Sample records for continuous-flow accelerator mass

  1. Leakage of the Greenland Ice Sheet through accelerated ice flow

    NASA Astrophysics Data System (ADS)

    Rignot, E.

    2005-12-01

    A map of coastal velocities of the Greenland ice sheet was produced from Radarsat-1 acquired during the background mission of 2000 and combined with radio echo sounding data to estimate the ice discharge from the ice sheet. On individual glaciers, ice discharge was compared with snow input from the interior and melt above the flux gate to determine the glacier mass balance. Time series of velocities on several glaciers at different latitudes reveal seasonal fluctuations of only 7-8 percent so that winter velocities are only 2 percent less than the yearly mean. The results show the northern Greenland glaciers to be close to balance yet losing mass. No change in ice flow is detected on Petermann, 79north and Zachariae Isstrom in 2000-2004. East Greenland glaciers are in balance and flowing steadily north of Kangerdlussuaq, but Kangerdlussuaq, Helheim and all the southeastern glaciers are thinning dramatically. All these glaciers accelerated, Kangerdlussuaq in 2000, Helheim prior to 2004, and southeast Greenland glaciers accelerated 10 to 50 percent in 2000-2004. Glacier acceleration is generally brutal, probably once the glacier reached a threshold, and sustained. In the northwest, most glaciers are largely out of balance. Jakobshavn accelerated significantly in 2002, and glaciers in its immediate vicinity accelerated more than 50 percent in 2000-2004. Less is known about southwest Greenland glaciers due to a lack of ice thickness data but the glaciers have accelerated there as well and are likely to be strongly out of balance despite thickening of the interior. Overall, I estimate the mass balance of the Greenland ice sheet to be about -80 +/-10 cubic km of ice per year in 2000 and -110 +/-15 cubic km of ice per year in 2004, i.e. more negative than based on partial altimetry surveys of the outlet glaciers. As climate continues to warm, more glaciers will accelerate, and the mass balance will become increasingly negative, regardless of the evolution of the ice sheet interior.

  2. Monodisperse granular flows in viscous dispersions in a centrifugal acceleration field

    NASA Astrophysics Data System (ADS)

    Cabrera, Miguel Angel; Wu, Wei

    2016-04-01

    Granular flows are encountered in geophysical flows and innumerable industrial applications with particulate materials. When mixed with a fluid, a complex network of interactions between the particle- and fluid-phase develops, resulting in a compound material with a yet unclear physical behaviour. In the study of granular suspensions mixed with a viscous dispersion, the scaling of the stress-strain characteristics of the fluid phase needs to account for the level of inertia developed in experiments. However, the required model dimensions and amount of material becomes a main limitation for their study. In recent years, centrifuge modelling has been presented as an alternative for the study of particle-fluid flows in a reduced scaled model in an augmented acceleration field. By formulating simple scaling principles proportional to the equivalent acceleration Ng in the model, the resultant flows share many similarities with field events. In this work we study the scaling principles of the fluid phase and its effects on the flow of granular suspensions. We focus on the dense flow of a monodisperse granular suspension mixed with a viscous fluid phase, flowing down an inclined plane and being driven by a centrifugal acceleration field. The scaled model allows the continuous monitoring of the flow heights, velocity fields, basal pressure and mass flow rates at different Ng levels. The experiments successfully identify the effects of scaling the plastic viscosity of the fluid phase, its relation with the deposition of particles over the inclined plane, and allows formulating a discussion on the suitability of simulating particle-fluid flows in a centrifugal acceleration field.

  3. Acceleration processes in the quasi-steady magnetoplasmadynamic discharge. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Boyle, M. J.

    1974-01-01

    The flow field characteristics within the discharge chamber and exhaust of a quasi-steady magnetoplasmadynamic (MPD) arcjet were examined to clarify the nature of the plasma acceleration process. The observation of discharge characteristics unperturbed by insulator ablation and terminal voltage fluctuations, first requires the satisfaction of three criteria: the use of refractory insulator materials; a mass injection geometry tailored to provide propellant to both electrode regions of the discharge; and a cathode of sufficient surface area to permit nominal MPD arcjet operation for given combinations of arc current and total mass flow. The axial velocity profile and electromagnetic discharge structure were measured for an arcjet configuration which functions nominally at 15.3 kA and 6 g/sec argon mass flow. An empirical two-flow plasma acceleration model is advanced which delineates inner and outer flow regions and accounts for the observed velocity profile and calculated thrust of the accelerator.

  4. Generalized derivation of the added-mass and circulatory forces for viscous flows

    NASA Astrophysics Data System (ADS)

    Limacher, Eric; Morton, Chris; Wood, David

    2018-01-01

    The concept of added mass arises from potential flow analysis and is associated with the acceleration of a body in an inviscid irrotational fluid. When shed vorticity is modeled as vortex singularities embedded in this irrotational flow, the associated force can be superimposed onto the added-mass force due to the linearity of the governing Laplace equation. This decomposition of force into added-mass and circulatory components remains common in modern aerodynamic models, but its applicability to viscous separated flows remains unclear. The present work addresses this knowledge gap by presenting a generalized derivation of the added-mass and circulatory force decomposition which is valid for a body of arbitrary shape in an unbounded, incompressible fluid domain, in both two and three dimensions, undergoing arbitrary motions amid continuous distributions of vorticity. From the general expression, the classical added-mass force is rederived for well-known canonical cases and is seen to be additive to the circulatory force for any flow. The formulation is shown to be equivalent to existing theoretical work under the specific conditions and assumptions of previous studies. It is also validated using a numerical simulation of a pitching plate in a steady freestream flow, conducted by Wang and Eldredge [Theor. Comput. Fluid Dyn. 27, 577 (2013), 10.1007/s00162-012-0279-5]. In response to persistent confusion in the literature, a discussion of the most appropriate physical interpretation of added mass is included, informed by inspection of the derived equations. The added-mass force is seen to account for the dynamic effect of near-body vorticity and is not (as is commonly claimed) associated with the acceleration of near-body fluid which "must" somehow move with the body. Various other consequences of the derivation are discussed, including a concept which has been labeled the conservation of image-vorticity impulse.

  5. Equations of motion for the variable mass flow-variable exhaust velocity rocket

    NASA Technical Reports Server (NTRS)

    Tempelman, W. H.

    1972-01-01

    An equation of motion for a one dimensional rocket is derived as a function of the mass flow rate into the acceleration chamber and the velocity distribution along the chamber, thereby including the transient flow changes in the chamber. The derivation of the mass density requires the introduction of the special time coordinate. The equation of motion is derived from both classical force and momentum approaches and is shown to be consistent with the standard equation expressed in terms of flow parameters at the exit to the acceleration chamber.

  6. Unsteady force estimation using a Lagrangian drift-volume approach

    NASA Astrophysics Data System (ADS)

    McPhaden, Cameron J.; Rival, David E.

    2018-04-01

    A novel Lagrangian force estimation technique for unsteady fluid flows has been developed, using the concept of a Darwinian drift volume to measure unsteady forces on accelerating bodies. The construct of added mass in viscous flows, calculated from a series of drift volumes, is used to calculate the reaction force on an accelerating circular flat plate, containing highly-separated, vortical flow. The net displacement of fluid contained within the drift volumes is, through Darwin's drift-volume added-mass proposition, equal to the added mass of the plate and provides the reaction force of the fluid on the body. The resultant unsteady force estimates from the proposed technique are shown to align with the measured drag force associated with a rapid acceleration. The critical aspects of understanding unsteady flows, relating to peak and time-resolved forces, often lie within the acceleration phase of the motions, which are well-captured by the drift-volume approach. Therefore, this Lagrangian added-mass estimation technique opens the door to fluid-dynamic analyses in areas that, until now, were inaccessible by conventional means.

  7. Mass, momentum and energy flow from an MPD accelerator. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cory, J. S.

    1971-01-01

    The mass, momentum, and energy flows are measured over a current range of 8 to 50 kA and inlet mass flows of 2 to 36q/sec of argon. The momentum flux profile indicates that the accelerator produces a uniform, 2-inch diameter axial jet at the anode which expands into a Gaussian profile at an axial station 11 inches from the anode. The electromagnetic component of the thrust is found to follow the familiar quadratic dependence on arc current, while a more complex empirical relation is needed to correlate the gasdynamic contribution with the current and mass flow rate. Using available time-of-flight velocity profiles at a current of 16 kA and a mass flow of 5.9 g/sec, calculated flux profiles of mass and kinetic energy exhibit a tendency for some fraction of the inlet mass flow to leak out at a low velocity around the central high velocity core.

  8. Mass spectrometric directed system for the continuous-flow synthesis and purification of diphenhydramine.

    PubMed

    Loren, Bradley P; Wleklinski, Michael; Koswara, Andy; Yammine, Kathryn; Hu, Yanyang; Nagy, Zoltan K; Thompson, David H; Cooks, R Graham

    2017-06-01

    A highly integrated approach to the development of a process for the continuous synthesis and purification of diphenhydramine is reported. Mass spectrometry (MS) is utilized throughout the system for on-line reaction monitoring, off-line yield quantitation, and as a reaction screening module that exploits reaction acceleration in charged microdroplets for high throughput route screening. This effort has enabled the discovery and optimization of multiple routes to diphenhydramine in glass microreactors using MS as a process analytical tool (PAT). The ability to rapidly screen conditions in charged microdroplets was used to guide optimization of the process in a microfluidic reactor. A quantitative MS method was developed and used to measure the reaction kinetics. Integration of the continuous-flow reactor/on-line MS methodology with a miniaturized crystallization platform for continuous reaction monitoring and controlled crystallization of diphenhydramine was also achieved. Our findings suggest a robust approach for the continuous manufacture of pharmaceutical drug products, exemplified in the particular case of diphenhydramine, and optimized for efficiency and crystal size, and guided by real-time analytics to produce the agent in a form that is readily adapted to continuous synthesis.

  9. Mass spectrometric directed system for the continuous-flow synthesis and purification of diphenhydramine† †Electronic supplementary information (ESI) available: NMR spectra of selected product, mass spectra of selected products, crystallization information, and experimental procedures are supplied. See DOI: 10.1039/c7sc00905d Click here for additional data file.

    PubMed Central

    Loren, Bradley P.; Wleklinski, Michael; Koswara, Andy; Yammine, Kathryn; Hu, Yanyang

    2017-01-01

    A highly integrated approach to the development of a process for the continuous synthesis and purification of diphenhydramine is reported. Mass spectrometry (MS) is utilized throughout the system for on-line reaction monitoring, off-line yield quantitation, and as a reaction screening module that exploits reaction acceleration in charged microdroplets for high throughput route screening. This effort has enabled the discovery and optimization of multiple routes to diphenhydramine in glass microreactors using MS as a process analytical tool (PAT). The ability to rapidly screen conditions in charged microdroplets was used to guide optimization of the process in a microfluidic reactor. A quantitative MS method was developed and used to measure the reaction kinetics. Integration of the continuous-flow reactor/on-line MS methodology with a miniaturized crystallization platform for continuous reaction monitoring and controlled crystallization of diphenhydramine was also achieved. Our findings suggest a robust approach for the continuous manufacture of pharmaceutical drug products, exemplified in the particular case of diphenhydramine, and optimized for efficiency and crystal size, and guided by real-time analytics to produce the agent in a form that is readily adapted to continuous synthesis. PMID:28979759

  10. Numerical research of parameters of interaction of the gas flow with rotary valve of the gas pipeline

    NASA Astrophysics Data System (ADS)

    Boldyrev, A. V.; Karelin, D. L.; Muljukin, V. L.

    2016-11-01

    Conducted numerical research of static characteristics of the rotary gate valve at different angles of its deviation. for this purpose were set different values of pressure differential on the valve depending on which, was determined the mass flow and torque on valve axes. The mathematical model is provided by continuity equations, average on Reynolds, Navier-Stokes and energy, the equation of the perfect gas, the equations of two-layer k-e of model of turbulence. When calculating the current near walls are used Wolfstein's model and the hybrid wall functions of Reichardt for the speed and temperature. The task is solved in three-dimensional statement with use of conditions of symmetry. The structure of the current is analyzed: zones of acceleration and flow separation, whirlwinds, etc. Noted growth of hydraulic resistance of the valve with reduction of slope angle of the valve and with the increase in mass flow. Established increase of torque with reduction of the deviation angle of the valve and with increase in the mass expense.

  11. Acceleration of Humboldt glacier, north Greenland

    NASA Astrophysics Data System (ADS)

    Jeong, S.; Howat, I.; Noh, M. J.; King, M. D.

    2017-12-01

    Here we report on recent abrupt acceleration on the flow speed of Humboldt Glacier (HG) in northern Greenland. The mean annual discharge of this glacier in 2000 was estimated as 8.4Gt/a, placing it among the largest outlet glacier draining the northern coast (Enderlin et al., 2014). Using a combination of remote sensing datasets, we find that following a slight slowing before 2010, HG suddenly sped up by a factor of three between 2012 and 2013, maintaining that increased speed through 2016. Speedup was accompanied by up to 10 m of thinning near the terminus and followed slower, longer-term thinning and retreat. Here we assess possible causes for the speedup, potential for continued acceleration and implication to ice sheet mass balance. ReferenceEnderlin, E. M., I. M. Howat, S. Jeong, M.-J. Noh, J. H. van Angelen, and M. R. van den Broeke (2014), An improved mass budget for the Greenland ice sheet, Geophys. Res. Lett., 41, 866-872, doi:10.1002/2013GL059010.

  12. Photochemical transformations accelerated in continuous-flow reactors: basic concepts and applications.

    PubMed

    Su, Yuanhai; Straathof, Natan J W; Hessel, Volker; Noël, Timothy

    2014-08-18

    Continuous-flow photochemistry is used increasingly by researchers in academia and industry to facilitate photochemical processes and their subsequent scale-up. However, without detailed knowledge concerning the engineering aspects of photochemistry, it can be quite challenging to develop a suitable photochemical microreactor for a given reaction. In this review, we provide an up-to-date overview of both technological and chemical aspects associated with photochemical processes in microreactors. Important design considerations, such as light sources, material selection, and solvent constraints are discussed. In addition, a detailed description of photon and mass-transfer phenomena in microreactors is made and fundamental principles are deduced for making a judicious choice for a suitable photomicroreactor. The advantages of microreactor technology for photochemistry are described for UV and visible-light driven photochemical processes and are compared with their batch counterparts. In addition, different scale-up strategies and limitations of continuous-flow microreactors are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Accelerated gas-liquid visible light photoredox catalysis with continuous-flow photochemical microreactors.

    PubMed

    Straathof, Natan J W; Su, Yuanhai; Hessel, Volker; Noël, Timothy

    2016-01-01

    In this protocol, we describe the construction and use of an operationally simple photochemical microreactor for gas-liquid photoredox catalysis using visible light. The general procedure includes details on how to set up the microreactor appropriately with inlets for gaseous reagents and organic starting materials, and it includes examples of how to use it to achieve continuous-flow preparation of disulfides or trifluoromethylated heterocycles and thiols. The reported photomicroreactors are modular, inexpensive and can be prepared rapidly from commercially available parts within 1 h even by nonspecialists. Interestingly, typical reaction times of gas-liquid visible light photocatalytic reactions performed in microflow are lower (in the minute range) than comparable reactions performed as a batch process (in the hour range). This can be attributed to the improved irradiation efficiency of the reaction mixture and the enhanced gas-liquid mass transfer in the segmented gas-liquid flow regime.

  14. System for measuring multiphase flow using multiple pressure differentials

    DOEpatents

    Fincke, James R.

    2003-01-01

    An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.

  15. Flow of sand and a variable mass Atwood machine

    NASA Astrophysics Data System (ADS)

    Flores, José; Solovey, Guillermo; Gil, Salvador

    2003-07-01

    We discuss a simple and inexpensive apparatus that lets us measure the instantaneous flow rate of granular media, such as sand, in real time. The measurements allow us to elucidate the phenomenological laws that govern the flow of granular media through an aperture. We use this apparatus to construct a variable mass system and study the motion of an Atwood machine with one weight changing in time in a controlled manner. The study illustrates Newton's second law for variable mass systems and lets us investigate the dependence of the flow rate on acceleration.

  16. Design and Installation of a Field Ionization Test Chamber for Ion Thrusters

    DTIC Science & Technology

    2011-12-01

    where F is thrust, m& is the mass flow rate of the propellant, and go is the standard acceleration due to gravity at sea level [1]. It provides a...only one graphene wall, and multi- walled CNT ( MWCNT ), which consist of multiple, concentric walls of graphene (Figure 9). One of the most unique...ionization chamber to ensure the mass flow rate going into the chamber matches the mass flow rate leaving it. 46 B. FIELD EMISSION AND FIELD

  17. Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow.

    PubMed

    Holzner, M; Morales, V L; Willmann, M; Dentz, M

    2015-07-01

    Intermittency of Lagrangian velocity and acceleration is a key to understanding transport in complex systems ranging from fluid turbulence to flow in porous media. High-resolution optical particle tracking in a three-dimensional (3D) porous medium provides detailed 3D information on Lagrangian velocities and accelerations. We find sharp transitions close to pore throats, and low flow variability in the pore bodies, which gives rise to stretched exponential Lagrangian velocity and acceleration distributions characterized by a sharp peak at low velocity, superlinear evolution of particle dispersion, and double-peak behavior in the propagators. The velocity distribution is quantified in terms of pore geometry and flow connectivity, which forms the basis for a continuous-time random-walk model that sheds light on the observed Lagrangian flow and transport behaviors.

  18. SHEAR ACCELERATION IN EXPANDING FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rieger, F. M.; Duffy, P., E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: peter.duffy@ucd.ie

    Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets from active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi–Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplifymore » that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge line, and limb-brightening).« less

  19. High-bandwidth continuous-flow arc furnace

    DOEpatents

    Hardt, David E.; Lee, Steven G.

    1996-01-01

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics.

  20. High-bandwidth continuous-flow arc furnace

    DOEpatents

    Hardt, D.E.; Lee, S.G.

    1996-08-06

    A high-bandwidth continuous-flow arc furnace for stream welding applications includes a metal mass contained in a crucible having an orifice. A power source charges an electrode for generating an arc between the electrode and the mass. The arc heats the metal mass to a molten state. A pressurized gas source propels the molten metal mass through the crucible orifice in a continuous stream. As the metal is ejected, a metal feeder replenishes the molten metal bath. A control system regulates the electrode current, shielding gas pressure, and metal source to provide a continuous flow of molten metal at the crucible orifice. Independent control over the electrode current and shield gas pressure decouples the metal flow temperature and the molten metal flow rate, improving control over resultant weld characteristics. 4 figs.

  1. Removal of hexavalent chromium by biosorption process in rotating packed bed.

    PubMed

    Panda, M; Bhowal, A; Datta, S

    2011-10-01

    Removal of hexavalent chromium ions from an aqueous solution by crude tamarind (Tamarindus indica) fruit shell was examined in a rotating packed bed contactor by continuously recirculating a given volume of solution through the bed. Reduction of Cr(VI) to Cr(III) within the biosorbent appeared to be the removal mechanism. Depletion rate of Cr(VI) from, and release of reduced Cr(III) ions into the aqueous phase, was influenced by mass transfer resistance besides pH and packing depth. A mathematical model considering the reduction reaction to be irreversible and incorporating intraparticle and external phase mass transfer resistances represented the experimental data adequately. The study indicated that the limitations of fixed bed contactor operating under terrestrial gravity in intensifying mass transfer rates for this system can be overcome with rotating packed bed due to liquid flow under centrifugal acceleration.

  2. Numerical Simulation of Hot Accretion Flows. III. Revisiting Wind Properties Using the Trajectory Approach

    NASA Astrophysics Data System (ADS)

    Yuan, Feng; Gan, Zhaoming; Narayan, Ramesh; Sadowski, Aleksander; Bu, Defu; Bai, Xue-Ning

    2015-05-01

    Previous MHD simulations have shown that wind must exist in black hole hot accretion flows. In this paper, we continue our study by investigating the detailed properties of wind and the mechanism of wind production. For this aim, we make use of a 3D general relativistic MHD simulation of hot accretion flows around a Schwarzschild black hole. To distinguish real wind from turbulent outflows, we track the trajectories of the virtual Lagrangian particles from simulation data. We find two types of real outflows, i.e., a jet and a wind. The mass flux of wind is very significant, and its radial profile can be described by {{\\dot{M}}wind}≈ {{\\dot{M}}BH}≤ft( r/20 {{r}s} \\right), with {{\\dot{M}}BH} being the mass accretion rate at the black hole horizon and rs being the Schwarzschild radius. The poloidal wind speed almost remains constant once they are produced, but the flux-weighted wind speed roughly follows {{v}p,wind}(r)≈ 0.25{{v}k}(r), with vk(r) being the Keplerian speed at radius r. The mass flux of the jet is much lower, but the speed is much higher, {{v}p,jet} ˜ (0.3-0.4)c. Consequently, both the energy and momentum fluxes of the wind are much larger than those of the jet. The wind is produced and accelerated primarily by the combination of centrifugal force and magnetic pressure gradient, while the jet is mainly accelerated by the magnetic pressure gradient. Finally, we find that the wind production efficiency {{ɛ }wind}\\equiv {{\\dot{E}}wind}/{{\\dot{M}}BH}{{c}2}˜ 1/1000 is in good agreement with the value required from large-scale galaxy simulations with active galactic nucleus feedback.

  3. Surge of a Complex Glacier System - The Current Surge of the Bering-Bagley Glacier System, Alaska

    NASA Astrophysics Data System (ADS)

    Herzfeld, U. C.; McDonald, B.; Trantow, T.; Hale, G.; Stachura, M.; Weltman, A.; Sears, T.

    2013-12-01

    Understanding fast glacier flow and glacial accelerations is important for understanding changes in the cryosphere and ultimately in sea level. Surge-type glaciers are one of four types of fast-flowing glaciers --- the other three being continuously fast-flowing glaciers, fjord glaciers and ice streams --- and the one that has seen the least amount of research. The Bering-Bagley Glacier System, Alaska, the largest glacier system in North America, surged in 2011 and 2012. Velocities decreased towards the end of 2011, while the surge kinematics continued to expand. A new surge phase started in summer and fall 2012. In this paper, we report results from airborne observations collected in September 2011, June/July and September/October 2012 and in 2013. Airborne observations include simultaneously collected laser altimeter data, videographic data, GPS data and photographic data and are complemented by satellite data analysis. Methods range from classic interpretation of imagery to analysis and classification of laser altimeter data and connectionist (neural-net) geostatistical classification of concurrent airborne imagery. Results focus on the characteristics of surge progression in a large and complex glacier system (as opposed to a small glacier with relatively simple geometry). We evaluate changes in surface elevations including mass transfer and sudden drawdowns, crevasse types, accelerations and changes in the supra-glacial and englacial hydrologic system. Supraglacial water in Bering Glacier during Surge, July 2012 Airborne laser altimeter profile across major rift in central Bering Glacier, Sept 2011

  4. CFD Application to Flow-Accelerated Corrosion in Feeder Bends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietralik, John M.; Smith, Bruce A.W.

    2006-07-01

    Feeder piping in CANDU{sup R} plants experiences a thinning degradation mechanism called Flow-Accelerated Corrosion (FAC). The piping is made of carbon steel and has high water flow speeds. Although the water chemistry is highly alkaline with room-temperature pH in a range of 10.0-10.5, the piping has FAC rates exceeding 0.1 mm/year in some locations, e.g., in bends. One of the most important parameters affecting the FAC rate is the mass transfer coefficient for convective mass transport of ferrous ions. The ions are created at the pipe wall as a result of corrosion, diffuse through the oxide layer, and are transportedmore » from the oxide-layer/water interface to the bulk water by mass transport. Consequently, the local flow characteristics contribute to the highly turbulent convective mass transfer. Plant data and laboratory experiments indicate that the mass transfer step dominates FAC under feeder conditions. In this study, the flow and mass transfer in a feeder bend under operating conditions were simulated using the Fluent{sup TM} computer code. Because the flow speed is very high, with the Reynolds numbers in a range of several millions, and because the geometry is complex, experiments in a 1:1 scale were conducted with the main objective to validate flow simulations. The experiments measured pressure at several key locations and visualized the flow. The flow and mass transfer models were validated using available friction-factor and mass transfer correlations and literature experiments on mass transfer in a bend. The validation showed that the turbulence model that best predicts the experiments is the realizable k-{epsilon} model. Other two-equation turbulence models, as well as one-equation models and Reynolds stress models were tried. The near-wall treatment used the non-equilibrium wall functions. The wall functions were modified for surface roughness when necessary. A comparison of the local mass transfer coefficient with measured FAC rate in plant specimens shows very good agreement. Visualization experiments indicate secondary flows in the bends. No boundary layer separation was observed in experiments or in simulations. (authors)« less

  5. Smoothed particle hydrodynamics method for simulating waterfall flow

    NASA Astrophysics Data System (ADS)

    Suwardi, M. G.; Jondri; Tarwidi, D.

    2018-03-01

    The existence of waterfall in many nations, such as Indonesia has a potential to develop and to fulfill the electricity demand in the nation. By utilizing mechanical flow energy of the waterfall, it would be able to generate electricity. The study of mechanical energy could be done by simulating waterfall flow using 2-D smoothed particle hydrodynamics (SPH) method. The SPH method is suitable to simulate the flow of the waterfall, because it has an advantage which could form particles movement that mimic the characteristics of fluid. In this paper, the SPH method is used to solve Navier-Stokes and continuity equation which are the main cores of fluid motion. The governing equations of fluid flow are used to obtain the acceleration, velocity, density, and position of the SPH particles as well as the completion of Leapfrog time-stepping method. With these equations, simulating a waterfall flow would be more attractive and able to complete the analysis of mechanical energy as desired. The mechanical energy that generated from the waterfall flow is calculated and analyzed based on the mass, height, and velocity of each SPH particle.

  6. Gas propagation in a liquid helium cooled vacuum tube following a sudden vacuum loss

    NASA Astrophysics Data System (ADS)

    Dhuley, Ram C.

    This dissertation describes the propagation of near atmospheric nitrogen gas that rushes into a liquid helium cooled vacuum tube after the tube suddenly loses vacuum. The loss-of-vacuum scenario resembles accidental venting of atmospheric air to the beam-line of a superconducting radio frequency particle accelerator and is investigated to understand how in the presence of condensation, the in-flowing air will propagate in such geometry. In a series of controlled experiments, room temperature nitrogen gas (a substitute for air) at a variety of mass flow rates was vented to a high vacuum tube immersed in a bath of liquid helium. Pressure probes and thermometers installed on the tube along its length measured respectively the tube pressure and tube wall temperature rise due to gas flooding and condensation. At high mass in-flow rates a gas front propagated down the vacuum tube but with a continuously decreasing speed. Regression analysis of the measured front arrival times indicates that the speed decreases nearly exponentially with the travel length. At low enough mass in-flow rates, no front propagated in the vacuum tube. Instead, the in-flowing gas steadily condensed over a short section of the tube near its entrance and the front appeared to `freeze-out'. An analytical expression is derived for gas front propagation speed in a vacuum tube in the presence of condensation. The analytical model qualitatively explains the front deceleration and flow freeze-out. The model is then simplified and supplemented with condensation heat/mass transfer data to again find the front to decelerate exponentially while going away from the tube entrance. Within the experimental and procedural uncertainty, the exponential decay length-scales obtained from the front arrival time regression and from the simplified model agree.

  7. Influence of continuous deformations and tremors of rock mass on a building. Case study

    NASA Astrophysics Data System (ADS)

    Strzałkowski, Piotr

    2018-04-01

    This work presents an exemplary analysis of the influence of mining exploitations on a building. Continuous deformations of the ground surface in the location of the object were considered. Analysis of the impact of tremors of rock mass on the object was performed. The results of calculations as well as the measurements of surface vibrations accelerations were taken into account. The performed analyses show the influence of a fault on increase of vibrations accelerations.

  8. Unsteady forces on a spherical particle accelerating or decelerating in an initially stagnant fluid

    NASA Astrophysics Data System (ADS)

    Keshav, Yashas Mudlapur Phaneesh

    Flows with particles play an important role in a number of engineering applications. These include trajectories of droplets in sprays in fuel-injected-reciprocating-piston and gas-turbine engines, erosion of materials due to particle impact on a surface, and deposition of materials on surfaces by impinging droplets or particles that could solidify or bond on impact. For these applications, it is important to understand the forces that act on the particles so that their trajectories could be predicted. Considerable work has been done on understanding the forces acting on spherical particles, where the Reynolds numbers (Rep) based on the particle diameter and the relative speed between the particle and the fluid is less than unity. When Rep is larger than unity and when the particle is accelerating or decelerating, the added-mass effect and the Basset forces are not well understood. In this study, time-accurate numerical simulations were performed to study laminar incompressible flow induced by a single non-rotating rigid spherical particle that is accelerated or decelerated at a constant rate in an initially stagnant fluid, where the unsteady flow about the spherical particle is resolved. The Rep studied range from 0.01 to 100, and the acceleration number (Ac), where A c is the square of the relative velocity between the particle and the fluid divided by the acceleration times the particle diameter studied was in the range 2.13x-7 < |Ac |< 21337. Results obtained show the added mass effect for Rep up to 100 has the same functional form as those based on potential theory where the Rep is infinite and creeping flow where Rep is less than unity. The Basset force, however, differs considerably from those under creeping flow conditions and depends on Rep and the acceleration number (Ac). A model was developed to provide the magnitude of the added-mass effect and the Basset force in the range of Rep and Ac studied. Results obtained also show the effect of unsteadiness to become negligible when Ac reaches 80.

  9. Internal hydraulic control in the Little Belt, Denmark - observations of flow configurations and water mass formation

    NASA Astrophysics Data System (ADS)

    Holtegaard Nielsen, Morten; Vang, Torben; Chresten Lund-Hansen, Lars

    2017-12-01

    Internal hydraulic control, which occurs when stratified water masses are forced through an abrupt constriction, plays an enormous role in nature on both large and regional scales with respect to dynamics, circulation, and water mass formation. Despite a growing literature on this subject surprisingly few direct observations have been made that conclusively show the existence of and the circumstances related to internal hydraulic control in nature. In this study we present observations from the Little Belt, Denmark, one of three narrow straits connecting the Baltic Sea and the North Sea. The observations (comprised primarily of along-strait, detailed transects of salinity and temperature; continuous observations of flow velocity, salinity, and temperature at a permanent station; and numerous vertical profiles of salinity, temperature, fluorescence, and flow velocity in various locations) show that internal hydraulic control is a frequently occurring phenomenon in the Little Belt. The observations, which are limited to south-going flows of approximately two-layered water masses, show that internal hydraulic control may take either of two configurations, i.e. the lower or the upper layer being the active, accelerating one. This is connected to the depth of the pycnocline on the upstream side and the topography, which is both deepening and contracting toward the narrow part of the Little Belt. The existence of two possible flow configurations is known from theoretical and laboratory studies, but we believe that this has never been observed in nature and reported before. The water masses formed by the intense mixing, which is tightly connected with the presence of control, may be found far downstream of the point of control. The observations show that these particular water masses are associated with chlorophyll concentrations that are considerably higher than in adjacent water masses, showing that control has a considerable influence on the primary production and hence the ecosystem in the area.

  10. 14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Minimum mass flow of supplemental oxygen... § 25.1443 Minimum mass flow of supplemental oxygen. (a) If continuous flow equipment is installed for use by flight crewmembers, the minimum mass flow of supplemental oxygen required for each crewmember...

  11. 14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Minimum mass flow of supplemental oxygen... § 25.1443 Minimum mass flow of supplemental oxygen. (a) If continuous flow equipment is installed for use by flight crewmembers, the minimum mass flow of supplemental oxygen required for each crewmember...

  12. 14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Minimum mass flow of supplemental oxygen... § 25.1443 Minimum mass flow of supplemental oxygen. (a) If continuous flow equipment is installed for use by flight crewmembers, the minimum mass flow of supplemental oxygen required for each crewmember...

  13. 14 CFR 25.1443 - Minimum mass flow of supplemental oxygen.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Minimum mass flow of supplemental oxygen... § 25.1443 Minimum mass flow of supplemental oxygen. (a) If continuous flow equipment is installed for use by flight crewmembers, the minimum mass flow of supplemental oxygen required for each crewmember...

  14. Accelerated West Antarctic ice mass loss continues to outpace East Antarctic gains

    NASA Astrophysics Data System (ADS)

    Harig, Christopher; Simons, Frederik J.

    2015-04-01

    While multiple data sources have confirmed that Antarctica is losing ice at an accelerating rate, different measurement techniques estimate the details of its geographically highly variable mass balance with different levels of accuracy, spatio-temporal resolution, and coverage. Some scope remains for methodological improvements using a single data type. In this study we report our progress in increasing the accuracy and spatial resolution of time-variable gravimetry from the Gravity Recovery and Climate Experiment (GRACE). We determine the geographic pattern of ice mass change in Antarctica between January 2003 and June 2014, accounting for glacio-isostatic adjustment (GIA) using the IJ05_R2 model. Expressing the unknown signal in a sparse Slepian basis constructed by optimization to prevent leakage out of the regions of interest, we use robust signal processing and statistical estimation methods. Applying those to the latest time series of monthly GRACE solutions we map Antarctica's mass loss in space and time as well as can be recovered from satellite gravity alone. Ignoring GIA model uncertainty, over the period 2003-2014, West Antarctica has been losing ice mass at a rate of - 121 ± 8 Gt /yr and has experienced large acceleration of ice mass losses along the Amundsen Sea coast of - 18 ± 5 Gt /yr2, doubling the mass loss rate in the past six years. The Antarctic Peninsula shows slightly accelerating ice mass loss, with larger accelerated losses in the southern half of the Peninsula. Ice mass gains due to snowfall in Dronning Maud Land have continued to add about half the amount of West Antarctica's loss back onto the continent over the last decade. We estimate the overall mass losses from Antarctica since January 2003 at - 92 ± 10 Gt /yr.

  15. Analysis of the acceleration region in a circulating fluidized bed riser operating above fast fluidization velocities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monazam, E.R.; Shadle, L.J.

    2008-11-05

    In commercial circulating fluidized bed (CFB) processes the acceleration zone greatly contributes to solids mixing, gas and solids dispersion, and particle residence times. A new analysis was developed to describe the relative gas-solids concentration in the acceleration region of a transport system with air as the fluidizing agent for Geldart-type B particles. A theoretical expression was derived from a drag relationship and momentum and continuity equations to describe the evolution of the gas-solids profile along the axial direction. The acceleration zone was characterized using nondimensional analysis of the continuum equations (balances of masses and momenta) that described multiphase flows. Inmore » addition to acceleration length, the boundary condition for the solids fraction at the bottom of the riser and the fully developed regions were measured using an industrial scale CFB of 0.3 m diameter and 15 m tall. The operating factors affecting the flow development in the acceleration region were determined for three materials of various sizes and densities in core annular and dilute regimes of the riser. Performance data were taken from statistically designed experiments over a wide range of Fr (0.5-39), Re (8-600), Ar (29-3600), load ratio (0.2-28), riser to particle diameter ratio (375-5000), and gas to solids density ratio (138-1381). In this one-dimensional system of equations, velocities and solid fractions were assumed to be constant over any cross section. The model and engineering correlations were compared with literature expressions to assess their validity and range of applicability. These expressions can be used as tools for simulation and design of a CFB riser and can also be easily coupled to a kinetics model for process simulation.« less

  16. Hollow cathode, quasi-steady MPD arc

    NASA Technical Reports Server (NTRS)

    Parmentier, N.; Jahn, R. G.

    1971-01-01

    A quasi-steady MPD accelerator has been operated with four different hollow cathodes over a power range from 5 kilowatts to 5 megawatts. The absolute level of the argon mass flow, as well as the fractional division of the flow between the cathode and the six standard chamber injectors, is varied over a range of 1 to 12 grams per second. For a fixed total current, it is observed that the voltage increases monotonically with mass flow rate, compared to the usual experience with solid cathodes where the voltage decreases with mass flow rate. For a fixed percentage of flow through the cathode, each hollow cathode configuration displays a minimum impedance at a particular value of the total mass flow. It is asserted that in order to keep the discharge inside the hollow cathode the magnetic pressure and gasdynamic pressure have to match inside the cavity.

  17. Centripetal Acceleration Reaction: An Effective and Robust Mechanism for Flapping Flight in Insects

    PubMed Central

    Zhang, Chao; Hedrick, Tyson L.; Mittal, Rajat

    2015-01-01

    Despite intense study by physicists and biologists, we do not fully understand the unsteady aerodynamics that relate insect wing morphology and kinematics to lift generation. Here, we formulate a force partitioning method (FPM) and implement it within a computational fluid dynamic model to provide an unambiguous and physically insightful division of aerodynamic force into components associated with wing kinematics, vorticity, and viscosity. Application of the FPM to hawkmoth and fruit fly flight shows that the leading-edge vortex is the dominant mechanism for lift generation for both these insects and contributes between 72–85% of the net lift. However, there is another, previously unidentified mechanism, the centripetal acceleration reaction, which generates up to 17% of the net lift. The centripetal acceleration reaction is similar to the classical inviscid added-mass in that it depends only on the kinematics (i.e. accelerations) of the body, but is different in that it requires the satisfaction of the no-slip condition, and a combination of tangential motion and rotation of the wing surface. Furthermore, the classical added-mass force is identically zero for cyclic motion but this is not true of the centripetal acceleration reaction. Furthermore, unlike the lift due to vorticity, centripetal acceleration reaction lift is insensitive to Reynolds number and to environmental flow perturbations, making it an important contributor to insect flight stability and miniaturization. This force mechanism also has broad implications for flow-induced deformation and vibration, underwater locomotion and flows involving bubbles and droplets. PMID:26252016

  18. Centripetal Acceleration Reaction: An Effective and Robust Mechanism for Flapping Flight in Insects.

    PubMed

    Zhang, Chao; Hedrick, Tyson L; Mittal, Rajat

    2015-01-01

    Despite intense study by physicists and biologists, we do not fully understand the unsteady aerodynamics that relate insect wing morphology and kinematics to lift generation. Here, we formulate a force partitioning method (FPM) and implement it within a computational fluid dynamic model to provide an unambiguous and physically insightful division of aerodynamic force into components associated with wing kinematics, vorticity, and viscosity. Application of the FPM to hawkmoth and fruit fly flight shows that the leading-edge vortex is the dominant mechanism for lift generation for both these insects and contributes between 72-85% of the net lift. However, there is another, previously unidentified mechanism, the centripetal acceleration reaction, which generates up to 17% of the net lift. The centripetal acceleration reaction is similar to the classical inviscid added-mass in that it depends only on the kinematics (i.e. accelerations) of the body, but is different in that it requires the satisfaction of the no-slip condition, and a combination of tangential motion and rotation of the wing surface. Furthermore, the classical added-mass force is identically zero for cyclic motion but this is not true of the centripetal acceleration reaction. Furthermore, unlike the lift due to vorticity, centripetal acceleration reaction lift is insensitive to Reynolds number and to environmental flow perturbations, making it an important contributor to insect flight stability and miniaturization. This force mechanism also has broad implications for flow-induced deformation and vibration, underwater locomotion and flows involving bubbles and droplets.

  19. Seasonal speed-up of two outlet glaciers of Austfonna, Svalbard, inferred from continuous GPS measurements

    NASA Astrophysics Data System (ADS)

    Dunse, T.; Schuler, T. V.; Hagen, J. O.; Reijmer, C. H.

    2011-12-01

    A large part of the ice discharge from ice caps and ice sheets occurs through spatially limited flow units that may operate in a mode of steady flow or cyclic surge behaviour. Changes in the dynamics of distinct flow units play a key role in the mass balance of Austfonna, the largest ice cap on Svalbard. The recent net mass loss of Austfonna was dominated by calving from marine terminating outlet glaciers. Previous ice-surface velocity maps of the ice cap were derived by satellite radar interferometry (InSAR) and rely on data acquired in the mid-1990s with limited information concerning the temporal variability. Here, we present continuous Global Positioning System (GPS) observations along the central flowlines of two fast flowing outlet glaciers over 2008-2010. The data show prominent summer speed-ups with ice-surface velocities as high as 240 % of the pre-summer mean. Acceleration follows the onset of the summer melt period, indicating enhanced basal motion due to input of surface meltwater into the subglacial drainage system. In 2008, multiple velocity peaks coincide with successive melt periods. In 2009, the principle melt was of higher amplitude than in 2008. Flow velocities appear unaffected by subsequent melt periods, suggesting a transition towards a hydraulically more efficient drainage system. The observed annual mean velocities of Duvebreen and Basin-3 exceed those from the mid-1990s by factors two and four, respectively, implying increased ice discharge at the calving front. Measured summer velocities up to 2 m d-1 for Basin-3 are close to that of Kronebreen, often referred to as the fastest glacier on Svalbard.

  20. Investigation into the effect of water chemistry on corrosion product formation in areas of accelerated flow

    NASA Astrophysics Data System (ADS)

    McGrady, John; Scenini, Fabio; Duff, Jonathan; Stevens, Nicholas; Cassineri, Stefano; Curioni, Michele; Banks, Andrew

    2017-09-01

    The deposition of CRUD (Chalk River Unidentified Deposit) in the primary circuit of a Pressurised Water Reactor (PWR) is known to preferentially occur in regions of the circuit where flow acceleration of coolant occurs. A micro-fluidic flow cell was used to recreate accelerated flow under simulated PWR conditions, by flowing water through a disc with a central micro-orifice. CRUD deposition was reproduced on the disc, and CRUD Build-Up Rates (BUR) in various regions of the disc were analysed. The effect of the local environment on BUR was investigated. In particular, the effect of flow velocity, specimen material and Fe concentration were considered. The morphology and composition of the deposits were analysed with respect to experimental conditions. The BUR of CRUD was found to be sensitive to flow velocity and Fe concentration, suggesting that mass transfer is an important factor. The morphology of the deposit was affected by the specimen material indicating a dependence on surface/particle electrostatics meaning surface chemistry plays an important role in deposition. The preferential deposition of CRUD in accelerated flow regions due to electrokinetic effects was observed and it was shown that higher Fe concentrations in solution increased BURs within the orifice whereas increased flow velocity reduced BURs.

  1. Accuracy of delta 18O isotope ratio measurements on the same sample by continuous-flow isotope-ratio mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    The doubly labeled water method is considered the reference method to measure energy expenditure. Conventional mass spectrometry requires a separate aliquot of the same sample to be prepared and analyzed separately. With continuous-flow isotope-ratio mass spectrometry, the same sample could be analy...

  2. DEM simulation of granular flows in a centrifugal acceleration field

    NASA Astrophysics Data System (ADS)

    Cabrera, Miguel Angel; Peng, Chong; Wu, Wei

    2017-04-01

    The main purpose of mass-flow experimental models is abstracting distinctive features of natural granular flows, and allow its systematic study in the laboratory. In this process, particle size, space, time, and stress scales must be considered for the proper representation of specific phenomena [5]. One of the most challenging tasks in small scale models, is matching the range of stresses and strains among the particle and fluid media observed in a field event. Centrifuge modelling offers an alternative to upscale all gravity-driven processes, and it has been recently employed in the simulation of granular flows [1, 2, 3, 6, 7]. Centrifuge scaling principles are presented in Ref. [4], collecting a wide spectrum of static and dynamic models. However, for the case of kinematic processes, the non-uniformity of the centrifugal acceleration field plays a major role (i.e., Coriolis and inertial effects). In this work, we discuss a general formulation for the centrifugal acceleration field, implemented in a discrete element model framework (DEM), and validated with centrifuge experimental results. Conventional DEM simulations relate the volumetric forces as a function of the gravitational force Gp = mpg. However, in the local coordinate system of a rotating centrifuge model, the cylindrical centrifugal acceleration field needs to be included. In this rotating system, the centrifugal acceleration of a particle depends on the rotating speed of the centrifuge, as well as the position and speed of the particle in the rotating model. Therefore, we obtain the formulation of centrifugal acceleration field by coordinate transformation. The numerical model is validated with a series of centrifuge experiments of monodispersed glass beads, flowing down an inclined plane at different acceleration levels and slope angles. Further discussion leads to the numerical parameterization necessary for simulating equivalent granular flows under an augmented acceleration field. The premise of this validation is abstracting the role of the governing acceleration on the granular flow dynamics and extend it to a wider range of accelerations and slope angles. Based on this results we aim to validate the centrifuge scaling principle of flow velocity and flow height, and discuss the viability of centrifuge modelling of mass flows in a wider range of configurations. References T. Arndt, A. Brucks, J.M. Ottino, and R. Lueptow. Creeping granular motion under variable gravity levels. Phys. Rev. E, 74 (031307), 2006. E. Bowman, J. Laue, and S. Springman. Experimental modelling of debris flow behaviour using a geotechnical centrifuge. Canadian Geotechnical Journal, 47(7): 742 - 762, 2010. M. Cabrera. Experimental modelling of granular flows in rotating frames. PhD thesis, University of Natural Resources and Life Sciences, Vienna, February 2016 J. Garnier, C. Gaudin, S.M. Springman, P.J. Culligan, D.J. Goodings, D. Konig, B.L. Kutter, R. Phillips, M.F. Randolph, and L. Thorel. Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling. International Journal of Physical Modelling in Geotechnics, 7(3):1 - 23, 2007. R.M. Iverson. Scaling and design of landslide and debris-flow experiments. Geomorphology, 2015. J. Mathews. Investigation of granular flow using silo centrifuge models. PhD thesis, University of Natural Resources and Life Sciences, Vienna, September 2013. L. Vallejo, N. Estrada, A. Taboada, B. Caicedo, and J.A. Silva. Numerical and physical modeling of granular flow. In C.W. Ng, Y.H. Wang, and L.M. Zhang, editors, Physical Modelling in Geotechnics. Taylor & Francis, July 2006.

  3. Method and system for measuring multiphase flow using multiple pressure differentials

    DOEpatents

    Fincke, James R.

    2001-01-01

    An improved method and system for measuring a multiphase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multiphase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The method for determining the mass flow of the high void fraction fluid flow and the gas flow includes certain steps. The first step is calculating a gas density for the gas flow. The next two steps are finding a normalized gas mass flow rate through the venturi and computing a gas mass flow rate. The following step is estimating the gas velocity in the venturi tube throat. The next step is calculating the pressure drop experienced by the gas-phase due to work performed by the gas phase in accelerating the liquid phase between the upstream pressure measuring point and the pressure measuring point in the venturi throat. Another step is estimating the liquid velocity in the venturi throat using the calculated pressure drop experienced by the gas-phase due to work performed by the gas phase. Then the friction is computed between the liquid phase and a wall in the venturi tube. Finally, the total mass flow rate based on measured pressure in the venturi throat is calculated, and the mass flow rate of the liquid phase is calculated from the difference of the total mass flow rate and the gas mass flow rate.

  4. Greenland Ice Sheet Mass Balance: Distribution of Increased Mass Loss with Climate Warming; 2003-07 Versus 1992-2002

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Li, Jun; Benner, Anita C.; Beckley, Matthew; Cornejo, Helen G.; DiMarzio, John; Giovinetto, Mario B.; Neumann, Thomas A.; Robbins, John; Saba, Jack L.; hide

    2011-01-01

    We derive mass changes of the Greenland ice sheet (GIS) for 2003-07 from ICESat laser altimetry and compare them with results for 1992-2002 from ERS radar and airborne laser altimetry. The GIS continued to grow inland and thin at the margins during 2003 07, but surface melting and accelerated flow significantly increased the marginal thinning compared with the 1990s. The net balance changed from a small loss of 7 plus or minus 3 Gt a 1(sup -1) in the 1990s to 171 plus or minus 4 Gt a (sup -1) for 2003-07, contributing 0.5 mm a(sup -1) to recent global sea-level rise. We divide the derived mass changes into two components: (1) from changes in melting and ice dynamics and (2) from changes in precipitation and accumulation rate. We use our firn compaction model to calculate the elevation changes driven by changes in both temperature and accumulation rate and to calculate the appropriate density to convert the accumulation-driven changes to mass changes. Increased losses from melting and ice dynamics (17-206 Gt a(sup-1) are over seven times larger than increased gains from precipitation (10 35 Gt a(sup-1) during a warming period of approximately 2 K (10 a)(sup -1) over the GIS. Above 2000m elevation, the rate of gain decreased from 44 to 28 Gt a(sup-1), while below 2000m the rate of loss increased from 51 to 198 Gt a(sup-1). Enhanced thinning below the equilibrium line on outlet glaciers indicates that increased melting has a significant impact on outlet glaciers, as well as accelerating ice flow. Increased thinning at higher elevations appears to be induced by dynamic coupling to thinning at the margins on decadal timescales.

  5. An Experimental Study of Continuous Plasma Flows Driven by a Confined Arc in a Transverse Magnetic Field

    NASA Technical Reports Server (NTRS)

    Barger, R. L.; Brooks, J. D.; Beasley, W. D.

    1961-01-01

    A crossed-field, continuous-flow plasma accelerator has been built and operated. The highest measured velocity of the flow, which was driven by the interaction of the electric and magnetic fields, was about 500 meters per second. Some of the problems discussed are ion slip, stability and uniformity of the discharge, effect of the magnetic field on electron emission, use of preionization, and electrode contamination.

  6. Effects of centrifugal acceleration on the flows and segregation in vertical Bridgman crystal growth with steady ampoule rotation

    NASA Astrophysics Data System (ADS)

    Lan, C. W.

    2001-07-01

    The effects of centrifugal acceleration on the flows and segregation in vertical Bridgman crystal growth with steady ampoule rotation are investigated through numerical simulation. The numerical model is based on the Boussinesq approximation in a rotating frame, and the fluid flow, heat and mass transfer, and the growth interface are solved simultaneously by a robust finite-volume/Newton method. The growth of gallium-doped germanium (GaGe) in the Grenoble furnace is adopted as an example. The calculated results at small Froude number (Fr<<1) are consistent with the previous prediction (Lan, J. Crystal growth 197 (1999) 983). However, at a high rotation speed or in reduced gravity, where the centrifugal acceleration becomes important (Fr˜1), the results are quite different due to the secondary flow induced. Since the direction of the induced flow is different from that of the buoyancy convection due to the concave interface, the flow damping is more effective than that due to the Coriolis force alone. More importantly, radial segregation can be reversed during the flow transition from one to the other.

  7. Monitoring extent of moisture variations due to leachate recirculation in an ELR/bioreactor landfill using resistivity imaging.

    PubMed

    Manzur, Shahed Rezwan; Hossain, Md Sahadat; Kemler, Vance; Khan, Mohammad Sadik

    2016-09-01

    Bioreactor or enhanced leachate recirculation (ELR) landfills are designed and operated for accelerated waste stabilization, accelerated decomposition, and an increased rate of gas generation. The major aspects of a bioreactor landfill are the addition of liquid and the recirculation of collected leachate back into the waste mass through the subsurface leachate recirculation system (LRS). The performance of the ELR landfill largely depends on the existing moisture content within the waste mass; therefore, it is of utmost importance to determine the moisture variations within the landfill. Traditionally, the moisture variation of the ELR landfill is determined by collecting samples through a bucket auger boring from the landfill, followed by laboratory investigation. Collecting the samples through a bucket auger boring is time consuming, labor intensive, and cost prohibitive. Moreover, it provides the information for a single point within the waste mass, but not for the moisture distribution within the landfill. Fortunately, 2D resistivity imaging (RI) can be performed to assess the moisture variations within the landfill and provide a continuous image of the subsurface, which can be utilized to evaluate the performance of the ELR landfill. During this study, the 2D resistivity imaging technique was utilized to determine the moisture distribution and moisture movement during the recirculation process of an ELR landfill in Denton, Texas, USA. A horizontal recirculation pipe was selected and monitored periodically for 2.5years, using the RI technique, to investigate the performance of the leachate recirculation. The RI profile indicated that the resistivity of the solid waste decreased as much as 80% with the addition of water/leachate through the recirculation pipe. In addition, the recirculated leachate traveled laterally between 11m and 16m. Based on the resistivity results, it was also observed that the leachate flow throughout the pipe was non-uniform. The non-uniformity of the leachate flow confirms that the flow of leachate through waste is primarily through preferential flow paths due the heterogeneous nature of the waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Investigating ice shelf mass loss processes from continuous satellite altimetry

    NASA Astrophysics Data System (ADS)

    Fricker, H. A.

    2017-12-01

    The Antarctic Ice Sheet continually gains mass through snowfall over its large area and, to remain approximately in equilibrium, it sheds most of this excess mass through two processes, basal melting and iceberg calving, that both occur in the floating ice shelves surrounding the continent. Small amounts of mass are also lost by surface melting, which occurs on many ice shelves every summer to varying degrees, and has been linked to ice-shelf collapse via hydrofracture on ice shelves that have been pre-weakened. Ice shelves provide mechanical support to `buttress' seaward flow of grounded ice, so that ice-shelf thinning and retreat result in enhanced ice discharge to the ocean. Ice shelves are susceptible to changes in forcing from both the atmosphere and the ocean, which both change on a broad range of timescales to modify mass gains and losses at the surface and base, and from internal instabilities of the ice sheet itself. Mass loss from iceberg calving is episodic, with typical intervals between calving events on the order of decades. Since ice shelves are so vast, the only viable way to monitor them is with satellites. Here, we discuss results from satellite radar and laser altimeter data from one NASA satellite (ICESat), and four ESA satellites (ERS-1, ERS-2, Envisat, CryoSat-2) to obtain estimates of ice-shelf surface height since the early 1990s. The continuous time series show accelerated losses in total Antarctic ice-shelf volume from 1994 to 2017, and allow us to investigate the processes causing ice-shelf mass change. For Larsen C, much of the variability comes from changing atmospheric conditions affecting firn state. In the Amundsen Sea, the rapid thinning is a combination of accelerated ocean-driven thinning and ice dynamics. This long-term thinning signal is, however, is strongly modulated by ENSO-driven interannual variability. However, observations of ocean variability around Antarctica are sparse, since these regions are often covered in sea ice and difficult to access. Some innovative methods are being used to acquire these data, including airborne deployment of ALAMO profiling floats which we tested in the Ross Sea as part of the ROSETTA-Ice project. Combining these altimeter datasets and in situ ocean datasets will allow us to examine processes causing basal melting in the sub-ice-shelf cavities.

  9. Plane hydroelastic beam vibrations due to uniformly moving one axle vehicle

    NASA Astrophysics Data System (ADS)

    Fleischer, D.; Park, S.-K.

    2004-06-01

    The hydroelastic vibrations of a beam with rectangular cross-section is analyzed under the effect of an uniformly moving single axle vehicle using modal analysis and two-dimensional potential flow theory of the fluid neglecting the effect of surface waves aside the beam. For the special case of homogeneous beam resting on the surface of a water filled prismatic basin, the normal modes are determined considering surface waves in beam direction under the condition of compensating the volume of the enclosed fluid. The way to determine the vertical acceleration of the single axle vehicle is shown, which governs the response of the system. As analysis results the course of wheel load, the surface waves along the beam and the flow velocity distribution of the fluid is demonstrated for a continuous floating bridge under the passage of a rolling mass moving with uniform speed.

  10. Complex Greenland outlet glacier flow captured

    PubMed Central

    Aschwanden, Andy; Fahnestock, Mark A.; Truffer, Martin

    2016-01-01

    The Greenland Ice Sheet is losing mass at an accelerating rate due to increased surface melt and flow acceleration in outlet glaciers. Quantifying future dynamic contributions to sea level requires accurate portrayal of outlet glaciers in ice sheet simulations, but to date poor knowledge of subglacial topography and limited model resolution have prevented reproduction of complex spatial patterns of outlet flow. Here we combine a high-resolution ice-sheet model coupled to uniformly applied models of subglacial hydrology and basal sliding, and a new subglacial topography data set to simulate the flow of the Greenland Ice Sheet. Flow patterns of many outlet glaciers are well captured, illustrating fundamental commonalities in outlet glacier flow and highlighting the importance of efforts to map subglacial topography. Success in reproducing present day flow patterns shows the potential for prognostic modelling of ice sheets without the need for spatially varying parameters with uncertain time evolution. PMID:26830316

  11. Ultrasonic Mastering of Filter Flow and Antifouling of Renewable Resources.

    PubMed

    Radziuk, Darya; Möhwald, Helmuth

    2016-04-04

    Inadequate access to pure water and sanitation requires new cost-effective, ergonomic methods with less consumption of energy and chemicals, leaving the environment cleaner and sustainable. Among such methods, ultrasound is a unique means to control the physics and chemistry of complex fluids (wastewater) with excellent performance regarding mass transfer, cleaning, and disinfection. In membrane filtration processes, it overcomes diffusion limits and can accelerate the fluid flow towards the filter preventing antifouling. Here, we outline the current state of knowledge and technological design, with a focus on physicochemical strategies of ultrasound for water cleaning. We highlight important parameters of ultrasound for the delivery of a fluid flow from a technical perspective employing principles of physics and chemistry. By introducing various ultrasonic methods, involving bubbles or cavitation in combination with external fields, we show advancements in flow acceleration and mass transportation to the filter. In most cases we emphasize the main role of streaming and the impact of cavitation with a perspective to prevent and remove fouling deposits during the flow. We also elaborate on the deficiencies of present technologies and on problems to be solved to achieve a wide-spread application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A novel heterogeneous algorithm to simulate multiphase flow in porous media on multicore CPU-GPU systems

    NASA Astrophysics Data System (ADS)

    McClure, J. E.; Prins, J. F.; Miller, C. T.

    2014-07-01

    Multiphase flow implementations of the lattice Boltzmann method (LBM) are widely applied to the study of porous medium systems. In this work, we construct a new variant of the popular "color" LBM for two-phase flow in which a three-dimensional, 19-velocity (D3Q19) lattice is used to compute the momentum transport solution while a three-dimensional, seven velocity (D3Q7) lattice is used to compute the mass transport solution. Based on this formulation, we implement a novel heterogeneous GPU-accelerated algorithm in which the mass transport solution is computed by multiple shared memory CPU cores programmed using OpenMP while a concurrent solution of the momentum transport is performed using a GPU. The heterogeneous solution is demonstrated to provide speedup of 2.6 × as compared to multi-core CPU solution and 1.8 × compared to GPU solution due to concurrent utilization of both CPU and GPU bandwidths. Furthermore, we verify that the proposed formulation provides an accurate physical representation of multiphase flow processes and demonstrate that the approach can be applied to perform heterogeneous simulations of two-phase flow in porous media using a typical GPU-accelerated workstation.

  13. Visualization of in vivo metabolic flows reveals accelerated utilization of glucose and lactate in penumbra of ischemic heart

    PubMed Central

    Sugiura, Yuki; Katsumata, Yoshinori; Sano, Motoaki; Honda, Kurara; Kajimura, Mayumi; Fukuda, Keiichi; Suematsu, Makoto

    2016-01-01

    Acute ischemia produces dynamic changes in labile metabolites. To capture snapshots of such acute metabolic changes, we utilized focused microwave treatment to fix metabolic flow in vivo in hearts of mice 10 min after ligation of the left anterior descending artery. The left ventricle was subdivided into short-axis serial slices and the metabolites were analyzed by capillary electrophoresis mass spectrometry and matrix-assisted laser desorption/ionization imaging mass spectrometry. These techniques allowed us to determine the fate of exogenously administered 13C6-glucose and 13C3-lactate. The penumbra regions, which are adjacent to the ischemic core, exhibited the greatest adenine nucleotide energy charge and an adenosine overflow extending from the ischemic core, which can cause ischemic hyperemia. Imaging analysis of metabolic pathway flows revealed that the penumbra executes accelerated glucose oxidation, with remaining lactate utilization for tricarboxylic acid cycle for energy compensation, suggesting unexpected metabolic interplays of the penumbra with the ischemic core and normoxic regions. PMID:27581923

  14. Continuous Flow Science in an Undergraduate Teaching Laboratory: Bleach-Mediated Oxidation in a Biphasic System

    ERIC Educational Resources Information Center

    Kairouz, Vanessa; Collins, Shawn K.

    2018-01-01

    An undergraduate teaching laboratory experiment involving a continuous flow, bleach-mediated oxidation of aldehydes under biphasic conditions was developed that allowed students to explore concepts of mixing or mass transport, solvent sustainability, biphasic reactions, phase transfer catalysis, and continuous flow chemistry.

  15. Scaling and design of landslide and debris-flow experiments

    USGS Publications Warehouse

    Iverson, Richard M.

    2015-01-01

    Scaling plays a crucial role in designing experiments aimed at understanding the behavior of landslides, debris flows, and other geomorphic phenomena involving grain-fluid mixtures. Scaling can be addressed by using dimensional analysis or – more rigorously – by normalizing differential equations that describe the evolving dynamics of the system. Both of these approaches show that, relative to full-scale natural events, miniaturized landslides and debris flows exhibit disproportionately large effects of viscous shear resistance and cohesion as well as disproportionately small effects of excess pore-fluid pressure that is generated by debris dilation or contraction. This behavioral divergence grows in proportion to H3, where H is the thickness of a moving mass. Therefore, to maximize geomorphological relevance, experiments with wet landslides and debris flows must be conducted at the largest feasible scales. Another important consideration is that, unlike stream flows, landslides and debris flows accelerate from statically balanced initial states. Thus, no characteristic macroscopic velocity exists to guide experiment scaling and design. On the other hand, macroscopic gravity-driven motion of landslides and debris flows evolves over a characteristic time scale (L/g)1/2, where g is the magnitude of gravitational acceleration and L is the characteristic length of the moving mass. Grain-scale stress generation within the mass occurs on a shorter time scale, H/(gL)1/2, which is inversely proportional to the depth-averaged material shear rate. A separation of these two time scales exists if the criterion H/L < < 1 is satisfied, as is commonly the case. This time scale separation indicates that steady-state experiments can be used to study some details of landslide and debris-flow behavior but cannot be used to study macroscopic landslide or debris-flow dynamics.

  16. Acceleration of the highest energy cosmic rays through proton-neutron conversions in relativistic bulk flows

    NASA Astrophysics Data System (ADS)

    Derishev, E.; Aharonian, F.

    We show that, in the presence of radiation field, relativistic bulk flows can very quikly accelerate protons and electrons up to the energies limited either by Hillas criterion or by synchrotron losses. Unlike the traditional approach, we take advantage of continuous photon-induced conversion of charged particle species to neutral ones, and vice versa (proton-neutron or electron-photon). Such a conversion, though it leads to considerable energy losses, allows accelerated particles to increase their energies in each scattering by a factor roughly equal to the bulk Lorentz factor, thus avoiding the need in slow and relatively inefficient diffusive acceleration. The optical depth of accelerating region with respect to inelastic photon-induced reactions (pair production for electrons and photomeson reactions for protons) should be a substancial fraction of unity. Remarkably, self-tuning of the optical depth is automatically achieved as long as the photon density depends on the distance along the bulk flow. This mechanism can work in Gamma-Ray Bursts (GRBs), Active Galactic Nuclei (AGNs), microquasars, or any other object with relativistic bulk flows embedded in radiation-reach environment. Both GRBs and AGNs turn out to be capable of producing 1020 eV cosmic rays.

  17. Technology Horizons: A Vision for Air Force Science and Technology 2010-30

    DTIC Science & Technology

    2011-09-01

    software, hardware, and networks, it is now recognized as en- compassing the entire system that couples information flow and decision processes across...acceleration, and scramjet cruise. Inward turning inlets and a dual- flow path design allow high volumetric efficiency, and high cruise speed provides...the same time, emerging “third- stream engine architectures” can enable constant-mass- flow engines that can provide further reductions in fuel

  18. Laboratory Plasma Source as an MHD Model for Astrophysical Jets

    NASA Technical Reports Server (NTRS)

    Mayo, Robert M.

    1997-01-01

    The significance of the work described herein lies in the demonstration of Magnetized Coaxial Plasma Gun (MCG) devices like CPS-1 to produce energetic laboratory magneto-flows with embedded magnetic fields that can be used as a simulation tool to study flow interaction dynamic of jet flows, to demonstrate the magnetic acceleration and collimation of flows with primarily toroidal fields, and study cross field transport in turbulent accreting flows. Since plasma produced in MCG devices have magnetic topology and MHD flow regime similarity to stellar and extragalactic jets, we expect that careful investigation of these flows in the laboratory will reveal fundamental physical mechanisms influencing astrophysical flows. Discussion in the next section (sec.2) focuses on recent results describing collimation, leading flow surface interaction layers, and turbulent accretion. The primary objectives for a new three year effort would involve the development and deployment of novel electrostatic, magnetic, and visible plasma diagnostic techniques to measure plasma and flow parameters of the CPS-1 device in the flow chamber downstream of the plasma source to study, (1) mass ejection, morphology, and collimation and stability of energetic outflows, (2) the effects of external magnetization on collimation and stability, (3) the interaction of such flows with background neutral gas, the generation of visible emission in such interaction, and effect of neutral clouds on jet flow dynamics, and (4) the cross magnetic field transport of turbulent accreting flows. The applicability of existing laboratory plasma facilities to the study of stellar and extragalactic plasma should be exploited to elucidate underlying physical mechanisms that cannot be ascertained though astrophysical observation, and provide baseline to a wide variety of proposed models, MHD and otherwise. The work proposed herin represents a continued effort on a novel approach in relating laboratory experiments to astrophysical jet observation. There exists overwhelming similarity among these flows that has already produced some fascinating results and is expected to continue a high pay off in future flow similarity studies.

  19. The assembly and use of continuous flow systems for chemical synthesis.

    PubMed

    Britton, Joshua; Jamison, Timothy F

    2017-11-01

    The adoption of and opportunities in continuous flow synthesis ('flow chemistry') have increased significantly over the past several years. Continuous flow systems provide improved reaction safety and accelerated reaction kinetics, and have synthesised several active pharmaceutical ingredients in automated reconfigurable systems. Although continuous flow platforms are commercially available, systems constructed 'in-lab' provide researchers with a flexible, versatile, and cost-effective alternative. Herein, we describe the assembly and use of a modular continuous flow apparatus from readily available and affordable parts in as little as 30 min. Once assembled, the synthesis of a sulfonamide by reacting 4-chlorobenzenesulfonyl chloride with dibenzylamine in a single reactor coil with an in-line quench is presented. This example reaction offers the opportunity to learn several important skills including reactor construction, charging of a back-pressure regulator, assembly of stainless-steel syringes, assembly of a continuous flow system with multiple junctions, and yield determination. From our extensive experience of single-step and multistep continuous flow synthesis, we also describe solutions to commonly encountered technical problems such as precipitation of solids ('clogging') and reactor failure. Following this protocol, a nonspecialist can assemble a continuous flow system from reactor coils, syringes, pumps, in-line liquid-liquid separators, drying columns, back-pressure regulators, static mixers, and packed-bed reactors.

  20. Practical strategies for stable operation of HFF-QCM in continuous air flow.

    PubMed

    Wessels, Alexander; Klöckner, Bernhard; Siering, Carsten; Waldvogel, Siegfried R

    2013-09-09

    Currently there are a few fields of application using quartz crystal microbalances (QCM). Because of environmental conditions and insufficient resolution of the microbalance, chemical sensing of volatile organic compounds in an open system was as yet not possible. In this study we present strategies on how to use 195 MHz fundamental quartz resonators for a mobile sensor platform to detect airborne analytes. Commonly the use of devices with a resonant frequency of about 10 MHz is standard. By increasing the frequency to 195 MHz the frequency shift increases by a factor of almost 400. Unfortunately, such kinds of quartz crystals tend to exhibit some challenges to obtain a reasonable signal-to-noise ratio. It was possible to reduce the noise in frequency in a continuous air flow of 7.5 m/s to 0.4 Hz [i.e., σ(τ) = 2 × 10-9] by elucidating the major source of noise. The air flow in the vicinity of the quartz was analyzed to reduce turbulences. Furthermore, we found a dependency between the acceleration sensitivity and mechanical stress induced by an internal thermal gradient. By reducing this gradient, we achieved reduction of the sensitivity to acceleration by more than one decade. Hence, the resulting sensor is more robust to environmental conditions such as temperature, acceleration and air flow.

  1. Blast-Induced Acceleration in a Shock Tube: Distinguishing Primary and Tertiary Blast Injury

    DTIC Science & Technology

    2016-10-01

    objects of varied areal densities to define relations of blast flow conditions to acceleration and displacement , we have begun examination of the effects... displacement from other biomechanical components and effects of the shockwave. 15. SUBJECT TERMS Key words or phrases identifying major concepts in the...and total pressure, positive phase duration, and impulse) and acceleration and displacement of a wide range of inanimate objects, we have continued

  2. 40 CFR Table 6 to Subpart Ppp of... - Process Vents From Continuous Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operating—PR. d e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...

  3. 40 CFR Table 6 to Subpart Ppp of... - Process Vents From Continuous Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operating—PR. d,e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream mass or volumetric flow during each...

  4. Effects of variable electrical conductivity and thermal conductivity on unsteady MHD free convection flow past an exponential accelerated inclined plate

    NASA Astrophysics Data System (ADS)

    Rana, B. M. Jewel; Ahmed, Rubel; Ahmmed, S. F.

    2017-06-01

    An analysis is carried out to investigate the effects of variable viscosity, thermal radiation, absorption of radiation and cross diffusion past an inclined exponential accelerated plate under the influence of variable heat and mass transfer. A set of suitable transformations has been used to obtain the non-dimensional coupled governing equations. Explicit finite difference technique has been used to solve the obtained numerical solutions of the present problem. Stability and convergence of the finite difference scheme have been carried out for this problem. Compaq Visual Fortran 6.6a has been used to calculate the numerical results. The effects of various physical parameters on the fluid velocity, temperature, concentration, coefficient of skin friction, rate of heat transfer, rate of mass transfer, streamlines and isotherms on the flow field have been presented graphically and discussed in details.

  5. Application of Sweeping Jet Actuators on the NASA Hump Model and Comparison with CFDVAL2004 Experiments

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti

    2017-01-01

    Flow separation control over a wall-mounted hump model was studied experimentally to assess the performance of sweeping jet actuators. Results were compared to that of the 2004 CFD validation experiment (CFDVAL2004), which examined flow separation control with steady suction and unsteady zero-net-mass-flow actuators. Comparisons were carried out at low and high amplitude excitations. In addition to the active flow control methods, a passive flow control method (i.e., vortex generator) was used to complement the dataset. Steady/unsteady surface pressure measurements and surface oilflow visualization were used in the performance assessment of the actuators. The results indicated that the sweeping jet actuators are more effective than the steady suction and unsteady zero-net-mass-flow actuators. For the same momentum coefficient, the sweeping jet actuators produced more flow acceleration upstream of separation, more pressure recovery downstream, and consistently a smaller separation bubble.

  6. Greenland ice sheet surface temperature, melt and mass loss: 2000-06

    USGS Publications Warehouse

    Hall, D.K.; Williams, R.S.; Luthcke, S.B.; DiGirolamo, N.E.

    2008-01-01

    A daily time series of 'clear-sky' surface temperature has been compiled of the Greenland ice sheet (GIS) using 1 km resolution moderate-resolution imaging spectroradiometer (MODIS) land-surface temperature (LST) maps from 2000 to 2006. We also used mass-concentration data from the Gravity Recovery and Climate Experiment (GRACE) to study mass change in relationship to surface melt from 2003 to 2006. The mean LST of the GIS increased during the study period by ???0.27??Ca-1. The increase was especially notable in the northern half of the ice sheet during the winter months. Melt-season length and timing were also studied in each of the six major drainage basins. Rapid (<15 days) and sustained mass loss below 2000 m elevation was triggered in 2004 and 2005 as recorded by GRACE when surface melt begins. Initiation of large-scale surface melt was followed rapidly by mass loss. This indicates that surface meltwater is flowing rapidly to the base of the ice sheet, causing acceleration of outlet glaciers, thus highlighting the metastability of parts of the GIS and the vulnerability of the ice sheet to air-temperature increases. If air temperatures continue to rise over Greenland, increased surface melt will play a large role in ice-sheet mass loss.

  7. Diels-Alder cycloadditions by microwave-assisted, continuous flow organic synthesis (MACOS): the role of metal films in the flow tube.

    PubMed

    Shore, Gjergji; Organ, Michael G

    2008-02-21

    Thin Pd films have been deposited on the inside of capillary-sized tubes through which compounds undergoing Diels-Alder reactions have been flowed while being heated with microwave irradiation; dramatic rate accelerations are observed in the presence of the film, which has been shown to play both a heating and catalytic role.

  8. Clinical characterization of 2D pressure field in human left ventricles

    NASA Astrophysics Data System (ADS)

    Borja, Maria; Rossini, Lorenzo; Martinez-Legazpi, Pablo; Benito, Yolanda; Alhama, Marta; Yotti, Raquel; Perez Del Villar, Candelas; Gonzalez-Mansilla, Ana; Barrio, Alicia; Fernandez-Aviles, Francisco; Bermejo, Javier; Khan, Andrew; Del Alamo, Juan Carlos

    2014-11-01

    The evaluation of left ventricle (LV) function in the clinical setting remains a challenge. Pressure gradient is a reliable and reproducible indicator of the LV function. We obtain 2D relative pressure field in the LV using in-vivo measurements obtained by processing Doppler-echocardiography images of healthy and dilated hearts. Exploiting mass conservation, we solve the Poisson pressure equation (PPE) dropping the time derivatives and viscous terms. The flow acceleration appears only in the boundary conditions, making our method weakly sensible to the time resolution of in-vivo acquisitions. To ensure continuity with respect to the discrete operator and grid used, a potential flow correction is applied beforehand, which gives another Poisson equation. The new incompressible velocity field ensures that the compatibility equation for the PPE is satisfied. Both Poisson equations are efficiently solved on a Cartesian grid using a multi-grid method and immersed boundary for the LV wall. The whole process is computationally inexpensive and could play a diagnostic role in the clinical assessment of LV function.

  9. Field Measurements of Particulate Matter Emissions, Carbon Monoxide, and Exhaust Opacity from Heavy-Duty Diesel Vehicles.

    PubMed

    Clark, Nigel N; Jarrett, Ronald P; Atkinson, Christopher M

    1999-09-01

    Diesel particulate matter (PM) is a significant contributor to ambient air PM 10 and PM 2.5 particulate levels. In addition, recent literature argues that submicron diesel PM is a pulmonary health hazard. There is difficulty in attributing PM emissions to specific operating modes of a diesel engine, although it is acknowledged that PM production rises dramatically with load and that high PM emissions occur during rapid load increases on turbocharged engines. Snap-acceleration tests generally identify PM associated with rapid transient operating conditions, but not with high load. To quantify the origin of PM during transient engine operation, continuous opacity measurements have been made using a Wager 650CP full flow exhaust opacity meter. Opacity measurements were taken while the vehicles were operated over transient driving cycles on a chassis dynamometer using the West Virginia University (WVU) Transportable Heavy Duty Vehicle Emissions Testing Laboratories. Data were gathered from Detroit Diesel, Cummins, Caterpillar, and Navistar heavy-duty (HD) diesel engines. Driving cycles used were the Central Business District (CBD) cycle, the WVU 5-Peak Truck cycle, the WVU 5-Mile route, and the New York City Bus (NYCB) cycle. Continuous opacity measurements, integrated over the entire driving cycle, were compared to total integrated PM mass. In addition, the truck was subjected to repeat snap-acceleration tests, and PM was collected for a composite of these snap-acceleration tests. Additional data were obtained from a fleet of 1996 New Flyer buses in Flint, MI, equipped with electronically controlled Detroit Diesel Series 50 engines. Again, continuous opacity, regulated gaseous emissions, and PM were measured. The relationship between continuous carbon monoxide (CO) emissions and continuous opacity was noted. In identifying the level of PM emissions in transient diesel engine operation, it is suggested that CO emissions may prove to be a useful indicator and may be used to apportion total PM on a continuous basis over a transient cycle. The projected continuous PM data will prove valuable in future mobile source inventory prediction.

  10. Environmental continuous air monitor inlet with combined preseparator and virtual impactor

    DOEpatents

    Rodgers, John C [Santa Fe, NM

    2007-06-19

    An inlet for an environmental air monitor is described wherein a pre-separator interfaces with ambient environment air and removes debris and insects commonly associated with high wind outdoors and a deflector plate in communication with incoming air from the pre-separator stage, that directs the air radially and downward uniformly into a plurality of accelerator jets located in a manifold of a virtual impactor, the manifold being cylindrical and having a top, a base, and a wall, with the plurality of accelerator jets being located in the top of the manifold and receiving the directed air and accelerating directed air, thereby creating jets of air penetrating into the manifold, where a major flow is deflected to the walls of the manifold and extracted through ports in the walls. A plurality of receiver nozzles are located in the base of the manifold coaxial with the accelerator jets, and a plurality of matching flow restrictor elements are located in the plurality of receiver nozzles for balancing and equalizing the total minor flow among all the plurality of receiver nozzles, through which a lower, fractional flow extracts large particle constituents of the air for collection on a sample filter after passing through the plurality of receiver nozzles and the plurality of matching flow restrictor elements.

  11. Practical Strategies for Stable Operation of HFF-QCM in Continuous Air Flow

    PubMed Central

    Wessels, Alexander; Klöckner, Bernhard; Siering, Carsten; Waldvogel, Siegfried R.

    2013-01-01

    Currently there are a few fields of application using quartz crystal microbalances (QCM). Because of environmental conditions and insufficient resolution of the microbalance, chemical sensing of volatile organic compounds in an open system was as yet not possible. In this study we present strategies on how to use 195 MHz fundamental quartz resonators for a mobile sensor platform to detect airborne analytes. Commonly the use of devices with a resonant frequency of about 10 MHz is standard. By increasing the frequency to 195 MHz the frequency shift increases by a factor of almost 400. Unfortunately, such kinds of quartz crystals tend to exhibit some challenges to obtain a reasonable signal-to-noise ratio. It was possible to reduce the noise in frequency in a continuous air flow of 7.5 m/s to 0.4 Hz [i.e., σ(τ) = 2 × 10−9] by elucidating the major source of noise. The air flow in the vicinity of the quartz was analyzed to reduce turbulences. Furthermore, we found a dependency between the acceleration sensitivity and mechanical stress induced by an internal thermal gradient. By reducing this gradient, we achieved reduction of the sensitivity to acceleration by more than one decade. Hence, the resulting sensor is more robust to environmental conditions such as temperature, acceleration and air flow. PMID:24021970

  12. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1971-01-01

    Experimental data were combined with one-dimensional conservation relations to yield information on the energy deposition ratio in a parallel-plate accelerator, where the downstream flow was confined to a constant area channel. Approximately 70% of the total input power was detected in the exhaust flow, of which only about 20% appeared as directed kinetic energy, thus implying that a downstream expansion to convert chamber enthalpy into kinetic energy must be an important aspect of conventional high power MPD arcs. Spectroscopic experiments on a quasi-steady MPD argon accelerator verified the presence of A(III) and the absence of A(I), and indicated an azimuthal structure in the jet related to the mass injection locations. Measurements of pressure in the arc chamber and impact pressure in the exhaust jet using a piezocrystal backed by a Plexiglas rod were in good agreement with the electromagnetic thrust model.

  13. On-line Monitoring of Continuous Flow Chemical Synthesis Using a Portable, Small Footprint Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Bristow, Tony W. T.; Ray, Andrew D.; O'Kearney-McMullan, Anne; Lim, Louise; McCullough, Bryan; Zammataro, Alessio

    2014-10-01

    For on-line monitoring of chemical reactions (batch or continuous flow), mass spectrometry (MS) can provide data to (1) determine the fate of starting materials and reagents, (2) confirm the presence of the desired product, (3) identify intermediates and impurities, (4) determine steady state conditions and point of completion, and (5) speed up process optimization. Recent developments in small footprint atmospheric pressure ionization portable mass spectrometers further enable this coupling, as the mass spectrometer can be easily positioned with the reaction system to be studied. A major issue for this combination is the transfer of a sample that is representative of the reaction and also compatible with the mass spectrometer. This is particularly challenging as high concentrations of reagents and products can be encountered in organic synthesis. The application of a portable mass spectrometer for on-line characterization of flow chemical synthesis has been evaluated by coupling a Microsaic 4000 MiD to the Future Chemistry Flow Start EVO chemistry system. Specifically, the Hofmann rearrangement has been studied using the on-line mass spectrometry approach. Sample transfer from the flow reactor is achieved using a mass rate attenuator (MRA) and a sampling make-up flow from a high pressure pump. This enables the appropriate sample dilution, transfer, and preparation for electrospray ionization. The capability of this approach to provide process understanding is described using an industrial pharmaceutical process that is currently under development. The effect of a number of key experimental parameters, such as the composition of the sampling make-up flow and the dilution factor on the mass spectrometry data, is also discussed.

  14. A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure

    USGS Publications Warehouse

    George, David L.; Iverson, Richard M.

    2011-01-01

    Pore-fluid pressure plays a crucial role in debris flows because it counteracts normal stresses at grain contacts and thereby reduces intergranular friction. Pore-pressure feedback accompanying debris deformation is particularly important during the onset of debrisflow motion, when it can dramatically influence the balance of forces governing downslope acceleration. We consider further effects of this feedback by formulating a new, depth-averaged mathematical model that simulates coupled evolution of granular dilatancy, solid and fluid volume fractions, pore-fluid pressure, and flow depth and velocity during all stages of debris-flow motion. To illustrate implications of the model, we use a finite-volume method to compute one-dimensional motion of a debris flow descending a rigid, uniformly inclined slope, and we compare model predictions with data obtained in large-scale experiments at the USGS debris-flow flume. Predictions for the first 1 s of motion show that increasing pore pressures (due to debris contraction) cause liquefaction that enhances flow acceleration. As acceleration continues, however, debris dilation causes dissipation of pore pressures, and this dissipation helps stabilize debris-flow motion. Our numerical predictions of this process match experimental data reasonably well, but predictions might be improved by accounting for the effects of grain-size segregation.

  15. Testing different concepts of the equations of motion, describing runout time and distance of slow-moving gravitational slides and flows.

    NASA Astrophysics Data System (ADS)

    van Asch, Th. W. J.; Daehne, A.; Spickermann, A.; Travelletti, J.; Bégueria-Portuguès, S.

    2010-05-01

    The kinematics of rapid and slow moving landslides is commonly described by equations of motion, which in case of a viscous component are based on the Navier-Stokes equation. They consist of inertial terms related to the change in velocity in time (local acceleration) and space (convective acceleration) and terms related to respectively the gravity, pressure and viscous forces. These viscous resistance forces in the mass balance can be accompanied or replaced by other rheological (frictional and cohesive) terms depending on the liquid/solid ratio of the moving mass. We designed a 1D and a GIS based 2.5 D model with a numerical implementation for these equations which gave a reasonable simple compromise solution that achieved a desired level of stability, accuracy and controlled diffusion. An explicit finite difference (Eulerian) mesh, i.e. the moving mass was described by variation in the conservative variables at point fixed coordinates (i,j) as a function of time (n). A central difference forward scheme is used for the numerical solutions of the mass and momentum balance equations. A number of case studies of fast debris flows ranging in velocity between 1 and 10 m s-1, carried out in the Faucon torrent French Alps, the Wartschenbach torrent in Austria, near the Turnoff Creek in British Columbia, the Peringalam catchment in SW-India and the Jagüeyes landslide in the Guantánamo province Cuba, showed that the models were able to describe velocity, deposition and run-out reasonable well using different rheological characteristics. Despite the fact that many authors include an inertial term in the equation of motion for slow moving mass movements it appeared that our 1D and GIS based 2.5 D models were not able to simulate properly the velocity of slower moving debris flows or landslides with velocities ranging from 1 to 2 m min-1 until 30 mm y-1.Deletion of the inertial term related to the local acceleration in the equation of motion, thus assuming that there is a permanent equilibrium between gravity, pressure and Coulomb-viscous forces, produced a more flexible tool, able to describe the velocity, deposition and run-out of mass movements with a wide range of values. Examples of successful simulations in 1-D and 2.5-D exist already. In this contribution we will compare 1D simulations with and without a local acceleration term and analyze the results. A slow moving debris flow which developed on the Super-Sauze mudslide and a slow moving landslide in varved clays near Monestier-du-Percy in the French Alps were selected to test the calibration performances of these two options in the equation of motion.

  16. Energy mechanics of rock and snow avalanches and the role of fragmentation (invited)

    NASA Astrophysics Data System (ADS)

    Bartelt, Perry; Buser, Othmar; Glover, James

    2014-05-01

    The energy mechanics of rock and snow avalanches are traditionally described using a two-step transformation: potential energy is first converted into kinetic energy; kinetic energy is dissipated to heat by frictional processes. If the frictional processes are known, the energy fluxes of avalanches can be calculated completely. The break-up of the released mass, however, introduces several new energy fluxes into the avalanche problem. The first energy is associated with the fragmentation, which generates random particle motions. This is true kinetic energy. Inter-particle interactions (collisions, abrasion, fracture) cause the energy of the random particle motion to dissipate to heat. A constraint on the random motions is the basal boundary. It is at this interface that the dispersive pressure is created by vertical particle motions that are directed upwards into the flow. The integral of the upward particle motions can induce a change in avalanche flow volume and density, depending on the relationship between the weight of the flow and the dispersive pressure. Interestingly, normal pressures will only diverge from hydrostatic when there are changes in flow density. We are therefore confronted with the problem of calculating not only the vertical acceleration of the dispersive pressure, but also the change in vertical acceleration. In this contribution we discuss a method to calculate random particle motions, dispersive pressure and changes in avalanche flow density. These are dependent not only on the absolute mass, but also on the material properties of the disintegrating mass. This becomes particularly interesting when considering the motion of snow and rock avalanches as it allows the prediction of flow regime changes and therefore extreme avalanche run-out potential.

  17. Ambient infrared laser ablation mass spectrometry (AIRLAB-MS) with plume capture by continuous flow solvent probe

    DOEpatents

    O'Brien, Jeremy T.; Williams, Evan R.; Holman, Hoi-Ying N.

    2017-10-31

    A new experimental setup for spatially resolved ambient infrared laser ablation mass spectrometry (AIRLAB-MS) that uses an infrared microscope with an infinity-corrected reflective objective and a continuous flow solvent probe coupled to a Fourier transform ion cyclotron resonance mass spectrometer is described. The efficiency of material transfer from the sample to the electrospray ionization emitter was determined using glycerol/methanol droplets containing 1 mM nicotine and is .about.50%. This transfer efficiency is significantly higher than values reported for similar techniques.

  18. Staging and laser acceleration of ions in underdense plasma

    NASA Astrophysics Data System (ADS)

    Ting, Antonio; Hafizi, Bahman; Helle, Michael; Chen, Yu-Hsin; Gordon, Daniel; Kaganovich, Dmitri; Polyanskiy, Mikhail; Pogorelsky, Igor; Babzien, Markus; Miao, Chenlong; Dover, Nicholas; Najmudin, Zulfikar; Ettlinger, Oliver

    2017-03-01

    Accelerating ions from rest in a plasma requires extra considerations because of their heavy mass. Low phase velocity fields or quasi-electrostatic fields are often necessary, either by operating above or near the critical density or by applying other slow wave generating mechanisms. Solid targets have been a favorite and have generated many good results. High density gas targets have also been reported to produce energetic ions. It is interesting to consider acceleration of ions in laser-driven plasma configurations that will potentially allow continuous acceleration in multiple consecutive stages. The plasma will be derived from gaseous targets, producing plasma densities slightly below the critical plasma density (underdense) for the driving laser. Such a plasma is experimentally robust, being repeatable and relatively transparent to externally injected ions from a previous stage. When optimized, multiple stages of this underdense laser plasma acceleration mechanism can progressively accelerate the ions to a high final energy. For a light mass ion such as the proton, relativistic velocities could be reached, making it suitable for further acceleration by high phase velocity plasma accelerators to energies appropriate for High Energy Physics applications. Negatively charged ions such as antiprotons could be similarly accelerated in this multi-staged ion acceleration scheme.

  19. Direct numerical simulation of incompressible acceleration-driven variable-density turbulence

    NASA Astrophysics Data System (ADS)

    Gat, Ilana; Matheou, Georgios; Chung, Daniel; Dimotakis, Paul

    2015-11-01

    Fully developed turbulence in variable-density flow driven by an externally imposed acceleration field, e.g., gravity, is fundamental in many applications, such as inertial confinement fusion, geophysics, and astrophysics. Aspects of this turbulence regime are poorly understood and are of interest to fluid modeling. We investigate incompressible acceleration-driven variable-density turbulence by a series of direct numerical simulations of high-density fluid in-between slabs of low-density fluid, in a triply-periodic domain. A pseudo-spectral numerical method with a Helmholtz-Hodge decomposition of the pressure field, which ensures mass conservation, is employed, as documented in Chung & Pullin (2010). A uniform dynamic viscosity and local Schmidt number of unity are assumed. This configuration encapsulates a combination of flow phenomena in a temporally evolving variable-density shear flow. Density ratios up to 10 and Reynolds numbers in the fully developed turbulent regime are investigated. The temporal evolution of the vertical velocity difference across the shear layer, shear-layer growth, mean density, and Reynolds number are discussed. Statistics of Lagrangian accelerations of fluid elements and of vorticity as a function of the density ratio are also presented. This material is based upon work supported by the AFOSR, the DOE, the NSF GRFP, and Caltech.

  20. Steady flow of smooth, inelastic particles on a bumpy inclined plane: Hard and soft particle simulations

    NASA Astrophysics Data System (ADS)

    Tripathi, Anurag; Khakhar, D. V.

    2010-04-01

    We study smooth, slightly inelastic particles flowing under gravity on a bumpy inclined plane using event-driven and discrete-element simulations. Shallow layers (ten particle diameters) are used to enable simulation using the event-driven method within reasonable computational times. Steady flows are obtained in a narrow range of angles (13°-14.5°) ; lower angles result in stopping of the flow and higher angles in continuous acceleration. The flow is relatively dense with the solid volume fraction, ν≈0.5 , and significant layering of particles is observed. We derive expressions for the stress, heat flux, and dissipation for the hard and soft particle models from first principles. The computed mean velocity, temperature, stress, dissipation, and heat flux profiles of hard particles are compared to soft particle results for different values of stiffness constant (k) . The value of stiffness constant for which results for hard and soft particles are identical is found to be k≥2×106mg/d , where m is the mass of a particle, g is the acceleration due to gravity, and d is the particle diameter. We compare the simulation results to constitutive relations obtained from the kinetic theory of Jenkins and Richman [J. T. Jenkins and M. W. Richman, Arch. Ration. Mech. Anal. 87, 355 (1985)] for pressure, dissipation, viscosity, and thermal conductivity. We find that all the quantities are very well predicted by kinetic theory for volume fractions ν<0.5 . At higher densities, obtained for thicker layers ( H=15d and H=20d ), the kinetic theory does not give accurate prediction. Deviations of the kinetic theory predictions from simulation results are relatively small for dissipation and heat flux and most significant deviations are observed for shear viscosity and pressure. The results indicate the range of applicability of soft particle simulations and kinetic theory for dense flows.

  1. 40 CFR 75.72 - Determination of NOX mass emissions for common stack and multiple stack configurations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the hourly stack flow rate (in scfh). Only one methodology for determining NOX mass emissions shall be...-diluent continuous emissions monitoring system and a flow monitoring system in the common stack, record... maintain a flow monitoring system and diluent monitor in the duct to the common stack from each unit; or...

  2. The IMISS-1 Experiment for Recording and Analysis of Accelerations in Orbital Flight

    NASA Astrophysics Data System (ADS)

    Sadovnichii, V. A.; Alexandrov, V. V.; Bugrov, D. I.; Lemak, S. S.; Pakhomov, V. B.; Panasyuk, M. I.; Petrov, V. L.; Yashin, I. V.

    2018-03-01

    The IMISS-1 experiment represents the second step in solving the problem of the creation of the gaze stabilization corrector. This device is designed to correct the effect of the gaze stabilization delay under microgravity. IMISS-1 continues research started by the Tat'yana-2 satellite. This research will be continued on board the International Space Station. At this stage we study the possibility of registration of angular and linear accelerations acting on the sensitive mass in terms of Low Earth Orbit flight, using MEMS sensors.

  3. [Fiat Lux. May be no more true in cytometry! Go to mass and spectrum but still stay classic].

    PubMed

    Idziorek, Thierry; Cazareth, Julie; Blanc, Catherine; Jouy, Nathalie; Bourdely, Pierre; Corneau, Aurélien

    2018-05-01

    The last decade has been an era of accelerated technological progress for flow cytometry. New technologies have been developed such as mass cytometry in which standard fluorochromes have been replaced by lanthanide-based non-radioactive metals and by spectral cytometry that measures the complete fluorescence spectrum. In this review, we schematically describe conventional, mass and spectral cytometry and present the plus and minus of each technology. © 2018 médecine/sciences – Inserm.

  4. Destabilisation of an Arctic ice cap triggered by a hydro-thermodynamic feedback to summer-melt

    NASA Astrophysics Data System (ADS)

    Dunse, T.; Schellenberger, T.; Kääb, A.; Hagen, J. O.; Schuler, T. V.; Reijmer, C. H.

    2014-05-01

    Mass loss from glaciers and ice sheets currently accounts for two-thirds of the observed global sea-level rise and has accelerated since the 1990s, coincident with strong atmospheric warming in the Polar Regions. Here we present continuous GPS measurements and satellite synthetic aperture radar based velocity maps from the Austfonna ice cap, Svalbard, that demonstrate strong links between surface-melt and multiannual ice-flow acceleration. We identify a hydro-thermodynamic feedback that successively mobilizes stagnant ice regions, initially frozen to their bed, thereby facilitating fast basal motion over an expanding area. By autumn 2012, successive destabilization of the marine terminus escalated in a surge of the ice cap's largest drainage basin, Basin-3. The resulting iceberg discharge of 4.2 ± 1.6 Gt a-1 over the period April 2012 to May 2013 triples the calving loss from the entire ice cap. After accounting for the terminus advance, the related sea-level rise contribution of 7.2 ± 2.6 Gt a-1 matches the recent annual ice-mass loss from the entire Svalbard archipelago. Our study highlights the importance of dynamic glacier wastage and illuminates mechanisms that may trigger a sustained increase in dynamic glacier wastage or the disintegration of ice-sheets in response to climate warming, which is acknowledged but not quantified in global projections of sea-level rise.

  5. Vortex Dynamics of Asymmetric Heave Plates

    NASA Astrophysics Data System (ADS)

    Rusch, Curtis; Maurer, Benjamin; Polagye, Brian

    2017-11-01

    Heave plates can be used to provide reaction forces for wave energy converters, which harness the power in ocean surface waves to produce electricity. Heave plate inertia includes both the static mass of the heave plate, as well as the ``added mass'' of surrounding water accelerated with the object. Heave plate geometries may be symmetric or asymmetric, with interest in asymmetric designs driven by the resulting hydrodynamic asymmetry. Limited flow visualization has been previously conducted on symmetric heave plates, but flow visualization of asymmetric designs is needed to understand the origin of observed hydrodynamic asymmetries and their dependence on the Keulegan-Carpenter number. For example, it is hypothesized that the time-varying added mass of asymmetric heave plates is caused by vortex shedding, which is related to oscillation amplitude. Here, using direct flow visualization, we explore the relationship between vortex dynamics and time-varying added mass and drag. These results suggest potential pathways for more advanced heave plate designs that can exploit vortex formation and shedding to achieve more favorable hydrodynamic properties for wave energy converters.

  6. Numerical Study of the Buoyancy-Driven Flow in a Four-Electrode Rectangular Electrochemical Cell

    NASA Astrophysics Data System (ADS)

    Sun, Zhanyu; Agafonov, Vadim; Rice, Catherine; Bindler, Jacob

    2009-11-01

    Two-dimensional numerical simulation is done on the buoyancy-driven flow in a four-electrode rectangular electrochemical cell. Two kinds of electrode layouts, the anode-cathode-cathode-anode (ACCA) and the cathode-anode-anode-cathode (CAAC) layouts, are studied. In the ACCA layout, the two anodes are placed close to the channel outlets while the two cathodes are located between the two anodes. The CAAC layout can be converted from the ACCA layout by applying higher electric potential on the two middle electrodes. Density gradient was generated by the electrodic reaction I3^-+2e^- =3I^-. When the electrochemical cell is accelerated axially, buoyancy-driven flow occurs. In our model, electro-neutrality is assumed except at the electrodes. The Navier-Stokes equations with the Boussinesq approximation and the Nernst-Planck equations are employed to model the momentum and mass transports, respectively. It is found that under a given axial acceleration, the electrolyte density between the two middle electrodes determines the bulk flow through the electrochemical cell. The cathodic current difference is found to be able to measure the applied acceleration. Other important electro-hydrodynamic characteristics are also discussed.

  7. Recent Changes in Ices Mass Balance of the Amundsen Sea Sector

    NASA Astrophysics Data System (ADS)

    Sutterley, T. C.; Velicogna, I.; Rignot, E. J.; Mouginot, J.; Flament, T.; van den Broeke, M. R.; van Wessem, M.; Reijmer, C.

    2014-12-01

    The glaciers flowing into the Amundsen Sea Embayment (ASE) sector of West Antarctica were confirmed in the Ice Sheet Mass Balance Inter-comparison Exercise (IMBIE) to be the dominant contributors to the current Antarctic ice mass loss, and recently recognized to be undergoing marine ice sheet instability. Here, we investigate their regional ice mass balance using a time series of satellite and airborne data combined with model output products from the Regional Atmospheric and Climate Model (RACMO). Our dataset includes laser altimetry from NASA's ICESat-1 satellite mission and from Operation IceBridge (OIB) airborne surveys, satellite radar altimetry data from ESA's Envisat mission, time-variable gravity data from NASA/DLR's GRACE mission, surface mass balance products from RACMO, ice velocity from a combination of international synthetic aperture radar satellites and ice thickness data from OIB. We find a record of ice mass balance for the ASE where all the analyzed techniques agree remarkably in magnitude and temporal variability. The mass loss of the region has been increasing continuously since 1992, with no indication of a slow down. The mass loss during the common period averaged 91 Gt/yr and accelerated 20 Gt/yr2. In 1992-2013, the ASE contributed 4.5 mm global sea level rise. Overall, our results demonstrate the synergy of multiple analysis techniques for examining Antarctic Ice Sheet mass balance at the regional scale. This work was performed at UCI and JPL under a contract with NASA.

  8. The stochastic dynamics of intermittent porescale particle motion

    NASA Astrophysics Data System (ADS)

    Dentz, Marco; Morales, Veronica; Puyguiraud, Alexandre; Gouze, Philippe; Willmann, Matthias; Holzner, Markus

    2017-04-01

    Numerical and experimental data for porescale particle dynamics show intermittent patterns in Lagrangian velocities and accelerations, which manifest in long time intervals of low and short durations of high velocities [1, 2]. This phenomenon is due to the spatial persistence of particle velocities on characteristic heterogeneity length scales. In order to systematically quantify these behaviors and extract the stochastic dynamics of particle motion, we focus on the analysis of Lagrangian velocities sampled equidistantly along trajectories [3]. This method removes the intermittency observed under isochrone sampling. The space-Lagrangian velocity series can be quantified by a Markov process that is continuous in distance along streamline. It is fully parameterized in terms of the flux-weighted Eulerian velocity PDF and the characteristic pore-length. The resulting stochastic particle motion describes a continuous time random walk (CTRW). This approach allows for the process based interpretation of experimental and numerical porescale velocity, acceleration and displacement data. It provides a framework for the characterization and upscaling of particle transport and dispersion from the pore to the Darcy-scale based on the medium geometry and Eulerian flow attributes. [1] P. De Anna, T. Le Borgne, M. Dentz, A.M. Tartakovsky, D. Bolster, and P. Davy, "Flow intermittency, dispersion, and correlated continuous time random walks in porous media," Phys. Rev. Lett. 110, 184502 (2013). [2] M. Holzner, V. L. Morales, M. Willmann, and M. Dentz, "Intermittent Lagrangian velocities and accelerations in three- dimensional porous medium flow," Phys. Rev. E 92, 013015 (2015). [3] M. Dentz, P. K. Kang, A. Comolli, T. Le Borgne, and D. R. Lester, "Continuous time random walks for the evolution of Lagrangian velocities," Phys. Rev. Fluids (2016).

  9. Spectroscopic studies of the exhaust plume of a quasi-steady MPD accelerator. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.

    1972-01-01

    Spectroscopic and photographic investigations are reported that reveal a complex azimuthal species structure in the exhaust plume of a quasi-steady argon MPD accelerator. Over a wide range of operating conditions the injected argon remains collimated in discrete jets which are azimuthally in line with the six propellant injector orifices. The regions between these argon jets, including the central core of the exhaust flow, are occupied by impurities such as carbon, hydrogen and oxygen ablated from the Plexiglas back plate of the arc chamber. The features of this plume structure are found to be dependent on the arc current and mass flow rate. It is found that nearly half the observed velocity is attained in an acceleration region well downstream of the region of significant electromagnetic interaction. Recombination calculations show that the ionization energy is essentially frozen.

  10. Evaluation of tunable diode laser absorption spectroscopy for in-process water vapor mass flux measurements during freeze drying.

    PubMed

    Gieseler, Henning; Kessler, William J; Finson, Michael; Davis, Steven J; Mulhall, Phillip A; Bons, Vincent; Debo, David J; Pikal, Michael J

    2007-07-01

    The goal of this work was to demonstrate the use of Tunable Diode Laser Absorption Spectroscopy (TDLAS) as a noninvasive method to continuously measure the water vapor concentration and the vapor flow velocity in the spool connecting a freeze-dryer chamber and condenser. The instantaneous measurements were used to determine the water vapor mass flow rate (g/s). The mass flow determinations provided a continuous measurement of the total amount of water removed. Full load runs of pure water at different pressure and shelf temperature settings and a 5% (w/w) mannitol product run were performed in both laboratory and pilot scale freeze dryers. The ratio of "gravimetric/TDLAS" measurements of water removed was 1.02 +/- 0.06. A theoretical heat transfer model was used to predict the mass flow rate and the model results were compared to both the gravimetric and TDLAS data. Good agreement was also observed in the "gravimetric/TDLAS" ratio for the 5% mannitol runs dried in both freeze dryers. The endpoints of primary and secondary drying for the product runs were clearly identified. Comparison of the velocity and mass flux profiles between the laboratory and pilot dryers indicated a higher restriction to mass flow for the lab scale freeze dryer. Copyright 2007 Wiley-Liss, Inc.

  11. Influence of Wind Pressure on the Carbonation of Concrete

    PubMed Central

    Zou, Dujian; Liu, Tiejun; Du, Chengcheng; Teng, Jun

    2015-01-01

    Carbonation is one of the major deteriorations that accelerate steel corrosion in reinforced concrete structures. Many mathematical/numerical models of the carbonation process, primarily diffusion-reaction models, have been established to predict the carbonation depth. However, the mass transfer of carbon dioxide in porous concrete includes molecular diffusion and convection mass transfer. In particular, the convection mass transfer induced by pressure difference is called penetration mass transfer. This paper presents the influence of penetration mass transfer on the carbonation. A penetration-reaction carbonation model was constructed and validated by accelerated test results under high pressure. Then the characteristics of wind pressure on the carbonation were investigated through finite element analysis considering steady and fluctuating wind flows. The results indicate that the wind pressure on the surface of concrete buildings results in deeper carbonation depth than that just considering the diffusion of carbon dioxide. In addition, the influence of wind pressure on carbonation tends to increase significantly with carbonation depth. PMID:28793462

  12. Influence of Wind Pressure on the Carbonation of Concrete.

    PubMed

    Zou, Dujian; Liu, Tiejun; Du, Chengcheng; Teng, Jun

    2015-07-24

    Carbonation is one of the major deteriorations that accelerate steel corrosion in reinforced concrete structures. Many mathematical/numerical models of the carbonation process, primarily diffusion-reaction models, have been established to predict the carbonation depth. However, the mass transfer of carbon dioxide in porous concrete includes molecular diffusion and convection mass transfer. In particular, the convection mass transfer induced by pressure difference is called penetration mass transfer. This paper presents the influence of penetration mass transfer on the carbonation. A penetration-reaction carbonation model was constructed and validated by accelerated test results under high pressure. Then the characteristics of wind pressure on the carbonation were investigated through finite element analysis considering steady and fluctuating wind flows. The results indicate that the wind pressure on the surface of concrete buildings results in deeper carbonation depth than that just considering the diffusion of carbon dioxide. In addition, the influence of wind pressure on carbonation tends to increase significantly with carbonation depth.

  13. Two improvements on numerical simulation of 2-DOF vortex-induced vibration with low mass ratio

    NASA Astrophysics Data System (ADS)

    Kang, Zhuang; Ni, Wen-chi; Zhang, Xu; Sun, Li-ping

    2017-12-01

    Till now, there have been lots of researches on numerical simulation of vortex-induced vibration. Acceptable results have been obtained for fixed cylinders with low Reynolds number. However, for responses of 2-DOF vortex-induced vibration with low mass ratio, the accuracy is not satisfactory, especially for the maximum amplitudes. In Jauvtis and Williamson's work, the maximum amplitude of the cylinder with low mass ratio m*=2.6 can reach as large as 1.5 D to be called as the "super-upper branch", but from current literatures, few simulation results can achieve such value, even fail to capture the upper branch. Besides, it is found that the amplitude decays too fast in the lower branch with the RANS-based turbulence model. The reason is likely to be the defects of the turbulence model itself in the prediction of unsteady separated flows as well as the unreasonable setting of the numerical simulation parameters. Aiming at above issues, a modified turbulence model is proposed in this paper, and the effect of the acceleration of flow field on the response of vortex-induced vibration is studied based on OpenFOAM. By analyzing the responses of amplitude, phase and trajectory, frequency and vortex mode, it is proved that the vortex-induced vibration can be predicted accurately with the modified turbulence model under appropriate flow field acceleration.

  14. Direct evidence for magnetic reconnection in the solar wind near 1 AU

    NASA Astrophysics Data System (ADS)

    Gosling, J. T.; Skoug, R. M.; McComas, D. J.; Smith, C. W.

    2005-01-01

    We have obtained direct evidence for local magnetic reconnection in the solar wind using solar wind plasma and magnetic field data obtained by the Advanced Composition Explorer (ACE). The prime evidence consists of accelerated ion flow observed within magnetic field reversal regions in the solar wind. Here we report such observations obtained in the interior of an interplanetary coronal mass ejection (ICME) or at the interface between two ICMEs on 23 November 1997 at a time when the magnetic field was stronger than usual. The observed plasma acceleration was consistent with the Walen relationship, which relates changes in flow velocity to density-weighted changes in the magnetic field vector. Pairs of proton beams having comparable densities and counterstreaming relative to one another along the magnetic field at a speed of ˜1.4VA, where VA was the local Alfven speed, were observed near the center of the accelerated flow event. We infer from the observations that quasi-stationary reconnection occurred sunward of the spacecraft and that the accelerated flow occurred within a Petschek-type reconnection exhaust region bounded by Alfven waves and having a cross section width of ˜4 × 105 km as it swept over ACE. The counterstreaming ion beams resulted from solar wind plasma entering the exhaust region from opposite directions along the reconnected magnetic field lines. We have identified a limited number (five) of other accelerated flow events in the ACE data that are remarkably similar to the 23 November 1997 event. All such events identified occurred at thin current sheets associated with moderate to large changes in magnetic field orientation (98°-162°) in plasmas characterized by low proton beta (0.01-0.15) and high Alfven speed (51-204 km/s). They also were all associated with ICMEs.

  15. Using a Smart-pulley Atwood machine to study rocket motion

    NASA Astrophysics Data System (ADS)

    Greenwood, M. Stautberg; Bernett, R.; Benavides, M.; Granger, S.; Plass, R.; Walters, S.

    1989-10-01

    The Atwood machine consisted of a funnel partly filled with water on one side and a fixed mass of 400 g on the other side. The ``rocket'' begins to ascend when the acceleration is momentarily zero. This occurs when the total mass of the rocket is slightly larger than 400 g due to the rocket's thrust. As the wheel of Pasco's Smart pulley rotates, signals are sent to the Apple computer and the software generates tables and graphs of position, speed, and acceleration as a function of time. Also presented is a numerical differentiation scheme that greatly reduces the scatter in the experimental data for the acceleration. The data are compared with theory, assuming that dm/dt is constant. The value of dm/dt necessary to fit the data is compared with that found by measuring the flow rate from the funnel directly. Excellent agreement is obtained for the two values of dm/dt.

  16. Numerical investigation of particle-blast interaction during explosive dispersal of liquids and granular materials

    NASA Astrophysics Data System (ADS)

    Pontalier, Q.; Lhoumeau, M.; Milne, A. M.; Longbottom, A. W.; Frost, D. L.

    2018-05-01

    Experiments show that when a high-explosive charge with embedded particles or a charge surrounded by a layer of liquid or granular material is detonated, the flow generated is perturbed by the motion of the particles and the blast wave profile differs from that of an ideal Friedlander form. Initially, the blast wave overpressure is reduced due to the energy dissipation resulting from compaction, fragmentation, and heating of the particle bed, and acceleration of the material. However, as the blast wave propagates, particle-flow interactions collectively serve to reduce the rate of decay of the peak blast wave overpressure. Computations carried out with a multiphase hydrocode reproduce the general trends observed experimentally and highlight the transition between the particle acceleration/deceleration phases, which is not accessible experimentally, since the particles are obscured by the detonation products. The dependence of the particle-blast interaction and the blast mitigation effectiveness on the mitigant to explosive mass ratio, the particle size, and the initial solid volume fraction is investigated systematically. The reduction in peak blast overpressure is, as in experiments, primarily dependent on the mass ratio of material to explosive, with the particle size, density, and initial porosity of the particle bed playing secondary roles. In the near field, the blast overpressure decreases sharply with distance as the particles are accelerated by the flow. When the particles decelerate due to drag, energy is returned to the flow and the peak blast overpressure recovers and reaches values similar to that of a bare explosive charge for low mass ratios. Time-distance trajectory plots of the particle and blast wave motion with the pressure field superimposed, illustrate the weak pressure waves generated by the motion of the particle layer which travel upstream and perturb the blast wave motion. Computation of the particle and gas momentum flux in the multiphase flow generated during explosive particle dispersal indicates that the particle momentum flux is the dominant term in the near field. Both the gas and particle loading must be taken into account when determining the damage to nearby structures following the detonation of a high-explosive charge surrounded by a material layer.

  17. Numerical investigation of particle-blast interaction during explosive dispersal of liquids and granular materials

    NASA Astrophysics Data System (ADS)

    Pontalier, Q.; Lhoumeau, M.; Milne, A. M.; Longbottom, A. W.; Frost, D. L.

    2018-04-01

    Experiments show that when a high-explosive charge with embedded particles or a charge surrounded by a layer of liquid or granular material is detonated, the flow generated is perturbed by the motion of the particles and the blast wave profile differs from that of an ideal Friedlander form. Initially, the blast wave overpressure is reduced due to the energy dissipation resulting from compaction, fragmentation, and heating of the particle bed, and acceleration of the material. However, as the blast wave propagates, particle-flow interactions collectively serve to reduce the rate of decay of the peak blast wave overpressure. Computations carried out with a multiphase hydrocode reproduce the general trends observed experimentally and highlight the transition between the particle acceleration/deceleration phases, which is not accessible experimentally, since the particles are obscured by the detonation products. The dependence of the particle-blast interaction and the blast mitigation effectiveness on the mitigant to explosive mass ratio, the particle size, and the initial solid volume fraction is investigated systematically. The reduction in peak blast overpressure is, as in experiments, primarily dependent on the mass ratio of material to explosive, with the particle size, density, and initial porosity of the particle bed playing secondary roles. In the near field, the blast overpressure decreases sharply with distance as the particles are accelerated by the flow. When the particles decelerate due to drag, energy is returned to the flow and the peak blast overpressure recovers and reaches values similar to that of a bare explosive charge for low mass ratios. Time-distance trajectory plots of the particle and blast wave motion with the pressure field superimposed, illustrate the weak pressure waves generated by the motion of the particle layer which travel upstream and perturb the blast wave motion. Computation of the particle and gas momentum flux in the multiphase flow generated during explosive particle dispersal indicates that the particle momentum flux is the dominant term in the near field. Both the gas and particle loading must be taken into account when determining the damage to nearby structures following the detonation of a high-explosive charge surrounded by a material layer.

  18. One-Dimensional, Two-Phase Flow Modeling Toward Interpreting Motor Slag Expulsion Phenomena

    NASA Technical Reports Server (NTRS)

    Kibbey, Timothy P.

    2012-01-01

    Aluminum oxide slag accumulation and expulsion was previously shown to be a player in various solid rocket motor phenomena, including the Space Shuttle's Reusable Solid Rocket Motor (RSRM) pressure perturbation, or "blip," and phantom moment. In the latter case, such un ]commanded side accelerations near the end of burn have also been identified in several other motor systems. However, efforts to estimate the mass expelled during a given event have come up short. Either bulk calculations are performed without enough physics present, or multiphase, multidimensional Computational Fluid Dynamic analyses are performed that give a snapshot in time and space but do not always aid in grasping the general principle. One ]dimensional, two ]phase compressible flow calculations yield an analytical result for nozzle flow under certain assumptions. This can be carried further to relate the bulk motor parameters of pressure, thrust, and mass flow rate under the different exhaust conditions driven by the addition of condensed phase mass flow. An unknown parameter is correlated to airflow testing with water injection where mass flow rates and pressure are known. Comparison is also made to full ]scale static test motor data where thrust and pressure changes are known and similar behavior is shown. The end goal is to be able to include the accumulation and flow of slag in internal ballistics predictions. This will allow better prediction of the tailoff when much slag is ejected and of mass retained versus time, believed to be a contributor to the widely-observed "flight knockdown" parameter.

  19. Breaking Off of Large Ice Masses From Hanging Glaciers

    NASA Astrophysics Data System (ADS)

    Pralong, A.; Funk, M.

    In order to reduce damage to settlements or other installations (roads, railway, etc) and avoid loss of life, a forecast of the final failure time of ice masses is required. At present, the most promising approach for such a prediction is based on the regularity by which certain large ice masses accelerate prior to the instant of collapse. The lim- itation of this forecast lies in short-term irregularities and in the difficulties to obtain sufficiently accurate data. A better physical understanding of the breaking off process is required, in order to improve the forecasting method. Previous analyze has shown that a stepwise crack extension coupling with a viscous flow leads to the observed acceleration function. We propose another approach by considering a local damage evolution law (gener- alized Kachanow's law) coupled with Glen's flow law to simulate the spatial evolu- tion of damage in polycristalline ice, using a finite element computational model. The present study focuses on the transition from a diffuse to a localised damage reparti- tion occurring during the damage evolution. The influence of inhomogeneous initial conditions (inhomogeneity of the mechanical properties of ice, damage inhomogene- ity) and inhomogeneous boundary conditions on the damage repartition are especially investigated.

  20. Continuous esterification to produce biodiesel by SPES/PES/NWF composite catalytic membrane in flow-through membrane reactor: experimental and kinetic studies.

    PubMed

    Shi, Wenying; He, Benqiao; Cao, Yuping; Li, Jianxin; Yan, Feng; Cui, Zhenyu; Zou, Zhiqun; Guo, Shiwei; Qian, Xiaomin

    2013-02-01

    A novel composite catalytic membrane (CCM) was prepared from sulfonated polyethersulfone (SPES) and polyethersulfone (PES) blend supported by non-woven fabrics, as a heterogeneous catalyst to produce biodiesel from continuous esterification of oleic acid with methanol in a flow-through mode. A kinetic model of esterification was established based on a plug-flow assumption. The effects of the CCM structure (thickness, area, porosity, etc.), reaction temperature and the external and internal mass transfer resistances on esterification were investigated. The results showed that the CCM structure had a significant effect on the acid conversion. The external mass transfer resistance could be neglected when the flow rate was over 1.2 ml min(-1). The internal mass transfer resistance impacted on the conversion when membrane thickness was over 1.779 mm. An oleic acid conversion kept over 98.0% for 500 h of continuous running. The conversions obtained from the model are in good agreement with the experimental data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Experimental study on heat transfer to supercritical water flowing through tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, M.; Gu, H.; Cheng, X.

    2012-07-01

    A test facility named SWAMUP (Supercritical Water Multi-Purpose Loop) has been constructed in Shanghai Jiao Tong Univ. to investigate heat transfer and pressure drop through tubes and rod bundles. SWAMUP is a closed loop with operating pressure up to 30 MPa, outlet-water temperature up to 550 deg. C, and mass flow rate up to 5 t/h. In this paper, experimental study has been carried out on heat transfer of supercritical water flowing vertically through tubes (ID=7.6 and 10 mm). A large number of test points in tubes has been obtained with a wide range of heat flux (200-1500 kw/m{sup 2})more » and mass flux (450-2000 kg/m{sup 2}s). Test results showed that heat transfer deterioration (HTD) caused by buoyancy effect only appears in upward flow and HTD caused by acceleration effect appears both in upward flow and downward flow. The heat transfer coefficients (HTC) produced in tube tests were compared with existing heat transfer correlations. (authors)« less

  2. Heat and mass exchanger

    DOEpatents

    Lowenstein, Andrew; Sibilia, Marc J.; Miller, Jeffrey A.; Tonon, Thomas

    2007-09-18

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  3. Heat and mass exchanger

    DOEpatents

    Lowenstein, Andrew [Princeton, NJ; Sibilia, Marc J [Princeton, NJ; Miller, Jeffrey A [Hopewell, NJ; Tonon, Thomas [Princeton, NJ

    2011-06-28

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  4. Fusion-Driven Space Plane for Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Kammash, T.; Cassenti, B.

    A fusion hybrid reactor where the fusion component is the gasdynamic mirror (GDM) is proposed as the driver of a rocket that would allow a space vehicle of the size of Boeing 747 to travel to the moon in about one day. The energy produced by the reactor is induced by fusion neutrons that impinge on a thorium-232 blanket where they breed uranium-233 and simultane- ously burn it to produce power. For a vehicle of mass 500 metric tons (mT), the thrust required to accelerate it at 1 g is 5 MN, and the specific impulse, Isp, necessary to accelerate 90% of the launch mass to the escape velocity of 11,200 m/sec is found to be 10,182 seconds. For these propulsion parameters, the coolant mass flow rate would be 49 kg/sec. We note that the time it takes the launch mass, initially at rest and accelerated at 1g, to reach the escape velocity is 1,020 seconds. At the above noted rate, the total propellant mass is approximately 50 mT, which is about 10% of the launch mass, validating the Isp needed to accelerate the remainder to the escape velocity. If we assume that the trajectory to the moon is linear, and we account for the deceleration of the vehicle by the earth's gravitational force, and its acceleration by the moon's gravitational force, we can calculate the average velocity and the time it takes to reach the moon. We find that the travel time is about 1.66 days, which in this model is effectively the time for a fly-by. A more rigorous calculation using the restricted three body approach with the third body being the spacecraft, and allowing for a coordinate system that rotates at the circular frequency of the larger masses, shows that the transit time is about 0.65 days, which is comparable to the flight time between New York and Sidney, Australia.

  5. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2016-01-01

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.

  6. Acceleration Modes and Transitions in Pulsed Plasma Accelerators

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Greve, Christine M.

    2018-01-01

    Pulsed plasma accelerators typically operate by storing energy in a capacitor bank and then discharging this energy through a gas, ionizing and accelerating it through the Lorentz body force. Two plasma accelerator types employing this general scheme have typically been studied: the gas-fed pulsed plasma thruster and the quasi-steady magnetoplasmadynamic (MPD) accelerator. The gas-fed pulsed plasma accelerator is generally represented as a completely transient device discharging in approximately 1-10 microseconds. When the capacitor bank is discharged through the gas, a current sheet forms at the breech of the thruster and propagates forward under a j (current density) by B (magnetic field) body force, entraining propellant it encounters. This process is sometimes referred to as detonation-mode acceleration because the current sheet representation approximates that of a strong shock propagating through the gas. Acceleration of the initial current sheet ceases when either the current sheet reaches the end of the device and is ejected or when the current in the circuit reverses, striking a new current sheet at the breech and depriving the initial sheet of additional acceleration. In the quasi-steady MPD accelerator, the pulse is lengthened to approximately 1 millisecond or longer and maintained at an approximately constant level during discharge. The time over which the transient phenomena experienced during startup typically occur is short relative to the overall discharge time, which is now long enough for the plasma to assume a relatively steady-state configuration. The ionized gas flows through a stationary current channel in a manner that is sometimes referred to as the deflagration-mode of operation. The plasma experiences electromagnetic acceleration as it flows through the current channel towards the exit of the device. A device that had a short pulse length but appeared to operate in a plasma acceleration regime different from the gas-fed pulsed plasma accelerators was developed by Cheng, et al. The Coaxial High ENerGy (CHENG) thruster operated on the 10-microseconds timescales of pulsed plasma thrusters, but claimed high thrust density, high efficiency and low electrode erosion rates, which are more consistent with the deflagration mode of acceleration. Separate work on gas-fed pulsed plasma thrusters (PPTs) by Ziemer, et al. identified two separate regimes of performance. The regime at higher mass bits (termed Mode I in that work) possessed relatively constant thrust efficiency (ratio of jet kinetic energy to input electrical energy) as a function of mass bit. In the second regime at very low mass bits (termed Mode II), the efficiency increased with decreasing mass bit. Work by Poehlmann et al. and by Sitaraman and Raja sought to understand the performance of the CHENG thruster and the Mode I / Mode II performance in PPTs by modeling the acceleration using the Hugoniot Relation, with the detonation and deflagration modes representing two distinct sets of solutions to the relevant conservation laws. These works studied the proposal that, depending upon the values of the various controllable parameters, the accelerator would operate in either the detonation or deflagration mode. In the present work, we propose a variation on the explanation for the differences in performance between the various pulsed plasma accelerators. Instead of treating the accelerator as if it were only operating in one mode or the other during a pulse, we model the initial stage of the discharge in all cases as an accelerating current sheet (detonation mode). If the current sheet reaches the exit of the accelerator before the discharge is completed, the acceleration mode transitions to the deflagration mode type found in the quasi-steady MPD thrusters. This modeling method is used to demonstrate that standard gas-fed pulsed plasma accelerators, the CHENG thruster, and the quasi-steady MPD accelerator are variations of the same device, with the overall acceleration of the plasma depending upon the behavior of the plasma discharge during initial transient phase and the relative lengths of the detonation and deflagration modes of operation.

  7. Continuous Flow Atmospheric Pressure Laser Desorption/Ionization Using a 6–7-µm-Band Mid-Infrared Tunable Laser for Biomolecular Mass Spectrometry

    PubMed Central

    Hiraguchi, Ryuji; Hazama, Hisanao; Senoo, Kenichirou; Yahata, Yukinori; Masuda, Katsuyoshi; Awazu, Kunio

    2014-01-01

    A continuous flow atmospheric pressure laser desorption/ionization technique using a porous stainless steel probe and a 6–7-µm-band mid-infrared tunable laser was developed. This ion source is capable of direct ionization from a continuous flow with a high temporal stability. The 6–7-µm wavelength region corresponds to the characteristic absorption bands of various molecular vibration modes, including O–H, C=O, CH3 and C–N bonds. Consequently, many organic compounds and solvents, including water, have characteristic absorption peaks in this region. This ion source requires no additional matrix, and utilizes water or acetonitrile as the solvent matrix at several absorption peak wavelengths (6.05 and 7.27 µm, respectively). The distribution of multiply-charged peptide ions is extremely sensitive to the temperature of the heated capillary, which is the inlet of the mass spectrometer. This ionization technique has potential for the interface of liquid chromatography/mass spectrometry (LC/MS). PMID:24937686

  8. Analysis of the cross flow in a radial inflow turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Abdallah, S.; Tabakoff, W.

    1977-01-01

    Equations of motion were derived, and a computational procedure is presented, for determining the nonviscous flow characteristics in the cross-sectional planes of a curved channel due to continuous mass discharge or mass addition. An analysis was applied to the radial inflow turbine scroll to study the effects of scroll geometry and the through flow velocity profile on the flow behavior. The computed flow velocity component in the scroll cross-sectional plane, together with the through flow velocity profile which can be determined in a separate analysis, provide a complete description of the three dimensional flow in the scroll.

  9. 40 CFR Table 12 to Subpart G of... - Monitoring Requirements for Treatment Processes

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Appropriate methods as specified in § 63.143 and as approved by permitting authority. 2. Steam stripper (i... recorder. (ii) Wastewater feed mass flow rate; and Continuously Liquid flow meter installed at stripper... operating temperature Continuously (A) Liquid temperature monitoring device installed at stripper influent...

  10. 40 CFR Table 12 to Subpart G of... - Monitoring Requirements for Treatment Processes

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Appropriate methods as specified in § 63.143 and as approved by permitting authority. 2. Steam stripper (i... recorder. (ii) Wastewater feed mass flow rate; and Continuously Liquid flow meter installed at stripper... operating temperature Continuously (A) Liquid temperature monitoring device installed at stripper influent...

  11. 40 CFR Table 12 to Subpart G of... - Monitoring Requirements for Treatment Processes

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Appropriate methods as specified in § 63.143 and as approved by permitting authority. 2. Steam stripper (i... recorder. (ii) Wastewater feed mass flow rate; and Continuously Liquid flow meter installed at stripper... operating temperature Continuously (A) Liquid temperature monitoring device installed at stripper influent...

  12. 40 CFR Table 12 to Subpart G of... - Monitoring Requirements for Treatment Processes

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Appropriate methods as specified in § 63.143 and as approved by permitting authority. 2. Steam stripper (i... recorder. (ii) Wastewater feed mass flow rate; and Continuously Liquid flow meter installed at stripper... operating temperature Continuously (A) Liquid temperature monitoring device installed at stripper influent...

  13. 40 CFR Table 12 to Subpart G of... - Monitoring Requirements for Treatment Processes

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Appropriate methods as specified in § 63.143 and as approved by permitting authority. 2. Steam stripper (i... recorder. (ii) Wastewater feed mass flow rate; and Continuously Liquid flow meter installed at stripper... operating temperature Continuously (A) Liquid temperature monitoring device installed at stripper influent...

  14. Annular MHD Physics for Turbojet Energy Bypass

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    2011-01-01

    The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).

  15. A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing.

    PubMed

    Habhab, Mohammed-Baker; Ismail, Tania; Lo, Joe Fujiou

    2016-11-23

    Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP) based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications.

  16. Continuous-flow liquid microjunction surface sampling probe connected on-line with high-performance liquid chromatography/mass spectrometry for spatially resolved analysis of small molecules and proteins.

    PubMed

    Van Berkel, Gary J; Kertesz, Vilmos

    2013-06-30

    A continuous-flow liquid microjunction surface sampling probe extracts soluble material from surfaces for direct ionization and detection by mass spectrometry. Demonstrated here is the on-line coupling of such a probe with high-performance liquid chromatography/mass spectrometry (HPLC/MS) enabling extraction, separation and detection of small molecules and proteins from surfaces in a spatially resolved (~0.5 mm diameter spots) manner. A continuous-flow liquid microjunction surface sampling probe was connected to a six-port, two-position valve for extract collection and injection to an HPLC column. A QTRAP® 5500 hybrid triple quadrupole linear ion trap equipped with a Turbo V™ ion source operated in positive electrospray ionization (ESI) mode was used for all experiments. The system operation was tested with the extraction, separation and detection of propranolol and associated metabolites from drug dosed tissues, caffeine from a coffee bean, cocaine from paper currency, and proteins from dried sheep blood spots on paper. Confirmed in the tissue were the parent drug and two different hydroxypropranolol glucuronides. The mass spectrometric response for these compounds from different locations in the liver showed an increase with increasing extraction time (5, 20 and 40 s). For on-line separation and detection/identification of extracted proteins from dried sheep blood spots, two major protein peaks dominated the chromatogram and could be correlated with the expected masses for the hemoglobin α and β chains. Spatially resolved sampling, separation, and detection of small molecules and proteins from surfaces can be accomplished using a continuous-flow liquid microjunction surface sampling probe coupled on-line with HPLC/MS detection. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.

  17. Evaluation of the 34S/32S ratio of Soufre de Lacq elemental sulfur isotopic reference material by continuous flow isotope-ratio mass spectrometry

    USGS Publications Warehouse

    Qi, H.P.; Coplen, T.B.

    2003-01-01

    Soufre de Lacq elemental sulfur reference material (IAEA-S-4) isotopically is homogeneous in amounts as small as 41 ??g as determined by continuous flow isotope-ratio mass spectrometry. The ??34S value for this reference material is +16.90 ?? 0.12??? (1??) on a scale (Vienna Can??on Diablo troilite, VCDT) where IAEA-S-1 Ag2S is -0.3??? and IAEA-S-2 Ag2S is +22.67???. Published by Elsevier Science B.V.

  18. Microstructure and Mechanical Properties in Hot-Rolled Extra High-Yield-Strength Steel Plates for Offshore Structure and Shipbuilding

    NASA Astrophysics Data System (ADS)

    Liu, Dongsheng; Li, Qingliang; Emi, Toshihiko

    2011-05-01

    Key parameters for a thermomechanically controlled processing and accelerated cooling process (TMCP-AcC) were determined for integrated mass production to produce extra high-yield-strength microalloyed low carbon SiMnCrNiCu steel plates for offshore structure and bulk shipbuilding. Confocal scanning microscopy was used to make in-situ observations on the austenite grain growth during reheating. A Gleeble 3800 thermomechanical simulator was employed to investigate the flow stress behavior, static recrystallization (SRX) of austenite, and decomposition behavior of the TMCP conditioned austenite during continuous cooling. The Kocks-Mecking model was employed to describe the constitutive behavior, while the Johnson-Mehl-Avrami-Kolmogorov (JMAK) approach was used to predict the SRX kinetics. The effects of hot rolling schedule and AcC on microstructure and properties were investigated by test-scale rolling trials. The bridging between the laboratory observations and the process parameter determination to optimize the mass production was made by integrated industrial production trials on a set of a 5-m heavy plate mill equipped with an accelerated cooling system. Successful production of 60- and 50-mm-thick plates with yield strength in excess of 460 MPa and excellent toughness at low temperature (213 K (-60 °C)) in the parent metal and the simulated coarse-grained heat affected zone (CGHAZ) provides a useful integrated database for developing advanced high-strength steel plates via TMCP-AcC.

  19. Program For Finite-Element Analyses Of Phase-Change Fluids

    NASA Technical Reports Server (NTRS)

    Viterna, L. A.

    1995-01-01

    PHASTRAN analyzes heat-transfer and flow behaviors of materials undergoing phase changes. Many phase changes operate over range of accelerations or effective gravitational fields. To analyze such thermal systems, it is necessary to obtain simultaneous solutions for equations of conservation of energy, momentum, and mass, and for equation of state. Written in APL2.

  20. Observation of a westward travelling surge from satellites at low, medium and high altitudes

    NASA Technical Reports Server (NTRS)

    Ungstrup, E.; Sharp, R. D.; Cattell, C. A.; Anderson, R. R.; Fitzenreiter, R. J.; Evans, D. S.; Baker, D. N.

    1984-01-01

    The motion of discontinuity; electric potential and current structure of the event; energy source and flow; wave-particle interactions; and particle acceleration are addressed using wave, electron, ion mass spectrometer, dc electric field, and magnetic field observation from the Isee-1, NOAA-6, and the 1976-059 geostationary satellite.

  1. Toward a high-throughput method for determining vicine and convicine levels in faba bean seeds using flow injection analysis combined with tandem mass spectrometry.

    PubMed

    Purves, Randy W; Khazaei, Hamid; Vandenberg, Albert

    2018-08-01

    Although faba bean provides environmental and health benefits, vicine and convicine (v-c) limit its use as a source of vegetable protein. Crop improvement efforts to minimize v-c concentration require low-cost, rapid screening methods to distinguish between high and low v-c genotypes to accelerate development of new cultivars and to detect out-crossing events. To assist crop breeders, we developed a unique and rapid screening method that uses a 60 s instrumental analysis step to accurately distinguish between high and low v-c genotypes. The method involves flow injection analysis (FIA) coupled with tandem mass spectrometry (i.e., selective reaction monitoring, SRM). Using seeds with known v-c levels as calibrants, measured v-c levels were comparable with liquid chromatography (LC)-SRM results and the method was used to screen 370 faba bean genotypes. Widespread use of FIA-SRM will accelerate breeding of low v-c faba bean, thereby alleviating concerns about anti-nutritional effects of v-c in this crop. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Characterization of corrosion phenomena and kinetics on T91 ferritic/martensitic steel exposed at 450 and 550 °C to flowing Pb-Bi eutectic with 10-7 mass% dissolved oxygen

    NASA Astrophysics Data System (ADS)

    Tsisar, Valentyn; Schroer, Carsten; Wedemeyer, Olaf; Skrypnik, Aleksandr; Konys, Jürgen

    2017-10-01

    Corrosion behavior of two heats of T91 ferritic/martensitic steel, with slightly different Cr content, was investigated in flowing (2 m/s) Pb-Bi with 10-7 mass%O at 450 and 550 °C. The observed corrosion modes are: protective scale formation; accelerated oxidation and solution-based corrosion attack. Accelerated oxidation at 450 °C results in general metal recession of about 10 μm after ∼9000 h exposure and ∼15 μm at 550 °C after 2000 h. More severe and local solution-based corrosion results in a maximum depth of attack of 50-960 μm and 115-190 μm, correspondingly. Incubation period for solution-based corrosion is 500-5000 h at 450 °C and ≤500 h at 550 °C. The slightly higher chromium content in one of the heat of T91 steel prolongs the incubation period by improving the stability of the Cr-based oxide film.

  3. Investigation of the aerothermodynamics of hypervelocity reacting flows in the ram accelerator

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.; Bruckner, A. P.; Mattick, A. T.; Knowlen, C.

    1992-01-01

    New diagnostic techniques for measuring the high pressure flow fields associated with high velocity ram accelerator propulsive modes was experimentally investigated. Individual propulsive modes are distinguished by their operating Mach number range and the manner in which the combustion process is initiated and stabilized. Operation of the thermally choked ram accelerator mode begins by injecting the projectile into the accelerator tube at a prescribed entrance velocity by means of a conventional light gas gun. A specially designed obturator, which is used to seal the bore of the gun, plays a key role in the ignition of the propellant gases in the subsonic combustion mode of the ram accelerator. Once ignited, the combustion process travels with the projectile and releases enough heat to thermally choke the flow within several tube diameters behind it, thereby stabilizing a high pressure zone on the rear of the projectile. When the accelerating projectile approaches the Chapman-Jouguet detonation speed of the propellant mixture, the combustion region is observed to move up onto the afterbody of the projectile as the pressure field evolves to a distinctively different form that implies the presence of supersonic combustion processes. Eventually, a high enough Mach number is reached that the ram effect is sufficient to cause the combustion process to occur entirely on the body. Propulsive cycles utilizing on-body heat release can be established either by continuously accelerating the projectile in a single propellant mixture from low initial in-tube Mach numbers (M less than 4) or by injecting the projectile at a speed above the propellant's Chapman-Jouguet detonation speed. The results of experimental and theoretical explorations of ram accelerator gas dynamic phenomena and the effectiveness of the new diagnostic techniques are presented in this report.

  4. Present and future prospects of accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kutschera, Walter

    1988-05-01

    Accelerator mass spectrometry (AMS) has become a powerful technique for measuring extremely low abundances (10 -10 to 10 -15 relative to stable isotopes) of long-lived radioisotopes with half-lives in the range from 10 2 to 10 8 years. With a few exceptions, tandem accelerators turned out to be the most useful instruments for AMS measurements. Both natural (mostly cosmogenic) and manmade (anthropogenic) radioisotopes are studied with this technique. In some cases very low concentrations of stable isotopes are also measured. Applications of AMS cover a large variety of fields including anthropology, archaeology, oceanography, hydrology, climatology, volcanology, mineral exploration, cosmochemistry, meteoritics, glaciology, sedimentary processes, geochronology, environmental physics, astrophysics, nuclear and particle physics. Present and future prospects of AMS will be discussed as an interplay between the continuous development of new techniques and the investigation of problems in the above mentioned fields. Depending on the specific problem to be investigated, different aspects of an AMS system are of importance. Typical factors to be considered are energy range and type of accelerator, and the possibilities of dedicated versus partial use of new or existing accelerators.

  5. 40 CFR Table 14 to Subpart Xxxx of... - Continuous Compliance With the Emission Limitations for Puncture Sealant Application Affected...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... regeneration stream mass or volumetric flow, and the carbon bed temperature after each regeneration, and within 15 minutes of completing any cooling cycle, andb. Maintaining the total regeneration stream mass or volumetric flow, and the carbon bed temperature after each regeneration, and within 15 minutes of completing...

  6. 40 CFR Table 7 to Subpart Ppp of... - Process Vents From Continuous Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... absorbent is used. Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or volumetric flow; and...

  7. 40 CFR Table 14 to Subpart Xxxx of... - Continuous Compliance With the Emission Limitations for Puncture Sealant Application Affected...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Table 4 to this subpart a. Monitoring and recording every 15 minutes the total regeneration stream mass or volumetric flow, and the carbon bed temperature after each regeneration, and within 15 minutes of completing any cooling cycle, andb. Maintaining the total regeneration stream mass or volumetric flow, and...

  8. 40 CFR 63.4168 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling... regeneration desorbing gas mass flow monitor must be an integrating device having a measurement sensitivity of...

  9. 40 CFR Table 14 to Subpart Xxxx of... - Continuous Compliance With the Emission Limitations for Puncture Sealant Application Affected...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Table 4 to this subpart a. Monitoring and recording every 15 minutes the total regeneration stream mass or volumetric flow, and the carbon bed temperature after each regeneration, and within 15 minutes of completing any cooling cycle, andb. Maintaining the total regeneration stream mass or volumetric flow, and...

  10. 40 CFR 63.3557 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling cycle, and comply with paragraphs (a)(3) through (5) and (d)(1) and (2) of this section. (1) The regeneration desorbing gas mass flow...

  11. 40 CFR Table 7 to Subpart Ppp of... - Process Vents From Continuous Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... absorbent is used. Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or volumetric flow; and...

  12. 40 CFR Table 14 to Subpart Xxxx of... - Continuous Compliance With the Emission Limitations for Puncture Sealant Application Affected...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... total regeneration stream mass or volumetric flow, and the carbon bed temperature after each regeneration, and within 15 minutes of completing any cooling cycle, andb. Maintaining the total regeneration stream mass or volumetric flow, and the carbon bed temperature after each regeneration, and within 15...

  13. 40 CFR 63.3557 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling cycle, and comply with paragraphs (a)(3) through (5) and (d)(1) and (2) of this section. (1) The regeneration desorbing gas mass flow...

  14. 40 CFR Table 7 to Subpart Ppp of... - Process Vents From Continuous Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... absorbent is used. Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or volumetric flow; and...

  15. 40 CFR 63.3557 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and cooling cycle, and comply with paragraphs (a)(3) through (5) and (d)(1) and (2) of this section. (1) The regeneration desorbing gas mass flow...

  16. 40 CFR Table 14 to Subpart Xxxx of... - Continuous Compliance With the Emission Limitations for Puncture Sealant Application Affected...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... total regeneration stream mass or volumetric flow, and the carbon bed temperature after each regeneration, and within 15 minutes of completing any cooling cycle, andb. Maintaining the total regeneration stream mass or volumetric flow, and the carbon bed temperature after each regeneration, and within 15...

  17. In-situ continuous water monitoring system

    DOEpatents

    Thompson, Cyril V.; Wise, Marcus B.

    1998-01-01

    An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer.

  18. In-situ continuous water monitoring system

    DOEpatents

    Thompson, C.V.; Wise, M.B.

    1998-03-31

    An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer. 2 figs.

  19. Laser manipulation of atomic and molecular flows

    NASA Astrophysics Data System (ADS)

    Lilly, Taylor C.

    The continuing advance of laser technology enables a range of broadly applicable, laser-based flow manipulation techniques. The characteristics of these laser-based flow manipulations suggest that they may augment, or be superior to, such traditional electro-mechanical methods as ionic flow control, shock tubes, and small scale wind tunnels. In this study, methodology was developed for investigating laser flow manipulation techniques, and testing their feasibility for a number of aerospace, basic physics, and micro technology applications. Theories for laser-atom and laser-molecule interactions have been under development since the advent of laser technology. The theories have yet to be adequately integrated into kinetic flow solvers. Realizing this integration would greatly enhance the scaling of laser-species interactions beyond the realm of ultra-cold atomic physics. This goal was realized in the present study. A representative numerical investigation, of laser-based neutral atomic and molecular flow manipulations, was conducted using near-resonant and non-resonant laser fields. To simulate the laser interactions over a range of laser and flow conditions, the following tools were employed: a custom collisionless gas particle trajectory code and a specifically modified version of the Direct Simulation Monte Carlo statistical kinetic solver known as SMILE. In addition to the numerical investigations, a validating experiment was conducted. The experimental results showed good agreement with the numerical simulations when experimental parameters, such as finite laser line width, were taken into account. Several areas of interest were addressed: laser induced neutral flow steering, collimation, direct flow acceleration, and neutral gas heating. Near-resonant continuous wave laser, and non-resonant pulsed laser, interactions with cesium and nitrogen were simulated. These simulations showed trends and some limitations associated with these interactions, used for flow steering and collimation. The use of one of these interactions, the induced dipole force, was extended beyond a single Gaussian laser field. The interference patterns associated with counter-propagating laser fields, or "optical lattices," were shown to be capable of both direct species acceleration and gas heating. This study resulted in predictions for a continuous, resonant laser-cesium flow with accelerations of 106 m/s2. For this circumstance, a future straightforward proof of principle experiment has been identified. To demonstrate non-resonant gas heating, a series of pulsed optical lattices were simulated interacting with neutral non-polar species. An optimum time between pulses was identified as a function of the collisional relaxation time. Using the optimum time between pulses, molecular nitrogen simulations showed an increase in gas temperature from 300 K to 2470 K at 1 atm, for 50 successive optical lattice pulses. A second proof of principle experiment was identified for future investigation.

  20. CFD Based Added Mass Prediction in Cruise Condition of Underwater Vehicle Dynamic

    NASA Astrophysics Data System (ADS)

    Agoes Moelyadi, Mochammad; Bambang Riswandi, Bagus

    2018-04-01

    One of the unsteady flow behavior on the hydrodynamic characteristics of underwater vehicle is the presence of added mass. In cruising conditions, the underwater vehicle may require the addition of speed or experience the disturbance in the form of unsteady flow so that cause the hydrodynamic interaction between the surface of the vehicle with the surrounding fluid. This leads to the rise of local velocity of flow and the great changes of hydrodynamic forces which are very influential on the stability of the underwater vehicle. One of the result is an additional force called added mass. It is very useful parameter to control underwater vehicle dynamic.This paper reports the research on the added mass coefficient of underwater vehicles obtained through the Computational Fluid Dynmaic (CFD) simulation method using CFX software. Added mass coefficient is calculated by performing an unsteady simulation or known as transient simulation. Computational simulations are based on the Reynold Average Navier- Stokes (RANS) equation solution. The simulated vehicle moves forward and backward according to the sinus function, with a frequency of 0.25 Hz, a 2 m amplitude, a cruising depth of 10 m below sea level, and Vcruise 1.54 m / s (Re = 9.000.000). Simulation result data includes velocity contour, variation of force and acceleration to frequency, and added mass coefficient.

  1. Fate of very low-mass secondaries in accreting binaries and the 1.5-ms pulsar

    NASA Technical Reports Server (NTRS)

    Ruderman, M. A.; Shaham, J.

    1983-01-01

    It is shown analytically that the canonical stability postulate for low-mass binaries can be inaccurate when the secondary component mass is less than 0.02 solar mass. The adjustable evolutionary parameter h is demonstrated to have a value (in terms of the mass flow effects) of 2/3, less than which catastrophic instability and tidal disruption of the secondary might occur. The disrupted secondary would be reduced to a remnant significantly smaller in mass than the earth, and not be observable visually. Additionally, close passage by another star could accelerate or initiate the process. The model is applicable to the pulsar binary PSR1937+214, and is noted not to conflict with spin-up theories.

  2. Numerical simulation of liquid droplet breakup in supersonic flows

    NASA Astrophysics Data System (ADS)

    Liu, Nan; Wang, Zhenguo; Sun, Mingbo; Wang, Hongbo; Wang, Bing

    2018-04-01

    A five-equation model based on finite-difference frame was utilized to simulate liquid droplet breakup in supersonic flows. To enhance the interface-capturing quality, an anti-diffusion method was introduced as a correction of volume-fraction after each step of calculation to sharpen the interface. The robustness was guaranteed by the hybrid variable reconstruction in which the second-order and high-order method were respectively employed in discontinuous and continuous flow fields. According to the recent classification of droplet breakup regimes, the simulations lay in the shear induced entrainment regime. Comparing to the momentum of the high-speed air flows, surface tension and viscid force were negligible in both two-dimensional and three-dimensional simulations. The inflow conditions were set as Mach 1.2, 1.5 and 1.8 to reach different dynamic pressure with the liquid to gas density ratio being 1000 initially. According to the results of simulations, the breakup process was divided into three stages which were analyzed in details with the consideration of interactions between gas and liquid. The shear between the high-speed gas flow and the liquid droplet was found to be the sources of surface instabilities on windward, while the instabilities on the leeward side were originated by vortices. Movement of the liquid mass center was studied, and the unsteady acceleration was observed. In addition, the characteristic breakup time was around 1.0 based on the criterion of either droplet thickness or liquid volume fraction.

  3. 40 CFR Table 6 to Subpart Ppp of... - Process Vents From Continuous Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... temperature established in the NCS or operating—PR. d,e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...

  4. 40 CFR 63.3547 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... adsorber as an add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and... regeneration desorbing gas mass flow monitor must be an integrating device having an accuracy of ±10 percent...

  5. 40 CFR 63.3547 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... adsorber as an add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and... regeneration desorbing gas mass flow monitor must be an integrating device having an accuracy of ±10 percent...

  6. 40 CFR 63.3547 - What are the requirements for continuous parameter monitoring system installation, operation, and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... adsorber as an add-on control device, you must monitor the total regeneration desorbing gas (e.g., steam or nitrogen) mass flow for each regeneration cycle, the carbon bed temperature after each regeneration and... regeneration desorbing gas mass flow monitor must be an integrating device having an accuracy of ±10 percent...

  7. 40 CFR Table 6 to Subpart Ppp of... - Process Vents From Continuous Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... temperature established in the NCS or operating—PR. d,e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...

  8. 40 CFR Table 6 to Subpart Ppp of... - Process Vents From Continuous Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... temperature established in the NCS or operating—PR. d,e Carbon Adsorber f Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s), and 1. Record of total regeneration stream mass or volumetric flow for each carbon bed regeneration cycle.2. Record and report the total regeneration stream...

  9. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winterberg, F.

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed inmore » an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.« less

  10. Stellar Ablation of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.; Horwitz, J. L.

    2007-01-01

    We review observations and theories of the solar ablation of planetary atmospheres, focusing on the terrestrial case where a large magnetosphere holds off the solar wind, so that there is little direct atmospheric impact, but also couples the solar wind electromagnetically to the auroral zones. We consider the photothermal escape flows known as the polar wind or refilling flows, the enhanced mass flux escape flows that result from localized solar wind energy dissipation in the auroral zones, and the resultant enhanced neutral atom escape flows. We term these latter two escape flows the "auroral wind." We review observations and theories of the heating and acceleration of auroral winds, including energy inputs from precipitating particles, electromagnetic energy flux at magnetohydrodynamic and plasma wave frequencies, and acceleration by parallel electric fields and by convection pickup processes also known as "centrifugal acceleration." We consider also the global circulation of ionospheric plasmas within the magnetosphere, their participation in magnetospheric disturbances as absorbers of momentum and energy, and their ultimate loss from the magnetosphere into the downstream solar wind, loading reconnection processes that occur at high altitudes near the magnetospheric boundaries. We consider the role of planetary magnetization and the accumulating evidence of stellar ablation of extrasolar planetary atmospheres. Finally, we suggest and discuss future needs for both the theory and observation of the planetary ionospheres and their role in solar wind interactions, to achieve the generality required for a predictive science of the coupling of stellar and planetary atmospheres over the full range of possible conditions.

  11. Mechanisms and Simulation of accelerated shrinkage of continental glaciers: a case study of Urumqi Glacier No. 1 Eastern Tianshan, Central Asia

    NASA Astrophysics Data System (ADS)

    Li, Zhongqin; Ren, Jiawen; Li, Huilin; Wang, Puyu; Wang, Feiteng

    2016-04-01

    Similar to most mountain glaciers in the world, Urumqi Glacier No. 1 (UG1), the best observed glacier in China with continued glaciological and climatological monitoring records of longer than 50 years has experienced an accelerated recession during the past several decades. The purpose of this study is to investigate the acceleration of recession. By taking UG1 as an example, we analyze the generic mechanisms of acceleration of shrinkage of continental mountain glaciers. The results indicate that the acceleration of mass loss of UG1 commenced first in 1985 and second in 1996 and that the latter was more vigorous. The air temperature rises during melting season, the ice temperature augment of the glacier and the albedo reduction on the glacier surface are considered responsible for the accelerated recession. In addition, the simulations of the accelerated shrinkage of UG1 are introduced.

  12. The Q continuum simulation: Harnessing the power of GPU accelerated supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heitmann, Katrin; Frontiere, Nicholas; Sewell, Chris

    2015-08-01

    Modeling large-scale sky survey observations is a key driver for the continuing development of high-resolution, large-volume, cosmological simulations. We report the first results from the "Q Continuum" cosmological N-body simulation run carried out on the GPU-accelerated supercomputer Titan. The simulation encompasses a volume of (1300 Mpc)(3) and evolves more than half a trillion particles, leading to a particle mass resolution of m(p) similar or equal to 1.5 . 10(8) M-circle dot. At thismass resolution, the Q Continuum run is currently the largest cosmology simulation available. It enables the construction of detailed synthetic sky catalogs, encompassing different modeling methodologies, including semi-analyticmore » modeling and sub-halo abundance matching in a large, cosmological volume. Here we describe the simulation and outputs in detail and present first results for a range of cosmological statistics, such as mass power spectra, halo mass functions, and halo mass-concentration relations for different epochs. We also provide details on challenges connected to running a simulation on almost 90% of Titan, one of the fastest supercomputers in the world, including our usage of Titan's GPU accelerators.« less

  13. A stable partitioned FSI algorithm for rigid bodies and incompressible flow. Part I: Model problem analysis

    NASA Astrophysics Data System (ADS)

    Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.; Tang, Qi

    2017-08-01

    A stable partitioned algorithm is developed for fluid-structure interaction (FSI) problems involving viscous incompressible flow and rigid bodies. This added-mass partitioned (AMP) algorithm remains stable, without sub-iterations, for light and even zero mass rigid bodies when added-mass and viscous added-damping effects are large. The scheme is based on a generalized Robin interface condition for the fluid pressure that includes terms involving the linear acceleration and angular acceleration of the rigid body. Added-mass effects are handled in the Robin condition by inclusion of a boundary integral term that depends on the pressure. Added-damping effects due to the viscous shear forces on the body are treated by inclusion of added-damping tensors that are derived through a linearization of the integrals defining the force and torque. Added-damping effects may be important at low Reynolds number, or, for example, in the case of a rotating cylinder or rotating sphere when the rotational moments of inertia are small. In this first part of a two-part series, the properties of the AMP scheme are motivated and evaluated through the development and analysis of some model problems. The analysis shows when and why the traditional partitioned scheme becomes unstable due to either added-mass or added-damping effects. The analysis also identifies the proper form of the added-damping which depends on the discrete time-step and the grid-spacing normal to the rigid body. The results of the analysis are confirmed with numerical simulations that also demonstrate a second-order accurate implementation of the AMP scheme.

  14. Compact mass spectrometer for plasma discharge ion analysis

    DOEpatents

    Tuszewski, M.G.

    1997-07-22

    A mass spectrometer and methods are disclosed for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector. 7 figs.

  15. Compact mass spectrometer for plasma discharge ion analysis

    DOEpatents

    Tuszewski, Michel G.

    1997-01-01

    A mass spectrometer and methods for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector.

  16. Exact and approximate solutions for transient squeezing flow

    NASA Astrophysics Data System (ADS)

    Lang, Ji; Santhanam, Sridhar; Wu, Qianhong

    2017-10-01

    In this paper, we report two novel theoretical approaches to examine a fast-developing flow in a thin fluid gap, which is widely observed in industrial applications and biological systems. The problem is featured by a very small Reynolds number and Strouhal number, making the fluid convective acceleration negligible, while its local acceleration is not. We have developed an exact solution for this problem which shows that the flow starts with an inviscid limit when the viscous effect has no time to appear and is followed by a subsequent developing flow, in which the viscous effect continues to penetrate into the entire fluid gap. An approximate solution is also developed using a boundary layer integral method. This solution precisely captures the general behavior of the transient fluid flow process and agrees very well with the exact solution. We also performed numerical simulation using Ansys-CFX. Excellent agreement between the analytical and the numerical solutions is obtained, indicating the validity of the analytical approaches. The study presented herein fills the gap in the literature and will have a broad impact on industrial and biomedical applications.

  17. Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt

    NASA Astrophysics Data System (ADS)

    Dunse, T.; Schellenberger, T.; Hagen, J. O.; Kääb, A.; Schuler, T. V.; Reijmer, C. H.

    2015-02-01

    Mass loss from glaciers and ice sheets currently accounts for two-thirds of the observed global sea-level rise and has accelerated since the 1990s, coincident with strong atmospheric warming in the polar regions. Here we present continuous GPS measurements and satellite synthetic-aperture-radar-based velocity maps from Basin-3, the largest drainage basin of the Austfonna ice cap, Svalbard. Our observations demonstrate strong links between surface-melt and multiannual ice-flow acceleration. We identify a hydro-thermodynamic feedback that successively mobilizes stagnant ice regions, initially frozen to their bed, thereby facilitating fast basal motion over an expanding area. By autumn 2012, successive destabilization of the marine terminus escalated in a surge of Basin-3. The resulting iceberg discharge of 4.2±1.6 Gt a-1 over the period April 2012 to May 2013 triples the calving loss from the entire ice cap. With the seawater displacement by the terminus advance accounted for, the related sea-level rise contribution amounts to 7.2±2.6 Gt a-1. This rate matches the annual ice-mass loss from the entire Svalbard archipelago over the period 2003-2008, highlighting the importance of dynamic mass loss for glacier mass balance and sea-level rise. The active role of surface melt, i.e. external forcing, contrasts with previous views of glacier surges as purely internal dynamic instabilities. Given sustained climatic warming and rising significance of surface melt, we propose a potential impact of the hydro-thermodynamic feedback on the future stability of ice-sheet regions, namely at the presence of a cold-based marginal ice plug that restricts fast drainage of inland ice. The possibility of large-scale dynamic instabilities such as the partial disintegration of ice sheets is acknowledged but not quantified in global projections of sea-level rise.

  18. Background gas density and beam losses in NIO1 beam source

    NASA Astrophysics Data System (ADS)

    Sartori, E.; Veltri, P.; Cavenago, M.; Serianni, G.

    2016-02-01

    NIO1 (Negative Ion Optimization 1) is a versatile ion source designed to study the physics of production and acceleration of H- beams up to 60 keV. In ion sources, the gas is steadily injected in the plasma source to sustain the discharge, while high vacuum is maintained by a dedicated pumping system located in the vessel. In this paper, the three dimensional gas flow in NIO1 is studied in the molecular flow regime by the Avocado code. The analysis of the gas density profile along the accelerator considers the influence of effective gas temperature in the source, of the gas temperature accommodation by collisions at walls, and of the gas particle mass. The calculated source and vessel pressures are compared with experimental measurements in NIO1 during steady gas injection.

  19. A stable partitioned FSI algorithm for rigid bodies and incompressible flow. Part II: General formulation

    NASA Astrophysics Data System (ADS)

    Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.; Tang, Qi

    2017-08-01

    A stable partitioned algorithm is developed for fluid-structure interaction (FSI) problems involving viscous incompressible flow and rigid bodies. This added-mass partitioned (AMP) algorithm remains stable, without sub-iterations, for light and even zero mass rigid bodies when added-mass and viscous added-damping effects are large. The scheme is based on a generalized Robin interface condition for the fluid pressure that includes terms involving the linear acceleration and angular acceleration of the rigid body. Added mass effects are handled in the Robin condition by inclusion of a boundary integral term that depends on the pressure. Added-damping effects due to the viscous shear forces on the body are treated by inclusion of added-damping tensors that are derived through a linearization of the integrals defining the force and torque. Added-damping effects may be important at low Reynolds number, or, for example, in the case of a rotating cylinder or rotating sphere when the rotational moments of inertia are small. In this second part of a two-part series, the general formulation of the AMP scheme is presented including the form of the AMP interface conditions and added-damping tensors for general geometries. A fully second-order accurate implementation of the AMP scheme is developed in two dimensions based on a fractional-step method for the incompressible Navier-Stokes equations using finite difference methods and overlapping grids to handle the moving geometry. The numerical scheme is verified on a number of difficult benchmark problems.

  20. Continuous high-frequency dissolved O2/Ar measurements by equilibrator inlet mass spectrometry.

    PubMed

    Cassar, Nicolas; Barnett, Bruce A; Bender, Michael L; Kaiser, Jan; Hamme, Roberta C; Tilbrook, Bronte

    2009-03-01

    The oxygen (O(2)) concentration in the surface ocean is influenced by biological and physical processes. With concurrent measurements of argon (Ar), which has similar solubility properties as oxygen, we can remove the physical contribution to O(2) supersaturation and determine the biological oxygen supersaturation. Biological O(2) supersaturation in the surface ocean reflects the net metabolic balance between photosynthesis and respiration, i.e., the net community productivity (NCP). We present a new method for continuous shipboard measurements of O(2)/Ar by equilibrator inlet mass spectrometry (EIMS). From these measurements and an appropriate gas exchange parametrization, NCP can be estimated at high spatial and temporal resolution. In the EIMS configuration, seawater from the ship's continuous intake flows through a cartridge enclosing a gas-permeable microporous membrane contactor. Gases in the headspace of the cartridge equilibrate with dissolved gases in the flowing seawater. A fused-silica capillary continuously samples headspace gases, and the O(2)/Ar ratio is measured by mass spectrometry. The ion current measurements on the mass spectrometer reflect the partial pressures of dissolved gases in the water flowing through the equilibrator. Calibration of the O(2)/Ar ion current ratio (32/40) is performed automatically every 2 h by sampling ambient air through a second capillary. A conceptual model demonstrates that the ratio of gases reaching the mass spectrometer is dependent on several parameters, such as the differences in molecular diffusivities and solubilities of the gases. Laboratory experiments and field observations performed by EIMS are discussed. We also present preliminary evidence that other gas measurements, such as N(2)/Ar and pCO(2) measurements, may potentially be performed with EIMS. Finally, we compare the characteristics of the EIMS with the previously described membrane inlet mass spectrometry (MIMS) approach.

  1. Performance analysis of a continuous serpentine flow reactor for electrochemical oxidation of synthetic and real textile wastewater: Energy consumption, mass transfer coefficient and economic analysis.

    PubMed

    Pillai, Indu M Sasidharan; Gupta, Ashok K

    2017-05-15

    A continuous flow electrochemical reactor was developed, and its application was tested for the treatment of textile wastewater. A parallel plate configuration with serpentine flow was chosen for the continuous flow reactor. Uniparameter optimization was carried out for electrochemical oxidation of synthetic and real textile wastewater (collected from the inlet of the effluent treatment plant). Chemical Oxygen Demand (COD) removal efficiency of 90% was achieved for synthetic textile wastewater (initial COD - 780 mg L -1 ) at a flow rate of 500 mL h -1 (retention time of 6 h) and a current density of 1.15 mA cm -2 and the energy consumption for the degradation was 9.2 kWh (kg COD) -1 . The complete degradation of real textile wastewater (initial COD of 368 mg L -1 ) was obtained at a current density of 1.15 mA cm -2 , NaCl concentration of 1 g L -1 and retention time of 6 h. Energy consumption and mass transfer coefficient of the reactions were calculated. The continuous flow reactor performed better than batch reactor with reference to energy consumption and economy. The overall treatment cost for complete COD removal of real textile wastewater was 5.83 USD m -3 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Influence of different heating types on the pumping performance of a bubble pump

    NASA Astrophysics Data System (ADS)

    Bierling, Bernd; Schmid, Fabian; Spindler, Klaus

    2017-11-01

    This study presents an experimental investigation of the influence of different heating types on the pumping performance of a bubble pump. A test rig was set up at the Institute of Thermodynamics and Thermal Engineering (ITW), University of Stuttgart. The vertical lift tube is made of copper with an inner diameter of 8 mm and a length of 1.91 m. The working fluid is demineralized water. The test rig offers the possibility to vary the supplied heat flow (0 W - 750 W), the resulting supplied heat flux and the location of the heating. Investigations were carried out using spot heating, partial-length heating and full-length heating. A Coriolis mass flowmeter was successfully implemented which measures the vapor mass flow rate continuously. The improvement of the vapor mass flow rate measurement by using the continuous measurement method compared to a discontinuous one is discussed. Furthermore, the influence of an unstable inlet temperature of the working fluid entering the lift tube on the pumping performance is investigated. The focus of this publication lies on the build-up of the test rig with the measurement setup and the analysis of the pumping performance for the three heating types. The measurement results show a big influence of the heating type on the pumping performance. The lower the relative length of the heating, the higher is the pumping ratio which is defined as the lifted liquid mass flow rate in relation to the generated vapor mass flow rate.

  3. A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing

    PubMed Central

    Habhab, Mohammed-Baker; Ismail, Tania; Lo, Joe Fujiou

    2016-01-01

    Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP) based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications. PMID:27886051

  4. Performance evaluation of the active-flow personal DataRAM PM 2.5 mass monitor (Thermo Anderson pDR-1200) designed for continuous personal exposure measurements

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Bhabesh; Fine, Philip M.; Delfino, Ralph; Sioutas, Constantinos

    The need for continuous personal monitoring for exposure to particulate matter has been demonstrated by recent health studies showing effects of PM exposure on time scales of less than a few hours. Filter-based methods cannot measure this short-term variation of PM levels, which can be quite significant considering human activity patterns. The goal of this study was to evaluate the active-flow personal DataRAM for PM 2.5 (MIE pDR-1200; Thermo Electron Corp., Franklin, MA) designed as a wearable monitor to continuously measure particle exposure. The instrument precision was found to be good (2.1%) and significantly higher than the passive pDR configuration tested previously. A comparison to other proven continuous monitors resulted in good agreement at low relative humidities. Results at higher humidity followed predictable trends and provided a correction scheme that improved the accuracy of pDR readings. The pDR response to particle size also corresponded to previously observed and theoretical errors. The active flow feature of the pDR allows collection of the sampled particles on a back-up filter. The 24-h mass measured on this filter was found to compare very well with a Federal Reference Method for PM 2.5 mass.

  5. Superamphiphobic Silicon-Nanowire-Embedded Microsystem and In-Contact Flow Performance of Gas and Liquid Streams.

    PubMed

    Ko, Dong-Hyeon; Ren, Wurong; Kim, Jin-Oh; Wang, Jun; Wang, Hao; Sharma, Siddharth; Faustini, Marco; Kim, Dong-Pyo

    2016-01-26

    Gas and liquid streams are invariably separated either by a solid wall or by a membrane for heat or mass transfer between the gas and liquid streams. Without the separating wall, the gas phase is present as bubbles in liquid or, in a microsystem, as gas plugs between slugs of liquid. Continuous and direct contact between the two moving streams of gas and liquid is quite an efficient way of achieving heat or mass transfer between the two phases. Here, we report a silicon nanowire built-in microsystem in which a liquid stream flows in contact with an underlying gas stream. The upper liquid stream does not penetrate into the lower gas stream due to the superamphiphobic nature of the silicon nanowires built into the bottom wall, thereby preserving the integrity of continuous gas and liquid streams, although they are flowing in contact. Due to the superamphiphobic nature of silicon nanowires, the microsystem provides the best possible interfacial mass transfer known to date between flowing gas and liquid phases, which can achieve excellent chemical performance in two-phase organic syntheses.

  6. From catastrophic acceleration to deceleration of liquid plugs in prewetted capillary tubes

    NASA Astrophysics Data System (ADS)

    Magniez, Juan; Baudoin, Michael; Zoueshtiagh, Farzam; Lemac/Lics Team

    2016-11-01

    Liquid/gas flows in capillaries are involved in a multitude of systems including flow in porous media, petroleum extraction, imbibition of paper or flows in pulmonary airways in pathological conditions. Liquid plugs, witch compose the biphasic flows, can have a dramatic impact on patients with pulmonary obstructive diseases, since they considerably alter the circulation of air in the airways and thus can lead to severe breathing difficulties. Here, the dynamics of liquid plugs in prewetted capillary tube is investigated experimentally and theoretically, with a particular emphasis on the role of the prewetting films and of the driving condition (constant flow rate, constant pressure). For both driving conditions, the plugs can either experience a continuous increase or decrease of their size. While this phenomenon is regular in the case of imposed flow rate, a constant pressure head can lead to a catastrophic acceleration of the plug and eventually its rupture or a dramatic increase of the plug size. A theoretical model is proposed to explain the transition between theses two regimes. These results give a new insight on the critical pressure required for airways obstruction and reopening. IEMN, International Laboratory LEMAC/LICS, UMR CNRS 8520, University of Lille.

  7. Simulating ice thickness and velocity evolution of Upernavik Isstrøm 1849-2012 by forcing prescribed terminus positions in ISSM

    NASA Astrophysics Data System (ADS)

    Haubner, Konstanze; Box, Jason E.; Schlegel, Nicole J.; Larour, Eric Y.; Morlighem, Mathieu; Solgaard, Anne M.; Kjeldsen, Kristian K.; Larsen, Signe H.; Rignot, Eric; Dupont, Todd K.; Kjær, Kurt H.

    2018-04-01

    Tidewater glacier velocity and mass balance are known to be highly responsive to terminus position change. Yet it remains challenging for ice flow models to reproduce observed ice margin changes. Here, using the Ice Sheet System Model (ISSM; Larour et al. 2012), we simulate the ice velocity and thickness changes of Upernavik Isstrøm (north-western Greenland) by prescribing a collection of 27 observed terminus positions spanning 164 years (1849-2012). The simulation shows increased ice velocity during the 1930s, the late 1970s and between 1995 and 2012 when terminus retreat was observed along with negative surface mass balance anomalies. Three distinct mass balance states are evident in the reconstruction: (1849-1932) with near zero mass balance, (1932-1992) with ice mass loss dominated by ice dynamical flow, and (1998-2012), when increased retreat and negative surface mass balance anomalies led to mass loss that was twice that of any earlier period. Over the multi-decadal simulation, mass loss was dominated by thinning and acceleration responsible for 70 % of the total mass loss induced by prescribed change in terminus position. The remaining 30 % of the total ice mass loss resulted directly from prescribed terminus retreat and decreasing surface mass balance. Although the method can not explain the cause of glacier retreat, it enables the reconstruction of ice flow and geometry during 1849-2012. Given annual or seasonal observed terminus front positions, this method could be a useful tool for evaluating simulations investigating the effect of calving laws.

  8. A numerical investigation of wind accretion in persistent supergiant X-ray binaries - I. Structure of the flow at the orbital scale

    NASA Astrophysics Data System (ADS)

    El Mellah, I.; Casse, F.

    2017-05-01

    Classical supergiant X-ray binaries host a neutron star orbiting a supergiant OB star and display persistent X-ray luminosities of 1035-1037 erg s-1. The stellar wind from the massive companion is believed to be the main source of matter accreted by the compact object. With this first paper, we introduce a ballistic model to evaluate the influence of the orbital effects on the structure of the accelerating winds that participate to the accretion process. Thanks to the parametrization we retained the numerical pipeline we designed, we can investigate the supersonic flow and the subsequent observables as a function of a reduced set of characteristic numbers and scales. We show that the shape of the permanent flow is entirely determined by the mass ratio, the filling factor, the Eddington factor and the α-force multiplier that drives the stellar wind acceleration. Provided scales such as the orbital period are known, we can trace back the observables to evaluate the mass accretion rates, the accretion mechanism, the shearing of the inflow and the stellar parameters. We discuss the likelihood of wind-formed accretion discs around the accretors in each case and confront our model to three persistent supergiant X-ray binaries (Vela X-1, IGR J18027-2016, XTE J1855-026).

  9. Application of two-component phase Doppler interferometry to the measurement of particle size, mass flux, and velocities in two-phase flows

    NASA Technical Reports Server (NTRS)

    Mcdonell, V. G.; Samuelsen, G. S.

    1989-01-01

    Two-component phase Doppler interferometry is described, along with its application for the spatially-resolved measurements of particle size, velocity, and mass flux as well as continuous phase velocity. This technique measures single particle events at a point in the flow; droplet size is deduced from the spatial phase shift of the Doppler signal. Particle size influence and discrimination of continuous and discrete phases are among issues covered. Applications are presented for four cases: an example of the discrimination of two sizes of glass beads in a jet flow; a demonstration of the discrimination of phases in a spray field; an assessment of atomizer symmetry with respect to fuel distribution; and a characterization of a droplet field in a reacting spray. It is noted that the above technique is especially powerful in delineating droplet interactions in the swirling, complex flows typical of realistic systems.

  10. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization.

    PubMed

    Hatzell, Kelsey B; Hatzell, Marta C; Cook, Kevin M; Boota, Muhammad; Housel, Gabrielle M; McBride, Alexander; Kumbur, E Caglan; Gogotsi, Yury

    2015-03-03

    Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. Chemical oxidation of granular activated carbon (AC) was examined here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded flow electrodes (28% carbon content) based on oxidized AC displayed similar viscosities (∼21 Pa s) to lower mass-loaded flow electrodes (20% carbon content) based on nonoxidized AC. The 40% increased mass loading (from 20% to 28%) resulted in a 25% increase in flow electrode gravimetric capacitance (from 65 to 83 F g(-1)) without sacrificing flowability (viscosity). The electrical energy required to remove ∼18% of the ions (desalt) from of the feed solution was observed to be significantly dependent on the mass loading and decreased (∼60%) from 92 ± 7 to 28 ± 2.7 J with increased mass densities from 5 to 23 wt %. It is shown that the surface chemistry of the active material in a flow electrode effects the electrical and pumping energy requirements of a FCDI system.

  11. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization

    DOE PAGES

    Hatzell, Kelsey B.; Hatzell, Marta C.; Cook, Kevin M.; ...

    2015-01-29

    Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. We examine chemical oxidation of granular activated carbon (AC) here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded flow electrodes (28% carbon content) based on oxidized AC displayed similar viscosities (~21 Pa s)more » to lower mass-loaded flow electrodes (20% carbon content) based on nonoxidized AC. The 40% increased mass loading (from 20% to 28%) resulted in a 25% increase in flow electrode gravimetric capacitance (from 65 to 83 F g –1) without sacrificing flowability (viscosity). The electrical energy required to remove ~18% of the ions (desalt) from of the feed solution was observed to be significantly dependent on the mass loading and decreased (~60%) from 92 ± 7 to 28 ± 2.7 J with increased mass densities from 5 to 23 wt %. Finally, it is shown that the surface chemistry of the active material in a flow electrode effects the electrical and pumping energy requirements of a FCDI system.« less

  12. Scaling of the Propulsive Capability of Aluminized Gelled Nitromethane

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Higgins, Andrew; Frost, David; Zhang, Fan

    2017-06-01

    It is well accepted that small mass fractions (<20%) of micron-scale aluminum particles added to a high explosive can react quickly and with sufficient exothermicity to improve metal-acceleration ability (AA) relative to an equal volume of only the base explosive. In order for the aluminum to increase AA, exothermicity must more than offset losses in gas-production and from heating and accelerating the solid particle in the flow. Furthermore, particles must react promptly to deliver this energy prior to loss in driving pressure with product expansion or acoustic decoupling from the driven material. For these reasons many aluminized formulations exhibit slight or no increase in AA ability. Furthermore, AA ability is typically studied using the cylinder test, which specifies a fixed, heavy copper wall. In the present study the authors have used symmetric sandwiches of flyer plates of varying thicknesses to examine how charge scaling and plate acceleration timescales influence the enhancement in AA for different mass fractions and sizes of aluminum particles. Nitromethane gelled with 4% Poly(methyl methacrylate) by mass was used as the base explosive. 3M K1 microballoons were added at a mass fraction of 0.5% to sensitize the mixture. Mass fraction of aluminum was varied between 10% and 40% and particle size was varied from 2 μm to 100 μm. For small mass fractions of alumimum, an enhancement in AA was observed for all particle sizes and flyer configurations and indicated an onset of reaction very close to the sonic plane of the detonation wave.

  13. Optimal orbit transfer suitable for large flexible structures

    NASA Technical Reports Server (NTRS)

    Chatterjee, Alok K.

    1989-01-01

    The problem of continuous low-thrust planar orbit transfer of large flexible structures is formulated as an optimal control problem with terminal state constraints. The dynamics of the spacecraft motion are treated as a point-mass central force field problem; the thrust-acceleration magnitude is treated as an additional state variable; and the rate of change of thrust-acceleration is treated as a control variable. To ensure smooth transfer, essential for flexible structures, an additional quadratic term is appended to the time cost functional. This term penalizes any abrupt change in acceleration. Numerical results are presented for the special case of a planar transfer.

  14. Atomizing, continuous, water monitoring module

    DOEpatents

    Thompson, C.V.; Wise, M.B.

    1997-07-08

    A system for continuously analyzing volatile constituents of a liquid is described. The system contains a pump for continuously pumping the liquid to be tested at a predetermined flow rate into an extracting container through a liquid directing tube having an orifice at one end and positioned to direct the liquid into the extracting container at a flow rate sufficient to atomize the liquid within the extracting container. A continuous supply of helium carrier gas at a predetermined flow rate is directed through a tube into the extracting container and co-mingled with the atomized liquid to extract the volatile constituents contained within the atomized liquid. The helium containing the extracted volatile constituents flows out of the extracting container into a mass spectrometer for an analysis of the volatile constituents of the liquid. 3 figs.

  15. Atomizing, continuous, water monitoring module

    DOEpatents

    Thompson, Cyril V.; Wise, Marcus B.

    1997-01-01

    A system for continuously analyzing volatile constituents of a liquid is described. The system contains a pump for continuously pumping the liquid to be tested at a predetermined flow rate into an extracting container through a liquid directing tube having an orifice at one end and positioned to direct the liquid into the extracting container at a flow rate sufficient to atomize the liquid within the extracting container. A continuous supply of helium carrier gas at a predetermined flow rate is directed through a tube into the extracting container and co-mingled with the atomized liquid to extract the volatile constituents contained within the atomized liquid. The helium containing the extracted volatile constituents flows out of the extracting container into a mass spectrometer for an analysis of the volatile constituents of the liquid.

  16. Experimental study on flowing burning behaviors of a pool fire with dripping of melted thermoplastics.

    PubMed

    Xie, Qiyuan; Tu, Ran; Wang, Nan; Ma, Xin; Jiang, Xi

    2014-02-28

    The objective of this work is to quantitatively investigate the dripping-burning and flowing fire of thermoplastics. A new experimental setup is developed with a heating vessel and a T-trough. Hot thermoplastic liquids are generated in the vessel by electric heating. N2 gas is continuously injected into the vessel to avoid a sudden ignition of fuel in it. The detailed flowing burning behaviors of pool fire in the T-trough are analyzed through the measurements of the mass, heat flux and temperatures etc. The experimental results suggest that a continuous dripping of melted thermoplastic liquids in a nearly constant mass rate can be successfully made in the new setup. It also shows that the mass dripping rate of melted PS liquid is smaller than PP and PE since its large viscosity. In addition, the flame spread velocities of hot liquids of PS in the T-trough are also smaller than that of PP and PE because of its large viscosity. The mass burning rate of the PP and PE pool fire in T-trough are smaller than PS. Finally, considering the heating, melting, dripping and flowing burning behaviors of these polymers, it is suggested that the fire hazard of PE and PP are obviously higher than PS for their faster flowing burning. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. The Launching of Cold Clouds by Galaxy Outflows. I. Hydrodynamic Interactions with Radiative Cooling

    NASA Astrophysics Data System (ADS)

    Scannapieco, Evan; Brüggen, Marcus

    2015-06-01

    To better understand the nature of the multiphase material found in outflowing galaxies, we study the evolution of cold clouds embedded in flows of hot and fast material. Using a suite of adaptive mesh refinement simulations that include radiative cooling, we investigate both cloud mass loss and cloud acceleration under the full range of conditions observed in galaxy outflows. The simulations are designed to track the cloud center of mass, enabling us to study the cloud evolution at long disruption times. For supersonic flows, a Mach cone forms around the cloud, which damps the Kelvin-Helmholtz instability but also establishes a streamwise pressure gradient that stretches the cloud apart. If time is expressed in units of the cloud crushing time, both the cloud lifetime and the cloud acceleration rate are independent of cloud radius, and we find simple scalings for these quantities as a function of the Mach number of the external medium. A resolution study suggests that our simulations accurately describe the evolution of cold clouds in the absence of thermal conduction and magnetic fields, physical processes whose roles will be studied in forthcoming papers.

  18. From the front

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Stephen

    The causes of recent dynamic thinning of Greenland's outlet glaciers have been debated. Realistic simulations suggest that changes at the marine fronts of these glaciers are to blame, implying that dynamic thinning will cease once the glaciers retreat to higher ground. For the last decade, many outlet glaciers in Greenland that terminate in the ocean have accelerated, thinned, and retreated. To explain these dynamic changes, two hypotheses have been discussed. Atmospheric warming has increased surface melting and may also have increased the amount of meltwater reaching the glacier bed, increasing lubrication at the base and hence the rate of glaciermore » sliding. Alternatively, a change in the delicate balance of forces where the glacier fronts meet the ocean could trigger the changes. Faezeh Nick and colleagues5 present ice-sheet modeling experiments that mimic the observations on Helheim glacier, East Greenland, and suggest that the dynamic behaviour of outlet glaciers follows from perturbations at their marine fronts. Greenland's ice sheet loses mass partly through surface melting and partly through fast flowing outlet glaciers that connect the vast plateau of inland ice with the ocean. Earlier ice sheet models have failed to reproduce the dynamic variability exhibited by ice sheets over time. It has therefore not been possible to distinguish with confidence between basal lubrication from surface meltwater and changes at the glaciers' marine fronts as causes for the observed changes on Greenland's outlet glaciers. But this distinction bears directly on future sea-level rise, the raison d'etre of much of modern-day glaciology: If the recent dynamic mass loss Greenland's outlet glaciers is linked to changing atmospheric temperatures, it may continue for as long as temperatures continue to increase. On the other hand, if the source of the dynamic mass loss is a perturbation at the ice-ocean boundary, these glaciers will lose contact with that perturbation after a finite amount of thinning and retreat. Therefore, the first hypothesis implies continued retreat of outlet glaciers into the foreseeable future, while the second does not -- provided the bedrock topography prohibits a connection between the retreating glacier and the ocean. Nick and coauthors test the physical mechanisms implied in each hypotbesis in an innovative ice-flow model, and use that model to try to match a time series of observations from Helheim glacier, one of Greenland's three largest outlet glaciers. Along with many observations, the simulations strongly support the contention that the recent retreat of Greenland's outlet glaciers is the result of changes at their marine fronts.Further, the simulations confirm the earlier hypotheses that bedrock topography largely controlled Helheim glacier's rapid acceleration and retreat in 2004 and 2005, and its deceleration and stabilization in 2006. Finally, the current work implies that if requirements of observational data (high-resolution bed topography) and computational resources (fine computational grid resolution) can be met, improved predictive capability for ice-sheet models is attainable. With respect to the concerns raised by the IPCC, this study signals progress.« less

  19. Mathematical and experimental modelling of the dynamic bubble processes occurring in a two-phase cyclonic separation device

    NASA Astrophysics Data System (ADS)

    Schrage, Dean Stewart

    1998-11-01

    This dissertation presents a combined mathematical and experimental analysis of the fluid dynamics of a gas- liquid, dispersed-phase cyclonic separation device. The global objective of this research is to develop a simulation model of separation process in order to predict the void fraction field within a cyclonic separation device. The separation process is approximated by analyzing the dynamic motion of many single-bubbles, moving under the influence of the far-field, interacting with physical boundaries and other bubbles. The dynamic motion of the bubble is described by treating the bubble as a point-mass and writing an inertial force balance, equating the force applied to the bubble-point-location to the inertial acceleration of the bubble mass (also applied to the point-location). The forces which are applied to the bubble are determined by an integration of the surface pressure over the bubble. The surface pressure is coupled to the intrinsic motion of the bubble, and is very difficult to obtain exactly. However, under moderate Reynolds number, the wake trailing a bubble is small and the near-field flow field can be approximated as an inviscid flow field. Unconventional potential flow techniques are employed to solve for the surface pressure; the hydrodyamic forces are described as a hydrodynamic mass tensor operating on the bubble acceleration vector. The inviscid flow model is augmented with adjunct forces which describe: drag forces, dynamic lift, far-field pressure forces. The dynamic equations of motion are solved both analytically and numerically for the bubble trajectory in specific flow field examples. A validation of these equations is performed by comparing to an experimentally-derived trajectory of a single- bubble, which is released into a cylindrical Couette flow field (inner cylinder rotating) at varying positions. Finally, a simulation of a cyclonic separation device is performed by extending the single-bubble dynamic model to a multi-bubble ensemble. A simplified model is developed to predict the effects of bubble-interaction. The simulation qualitatively depicts the separation physics encountered in an actual cyclonic separation device, supporting the original tenet that the separation process can be approximated by the collective motions of single- bubbles.

  20. Sea Level Budget along the East Coast of North America

    NASA Astrophysics Data System (ADS)

    Pease, A. M.; Davis, J. L.; Vinogradova, N. T.

    2016-12-01

    We analyzed tide gauge data, taken from 1955 to 2015, from 29 locations along the east coast of North America. A well-documented period of sea-level acceleration began around 1990. The sea level rate (referenced to epoch 1985.0) and acceleration (post-1990) are spatially and temporally variable, due to various physical processes, each of which is also spatially and temporally variable. To determine the sea-level budgets for rate and acceleration, we considered a number of major contributors to sea level change: ocean density and dynamics, glacial isostatic adjustment (GIA), the inverted barometer effect, and mass change associated with the Greenland Ice Sheet (GIS) and the Antarctic Ice Sheet (AIS). The geographic variability in the budgets for sea-level rate is dominated by GIA. At some sites, GIA is the largest contributor to the rate. The geographic variability in the budgets for sea-level acceleration is dominated by ocean dynamics and density and GIS mass loss. The figure below shows budgets for sea-level rate (left) and acceleration (right) for Key West, Fla., (top) and The Battery in New York City (bottom). The blue represents values (with error bar shown) estimated from tide gauge observations, and the yellow represents the total values estimated from the individual model contributions (each in red, green, cyan, pink, and black). The estimated totals for rate and acceleration are good matches to the tide-gauge inferences. To achieve a reasonable fit, a scaling factor (admittance) for the combined contribution of ocean dynamics and density was estimated; this admittance may reflect the low spatial sampling of the GECCO2 model we used, or other problems in modeling coastal sea-level. The significant contributions of mass loss to the acceleration enable us to predict that, if such mass-loss continues or increases, the character of sea-level change on the North American east coast will change in the next 50-100 years. In particular, whereas GIA presently dominates the spatial variability of sea-level change, mass loss from Greenland and Antarctica will dominate it by 2050-2100. However, the long-term contribution of ocean dynamics and density remain more of a question.

  1. Modified Einstein and Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Bulyzhenkov, I. É.

    2018-05-01

    The appearance of inertial rest mass-energy is associated with the kinematic slowing-down of time and with the vortex state of the elementary massive space with zero integral of its kinetic and potential energies. An analog of the Einstein equation is found for moving densities of a non-empty metric space in the concept of the Einstein-Infeld material field. The vector consequences of this tensor equation for a metric medium of overlapping elementary carriers of continuous mass-energies allow us to modify the Navier-Stokes equation under inertial motion of the matter of the nonlocal field in the nonrelativistic limit. The nonlocality of massenergy generates kinematic accelerations of feedback to Newtonian acceleration, which impedes asymptotic divergence of energy fluxes. Stabilization of inertial media by dynamic Bernoulli pressure corresponds to nonlocal self-organization of Einstein-Infeld non-empty space and invalidates Newtonian localization of masses in empty space.

  2. Interior ballistics of a two-stage light gas gun using velocity interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munson, D.E.; May, R.P.

    1976-02-01

    An extensive interior ballistics study of a two-stage light gas gun was performed which resulted in a detailed measurement of the projectile velocity as a continuous function of time. The two-stage gun consisted of a 88.9-mm i.d. pump stage and a 28.6-mm i.d. launch stage. Five main parameters of gun operation, propellant mass, piston mass, pump gas, pump gas pressure, and projectile mass were varied in this study. Projectile velocities were measured using a very precise velocity interferometer for any reflecting surface (VISAR) technique. The measurements showed that the initial acceleration of the projectile is discontinuous due to the shockmore » nature of the applied pressure on the projectile upon rupture of the burst diaphragm. These shock accelerations are understood easily via simple shock-tube theory. 9 figures, 3 tables.« less

  3. Modified Einstein and Navier–Stokes Equations

    NASA Astrophysics Data System (ADS)

    Bulyzhenkov, I. É.

    2018-05-01

    The appearance of inertial rest mass-energy is associated with the kinematic slowing-down of time and with the vortex state of the elementary massive space with zero integral of its kinetic and potential energies. An analog of the Einstein equation is found for moving densities of a non-empty metric space in the concept of the Einstein-Infeld material field. The vector consequences of this tensor equation for a metric medium of overlapping elementary carriers of continuous mass-energies allow us to modify the Navier-Stokes equation under inertial motion of the matter of the nonlocal field in the nonrelativistic limit. The nonlocality of massenergy generates kinematic accelerations of feedback to Newtonian acceleration, which impedes asymptotic divergence of energy fluxes. Stabilization of inertial media by dynamic Bernoulli pressure corresponds to nonlocal self-organization of Einstein-Infeld non-empty space and invalidates Newtonian localization of masses in empty space.

  4. Extraction of dye from aqueous solution in rotating packed bed.

    PubMed

    Modak, Jayant B; Bhowal, Avijit; Datta, Siddhartha

    2016-03-05

    The influence of centrifugal acceleration on mass transfer rates in liquid-liquid extraction was investigated experimentally in rotating packed bed (RPB) contactor. The extraction of methyl red using xylene was studied in the equipment. The effect of rotational speed (300-900rpm), flow rate of the aqueous (4.17-20.8×10(-6)m(3)/s), and organic phase (0.83-2.5×10(-6)m(3)/s) on the mass transfer performance was examined. The maximum stage efficiency attained was ∼0.98 at aqueous to organic flow rate ratio of 10. The results suggest that contactor volume required to carry out a given separation can be reduced by an order of magnitude with RPB in comparison to conventional extractors. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Monitoring Jakobshavn Glacier using Sequential Landsat Images

    NASA Astrophysics Data System (ADS)

    Jian, Z.; Zhuoqi, C.; Cheng, X.

    2016-12-01

    Jakobshavn Glacier is the fastest (19 m per day) and one of the most active glaciers around the world. Discharging more than 35km3 of ice every year, its mass loss surpasses anyone else outside the Antarctic. From Landsat 8 OLI Images on August 14, 2015, we find a huge iceberg about 5 km2 calved from resulting in the front shrinking for 1060.8m. NSIDC ice velocity data and weather station data on Jakobshavn glacier are used to analyze the cause of calving. On one hand, upstream glacier push forward the Jakobshavn glacier westward continually, many cracks were formed over the glacier surface. Surface melting water flow into the interior of glaciers to accelerate calving. On the other hand with the gradually rising temperature, the bottom of glaciers accelerate ablation. When glaciers move into the ocean and the thin bottom can not provide strong enough support, calving occurs. Before this incident, we trace sequential Landsat data during 1986 to 2015. In 2010, it had another large-scale calving. We draw from our data that Jakobshavn retreated intensely in the past 30 years although in the last 10 years it appears more stable. The speed of glacier shrinking during 1996 to 2006 is three times as fast as past 10 years.

  6. Hypersonic vehicle model and control law development using H(infinity) and micron synthesis

    NASA Astrophysics Data System (ADS)

    Gregory, Irene M.; Chowdhry, Rajiv S.; McMinn, John D.; Shaughnessy, John D.

    1994-10-01

    The control system design for a Single Stage To Orbit (SSTO) air breathing vehicle will be central to a successful mission because a precise ascent trajectory will preserve narrow payload margins. The air breathing propulsion system requires the vehicle to fly roughly halfway around the Earth through atmospheric turbulence. The turbulence, the high sensitivity of the propulsion system to inlet flow conditions, the relatively large uncertainty of the parameters characterizing the vehicle, and continuous acceleration make the problem especially challenging. Adequate stability margins must be provided without sacrificing payload mass since payload margins are critical. Therefore, a multivariable control theory capable of explicitly including both uncertainty and performance is needed. The H(infinity) controller in general provides good robustness but can result in conservative solutions for practical problems involving structured uncertainty. Structured singular value mu framework for analysis and synthesis is potentially much less conservative and hence more appropriate for problems with tight margins. An SSTO control system requires: highly accurate tracking of velocity and altitude commands while limiting angle-of-attack oscillations, minimized control power usage, and a stabilized vehicle when atmospheric turbulence and system uncertainty are present. The controller designs using H(infinity) and mu-synthesis procedures were compared. An integrated flight/propulsion dynamic mathematical model of a conical accelerator vehicle was linearized as the vehicle accelerated through Mach 8. Vehicle acceleration through the selected flight condition gives rise to parametric variation that was modeled as a structured uncertainty. The mu-analysis approach was used in the frequency domain to conduct controller analysis and was confirmed by time history plots. Results demonstrate the inherent advantages of the mu framework for this class of problems.

  7. Hypersonic vehicle model and control law development using H(infinity) and micron synthesis

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Chowdhry, Rajiv S.; Mcminn, John D.; Shaughnessy, John D.

    1994-01-01

    The control system design for a Single Stage To Orbit (SSTO) air breathing vehicle will be central to a successful mission because a precise ascent trajectory will preserve narrow payload margins. The air breathing propulsion system requires the vehicle to fly roughly halfway around the Earth through atmospheric turbulence. The turbulence, the high sensitivity of the propulsion system to inlet flow conditions, the relatively large uncertainty of the parameters characterizing the vehicle, and continuous acceleration make the problem especially challenging. Adequate stability margins must be provided without sacrificing payload mass since payload margins are critical. Therefore, a multivariable control theory capable of explicitly including both uncertainty and performance is needed. The H(infinity) controller in general provides good robustness but can result in conservative solutions for practical problems involving structured uncertainty. Structured singular value mu framework for analysis and synthesis is potentially much less conservative and hence more appropriate for problems with tight margins. An SSTO control system requires: highly accurate tracking of velocity and altitude commands while limiting angle-of-attack oscillations, minimized control power usage, and a stabilized vehicle when atmospheric turbulence and system uncertainty are present. The controller designs using H(infinity) and mu-synthesis procedures were compared. An integrated flight/propulsion dynamic mathematical model of a conical accelerator vehicle was linearized as the vehicle accelerated through Mach 8. Vehicle acceleration through the selected flight condition gives rise to parametric variation that was modeled as a structured uncertainty. The mu-analysis approach was used in the frequency domain to conduct controller analysis and was confirmed by time history plots. Results demonstrate the inherent advantages of the mu framework for this class of problems.

  8. An Experimental Study on the Fabrication of Glass-based Acceleration Sensor Body Using Micro Powder Blasting Method

    PubMed Central

    Park, Dong-Sam; Yun, Dae-Jin; Cho, Myeong-Woo; Shin, Bong-Cheol

    2007-01-01

    This study investigated the feasibility of the micro powder blasting technique for the micro fabrication of sensor structures using the Pyrex glass to replace the existing silicon-based acceleration sensor fabrication processes. As the preliminary experiments, the effects of the blasting pressure, the mass flow rate of abrasive and the number of nozzle scanning times on erosion depth of the Pyrex and the soda lime glasses were examined. From the experimental results, optimal blasting conditions were selected for the Pyrex glass machining. The dimensions of the designed glass sensor was 1.7×1.7×0.6mm for the vibrating mass, and 2.9×0.7×0.2mm for the cantilever beam. The machining results showed that the dimensional errors of the machined glass sensor ranged from 3 μm in minimum to 20 μm in maximum. These results imply that the micro powder blasting method can be applied for the micromachining of glass-based acceleration sensors to replace the exiting method.

  9. Numerical simulation of a self-propelled copepod during escape

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Fotis; Borazjani, Iman; Malkiel, Edwin; Katz, Josef

    2008-11-01

    Obtaining the 3D flow field, forces, and power is essential for understanding the high accelerations of a copepod during the escap. We carry out numerical simulations to study a free swimming copepod using the sharp-interface immersed boundary, fluid-structure interaction (FSI) approach of Borazjani et al. (J Compu Phys, 2008, 227, p 7587-7620). We use our previous tethered copepod model with a realistic copepod-like body, including all the appendages with the appendages motion prescribed from high-resolution, cinematic dual digital holography. The simulations are performed in a frame of reference attached to the copepod whose velocity is calculated by considering the forces acting on the copepod. The self-propelled simulations are challenging due to the destabilizing effects of the large added mass resulting from the low copepod mass and fast acceleration during the escape. Strongly-coupled FSI with under-relaxation and the Aitken acceleration technique is used to obtain stable and robust FSI iterations. The computed results for the self-propelled model are analyzed and compared with our earlier results for the tethered model.

  10. Droplet breakup in accelerating gas flows. Part 2: Secondary atomization

    NASA Technical Reports Server (NTRS)

    Zajac, L. J.

    1973-01-01

    An experimental investigation to determine the effects of an accelerating gas flow on the atomization characteristics of liquid sprays was conducted. The sprays were produced by impinging two liquid jets. The liquid was molten wax and the gas was nitrogen. The use of molten wax allowed for a quantitative measure of the resulting dropsize distribution. The results of this study, indicate that a significant amount of droplet breakup will occur as a result of the action of the gas on the liquid droplets. Empirical correlations are presented in terms of parameters that were found to affect the mass median dropsize most significantly, the orifice diameter, the liquid injection velocity, and the maximum gas velocity. An empirical correlation for the normalized dropsize distribution is also presented. These correlations are in a form that may be incorporated readily into existing combustion model computer codes for the purpose of calculating rocket engine combustion performance.

  11. Particle Acceleration in Mildly Relativistic Shearing Flows: The Interplay of Systematic and Stochastic Effects, and the Origin of the Extended High-energy Emission in AGN Jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ruo-Yu; Rieger, F. M.; Aharonian, F. A., E-mail: ruoyu@mpi-hd.mpg.de, E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: aharon@mpi-hd.mpg.de

    The origin of the extended X-ray emission in the large-scale jets of active galactic nuclei (AGNs) poses challenges to conventional models of acceleration and emission. Although electron synchrotron radiation is considered the most feasible radiation mechanism, the formation of the continuous large-scale X-ray structure remains an open issue. As astrophysical jets are expected to exhibit some turbulence and shearing motion, we here investigate the potential of shearing flows to facilitate an extended acceleration of particles and evaluate its impact on the resultant particle distribution. Our treatment incorporates systematic shear and stochastic second-order Fermi effects. We show that for typical parametersmore » applicable to large-scale AGN jets, stochastic second-order Fermi acceleration, which always accompanies shear particle acceleration, can play an important role in facilitating the whole process of particle energization. We study the time-dependent evolution of the resultant particle distribution in the presence of second-order Fermi acceleration, shear acceleration, and synchrotron losses using a simple Fokker–Planck approach and provide illustrations for the possible emergence of a complex (multicomponent) particle energy distribution with different spectral branches. We present examples for typical parameters applicable to large-scale AGN jets, indicating the relevance of the underlying processes for understanding the extended X-ray emission and the origin of ultrahigh-energy cosmic rays.« less

  12. 40 CFR Table 3 to Subpart Ttttt of... - Initial Compliance With Emission Limits

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emissions Standards for Hazardous Air Pollutants for Primary Magnesium... dryer stack a. The average mass flow of particulate matter from the control system applied to emissions...

  13. The moon-Earth system...As a vacuum gravity energy machine? A Hint about the Nature of Universal Gravity that May Have Been Overlooked

    NASA Astrophysics Data System (ADS)

    Masters, Roy

    2011-10-01

    We revisit the theories describing the moon raising the tides by virtue of pull gravity combined with the moon's centripetal angular momentum. We show that if gravity is considered as the attractive interaction between individual bodies, then a laboring moon doing work would have fallen to earth eons ago. Isaac Newton's laws of motion cannot work with pull gravity, but they do with Einstein's gravity as a property of the universe, which produces a continuous infusion of energy. In other words, the moon-Earth system becomes the first observable vacuum gravity energy machine. In other words the dynamics of what appears to be a closed system has been producing energy that continues raising the tides into perpetuity along with the force needed for the moon to escape the Earth's gravitational pull 4cm per year. All this is in defiance of Newton's first law which says ``If no force is added to a body it cannot accelerate.'' In this theory, a flowing space-time curves with three dimensions of force. A (flowing) spatial fabric bends around mass and displaces the inverse square field vanishing point property of matter with the appearance of a push-force square of the distance. In other words, the immeasurable universal gravity field appears as measurable local gravitation, concentrating universal gravitational pressure with the square of the distance from the very point was supposed to have disappeared. Needless to say such ``gravity'' necessitates a different beginning.

  14. Acceleration and collimation of relativistic plasmas ejected by fast rotators

    NASA Astrophysics Data System (ADS)

    Bogovalov, S. V.

    2001-06-01

    A stationary self-consistent outflow of a magnetised relativistic plasma from a rotating object with an initially monopole-like magnetic field is investigated in the ideal MHD approximation under the condition sigma U02 > 1, where sigma is the ratio of the Poynting flux over the mass energy flux at the equator and the surface of the star, with U0=gamma 0v0/c and gamma0 the initial four-velocity and Lorentz factor of the plasma. The mechanism of the magnetocentrifugal acceleration and self-collimation of the relativistic plasma is investigated. A jet-like relativistic flow along the axis of rotation is found in the steady-state solution under the condition sigma U02 > 1 with properties predicted analytically. The amount of the collimated matter in the jet is rather small in comparison to the total mass flux in the wind. An explanation for the weak self-collimation of relativistic winds is given.

  15. NASA Astrophysics Data System (ADS)

    Kadyrov, E.; Evdokimenko, Y.; Kisel, V.; Kadyrov, V.; Worzala, F.

    1994-12-01

    Several designs of high-velocity oxygen fuel (HVOF) thermal spray systems have been created during the last decade. The most advanced systems are now producing coatings comparable in quality to detonation (D-gun) coatings. This paper presents numerical analysis of the interaction of dispersive particles with the carrying gas flow for three different HVOF systems, along with a method to calculate the parameters of sprayed particles that highlights the advantages and limitations of each design. The method includes gas dynamical calculations of the gas flow in an accelerating channel and calculations of the injected par-motion and thermal state (temperature and melted mass fraction). The calculations were performed for particles of tungsten carbide, aluminum oxide, and zirconium oxide with size distributions of 10 to 80 μm. Two conventional types of HVOF systems were considered: those with a supersonic accelerating channel and those with a subsonic accelerating channel (without a de Laval nozzle). A novel design is pro-posed that contains a combined gas dynamical path with functionally separated regions of heating and acceleration. The regularities and distinctions in the behavior of the metallic and ceramic oxide particles are discussed for different jet configurations. The results obtained indicate that it is possible to signifi-cantly affect particle parameters by using the new configuration solutions without creating construction complications.

  16. Comparison of different notation for equations of motion of a body in a medium flow

    NASA Astrophysics Data System (ADS)

    Samsonov, V. A.; Selyutskii, Yu. D.

    2008-02-01

    In [1-6], a model of a nonstationary action of a medium flow on a body moving in this flow was constructed in the form of an associated dynamical system of second order. In the literature, the representation of the aerodynamic force in integral form with a Duhamel type integral is often used (e.g., see [7, 8]). In the present paper, we pay attention to the fact that a system of ODE is equivalent not to a single integro-differential equation but to a family of such equations. Therefore, it is necessary to discuss the problem of the correspondence between their solutions. The integro-differential representation of the aerodynamic force is reduced to a form convenient to realize the procedure of separation of motions. In this case, we single out the first two approximations with respect to a small parameter. It turns out that in the case of actual airfoils one can speak of "detached" rather than "attached" mass. In the problem on the forced drag of an airfoil in a flow, it is shown that for a sufficiently large acceleration the aerodynamic force can change its direction and turn from a drag force into an "accelerating" force for some time. At the same time, in the case of free drag of a sufficiently light plate, the "acceleration" effect is not observed, but in the course of deceleration the plate moves from it original position in the direction opposite to the initial direction of motion.

  17. A Semi-analytical Model for Wind-fed Black Hole High-mass X-Ray Binaries: State Transition Triggered by Magnetic Fields from the Companion Star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaji, Kentaro; Yamada, Shinya; Masai, Kuniaki

    We propose a mechanism of state transition in wind-fed black hole (BH) binaries (high-mass X-ray binaries) such as Cyg X-1 and LMC X-1. Modeling a line-driven stellar wind from the companion by two-dimensional hydrodynamical calculations, we investigate the processes of wind capture by, and accretion onto, the BH. We assume that the wind acceleration is terminated at the He ii ionization front because ions responsible for line-driven acceleration are ionized within the front, i.e., the He iii region. It is found that the mass accretion rate inferred from the luminosity is remarkably smaller than the capture rate. Considering the difference,more » we construct a model for the state transition based on the accretion flow being controlled by magnetorotational instability. The outer flow is torus-like, and plays an important role to trigger the transition. The model can explain why state transition does occur in Cyg X-1, while not in LMC X-1. Cyg X-1 exhibits a relatively low luminosity, and then the He ii ionization front is located and can move between the companion and BH, depending on its ionizing photon flux. On the other hand, LMC X-1 exhibits too high luminosity for the front to move considerably; the front is too close to the companion atmosphere. The model also predicts that each state of high-soft or low-hard would last fairly long because the luminosity depends weakly on the wind velocity. In the context of the model, the state transition is triggered by a fluctuation of the magnetic field when its amplitude becomes comparable to the field strength in the torus-like outer flow.« less

  18. A stable partitioned FSI algorithm for rigid bodies and incompressible flow. Part I: Model problem analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.

    A stable partitioned algorithm is developed for fluid-structure interaction (FSI) problems involving viscous incompressible flow and rigid bodies. This added-mass partitioned (AMP) algorithm remains stable, without sub-iterations, for light and even zero mass rigid bodies when added-mass and viscous added-damping effects are large. The scheme is based on a generalized Robin interface condition for the fluid pressure that includes terms involving the linear acceleration and angular acceleration of the rigid body. Added mass effects are handled in the Robin condition by inclusion of a boundary integral term that depends on the pressure. Added-damping effects due to the viscous shear forcesmore » on the body are treated by inclusion of added-damping tensors that are derived through a linearization of the integrals defining the force and torque. Added-damping effects may be important at low Reynolds number, or, for example, in the case of a rotating cylinder or rotating sphere when the rotational moments of inertia are small. In this second part of a two-part series, the general formulation of the AMP scheme is presented including the form of the AMP interface conditions and added-damping tensors for general geometries. A fully second-order accurate implementation of the AMP scheme is developed in two dimensions based on a fractional-step method for the incompressible Navier-Stokes equations using finite difference methods and overlapping grids to handle the moving geometry. Here, the numerical scheme is verified on a number of difficult benchmark problems.« less

  19. A stable partitioned FSI algorithm for rigid bodies and incompressible flow. Part I: Model problem analysis

    DOE PAGES

    Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.; ...

    2017-01-20

    A stable partitioned algorithm is developed for fluid-structure interaction (FSI) problems involving viscous incompressible flow and rigid bodies. This added-mass partitioned (AMP) algorithm remains stable, without sub-iterations, for light and even zero mass rigid bodies when added-mass and viscous added-damping effects are large. The scheme is based on a generalized Robin interface condition for the fluid pressure that includes terms involving the linear acceleration and angular acceleration of the rigid body. Added mass effects are handled in the Robin condition by inclusion of a boundary integral term that depends on the pressure. Added-damping effects due to the viscous shear forcesmore » on the body are treated by inclusion of added-damping tensors that are derived through a linearization of the integrals defining the force and torque. Added-damping effects may be important at low Reynolds number, or, for example, in the case of a rotating cylinder or rotating sphere when the rotational moments of inertia are small. In this second part of a two-part series, the general formulation of the AMP scheme is presented including the form of the AMP interface conditions and added-damping tensors for general geometries. A fully second-order accurate implementation of the AMP scheme is developed in two dimensions based on a fractional-step method for the incompressible Navier-Stokes equations using finite difference methods and overlapping grids to handle the moving geometry. Here, the numerical scheme is verified on a number of difficult benchmark problems.« less

  20. Effect of accelerated crucible rotation on the segregation of impurities in vertical Bridgman growth of multi-crystalline silicon

    NASA Astrophysics Data System (ADS)

    Bellmann, M. P.; Meese, E. A.; Arnberg, L.

    2011-03-01

    We have performed axisymmetric, transient simulations of the vertical Bridgman growth of mc-silicon to study the effect of the accelerated crucible rotation technique (ACRT) on the melt flow and impurity segregation. A solute transport model has been applied to predict the final segregation pattern of impurities in a circular ingot. The sinusoidal ACRT rotation cycle considered here suppresses mixing in the melt near the center, resulting in diffusion-limited mass transport. Therefore the radial impurity segregation is increased towards the center. The effect of increased radial segregation is intensified for low values of the Ekman time scale.

  1. Performance characteristics of quasi-steady MPD discharges. [spacecraft plasma propulsion thrust efficiency and specific impulse

    NASA Technical Reports Server (NTRS)

    Rudolph, L. K.; Jahn, R. G.; Clark, K. E.; Von Jaskowsky, W. F.

    1976-01-01

    The onset of voltage fluctuations in a multi-megawatt quasi-steady MPD accelerator, indicative of increased cathode ablation and a consequent degradation of performance, is found to be a function of cathode size. With longer cathodes, this onset shifts to substantially higher powers per unit mass flow and the plasma exhaust velocity can be increased to values previously thought inaccessible to accelerators of this class. Centerline velocities up to 30 km/sec have been measured in argon, which for the observed exhaust profiles translate into specific impulses up to 2400 sec and corresponding thrust efficiencies above 30%.

  2. Method of Calibrating a Force Balance

    NASA Technical Reports Server (NTRS)

    Parker, Peter A. (Inventor); Rhew, Ray D. (Inventor); Johnson, Thomas H. (Inventor); Landman, Drew (Inventor)

    2015-01-01

    A calibration system and method utilizes acceleration of a mass to generate a force on the mass. An expected value of the force is calculated based on the magnitude and acceleration of the mass. A fixture is utilized to mount the mass to a force balance, and the force balance is calibrated to provide a reading consistent with the expected force determined for a given acceleration. The acceleration can be varied to provide different expected forces, and the force balance can be calibrated for different applied forces. The acceleration may result from linear acceleration of the mass or rotational movement of the mass.

  3. Rayleigh-Taylor mixing with time-dependent acceleration

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana

    2016-10-01

    We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a time-dependent acceleration. The acceleration is a power-law function of time, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical regimes of self-similar RT mixing-acceleration-driven Rayleigh-Taylor-type and dissipation-driven Richtymer-Meshkov-type with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with time-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.

  4. Rayleigh-Taylor mixing with space-dependent acceleration

    NASA Astrophysics Data System (ADS)

    Abarzhi, Snezhana

    2016-11-01

    We extend the momentum model to describe Rayleigh-Taylor (RT) mixing driven by a space-dependent acceleration. The acceleration is a power-law function of space coordinate, similarly to astrophysical and plasma fusion applications. In RT flow the dynamics of a fluid parcel is driven by a balance per unit mass of the rates of momentum gain and loss. We find analytical solutions in the cases of balanced and imbalanced gains and losses, and identify their dependence on the acceleration exponent. The existence is shown of two typical sub-regimes of self-similar RT mixing - the acceleration-driven Rayleigh-Taylor-type mixing and dissipation-driven Richtymer-Meshkov-type mixing with the latter being in general non-universal. Possible scenarios are proposed for transitions from the balanced dynamics to the imbalanced self-similar dynamics. Scaling and correlations properties of RT mixing are studied on the basis of dimensional analysis. Departures are outlined of RT dynamics with space-dependent acceleration from canonical cases of homogeneous turbulence as well as blast waves with first and second kind self-similarity. The work is supported by the US National Science Foundation.

  5. An Integrated Instrumentation System for Velocity, Concentration and Mass Flow Rate Measurement of Solid Particles Based on Electrostatic and Capacitance Sensors.

    PubMed

    Li, Jian; Kong, Ming; Xu, Chuanlong; Wang, Shimin; Fan, Ying

    2015-12-10

    The online and continuous measurement of velocity, concentration and mass flow rate of pneumatically conveyed solid particles for the high-efficiency utilization of energy and raw materials has become increasingly significant. In this paper, an integrated instrumentation system for the velocity, concentration and mass flow rate measurement of dense phase pneumatically conveyed solid particles based on electrostatic and capacitance sensorsis developed. The electrostatic sensors are used for particle mean velocity measurement in combination with the cross-correlation technique, while the capacitance sensor with helical surface-plate electrodes, which has relatively homogeneous sensitivity distribution, is employed for the measurement of particle concentration and its capacitance is measured by an electrostatic-immune AC-based circuit. The solid mass flow rate can be further calculated from the measured velocity and concentration. The developed instrumentation system for velocity and concentration measurement is verified and calibrated on a pulley rig and through static experiments, respectively. Finally the system is evaluated with glass beads on a gravity-fed rig. The experimental results demonstrate that the system is capable of the accurate solid mass flow rate measurement, and the relative error is within -3%-8% for glass bead mass flow rates ranging from 0.13 kg/s to 0.9 kg/s.

  6. Desirable limits of accelerative forces in a space-based materials processing facility

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.

    1990-01-01

    There are three categories of accelerations to be encountered on orbiting spacecraft: (1) quasi-steady accelerations, caused by atmospheric drag or by gravity gradients, 10(exp -6) to 10(exp -7) g sub o; (2) transient accelerations, caused by movements of the astronauts, mass translocations, landing and departure of other spacecraft, etc.; and (3) oscillary accelerations, caused by running machinery (fans, pumps, generators). Steady accelerations cause continuing displacements; transients cause time-limited displacements. The important aspect is the area under the acceleration curve, measured over a certain time interval. Note that this quantity is not equivalent to a velocity because of friction effects. Transient motions are probably less important than steady accelerations because they only produce constant displacements. If the accelerative forces were not equal and opposite, the displacement would increase with time. A steady acceleration will produce an increasing velocity of a particle, but eventually an equilibrium value will be reached where drag and acceleration forces are equal. From then on, the velocity will remain constant, and the displacement will increase linearly with time.

  7. Some perspective decisions for the regeneration system equipment of the thermal and nuclear power plants decreasing the probability of water ingress into the turbine and rotor acceleration by return steam flow

    NASA Astrophysics Data System (ADS)

    Trifonov, N. N.; Svyatkin, F. A.; Sintsova, T. G.; Ukhanova, M. G.; Yesin, S. B.; Nikolayenkova, E. K.; Yurchenko, A. Yu.; Grigorieva, E. B.

    2016-03-01

    The regeneration system heaters are one of the sources of possible ingress of the water into the turbine. The water penetrates into the turbine either at the heaters overflow or with the return flow of steam generated when the water being in the heater boils up in the dynamic operation modes or at deenergization of the power-generating unit. The return flow of steam and water is dangerous to the turbine blades and can result in the rotor acceleration. The known protective devices used to prevent the overflow of the low-pressure and high-pressure heaters (LPH and HPH), of the horizontal and vertical heaters of heating-system water (HWH and VWH), as well as of the deaerators and low-pressure mixing heaters (LPMH) were considered. The main protective methods of the steam and water return flows supplied by the heaters in dynamic operation modes or at deenergization of the power-generating unit are described. Previous operating experience shows that the available protections do not fully prevent water ingress into the turbine and the rotor acceleration and, therefore, the development of measures to decrease the possibility of ingress of the water into the turbine is an actual problem. The measures allowing eliminating or reducing the water mass in the heaters are expounded; some of them were designed by the specialists of OAO Polzunov Scientific and Development Association on Research and Design of Power Equipment (NPO CKTI) and are efficiently introduced at heat power plants and nuclear power plants. The suggested technical solutions allow reducing the possibility of the water ingress into the turbine and rotor acceleration by return steam flow in the dynamic operation modes or in the case of power generating unit deenergization. Some of these solutions have been tested in experimental-industrial exploitation and can be used in industry.

  8. Impact of Tissue Factor Localization on Blood Clot Structure and Resistance under Venous Shear.

    PubMed

    Govindarajan, Vijay; Zhu, Shu; Li, Ruizhi; Lu, Yichen; Diamond, Scott L; Reifman, Jaques; Mitrophanov, Alexander Y

    2018-02-27

    The structure and growth of a blood clot depend on the localization of tissue factor (TF), which can trigger clotting during the hemostatic process or promote thrombosis when exposed to blood under pathological conditions. We sought to understand how the growth, structure, and mechanical properties of clots under flow are shaped by the simultaneously varying TF surface density and its exposure area. We used an eight-channel microfluidic device equipped with a 20- or 100-μm-long collagen surface patterned with lipidated TF of surface densities ∼0.1 and ∼2 molecules/μm 2 . Human whole blood was perfused at venous shear, and clot growth was continually measured. Using our recently developed computational model of clot formation, we performed simulations to gain insights into the clot's structure and its resistance to blood flow. An increase in TF exposure area resulted not only in accelerated bulk platelet, thrombin, and fibrin accumulation, but also in increased height of the platelet mass and increased clot resistance to flow. Moreover, increasing the TF surface density or exposure area enhanced platelet deposition by approximately twofold, and thrombin and fibrin generation by greater than threefold, thereby increasing both clot size and its viscous resistance. Finally, TF effects on blood flow occlusion were more pronounced for the longer thrombogenic surface than for the shorter one. Our results suggest that TF surface density and its exposure area can independently enhance both the clot's occlusivity and its resistance to blood flow. These findings provide, to our knowledge, new insights into how TF affects thrombus growth in time and space under flow. Copyright © 2018 Biophysical Society. All rights reserved.

  9. Modeling of thermodynamic non-equilibrium flows around cylinders and in channels

    NASA Astrophysics Data System (ADS)

    Sinha, Avick; Gopalakrishnan, Shiva

    2017-11-01

    Numerical simulations for two different types of flash-boiling flows, namely shear flow (flow through a de-Laval nozzle) and free shear flow (flow past a cylinder) are carried out in the present study. The Homogenous Relaxation Model (HRM) is used to model the thermodynamic non-equilibrium process. It was observed that the vaporization of the fluid stream, which was initially maintained at a sub-cooled state, originates at the nozzle throat. This is because the fluid accelerates at the vena-contracta and subsequently the pressure falls below the saturation vapor pressure, generating a two-phase mixture in the diverging section of the nozzle. The mass flow rate at the nozzle was found to decrease with the increase in fluid inlet temperature. A similar phenomenon also occurs for the free shear case due to boundary layer separation, causing a drop in pressure behind the cylinder. The mass fraction of vapor is maximum at rear end of the cylinder, where the size of the wake is highest. As the back pressure is reduced, severe flashing behavior was observed. The numerical simulations were validated against available experimental data. The authors gratefully acknowledge funding from the public-private partnership between DST, Confederation of Indian Industry and General Electric Pvt. Ltd.

  10. Continuous-flow mass production of silicon nanowires via substrate-enhanced metal-catalyzed electroless etching of silicon with dissolved oxygen as an oxidant.

    PubMed

    Hu, Ya; Peng, Kui-Qing; Liu, Lin; Qiao, Zhen; Huang, Xing; Wu, Xiao-Ling; Meng, Xiang-Min; Lee, Shuit-Tong

    2014-01-13

    Silicon nanowires (SiNWs) are attracting growing interest due to their unique properties and promising applications in photovoltaic devices, thermoelectric devices, lithium-ion batteries, and biotechnology. Low-cost mass production of SiNWs is essential for SiNWs-based nanotechnology commercialization. However, economic, controlled large-scale production of SiNWs remains challenging and rarely attainable. Here, we demonstrate a facile strategy capable of low-cost, continuous-flow mass production of SiNWs on an industrial scale. The strategy relies on substrate-enhanced metal-catalyzed electroless etching (MCEE) of silicon using dissolved oxygen in aqueous hydrofluoric acid (HF) solution as an oxidant. The distinct advantages of this novel MCEE approach, such as simplicity, scalability and flexibility, make it an attractive alternative to conventional MCEE methods.

  11. Optimization of information content in a mass spectrometry based flow-chemistry system by investigating different ionization approaches.

    PubMed

    Martha, Cornelius T; Hoogendoorn, Jan-Carel; Irth, Hubertus; Niessen, Wilfried M A

    2011-05-15

    Current development in catalyst discovery includes combinatorial synthesis methods for the rapid generation of compound libraries combined with high-throughput performance-screening methods to determine the associated activities. Of these novel methodologies, mass spectrometry (MS) based flow chemistry methods are especially attractive due to the ability to combine sensitive detection of the formed reaction product with identification of introduced catalyst complexes. Recently, such a mass spectrometry based continuous-flow reaction detection system was utilized to screen silver-adducted ferrocenyl bidentate catalyst complexes for activity in a multicomponent synthesis of a substituted 2-imidazoline. Here, we determine the merits of different ionization approaches by studying the combination of sensitive detection of product formation in the continuous-flow system with the ability to simultaneous characterize the introduced [ferrocenyl bidentate+Ag](+) catalyst complexes. To this end, we study the ionization characteristics of electrospray ionization (ESI), atmospheric-pressure chemical ionization (APCI), no-discharge APCI, dual ESI/APCI, and dual APCI/no-discharge APCI. Finally, we investigated the application potential of the different ionization approaches by the investigation of ferrocenyl bidentate catalyst complex responses in different solvents. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. 40 CFR Table 7 to Subpart Ppp of... - Process Vents From Continuous Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or...

  13. Metallurgical technologies, energy conversion, and magnetohydrodynamic flows

    NASA Astrophysics Data System (ADS)

    Branover, Herman; Unger, Yeshajahu

    The present volume discusses metallurgical applications of MHD, R&D on MHD devices employing liquid working medium for process applications, electromagnetic (EM) modulation of molten metal flow, EM pump performance of superconducting MHD devices, induction EM alkali-metal pumps, a physical model for EM-driven flow in channel-induction furnaces, grain refinement in Al alloys via EM vibrational method, dendrite growth of solidifying metal in dc magnetic field, MHD for mass and heat transfer in single-crystal melt growth, inverse EM shaping, and liquid-metal MHD development in Israel. Also discussed are the embrittlement of steel by lead, an open cycle MHD disk generator, the acceleration of gas-liquid piston flows for molten-metal MHD generators, MHD flow around a cylinder, new MHD drag coefficients, liquid-metal MHD two-phase flow, and two-phase liquid gas mixers for MHD energy conversion. (No individual items are abstracted in this volume)

  14. Ghosts in the self-accelerating brane universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyama, Kazuya; Institute of Cosmology and Gravitation, Portsmouth University, Portsmouth, PO1 2EG

    2005-12-15

    We study the spectrum of gravitational perturbations about a vacuum de Sitter brane with the induced 4D Einstein-Hilbert term, in a 5D Minkowski spacetime (DGP model). We consider solutions that include a self-accelerating universe, where the accelerating expansion of the universe is realized without introducing a cosmological constant on the brane. The mass of the discrete mode for the spin-2 graviton is calculated for various Hr{sub c}, where H is the Hubble parameter and r{sub c} is the crossover scale determined by the ratio between the 5D Newton constant and the 4D Newton constant. We show that, if we introducemore » a positive cosmological constant on the brane (Hr{sub c}>1), the spin-2 graviton has mass in the range 01/2. In a self-accelerating universe Hr{sub c}=1, the spin-2 graviton has mass m{sup 2}=2H{sup 2}, which coincides with the mass of the brane fluctuation mode. Then there arises a mixing between the brane fluctuation mode and the spin-2 graviton. We argue that this mixing presumably gives a ghost in the self-accelerating universe by continuity across Hr{sub c}=1, although a careful calculation of the effective action is required to verify this rigorously.« less

  15. First heavy ion beam tests with a superconducting multigap CH cavity

    NASA Astrophysics Data System (ADS)

    Barth, W.; Aulenbacher, K.; Basten, M.; Busch, M.; Dziuba, F.; Gettmann, V.; Heilmann, M.; Kürzeder, T.; Miski-Oglu, M.; Podlech, H.; Rubin, A.; Schnase, A.; Schwarz, M.; Yaramyshev, S.

    2018-02-01

    Very compact accelerating-focusing structures, as well as short focusing periods, high accelerating gradients and short drift spaces are strongly required for superconducting (sc) accelerator sections operating at low and medium energies for continuous wave (cw) heavy ion beams. To keep the GSI-super heavy element (SHE) program competitive on a high level and even beyond, a standalone sc cw linac (Helmholtz linear accelerator) in combination with the GSI high charge state injector (HLI), upgraded for cw operation, is envisaged. Recently the first linac section (financed by Helmholtz Institute Mainz (HIM) and GSI) as a demonstration of the capability of 217 MHz multigap crossbar H-mode structures (CH) has been commissioned and extensively tested with heavy ion beam from the HLI. The demonstrator setup reached acceleration of heavy ions up to the design beam energy. The required acceleration gain was achieved with heavy ion beams even above the design mass to charge ratio at high beam intensity and full beam transmission. This paper presents systematic beam measurements with varying rf amplitudes and phases of the CH cavity, as well as phase space measurements for heavy ion beams with different mass to charge ratio. The worldwide first and successful beam test with a superconducting multigap CH cavity is a milestone of the R&D work of HIM and GSI in collaboration with IAP in preparation of the HELIAC project and other cw-ion beam applications.

  16. Effects of spatial gradients in thermophysical properties on the topology of turbulence in heated channel flow of supercritical fluids

    NASA Astrophysics Data System (ADS)

    Azih, Chukwudi; Yaras, Metin I.

    2018-01-01

    The current literature suggests that large spatial gradients of thermophysical properties, which occur in the vicinity of the pseudo-critical thermodynamic state, may result in significant variations in forced-convection heat transfer rates. Specifically, these property gradients induce inertia- and buoyancy-driven phenomena that may enhance or deteriorate the turbulence-dominated heat convection process. Through direct numerical simulations, the present study investigates the role of coherent flow structures in channel geometries for non-buoyant and buoyant flows of supercritical water, with buoyant configurations involving wall-normal oriented gravitational acceleration and downstream-oriented gravitational acceleration. This sequence of simulations enables the evaluation of the relative contributions of inertial and buoyancy phenomena to heat transfer variations. In these simulations, the state of the working fluid is in the vicinity of the pseudo-critical point. The uniform wall heat flux and the channel mass flux are specified such that the heat to mass flux ratio is 3 kJ/kg, with an inflow Reynolds number of 12 000 based on the channel hydraulic diameter, the area-averaged inflow velocity, and fluid properties evaluated at the bulk temperature and pressure of the inflow plane. In the absence of buoyancy forces, notable reductions in the density and viscosity in close proximity of the heated wall are observed to promote generation of small-scale vortices, with resultant breakdown into smaller scales as they interact with preexisting larger near-wall vortices. This interaction results in a reduction in the overall thermal mixing at particular wall-normal regions of the channel. Under the influence of wall-normal gravitational acceleration, the wall-normal density gradients are noted to enhance ejection motions due to baroclinic vorticity generation on the lower wall, thus providing additional wall-normal thermal mixing. Along the upper wall, the same mechanism generates streamwise vorticity of the opposing sense of rotation in the close vicinity to the respective legs of the hairpin vortices causing a net reduction in thermal mixing. Finally, in the case of downstream-oriented gravitational acceleration, baroclinic vorticity generation as per spanwise density gradients causes additional wall-normal thermal mixing by promoting larger-scale ejection and sweep motions.

  17. Subsonic structure and optically thick winds from Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Grassitelli, L.; Langer, N.; Grin, N. J.; Mackey, J.; Bestenlehner, J. M.; Gräfener, G.

    2018-06-01

    Mass loss by stellar wind is a key agent in the evolution and spectroscopic appearance of massive main sequence and post-main sequence stars. In Wolf-Rayet stars the winds can be so dense and so optically thick that the photosphere appears in the highly supersonic part of the outflow, veiling the underlying subsonic part of the star, and leaving the initial acceleration of the wind inaccessible to observations. Here we investigate the conditions and the structure of the subsonic part of the outflow of Galactic Wolf-Rayet stars, in particular of the WNE subclass; our focus is on the conditions at the sonic point of their winds. We compute 1D hydrodynamic stellar structure models for massive helium stars adopting outer boundaries at the sonic point. We find that the outflows of our models are accelerated to supersonic velocities by the radiative force from opacity bumps either at temperatures of the order of 200 kK by the iron opacity bump or of the order of 50 kK by the helium-II opacity bump. For a given mass-loss rate, the diffusion approximation for radiative energy transport allows us to define the temperature gradient based purely on the local thermodynamic conditions. For a given mass-loss rate, this implies that the conditions in the subsonic part of the outflow are independent from the detailed physical conditions in the supersonic part. Stellar atmosphere calculations can therefore adopt our hydrodynamic models as ab initio input for the subsonic structure. The close proximity to the Eddington limit at the sonic point allows us to construct a sonic HR diagram, relating the sonic point temperature to the luminosity-to-mass ratio and the stellar mass-loss rate, thereby constraining the sonic point conditions, the subsonic structure, and the stellar wind mass-loss rates of WNE stars from observations. The minimum stellar wind mass-loss rate necessary to have the flow accelerated to supersonic velocities by the iron opacity bump is derived. A comparison of the observed parameters of Galactic WNE stars to this minimum mass-loss rate indicates that these stars have their winds launched to supersonic velocities by the radiation pressure arising from the iron opacity bump. Conversely, stellar models which do not show transonic flows from the iron opacity bump form low-density extended envelopes. We derive an analytic criterion for the appearance of envelope inflation and of a density inversion in the outer sub-photospheric layers.

  18. A simple mass-conserved level set method for simulation of multiphase flows

    NASA Astrophysics Data System (ADS)

    Yuan, H.-Z.; Shu, C.; Wang, Y.; Shu, S.

    2018-04-01

    In this paper, a modified level set method is proposed for simulation of multiphase flows with large density ratio and high Reynolds number. The present method simply introduces a source or sink term into the level set equation to compensate the mass loss or offset the mass increase. The source or sink term is derived analytically by applying the mass conservation principle with the level set equation and the continuity equation of flow field. Since only a source term is introduced, the application of the present method is as simple as the original level set method, but it can guarantee the overall mass conservation. To validate the present method, the vortex flow problem is first considered. The simulation results are compared with those from the original level set method, which demonstrates that the modified level set method has the capability of accurately capturing the interface and keeping the mass conservation. Then, the proposed method is further validated by simulating the Laplace law, the merging of two bubbles, a bubble rising with high density ratio, and Rayleigh-Taylor instability with high Reynolds number. Numerical results show that the mass is a well-conserved by the present method.

  19. Interplay of Coulomb interactions and disorder in three-dimensional quadratic band crossings without time-reversal symmetry and with unequal masses for conduction and valence bands

    NASA Astrophysics Data System (ADS)

    Mandal, Ipsita; Nandkishore, Rahul M.

    2018-03-01

    Coulomb interactions famously drive three-dimensional quadratic band crossing semimetals into a non-Fermi liquid phase of matter. In a previous work [Nandkishore and Parameswaran, Phys. Rev. B 95, 205106 (2017), 10.1103/PhysRevB.95.205106], the effect of disorder on this non-Fermi liquid phase was investigated, assuming that the band structure was isotropic, assuming that the conduction and valence bands had the same band mass, and assuming that the disorder preserved exact time-reversal symmetry and statistical isotropy. It was shown that the non-Fermi liquid fixed point is unstable to disorder and that a runaway flow to strong disorder occurs. In this paper, we extend that analysis by relaxing the assumption of time-reversal symmetry and allowing the electron and hole masses to differ (but continuing to assume isotropy of the low energy band structure). We first incorporate time-reversal symmetry breaking disorder and demonstrate that there do not appear any new fixed points. Moreover, while the system continues to flow to strong disorder, time-reversal-symmetry-breaking disorder grows asymptotically more slowly than time-reversal-symmetry-preserving disorder, which we therefore expect should dominate the strong-coupling phase. We then allow for unequal electron and hole masses. We show that whereas asymmetry in the two masses is irrelevant in the clean system, it is relevant in the presence of disorder, such that the `effective masses' of the conduction and valence bands should become sharply distinct in the low-energy limit. We calculate the RG flow equations for the disordered interacting system with unequal band masses and demonstrate that the problem exhibits a runaway flow to strong disorder. Along the runaway flow, time-reversal-symmetry-preserving disorder grows asymptotically more rapidly than both time-reversal-symmetry-breaking disorder and the Coulomb interaction.

  20. Continuous Purification of Colloidal Quantum Dots in Large-Scale Using Porous Electrodes in Flow Channel.

    PubMed

    Lim, Hosub; Woo, Ju Young; Lee, Doh C; Lee, Jinkee; Jeong, Sohee; Kim, Duckjong

    2017-02-27

    Colloidal quantum dots (QDs) afford huge potential in numerous applications owing to their excellent optical and electronic properties. After the synthesis of QDs, separating QDs from unreacted impurities in large scale is one of the biggest issues to achieve scalable and high performance optoelectronic applications. Thus far, however, continuous purification method, which is essential for mass production, has rarely been reported. In this study, we developed a new continuous purification process that is suitable to the mass production of high-quality QDs. As-synthesized QDs are driven by electrophoresis in a flow channel and captured by porous electrodes and finally separated from the unreacted impurities. Nuclear magnetic resonance and ultraviolet/visible/near-infrared absorption spectroscopic data clearly showed that the impurities were efficiently removed from QDs with the purification yield, defined as the ratio of the mass of purified QDs to that of QDs in the crude solution, up to 87%. Also, we could successfully predict the purification yield depending on purification conditions with a simple theoretical model. The proposed large-scale purification process could be an important cornerstone for the mass production and industrial use of high-quality QDs.

  1. Continuous Purification of Colloidal Quantum Dots in Large-Scale Using Porous Electrodes in Flow Channel

    NASA Astrophysics Data System (ADS)

    Lim, Hosub; Woo, Ju Young; Lee, Doh Chang; Lee, Jinkee; Jeong, Sohee; Kim, Duckjong

    2017-11-01

    Colloidal Quantum dots (QDs) afford huge potential in numerous applications owing to their excellent optical and electronic properties. After the synthesis of QDs, separating QDs from unreacted impurities in large scale is one of the biggest issues to achieve scalable and high performance optoelectronic applications. Thus far, however, continuous purification method, which is essential for mass production, has rarely been reported. In this study, we developed a new continuous purification process that is suitable to the mass production of high-quality QDs. As-synthesized QDs are driven by electrophoresis in a flow channel and captured by porous electrodes and finally separated from the unreacted impurities. Nuclear magnetic resonance and ultraviolet/visible/near-infrared absorption spectroscopic data clearly showed that the impurities were efficiently removed from QDs with the purification yield, defined as the ratio of the mass of purified QDs to that of QDs in the crude solution, up to 87%. Also, we could successfully predict the purification yield depending on purification conditions with a simple theoretical model. The proposed large-scale purification process could be an important cornerstone for the mass production and industrial use of high-quality QDs.

  2. Stochastic transport models for mixing in variable-density turbulence

    NASA Astrophysics Data System (ADS)

    Bakosi, J.; Ristorcelli, J. R.

    2011-11-01

    In variable-density (VD) turbulent mixing, where very-different- density materials coexist, the density fluctuations can be an order of magnitude larger than their mean. Density fluctuations are non-negligible in the inertia terms of the Navier-Stokes equation which has both quadratic and cubic nonlinearities. Very different mixing rates of different materials give rise to large differential accelerations and some fundamentally new physics that is not seen in constant-density turbulence. In VD flows material mixing is active in a sense far stronger than that applied in the Boussinesq approximation of buoyantly-driven flows: the mass fraction fluctuations are coupled to each other and to the fluid momentum. Statistical modeling of VD mixing requires accounting for basic constraints that are not important in the small-density-fluctuation passive-scalar-mixing approximation: the unit-sum of mass fractions, bounded sample space, and the highly skewed nature of the probability densities become essential. We derive a transport equation for the joint probability of mass fractions, equivalent to a system of stochastic differential equations, that is consistent with VD mixing in multi-component turbulence and consistently reduces to passive scalar mixing in constant-density flows.

  3. Transitioning of power flow in beam models with bends

    NASA Technical Reports Server (NTRS)

    Hambric, Stephen A.

    1990-01-01

    The propagation of power flow through a dynamically loaded beam model with 90 degree bends is investigated using NASTRAN and McPOW. The transitioning of power flow types (axial, torsional, and flexural) is observed throughout the structure. To get accurate calculations of the torsional response of beams using NASTRAN, torsional inertia effects had to be added to the mass matrix calculation section of the program. Also, mass effects were included in the calculation of BAR forces to improve the continuity of power flow between elements. The importance of including all types of power flow in an analysis, rather than only flexural power, is indicated by the example. Trying to interpret power flow results that only consider flexural components in even a moderately complex problem will result in incorrect conclusions concerning the total power flow field.

  4. 40 CFR 63.605 - Monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants § 63.605... the mass flow of phosphorus-bearing feed material to the process. The monitoring system shall have an...

  5. Ultra-fast Escape of a Octopus-inspired Rocket

    NASA Astrophysics Data System (ADS)

    Weymouth, Gabriel; Triantafyllou, Michael

    2013-11-01

    The octopus, squid, and other cephalopods inflate with water and then release a jet to accelerate in the opposite direction. This escape mechanism is particularly interesting in the octopus because they become initially quite bluff, yet this does not hinder them in achieving impressive bursts of speed. We examine this somewhat paradoxical maneuver using a simple deflating spheroid model in both potential and viscous flow. We demonstrate that the dynamic reduction of the width of the body completely changes the flow and forces acting on the escaping rocket in three ways. First, a body which reduces in size can generate an added mass thrust which counteracts the added mass inertia. Second, the motion of the shrinking wall acts similar to suction on a static wall, reducing separation and drag forces in a viscous fluid, but that this effects depends on the rate of size change. Third, using a combination of these two features it is possible to initially load the fluid with kinetic energy when heavy and bluff and then recover that energy when streamlined and light, enabling ultra-fast accelerations. As a notable example, these mechanisms allow a shrinking spheroid rocket in a heavy inviscid fluid to achieve speeds greater than an identical rocket in the vacuum of space. Southampton Marine and Maritime Institute.

  6. Cardiovascular responses of semi-arboreal snakes to chronic, intermittent hypergravity

    NASA Technical Reports Server (NTRS)

    Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.

    1996-01-01

    Cardiovascular functions were studied in semi-arboreal rat snakes (Elaphe obsoleta) following long-term, intermittent exposure to +1.5 Gz (head-to-tail acceleration) on a centrifuge. Snakes were held in a nearly straight position within horizontal plastic tubes during periods of centrifugation. Centrifugal acceleration, therefore, subjected snakes to a linear force gradient with the maximal force being experienced at the tail. Compared to non-centrifuged controls, Gz-acclimated snakes showed greater increases of heart rate during head-up tilt or acceleration, greater sensitivity of arterial pressure to circulating catecholamines, higher blood levels of corticosterone, and higher blood ratios of prostaglandin F 2 alpha/prostaglandin E2. Cardiovascular tolerance to increased gravity during graded Gz acceleration was measured as the maximum (caudal) acceleration force at which carotid arterial blood flow became null. When such tolerances were adjusted for effects of body size and other continuous variables incorporated into an analysis of covariance, the difference between the adjusted mean values of control and acclimated snakes (2.37 and 2.84 Gz, respectively) corresponded closely to the 0.5 G difference between the acclimation G (1.5) and Earth gravity (1.0). As in other vertebrates, cardiovascular tolerance to Gz stress tended to be increased by acclimation, short body length, high arterial pressure, and comparatively large blood volume. Voluntary body movements were important for promoting carotid blood flow at the higher levels of Gz stress.

  7. Ponderomotive Acceleration in Coronal Loops

    NASA Astrophysics Data System (ADS)

    Dahlburg, Russell B.; Laming, J. Martin; Taylor, Brian; Obenschain, Keith

    2017-08-01

    Ponderomotive acceleration has been asserted to be a cause of the First Ionization Potential (FIP) effect, the by now well known enhancement in abundance by a factor of 3-4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a ``byproduct'' of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of a coronal loops with an axial magnetic field from 0.005 Teslas to 0.02 Teslas and lengths from 25000 km to 75000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets which act to heat the loop. As a consequence of coronal magnetic reconnection, small scale, high speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  8. Characterization of vitamin D3 metabolites using continuous-flow fast atom bombardment tandem mass spectrometry and high-performance liquid chromatography.

    PubMed

    Yeung, B; Vouros, P; Reddy, G S

    1993-08-13

    A mass spectrometric method for the detection of vitamin D3 metabolites is described. This method involves the derivatization of the metabolites by cycloaddition with 4-phenyl-1,2,4-triazoline-3,5-dione, followed by their characterization by continuous-flow fast atom bombardment (CF-FAB) tandem mass spectrometry (MS-MS) and high-performance liquid chromatography (HPLC). Using HPLC, this derivatization has been shown to increase the UV detectability of 25-hydroxyvitamin D3 by about 5-fold. The FAB spectra of the adducts are dominated by peaks corresponding to a protonated molecule and a fragment ion derived in part from the loss of the side chain. Multiple reaction monitoring (MRM) of this transition by MS-MS may be utilized for trace level analysis of vitamin D metabolites. Sample introduction by flow injection yields detection limits in the low nanogram to high picogram range, whereas the use of on-line capillary LC has been found to decrease the detection limits to the low picogram level.

  9. Dilution jets in accelerated cross flows. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Lipshitz, A.; Greber, I.

    1984-01-01

    Results of flow visualization experiments and measurements of the temperature field produced by a single jet and a row of dilution jets issued into a reverse flow combustor are presented. The flow in such combustors is typified by transverse and longitudinal acceleration during the passage through its bending section. The flow visualization experiments are designed to examine the separate effects of longitudinal and transverse acceleration on the jet trajectory and spreading rate. A model describing a dense single jet in a lighter accelerating cross flow is developed. The model is based on integral conservation equations, including the pressure terms appropriate to accelerating flows. It uses a modified entrainment correlation obtained from previous experiments of a jet in a cross stream. The flow visualization results are compared with the model calculations in terms of trajectories and spreading rates. Each experiment is typified by a set of three parameters: momentum ratio, density ratio and the densimetric Froude number.

  10. An investigation of two phase flow pressure drops in a reduced acceleration environment

    NASA Astrophysics Data System (ADS)

    Wheeler, Montgomery W.; Best, Frederick R.; Reinarts, Thomas R.

    1993-01-01

    Thermal systems for space applications based on two phase flow have several advantages over single phase systems. Two phase thermal energy management and dynamic power conversion system advantages include the capability of achieving high specific power levels. Before two phase systems for space applications can be designed effectively, knowledge of the flow behavior in a reduced acceleration environment is necessary. To meet these needs, two phase flow experiments were conducted aboard the National Aeronautic and Space Administration's KC-135 using R12 as the working fluid. Annular flow two phase pressure drops were measured through 10.41-mm ID 1.251-m long glass tubing during periods with acceleration levels in the range ±0.05 G. The experiments were conducted with emphasis on achieving data with a high level of accuracy. The reduced acceleration annular flow pressure drops were compred with pressure drops measured in a 1-G environment for similar flow conditions. The reduced acceleration pressure drops were found to be 45% greater than the 1-G pressure drops. In addition, the reduced acceleration annular flow interfacial friction factors were compared with models for vertical up-flow in a 1-G environment. The reduced acceleration interfacial friction factor data was not predicted by the 1-G models.

  11. Theoretical analysis and experimental investigation on performance of the thermal shield of accelerator cryomodules by thermo-siphon cooling of liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Datta, T. S.; Kar, S.; Kumar, M.; Choudhury, A.; Chacko, J.; Antony, J.; Babu, S.; Sahu, S. K.

    2015-12-01

    Five beam line cryomodules with total 27 superconducting Radio Frequency (RF) cavities are installed and commissioned at IUAC to enhance the energy of heavy ion from 15 UD Pelletron. To reduce the heat load at 4.2 K, liquid nitrogen (LN2) cooled intermediate thermal shield is used for all these cryomodules. For three linac cryomodules, concept of forced flow LN2 cooling is used and for superbuncher and rebuncher, thermo-siphon cooling is incorporated. It is noticed that the shield temperature of superbuncher varies from 90 K to 110 K with respect to liquid nitrogen level. The temperature difference can't be explained by using the basic concept of thermo-siphon with the heat load on up flow line. A simple thermo-siphon experimental set up is developed to simulate the thermal shield temperature profile. Mass flow rate of liquid nitrogen is measured with different heat load on up flow line for different liquid levels. It is noticed that small amount of heat load on down flow line have a significant effect on mass flow rate. The present paper will be investigating the data generated from the thermosiphon experimental set up and a theoretical analysis will be presented here to validate the measured temperature profile of the cryomodule shield.

  12. Quantity of dates trumps quality of dates for dense Bayesian radiocarbon sediment chronologies - Gas ion source 14C dating instructed by simultaneous Bayesian accumulation rate modeling

    NASA Astrophysics Data System (ADS)

    Rosenheim, B. E.; Firesinger, D.; Roberts, M. L.; Burton, J. R.; Khan, N.; Moyer, R. P.

    2016-12-01

    Radiocarbon (14C) sediment core chronologies benefit from a high density of dates, even when precision of individual dates is sacrificed. This is demonstrated by a combined approach of rapid 14C analysis of CO2 gas generated from carbonates and organic material coupled with Bayesian statistical modeling. Analysis of 14C is facilitated by the gas ion source on the Continuous Flow Accelerator Mass Spectrometry (CFAMS) system at the Woods Hole Oceanographic Institution's National Ocean Sciences Accelerator Mass Spectrometry facility. This instrument is capable of producing a 14C determination of +/- 100 14C y precision every 4-5 minutes, with limited sample handling (dissolution of carbonates and/or combustion of organic carbon in evacuated containers). Rapid analysis allows over-preparation of samples to include replicates at each depth and/or comparison of different sample types at particular depths in a sediment or peat core. Analysis priority is given to depths that have the least chronologic precision as determined by Bayesian modeling of the chronology of calibrated ages. Use of such a statistical approach to determine the order in which samples are run ensures that the chronology constantly improves so long as material is available for the analysis of chronologic weak points. Ultimately, accuracy of the chronology is determined by the material that is actually being dated, and our combined approach allows testing of different constituents of the organic carbon pool and the carbonate minerals within a core. We will present preliminary results from a deep-sea sediment core abundant in deep-sea foraminifera as well as coastal wetland peat cores to demonstrate statistical improvements in sediment- and peat-core chronologies obtained by increasing the quantity and decreasing the quality of individual dates.

  13. Mass spectrometric real-time monitoring of an enzymatic phosphorylation assay using internal standards and data-handling freeware.

    PubMed

    Krappmann, Michael; de Boer, Arjen R; Kool, Daniël R W; Irth, Hubertus; Letzel, Thomas

    2016-04-30

    Continuous-flow reaction detection systems (monitoring enzymatic reactions with mass spectrometry (MS)) lack quantitative values so far. Therefore, two independent internal standards (IS) are implemented in a way that the online system stability can be observed, quantitative conversion values for substrate and product can be obtained and they can be used as mass calibration standards for high MS accuracy. An application previously developed for the MS detection of peptide phosphorylation by cAMP-dependent protein kinase A (PKA) (De Boer et al., Anal. Bioanal. Chem. 2005, 381, 647-655) was transferred to a continuous-flow reaction detection system. This enzymatic reaction, involving enzyme activation as well as the transfer of a phosphate group from ATP to a peptide substrate, was used to prove the compatibility of a quantitative enzymatic assay in a continuous-flow real-time system (connected to MS). Moreover (using internal standards), the critical parameter reaction temperature (including solution density variations depending on temperature) was studied in the continuous-flow mixing system. Furthermore, two substrates (malantide and kemptide), two enzyme types (catalytic subunit of PKA and complete PKA) and one inhibitor were tested to determine system robustness and long-term availability. Even spraying solutions that contained significant amount of MS contaminants (e.g. the polluted catalytic subunit) resulted in quantifiable MS signal intensities. Subsequent recalculations using the internal standards led to results representing the power of this application. The presented methodology and the data evaluation with available Achroma freeware enable the direct coupling of biochemical assays with quantitative MS detection. Monitoring changes such as temperature, reaction time, inhibition, or compound concentrations can be observed quantitatively and thus enzymatic activity can be calculated. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Methods for extracting aerodynamic accelerations from Orbiter High Resolution Accelerometer Package flight data

    NASA Technical Reports Server (NTRS)

    Thompson, J. M.; Russell, J. W.; Blanchard, R. C.

    1987-01-01

    This report presents a process for extracting the aerodynamic accelerations of the Shuttle Orbiter Vehicle from the High Resolution Accelerometer Package (HiRAP) flight data during reentry. The methods for obtaining low-level aerodynamic accelerations, principally in the rarefied flow regime, are applied to 10 Orbiter flights. The extraction process is presented using data obtained from Space Transportation System Flight 32 (Mission 61-C) as a typical example. This process involves correcting the HiRAP measurements for the effects of temperature bias and instrument offset from the Orbiter center of gravity, and removing acceleration data during times they are affected by thruster firings. The corrected data are then made continuous and smooth and are further enhanced by refining the temperature bias correction and removing effects of the auxiliary power unit actuation. The resulting data are the current best estimate of the Orbiter aerodynamic accelerations during reentry and will be used for further analyses of the Orbiter aerodynamics and the upper atmosphere characteristics.

  15. Flow study in the cross sectional planes of a turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Abdallah, S.; Tabakoff, W.

    1977-01-01

    A numerical study of the nonviscous flow characteristics in the cross-sectional planes of a radial inflow turbine scroll is presented. The velocity potential is used in the formulation to determine the flow velocity in these planes resulting from the continuous mass discharge. The effect of the through flow velocity is simulated by a continuous distribution of source/sink in the cross-section. A special iterative procedure is devised to handle the solution of the resulting Poisson's differential equation with Neumann boundary conditions in a domain with generally curved boundaries. The analysis is used to determine the effects of the radius of curvature, the location of the scroll section and its geometry on the flow characteristics in the turbine scroll.

  16. Electrostatic/magnetic ion acceleration through a slowly diverging magnetic nozzle between a ring anode and an on-axis hollow cathode

    NASA Astrophysics Data System (ADS)

    Sasoh, A.; Mizutani, K.; Iwakawa, A.

    2017-06-01

    Ion acceleration through a slowly diverging magnetic nozzle between a ring anode and a hollow cathode set on the axis of symmetry has been realized. Xenon was supplied as the propellant gas from an annular slit along the inner surface of the ring anode so that it was ionized near the anode, and the applied electric potential was efficiently transformed to an ion kinetic energy. As an electrostatic thruster, within the examined operation conditions, the thrust, F, almost scaled with the propellant mass flow rate; the discharge current, Jd, increased with the discharge voltage, Vd. An important characteristic was that the thrust also exhibited electromagnetic acceleration performance, i.e., the so-called "swirl acceleration," in which F ≅JdB Ra /√{2 }, where B and Ra were a magnetic field and an anode inner radius, respectively. Such a unique thruster performance combining both electrostatic and electromagnetic accelerations is expected to be useful as another option for in-space electric propulsion in its broad functional diversity.

  17. Numerical Simulations of Multiphase Winds and Fountains from Star-forming Galactic Disks. I. Solar Neighborhood TIGRESS Model

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Ostriker, Eve C.

    2018-02-01

    Gas blown away from galactic disks by supernova (SN) feedback plays a key role in galaxy evolution. We investigate outflows utilizing the solar neighborhood model of our high-resolution, local galactic disk simulation suite, TIGRESS. In our numerical implementation, star formation and SN feedback are self-consistently treated and well resolved in the multiphase, turbulent, magnetized interstellar medium. Bursts of star formation produce spatially and temporally correlated SNe that drive strong outflows, consisting of hot (T> 5× {10}5 {{K}}) winds and warm (5050 {{K}}< T< 2× {10}4 {{K}}) fountains. The hot gas at distance d> 1 {kpc} from the midplane has mass and energy fluxes nearly constant with d. The hot flow escapes our local Cartesian box barely affected by gravity, and is expected to accelerate up to terminal velocity of {v}{wind}∼ 350{--}500 {km} {{{s}}}-1. The mean mass and energy loading factors of the hot wind are 0.1 and 0.02, respectively. For warm gas, the mean outward mass flux through d=1 {kpc} is comparable to the mean star formation rate, but only a small fraction of this gas is at velocity > 50 {km} {{{s}}}-1. Thus, the warm outflows eventually fall back as inflows. The warm fountain flows are created by expanding hot superbubbles at d< 1 {kpc}; at larger d neither ram pressure acceleration nor cooling transfers significant momentum or energy flux from the hot wind to the warm outflow. The velocity distribution at launching near d∼ 1 {kpc} is a better representation of warm outflows than a single mass loading factor, potentially enabling development of subgrid models for warm galactic winds in arbitrary large-scale galactic potentials.

  18. Effect of fjord geometry on tidewater glacier stability

    NASA Astrophysics Data System (ADS)

    Åkesson, Henning; Nisancioglu, Kerim H.; Nick, Faezeh M.

    2016-04-01

    Many marine-terminating glaciers have thinned, accelerated and retreated during the last two decades, broadly consistent with warmer atmospheric and oceanic conditions. However, these patterns involve considerable spatial and temporal variability, with diverse glacier behavior within the same regions. Similarly, reconstructions of marine-terminating glaciers indicate highly asynchronous retreat histories. While it is well known that retrograde slopes can cause marine ice sheet instabilities, the effect of lateral drag and fjord width has received less attention. Here, we test the hypothesis that marine outlet glacier stability is largely controlled by fjord width, and to a less extent by regional climate forcing. We employ a dynamic flowline model on idealized glacier geometries (representative of different outlet glaciers) to investigate geometric controls on decadal and longer times scales. The model accounts for driving and resistive stresses of glacier flow as well as along-flow stress transfer. It has a physical treatment of iceberg calving and a time-adaptive grid allowing for continuous tracking of grounding-line migration. We apply changes in atmospheric and oceanic forcing and show how wide and narrow fjord sections foster glacier (in)stabilities. We also evaluate the effect of including a surface mass balance - elevation feedback in such a setting. Finally, the relevance of these results to past and future marine-terminating glacier stability is discussed.

  19. Development of a wet vapor homogeneous liquid metal MHD power system

    NASA Astrophysics Data System (ADS)

    1989-04-01

    During the period covered by this report (October 1988 to March 1989), the following work was done: the mixing stream condensation process was analyzed, and a theoretical model for simulating this process was modified. A parametric study is being conducted at the present time; the separation processes were analyzed; and the experimental system was specified and its design is at present in an advanced stage. The mixing stream condensation process was analyzed. For the parameters defined in the SOW of this project the process was found to be a mist flow direct contact condensation, where the hot gas mixture consisting of inert gas and vapor is the continuous phase, and the subcooled liquid on which the vapor is condensed if the droplets dispersed phase. Two possibilities of creating the mist flow were considered. The first, injecting the cold Liquid Metal (LM) into the Mixing Streams Condenser (MSC) entrance as a jet and breaking it into LM fragments and the fragments into droplets by momentum transfer breakup mechanism. The second, atomizing the cooled LM stream into little droplets (approximately 100 micrometers in diameter) and accelerating them by the gas. The second possibility was preferred due to its much higher heat and mass transfer surface and coefficients relative to the first one.

  20. Internal loop photo-biodegradation reactor used for accelerated quinoline degradation and mineralization.

    PubMed

    Chang, Ling; Zhang, Yongming; Gan, Lu; Xu, Hua; Yan, Ning; Liu, Rui; Rittmann, Bruce E

    2014-07-01

    Biofilm biodegradation was coupled with ultra-violet photolysis using the internal loop photobiodegradation reactor for degradation of quinoline. Three protocols-photolysis alone (P), biodegradation alone (B), and intimately coupled photolysis and biodegradation (P&B)-were used for degradation of quinoline in batch and continuous-flow experiments. For a 1,000 mg/L initial quinoline concentration, the volumetric removal rate for quinoline was 38 % higher with P&B than with B in batch experiments, and the P&B kinetics were the sum of kinetics from the P and B experiments. Continuous-flow experiments with an influent quinoline concentration of 1,000 mg/L also gave significantly greater quinoline removal in P&B, and the quinoline-removal kinetics for P&B were approximately equal to the sum of the removal kinetics for P and B. P&B similarly increased the rate and extent of quinoline mineralization, for which the kinetics for P&B were nearly equal to the sum of kinetics for P and B. These findings support that the rate-limiting step for mineralization was transformation of quinoline, which was accelerated by the simultaneous action of photolysis and biodegradation.

  1. Orbit determination and prediction of GEO satellite of BeiDou during repositioning maneuver

    NASA Astrophysics Data System (ADS)

    Cao, Fen; Yang, XuHai; Li, ZhiGang; Sun, BaoQi; Kong, Yao; Chen, Liang; Feng, Chugang

    2014-11-01

    In order to establish a continuous GEO satellite orbit during repositioning maneuvers, a suitable maneuver force model has been established associated with an optimal orbit determination method and strategy. A continuous increasing acceleration is established by constructing a constant force that is equivalent to the pulse force, with the mass of the satellite decreasing throughout maneuver. This acceleration can be added to other accelerations, such as solar radiation, to obtain the continuous acceleration of the satellite. The orbit determination method and strategy are illuminated, with subsequent assessment of the orbit being determined and predicted accordingly. The orbit of the GEO satellite during repositioning maneuver can be determined and predicted by using C-Band pseudo-range observations of the BeiDou GEO satellite with COSPAR ID 2010-001A in 2011 and 2012. The results indicate that observations before maneuver do affect orbit determination and prediction, and should therefore be selected appropriately. A more precise orbit and prediction can be obtained compared to common short arc methods when observations starting 1 day prior the maneuver and 2 h after the maneuver are adopted in POD (Precise Orbit Determination). The achieved URE (User Range Error) under non-consideration of satellite clock errors is better than 2 m within the first 2 h after maneuver, and less than 3 m for further 2 h of orbit prediction.

  2. Mass-dependent channel electron multiplier operation. [for ion detection

    NASA Technical Reports Server (NTRS)

    Fields, S. A.; Burch, J. L.; Oran, W. A.

    1977-01-01

    The absolute counting efficiency and pulse height distributions of a continuous-channel electron multiplier used in the detection of hydrogen, argon and xenon ions are assessed. The assessment technique, which involves the post-acceleration of 8-eV ion beams to energies from 100 to 4000 eV, provides information on counting efficiency versus post-acceleration voltage characteristics over a wide range of ion mass. The charge pulse height distributions for H2 (+), A (+) and Xe (+) were measured by operating the experimental apparatus in a marginally gain-saturated mode. It was found that gain saturation occurs at lower channel multiplier operating voltages for light ions such as H2 (+) than for the heavier ions A (+) and Xe (+), suggesting that the technique may be used to discriminate between these two classes of ions in electrostatic analyzers.

  3. Unusual behavior in the reactivity of 5-substituted-1H-tetrazoles in a resistively heated microreactor

    PubMed Central

    Gutmann, Bernhard; Glasnov, Toma N; Razzaq, Tahseen; Goessler, Walter; Roberge, Dominique M

    2011-01-01

    Summary The decomposition of 5-benzhydryl-1H-tetrazole in an N-methyl-2-pyrrolidone/acetic acid/water mixture was investigated under a variety of high-temperature reaction conditions. Employing a sealed Pyrex glass vial and batch microwave conditions at 240 °C, the tetrazole is comparatively stable and complete decomposition to diphenylmethane requires more than 8 h. Similar kinetic data were obtained in conductively heated flow devices with either stainless steel or Hastelloy coils in the same temperature region. In contrast, in a flow instrument that utilizes direct electric resistance heating of the reactor coil, tetrazole decomposition was dramatically accelerated with rate constants increased by two orders of magnitude. When 5-benzhydryl-1H-tetrazole was exposed to 220 °C in this type of flow reactor, decomposition to diphenylmethane was complete within 10 min. The mechanism and kinetic parameters of tetrazole decomposition under a variety of reaction conditions were investigated. A number of possible explanations for these highly unusual rate accelerations are presented. In addition, general aspects of reactor degradation, corrosion and contamination effects of importance to continuous flow chemistry are discussed. PMID:21647324

  4. Accelerated ions from pulsed-power-driven fast plasma flow in perpendicular magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takezaki, Taichi, E-mail: ttakezaki@stn.nagaokaut.ac.jp; Takahashi, Kazumasa; Sasaki, Toru, E-mail: sasakit@vos.nagaokaut.ac.jp

    2016-06-15

    To understand the interaction between fast plasma flow and perpendicular magnetic field, we have investigated the behavior of a one-dimensional fast plasma flow in a perpendicular magnetic field by a laboratory-scale experiment using a pulsed-power discharge. The velocity of the plasma flow generated by a tapered cone plasma focus device is about 30 km/s, and the magnetic Reynolds number is estimated to be 8.8. After flow through the perpendicular magnetic field, the accelerated ions are measured by an ion collector. To clarify the behavior of the accelerated ions and the electromagnetic fields, numerical simulations based on an electromagnetic hybrid particle-in-cell methodmore » have been carried out. The results show that the behavior of the accelerated ions corresponds qualitatively to the experimental results. Faster ions in the plasma flow are accelerated by the induced electromagnetic fields modulated with the plasma flow.« less

  5. Debris flows: behavior and hazard assessment

    USGS Publications Warehouse

    Iverson, Richard M.

    2014-01-01

    Debris flows are water-laden masses of soil and fragmented rock that rush down mountainsides, funnel into stream channels, entrain objects in their paths, and form lobate deposits when they spill onto valley floors. Because they have volumetric sediment concentrations that exceed 40 percent, maximum speeds that surpass 10 m/s, and sizes that can range up to ~109 m3, debris flows can denude slopes, bury floodplains, and devastate people and property. Computational models can accurately represent the physics of debris-flow initiation, motion and deposition by simulating evolution of flow mass and momentum while accounting for interactions of debris' solid and fluid constituents. The use of physically based models for hazard forecasting can be limited by imprecise knowledge of initial and boundary conditions and material properties, however. Therefore, empirical methods continue to play an important role in debris-flow hazard assessment.

  6. Exact and Approximate Solutions for Transient Squeezing Flow

    NASA Astrophysics Data System (ADS)

    Lang, Ji; Santhanam, Sridhar; Wu, Qianhong

    2017-11-01

    In this paper, we report two novel theoretical approaches to examine a fast-developing flow in a thin fluid gap, which is widely observed in industrial applications and biological systems. The problem is featured by a very small Reynolds number and Strouhal number, making the fluid convective acceleration is negligible, while its local acceleration is not. We have developed an exact solution for this problem which shows that the flow starts with an inviscid limit when the viscous effect has no time to appear, and is followed by a subsequent developing flow, in which the viscous effect continues to penetrate into the entire fluid gap. An approximate solution is also developed using a boundary layer integral method. This solution precisely captures the general behavior of the transient fluid flow process, and agrees very well with the exact solution. We also performed numerical simulation using Ansys-CFX. Excellent agreement between the analytical and the numerical solutions is obtained, indicating the validity of the analytical approaches. The study presented herein fills the gap in the literature, and will have a broad impact in industrial and biomedical applications. This work is supported by National Science Foundation CBET Fluid Dynamics Program under Award #1511096, and supported by the Seed Grant from The Villanova Center for the Advancement of Sustainability in Engineering (VCASE).

  7. Cardiovascular function during sustained +G/z/ stress

    NASA Technical Reports Server (NTRS)

    Erickson, H. H.; Sandler, H.; Stone, H. L.

    1976-01-01

    The development of aerospace systems capable of very high levels of positive vertical accelerators stress has created a need for a better understanding of the cardiovascular responses to acceleration. Using a canine model, the heart and cardiovascular system were instrumented to continuously measure coronary blood flow, cardiac output, left ventricular and aortic root pressure, and oxygen saturation in the aorta, coronary sinus, and right ventricle. The animals were exposed to acceleration profiles up to +6 G, 120 s at peak G; a seatback angle of 45 deg was simulated in some experiments. Radiopaque contrast medium was injected to visualize the left ventricular chamber, coronary vasculature, aorta, and branches of the aorta. The results suggest mechanisms responsible for arrhythmias which may occur, and subendocardial hemorrhage which has been reported in other animals.

  8. Highlights of the high-temperature falling particle receiver project: 2012 - 2016

    NASA Astrophysics Data System (ADS)

    Ho, C. K.; Christian, J.; Yellowhair, J.; Jeter, S.; Golob, M.; Nguyen, C.; Repole, K.; Abdel-Khalik, S.; Siegel, N.; Al-Ansary, H.; El-Leathy, A.; Gobereit, B.

    2017-06-01

    A 1 MWt continuously recirculating falling particle receiver has been demonstrated at Sandia National Laboratories. Free-fall and obstructed-flow receiver designs were tested with particle mass flow rates of ˜1 - 7 kg/s and average irradiances up to 1,000 suns. Average particle outlet temperatures exceeded 700 °C for the free-fall tests and reached nearly 800 °C for the obstructed-flow tests, with peak particle temperatures exceeding 900 °C. High particle heating rates of ˜50 to 200 °C per meter of illuminated drop length were achieved for the free-fall tests with mass flow rates ranging from 1 - 7 kg/s and for average irradiances up to ˜ 700 kW/m2. Higher temperatures were achieved at the lower particle mass flow rates due to less shading. The obstructed-flow design yielded particle heating rates over 300 °C per meter of illuminated drop length for mass flow rates of 1 - 3 kg/s for irradiances up to ˜1,000 kW/m2. The thermal efficiency was determined to be ˜60 - 70% for the free-falling particle tests and up to ˜80% for the obstructed-flow tests. Challenges encountered during the tests include particle attrition and particle loss through the aperture, reduced particle mass flow rates at high temperatures due to slot aperture narrowing and increased friction, and deterioration of the obstructed-flow structures due to wear and oxidation. Computational models were validated using the test data and will be used in future studies to design receiver configurations that can increase the thermal efficiency.

  9. K-t GRAPPA-accelerated 4D flow MRI of liver hemodynamics: influence of different acceleration factors on qualitative and quantitative assessment of blood flow.

    PubMed

    Stankovic, Zoran; Fink, Jury; Collins, Jeremy D; Semaan, Edouard; Russe, Maximilian F; Carr, James C; Markl, Michael; Langer, Mathias; Jung, Bernd

    2015-04-01

    We sought to evaluate the feasibility of k-t parallel imaging for accelerated 4D flow MRI in the hepatic vascular system by investigating the impact of different acceleration factors. k-t GRAPPA accelerated 4D flow MRI of the liver vasculature was evaluated in 16 healthy volunteers at 3T with acceleration factors R = 3, R = 5, and R = 8 (2.0 × 2.5 × 2.4 mm(3), TR = 82 ms), and R = 5 (TR = 41 ms); GRAPPA R = 2 was used as the reference standard. Qualitative flow analysis included grading of 3D streamlines and time-resolved particle traces. Quantitative evaluation assessed velocities, net flow, and wall shear stress (WSS). Significant scan time savings were realized for all acceleration factors compared to standard GRAPPA R = 2 (21-71 %) (p < 0.001). Quantification of velocities and net flow offered similar results between k-t GRAPPA R = 3 and R = 5 compared to standard GRAPPA R = 2. Significantly increased leakage artifacts and noise were seen between standard GRAPPA R = 2 and k-t GRAPPA R = 8 (p < 0.001) with significant underestimation of peak velocities and WSS of up to 31 % in the hepatic arterial system (p <0.05). WSS was significantly underestimated up to 13 % in all vessels of the portal venous system for k-t GRAPPA R = 5, while significantly higher values were observed for the same acceleration with higher temporal resolution in two veins (p < 0.05). k-t acceleration of 4D flow MRI is feasible for liver hemodynamic assessment with acceleration factors R = 3 and R = 5 resulting in a scan time reduction of at least 40 % with similar quantitation of liver hemodynamics compared with GRAPPA R = 2.

  10. Optimal electric potential profile in a collisional magnetized thruster

    NASA Astrophysics Data System (ADS)

    Fruchtman, Amnon; Makrinich, Gennady

    2016-10-01

    A major figure of merit in propulsion in general and in electric propulsion in particular is the thrust per unit of deposited power, the ratio of thrust over power. We have recently demonstrated experimentally and theoretically that for a fixed deposited power in the ions, the momentum delivered by the electric force is larger if the accelerated ions collide with neutrals during the acceleration. As expected, the higher thrust for given power is achieved for a collisional plasma at the expense of a lower thrust per unit mass flow rate. Operation in the collisional regime can be advantageous for certain space missions. We analyze a Hall thruster configuration in which the flow is only weakly ionized but there are frequent ion-neutral collisions. With a variational method we seek an electric potential profile that maximizes thrust over power. We then examine what radial magnetic field profile should determine such a potential profile. Supported by the Israel Science Foundation Grant 765/11.

  11. Multiple-Point Mass Flux Measurement System Using Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.; Clem, Michelle M.

    2009-01-01

    A multiple-point Rayleigh scattering diagnostic is being developed to provide mass flux measurements in gas flows. Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous density, temperature, and velocity measurements. Rayleigh scattered light from a focused 18 Watt continuous-wave laser beam is directly imaged through a solid Fabry-Perot etalon onto a CCD detector which permits spectral analysis of the light. The spatial resolution of the measurements is governed by the locations of interference fringes, which can be changed by altering the etalon characteristics. A prototype system has been used to acquire data in a Mach 0.56 flow to demonstrate feasibility of using this system to provide mass flux measurements. Estimates of measurement uncertainty and recommendations for system improvements are presented

  12. Gas Flows in Rocket Motors. Volume 2. Appendix C. Time Iterative Solution of Viscous Supersonic Flow

    DTIC Science & Technology

    1989-08-01

    by b!ock number) FIELD GROUP SUB- GROUP nozzle analysis, Navier-Stokes, turbulent flow, equilibrium S 20 04 chemistry 19. ABSTRACT (Continue on reverse... quasi -conservative formulations lead to unacrepilably large mass conservation errors. Along with the investigations of Navier-Stkes algorithins...Characteristics Splitting ................................... 125 4.2.3 Non -Iterative PNS Procedure ............................... 125 4.2.4 Comparisons of

  13. Isotope ratio mass spectrometry in nutrition research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luke, A.H.

    Many of the biochemical pathways and processes that form the foundation of modern nutrition research was elucidated using stable isotopes as physiological tracers. Since the discovery of stable isotopes, improvements and innovations in mass spectrometry and chromatography have led to greatly expanded applications. This research project was designed to evaluate gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) as a tool for isotopic tracer studies and to delineate the operational parameters for the analysis of {sup 13}C-labeled cholesterol, leucine and {alpha}-ketoisocaproate. The same isotope ratio mass spectrometer was then used as the base instrument for the ratio mass spectrometer was then usedmore » as the base instrument for the development of two additional inlet systems: a continuous-flow inlet for the analyses of {sup 13}C and {sup 18}O as CO{sub 2} and a filament inlet for on-line combustion and isotopic analysis of non-volatile organic compounds. Each of these three inlets was evaluated and their utility in nutrition research illustrated. GC/C/IRMS was used to analyze cholesterol, leucine and {alpha}-ketoisocaproate with good accuracy, precision and little isotopic memory. For all three compounds the detection limits achieved well surpassed currently used technologies. For compounds that can be well separated by GC, GC/C/IRMS is a valuable analytical tool. The continuous-flow inlet provided good accuracy and precision for measurements of {sup 13}CO{sub 2} from breath tests and {sup 18}O as CO{sub 2} from total energy expenditure tests. Most importantly, the continuous-flow inlet increased sample throughput by at least a factor of three over conventional analytical techniques. The filament inlet provided accurate and precise {sup 13}C ratio measurements of both natural abundance and enriched standards of non-volatile organic compounds of physiological interest.« less

  14. Performance of Thermal Mass Flow Meters in a Variable Gravitational Environment

    NASA Technical Reports Server (NTRS)

    Brooker, John E.; Ruff, Gary A.

    2004-01-01

    The performance of five thermal mass flow meters, MKS Instruments 179A and 258C, Unit Instruments UFM-8100, Sierra Instruments 830L, and Hastings Instruments HFM-200, were tested on the KC-135 Reduced Gravity Aircraft in orthogonal, coparallel, and counterparallel orientations relative to gravity. Data was taken throughout the parabolic trajectory where the g-level varied from 0.01 to 1.8 times normal gravity. Each meter was calibrated in normal gravity in the orthogonal position prior to flight followed by ground testing at seven different flow conditions to establish a baseline operation. During the tests, the actual flow rate was measured independently using choked-flow orifices. Gravitational acceleration and attitude had a unique effect on the performance of each meter. All meters operated within acceptable limits at all gravity levels in the calibrated orthogonal position. However, when operated in other orientations, the deviations from the reference flow became substantial for several of the flow meters. Data analysis indicated that the greatest source of error was the effect of orientation, followed by the gravity level. This work emphasized that when operating thermal flow meters in a variable gravity environment, it is critical to orient the meter in the same direction relative to gravity in which it was calibrated. Unfortunately, there was no test in normal gravity that could predict the performance of a meter in reduced gravity. When operating in reduced gravity, all meters indicated within 5 percent of the full scale reading at all flow conditions and orientations.

  15. Drift mode accelerometry for spaceborne gravity measurements

    NASA Astrophysics Data System (ADS)

    Conklin, John W.

    2015-11-01

    A drift mode accelerometer is a precision instrument for spacecraft that overcomes much of the acceleration noise and readout dynamic range limitations of traditional electrostatic accelerometers. It has the potential of achieving acceleration noise performance similar to that of drag-free systems over a restricted frequency band without the need for external drag-free control or continuous spacecraft propulsion. Like traditional accelerometers, the drift mode accelerometer contains a high-density test mass surrounded by an electrode housing, which can control and sense all six degrees of freedom of the test mass. Unlike traditional accelerometers, the suspension system is operated with a low duty cycle so that the limiting suspension force noise only acts over brief, known time intervals, which can be neglected in the data analysis. The readout is performed using a laser interferometer which is immune to the dynamic range limitations of even the best voltage references typically used to determine the inertial acceleration of electrostatic accelerometers. The drift mode accelerometer is a novel offshoot of the like-named operational mode of the LISA Pathfinder spacecraft, in which its test mass suspension system is cycled on and off to estimate the acceleration noise associated with the front-end electronics. This paper presents the concept of a drift mode accelerometer, describes the operation of such a device, develops models for its performance with respect to non-drag-free satellite geodesy and gravitational wave missions, and discusses plans for testing the performance of a prototype sensor in the laboratory using torsion pendula.

  16. Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003-2013

    NASA Astrophysics Data System (ADS)

    Seo, Ki-Weon; Wilson, Clark R.; Scambos, Ted; Kim, Baek-Min; Waliser, Duane E.; Tian, Baijun; Kim, Byeong-Hoon; Eom, Jooyoung

    2015-05-01

    Recent observations from satellite gravimetry (the Gravity Recovery and Climate Experiment (GRACE) mission) suggest an acceleration of ice mass loss from the Antarctic Ice Sheet (AIS). The contribution of surface mass balance changes (due to variable precipitation) is compared with GRACE-derived mass loss acceleration by assessing the estimated contribution of snow mass from meteorological reanalysis data. We find that over much of the continent, the acceleration can be explained by precipitation anomalies. However, on the Antarctic Peninsula and other parts of West Antarctica, mass changes are not explained by precipitation and are likely associated with ice discharge rate increases. The total apparent GRACE acceleration over all of the AIS between 2003 and 2013 is -13.6 ± 7.2 Gt/yr2. Of this total, we find that the surface mass balance component is -8.2 ± 2.0 Gt/yr2. However, the GRACE estimate appears to contain errors arising from the atmospheric pressure fields used to remove air mass effects. The estimated acceleration error from this effect is about 9.8 ± 5.8 Gt/yr2. Correcting for this yields an ice discharge acceleration of -15.1 ± 6.5 Gt/yr2.

  17. Surface Mass Balance Contributions to Acceleration of Antarctic Ice Mass Loss during 2003- 2013

    NASA Astrophysics Data System (ADS)

    Seo, K. W.; Wilson, C. R.; Scambos, T. A.; Kim, B. M.; Waliser, D. E.; Tian, B.; Kim, B.; Eom, J.

    2015-12-01

    Recent observations from satellite gravimetry (the GRACE mission) suggest an acceleration of ice mass loss from the Antarctic Ice Sheet (AIS). The contribution of surface mass balance changes (due to variable precipitation) is compared with GRACE-derived mass loss acceleration by assessing the estimated contribution of snow mass from meteorological reanalysis data. We find that over much of the continent, the acceleration can be explained by precipitation anomalies. However, on the Antarctic Peninsula and other parts of West Antarctica mass changes are not explained by precipitation and are likely associated with ice discharge rate increases. The total apparent GRACE acceleration over all of the AIS between 2003 and 2013 is -13.6±7.2 GTon/yr2. Of this total, we find that the surface mass balance component is -8.2±2.0 GTon/yr2. However, the GRACE estimate appears to contain errors arising from the atmospheric pressure fields used to remove air mass effects. The estimated acceleration error from this effect is about 9.8±5.8 GTon/yr2. Correcting for this yields an ice discharge acceleration of -15.1±6.5 GTon/yr2.

  18. Analysis on the Upwelling of the Anoxic Water Mass in Inner Tokyo Bay

    NASA Astrophysics Data System (ADS)

    Kitahara, Kouichi; Wada, Akira; Kawanaga, Mitsuhito; Fukuoka, Ippei; Takano, Tairyu

    In the period of strong density stratification from early summer through early fall, the supply of oxygen from the sea surface to the deeper water is cut off. At the same time, organic matter decomposes near the ocean bottom, so that the anoxic water mass forms. In inner Tokyo Bay, when a northeasterly wind(directed from the inner bay toward the mouth of the bay)blows, the anoxic water mass upwells(an “Aoshio” occurs). In some cases fishes and shellfish die along the coast. Based on the report of results of continuous observations of water temperature, salinity and dissolved oxygen content presented by Fukuoka et al, 2005, here we have used an improved fluid flow model to carry out 3-dimensional calculations of the water level, water temperature, salinity and flow distributions. The computational results have reproduced the observational results well. The calculations showed that upwelling of the anoxic water mass that forms during the stratified period is not only affected by the continuously blowing northeasterly wind, but also by a continuous southwesterly wind that blew several days previously. Surface water blown against the coast by this continuous southwesterly wind is pushed downward; the calculations reproduced the process by which the rising force of this previously downwelled surface water also affects the phenomenon of anoxia. Furthermore, we presented the results of time dependent analysis of quantities relevant to water quality, including dissolved oxygen, which is closely related to the Aoshio, using the flow and diffusion model and a primary ecological model during the stratified ocean period, the sinking period and the upwelling period. We have compared the computed results to the results of continuous observations of dissolved oxygen during occurrence of an Aoshio in 1992 at observation point D-2, and confirmed that this model is an appropriate one to describe this phenomenon.

  19. Ion diagnostics of a discharge in crossed electric and magnetic fields for electric propulsion

    NASA Astrophysics Data System (ADS)

    Mazouffre, S.; Kulaev, V.; Luna, J. Pérez

    2009-08-01

    The velocity distribution function (VDF) of metastable Xe+ ions was measured along the channel centerline of the high-power PPS®X000 Hall effect thruster by means of laser induced fluorescence (LIF) spectroscopy at 834.72 nm for various discharge voltages (300-700 V) and propellant mass flow rates (6-15 mg s-1). The development of the on-axis profile of the velocity dispersion reveals the interrelation between ionization and acceleration layers. The ion velocity profiles are in accordance with outcomes of a hybrid numerical model in which the electron mobility is assessed from particle-in-cell simulations. The axial distribution of the effective electric field is inferred from the mean ion velocity profile, despite the parasitic effect due to ions created in the acceleration region. Most of the acceleration process takes place outside the thruster channel. The electric field augments and it moves upstream when the applied voltage is ramped up. The impact of the xenon mass flow rates is found to depend upon the voltage. A novel approach based on the moments of the experimental VDFs in combination with the Boltzmann's equation is introduced in order to determine the real electric field distribution. The method also provides the ionization frequency profile. The LIF diagnostics reveals the existence at the end of the acceleration region of fast ions of which the kinetic energy is above the supplied energy. The fraction of these supra-sped up ions grows when the voltage increases. The ion VDFs were also recorded in the plasma plume far field by way of a retarding potential analyzer (RPA). The shape of the RPA traces as well as their evolution with operating conditions are in agreement with trends observed by means of LIF spectroscopy. Finally, physical mechanisms at the origin of supra-sped up ions are discussed in light of numerical simulation outcomes and a set of new experimental results.

  20. Long-term dynamics of a tidewater outlet glacier in West Greenland and its relation to external forcing

    NASA Astrophysics Data System (ADS)

    Vieli, Andreas; Luethi, Martin; Moreau, Luc; Reisser, Moritz; Ian, Joughin

    2015-04-01

    Dynamic changes of ocean-terminating outlet glaciers such as terminus retreat and flow acceleration are responsible for about half of the current mass loss of the Greenland ice sheet. Although these changes seem related to the general warming in recent decades, the detailed link between external forcing from the atmosphere and/or ocean and glacier response is not well understood. Further, existing observations of tidewater outlet glacier change also show strong temporal fluctuations and are mostly limited to the last two decades of satellite observations. It is therefore difficult to derive and interpret long-term trends in outlet glacier change which is relevant in the context of century scale predictions. Here we present and analyse a detailed long-term record of flow and geometry evolution of Eqi Sermia, a ocean terminating outlet glacier in West Greenland. This record starts in 1912 and has, due to its proximity to the main access route for early expeditions to the ice sheet, a decadal and smaller resolution. This historic record is supplemented by data from satellites and ground based radar interferometry for deriving front positions and flow velocities in the two recent decades. The front and flow speed of Eqi Sermia was more or less stable between 1912 with aslow retreat phase between 1920 to the 1960, followed by a slight readvance in the 1980s. In 2007 the terminus started to retreat very rapidly, retreated 3 km since and in a step wise fashion and almost quadrupled its flow speed at the terminus. A comparison with surface mass balance and temperature records suggests a close relation of the long-term evolution of Egi Sermia to atmospheric forcing rather than oceanic, perhaps reflecting the relatively shallow fjord depths. In contrast, the recent rapid retreat and acceleration may be due to a changing regime in the calving process and geometric effects.

  1. Continuous monitoring of blood volume changes in humans

    NASA Technical Reports Server (NTRS)

    Hinghofer-Szalkay, H.; Greenleaf, J. E.

    1987-01-01

    Use of on-line high-precision mass densitometry for the continuous monitoring of blood volume changes in humans was demonstrated by recording short-term blood volume alterations produced by changes in body position. The mass density of antecubital venous blood was measured continuously for 80 min per session with 0.1 g/l precision at a flow rate of 1.5 ml/min. Additional discrete plasma density and hematocrit measurements gave linear relations between all possible combinations of blood density, plasma density, and hematocrit. Transient filtration phenomena were revealed that are not amenable to discontinuous measurements.

  2. Flow accelerated corrosion of carbon steel feeder pipes from pressurized heavy water reactors

    NASA Astrophysics Data System (ADS)

    Singh, J. L.; Kumar, Umesh; Kumawat, N.; Kumar, Sunil; Kain, Vivekanand; Anantharaman, S.; Sinha, A. K.

    2012-10-01

    Detailed investigation of a number of feeder pipes received from Rajasthan Atomic Power Station Unit 2 (RAPS#2) after en-masse feeder pipe replacement after 15.67 Effective Full Power Years (EFPYs) was carried out. Investigations included ultrasonic thickness measurement by ultrasonic testing, optical microscopy, scanning electron microscopy, chemical analysis and X-ray Diffraction (XRD). Results showed that maximum thickness reduction of the feeder had occurred downstream and close to the weld in 32 NB (1.25″/32.75 mm ID) elbows. Rate of Flow Accelerated Corrosion (FAC) was measured to be higher in the lower diameter feeder pipes due to high flow velocity and turbulence. Weld regions had thinned to a lower extent than the parent material due to higher chromium content in the weld. A weld protrusion has been shown to add to the thinning due to FAC and lead to faster thinning rate at localized regions. Surface morphology of inner surface of feeder had shown different size scallop pattern over the weld and parent material. Inter-granular cracks were also observed along the weld fusion line and in the parent material in 32 NB outlet feeder elbow.

  3. Antarctic ice sheet mass loss estimates using Modified Antarctic Mapping Mission surface flow observations

    NASA Astrophysics Data System (ADS)

    Ren, Diandong; Leslie, Lance M.; Lynch, Mervyn J.

    2013-03-01

    The long residence time of ice and the relatively gentle slopes of the Antarctica Ice Sheet make basal sliding a unique positive feedback mechanism in enhancing ice discharge along preferred routes. The highly organized ice stream channels extending to the interior from the lower reach of the outlets are a manifestation of the role of basal granular material in enhancing the ice flow. In this study, constraining the model-simulated year 2000 ice flow fields with surface velocities obtained from InSAR measurements permits retrieval of the basal sliding parameters. Forward integrations of the ice model driven by atmospheric and oceanic parameters from coupled general circulation models under different emission scenarios provide a range of estimates of total ice mass loss during the 21st century. The total mass loss rate has a small intermodel and interscenario spread, rising from approximately -160 km3/yr at present to approximately -220 km3/yr by 2100. The accelerated mass loss rate of the Antarctica Ice Sheet in a warming climate is due primarily to a dynamic response in the form of an increase in ice flow speed. Ice shelves contribute to this feedback through a reduced buttressing effect due to more frequent systematic, tabular calving events. For example, by 2100 the Ross Ice Shelf is projected to shed 40 km3 during each systematic tabular calving. After the frontal section's attrition, the remaining shelf will rebound. Consequently, the submerged cross-sectional area will reduce, as will the buttressing stress. Longitudinal differential warming of ocean temperature contributes to tabular calving. Because of the prevalence of fringe ice shelves, oceanic effects likely will play a very important role in the future mass balance of the Antarctica Ice Sheet, under a possible future warming climate.

  4. Dark energy in the environments of the Local Group, the M 81 group, and the CenA group: the normalized Hubble diagram

    NASA Astrophysics Data System (ADS)

    Teerikorpi, P.; Chernin, A. D.; Karachentsev, I. D.; Valtonen, M. J.

    2008-05-01

    Context: Type Ia supernova observations on scales of thousands of Mpc show that the global expansion of the universe is accelerated by antigravity produced by the enigmatic dark energy contributing 3/4 of the total energy of the universe. Aims: Does antigravity act on small scales as well as large? As a continuation of our efforts to answer this crucial question we combine high accuracy observations of the galaxy flows around the Local Group and the nearby M 81 and CenA groups to observe the effect of the dark energy density on local scales of a few Mpc. Methods: We use an analytical model to describe non-uniform static space-time regions around galaxy groups. In this context it is useful to present the Hubble flow in a normalized Hubble diagram V/Hv Rv vs. r/R_v, where the vacuum Hubble constant Hv depends only on the cosmological vacuum density and the zero-gravity distance Rv depends on the vacuum density and on the mass of the galaxy group. We have prepared the normalized Hubble diagrams for the LG, M 81 and CenA group environments for different values of the assumed vacuum energy density, using a total of about 150 galaxies, for almost all of which the distances have been measured by the HST. Results: The normalized Hubble diagram, where we identify dynamically different regions, is in agreement with the standard vacuum density (Ωv = 0.77~h_70-2), the out-flow of galaxies clearly being controlled by the minimum energy condition imposed by the central mass plus the vacuum density. A high vacuum density 1.6~h_70-2 violates the minimum energy limit, while a low density 0.1~h_70-2 leaves the start of the Hubble flow around 1-2 Mpc with the slope close to the global value obscure. We also consider the subtle relation of the zero-gravity radius Rv to the zero-velocity distance R0 appearing in the usual retarded expansion around a mass M: in a vacuum-dominated flat universe R0 ≈ 0.76 R_v. Conclusions: The normalized Hubble diagram appears to be a good way to present and analyze physically different regions around mass clumps embedded in cosmological vacuum. The most natural interpretation of the diagram is that the local density of the dark energy is approximately equal to the density known from studies on global scales.

  5. Determination of gas & liquid two-phase flow regime transitions in wellbore annulus by virtual mass force coefficient when gas cut

    NASA Astrophysics Data System (ADS)

    Qu, Junbo; Yan, Tie; Sun, Xiaofeng; Chen, Ye; Pan, Yi

    2017-10-01

    With the development of drilling technology to deeper stratum, overflowing especially gas cut occurs frequently, and then flow regime in wellbore annulus is from the original drilling fluid single-phase flow into gas & liquid two-phase flow. By using averaged two-fluid model equations and the basic principle of fluid mechanics to establish the continuity equations and momentum conservation equations of gas phase & liquid phase respectively. Relationship between pressure and density of gas & liquid was introduced to obtain hyperbolic equation, and get the expression of the dimensionless eigenvalue of the equation by using the characteristic line method, and analyze wellbore flow regime to get the critical gas content under different virtual mass force coefficients. Results show that the range of equation eigenvalues is getting smaller and smaller with the increase of gas content. When gas content reaches the critical point, the dimensionless eigenvalue of equation has no real solution, and the wellbore flow regime changed from bubble flow to bomb flow. When virtual mass force coefficients are 0.50, 0.60, 0.70 and 0.80 respectively, the critical gas contents are 0.32, 0.34, 0.37 and 0.39 respectively. The higher the coefficient of virtual mass force, the higher gas content in wellbore corresponding to the critical point of transition flow regime, which is in good agreement with previous experimental results. Therefore, it is possible to determine whether there is a real solution of the dimensionless eigenvalue of equation by virtual mass force coefficient and wellbore gas content, from which we can obtain the critical condition of wellbore flow regime transformation. It can provide theoretical support for the accurate judgment of the annular flow regime.

  6. 40 CFR 63.993 - Absorbers, condensers, carbon adsorbers and other recovery devices used as final recovery devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... providing a continuous record or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording...

  7. 40 CFR 63.5995 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for continuity, oxidation, and galvanic corrosion. (c) For each integrating regeneration stream flow... a device that is capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle. (d) For any other control device, or for other capture systems, ensure that the CPMS is...

  8. 40 CFR 63.5995 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for continuity, oxidation, and galvanic corrosion. (c) For each integrating regeneration stream flow... a device that is capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle. (d) For any other control device, or for other capture systems, ensure that the CPMS is...

  9. 40 CFR 63.5995 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for continuity, oxidation, and galvanic corrosion. (c) For each integrating regeneration stream flow... a device that is capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle. (d) For any other control device, or for other capture systems, ensure that the CPMS is...

  10. 40 CFR 63.993 - Absorbers, condensers, carbon adsorbers and other recovery devices used as final recovery devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... providing a continuous record or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording...

  11. 40 CFR 63.11940 - What continuous monitoring requirements must I meet for control devices required to install CPMS...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... non-vacuum regeneration systems, an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, capable of recording the total regeneration stream mass for each regeneration cycle. For non-vacuum regeneration systems, an integrating regeneration stream flow monitoring device...

  12. 40 CFR 63.993 - Absorbers, condensers, carbon adsorbers and other recovery devices used as final recovery devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... providing a continuous record or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording...

  13. 40 CFR 63.993 - Absorbers, condensers, carbon adsorbers and other recovery devices used as final recovery devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... providing a continuous record or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording...

  14. 40 CFR 63.11940 - What continuous monitoring requirements must I meet for control devices required to install CPMS...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... non-vacuum regeneration systems, an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, capable of recording the total regeneration stream mass for each regeneration cycle. For non-vacuum regeneration systems, an integrating regeneration stream flow monitoring device...

  15. 40 CFR 63.993 - Absorbers, condensers, carbon adsorbers and other recovery devices used as final recovery devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... providing a continuous record or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon-bed temperature monitoring device, capable of recording...

  16. Kinetics of gravity-driven slug flow in partially wettable capillaries of varying cross section

    NASA Astrophysics Data System (ADS)

    Nissan, Alon; Wang, Qiuling; Wallach, Rony

    2016-11-01

    A mathematical model for slug (finite liquid volume) motion in not-fully-wettable capillary tubes with sinusoidally varying cross-sectional areas was developed. The model, based on the Navier-Stokes equation, accounts for the full viscous terms due to nonuniform geometry, the inertial term, the slug's front and rear meniscus hysteresis effect, and dependence of contact angle on flow velocity (dynamic contact angle). The model includes a velocity-dependent film that is left behind the advancing slug, reducing its mass. The model was successfully verified experimentally by recording slug movement in uniform and sinusoidal capillary tubes with a gray-scale high-speed camera. Simulation showed that tube nonuniformity has a substantial effect on slug flow pattern: in a uniform tube it is monotonic and depends mainly on the slug's momentary mass/length; an undulating tube radius results in nonmonotonic flow characteristics. The static nonzero contact angle varies locally in nonuniform tubes owing to the additional effect of wall slope. Moreover, the nonuniform cross-sectional area induces slug acceleration, deceleration, blockage, and metastable-equilibrium locations. Increasing contact angle further amplifies the geometry effect on slug propagation. The developed model provides a modified means of emulating slug flow in differently wettable porous media for intermittent inlet water supply (e.g., raindrops on the soil surface).

  17. Antarctic ice-sheet loss driven by basal melting of ice shelves.

    PubMed

    Pritchard, H D; Ligtenberg, S R M; Fricker, H A; Vaughan, D G; van den Broeke, M R; Padman, L

    2012-04-25

    Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Atmospheric and oceanic forcing have the potential to reduce the thickness and extent of floating ice shelves, potentially limiting their ability to buttress the flow of grounded tributary glaciers. Indeed, recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. But the extent and magnitude of ice-shelf thickness change, the underlying causes of such change, and its link to glacier flow rate are so poorly understood that its future impact on the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary control of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet leading to accelerated glacier flow. The highest thinning rates occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen seas, and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic ice-sheet mass balance, and hence global sea level, on annual to decadal timescales.

  18. Smoothed particle hydrodynamics method for evaporating multiphase flows.

    PubMed

    Yang, Xiufeng; Kong, Song-Charng

    2017-09-01

    The smoothed particle hydrodynamics (SPH) method has been increasingly used for simulating fluid flows; however, its ability to simulate evaporating flow requires significant improvements. This paper proposes an SPH method for evaporating multiphase flows. The present SPH method can simulate the heat and mass transfers across the liquid-gas interfaces. The conservation equations of mass, momentum, and energy were reformulated based on SPH, then were used to govern the fluid flow and heat transfer in both the liquid and gas phases. The continuity equation of the vapor species was employed to simulate the vapor mass fraction in the gas phase. The vapor mass fraction at the interface was predicted by the Clausius-Clapeyron correlation. An evaporation rate was derived to predict the mass transfer from the liquid phase to the gas phase at the interface. Because of the mass transfer across the liquid-gas interface, the mass of an SPH particle was allowed to change. Alternative particle splitting and merging techniques were developed to avoid large mass difference between SPH particles of the same phase. The proposed method was tested by simulating three problems, including the Stefan problem, evaporation of a static drop, and evaporation of a drop impacting a hot surface. For the Stefan problem, the SPH results of the evaporation rate at the interface agreed well with the analytical solution. For drop evaporation, the SPH result was compared with the result predicted by a level-set method from the literature. In the case of drop impact on a hot surface, the evolution of the shape of the drop, temperature, and vapor mass fraction were predicted.

  19. Apparent Mass Nonlinearity for Paired Oscillating Plates

    NASA Astrophysics Data System (ADS)

    Granlund, Kenneth; Ol, Michael

    2014-11-01

    The classical potential-flow problem of a plate oscillating sinusoidally at small amplitude, in a direction normal to its plane, has a well-known analytical solution of a fluid ``mass,'' multiplied by plate acceleration, being equal to the force on the plate. This so-called apparent-mass is analytically equal to that of a cylinder of fluid, with diameter equal to plate chord. The force is directly proportional to frequency squared. Here we consider experimentally a generalization, where two coplanar plates of equal chord are placed at some lateral distance apart. For spacing of ~0.5 chord and larger between the two plates, the analytical solution for a single plate can simply be doubled. Zero spacing means a plate of twice the chord and therefore a heuristic cylinder of fluid of twice the cross-sectional area. This limit is approached for plate spacing <0.5c. For a spacing of 0.1-0.2c, the force due to apparent mass was found to increase with frequency, when normalized by frequency squared; this is a nonlinearity and a departure from the classical theory. Flow visualization in a water-tank suggests that such departure can be imputed to vortex shedding from the plates' edges inside the inter-plate gap.

  20. 40 CFR 60.203 - Monitoring of operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for the Phosphate..., calibrate, maintain, and operate a monitoring device which can be used to determine the mass flow of... maintain a daily record of equivalent P2O5 feed by first determining the total mass rate in Mg/hr of...

  1. A modified dodge algorithm for the parabolized Navier-Stokes equations and compressible duct flows

    NASA Technical Reports Server (NTRS)

    Cooke, C. H.

    1981-01-01

    A revised version of a split-velocity method for numerical calculation of compressible duct flow was developed. The revision incorporates balancing of mass flow rates on each marching step in order to maintain front-to-back continuity during the calculation. The (checkerboard) zebra algorithm is applied to solution of the three-dimensional continuity equation in conservative form. A second-order A-stable linear multistep method is employed in effecting a marching solution of the parabolized momentum equations. A checkerboard successive overrelaxation iteration is used to solve the resulting implicit nonlinear systems of finite-difference equations which govern stepwise transition.

  2. Continuous-flow multi-pulse electroporation at low DC voltages by microfluidic flipping of the voltage space topology

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, N.; Horowitz, L. F.; Folch, A.

    2016-10-01

    Concerns over biosafety, cost, and carrying capacity of viral vectors have accelerated research into physical techniques for gene delivery such as electroporation and mechanoporation. Advances in microfabrication have made it possible to create high electric fields over microscales, resulting in more efficient DNA delivery and higher cell viability. Continuous-flow microfluidic methods are typically more suitable for cellular therapies where a large number of cells need to be transfected under sterile conditions. However, the existing continuous-flow designs used to generate multiple pulses either require expensive peripherals such as high-voltage (>400 V) sources or function generators, or result in reduced cell viability due to the proximity of the cells to the electrodes. In this paper, we report a continuous-flow microfluidic device whose channel geometry reduces instrumentation demands and minimizes cellular toxicity. Our design can generate multiple pulses of high DC electric field strength using significantly lower voltages (15-60 V) than previous designs. The cells flow along a serpentine channel that repeatedly flips the cells between a cathode and an anode at high throughput. The cells must flow through a constriction each time they pass from an anode to a cathode, exposing them to high electric field strength for short durations of time (the "pulse-width"). A conductive biocompatible poly-aniline hydrogel network formed in situ is used to apply the DC voltage without bringing the metal electrodes close to the cells, further sheltering cells from the already low voltage electrodes. The device was used to electroporate multiple cell lines using electric field strengths between 700 and 800 V/cm with transfection efficiencies superior than previous flow-through designs.

  3. Continuous-flow multi-pulse electroporation at low DC voltages by microfluidic flipping of the voltage space topology.

    PubMed

    Bhattacharjee, N; Horowitz, L F; Folch, A

    2016-10-17

    Concerns over biosafety, cost, and carrying capacity of viral vectors have accelerated research into physical techniques for gene delivery such as electroporation and mechanoporation. Advances in microfabrication have made it possible to create high electric fields over microscales, resulting in more efficient DNA delivery and higher cell viability. Continuous-flow microfluidic methods are typically more suitable for cellular therapies where a large number of cells need to be transfected under sterile conditions. However, the existing continuous-flow designs used to generate multiple pulses either require expensive peripherals such as high-voltage (>400 V) sources or function generators, or result in reduced cell viability due to the proximity of the cells to the electrodes. In this paper, we report a continuous-flow microfluidic device whose channel geometry reduces instrumentation demands and minimizes cellular toxicity. Our design can generate multiple pulses of high DC electric field strength using significantly lower voltages (15-60 V) than previous designs. The cells flow along a serpentine channel that repeatedly flips the cells between a cathode and an anode at high throughput. The cells must flow through a constriction each time they pass from an anode to a cathode, exposing them to high electric field strength for short durations of time (the "pulse-width"). A conductive biocompatible poly-aniline hydrogel network formed in situ is used to apply the DC voltage without bringing the metal electrodes close to the cells, further sheltering cells from the already low voltage electrodes. The device was used to electroporate multiple cell lines using electric field strengths between 700 and 800 V/cm with transfection efficiencies superior than previous flow-through designs.

  4. A 4-cylinder Stirling engine computer program with dynamic energy equations

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.; Lorenzo, C. F.

    1983-01-01

    A computer program for simulating the steady state and transient performance of a four cylinder Stirling engine is presented. The thermodynamic model includes both continuity and energy equations and linear momentum terms (flow resistance). Each working space between the pistons is broken into seven control volumes. Drive dynamics and vehicle load effects are included. The model contains 70 state variables. Also included in the model are piston rod seal leakage effects. The computer program includes a model of a hydrogen supply system, from which hydrogen may be added to the system to accelerate the engine. Flow charts are provided.

  5. Preconditioning and the limit to the incompressible flow equations

    NASA Technical Reports Server (NTRS)

    Turkel, E.; Fiterman, A.; Vanleer, B.

    1993-01-01

    The use of preconditioning methods to accelerate the convergence to a steady state for both the incompressible and compressible fluid dynamic equations are considered. The relation between them for both the continuous problem and the finite difference approximation is also considered. The analysis relies on the inviscid equations. The preconditioning consists of a matrix multiplying the time derivatives. Hence, the steady state of the preconditioned system is the same as the steady state of the original system. For finite difference methods the preconditioning can change and improve the steady state solutions. An application to flow around an airfoil is presented.

  6. Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003-2013.

    PubMed

    Seo, Ki-Weon; Wilson, Clark R; Scambos, Ted; Kim, Baek-Min; Waliser, Duane E; Tian, Baijun; Kim, Byeong-Hoon; Eom, Jooyoung

    2015-05-01

    Recent observations from satellite gravimetry (the Gravity Recovery and Climate Experiment (GRACE) mission) suggest an acceleration of ice mass loss from the Antarctic Ice Sheet (AIS). The contribution of surface mass balance changes (due to variable precipitation) is compared with GRACE-derived mass loss acceleration by assessing the estimated contribution of snow mass from meteorological reanalysis data. We find that over much of the continent, the acceleration can be explained by precipitation anomalies. However, on the Antarctic Peninsula and other parts of West Antarctica, mass changes are not explained by precipitation and are likely associated with ice discharge rate increases. The total apparent GRACE acceleration over all of the AIS between 2003 and 2013 is -13.6 ± 7.2 Gt/yr 2 . Of this total, we find that the surface mass balance component is -8.2 ± 2.0 Gt/yr 2 . However, the GRACE estimate appears to contain errors arising from the atmospheric pressure fields used to remove air mass effects. The estimated acceleration error from this effect is about 9.8 ± 5.8 Gt/yr 2 . Correcting for this yields an ice discharge acceleration of -15.1 ± 6.5 Gt/yr 2 .

  7. Basic coaxial mass driver reference design. [electromagnetic lunar launch

    NASA Technical Reports Server (NTRS)

    Kolm, H. H.

    1977-01-01

    The reference design for a basic coaxial mass driver is developed to illustrate the principles and optimization procedures on the basis of numerical integration by programmable pocket calculators. The four inch caliber system uses a single-coil bucket and a single-phase propulsion track with discrete coils, separately energized by capacitors. An actual driver would use multiple-coil buckets and an oscillatory multi-phase drive system. Even the basic, table-top demonstration system should in principle be able to achieve accelerations in the 1,000 m/sq sec range. Current densities of the order of 25 ka/sq cm, continuously achievable only in superconductors, are carried by an ordinary aluminum bucket coil for a short period in order to demonstrate the calculated acceleration. Ultimately the system can be lengthened and provided with a magnetically levitated, superconducting bucket to study levitation dynamics under quasi-steady-state conditions, and to approach lunar escape velocity in an evacuated tube.

  8. Orthogonal time-of-flight mass spectrometry of an ion beam with a broad kinetic energy profile.

    PubMed

    Miller, S W; Prince, B D; Bemish, R J

    2017-10-01

    A combined experimental and modeling effort is undertaken to assess a detection system composed of an orthogonal extraction time-of-flight (TOF) mass spectrometer coupled to a continuous ion source emitting an ion beam with kinetic energy of several hundred eV. The continuous ion source comprises an electrospray capillary system employing an undiluted ionic liquid emitting directly into vacuum. The resulting ion beam consists of ions with kinetic energy distributions of width greater than a hundred of eV and mass-to-charge (m/q) ratios ranging from 111 to 500 000 amu/q. In particular, the investigation aims to demonstrate the kinetic energy resolution along the ion beam axis (axial) of orthogonally extracted ions in measurements of the axial kinetic energy-specific mass spectrum, mass flow rate, and total ion current. The described instrument is capable of simultaneous measurement of a broad m/q range in a single acquisition cycle with approximately 25 eV/q axial kinetic energy resolution. Mass resolutions of ∼340 (M/ΔM, FWHM) were obtained for ions at m/q = 1974. Comparison of the orthogonally extracted TOF mass spectrum to mass flow and ion current measurements obtained with a quartz-crystal microbalance and Faraday cup, respectively, shows reasonable numeric agreement and qualitative agreement in the trend as a function of energy defect.

  9. A modified Dodge algorithm for the parabolized Navier-Stokes equation and compressible duct flows

    NASA Technical Reports Server (NTRS)

    Cooke, C. H.

    1981-01-01

    A revised version of Dodge's split-velocity method for numerical calculation of compressible duct flow was developed. The revision incorporates balancing of mass flow rates on each marching step in order to maintain front-to-back continuity during the calculation. The (checkerboard) zebra algorithm is applied to solution of the three dimensional continuity equation in conservative form. A second-order A-stable linear multistep method is employed in effecting a marching solution of the parabolized momentum equations. A checkerboard iteration is used to solve the resulting implicit nonlinear systems of finite-difference equations which govern stepwise transition. Qualitive agreement with analytical predictions and experimental results was obtained for some flows with well-known solutions.

  10. Use of a Doppler pulmonary artery catheter for continuous measurement of right ventricular pump function and contractility during single lung transplantation.

    PubMed

    Heerdt, P M; Pond, C G; Kussman, M K; Triantafillou, A N

    1993-01-01

    Despite numerous technologic advances in intraoperative monitoring, the only methods routinely available for assessment of right ventricular function in lung transplant recipients are continuous measurement of right heart pressures and intermittent thermodilution determination of cardiac output and ejection fraction. Additional data may now be obtained with transesophageal echocardiography, although this technology is expensive and not widely available and requires diverting attention from a potentially unstable patient for data acquisition and analysis. Recently, a Doppler pulmonary artery catheter was introduced that measures beat-to-beat pulmonary artery blood flow-velocity, cross sectional area, and volume flow. Because of data indicating that acceleration of blood in the pulmonary artery (measured as the first derivative of either the velocity or flow waveform) is a sensitive indicator of right ventricular contractility, we have used waveforms obtained with the catheter for assessment of right ventricular pump function (stroke volume and peak pulmonary artery flow rate) and contractility in heart surgery patients. We report here our experience with this method in two patients undergoing left single lung transplantation.

  11. Self-propelled anguilliform swimming: simultaneous solution of the two-dimensional navier-stokes equations and Newton's laws of motion

    PubMed

    Carling; Williams; Bowtell

    1998-12-01

    Anguilliform swimming has been investigated by using a computational model combining the dynamics of both the creature's movement and the two-dimensional fluid flow of the surrounding water. The model creature is self-propelled; it follows a path determined by the forces acting upon it, as generated by its prescribed changing shape. The numerical solution has been obtained by applying coordinate transformations and then using finite difference methods. Results are presented showing the flow around the creature as it accelerates from rest in an enclosed tank. The kinematics and dynamics associated with the creature's centre of mass are also shown. For a particular set of body shape parameters, the final mean swimming speed is found to be 0.77 times the speed of the backward-travelling wave. The corresponding movement amplitude envelope is shown. The magnitude of oscillation in the net forward force has been shown to be approximately twice that in the lateral force. The importance of allowing for acceleration and deceleration of the creature's body (rather than imposing a constant swimming speed) has been demonstrated. The calculations of rotational movement of the body and the associated moment of forces about the centre of mass have also been included in the model. The important role of viscous forces along and around the creature's body and in the growth and dissolution of the vortex structures has been illustrated.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirotani, Kouichi; Pu, Hung-Yi; Lin, Lupin Chun-Che

    We investigate the electrostatic acceleration of electrons and positrons in the vicinity of the event horizon, applying the pulsar outer-gap model to black hole (BH) magnetospheres. During a low accretion phase, the radiatively inefficient accretion flow (RIAF) cannot emit enough MeV photons that are needed to sustain the force-free magnetosphere via two-photon collisions. In such a charge-starved region (or a gap), an electric field arises along the magnetic field lines to accelerate electrons and positrons into ultra-relativistic energies. These relativistic leptons emit copious gamma rays via curvature and inverse-Compton (IC) processes. Some of such gamma rays collide with the submillimeter-IRmore » photons emitted from the RIAF to materialize as pairs, which polarize to partially screen the original acceleration electric field. It is found that the gap gamma-ray luminosity increases with decreasing accretion rate. However, if the accretion rate decreases too much, the diminished RIAF soft photon field can no longer sustain a stationary pair production within the gap. As long as a stationary gap is formed, the magnetosphere becomes force-free outside the gap by the cascaded pairs, irrespective of the BH mass. If a nearby stellar-mass BH is in quiescence, or if a galactic intermediate-mass BH is in a very low accretion state, its curvature and IC emissions are found to be detectable with Fermi /LAT and imaging atmospheric Cherenkov telescopes (IACT). If a low-luminosity active galactic nucleus is located within about 30 Mpc, the IC emission from its supermassive BH is marginally detectable with IACT.« less

  13. Microgravity: Teacher's guide with activities for physical science

    NASA Technical Reports Server (NTRS)

    Vogt, Gregory L.; Wargo, Michael J.; Rosenberg, Carla B. (Editor)

    1995-01-01

    This guide is an educational tool for teachers of grades 5 through 12. It is an introduction to microgravity and its application to spaceborne laboratory experiments. Specific payloads and missions are mentioned with limited detail, including Spacelab, the International Microgravity Laboratory, and the United States Microgravity Laboratory. Activities for students demonstrate chemistry, mathematics, and physics applications of microgravity. Activity objectives include: modeling how satellites orbit Earth; demonstrating that free fall eliminates the local effects of gravity; measuring the acceleration environments created by different motions; using a plasma sheet to observe acceleration forces that are experienced on board a space vehicle; demonstrating how mass can be measured in microgravity; feeling how inertia affects acceleration; observing the gravity-driven fluid flow that is caused by differences in solution density; studying surface tension and the fluid flows caused by differences in surface tension; illustrating the effects of gravity on the burning rate of candles; observing candle flame properties in free fall; measuring the contact angle of a fluid; illustrating the effects of gravity and surface tension on fiber pulling; observing crystal growth phenomena in a 1-g environment; investigating temperature effects on crystal growth; and observing crystal nucleation and growth rate during directional solidification. Each activity includes a background section, procedure, and follow-up questions.

  14. The Winds of Main Sequence B Stars in NGC 6231, Evidence for Shocks in Weak Winds.

    NASA Astrophysics Data System (ADS)

    Massa, Derck

    1996-07-01

    Because the main sequence B stars in NGC 6231 have abnormallystrong C iv wind lines, they are the only main sequence Bstars with distinct edge velocities. Although the underlyingcause for the strong lines remains unknown, these stars doprovide an opportunity to test two important ideas concerningB star winds: 1) that the driving ions in the winds of starswith low mass loss rates decouple from the general flow, and;2) that shocks deep in the winds of main sequence B stars areresponsible for their observed X-rays. In both of thesemodels, the wind accelerates toward a terminal velocity,v_infty, far greater than the observed value, shocking ordecoupling well before it can attain the high v_infty. As aresult, the observable wind accelerates very rapidly, leadingto wind flushing times less than 30 minutes. If theseconjectures are correct, then the winds of main sequence Bstars should be highly variable on time scales of minutes.Model fitting of available IUE data are consistant with thegeneral notion of a rapidly accelerating wind, shocking wellbefore its actual v_infty. However, these are 5 hourexposures, so the fits are to ill-defined mean wind flows.The new GHRS observations will provide adequate spectral andtemporal resolution to observe the expected variability and,thereby, verify the existance of two important astrophysicalprocesses.

  15. Multivariate statistical process control of a continuous pharmaceutical twin-screw granulation and fluid bed drying process.

    PubMed

    Silva, A F; Sarraguça, M C; Fonteyne, M; Vercruysse, J; De Leersnyder, F; Vanhoorne, V; Bostijn, N; Verstraeten, M; Vervaet, C; Remon, J P; De Beer, T; Lopes, J A

    2017-08-07

    A multivariate statistical process control (MSPC) strategy was developed for the monitoring of the ConsiGma™-25 continuous tablet manufacturing line. Thirty-five logged variables encompassing three major units, being a twin screw high shear granulator, a fluid bed dryer and a product control unit, were used to monitor the process. The MSPC strategy was based on principal component analysis of data acquired under normal operating conditions using a series of four process runs. Runs with imposed disturbances in the dryer air flow and temperature, in the granulator barrel temperature, speed and liquid mass flow and in the powder dosing unit mass flow were utilized to evaluate the model's monitoring performance. The impact of the imposed deviations to the process continuity was also evaluated using Hotelling's T 2 and Q residuals statistics control charts. The influence of the individual process variables was assessed by analyzing contribution plots at specific time points. Results show that the imposed disturbances were all detected in both control charts. Overall, the MSPC strategy was successfully developed and applied. Additionally, deviations not associated with the imposed changes were detected, mainly in the granulator barrel temperature control. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Numerical studies of asymmetric adiabatic accretion flow - The effect of velocity gradients

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.; Fryxell, B. A.

    1989-01-01

    A numerical study of the time variation of the angular momentum and mass capture rates for a central object accreting from a uniform medium with a velocity gradient transverse to the direction of the mean flow is presented, covering a range of velocity asymmetries and Mach numbers in the incident flow. It is found that the mass accretion rate in a given evolutionary sequence varies in an irregular manner, with the matter accreting onto the central object from either a continuously moving accretion wake or from an accretion disk. The implications of the results from the study of short-term fluctuations observed in the pulse period and luminosity of X-ray pulsars are discussed.

  17. RTD-based Material Tracking in a Fully-Continuous Dry Granulation Tableting Line.

    PubMed

    Martinetz, M C; Karttunen, A-P; Sacher, S; Wahl, P; Ketolainen, J; Khinast, J G; Korhonen, O

    2018-06-06

    Continuous manufacturing (CM) offers quality and cost-effectiveness benefits over currently dominating batch processing. One challenge that needs to be addressed when implementing CM is traceability of materials through the process, which is needed for the batch/lot definition and control strategy. In this work the residence time distributions (RTD) of single unit operations (blender, roller compactor and tablet press) of a continuous dry granulation tableting line were captured with NIR based methods at selected mass flow rates to create training data. RTD models for continuous operated unit operations and the entire line were developed based on transfer functions. For semi-continuously operated bucket conveyor and pneumatic transport an assumption based the operation frequency was used. For validation of the parametrized process model, a pre-defined API step change and its propagation through the manufacturing line was computed and compared to multi-scale experimental runs conducted with the fully assembled continuous operated manufacturing line. This novel approach showed a very good prediction power at the selected mass flow rates for a complete continuous dry granulation line. Furthermore, it shows and proves the capabilities of process simulation as a tool to support development and control of pharmaceutical manufacturing processes. Copyright © 2018. Published by Elsevier B.V.

  18. A near-infrared spectroscopic survey of massive jets towards extended green objects

    NASA Astrophysics Data System (ADS)

    Caratti o Garatti, A.; Stecklum, B.; Linz, H.; Garcia Lopez, R.; Sanna, A.

    2015-01-01

    Context. Protostellar jets and outflows are the main outcome of the star formation process, and their analysis can provide us with major clues about the ejection and accretion history of young stellar objects (YSOs). Aims: We aim at deriving the main physical properties of massive jets from near-infrared (NIR) observations, comparing them to those of a large sample of jets from low-mass YSOs, and relating them to the main features of their driving sources. Methods: We present a NIR imaging (H2 and Ks) and low-resolution spectroscopic (0.95-2.50 μm) survey of 18 massive jets towards GLIMPSE extended green objects (EGOs), driven by intermediate- and high-mass YSOs, which have bolometric luminosities (Lbol) between 4 × 102 and 1.3 × 105 L⊙. Results: As in low-mass jets, H2 is the primary NIR coolant, detected in all the analysed flows, whereas the most important ionic tracer is [Fe ii], detected in half of the sampled jets. Our analysis indicates that the emission lines originate from shocks at high temperatures and densities. No fluorescent emission is detected along the flows, regardless of the source bolometric luminosity. On average, the physical parameters of these massive jets (i.e. visual extinction, temperature, column density, mass, and luminosity) have higher values than those measured in their low-mass counterparts. The morphology of the H2 flows is varied, mostly depending on the complex, dynamic, and inhomogeneous environment in which these massive jets form and propagate. All flows and jets in our sample are collimated, showing large precession angles. Additionally, the presence of both knots and jets suggests that the ejection process is continuous with burst episodes, as in low-mass YSOs. We compare the flow H2 luminosity with the source bolometric luminosity confirming the tight correlation between these two quantities. Five sources, however, display a lower LH2/Lbol efficiency, which might be related to YSO evolution. Most important, the inferred LH2 vs. Lbol relationship agrees well with the correlation between the momentum flux of the CO outflows and the bolometric luminosities of high-mass YSOs indicating that outflows from high-mass YSOs are momentum driven, as are their low-mass counterparts. We also derive a less stringent correlation between the inferred mass of the H2 flows and Lbol of the YSOs, indicating that the mass of the flow depends on the driving source mass. Conclusions: By comparing the physical properties of jets in the NIR, a continuity from low- to high-mass jets is identified. Massive jets appear as a scaled-up version of their low-mass counterparts in terms of their physical parameters and origin. Nevertheless, there are consistent differences such as a more variegated morphology and, on average, stronger shock conditions, which are likely due to the different environment in which high-mass stars form. Based on observations collected at the European Southern Observatory La Silla, Chile, 080.C-0573(A), 083.C-0846(A).Appendices are available in electronic form at http://www.aanda.org

  19. Small Scale Mass Flow Plug Calibration

    NASA Technical Reports Server (NTRS)

    Sasson, Jonathan

    2015-01-01

    A simple control volume model has been developed to calculate the discharge coefficient through a mass flow plug (MFP) and validated with a calibration experiment. The maximum error of the model in the operating region of the MFP is 0.54%. The model uses the MFP geometry and operating pressure and temperature to couple continuity, momentum, energy, an equation of state, and wall shear. Effects of boundary layer growth and the reduction in cross-sectional flow area are calculated using an in- integral method. A CFD calibration is shown to be of lower accuracy with a maximum error of 1.35%, and slower by a factor of 100. Effects of total pressure distortion are taken into account in the experiment. Distortion creates a loss in flow rate and can be characterized by two different distortion descriptors.

  20. Out-of-Plane Continuous Electrostatic Micro-Power Generators

    PubMed Central

    Mahmoud, M. A. E.; Abdel-Rahman, E. M.; Mansour, R. R.; El-Saadany, E. F.

    2017-01-01

    This paper presents an out-of-plane electrostatic micro-power generator (MPG). Electret-based continuous MPGs with different gaps and masses are fabricated to demonstrate the merits of this topology. Experimental results of the MPG demonstrate output power of 1 mW for a base acceleration amplitude and frequency of 0.08 g and 86 Hz. The MPGs also demonstrate a wideband harvesting bandwidth reaching up to 9 Hz. A free-flight and an impact mode model of electrostatic MPGs are also derived and validated by comparison to experimental results. PMID:28420151

  1. Weighing galaxy clusters with gas. II. On the origin of hydrostatic mass bias in ΛCDM galaxy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Kaylea; Nagai, Daisuke; Yu, Liang

    2014-02-20

    The use of galaxy clusters as cosmological probes hinges on our ability to measure their masses accurately and with high precision. Hydrostatic mass is one of the most common methods for estimating the masses of individual galaxy clusters, which suffer from biases due to departures from hydrostatic equilibrium. Using a large, mass-limited sample of massive galaxy clusters from a high-resolution hydrodynamical cosmological simulation, in this work we show that in addition to turbulent and bulk gas velocities, acceleration of gas introduces biases in the hydrostatic mass estimate of galaxy clusters. In unrelaxed clusters, the acceleration bias is comparable to themore » bias due to non-thermal pressure associated with merger-induced turbulent and bulk gas motions. In relaxed clusters, the mean mass bias due to acceleration is small (≲ 3%), but the scatter in the mass bias can be reduced by accounting for gas acceleration. Additionally, this acceleration bias is greater in the outskirts of higher redshift clusters where mergers are more frequent and clusters are accreting more rapidly. Since gas acceleration cannot be observed directly, it introduces an irreducible bias for hydrostatic mass estimates. This acceleration bias places limits on how well we can recover cluster masses from future X-ray and microwave observations. We discuss implications for cluster mass estimates based on X-ray, Sunyaev-Zel'dovich effect, and gravitational lensing observations and their impact on cluster cosmology.« less

  2. Weighing Galaxy Clusters with Gas. II. On the Origin of Hydrostatic Mass Bias in ΛCDM Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Nelson, Kaylea; Lau, Erwin T.; Nagai, Daisuke; Rudd, Douglas H.; Yu, Liang

    2014-02-01

    The use of galaxy clusters as cosmological probes hinges on our ability to measure their masses accurately and with high precision. Hydrostatic mass is one of the most common methods for estimating the masses of individual galaxy clusters, which suffer from biases due to departures from hydrostatic equilibrium. Using a large, mass-limited sample of massive galaxy clusters from a high-resolution hydrodynamical cosmological simulation, in this work we show that in addition to turbulent and bulk gas velocities, acceleration of gas introduces biases in the hydrostatic mass estimate of galaxy clusters. In unrelaxed clusters, the acceleration bias is comparable to the bias due to non-thermal pressure associated with merger-induced turbulent and bulk gas motions. In relaxed clusters, the mean mass bias due to acceleration is small (lsim 3%), but the scatter in the mass bias can be reduced by accounting for gas acceleration. Additionally, this acceleration bias is greater in the outskirts of higher redshift clusters where mergers are more frequent and clusters are accreting more rapidly. Since gas acceleration cannot be observed directly, it introduces an irreducible bias for hydrostatic mass estimates. This acceleration bias places limits on how well we can recover cluster masses from future X-ray and microwave observations. We discuss implications for cluster mass estimates based on X-ray, Sunyaev-Zel'dovich effect, and gravitational lensing observations and their impact on cluster cosmology.

  3. connecting the dots between Greenland ice sheet surface melting and ice flow dynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Box, J. E.; Colgan, W. T.; Fettweis, X.; Phillips, T. P.; Stober, M.

    2013-12-01

    This presentation is of a 'unified theory' in glaciology that first identifies surface albedo as a key factor explaining total ice sheet mass balance and then surveys a mechanistic self-reinforcing interaction between melt water and ice flow dynamics. The theory is applied in a near-real time total Greenland mass balance retrieval based on surface albedo, a powerful integrator of the competing effects of accumulation and ablation. New snowfall reduces sunlight absorption and increases meltwater retention. Melting amplifies absorbed sunlight through thermal metamorphism and bare ice expansion in space and time. By ';following the melt'; we reveal mechanisms linking existing science into a unified theory. Increasing meltwater softens the ice sheet in three ways: 1.) sensible heating given the water temperature exceeds that of the ice sheet interior; 2.) Some infiltrating water refreezes, transferring latent heat to the ice; 3.) Friction from water turbulence heats the ice. It has been shown that for a point on the ice sheet, basal lubrication increases ice flow speed to a time when an efficient sub-glacial drainage network develops that reduces this effect. Yet, with an increasing melt duration the point where the ice sheet glides on a wet bed increases inland to a larger area. This effect draws down the ice surface elevation, contributing to the ';elevation feedback'. In a perpetual warming scenario, the elevation feedback ultimately leads to ice sheet loss reversible only through much slower ice sheet growth in an ice age environment. As the inland ice sheet accelerates, the horizontal extension pulls cracks and crevasses open, trapping more sunlight, amplifying the effect of melt accelerated ice. As the bare ice area increases, the direct sun-exposed crevassed and infiltration area increases further allowing the ice warming process to occur more broadly. Considering hydrofracture [a.k.a. hydrofracking]; surface meltwater fills cracks, attacking the ice integrity. Because water is 'heavier' than ice, water-filled cracks have unlimited capacity to hydraulically ';jack' open fractures, penetrating, fracturing and disaggregating a solid ice body. This process promotes iceberg calving at more than 150, 1km wide marine terminating Greenland glacier fronts. Resulting from a rising trend of surface melting and sea water temperature, meltwater ejection at the underwater front of marine glaciers drives a an increasing turbulent heat exchange between the glacier front and relatively warm sea water melting it faster. Underwater melting promotes an undercutting of the glacier front leading to ice berg calving. Calving through hydrofracture or marine undercutting provide a direct and immediate ice flow speed response mechanism for surface meltwater production. Ice flow speed reacts because calving reduces flow resistance. The above physical processes interact. Cooling shuts these processes down. Negative feedbacks dampen the warming impulse. Live 21 June, 2013 is a new Danish Web site1 that exploits total mass balance rate of decline as a function of albedo to predict GRACE mass rate of change with 80% explained variance. While surface mass balance explains the mass rate of change slightly higher, surface albedo is an observable quantity as is gravity change.

  4. Experimental study on corrosion and precipitation in non-isothermal Pb-17Li system for development of liquid breeder blanket of fusion reactor

    NASA Astrophysics Data System (ADS)

    Kondo, Masatoshi; Ishii, Masaomi; Norimatsu, Takayoshi; Muroga, Takeo

    2017-07-01

    The corrosion characteristics of RAFM steel JLF-1 in a non-isothermal Pb-17Li flowing system were investigated by means of the corrosion test using a non-isothermal mixing pot. The corrosion test was performed at 739K with a temperature gradient of 14K for 500 hours. The corrosion tests at a static and a flowing conditions in an isothermal Pb-17Li system were also performed at the same temperature for the same duration with the non-isothermal test. Then, the effect of mass transfer both by the flow and the temperature gradient on the corrosion behaviors was featured by the comparison of these results. The corrosion was caused by the dissolution of Fe and Cr from the steel surface into the flowing Pb-17Li. The specimen surface revealed a fine granular microstructure after the corrosion tests. A large number of pebbleshaped protrusions were observed on the specimen surface. This microstructure was different from the original martensite microstructure of the steel, and might be formed by the influence of the reaction with Li component in the alloy. The formation of the granular microstructure was accelerated by the flow and the temperature gradient. Some pebble-shaped protrusions had gaps at their bases. The removal of these pebble-shaped granules by the flowing Pb-17Li might cause a small-scale corrosion-erosion. The results of metallurgical analysis indicated that a large-scale corrosion-erosion was also caused by their destruction of the corroded layer on the surface. The non-isothermal mixing pot equipped a cold trap by a metal mesh in the low temperature region. The metal elements of Fe and Cr were recovered as they precipitated on the surface of the metal mesh. It was found that a Fe-Cr binary intermetallic compound was formed in the precipitation procedure. The overall mass transfer coefficient for the dissolution type corrosion in the non-isothermal system was much bigger than that in the isothermal system. This model evaluation indicated that the temperature gradient accelerated the corrosion.

  5. Heavy Ion Acceleration at J-PARC

    NASA Astrophysics Data System (ADS)

    SATO, Susumu

    2018-02-01

    J-PARC, the Japan Proton Accelerator Research Complex, is an accelerator, which provides a high-intensity proton beam. Recently as a very attractive project, the acceleration of heavy ions produced by supplementary ion sources, called J-PARC-HI, is seriously contemplated by domestic as well as international communities. The planned facility would accelerate heavy ions up to U92+ with a beam energy 20 AGeV ( of 6.2 AGeV). The highlight of the J-PARC-HI project is its very high beam rate up to 1011 Hz, which will enable the study of very rare events. Taking advantage of this high intensity, J-PARC-HI will carry out frontier studies of new and rare observables in this energy region: (i) nuclear medium modification of chiral property of vector mesons through low-mass di-lepton signal, (ii) QCD critical pointcharacterization through event-by-event fluctuation signals of particle production, (iii) systematic measurements related to the equation of state through collective flow signal or two-particle momentum correlation signal, or (iv) the search of hyper nuclei with multi strangeness including or exceeding S = 3. The current plan of J-PARC-HI aims to carrying out the first experimental measurements in 2025.

  6. The Impact of Fluid Inertia on In Vivo Estimation of Mitral Valve Leaflet Constitutive Properties and Mechanics.

    PubMed

    Bark, David L; Dasi, Lakshmi P

    2016-05-01

    We examine the influence of the added mass effect (fluid inertia) on mitral valve leaflet stress during isovolumetric phases. To study this effect, oscillating flow is applied to a flexible membrane at various frequencies to control inertia. Resulting membrane strain is calculated through a three-dimensional reconstruction of markers from stereo images. To investigate the effect in vivo, the analysis is repeated on a published dataset for an ovine mitral valve (Journal of Biomechanics 42(16): 2697-2701). The membrane experiment demonstrates that the relationship between pressure and strain must be corrected with a fluid inertia term if the ratio of inertia to pressure differential approaches 1. In the mitral valve, this ratio reaches 0.7 during isovolumetric contraction for an acceleration of 6 m/s(2). Acceleration is reduced by 72% during isovolumetric relaxation. Fluid acceleration also varies along the leaflet during isovolumetric phases, resulting in spatial variations in stress. These results demonstrate that fluid inertia may be the source of the temporally and spatially varying stiffness measurements previously seen through inverse finite element analysis of in vivo data during isovolumetric phases. This study demonstrates that there is a need to account for added mass effects when analyzing in vivo constitutive relationships of heart valves.

  7. Onset of turbulence in accelerated high-Reynolds-number flow

    NASA Astrophysics Data System (ADS)

    Zhou, Ye; Robey, Harry F.; Buckingham, Alfred C.

    2003-05-01

    A new criterion, flow drive time, is identified here as a necessary condition for transition to turbulence in accelerated, unsteady flows. Compressible, high-Reynolds-number flows initiated, for example, in shock tubes, supersonic wind tunnels with practical limitations on dimensions or reservoir capacity, and high energy density pulsed laser target vaporization experimental facilities may not provide flow duration adequate for turbulence development. In addition, for critical periods of the overall flow development, the driving background flow is often unsteady in the experiments as well as in the physical flow situations they are designed to mimic. In these situations transition to fully developed turbulence may not be realized despite achievement of flow Reynolds numbers associated with or exceeding stationary flow transitional criteria. Basically our transitional criterion and prediction procedure extends to accelerated, unsteady background flow situations the remarkably universal mixing transition criterion proposed by Dimotakis [P. E. Dimotakis, J. Fluid Mech. 409, 69 (2000)] for stationary flows. This provides a basis for the requisite space and time scaling. The emphasis here is placed on variable density flow instabilities initiated by constant acceleration Rayleigh-Taylor instability (RTI) or impulsive (shock) acceleration Richtmyer-Meshkov instability (RMI) or combinations of both. The significant influences of compressibility on these developing transitional flows are discussed with their implications on the procedural model development. A fresh perspective for predictive modeling and design of experiments for the instability growth and turbulent mixing transitional interval is provided using an analogy between the well-established buoyancy-drag model with applications of a hierarchy of single point turbulent transport closure models. Experimental comparisons with the procedural results are presented where use is made of three distinctly different types of acceleration driven instability experiments: (1) classical, relatively low speed, constant acceleration RTI experiments; (2) shock tube, shockwave driven RMI flow mixing experiments; (3) laser target vaporization RTI and RMI mixing experiments driven at very high energy density. These last named experiments are of special interest as they provide scaleable flow conditions simulating those of astrophysical magnitude such as shock-driven hydrodynamic mixing in supernova evolution research.

  8. HYDRODYNAMIC SIMULATION OF THE UPPER POTOMAC ESTUARY.

    USGS Publications Warehouse

    Schaffranck, Raymond W.

    1986-01-01

    Hydrodynamics of the upper extent of the Potomac Estuary between Indian Head and Morgantown, Md. , are simulated using a two-dimensional model. The model computes water-surface elevations and depth-averaged velocities by numerically integrating finite-difference forms of the equations of mass and momentum conservation using the alternating direction implicit method. The fundamental, non-linear, unsteady-flow equations, upon which the model is formulated, include additional terms to account for Coriolis acceleration and meteorological influences. Preliminary model/prototype data comparisons show agreement to within 9% for tidal flow volumes and phase differences within the measured-data-recording interval. Use of the model to investigate the hydrodynamics and certain aspects of transport within this Potomac Estuary reach is demonstrated. Refs.

  9. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study

    PubMed Central

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-01-01

    An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography. PMID:28626241

  10. Flow-induced corrosion of absorbable magnesium alloy: In-situ and real-time electrochemical study.

    PubMed

    Wang, Juan; Jang, Yongseok; Wan, Guojiang; Giridharan, Venkataraman; Song, Guang-Ling; Xu, Zhigang; Koo, Youngmi; Qi, Pengkai; Sankar, Jagannathan; Huang, Nan; Yun, Yeoheung

    2016-03-01

    An in-situ and real-time electrochemical study in a vascular bioreactor was designed to analyze corrosion mechanism of magnesium alloy (MgZnCa) under mimetic hydrodynamic conditions. Effect of hydrodynamics on corrosion kinetics, types, rates and products was analyzed. Flow-induced shear stress (FISS) accelerated mass and electron transfer, leading to an increase in uniform and localized corrosions. FISS increased the thickness of uniform corrosion layer, but filiform corrosion decreased this layer resistance at high FISS conditions. FISS also increased the removal rate of localized corrosion products. Impedance-estimated and linear polarization-measured polarization resistances provided a consistent correlation to corrosion rate calculated by computed tomography.

  11. Effects of Background Pressure on Relativistic Laser-Plasma Interaction Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Peterson, Andrew; Orban, C.; Feister, S.; Ngirmang, G.; Smith, J. T.; Klim, A.; Frische, K.; Morrison, J.; Chowdhury, E.; Roquemore, W. M.

    2016-10-01

    Typically, ultra-intense laser-accelerated ion experiments are carried out under high-vacuum conditions and with a repetition rate up to several shots per day. Looking to the future there is a need to perform these experiments with a much larger repetition rate. A continuously flowing liquid target is more suitable than a solid target for this purpose. However liquids vaporize below their vapor pressure, and the experiment cannot be performed under high-vacuum conditions. The effects of this non-negligible high chamber pressure acceleration of charged particles is not yet well understood. We investigate this phenomena using Particle-in-Cell simulations, exploring the effect of the background pressure on the accelerated ion spectrum. Experiments in this regime are being performed at the Air Force Research Laboratory at Wright-Patterson Air Force Base. This research was sponsored by the Quantum and Non-Equilibrium Processes Division of the Air Force Office of Scientific Research, under the management of Dr. Enrique Parra, Program Manager and significant support from the DOD HPCMP Internship Program.

  12. The role of Coulomb collisions in limiting differential flow and temperature differences in the solar wind

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.

    1976-01-01

    Data obtained by OGO 5 are used to confirm IMP 6 observations of an inverse dependence of the helium-to-hydrogen temperature ratio in the solar wind on the ratio of solar-wind expansion time to the Coulomb-collision equipartition time. The analysis is then extended to determine the relation of the difference between the hydrogen and helium bulk velocities (the differential flow vector) with the ratio between the solar-wind expansion time and the time required for Coulomb collisions to slow down a beam of ions passing through a plasma. It is found that the magnitude of the differential flow vector varies inversely with the time ratio when the latter is small and approaches zero when it is large. These results are shown to suggest a model of continuous preferential heating and acceleration of helium (or cooling and deceleration of hydrogen), which is cancelled or limited by Coulomb collisions by the time the plasma has reached 1 AU. Since the average dependence of the differential flow vector on the time ratio cannot explain all the systematic variations of the vector observed in corotating high-velocity streams, it is concluded that additional helium acceleration probably occurs on the leading edge of such streams.

  13. Gravity fluctuations induced by magma convection at Kilauea Volcano, Hawai'i

    USGS Publications Warehouse

    Carbone, Daniele; Poland, Michael P.

    2012-01-01

    Convection in magma chambers is thought to play a key role in the activity of persistently active volcanoes, but has only been inferred indirectly from geochemical observations or simulated numerically. Continuous microgravity measurements, which track changes in subsurface mass distribution over time, provide a potential method for characterizing convection in magma reservoirs. We recorded gravity oscillations with a period of ~150 s at two continuous gravity stations at the summit of Kīlauea Volcano, Hawai‘i. The oscillations are not related to inertial accelerations caused by seismic activity, but instead indicate variations in subsurface mass. Source modeling suggests that the oscillations are caused by density inversions in a magma reservoir located ~1 km beneath the east margin of Halema‘uma‘u Crater in Kīlauea Caldera—a location of known magma storage.

  14. Flank collapse at Mount Wrangell, Alaska, recorded by volcanic mass-flow deposits in the Copper River lowland

    USGS Publications Warehouse

    Waythomas, C.F.; Wallace, K.L.

    2002-01-01

    An areally extensive volcanic mass-flow deposit of Pleistocene age, known as the Chetaslina volcanic mass-flow deposit, is a prominent and visually striking deposit in the southeastern Copper River lowland of south-central Alaska. The mass-flow deposit consists of a diverse mixture of colorful, variably altered volcanic rocks, lahar deposits, glaciolacustrine diamicton, and till that record a major flank collapse on the southwest flank of Mount Wrangell. The deposit is well exposed near its presumed source, and thick, continuous, stratigraphic exposures have permitted us to study its sedimentary characteristics as a means of better understanding the origin, significance, and evolution of the deposit. Deposits of the Chetaslina volcanic mass flow in the Chetaslina River drainage are primary debris-avalanche deposits and consist of two principal facies types, a near-source block facies and a distal mixed facies. The block facies is composed entirely of block-supported, shattered and fractured blocks with individual blocks up to 40 m in diameter. The mixed facies consists of block-sized particles in a matrix of poorly sorted rock rubble, sand, and silt generated by the comminution of larger blocks. Deposits of the Chetaslina volcanic mass flow exposed along the Copper, Tonsina, and Chitina rivers are debris-flow deposits that evolved from the debris-avalanche component of the flow and from erosion and entrainment of local glacial and glaciolacustrine diamicton in the Copper River lowland. The debris-flow deposits were probably generated through mixing of the distal debris avalanche with the ancestral Copper River, or through breaching of a debris-avalanche dam across the ancestral river. The distribution of facies types and major-element chemistry of clasts in the deposit indicate that its source was an ancestral volcanic edifice, informally known as the Chetaslina vent, on the southwest side of Mount Wrangell. A major sector collapse of the Chetaslina vent initiated the Chetaslina volcanic mass flow forming a debris avalanche of about 4 km3 that subsequently transformed to a debris flow of unknown volume.

  15. Effects of radial direction and eccentricity on acceleration perception.

    PubMed

    Mueller, Alexandra S; Timney, Brian

    2014-01-01

    Radial optic flow can elicit impressions of self-motion--vection--or of objects moving relative to the observer, but there is disagreement as to whether humans have greater sensitivity to expanding or to contracting optic flow. Although most studies agree there is an anisotropy in sensitivity to radial optic flow, it is unclear whether this asymmetry is a function of eccentricity. The issue is further complicated by the fact that few studies have examined how acceleration sensitivity is affected, even though observers and objects in the environment seldom move at a constant speed. To address these issues, we investigated the effects of direction and eccentricity on the ability to detect acceleration in radial optic flow. Our results indicate that observers are better at detecting acceleration when viewing contraction compared with expansion and that eccentricity has no effect on the ability to detect accelerating radial optic flow. Ecological interpretations are discussed.

  16. Glacier dynamics over the last quarter of a century at Jakobshavn Isbræ

    NASA Astrophysics Data System (ADS)

    Muresan, I. S.; Khan, S. A.; Aschwanden, A.; Khroulev, C.; Van Dam, T.; Bamber, J.; van den Broeke, M. R.; Wouters, B.; Kuipers Munneke, P.; Kjær, K. H.

    2015-09-01

    Observations over the past two decades show substantial ice loss associated with the speedup of marine terminating glaciers in Greenland. Here we use a regional 3-D outlet glacier model to simulate the behaviour of Jakobshavn Isbræ (JI) located in west Greenland. Using atmospheric and oceanic forcing we tune our model to reproduce the observed frontal changes of JI during 1990-2014. We identify two major accelerations. The first occurs in 1998, and is triggered by moderate thinning prior to 1998. The second acceleration, which starts in 2003 and peaks in summer 2004, is triggered by the final breakup of the floating tongue, which generates a reduction in buttressing at the JI terminus. This results in further thinning, and as the slope steepens inland, sustained high velocities have been observed at JI over the last decade. As opposed to other regions on the Greenland Ice Sheet (GrIS), where dynamically induced mass loss has slowed down over recent years, both modelled and observed results for JI suggest a continuation of the acceleration in mass loss. Further, we find that our model is not able to capture the 2012 peak in the observed velocities. Our analysis suggests that the 2012 acceleration of JI is likely the result of an exceptionally long melt season dominated by extreme melt events. Considering that such extreme surface melt events are expected to intensify in the future, our findings suggest that the 21st century projections of the GrIS mass loss and the future sea level rise may be larger than predicted by existing modelling results.

  17. The Challenge of Incorporating Charged Dust in the Physics of Flowing Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Russell, C. T.; Ma, Y.; Lai, H.; Jian, L.; Toth, G.

    2013-12-01

    The presence of two oppositely charged species with very different mass ratios leads to interesting physical processes and difficult numerical simulations. The reconnection problem is a classic example of this principle with a proton-electron mass ratio of 1836, but it is not the only example. Increasingly we are discovering situations in which heavy, electrically charged dust particles are major players in a plasma interaction. The mass of a 1mm dust particle is about 2000 proton masses and of a 10 mm dust particle about 2 million proton masses. One example comes from planetary magnetospheres. Charged dust pervades Enceladus' southern plume. The saturnian magnetospheric plasma flows through this dusty plume interacting with the charged dust and ionized plume gas. Multiple wakes are seen downstream. The flow is diverted in one direction. The field aligned-current systems are elsewhere. How can these two wake features be understood? Next we have an example from the solar wind. When asteroids collide in a disruptive collision, the solar wind strips the nano-scale charged dust from the debris forming a dusty plasma cloud that may be over 106km in extent and containing over 100 million kg of dust accelerated to the solar wind speed. How does this occur, especially as rapidly as it appears to happen? In this paper we illustrate a start on understanding these phenomena using multifluid MHD simulations but these simulations are only part of the answer to this complex problem that needs attention from a broader range of the community.

  18. Local expansion flows of galaxies: quantifying acceleration effect of dark energy

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.

    2013-08-01

    The nearest expansion flow of galaxies observed around the Local group is studied as an archetypical example of the newly discovered local expansion flows around groups and clusters of galaxies in the nearby Universe. The flow is accelerating due to the antigravity produced by the universal dark energy background. We introduce a new acceleration measure of the flow which is the dimensionless ``acceleration parameter" Q (x) = x - x-2 depending on the normalized distance x only. The parameter is zero at the zero-gravity distance x = 1, and Q(x) ∝ x, when x ≫ 1. At the distance x = 3, the parameter Q = 2.9. Since the expansion flows have a self-similar structure in normalized variables, we expect that the result is valid as well for all the other expansion flows around groups and clusters of galaxies on the spatial scales from ˜ 1 to ˜ 10 Mpc everywhere in the Universe.

  19. Increased Brownian Force Noise from Molecular Impacts in a Constrained Volume

    NASA Astrophysics Data System (ADS)

    Cavalleri, A.; Ciani, G.; Dolesi, R.; Heptonstall, A.; Hueller, M.; Nicolodi, D.; Rowan, S.; Tombolato, D.; Vitale, S.; Wass, P. J.; Weber, W. J.

    2009-10-01

    We report on residual-gas damping of the motion of a macroscopic test mass enclosed in a nearby housing in the molecular flow regime. The damping coefficient, and thus the associated thermal force noise, is found to increase significantly when the distance between the test mass and surrounding walls is smaller than the test mass itself. The effect has been investigated with two torsion pendulums of different geometry and has been modeled in a numerical simulation whose predictions are in good agreement with the measurements. Relevant to a wide variety of small-force experiments, the residual-gas force noise power for the test masses in the LISA gravitational wave observatory is roughly a factor 15 larger than in an infinite gas volume, though still compatible with the target acceleration noise of 3fms-2Hz-1/2 at the foreseen pressure below 10-6Pa.

  20. On the Existence of Step-To-Step Breakpoint Transitions in Accelerated Sprinting

    PubMed Central

    McGhie, David; Danielsen, Jørgen; Sandbakk, Øyvind; Haugen, Thomas

    2016-01-01

    Accelerated running is characterised by a continuous change of kinematics from one step to the next. It has been argued that breakpoints in the step-to-step transitions may occur, and that these breakpoints are an essential characteristic of dynamics during accelerated running. We examined this notion by comparing a continuous exponential curve fit (indicating continuity, i.e., smooth transitions) with linear piecewise fitting (indicating breakpoint). We recorded the kinematics of 24 well trained sprinters during a 25 m sprint run with start from competition starting blocks. Kinematic data were collected for 24 anatomical landmarks in 3D, and the location of centre of mass (CoM) was calculated from this data set. The step-to-step development of seven variables (four related to CoM position, and ground contact time, aerial time and step length) were analysed by curve fitting. In most individual sprints (in total, 41 sprints were successfully recorded) no breakpoints were identified for the variables investigated. However, for the mean results (i.e., the mean curve for all athletes) breakpoints were identified for the development of vertical CoM position, angle of acceleration and distance between support surface and CoM. It must be noted that for these variables the exponential fit showed high correlations (r2>0.99). No relationship was found between the occurrences of breakpoints for different variables as investigated using odds ratios (Mantel-Haenszel Chi-square statistic). It is concluded that although breakpoints regularly appear during accelerated running, these are not the rule and thereby unlikely a fundamental characteristic, but more likely an expression of imperfection of performance. PMID:27467387

  1. A mass filter based on an accelerating traveling wave.

    PubMed

    Wiedenbeck, Michael; Kasemset, Bodin; Kasper, Manfred

    2008-01-01

    We describe a novel mass filtering concept based on the acceleration of a pulsed ion beam through a stack of electrostatic plates. A precisely controlled traveling wave generated within such an ion guide will induce a mass-selective ion acceleration, with mass separation ultimately accomplished via a simple energy-filtering system. Crucial for successful filtering is that the velocity with which the traveling wave passes through the ion guide must be dynamically controlled in order to accommodate the acceleration of the target ion species. Mass selection is determined by the velocity and acceleration with which the wave traverses the ion guide, whereby the target species will acquire a higher kinetic energy than all other lighter as well as heaver species. Finite element simulations of this design demonstrate that for small masses a mass resolution M/DeltaM approximately 1000 can be achieved within an electrode stack containing as few as 20 plates. Some of the possible advantages and drawbacks which distinguish this concept from established mass spectrometric technologies are discussed.

  2. Changing pattern of ice flow and mass balance for glaciers discharging into the Larsen A and B embayments, Antarctic Peninsula, 2011 to 2016

    NASA Astrophysics Data System (ADS)

    Rott, Helmut; Abdel Jaber, Wael; Wuite, Jan; Scheiblauer, Stefan; Floricioiu, Dana; Melchior van Wessem, Jan; Nagler, Thomas; Miranda, Nuno; van den Broeke, Michiel R.

    2018-04-01

    We analysed volume change and mass balance of outlet glaciers on the northern Antarctic Peninsula over the periods 2011 to 2013 and 2013 to 2016, using high-resolution topographic data from the bistatic interferometric radar satellite mission TanDEM-X. Complementary to the geodetic method that applies DEM differencing, we computed the net mass balance of the main outlet glaciers using the mass budget method, accounting for the difference between the surface mass balance (SMB) and the discharge of ice into an ocean or ice shelf. The SMB values are based on output of the regional climate model RACMO version 2.3p2. To study glacier flow and retrieve ice discharge we generated time series of ice velocity from data from different satellite radar sensors, with radar images of the satellites TerraSAR-X and TanDEM-X as the main source. The study area comprises tributaries to the Larsen A, Larsen Inlet and Prince Gustav Channel embayments (region A), the glaciers calving into the Larsen B embayment (region B) and the glaciers draining into the remnant part of the Larsen B ice shelf in Scar Inlet (region C). The glaciers of region A, where the buttressing ice shelf disintegrated in 1995, and of region B (ice shelf break-up in 2002) show continuing losses in ice mass, with significant reduction of losses after 2013. The mass balance numbers for the grounded glacier area of region A are -3.98 ± 0.33 Gt a-1 from 2011 to 2013 and -2.38 ± 0.18 Gt a-1 from 2013 to 2016. The corresponding numbers for region B are -5.75 ± 0.45 and -2.32 ± 0.25 Gt a-1. The mass balance in region C during the two periods was slightly negative, at -0.54 ± 0.38 Gt a-1 and -0.58 ± 0.25 Gt a-1. The main share in the overall mass losses of the region was contributed by two glaciers: Drygalski Glacier contributing 61 % to the mass deficit of region A, and Hektoria and Green glaciers accounting for 67 % to the mass deficit of region B. Hektoria and Green glaciers accelerated significantly in 2010-2011, triggering elevation losses up to 19.5 m a-1 on the lower terminus during the period 2011 to 2013 and resulting in a mass balance of -3.88 Gt a-1. Slowdown of calving velocities and reduced calving fluxes in 2013 to 2016 coincided with years in which ice mélange and sea ice cover persisted in proglacial fjords and bays during summer.

  3. Numerical Simulations of Wind Accretion in Symbiotic Binaries

    NASA Astrophysics Data System (ADS)

    de Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-08-01

    About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10-4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent on the mass loss from the AGB star. Our simulations of gravitationally focused wind accretion in symbiotic binaries show the formation of stream flows and enhanced accretion rates onto the compact component. We conclude that mass transfer through a focused wind is an important mechanism in wind accreting interacting binaries and can have a significant impact on the evolution of the binary itself and the individual components.

  4. A robust and fast method of sampling and analysis of delta13C of dissolved inorganic carbon in ground waters.

    PubMed

    Spötl, Christoph

    2005-09-01

    The stable carbon isotopic composition of dissolved inorganic carbon (delta13C(DIC)) is traditionally determined using either direct precipitation or gas evolution methods in conjunction with offline gas preparation and measurement in a dual-inlet isotope ratio mass spectrometer. A gas evolution method based on continuous-flow technology is described here, which is easy to use and robust. Water samples (100-1500 microl depending on the carbonate alkalinity) are injected into He-filled autosampler vials in the field and analysed on an automated continuous-flow gas preparation system interfaced to an isotope ratio mass spectrometer. Sample analysis time including online preparation is 10 min and overall precision is 0.1 per thousand. This method is thus fast and can easily be automated for handling large sample batches.

  5. Development of high efficiency ball-bearing turbocharger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyashita, K.; Kurasawa, M.; Matsuoka, H.

    1987-01-01

    Turbochargers have become very popular on passenger cars since the first mass-produced turbocharged passenger cars were put on market in Japan in 1979. Turbo lag is one of the most serious problem since the first mass-production started. Several new technologies such as a variable geometry turbocharger, ceramic turbocharger, etc. have been introduced to improve acceleration performance. A variable geometry turbocharger changes the area of gas flow passage and increases exhaust gas speed at low engine speed. A ceramic turbocharger reduces inertia moment of a turbine wheel and shaft. Turbocharger mechanical efficiency has equal importance as compressor efficiency and turbine efficiency.more » This paper describes the test results of ball bearing turbochargers.« less

  6. Flow induced protein nucleation: Insulin oligomerization under shear.

    NASA Astrophysics Data System (ADS)

    Dexter, Andrew; Azadani, Ali; Sorci, Mirco; Belfort, Georges; Hirsa, Amir

    2007-11-01

    A large number of diseases are associated with protein aggregation and misfolding, such as Alzheimer's, Parkinson's and human prion diseases such as Creutzveld-Jakob disease. Characteristic of these diseases is the presence of amyloid fibrils and their precursors, oligomers and protofibrils. Considerable evidence exists that a shearing flow strongly influences amyloid formation both in vitro and in vivo. Furthermore, the stability of protein-based pharmaceuticals is essential for conventional therapeutic preparations and drug delivery systems. By studying the nucleation and growth of insulin fibrils in a well-defined flow system, we expect to identify the flow conditions that impact protein aggregation kinetics and which lead to protein destabilization. The present flow system consists of an annular region bounded by stationary inner and outer cylinders and is driven by rotation of the floor. Preliminary results indicate that a continuous shearing flow can accelerate the aggregation process. The interfacial shear viscosity was found to drastically increase during aggregation and appears to be a useful parameter to probe protein oligomerization and the effects of flow.

  7. Star Formation Rates in Cooling Flow Clusters: A UV Pilot Study with Archival XMM-Newton Optical Monitor Data

    NASA Technical Reports Server (NTRS)

    Hicks, A. K.; Mushotzky, R.

    2006-01-01

    We have analyzed XMM-Newton Optical Monitor (OM) UV (180-400 nm) data for a sample of 33 galaxies. 30 are cluster member galaxies, and nine of these are central cluster galaxies (CCGs) in cooling flow clusters having mass deposition rates which span a range of 8 - 525 Solar Mass/yr. By comparing the ratio of UV to 2MASS J band fluxes, we find a significant UV excess in many, but not all, cooling flow CCGs, a finding consistent with the outcome of previous studies based on optical imaging data (McNamara & O'Connell 1989; Cardiel, Gorgas, & Aragon-Salamanca 1998; Crawford et al. 1999). This UV excess is a direct indication of the presence of young massive stars, and therefore recent star formation, in these galaxies. Using the Starburst99 spectral energy distribution (SED) model of continuous star formation over a 900 Myr period, we derive star formation rates of 0.2 - 219 solar Mass/yr for the cooling flow sample. For 2/3 of this sample it is possible to equate Chandra/XMM cooling flow mass deposition rates with UV inferred star formation rates, for a combination of starburst lifetime and IMF slope. This is a pilot study of the well populated XMM UV cluster archive and a more extensive follow up study is currently underway.

  8. Dynamics of temporal variations in phonatory flow.

    PubMed

    Krane, Michael H; Barry, Michael; Wei, Timothy

    2010-07-01

    This paper addresses the dynamic relevance of time variations of phonatory airflow, commonly neglected under the quasisteady phonatory flow assumption. In contrast to previous efforts, which relied on direct measurement of glottal impedance, this work uses spatially and temporally resolved measurements of the velocity field to estimate the unsteady and convective acceleration terms in the unsteady Bernoulli equation. Theoretical considerations suggest that phonatory flow is inherently unsteady when two related conditions apply: (1) that the unsteady and convective accelerations are commensurate, and (2) that the inertia of the glottal jet is non-negligible. Acceleration waveforms, computed from experimental data, show that unsteady and convective accelerations to be the same order of magnitude, throughout the cycle, and that the jet flow contributes significantly to the unsteady acceleration. In the middle of the cycle, however, jet inertia is negligible because the convective and unsteady accelerations nearly offset one another in the jet region. These results, consistent with previous findings treating quasisteady phonatory flow, emphasize that unsteady acceleration cannot be neglected during the final stages of the phonation cycle, during which voice sound power and spectral content are largely determined. Furthermore, glottal jet dynamics must be included in any model of phonatory airflow.

  9. Dynamics of temporal variations in phonatory flow1

    PubMed Central

    Krane, Michael H.; Barry, Michael; Wei, Timothy

    2010-01-01

    This paper addresses the dynamic relevance of time variations of phonatory airflow, commonly neglected under the quasisteady phonatory flow assumption. In contrast to previous efforts, which relied on direct measurement of glottal impedance, this work uses spatially and temporally resolved measurements of the velocity field to estimate the unsteady and convective acceleration terms in the unsteady Bernoulli equation. Theoretical considerations suggest that phonatory flow is inherently unsteady when two related conditions apply: (1) that the unsteady and convective accelerations are commensurate, and (2) that the inertia of the glottal jet is non-negligible. Acceleration waveforms, computed from experimental data, show that unsteady and convective accelerations to be the same order of magnitude, throughout the cycle, and that the jet flow contributes significantly to the unsteady acceleration. In the middle of the cycle, however, jet inertia is negligible because the convective and unsteady accelerations nearly offset one another in the jet region. These results, consistent with previous findings treating quasisteady phonatory flow, emphasize that unsteady acceleration cannot be neglected during the final stages of the phonation cycle, during which voice sound power and spectral content are largely determined. Furthermore, glottal jet dynamics must be included in any model of phonatory airflow. PMID:20649231

  10. Development of piezoelectric bistable energy harvester based on buckled beam with axially constrained end condition for human motion

    NASA Astrophysics Data System (ADS)

    Eltanany, Ali M.; Yoshimura, Takeshi; Fujimura, Norifumi; Ebied, Mohamed R.; Ali, Mohamed G. S.

    2017-10-01

    In this study, we aim to examine the triggering force for an efficient snap-through solution of hand shaking vibrations of a piezoelectric bistable energy harvester. The proposed structure works at very low frequencies with nearly continuous periodic vibrations. The static characterizations are presented as well as the dynamic characterizations based on the phase diagrams of velocity vs displacement, voltage vs displacement, and voltage vs input acceleration. The mass attached to the bistable harvester plays an important role in determining the acceleration needed for the snap-through action, and the explanation for this role is complex because of mass dependence on frequency/amplitude vibration. Various hand shaking vibration tests are performed to demonstrate the advantage of the proposed structure in harvesting energy from hand shaking vibration. The minimum input acceleration for snap-through action was 11.59 m/s2 with peaks of 15.76 and 2 m/s2 in the frequency range of 1.3-2.7 Hz, when an attached mass of 14.6 g is used. The maximum generated power at a buckling state of 0.5 mm is 11.3 µW for the test structure at 26 g. The experimental results obtained in this study indicate that power output harvesting of slow hand shaking vibrations at 10 µW and a load resistance of 1 MΩ.

  11. Inviscid linear stability analysis of two fluid columns of different densities subject to gravity

    NASA Astrophysics Data System (ADS)

    Prathama, Aditya; Pantano, Carlos

    2017-11-01

    We investigate the inviscid linear stability of vertical interface between two fluid columns of different densities under the influence of gravity. In this flow arrangement, the two free streams are continuously accelerating, in contrast to the canonical Kelvin-Helmholtz or Rayleigh-Taylor instabilities whose base flows are stationary (or weakly time dependent). In these classical cases, the temporal evolution of the interface can be expressed as Fourier or Laplace solutions in time. This is not possible in our case; instead, we employ the initial value problem method to solve the equations analytically. The results, expressed in terms of the well-known parabolic cylinder function, indicate that the instability grows as the exponential of a quadratic function of time. The analysis shows that in this accelerating Kelvin-Helmholtz configuration, the interface is unconditionally unstable at all wave modes, despite the presence of surface tension. Department of Energy, National Nuclear Security Administration (Award No. DE-NA0002382) and the California Institute of Technology.

  12. A modified Dodge algorithm for the parabolized Navier-Stokes equations and compressible duct flows

    NASA Technical Reports Server (NTRS)

    Cooke, C. H.; Dwoyer, D. M.

    1983-01-01

    A revised version of Dodge's split-velocity method for numerical calculation of compressible duct flow was developed. The revision incorporates balancing of mass flow rates on each marching step in order to maintain front-to-back continuity during the calculation. The (checkerboard) zebra algorithm is applied to solution of the three dimensional continuity equation in conservative form. A second-order A-stable linear multistep method is employed in effecting a marching solution of the parabolized momentum equations. A checkerboard iteration is used to solve the resulting implicit nonlinear systems of finite-difference equations which govern stepwise transition. Qualitative agreement with analytical predictions and experimental results was obtained for some flows with well-known solutions. Previously announced in STAR as N82-16363

  13. Electrophoresis technology

    NASA Technical Reports Server (NTRS)

    Snyder, R. S.

    1985-01-01

    A new high resolution apparatus designed for space was built as a laboratory prototype. Using a moving wall with a low zeta potential coating, the major sources of flow distortion for an electrophoretic sample stream are removed. Highly resolved fractions, however, will only be produced in space because of the sensitivity of this chamber to buoyancy-induced convection in the laboratory. The second and third flights of the McDonnell Douglas Astronautics Corporation continuous flow electrophoresis system carried samples developed at MSFC intended to evaluate the broad capabilities of free flow electrophoresis in a reduced gravity environment. Biological model materials, hemoglobin and polystyrene latex microspheres, were selected because of their past use as electrophoresis standards and as visible markers for fluid flow due to electroosmosis, spacecraft acceleration or other factors. The dependence of the separation resolution on the properties of the sample and its suspension solution was assessed.

  14. Electrostatic acceleration of helicon plasma using a cusped magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harada, S.; Mitsubishi Heavy Industry ltd., 16-5 Konan 2-chome, Minato-ku, Tokyo 108-8215; Baba, T.

    2014-11-10

    The electrostatic acceleration of helicon plasma is investigated using an electrostatic potential exerted between the ring anode at the helicon source exit and an off-axis hollow cathode in the downstream region. In the downstream region, the magnetic field for the helicon source, which is generated by a solenoid coil, is modified using permanent magnets and a yoke, forming an almost magnetic field-free region surrounded by an annular cusp field. Using a retarding potential analyzer, two primary ion energy peaks, where the lower peak corresponds to the space potential and the higher one to the ion beam, are detected in themore » field-free region. Using argon as the working gas with a helicon power of 1.5 kW and a mass flow rate of 0.21 mg/s, the ion beam energy is on the order of the applied acceleration voltage. In particular, with an acceleration voltage lower than 150 V, the ion beam energy even exceeds the applied acceleration voltage by an amount on the order of the electron thermal energy at the exit of the helicon plasma source. The ion beam energy profile strongly depends on the helicon power and the applied acceleration voltage. Since by this method the whole working gas from the helicon plasma source can, in principle, be accelerated, this device can be applied as a noble electrostatic thruster for space propulsion.« less

  15. Electrostatic acceleration of helicon plasma using a cusped magnetic field

    NASA Astrophysics Data System (ADS)

    Harada, S.; Baba, T.; Uchigashima, A.; Yokota, S.; Iwakawa, A.; Sasoh, A.; Yamazaki, T.; Shimizu, H.

    2014-11-01

    The electrostatic acceleration of helicon plasma is investigated using an electrostatic potential exerted between the ring anode at the helicon source exit and an off-axis hollow cathode in the downstream region. In the downstream region, the magnetic field for the helicon source, which is generated by a solenoid coil, is modified using permanent magnets and a yoke, forming an almost magnetic field-free region surrounded by an annular cusp field. Using a retarding potential analyzer, two primary ion energy peaks, where the lower peak corresponds to the space potential and the higher one to the ion beam, are detected in the field-free region. Using argon as the working gas with a helicon power of 1.5 kW and a mass flow rate of 0.21 mg/s, the ion beam energy is on the order of the applied acceleration voltage. In particular, with an acceleration voltage lower than 150 V, the ion beam energy even exceeds the applied acceleration voltage by an amount on the order of the electron thermal energy at the exit of the helicon plasma source. The ion beam energy profile strongly depends on the helicon power and the applied acceleration voltage. Since by this method the whole working gas from the helicon plasma source can, in principle, be accelerated, this device can be applied as a noble electrostatic thruster for space propulsion.

  16. Efficient production of high-energy nonthermal particles during magnetic reconnection in a magnetically dominated ion-electron plasma

    DOE PAGES

    Guo, Fan; Li, Xiaocan; Li, Hui; ...

    2016-02-03

    Magnetic reconnection is a leading mechanism for dissipating magnetic energy and accelerating nonthermal particles in Poynting-flux-dominated flows. We investigate nonthermal particle acceleration during magnetic reconnection in a magnetically dominated ion–electron plasma using fully kinetic simulations. For an ion–electron plasma with a total magnetization ofmore » $${\\sigma }_{0}={B}^{2}/(4\\pi n({m}_{i}+{m}_{e}){c}^{2})$$, the magnetization for each species is $${\\sigma }_{i}\\sim {\\sigma }_{0}$$ and $${\\sigma }_{e}\\sim ({m}_{i}/{m}_{e}){\\sigma }_{0}$$, respectively. We have studied the magnetically dominated regime by varying σe = 103–105 with initial ion and electron temperatures $${T}_{i}={T}_{e}=5-20{m}_{e}{c}^{2}$$ and mass ratio $${m}_{i}/{m}_{e}=1-1836$$. Our results demonstrate that reconnection quickly establishes power-law energy distributions for both electrons and ions within several (2–3) light-crossing times. For the cases with periodic boundary conditions, the power-law index is $$1\\lt s\\lt 2$$ for both electrons and ions. The hard spectra limit the power-law energies for electrons and ions to be $${\\gamma }_{{be}}\\sim {\\sigma }_{e}$$ and $${\\gamma }_{{bi}}\\sim {\\sigma }_{i}$$, respectively. The main acceleration mechanism is a Fermi-like acceleration through the drift motions of charged particles. When comparing the spectra for electrons and ions in momentum space, the spectral indices sp are identical as predicted in Fermi acceleration. We also find that the bulk flow can carry a significant amount of energy during the simulations. Finally, we discuss the implication of this study in the context of Poynting-flux dominated jets and pulsar winds, especially the applications for explaining nonthermal high-energy emissions.« less

  17. Predicting the Rate of River Bank Erosion Caused by Large Wood Log

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Rutherfurd, I.; Ghisalberti, M.

    2016-12-01

    When a single tree falls into a river channel, flow is deflected and accelerated between the tree roots and the bank face, increasing shear stress and scouring the bank. The scallop shaped erosion increases the diversity of the channel morphology, but also causes concern for adjacent landholders. Concern about increased bank erosion is one of the main reasons for large wood to still be removed from channels in SE Australia. Further, the hydraulic effect of many logs in the channel can reduce overall bank erosion rates. Although both phenomena have been described before, this research develops a hydraulic model that estimates their magnitude, and tests and calibrates this model with flume and field measurements, with logs with various configurations and sizes. Specifically, the model estimates the change in excess shear stress on the bank associated . The model addresses the effect of the log angle, distance from bank, and log size and flow condition by solving the mass continuity and energy conservation between the cross section at the approaching flow and contracted flow. Then, we evaluate our model against flume experiment preformed with semi-realistic log models to represent logs in different sizes and decay stages by comparing the measured and simulated velocity increase in the gap between the log and the bank. The log angle, distance from bank, and flow condition are systemically varied for each log model during the experiment. Final, the calibrated model is compared with the field data collected in anabranching channels of Murray River in SE Australia where there are abundant instream logs and regulated and consistent high flow for irrigation. Preliminary results suggest that a log can significantly increase the shear stress on the bank, especially when it positions perpendicular to the flow. The shear stress increases with the log angle in a rising curve (The log angle is the angle between log trunk and flow direction. 0o means log is parallel to flow with canopy pointing downstream). However, the shear stress shows insignificant changes as the log is being moved close to the bank.

  18. Dissolution of Si in Molten Al with Gas Injection

    NASA Astrophysics Data System (ADS)

    Seyed Ahmadi, Mehran

    Silicon is an essential component of many aluminum alloys, as it imparts a range of desirable characteristics. However, there are considerable practical difficulties in dissolving solid Si in molten Al, because the dissolution process is slow, resulting in material and energy losses. It is thus essential to examine Si dissolution in molten Al, to identify means of accelerating the process. This thesis presents an experimental study of the effect of Si purity, bath temperature, fluid flow conditions, and gas stirring on the dissolution of Si in molten Al, plus the results of physical and numerical modeling of the flow to corroborate the experimental results. The dissolution experiments were conducted in a revolving liquid metal tank to generate a bulk velocity, and gas was introduced into the melt using top lance injection. Cylindrical Si specimens were immersed into molten Al for fixed durations, and upon removal the dissolved Si was measured. The shape and trajectory of injected bubbles were examined by means of auxiliary water experiments and video recordings of the molten Al free surface. The gas-agitated liquid was simulated using the commercial software FLOW-3D. The simulation results provide insights into bubble dynamics and offer estimates of the fluctuating velocities within the Al bath. The experimental results indicate that the dissolution rate of Si increases in tandem with the melt temperature and bulk velocity. A higher bath temperature increases the solubility of Si at the solid/liquid interface, resulting in a greater driving force for mass transfer, and a higher liquid velocity decreases the resistance to mass transfer via a thinner mass boundary layer. Impurities (with lower diffusion coefficients) in the form of inclusions obstruct the dissolution of the Si main matrix. Finally, dissolution rate enhancement was observed by gas agitation. It is postulated that the bubble-induced fluctuating velocities disturb the mass boundary layer, which increases the mass transfer rate. Correlations derived for mass transfer from solids in liquids under various operating conditions were applied to the Al--Si system. A new correlation for combined natural and forced convection mass transfer from vertical cylinders in cross flow is presented, and a modification is proposed to take into account free stream turbulence in a correlation for forced convection mass transfer from vertical cylinders in cross flow.

  19. Seismic responses and controlling factors of Miocene deepwater gravity-flow deposits in Block A, Lower Congo Basin

    NASA Astrophysics Data System (ADS)

    Wang, Linlin; Wang, Zhenqi; Yu, Shui; Ngia, Ngong Roger

    2016-08-01

    The Miocene deepwater gravity-flow sedimentary system in Block A of the southwestern part of the Lower Congo Basin was identified and interpreted using high-resolution 3-D seismic, drilling and logging data to reveal development characteristics and main controlling factors. Five types of deepwater gravity-flow sedimentary units have been identified in the Miocene section of Block A, including mass transport, deepwater channel, levee, abandoned channel and sedimentary lobe deposits. Each type of sedimentary unit has distinct external features, internal structures and lateral characteristics in seismic profiles. Mass transport deposits (MTDs) in particular correspond to chaotic low-amplitude reflections in contact with mutants on both sides. The cross section of deepwater channel deposits in the seismic profile is in U- or V-shape. The channel deposits change in ascending order from low-amplitude, poor-continuity, chaotic filling reflections at the bottom, to high-amplitude, moderate to poor continuity, chaotic or sub-parallel reflections in the middle section and to moderate-weak amplitude, good continuity, parallel or sub-parallel reflections in the upper section. The sedimentary lobes are laterally lobate, which corresponds to high-amplitude, good-continuity, moundy reflection signatures in the seismic profile. Due to sediment flux, faults, and inherited terrain, few mass transport deposits occur in the northeastern part of the study area. The front of MTDs is mainly composed of channel-levee complex deposits, while abandoned-channel and lobe-deposits are usually developed in high-curvature channel sections and the channel terminals, respectively. The distribution of deepwater channel, levee, abandoned channel and sedimentary lobe deposits is predominantly controlled by relative sea level fluctuations and to a lesser extent by tectonism and inherited terrain.

  20. Micro environmental sensing device

    DOEpatents

    Polosky, Marc A.; Lukens, Laurance L.

    2006-05-02

    A microelectromechanical (MEM) acceleration switch is disclosed which includes a proof mass flexibly connected to a substrate, with the proof mass being moveable in a direction substantially perpendicular to the substrate in response to a sensed acceleration. An electrode on the proof mass contacts one or more electrodes located below the proof mass to provide a switch closure in response to the sensed acceleration. Electrical latching of the switch in the closed position is possible with an optional latching electrode. The MEM acceleration switch, which has applications for use as an environmental sensing device, can be fabricated using micromachining.

  1. STANDING SHOCK INSTABILITY IN ADVECTION-DOMINATED ACCRETION FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, Truong; Wood, Kent S.; Wolff, Michael T.

    2016-03-10

    Depending on the values of the energy and angular momentum per unit mass in the gas supplied at large radii, inviscid advection-dominated accretion flows can display velocity profiles with either preshock deceleration or preshock acceleration. Nakayama has shown that these two types of flow configurations are expected to have different stability properties. By employing the Chevalier and Imamura linearization method and the Nakayama instability boundary conditions, we discover that there are regions of parameter space where disks/shocks with outflows can be stable or unstable. In regions of instability, we find that preshock deceleration is always unstable to the zeroth mode withmore » zero frequency of oscillation, but is always stable to the fundamental mode and overtones. Furthermore, we also find that preshock acceleration is always unstable to the zeroth mode and that the fundamental mode and overtones become increasingly less stable as the shock location moves away from the horizon when the disk half-height expands above ∼12 gravitational radii at the shock radius. In regions of stability, we demonstrate the zeroth mode to be stable for the velocity profiles that exhibit preshock acceleration and deceleration. Moreover, for models that are linearly unstable, our model suggests the possible existence of quasi-periodic oscillations (QPOs) with ratios 2:3 and 3:5. These ratios are believed to occur in stellar and supermassive black hole candidates, for example, in GRS 1915+105 and Sgr A*, respectively. We expect that similar QPO ratios also exist in regions of stable shocks.« less

  2. Measurement of Newton's constant using a torsion balance with angular acceleration feedback.

    PubMed

    Gundlach, J H; Merkowitz, S M

    2000-10-02

    We measured Newton's gravitational constant G using a new torsion balance method. Our technique greatly reduces several sources of uncertainty compared to previous measurements: (1) It is insensitive to anelastic torsion fiber properties; (2) a flat plate pendulum minimizes the sensitivity due to the pendulum density distribution; (3) continuous attractor rotation reduces background noise. We obtain G = (6.674215+/-0.000092) x 10(-11) m3 kg(-1) s(-2); the Earth's mass is, therefore, M = (5.972245+/-0.000082) x 10(24) kg and the Sun's mass is M = (1.988435+/-0.000027) x 10(30) kg.

  3. Continuous Flow Liquid Microjunction Surface Sampling Probe Connected On-line with HPLC/MS for Spatially Resolved Analysis of Small Molecules and Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Berkel, Gary J; Kertesz, Vilmos

    RATIONALE: A continuous flow liquid microjunction surface sampling probe extracts soluble material from surfaces for direct ionization and detection by MS. Demonstrated here is the on-line coupling of such a probe with HPLC/MS enabling extraction, separation and detection of small molecules and proteins from surfaces in a spatially resolved (~0.5 mm diameter spots) manner. Methods: A continuous flow liquid microjunction surface sampling probe was connected to a 6-port, 2-position valve for extract collection and injection to an HPLC column. A QTRAP 5500 hybrid triple quadrupole linear ion trap equipped with a Turbo V ion source operated in positive ESI modemore » was used for all experiments. System operation was tested with extraction, separation and detection of propranolol and associated metabolites from drug dosed tissues and proteins from dried sheep blood spots on paper. Results: Confirmed in the tissue were the parent drug and two different hydroxypropranolol glucuronides. The mass spectrometric response for these compounds from different locations in the liver showed an increase with increasing extraction time (5, 20 and 40 s extractions). For on-line separation and detection/identification of extracted proteins from dried sheep blood spots, two major protein peaks dominated the chromatogram and could be correlated with the expected masses for the hemoglobin and chains. Conclusions: Spatially resolved sampling, separation, and detection of small molecules and proteins from surfaces can be accomplished using a continuous flow liquid microjunction surface sampling probe coupled on-line with HPLC/MS detection.« less

  4. The effects of the stellar wind and orbital motion on the jets of high-mass microquasars

    NASA Astrophysics Data System (ADS)

    Bosch-Ramon, V.; Barkov, M. V.

    2016-05-01

    Context. High-mass microquasar jets propagate under the effect of the wind from the companion star, and the orbital motion of the binary system. The stellar wind and the orbit may be dominant factors determining the jet properties beyond the binary scales. Aims: This is an analytical study, performed to characterise the effects of the stellar wind and the orbital motion on the jet properties. Methods: Accounting for the wind thrust transferred to the jet, we derive analytical estimates to characterise the jet evolution under the impact of the stellar wind. We include the Coriolis force effect, induced by orbital motion and enhanced by the wind's presence. Large-scale evolution of the jet is sketched, accounting for wind-to-jet thrust transfer, total energy conservation, and wind-jet flow mixing. Results: If the angle of the wind-induced jet bending is larger than its half-opening angle, the following is expected: (I) a strong recollimation shock; (II) bending against orbital motion, caused by Coriolis forces and enhanced by the wind presence; and (III) non-ballistic helical propagation further away. Even if disrupted, the jet can re-accelerate due to ambient pressure gradients, but wind entrainment can weaken this acceleration. On large scales, the opening angle of the helical structure is determined by the wind-jet thrust relation, and the wind-loaded jet flow can be rather slow. Conclusions: The impact of stellar winds on high-mass microquasar jets can yield non-ballistic helical jet trajectories, jet partial disruption and wind mixing, shocks, and possibly non-thermal emission. Among other observational diagnostics, such as radiation variability at any band, the radio morphology on milliarcsecond scales can be informative on the wind-jet interaction.

  5. Hypervelocity atmospheric flight: Real gas flow fields

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1990-01-01

    Flight in the atmosphere is examined from the viewpoint of including real gas phenomena in the flow field about a vehicle flying at hypervelocity. That is to say, the flow field is subject not only to compressible phenomena, but is dominated by energetic phenomena. There are several significant features of such a flow field. Spatially, its composition can vary by both chemical and elemental species. The equations which describe the flow field include equations of state and mass, species, elemental, and electric charge continuity; momentum; and energy equations. These are nonlinear, coupled, partial differential equations that were reduced to a relatively compact set of equations of a self-consistent manner (which allows mass addition at the surface at a rate comparable to the free-stream mass flux). The equations and their inputs allow for transport of these quantities relative to the mass-averaged behavior of the flow field. Thus transport of mass by chemical, thermal, pressure, and forced diffusion; transport of momentum by viscosity; and transport of energy by conduction, chemical considerations, viscosity, and radiative transfer are included. The last of these complicate the set of equations by making the energy equation a partial integrodifferential equation. Each phenomenon is considered and represented mathematically by one or more developments. The coefficients which pertain are both thermodynamically and chemically dependent. Solutions of the equations are presented and discussed in considerable detail, with emphasis on severe energetic flow fields. For hypervelocity flight in low-density environments where gaseous reactions proceed at finite rates, chemical nonequilibrium is considered and some illustrations are presented. Finally, flight where the flow field may be out of equilibrium, both chemically and thermodynamically, is presented briefly.

  6. Hypervelocity atmospheric flight: Real gas flow fields

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1989-01-01

    Flight in the atmosphere is examined from the viewpoint of including real gas phenomena in the flow field about a vehicle flying at hypervelocity. That is to say, the flow field is subject not only to compressible phenomena, but is dominated by energetic phenomena. There are several significant features of such a flow field. Spatially, its composition can vary by both chemical and elemental species. The equations which describe the flow field include equations of state and mass, species, elemental, and electric charge continuity; momentum; and energy equations. These are nonlinear, coupled, partial differential equations that have been reduced to a relatively compact set of equations in a self-consistent manner (which allows mass addition at the surface at a rate comparable to the free-stream mass flux). The equations and their inputs allow for transport of these quantities relative to the mass-average behavior of the flow field. Thus transport of mass by chemical, thermal, pressure, and forced diffusion; transport of momentum by viscosity; and transport of energy by conduction, chemical considerations, viscosity, and radiative transfer are included. The last of these complicate the set of equations by making the energy equations a partial integrodifferential equation. Each phenomenon is considered and represented mathematically by one or more developments. The coefficients which pertain are both thermodynamically and chemically dependent. Solutions of the equations are presented and discussed in considerable detail, with emphasis on severe energetic flow fields. Hypervelocity flight in low-density environments where gaseous reactions proceed at finite rates chemical nonequilibrium is considered, and some illustrations are presented. Finally, flight where the flow field may be out of equilibrium, both chemically and thermodynamically, is presented briefly.

  7. Continuous flow synthesis of ZSM-5 zeolite on the order of seconds

    PubMed Central

    Liu, Zhendong; Okabe, Kotatsu; Anand, Chokkalingam; Yonezawa, Yasuo; Zhu, Jie; Yamada, Hiroki; Endo, Akira; Yanaba, Yutaka; Yoshikawa, Takeshi; Ohara, Koji; Okubo, Tatsuya; Wakihara, Toru

    2016-01-01

    The hydrothermal synthesis of zeolites carried out in batch reactors takes a time so long (typically, on the order of days) that the crystallization of zeolites has long been believed to be very slow in nature. We herein present a synthetic process for ZSM-5, an industrially important zeolite, on the order of seconds in a continuous flow reactor using pressurized hot water as a heating medium. Direct mixing of a well-tuned precursor (90 °C) with the pressurized water preheated to extremely high temperature (370 °C) in the millimeter-sized continuous flow reactor resulted in immediate heating to high temperatures (240–300 °C); consequently, the crystallization of ZSM-5 in a seed-free system proceeded to completion within tens of or even several seconds. These results indicate that the crystallization of zeolites can complete in a period on the order of seconds. The subtle design combining a continuous flow reactor with pressurized hot water can greatly facilitate the mass production of zeolites in the future. PMID:27911823

  8. Drift Mode Accelerometry for Spaceborne Gravity Measurements

    NASA Astrophysics Data System (ADS)

    Conklin, J. W.; Shelley, R.; Chilton, A.; Olatunde, T.; Ciani, G.; Mueller, G.

    2014-12-01

    A drift mode accelerometer is a precision instrument for spacecraft that overcomes much of the acceleration noise and readout dynamic range limitations of traditional electrostatic accelerometers. It has the potential of achieving acceleration noise performance similar to that of drag-free systems over a restricted frequency band without the need for external drag-free control or continuous spacecraft propulsion. Like traditional accelerometers, the drift mode accelerometer contains a high-density test mass surrounded by an electrode housing, which can control and sense all six degrees of freedom of the test mass. Unlike traditional accelerometers, the suspension system is operated with a low duty cycle so that the limiting suspension force noise only acts over brief, known time intervals, which can be accounted for in the data analysis. The readout is performed using a laser interferometer which is immune to the dynamic range limitations of even the best voltage references typically used to determine the inertial acceleration of electrostatic accelerometers. This presentation describes operation and performance modeling for such a device with respect to a low Earth orbiting satellite geodesy mission. Methods for testing the drift mode accelerometer with the University of Florida precision torsion pendulum will also be discussed.

  9. Sediment Vertical Flux in Unsteady Sheet Flows

    NASA Astrophysics Data System (ADS)

    Hsu, T.; Jenkins, J. T.; Liu, P. L.

    2002-12-01

    In models for sediment suspension, two different boundary conditions have been employed at the sediment bed. Either the sediment concentration is given or the vertical flux of sediment is specified. The specification of the latter is usually called the pick-up function. Recently, several developments towards a better understanding of the sediment bed boundary condition have been reported. Nielson et al (Coastal Engineering 2002, 45, p61-68) have indicated a better performance using the sediment vertical flux as the bed boundary condition in comparisons with experimental data. Also, Drake and Calantoni (Journal of Geophysical Research 2001, 106, C9, p19859-19868) have suggested that in the nearshore environment with its various unsteady flow conditions, the appropriate sediment boundary conditions of a large-scale morphology model must consider both the magnitude the free stream velocity and the acceleration of the flow. In this research, a small-scale sheet flow model based on the two-phase theory is implemented to further study these issues. Averaged two-phase continuum equations are presented for concentrated flows of sediment that are driven by strong, fully developed, unsteady turbulent shear flows over a mobile bed. The particle inter-granular stress is modeled using collisional granular flow theory and a two-equation closure for the fluid turbulence is adopted. In the context of the two-phase theory, sediment is transported through the sediment vertical velocity. Using the fully developed sediment phase continuity equation, it can be shown that the vertical velocity of the sediment must vanish when the flow reaches a steady state. In other words, in fully developed conditions, it is the unsteadiness of the flow that induces the vertical motion of the sediment and that changes the sediment concentration profile. Therefore, implementing a boundary condition based on sediment vertical flux is consistent with both the two-phase theory and with the observation that the flow acceleration is an important parameter. In this paper, the vertical flux of sediment is studied under various combinations of free stream velocity, acceleration, and sediment material properties using the two-phase sheet flow model. Some interesting features of sediment dynamics within the sheet, such as time history of sediment vertical velocity, collisional and turbulent suspension mechanisms are presented.

  10. Three-dimensional transient flow of spin-up in a filled cylinder with oblique gravity force

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1995-01-01

    Three-dimensional transient flow profiles of spin-up in a fully liquid filled cylinder from rest with gravity acceleration at various direction are numerically simulated and studied. Particular interests are concentrated on the development of temporary reverse flow zones and Ekman layer right after the impulsive start of spin-up from rest, and decay before the flow reaching to the solid rotation. Relationship of these flow developments and differences in the Reynolds numbers of the flow and its size selection of grid points concerning the numerical instabilities of flow computations are also discussed. In addition to the gravitational acceleration along the axial direction of the cylindrical container, a series of complicated flow profiles accompanied by three-dimensional transient flows with oblique gravitational acceleration has been studies.

  11. Progress on a Rayleigh Scattering Mass Flux Measurement Technique

    NASA Technical Reports Server (NTRS)

    Mielke-Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.; Hirt, Stefanie M.

    2010-01-01

    A Rayleigh scattering diagnostic has been developed to provide mass flux measurements in wind tunnel flows. Spectroscopic molecular Rayleigh scattering is an established flow diagnostic tool that has the ability to provide simultaneous density and velocity measurements in gaseous flows. Rayleigh scattered light from a focused 10 Watt continuous-wave laser beam is collected and fiber-optically transmitted to a solid Fabry-Perot etalon for spectral analysis. The circular interference pattern that contains the spectral information that is needed to determine the flow properties is imaged onto a CCD detector. Baseline measurements of density and velocity in the test section of the 15 cm x 15 cm Supersonic Wind Tunnel at NASA Glenn Research Center are presented as well as velocity measurements within a supersonic combustion ramjet engine isolator model installed in the tunnel test section.

  12. Temperature gradients due to adiabatic plasma expansion in a magnetic nozzle

    NASA Astrophysics Data System (ADS)

    Sheehan, J. P.; Longmier, B. W.; Bering, E. A.; Olsen, C. S.; Squire, J. P.; Ballenger, M. G.; Carter, M. D.; Cassady, L. D.; Díaz, F. R. Chang; Glover, T. W.; Ilin, A. V.

    2014-08-01

    A mechanism for ambipolar ion acceleration in a magnetic nozzle is proposed. The plasma is adiabatic (i.e., does not exchange energy with its surroundings) in the diverging section of a magnetic nozzle so any energy lost by the electrons must be transferred to the ions via the electric field. Fluid theory indicates that the change in plasma potential is proportional to the change in average electron energy. These predictions were compared to measurements in the VX-200 experiment which has conditions conducive to ambipolar ion acceleration. A planar Langmuir probe was used to measure the plasma potential, electron density, and electron temperature for a range of mass flow rates and power levels. Axial profiles of those parameters were also measured, showing consistency with the adiabatic ambipolar fluid theory.

  13. Atmospheric influences on the anomalous 2016 Antarctic sea ice decay

    NASA Astrophysics Data System (ADS)

    Schlosser, Elisabeth; Haumann, F. Alexander; Raphael, Marilyn N.

    2018-03-01

    In contrast to the Arctic, where total sea ice extent (SIE) has been decreasing for the last three decades, Antarctic SIE has shown a small, but significant, increase during the same time period. However, in 2016, an unusually early onset of the melt season was observed; the maximum Antarctic SIE was already reached as early as August rather than the end of September, and was followed by a rapid decrease. The decay was particularly strong in November, when Antarctic SIE exhibited a negative anomaly (compared to the 1979-2015 average) of approximately 2 million km2. ECMWF Interim reanalysis data showed that the early onset of the melt and the rapid decrease in sea ice area (SIA) and SIE were associated with atmospheric flow patterns related to a positive zonal wave number three (ZW3) index, i.e., synoptic situations leading to strong meridional flow and anomalously strong southward heat advection in the regions of strongest sea ice decline. A persistently positive ZW3 index from May to August suggests that SIE decrease was preconditioned by SIA decrease. In particular, in the first third of November northerly flow conditions in the Weddell Sea and the Western Pacific triggered accelerated sea ice decay, which was continued in the following weeks due to positive feedback effects, leading to the unusually low November SIE. In 2016, the monthly mean Southern Annular Mode (SAM) index reached its second lowest November value since the beginning of the satellite observations. A better spatial and temporal coverage of reliable ice thickness data is needed to assess the change in ice mass rather than ice area.

  14. Mathematical Model for Collision-Coalescence Among Inclusions in the Bloom Continuous Caster with M-EMS

    NASA Astrophysics Data System (ADS)

    Lei, Hong; Jiang, Jimin; Yang, Bin; Zhao, Yan; Zhang, Hongwei; Wang, Weixian; Dong, Guiwen

    2018-04-01

    Mathematical simulation is an effective tool to analyze the fluid flow and the inclusion behavior in the bloom continuous caster with mold electromagnetic stirring (M-EMS). The mathematical model is applied to the modeling of magnetic field, flow field, and inclusion field. Due to the introduction of Archimedes force, the collision mechanism and inclusion's slipping velocity should be modified in the inclusion mass and population conservation model. Numerically predicted magnetic field, flow field, and the inclusion spatial distribution conform to the experimental results in the existing literature. Lorentz force plays an important role in the fluid flow, and Archimedes force plays an important role in the inclusion distribution in the continuous caster. Due to Brownian collision, Stokes collision, Archimedes collision, and turbulent collision, the coalescence among inclusions occurs in the bloom continuous caster with M-EMS. Among the four types of collisions, turbulent collision occurs most frequently, followed by Archimedes collision and Stokes collision. The frequency of Brownian collision is several orders of magnitudes smaller and is therefore negligible. The inclusion volume concentration, number density, and characteristic radius exhibit a U-shape in the continuous caster without M-EMS. However, with M-EMS, they exhibit an inverted U-shape.

  15. Simulation of ASTROD I test mass charging due to solar energetic particles and interplanetary electrons

    NASA Astrophysics Data System (ADS)

    Liu, L.; Dong, Y.; Bao, G.; Ni, W.-T.; Shaul, D. N. A.

    2010-01-01

    As ASTROD I travels through space, its test mass will accrue charge due to exposure of the spacecraft to high-energy particles. This test mass charge will result in Coulomb forces between the test mass and the surrounding electrodes. In earlier work, we have used the GEANT 4 toolkit to simulate charging of the ASTROD test mass due to cosmic-ray protons of energies between 0.1 and 1000 GeV at solar maximum and at solar minimum. Here we use GEANT 4 to simulate the charging process due to solar energetic particle events and interplanetary electrons. We then estimate the test mass acceleration noise due to these fluxes. The predicted charging rates range from 2247 e+/s to 47,055 e+/s, at peak intensity, for the four largest SEP events in September and October 1989. Although the noise due to charging exceeds the ASTROD I budget for the two larger events, it can be suppressed through continuous discharging. The acceleration noise during the two small events is well below the design target. The charging rate of the ASTROD I test mass due to interplanetary electrons in this simulation is about -11% of the cosmic-ray protons at solar minimum, and over -37% at solar maximum. In addition to the Monte Carlo uncertainty, an error of ±30% in the net charging rates should be added to account for uncertainties in the spectra, physics models and geometry implementations.

  16. Recent Ice Loss from the Fleming and Other Glaciers, Wordie Bay, West Antarctic Peninsula

    NASA Technical Reports Server (NTRS)

    Rignot, E.; Casassa, G.; Gogineni, S.; Kanagaratnam, P.; Krabill, W.; Pritchard, H.; Rivera, A.; Thomas, R.; Turner, J.; Vaughan, D.

    2005-01-01

    Satellite radar interferometry data from 1995 to 2004, and airborne ice thickness data from 2002, reveal that the glaciers flowing into former Wordie Ice Shelf, West Antarctic Peninsula, discharge 6.8 +/- 0.3 km(exp 3)/yr of ice, which is 84 +/- 30 percent larger than a snow accumulation of 3.7 +/- 0.8 km(exp 3)/yr over a 6,300 km(exp 2) drainage basin. Airborne and ICESat laser altimetry elevation data reveal glacier thinning at rates up to 2 m/yr. Fifty km from its ice front, Fleming Glacier flows 50 percent faster than it did in 1974 prior to the main collapse of Wordie Ice Shelf. We conclude that the glaciers accelerated following ice shelf removal, and have been thinning and losing mass to the ocean over the last decade. This and other observations suggest that the mass loss from the northern part of the Peninsula is not negligible at present.

  17. Further development and testing of the metabolic gas analyzer

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Continued development of a metabolic monitor utilizing a mass spectrometer and digital computer to perform measurements and data reduction, is reported. The device prints-out breath-by-breath values for 02 consumption, C02 production, minute volume and tidal volume. The flow is measured by introduction of a tracer gas to the expired gas stream. Design modifications to reduce pressure drop in the flow splitter to one inch of water at 600 liters/min flow and to extend the range of linear flow measurement to 1000 liters/min are discussed.

  18. k-t accelerated aortic 4D flow MRI in under two minutes: Feasibility and impact of resolution, k-space sampling patterns, and respiratory navigator gating on hemodynamic measurements.

    PubMed

    Bollache, Emilie; Barker, Alex J; Dolan, Ryan Scott; Carr, James C; van Ooij, Pim; Ahmadian, Rouzbeh; Powell, Alex; Collins, Jeremy D; Geiger, Julia; Markl, Michael

    2018-01-01

    To assess the performance of highly accelerated free-breathing aortic four-dimensional (4D) flow MRI acquired in under 2 minutes compared to conventional respiratory gated 4D flow. Eight k-t accelerated nongated 4D flow MRI (parallel MRI with extended and averaged generalized autocalibrating partially parallel acquisition kernels [PEAK GRAPPA], R = 5, TRes = 67.2 ms) using four k y -k z Cartesian sampling patterns (linear, center-out, out-center-out, random) and two spatial resolutions (SRes1 = 3.5 × 2.3 × 2.6 mm 3 , SRes2 = 4.5 × 2.3 × 2.6 mm 3 ) were compared in vitro (aortic coarctation flow phantom) and in 10 healthy volunteers, to conventional 4D flow (16 mm-navigator acceptance window; R = 2; TRes = 39.2 ms; SRes = 3.2 × 2.3 × 2.4 mm 3 ). The best k-t accelerated approach was further assessed in 10 patients with aortic disease. The k-t accelerated in vitro aortic peak flow (Qmax), net flow (Qnet), and peak velocity (Vmax) were lower than conventional 4D flow indices by ≤4.7%, ≤ 11%, and ≤22%, respectively. In vivo k-t accelerated acquisitions were significantly shorter but showed a trend to lower image quality compared to conventional 4D flow. Hemodynamic indices for linear and out-center-out k-space samplings were in agreement with conventional 4D flow (Qmax ≤ 13%, Qnet ≤ 13%, Vmax ≤ 17%, P > 0.05). Aortic 4D flow MRI in under 2 minutes is feasible with moderate underestimation of flow indices. Differences in k-space sampling patterns suggest an opportunity to mitigate image artifacts by an optimal trade-off between scan time, acceleration, and k-space sampling. Magn Reson Med 79:195-207, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Impact of Interstellar Vehicle Acceleration and Cruise Velocity on Total Mission Mass and Trip Time

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    2006-01-01

    Far-term interstellar missions, like their near-term solar system exploration counterparts, seek to minimize overall mission trip time and transportation system mass. Trip time is especially important in interstellar missions because of the enormous distances between stars and the finite limit of the speed of light (c). In this paper, we investigate the impact of vehicle acceleration and maximum or cruise velocity (Vcruise) on the total mission trip time. We also consider the impact that acceleration has on the transportation system mass (M) and power (P) (e.g., acceleration approx. power/mass and mass approx. power), as well as the impact that the cruise velocity has on the vehicle mass (e.g., the total mission change in velocity ((Delta)V) approx. Vcruise). For example, a Matter-Antimatter Annihilation Rocket's wet mass (Mwet) with propellant (Mp) will be a function of the dry mass of the vehicle (Mdry) and (Delta)V through the Rocket Equation. Similarly, a laser-driven LightSail's sail mass and laser power and mass will be a function of acceleration, Vcruise, and power-beaming distance (because of the need to focus the laser beam over interstellar distances).

  20. Analysis of trickle-bed reactor for ethanol production from syngas using Clostridium ragsdalei

    NASA Astrophysics Data System (ADS)

    Devarapalli, Mamatha

    The conversion of syngas components (CO, CO2 and H2) to liquid fuels such as ethanol involves complex biochemical reactions catalyzed by a group of acetogens such as Clostridium ljungdahlii, Clostridium carboxidivorans and Clostridium ragsdalei. The low ethanol productivity in this process is associated with the low solubility of gaseous substrates CO and H2 in the fermentation medium. In the present study, a 1-L trickle-bed reactor (TBR) was analyzed to understand its capabilities to improve the mass transfer of syngas in fermentation medium. Further, semi-continuous and continuous syngas fermentations were performed using C. ragsdalei to evaluate the ability of the TBR for ethanol production. In the mass transfer studies, using 6-mm glass beads, it was found that the overall mass transfer coefficient (kLa/V L) increased with the increase in gas flow rate from 5.5 to 130.5 sccm. Further, an increase in the liquid flow rate in the TBR decreased the kLa/VL due to the increase in liquid hold up volume (VL) in the packing. The highest kLa/VL values of 421 h-1 and 178 h-1 were achieved at a gas flow rate of 130.5 sccm for 6-mm and 3-mm glass beads, respectively. Semi-continuous fermentations were performed with repetitive medium replacement in counter-current and co-current modes. In semi-continuous fermentations with syngas consisting of 38% CO, 5% N2, 28.5% CO2 and 28.5% H2 (by volume), the increase in H2 conversion (from 18 to 55%) and uptake (from 0.7 to 2.2 mmol/h) were observed. This increase was attributed to more cell attachment in the packing that reduced CO inhibition to hydrogenase along the column length and increased the H2 uptake. The maximum ethanol produced during counter-current and co-current modes were 3.0 g/L and 5.7 g/L, respectively. In continuous syngas fermentation, the TBR was operated at dilution rates between 0.006 h-1and 0.012 h -1 and gas flow rates between 1.5 sccm and 18.9 sccm. The highest ethanol concentration of 13 g/L was achieved at dilution and gas flow rates of 0.012 h-1 and 18.9 sccm, respectively. The molar ratio of ethanol to acetic acid of 4:1 was obtained during continuous fermentation which was 7.7 times higher than in semi-continuous fermentations. The improvement of the reactor performance in continuous mode gives scope to explore the TBR as a potential bioreactor design for large scale biofuels production.

  1. Effect of Flow Rate Controller on Liquid Steel Flow in Continuous Casting Mold using Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Gursoy, Kadir Ali; Yavuz, Mehmet Metin

    2014-11-01

    In continuous casting operation of steel, the flow through tundish to the mold can be controlled by different flow rate control systems including stopper rod and slide-gate. Ladle changes in continuous casting machines result in liquid steel level changes in tundishes. During this transient event of production, the flow rate controller opening is increased to reduce the pressure drop across the opening which helps to keep the mass flow rate at the desired level for the reduced liquid steel level in tundish. In the present study, computational fluid dynamic (CFD) models are developed to investigate the effect of flow rate controller on mold flow structure, and particularly to understand the effect of flow controller opening on meniscus flow. First, a detailed validation of the CFD models is conducted using available experimental data and the performances of different turbulence models are compared. Then, the constant throughput casting operations for different flow rate controller openings are simulated to quantify the opening effect on meniscus region. The results indicate that the meniscus velocities are significantly affected by the flow rate controller and its opening level. The steady state operations, specified as constant throughput casting, do not provide the same mold flow if the controller opening is altered. Thus, for quality and castability purposes, adjusting the flow controller opening to obtain the fixed mold flow structure is proposed. Supported by Middle East Technical University (METU) BAP (Scientific Research Projects) Coordination.

  2. Global spatial indexing of the human impact on Al, Cu, Fe, and Zn mobilization.

    PubMed

    Rauch, Jason N

    2010-08-01

    With increasing consumption of material by human activity, the extent of human influence relative to nature in the mobilization of metals and other elements on Earth continues to grow. Recognizing people as modern geomorphic agents, I produced global data layers at 1 degreesx1 degrees of human-mediated mass flows (coal combustion, biomass burning, and mining) and nature-mediated mass flows (net primary productivity, sea salt aerosol emission, and denudation to the oceans) for the industrial metals of aluminum, iron, copper, and zinc for the year 2000. The major mobilization processes are denudation (natural) and mining (anthropic), though net primary productivity for Zn and Cu and coal combustion for Al are nearly as significant. All flows are subsequently combined into an index representing human versus nature flow dominance. As the first maps of mobilization flows of metals widely used by modern technology, they reveal that approximately 1-5% (depending upon the metal) of Earth's land surface now has metal flow dominated by human activity.

  3. Reprint Of: Enhanced spatially-resolved trace analysis using combined SIMS-single-stage AMS

    NASA Astrophysics Data System (ADS)

    Grabowski, K. S.; Groopman, E. E.; Fahey, A. J.

    2018-01-01

    Secondary ion mass spectrometry (SIMS) provides spatially resolved trace analysis of solid materials, but can be complicated by unresolved abundant molecular isobars. By adding a 300-kV single-stage accelerator mass spectrometer (SSAMS) as a detector for a Cameca ims 4f SIMS, one can measure more abundant positive ions from the SIMS while removing molecular isobars, thus improving very low abundance trace element and isotope analysis. This paper describes important features and capabilities of such an integrated system at the Naval Research Laboratory using charge state +1 ions. Transmission loss is compared to molecule destruction as gas flow to the molecule-destruction cell increases. As most measurements tolerate more modest abundance sensitivities than for 14C analysis, a lower gas flow is acceptable, so good transmission of 20-50% for ions of interest can be maintained for a broad range of ion masses. This new instrument has measured isotope ratios for uranium, lead, rare earths, and other elements from particulates and localized regions, with molecule destruction enabling the measurement at low SIMS mass resolving power and thus high transmission, as examples will show. This new and world-unique instrument provides improved capabilities for applications in nuclear and other forensics, geochemistry, cosmochemistry, and the development of optical, electronic, multifunctional, and structural materials.

  4. Enhanced spatially-resolved trace analysis using combined SIMS-single-stage AMS

    NASA Astrophysics Data System (ADS)

    Grabowski, K. S.; Groopman, E. E.; Fahey, A. J.

    2017-11-01

    Secondary ion mass spectrometry (SIMS) provides spatially resolved trace analysis of solid materials, but can be complicated by unresolved abundant molecular isobars. By adding a 300-kV single-stage accelerator mass spectrometer (SSAMS) as a detector for a Cameca ims 4f SIMS, one can measure more abundant positive ions from the SIMS while removing molecular isobars, thus improving very low abundance trace element and isotope analysis. This paper describes important features and capabilities of such an integrated system at the Naval Research Laboratory using charge state +1 ions. Transmission loss is compared to molecule destruction as gas flow to the molecule-destruction cell increases. As most measurements tolerate more modest abundance sensitivities than for 14C analysis, a lower gas flow is acceptable, so good transmission of 20-50% for ions of interest can be maintained for a broad range of ion masses. This new instrument has measured isotope ratios for uranium, lead, rare earths, and other elements from particulates and localized regions, with molecule destruction enabling the measurement at low SIMS mass resolving power and thus high transmission, as examples will show. This new and world-unique instrument provides improved capabilities for applications in nuclear and other forensics, geochemistry, cosmochemistry, and the development of optical, electronic, multifunctional, and structural materials.

  5. Apparatus for diffusion separation

    DOEpatents

    Nierenberg, William A.; Pontius, Rex B.

    1976-08-10

    1. The method of testing the separation efficiency of porous permeable membranes which comprises causing a stream of a gaseous mixture to flow into contact with one face of a finely porous permeable membrane under such conditions that a major fraction of the mixture diffuses through the membrane, maintaining a rectangular cross section of the gaseous stream so flowing past said membrane, continuously recirculating the gas that diffuses through said membrane and continuously withdrawing the gas that does not diffuse through said membrane and maintaining the volume of said recirculating gas constant by continuously introducing into said continuously recirculating gas stream a mass of gas equivalent to that which is continuously withdrawn from said gas stream and comparing the concentrations of the light component in the entering gas, the withdrawn gas and the recirculated gas in order to determine the efficiency of said membrane.

  6. The first effects of fluid inertia on flows in ordered and random arrays of spheres

    NASA Astrophysics Data System (ADS)

    Hill, Reghan J.; Koch, Donald L.; Ladd, Anthony J. C.

    2001-12-01

    Theory and lattice-Boltzmann simulations are used to examine the effects of fluid inertia, at small Reynolds numbers, on flows in simple cubic, face-centred cubic and random arrays of spheres. The drag force on the spheres, and hence the permeability of the arrays, is determined at small but finite Reynolds numbers, at solid volume fractions up to the close-packed limits of the arrays. For small solid volume fraction, the simulations are compared to theory, showing that the first inertial contribution to the drag force, when scaled with the Stokes drag force on a single sphere in an unbounded fluid, is proportional to the square of the Reynolds number. The simulations show that this scaling persists at solid volume fractions up to the close-packed limits of the arrays, and that the first inertial contribution to the drag force relative to the Stokes-flow drag force decreases with increasing solid volume fraction. The temporal evolution of the spatially averaged velocity and the drag force is examined when the fluid is accelerated from rest by a constant average pressure gradient toward a steady Stokes flow. Theory for the short- and long-time behaviour is in good agreement with simulations, showing that the unsteady force is dominated by quasi-steady drag and added-mass forces. The short- and long-time added-mass coefficients are obtained from potential-flow and quasi-steady viscous-flow approximations, respectively.

  7. Effects of High-energy Particles on Accretion Flows onto a Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeo S.; Toma, Kenji; Takahara, Fumio

    2014-08-01

    We study the effects of high-energy particles (HEPs) on the accretion flows onto a supermassive black hole and luminosities of escaping particles such as protons, neutrons, gamma rays, and neutrinos. We formulate a one-dimensional model of the two-component accretion flow consisting of thermal particles and HEPs, supposing that some fraction of the released energy is converted to the acceleration of HEPs. The thermal component is governed by fluid dynamics while the HEPs obey the moment equations of the diffusion-convection equation. By solving the time evolution of these equations, we obtain advection-dominated flows as the steady state solutions. The effects of the HEPs on the flow structures turn out to be small even if the pressure of the HEPs dominates over the thermal pressure. For a model in which the escaping protons take away almost all the energy released, the HEPs have a large enough influence to make the flow have a Keplerian angular velocity at the inner region. We calculate the luminosities of the escaping particles for these steady solutions. The escaping particles can extract the energy from about 10^{-4}\\dot{M} c^2 to 10^{-2}\\dot{M} c^2, where \\dot{M} is the mass accretion rate. The luminosities of the escaping particles depend on parameters such as the injection Lorentz factors, the mass accretion rates, and the diffusion coefficients. We also discuss some implications on the relativistic jet production by the escaping particles.

  8. H2OTSTUF: Appropriate Operating Regimes for Magnetohydrodynamic Augmentation

    NASA Technical Reports Server (NTRS)

    Jones, Jonathan E.; Hawk, Clark W.

    1998-01-01

    A trade study of magnetohydrodynamic (MHD) augmented propulsion reveals a unique operating regime at lower thrust levels. Substantial mass savings are realized over conventional chemical, solar, and electrical propulsion concepts when MHD augmentation is used to obtain optimal I(sub sp). However, trip times for the most conservative estimates of power plant specific impulse and accelerator efficiency may be prohibitively long. Quasi-one-dimensional calculations show that a solar or nuclear thermal system augmented by MHD can provide competitive performance while utilizing a diverse range of propellants including water, which is available from the Space Shuttle, the Moon, asteroids, and various moons and planets within our solar system. The use of in-situ propellants will reduce costs of space operations as well as enable human exploration of our Solar System. The following conclusions can be drawn from the results of the mission trade study: (1) There exists a maximum thrust or mass flow rate above which MHD augmentation increases the initial mass in low earth orbit (LEO); (2) Mass saving of over 50% can be realized for unique combination of solar/MHD systems; (3) Trip times for systems utilizing current power supply technology may be prohibitively long. Theoretical predictions of MHD performance for in space propulsion systems show that improved efficiencies can reduce trip times to acceptable levels; (4) Long trip times indicative of low thrust systems can be shortened by an increase in the MHD accelerator efficiency or a decrease in the specific mass of the power supply and power processing unit; and (5) As for all propulsion concepts, missions with larger (Delta)v's benefit more from the increased specific impulse resulting from MHD augmentation. Using a quasi-one-dimensional analysis, the required operating conditions for a MHD accelerator to reach acceptable efficiencies are outlined. This analysis shows that substantial non-equilibrium ionization is desirable.

  9. Ablation in the slit in combustion

    NASA Astrophysics Data System (ADS)

    Tairova, A. A.; Belyakov, G. V.; Chervinchuk, S. Yu.

    2017-12-01

    The understanding of the patterns of the front of exothermic reaction propagation in permeable media is necessary for a correct description of both natural and technological processes. The study of mechanisms of combustion and filtration flow in the slit consists in determining the conditions of propagation of melting waves and evaporation in a cocurrent gas flow as well the associated mass loss of the surface material. This paper presents the heat flow effect on the hydrocarbon reservoir model. The poly methyl methacrylate with the boiling point Tboil = 200°C and sublimation heat ΔHsubl = 40.29 kJ/mol was chosen as the model of the hydrocarbon layer, which on heating becomes liquid and gaseous (ethers and methyl methacrylate pairs). Heated gas flows along the slit preliminary created. The flow was maintained by a pump. The gas burner was installed at the entrance to the slit. The heat flow was constant. The impulse of gas flow and the mass loss of the material from the surface of the gap were continuously measured with scales. The pressure in the flow was controlled by the manometer.

  10. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1974-01-01

    Detailed measurements of the axial velocity profile and electromagnetic structure of a high power, quasi-steady MPD discharge are used to formulate a gasdynamic model of the acceleration process. Conceptually dividing the accelerated plasma into an inner flow and an outer flow, it is found that more than two-thirds of the total power in the plasma is deposited in the inner flow, accelerating it to an exhaust velocity of 12.5 km/sec. The outer flow, which is accelerated to a velocity of only 6.2 km/sec, appears to provide a current conduction path between the inner flow and the anode. Related cathode studies have shown that the critical current for the onset of terminal voltage fluctuations, which was recently shown to be a function of the cathode area, appears to reach an asymptote for cathodes of very large surface area. Detailed floating potential measurements show that the fluctuations are confined to the vicinity of the cathode and hence reflect a cathode emission process rather than a fundamental limit on MPD performance.

  11. Quantification aspects of constant pressure (ultra) high pressure liquid chromatography using mass-sensitive detectors with a nebulizing interface.

    PubMed

    Verstraeten, M; Broeckhoven, K; Lynen, F; Choikhet, K; Landt, K; Dittmann, M; Witt, K; Sandra, P; Desmet, G

    2013-01-25

    The present contribution investigates the quantitation aspects of mass-sensitive detectors with nebulizing interface (ESI-MSD, ELSD, CAD) in the constant pressure gradient elution mode. In this operation mode, the pressure is controlled and maintained at a set value and the liquid flow rate will vary according to the inverse mobile phase viscosity. As the pressure is continuously kept at the allowable maximum during the entire gradient run, the average liquid flow rate is higher compared to that in the conventional constant flow rate operation mode, thus shortening the analysis time. The following three mass-sensitive detectors were investigated: mass spectrometry detector (MS), evaporative light scattering detector (ELSD) and charged aerosol detector (CAD) and a wide variety of samples (phenones, polyaromatic hydrocarbons, wine, cocoa butter) has been considered. It was found that the nebulizing efficiency of the LC-interfaces of the three detectors under consideration changes with the increasing liquid flow rate. For the MS, the increasing flow rate leads to a lower peak area whereas for the ELSD the peak area increases compared to the constant flow rate mode. The peak area obtained with a CAD is rather insensitive to the liquid flow rate. The reproducibility of the peak area remains similar in both modes, although variation in system permeability compromises the 'long-term' reproducibility. This problem can however be overcome by running a flow rate program with an optimized flow rate and composition profile obtained from the constant pressure mode. In this case, the quantification remains reproducibile, despite any occuring variations of the system permeability. Furthermore, the same fragmentation pattern (MS) has been found in the constant pressure mode compared to the customary constant flow rate mode. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Observations of the Coronal Mass Ejection with a Complex Acceleration Profile

    NASA Astrophysics Data System (ADS)

    Reva, A. A.; Kirichenko, A. S.; Ulyanov, A. S.; Kuzin, S. V.

    2017-12-01

    We study the coronal mass ejection (CME) with a complex acceleration profile. The event occurred on 2009 April 23. It had an impulsive acceleration phase, an impulsive deceleration phase, and a second impulsive acceleration phase. During its evolution, the CME showed signatures of different acceleration mechanisms: kink instability, prominence drainage, flare reconnection, and a CME–CME collision. The special feature of the observations is the usage of the TESIS EUV telescope. The instrument could image the solar corona in the Fe 171 Å line up to a distance of 2 {R}ȯ from the center of the Sun. This allows us to trace the CME up to the LASCO/C2 field of view without losing the CME from sight. The onset of the CME was caused by kink instability. The mass drainage occurred after the kink instability. The mass drainage played only an auxiliary role: it decreased the CME mass, which helped to accelerate the CME. The first impulsive acceleration phase was caused by the flare reconnection. We observed the two-ribbon flare and an increase of the soft X-ray flux during the first impulsive acceleration phase. The impulsive deceleration and the second impulsive acceleration phases were caused by the CME–CME collision. The studied event shows that CMEs are complex phenomena that cannot be explained with only one acceleration mechanism. We should seek a combination of different mechanisms that accelerate CMEs at different stages of their evolution.

  13. Realizing life-scalable experimental pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Cronin, S. J.; Lube, G.; Breard, E.; Jones, J.; Valentine, G.; Freundt, A.; Hort, M. K.; Bursik, M. I.

    2013-12-01

    Pyroclastic Density Currents (PDCs) - the most deadly threat from volcanoes - are extremely hot, ground-hugging currents of rock fragments and gas that descend slopes at hundreds of kilometers per hour. These hostile flows are impossible to internally measure, thus volcanologists are persistently blocked in efforts to realistically forecast their internal mechanics and hazards. Attempts to fill this gap via laboratory-scale experiments continue to prove difficult, because they usually mismatch the dynamic and kinematic scaling of real-world flows by several orders of magnitude. In a multi-institutional effort, the first large-scale pyroclastic flow generator that can synthesize repeatable hot high-energy gas-particle mixture flows in safety has been commissioned in New Zealand. The final apparatus stands 15 m high, consisting of a tower/elevator system; an instrumented hopper that can hold >6000 kg (or 3.2 m3) of natural volcanic materials, which can be discharged at a range of controlled rates onto an instrumented, variably inclinable (6-25°) glass-sided chute for examining the vertical profiles of PDCs in motion. The use of rhyolitic pyroclastic material from the 1800 AD Taupo Eruption (with its natural grain-size, sorting and shape characteristics) and gas ensures natural coupling between the solids and fluid phases. PDC analogues with runout of >15 meters and flow depths of 1.5-6 meters are created by generating variably heated falling columns of natural volcanic particles (50-1300 kg/s), dispersed and aerated to controlled particle densities between 3 and 60 vol.% at the base of the elevated hopper. The descending columns rapidly generate high-velocity flows (up to 14 m/s) once impacting on the inclined channel, reproducing many features of natural flows, including segregation into dense and dilute regimes, progressive aggradational and en masse deposition of particles and the development of high internal gas-pore-pressures during flow. The PDC starting conditions (velocity, mass flux, particle solids concentration and temperature) can be precisely varied to obtain a wide range of PDC gas-particle transport and sedimentation conditions that match dynamic and kinematic scaling of natural flows. For instance, bulk flow scaling shows full turbulence (Re>106); while at the same time, the variation in Stokes and Stability numbers (describing Lagrangian acceleration of particles due to gravity and viscous drag) cover a wide range of natural conditions. The resulting PDC flow regimes include convection dominated dilute suspension that produce lateral ash-cloud surges, inertial dry granular to partially fluidised flows with high dynamic pressures, and, intermittent flow regimes of intermediate particle solids concentration. Depending on the PDC starting conditions, stratified, dune-bedded or inversely graded bedforms are created, whose formation can be tracked using high-speed cinematography and particle-image-velocimetry. We present here the first overview results from these experiments and invite further multi-organisational collaboration in ongoing simulations.

  14. Experimental Study of a Nozzle Using Fluidic Counterflow for Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D.

    1998-01-01

    A static experimental investigation of a counterflow thrust vectoring nozzle concept was performed. The study was conducted in the NASA Langley Research Center Jet Exit Test Facility. Internal performance characteristics were defined over a nozzle pressure ratio (jet total to ambient) range of 3.5 to 10.0. The effects of suction collar geometry and suction slot height on nozzle performance were examined. In the counterflow concept, thrust vectoring is achieved by applying a vacuum to a slot adjacent to a primary jet that is shrouded by a suction collar. Two flow phenomena work to vector the primary jet depending upon the test conditions and configuration. In one case, the vacuum source creates a secondary reverse flowing stream near the primary jet. The shear layers between the two counterflowing streams mix and entrain mass from the surrounding fluid. The presence of the collar inhibits mass entrainment and the flow near the collar accelerates, causing a drop in pressure on the collar. The second case works similarly except that the vacuum is not powerful enough to create a counterflowing stream and instead a coflowing stream is present. The primary jet is vectored if suction is applied asymmetrically on the top or bottom of the jet.

  15. Modeling of diesel/CNG mixing in a pre-injection chamber

    NASA Astrophysics Data System (ADS)

    Abdul-Wahhab, H. A.; Aziz, A. R. A.; Al-Kayiem, H. H.; Nasif, M. S.

    2015-12-01

    Diesel engines performance can be improved by adding combustible gases to the liquid diesel. In this paper, the propagation of a two phase flow liquid-gas fuel mixture into a pre-mixer is investigated numerically by computational fluid dynamics simulation. CNG was injected into the diesel within a cylindrical conduit operates as pre-mixer. Four injection models of Diesel-CNG were simulated using ANSYS-FLUENT commercial software. Two CNG jet diameters were used of 1 and 2 mm and the diesel pipe diameter was 9 mm. Two configurations were considered for the gas injection. In the first the gas was injected from one side while for the second two side entries were used. The CNG to Diesel pressure ratio was varied between 1.5 and 3. The CNG to Diesel mass flow ratios were varied between 0.7 and 0.9. The results demonstrate that using double-sided injection increased the homogeneity of the mixture due to the swirl and acceleration of the mixture. Mass fraction, in both cases, was found to increase as the mixture flows towards the exit. As a result, this enhanced mixing is likely to lead to improvement in the combustion performance.

  16. Analytical solutions for solute transport in groundwater and riverine flow using Green's Function Method and pertinent coordinate transformation method

    NASA Astrophysics Data System (ADS)

    Sanskrityayn, Abhishek; Suk, Heejun; Kumar, Naveen

    2017-04-01

    In this study, analytical solutions of one-dimensional pollutant transport originating from instantaneous and continuous point sources were developed in groundwater and riverine flow using both Green's Function Method (GFM) and pertinent coordinate transformation method. Dispersion coefficient and flow velocity are considered spatially and temporally dependent. The spatial dependence of the velocity is linear, non-homogeneous and that of dispersion coefficient is square of that of velocity, while the temporal dependence is considered linear, exponentially and asymptotically decelerating and accelerating. Our proposed analytical solutions are derived for three different situations depending on variations of dispersion coefficient and velocity, respectively which can represent real physical processes occurring in groundwater and riverine systems. First case refers to steady solute transport situation in steady flow in which dispersion coefficient and velocity are only spatially dependent. The second case represents transient solute transport in steady flow in which dispersion coefficient is spatially and temporally dependent while the velocity is spatially dependent. Finally, the third case indicates transient solute transport in unsteady flow in which both dispersion coefficient and velocity are spatially and temporally dependent. The present paper demonstrates the concentration distribution behavior from a point source in realistically occurring flow domains of hydrological systems including groundwater and riverine water in which the dispersivity of pollutant's mass is affected by heterogeneity of the medium as well as by other factors like velocity fluctuations, while velocity is influenced by water table slope and recharge rate. Such capabilities give the proposed method's superiority about application of various hydrological problems to be solved over other previously existing analytical solutions. Especially, to author's knowledge, any other solution doesn't exist for both spatially and temporally variations of dispersion coefficient and velocity. In this study, the existing analytical solutions from previous widely known studies are used for comparison as validation tools to verify the proposed analytical solution as well as the numerical code of the Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (2DFATMIC) code and the developed 1D finite difference code (FDM). All such solutions show perfect match with the respective proposed solutions.

  17. Flow acceleration structure of Aurelia aurita: implications on propulsion

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Tae; Piper, Matthew; Chamorro, Leonardo P.

    2017-11-01

    The jetting and paddling mechanisms used by Aurelia aurita jellyfish allows for one of the most efficient propulsion among other metazoans. Characterization of the induced flow acceleration is critical to uncover distinctive patterns. We found four acceleration structures using 3D measurements of body and flow dynamics in Lagrangian frame of reference. Two intense structures occur near the bell margin and are generated by paddling; the other two around the center of the jellyfish and half magnitude are a result of jetting. Their interaction leads to the maximum flow velocity in the middle of the relaxation, where relatively straight flow trajectories occur. The jellyfish achieves an efficient relaxation by generating flow deceleration with minor body deceleration.

  18. Effects of gas liquid ratio on the atomization characteristics of gas-liquid swirl coaxial injectors

    NASA Astrophysics Data System (ADS)

    Kang, Zhongtao; Li, Qinglian; Zhang, Jiaqi; Cheng, Peng

    2018-05-01

    To understand the atomization characteristics and atomization mechanism of the gas-liquid swirl coaxial (GLSC) injector, a back-lighting photography technique has been employed to capture the instantaneous spray images with a high speed camera. The diameter and velocity of the droplets in the spray have been characterized with a Dantec Phase Doppler Anemometry (PDA) system. The effects of gas liquid ratio (GLR) on the spray pattern, Sauter mean diameter (SMD), diameter-velocity distribution and mass flow rate distribution were analyzed and discussed. The results show that the atomization of the GLSC injector is dominated by the film breakup when the GLR is small, and violent gas-liquid interaction when the GLR is large enough. The film breakup dominated spray can be divided into gas acceleration region and film breakup region while the violent gas-liquid interaction dominated spray can be divided into the gas acceleration region, violent gas-liquid interaction region and big droplets breakup region. The atomization characteristics of the GLSC injector is significantly influenced by the GLR. From the point of atomization performance, the increase of GLR has positive effects. It decreases the global Sauter mean diameter (GSMD) and varies the SMD distribution from a hollow cone shape (GLR = 0) to an inverted V shape, and finally slanted N shape. However, from the point of spatial distribution, the increase of GLR has negative effects, because the mass flow rate distribution becomes more nonuniform.

  19. Greenland ice sheet beyond 2100: Simulating its evolution and influence using the coupled climate-ice sheet model EC-Earth - PISM

    NASA Astrophysics Data System (ADS)

    Yang, S.; Christensen, J. H.; Madsen, M. S.; Ringgaard, I. M.; Petersen, R. A.; Langen, P. P.

    2017-12-01

    Greenland ice sheet (GrIS) is observed undergoing a rapid change in the recent decades, with an increasing area of surface melting and ablation and a speeding mass loss. Predicting the GrIS changes and their climate consequences relies on the understanding of the interaction of the GrIS with the climate system on both global and local scales, and requires climate model systems incorporating with an explicit and physically consistent ice sheet module. In this work we study the GrIS evolution and its interaction with the climate system using a fully coupled global climate model with a dynamical ice sheet model for the GrIS. The coupled model system, EC-EARTH - PISM, consisting of the atmosphere-ocean-sea ice model system EC-EARTH, and the Parallel Ice Sheet Model (PISM), has been employed for a 1400-year simulation forced by CMIP5 historical forcing from 1850 to 2005 and continued along an extended RCP8.5 scenario with the forcing peaking at 2200 and stabilized hereafter. The simulation reveals that, following the anthropogenic forcing increase, the global mean surface temperature rapidly rises about 10 °C in the 21st and 22nd century. After the forcing stops increasing after 2200, the temperature change slows down and eventually stabilizes at about 12.5 °C above the preindustrial level. In response to the climate warming, the GrIS starts losing mass slowly in the 21st century, but the ice retreat accelerates substantially after 2100 and ice mass loss continues hereafter at a constant rate of approximately 0.5 m sea level rise equivalence per 100 years, even as the warming rate gradually levels off. Ultimately the volume and extent of GrIS reduce to less than half of its preindustrial value. To understand the interaction of GrIS with the climate system, the characteristics of atmospheric and oceanic circulation in the warm climate are analyzed. The circulation patterns associated with the negative surface mass balance that leads to GrIS retreat are investigated. The impact of the simulated surface warming on the ice flow and ice dynamics is explored.

  20. Virtualized Traffic: reconstructing traffic flows from discrete spatiotemporal data.

    PubMed

    Sewall, Jason; van den Berg, Jur; Lin, Ming C; Manocha, Dinesh

    2011-01-01

    We present a novel concept, Virtualized Traffic, to reconstruct and visualize continuous traffic flows from discrete spatiotemporal data provided by traffic sensors or generated artificially to enhance a sense of immersion in a dynamic virtual world. Given the positions of each car at two recorded locations on a highway and the corresponding time instances, our approach can reconstruct the traffic flows (i.e., the dynamic motions of multiple cars over time) between the two locations along the highway for immersive visualization of virtual cities or other environments. Our algorithm is applicable to high-density traffic on highways with an arbitrary number of lanes and takes into account the geometric, kinematic, and dynamic constraints on the cars. Our method reconstructs the car motion that automatically minimizes the number of lane changes, respects safety distance to other cars, and computes the acceleration necessary to obtain a smooth traffic flow subject to the given constraints. Furthermore, our framework can process a continuous stream of input data in real time, enabling the users to view virtualized traffic events in a virtual world as they occur. We demonstrate our reconstruction technique with both synthetic and real-world input. © 2011 IEEE Published by the IEEE Computer Society

  1. Detection of linear ego-acceleration from optic flow.

    PubMed

    Festl, Freya; Recktenwald, Fabian; Yuan, Chunrong; Mallot, Hanspeter A

    2012-07-20

    Human observers are able to estimate various ego-motion parameters from optic flow, including rotation, translational heading, time-to-collision (TTC), time-to-passage (TTP), etc. The perception of linear ego-acceleration or deceleration, i.e., changes of translational velocity, is less well understood. While time-to-passage experiments indicate that ego-acceleration is neglected, subjects are able to keep their (perceived) speed constant under changing conditions, indicating that some sense of ego-acceleration or velocity change must be present. In this paper, we analyze the relation of ego-acceleration estimates and geometrical parameters of the environment using simulated flights through cylindrical and conic (narrowing or widening) corridors. Theoretical analysis shows that a logarithmic ego-acceleration parameter, called the acceleration rate ρ, can be calculated from retinal acceleration measurements. This parameter is independent of the geometrical layout of the scene; if veridical ego-motion is known at some instant in time, acceleration rate allows updating of ego-motion without further depth-velocity calibration. Results indicate, however, that subjects systematically confuse ego-acceleration with corridor narrowing and ego-deceleration with corridor widening, while veridically judging ego-acceleration in straight corridors. We conclude that judgments of ego-acceleration are based on first-order retinal flow and do not make use of acceleration rate or retinal acceleration.

  2. Transition of basaltic lava from pahoehoe to aa, Kilauea Volcano, Hawaii: Field observations and key factors

    USGS Publications Warehouse

    Peterson, Donald W.; Tilling, Robert I.

    1980-01-01

    Nearly all Hawaiian basaltic lava erupts as pahoehoe, and some changes to aa during flowage and cooling; factors governing the transition involve certain critical relations between viscosity and rate of shear strain. If the lava slows, cools, and stops in direct response to concomitant increase in viscosity before these critical relations are reached, it remains pahoehoe. But, if flow mechanics (flow rate, flow dimensions, slope, momentum, etc.) impel the lava to continue to move and deform even after it has become highly viscous, the critical relations may be reached and the lava changes to aa.Typical modes of transition from pahoehoe to aa include: (1) spontaneous formation of relatively stiff clots in parts of the flowing lava where shear rate is highest; these clots grow into discrete, rough, sticky masses to which the remaining fluid lava incrementally adheres; (2) fragmentation and immersion of solid or semi-solid surface crusts of pahoehoe by roiling movements of the flow, forming cores of discrete, tacky masses; (3) sudden renewed movement of lava stored and cooled within surface reservoirs to form clots. The masses, fragments, and clots in these transition modes are characterized by spinose, granulated surfaces; as flow movement continues, the masses and fragments aggregate, fracture, and grind together, completing the transition to aa.Observations show that the critical relation between viscosity and rate of shear strain is inverse: if viscosity is low, a high rate of shear is required to begin the transition to aa; conversely, if viscosity is high, a much lower rate of shear will induce the transition. These relations can be demonstrated qualitatively with simple graphs, which can be used to examine the flow history of any selected finite lava element by tracing the path represented by its changing viscosity and shear rate. A broad, diffuse “transition threshold zone” in these graphs portrays the inverse critical relation between viscosity and shear rate; the transition to aa is represented by the path of the lava element crossing this zone.Moving lava flows can be regarded as natural viscometers, by which shear stress and rate of shear strain at selected points can be determined and viscosity can be computed. By making such determinations under a wide range of conditions on pahoehoe, aa, and transitional flow types, the critical relations that control the pahoehoe-aa transition can be quantified.

  3. Vorticity field measurement using digital inline holography

    NASA Astrophysics Data System (ADS)

    Mallery, Kevin; Hong, Jiarong

    2017-11-01

    We demonstrate the direct measurement of a 3D vorticity field using digital inline holographic microscopy. Microfiber tracer particles are illuminated with a 532 nm continuous diode laser and imaged using a single CCD camera. The recorded holographic images are processed using a GPU-accelerated inverse problem approach to reconstruct the 3D structure of each microfiber in the imaged volume. The translation and rotation of each microfiber are measured using a time-resolved image sequence - yielding velocity and vorticity point measurements. The accuracy and limitations of this method are investigated using synthetic holograms. Measurements of solid body rotational flow are used to validate the accuracy of the technique under known flow conditions. The technique is further applied to a practical turbulent flow case for investigating its 3D velocity field and vorticity distribution.

  4. Noise Radiation Of A Strongly Pulsating Tailpipe Exhaust

    NASA Astrophysics Data System (ADS)

    Peizi, Li; Genhua, Dai; Zhichi, Zhu

    1993-11-01

    The method of characteristics is used to solve the problem of the propagation of a strongly pulsating flow in an exhaust system tailpipe. For a strongly pulsating exhaust, the flow may shock at the pipe's open end at some point in a pulsating where the flow pressure exceeds its critical value. The method fails if one insists on setting the flow pressure equal to the atmospheric pressure as the pipe end boundary condition. To solve the problem, we set the Mach number equal to 1 as the boundary condition when the flow pressure exceeds its critical value. For a strongly pulsating flow, the fluctuations of flow variables may be much higher than their respective time averages. Therefore, the acoustic radiation method would fail in the computation of the noise radiation from the pipe's open end. We simulate the exhaust flow out of the open end as a simple sound source to compute the noise radiation, which has been successfully applied in reference [1]. The simple sound source strength is proportional to the volume acceleration of exhaust gas. Also computed is the noise radiation from the turbulence of the exhaust flow, as was done in reference [1]. Noise from a reciprocating valve simulator has been treated in detail. The radiation efficiency is very low for the pressure range considered and is about 10 -5. The radiation efficiency coefficient increases with the square of the frequency. Computation of the pipe length dependence of the noise radiation and mass flux allows us to design a suitable length for an aerodynamic noise generator or a reciprocating internal combustion engine. For the former, powerful noise radiation is preferable. For the latter, maximum mass flux is desired because a freer exhaust is preferable.

  5. A modified commercial gas chromatograph for the continuous monitoring of the thermal degradation of sunflower oil and off-line solid phase extraction gas-chromatography-mass spectrometry characterization of released volatiles.

    PubMed

    Ontañon, I; Sanz, J; Escudero, A; de Marcos, S; Ferreira, V; Galbán, J

    2015-04-03

    A homemade flow cell attached to a commercial Gas Chromatograph equipped with a Flame Ionization Detector (FID) has been designed for the continuous monitoring of volatile compounds released during heating edible oils. Analytical parameters such as mass of sample, temperature and flow rates have been optimized and the obtained results have been compared with the corresponding thermographs from standard TG systems. Results show that under optimum conditions, the profiles of volatiles released upon heating are comparable to the profiles of TG curves, suggesting that the FID based system could be an alternative to TGA. Additionally, volatiles have been retained in a Lichrolut EN(®) resin, eluted and analyzed by Gas Chromatography-Mass Spectrometry. In this case, forty five compounds have been identified (acids, alcohols, alkanes, aldehydes, ketones and furans) and compared with the FID signals, working both in air or nitrogen atmosphere. It has been concluded that the oxidative thermal degradation is prevented in the presence of a nitrogen atmosphere. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. An All-vanadium Continuous-flow Photoelectrochemical Cell for Extending State-of-charge in Solar Energy Storage.

    PubMed

    Wei, Zi; Shen, Yi; Liu, Dong; Liu, Fuqiang

    2017-04-04

    Greater levels of solar energy storage provide an effective solution to the inherent nature of intermittency, and can substantially improve reliability, availability, and quality of the renewable energy source. Here we demonstrated an all-vanadium (all-V) continuous-flow photoelectrochemical storage cell (PESC) to achieve efficient and high-capacity storage of solar energy, through improving both photocurrent and photocharging depth. It was discovered that forced convective flow of electrolytes greatly enhanced the photocurrent by 5 times comparing to that with stagnant electrolytes. Electrochemical impedance spectroscopy (EIS) study revealed a great reduction of charge transfer resistance with forced convective flow of electrolytes as a result of better mass transport at U-turns of the tortuous serpentine flow channel of the cell. Taking advantage of the improved photocurrent and diminished charge transfer resistance, the all-V continuous-flow PESC was capable of producing ~20% gain in state of charge (SOC) under AM1.5 illumination for ca. 1.7 hours without any external bias. This gain of SOC was surprisingly three times more than that with stagnant electrolytes during a 25-hour period of photocharge.

  7. Dust particle injector for hypervelocity accelerators provides high charge-to-mass ratio

    NASA Technical Reports Server (NTRS)

    Berg, O. E.

    1966-01-01

    Injector imparts a high charge-to-mass ratio to microparticles and injects them into an electrostatic accelerator so that the particles are accelerated to meteoric speeds. It employs relatively large masses in the anode and cathode structures with a relatively wide separation, thus permitting a large increase in the allowable injection voltages.

  8. APPARATUS FOR THE MASS ANALYSIS OF PLASMA ON A CONTINUOUS BASIS

    DOEpatents

    Neidigh, R.V.

    1963-07-01

    An apparatus for the mass analysis of plasmas on a continuous basis is described. The apparatus comprises a pair of parallel electrodes in a tubular member which serve as a velocity-selecting region for ions drawn by an accelerating potential through a tapered nose cone affixed to the tubular member. The magnetic force and electrostatic forces in the velocity-selecting region are made equal and opposite in direction to prevent the ionic species from striking either of the electrodes as they traverse the region. A pair of parallel plates is positioned within the tubular member and in alignment with the electrodes, but displaced slightly so as not to be seen by direct light coming through the entrance slit of the nose cone, and one of these plates serves as a collector plate. This collector plate is coupled to the vertical amplifier of an oscilloscope or other recorder to provide a continuous indication of the ionic coinposition of the plasma under analysis. ( DELTA EC)

  9. An extended macro model accounting for acceleration changes with memory and numerical tests

    NASA Astrophysics Data System (ADS)

    Cheng, Rongjun; Ge, Hongxia; Sun, Fengxin; Wang, Jufeng

    2018-09-01

    Considering effect of acceleration changes with memory, an improved continuum model of traffic flow is proposed in this paper. By applying the linear stability theory, we derived the new model's linear stability condition. Through nonlinear analysis, the KdV-Burgers equation is derived to describe the propagating behavior of traffic density wave near the neutral stability line. Numerical simulation is carried out to study the extended traffic flow model, which explores how acceleration changes with memory affected each car's velocity, density and fuel consumption and exhaust emissions. Numerical results demonstrate that acceleration changes with memory have significant negative effect on dynamic characteristic of traffic flow. Furthermore, research results verify that the effect of acceleration changes with memory will deteriorate the stability of traffic flow and increase cars' total fuel consumptions and emissions during the whole evolution of small perturbation.

  10. Elements of an improved model of debris‐flow motion

    USGS Publications Warehouse

    Iverson, Richard M.

    2009-01-01

    A new depth‐averaged model of debris‐flow motion describes simultaneous evolution of flow velocity and depth, solid and fluid volume fractions, and pore‐fluid pressure. Non‐hydrostatic pore‐fluid pressure is produced by dilatancy, a state‐dependent property that links the depth‐averaged shear rate and volumetric strain rate of the granular phase. Pore‐pressure changes caused by shearing allow the model to exhibit rate‐dependent flow resistance, despite the fact that the basal shear traction involves only rate‐independent Coulomb friction. An analytical solution of simplified model equations shows that the onset of downslope motion can be accelerated or retarded by pore‐pressure change, contingent on whether dilatancy is positive or negative. A different analytical solution shows that such effects will likely be muted if downslope motion continues long enough, because dilatancy then evolves toward zero, and volume fractions and pore pressure concurrently evolve toward steady states.

  11. Elements of an improved model of debris-flow motion

    USGS Publications Warehouse

    Iverson, R.M.

    2009-01-01

    A new depth-averaged model of debris-flow motion describes simultaneous evolution of flow velocity and depth, solid and fluid volume fractions, and pore-fluid pressure. Non-hydrostatic pore-fluid pressure is produced by dilatancy, a state-dependent property that links the depth-averaged shear rate and volumetric strain rate of the granular phase. Pore-pressure changes caused by shearing allow the model to exhibit rate-dependent flow resistance, despite the fact that the basal shear traction involves only rate-independent Coulomb friction. An analytical solution of simplified model equations shows that the onset of downslope motion can be accelerated or retarded by pore-pressure change, contingent on whether dilatancy is positive or negative. A different analytical solution shows that such effects will likely be muted if downslope motion continues long enough, because dilatancy then evolves toward zero, and volume fractions and pore pressure concurrently evolve toward steady states. ?? 2009 American Institute of Physics.

  12. Continuous formation of N-chloro-N,N-dialkylamine solutions in well-mixed meso-scale flow reactors

    PubMed Central

    Jolley, Katherine E

    2015-01-01

    Summary The continuous flow synthesis of a range of organic solutions of N,N-dialkyl-N-chloramines is described using either a bespoke meso-scale tubular reactor with static mixers or a continuous stirred tank reactor. Both reactors promote the efficient mixing of a biphasic solution of N,N-dialkylamine in organic solvent, and aqueous sodium hypochlorite to achieve near quantitative conversions, in 72–100% in situ yields, and useful productivities of around 0.05 mol/h with residence times from 3 to 20 minutes. Initial calorimetric studies have been carried out to inform on reaction exotherms, rates and safe operation. Amines which partition mainly in the organic phase require longer reaction times, provided by the CSTR, to compensate for low mass transfer rates in the biphasic system. The green metrics of the reaction have been assessed and compared to existing procedures and have shown the continuous process is improved over previous procedures. The organic solutions of N,N-dialkyl-N-chloramines produced continuously will enable their use in tandem flow reactions with a range of nucleophilic substrates. PMID:26734089

  13. A novel method to measure regional muscle blood flow continuously using NIRS kinetics information

    PubMed Central

    Nioka, Shoko; Kime, Ryotaro; Sunar, Ulas; Im, Joohee; Izzetoglu, Meltem; Zhang, Jun; Alacam, Burak; Chance, Britton

    2006-01-01

    Background This article introduces a novel method to continuously monitor regional muscle blood flow by using Near Infrared Spectroscopy (NIRS). We demonstrate the feasibility of the new method in two ways: (1) by applying this new method of determining blood flow to experimental NIRS data during exercise and ischemia; and, (2) by simulating muscle oxygenation and blood flow values using these newly developed equations during recovery from exercise and ischemia. Methods Deoxy (Hb) and oxyhemoglobin (HbO2), located in the blood ofthe skeletal muscle, carry two internal relationships between blood flow and oxygen consumption. One is a mass transfer principle and the other describes a relationship between oxygen consumption and Hb kinetics in a two-compartment model. To monitor blood flow continuously, we transfer these two relationships into two equations and calculate the blood flow with the differential information of HbO2 and Hb. In addition, these equations are used to simulate the relationship between blood flow and reoxygenation kinetics after cuff ischemia and a light exercise. Nine healthy subjects volunteered for the cuff ischemia, light arm exercise and arm exercise with cuff ischemia for the experimental study. Results Analysis of experimental data of both cuff ischemia and light exercise using the new equations show greater blood flow (four to six times more than resting values) during recovery, agreeing with previous findings. Further, the simulation and experimental studies of cuff ischemia and light exercise agree with each other. Conclusion We demonstrate the accuracy of this new method by showing that the blood flow obtained from the method agrees with previous data as well as with simulated data. We conclude that this novel continuous blood flow monitoring method can provide blood flow information non-invasively with NIRS. PMID:16704736

  14. Discrete meso-element simulation of chemical reactions in shear bands

    NASA Astrophysics Data System (ADS)

    Tamura, S.; Horie, Y.

    1998-07-01

    A meso-dynamic simulation technique is used to investigate the chemical reactions in high speed shearing of reactive porous mixtures. The reaction speed is assumed to be a function of temperature, pressure and mixing of materials. To gain a theoretical insight into the experiments reported by Nesterenko et al., a parametric study of material flow and local temperature was carried out using a Nb and Si mixture. In the model calculation, a heterogeneous shear region of 5 μm width, consisting of alternating layers of Nb and Si, was created first in a mixture and then sheared at the rate of 8.0×107s-1. Results show that the material flow is mostly homogeneous, but contains a local agglomeration and circulatory flow. This behavior accelerates mass mixing and causes a significant temperature increase. To evaluate the mixing of material, average minimum distance of materials separation was calculated. Voids effect were also investigated.

  15. Möbius domain-wall fermions on gradient-flowed dynamical HISQ ensembles

    NASA Astrophysics Data System (ADS)

    Berkowitz, Evan; Bouchard, Chris; Chang, Chia Cheng; Clark, M. A.; Joó, Bálint; Kurth, Thorsten; Monahan, Christopher; Nicholson, Amy; Orginos, Kostas; Rinaldi, Enrico; Vranas, Pavlos; Walker-Loud, André

    2017-09-01

    We report on salient features of a mixed lattice QCD action using valence Möbius domain-wall fermions solved on the dynamical Nf=2 +1 +1 highly improved staggered quark sea-quark ensembles generated by the MILC Collaboration. The approximate chiral symmetry properties of the valence fermions are shown to be significantly improved by utilizing the gradient-flow scheme to first smear the highly improved staggered quark configurations. The greater numerical cost of the Möbius domain-wall inversions is mitigated by the highly efficient QUDA library optimized for NVIDIA GPU accelerated compute nodes. We have created an interface to this optimized QUDA solver in Chroma. We provide tuned parameters of the action and performance of QUDA using ensembles with the lattice spacings a ≃{0.15 ,0.12 ,0.09 } fm and pion masses mπ≃{310 ,220 ,130 } MeV . We have additionally generated two new ensembles with a ˜0.12 fm and mπ˜{400 ,350 } MeV . With a fixed flow time of tg f=1 in lattice units, the residual chiral symmetry breaking of the valence fermions is kept below 10% of the light quark mass on all ensembles, mres≲0.1 ×ml , with moderate values of the fifth dimension L5 and a domain-wall height M5≤1.3 . As a benchmark calculation, we perform a continuum, infinite volume, physical pion and kaon mass extrapolation of FK±/Fπ± and demonstrate our results are independent of flow time and consistent with the FLAG determination of this quantity at the level of less than one standard deviation.

  16. What can we learn from the self-attraction and loading fingerprints about pre-GRACE mass-loss acceleration from Greenland and Antarctica?

    NASA Astrophysics Data System (ADS)

    Davis, J. L.; Vinogradova, N. T.

    2017-12-01

    Tide-gauge records from the North Atlantic reveal significant acceleration in sea level starting in the late 20th century. We have analyzed the tide-gauge data using a model in which the accelerations are assumed to be zero prior to 1990. The estimated accelerations range from -1 to +3 m cy-2 and exhibit a systematic spatial variability. Davis and Vinogradova [2017] demonstrated that to model this variability in sea-level acceleration requires contributions from several distinct physical processes: accelerated mass loss from the Greenland and Antarctic Ice Sheets and acceleration associated with ocean circulation and heat uptake. Atmospheric pressure also contributes to the observed changes in sea level, at a much smaller amplitude. Because we are focusing on sea-level accelerations (i.e., sea-level rate changes), the contribution from Glacial Isostatic Adjustment (GIA) is negligible. Modeling of observed sea-level acceleration is achieved using external constraints for the important physical processes. Using GRACE results, we can calculate the sea-level "fingerprints" for Greenland and Antarctica associated with mass loading and gravitational perturbations. For the North Atlantic, Greenland induces a significant spatial variation in sea-level change—dominated by the solid-Earth response to the mass loss—whereas Antarctica contributes a spatially constant acceleration. The observations prefer a scaling of the solid-Earth/gravitational response, and we present the implications of this result for ice-mass changes prior to the onset of GRACE observations (2002-3).

  17. LONG-TERM MECHANICAL CIRCULATORY SUPPORT (DESTINATION THERAPY): ON TRACK TO COMPETE WITH HEART TRANSPLANTATIO?

    PubMed Central

    Kirklin, James K.; Naftel, David C.; Pagani, Francis D.; Kormos, Robert L.; Stevenson, Lynne; Miller, Marissa; Young, James B.

    2012-01-01

    Objective(s) Average two-year survival following cardiac transplantation is approximately 80%. The evolution and subsequent approval of larger pulsatile and, more recently, continuous flow mechanical circulatory support (MCS) technology for destination therapy (DT) offers the potential for triage of some patients awaiting cardiac transplantation to DT. Methods The National Heart, Lung and Blood Institute Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) is a national multi-institutional study of chronic mechanical circulatory support. Between June 2006 and December 2011, 127 pulsatile and 1160 continuous flow pumps (24% of total primary LVADs) carried an initial strategy of DT therapy. Results By multivariable analysis, risk factors (p<0.05) for mortality following DT included older age, larger body mass index, history of cancer, history of cardiac surgery, INTERMACS level I (cardiogenic shock), dialysis, increased BUN, use of a pulsatile flow device and use of a RVAD. Among continuous flow LVAD patients who were not in cardiogenic shock, a particularly favorable survival was associated with no cancer, patients not in cardiogenic shock, and BUN < 50, resulting in one and two year survival of 88 and 80%. Conclusions 1) Evolution from pulsatile to continuous flow technology has dramatically improved one and two year survival; 2) Destination Therapy is not appropriate for patients with rapid hemodynamic deterioration; or severe right ventricular failure 4) Important subsets of continuous flow DT patients now enjoy survival which is competitive with heart transplantation out to about two years. PMID:22795459

  18. Seasonal Variability in Regional Ice Flow Due to Meltwater Injection Into the Shear Margins of Jakobshavn Isbræ

    NASA Astrophysics Data System (ADS)

    Cavanagh, J. P.; Lampkin, D. J.; Moon, T.

    2017-12-01

    The impact of meltwater injection into the shear margins of Jakobshavn Isbræ via drainage from water-filled crevasses on ice flow is examined. We use Landsat-8 Operational Land Imager panchromatic, high-resolution imagery to monitor the spatiotemporal variability of seven water-filled crevasse ponds during the summers of 2013 to 2015. The timing of drainage from water-filled crevasses coincides with an increase of 2 to 20% in measured ice velocity beyond Jakobshavn Isbræ shear margins, which we define as extramarginal ice velocity. Some water-filled crevasse groups demonstrate multiple drainage events within a single melt season. Numerical simulations show that hydrologic shear weakening due to water-filled crevasse drainage can accelerate extramarginal flow by as much as 35% within 10 km of the margins and enhance mass flux through the shear margins by 12%. This work demonstrates a novel mechanism through which surface melt can influence regional ice flow.

  19. Analytical study of laser supported combustion waves in hydrogen

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Root, R. G.

    1977-01-01

    A one-dimensional energy equation, with constant pressure and area, was used to model the LSC wave. This equation balances convection, conduction, laser energy absorption, radiation energy loss and radiation energy transport. Solutions of this energy equation were obtained to give profiles of temperature and other properties, as well as the relation between laser intensity and mass flux through the wave. The flow through the LSC wave was then conducted through a variable pressure, variable area streamtube to accelerate it to high speed, with the propulsion application in mind. A numerical method for coupling the LSC wave model to the streamtube flow was developed, and a sample calculation was performed. The result shows that 42% of the laser power has been radiated away by the time the gas reaches the throat. It was concluded that in the radially confined flows of interest for propulsion applications, transverse velocities would be less important than in the unconfined flows where air experiments have been conducted.

  20. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Astrophysics Data System (ADS)

    Papell, S. Stephen; Nyland, Ted W.; Saiyed, Naseem H.

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomas devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1 - X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  1. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Nyland, Ted W.; Saiyed, Naseem H.

    1992-01-01

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomson devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1-X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  2. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Technical Reports Server (NTRS)

    Papell, S. Stephen; Nyland, Ted W.; Saiyed, Naseem H.

    1992-01-01

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomas devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1 - X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  3. Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device

    NASA Astrophysics Data System (ADS)

    Papell, S. S.; Nyland, Ted W.; Saiyed, Naseem H.

    1992-07-01

    Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomson devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1-X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.

  4. Acceleration and heating of heavy ions in high speed solar wind streams

    NASA Technical Reports Server (NTRS)

    Gomberoff, L.; Gratton, F. T.; Gnavi, G.

    1995-01-01

    Left hand polarized Alfven waves generated in coronal holes propagate in the direction of high speed solar wind streams, accelerating and heating heavy ions. As the solar wind expands, the ratio between the frequency of the Alfven waves and the proton gyrofrequency increases, due to the decrease of the interplanetary magnetic field, and encounter first the local ion gyrofrequency of the species with the largest M(sub l) = m(sub l)/z(sub l)m(sub p) (m(sub l) is the mass of species l, m(sub p) is the proton mass and z(sub l) is the degree of ionization of species l). It is shown that the Alfven waves experience there strong absorption and cannot propagate any further until the ions are accelerated and heated. Once this occurs, the Alfven waves continue to propagate until they meet the gyrofrequency of the next species giving rise to a similar phenomenon. In order to show this contention, we use the linear dispersion relation of ion cyclotron waves in a multicomponent plasma consisting of oxygen ions, alpha particles and protons. We assume that at any distance from the sun, the Alfven waves follow the local dispersion relation of electromagnetic ion cyclotron waves. To illustrate the results, we solve the dispersion relation for oxygen ions and alpha particles drifting relative to the protons. The dispersion relation has three branches. The first branch starts at zero frequency and goes to the Doppler-shifted oxygen ion gyrofrequency. The second branch starts close to the oxygen gyrofrequency, and goes to the Doppler-shifted alpha particle gyrofrequency. The third branch starts close to the alpha particle gyrofrequency, and goes to the proton gyrofrequency. The Alfven waves propagate following the first branch of the dispersion relation. When they reach the Doppler-shifted oxygen ion gyrofrequency, the ions are accelerated and heated to some definite values. When these values are reached, the dispersion relation changes, and it is now the first branch of the dispersion relation, the one which goes to the Doppler-shifted alpha particle gyrofrequency. The Alfven waves continue to propagate along the first branch of the dispersion relation and proceed to accelerate and heat the alpha particles.

  5. Research for the Fluid Field of the Centrifugal Compressor Impeller in Accelerating Startup

    NASA Astrophysics Data System (ADS)

    Li, Xiaozhu; Chen, Gang; Zhu, Changyun; Qin, Guoliang

    2013-03-01

    In order to study the flow field in the impeller in the accelerating start-up process of centrifugal compressor, the 3-D and 1-D transient accelerated flow governing equations along streamline in the impeller of the centrifugal compressor are derived in detail, the assumption of pressure gradient distribution is presented, and the solving method for 1-D transient accelerating flow field is given based on the assumption. The solving method is achieved by programming and the computing result is obtained. It is obtained by comparison that the computing method is met with the test result. So the feasibility and effectiveness for solving accelerating start-up problem of centrifugal compressor by the solving method in this paper is proven.

  6. Insight into glacier climate interaction: reconstruction of the mass balance field using ice extent data

    NASA Astrophysics Data System (ADS)

    Visnjevic, Vjeran; Herman, Frédéric; Licul, Aleksandar

    2016-04-01

    With the end of the Last Glacial Maximum (LGM), about 20 000 years ago, ended the most recent long-lasting cold phase in Earth's history. We recently developed a model that describes large-scale erosion and its response to climate and dynamical changes with the application to the Alps for the LGM period. Here we will present an inverse approach we have recently developed to infer the LGM mass balance from known ice extent data, focusing on a glacier or ice cap. The ice flow model is developed using the shallow ice approximation and the developed codes are accelerated using GPUs capabilities. The mass balance field is the constrained variable defined by the balance rate β and the equilibrium line altitude (ELA), where c is the cutoff value: b = max(βṡ(S(z) - ELA), c) We show that such a mass balance can be constrained from the observed past ice extent and ice thickness. We are also investigating several different geostatistical methods to constrain spatially variable mass balance, and derive uncertainties on each of the mass balance parameters.

  7. Basic and Applied Studies of the RAM Accelerator as a Hypervelocity Projectile Launcher

    DTIC Science & Technology

    1993-12-10

    The quasi-steady, one-dimensional "blackbox" model of thermally choked ram accelerator performance 18 that has been widely used by the authors and...the thermal choke point is assumed to be in equilibrium, the conditions can be determined by an equilibrium chemistry combustion routine. This model ...to operation, the details of the flow field must be examined. I The simplest model of the thermally choked ram accelerator flow field treats the flow

  8. Design of a compact all-permanent magnet ECR ion source injector for ReA at the MSU NSCL

    NASA Astrophysics Data System (ADS)

    Pham, Alfonse N.; Leitner, Daniela; Glennon, Patrick; Ottarson, Jack; Lawton, Don; Portillo, Mauricio; Machicoane, Guillaume; Wenstrom, John; Lajoie, Andrew

    2016-06-01

    The design of a compact all-permanent magnet electron cyclotron resonance (ECR) ion source injector for the ReAccelerator Facility (ReA) at the Michigan State University (MSU) National Superconducting Cyclotron Laboratory (NSCL) is currently being carried out. The ECR ion source injector will complement the electron beam ion trap (EBIT) charge breeder as an off-line stable ion beam injector for the ReA linac. The objective of the ECR ion source injector is to provide continuous-wave beams of heavy ions from hydrogen to masses up to 136Xe within the ReA charge-to-mass ratio (Q / A) operational range from 0.2 to 0.5. The ECR ion source will be mounted on a high-voltage platform that can be adjusted to obtain the required 12 keV/u injection energy into a room temperature radio-frequency quadrupole (RFQ) for further acceleration. The beam line consists of a 30 kV tetrode extraction system, mass analyzing section, and optical matching section for injection into the existing ReA low energy beam transport (LEBT) line. The design of the ECR ion source and the associated beam line are discussed.

  9. On the Single-Layer Hydraulics Model for Flows and Ventilation over Unban Areas in Stable Stratification

    NASA Astrophysics Data System (ADS)

    Liu, C. H.

    2015-12-01

    Atmospheric stability has substantial effects on the flows and heat/mass transport processes. While extensive studies have been conducted for neutral and unstable stabilities, rather limited studies have been devoted to stable stratification. Major technical reason is the demanding spatio-temporal resolution required to solve the small scales in stratified turbulent flows. Instead of continuous density variation, we use the single-layer hydraulics model (analogous to shallow water equations for global dynamics), to simulate the stratified flows and turbulence structure over hypothetical urban areas. An array of identical ribs in cross flows is used to model an idealized urban surface and the aerodynamic resistance is controlled by the separation among the ribs. Two immiscible fluids (water and air) with a large density difference (three order of magnitude) are used to simulate the stratification. The key assumption is that the density in the (lower) single layer is uniform. As a result, the stratification is measured by the Froude number Fr (= U/(gH)1/2; where U is the flow speed, g the gravitational acceleration and H the single-layer depth). One of the characteristics of single-layer hydraulics model is hydraulic jump which occurs when the flows are slowing down from Fr > 1 (high-speed flows over smoother surfaces) to Fr < 1 (lower-speed flows over rougher surfaces). It is noteworthy that kinetic energy does not conserve across hydraulic jump that, unavoidably, cascades to turbulent kinetic energy (TKE). We thus hypotheses that the elevated TKE could modify the street-level ventilation mechanism in the stratified flows across an abrupt change in surface roughness entering urban areas. Large-eddy simulation and laboratory-scale water channel experiments are sought to improve our understanding of the occurrence of hydraulic jump and the associated street-level ventilation mechanism in the stratified flows over urban areas. Preliminary results, by comparing the dynamics at Fr = 2.4 and Fr = 2.8, demonstrate the notable changes in ventilation performance in the first several rows of ribs of urban areas. Substantial changes in the mean and fluctuating velocities are observed that contribute to the different street-level ventilation mechanism. Detailed results will be reported in the upcoming AGU fall meeting.

  10. Development of a locally mass flux conservative computer code for calculating 3-D viscous flow in turbomachines

    NASA Technical Reports Server (NTRS)

    Walitt, L.

    1982-01-01

    The VANS successive approximation numerical method was extended to the computation of three dimensional, viscous, transonic flows in turbomachines. A cross-sectional computer code, which conserves mass flux at each point of the cross-sectional surface of computation was developed. In the VANS numerical method, the cross-sectional computation follows a blade-to-blade calculation. Numerical calculations were made for an axial annular turbine cascade and a transonic, centrifugal impeller with splitter vanes. The subsonic turbine cascade computation was generated in blade-to-blade surface to evaluate the accuracy of the blade-to-blade mode of marching. Calculated blade pressures at the hub, mid, and tip radii of the cascade agreed with corresponding measurements. The transonic impeller computation was conducted to test the newly developed locally mass flux conservative cross-sectional computer code. Both blade-to-blade and cross sectional modes of calculation were implemented for this problem. A triplet point shock structure was computed in the inducer region of the impeller. In addition, time-averaged shroud static pressures generally agreed with measured shroud pressures. It is concluded that the blade-to-blade computation produces a useful engineering flow field in regions of subsonic relative flow; and cross-sectional computation, with a locally mass flux conservative continuity equation, is required to compute the shock waves in regions of supersonic relative flow.

  11. Blazars: The accelerating inner jet model.

    NASA Astrophysics Data System (ADS)

    Georganopoulos, M.; Marscher, A. P.

    1996-05-01

    The standard interpretation of the nonthermal continuum radiation of blazars from radio to gamma -rays is thought to be synchrotron and inverse Compton radiation from a relativistic jet. The inner jet of a blazar is the section of the jet that connects the central engine with the VLBI core of the radio jet. This is a small (la 1 pc) region where the jet is formed, collimated and accelerated to speeds close to that of light. In the accelerating inner jet model ultrarelativistic plasma is generated continuously near the central engine of the AGN and is accelerated hydrodynamically. An external hydrostatic and/or magnetohydrodynamic pressure collimates the flow. In this work a simple relativistic hydrodynamic scheme that produces a simultaneously accelerating and converging flow is coupled with a detailed calculation of the evolution of the electron energy distribution and synchrotron emissivity due to relativistic electrons radiating in a mostly random magnetic field. Higher frequency radiation emanates from smaller distances from the central engine, implying shorter flux variation timescales at higher frequencies, as observed. The velocity of the jet increases with distance; this implies larger Doppler boosting for greater distances down the jet up to the point where the Lorentz factor Gamma la theta (-1) , where theta is the angle between the velocity vector and the line of sight, and therefore at lower frequencies. This can explain some of the differences between RBLs and XBLs as a line-of-sight orientation effect. A square density wave is propagated with the jet velocity and the variability thus induced is studied, taking into account time delay effects. The model is found to agree qualitatively with the observed steady state spectra as well as with the observed variability properties of BL Lac objects.

  12. Pulsed electromagnetic acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1973-01-01

    Direct measurements of the power deposited in the anode of a multimegawatt MPD accelerator using thermocouples attached to a thin shell anode reveal a dramatic decrease in the fractional anode power from 50% at 200 KW input power to less than 10% at 20 MW power. The corresponding local power flux peak at a value of 10,000 W/sq cm at the lip of the anode exhaust orifice, a distribution traced to a corresponding peak in the local current density at the anode. A comparison of voltage-current characteristics and spectral photographs of the MPD discharge using quartz, boron nitride and plexiglas insulators with various mass injection configurations led to the identification of different voltage modes and regions of ablation free operation. The technique of piezoelectric impact pressure measurement in the MPD exhaust flow was refined to account for the effects due to probe yaw angle.

  13. On magnetic reconnection in the Venusian wake. The experimental evidences

    NASA Astrophysics Data System (ADS)

    Fedorov, A.; Volwerk, M.; Zhang, T.; Barabash, S.; Sauvaud, J.

    2009-12-01

    The Venusian magnetotail is formed by solar wind magnetic flux tubes draping around the planet and stretched antisunward. The magnetotail topology represents two magnetic lobes separated by a thin current sheet. Such a configuration is a free energy reservoir. The accumulated energy is generally released by acceleration of planetary ions antisunward. But in the case of a magnetic reconnection, hypothetically appeared somewhere in the equatorial current sheet, some part of the planetary ions filling the tail, should be accelerated toward the planet. The present paper is devoted to the study of such sunward flows observed by IMA mass spectrometer onboard of the Venus Express orbiter. The case study shows rare accidently observed precipitations of the heavy ions in the nightside of the planet. The statistical study gives us the spatial distribution of such precipitations and conditions of their appearance.

  14. Detection of Large Ions in Time-of-Flight Mass Spectrometry: Effects of Ion Mass and Acceleration Voltage on Microchannel Plate Detector Response

    NASA Astrophysics Data System (ADS)

    Liu, Ranran; Li, Qiyao; Smith, Lloyd M.

    2014-08-01

    In time-of-flight mass spectrometry (TOF-MS), ion detection is typically accomplished by the generation and amplification of secondary electrons produced by ions colliding with a microchannel plate (MCP) detector. Here, the response of an MCP detector as a function of ion mass and acceleration voltage is characterized, for singly charged peptide/protein ions ranging from 1 to 290 kDa in mass, and for acceleration voltages from 5 to 25 kV. A nondestructive inductive charge detector (ICD) employed in parallel with MCP detection provides a reliable reference signal to allow accurate calibration of the MCP response. MCP detection efficiencies were very close to unity for smaller ions at high acceleration voltages (e.g., angiotensin, 1046.5 Da, at 25 kV acceleration voltage), but decreased to ~11% for the largest ions examined (immunoglobulin G (IgG) dimer, 290 kDa) even at the highest acceleration voltage employed (25 kV). The secondary electron yield γ (average number of electrons produced per ion collision) is found to be proportional to mv3.1 (m: ion mass, v: ion velocity) over the entire mass range examined, and inversely proportional to the square root of m in TOF-MS analysis. The results indicate that although MCP detectors indeed offer superlative performance in the detection of smaller peptide/protein species, their performance does fall off substantially for larger proteins, particularly under conditions of low acceleration voltage.

  15. AMS implications of charge-changing during acceleration

    NASA Astrophysics Data System (ADS)

    Knies, D. L.; Grabowski, K. S.; Cetina, C.; Demoranville, L. T.; Dougherty, M. R.; Mignerey, A. C.; Taylor, C. L.

    2007-08-01

    The NRL Accelerator Mass Spectrometer facility was recently reconfigured to incorporate a modified Cameca IMS 6f Secondary Ion Mass Spectrometer as a high-performance ion source. The NRL accelerator facility supplants the mass spectrometer portion of the IMS 6f instrument. As part of the initial testing of the combined instrument, charge-state scans were performed under various conditions. These provided the basis for studying the effects of terminal gas pressure on the process of charge-changing during acceleration. A combined system of transmission-micro-channel plate and energy detector was found to remove ghost beams produced from Pd charge-changing events in the accelerator tube.

  16. Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise

    PubMed Central

    Shannon, Sarah R.; Payne, Antony J.; Bartholomew, Ian D.; van den Broeke, Michiel R.; Edwards, Tamsin L.; Fettweis, Xavier; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Goelzer, Heiko; Hoffman, Matthew J.; Huybrechts, Philippe; Mair, Douglas W. F.; Nienow, Peter W.; Perego, Mauro; Price, Stephen F.; Smeets, C. J. P. Paul; Sole, Andrew J.; van de Wal, Roderik S. W.; Zwinger, Thomas

    2013-01-01

    We assess the effect of enhanced basal sliding on the flow and mass budget of the Greenland ice sheet, using a newly developed parameterization of the relation between meltwater runoff and ice flow. A wide range of observations suggest that water generated by melt at the surface of the ice sheet reaches its bed by both fracture and drainage through moulins. Once at the bed, this water is likely to affect lubrication, although current observations are insufficient to determine whether changes in subglacial hydraulics will limit the potential for the speedup of flow. An uncertainty analysis based on our best-fit parameterization admits both possibilities: continuously increasing or bounded lubrication. We apply the parameterization to four higher-order ice-sheet models in a series of experiments forced by changes in both lubrication and surface mass budget and determine the additional mass loss brought about by lubrication in comparison with experiments forced only by changes in surface mass balance. We use forcing from a regional climate model, itself forced by output from the European Centre Hamburg Model (ECHAM5) global climate model run under scenario A1B. Although changes in lubrication generate widespread effects on the flow and form of the ice sheet, they do not affect substantial net mass loss; increase in the ice sheet’s contribution to sea-level rise from basal lubrication is projected by all models to be no more than 5% of the contribution from surface mass budget forcing alone. PMID:23940337

  17. Enhanced basal lubrication and the contribution of the Greenland ice sheet to future sea-level rise.

    PubMed

    Shannon, Sarah R; Payne, Antony J; Bartholomew, Ian D; van den Broeke, Michiel R; Edwards, Tamsin L; Fettweis, Xavier; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Goelzer, Heiko; Hoffman, Matthew J; Huybrechts, Philippe; Mair, Douglas W F; Nienow, Peter W; Perego, Mauro; Price, Stephen F; Smeets, C J P Paul; Sole, Andrew J; van de Wal, Roderik S W; Zwinger, Thomas

    2013-08-27

    We assess the effect of enhanced basal sliding on the flow and mass budget of the Greenland ice sheet, using a newly developed parameterization of the relation between meltwater runoff and ice flow. A wide range of observations suggest that water generated by melt at the surface of the ice sheet reaches its bed by both fracture and drainage through moulins. Once at the bed, this water is likely to affect lubrication, although current observations are insufficient to determine whether changes in subglacial hydraulics will limit the potential for the speedup of flow. An uncertainty analysis based on our best-fit parameterization admits both possibilities: continuously increasing or bounded lubrication. We apply the parameterization to four higher-order ice-sheet models in a series of experiments forced by changes in both lubrication and surface mass budget and determine the additional mass loss brought about by lubrication in comparison with experiments forced only by changes in surface mass balance. We use forcing from a regional climate model, itself forced by output from the European Centre Hamburg Model (ECHAM5) global climate model run under scenario A1B. Although changes in lubrication generate widespread effects on the flow and form of the ice sheet, they do not affect substantial net mass loss; increase in the ice sheet's contribution to sea-level rise from basal lubrication is projected by all models to be no more than 5% of the contribution from surface mass budget forcing alone.

  18. Simulation of ground-water flow of the coastal plain aquifers in parts of Maryland, Delaware, and the District of Columbia

    USGS Publications Warehouse

    Fleck, W.B.; Vroblesky, D.A.

    1996-01-01

    Geomorphic processes and the aquatic habitat of the Redwood Creek basin were studied extensively between 1973 and 1983. This volume contains 22 separate articles by 32 investigators who studied geology, major storms, timber harvesting and its role on accelerating erosion, mass movement, fluvial erosion, sediment transport and storage, stream channel response to storms and landuse, stream habitat, and stream chemistry. This research describes a rapidly eroding landscape that is sensitive to effects of both landuse and major storms.

  19. Nanofiltration-Enabled In Situ Solvent and Reagent Recycle for Sustainable Continuous-Flow Synthesis.

    PubMed

    Fodi, Tamas; Didaskalou, Christos; Kupai, Jozsef; Balogh, Gyorgy T; Huszthy, Peter; Szekely, Gyorgy

    2017-09-11

    Solvent usage in the pharmaceutical sector accounts for as much as 90 % of the overall mass during manufacturing processes. Consequently, solvent consumption poses significant costs and environmental burdens. Continuous processing, in particular continuous-flow reactors, have great potential for the sustainable production of pharmaceuticals but subsequent downstream processing remains challenging. Separation processes for concentrating and purifying chemicals can account for as much as 80 % of the total manufacturing costs. In this work, a nanofiltration unit was coupled to a continuous-flow rector for in situ solvent and reagent recycling. The nanofiltration unit is straightforward to implement and simple to control during continuous operation. The hybrid process operated continuously over six weeks, recycling about 90 % of the solvent and reagent. Consequently, the E-factor and the carbon footprint were reduced by 91 % and 19 %, respectively. Moreover, the nanofiltration unit led to a solution of the product eleven times more concentrated than the reaction mixture and increased the purity from 52.4 % to 91.5 %. The boundaries for process conditions were investigated to facilitate implementation of the methodology by the pharmaceutical sector. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A Study of Laminar Compressible Viscous Pipe Flow Accelerated by an Axial Body Force, with Application to Magnetogasdynamics

    NASA Technical Reports Server (NTRS)

    Martin, E. Dale

    1961-01-01

    A study is made of the steady laminar flow of a compressible viscous fluid in a circular pipe when the fluid is accelerated by an axial body force. The application of the theory to the magnetofluidmechanics of an electrically conducting gas accelerated by electric and magnetic fields is discussed. Constant viscosity, thermal conductivity, and electrical conductivity are assumed. Fully developed flow velocity and temperature profiles are shown, and detailed results of the accelerating flow development, including velocity and pressure as functions of distance, are given for the case where the axial body force is constant and for the case where it is a linear function of velocity. From these results are determined the pipe entry length and the pressure difference required.

  1. An analytical study of reduced-gravity flow dynamics

    NASA Technical Reports Server (NTRS)

    Bradshaw, R. D.; Kramer, J. L.; Zich, J. L.

    1976-01-01

    Addition of surface tension forces to a marker-and-cell code and the performance of four incompressible fluid simulations in reduced gravity, were studied. This marker-and-cell code has a variable grid capability with arbitrary curved boundaries and time dependent acceleration fields. The surface tension logic includes a spline fit of surface marker particles as well as contact angle logic for straight and curved wall boundaries. Three types of flow motion were simulated with the improved code: impulsive settling in a model Centaur LH2 tank, continuous settling in a model and full scale Centaur LO2 tank and mixing in a Centaur LH2 tank. The impulsive settling case confirmed a drop tower analysis which indicated more orderly fluid collection flow patterns with this method providing a potential savings in settling propellants. In the LO2 tank, fluid collection and flow simulation into the thrust barrel were achieved. The mixing simulation produced good results indicating both the development of the flow field and fluid interface behavior.

  2. Galaxy Feeds Off Gas Artist Concept

    NASA Image and Video Library

    2011-09-13

    In this artist conception based on data from ESA Herschel observatory, a galaxy accretes mass from rapid, narrow streams of cold gas. These filaments provide the galaxy with continuous flows of raw material to feed its star-forming at a leisurely pace

  3. The Early Development of Programmable Machinery.

    ERIC Educational Resources Information Center

    Collins, Martin D.

    1985-01-01

    Programmable equipment innovations, precursors of today's technology, are examined, including the development of the binary code and feedback control systems, such as temperature sensing devices, interchangeable parts, punched cards carrying instructions, continuous flow oil refining process, assembly lines for mass production, and the…

  4. Mass Gains of the Antarctic Ice Sheet Exceed Losses

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Li, Jun; Robbins, John; Saba, Jack L.; Yi, Donghui; Brenner, Anita; Bromwich, David

    2012-01-01

    During 2003 to 2008, the mass gain of the Antarctic ice sheet from snow accumulation exceeded the mass loss from ice discharge by 49 Gt/yr (2.5% of input), as derived from ICESat laser measurements of elevation change. The net gain (86 Gt/yr) over the West Antarctic (WA) and East Antarctic ice sheets (WA and EA) is essentially unchanged from revised results for 1992 to 2001 from ERS radar altimetry. Imbalances in individual drainage systems (DS) are large (-68% to +103% of input), as are temporal changes (-39% to +44%). The recent 90 Gt/yr loss from three DS (Pine Island, Thwaites-Smith, and Marie-Bryd Coast) of WA exceeds the earlier 61 Gt/yr loss, consistent with reports of accelerating ice flow and dynamic thinning. Similarly, the recent 24 Gt/yr loss from three DS in the Antarctic Peninsula (AP) is consistent with glacier accelerations following breakup of the Larsen B and other ice shelves. In contrast, net increases in the five other DS of WA and AP and three of the 16 DS in East Antarctica (EA) exceed the increased losses. Alternate interpretations of the mass changes driven by accumulation variations are given using results from atmospheric-model re-analysis and a parameterization based on 5% change in accumulation per degree of observed surface temperature change. A slow increase in snowfall with climate waRMing, consistent with model predictions, may be offsetting increased dynamic losses.

  5. Changes in ice dynamics and mass balance of the Antarctic ice sheet.

    PubMed

    Rignot, Eric

    2006-07-15

    The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 degrees C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes.

  6. Effects of high-energy particles on accretion flows onto a super massive black hole

    NASA Astrophysics Data System (ADS)

    Kimura, Shigeo

    We study effects of high-energy particles on the accretion flow onto a supermassive black hole and luminosities of escaping particles such as protons, neutrons, gamma-rays, and neutrinos. We formulate a one-dimensional model of the two-component accretion flow consisting of thermal particles and high-energy particles, supposing that some fraction of viscous dissipation energy is converted to the acceleration of high-energy particles. The thermal component is governed by fluid dynamics while the high-energy particles obey the moment equations of the diffusion-convection equation. By solving the time evolution of these equations, we obtain advection dominated flows as steady state solutions. Effects of the high-energy particles on the flow structure turn out to be very small because the compressional heating is so effective that the thermal component always provides the major part of the pressure. We calculate luminosities of escaping particles for these steady solutions. For a broad range of mass accretion rates, escaping particles can extract the energy about one-thousandth of the accretion energy. We also discuss some implications on relativistic jet production by escaping particles.

  7. Program and charts for determining shock tube, and expansion tunnel flow quantities for real air

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III; Wilder, S. E.

    1975-01-01

    A computer program in FORTRAN 4 language was written to determine shock tube, expansion tube, and expansion tunnel flow quantities for real-air test gas. This program permits, as input data, a number of possible combinations of flow quantities generally measured during a test. The versatility of the program is enhanced by the inclusion of such effects as a standing or totally reflected shock at the secondary diaphragm, thermochemical-equilibrium flow expansion and frozen flow expansion for the expansion tube and expansion tunnel, attenuation of the flow in traversing the acceleration section of the expansion tube, real air as the acceleration gas, and the effect of wall boundary layer on the acceleration section air flow. Charts which provide a rapid estimation of expansion tube performance prior to a test are included.

  8. Switch of flow direction in an Antarctic ice stream.

    PubMed

    Conway, H; Catania, G; Raymond, C F; Gades, A M; Scambos, T A; Engelhardt, H

    2002-10-03

    Fast-flowing ice streams transport ice from the interior of West Antarctica to the ocean, and fluctuations in their activity control the mass balance of the ice sheet. The mass balance of the Ross Sea sector of the West Antarctic ice sheet is now positive--that is, it is growing--mainly because one of the ice streams (ice stream C) slowed down about 150 years ago. Here we present evidence from both surface measurements and remote sensing that demonstrates the highly dynamic nature of the Ross drainage system. We show that the flow in an area that once discharged into ice stream C has changed direction, now draining into the Whillans ice stream (formerly ice stream B). This switch in flow direction is a result of continuing thinning of the Whillans ice stream and recent thickening of ice stream C. Further abrupt reorganization of the activity and configuration of the ice streams over short timescales is to be expected in the future as the surface topography of the ice sheet responds to the combined effects of internal dynamics and long-term climate change. We suggest that caution is needed when using observations of short-term mass changes to draw conclusions about the large-scale mass balance of the ice sheet.

  9. On accelerated flow of MHD powell-eyring fluid via homotopy analysis method

    NASA Astrophysics Data System (ADS)

    Salah, Faisal; Viswanathan, K. K.; Aziz, Zainal Abdul

    2017-09-01

    The aim of this article is to obtain the approximate analytical solution for incompressible magnetohydrodynamic (MHD) flow for Powell-Eyring fluid induced by an accelerated plate. Both constant and variable accelerated cases are investigated. Approximate analytical solution in each case is obtained by using the Homotopy Analysis Method (HAM). The resulting nonlinear analysis is carried out to generate the series solution. Finally, Graphical outcomes of different values of the material constants parameters on the velocity flow field are discussed and analyzed.

  10. Chexal-Horowitz flow-accelerated corrosion model -- Parameters and influences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chexal, V.K.; Horowitz, J.S.

    1995-12-01

    Flow-accelerated corrosion (FAC) continues to cause problems in nuclear and fossil power plants. Thinning caused by FAC has lead to many leaks and complete ruptures. These failures have required costly repairs and occasionally have caused lengthy shutdowns. To deal with FAC, utilities have instituted costly inspection and piping replacement programs. Typically, a nuclear unit will inspect about 100 large bore piping components plus additional small bore components during every refueling outage. To cope with FAC, there has been a great deal of research and development performed to obtain a greater understanding of the phenomenon. Currently, there is general agreement onmore » the mechanism of FAC. This understanding has lead to the development of computer based tools to assist utility engineers in dealing with this issue. In the United States, the most commonly used computer program to predict and control is CHECWORKS{trademark}. This paper presents a description of the mechanism of FAC, and introduces the predictive algorithms used in CHECWORKS{trademark}. The parametric effects of water chemistry, materials, flow and geometry as predicted by CHECWORKS{trademark} will then be discussed. These trends will be described and explained by reference to the corrosion mechanism. The remedial actions possible to reduce the rate of damage caused by FAC will also be discussed.« less

  11. Design of a mesoscale continuous flow route towards lithiated methoxyallene.

    PubMed

    Seghers, Sofie; Heugebaert, Thomas S A; Moens, Matthias; Sonck, Jolien; Thybaut, Joris; Stevens, Chris Victor

    2018-05-11

    The unique nucleophilic properties of lithiated methoxyallene allow for C-C bond formation with a wide variety of electrophiles, thus introducing an allenic group for further functionalization. This approach has yielded a tremendously broad range of (hetero)cyclic scaffolds, including API precursors. To date, however, its valorization at scale is hampered by the batch synthesis protocol which suffers from serious safety issues. Hence, the attractive heat and mass transfer properties of flow technology were exploited to establish a mesoscale continuous flow route towards lithiated methoxyallene. An excellent conversion of 94% was obtained, corresponding to a methoxyallene throughput of 8.2 g/h. The process is characterized by short reaction times, mild reaction conditions and a stoichiometric use of reagents. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Symposium on accelerator mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1981-01-01

    The area of accelerator mass spectrometry has expanded considerably over the past few years and established itself as an independent and interdisciplinary research field. Three years have passed since the first meeting was held at Rochester. A Symposium on Accelerator Mass Spectrometry was held at Argonne on May 11-13, 1981. In attendance were 96 scientists of whom 26 were from outside the United States. The present proceedings document the program and excitement of the field. Papers are arranged according to the original program. A few papers not presented at the meeting have been added to complete the information on themore » status of accelerator mass spectrometry. Individual papers were prepared separately for the data base.« less

  13. Interface for the rapid analysis of liquid samples by accelerator mass spectrometry

    DOEpatents

    Turteltaub, Kenneth; Ognibene, Ted; Thomas, Avi; Daley, Paul F; Salazar Quintero, Gary A; Bench, Graham

    2014-02-04

    An interface for the analysis of liquid sample having carbon content by an accelerator mass spectrometer including a wire, defects on the wire, a system for moving the wire, a droplet maker for producing droplets of the liquid sample and placing the droplets of the liquid sample on the wire in the defects, a system that converts the carbon content of the droplets of the liquid sample to carbon dioxide gas in a helium stream, and a gas-accepting ion source connected to the accelerator mass spectrometer that receives the carbon dioxide gas of the sample in a helium stream and introduces the carbon dioxide gas of the sample into the accelerator mass spectrometer.

  14. Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV application

    NASA Astrophysics Data System (ADS)

    Pan, Chong; Xue, Dong; Xu, Yang; Wang, JinJun; Wei, RunJie

    2015-10-01

    Lucas-Kanade (LK) algorithm, usually used in optical flow filed, has recently received increasing attention from PIV community due to its advanced calculation efficiency by GPU acceleration. Although applications of this algorithm are continuously emerging, a systematic performance evaluation is still lacking. This forms the primary aim of the present work. Three warping schemes in the family of LK algorithm: forward/inverse/symmetric warping, are evaluated in a prototype flow of a hierarchy of multiple two-dimensional vortices. Second-order Newton descent is also considered here. The accuracy & efficiency of all these LK variants are investigated under a large domain of various influential parameters. It is found that the constant displacement constraint, which is a necessary building block for GPU acceleration, is the most critical issue in affecting LK algorithm's accuracy, which can be somehow ameliorated by using second-order Newton descent. Moreover, symmetric warping outbids the other two warping schemes in accuracy level, robustness to noise, convergence speed and tolerance to displacement gradient, and might be the first choice when applying LK algorithm to PIV measurement.

  15. Lab and Imaging Tests

    MedlinePlus

    ... Grant Grant Finder Therapy Acceleration Program Academic Concierge Biotechnology Accelerator Clinical Trials Division Resources for HCPs Continuing ... Grant Grant Finder Therapy Acceleration Program Academic Concierge Biotechnology Accelerator Clinical Trials Division Resources for HCPs Continuing ...

  16. A peculiar segmented flow microfluidics for isoquercitrin biosynthesis based on coupling of reaction and separation.

    PubMed

    Gong, An; Gu, Shuang-Shuang; Wang, Jun; Sheng, Sheng; Wu, Fu-An

    2015-10-01

    A segmented flow containing a buffer-ionic liquid/solvent in a micro-channel reactor was applied to synthesize isoquercitrin by the hesperidinase-catalyzed selective hydrolysis of rutin, based on a novel system of reaction coupling with separation. Within the developed microchannel reactor with one T-shaped inlet and outlet, the maximum isoquercitrin yield (101.7 ± 2.6%) was achieved in 20 min at 30 °C and 4 μL/min. Compared with a continuous-flow reactor, reaction rate was increased 4-fold due to a glycine-sodium hydroxide:[Bmim][BF4]/glycerol triacetate (1:1, v/v) system that formed a slug flow in microchannel and significantly increased mass transfer rates. The mass transfer coefficient significantly increased and exhibited a linear relationship with the flow rate. Hesperidinase could be efficiently reused at least 5 times, without losing any activity. The bonding mechanism and secondary structure of hesperidinase indicated that hesperidinase had a greater affinity to rutin at a production rate of 4 μL/min in this segmented flow microreactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Fluid Physics Under a Stochastic Acceleration Field

    NASA Technical Reports Server (NTRS)

    Vinals, Jorge

    2001-01-01

    The research summarized in this report has involved a combined theoretical and computational study of fluid flow that results from the random acceleration environment present onboard space orbiters, also known as g-jitter. We have focused on a statistical description of the observed g-jitter, on the flows that such an acceleration field can induce in a number of experimental configurations of interest, and on extending previously developed methodology to boundary layer flows. Narrow band noise has been shown to describe many of the features of acceleration data collected during space missions. The scale of baroclinically induced flows when the driving acceleration is random is not given by the Rayleigh number. Spatially uniform g-jitter induces additional hydrodynamic forces among suspended particles in incompressible fluids. Stochastic modulation of the control parameter shifts the location of the onset of an oscillatory instability. Random vibration of solid boundaries leads to separation of boundary layers. Steady streaming ahead of a modulated solid-melt interface enhances solute transport, and modifies the stability boundaries of a planar front.

  18. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, A.W.

    1984-04-16

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.

  19. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, Alfred W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.

  20. Performance evaluation of different horizontal subsurface flow wetland types by characterization of flow behavior, mass removal and depth-dependent contaminant load.

    PubMed

    Seeger, Eva M; Maier, Uli; Grathwohl, Peter; Kuschk, Peter; Kaestner, Matthias

    2013-02-01

    For several pilot-scale constructed wetlands (CWs: a planted and unplanted gravel filter) and a hydroponic plant root mat (operating at two water levels), used for treating groundwater contaminated with BTEX, the fuel additive MTBE and ammonium, the hydrodynamic behavior was evaluated by means of temporal moment analysis of outlet tracer breakthrough curves (BTCs): hydraulic indices were related to contaminant mass removal. Detailed investigation of flow within the model gravel CWs allowed estimation of local flow rates and contaminant loads within the CWs. Best hydraulics were observed for the planted gravel filter (number of continuously stirred tank reactors N = 11.3, dispersion number = 0.04, Péclet number = 23). The hydroponic plant root mat revealed lower N and pronounced dispersion tendencies, whereby an elevated water table considerably impaired flow characteristics and treatment efficiencies. Highest mass removals were achieved by the plant root mat at low level: 98% (544 mg m⁻² d⁻¹), 78% (54 mg m⁻² d⁻¹) and 74% (893 mg m⁻² d⁻¹) for benzene, MTBE and ammonium-nitrogen, respectively. Within the CWs the flow behavior was depth-dependent, with the planting and the position of the outlet tube being key factors resulting in elevated flow rate and contaminant flux immediately below the densely rooted porous media zone in the planted CW, and fast bottom flow in the unplanted reference. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Mass and Momentum Turbulent Transport Experiments with Confined Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Bennett, J. C.

    1981-01-01

    Downstream mixing of coaxial jets discharging in an expanded duct was studied to obtain data for the evaluation and improvement of turbulent transport models currently used in a variety of computational procedures throughout the propulsion community for combustor flow modeling. Flow visualization studies showed four major shear regions occurring; a wake region immediately downstream of the inlet jet inlet duct; a shear region further downstream between the inner and annular jets; a recirculation zone; and a reattachment zone. A combination of turbulent momentum transport rate and two velocity component data were obtained from simultaneous measurements with a two color laser velocimeter (LV) system. Axial, radial and azimuthal velocities and turbulent momentum transport rate measurements in the r-z and r-theta planes were used to determine the mean value, second central moment (or rms fluctuation from mean), skewness and kurtosis for each data set probability density function (p.d.f.). A combination of turbulent mass transport rate, concentration and velocity data were obtained system. Velocity and mass transport in all three directions as well as concentration distributions were used to obtain the mean, second central moments, skewness and kurtosis for each p.d.f. These LV/LIF measurements also exposed the existence of a large region of countergradient turbulent axial mass transport in the region where the annular jet fluid was accelerating the inner jet fluid.

  2. Computing wheat nitrogen requirements from grain yield and protein maps

    USDA-ARS?s Scientific Manuscript database

    Optical protein sensors and mass-flow yield monitors provide the opportunity to continuously measure grain quality and quantity during harvesting. This chapter illustrates how yield monitor and grain protein measurements may provide useful postharvest information for evaluating water or nitrogen (N)...

  3. Computing wheat nitrogen requirements from grain yield and protein maps

    USDA-ARS?s Scientific Manuscript database

    Optical protein sensors and mass-flow yield monitors provide the opportunity to continuously measure grain quality and quantity during harvesting. This chapter illustrates how yield monitor and grain protein measurements may provide useful post-harvest information for evaluating water or nitrogen (...

  4. Organic Synthesis in a Spinning Tube-in-Tube (STT¢) Reactor

    EPA Science Inventory

    Continuous-flow reactors have been designed to minimize and potentially overcome the limitations of heat and mass transfer that are encountered in chemical reactors and further experienced upon scale up of a reaction. With process intensification, optimization of the reaction i...

  5. Telemetric Sensors for the Space Life Sciences

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Somps, Chris J.; Madou, Marc; Jeutter, Dean C.; Singh, Avtar; Connolly, John P. (Technical Monitor)

    1996-01-01

    Telemetric sensors for monitoring physiological changes in animal models in space are being developed by NASA's Sensors 2000! program. The sensors measure a variety of physiological measurands, including temperature, biopotentials, pressure, flow, acceleration, and chemical levels, and transmit these signals from the animals to a remote receiver via a wireless link. Thus physiologic information can be obtained continuously and automatically without animal handling, tethers, or percutaneous leads. We report here on NASA's development and testing of advanced wireless sensor systems for space life sciences research.

  6. Effects of resistance-guided high intensity interval functional electrical stimulation cycling on an individual with paraplegia: A case report.

    PubMed

    Dolbow, David R; Credeur, Daniel P

    2018-03-01

    Individuals with spinal cord injury (SCI) are more than twice as likely to develop and die from cardio-metabolic diseases as compared to able-bodied. This increased risk is thought to be in part due to accelerated muscle atrophy and reduced blood flow through sublesional arteries. Thus, strategies to recondition paralyzed skeletal muscles may help reduce cardio-metabolic disease risk. The purpose of this case report was to examine the impact of a novel, resistance-guided, high intensity interval training functional electrical stimulation (RG-HIIT-FES) cycling program on cardio-metabolic health in people with chronic SCI. One adult female with chronic T10 SCI. A novel RG-HIIT-FES cycling program three times per week for 10 weeks. Measures of body composition and cardio-metabolic health (vascular endothelial function of the brachial artery via flow-mediated dilation) and HbA1c blood values were performed at baseline and following completion of the RG-HIIT-FES program. Total body lean mass and legs lean mass increased 2.8% and 5.3% respectively while vastus lateralis thickness increased by 59.5%. Reactive hyperemia and flow mediated dilation change in brachial artery diameter increased by 11.1% and 147.7% following the program, respectively. HbA1c level changed minimally (5 to 4.9%). This case report suggests that RG-HIIT-FES cycling was an effective strategy to improve lean mass, and systemic vascular endothelial health in an individual with chronic SCI.

  7. The convective noise floor for the spectroscopic detection of low mass companions to solar type stars

    NASA Technical Reports Server (NTRS)

    Deming, D.; Espenak, F.; Jennings, D. E.; Brault, J. W.

    1986-01-01

    The threshold mass for the unambiguous spectroscopic detection of low mass companions to solar type stars is defined here as the time when the maximum acceleration in the stellar radial velocity due to the Doppler reflex of the companion exceeds the apparent acceleration produced by changes in convection. An apparent acceleration of 11 m/s/yr in integrated sunlight was measured using near infrared Fourier transform spectroscopy. This drift in the apparent solar velocity is attributed to a lessening in the magnetic inhibition of granular convection as solar minimum approaches. The threshold mass for spectroscopic detection of companions to a one solar mass star is estimated at below one Jupiter mass.

  8. IN SITU OXIDATION AND ASSOCIATED MASS-FLUX-REDUCTION/MASS-REMOVAL BEHAVIOR FOR SYSTEMS WITH ORGANIC LIQUID LOCATED IN LOWER-PERMEABILITY SEDIMENTS

    PubMed Central

    Marble, Justin C.; Carroll, Kenneth C.; Janousek, Hilary; Brusseau, Mark L.

    2010-01-01

    The effectiveness of permanganate for in situ chemical oxidation of organic liquid (trichloroethene) trapped in lower-permeability (K) zones located within a higher-permeability matrix was examined in a series of flow-cell experiments. The permanganate solution was applied in both continuous and pulsed-injection modes. Manganese-oxide precipitation, as confirmed by use of SEM-EDS, occurred within, adjacent to, and downgradient of the lower-K zones, reflective of trichloroethene oxidation. During flow interruptions, precipitate formed within the surrounding higher-permeability matrix, indicating diffusive flux of aqueous-phase trichloroethene from the lower-K zones. The impact of permanganate treatment on mass flux behavior was examined by conducting water floods after permanganate injection. The results were compared to those of water-flood control experiments. The amount of water flushing required for complete contaminant mass removal was reduced for all permanganate treatments for which complete removal was characterized. However, the nature of the mass-flux-reduction/mass-removal relationship observed during water flooding varied as a function of the specific permanganate treatment. PMID:20685008

  9. Radiographic findings after treatment with balloon brachytherapy accelerated partial breast irradiation.

    PubMed

    Ibrahim, Nafisa B; Anandan, Srividya; Hartman, Audrey L; McSweeney, Michelle; Chun, Jeanette; McKee, Andrea; Yang, Rebecca; Kim, Cathleen

    2015-01-01

    The use of accelerated partial breast irradiation (APBI) following breast-conserving surgery is rapidly gaining popularity as an alternative to whole-breast irradiation (WBI) in selected patients with early-stage breast cancer. Although data on the long-term effectiveness and safety of APBI accelerated partial breast irradiation are still being gathered, the shorter treatment course and narrowed radiation target of APBI accelerated partial breast irradiation provide an attractive alternative for carefully selected patients. These patients include those with relatively small tumors (≤3 cm), negative or close margins, and negative sentinel lymph nodes. Possible long-term complications include telangiectasia and the development of a palpable mass at the lumpectomy site. Mammographic findings in patients who have undergone APBI accelerated partial breast irradiation are distinct from those in patients who have undergone conventional WBI whole-breast irradiation . The most common post-APBI accelerated partial breast irradiation radiographic findings include formation of seromas at the lumpectomy site, focal parenchymal changes such as increased trabeculation and parenchymal distortion, fat necrosis, and skin changes such as thickening or retraction. Given the continued evolution of breast cancer treatment, it is important that radiologists have a comprehensive understanding of APBI accelerated partial breast irradiation in terms of rationale, patient selection criteria, common postprocedural radiographic findings (and how they differ from post-WBI whole-breast irradiation findings), and advantages and potential complications. RSNA, 2015

  10. On Markov modelling of near-wall turbulent shear flow

    NASA Astrophysics Data System (ADS)

    Reynolds, A. M.

    1999-11-01

    The role of Reynolds number in determining particle trajectories in near-wall turbulent shear flow is investigated in numerical simulations using a second-order Lagrangian stochastic (LS) model (Reynolds, A.M. 1999: A second-order Lagrangian stochastic model for particle trajectories in inhomogeneous turbulence. Quart. J. Roy. Meteorol. Soc. (In Press)). In such models, it is the acceleration, velocity and position of a particle rather than just its velocity and position which are assumed to evolve jointly as a continuous Markov process. It is found that Reynolds number effects are significant in determining simulated particle trajectories in the viscous sub-layer and the buffer zone. These effects are due almost entirely to the change in the Lagrangian integral timescale and are shown to be well represented in a first-order LS model by Sawford's correction footnote Sawford, B.L. 1991: Reynolds number effects in Lagrangian stochastic models of turbulent dispersion. Phys Fluids, 3, 1577-1586). This is found to remain true even when the Taylor-Reynolds number R_λ ~ O(0.1). This is somewhat surprising because the assumption of a Markovian evolution for velocity and position is strictly applicable only in the large Reynolds number limit because then the Lagrangian acceleration autocorrelation function approaches a delta function at the origin, corresponding to an uncorrelated component in the acceleration, and hence a Markov process footnote Borgas, M.S. and Sawford, B.L. 1991: The small-scale structure of acceleration correlations and its role in the statistical theory of turbulent dispersion. J. Fluid Mech. 288, 295-320.

  11. Insights in the Diffusion Controlled Interfacial Flow Synthesis of Au Nanostructures in a Microfluidic System.

    PubMed

    Kulkarni, Amol A; Sebastian Cabeza, Victor

    2017-12-19

    Continuous segmented flow interfacial synthesis of Au nanostructures is demonstrated in a microchannel reactor. This study brings new insights into the growth of nanostructures at continuous interfaces. The size as well as the shape of the nanostructures showed significant dependence on the reactant concentrations, reaction time, temperature, and surface tension, which actually controlled the interfacial mass transfer. The microchannel reactor assisted in achieving a high interfacial area, as well as uniformity in mass transfer effects. Hexagonal nanostructures were seen to be formed in synthesis times as short as 10 min. The wettability of the channel showed significant effect on the particle size as well as the actual shape. The hydrophobic channel yielded hexagonal structures of relatively smaller size than the hydrophilic microchannel, which yielded sharp hexagonal bipyramidal particles (diagonal distance of 30 nm). The evolution of particle size and shape for the case of hydrophilic microchannel is also shown as a function of the residence time. The interfacial synthesis approach based on a stable segmented flow promoted an excellent control on the reaction extent, reduction in axial dispersion as well as the particle size distribution.

  12. Active region flows

    NASA Technical Reports Server (NTRS)

    Foukal, Peter

    1987-01-01

    A wide range of observations has shown that active region phenomena in the photospheric, chromospheric and coronal temperature regimes are dynamical in nature. At the photosphere, recent observations of full line profiles place an upper limit of about + or - 20/msec on any downflows at supergranule cell edges. Observations of the full Stokes 5 profiles in the network show no evidence for downflows in magnetic flux tubes. In the area of chromospheric dynamics, several models were put forward recently to reproduce the observed behavior of spicules. However, it is pointed out that these adiabatic models do not include the powerful radiative dissipation which tend to damp out the large amplitude disturbances that produce the spicular acceleration in the models. In the corona, loop flows along field lines clearly transport mass and energy at rates important for the dynamics of these structures. However, advances in understanding the heating and mass balance of the loop structures seem to require new kinds of observations. Some results are presented using a remote sensing diagnostic of the intensity and orientation of macroscopic plasma electric fields predicted by models of reconnective heating and also wave heating.

  13. Initial Thrust Measurements of Marshall's Ion-ioN Thruster

    NASA Technical Reports Server (NTRS)

    Caruso, Natalie R. S.; Scogin, Tyler; Liu, Thomas M.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.

    2015-01-01

    Electronegative ion thrusters are a variation of traditional gridded ion thruster technology differentiated by the production and acceleration of both positive and negative ions. Benefits of electronegative ion thrusters include the elimination of lifetime-limiting cathodes from the thruster architecture and the ability to generate appreciable thrust from both charge species. While much progress has been made in the development of electronegative ion thruster technology, direct thrust measurements are required to unambiguously demonstrate the efficacy of the concept and support continued development. In the present work, direct thrust measurements of the thrust produced by the MINT (Marshall's Ion-ioN Thruster) are performed using an inverted-pendulum thrust stand in the High-Power Electric Propulsion Laboratory's Vacuum Test Facility-1 at the Georgia Institute of Technology with operating pressures ranging from 4.8 x 10(exp -5) and 5.7 x 10(exp -5) torr. Thrust is recorded while operating with a propellant volumetric mixture ratio of 5:1 argon to nitrogen with total volumetric flow rates of 6, 12, and 24 sccm (0.17, 0.34, and 0.68 mg/s). Plasma is generated using a helical antenna at 13.56 MHz and radio frequency (RF) power levels of 150 and 350 W. The acceleration grid assembly is operated using both sinusoidal and square waveform biases of +/-350 V at frequencies of 4, 10, 25, 125, and 225 kHz. Thrust is recorded for two separate thruster configurations: with and without the magnetic filter. No thrust is discernable during thruster operation without the magnetic filter for any volumetric flow rate, RF forward Power level, or acceleration grid biasing scheme. For the full thruster configuration, with the magnetic filter installed, a brief burst of thrust of approximately 3.75 mN +/- 3 mN of error is observed at the start of grid operation for a volumetric flow rate of 24 sccm at 350 W RF power using a sinusoidal waveform grid bias at 125 kHz and +/- 350 V. Similar bursts in thrust are observed using a square waveform grid bias at 10 kHz and +/- 350 V for volumetric flow rates of 6, 10, and 12 sccm at 150, 350, and 350 W respectively. The only operating condition that exhibits repeated thrust spikes throughout thruster operation is the 24 sccm condition with a 5:1 mixture ratio at 150 W RF power using the 10 kHz square waveform acceleration grid bias. Thrust spikes for this condition measure 3 mN with an error of +/- 2.5 mN. There are no operating conditions tested that show continuous thrust production.

  14. Investigation of the external flow analysis for density measurements at high altitude

    NASA Technical Reports Server (NTRS)

    Bienkowski, G. K.

    1984-01-01

    The results of analysis performed on the external flow around the shuttle orbiter nose regions at the Shuttle Upper Atmosphere Mass Spectrometer (SUMS) inlet orifice are presented. The purpose of the analysis is to quantitatively characterize the flow conditions to facilitate SUMS flight data reduction and subsequent determination of orbiter aerodynamic force coefficients in the hypersonic rarefied flow regime. Experimental determination of aerodynamic force coefficients requires accurate simultaneous measurement of forces (or acceleration) and dynamic pressure along with independent knowledge of density and velocity. The SUMS provides independent measurement of dynamic pressure; however, it does so indirectly and requires knowledge of the relationship between measured orifice conditions and the dynamic pressure which can only be determined on the basis of molecule or theory for a winged configuration. Monte Carlo direct simulation computer codes were developed for both the flow field solution at the orifice and for the internal orifice flow. These codes were used to study issues associated with geometric modeling of the orbiter nose geometry and the modeling of intermolecular collisions including rotational energy exchange and a preliminary analysis of vibrational excitation and dissociation effects. Data obtained from preliminary simulation runs are presented.

  15. The Plasma and Suprathermal Ion Composition (PLASTIC) Investigation on the STEREO Observatories

    NASA Astrophysics Data System (ADS)

    Galvin, A. B.; Kistler, L. M.; Popecki, M. A.; Farrugia, C. J.; Simunac, K. D. C.; Ellis, L.; Möbius, E.; Lee, M. A.; Boehm, M.; Carroll, J.; Crawshaw, A.; Conti, M.; Demaine, P.; Ellis, S.; Gaidos, J. A.; Googins, J.; Granoff, M.; Gustafson, A.; Heirtzler, D.; King, B.; Knauss, U.; Levasseur, J.; Longworth, S.; Singer, K.; Turco, S.; Vachon, P.; Vosbury, M.; Widholm, M.; Blush, L. M.; Karrer, R.; Bochsler, P.; Daoudi, H.; Etter, A.; Fischer, J.; Jost, J.; Opitz, A.; Sigrist, M.; Wurz, P.; Klecker, B.; Ertl, M.; Seidenschwang, E.; Wimmer-Schweingruber, R. F.; Koeten, M.; Thompson, B.; Steinfeld, D.

    2008-04-01

    The Plasma and Suprathermal Ion Composition (PLASTIC) investigation provides the in situ solar wind and low energy heliospheric ion measurements for the NASA Solar Terrestrial Relations Observatory Mission, which consists of two spacecraft (STEREO-A, STEREO-B). PLASTIC-A and PLASTIC-B are identical. Each PLASTIC is a time-of-flight/energy mass spectrometer designed to determine the elemental composition, ionic charge states, and bulk flow parameters of major solar wind ions in the mass range from hydrogen to iron. PLASTIC has nearly complete angular coverage in the ecliptic plane and an energy range from ˜0.3 to 80 keV/e, from which the distribution functions of suprathermal ions, including those ions created in pick-up and local shock acceleration processes, are also provided.

  16. Mechanisms of Ionospheric Mass Escape

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Khazanov, G. V.

    2010-01-01

    The dependence of ionospheric O+ escape flux on electromagnetic energy flux and electron precipitation into the ionosphere is derived for a hypothetical ambipolar pick-up process, powered the relative motion of plasmas and neutral upper atmosphere, and by electron precipitation, at heights where the ions are magnetized but influenced by photo-ionization, collisions with gas atoms, ambipolar and centrifugal acceleration. Ion pick-up by the convection electric field produces "ring-beam" or toroidal velocity distributions, as inferred from direct plasma measurements, from observations of the associated waves, and from the spectra of incoherent radar echoes. Ring-beams are unstable to plasma wave growth, resulting in rapid relaxation via transverse velocity diffusion, into transversely accelerated ion populations. Ion escape is substantially facilitated by the ambipolar potential, but is only weakly affected by centrifugal acceleration. If, as cited simulations suggest, ion ring beams relax into non-thermal velocity distributions with characteristic speed equal to the local ion-neutral flow speed, a generalized "Jeans escape" calculation shows that the escape flux of ionospheric O+ increases with Poynting flux and with precipitating electron density in rough agreement with observations.

  17. Development of the Accelerator Mass Spectrometry technology at the Comenius University in Bratislava

    NASA Astrophysics Data System (ADS)

    Povinec, Pavel P.; Masarik, Jozef; Ješkovský, Miroslav; Kaizer, Jakub; Šivo, Alexander; Breier, Robert; Pánik, Ján; Staníček, Jaroslav; Richtáriková, Marta; Zahoran, Miroslav; Zeman, Jakub

    2015-10-01

    An Accelerator Mass Spectrometry (AMS) laboratory has been established at the Centre for Nuclear and Accelerator Technologies (CENTA) at the Comenius University in Bratislava comprising of a MC-SNICS ion source, 3 MV Pelletron tandem accelerator, and an analyzer of accelerated ions. The preparation of targets for 14C and 129I AMS measurements is described in detail. The development of AMS techniques for potassium, uranium and thorium analysis in radiopure materials required for ultra-low background underground experiments is briefly mentioned.

  18. The logarithmic and power law behaviors of the accelerating, turbulent thermal boundary layer

    NASA Astrophysics Data System (ADS)

    Castillo, Luciano; Hussain, Fazle

    2017-02-01

    Direct numerical simulation of spatially evolving thermal turbulent boundary layers with strong favorable pressure gradient (FPG) shows that the thermal fluctuation intensity, θ' + and the Reynolds shear stress, u'v'¯+ exhibit a logarithmic behavior spanning the meso-layer (e.g., 50 ≤y+≤170 ). However, the mean thermal profile is not logarithmic even in the zero pressure gradient (ZPG) region; instead, it follows a power law. The maxima of u' 2 ¯+ and v'θ'¯+ change little with the strength of acceleration, while v'+, w'+, and u'v'¯+ continue to decay in the flow direction. Furthermore, θ'+ and u'θ'¯+ surprisingly experience changes from constants in ZPG to sharp rises in the FPG region. Such behavior appears to be due to squashing of the streaks which decreases the streak flank angle below the critical value for "transient growth" generation of streamwise vortices, shutting down production [W. Schoppa and F. Hussain, "Coherent structure generation near-wall turbulence," J. Fluid Mech. 453, 57-108 (2002)]. The streamwise vortices near the wall, although shrink because of stretching, simultaneously, also become weaker as the structures are progressively pushed farther down to the more viscous region near the wall. While the vortical structures decay rapidly in accelerating flows, the thermal field does not—nullifying the myth that both the thermal and velocity fields are similar.

  19. A compressible two-phase model for dispersed particle flows with application from dense to dilute regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrath, Thomas P., E-mail: thomas.p.mcgrath@navy.mil; St Clair, Jeffrey G.; Department of Mechanical and Aerospace Engineering, University of Florida, 231 MAE-A, P.O. Box 116250, Gainesville, Florida 32611

    2016-05-07

    Multiphase flows are present in many important fields ranging from multiphase explosions to chemical processing. An important subset of multiphase flow applications involves dispersed materials, such as particles, droplets, and bubbles. This work presents an Eulerian–Eulerian model for multiphase flows containing dispersed particles surrounded by a continuous media such as air or water. Following a large body of multiphase literature, the driving force for particle acceleration is modeled as a direct function of both the continuous-phase pressure gradient and the gradient of intergranular stress existing within the particle phase. While the application of these two components of driving force ismore » well accepted in much of the literature, other models exist in which the particle-phase pressure gradient itself drives particle motion. The multiphase model treats all phases as compressible and is derived to ensure adherence to the 2nd Law of Thermodynamics. The governing equations are presented and discussed, and a characteristic analysis shows the model to be hyperbolic, with a degeneracy in the case that the intergranular stress, which is modeled as a configuration pressure, is zero. Finally, results from a two sample problems involving shock-induced particle dispersion are presented. The results agree well with experimental measurements, providing initial confidence in the proposed model.« less

  20. Convergence acceleration of viscous flow computations

    NASA Technical Reports Server (NTRS)

    Johnson, G. M.

    1982-01-01

    A multiple-grid convergence acceleration technique introduced for application to the solution of the Euler equations by means of Lax-Wendroff algorithms is extended to treat compressible viscous flow. Computational results are presented for the solution of the thin-layer version of the Navier-Stokes equations using the explicit MacCormack algorithm, accelerated by a convective coarse-grid scheme. Extensions and generalizations are mentioned.

  1. Accelerations in Flight

    NASA Technical Reports Server (NTRS)

    Doolittle, J H

    1925-01-01

    This work on accelerometry was done at McCook Field for the purpose of continuing the work done by other investigators and obtaining the accelerations which occur when a high-speed pursuit airplane is subjected to the more common maneuvers. The accelerations obtained in suddenly pulling out of a dive with well-balanced elevators are shown to be within 3 or 4 per cent of the theoretically possible accelerations. The maximum acceleration which a pilot can withstand depends upon the length of time the acceleration is continued. It is shown that he experiences no difficulty under the instantaneous accelerations as high as 7.8 G., but when under accelerations in excess of 4.5 G., continued for several seconds, he quickly loses his faculties.

  2. Loop Heat Pipe Temperature Oscillation Induced by Gravity Assist and Reservoir Heating

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Garrison, Matthew; Patel, Deepak; Robinson, Franklin; Ottenstein, Laura

    2015-01-01

    The Laser Thermal Control System (LCTS) for the Advanced Topographic Laser Altimeter System (ATLAS) to be installed on NASA's Ice, Cloud, and Land Elevation Satellite (ICESat-2) consists of a constant conductance heat pipe and a loop heat pipe (LHP) with an associated radiator. During the recent thermal vacuum testing of the LTCS where the LHP condenser/radiator was placed in a vertical position above the evaporator and reservoir, it was found that the LHP reservoir control heater power requirement was much higher than the analytical model had predicted. Even with the control heater turned on continuously at its full power, the reservoir could not be maintained at its desired set point temperature. An investigation of the LHP behaviors found that the root cause of the problem was fluid flow and reservoir temperature oscillations, which led to persistent alternate forward and reversed flow along the liquid line and an imbalance between the vapor mass flow rate in the vapor line and liquid mass flow rate in the liquid line. The flow and temperature oscillations were caused by an interaction between gravity and reservoir heating, and were exacerbated by the large thermal mass of the instrument simulator which modulated the net heat load to the evaporator, and the vertical radiator/condenser which induced a variable gravitational pressure head. Furthermore, causes and effects of the contributing factors to flow and temperature oscillations intermingled.

  3. MONITORING POLYCHLORINATED BIPHENYLS (PCBS) BIODEGRADATION USING CONTINUOUS-FLOW ISOTOPE RATIO MASS SPECTROMETRY

    EPA Science Inventory

    Research has shown that polychlorinated biphenyls (PCBs) in some cases can be removed from the environment by biodegradation. Aerobic and anaerobic biological processes have been determined in previous research to be capable of degrading PCBs. During the aerobic and anaerobic d...

  4. Mobius domain-wall fermions on gradient-flowed dynamical HISQ ensembles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkowitz, Evan; Bouchard, Chris; Chang, Chia Cheng

    Here, we report on salient features of a mixed lattice QCD action using valence M\\"{o}bius domain-wall fermions solved on the dynamicalmore » $$N_f=2+1+1$$ HISQ ensembles generated by the MILC Collaboration. The approximate chiral symmetry properties of the valence fermions are shown to be significantly improved by utilizing the gradient-flow scheme to first smear the HISQ configurations. The greater numerical cost of the M\\"{o}bius domain-wall inversions is mitigated by the highly efficient QUDA library optimized for NVIDIA GPU accelerated compute nodes. We have created an interface to this optimized QUDA solver in Chroma. We provide tuned parameters of the action and performance of QUDA using ensembles with the lattice spacings $$a \\simeq \\{0.15, 0.12, 0.09\\}$$ fm and pion masses $$m_\\pi \\simeq \\{310, 220,130\\}$$ MeV. We have additionally generated two new ensembles with $$a\\sim0.12$$ fm and $$m_\\pi\\sim\\{400, 350\\}$$ MeV. With a fixed flow-time of $$t_{gf}=1$$ in lattice units, the residual chiral symmetry breaking of the valence fermions is kept below 10\\% of the light quark mass on all ensembles, $$m_{res} \\lesssim 0.1\\times m_l$$, with moderate values of the fifth dimension $$L_5$$ and a domain-wall height $$M_5 \\leq 1.3$$. As a benchmark calculation, we perform a continuum, infinite volume, physical pion and kaon mass extrapolation of $$F_{K^\\pm}/F_{\\pi^\\pm}$$ and demonstrate our results are independent of flow-time, and consistent with the FLAG determination of this quantity at the level of less than one standard deviation.« less

  5. Mobius domain-wall fermions on gradient-flowed dynamical HISQ ensembles

    DOE PAGES

    Berkowitz, Evan; Bouchard, Chris; Chang, Chia Cheng; ...

    2017-09-25

    Here, we report on salient features of a mixed lattice QCD action using valence M\\"{o}bius domain-wall fermions solved on the dynamicalmore » $$N_f=2+1+1$$ HISQ ensembles generated by the MILC Collaboration. The approximate chiral symmetry properties of the valence fermions are shown to be significantly improved by utilizing the gradient-flow scheme to first smear the HISQ configurations. The greater numerical cost of the M\\"{o}bius domain-wall inversions is mitigated by the highly efficient QUDA library optimized for NVIDIA GPU accelerated compute nodes. We have created an interface to this optimized QUDA solver in Chroma. We provide tuned parameters of the action and performance of QUDA using ensembles with the lattice spacings $$a \\simeq \\{0.15, 0.12, 0.09\\}$$ fm and pion masses $$m_\\pi \\simeq \\{310, 220,130\\}$$ MeV. We have additionally generated two new ensembles with $$a\\sim0.12$$ fm and $$m_\\pi\\sim\\{400, 350\\}$$ MeV. With a fixed flow-time of $$t_{gf}=1$$ in lattice units, the residual chiral symmetry breaking of the valence fermions is kept below 10\\% of the light quark mass on all ensembles, $$m_{res} \\lesssim 0.1\\times m_l$$, with moderate values of the fifth dimension $$L_5$$ and a domain-wall height $$M_5 \\leq 1.3$$. As a benchmark calculation, we perform a continuum, infinite volume, physical pion and kaon mass extrapolation of $$F_{K^\\pm}/F_{\\pi^\\pm}$$ and demonstrate our results are independent of flow-time, and consistent with the FLAG determination of this quantity at the level of less than one standard deviation.« less

  6. Comparison of performance of shell-and-tube heat exchangers with conventional segmental baffles and continuous helical baffle

    NASA Astrophysics Data System (ADS)

    Ahmed, Asif; Ferdous, Imam Ul.; Saha, Sumon

    2017-06-01

    In the present study, three-dimensional numerical simulation of two shell-and-tube heat exchangers (STHXs) with conventional segmental baffles (STHXsSB) and continuous helical baffle (STHXsHB) is carried out and a comparative study is performed based on the simulation results. Both of the STHXs contain 37 tubes inside a 500 mm long and 200 mm diameter shell and mass flow rate of shell-side fluid is varied from 0.5 kg/s to 2 kg/s. At first, physical and mathematical models are developed and numerically simulated using finite element method (FEM). For the validation of the computational model, shell-side average nusselt number (Nus) is calculated from the simulation results and compared with the available experimental results. The comparative study shows that STHXsHB has 72-127% higher heat transfer coefficient per unit pressure drop compared to the conventional STHXsSB for the same shell-side mass flow rate. Moreover, STHXsHB has 59-63% lower shell-side pressure drop than STHXsSB.

  7. Large-scale horizontal flows from SOUP observations of solar granulation

    NASA Technical Reports Server (NTRS)

    November, L. J.; Simon, G. W.; Tarbell, T. D.; Title, A. M.; Ferguson, S. H.

    1987-01-01

    Using high resolution time sequence photographs of solar granulation from the SOUP experiment on Spacelab 2, large scale horizontal flows were observed in the solar surface. The measurement method is based upon a local spatial cross correlation analysis. The horizontal motions have amplitudes in the range 300 to 1000 m/s. Radial outflow of granulation from a sunspot penumbra into surrounding photosphere is a striking new discovery. Both the supergranulation pattern and cellular structures having the scale of mesogranulation are seen. The vertical flows that are inferred by continuity of mass from these observed horizontal flows have larger upflow amplitudes in cell centers than downflow amplitudes at cell boundaries.

  8. Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients.

    PubMed

    Gutmann, Bernhard; Cantillo, David; Kappe, C Oliver

    2015-06-01

    In the past few years, continuous-flow reactors with channel dimensions in the micro- or millimeter region have found widespread application in organic synthesis. The characteristic properties of these reactors are their exceptionally fast heat and mass transfer. In microstructured devices of this type, virtually instantaneous mixing can be achieved for all but the fastest reactions. Similarly, the accumulation of heat, formation of hot spots, and dangers of thermal runaways can be prevented. As a result of the small reactor volumes, the overall safety of the process is significantly improved, even when harsh reaction conditions are used. Thus, microreactor technology offers a unique way to perform ultrafast, exothermic reactions, and allows the execution of reactions which proceed via highly unstable or even explosive intermediates. This Review discusses recent literature examples of continuous-flow organic synthesis where hazardous reactions or extreme process windows have been employed, with a focus on applications of relevance to the preparation of pharmaceuticals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. On Driving AGB Mass-Loss from Core-Contraction

    NASA Astrophysics Data System (ADS)

    Lewis, B. M.

    1997-12-01

    A bulk movement of mass constitutes a momentum flow. An instructive instance occurs in the radial pulsation of stars and white dwarfs, where a symmetric contraction phase implies the existence of an inwardly- directed radial momentum flow, that is followed during the subsequent expansion by an outwardly-directed flow. The key notion here is that an inward flow is effectively transmitted through the center to become in turn an outward flow: in adiabatic processes the momentum flux is not cancelled simply because it arrives at the center. However, during the radial pulsation of AGB stars momentum is cancelled in atmospheric shock-waves and consumed in work against gravity while mass is lifted far enough away from the star for dust to form, whereon radiation pressure drives it away. These momentum-dissipative conditions at the outer boundary therefore require a stellar source of radially directed momentum if pulsation is to continue in an AGB star. A sufficient source is found in the contraction of the whole of the electron-degenerate core of an AGB star under the addition of He ashes from shell-hydrogen burning. This produces an inwardly- directed radial momentum flow that must reach the center. Lewis quantifies the resulting momentum flux (http://xxx.lanl.gov/ps/astro-ph /9707233), and finds that it easily suffices to support the mass-loss of every AGB star. But it is necessary to assume that most of the inwardly directed flux is transmitted through the center to become in turn an outwardly directed flux. The AGB core maintains its virial equilibrium by exporting its excess momentum flux to the stellar envelope. This mechanism explains the dependence of the mass-loss rate from AGB stars on core mass; its generalization to objects with angular momentum and/or strong magnetic fields suggests a novel explanation for the axial symmetry exhibited by most planetary nebulae and proto planetary nebulae. Gravitational contraction can also account for the momentum flux in the solar wind.

  10. Material processing of convection-driven flow field and temperature distribution under oblique gravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1995-01-01

    A set of mathematical formulation is adopted to study vapor deposition from source materials driven by heat transfer process under normal and oblique directions of gravitational acceleration with extremely low pressure environment of 10(exp -2) mm Hg. A series of time animation of the initiation and development of flow and temperature profiles during the course of vapor deposition has been obtained through the numerical computation. Computations show that the process of vapor deposition has been accomplished by the transfer of vapor through a fairly complicated flow pattern of recirculation under normal direction gravitational acceleration. It is obvious that there is no way to produce a homogeneous thin crystalline films with fine grains under such a complicated flow pattern of recirculation with a non-uniform temperature distribution under normal direction gravitational acceleration. There is no vapor deposition due to a stably stratified medium without convection for reverse normal direction gravitational acceleration. Vapor deposition under oblique direction gravitational acceleration introduces a reduced gravitational acceleration in vertical direction which is favorable to produce a homogeneous thin crystalline films. However, oblique direction gravitational acceleration also induces an unfavorable gravitational acceleration along horizontal direction which is responsible to initiate a complicated flow pattern of recirculation. In other words, it is necessary to carry out vapor deposition under a reduced gravity in the future space shuttle experiments with extremely low pressure environment to process vapor deposition with a homogeneous crystalline films with fine grains. Fluid mechanics simulation can be used as a tool to suggest most optimistic way of experiment with best setup to achieve the goal of processing best nonlinear optical materials.

  11. Anode power deposition in quasi-steady MPD arcs. [accelerator anode heat flux measurement

    NASA Technical Reports Server (NTRS)

    Saber, A. J.; Jahn, R. G.

    1973-01-01

    The power deposited in the anode of a quasi-steady MPD accelerator has been measured directly by thermocouples attached to the inside surface of a shell anode which provide a local measurement of anode heat flux. The results over a range of arc currents from 5.5 to 44 kiloamperes and argon mass flows from 1 g/sec to 48 g/sec show that the fraction of the total input power deposited in the anode decreases drastically from 50% at an arc power of 200 kW to 10% at 20 MW, and that anode power is not uniformly deposited in the anode. A theoretical model of the anode heat transfer, including effects of anode work function, electron thermal energy, and anode sheath, can be brought into reasonable agreement with the measurements, provided the effective range of the conduction electrons from within the discharge plasma to the anode surface is properly acknowledged.

  12. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing

    NASA Technical Reports Server (NTRS)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerone C.; Kolody, Mark R.

    2011-01-01

    Evaluation of metal-based structures has long relied on atmospheric exposure test sites to determine corrosion resistance in marine environments. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions of the corrosive environment. Their success for correlation to atmospheric exposure is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated laboratory testing, which often focuses on the electrochemical reactions that occur during corrosion conditions, has yet to be universally accepted as a useful tool in predicting the long term service life of a metal despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard and their use is imperative, a method that correlates timescales from atmospheric exposure to accelerated testing would be very valuable. This work uses surface chemistry to interpret the chemical changes occurring on low carbon steel during atmospheric and accelerated corrosion conditions with the objective of finding a correlation between its accelerated and long-term corrosion performance. The current results of correlating data from marine atmospheric exposure conditions at the Kennedy Space Center beachside corrosion test site, alternating seawater spray, and immersion in typical electrochemical laboratory conditions, will be presented. Key words: atmospheric exposure, accelerated corrosion testing, alternating seawater spray, marine, correlation, seawater, carbon steel, long-term corrosion performance prediction, X-ray photoelectron spectroscopy.

  13. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing - Part 2

    NASA Technical Reports Server (NTRS)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerome C.; Kolody, Mark R.

    2012-01-01

    Evaluation of metals to predict service life of metal-based structures in corrosive environments has long relied on atmospheric exposure test sites. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions similar to those of the corrosive environment. Their reliability to correlate to atmospheric exposure test results is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated corrosion testing has yet to be universally accepted as a useful tool in predicting the long-term service life of a metal, despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard, and their use is crucial, a method that correlates timescales from accelerated testing to atmospheric exposure would be very valuable. This paper presents work that began with the characterization of the atmospheric environment at the Kennedy Space Center (KSC) Beachside Corrosion Test Site. The chemical changes that occur on low carbon steel, during atmospheric and accelerated corrosion conditions, were investigated using surface chemistry analytical methods. The corrosion rates and behaviors of panels subjected to long-term and accelerated corrosion conditions, involving neutral salt fog and alternating seawater spray, were compared to identify possible timescale correlations between accelerated and long-term corrosion performance. The results, as well as preliminary findings on the correlation investigation, are presented.

  14. Body mass, composition, and food intake in rabbits during altered acceleration fields

    NASA Technical Reports Server (NTRS)

    Katovich, M. J.; Smith, A. H.

    1978-01-01

    Mature male Polish rabbits were subjected to varying gravitational fields in an animal centrifuge in order to evaluate the effects of acceleration and deacceleration on body mass, body composition, and food intake. The acceleration field intensity was increased by 0.25-G increments to a maximum of 2.5 G at intervals which permitted physiological adaptation at each field. Control animals of the same age were maintained at earth gravity under identical conditions of constant-light environment at a room temperature of 23 + or - 5 C. It is shown that increasing the acceleration-field intensity leads to a decrease in body mass. The regulated nature of this decreased body mass is tested by the response to an additional three-day fasting of animals adapted physiologically to 2.5 G. Ad libitum food intake per kg body mass per day tends to increase in chronically accelerated animals above 1.75 G. Increase in water content in centrifuged animals after physiological adaptation to 2.5 G is the result of decreasing body fat. Body mass and food intake returned to the precentrifuged levels of control animals within six weeks after cessation of centrifugation.

  15. Feasibility of 4D flow MR imaging of the brain with either Cartesian y-z radial sampling or k-t SENSE: comparison with 4D Flow MR imaging using SENSE.

    PubMed

    Sekine, Tetsuro; Amano, Yasuo; Takagi, Ryo; Matsumura, Yoshio; Murai, Yasuo; Kumita, Shinichiro

    2014-01-01

    A drawback of time-resolved 3-dimensional phase contrast magnetic resonance (4D Flow MR) imaging is its lengthy scan time for clinical application in the brain. We assessed the feasibility for flow measurement and visualization of 4D Flow MR imaging using Cartesian y-z radial sampling and that using k-t sensitivity encoding (k-t SENSE) by comparison with the standard scan using SENSE. Sixteen volunteers underwent 3 types of 4D Flow MR imaging of the brain using a 3.0-tesla scanner. As the standard scan, 4D Flow MR imaging with SENSE was performed first and then followed by 2 types of acceleration scan-with Cartesian y-z radial sampling and with k-t SENSE. We measured peak systolic velocity (PSV) and blood flow volume (BFV) in 9 arteries, and the percentage of particles arriving from the emitter plane at the target plane in 3 arteries, visually graded image quality in 9 arteries, and compared these quantitative and visual data between the standard scan and each acceleration scan. 4D Flow MR imaging examinations were completed in all but one volunteer, who did not undergo the last examination because of headache. Each acceleration scan reduced scan time by 50% compared with the standard scan. The k-t SENSE imaging underestimated PSV and BFV (P < 0.05). There were significant correlations for PSV and BFV between the standard scan and each acceleration scan (P < 0.01). The percentage of particles reaching the target plane did not differ between the standard scan and each acceleration scan. For visual assessment, y-z radial sampling deteriorated the image quality of the 3 arteries. Cartesian y-z radial sampling is feasible for measuring flow, and k-t SENSE offers sufficient flow visualization; both allow acquisition of 4D Flow MR imaging with shorter scan time.

  16. Hydraulic modeling of unsteady debris-flow surges with solid-fluid interactions

    USGS Publications Warehouse

    Iverson, Richard M.

    1997-01-01

    Interactions of solid and fluid constituents produce the unique style of motion that typifies debris flows. To simulate this motion, a new hydraulic model represents debris flows as deforming masses of granular solids variably liquefied by viscous pore fluid. The momentum equation of the model describes how internal and boundary forces change as coarse-grained surge heads dominated by grain-contact friction grade into muddy debris-flow bodies more strongly influenced by fluid viscosity and pressure. Scaling analysis reveals that pore-pressure variations can cause flow resistance in surge heads to surpass that in debris-flow bodies by orders of magnitude. Numerical solutions of the coupled momentum and continuity equations provide good predictions of unsteady, nonuniform motion of experimental debris flows from initiation through deposition.

  17. Secular changes in height, body weight, body mass index and pubertal development in male children and adolescents in Krakow, Poland.

    PubMed

    Kryst, Łukasz; Kowal, Małgorzata; Woronkowicz, Agnieszka; Sobiecki, Jan; Cichocka, Barbara Anna

    2012-07-01

    This study examined the secular changes in height, body weight, body mass index and pubertal development in male children and adolescents in Krakow (Poland) over the past 80 years, with an emphasis on the last decade (2000-2010). The survey of the population of Krakow is a continuation of observations conducted in that area for many years. The analysis aims to determine whether in the last decade Krakow still witnessed the secular trend, and what form the trend took. The body height and weight, and body mass index (BMI), of 1862 boys aged 3.5-18.5 years were analysed, against the background of a survey series from the years 1938 (N = 1801), 1971 (N = 2045), 1983 (N = 3124) and 2000 (N = 2328). The mean body height, in almost all age categories, was greater than in the past; however the final height over the last decade remained the same. The mean values of body weight and BMI increased, especially in the last decade. Also, an acceleration of puberty in boys was observed. The last 10 years saw an over 3-month decrease in the age of initial appearance of pubic hair in boys. In conclusion, the last decade saw cessation of the growing taller trend: maximum body height stabilized at approximately 179 cm, but weight and BMI increased. Also, a distinct acceleration of puberty was noticed. Lack of height increase, at the same time as weight gain and puberty acceleration, indicate a progressing developmental disharmony.

  18. Aerogel mass production for the CLAS12 RICH: Novel characterization methods and optical performance

    NASA Astrophysics Data System (ADS)

    Contalbrigo, M.; Balossino, I.; Barion, L.; Barnyakov, A. Yu.; Battaglia, G.; Danilyuk, A. F.; Katcin, A. A.; Kravchenko, E. A.; Mirazita, M.; Movsisyan, A.; Orecchini, D.; Pappalardo, L. L.; Squerzanti, S.; Tomassini, S.; Turisini, M.

    2017-12-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capabilities in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the Jefferson Lab upgraded 12 GeV continuous electron beam accelerator facility. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely-packed and highly-segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). The status of the aerogel mass-production and the assessment studies of the aerogel optical performance are here reported.

  19. On Atwood's Machine with a Nonzero Mass String

    NASA Astrophysics Data System (ADS)

    Tarnopolski, Mariusz

    2015-11-01

    Let us consider a classical high school exercise concerning two weights on a pulley and a string, illustrated in Fig. 1(a). A system like this is called an Atwood's machine and was invented by George Atwood in 1784 as a laboratory experiment to verify the mechanical laws of motion with constant acceleration. Nowadays, Atwood's machine is used for didactic purposes to demonstrate uniformly accelerated motion with acceleration arbitrarily smaller than the gravitational acceleration g. The simplest case is with a massless and frictionless pulley and a massless string. With little effort one can include the mass of the pulley in calculations. The mass of a string has been incorporated previously in some considerations and experiments. These include treatments focusing on friction, justifying the assumption of a massless string, incorporating variations in Earth's gravitational field, comparing the calculated value of g based on a simple experiment, taking the mass of the string into account in such a way that the resulting acceleration is constant, or in one exception solely focusing on a heavy string, but with a slightly different approach. Here we wish to provide i) a derivation of the acceleration and position dependence on the weights' masses based purely on basic dynamical reasoning similar to the conventional version of the exercise, and ii) focus on the influence of the string's linear density, or equivalently its mass, on the outcome compared to a massless string case.

  20. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, J.O.; Remenyik, C.J.

    1994-08-09

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure is disclosed. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel. 5 figs.

  1. Device for accurately measuring mass flow of gases

    DOEpatents

    Hylton, James O.; Remenyik, Carl J.

    1994-01-01

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel.

  2. Internal-Performance Evaluation of Two Fixed-Divergent-Shroud Ejectors

    NASA Technical Reports Server (NTRS)

    Mihaloew, James R.

    1960-01-01

    Ejectors designed for use in a Mach 2.2 aircraft were evaluated over a range of representative primary pressure ratios and ejector corrected weight-flow ratios. Basic thrust and pumping characteristics are discussed in terms of an assumed engine operating schedule to illustrate the variation of performance with Mach number. The two designs differed about 16 percent in the shroud longitudinal spacing ratio. For corrected ejector weight-flow ratios up to 0.10, the performance of the fixed-shroud ejector designs is comparable with that of a similar continuously variable ejector except at conditions corresponding to acceleration with afterburning from Mach 0.4 to 1.2. In this region, the ejector thrust ratio decreased to a minimum of 0.96.

  3. Mass, linear momentum and kinetic energy of bipolar flows in protoplanetary nebulae

    NASA Astrophysics Data System (ADS)

    Bujarrabal, V.; Castro-Carrizo, A.; Alcolea, J.; Sánchez Contreras, C.

    2001-10-01

    We have studied the CO emission from protoplanetary nebulae (PPNe). Our sample is composed of 37 objects and includes, we think, all well identified PPNe detected in CO, together with the two yellow hypergiants emitting in CO and one young PN. We present a summary of the existing CO data, including accurate new observations of the 12CO and 13CO J=1-0 and J=2-1 lines in 16 objects. We identify in the nebulae a slowly expanding shell (represented in the spectra by a central core) and a fast outflow (corresponding to the line wings), that in the well studied PPNe is known to be bipolar. Excluding poor data, we end up with a sample of 32 sources (including the 16 observed by us); fast flows are detected in 28 of these nebulae, being absent in only 4. We present a method to estimate from these data the mass, ``scalar'' momentum and kinetic energy of the different components of the molecular outflows. We argue that the uncertainties of our method can hardly lead to significant overestimates of these parameters, although underestimates may be present in not well studied objects. The total nebular mass is often as high as ~1 Msun, and the mass-loss rate, that (presumably during the last stages of the AGB phase) originated the nebula, had typical values ~10-4 Msun yr-1. The momentum corresponding to this mass ejection process in most studied nebulae is accurately coincident with the maximum momentum that radiation pressure, acting through absorption by dust grains, is able to supply (under expected conditions). We estimate that this high-efficiency process lasts about 1000-10 000 yr, after which the star has ejected a good fraction of its mass and the AGB phase ends. On the other hand, the fast molecular outflows, that have probably been accelerated by shock interaction with axial post-AGB jets, carry a significant fraction of the nebular mass, with a very high momentum (in most cases between 1037 and 1040 g cm s-1) and very high kinetic energy (usually between 1044 and 1047 erg). In general, yellow hypergiants and post-AGB objects with low initial mass show nebular masses and momenta that are, respectively, higher and lower than these values. We compare the momenta of the fast outflows with those that can be supplied by radiation pressure, taking into account the expected short acceleration times and some effects that can increase the momentum transfer. We find that in about 80% of PPNe, the fast molecular flows have too high momenta to be powered by radiation pressure. In some cases the momentum of the outflow is ~1000 larger than that carried by radiation pressure; such high factors are difficult to explain even under exceptional conditions. Wind interaction is the basic phenomenon in the PN shaping from the former AGB envelopes; we conclude that this interaction systematically takes place along a dominant direction and that this process is not powered by radiation pressure. Due to the lack of theoretical studies, the possible momentum source remains a matter of speculation.

  4. Qualitative spectroscopic study of magnetic nozzle flow

    NASA Technical Reports Server (NTRS)

    Umeki, T.; Turchi, P. J.

    1992-01-01

    The physics of the magnetic nozzle flow for a 100-kW-level quasi-steady MPD thruster was studied by photographic spectroscopy focusing on the plasma model in the flow and the acceleration mechanism. Spectroscopic visualization for the flow-species analysis indicates that the plasma-exhaust flow dominated by NII species were confined by the magnetic nozzle effect to collimate the flow for the better thruster performance. Inside the nozzle, the plasma flow was found to be in nonhomogeneous collisional-radiative condition. There appears to be a substantial flow acceleration from the magnetic nozzle inlet to the outlet with slight expansion. This suggests that the flow resembles that of constant area supersonic duct flow with cooling.

  5. Changes in mesenteric, renal, and aortic flows with +Gx acceleration

    NASA Technical Reports Server (NTRS)

    Stone, H. L.; Erickson, H. H.; Sandler, H.

    1974-01-01

    Previous studies in man and dogs have indicated that the splanchnic bed might contribute to the maintenance of arterial pressure during +Gx acceleration. Eight mongrel dogs were chronically instrumented with Doppler flow probes around the superior mesenteric (SMA) and renal arteries (RA) as well as the terminal aorta (TA). A solid-state pressure transducer was placed in the aorta distal to the flow probe. Using alpha-chloralose anesthesia following a 2-4 week recovery period, the animals were subjected to 120 sec at levels of 5, 10 and 15 +Gx acceleration on a 7.6-m radius centrifuge. The results indicate that both an active component and a mechanical component contribute to the maintenance of arterial pressure during +Gx acceleration.

  6. Transport modes during crystal growth in a centrifuge

    NASA Technical Reports Server (NTRS)

    Arnold, William A.; Wilcox, William R.; Carlson, Frederick; Chait, Arnon; Regel', Liia L.

    1992-01-01

    Flow modes arising under average acceleration in centrifugal crystal growth, the gradient of acceleration, and the Coriolis force are investigated using a fully nonlinear three-dimensional numerical model for a centrifugal crystal growth experiment. The analysis focuses on an examination of the quasi-steady state flow modes. The importance of the gradient acceleration is determined by the value of a new nondimensional number, Ad.

  7. Mass, charge, and energy separation by selective acceleration with a traveling potential hill

    NASA Astrophysics Data System (ADS)

    Tung, L. Schwager; Barr, W. L.; Lowder, R. S.; Post, R. F.

    1996-10-01

    A traveling electric potential hill has been used to generate an ion beam with an energy distribution that is mass dependent from a monoenergetic ion beam of mixed masses. This effect can be utilized as a novel method for mass separation applied to identification or enrichment of ions (e.g., of elements, isotopes, or molecules). This theory for mass-selective acceleration is presented here and is shown to be confirmed by experiment and by a time-dependent particle-in-cell computer simulation. Results show that monoenergetic ions with the particular mass of choice are accelerated by controlling the hill potential and the hill velocity. The hill velocity is typically 20%-30% faster than the ions to be accelerated. The ability of the hill to pickup a particular mass uses the fact that small kinetic energy differences in the lab frame appear much larger in the moving hill frame. Ions will gain energy from the approaching hill if their relative energy in the moving hill frame is less than the peak potential of the hill. The final energy of these accelerated ions can be several times the source energy, which facilitates energy filtering for mass purification or identification. If the hill potential is chosen to accelerate multiple masses, the heaviest mass will have the greatest final energy. Hence, choosing the appropriate hill potential and collector retarding voltage will isolate ions with the lightest, heaviest, or intermediate mass. In the experimental device, called a Solitron, purified 20Ne and 22Ne are extracted from a ribbon beam of neon that is originally composed of 20Ne:22Ne in the natural ratio of 91:9. The isotopic content of the processed beam is determined by measuring the energy distribution of the detected current. These results agree with the theory. In addition to mass selectivity, our theory can also be applied to the filtration of an ion beam according to charge state or energy. Because of this variety of properties, the Solitron is envisioned to have broad applications. The primary application is for the enrichment of stable isotopes for medical and industrial tracers. Other applications include mass analysis of unknown gases (atomic and molecular) and metals, extracting single charge states from a multiply charged beam, accelerating the high energy tail in a beam or plasma with a velocity distribution, and beam bunching.

  8. A qualitative and quantitative laser-based computer-aided flow visualization method. M.S. Thesis, 1992 Final Report

    NASA Technical Reports Server (NTRS)

    Canacci, Victor A.; Braun, M. Jack

    1994-01-01

    The experimental approach presented here offers a nonintrusive, qualitative and quantitative evaluation of full field flow patterns applicable in various geometries in a variety of fluids. This Full Flow Field Tracking (FFFT) Particle Image Velocimetry (PIV) technique, by means of particle tracers illuminated by a laser light sheet, offers an alternative to Laser Doppler Velocimetry (LDV), and intrusive systems such as Hot Wire/Film Anemometry. The method makes obtainable the flow patterns, and allows quantitative determination of the velocities, accelerations, and mass flows of an entire flow field. The method uses a computer based digitizing system attached through an imaging board to a low luminosity camera. A customized optical train allows the system to become a long distance microscope (LDM), allowing magnifications of areas of interest ranging up to 100 times. Presented in addition to the method itself, are studies in which the flow patterns and velocities were observed and evaluated in three distinct geometries, with three different working fluids. The first study involved pressure and flow analysis of a brush seal in oil. The next application involved studying the velocity and flow patterns in a cowl lip cooling passage of an air breathing aircraft engine using water as the working fluid. Finally, the method was extended to a study in air to examine the flows in a staggered pin arrangement located on one side of a branched duct.

  9. Elemental and charge state composition of the fast solar wind observed with SMS instruments on WIND

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.; Galvin, A. B.; Ipavich, F. M.; Hamilton, D. C.; Bochsler, P.; Geiss, J.; Fisk, L. A.; Wilken, B.

    1995-01-01

    The elemental composition and charge state distributions of heavy ions of the solar wind provide essential information about: (1) atom-ion separation processes in the solar atmosphere leading to the 'FIP effect' (the overabundance of low First Ionization potential (FIP) elements in the solar wind compared to the photosphere); and (2) coronal temperature profiles, as well as mechanisms which heat the corona and accelerate the solar wind. This information is required for solar wind acceleration models. The SWICS instrument on Ulysses measures for all solar wind flow conditions the relative abundance of about 8 elements and 20 charge states of the solar wind. Furthermore, the Ulysses high-latitude orbit provides an unprecedented look at the solar wind from the polar coronal holes near solar minimum conditions. The MASS instrument on the WIND spacecraft is a high-mass resolution solar wind ion mass spectrometer that will provide routinely not only the abundances and charge state of all elements easily measured with SWICS, but also of N, Mg, S. The MASS sensor was fully operational at the end of 1994 and has sampled the in-ecliptic solar wind composition in both the slow and the corotating fast streams. This unique combination of SWICS on Ulysses and MASS on WIND allows us to view for the first time the solar wind from two regions of the large coronal hole. Observations with SWICS in the coronal hole wind: (1) indicate that the FIP effect is small; and (2) allow us determine the altitude of the maximum in the electron temperature profile, and indicate a maximum temperature of approximately 1.5 MK. New results from the SMS instruments on Wind will be compared with results from SWICS on Ulysses.

  10. The vortex as a clock

    NASA Astrophysics Data System (ADS)

    Breidenthal, Robert

    2003-11-01

    Using heuristic arguments, the fundamental effect of acceleration on dissipation in self-similar turbulence is explored. If the ratio of the next vortex rotation period to the last one is always constant, a flow is temporally self-similar. This implies that the vortex rotation period is a linear function of time. For ordinary, unforced turbulence, the period increases linearly in time. However, by imposing an external e-folding time scale on the flow that decreases linearly in time, the dissipation rate is changed from that of the corresponding unforced flow. The dissipation rate depends on the time rate of change of the rotation period as well as the dimensions of the dynamic quantity controlling the flow. For almost all canonical laboratory flows, acceleration reduces the dissipation and entrainment rates. An example is the exponential jet, where the flame length increases by about 20conventional jet. An exception is Rayleigh-Taylor flow, where acceleration increases the dissipation rate.

  11. 40 CFR Table 13 to Subpart Xxxx of... - Minimum Data for Continuous Compliance With the Emission Limitations for Puncture Sealant...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... regeneration stream mass or volumetric flow for each regeneration cycle for 100 percent of the hours during which the process was operated, and a record of the carbon bed temperature after each regeneration, and...

  12. 40 CFR Table 13 to Subpart Xxxx of... - Minimum Data for Continuous Compliance With the Emission Limitations for Puncture Sealant...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... regeneration stream mass or volumetric flow for each regeneration cycle for 100 percent of the hours during which the process was operated, and a record of the carbon bed temperature after each regeneration, and...

  13. Downhill cycling symmetry breaking: how the rider foils experiment

    NASA Astrophysics Data System (ADS)

    Ben Abu, Yuval; Wolfson, Ira; Bran, Gil; Yizhaq, Hezi

    2017-11-01

    In high-school teaching of mechanics, we deal, among other things, with the nature of static and kinetic friction, forces that are proportional to the normal force. Under the influence of frictional forces, a body moves down a rough sloped decline at a fixed rate of acceleration that is independent of its mass. This situation does not apply to cases where the frictional force is dependent upon velocity, such as bodies which are moving through a streaming fluid (such as raindrops falling to the ground). In this case the body moves with a continuously decreasing acceleration, eventually reaching a terminal velocity when the frictional and gravitational forces balance out. This velocity constraint is determined by the dependence of the frictional force on velocity and geometric parameters that determine the strength of the frictional force. We show here that a similar situation takes place when bicycles descend an incline with a fixed slope. We also investigated the dependence of the velocity constraint with mass, using bicycles equipped with sophisticated sensors that metamorphose them into data-processing laboratories.

  14. Numerical simulation for the influence of laser-induced plasmas addition on air mass capture of hypersonic inlet

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Dou, Zhiguo; Li, Qian

    2012-03-01

    The theory of laser-induced plasmas addition to hypersonic airflow off a vehicle to increase air mass capture and improve the performance of hypersonic inlets at Mach numbers below the design value is explored. For hypersonic vehicles, when flying at mach numbers lower than the design one, we can increase the mass capture ratio of inlet through laser-induced plasmas injection to the hypersonic flow upstream of cowl lip to form a virtual cowl. Based on the theory, the model of interaction between laser-induced plasmas and hypersonic flow was established. The influence on the effect of increasing mass capture ratio was studied at different positions of laser-induced plasmas region for the external compression hypersonic inlet at Mach 5 while the design value is 6, the power of plasmas was in the range of 1-8mJ. The main results are as follows: 1. the best location of the plasma addition region is near the intersection of the nose shock of the vehicle with the continuation of the cowl line, and slightly below that line. In that case, the shock generated by the heating is close to the shock that is a reflection of the vehicle nose shock off the imaginary solid surface-extension of the cowl. 2. Plasma addition does increase mass capture, and the effect becomes stronger as more energy is added, the peak value appeared when the power of plasma was about 4mJ, when the plasma energy continues to get stronger, the mass capture will decline slowly.

  15. Numerical simulation for the influence of laser-induced plasmas addition on air mass capture of hypersonic inlet

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Dou, Zhiguo; Li, Qian

    2011-11-01

    The theory of laser-induced plasmas addition to hypersonic airflow off a vehicle to increase air mass capture and improve the performance of hypersonic inlets at Mach numbers below the design value is explored. For hypersonic vehicles, when flying at mach numbers lower than the design one, we can increase the mass capture ratio of inlet through laser-induced plasmas injection to the hypersonic flow upstream of cowl lip to form a virtual cowl. Based on the theory, the model of interaction between laser-induced plasmas and hypersonic flow was established. The influence on the effect of increasing mass capture ratio was studied at different positions of laser-induced plasmas region for the external compression hypersonic inlet at Mach 5 while the design value is 6, the power of plasmas was in the range of 1-8mJ. The main results are as follows: 1. the best location of the plasma addition region is near the intersection of the nose shock of the vehicle with the continuation of the cowl line, and slightly below that line. In that case, the shock generated by the heating is close to the shock that is a reflection of the vehicle nose shock off the imaginary solid surface-extension of the cowl. 2. Plasma addition does increase mass capture, and the effect becomes stronger as more energy is added, the peak value appeared when the power of plasma was about 4mJ, when the plasma energy continues to get stronger, the mass capture will decline slowly.

  16. Astronaut mass measurement using linear acceleration method and the effect of body non-rigidity

    NASA Astrophysics Data System (ADS)

    Yan, Hui; Li, LuMing; Hu, ChunHua; Chen, Hao; Hao, HongWei

    2011-04-01

    Astronaut's body mass is an essential factor of health monitoring in space. The latest mass measurement device for the International Space Station (ISS) has employed a linear acceleration method. The principle of this method is that the device generates a constant pulling force, and the astronaut is accelerated on a parallelogram motion guide which rotates at a large radius to achieve a nearly linear trajectory. The acceleration is calculated by regression analysis of the displacement versus time trajectory and the body mass is calculated by using the formula m= F/ a. However, in actual flight, the device is instable that the deviation between runs could be 6-7 kg. This paper considers the body non-rigidity as the major cause of error and instability and analyzes the effects of body non-rigidity from different aspects. Body non-rigidity makes the acceleration of the center of mass (C.M.) oscillate and fall behind the point where force is applied. Actual acceleration curves showed that the overall effect of body non-rigidity is an oscillation at about 7 Hz and a deviation of about 25%. To enhance body rigidity, better body restraints were introduced and a prototype based on linear acceleration method was built. Measurement experiment was carried out on ground on an air table. Three human subjects weighing 60-70 kg were measured. The average variance was 0.04 kg and the average measurement error was 0.4%. This study will provide reference for future development of China's own mass measurement device.

  17. Can Satellite Geodesy Disentangle Holocene Rebound and Present-Day Glacier Balance Signatures?

    NASA Technical Reports Server (NTRS)

    Irvins, E.; James, T.; Yoder, C.

    1995-01-01

    The secular drift of the precession of the ascending node of the LAGOES -1 satellite is apparently linked to the Earth s paleoclimate through the slow viscous response of the mantle to ice sheet/ocean mass transfer during the last great continental deglaciation . The secular node acceleration is particularly sensitive to the longest wavelengths of the paleo -surface loading that have been memorized by the mantle glacio -isostatic flow. Tide gauge records for the last 130 years show a post-glacial rebound-corrected sea-level rise of 2.4 n 0.9 mm yr-1.

  18. A Closely Coupled Experimental and Numerical Approach for Hypersonic and High Enthalpy Flow Investigations Utilising the HEG Shock Tunnel and the DLR TAU Code

    DTIC Science & Technology

    2010-04-01

    factorization scheme (Lower-Upper Symmetric Gauss- Seidel ) can be used for time integration. Additional convergence acceleration is achieved by the...of the full Stefan -Maxwell equations. The diffusive mass flux of species S is computed according to: for 1 for jS S S Sm j jm S j eS jd S S S j j j...approximate factorization scheme (Lower-Upper Symmetric Gauss- Seidel ). For steady state problems, equation (69) reduces to R=0 because ddU t

  19. Accelerated time-resolved three-dimensional MR velocity mapping of blood flow patterns in the aorta using SENSE and k-t BLAST.

    PubMed

    Stadlbauer, Andreas; van der Riet, Wilma; Crelier, Gerard; Salomonowitz, Erich

    2010-07-01

    To assess the feasibility and potential limitations of the acceleration techniques SENSE and k-t BLAST for time-resolved three-dimensional (3D) velocity mapping of aortic blood flow. Furthermore, to quantify differences in peak velocity versus heart phase curves. Time-resolved 3D blood flow patterns were investigated in eleven volunteers and two patients suffering from aortic diseases with accelerated PC-MR sequences either in combination with SENSE (R=2) or k-t BLAST (6-fold). Both sequences showed similar data acquisition times and hence acceleration efficiency. Flow-field streamlines were calculated and visualized using the GTFlow software tool in order to reconstruct 3D aortic blood flow patterns. Differences between the peak velocities from single-slice PC-MRI experiments using SENSE 2 and k-t BLAST 6 were calculated for the whole cardiac cycle and averaged for all volunteers. Reconstruction of 3D flow patterns in volunteers revealed attenuations in blood flow dynamics for k-t BLAST 6 compared to SENSE 2 in terms of 3D streamlines showing fewer and less distinct vortices and reduction in peak velocity, which is caused by temporal blurring. Solely by time-resolved 3D MR velocity mapping in combination with SENSE detected pathologic blood flow patterns in patients with aortic diseases. For volunteers, we found a broadening and flattering of the peak velocity versus heart phase diagram between the two acceleration techniques, which is an evidence for the temporal blurring of the k-t BLAST approach. We demonstrated the feasibility of SENSE and detected potential limitations of k-t BLAST when used for time-resolved 3D velocity mapping. The effects of higher k-t BLAST acceleration factors have to be considered for application in 3D velocity mapping. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  20. Spray and High-Pressure Flow Computations in the National Combustion Code (NCC) Improved

    NASA Technical Reports Server (NTRS)

    Raju, Manthena S.

    2002-01-01

    Sprays occur in a wide variety of industrial and power applications and in materials processing. A liquid spray is a two-phase flow with a gas as the continuous phase and a liquid as the dispersed phase in the form of droplets or ligaments. The interactions between the two phases--which are coupled through exchanges of mass, momentum, and energy--can occur in different ways at disparate time and length scales involving various thermal, mass, and fluid dynamic factors. An understanding of the flow, combustion, and thermal properties of a rapidly vaporizing spray requires careful modeling of the ratecontrolling processes associated with turbulent transport, mixing, chemical kinetics, evaporation, and spreading rates of the spray, among many other factors. With the aim of developing an efficient solution procedure for use in multidimensional combustor modeling, researchers at the NASA Glenn Research Center have advanced the state-of-the-art in spray computations in several important ways.

Top