State-space self-tuner for on-line adaptive control
NASA Technical Reports Server (NTRS)
Shieh, L. S.
1994-01-01
Dynamic systems, such as flight vehicles, satellites and space stations, operating in real environments, constantly face parameter and/or structural variations owing to nonlinear behavior of actuators, failure of sensors, changes in operating conditions, disturbances acting on the system, etc. In the past three decades, adaptive control has been shown to be effective in dealing with dynamic systems in the presence of parameter uncertainties, structural perturbations, random disturbances and environmental variations. Among the existing adaptive control methodologies, the state-space self-tuning control methods, initially proposed by us, are shown to be effective in designing advanced adaptive controllers for multivariable systems. In our approaches, we have embedded the standard Kalman state-estimation algorithm into an online parameter estimation algorithm. Thus, the advanced state-feedback controllers can be easily established for digital adaptive control of continuous-time stochastic multivariable systems. A state-space self-tuner for a general multivariable stochastic system has been developed and successfully applied to the space station for on-line adaptive control. Also, a technique for multistage design of an optimal momentum management controller for the space station has been developed and reported in. Moreover, we have successfully developed various digital redesign techniques which can convert a continuous-time controller to an equivalent digital controller. As a result, the expensive and unreliable continuous-time controller can be implemented using low-cost and high performance microprocessors. Recently, we have developed a new hybrid state-space self tuner using a new dual-rate sampling scheme for on-line adaptive control of continuous-time uncertain systems.
Optimal Stochastic Modeling and Control of Flexible Structures
1988-09-01
1.37] and McLane [1.18] considered multivariable systems and derived their optimal control characteristics. Kleinman, Gorman and Zaborsky considered...Leondes [1.72,1.73] studied various aspects of multivariable linear stochastic, discrete-time systems that are partly deterministic, and partly stochastic...June 1966. 1.8. A.V. Balaknishnan, Applied Functional Analaysis , 2nd ed., New York, N.Y.: Springer-Verlag, 1981 1.9. Peter S. Maybeck, Stochastic
Sornborger, Andrew T; Lauderdale, James D
2016-11-01
Neural data analysis has increasingly incorporated causal information to study circuit connectivity. Dimensional reduction forms the basis of most analyses of large multivariate time series. Here, we present a new, multitaper-based decomposition for stochastic, multivariate time series that acts on the covariance of the time series at all lags, C ( τ ), as opposed to standard methods that decompose the time series, X ( t ), using only information at zero-lag. In both simulated and neural imaging examples, we demonstrate that methods that neglect the full causal structure may be discarding important dynamical information in a time series.
Prediction of mortality rates using a model with stochastic parameters
NASA Astrophysics Data System (ADS)
Tan, Chon Sern; Pooi, Ah Hin
2016-10-01
Prediction of future mortality rates is crucial to insurance companies because they face longevity risks while providing retirement benefits to a population whose life expectancy is increasing. In the past literature, a time series model based on multivariate power-normal distribution has been applied on mortality data from the United States for the years 1933 till 2000 to forecast the future mortality rates for the years 2001 till 2010. In this paper, a more dynamic approach based on the multivariate time series will be proposed where the model uses stochastic parameters that vary with time. The resulting prediction intervals obtained using the model with stochastic parameters perform better because apart from having good ability in covering the observed future mortality rates, they also tend to have distinctly shorter interval lengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loveday, D.L.; Craggs, C.
Box-Jenkins-based multivariate stochastic modeling is carried out using data recorded from a domestic heating system. The system comprises an air-source heat pump sited in the roof space of a house, solar assistance being provided by the conventional tile roof acting as a radiation absorber. Multivariate models are presented which illustrate the time-dependent relationships between three air temperatures - at external ambient, at entry to, and at exit from, the heat pump evaporator. Using a deterministic modeling approach, physical interpretations are placed on the results of the multivariate technique. It is concluded that the multivariate Box-Jenkins approach is a suitable techniquemore » for building thermal analysis. Application to multivariate Box-Jenkins approach is a suitable technique for building thermal analysis. Application to multivariate model-based control is discussed, with particular reference to building energy management systems. It is further concluded that stochastic modeling of data drawn from a short monitoring period offers a means of retrofitting an advanced model-based control system in existing buildings, which could be used to optimize energy savings. An approach to system simulation is suggested.« less
Diffusion Processes Satisfying a Conservation Law Constraint
Bakosi, J.; Ristorcelli, J. R.
2014-03-04
We investigate coupled stochastic differential equations governing N non-negative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires that a set of fluctuating variables be non-negative and (if appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the non-negativity and the unit-sum conservation law constraint are satisfied as the variables evolve in time. We investigate the consequencesmore » of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.« less
Diffusion Processes Satisfying a Conservation Law Constraint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakosi, J.; Ristorcelli, J. R.
We investigate coupled stochastic differential equations governing N non-negative continuous random variables that satisfy a conservation principle. In various fields a conservation law requires that a set of fluctuating variables be non-negative and (if appropriately normalized) sum to one. As a result, any stochastic differential equation model to be realizable must not produce events outside of the allowed sample space. We develop a set of constraints on the drift and diffusion terms of such stochastic models to ensure that both the non-negativity and the unit-sum conservation law constraint are satisfied as the variables evolve in time. We investigate the consequencesmore » of the developed constraints on the Fokker-Planck equation, the associated system of stochastic differential equations, and the evolution equations of the first four moments of the probability density function. We show that random variables, satisfying a conservation law constraint, represented by stochastic diffusion processes, must have diffusion terms that are coupled and nonlinear. The set of constraints developed enables the development of statistical representations of fluctuating variables satisfying a conservation law. We exemplify the results with the bivariate beta process and the multivariate Wright-Fisher, Dirichlet, and Lochner’s generalized Dirichlet processes.« less
Fully probabilistic control design in an adaptive critic framework.
Herzallah, Randa; Kárný, Miroslav
2011-12-01
Optimal stochastic controller pushes the closed-loop behavior as close as possible to the desired one. The fully probabilistic design (FPD) uses probabilistic description of the desired closed loop and minimizes Kullback-Leibler divergence of the closed-loop description to the desired one. Practical exploitation of the fully probabilistic design control theory continues to be hindered by the computational complexities involved in numerically solving the associated stochastic dynamic programming problem; in particular, very hard multivariate integration and an approximate interpolation of the involved multivariate functions. This paper proposes a new fully probabilistic control algorithm that uses the adaptive critic methods to circumvent the need for explicitly evaluating the optimal value function, thereby dramatically reducing computational requirements. This is a main contribution of this paper. Copyright © 2011 Elsevier Ltd. All rights reserved.
Multivariate moment closure techniques for stochastic kinetic models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lakatos, Eszter, E-mail: e.lakatos13@imperial.ac.uk; Ale, Angelique; Kirk, Paul D. W.
2015-09-07
Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporallymore » evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qichun; Zhou, Jinglin; Wang, Hong
In this paper, stochastic coupling attenuation is investigated for a class of multi-variable bilinear stochastic systems and a novel output feedback m-block backstepping controller with linear estimator is designed, where gradient descent optimization is used to tune the design parameters of the controller. It has been shown that the trajectories of the closed-loop stochastic systems are bounded in probability sense and the stochastic coupling of the system outputs can be effectively attenuated by the proposed control algorithm. Moreover, the stability of the stochastic systems is analyzed and the effectiveness of the proposed method has been demonstrated using a simulated example.
NASA Astrophysics Data System (ADS)
Gottwald, Georg; Melbourne, Ian
2013-04-01
Whereas diffusion limits of stochastic multi-scale systems have a long and successful history, the case of constructing stochastic parametrizations of chaotic deterministic systems has been much less studied. We present rigorous results of convergence of a chaotic slow-fast system to a stochastic differential equation with multiplicative noise. Furthermore we present rigorous results for chaotic slow-fast maps, occurring as numerical discretizations of continuous time systems. This raises the issue of how to interpret certain stochastic integrals; surprisingly the resulting integrals of the stochastic limit system are generically neither of Stratonovich nor of Ito type in the case of maps. It is shown that the limit system of a numerical discretisation is different to the associated continuous time system. This has important consequences when interpreting the statistics of long time simulations of multi-scale systems - they may be very different to the one of the original continuous time system which we set out to study.
NASA Astrophysics Data System (ADS)
Chen, Yonghong; Bressler, Steven L.; Knuth, Kevin H.; Truccolo, Wilson A.; Ding, Mingzhou
2006-06-01
In this article we consider the stochastic modeling of neurobiological time series from cognitive experiments. Our starting point is the variable-signal-plus-ongoing-activity model. From this model a differentially variable component analysis strategy is developed from a Bayesian perspective to estimate event-related signals on a single trial basis. After subtracting out the event-related signal from recorded single trial time series, the residual ongoing activity is treated as a piecewise stationary stochastic process and analyzed by an adaptive multivariate autoregressive modeling strategy which yields power, coherence, and Granger causality spectra. Results from applying these methods to local field potential recordings from monkeys performing cognitive tasks are presented.
Wei, Yanling; Park, Ju H; Karimi, Hamid Reza; Tian, Yu-Chu; Jung, Hoyoul; Yanling Wei; Park, Ju H; Karimi, Hamid Reza; Yu-Chu Tian; Hoyoul Jung; Tian, Yu-Chu; Wei, Yanling; Jung, Hoyoul; Karimi, Hamid Reza; Park, Ju H
2018-06-01
Continuous-time semi-Markovian jump neural networks (semi-MJNNs) are those MJNNs whose transition rates are not constant but depend on the random sojourn time. Addressing stochastic synchronization of semi-MJNNs with time-varying delay, an improved stochastic stability criterion is derived in this paper to guarantee stochastic synchronization of the response systems with the drive systems. This is achieved through constructing a semi-Markovian Lyapunov-Krasovskii functional together as well as making use of a novel integral inequality and the characteristics of cumulative distribution functions. Then, with a linearization procedure, controller synthesis is carried out for stochastic synchronization of the drive-response systems. The desired state-feedback controller gains can be determined by solving a linear matrix inequality-based optimization problem. Simulation studies are carried out to demonstrate the effectiveness and less conservatism of the presented approach.
2013-12-01
providing the opportunity to teach complex subjects related to stable and unstable equilibrium, stochastic systems, and conservation laws. The...bubbles through adjustment of three variables. The seal pressure, actuating pressure, and cycle time of the triggering solenoid valve each contribute to...stable and unstable equilibrium, stochastic systems, and conservation laws. The diaphragm valve designed in this thesis provides the centerpiece for
Vial, Flavie; Wei, Wei; Held, Leonhard
2016-12-20
In an era of ubiquitous electronic collection of animal health data, multivariate surveillance systems (which concurrently monitor several data streams) should have a greater probability of detecting disease events than univariate systems. However, despite their limitations, univariate aberration detection algorithms are used in most active syndromic surveillance (SyS) systems because of their ease of application and interpretation. On the other hand, a stochastic modelling-based approach to multivariate surveillance offers more flexibility, allowing for the retention of historical outbreaks, for overdispersion and for non-stationarity. While such methods are not new, they are yet to be applied to animal health surveillance data. We applied an example of such stochastic model, Held and colleagues' two-component model, to two multivariate animal health datasets from Switzerland. In our first application, multivariate time series of the number of laboratories test requests were derived from Swiss animal diagnostic laboratories. We compare the performance of the two-component model to parallel monitoring using an improved Farrington algorithm and found both methods yield a satisfactorily low false alarm rate. However, the calibration test of the two-component model on the one-step ahead predictions proved satisfactory, making such an approach suitable for outbreak prediction. In our second application, the two-component model was applied to the multivariate time series of the number of cattle abortions and the number of test requests for bovine viral diarrhea (a disease that often results in abortions). We found that there is a two days lagged effect from the number of abortions to the number of test requests. We further compared the joint modelling and univariate modelling of the number of laboratory test requests time series. The joint modelling approach showed evidence of superiority in terms of forecasting abilities. Stochastic modelling approaches offer the potential to address more realistic surveillance scenarios through, for example, the inclusion of times series specific parameters, or of covariates known to have an impact on syndrome counts. Nevertheless, many methodological challenges to multivariate surveillance of animal SyS data still remain. Deciding on the amount of corroboration among data streams that is required to escalate into an alert is not a trivial task given the sparse data on the events under consideration (e.g. disease outbreaks).
Stability of continuous-time quantum filters with measurement imperfections
NASA Astrophysics Data System (ADS)
Amini, H.; Pellegrini, C.; Rouchon, P.
2014-07-01
The fidelity between the state of a continuously observed quantum system and the state of its associated quantum filter, is shown to be always a submartingale. The observed system is assumed to be governed by a continuous-time Stochastic Master Equation (SME), driven simultaneously by Wiener and Poisson processes and that takes into account incompleteness and errors in measurements. This stability result is the continuous-time counterpart of a similar stability result already established for discrete-time quantum systems and where the measurement imperfections are modelled by a left stochastic matrix.
Tsai, Jason S-H; Hsu, Wen-Teng; Lin, Long-Guei; Guo, Shu-Mei; Tann, Joseph W
2014-01-01
A modified nonlinear autoregressive moving average with exogenous inputs (NARMAX) model-based state-space self-tuner with fault tolerance is proposed in this paper for the unknown nonlinear stochastic hybrid system with a direct transmission matrix from input to output. Through the off-line observer/Kalman filter identification method, one has a good initial guess of modified NARMAX model to reduce the on-line system identification process time. Then, based on the modified NARMAX-based system identification, a corresponding adaptive digital control scheme is presented for the unknown continuous-time nonlinear system, with an input-output direct transmission term, which also has measurement and system noises and inaccessible system states. Besides, an effective state space self-turner with fault tolerance scheme is presented for the unknown multivariable stochastic system. A quantitative criterion is suggested by comparing the innovation process error estimated by the Kalman filter estimation algorithm, so that a weighting matrix resetting technique by adjusting and resetting the covariance matrices of parameter estimate obtained by the Kalman filter estimation algorithm is utilized to achieve the parameter estimation for faulty system recovery. Consequently, the proposed method can effectively cope with partially abrupt and/or gradual system faults and input failures by the fault detection. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Analytical Assessment for Transient Stability Under Stochastic Continuous Disturbances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, Ping; Li, Hongyu; Gan, Chun
Here, with the growing integration of renewable power generation, plug-in electric vehicles, and other sources of uncertainty, increasing stochastic continuous disturbances are brought to power systems. The impact of stochastic continuous disturbances on power system transient stability attracts significant attention. To address this problem, this paper proposes an analytical assessment method for transient stability of multi-machine power systems under stochastic continuous disturbances. In the proposed method, a probability measure of transient stability is presented and analytically solved by stochastic averaging. Compared with the conventional method (Monte Carlo simulation), the proposed method is many orders of magnitude faster, which makes itmore » very attractive in practice when many plans for transient stability must be compared or when transient stability must be analyzed quickly. Also, it is found that the evolution of system energy over time is almost a simple diffusion process by the proposed method, which explains the impact mechanism of stochastic continuous disturbances on transient stability in theory.« less
Optimal estimation of parameters and states in stochastic time-varying systems with time delay
NASA Astrophysics Data System (ADS)
Torkamani, Shahab; Butcher, Eric A.
2013-08-01
In this study estimation of parameters and states in stochastic linear and nonlinear delay differential systems with time-varying coefficients and constant delay is explored. The approach consists of first employing a continuous time approximation to approximate the stochastic delay differential equation with a set of stochastic ordinary differential equations. Then the problem of parameter estimation in the resulting stochastic differential system is represented as an optimal filtering problem using a state augmentation technique. By adapting the extended Kalman-Bucy filter to the resulting system, the unknown parameters of the time-delayed system are estimated from noise-corrupted, possibly incomplete measurements of the states.
Studying Resist Stochastics with the Multivariate Poisson Propagation Model
Naulleau, Patrick; Anderson, Christopher; Chao, Weilun; ...
2014-01-01
Progress in the ultimate performance of extreme ultraviolet resist has arguably decelerated in recent years suggesting an approach to stochastic limits both in photon counts and material parameters. Here we report on the performance of a variety of leading extreme ultraviolet resist both with and without chemical amplification. The measured performance is compared to stochastic modeling results using the Multivariate Poisson Propagation Model. The results show that the best materials are indeed nearing modeled performance limits.
Optimal Control of Stochastic Systems Driven by Fractional Brownian Motions
2014-10-09
problems for stochastic partial differential equations driven by fractional Brownian motions are explicitly solved. For the control of a continuous time...linear systems with Brownian motion or a discrete time linear system with a white Gaussian noise and costs 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 stochastic optimal control, fractional Brownian motion , stochastic
Path integrals and large deviations in stochastic hybrid systems.
Bressloff, Paul C; Newby, Jay M
2014-04-01
We construct a path-integral representation of solutions to a stochastic hybrid system, consisting of one or more continuous variables evolving according to a piecewise-deterministic dynamics. The differential equations for the continuous variables are coupled to a set of discrete variables that satisfy a continuous-time Markov process, which means that the differential equations are only valid between jumps in the discrete variables. Examples of stochastic hybrid systems arise in biophysical models of stochastic ion channels, motor-driven intracellular transport, gene networks, and stochastic neural networks. We use the path-integral representation to derive a large deviation action principle for a stochastic hybrid system. Minimizing the associated action functional with respect to the set of all trajectories emanating from a metastable state (assuming that such a minimization scheme exists) then determines the most probable paths of escape. Moreover, evaluating the action functional along a most probable path generates the so-called quasipotential used in the calculation of mean first passage times. We illustrate the theory by considering the optimal paths of escape from a metastable state in a bistable neural network.
NASA Astrophysics Data System (ADS)
Wu, Jiang; Liao, Fucheng; Tomizuka, Masayoshi
2017-01-01
This paper discusses the design of the optimal preview controller for a linear continuous-time stochastic control system in finite-time horizon, using the method of augmented error system. First, an assistant system is introduced for state shifting. Then, in order to overcome the difficulty of the state equation of the stochastic control system being unable to be differentiated because of Brownian motion, the integrator is introduced. Thus, the augmented error system which contains the integrator vector, control input, reference signal, error vector and state of the system is reconstructed. This leads to the tracking problem of the optimal preview control of the linear stochastic control system being transformed into the optimal output tracking problem of the augmented error system. With the method of dynamic programming in the theory of stochastic control, the optimal controller with previewable signals of the augmented error system being equal to the controller of the original system is obtained. Finally, numerical simulations show the effectiveness of the controller.
Itô and Stratonovich integrals on compound renewal processes: the normal/Poisson case
NASA Astrophysics Data System (ADS)
Germano, Guido; Politi, Mauro; Scalas, Enrico; Schilling, René L.
2010-06-01
Continuous-time random walks, or compound renewal processes, are pure-jump stochastic processes with several applications in insurance, finance, economics and physics. Based on heuristic considerations, a definition is given for stochastic integrals driven by continuous-time random walks, which includes the Itô and Stratonovich cases. It is then shown how the definition can be used to compute these two stochastic integrals by means of Monte Carlo simulations. Our example is based on the normal compound Poisson process, which in the diffusive limit converges to the Wiener process.
Model transformations for state-space self-tuning control of multivariable stochastic systems
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Bao, Yuan L.; Coleman, Norman P.
1988-01-01
The design of self-tuning controllers for multivariable stochastic systems is considered analytically. A long-division technique for finding the similarity transformation matrix and transforming the estimated left MFD to the right MFD is developed; the derivation is given in detail, and the procedures involved are briefly characterized.
Markovian limit for a reduced operation-valued stochastic process
NASA Astrophysics Data System (ADS)
Barchielli, Alberto
1987-04-01
Operation-valued stochastic processes give a formalization of the concept of continuous (in time) measurements in quantum mechanics. In this article, a first stage M of a measuring apparatus coupled to the system S is explicitly introduced, and continuous measurement of some observables of M is considered (one can speak of an indirect continuous measurement on S). When the degrees of freedom of the measuring apparatus M are eliminated and the weak coupling limit is taken, it is shown that an operation-valued stochastic process describing a direct continuous observation of the system S is obtained.
Finite-time state feedback stabilisation of stochastic high-order nonlinear feedforward systems
NASA Astrophysics Data System (ADS)
Xie, Xue-Jun; Zhang, Xing-Hui; Zhang, Kemei
2016-07-01
This paper studies the finite-time state feedback stabilisation of stochastic high-order nonlinear feedforward systems. Based on the stochastic Lyapunov theorem on finite-time stability, by using the homogeneous domination method, the adding one power integrator and sign function method, constructing a ? Lyapunov function and verifying the existence and uniqueness of solution, a continuous state feedback controller is designed to guarantee the closed-loop system finite-time stable in probability.
Golightly, Andrew; Wilkinson, Darren J.
2011-01-01
Computational systems biology is concerned with the development of detailed mechanistic models of biological processes. Such models are often stochastic and analytically intractable, containing uncertain parameters that must be estimated from time course data. In this article, we consider the task of inferring the parameters of a stochastic kinetic model defined as a Markov (jump) process. Inference for the parameters of complex nonlinear multivariate stochastic process models is a challenging problem, but we find here that algorithms based on particle Markov chain Monte Carlo turn out to be a very effective computationally intensive approach to the problem. Approximations to the inferential model based on stochastic differential equations (SDEs) are considered, as well as improvements to the inference scheme that exploit the SDE structure. We apply the methodology to a Lotka–Volterra system and a prokaryotic auto-regulatory network. PMID:23226583
A Stochastic Diffusion Process for the Dirichlet Distribution
Bakosi, J.; Ristorcelli, J. R.
2013-03-01
The method of potential solutions of Fokker-Planck equations is used to develop a transport equation for the joint probability ofNcoupled stochastic variables with the Dirichlet distribution as its asymptotic solution. To ensure a bounded sample space, a coupled nonlinear diffusion process is required: the Wiener processes in the equivalent system of stochastic differential equations are multiplicative with coefficients dependent on all the stochastic variables. Individual samples of a discrete ensemble, obtained from the stochastic process, satisfy a unit-sum constraint at all times. The process may be used to represent realizations of a fluctuating ensemble ofNvariables subject to a conservation principle.more » Similar to the multivariate Wright-Fisher process, whose invariant is also Dirichlet, the univariate case yields a process whose invariant is the beta distribution. As a test of the results, Monte Carlo simulations are used to evolve numerical ensembles toward the invariant Dirichlet distribution.« less
Stochastic Stability of Sampled Data Systems with a Jump Linear Controller
NASA Technical Reports Server (NTRS)
Gonzalez, Oscar R.; Herencia-Zapana, Heber; Gray, W. Steven
2004-01-01
In this paper an equivalence between the stochastic stability of a sampled-data system and its associated discrete-time representation is established. The sampled-data system consists of a deterministic, linear, time-invariant, continuous-time plant and a stochastic, linear, time-invariant, discrete-time, jump linear controller. The jump linear controller models computer systems and communication networks that are subject to stochastic upsets or disruptions. This sampled-data model has been used in the analysis and design of fault-tolerant systems and computer-control systems with random communication delays without taking into account the inter-sample response. This paper shows that the known equivalence between the stability of a deterministic sampled-data system and the associated discrete-time representation holds even in a stochastic framework.
Multivariate stochastic analysis for Monthly hydrological time series at Cuyahoga River Basin
NASA Astrophysics Data System (ADS)
zhang, L.
2011-12-01
Copula has become a very powerful statistic and stochastic methodology in case of the multivariate analysis in Environmental and Water resources Engineering. In recent years, the popular one-parameter Archimedean copulas, e.g. Gumbel-Houggard copula, Cook-Johnson copula, Frank copula, the meta-elliptical copula, e.g. Gaussian Copula, Student-T copula, etc. have been applied in multivariate hydrological analyses, e.g. multivariate rainfall (rainfall intensity, duration and depth), flood (peak discharge, duration and volume), and drought analyses (drought length, mean and minimum SPI values, and drought mean areal extent). Copula has also been applied in the flood frequency analysis at the confluences of river systems by taking into account the dependence among upstream gauge stations rather than by using the hydrological routing technique. In most of the studies above, the annual time series have been considered as stationary signal which the time series have been assumed as independent identically distributed (i.i.d.) random variables. But in reality, hydrological time series, especially the daily and monthly hydrological time series, cannot be considered as i.i.d. random variables due to the periodicity existed in the data structure. Also, the stationary assumption is also under question due to the Climate Change and Land Use and Land Cover (LULC) change in the fast years. To this end, it is necessary to revaluate the classic approach for the study of hydrological time series by relaxing the stationary assumption by the use of nonstationary approach. Also as to the study of the dependence structure for the hydrological time series, the assumption of same type of univariate distribution also needs to be relaxed by adopting the copula theory. In this paper, the univariate monthly hydrological time series will be studied through the nonstationary time series analysis approach. The dependence structure of the multivariate monthly hydrological time series will be studied through the copula theory. As to the parameter estimation, the maximum likelihood estimation (MLE) will be applied. To illustrate the method, the univariate time series model and the dependence structure will be determined and tested using the monthly discharge time series of Cuyahoga River Basin.
NASA Astrophysics Data System (ADS)
Alfonso, Lester; Zamora, Jose; Cruz, Pedro
2015-04-01
The stochastic approach to coagulation considers the coalescence process going in a system of a finite number of particles enclosed in a finite volume. Within this approach, the full description of the system can be obtained from the solution of the multivariate master equation, which models the evolution of the probability distribution of the state vector for the number of particles of a given mass. Unfortunately, due to its complexity, only limited results were obtained for certain type of kernels and monodisperse initial conditions. In this work, a novel numerical algorithm for the solution of the multivariate master equation for stochastic coalescence that works for any type of kernels and initial conditions is introduced. The performance of the method was checked by comparing the numerically calculated particle mass spectrum with analytical solutions obtained for the constant and sum kernels, with an excellent correspondence between the analytical and numerical solutions. In order to increase the speedup of the algorithm, software parallelization techniques with OpenMP standard were used, along with an implementation in order to take advantage of new accelerator technologies. Simulations results show an important speedup of the parallelized algorithms. This study was funded by a grant from Consejo Nacional de Ciencia y Tecnologia de Mexico SEP-CONACYT CB-131879. The authors also thanks LUFAC® Computacion SA de CV for CPU time and all the support provided.
NASA Astrophysics Data System (ADS)
Elliott, Thomas J.; Gu, Mile
2018-03-01
Continuous-time stochastic processes pervade everyday experience, and the simulation of models of these processes is of great utility. Classical models of systems operating in continuous-time must typically track an unbounded amount of information about past behaviour, even for relatively simple models, enforcing limits on precision due to the finite memory of the machine. However, quantum machines can require less information about the past than even their optimal classical counterparts to simulate the future of discrete-time processes, and we demonstrate that this advantage extends to the continuous-time regime. Moreover, we show that this reduction in the memory requirement can be unboundedly large, allowing for arbitrary precision even with a finite quantum memory. We provide a systematic method for finding superior quantum constructions, and a protocol for analogue simulation of continuous-time renewal processes with a quantum machine.
Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo
2014-07-01
Reservoir computing is a recently introduced machine learning paradigm that has already shown excellent performances in the processing of empirical data. We study a particular kind of reservoir computers called time-delay reservoirs that are constructed out of the sampling of the solution of a time-delay differential equation and show their good performance in the forecasting of the conditional covariances associated to multivariate discrete-time nonlinear stochastic processes of VEC-GARCH type as well as in the prediction of factual daily market realized volatilities computed with intraday quotes, using as training input daily log-return series of moderate size. We tackle some problems associated to the lack of task-universality for individually operating reservoirs and propose a solution based on the use of parallel arrays of time-delay reservoirs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mathematical issues in eternal inflation
NASA Astrophysics Data System (ADS)
Singh Kohli, Ikjyot; Haslam, Michael C.
2015-04-01
In this paper, we consider the problem of the existence and uniqueness of solutions to the Einstein field equations for a spatially flat Friedmann-Lemaître-Robertson-Walker universe in the context of stochastic eternal inflation, where the stochastic mechanism is modelled by adding a stochastic forcing term representing Gaussian white noise to the Klein-Gordon equation. We show that under these considerations, the Klein-Gordon equation actually becomes a stochastic differential equation. Therefore, the existence and uniqueness of solutions to Einstein’s equations depend on whether the coefficients of this stochastic differential equation obey Lipschitz continuity conditions. We show that for any choice of V(φ ), the Einstein field equations are not globally well-posed, hence, any solution found to these equations is not guaranteed to be unique. Instead, the coefficients are at best locally Lipschitz continuous in the physical state space of the dynamical variables, which only exist up to a finite explosion time. We further perform Feller’s explosion test for an arbitrary power-law inflaton potential and prove that all solutions to the Einstein field equations explode in a finite time with probability one. This implies that the mechanism of stochastic inflation thus considered cannot be described to be eternal, since the very concept of eternal inflation implies that the process continues indefinitely. We therefore argue that stochastic inflation based on a stochastic forcing term would not produce an infinite number of universes in some multiverse ensemble. In general, since the Einstein field equations in both situations are not well-posed, we further conclude that the existence of a multiverse via the stochastic eternal inflation mechanism considered in this paper is still very much an open question that will require much deeper investigation.
Structure and Randomness of Continuous-Time, Discrete-Event Processes
NASA Astrophysics Data System (ADS)
Marzen, Sarah E.; Crutchfield, James P.
2017-10-01
Loosely speaking, the Shannon entropy rate is used to gauge a stochastic process' intrinsic randomness; the statistical complexity gives the cost of predicting the process. We calculate, for the first time, the entropy rate and statistical complexity of stochastic processes generated by finite unifilar hidden semi-Markov models—memoryful, state-dependent versions of renewal processes. Calculating these quantities requires introducing novel mathematical objects (ɛ -machines of hidden semi-Markov processes) and new information-theoretic methods to stochastic processes.
Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Huyên, E-mail: pham@math.univ-paris-diderot.fr; Wei, Xiaoli, E-mail: tyswxl@gmail.com
We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.
Continuous-Time Public Good Contribution Under Uncertainty: A Stochastic Control Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrari, Giorgio, E-mail: giorgio.ferrari@uni-bielefeld.de; Riedel, Frank, E-mail: frank.riedel@uni-bielefeld.de; Steg, Jan-Henrik, E-mail: jsteg@uni-bielefeld.de
In this paper we study continuous-time stochastic control problems with both monotone and classical controls motivated by the so-called public good contribution problem. That is the problem of n economic agents aiming to maximize their expected utility allocating initial wealth over a given time period between private consumption and irreversible contributions to increase the level of some public good. We investigate the corresponding social planner problem and the case of strategic interaction between the agents, i.e. the public good contribution game. We show existence and uniqueness of the social planner’s optimal policy, we characterize it by necessary and sufficient stochasticmore » Kuhn–Tucker conditions and we provide its expression in terms of the unique optional solution of a stochastic backward equation. Similar stochastic first order conditions prove to be very useful for studying any Nash equilibria of the public good contribution game. In the symmetric case they allow us to prove (qualitative) uniqueness of the Nash equilibrium, which we again construct as the unique optional solution of a stochastic backward equation. We finally also provide a detailed analysis of the so-called free rider effect.« less
Stochastic background from cosmic (super)strings: Popcorn-like and (Gaussian) continuous regimes
NASA Astrophysics Data System (ADS)
Regimbau, Tania; Giampanis, Stefanos; Siemens, Xavier; Mandic, Vuk
2012-03-01
In the era of the next generation of gravitational wave experiments a stochastic background from cusps of cosmic (super)strings is expected to be probed and, if not detected, to be significantly constrained. A popcornlike background can be, for part of the parameter space, as pronounced as the (Gaussian) continuous contribution from unresolved sources that overlap in frequency and time. We study both contributions from unresolved cosmic string cusps over a range of frequencies relevant to ground based interferometers, such as the LIGO/Virgo second generation and Einstein Telescope third generation detectors, the space antenna LISA, and pulsar timing arrays. We compute the sensitivity (at the 2σ level) in the parameter space for the LIGO/Virgo second generation detector, the Einstein Telescope detector, LISA, and pulsar timing arrays. We conclude that the popcorn regime is complementary to the continuous background. Its detection could therefore enhance confidence in a stochastic background detection and possibly help determine fundamental string parameters such as the string tension and the reconnection probability.
Idempotent Methods for Continuous Time Nonlinear Stochastic Control
2012-09-13
AND ADDRESS(ES) dba AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Stochastech Corporation dba Tempest Technologies 8939 S...Stochastic Control Problems Ben G. Fitzpatrick Tempest Technologies 8939 S. Sepulveda Boulevard, Suite 506 Los Angeles, CA 90045 Sponsored by
Ali, S. M.; Mehmood, C. A; Khan, B.; Jawad, M.; Farid, U; Jadoon, J. K.; Ali, M.; Tareen, N. K.; Usman, S.; Majid, M.; Anwar, S. M.
2016-01-01
In smart grid paradigm, the consumer demands are random and time-dependent, owning towards stochastic probabilities. The stochastically varying consumer demands have put the policy makers and supplying agencies in a demanding position for optimal generation management. The utility revenue functions are highly dependent on the consumer deterministic stochastic demand models. The sudden drifts in weather parameters effects the living standards of the consumers that in turn influence the power demands. Considering above, we analyzed stochastically and statistically the effect of random consumer demands on the fixed and variable revenues of the electrical utilities. Our work presented the Multi-Variate Gaussian Distribution Function (MVGDF) probabilistic model of the utility revenues with time-dependent consumer random demands. Moreover, the Gaussian probabilities outcome of the utility revenues is based on the varying consumer n demands data-pattern. Furthermore, Standard Monte Carlo (SMC) simulations are performed that validated the factor of accuracy in the aforesaid probabilistic demand-revenue model. We critically analyzed the effect of weather data parameters on consumer demands using correlation and multi-linear regression schemes. The statistical analysis of consumer demands provided a relationship between dependent (demand) and independent variables (weather data) for utility load management, generation control, and network expansion. PMID:27314229
Ali, S M; Mehmood, C A; Khan, B; Jawad, M; Farid, U; Jadoon, J K; Ali, M; Tareen, N K; Usman, S; Majid, M; Anwar, S M
2016-01-01
In smart grid paradigm, the consumer demands are random and time-dependent, owning towards stochastic probabilities. The stochastically varying consumer demands have put the policy makers and supplying agencies in a demanding position for optimal generation management. The utility revenue functions are highly dependent on the consumer deterministic stochastic demand models. The sudden drifts in weather parameters effects the living standards of the consumers that in turn influence the power demands. Considering above, we analyzed stochastically and statistically the effect of random consumer demands on the fixed and variable revenues of the electrical utilities. Our work presented the Multi-Variate Gaussian Distribution Function (MVGDF) probabilistic model of the utility revenues with time-dependent consumer random demands. Moreover, the Gaussian probabilities outcome of the utility revenues is based on the varying consumer n demands data-pattern. Furthermore, Standard Monte Carlo (SMC) simulations are performed that validated the factor of accuracy in the aforesaid probabilistic demand-revenue model. We critically analyzed the effect of weather data parameters on consumer demands using correlation and multi-linear regression schemes. The statistical analysis of consumer demands provided a relationship between dependent (demand) and independent variables (weather data) for utility load management, generation control, and network expansion.
Stochastic Multi-Timescale Power System Operations With Variable Wind Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hongyu; Krad, Ibrahim; Florita, Anthony
This paper describes a novel set of stochastic unit commitment and economic dispatch models that consider stochastic loads and variable generation at multiple operational timescales. The stochastic model includes four distinct stages: stochastic day-ahead security-constrained unit commitment (SCUC), stochastic real-time SCUC, stochastic real-time security-constrained economic dispatch (SCED), and deterministic automatic generation control (AGC). These sub-models are integrated together such that they are continually updated with decisions passed from one to another. The progressive hedging algorithm (PHA) is applied to solve the stochastic models to maintain the computational tractability of the proposed models. Comparative case studies with deterministic approaches are conductedmore » in low wind and high wind penetration scenarios to highlight the advantages of the proposed methodology, one with perfect forecasts and the other with current state-of-the-art but imperfect deterministic forecasts. The effectiveness of the proposed method is evaluated with sensitivity tests using both economic and reliability metrics to provide a broader view of its impact.« less
Mean-variance portfolio selection for defined-contribution pension funds with stochastic salary.
Zhang, Chubing
2014-01-01
This paper focuses on a continuous-time dynamic mean-variance portfolio selection problem of defined-contribution pension funds with stochastic salary, whose risk comes from both financial market and nonfinancial market. By constructing a special Riccati equation as a continuous (actually a viscosity) solution to the HJB equation, we obtain an explicit closed form solution for the optimal investment portfolio as well as the efficient frontier.
NASA Astrophysics Data System (ADS)
Niedzielski, Tomasz; Kosek, Wiesław
2008-02-01
This article presents the application of a multivariate prediction technique for predicting universal time (UT1-UTC), length of day (LOD) and the axial component of atmospheric angular momentum (AAM χ 3). The multivariate predictions of LOD and UT1-UTC are generated by means of the combination of (1) least-squares (LS) extrapolation of models for annual, semiannual, 18.6-year, 9.3-year oscillations and for the linear trend, and (2) multivariate autoregressive (MAR) stochastic prediction of LS residuals (LS + MAR). The MAR technique enables the use of the AAM χ 3 time-series as the explanatory variable for the computation of LOD or UT1-UTC predictions. In order to evaluate the performance of this approach, two other prediction schemes are also applied: (1) LS extrapolation, (2) combination of LS extrapolation and univariate autoregressive (AR) prediction of LS residuals (LS + AR). The multivariate predictions of AAM χ 3 data, however, are computed as a combination of the extrapolation of the LS model for annual and semiannual oscillations and the LS + MAR. The AAM χ 3 predictions are also compared with LS extrapolation and LS + AR prediction. It is shown that the predictions of LOD and UT1-UTC based on LS + MAR taking into account the axial component of AAM are more accurate than the predictions of LOD and UT1-UTC based on LS extrapolation or on LS + AR. In particular, the UT1-UTC predictions based on LS + MAR during El Niño/La Niña events exhibit considerably smaller prediction errors than those calculated by means of LS or LS + AR. The AAM χ 3 time-series is predicted using LS + MAR with higher accuracy than applying LS extrapolation itself in the case of medium-term predictions (up to 100 days in the future). However, the predictions of AAM χ 3 reveal the best accuracy for LS + AR.
Forecasting the stochastic demand for inpatient care: the case of the Greek national health system.
Boutsioli, Zoe
2010-08-01
The aim of this study is to estimate the unexpected demand of Greek public hospitals. A multivariate model with four explanatory variables is used. These are as follows: the weekend effect, the duty effect, the summer holiday and the official holiday. The method of the ordinary least squares is used to estimate the impact of these variables on the daily hospital emergency admissions series. The forecasted residuals of hospital regressions for each year give the estimated stochastic demand. Daily emergency admissions decline during weekends, summer months and official holidays, and increase on duty hospital days. Stochastic hospital demand varies both among hospitals and over the five-year time period under investigation. Variations among hospitals are larger than time variations. Hospital managers and health policy-makers can be availed by forecasting the future flows of emergent patients. The benefit can be both at managerial and economical level. More advanced models including additional daily variables such as the weather forecasts could provide more accurate estimations.
Hybrid deterministic/stochastic simulation of complex biochemical systems.
Lecca, Paola; Bagagiolo, Fabio; Scarpa, Marina
2017-11-21
In a biological cell, cellular functions and the genetic regulatory apparatus are implemented and controlled by complex networks of chemical reactions involving genes, proteins, and enzymes. Accurate computational models are indispensable means for understanding the mechanisms behind the evolution of a complex system, not always explored with wet lab experiments. To serve their purpose, computational models, however, should be able to describe and simulate the complexity of a biological system in many of its aspects. Moreover, it should be implemented by efficient algorithms requiring the shortest possible execution time, to avoid enlarging excessively the time elapsing between data analysis and any subsequent experiment. Besides the features of their topological structure, the complexity of biological networks also refers to their dynamics, that is often non-linear and stiff. The stiffness is due to the presence of molecular species whose abundance fluctuates by many orders of magnitude. A fully stochastic simulation of a stiff system is computationally time-expensive. On the other hand, continuous models are less costly, but they fail to capture the stochastic behaviour of small populations of molecular species. We introduce a new efficient hybrid stochastic-deterministic computational model and the software tool MoBioS (MOlecular Biology Simulator) implementing it. The mathematical model of MoBioS uses continuous differential equations to describe the deterministic reactions and a Gillespie-like algorithm to describe the stochastic ones. Unlike the majority of current hybrid methods, the MoBioS algorithm divides the reactions' set into fast reactions, moderate reactions, and slow reactions and implements a hysteresis switching between the stochastic model and the deterministic model. Fast reactions are approximated as continuous-deterministic processes and modelled by deterministic rate equations. Moderate reactions are those whose reaction waiting time is greater than the fast reaction waiting time but smaller than the slow reaction waiting time. A moderate reaction is approximated as a stochastic (deterministic) process if it was classified as a stochastic (deterministic) process at the time at which it crosses the threshold of low (high) waiting time. A Gillespie First Reaction Method is implemented to select and execute the slow reactions. The performances of MoBios were tested on a typical example of hybrid dynamics: that is the DNA transcription regulation. The simulated dynamic profile of the reagents' abundance and the estimate of the error introduced by the fully deterministic approach were used to evaluate the consistency of the computational model and that of the software tool.
Adaptive hybrid simulations for multiscale stochastic reaction networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hepp, Benjamin; Gupta, Ankit; Khammash, Mustafa
2015-01-21
The probability distribution describing the state of a Stochastic Reaction Network (SRN) evolves according to the Chemical Master Equation (CME). It is common to estimate its solution using Monte Carlo methods such as the Stochastic Simulation Algorithm (SSA). In many cases, these simulations can take an impractical amount of computational time. Therefore, many methods have been developed that approximate sample paths of the underlying stochastic process and estimate the solution of the CME. A prominent class of these methods include hybrid methods that partition the set of species and the set of reactions into discrete and continuous subsets. Such amore » partition separates the dynamics into a discrete and a continuous part. Simulating such a stochastic process can be computationally much easier than simulating the exact discrete stochastic process with SSA. Moreover, the quasi-stationary assumption to approximate the dynamics of fast subnetworks can be applied for certain classes of networks. However, as the dynamics of a SRN evolves, these partitions may have to be adapted during the simulation. We develop a hybrid method that approximates the solution of a CME by automatically partitioning the reactions and species sets into discrete and continuous components and applying the quasi-stationary assumption on identifiable fast subnetworks. Our method does not require any user intervention and it adapts to exploit the changing timescale separation between reactions and/or changing magnitudes of copy-numbers of constituent species. We demonstrate the efficiency of the proposed method by considering examples from systems biology and showing that very good approximations to the exact probability distributions can be achieved in significantly less computational time. This is especially the case for systems with oscillatory dynamics, where the system dynamics change considerably throughout the time-period of interest.« less
Adaptive hybrid simulations for multiscale stochastic reaction networks.
Hepp, Benjamin; Gupta, Ankit; Khammash, Mustafa
2015-01-21
The probability distribution describing the state of a Stochastic Reaction Network (SRN) evolves according to the Chemical Master Equation (CME). It is common to estimate its solution using Monte Carlo methods such as the Stochastic Simulation Algorithm (SSA). In many cases, these simulations can take an impractical amount of computational time. Therefore, many methods have been developed that approximate sample paths of the underlying stochastic process and estimate the solution of the CME. A prominent class of these methods include hybrid methods that partition the set of species and the set of reactions into discrete and continuous subsets. Such a partition separates the dynamics into a discrete and a continuous part. Simulating such a stochastic process can be computationally much easier than simulating the exact discrete stochastic process with SSA. Moreover, the quasi-stationary assumption to approximate the dynamics of fast subnetworks can be applied for certain classes of networks. However, as the dynamics of a SRN evolves, these partitions may have to be adapted during the simulation. We develop a hybrid method that approximates the solution of a CME by automatically partitioning the reactions and species sets into discrete and continuous components and applying the quasi-stationary assumption on identifiable fast subnetworks. Our method does not require any user intervention and it adapts to exploit the changing timescale separation between reactions and/or changing magnitudes of copy-numbers of constituent species. We demonstrate the efficiency of the proposed method by considering examples from systems biology and showing that very good approximations to the exact probability distributions can be achieved in significantly less computational time. This is especially the case for systems with oscillatory dynamics, where the system dynamics change considerably throughout the time-period of interest.
Higher-order stochastic differential equations and the positive Wigner function
NASA Astrophysics Data System (ADS)
Drummond, P. D.
2017-12-01
General higher-order stochastic processes that correspond to any diffusion-type tensor of higher than second order are obtained. The relationship of multivariate higher-order stochastic differential equations with tensor decomposition theory and tensor rank is explained. Techniques for generating the requisite complex higher-order noise are proved to exist either using polar coordinates and γ distributions, or from products of Gaussian variates. This method is shown to allow the calculation of the dynamics of the Wigner function, after it is extended to a complex phase space. The results are illustrated physically through dynamical calculations of the positive Wigner distribution for three-mode parametric downconversion, widely used in quantum optics. The approach eliminates paradoxes arising from truncation of the higher derivative terms in Wigner function time evolution. Anomalous results of negative populations and vacuum scattering found in truncated Wigner quantum simulations in quantum optics and Bose-Einstein condensate dynamics are shown not to occur with this type of stochastic theory.
H∞ state estimation of stochastic memristor-based neural networks with time-varying delays.
Bao, Haibo; Cao, Jinde; Kurths, Jürgen; Alsaedi, Ahmed; Ahmad, Bashir
2018-03-01
This paper addresses the problem of H ∞ state estimation for a class of stochastic memristor-based neural networks with time-varying delays. Under the framework of Filippov solution, the stochastic memristor-based neural networks are transformed into systems with interval parameters. The present paper is the first to investigate the H ∞ state estimation problem for continuous-time Itô-type stochastic memristor-based neural networks. By means of Lyapunov functionals and some stochastic technique, sufficient conditions are derived to ensure that the estimation error system is asymptotically stable in the mean square with a prescribed H ∞ performance. An explicit expression of the state estimator gain is given in terms of linear matrix inequalities (LMIs). Compared with other results, our results reduce control gain and control cost effectively. Finally, numerical simulations are provided to demonstrate the efficiency of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Zhangjun; Liu, Zenghui; Peng, Yongbo
2018-03-01
In view of the Fourier-Stieltjes integral formula of multivariate stationary stochastic processes, a unified formulation accommodating spectral representation method (SRM) and proper orthogonal decomposition (POD) is deduced. By introducing random functions as constraints correlating the orthogonal random variables involved in the unified formulation, the dimension-reduction spectral representation method (DR-SRM) and the dimension-reduction proper orthogonal decomposition (DR-POD) are addressed. The proposed schemes are capable of representing the multivariate stationary stochastic process with a few elementary random variables, bypassing the challenges of high-dimensional random variables inherent in the conventional Monte Carlo methods. In order to accelerate the numerical simulation, the technique of Fast Fourier Transform (FFT) is integrated with the proposed schemes. For illustrative purposes, the simulation of horizontal wind velocity field along the deck of a large-span bridge is proceeded using the proposed methods containing 2 and 3 elementary random variables. Numerical simulation reveals the usefulness of the dimension-reduction representation methods.
Mino, H
2007-01-01
To estimate the parameters, the impulse response (IR) functions of some linear time-invariant systems generating intensity processes, in Shot-Noise-Driven Doubly Stochastic Poisson Process (SND-DSPP) in which multivariate presynaptic spike trains and postsynaptic spike trains can be assumed to be modeled by the SND-DSPPs. An explicit formula for estimating the IR functions from observations of multivariate input processes of the linear systems and the corresponding counting process (output process) is derived utilizing the expectation maximization (EM) algorithm. The validity of the estimation formula was verified through Monte Carlo simulations in which two presynaptic spike trains and one postsynaptic spike train were assumed to be observable. The IR functions estimated on the basis of the proposed identification method were close to the true IR functions. The proposed method will play an important role in identifying the input-output relationship of pre- and postsynaptic neural spike trains in practical situations.
Infinite time interval backward stochastic differential equations with continuous coefficients.
Zong, Zhaojun; Hu, Feng
2016-01-01
In this paper, we study the existence theorem for [Formula: see text] [Formula: see text] solutions to a class of 1-dimensional infinite time interval backward stochastic differential equations (BSDEs) under the conditions that the coefficients are continuous and have linear growths. We also obtain the existence of a minimal solution. Furthermore, we study the existence and uniqueness theorem for [Formula: see text] [Formula: see text] solutions of infinite time interval BSDEs with non-uniformly Lipschitz coefficients. It should be pointed out that the assumptions of this result is weaker than that of Theorem 3.1 in Zong (Turkish J Math 37:704-718, 2013).
Mean-Variance Portfolio Selection for Defined-Contribution Pension Funds with Stochastic Salary
Zhang, Chubing
2014-01-01
This paper focuses on a continuous-time dynamic mean-variance portfolio selection problem of defined-contribution pension funds with stochastic salary, whose risk comes from both financial market and nonfinancial market. By constructing a special Riccati equation as a continuous (actually a viscosity) solution to the HJB equation, we obtain an explicit closed form solution for the optimal investment portfolio as well as the efficient frontier. PMID:24782667
STOCHASTIC DUELS OF LIMITED TIME-DURATION,
This paper continues the development of the theory of stochastic duels to include the case where there is a time limitation on the duration of the... duel . An example of this situation is fighter-bomber combat in which the fighter has a very limited fuel supply. In this duel , two contestants (with...variable or (2) constant. The duel proceeds until one or both of the contestants are killed or until the time limit is exceeded. The time limit is either
Multivariate stochastic simulation with subjective multivariate normal distributions
P. J. Ince; J. Buongiorno
1991-01-01
In many applications of Monte Carlo simulation in forestry or forest products, it may be known that some variables are correlated. However, for simplicity, in most simulations it has been assumed that random variables are independently distributed. This report describes an alternative Monte Carlo simulation technique for subjectively assesed multivariate normal...
NASA Astrophysics Data System (ADS)
Aoyama, Hideaki; Fujiwara, Yoshi; Ikeda, Yuichi; Iyetomi, Hiroshi; Souma, Wataru; Yoshikawa, Hiroshi
2017-07-01
Preface; Foreword, Acknowledgements, List of tables; List of figures, prologue, 1. Introduction: reconstructing macroeconomics; 2. Basic concepts in statistical physics and stochastic models; 3. Income and firm-size distributions; 4. Productivity distribution and related topics; 5. Multivariate time-series analysis; 6. Business cycles; 7. Price dynamics and inflation/deflation; 8. Complex network, community analysis, visualization; 9. Systemic risks; Appendix A: computer program for beginners; Epilogue; Bibliography; Index.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granita, E-mail: granitafc@gmail.com; Bahar, A.
This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found.
Kilinc, Deniz; Demir, Alper
2017-08-01
The brain is extremely energy efficient and remarkably robust in what it does despite the considerable variability and noise caused by the stochastic mechanisms in neurons and synapses. Computational modeling is a powerful tool that can help us gain insight into this important aspect of brain mechanism. A deep understanding and computational design tools can help develop robust neuromorphic electronic circuits and hybrid neuroelectronic systems. In this paper, we present a general modeling framework for biological neuronal circuits that systematically captures the nonstationary stochastic behavior of ion channels and synaptic processes. In this framework, fine-grained, discrete-state, continuous-time Markov chain models of both ion channels and synaptic processes are treated in a unified manner. Our modeling framework features a mechanism for the automatic generation of the corresponding coarse-grained, continuous-state, continuous-time stochastic differential equation models for neuronal variability and noise. Furthermore, we repurpose non-Monte Carlo noise analysis techniques, which were previously developed for analog electronic circuits, for the stochastic characterization of neuronal circuits both in time and frequency domain. We verify that the fast non-Monte Carlo analysis methods produce results with the same accuracy as computationally expensive Monte Carlo simulations. We have implemented the proposed techniques in a prototype simulator, where both biological neuronal and analog electronic circuits can be simulated together in a coupled manner.
Ecological prediction with nonlinear multivariate time-frequency functional data models
Yang, Wen-Hsi; Wikle, Christopher K.; Holan, Scott H.; Wildhaber, Mark L.
2013-01-01
Time-frequency analysis has become a fundamental component of many scientific inquiries. Due to improvements in technology, the amount of high-frequency signals that are collected for ecological and other scientific processes is increasing at a dramatic rate. In order to facilitate the use of these data in ecological prediction, we introduce a class of nonlinear multivariate time-frequency functional models that can identify important features of each signal as well as the interaction of signals corresponding to the response variable of interest. Our methodology is of independent interest and utilizes stochastic search variable selection to improve model selection and performs model averaging to enhance prediction. We illustrate the effectiveness of our approach through simulation and by application to predicting spawning success of shovelnose sturgeon in the Lower Missouri River.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, B
This survey gives an overview of popular generative models used in the modeling of stochastic temporal systems. In particular, this survey is organized into two parts. The first part discusses the discrete-time representations of dynamic Bayesian networks and dynamic relational probabilistic models, while the second part discusses the continuous-time representation of continuous-time Bayesian networks.
NASA Astrophysics Data System (ADS)
Gocheva-Ilieva, S.; Stoimenova, M.; Ivanov, A.; Voynikova, D.; Iliev, I.
2016-10-01
Fine particulate matter PM2.5 and PM10 air pollutants are a serious problem in many urban areas affecting both the health of the population and the environment as a whole. The availability of large data arrays for the levels of these pollutants makes it possible to perform statistical analysis, to obtain relevant information, and to find patterns within the data. Research in this field is particularly topical for a number of Bulgarian cities, European country, where in recent years regulatory air pollution health limits are constantly being exceeded. This paper examines average daily data for air pollution with PM2.5 and PM10, collected by 3 monitoring stations in the cities of Plovdiv and Asenovgrad between 2011 and 2016. The goal is to find and analyze actual relationships in data time series, to build adequate mathematical models, and to develop short-term forecasts. Modeling is carried out by stochastic univariate and multivariate time series analysis, based on Box-Jenkins methodology. The best models are selected following initial transformation of the data and using a set of standard and robust statistical criteria. The Mathematica and SPSS software were used to perform calculations. This examination showed measured concentrations of PM2.5 and PM10 in the region of Plovdiv and Asenovgrad regularly exceed permissible European and national health and safety thresholds. We obtained adequate stochastic models with high statistical fit with the data and good quality forecasting when compared against actual measurements. The mathematical approach applied provides an independent alternative to standard official monitoring and control means for air pollution in urban areas.
Baldovin-Stella stochastic volatility process and Wiener process mixtures
NASA Astrophysics Data System (ADS)
Peirano, P. P.; Challet, D.
2012-08-01
Starting from inhomogeneous time scaling and linear decorrelation between successive price returns, Baldovin and Stella recently proposed a powerful and consistent way to build a model describing the time evolution of a financial index. We first make it fully explicit by using Student distributions instead of power law-truncated Lévy distributions and show that the analytic tractability of the model extends to the larger class of symmetric generalized hyperbolic distributions and provide a full computation of their multivariate characteristic functions; more generally, we show that the stochastic processes arising in this framework are representable as mixtures of Wiener processes. The basic Baldovin and Stella model, while mimicking well volatility relaxation phenomena such as the Omori law, fails to reproduce other stylized facts such as the leverage effect or some time reversal asymmetries. We discuss how to modify the dynamics of this process in order to reproduce real data more accurately.
The stochastic system approach for estimating dynamic treatments effect.
Commenges, Daniel; Gégout-Petit, Anne
2015-10-01
The problem of assessing the effect of a treatment on a marker in observational studies raises the difficulty that attribution of the treatment may depend on the observed marker values. As an example, we focus on the analysis of the effect of a HAART on CD4 counts, where attribution of the treatment may depend on the observed marker values. This problem has been treated using marginal structural models relying on the counterfactual/potential response formalism. Another approach to causality is based on dynamical models, and causal influence has been formalized in the framework of the Doob-Meyer decomposition of stochastic processes. Causal inference however needs assumptions that we detail in this paper and we call this approach to causality the "stochastic system" approach. First we treat this problem in discrete time, then in continuous time. This approach allows incorporating biological knowledge naturally. When working in continuous time, the mechanistic approach involves distinguishing the model for the system and the model for the observations. Indeed, biological systems live in continuous time, and mechanisms can be expressed in the form of a system of differential equations, while observations are taken at discrete times. Inference in mechanistic models is challenging, particularly from a numerical point of view, but these models can yield much richer and reliable results.
Mesoscopic description of random walks on combs
NASA Astrophysics Data System (ADS)
Méndez, Vicenç; Iomin, Alexander; Campos, Daniel; Horsthemke, Werner
2015-12-01
Combs are a simple caricature of various types of natural branched structures, which belong to the category of loopless graphs and consist of a backbone and branches. We study continuous time random walks on combs and present a generic method to obtain their transport properties. The random walk along the branches may be biased, and we account for the effect of the branches by renormalizing the waiting time probability distribution function for the motion along the backbone. We analyze the overall diffusion properties along the backbone and find normal diffusion, anomalous diffusion, and stochastic localization (diffusion failure), respectively, depending on the characteristics of the continuous time random walk along the branches, and compare our analytical results with stochastic simulations.
Snipas, Mindaugas; Pranevicius, Henrikas; Pranevicius, Mindaugas; Pranevicius, Osvaldas; Paulauskas, Nerijus; Bukauskas, Feliksas F
2015-01-01
The primary goal of this work was to study advantages of numerical methods used for the creation of continuous time Markov chain models (CTMC) of voltage gating of gap junction (GJ) channels composed of connexin protein. This task was accomplished by describing gating of GJs using the formalism of the stochastic automata networks (SANs), which allowed for very efficient building and storing of infinitesimal generator of the CTMC that allowed to produce matrices of the models containing a distinct block structure. All of that allowed us to develop efficient numerical methods for a steady-state solution of CTMC models. This allowed us to accelerate CPU time, which is necessary to solve CTMC models, ~20 times.
Multidimensional stochastic approximation using locally contractive functions
NASA Technical Reports Server (NTRS)
Lawton, W. M.
1975-01-01
A Robbins-Monro type multidimensional stochastic approximation algorithm which converges in mean square and with probability one to the fixed point of a locally contractive regression function is developed. The algorithm is applied to obtain maximum likelihood estimates of the parameters for a mixture of multivariate normal distributions.
GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models
Mukherjee, Chiranjit; Rodriguez, Abel
2016-01-01
Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful. PMID:28626348
GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models.
Mukherjee, Chiranjit; Rodriguez, Abel
2016-01-01
Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful.
Dependability and performability analysis
NASA Technical Reports Server (NTRS)
Trivedi, Kishor S.; Ciardo, Gianfranco; Malhotra, Manish; Sahner, Robin A.
1993-01-01
Several practical issues regarding specifications and solution of dependability and performability models are discussed. Model types with and without rewards are compared. Continuous-time Markov chains (CTMC's) are compared with (continuous-time) Markov reward models (MRM's) and generalized stochastic Petri nets (GSPN's) are compared with stochastic reward nets (SRN's). It is shown that reward-based models could lead to more concise model specifications and solution of a variety of new measures. With respect to the solution of dependability and performability models, three practical issues were identified: largeness, stiffness, and non-exponentiality, and a variety of approaches are discussed to deal with them, including some of the latest research efforts.
Analysis of Phase-Type Stochastic Petri Nets With Discrete and Continuous Timing
NASA Technical Reports Server (NTRS)
Jones, Robert L.; Goode, Plesent W. (Technical Monitor)
2000-01-01
The Petri net formalism is useful in studying many discrete-state, discrete-event systems exhibiting concurrency, synchronization, and other complex behavior. As a bipartite graph, the net can conveniently capture salient aspects of the system. As a mathematical tool, the net can specify an analyzable state space. Indeed, one can reason about certain qualitative properties (from state occupancies) and how they arise (the sequence of events leading there). By introducing deterministic or random delays, the model is forced to sojourn in states some amount of time, giving rise to an underlying stochastic process, one that can be specified in a compact way and capable of providing quantitative, probabilistic measures. We formalize a new non-Markovian extension to the Petri net that captures both discrete and continuous timing in the same model. The approach affords efficient, stationary analysis in most cases and efficient transient analysis under certain restrictions. Moreover, this new formalism has the added benefit in modeling fidelity stemming from the simultaneous capture of discrete- and continuous-time events (as opposed to capturing only one and approximating the other). We show how the underlying stochastic process, which is non-Markovian, can be resolved into simpler Markovian problems that enjoy efficient solutions. Solution algorithms are provided that can be easily programmed.
An approach to the drone fleet survivability assessment based on a stochastic continues-time model
NASA Astrophysics Data System (ADS)
Kharchenko, Vyacheslav; Fesenko, Herman; Doukas, Nikos
2017-09-01
An approach and the algorithm to the drone fleet survivability assessment based on a stochastic continues-time model are proposed. The input data are the number of the drones, the drone fleet redundancy coefficient, the drone stability and restoration rate, the limit deviation from the norms of the drone fleet recovery, the drone fleet operational availability coefficient, the probability of the drone failure-free operation, time needed for performing the required tasks by the drone fleet. The ways for improving the recoverable drone fleet survivability taking into account amazing factors of system accident are suggested. Dependencies of the drone fleet survivability rate both on the drone stability and the number of the drones are analysed.
Pranevicius, Henrikas; Pranevicius, Mindaugas; Pranevicius, Osvaldas; Bukauskas, Feliksas F.
2015-01-01
The primary goal of this work was to study advantages of numerical methods used for the creation of continuous time Markov chain models (CTMC) of voltage gating of gap junction (GJ) channels composed of connexin protein. This task was accomplished by describing gating of GJs using the formalism of the stochastic automata networks (SANs), which allowed for very efficient building and storing of infinitesimal generator of the CTMC that allowed to produce matrices of the models containing a distinct block structure. All of that allowed us to develop efficient numerical methods for a steady-state solution of CTMC models. This allowed us to accelerate CPU time, which is necessary to solve CTMC models, ∼20 times. PMID:25705700
Stochastic modelling of microstructure formation in solidification processes
NASA Astrophysics Data System (ADS)
Nastac, Laurentiu; Stefanescu, Doru M.
1997-07-01
To relax many of the assumptions used in continuum approaches, a general stochastic model has been developed. The stochastic model can be used not only for an accurate description of the fraction of solid evolution, and therefore accurate cooling curves, but also for simulation of microstructure formation in castings. The advantage of using the stochastic approach is to give a time- and space-dependent description of solidification processes. Time- and space-dependent processes can also be described by partial differential equations. Unlike a differential formulation which, in most cases, has to be transformed into a difference equation and solved numerically, the stochastic approach is essentially a direct numerical algorithm. The stochastic model is comprehensive, since the competition between various phases is considered. Furthermore, grain impingement is directly included through the structure of the model. In the present research, all grain morphologies are simulated with this procedure. The relevance of the stochastic approach is that the simulated microstructures can be directly compared with microstructures obtained from experiments. The computer becomes a `dynamic metallographic microscope'. A comparison between deterministic and stochastic approaches has been performed. An important objective of this research was to answer the following general questions: (1) `Would fully deterministic approaches continue to be useful in solidification modelling?' and (2) `Would stochastic algorithms be capable of entirely replacing purely deterministic models?'
Forecasting financial asset processes: stochastic dynamics via learning neural networks.
Giebel, S; Rainer, M
2010-01-01
Models for financial asset dynamics usually take into account their inherent unpredictable nature by including a suitable stochastic component into their process. Unknown (forward) values of financial assets (at a given time in the future) are usually estimated as expectations of the stochastic asset under a suitable risk-neutral measure. This estimation requires the stochastic model to be calibrated to some history of sufficient length in the past. Apart from inherent limitations, due to the stochastic nature of the process, the predictive power is also limited by the simplifying assumptions of the common calibration methods, such as maximum likelihood estimation and regression methods, performed often without weights on the historic time series, or with static weights only. Here we propose a novel method of "intelligent" calibration, using learning neural networks in order to dynamically adapt the parameters of the stochastic model. Hence we have a stochastic process with time dependent parameters, the dynamics of the parameters being themselves learned continuously by a neural network. The back propagation in training the previous weights is limited to a certain memory length (in the examples we consider 10 previous business days), which is similar to the maximal time lag of autoregressive processes. We demonstrate the learning efficiency of the new algorithm by tracking the next-day forecasts for the EURTRY and EUR-HUF exchange rates each.
Huang, Haiying; Du, Qiaosheng; Kang, Xibing
2013-11-01
In this paper, a class of neutral high-order stochastic Hopfield neural networks with Markovian jump parameters and mixed time delays is investigated. The jumping parameters are modeled as a continuous-time finite-state Markov chain. At first, the existence of equilibrium point for the addressed neural networks is studied. By utilizing the Lyapunov stability theory, stochastic analysis theory and linear matrix inequality (LMI) technique, new delay-dependent stability criteria are presented in terms of linear matrix inequalities to guarantee the neural networks to be globally exponentially stable in the mean square. Numerical simulations are carried out to illustrate the main results. © 2013 ISA. Published by ISA. All rights reserved.
Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions.
Salis, Howard; Kaznessis, Yiannis
2005-02-01
The dynamical solution of a well-mixed, nonlinear stochastic chemical kinetic system, described by the Master equation, may be exactly computed using the stochastic simulation algorithm. However, because the computational cost scales with the number of reaction occurrences, systems with one or more "fast" reactions become costly to simulate. This paper describes a hybrid stochastic method that partitions the system into subsets of fast and slow reactions, approximates the fast reactions as a continuous Markov process, using a chemical Langevin equation, and accurately describes the slow dynamics using the integral form of the "Next Reaction" variant of the stochastic simulation algorithm. The key innovation of this method is its mechanism of efficiently monitoring the occurrences of slow, discrete events while simultaneously simulating the dynamics of a continuous, stochastic or deterministic process. In addition, by introducing an approximation in which multiple slow reactions may occur within a time step of the numerical integration of the chemical Langevin equation, the hybrid stochastic method performs much faster with only a marginal decrease in accuracy. Multiple examples, including a biological pulse generator and a large-scale system benchmark, are simulated using the exact and proposed hybrid methods as well as, for comparison, a previous hybrid stochastic method. Probability distributions of the solutions are compared and the weak errors of the first two moments are computed. In general, these hybrid methods may be applied to the simulation of the dynamics of a system described by stochastic differential, ordinary differential, and Master equations.
Stochastic Stability of Nonlinear Sampled Data Systems with a Jump Linear Controller
NASA Technical Reports Server (NTRS)
Gonzalez, Oscar R.; Herencia-Zapana, Heber; Gray, W. Steven
2004-01-01
This paper analyzes the stability of a sampled- data system consisting of a deterministic, nonlinear, time- invariant, continuous-time plant and a stochastic, discrete- time, jump linear controller. The jump linear controller mod- els, for example, computer systems and communication net- works that are subject to stochastic upsets or disruptions. This sampled-data model has been used in the analysis and design of fault-tolerant systems and computer-control systems with random communication delays without taking into account the inter-sample response. To analyze stability, appropriate topologies are introduced for the signal spaces of the sampled- data system. With these topologies, the ideal sampling and zero-order-hold operators are shown to be measurable maps. This paper shows that the known equivalence between the stability of a deterministic, linear sampled-data system and its associated discrete-time representation as well as between a nonlinear sampled-data system and a linearized representation holds even in a stochastic framework.
Stochastic parameter estimation in nonlinear time-delayed vibratory systems with distributed delay
NASA Astrophysics Data System (ADS)
Torkamani, Shahab; Butcher, Eric A.
2013-07-01
The stochastic estimation of parameters and states in linear and nonlinear time-delayed vibratory systems with distributed delay is explored. The approach consists of first employing a continuous time approximation to approximate the delayed integro-differential system with a large set of ordinary differential equations having stochastic excitations. Then the problem of state and parameter estimation in the resulting stochastic ordinary differential system is represented as an optimal filtering problem using a state augmentation technique. By adapting the extended Kalman-Bucy filter to the augmented filtering problem, the unknown parameters of the time-delayed system are estimated from noise-corrupted, possibly incomplete measurements of the states. Similarly, the upper bound of the distributed delay can also be estimated by the proposed technique. As an illustrative example to a practical problem in vibrations, the parameter, delay upper bound, and state estimation from noise-corrupted measurements in a distributed force model widely used for modeling machine tool vibrations in the turning operation is investigated.
Le modèle stochastique SIS pour une épidémie dans un environnement aléatoire.
Bacaër, Nicolas
2016-10-01
The stochastic SIS epidemic model in a random environment. In a random environment that is a two-state continuous-time Markov chain, the mean time to extinction of the stochastic SIS epidemic model grows in the supercritical case exponentially with respect to the population size if the two states are favorable, and like a power law if one state is favorable while the other is unfavorable.
NASA Astrophysics Data System (ADS)
Quan, Ji; Liu, Wei; Chu, Yuqing; Wang, Xianjia
2018-07-01
Continuous noise caused by mutation is widely present in evolutionary systems. Considering the noise effects and under the optional participation mechanism, a stochastic model for evolutionary public goods game in a finite size population is established. The evolutionary process of strategies in the population is described as a multidimensional ergodic and continuous time Markov process. The stochastic stable state of the system is analyzed by the limit distribution of the stochastic process. By numerical experiments, the influences of the fixed income coefficient for non-participants and the investment income coefficient of the public goods on the stochastic stable equilibrium of the system are analyzed. Through the numerical calculation results, we found that the optional participation mechanism can change the evolutionary dynamics and the equilibrium of the public goods game, and there is a range of parameters which can effectively promote the evolution of cooperation. Further, we obtain the accurate quantitative relationship between the parameters and the probabilities for the system to choose different stable equilibriums, which can be used to realize the control of cooperation.
A theoretically consistent stochastic cascade for temporal disaggregation of intermittent rainfall
NASA Astrophysics Data System (ADS)
Lombardo, F.; Volpi, E.; Koutsoyiannis, D.; Serinaldi, F.
2017-06-01
Generating fine-scale time series of intermittent rainfall that are fully consistent with any given coarse-scale totals is a key and open issue in many hydrological problems. We propose a stationary disaggregation method that simulates rainfall time series with given dependence structure, wet/dry probability, and marginal distribution at a target finer (lower-level) time scale, preserving full consistency with variables at a parent coarser (higher-level) time scale. We account for the intermittent character of rainfall at fine time scales by merging a discrete stochastic representation of intermittency and a continuous one of rainfall depths. This approach yields a unique and parsimonious mathematical framework providing general analytical formulations of mean, variance, and autocorrelation function (ACF) for a mixed-type stochastic process in terms of mean, variance, and ACFs of both continuous and discrete components, respectively. To achieve the full consistency between variables at finer and coarser time scales in terms of marginal distribution and coarse-scale totals, the generated lower-level series are adjusted according to a procedure that does not affect the stochastic structure implied by the original model. To assess model performance, we study rainfall process as intermittent with both independent and dependent occurrences, where dependence is quantified by the probability that two consecutive time intervals are dry. In either case, we provide analytical formulations of main statistics of our mixed-type disaggregation model and show their clear accordance with Monte Carlo simulations. An application to rainfall time series from real world is shown as a proof of concept.
Disentangling the stochastic behavior of complex time series
NASA Astrophysics Data System (ADS)
Anvari, Mehrnaz; Tabar, M. Reza Rahimi; Peinke, Joachim; Lehnertz, Klaus
2016-10-01
Complex systems involving a large number of degrees of freedom, generally exhibit non-stationary dynamics, which can result in either continuous or discontinuous sample paths of the corresponding time series. The latter sample paths may be caused by discontinuous events - or jumps - with some distributed amplitudes, and disentangling effects caused by such jumps from effects caused by normal diffusion processes is a main problem for a detailed understanding of stochastic dynamics of complex systems. Here we introduce a non-parametric method to address this general problem. By means of a stochastic dynamical jump-diffusion modelling, we separate deterministic drift terms from different stochastic behaviors, namely diffusive and jumpy ones, and show that all of the unknown functions and coefficients of this modelling can be derived directly from measured time series. We demonstrate appli- cability of our method to empirical observations by a data-driven inference of the deterministic drift term and of the diffusive and jumpy behavior in brain dynamics from ten epilepsy patients. Particularly these different stochastic behaviors provide extra information that can be regarded valuable for diagnostic purposes.
Gene regulatory networks: a coarse-grained, equation-free approach to multiscale computation.
Erban, Radek; Kevrekidis, Ioannis G; Adalsteinsson, David; Elston, Timothy C
2006-02-28
We present computer-assisted methods for analyzing stochastic models of gene regulatory networks. The main idea that underlies this equation-free analysis is the design and execution of appropriately initialized short bursts of stochastic simulations; the results of these are processed to estimate coarse-grained quantities of interest, such as mesoscopic transport coefficients. In particular, using a simple model of a genetic toggle switch, we illustrate the computation of an effective free energy Phi and of a state-dependent effective diffusion coefficient D that characterize an unavailable effective Fokker-Planck equation. Additionally we illustrate the linking of equation-free techniques with continuation methods for performing a form of stochastic "bifurcation analysis"; estimation of mean switching times in the case of a bistable switch is also implemented in this equation-free context. The accuracy of our methods is tested by direct comparison with long-time stochastic simulations. This type of equation-free analysis appears to be a promising approach to computing features of the long-time, coarse-grained behavior of certain classes of complex stochastic models of gene regulatory networks, circumventing the need for long Monte Carlo simulations.
NASA Astrophysics Data System (ADS)
Vrac, Mathieu
2018-06-01
Climate simulations often suffer from statistical biases with respect to observations or reanalyses. It is therefore common to correct (or adjust) those simulations before using them as inputs into impact models. However, most bias correction (BC) methods are univariate and so do not account for the statistical dependences linking the different locations and/or physical variables of interest. In addition, they are often deterministic, and stochasticity is frequently needed to investigate climate uncertainty and to add constrained randomness to climate simulations that do not possess a realistic variability. This study presents a multivariate method of rank resampling for distributions and dependences (R2D2) bias correction allowing one to adjust not only the univariate distributions but also their inter-variable and inter-site dependence structures. Moreover, the proposed R2D2 method provides some stochasticity since it can generate as many multivariate corrected outputs as the number of statistical dimensions (i.e., number of grid cell × number of climate variables) of the simulations to be corrected. It is based on an assumption of stability in time of the dependence structure - making it possible to deal with a high number of statistical dimensions - that lets the climate model drive the temporal properties and their changes in time. R2D2 is applied on temperature and precipitation reanalysis time series with respect to high-resolution reference data over the southeast of France (1506 grid cell). Bivariate, 1506-dimensional and 3012-dimensional versions of R2D2 are tested over a historical period and compared to a univariate BC. How the different BC methods behave in a climate change context is also illustrated with an application to regional climate simulations over the 2071-2100 period. The results indicate that the 1d-BC basically reproduces the climate model multivariate properties, 2d-R2D2 is only satisfying in the inter-variable context, 1506d-R2D2 strongly improves inter-site properties and 3012d-R2D2 is able to account for both. Applications of the proposed R2D2 method to various climate datasets are relevant for many impact studies. The perspectives of improvements are numerous, such as introducing stochasticity in the dependence itself, questioning its stability assumption, and accounting for temporal properties adjustment while including more physics in the adjustment procedures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rupšys, P.
A system of stochastic differential equations (SDE) with mixed-effects parameters and multivariate normal copula density function were used to develop tree height model for Scots pine trees in Lithuania. A two-step maximum likelihood parameter estimation method is used and computational guidelines are given. After fitting the conditional probability density functions to outside bark diameter at breast height, and total tree height, a bivariate normal copula distribution model was constructed. Predictions from the mixed-effects parameters SDE tree height model calculated during this research were compared to the regression tree height equations. The results are implemented in the symbolic computational language MAPLE.
Diffusion with stochastic resetting at power-law times.
Nagar, Apoorva; Gupta, Shamik
2016-06-01
What happens when a continuously evolving stochastic process is interrupted with large changes at random intervals τ distributed as a power law ∼τ^{-(1+α)};α>0? Modeling the stochastic process by diffusion and the large changes as abrupt resets to the initial condition, we obtain exact closed-form expressions for both static and dynamic quantities, while accounting for strong correlations implied by a power law. Our results show that the resulting dynamics exhibits a spectrum of rich long-time behavior, from an ever-spreading spatial distribution for α<1, to one that is time independent for α>1. The dynamics has strong consequences on the time to reach a distant target for the first time; we specifically show that there exists an optimal α that minimizes the mean time to reach the target, thereby offering a step towards a viable strategy to locate targets in a crowded environment.
NASA Technical Reports Server (NTRS)
Hanagud, S.; Uppaluri, B.
1975-01-01
This paper describes a methodology for making cost effective fatigue design decisions. The methodology is based on a probabilistic model for the stochastic process of fatigue crack growth with time. The development of a particular model for the stochastic process is also discussed in the paper. The model is based on the assumption of continuous time and discrete space of crack lengths. Statistical decision theory and the developed probabilistic model are used to develop the procedure for making fatigue design decisions on the basis of minimum expected cost or risk function and reliability bounds. Selections of initial flaw size distribution, NDT, repair threshold crack lengths, and inspection intervals are discussed.
On orthogonality preserving quadratic stochastic operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhamedov, Farrukh; Taha, Muhammad Hafizuddin Mohd
2015-05-15
A quadratic stochastic operator (in short QSO) is usually used to present the time evolution of differing species in biology. Some quadratic stochastic operators have been studied by Lotka and Volterra. In the present paper, we first give a simple characterization of Volterra QSO in terms of absolutely continuity of discrete measures. Further, we introduce a notion of orthogonal preserving QSO, and describe such kind of operators defined on two dimensional simplex. It turns out that orthogonal preserving QSOs are permutations of Volterra QSO. The associativity of genetic algebras generated by orthogonal preserving QSO is studied too.
Multiscale analysis of information dynamics for linear multivariate processes.
Faes, Luca; Montalto, Alessandro; Stramaglia, Sebastiano; Nollo, Giandomenico; Marinazzo, Daniele
2016-08-01
In the study of complex physical and physiological systems represented by multivariate time series, an issue of great interest is the description of the system dynamics over a range of different temporal scales. While information-theoretic approaches to the multiscale analysis of complex dynamics are being increasingly used, the theoretical properties of the applied measures are poorly understood. This study introduces for the first time a framework for the analytical computation of information dynamics for linear multivariate stochastic processes explored at different time scales. After showing that the multiscale processing of a vector autoregressive (VAR) process introduces a moving average (MA) component, we describe how to represent the resulting VARMA process using statespace (SS) models and how to exploit the SS model parameters to compute analytical measures of information storage and information transfer for the original and rescaled processes. The framework is then used to quantify multiscale information dynamics for simulated unidirectionally and bidirectionally coupled VAR processes, showing that rescaling may lead to insightful patterns of information storage and transfer but also to potentially misleading behaviors.
A dual theory of price and value in a meso-scale economic model with stochastic profit rate
NASA Astrophysics Data System (ADS)
Greenblatt, R. E.
2014-12-01
The problem of commodity price determination in a market-based, capitalist economy has a long and contentious history. Neoclassical microeconomic theories are based typically on marginal utility assumptions, while classical macroeconomic theories tend to be value-based. In the current work, I study a simplified meso-scale model of a commodity capitalist economy. The production/exchange model is represented by a network whose nodes are firms, workers, capitalists, and markets, and whose directed edges represent physical or monetary flows. A pair of multivariate linear equations with stochastic input parameters represent physical (supply/demand) and monetary (income/expense) balance. The input parameters yield a non-degenerate profit rate distribution across firms. Labor time and price are found to be eigenvector solutions to the respective balance equations. A simple relation is derived relating the expected value of commodity price to commodity labor content. Results of Monte Carlo simulations are consistent with the stochastic price/labor content relation.
On Restructurable Control System Theory
NASA Technical Reports Server (NTRS)
Athans, M.
1983-01-01
The state of stochastic system and control theory as it impacts restructurable control issues is addressed. The multivariable characteristics of the control problem are addressed. The failure detection/identification problem is discussed as a multi-hypothesis testing problem. Control strategy reconfiguration, static multivariable controls, static failure hypothesis testing, dynamic multivariable controls, fault-tolerant control theory, dynamic hypothesis testing, generalized likelihood ratio (GLR) methods, and adaptive control are discussed.
Deterministic and stochastic CTMC models from Zika disease transmission
NASA Astrophysics Data System (ADS)
Zevika, Mona; Soewono, Edy
2018-03-01
Zika infection is one of the most important mosquito-borne diseases in the world. Zika virus (ZIKV) is transmitted by many Aedes-type mosquitoes including Aedes aegypti. Pregnant women with the Zika virus are at risk of having a fetus or infant with a congenital defect and suffering from microcephaly. Here, we formulate a Zika disease transmission model using two approaches, a deterministic model and a continuous-time Markov chain stochastic model. The basic reproduction ratio is constructed from a deterministic model. Meanwhile, the CTMC stochastic model yields an estimate of the probability of extinction and outbreaks of Zika disease. Dynamical simulations and analysis of the disease transmission are shown for the deterministic and stochastic models.
Feynman-Kac formula for stochastic hybrid systems.
Bressloff, Paul C
2017-01-01
We derive a Feynman-Kac formula for functionals of a stochastic hybrid system evolving according to a piecewise deterministic Markov process. We first derive a stochastic Liouville equation for the moment generator of the stochastic functional, given a particular realization of the underlying discrete Markov process; the latter generates transitions between different dynamical equations for the continuous process. We then analyze the stochastic Liouville equation using methods recently developed for diffusion processes in randomly switching environments. In particular, we obtain dynamical equations for the moment generating function, averaged with respect to realizations of the discrete Markov process. The resulting Feynman-Kac formula takes the form of a differential Chapman-Kolmogorov equation. We illustrate the theory by calculating the occupation time for a one-dimensional velocity jump process on the infinite or semi-infinite real line. Finally, we present an alternative derivation of the Feynman-Kac formula based on a recent path-integral formulation of stochastic hybrid systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chuchu, E-mail: chenchuchu@lsec.cc.ac.cn; Hong, Jialin, E-mail: hjl@lsec.cc.ac.cn; Zhang, Liying, E-mail: lyzhang@lsec.cc.ac.cn
Stochastic Maxwell equations with additive noise are a system of stochastic Hamiltonian partial differential equations intrinsically, possessing the stochastic multi-symplectic conservation law. It is shown that the averaged energy increases linearly with respect to the evolution of time and the flow of stochastic Maxwell equations with additive noise preserves the divergence in the sense of expectation. Moreover, we propose three novel stochastic multi-symplectic methods to discretize stochastic Maxwell equations in order to investigate the preservation of these properties numerically. We make theoretical discussions and comparisons on all of the three methods to observe that all of them preserve the correspondingmore » discrete version of the averaged divergence. Meanwhile, we obtain the corresponding dissipative property of the discrete averaged energy satisfied by each method. Especially, the evolution rates of the averaged energies for all of the three methods are derived which are in accordance with the continuous case. Numerical experiments are performed to verify our theoretical results.« less
Modeling and Properties of Nonlinear Stochastic Dynamical System of Continuous Culture
NASA Astrophysics Data System (ADS)
Wang, Lei; Feng, Enmin; Ye, Jianxiong; Xiu, Zhilong
The stochastic counterpart to the deterministic description of continuous fermentation with ordinary differential equation is investigated in the process of glycerol bio-dissimilation to 1,3-propanediol by Klebsiella pneumoniae. We briefly discuss the continuous fermentation process driven by three-dimensional Brownian motion and Lipschitz coefficients, which is suitable for the factual fermentation. Subsequently, we study the existence and uniqueness of solutions for the stochastic system as well as the boundedness of the Two-order Moment and the Markov property of the solution. Finally stochastic simulation is carried out under the Stochastic Euler-Maruyama method.
Stochastic nature of series of waiting times.
Anvari, Mehrnaz; Aghamohammadi, Cina; Dashti-Naserabadi, H; Salehi, E; Behjat, E; Qorbani, M; Nezhad, M Khazaei; Zirak, M; Hadjihosseini, Ali; Peinke, Joachim; Tabar, M Reza Rahimi
2013-06-01
Although fluctuations in the waiting time series have been studied for a long time, some important issues such as its long-range memory and its stochastic features in the presence of nonstationarity have so far remained unstudied. Here we find that the "waiting times" series for a given increment level have long-range correlations with Hurst exponents belonging to the interval 1/2
Calculating Higher-Order Moments of Phylogenetic Stochastic Mapping Summaries in Linear Time.
Dhar, Amrit; Minin, Vladimir N
2017-05-01
Stochastic mapping is a simulation-based method for probabilistically mapping substitution histories onto phylogenies according to continuous-time Markov models of evolution. This technique can be used to infer properties of the evolutionary process on the phylogeny and, unlike parsimony-based mapping, conditions on the observed data to randomly draw substitution mappings that do not necessarily require the minimum number of events on a tree. Most stochastic mapping applications simulate substitution mappings only to estimate the mean and/or variance of two commonly used mapping summaries: the number of particular types of substitutions (labeled substitution counts) and the time spent in a particular group of states (labeled dwelling times) on the tree. Fast, simulation-free algorithms for calculating the mean of stochastic mapping summaries exist. Importantly, these algorithms scale linearly in the number of tips/leaves of the phylogenetic tree. However, to our knowledge, no such algorithm exists for calculating higher-order moments of stochastic mapping summaries. We present one such simulation-free dynamic programming algorithm that calculates prior and posterior mapping variances and scales linearly in the number of phylogeny tips. Our procedure suggests a general framework that can be used to efficiently compute higher-order moments of stochastic mapping summaries without simulations. We demonstrate the usefulness of our algorithm by extending previously developed statistical tests for rate variation across sites and for detecting evolutionarily conserved regions in genomic sequences.
Calculating Higher-Order Moments of Phylogenetic Stochastic Mapping Summaries in Linear Time
Dhar, Amrit
2017-01-01
Abstract Stochastic mapping is a simulation-based method for probabilistically mapping substitution histories onto phylogenies according to continuous-time Markov models of evolution. This technique can be used to infer properties of the evolutionary process on the phylogeny and, unlike parsimony-based mapping, conditions on the observed data to randomly draw substitution mappings that do not necessarily require the minimum number of events on a tree. Most stochastic mapping applications simulate substitution mappings only to estimate the mean and/or variance of two commonly used mapping summaries: the number of particular types of substitutions (labeled substitution counts) and the time spent in a particular group of states (labeled dwelling times) on the tree. Fast, simulation-free algorithms for calculating the mean of stochastic mapping summaries exist. Importantly, these algorithms scale linearly in the number of tips/leaves of the phylogenetic tree. However, to our knowledge, no such algorithm exists for calculating higher-order moments of stochastic mapping summaries. We present one such simulation-free dynamic programming algorithm that calculates prior and posterior mapping variances and scales linearly in the number of phylogeny tips. Our procedure suggests a general framework that can be used to efficiently compute higher-order moments of stochastic mapping summaries without simulations. We demonstrate the usefulness of our algorithm by extending previously developed statistical tests for rate variation across sites and for detecting evolutionarily conserved regions in genomic sequences. PMID:28177780
Waiting time distribution for continuous stochastic systems
NASA Astrophysics Data System (ADS)
Gernert, Robert; Emary, Clive; Klapp, Sabine H. L.
2014-12-01
The waiting time distribution (WTD) is a common tool for analyzing discrete stochastic processes in classical and quantum systems. However, there are many physical examples where the dynamics is continuous and only approximately discrete, or where it is favourable to discuss the dynamics on a discretized and a continuous level in parallel. An example is the hindered motion of particles through potential landscapes with barriers. In the present paper we propose a consistent generalization of the WTD from the discrete case to situations where the particles perform continuous barrier crossing characterized by a finite duration. To this end, we introduce a recipe to calculate the WTD from the Fokker-Planck (Smoluchowski) equation. In contrast to the closely related first passage time distribution (FPTD), which is frequently used to describe continuous processes, the WTD contains information about the direction of motion. As an application, we consider the paradigmatic example of an overdamped particle diffusing through a washboard potential. To verify the approach and to elucidate its numerical implications, we compare the WTD defined via the Smoluchowski equation with data from direct simulation of the underlying Langevin equation and find full consistency provided that the jumps in the Langevin approach are defined properly. Moreover, for sufficiently large energy barriers, the WTD defined via the Smoluchowski equation becomes consistent with that resulting from the analytical solution of a (two-state) master equation model for the short-time dynamics developed previously by us [Phys. Rev. E 86, 061135 (2012), 10.1103/PhysRevE.86.061135]. Thus, our approach "interpolates" between these two types of stochastic motion. We illustrate our approach for both symmetric systems and systems under constant force.
Estimating the decomposition of predictive information in multivariate systems
NASA Astrophysics Data System (ADS)
Faes, Luca; Kugiumtzis, Dimitris; Nollo, Giandomenico; Jurysta, Fabrice; Marinazzo, Daniele
2015-03-01
In the study of complex systems from observed multivariate time series, insight into the evolution of one system may be under investigation, which can be explained by the information storage of the system and the information transfer from other interacting systems. We present a framework for the model-free estimation of information storage and information transfer computed as the terms composing the predictive information about the target of a multivariate dynamical process. The approach tackles the curse of dimensionality employing a nonuniform embedding scheme that selects progressively, among the past components of the multivariate process, only those that contribute most, in terms of conditional mutual information, to the present target process. Moreover, it computes all information-theoretic quantities using a nearest-neighbor technique designed to compensate the bias due to the different dimensionality of individual entropy terms. The resulting estimators of prediction entropy, storage entropy, transfer entropy, and partial transfer entropy are tested on simulations of coupled linear stochastic and nonlinear deterministic dynamic processes, demonstrating the superiority of the proposed approach over the traditional estimators based on uniform embedding. The framework is then applied to multivariate physiologic time series, resulting in physiologically well-interpretable information decompositions of cardiovascular and cardiorespiratory interactions during head-up tilt and of joint brain-heart dynamics during sleep.
Faes, Luca; Nollo, Giandomenico; Porta, Alberto
2012-03-01
The complexity of the short-term cardiovascular control prompts for the introduction of multivariate (MV) nonlinear time series analysis methods to assess directional interactions reflecting the underlying regulatory mechanisms. This study introduces a new approach for the detection of nonlinear Granger causality in MV time series, based on embedding the series by a sequential, non-uniform procedure, and on estimating the information flow from one series to another by means of the corrected conditional entropy. The approach is validated on short realizations of linear stochastic and nonlinear deterministic processes, and then evaluated on heart period, systolic arterial pressure and respiration variability series measured from healthy humans in the resting supine position and in the upright position after head-up tilt. Copyright © 2011 Elsevier Ltd. All rights reserved.
Spatial scaling patterns and functional redundancies in a changing boreal lake landscape
Angeler, David G.; Allen, Craig R.; Uden, Daniel R.; Johnson, Richard K.
2015-01-01
Global transformations extend beyond local habitats; therefore, larger-scale approaches are needed to assess community-level responses and resilience to unfolding environmental changes. Using longterm data (1996–2011), we evaluated spatial patterns and functional redundancies in the littoral invertebrate communities of 85 Swedish lakes, with the objective of assessing their potential resilience to environmental change at regional scales (that is, spatial resilience). Multivariate spatial modeling was used to differentiate groups of invertebrate species exhibiting spatial patterns in composition and abundance (that is, deterministic species) from those lacking spatial patterns (that is, stochastic species). We then determined the functional feeding attributes of the deterministic and stochastic invertebrate species, to infer resilience. Between one and three distinct spatial patterns in invertebrate composition and abundance were identified in approximately one-third of the species; the remainder were stochastic. We observed substantial differences in metrics between deterministic and stochastic species. Functional richness and diversity decreased over time in the deterministic group, suggesting a loss of resilience in regional invertebrate communities. However, taxon richness and redundancy increased monotonically in the stochastic group, indicating the capacity of regional invertebrate communities to adapt to change. Our results suggest that a refined picture of spatial resilience emerges if patterns of both the deterministic and stochastic species are accounted for. Spatially extensive monitoring may help increase our mechanistic understanding of community-level responses and resilience to regional environmental change, insights that are critical for developing management and conservation agendas in this current period of rapid environmental transformation.
NASA Astrophysics Data System (ADS)
Katsoulakis, Markos A.; Vlachos, Dionisios G.
2003-11-01
We derive a hierarchy of successively coarse-grained stochastic processes and associated coarse-grained Monte Carlo (CGMC) algorithms directly from the microscopic processes as approximations in larger length scales for the case of diffusion of interacting particles on a lattice. This hierarchy of models spans length scales between microscopic and mesoscopic, satisfies a detailed balance, and gives self-consistent fluctuation mechanisms whose noise is asymptotically identical to the microscopic MC. Rigorous, detailed asymptotics justify and clarify these connections. Gradient continuous time microscopic MC and CGMC simulations are compared under far from equilibrium conditions to illustrate the validity of our theory and delineate the errors obtained by rigorous asymptotics. Information theory estimates are employed for the first time to provide rigorous error estimates between the solutions of microscopic MC and CGMC, describing the loss of information during the coarse-graining process. Simulations under periodic boundary conditions are used to verify the information theory error estimates. It is shown that coarse-graining in space leads also to coarse-graining in time by q2, where q is the level of coarse-graining, and overcomes in part the hydrodynamic slowdown. Operation counting and CGMC simulations demonstrate significant CPU savings in continuous time MC simulations that vary from q3 for short potentials to q4 for long potentials. Finally, connections of the new coarse-grained stochastic processes to stochastic mesoscopic and Cahn-Hilliard-Cook models are made.
Stochastic nature of series of waiting times
NASA Astrophysics Data System (ADS)
Anvari, Mehrnaz; Aghamohammadi, Cina; Dashti-Naserabadi, H.; Salehi, E.; Behjat, E.; Qorbani, M.; Khazaei Nezhad, M.; Zirak, M.; Hadjihosseini, Ali; Peinke, Joachim; Tabar, M. Reza Rahimi
2013-06-01
Although fluctuations in the waiting time series have been studied for a long time, some important issues such as its long-range memory and its stochastic features in the presence of nonstationarity have so far remained unstudied. Here we find that the “waiting times” series for a given increment level have long-range correlations with Hurst exponents belonging to the interval 1/2
Modeling stochastic frontier based on vine copulas
NASA Astrophysics Data System (ADS)
Constantino, Michel; Candido, Osvaldo; Tabak, Benjamin M.; da Costa, Reginaldo Brito
2017-11-01
This article models a production function and analyzes the technical efficiency of listed companies in the United States, Germany and England between 2005 and 2012 based on the vine copula approach. Traditional estimates of the stochastic frontier assume that data is multivariate normally distributed and there is no source of asymmetry. The proposed method based on vine copulas allow us to explore different types of asymmetry and multivariate distribution. Using data on product, capital and labor, we measure the relative efficiency of the vine production function and estimate the coefficient used in the stochastic frontier literature for comparison purposes. This production vine copula predicts the value added by firms with given capital and labor in a probabilistic way. It thereby stands in sharp contrast to the production function, where the output of firms is completely deterministic. The results show that, on average, S&P500 companies are more efficient than companies listed in England and Germany, which presented similar average efficiency coefficients. For comparative purposes, the traditional stochastic frontier was estimated and the results showed discrepancies between the coefficients obtained by the application of the two methods, traditional and frontier-vine, opening new paths of non-linear research.
Stochastic entrainment of a stochastic oscillator.
Wang, Guanyu; Peskin, Charles S
2015-01-01
In this work, we consider a stochastic oscillator described by a discrete-state continuous-time Markov chain, in which the states are arranged in a circle, and there is a constant probability per unit time of jumping from one state to the next in a specified direction around the circle. At each of a sequence of equally spaced times, the oscillator has a specified probability of being reset to a particular state. The focus of this work is the entrainment of the oscillator by this periodic but stochastic stimulus. We consider a distinguished limit, in which (i) the number of states of the oscillator approaches infinity, as does the probability per unit time of jumping from one state to the next, so that the natural mean period of the oscillator remains constant, (ii) the resetting probability approaches zero, and (iii) the period of the resetting signal approaches a multiple, by a ratio of small integers, of the natural mean period of the oscillator. In this distinguished limit, we use analytic and numerical methods to study the extent to which entrainment occurs.
Identification of the structure parameters using short-time non-stationary stochastic excitation
NASA Astrophysics Data System (ADS)
Jarczewska, Kamila; Koszela, Piotr; Śniady, PaweŁ; Korzec, Aleksandra
2011-07-01
In this paper, we propose an approach to the flexural stiffness or eigenvalue frequency identification of a linear structure using a non-stationary stochastic excitation process. The idea of the proposed approach lies within time domain input-output methods. The proposed method is based on transforming the dynamical problem into a static one by integrating the input and the output signals. The output signal is the structure reaction, i.e. structure displacements due to the short-time, irregular load of random type. The systems with single and multiple degrees of freedom, as well as continuous systems are considered.
Similar resilience attributes in lakes with different management practices
Baho, Didier L.; Drakare, Stina; Johnson, Richard K.; Allen, Craig R.; Angeler, David G.
2014-01-01
Liming has been used extensively in Scandinavia and elsewhere since the 1970s to counteract the negative effects of acidification. Communities in limed lakes usually return to acidified conditions once liming is discontinued, suggesting that liming is unlikely to shift acidified lakes to a state equivalent to pre-acidification conditions that requires no further management intervention. While this suggests a low resilience of limed lakes, attributes that confer resilience have not been assessed, limiting our understanding of the efficiency of costly management programs. In this study, we assessed community metrics (diversity, richness, evenness, biovolume), multivariate community structure and the relative resilience of phytoplankton in limed, acidified and circum-neutral lakes from 1997 to 2009, using multivariate time series modeling. We identified dominant temporal frequencies in the data, allowing us to track community change at distinct temporal scales. We assessed two attributes of relative resilience (cross-scale and within-scale structure) of the phytoplankton communities, based on the fluctuation frequency patterns identified. We also assessed species with stochastic temporal dynamics. Liming increased phytoplankton diversity and richness; however, multivariate community structure differed in limed relative to acidified and circum-neutral lakes. Cross-scale and within-scale attributes of resilience were similar across all lakes studied but the contribution of those species exhibiting stochastic dynamics was higher in the acidified and limed compared to circum-neutral lakes. From a resilience perspective, our results suggest that limed lakes comprise a particular condition of an acidified lake state. This explains why liming does not move acidified lakes out of a “degraded” basin of attraction. In addition, our study demonstrates the potential of time series modeling to assess the efficiency of restoration and management outcomes through quantification of the attributes contributing to resilience in ecosystems.
NASA Astrophysics Data System (ADS)
Bukoski, Alex; Steyn-Ross, D. A.; Pickett, Ashley F.; Steyn-Ross, Moira L.
2018-06-01
The dynamics of a stochastic type-I Hodgkin-Huxley-like point neuron model exposed to inhibitory synaptic noise are investigated as a function of distance from spiking threshold and the inhibitory influence of the general anesthetic agent propofol. The model is biologically motivated and includes the effects of intrinsic ion-channel noise via a stochastic differential equation description as well as inhibitory synaptic noise modeled as multiple Poisson-distributed impulse trains with saturating response functions. The effect of propofol on these synapses is incorporated through this drug's principal influence on fast inhibitory neurotransmission mediated by γ -aminobutyric acid (GABA) type-A receptors via reduction of the synaptic response decay rate. As the neuron model approaches spiking threshold from below, we track membrane voltage fluctuation statistics of numerically simulated stochastic trajectories. We find that for a given distance from spiking threshold, increasing the magnitude of anesthetic-induced inhibition is associated with augmented signatures of critical slowing: fluctuation amplitudes and correlation times grow as spectral power is increasingly focused at 0 Hz. Furthermore, as a function of distance from threshold, anesthesia significantly modifies the power-law exponents for variance and correlation time divergences observable in stochastic trajectories. Compared to the inverse square root power-law scaling of these quantities anticipated for the saddle-node bifurcation of type-I neurons in the absence of anesthesia, increasing anesthetic-induced inhibition results in an observable exponent <-0.5 for variance and >-0.5 for correlation time divergences. However, these behaviors eventually break down as distance from threshold goes to zero with both the variance and correlation time converging to common values independent of anesthesia. Compared to the case of no synaptic input, linearization of an approximating multivariate Ornstein-Uhlenbeck model reveals these effects to be the consequence of an additional slow eigenvalue associated with synaptic activity that competes with those of the underlying point neuron in a manner that depends on distance from spiking threshold.
Stochastic approach to equilibrium and nonequilibrium thermodynamics.
Tomé, Tânia; de Oliveira, Mário J
2015-04-01
We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.
Stochastic satisficing account of confidence in uncertain value-based decisions
Bahrami, Bahador; Keramati, Mehdi
2018-01-01
Every day we make choices under uncertainty; choosing what route to work or which queue in a supermarket to take, for example. It is unclear how outcome variance, e.g. uncertainty about waiting time in a queue, affects decisions and confidence when outcome is stochastic and continuous. How does one evaluate and choose between an option with unreliable but high expected reward, and an option with more certain but lower expected reward? Here we used an experimental design where two choices’ payoffs took continuous values, to examine the effect of outcome variance on decision and confidence. We found that our participants’ probability of choosing the good (high expected reward) option decreased when the good or the bad options’ payoffs were more variable. Their confidence ratings were affected by outcome variability, but only when choosing the good option. Unlike perceptual detection tasks, confidence ratings correlated only weakly with decisions’ time, but correlated with the consistency of trial-by-trial choices. Inspired by the satisficing heuristic, we propose a “stochastic satisficing” (SSAT) model for evaluating options with continuous uncertain outcomes. In this model, options are evaluated by their probability of exceeding an acceptability threshold, and confidence reports scale with the chosen option’s thus-defined satisficing probability. Participants’ decisions were best explained by an expected reward model, while the SSAT model provided the best prediction of decision confidence. We further tested and verified the predictions of this model in a second experiment. Our model and experimental results generalize the models of metacognition from perceptual detection tasks to continuous-value based decisions. Finally, we discuss how the stochastic satisficing account of decision confidence serves psychological and social purposes associated with the evaluation, communication and justification of decision-making. PMID:29621325
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkov, M V; Garanin, S G; Dolgopolov, Yu V
2014-11-30
A seven-channel fibre laser system operated by the master oscillator – multichannel power amplifier scheme is the phase locked using a stochastic parallel gradient algorithm. The phase modulators on lithium niobate crystals are controlled by a multichannel electronic unit with the microcontroller processing signals in real time. The dynamic phase locking of the laser system with the bandwidth of 14 kHz is demonstrated, the time of phasing is 3 – 4 ms. (fibre and integrated-optical structures)
Multivariate Markov chain modeling for stock markets
NASA Astrophysics Data System (ADS)
Maskawa, Jun-ichi
2003-06-01
We study a multivariate Markov chain model as a stochastic model of the price changes of portfolios in the framework of the mean field approximation. The time series of price changes are coded into the sequences of up and down spins according to their signs. We start with the discussion for small portfolios consisting of two stock issues. The generalization of our model to arbitrary size of portfolio is constructed by a recurrence relation. The resultant form of the joint probability of the stationary state coincides with Gibbs measure assigned to each configuration of spin glass model. Through the analysis of actual portfolios, it has been shown that the synchronization of the direction of the price changes is well described by the model.
Stochastic resetting in backtrack recovery by RNA polymerases
NASA Astrophysics Data System (ADS)
Roldán, Édgar; Lisica, Ana; Sánchez-Taltavull, Daniel; Grill, Stephan W.
2016-06-01
Transcription is a key process in gene expression, in which RNA polymerases produce a complementary RNA copy from a DNA template. RNA polymerization is frequently interrupted by backtracking, a process in which polymerases perform a random walk along the DNA template. Recovery of polymerases from the transcriptionally inactive backtracked state is determined by a kinetic competition between one-dimensional diffusion and RNA cleavage. Here we describe backtrack recovery as a continuous-time random walk, where the time for a polymerase to recover from a backtrack of a given depth is described as a first-passage time of a random walker to reach an absorbing state. We represent RNA cleavage as a stochastic resetting process and derive exact expressions for the recovery time distributions and mean recovery times from a given initial backtrack depth for both continuous and discrete-lattice descriptions of the random walk. We show that recovery time statistics do not depend on the discreteness of the DNA lattice when the rate of one-dimensional diffusion is large compared to the rate of cleavage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavlou, A. T.; Betzler, B. R.; Burke, T. P.
Uncertainties in the composition and fabrication of fuel compacts for the Fort St. Vrain (FSV) high temperature gas reactor have been studied by performing eigenvalue sensitivity studies that represent the key uncertainties for the FSV neutronic analysis. The uncertainties for the TRISO fuel kernels were addressed by developing a suite of models for an 'average' FSV fuel compact that models the fuel as (1) a mixture of two different TRISO fuel particles representing fissile and fertile kernels, (2) a mixture of four different TRISO fuel particles representing small and large fissile kernels and small and large fertile kernels and (3)more » a stochastic mixture of the four types of fuel particles where every kernel has its diameter sampled from a continuous probability density function. All of the discrete diameter and continuous diameter fuel models were constrained to have the same fuel loadings and packing fractions. For the non-stochastic discrete diameter cases, the MCNP compact model arranged the TRISO fuel particles on a hexagonal honeycomb lattice. This lattice-based fuel compact was compared to a stochastic compact where the locations (and kernel diameters for the continuous diameter cases) of the fuel particles were randomly sampled. Partial core configurations were modeled by stacking compacts into fuel columns containing graphite. The differences in eigenvalues between the lattice-based and stochastic models were small but the runtime of the lattice-based fuel model was roughly 20 times shorter than with the stochastic-based fuel model. (authors)« less
Discrete Deterministic and Stochastic Petri Nets
NASA Technical Reports Server (NTRS)
Zijal, Robert; Ciardo, Gianfranco
1996-01-01
Petri nets augmented with timing specifications gained a wide acceptance in the area of performance and reliability evaluation of complex systems exhibiting concurrency, synchronization, and conflicts. The state space of time-extended Petri nets is mapped onto its basic underlying stochastic process, which can be shown to be Markovian under the assumption of exponentially distributed firing times. The integration of exponentially and non-exponentially distributed timing is still one of the major problems for the analysis and was first attacked for continuous time Petri nets at the cost of structural or analytical restrictions. We propose a discrete deterministic and stochastic Petri net (DDSPN) formalism with no imposed structural or analytical restrictions where transitions can fire either in zero time or according to arbitrary firing times that can be represented as the time to absorption in a finite absorbing discrete time Markov chain (DTMC). Exponentially distributed firing times are then approximated arbitrarily well by geometric distributions. Deterministic firing times are a special case of the geometric distribution. The underlying stochastic process of a DDSPN is then also a DTMC, from which the transient and stationary solution can be obtained by standard techniques. A comprehensive algorithm and some state space reduction techniques for the analysis of DDSPNs are presented comprising the automatic detection of conflicts and confusions, which removes a major obstacle for the analysis of discrete time models.
Analysis of novel stochastic switched SILI epidemic models with continuous and impulsive control
NASA Astrophysics Data System (ADS)
Gao, Shujing; Zhong, Deming; Zhang, Yan
2018-04-01
In this paper, we establish two new stochastic switched epidemic models with continuous and impulsive control. The stochastic perturbations are considered for the natural death rate in each equation of the models. Firstly, a stochastic switched SILI model with continuous control schemes is investigated. By using Lyapunov-Razumikhin method, the sufficient conditions for extinction in mean are established. Our result shows that the disease could be die out theoretically if threshold value R is less than one, regardless of whether the disease-free solutions of the corresponding subsystems are stable or unstable. Then, a stochastic switched SILI model with continuous control schemes and pulse vaccination is studied. The threshold value R is derived. The global attractivity of the model is also obtained. At last, numerical simulations are carried out to support our results.
A Stochastic Tick-Borne Disease Model: Exploring the Probability of Pathogen Persistence.
Maliyoni, Milliward; Chirove, Faraimunashe; Gaff, Holly D; Govinder, Keshlan S
2017-09-01
We formulate and analyse a stochastic epidemic model for the transmission dynamics of a tick-borne disease in a single population using a continuous-time Markov chain approach. The stochastic model is based on an existing deterministic metapopulation tick-borne disease model. We compare the disease dynamics of the deterministic and stochastic models in order to determine the effect of randomness in tick-borne disease dynamics. The probability of disease extinction and that of a major outbreak are computed and approximated using the multitype Galton-Watson branching process and numerical simulations, respectively. Analytical and numerical results show some significant differences in model predictions between the stochastic and deterministic models. In particular, we find that a disease outbreak is more likely if the disease is introduced by infected deer as opposed to infected ticks. These insights demonstrate the importance of host movement in the expansion of tick-borne diseases into new geographic areas.
THE DISTRIBUTION OF ROUNDS FIRED IN STOCHASTIC DUELS
This paper continues the development of the theory of Stochastic Duels to include the distribution of the number of rounds fired. Most generally...the duel between two contestants who fire at each other with constant kill probabilities per round is considered. The time between rounds fired may be...at the beginning of the duel may be limited and is a discrete random variable. Besides the distribution of rounds fired, its first two moments and
Stochastic differential equations and turbulent dispersion
NASA Technical Reports Server (NTRS)
Durbin, P. A.
1983-01-01
Aspects of the theory of continuous stochastic processes that seem to contribute to an understanding of turbulent dispersion are introduced and the theory and philosophy of modelling turbulent transport is emphasized. Examples of eddy diffusion examined include shear dispersion, the surface layer, and channel flow. Modeling dispersion with finite-time scale is considered including the Langevin model for homogeneous turbulence, dispersion in nonhomogeneous turbulence, and the asymptotic behavior of the Langevin model for nonhomogeneous turbulence.
Hybrid stochastic simplifications for multiscale gene networks.
Crudu, Alina; Debussche, Arnaud; Radulescu, Ovidiu
2009-09-07
Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion [1-3] which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Hybrid simplifications can be used for onion-like (multi-layered) approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach.
The stochastic dynamics of intermittent porescale particle motion
NASA Astrophysics Data System (ADS)
Dentz, Marco; Morales, Veronica; Puyguiraud, Alexandre; Gouze, Philippe; Willmann, Matthias; Holzner, Markus
2017-04-01
Numerical and experimental data for porescale particle dynamics show intermittent patterns in Lagrangian velocities and accelerations, which manifest in long time intervals of low and short durations of high velocities [1, 2]. This phenomenon is due to the spatial persistence of particle velocities on characteristic heterogeneity length scales. In order to systematically quantify these behaviors and extract the stochastic dynamics of particle motion, we focus on the analysis of Lagrangian velocities sampled equidistantly along trajectories [3]. This method removes the intermittency observed under isochrone sampling. The space-Lagrangian velocity series can be quantified by a Markov process that is continuous in distance along streamline. It is fully parameterized in terms of the flux-weighted Eulerian velocity PDF and the characteristic pore-length. The resulting stochastic particle motion describes a continuous time random walk (CTRW). This approach allows for the process based interpretation of experimental and numerical porescale velocity, acceleration and displacement data. It provides a framework for the characterization and upscaling of particle transport and dispersion from the pore to the Darcy-scale based on the medium geometry and Eulerian flow attributes. [1] P. De Anna, T. Le Borgne, M. Dentz, A.M. Tartakovsky, D. Bolster, and P. Davy, "Flow intermittency, dispersion, and correlated continuous time random walks in porous media," Phys. Rev. Lett. 110, 184502 (2013). [2] M. Holzner, V. L. Morales, M. Willmann, and M. Dentz, "Intermittent Lagrangian velocities and accelerations in three- dimensional porous medium flow," Phys. Rev. E 92, 013015 (2015). [3] M. Dentz, P. K. Kang, A. Comolli, T. Le Borgne, and D. R. Lester, "Continuous time random walks for the evolution of Lagrangian velocities," Phys. Rev. Fluids (2016).
Entropy production of doubly stochastic quantum channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Müller-Hermes, Alexander, E-mail: muellerh@posteo.net; Department of Mathematical Sciences, University of Copenhagen, 2100 Copenhagen; Stilck França, Daniel, E-mail: dsfranca@mytum.de
2016-02-15
We study the entropy increase of quantum systems evolving under primitive, doubly stochastic Markovian noise and thus converging to the maximally mixed state. This entropy increase can be quantified by a logarithmic-Sobolev constant of the Liouvillian generating the noise. We prove a universal lower bound on this constant that stays invariant under taking tensor-powers. Our methods involve a new comparison method to relate logarithmic-Sobolev constants of different Liouvillians and a technique to compute logarithmic-Sobolev inequalities of Liouvillians with eigenvectors forming a projective representation of a finite abelian group. Our bounds improve upon similar results established before and as an applicationmore » we prove an upper bound on continuous-time quantum capacities. In the last part of this work we study entropy production estimates of discrete-time doubly stochastic quantum channels by extending the framework of discrete-time logarithmic-Sobolev inequalities to the quantum case.« less
Modern CACSD using the Robust-Control Toolbox
NASA Technical Reports Server (NTRS)
Chiang, Richard Y.; Safonov, Michael G.
1989-01-01
The Robust-Control Toolbox is a collection of 40 M-files which extend the capability of PC/PRO-MATLAB to do modern multivariable robust control system design. Included are robust analysis tools like singular values and structured singular values, robust synthesis tools like continuous/discrete H(exp 2)/H infinity synthesis and Linear Quadratic Gaussian Loop Transfer Recovery methods and a variety of robust model reduction tools such as Hankel approximation, balanced truncation and balanced stochastic truncation, etc. The capabilities of the toolbox are described and illustated with examples to show how easily they can be used in practice. Examples include structured singular value analysis, H infinity loop-shaping and large space structure model reduction.
Mean Field Games for Stochastic Growth with Relative Utility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Minyi, E-mail: mhuang@math.carleton.ca; Nguyen, Son Luu, E-mail: sonluu.nguyen@upr.edu
This paper considers continuous time stochastic growth-consumption optimization in a mean field game setting. The individual capital stock evolution is determined by a Cobb–Douglas production function, consumption and stochastic depreciation. The individual utility functional combines an own utility and a relative utility with respect to the population. The use of the relative utility reflects human psychology, leading to a natural pattern of mean field interaction. The fixed point equation of the mean field game is derived with the aid of some ordinary differential equations. Due to the relative utility interaction, our performance analysis depends on some ratio based approximation errormore » estimate.« less
Structured Modeling and Analysis of Stochastic Epidemics with Immigration and Demographic Effects
Baumann, Hendrik; Sandmann, Werner
2016-01-01
Stochastic epidemics with open populations of variable population sizes are considered where due to immigration and demographic effects the epidemic does not eventually die out forever. The underlying stochastic processes are ergodic multi-dimensional continuous-time Markov chains that possess unique equilibrium probability distributions. Modeling these epidemics as level-dependent quasi-birth-and-death processes enables efficient computations of the equilibrium distributions by matrix-analytic methods. Numerical examples for specific parameter sets are provided, which demonstrates that this approach is particularly well-suited for studying the impact of varying rates for immigration, births, deaths, infection, recovery from infection, and loss of immunity. PMID:27010993
Structured Modeling and Analysis of Stochastic Epidemics with Immigration and Demographic Effects.
Baumann, Hendrik; Sandmann, Werner
2016-01-01
Stochastic epidemics with open populations of variable population sizes are considered where due to immigration and demographic effects the epidemic does not eventually die out forever. The underlying stochastic processes are ergodic multi-dimensional continuous-time Markov chains that possess unique equilibrium probability distributions. Modeling these epidemics as level-dependent quasi-birth-and-death processes enables efficient computations of the equilibrium distributions by matrix-analytic methods. Numerical examples for specific parameter sets are provided, which demonstrates that this approach is particularly well-suited for studying the impact of varying rates for immigration, births, deaths, infection, recovery from infection, and loss of immunity.
NASA Astrophysics Data System (ADS)
Liu, Xiangdong; Li, Qingze; Pan, Jianxin
2018-06-01
Modern medical studies show that chemotherapy can help most cancer patients, especially for those diagnosed early, to stabilize their disease conditions from months to years, which means the population of tumor cells remained nearly unchanged in quite a long time after fighting against immune system and drugs. In order to better understand the dynamics of tumor-immune responses under chemotherapy, deterministic and stochastic differential equation models are constructed to characterize the dynamical change of tumor cells and immune cells in this paper. The basic dynamical properties, such as boundedness, existence and stability of equilibrium points, are investigated in the deterministic model. Extended stochastic models include stochastic differential equations (SDEs) model and continuous-time Markov chain (CTMC) model, which accounts for the variability in cellular reproduction, growth and death, interspecific competitions, and immune response to chemotherapy. The CTMC model is harnessed to estimate the extinction probability of tumor cells. Numerical simulations are performed, which confirms the obtained theoretical results.
NASA Astrophysics Data System (ADS)
Wang, Ting; Plecháč, Petr
2017-12-01
Stochastic reaction networks that exhibit bistable behavior are common in systems biology, materials science, and catalysis. Sampling of stationary distributions is crucial for understanding and characterizing the long-time dynamics of bistable stochastic dynamical systems. However, simulations are often hindered by the insufficient sampling of rare transitions between the two metastable regions. In this paper, we apply the parallel replica method for a continuous time Markov chain in order to improve sampling of the stationary distribution in bistable stochastic reaction networks. The proposed method uses parallel computing to accelerate the sampling of rare transitions. Furthermore, it can be combined with the path-space information bounds for parametric sensitivity analysis. With the proposed methodology, we study three bistable biological networks: the Schlögl model, the genetic switch network, and the enzymatic futile cycle network. We demonstrate the algorithmic speedup achieved in these numerical benchmarks. More significant acceleration is expected when multi-core or graphics processing unit computer architectures and programming tools such as CUDA are employed.
Warnke, Tom; Reinhardt, Oliver; Klabunde, Anna; Willekens, Frans; Uhrmacher, Adelinde M
2017-10-01
Individuals' decision processes play a central role in understanding modern migration phenomena and other demographic processes. Their integration into agent-based computational demography depends largely on suitable support by a modelling language. We are developing the Modelling Language for Linked Lives (ML3) to describe the diverse decision processes of linked lives succinctly in continuous time. The context of individuals is modelled by networks the individual is part of, such as family ties and other social networks. Central concepts, such as behaviour conditional on agent attributes, age-dependent behaviour, and stochastic waiting times, are tightly integrated in the language. Thereby, alternative decisions are modelled by concurrent processes that compete by stochastic race. Using a migration model, we demonstrate how this allows for compact description of complex decisions, here based on the Theory of Planned Behaviour. We describe the challenges for the simulation algorithm posed by stochastic race between multiple concurrent complex decisions.
NASA Astrophysics Data System (ADS)
Bush, John; Tambasco, Lucas
2017-11-01
First, we summarize the circumstances in which chaotic pilot-wave dynamics gives rise to quantum-like statistical behavior. For ``closed'' systems, in which the droplet is confined to a finite domain either by boundaries or applied forces, quantum-like features arise when the persistence time of the waves exceeds the time required for the droplet to cross its domain. Second, motivated by the similarities between this hydrodynamic system and stochastic electrodynamics, we examine the behavior of a bouncing droplet above the Faraday threshold, where a stochastic element is introduced into the drop dynamics by virtue of its interaction with a background Faraday wave field. With a view to extending the dynamical range of pilot-wave systems to capture more quantum-like features, we consider a generalized theoretical framework for stochastic pilot-wave dynamics in which the relative magnitudes of the drop-generated pilot-wave field and a stochastic background field may be varied continuously. We gratefully acknowledge the financial support of the NSF through their CMMI and DMS divisions.
Fast and Efficient Stochastic Optimization for Analytic Continuation
Bao, Feng; Zhang, Guannan; Webster, Clayton G; ...
2016-09-28
In this analytic continuation of imaginary-time quantum Monte Carlo data to extract real-frequency spectra remains a key problem in connecting theory with experiment. Here we present a fast and efficient stochastic optimization method (FESOM) as a more accessible variant of the stochastic optimization method introduced by Mishchenko et al. [Phys. Rev. B 62, 6317 (2000)], and we benchmark the resulting spectra with those obtained by the standard maximum entropy method for three representative test cases, including data taken from studies of the two-dimensional Hubbard model. Genearally, we find that our FESOM approach yields spectra similar to the maximum entropy results.more » In particular, while the maximum entropy method yields superior results when the quality of the data is strong, we find that FESOM is able to resolve fine structure with more detail when the quality of the data is poor. In addition, because of its stochastic nature, the method provides detailed information on the frequency-dependent uncertainty of the resulting spectra, while the maximum entropy method does so only for the spectral weight integrated over a finite frequency region. Therefore, we believe that this variant of the stochastic optimization approach provides a viable alternative to the routinely used maximum entropy method, especially for data of poor quality.« less
Avian seasonal productivity is often modeled as a time-limited stochastic process. Many mathematical formulations have been proposed, including individual based models, continuous-time differential equations, and discrete Markov models. All such models typically include paramete...
Trends in modern system theory
NASA Technical Reports Server (NTRS)
Athans, M.
1976-01-01
The topics considered are related to linear control system design, adaptive control, failure detection, control under failure, system reliability, and large-scale systems and decentralized control. It is pointed out that the design of a linear feedback control system which regulates a process about a desirable set point or steady-state condition in the presence of disturbances is a very important problem. The linearized dynamics of the process are used for design purposes. The typical linear-quadratic design involving the solution of the optimal control problem of a linear time-invariant system with respect to a quadratic performance criterion is considered along with gain reduction theorems and the multivariable phase margin theorem. The stumbling block in many adaptive design methodologies is associated with the amount of real time computation which is necessary. Attention is also given to the desperate need to develop good theories for large-scale systems, the beginning of a microprocessor revolution, the translation of the Wiener-Hopf theory into the time domain, and advances made in dynamic team theory, dynamic stochastic games, and finite memory stochastic control.
NASA Astrophysics Data System (ADS)
Santillán, Moisés; Qian, Hong
2013-01-01
We investigate the internal consistency of a recently developed mathematical thermodynamic structure across scales, between a continuous stochastic nonlinear dynamical system, i.e., a diffusion process with Langevin and Fokker-Planck equations, and its emergent discrete, inter-attractoral Markov jump process. We analyze how the system’s thermodynamic state functions, e.g. free energy F, entropy S, entropy production ep, free energy dissipation Ḟ, etc., are related when the continuous system is described with coarse-grained discrete variables. It is shown that the thermodynamics derived from the underlying, detailed continuous dynamics gives rise to exactly the free-energy representation of Gibbs and Helmholtz. That is, the system’s thermodynamic structure is the same as if one only takes a middle road and starts with the natural discrete description, with the corresponding transition rates empirically determined. By natural we mean in the thermodynamic limit of a large system, with an inherent separation of time scales between inter- and intra-attractoral dynamics. This result generalizes a fundamental idea from chemistry, and the theory of Kramers, by incorporating thermodynamics: while a mechanical description of a molecule is in terms of continuous bond lengths and angles, chemical reactions are phenomenologically described by a discrete representation, in terms of exponential rate laws and a stochastic thermodynamics.
Investigation of advanced UQ for CRUD prediction with VIPRE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, Michael Scott
2011-09-01
This document summarizes the results from a level 3 milestone study within the CASL VUQ effort. It demonstrates the application of 'advanced UQ,' in particular dimension-adaptive p-refinement for polynomial chaos and stochastic collocation. The study calculates statistics for several quantities of interest that are indicators for the formation of CRUD (Chalk River unidentified deposit), which can lead to CIPS (CRUD induced power shift). Stochastic expansion methods are attractive methods for uncertainty quantification due to their fast convergence properties. For smooth functions (i.e., analytic, infinitely-differentiable) in L{sup 2} (i.e., possessing finite variance), exponential convergence rates can be obtained under order refinementmore » for integrated statistical quantities of interest such as mean, variance, and probability. Two stochastic expansion methods are of interest: nonintrusive polynomial chaos expansion (PCE), which computes coefficients for a known basis of multivariate orthogonal polynomials, and stochastic collocation (SC), which forms multivariate interpolation polynomials for known coefficients. Within the DAKOTA project, recent research in stochastic expansion methods has focused on automated polynomial order refinement ('p-refinement') of expansions to support scalability to higher dimensional random input spaces [4, 3]. By preferentially refining only in the most important dimensions of the input space, the applicability of these methods can be extended from O(10{sup 0})-O(10{sup 1}) random variables to O(10{sup 2}) and beyond, depending on the degree of anisotropy (i.e., the extent to which randominput variables have differing degrees of influence on the statistical quantities of interest (QOIs)). Thus, the purpose of this study is to investigate the application of these adaptive stochastic expansion methods to the analysis of CRUD using the VIPRE simulation tools for two different plant models of differing random dimension, anisotropy, and smoothness.« less
Modelling on optimal portfolio with exchange rate based on discontinuous stochastic process
NASA Astrophysics Data System (ADS)
Yan, Wei; Chang, Yuwen
2016-12-01
Considering the stochastic exchange rate, this paper is concerned with the dynamic portfolio selection in financial market. The optimal investment problem is formulated as a continuous-time mathematical model under mean-variance criterion. These processes follow jump-diffusion processes (Weiner process and Poisson process). Then the corresponding Hamilton-Jacobi-Bellman(HJB) equation of the problem is presented and its efferent frontier is obtained. Moreover, the optimal strategy is also derived under safety-first criterion.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Wang, Jun
2017-09-01
In attempt to reproduce price dynamics of financial markets, a stochastic agent-based financial price model is proposed and investigated by stochastic exclusion process. The exclusion process, one of interacting particle systems, is usually thought of as modeling particle motion (with the conserved number of particles) in a continuous time Markov process. In this work, the process is utilized to imitate the trading interactions among the investing agents, in order to explain some stylized facts found in financial time series dynamics. To better understand the correlation behaviors of the proposed model, a new time-dependent intrinsic detrended cross-correlation (TDI-DCC) is introduced and performed, also, the autocorrelation analyses are applied in the empirical research. Furthermore, to verify the rationality of the financial price model, the actual return series are also considered to be comparatively studied with the simulation ones. The comparison results of return behaviors reveal that this financial price dynamics model can reproduce some correlation features of actual stock markets.
NASA Astrophysics Data System (ADS)
Marcozzi, Michael D.
2008-12-01
We consider theoretical and approximation aspects of the stochastic optimal control of ultradiffusion processes in the context of a prototype model for the selling price of a European call option. Within a continuous-time framework, the dynamic management of a portfolio of assets is effected through continuous or point control, activation costs, and phase delay. The performance index is derived from the unique weak variational solution to the ultraparabolic Hamilton-Jacobi equation; the value function is the optimal realization of the performance index relative to all feasible portfolios. An approximation procedure based upon a temporal box scheme/finite element method is analyzed; numerical examples are presented in order to demonstrate the viability of the approach.
Data-adaptive harmonic spectra and multilayer Stuart-Landau models
NASA Astrophysics Data System (ADS)
Chekroun, Mickaël D.; Kondrashov, Dmitri
2017-09-01
Harmonic decompositions of multivariate time series are considered for which we adopt an integral operator approach with periodic semigroup kernels. Spectral decomposition theorems are derived that cover the important cases of two-time statistics drawn from a mixing invariant measure. The corresponding eigenvalues can be grouped per Fourier frequency and are actually given, at each frequency, as the singular values of a cross-spectral matrix depending on the data. These eigenvalues obey, furthermore, a variational principle that allows us to define naturally a multidimensional power spectrum. The eigenmodes, as far as they are concerned, exhibit a data-adaptive character manifested in their phase which allows us in turn to define a multidimensional phase spectrum. The resulting data-adaptive harmonic (DAH) modes allow for reducing the data-driven modeling effort to elemental models stacked per frequency, only coupled at different frequencies by the same noise realization. In particular, the DAH decomposition extracts time-dependent coefficients stacked by Fourier frequency which can be efficiently modeled—provided the decay of temporal correlations is sufficiently well-resolved—within a class of multilayer stochastic models (MSMs) tailored here on stochastic Stuart-Landau oscillators. Applications to the Lorenz 96 model and to a stochastic heat equation driven by a space-time white noise are considered. In both cases, the DAH decomposition allows for an extraction of spatio-temporal modes revealing key features of the dynamics in the embedded phase space. The multilayer Stuart-Landau models (MSLMs) are shown to successfully model the typical patterns of the corresponding time-evolving fields, as well as their statistics of occurrence.
Hovorka, Roman; Nodale, Marianna; Haidar, Ahmad; Wilinska, Malgorzata E
2013-01-01
We investigated whether continuous glucose monitoring (CGM) levels can accurately assess glycemic control while directing closed-loop insulin delivery. Data were analyzed retrospectively from 33 subjects with type 1 diabetes who underwent closed-loop and conventional pump therapy on two separate nights. Glycemic control was evaluated by reference plasma glucose and contrasted against three methods based on Navigator (Abbott Diabetes Care, Alameda, CA) CGM levels. Glucose mean and variability were estimated by unmodified CGM levels with acceptable clinical accuracy. Time when glucose was in target range was overestimated by CGM during closed-loop nights (CGM vs. plasma glucose median [interquartile range], 86% [65-97%] vs. 75% [59-91%]; P=0.04) but not during conventional pump therapy (57% [32-72%] vs. 51% [29-68%]; P=0.82) providing comparable treatment effect (mean [SD], 28% [29%] vs. 23% [21%]; P=0.11). Using the CGM measurement error of 15% derived from plasma glucose-CGM pairs (n=4,254), stochastic interpretation of CGM gave unbiased estimate of time in target during both closed-loop (79% [62-86%] vs. 75% [59-91%]; P=0.24) and conventional pump therapy (54% [33-66%] vs. 51% [29-68%]; P=0.44). Treatment effect (23% [24%] vs. 23% [21%]; P=0.96) and time below target were accurately estimated by stochastic CGM. Recalibrating CGM using reference plasma glucose values taken at the start and end of overnight closed-loop was not superior to stochastic CGM. CGM is acceptable to estimate glucose mean and variability, but without adjustment it may overestimate benefit of closed-loop. Stochastic CGM provided unbiased estimate of time when glucose is in target and below target and may be acceptable for assessment of closed-loop in the outpatient setting.
Hybrid stochastic simplifications for multiscale gene networks
Crudu, Alina; Debussche, Arnaud; Radulescu, Ovidiu
2009-01-01
Background Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. Results We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion [1-3] which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Conclusion Hybrid simplifications can be used for onion-like (multi-layered) approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach. PMID:19735554
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malikopoulos, Andreas; Djouadi, Seddik M; Kuruganti, Teja
We consider the optimal stochastic control problem for home energy systems with solar and energy storage devices when the demand is realized from the grid. The demand is subject to Brownian motions with both drift and variance parameters modulated by a continuous-time Markov chain that represents the regime of electricity price. We model the systems as pure stochastic differential equation models, and then we follow the completing square technique to solve the stochastic home energy management problem. The effectiveness of the efficiency of the proposed approach is validated through a simulation example. For practical situations with constraints consistent to thosemore » studied here, our results imply the proposed framework could reduce the electricity cost from short-term purchase in peak hour market.« less
Fixation, transient landscape, and diffusion dilemma in stochastic evolutionary game dynamics
NASA Astrophysics Data System (ADS)
Zhou, Da; Qian, Hong
2011-09-01
Agent-based stochastic models for finite populations have recently received much attention in the game theory of evolutionary dynamics. Both the ultimate fixation and the pre-fixation transient behavior are important to a full understanding of the dynamics. In this paper, we study the transient dynamics of the well-mixed Moran process through constructing a landscape function. It is shown that the landscape playing a central theoretical “device” that integrates several lines of inquiries: the stable behavior of the replicator dynamics, the long-time fixation, and continuous diffusion approximation associated with asymptotically large population. Several issues relating to the transient dynamics are discussed: (i) multiple time scales phenomenon associated with intra- and inter-attractoral dynamics; (ii) discontinuous transition in stochastically stationary process akin to Maxwell construction in equilibrium statistical physics; and (iii) the dilemma diffusion approximation facing as a continuous approximation of the discrete evolutionary dynamics. It is found that rare events with exponentially small probabilities, corresponding to the uphill movements and barrier crossing in the landscape with multiple wells that are made possible by strong nonlinear dynamics, plays an important role in understanding the origin of the complexity in evolutionary, nonlinear biological systems.
Selected-node stochastic simulation algorithm
NASA Astrophysics Data System (ADS)
Duso, Lorenzo; Zechner, Christoph
2018-04-01
Stochastic simulations of biochemical networks are of vital importance for understanding complex dynamics in cells and tissues. However, existing methods to perform such simulations are associated with computational difficulties and addressing those remains a daunting challenge to the present. Here we introduce the selected-node stochastic simulation algorithm (snSSA), which allows us to exclusively simulate an arbitrary, selected subset of molecular species of a possibly large and complex reaction network. The algorithm is based on an analytical elimination of chemical species, thereby avoiding explicit simulation of the associated chemical events. These species are instead described continuously in terms of statistical moments derived from a stochastic filtering equation, resulting in a substantial speedup when compared to Gillespie's stochastic simulation algorithm (SSA). Moreover, we show that statistics obtained via snSSA profit from a variance reduction, which can significantly lower the number of Monte Carlo samples needed to achieve a certain performance. We demonstrate the algorithm using several biological case studies for which the simulation time could be reduced by orders of magnitude.
Robustness analysis of an air heating plant and control law by using polynomial chaos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colón, Diego; Ferreira, Murillo A. S.; Bueno, Átila M.
2014-12-10
This paper presents a robustness analysis of an air heating plant with a multivariable closed-loop control law by using the polynomial chaos methodology (MPC). The plant consists of a PVC tube with a fan in the air input (that forces the air through the tube) and a mass flux sensor in the output. A heating resistance warms the air as it flows inside the tube, and a thermo-couple sensor measures the air temperature. The plant has thus two inputs (the fan's rotation intensity and heat generated by the resistance, both measured in percent of the maximum value) and two outputsmore » (air temperature and air mass flux, also in percent of the maximal value). The mathematical model is obtained by System Identification techniques. The mass flux sensor, which is nonlinear, is linearized and the delays in the transfer functions are properly approximated by non-minimum phase transfer functions. The resulting model is transformed to a state-space model, which is used for control design purposes. The multivariable robust control design techniques used is the LQG/LTR, and the controllers are validated in simulation software and in the real plant. Finally, the MPC is applied by considering some of the system's parameters as random variables (one at a time, and the system's stochastic differential equations are solved by expanding the solution (a stochastic process) in an orthogonal basis of polynomial functions of the basic random variables. This method transforms the stochastic equations in a set of deterministic differential equations, which can be solved by traditional numerical methods (That is the MPC). Statistical data for the system (like expected values and variances) are then calculated. The effects of randomness in the parameters are evaluated in the open-loop and closed-loop pole's positions.« less
Hybrid Topological Lie-Hamiltonian Learning in Evolving Energy Landscapes
NASA Astrophysics Data System (ADS)
Ivancevic, Vladimir G.; Reid, Darryn J.
2015-11-01
In this Chapter, a novel bidirectional algorithm for hybrid (discrete + continuous-time) Lie-Hamiltonian evolution in adaptive energy landscape-manifold is designed and its topological representation is proposed. The algorithm is developed within a geometrically and topologically extended framework of Hopfield's neural nets and Haken's synergetics (it is currently designed in Mathematica, although with small changes it could be implemented in Symbolic C++ or any other computer algebra system). The adaptive energy manifold is determined by the Hamiltonian multivariate cost function H, based on the user-defined vehicle-fleet configuration matrix W, which represents the pseudo-Riemannian metric tensor of the energy manifold. Search for the global minimum of H is performed using random signal differential Hebbian adaptation. This stochastic gradient evolution is driven (or, pulled-down) by `gravitational forces' defined by the 2nd Lie derivatives of H. Topological changes of the fleet matrix W are observed during the evolution and its topological invariant is established. The evolution stops when the W-topology breaks down into several connectivity-components, followed by topology-breaking instability sequence (i.e., a series of phase transitions).
Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines.
Neftci, Emre O; Pedroni, Bruno U; Joshi, Siddharth; Al-Shedivat, Maruan; Cauwenberghs, Gert
2016-01-01
Recent studies have shown that synaptic unreliability is a robust and sufficient mechanism for inducing the stochasticity observed in cortex. Here, we introduce Synaptic Sampling Machines (S2Ms), a class of neural network models that uses synaptic stochasticity as a means to Monte Carlo sampling and unsupervised learning. Similar to the original formulation of Boltzmann machines, these models can be viewed as a stochastic counterpart of Hopfield networks, but where stochasticity is induced by a random mask over the connections. Synaptic stochasticity plays the dual role of an efficient mechanism for sampling, and a regularizer during learning akin to DropConnect. A local synaptic plasticity rule implementing an event-driven form of contrastive divergence enables the learning of generative models in an on-line fashion. S2Ms perform equally well using discrete-timed artificial units (as in Hopfield networks) or continuous-timed leaky integrate and fire neurons. The learned representations are remarkably sparse and robust to reductions in bit precision and synapse pruning: removal of more than 75% of the weakest connections followed by cursory re-learning causes a negligible performance loss on benchmark classification tasks. The spiking neuron-based S2Ms outperform existing spike-based unsupervised learners, while potentially offering substantial advantages in terms of power and complexity, and are thus promising models for on-line learning in brain-inspired hardware.
Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines
Neftci, Emre O.; Pedroni, Bruno U.; Joshi, Siddharth; Al-Shedivat, Maruan; Cauwenberghs, Gert
2016-01-01
Recent studies have shown that synaptic unreliability is a robust and sufficient mechanism for inducing the stochasticity observed in cortex. Here, we introduce Synaptic Sampling Machines (S2Ms), a class of neural network models that uses synaptic stochasticity as a means to Monte Carlo sampling and unsupervised learning. Similar to the original formulation of Boltzmann machines, these models can be viewed as a stochastic counterpart of Hopfield networks, but where stochasticity is induced by a random mask over the connections. Synaptic stochasticity plays the dual role of an efficient mechanism for sampling, and a regularizer during learning akin to DropConnect. A local synaptic plasticity rule implementing an event-driven form of contrastive divergence enables the learning of generative models in an on-line fashion. S2Ms perform equally well using discrete-timed artificial units (as in Hopfield networks) or continuous-timed leaky integrate and fire neurons. The learned representations are remarkably sparse and robust to reductions in bit precision and synapse pruning: removal of more than 75% of the weakest connections followed by cursory re-learning causes a negligible performance loss on benchmark classification tasks. The spiking neuron-based S2Ms outperform existing spike-based unsupervised learners, while potentially offering substantial advantages in terms of power and complexity, and are thus promising models for on-line learning in brain-inspired hardware. PMID:27445650
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harber, K.S.
1993-05-01
This report contains the following papers: Implications in vivid logic; a self-learning bayesian expert system; a natural language generation system for a heterogeneous distributed database system; competence-switching'' managed by intelligent systems; strategy acquisition by an artificial neural network: Experiments in learning to play a stochastic game; viewpoints and selective inheritance in object-oriented modeling; multivariate discretization of continuous attributes for machine learning; utilization of the case-based reasoning method to resolve dynamic problems; formalization of an ontology of ceramic science in CLASSIC; linguistic tools for intelligent systems; an application of rough sets in knowledge synthesis; and a relational model for imprecise queries.more » These papers have been indexed separately.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harber, K.S.
1993-05-01
This report contains the following papers: Implications in vivid logic; a self-learning Bayesian Expert System; a natural language generation system for a heterogeneous distributed database system; ``competence-switching`` managed by intelligent systems; strategy acquisition by an artificial neural network: Experiments in learning to play a stochastic game; viewpoints and selective inheritance in object-oriented modeling; multivariate discretization of continuous attributes for machine learning; utilization of the case-based reasoning method to resolve dynamic problems; formalization of an ontology of ceramic science in CLASSIC; linguistic tools for intelligent systems; an application of rough sets in knowledge synthesis; and a relational model for imprecise queries.more » These papers have been indexed separately.« less
Global solutions to random 3D vorticity equations for small initial data
NASA Astrophysics Data System (ADS)
Barbu, Viorel; Röckner, Michael
2017-11-01
One proves the existence and uniqueness in (Lp (R3)) 3, 3/2 < p < 2, of a global mild solution to random vorticity equations associated to stochastic 3D Navier-Stokes equations with linear multiplicative Gaussian noise of convolution type, for sufficiently small initial vorticity. This resembles some earlier deterministic results of T. Kato [16] and are obtained by treating the equation in vorticity form and reducing the latter to a random nonlinear parabolic equation. The solution has maximal regularity in the spatial variables and is weakly continuous in (L3 ∩L 3p/4p - 6)3 with respect to the time variable. Furthermore, we obtain the pathwise continuous dependence of solutions with respect to the initial data. In particular, one gets a locally unique solution of 3D stochastic Navier-Stokes equation in vorticity form up to some explosion stopping time τ adapted to the Brownian motion.
Bayesian inference for dynamic transcriptional regulation; the Hes1 system as a case study.
Heron, Elizabeth A; Finkenstädt, Bärbel; Rand, David A
2007-10-01
In this study, we address the problem of estimating the parameters of regulatory networks and provide the first application of Markov chain Monte Carlo (MCMC) methods to experimental data. As a case study, we consider a stochastic model of the Hes1 system expressed in terms of stochastic differential equations (SDEs) to which rigorous likelihood methods of inference can be applied. When fitting continuous-time stochastic models to discretely observed time series the lengths of the sampling intervals are important, and much of our study addresses the problem when the data are sparse. We estimate the parameters of an autoregulatory network providing results both for simulated and real experimental data from the Hes1 system. We develop an estimation algorithm using MCMC techniques which are flexible enough to allow for the imputation of latent data on a finer time scale and the presence of prior information about parameters which may be informed from other experiments as well as additional measurement error.
Stochastic Simulation and Forecast of Hydrologic Time Series Based on Probabilistic Chaos Expansion
NASA Astrophysics Data System (ADS)
Li, Z.; Ghaith, M.
2017-12-01
Hydrological processes are characterized by many complex features, such as nonlinearity, dynamics and uncertainty. How to quantify and address such complexities and uncertainties has been a challenging task for water engineers and managers for decades. To support robust uncertainty analysis, an innovative approach for the stochastic simulation and forecast of hydrologic time series is developed is this study. Probabilistic Chaos Expansions (PCEs) are established through probabilistic collocation to tackle uncertainties associated with the parameters of traditional hydrological models. The uncertainties are quantified in model outputs as Hermite polynomials with regard to standard normal random variables. Sequentially, multivariate analysis techniques are used to analyze the complex nonlinear relationships between meteorological inputs (e.g., temperature, precipitation, evapotranspiration, etc.) and the coefficients of the Hermite polynomials. With the established relationships between model inputs and PCE coefficients, forecasts of hydrologic time series can be generated and the uncertainties in the future time series can be further tackled. The proposed approach is demonstrated using a case study in China and is compared to a traditional stochastic simulation technique, the Markov-Chain Monte-Carlo (MCMC) method. Results show that the proposed approach can serve as a reliable proxy to complicated hydrological models. It can provide probabilistic forecasting in a more computationally efficient manner, compared to the traditional MCMC method. This work provides technical support for addressing uncertainties associated with hydrological modeling and for enhancing the reliability of hydrological modeling results. Applications of the developed approach can be extended to many other complicated geophysical and environmental modeling systems to support the associated uncertainty quantification and risk analysis.
The adaptation rate of a quantitative trait in an environmental gradient
NASA Astrophysics Data System (ADS)
Hermsen, R.
2016-12-01
The spatial range of a species habitat is generally determined by the ability of the species to cope with biotic and abiotic variables that vary in space. Therefore, the species range is itself an evolvable property. Indeed, environmental gradients permit a mode of evolution in which range expansion and adaptation go hand in hand. This process can contribute to rapid evolution of drug resistant bacteria and viruses, because drug concentrations in humans and livestock treated with antibiotics are far from uniform. Here, we use a minimal stochastic model of discrete, interacting organisms evolving in continuous space to study how the rate of adaptation of a quantitative trait depends on the steepness of the gradient and various population parameters. We discuss analytical results for the mean-field limit as well as extensive stochastic simulations. These simulations were performed using an exact, event-driven simulation scheme that can deal with continuous time-, density- and coordinate-dependent reaction rates and could be used for a wide variety of stochastic systems. The results reveal two qualitative regimes. If the gradient is shallow, the rate of adaptation is limited by dispersion and increases linearly with the gradient slope. If the gradient is steep, the adaptation rate is limited by mutation. In this regime, the mean-field result is highly misleading: it predicts that the adaptation rate continues to increase with the gradient slope, whereas stochastic simulations show that it in fact decreases with the square root of the slope. This discrepancy underscores the importance of discreteness and stochasticity even at high population densities; mean-field results, including those routinely used in quantitative genetics, should be interpreted with care.
The adaptation rate of a quantitative trait in an environmental gradient.
Hermsen, R
2016-11-30
The spatial range of a species habitat is generally determined by the ability of the species to cope with biotic and abiotic variables that vary in space. Therefore, the species range is itself an evolvable property. Indeed, environmental gradients permit a mode of evolution in which range expansion and adaptation go hand in hand. This process can contribute to rapid evolution of drug resistant bacteria and viruses, because drug concentrations in humans and livestock treated with antibiotics are far from uniform. Here, we use a minimal stochastic model of discrete, interacting organisms evolving in continuous space to study how the rate of adaptation of a quantitative trait depends on the steepness of the gradient and various population parameters. We discuss analytical results for the mean-field limit as well as extensive stochastic simulations. These simulations were performed using an exact, event-driven simulation scheme that can deal with continuous time-, density- and coordinate-dependent reaction rates and could be used for a wide variety of stochastic systems. The results reveal two qualitative regimes. If the gradient is shallow, the rate of adaptation is limited by dispersion and increases linearly with the gradient slope. If the gradient is steep, the adaptation rate is limited by mutation. In this regime, the mean-field result is highly misleading: it predicts that the adaptation rate continues to increase with the gradient slope, whereas stochastic simulations show that it in fact decreases with the square root of the slope. This discrepancy underscores the importance of discreteness and stochasticity even at high population densities; mean-field results, including those routinely used in quantitative genetics, should be interpreted with care.
A guidance and navigation system for continuous low-thrust vehicles. M.S. Thesis
NASA Technical Reports Server (NTRS)
Jack-Chingtse, C.
1973-01-01
A midcourse guidance and navigation system for continuous low thrust vehicles was developed. The equinoctial elements are the state variables. Uncertainties are modelled statistically by random vector and stochastic processes. The motion of the vehicle and the measurements are described by nonlinear stochastic differential and difference equations respectively. A minimum time trajectory is defined; equations of motion and measurements are linearized about this trajectory. An exponential cost criterion is constructed and a linear feedback quidance law is derived. An extended Kalman filter is used for state estimation. A short mission using this system is simulated. It is indicated that this system is efficient for short missions, but longer missions require accurate trajectory and ground based measurements.
Detecting synchronization clusters in multivariate time series via coarse-graining of Markov chains.
Allefeld, Carsten; Bialonski, Stephan
2007-12-01
Synchronization cluster analysis is an approach to the detection of underlying structures in data sets of multivariate time series, starting from a matrix R of bivariate synchronization indices. A previous method utilized the eigenvectors of R for cluster identification, analogous to several recent attempts at group identification using eigenvectors of the correlation matrix. All of these approaches assumed a one-to-one correspondence of dominant eigenvectors and clusters, which has however been shown to be wrong in important cases. We clarify the usefulness of eigenvalue decomposition for synchronization cluster analysis by translating the problem into the language of stochastic processes, and derive an enhanced clustering method harnessing recent insights from the coarse-graining of finite-state Markov processes. We illustrate the operation of our method using a simulated system of coupled Lorenz oscillators, and we demonstrate its superior performance over the previous approach. Finally we investigate the question of robustness of the algorithm against small sample size, which is important with regard to field applications.
Chevalier, Michael W.; El-Samad, Hana
2014-01-01
Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation times of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled. PMID:25481130
NASA Astrophysics Data System (ADS)
Chevalier, Michael W.; El-Samad, Hana
2014-12-01
Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation times of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled.
A hybrid continuous-discrete method for stochastic reaction-diffusion processes.
Lo, Wing-Cheong; Zheng, Likun; Nie, Qing
2016-09-01
Stochastic fluctuations in reaction-diffusion processes often have substantial effect on spatial and temporal dynamics of signal transductions in complex biological systems. One popular approach for simulating these processes is to divide the system into small spatial compartments assuming that molecules react only within the same compartment and jump between adjacent compartments driven by the diffusion. While the approach is convenient in terms of its implementation, its computational cost may become prohibitive when diffusive jumps occur significantly more frequently than reactions, as in the case of rapid diffusion. Here, we present a hybrid continuous-discrete method in which diffusion is simulated using continuous approximation while reactions are based on the Gillespie algorithm. Specifically, the diffusive jumps are approximated as continuous Gaussian random vectors with time-dependent means and covariances, allowing use of a large time step, even for rapid diffusion. By considering the correlation among diffusive jumps, the approximation is accurate for the second moment of the diffusion process. In addition, a criterion is obtained for identifying the region in which such diffusion approximation is required to enable adaptive calculations for better accuracy. Applications to a linear diffusion system and two nonlinear systems of morphogens demonstrate the effectiveness and benefits of the new hybrid method.
Single-shot quantum state estimation via a continuous measurement in the strong backaction regime
NASA Astrophysics Data System (ADS)
Cook, Robert L.; Riofrío, Carlos A.; Deutsch, Ivan H.
2014-09-01
We study quantum tomography based on a stochastic continuous-time measurement record obtained from a probe field collectively interacting with an ensemble of identically prepared systems. In comparison to previous studies, we consider here the case in which the measurement-induced backaction has a non-negligible effect on the dynamical evolution of the ensemble. We formulate a maximum likelihood estimate for the initial quantum state given only a single instance of the continuous diffusive measurement record. We apply our estimator to the simplest problem: state tomography of a single pure qubit, which, during the course of the measurement, is also subjected to dynamical control. We identify a regime where the many-body system is well approximated at all times by a separable pure spin coherent state, whose Bloch vector undergoes a conditional stochastic evolution. We simulate the results of our estimator and show that we can achieve close to the upper bound of fidelity set by the optimal generalized measurement. This estimate is compared to, and significantly outperforms, an equivalent estimator that ignores measurement backaction.
A data driven nonlinear stochastic model for blood glucose dynamics.
Zhang, Yan; Holt, Tim A; Khovanova, Natalia
2016-03-01
The development of adequate mathematical models for blood glucose dynamics may improve early diagnosis and control of diabetes mellitus (DM). We have developed a stochastic nonlinear second order differential equation to describe the response of blood glucose concentration to food intake using continuous glucose monitoring (CGM) data. A variational Bayesian learning scheme was applied to define the number and values of the system's parameters by iterative optimisation of free energy. The model has the minimal order and number of parameters to successfully describe blood glucose dynamics in people with and without DM. The model accounts for the nonlinearity and stochasticity of the underlying glucose-insulin dynamic process. Being data-driven, it takes full advantage of available CGM data and, at the same time, reflects the intrinsic characteristics of the glucose-insulin system without detailed knowledge of the physiological mechanisms. We have shown that the dynamics of some postprandial blood glucose excursions can be described by a reduced (linear) model, previously seen in the literature. A comprehensive analysis demonstrates that deterministic system parameters belong to different ranges for diabetes and controls. Implications for clinical practice are discussed. This is the first study introducing a continuous data-driven nonlinear stochastic model capable of describing both DM and non-DM profiles. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Gambetta, Jay; Wiseman, H. M.
2002-07-01
Do stochastic Schrödinger equations, also known as unravelings, have a physical interpretation? In the Markovian limit, where the system on average obeys a master equation, the answer is yes. Markovian stochastic Schrödinger equations generate quantum trajectories for the system state conditioned on continuously monitoring the bath. For a given master equation, there are many different unravelings, corresponding to different sorts of measurement on the bath. In this paper we address the non-Markovian case, and in particular the sort of stochastic Schrödinger equation introduced by Strunz, Diósi, and Gisin [Phys. Rev. Lett. 82, 1801 (1999)]. Using a quantum-measurement theory approach, we rederive their unraveling that involves complex-valued Gaussian noise. We also derive an unraveling involving real-valued Gaussian noise. We show that in the Markovian limit, these two unravelings correspond to heterodyne and homodyne detection, respectively. Although we use quantum-measurement theory to define these unravelings, we conclude that the stochastic evolution of the system state is not a true quantum trajectory, as the identity of the state through time is a fiction.
Hybrid stochastic simulations of intracellular reaction-diffusion systems.
Kalantzis, Georgios
2009-06-01
With the observation that stochasticity is important in biological systems, chemical kinetics have begun to receive wider interest. While the use of Monte Carlo discrete event simulations most accurately capture the variability of molecular species, they become computationally costly for complex reaction-diffusion systems with large populations of molecules. On the other hand, continuous time models are computationally efficient but they fail to capture any variability in the molecular species. In this study a hybrid stochastic approach is introduced for simulating reaction-diffusion systems. We developed an adaptive partitioning strategy in which processes with high frequency are simulated with deterministic rate-based equations, and those with low frequency using the exact stochastic algorithm of Gillespie. Therefore the stochastic behavior of cellular pathways is preserved while being able to apply it to large populations of molecules. We describe our method and demonstrate its accuracy and efficiency compared with the Gillespie algorithm for two different systems. First, a model of intracellular viral kinetics with two steady states and second, a compartmental model of the postsynaptic spine head for studying the dynamics of Ca+2 and NMDA receptors.
Dynamic partitioning for hybrid simulation of the bistable HIV-1 transactivation network.
Griffith, Mark; Courtney, Tod; Peccoud, Jean; Sanders, William H
2006-11-15
The stochastic kinetics of a well-mixed chemical system, governed by the chemical Master equation, can be simulated using the exact methods of Gillespie. However, these methods do not scale well as systems become more complex and larger models are built to include reactions with widely varying rates, since the computational burden of simulation increases with the number of reaction events. Continuous models may provide an approximate solution and are computationally less costly, but they fail to capture the stochastic behavior of small populations of macromolecules. In this article we present a hybrid simulation algorithm that dynamically partitions the system into subsets of continuous and discrete reactions, approximates the continuous reactions deterministically as a system of ordinary differential equations (ODE) and uses a Monte Carlo method for generating discrete reaction events according to a time-dependent propensity. Our approach to partitioning is improved such that we dynamically partition the system of reactions, based on a threshold relative to the distribution of propensities in the discrete subset. We have implemented the hybrid algorithm in an extensible framework, utilizing two rigorous ODE solvers to approximate the continuous reactions, and use an example model to illustrate the accuracy and potential speedup of the algorithm when compared with exact stochastic simulation. Software and benchmark models used for this publication can be made available upon request from the authors.
The impact of short term synaptic depression and stochastic vesicle dynamics on neuronal variability
Reich, Steven
2014-01-01
Neuronal variability plays a central role in neural coding and impacts the dynamics of neuronal networks. Unreliability of synaptic transmission is a major source of neural variability: synaptic neurotransmitter vesicles are released probabilistically in response to presynaptic action potentials and are recovered stochastically in time. The dynamics of this process of vesicle release and recovery interacts with variability in the arrival times of presynaptic spikes to shape the variability of the postsynaptic response. We use continuous time Markov chain methods to analyze a model of short term synaptic depression with stochastic vesicle dynamics coupled with three different models of presynaptic spiking: one model in which the timing of presynaptic action potentials are modeled as a Poisson process, one in which action potentials occur more regularly than a Poisson process (sub-Poisson) and one in which action potentials occur more irregularly (super-Poisson). We use this analysis to investigate how variability in a presynaptic spike train is transformed by short term depression and stochastic vesicle dynamics to determine the variability of the postsynaptic response. We find that sub-Poisson presynaptic spiking increases the average rate at which vesicles are released, that the number of vesicles released over a time window is more variable for smaller time windows than larger time windows and that fast presynaptic spiking gives rise to Poisson-like variability of the postsynaptic response even when presynaptic spike times are non-Poisson. Our results complement and extend previously reported theoretical results and provide possible explanations for some trends observed in recorded data. PMID:23354693
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bessac, Julie; Constantinescu, Emil; Anitescu, Mihai
We propose a statistical space-time model for predicting atmospheric wind speed based on deterministic numerical weather predictions and historical measurements. We consider a Gaussian multivariate space-time framework that combines multiple sources of past physical model outputs and measurements in order to produce a probabilistic wind speed forecast within the prediction window. We illustrate this strategy on wind speed forecasts during several months in 2012 for a region near the Great Lakes in the United States. The results show that the prediction is improved in the mean-squared sense relative to the numerical forecasts as well as in probabilistic scores. Moreover, themore » samples are shown to produce realistic wind scenarios based on sample spectra and space-time correlation structure.« less
Bessac, Julie; Constantinescu, Emil; Anitescu, Mihai
2018-03-01
We propose a statistical space-time model for predicting atmospheric wind speed based on deterministic numerical weather predictions and historical measurements. We consider a Gaussian multivariate space-time framework that combines multiple sources of past physical model outputs and measurements in order to produce a probabilistic wind speed forecast within the prediction window. We illustrate this strategy on wind speed forecasts during several months in 2012 for a region near the Great Lakes in the United States. The results show that the prediction is improved in the mean-squared sense relative to the numerical forecasts as well as in probabilistic scores. Moreover, themore » samples are shown to produce realistic wind scenarios based on sample spectra and space-time correlation structure.« less
Multivariate space - time analysis of PRE-STORM precipitation
NASA Technical Reports Server (NTRS)
Polyak, Ilya; North, Gerald R.; Valdes, Juan B.
1994-01-01
This paper presents the methodologies and results of the multivariate modeling and two-dimensional spectral and correlation analysis of PRE-STORM rainfall gauge data. Estimated parameters of the models for the specific spatial averages clearly indicate the eastward and southeastward wave propagation of rainfall fluctuations. A relationship between the coefficients of the diffusion equation and the parameters of the stochastic model of rainfall fluctuations is derived that leads directly to the exclusive use of rainfall data to estimate advection speed (about 12 m/s) as well as other coefficients of the diffusion equation of the corresponding fields. The statistical methodology developed here can be used for confirmation of physical models by comparison of the corresponding second-moment statistics of the observed and simulated data, for generating multiple samples of any size, for solving the inverse problem of the hydrodynamic equations, and for application in some other areas of meteorological and climatological data analysis and modeling.
A variational method for analyzing limit cycle oscillations in stochastic hybrid systems
NASA Astrophysics Data System (ADS)
Bressloff, Paul C.; MacLaurin, James
2018-06-01
Many systems in biology can be modeled through ordinary differential equations, which are piece-wise continuous, and switch between different states according to a Markov jump process known as a stochastic hybrid system or piecewise deterministic Markov process (PDMP). In the fast switching limit, the dynamics converges to a deterministic ODE. In this paper, we develop a phase reduction method for stochastic hybrid systems that support a stable limit cycle in the deterministic limit. A classic example is the Morris-Lecar model of a neuron, where the switching Markov process is the number of open ion channels and the continuous process is the membrane voltage. We outline a variational principle for the phase reduction, yielding an exact analytic expression for the resulting phase dynamics. We demonstrate that this decomposition is accurate over timescales that are exponential in the switching rate ɛ-1 . That is, we show that for a constant C, the probability that the expected time to leave an O(a) neighborhood of the limit cycle is less than T scales as T exp (-C a /ɛ ) .
A Second-Order Conditionally Linear Mixed Effects Model with Observed and Latent Variable Covariates
ERIC Educational Resources Information Center
Harring, Jeffrey R.; Kohli, Nidhi; Silverman, Rebecca D.; Speece, Deborah L.
2012-01-01
A conditionally linear mixed effects model is an appropriate framework for investigating nonlinear change in a continuous latent variable that is repeatedly measured over time. The efficacy of the model is that it allows parameters that enter the specified nonlinear time-response function to be stochastic, whereas those parameters that enter in a…
Physical realizability of continuous-time quantum stochastic walks
NASA Astrophysics Data System (ADS)
Taketani, Bruno G.; Govia, Luke C. G.; Wilhelm, Frank K.
2018-05-01
Quantum walks are a promising methodology that can be used to both understand and implement quantum information processing tasks. The quantum stochastic walk is a recently developed framework that combines the concept of a quantum walk with that of a classical random walk, through open system evolution of a quantum system. Quantum stochastic walks have been shown to have applications in as far reaching fields as artificial intelligence. However, there are significant constraints on the kind of open system evolutions that can be realized in a physical experiment. In this work, we discuss the restrictions on the allowed open system evolution and the physical assumptions underpinning them. We show that general direct implementations would require the complete solution of the underlying unitary dynamics and sophisticated reservoir engineering, thus weakening the benefits of experimental implementation.
Simulation-based planning for theater air warfare
NASA Astrophysics Data System (ADS)
Popken, Douglas A.; Cox, Louis A., Jr.
2004-08-01
Planning for Theatre Air Warfare can be represented as a hierarchy of decisions. At the top level, surviving airframes must be assigned to roles (e.g., Air Defense, Counter Air, Close Air Support, and AAF Suppression) in each time period in response to changing enemy air defense capabilities, remaining targets, and roles of opposing aircraft. At the middle level, aircraft are allocated to specific targets to support their assigned roles. At the lowest level, routing and engagement decisions are made for individual missions. The decisions at each level form a set of time-sequenced Courses of Action taken by opposing forces. This paper introduces a set of simulation-based optimization heuristics operating within this planning hierarchy to optimize allocations of aircraft. The algorithms estimate distributions for stochastic outcomes of the pairs of Red/Blue decisions. Rather than using traditional stochastic dynamic programming to determine optimal strategies, we use an innovative combination of heuristics, simulation-optimization, and mathematical programming. Blue decisions are guided by a stochastic hill-climbing search algorithm while Red decisions are found by optimizing over a continuous representation of the decision space. Stochastic outcomes are then provided by fast, Lanchester-type attrition simulations. This paper summarizes preliminary results from top and middle level models.
Continuous time limits of the utterance selection model
NASA Astrophysics Data System (ADS)
Michaud, Jérôme
2017-02-01
In this paper we derive alternative continuous time limits of the utterance selection model (USM) for language change [G. J. Baxter et al., Phys. Rev. E 73, 046118 (2006), 10.1103/PhysRevE.73.046118]. This is motivated by the fact that the Fokker-Planck continuous time limit derived in the original version of the USM is only valid for a small range of parameters. We investigate the consequences of relaxing these constraints on parameters. Using the normal approximation of the multinomial approximation, we derive a continuous time limit of the USM in the form of a weak-noise stochastic differential equation. We argue that this weak noise, not captured by the Kramers-Moyal expansion, cannot be neglected. We then propose a coarse-graining procedure, which takes the form of a stochastic version of the heterogeneous mean field approximation. This approximation groups the behavior of nodes of the same degree, reducing the complexity of the problem. With the help of this approximation, we study in detail two simple families of networks: the regular networks and the star-shaped networks. The analysis reveals and quantifies a finite-size effect of the dynamics. If we increase the size of the network by keeping all the other parameters constant, we transition from a state where conventions emerge to a state where no convention emerges. Furthermore, we show that the degree of a node acts as a time scale. For heterogeneous networks such as star-shaped networks, the time scale difference can become very large, leading to a noisier behavior of highly connected nodes.
NASA Astrophysics Data System (ADS)
Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan
2017-11-01
Precipitation plays an important role in determining the climate of a region. Precise estimation of precipitation is required to manage and plan water resources, as well as other related applications such as hydrology, climatology, meteorology and agriculture. Time series of hydrologic variables such as precipitation are composed of deterministic and stochastic parts. Despite this fact, the stochastic part of the precipitation data is not usually considered in modeling of precipitation process. As an innovation, the present study introduces three new hybrid models by integrating soft computing methods including multivariate adaptive regression splines (MARS), Bayesian networks (BN) and gene expression programming (GEP) with a time series model, namely generalized autoregressive conditional heteroscedasticity (GARCH) for modeling of the monthly precipitation. For this purpose, the deterministic (obtained by soft computing methods) and stochastic (obtained by GARCH time series model) parts are combined with each other. To carry out this research, monthly precipitation data of Babolsar, Bandar Anzali, Gorgan, Ramsar, Tehran and Urmia stations with different climates in Iran were used during the period of 1965-2014. Root mean square error (RMSE), relative root mean square error (RRMSE), mean absolute error (MAE) and determination coefficient (R2) were employed to evaluate the performance of conventional/single MARS, BN and GEP, as well as the proposed MARS-GARCH, BN-GARCH and GEP-GARCH hybrid models. It was found that the proposed novel models are more precise than single MARS, BN and GEP models. Overall, MARS-GARCH and BN-GARCH models yielded better accuracy than GEP-GARCH. The results of the present study confirmed the suitability of proposed methodology for precise modeling of precipitation.
Stochastic maps, continuous approximation, and stable distribution
NASA Astrophysics Data System (ADS)
Kessler, David A.; Burov, Stanislav
2017-10-01
A continuous approximation framework for general nonlinear stochastic as well as deterministic discrete maps is developed. For the stochastic map with uncorelated Gaussian noise, by successively applying the Itô lemma, we obtain a Langevin type of equation. Specifically, we show how nonlinear maps give rise to a Langevin description that involves multiplicative noise. The multiplicative nature of the noise induces an additional effective force, not present in the absence of noise. We further exploit the continuum description and provide an explicit formula for the stable distribution of the stochastic map and conditions for its existence. Our results are in good agreement with numerical simulations of several maps.
An adaptive multi-level simulation algorithm for stochastic biological systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lester, C., E-mail: lesterc@maths.ox.ac.uk; Giles, M. B.; Baker, R. E.
2015-01-14
Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, “Multi-level Montemore » Carlo for continuous time Markov chains, with applications in biochemical kinetics,” SIAM Multiscale Model. Simul. 10(1), 146–179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the efficiency of our method using a number of examples.« less
Hidden symmetries and equilibrium properties of multiplicative white-noise stochastic processes
NASA Astrophysics Data System (ADS)
González Arenas, Zochil; Barci, Daniel G.
2012-12-01
Multiplicative white-noise stochastic processes continue to attract attention in a wide area of scientific research. The variety of prescriptions available for defining them makes the development of general tools for their characterization difficult. In this work, we study equilibrium properties of Markovian multiplicative white-noise processes. For this, we define the time reversal transformation for such processes, taking into account that the asymptotic stationary probability distribution depends on the prescription. Representing the stochastic process in a functional Grassmann formalism, we avoid the necessity of fixing a particular prescription. In this framework, we analyze equilibrium properties and study hidden symmetries of the process. We show that, using a careful definition of the equilibrium distribution and taking into account the appropriate time reversal transformation, usual equilibrium properties are satisfied for any prescription. Finally, we present a detailed deduction of a covariant supersymmetric formulation of a multiplicative Markovian white-noise process and study some of the constraints that it imposes on correlation functions using Ward-Takahashi identities.
Stochastic modeling of the hypothalamic pulse generator activity.
Camproux, A C; Thalabard, J C; Thomas, G
1994-11-01
Luteinizing hormone (LH) is released by the pituitary in discrete pulses. In the monkey, the appearance of LH pulses in the plasma is invariably associated with sharp increases (i.e, volleys) in the frequency of the hypothalamic pulse generator electrical activity, so that continuous monitoring of this activity by telemetry provides a unique means to study the temporal structure of the mechanism generating the pulses. To assess whether the times of occurrence and durations of previous volleys exert significant influence on the timing of the next volley, we used a class of periodic counting process models that specify the stochastic intensity of the process as the product of two factors: 1) a periodic baseline intensity and 2) a stochastic regression function with covariates representing the influence of the past. This approach allows the characterization of circadian modulation and memory range of the process underlying hypothalamic pulse generator activity, as illustrated by fitting the model to experimental data from two ovariectomized rhesus monkeys.
Stochastic simulation of the spray formation assisted by a high pressure
NASA Astrophysics Data System (ADS)
Gorokhovski, M.; Chtab-Desportes, A.; Voloshina, I.; Askarova, A.
2010-03-01
The stochastic model of spray formation in the vicinity of the injector and in the far-field has been described and assessed by comparison with measurements in Diesel-like conditions. In the proposed mesh-free approach, the 3D configuration of continuous liquid core is simulated stochastically by ensemble of spatial trajectories of the specifically introduced stochastic particles. The parameters of the stochastic process are presumed from the physics of primary atomization. The spray formation model consists in computation of spatial distribution of the probability of finding the non-fragmented liquid jet in the near-to-injector region. This model is combined with KIVA II computation of atomizing Diesel spray in two-ways. First, simultaneously with the gas phase RANS computation, the ensemble of stochastic particles is tracking and the probability field of their positions is calculated, which is used for sampling of initial locations of primary blobs. Second, the velocity increment of the gas due to the liquid injection is computed from the mean volume fraction of the simulated liquid core. Two novelties are proposed in the secondary atomization modeling. The first one is due to unsteadiness of the injection velocity. When the injection velocity increment in time is decreasing, the supplementary breakup may be induced. Therefore the critical Weber number is based on such increment. Second, a new stochastic model of the secondary atomization is proposed, in which the intermittent turbulent stretching is taken into account as the main mechanism. The measurements reported by Arcoumanis et al. (time-history of the mean axial centre-line velocity of droplet, and of the centre-line Sauter Mean Diameter), are compared with computations.
NASA Astrophysics Data System (ADS)
Liu, Jian; Li, Baohe; Chen, Xiaosong
2018-02-01
The space-time coupled continuous time random walk model is a stochastic framework of anomalous diffusion with many applications in physics, geology and biology. In this manuscript the time averaged mean squared displacement and nonergodic property of a space-time coupled continuous time random walk model is studied, which is a prototype of the coupled continuous time random walk presented and researched intensively with various methods. The results in the present manuscript show that the time averaged mean squared displacements increase linearly with lag time which means ergodicity breaking occurs, besides, we find that the diffusion coefficient is intrinsically random which shows both aging and enhancement, the analysis indicates that the either aging or enhancement phenomena are determined by the competition between the correlation exponent γ and the waiting time's long-tailed index α.
A Multivariate Multilevel Approach to the Modeling of Accuracy and Speed of Test Takers
ERIC Educational Resources Information Center
Klein Entink, R. H.; Fox, J. P.; van der Linden, W. J.
2009-01-01
Response times on test items are easily collected in modern computerized testing. When collecting both (binary) responses and (continuous) response times on test items, it is possible to measure the accuracy and speed of test takers. To study the relationships between these two constructs, the model is extended with a multivariate multilevel…
Qubit models of weak continuous measurements: markovian conditional and open-system dynamics
NASA Astrophysics Data System (ADS)
Gross, Jonathan A.; Caves, Carlton M.; Milburn, Gerard J.; Combes, Joshua
2018-04-01
In this paper we approach the theory of continuous measurements and the associated unconditional and conditional (stochastic) master equations from the perspective of quantum information and quantum computing. We do so by showing how the continuous-time evolution of these master equations arises from discretizing in time the interaction between a system and a probe field and by formulating quantum-circuit diagrams for the discretized evolution. We then reformulate this interaction by replacing the probe field with a bath of qubits, one for each discretized time segment, reproducing all of the standard quantum-optical master equations. This provides an economical formulation of the theory, highlighting its fundamental underlying assumptions.
Dynamically orthogonal field equations for stochastic flows and particle dynamics
2011-02-01
where uncertainty ‘lives’ as well as a system of Stochastic Di erential Equations that de nes how the uncertainty evolves in the time varying stochastic ... stochastic dynamical component that are both time and space dependent, we derive a system of field equations consisting of a Partial Differential Equation...a system of Stochastic Differential Equations that defines how the stochasticity evolves in the time varying stochastic subspace. These new
A hybrid continuous-discrete method for stochastic reaction–diffusion processes
Zheng, Likun; Nie, Qing
2016-01-01
Stochastic fluctuations in reaction–diffusion processes often have substantial effect on spatial and temporal dynamics of signal transductions in complex biological systems. One popular approach for simulating these processes is to divide the system into small spatial compartments assuming that molecules react only within the same compartment and jump between adjacent compartments driven by the diffusion. While the approach is convenient in terms of its implementation, its computational cost may become prohibitive when diffusive jumps occur significantly more frequently than reactions, as in the case of rapid diffusion. Here, we present a hybrid continuous-discrete method in which diffusion is simulated using continuous approximation while reactions are based on the Gillespie algorithm. Specifically, the diffusive jumps are approximated as continuous Gaussian random vectors with time-dependent means and covariances, allowing use of a large time step, even for rapid diffusion. By considering the correlation among diffusive jumps, the approximation is accurate for the second moment of the diffusion process. In addition, a criterion is obtained for identifying the region in which such diffusion approximation is required to enable adaptive calculations for better accuracy. Applications to a linear diffusion system and two nonlinear systems of morphogens demonstrate the effectiveness and benefits of the new hybrid method. PMID:27703710
Weak Galilean invariance as a selection principle for coarse-grained diffusive models.
Cairoli, Andrea; Klages, Rainer; Baule, Adrian
2018-05-29
How does the mathematical description of a system change in different reference frames? Galilei first addressed this fundamental question by formulating the famous principle of Galilean invariance. It prescribes that the equations of motion of closed systems remain the same in different inertial frames related by Galilean transformations, thus imposing strong constraints on the dynamical rules. However, real world systems are often described by coarse-grained models integrating complex internal and external interactions indistinguishably as friction and stochastic forces. Since Galilean invariance is then violated, there is seemingly no alternative principle to assess a priori the physical consistency of a given stochastic model in different inertial frames. Here, starting from the Kac-Zwanzig Hamiltonian model generating Brownian motion, we show how Galilean invariance is broken during the coarse-graining procedure when deriving stochastic equations. Our analysis leads to a set of rules characterizing systems in different inertial frames that have to be satisfied by general stochastic models, which we call "weak Galilean invariance." Several well-known stochastic processes are invariant in these terms, except the continuous-time random walk for which we derive the correct invariant description. Our results are particularly relevant for the modeling of biological systems, as they provide a theoretical principle to select physically consistent stochastic models before a validation against experimental data.
Fast state estimation subject to random data loss in discrete-time nonlinear stochastic systems
NASA Astrophysics Data System (ADS)
Mahdi Alavi, S. M.; Saif, Mehrdad
2013-12-01
This paper focuses on the design of the standard observer in discrete-time nonlinear stochastic systems subject to random data loss. By the assumption that the system response is incrementally bounded, two sufficient conditions are subsequently derived that guarantee exponential mean-square stability and fast convergence of the estimation error for the problem at hand. An efficient algorithm is also presented to obtain the observer gain. Finally, the proposed methodology is employed for monitoring the Continuous Stirred Tank Reactor (CSTR) via a wireless communication network. The effectiveness of the designed observer is extensively assessed by using an experimental tested-bed that has been fabricated for performance evaluation of the over wireless-network estimation techniques under realistic radio channel conditions.
Data-based Non-Markovian Model Inference
NASA Astrophysics Data System (ADS)
Ghil, Michael
2015-04-01
This talk concentrates on obtaining stable and efficient data-based models for simulation and prediction in the geosciences and life sciences. The proposed model derivation relies on using a multivariate time series of partial observations from a large-dimensional system, and the resulting low-order models are compared with the optimal closures predicted by the non-Markovian Mori-Zwanzig formalism of statistical physics. Multilayer stochastic models (MSMs) are introduced as both a very broad generalization and a time-continuous limit of existing multilevel, regression-based approaches to data-based closure, in particular of empirical model reduction (EMR). We show that the multilayer structure of MSMs can provide a natural Markov approximation to the generalized Langevin equation (GLE) of the Mori-Zwanzig formalism. A simple correlation-based stopping criterion for an EMR-MSM model is derived to assess how well it approximates the GLE solution. Sufficient conditions are given for the nonlinear cross-interactions between the constitutive layers of a given MSM to guarantee the existence of a global random attractor. This existence ensures that no blow-up can occur for a very broad class of MSM applications. The EMR-MSM methodology is first applied to a conceptual, nonlinear, stochastic climate model of coupled slow and fast variables, in which only slow variables are observed. The resulting reduced model with energy-conserving nonlinearities captures the main statistical features of the slow variables, even when there is no formal scale separation and the fast variables are quite energetic. Second, an MSM is shown to successfully reproduce the statistics of a partially observed, generalized Lokta-Volterra model of population dynamics in its chaotic regime. The positivity constraint on the solutions' components replaces here the quadratic-energy-preserving constraint of fluid-flow problems and it successfully prevents blow-up. This work is based on a close collaboration with M.D. Chekroun, D. Kondrashov, S. Kravtsov and A.W. Robertson.
Past observable dynamics of a continuously monitored qubit
NASA Astrophysics Data System (ADS)
García-Pintos, Luis Pedro; Dressel, Justin
2017-12-01
Monitoring a quantum observable continuously in time produces a stochastic measurement record that noisily tracks the observable. For a classical process, such noise may be reduced to recover an average signal by minimizing the mean squared error between the noisy record and a smooth dynamical estimate. We show that for a monitored qubit, this usual procedure returns unusual results. While the record seems centered on the expectation value of the observable during causal generation, examining the collected past record reveals that it better approximates a moving-mean Gaussian stochastic process centered at a distinct (smoothed) observable estimate. We show that this shifted mean converges to the real part of a generalized weak value in the time-continuous limit without additional postselection. We verify that this smoothed estimate minimizes the mean squared error even for individual measurement realizations. We go on to show that if a second observable is weakly monitored concurrently, then that second record is consistent with the smoothed estimate of the second observable based solely on the information contained in the first observable record. Moreover, we show that such a smoothed estimate made from incomplete information can still outperform estimates made using full knowledge of the causal quantum state.
HyDE Framework for Stochastic and Hybrid Model-Based Diagnosis
NASA Technical Reports Server (NTRS)
Narasimhan, Sriram; Brownston, Lee
2012-01-01
Hybrid Diagnosis Engine (HyDE) is a general framework for stochastic and hybrid model-based diagnosis that offers flexibility to the diagnosis application designer. The HyDE architecture supports the use of multiple modeling paradigms at the component and system level. Several alternative algorithms are available for the various steps in diagnostic reasoning. This approach is extensible, with support for the addition of new modeling paradigms as well as diagnostic reasoning algorithms for existing or new modeling paradigms. HyDE is a general framework for stochastic hybrid model-based diagnosis of discrete faults; that is, spontaneous changes in operating modes of components. HyDE combines ideas from consistency-based and stochastic approaches to model- based diagnosis using discrete and continuous models to create a flexible and extensible architecture for stochastic and hybrid diagnosis. HyDE supports the use of multiple paradigms and is extensible to support new paradigms. HyDE generates candidate diagnoses and checks them for consistency with the observations. It uses hybrid models built by the users and sensor data from the system to deduce the state of the system over time, including changes in state indicative of faults. At each time step when observations are available, HyDE checks each existing candidate for continued consistency with the new observations. If the candidate is consistent, it continues to remain in the candidate set. If it is not consistent, then the information about the inconsistency is used to generate successor candidates while discarding the candidate that was inconsistent. The models used by HyDE are similar to simulation models. They describe the expected behavior of the system under nominal and fault conditions. The model can be constructed in modular and hierarchical fashion by building component/subsystem models (which may themselves contain component/ subsystem models) and linking them through shared variables/parameters. The component model is expressed as operating modes of the component and conditions for transitions between these various modes. Faults are modeled as transitions whose conditions for transitions are unknown (and have to be inferred through the reasoning process). Finally, the behavior of the components is expressed as a set of variables/ parameters and relations governing the interaction between the variables. The hybrid nature of the systems being modeled is captured by a combination of the above transitional model and behavioral model. Stochasticity is captured as probabilities associated with transitions (indicating the likelihood of that transition being taken), as well as noise on the sensed variables.
Continuous-time mean-variance portfolio selection with value-at-risk and no-shorting constraints
NASA Astrophysics Data System (ADS)
Yan, Wei
2012-01-01
An investment problem is considered with dynamic mean-variance(M-V) portfolio criterion under discontinuous prices which follow jump-diffusion processes according to the actual prices of stocks and the normality and stability of the financial market. The short-selling of stocks is prohibited in this mathematical model. Then, the corresponding stochastic Hamilton-Jacobi-Bellman(HJB) equation of the problem is presented and the solution of the stochastic HJB equation based on the theory of stochastic LQ control and viscosity solution is obtained. The efficient frontier and optimal strategies of the original dynamic M-V portfolio selection problem are also provided. And then, the effects on efficient frontier under the value-at-risk constraint are illustrated. Finally, an example illustrating the discontinuous prices based on M-V portfolio selection is presented.
Frontiers in Applied and Computational Mathematics 05’
2005-03-01
dynamics, forcing subsets to have the same oscillation numbers and interleaving spiking times . Our analysis follows the theory of coupled systems of...continuum is described by a continuous- time stochastic process, as are their internal dynamics. Soluble factors, such as cytokines, are represent- ed...scale of a partide pas- sage time through the reaction zone. Both are realistic for many systems of physical interest. A higher order theory includes
Markov Chain Models for Stochastic Behavior in Resonance Overlap Regions
NASA Astrophysics Data System (ADS)
McCarthy, Morgan; Quillen, Alice
2018-01-01
We aim to predict lifetimes of particles in chaotic zoneswhere resonances overlap. A continuous-time Markov chain model isconstructed using mean motion resonance libration timescales toestimate transition times between resonances. The model is applied todiffusion in the co-rotation region of a planet. For particles begunat low eccentricity, the model is effective for early diffusion, butnot at later time when particles experience close encounters to the planet.
Nishikawa, Hiroki; Nishijima, Norihiro; Enomoto, Hirayuki; Sakamoto, Azusa; Nasu, Akihiro; Komekado, Hideyuki; Nishimura, Takashi; Kita, Ryuichi; Kimura, Toru; Iijima, Hiroko; Nishiguchi, Shuhei; Osaki, Yukio
2017-01-01
To investigate variables before sorafenib therapy on the clinical outcomes in hepatocellular carcinoma (HCC) patients receiving sorafenib and to further assess and compare the predictive performance of continuous parameters using time-dependent receiver operating characteristics (ROC) analysis. A total of 225 HCC patients were analyzed. We retrospectively examined factors related to overall survival (OS) and progression free survival (PFS) using univariate and multivariate analyses. Subsequently, we performed time-dependent ROC analysis of continuous parameters which were significant in the multivariate analysis in terms of OS and PFS. Total sum of area under the ROC in all time points (defined as TAAT score) in each case was calculated. Our cohort included 175 male and 50 female patients (median age, 72 years) and included 158 Child-Pugh A and 67 Child-Pugh B patients. The median OS time was 0.68 years, while the median PFS time was 0.24 years. On multivariate analysis, gender, body mass index (BMI), Child-Pugh classification, extrahepatic metastases, tumor burden, aspartate aminotransferase (AST) and alpha-fetoprotein (AFP) were identified as significant predictors of OS and ECOG-performance status, Child-Pugh classification and extrahepatic metastases were identified as significant predictors of PFS. Among three continuous variables (i.e., BMI, AST and AFP), AFP had the highest TAAT score for the entire cohort. In subgroup analyses, AFP had the highest TAAT score except for Child-Pugh B and female among three continuous variables. In continuous variables, AFP could have higher predictive accuracy for survival in HCC patients undergoing sorafenib therapy.
An advanced environment for hybrid modeling of biological systems based on modelica.
Pross, Sabrina; Bachmann, Bernhard
2011-01-20
Biological systems are often very complex so that an appropriate formalism is needed for modeling their behavior. Hybrid Petri Nets, consisting of time-discrete Petri Net elements as well as continuous ones, have proven to be ideal for this task. Therefore, a new Petri Net library was implemented based on the object-oriented modeling language Modelica which allows the modeling of discrete, stochastic and continuous Petri Net elements by differential, algebraic and discrete equations. An appropriate Modelica-tool performs the hybrid simulation with discrete events and the solution of continuous differential equations. A special sub-library contains so-called wrappers for specific reactions to simplify the modeling process. The Modelica-models can be connected to Simulink-models for parameter optimization, sensitivity analysis and stochastic simulation in Matlab. The present paper illustrates the implementation of the Petri Net component models, their usage within the modeling process and the coupling between the Modelica-tool Dymola and Matlab/Simulink. The application is demonstrated by modeling the metabolism of Chinese Hamster Ovary Cells.
Misspecification of Cox regression models with composite endpoints
Wu, Longyang; Cook, Richard J
2012-01-01
Researchers routinely adopt composite endpoints in multicenter randomized trials designed to evaluate the effect of experimental interventions in cardiovascular disease, diabetes, and cancer. Despite their widespread use, relatively little attention has been paid to the statistical properties of estimators of treatment effect based on composite endpoints. We consider this here in the context of multivariate models for time to event data in which copula functions link marginal distributions with a proportional hazards structure. We then examine the asymptotic and empirical properties of the estimator of treatment effect arising from a Cox regression model for the time to the first event. We point out that even when the treatment effect is the same for the component events, the limiting value of the estimator based on the composite endpoint is usually inconsistent for this common value. We find that in this context the limiting value is determined by the degree of association between the events, the stochastic ordering of events, and the censoring distribution. Within the framework adopted, marginal methods for the analysis of multivariate failure time data yield consistent estimators of treatment effect and are therefore preferred. We illustrate the methods by application to a recent asthma study. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22736519
Engen, Steinar; Saether, Bernt-Erik
2014-03-01
We analyze the stochastic components of the Robertson-Price equation for the evolution of quantitative characters that enables decomposition of the selection differential into components due to demographic and environmental stochasticity. We show how these two types of stochasticity affect the evolution of multivariate quantitative characters by defining demographic and environmental variances as components of individual fitness. The exact covariance formula for selection is decomposed into three components, the deterministic mean value, as well as stochastic demographic and environmental components. We show that demographic and environmental stochasticity generate random genetic drift and fluctuating selection, respectively. This provides a common theoretical framework for linking ecological and evolutionary processes. Demographic stochasticity can cause random variation in selection differentials independent of fluctuating selection caused by environmental variation. We use this model of selection to illustrate that the effect on the expected selection differential of random variation in individual fitness is dependent on population size, and that the strength of fluctuating selection is affected by how environmental variation affects the covariance in Malthusian fitness between individuals with different phenotypes. Thus, our approach enables us to partition out the effects of fluctuating selection from the effects of selection due to random variation in individual fitness caused by demographic stochasticity. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Discrete stochastic analogs of Erlang epidemic models.
Getz, Wayne M; Dougherty, Eric R
2018-12-01
Erlang differential equation models of epidemic processes provide more realistic disease-class transition dynamics from susceptible (S) to exposed (E) to infectious (I) and removed (R) categories than the ubiquitous SEIR model. The latter is itself is at one end of the spectrum of Erlang SE[Formula: see text]I[Formula: see text]R models with [Formula: see text] concatenated E compartments and [Formula: see text] concatenated I compartments. Discrete-time models, however, are computationally much simpler to simulate and fit to epidemic outbreak data than continuous-time differential equations, and are also much more readily extended to include demographic and other types of stochasticity. Here we formulate discrete-time deterministic analogs of the Erlang models, and their stochastic extension, based on a time-to-go distributional principle. Depending on which distributions are used (e.g. discretized Erlang, Gamma, Beta, or Uniform distributions), we demonstrate that our formulation represents both a discretization of Erlang epidemic models and generalizations thereof. We consider the challenges of fitting SE[Formula: see text]I[Formula: see text]R models and our discrete-time analog to data (the recent outbreak of Ebola in Liberia). We demonstrate that the latter performs much better than the former; although confining fits to strict SEIR formulations reduces the numerical challenges, but sacrifices best-fit likelihood scores by at least 7%.
Stinchcombe, Adam R; Peskin, Charles S; Tranchina, Daniel
2012-06-01
We present a generalization of a population density approach for modeling and analysis of stochastic gene expression. In the model, the gene of interest fluctuates stochastically between an inactive state, in which transcription cannot occur, and an active state, in which discrete transcription events occur; and the individual mRNA molecules are degraded stochastically in an independent manner. This sort of model in simplest form with exponential dwell times has been used to explain experimental estimates of the discrete distribution of random mRNA copy number. In our generalization, the random dwell times in the inactive and active states, T_{0} and T_{1}, respectively, are independent random variables drawn from any specified distributions. Consequently, the probability per unit time of switching out of a state depends on the time since entering that state. Our method exploits a connection between the fully discrete random process and a related continuous process. We present numerical methods for computing steady-state mRNA distributions and an analytical derivation of the mRNA autocovariance function. We find that empirical estimates of the steady-state mRNA probability mass function from Monte Carlo simulations of laboratory data do not allow one to distinguish between underlying models with exponential and nonexponential dwell times in some relevant parameter regimes. However, in these parameter regimes and where the autocovariance function has negative lobes, the autocovariance function disambiguates the two types of models. Our results strongly suggest that temporal data beyond the autocovariance function is required in general to characterize gene switching.
Toward Development of a Stochastic Wake Model: Validation Using LES and Turbine Loads
Moon, Jae; Manuel, Lance; Churchfield, Matthew; ...
2017-12-28
Wind turbines within an array do not experience free-stream undisturbed flow fields. Rather, the flow fields on internal turbines are influenced by wakes generated by upwind unit and exhibit different dynamic characteristics relative to the free stream. The International Electrotechnical Commission (IEC) standard 61400-1 for the design of wind turbines only considers a deterministic wake model for the design of a wind plant. This study is focused on the development of a stochastic model for waked wind fields. First, high-fidelity physics-based waked wind velocity fields are generated using Large-Eddy Simulation (LES). Stochastic characteristics of these LES waked wind velocity field,more » including mean and turbulence components, are analyzed. Wake-related mean and turbulence field-related parameters are then estimated for use with a stochastic model, using Multivariate Multiple Linear Regression (MMLR) with the LES data. To validate the simulated wind fields based on the stochastic model, wind turbine tower and blade loads are generated using aeroelastic simulation for utility-scale wind turbine models and compared with those based directly on the LES inflow. The study's overall objective is to offer efficient and validated stochastic approaches that are computationally tractable for assessing the performance and loads of turbines operating in wakes.« less
Toward Development of a Stochastic Wake Model: Validation Using LES and Turbine Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Jae; Manuel, Lance; Churchfield, Matthew
Wind turbines within an array do not experience free-stream undisturbed flow fields. Rather, the flow fields on internal turbines are influenced by wakes generated by upwind unit and exhibit different dynamic characteristics relative to the free stream. The International Electrotechnical Commission (IEC) standard 61400-1 for the design of wind turbines only considers a deterministic wake model for the design of a wind plant. This study is focused on the development of a stochastic model for waked wind fields. First, high-fidelity physics-based waked wind velocity fields are generated using Large-Eddy Simulation (LES). Stochastic characteristics of these LES waked wind velocity field,more » including mean and turbulence components, are analyzed. Wake-related mean and turbulence field-related parameters are then estimated for use with a stochastic model, using Multivariate Multiple Linear Regression (MMLR) with the LES data. To validate the simulated wind fields based on the stochastic model, wind turbine tower and blade loads are generated using aeroelastic simulation for utility-scale wind turbine models and compared with those based directly on the LES inflow. The study's overall objective is to offer efficient and validated stochastic approaches that are computationally tractable for assessing the performance and loads of turbines operating in wakes.« less
Vellela, Melissa; Qian, Hong
2009-10-06
Schlögl's model is the canonical example of a chemical reaction system that exhibits bistability. Because the biological examples of bistability and switching behaviour are increasingly numerous, this paper presents an integrated deterministic, stochastic and thermodynamic analysis of the model. After a brief review of the deterministic and stochastic modelling frameworks, the concepts of chemical and mathematical detailed balances are discussed and non-equilibrium conditions are shown to be necessary for bistability. Thermodynamic quantities such as the flux, chemical potential and entropy production rate are defined and compared across the two models. In the bistable region, the stochastic model exhibits an exchange of the global stability between the two stable states under changes in the pump parameters and volume size. The stochastic entropy production rate shows a sharp transition that mirrors this exchange. A new hybrid model that includes continuous diffusion and discrete jumps is suggested to deal with the multiscale dynamics of the bistable system. Accurate approximations of the exponentially small eigenvalue associated with the time scale of this switching and the full time-dependent solution are calculated using Matlab. A breakdown of previously known asymptotic approximations on small volume scales is observed through comparison with these and Monte Carlo results. Finally, in the appendix section is an illustration of how the diffusion approximation of the chemical master equation can fail to represent correctly the mesoscopically interesting steady-state behaviour of the system.
Schuler, Matthew S.; Cooper, Brandon S.; Storm, Jonathan J.; Sears, Michael W.; Angilletta, Michael J.
2011-01-01
Most organisms experience environments that vary continuously over time, yet researchers generally study phenotypic responses to abrupt and sustained changes in environmental conditions. Gradual environmental changes, whether predictable or stochastic, might affect organisms differently than do abrupt changes. To explore this possibility, we exposed terrestrial isopods (Porcellio scaber) collected from a highly seasonal environment to four thermal treatments: (1) a constant 20°C; (2) a constant 10°C; (3) a steady decline from 20° to 10°C; and (4) a stochastic decline from 20° to 10°C that mimicked natural conditions during autumn. After 45 days, we measured thermal sensitivities of running speed and thermal tolerances (critical thermal maximum and chill-coma recovery time). Contrary to our expectation, thermal treatments did not affect the thermal sensitivity of locomotion; isopods from all treatments ran fastest at 33° to 34°C and achieved more than 80% of their maximal speed over a range of 10° to 11°C. Isopods exposed to a stochastic decline in temperature tolerated cold the best, and isopods exposed to a constant temperature of 20°C tolerated cold the worst. No significant variation in heat tolerance was observed among groups. Therefore, thermal sensitivity and heat tolerance failed to acclimate to any type of thermal change, whereas cold tolerance acclimated more during stochastic change than it did during abrupt change. PMID:21698113
Estimating rare events in biochemical systems using conditional sampling.
Sundar, V S
2017-01-28
The paper focuses on development of variance reduction strategies to estimate rare events in biochemical systems. Obtaining this probability using brute force Monte Carlo simulations in conjunction with the stochastic simulation algorithm (Gillespie's method) is computationally prohibitive. To circumvent this, important sampling tools such as the weighted stochastic simulation algorithm and the doubly weighted stochastic simulation algorithm have been proposed. However, these strategies require an additional step of determining the important region to sample from, which is not straightforward for most of the problems. In this paper, we apply the subset simulation method, developed as a variance reduction tool in the context of structural engineering, to the problem of rare event estimation in biochemical systems. The main idea is that the rare event probability is expressed as a product of more frequent conditional probabilities. These conditional probabilities are estimated with high accuracy using Monte Carlo simulations, specifically the Markov chain Monte Carlo method with the modified Metropolis-Hastings algorithm. Generating sample realizations of the state vector using the stochastic simulation algorithm is viewed as mapping the discrete-state continuous-time random process to the standard normal random variable vector. This viewpoint opens up the possibility of applying more sophisticated and efficient sampling schemes developed elsewhere to problems in stochastic chemical kinetics. The results obtained using the subset simulation method are compared with existing variance reduction strategies for a few benchmark problems, and a satisfactory improvement in computational time is demonstrated.
Global behavior analysis for stochastic system of 1,3-PD continuous fermentation
NASA Astrophysics Data System (ADS)
Zhu, Xi; Kliemann, Wolfgang; Li, Chunfa; Feng, Enmin; Xiu, Zhilong
2017-12-01
Global behavior for stochastic system of continuous fermentation in glycerol bio-dissimilation to 1,3-propanediol by Klebsiella pneumoniae is analyzed in this paper. This bioprocess cannot avoid the stochastic perturbation caused by internal and external disturbance which reflect on the growth rate. These negative factors can limit and degrade the achievable performance of controlled systems. Based on multiplicity phenomena, the equilibriums and bifurcations of the deterministic system are analyzed. Then, a stochastic model is presented by a bounded Markov diffusion process. In order to analyze the global behavior, we compute the control sets for the associated control system. The probability distributions of relative supports are also computed. The simulation results indicate that how the disturbed biosystem tend to stationary behavior globally.
Stochastic Adaptive Estimation and Control.
1994-10-26
Marcus, "Language Stability and Stabilizability of Discrete Event Dynamical Systems ," SIAM Journal on Control and Optimization, 31, September 1993...in the hierarchical control of flexible manufacturing systems ; in this problem, the model involves a hybrid process in continuous time whose state is...of the average cost control problem for discrete- time Markov processes. Our exposition covers from finite to Borel state and action spaces and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chevalier, Michael W., E-mail: Michael.Chevalier@ucsf.edu; El-Samad, Hana, E-mail: Hana.El-Samad@ucsf.edu
Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation timesmore » of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled.« less
Effects of stochastic noise on dynamical decoupling procedures
NASA Astrophysics Data System (ADS)
Bernád, J. Z.; Frydrych, H.
2014-06-01
Dynamical decoupling is an important tool to counter decoherence and dissipation effects in quantum systems originating from environmental interactions. It has been used successfully in many experiments; however, there is still a gap between fidelity improvements achieved in practice compared to theoretical predictions. We propose a model for imperfect dynamical decoupling based on a stochastic Ito differential equation which could explain the observed gap. We discuss the impact of our model on the time evolution of various quantum systems in finite- and infinite-dimensional Hilbert spaces. Analytical results are given for the limit of continuous control, whereas we present numerical simulations and upper bounds for the case of finite control.
Liu, Meng; Wang, Ke
2010-12-07
This is a continuation of our paper [Liu, M., Wang, K., 2010. Persistence and extinction of a stochastic single-species model under regime switching in a polluted environment, J. Theor. Biol. 264, 934-944]. Taking both white noise and colored noise into account, a stochastic single-species model under regime switching in a polluted environment is studied. Sufficient conditions for extinction, stochastic nonpersistence in the mean, stochastic weak persistence and stochastic permanence are established. The threshold between stochastic weak persistence and extinction is obtained. The results show that a different type of noise has a different effect on the survival results. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Witteveen, Jeroen A. S.; Bijl, Hester
2009-10-01
The Unsteady Adaptive Stochastic Finite Elements (UASFE) method resolves the effect of randomness in numerical simulations of single-mode aeroelastic responses with a constant accuracy in time for a constant number of samples. In this paper, the UASFE framework is extended to multi-frequency responses and continuous structures by employing a wavelet decomposition pre-processing step to decompose the sampled multi-frequency signals into single-frequency components. The effect of the randomness on the multi-frequency response is then obtained by summing the results of the UASFE interpolation at constant phase for the different frequency components. Results for multi-frequency responses and continuous structures show a three orders of magnitude reduction of computational costs compared to crude Monte Carlo simulations in a harmonically forced oscillator, a flutter panel problem, and the three-dimensional transonic AGARD 445.6 wing aeroelastic benchmark subject to random fields and random parameters with various probability distributions.
A guidance and navigation system for continuous low thrust vehicles. M.S. Thesis
NASA Technical Reports Server (NTRS)
Tse, C. J. C.
1973-01-01
A midcourse guidance and navigation system for continuous low thrust vehicles is described. A set of orbit elements, known as the equinoctial elements, are selected as the state variables. The uncertainties are modelled statistically by random vector and stochastic processes. The motion of the vehicle and the measurements are described by nonlinear stochastic differential and difference equations respectively. A minimum time nominal trajectory is defined and the equation of motion and the measurement equation are linearized about this nominal trajectory. An exponential cost criterion is constructed and a linear feedback guidance law is derived to control the thrusting direction of the engine. Using this guidance law, the vehicle will fly in a trajectory neighboring the nominal trajectory. The extended Kalman filter is used for state estimation. Finally a short mission using this system is simulated. The results indicate that this system is very efficient for short missions.
Stochastic effects in a thermochemical system with Newtonian heat exchange.
Nowakowski, B; Lemarchand, A
2001-12-01
We develop a mesoscopic description of stochastic effects in the Newtonian heat exchange between a diluted gas system and a thermostat. We explicitly study the homogeneous Semenov model involving a thermochemical reaction and neglecting consumption of reactants. The master equation includes a transition rate for the thermal transfer process, which is derived on the basis of the statistics for inelastic collisions between gas particles and walls of the thermostat. The main assumption is that the perturbation of the Maxwellian particle velocity distribution can be neglected. The transition function for the thermal process admits a continuous spectrum of temperature changes, and consequently, the master equation has a complicated integro-differential form. We perform Monte Carlo simulations based on this equation to study the stochastic effects in the Semenov system in the explosive regime. The dispersion of ignition times is calculated as a function of system size. For sufficiently small systems, the probability distribution of temperature displays transient bimodality during the ignition period. The results of the stochastic description are successfully compared with those of direct simulations of microscopic particle dynamics.
Yiu, Sean; Tom, Brian Dm
2017-01-01
Several researchers have described two-part models with patient-specific stochastic processes for analysing longitudinal semicontinuous data. In theory, such models can offer greater flexibility than the standard two-part model with patient-specific random effects. However, in practice, the high dimensional integrations involved in the marginal likelihood (i.e. integrated over the stochastic processes) significantly complicates model fitting. Thus, non-standard computationally intensive procedures based on simulating the marginal likelihood have so far only been proposed. In this paper, we describe an efficient method of implementation by demonstrating how the high dimensional integrations involved in the marginal likelihood can be computed efficiently. Specifically, by using a property of the multivariate normal distribution and the standard marginal cumulative distribution function identity, we transform the marginal likelihood so that the high dimensional integrations are contained in the cumulative distribution function of a multivariate normal distribution, which can then be efficiently evaluated. Hence, maximum likelihood estimation can be used to obtain parameter estimates and asymptotic standard errors (from the observed information matrix) of model parameters. We describe our proposed efficient implementation procedure for the standard two-part model parameterisation and when it is of interest to directly model the overall marginal mean. The methodology is applied on a psoriatic arthritis data set concerning functional disability.
Complex discrete dynamics from simple continuous population models.
Gamarra, Javier G P; Solé, Ricard V
2002-05-01
Nonoverlapping generations have been classically modelled as difference equations in order to account for the discrete nature of reproductive events. However, other events such as resource consumption or mortality are continuous and take place in the within-generation time. We have realistically assumed a hybrid ODE bidimensional model of resources and consumers with discrete events for reproduction. Numerical and analytical approaches showed that the resulting dynamics resembles a Ricker map, including the doubling route to chaos. Stochastic simulations with a handling-time parameter for indirect competition of juveniles may affect the qualitative behaviour of the model.
Inference for dynamics of continuous variables: the extended Plefka expansion with hidden nodes
NASA Astrophysics Data System (ADS)
Bravi, B.; Sollich, P.
2017-06-01
We consider the problem of a subnetwork of observed nodes embedded into a larger bulk of unknown (i.e. hidden) nodes, where the aim is to infer these hidden states given information about the subnetwork dynamics. The biochemical networks underlying many cellular and metabolic processes are important realizations of such a scenario as typically one is interested in reconstructing the time evolution of unobserved chemical concentrations starting from the experimentally more accessible ones. We present an application to this problem of a novel dynamical mean field approximation, the extended Plefka expansion, which is based on a path integral description of the stochastic dynamics. As a paradigmatic model we study the stochastic linear dynamics of continuous degrees of freedom interacting via random Gaussian couplings. The resulting joint distribution is known to be Gaussian and this allows us to fully characterize the posterior statistics of the hidden nodes. In particular the equal-time hidden-to-hidden variance—conditioned on observations—gives the expected error at each node when the hidden time courses are predicted based on the observations. We assess the accuracy of the extended Plefka expansion in predicting these single node variances as well as error correlations over time, focussing on the role of the system size and the number of observed nodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Feng, E-mail: chenfengmath@163.com, E-mail: hanyc@jlu.edu.cn; Han, Yuecai, E-mail: chenfengmath@163.com, E-mail: hanyc@jlu.edu.cn
2013-12-15
The existence of time-periodic stochastic motions of an incompressible fluid is obtained. Here the fluid is subject to a time-periodic body force and an additional time-periodic stochastic force that is produced by a rigid body moves periodically stochastically with the same period in the fluid.
Space-time-modulated stochastic processes
NASA Astrophysics Data System (ADS)
Giona, Massimiliano
2017-10-01
Starting from the physical problem associated with the Lorentzian transformation of a Poisson-Kac process in inertial frames, the concept of space-time-modulated stochastic processes is introduced for processes possessing finite propagation velocity. This class of stochastic processes provides a two-way coupling between the stochastic perturbation acting on a physical observable and the evolution of the physical observable itself, which in turn influences the statistical properties of the stochastic perturbation during its evolution. The definition of space-time-modulated processes requires the introduction of two functions: a nonlinear amplitude modulation, controlling the intensity of the stochastic perturbation, and a time-horizon function, which modulates its statistical properties, providing irreducible feedback between the stochastic perturbation and the physical observable influenced by it. The latter property is the peculiar fingerprint of this class of models that makes them suitable for extension to generic curved-space times. Considering Poisson-Kac processes as prototypical examples of stochastic processes possessing finite propagation velocity, the balance equations for the probability density functions associated with their space-time modulations are derived. Several examples highlighting the peculiarities of space-time-modulated processes are thoroughly analyzed.
NASA Astrophysics Data System (ADS)
Wang, C.; Rubin, Y.
2014-12-01
Spatial distribution of important geotechnical parameter named compression modulus Es contributes considerably to the understanding of the underlying geological processes and the adequate assessment of the Es mechanics effects for differential settlement of large continuous structure foundation. These analyses should be derived using an assimilating approach that combines in-situ static cone penetration test (CPT) with borehole experiments. To achieve such a task, the Es distribution of stratum of silty clay in region A of China Expo Center (Shanghai) is studied using the Bayesian-maximum entropy method. This method integrates rigorously and efficiently multi-precision of different geotechnical investigations and sources of uncertainty. Single CPT samplings were modeled as a rational probability density curve by maximum entropy theory. Spatial prior multivariate probability density function (PDF) and likelihood PDF of the CPT positions were built by borehole experiments and the potential value of the prediction point, then, preceding numerical integration on the CPT probability density curves, the posterior probability density curve of the prediction point would be calculated by the Bayesian reverse interpolation framework. The results were compared between Gaussian Sequential Stochastic Simulation and Bayesian methods. The differences were also discussed between single CPT samplings of normal distribution and simulated probability density curve based on maximum entropy theory. It is shown that the study of Es spatial distributions can be improved by properly incorporating CPT sampling variation into interpolation process, whereas more informative estimations are generated by considering CPT Uncertainty for the estimation points. Calculation illustrates the significance of stochastic Es characterization in a stratum, and identifies limitations associated with inadequate geostatistical interpolation techniques. This characterization results will provide a multi-precision information assimilation method of other geotechnical parameters.
Deterministic and stochastic models for middle east respiratory syndrome (MERS)
NASA Astrophysics Data System (ADS)
Suryani, Dessy Rizki; Zevika, Mona; Nuraini, Nuning
2018-03-01
World Health Organization (WHO) data stated that since September 2012, there were 1,733 cases of Middle East Respiratory Syndrome (MERS) with 628 death cases that occurred in 27 countries. MERS was first identified in Saudi Arabia in 2012 and the largest cases of MERS outside Saudi Arabia occurred in South Korea in 2015. MERS is a disease that attacks the respiratory system caused by infection of MERS-CoV. MERS-CoV transmission occurs directly through direct contact between infected individual with non-infected individual or indirectly through contaminated object by the free virus. Suspected, MERS can spread quickly because of the free virus in environment. Mathematical modeling is used to illustrate the transmission of MERS disease using deterministic model and stochastic model. Deterministic model is used to investigate the temporal dynamic from the system to analyze the steady state condition. Stochastic model approach using Continuous Time Markov Chain (CTMC) is used to predict the future states by using random variables. From the models that were built, the threshold value for deterministic models and stochastic models obtained in the same form and the probability of disease extinction can be computed by stochastic model. Simulations for both models using several of different parameters are shown, and the probability of disease extinction will be compared with several initial conditions.
Guerrier, Claire; Holcman, David
2016-10-18
Binding of molecules, ions or proteins to small target sites is a generic step of cell activation. This process relies on rare stochastic events where a particle located in a large bulk has to find small and often hidden targets. We present here a hybrid discrete-continuum model that takes into account a stochastic regime governed by rare events and a continuous regime in the bulk. The rare discrete binding events are modeled by a Markov chain for the encounter of small targets by few Brownian particles, for which the arrival time is Poissonian. The large ensemble of particles is described by mass action laws. We use this novel model to predict the time distribution of vesicular release at neuronal synapses. Vesicular release is triggered by the binding of few calcium ions that can originate either from the synaptic bulk or from the entry through calcium channels. We report here that the distribution of release time is bimodal although it is triggered by a single fast action potential. While the first peak follows a stimulation, the second corresponds to the random arrival over much longer time of ions located in the synaptic terminal to small binding vesicular targets. To conclude, the present multiscale stochastic modeling approach allows studying cellular events based on integrating discrete molecular events over several time scales.
Solving multistage stochastic programming models of portfolio selection with outstanding liabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edirisinghe, C.
1994-12-31
Models for portfolio selection in the presence of an outstanding liability have received significant attention, for example, models for pricing options. The problem may be described briefly as follows: given a set of risky securities (and a riskless security such as a bond), and given a set of cash flows, i.e., outstanding liability, to be met at some future date, determine an initial portfolio and a dynamic trading strategy for the underlying securities such that the initial cost of the portfolio is within a prescribed wealth level and the expected cash surpluses arising from trading is maximized. While the tradingmore » strategy should be self-financing, there may also be other restrictions such as leverage and short-sale constraints. Usually the treatment is limited to binomial evolution of uncertainty (of stock price), with possible extensions for developing computational bounds for multinomial generalizations. Posing as stochastic programming models of decision making, we investigate alternative efficient solution procedures under continuous evolution of uncertainty, for discrete time economies. We point out an important moment problem arising in the portfolio selection problem, the solution (or bounds) on which provides the basis for developing efficient computational algorithms. While the underlying stochastic program may be computationally tedious even for a modest number of trading opportunities (i.e., time periods), the derived algorithms may used to solve problems whose sizes are beyond those considered within stochastic optimization.« less
NASA Astrophysics Data System (ADS)
Li, Peng; Wu, Di
2018-01-01
Two competing approaches have been developed over the years for multi-echelon inventory system optimization, stochastic-service approach (SSA) and guaranteed-service approach (GSA). Although they solve the same inventory policy optimization problem in their core, they make different assumptions with regard to the role of safety stock. This paper provides a detailed comparison of the two approaches by considering operating flexibility costs in the optimization of (R, Q) policies for a continuous review serial inventory system. The results indicate the GSA model is more efficiency in solving the complicated inventory problem in terms of the computation time, and the cost difference of the two approaches is quite small.
Supercomputer optimizations for stochastic optimal control applications
NASA Technical Reports Server (NTRS)
Chung, Siu-Leung; Hanson, Floyd B.; Xu, Huihuang
1991-01-01
Supercomputer optimizations for a computational method of solving stochastic, multibody, dynamic programming problems are presented. The computational method is valid for a general class of optimal control problems that are nonlinear, multibody dynamical systems, perturbed by general Markov noise in continuous time, i.e., nonsmooth Gaussian as well as jump Poisson random white noise. Optimization techniques for vector multiprocessors or vectorizing supercomputers include advanced data structures, loop restructuring, loop collapsing, blocking, and compiler directives. These advanced computing techniques and superconducting hardware help alleviate Bellman's curse of dimensionality in dynamic programming computations, by permitting the solution of large multibody problems. Possible applications include lumped flight dynamics models for uncertain environments, such as large scale and background random aerospace fluctuations.
Continuous-Time Random Walk with multi-step memory: an application to market dynamics
NASA Astrophysics Data System (ADS)
Gubiec, Tomasz; Kutner, Ryszard
2017-11-01
An extended version of the Continuous-Time Random Walk (CTRW) model with memory is herein developed. This memory involves the dependence between arbitrary number of successive jumps of the process while waiting times between jumps are considered as i.i.d. random variables. This dependence was established analyzing empirical histograms for the stochastic process of a single share price on a market within the high frequency time scale. Then, it was justified theoretically by considering bid-ask bounce mechanism containing some delay characteristic for any double-auction market. Our model appeared exactly analytically solvable. Therefore, it enables a direct comparison of its predictions with their empirical counterparts, for instance, with empirical velocity autocorrelation function. Thus, the present research significantly extends capabilities of the CTRW formalism. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
Degeling, Koen; IJzerman, Maarten J; Koopman, Miriam; Koffijberg, Hendrik
2017-12-15
Parametric distributions based on individual patient data can be used to represent both stochastic and parameter uncertainty. Although general guidance is available on how parameter uncertainty should be accounted for in probabilistic sensitivity analysis, there is no comprehensive guidance on reflecting parameter uncertainty in the (correlated) parameters of distributions used to represent stochastic uncertainty in patient-level models. This study aims to provide this guidance by proposing appropriate methods and illustrating the impact of this uncertainty on modeling outcomes. Two approaches, 1) using non-parametric bootstrapping and 2) using multivariate Normal distributions, were applied in a simulation and case study. The approaches were compared based on point-estimates and distributions of time-to-event and health economic outcomes. To assess sample size impact on the uncertainty in these outcomes, sample size was varied in the simulation study and subgroup analyses were performed for the case-study. Accounting for parameter uncertainty in distributions that reflect stochastic uncertainty substantially increased the uncertainty surrounding health economic outcomes, illustrated by larger confidence ellipses surrounding the cost-effectiveness point-estimates and different cost-effectiveness acceptability curves. Although both approaches performed similar for larger sample sizes (i.e. n = 500), the second approach was more sensitive to extreme values for small sample sizes (i.e. n = 25), yielding infeasible modeling outcomes. Modelers should be aware that parameter uncertainty in distributions used to describe stochastic uncertainty needs to be reflected in probabilistic sensitivity analysis, as it could substantially impact the total amount of uncertainty surrounding health economic outcomes. If feasible, the bootstrap approach is recommended to account for this uncertainty.
The digital phase-locked loop as a near-optimum FM demodulator.
NASA Technical Reports Server (NTRS)
Kelly, C. N.; Gupta, S. C.
1972-01-01
This paper presents an approach to the optimum digital demodulation of a continuous-time FM signal using stochastic estimation theory. The primary result is a digital phase-locked loop realization possessing performance characteristics that approach those of the analog counterpart. Some practical considerations are presented and simulation results for a first-order message model are presented.
Piller, Kyle R; Geheber, Aaron D
2015-01-01
Anthropogenic perturbations impact aquatic systems causing wide-ranging responses, from assemblage restructuring to assemblage recovery. Previous studies indicate the duration and intensity of disturbances play a role in the dynamics of assemblage recovery. In August 2011, the Pearl River, United States, was subjected to a weak black liquor spill from a paper mill which resulted in substantial loss of fish in a large stretch of the main channel. We quantified resilience and recovery of fish assemblage structure in the impacted area following the event. We compared downstream (impacted) assemblages to upstream (unimpacted) assemblages to determine initial impacts on structure. Additionally, we incorporated historic fish collections (1988–2011) to examine impacts on assemblage structure across broad temporal scales. Based on NMDS, upstream and downstream sites generally showed similar assemblage structure across sample periods with the exception of the 2 months postdischarge, where upstream and downstream sites visually differed. Multivariate analysis of variance (PERMANOVA) indicated significant seasonal variation among samples, but found no significant interaction between impacted and unimpacted assemblages following the discharge event. However, multivariate dispersion (MVDISP) showed greater variance among assemblage structure following the discharge event. These results suggest that 2 months following the disturbance represent a time period of stochasticity in regard to assemblage structure dynamics, and this was followed by rapid recovery. We term this dynamic the “hangover effect” as it represents the time frame from the cessation of the perturbation to the assemblage's return to predisturbance conditions. The availability and proximity of tributaries and upstream refugia, which were not affected by the disturbance, as well as the rapid recovery of abiotic parameters likely played a substantial role in assemblage recovery. This study not only demonstrates rapid recovery in an aquatic system, but further demonstrates the value of continuous, long-term, data collections which enhance our understanding of assemblage dynamics. PMID:26120432
Adalsteinsson, David; McMillen, David; Elston, Timothy C
2004-03-08
Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA) molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. We have developed the software package Biochemical Network Stochastic Simulator (BioNetS) for efficiently and accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous) for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solves the appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.
Schilde, M; Doerner, K F; Hartl, R F
2014-10-01
In urban areas, logistic transportation operations often run into problems because travel speeds change, depending on the current traffic situation. If not accounted for, time-dependent and stochastic travel speeds frequently lead to missed time windows and thus poorer service. Especially in the case of passenger transportation, it often leads to excessive passenger ride times as well. Therefore, time-dependent and stochastic influences on travel speeds are relevant for finding feasible and reliable solutions. This study considers the effect of exploiting statistical information available about historical accidents, using stochastic solution approaches for the dynamic dial-a-ride problem (dynamic DARP). The authors propose two pairs of metaheuristic solution approaches, each consisting of a deterministic method (average time-dependent travel speeds for planning) and its corresponding stochastic version (exploiting stochastic information while planning). The results, using test instances with up to 762 requests based on a real-world road network, show that in certain conditions, exploiting stochastic information about travel speeds leads to significant improvements over deterministic approaches.
NASA Astrophysics Data System (ADS)
Tagade, Piyush; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Oh, Dukjin
2017-03-01
A novel approach for integrating a pseudo-two dimensional electrochemical thermal (P2D-ECT) model and data assimilation algorithm is presented for lithium-ion cell state estimation. This approach refrains from making any simplifications in the P2D-ECT model while making it amenable for online state estimation. Though deterministic, uncertainty in the initial states induces stochasticity in the P2D-ECT model. This stochasticity is resolved by spectrally projecting the stochastic P2D-ECT model on a set of orthogonal multivariate Hermite polynomials. Volume averaging in the stochastic dimensions is proposed for efficient numerical solution of the resultant model. A state estimation framework is developed using a transformation of the orthogonal basis to assimilate the measurables with this system of equations. Effectiveness of the proposed method is first demonstrated by assimilating the cell voltage and temperature data generated using a synthetic test bed. This validated method is used with the experimentally observed cell voltage and temperature data for state estimation at different operating conditions and drive cycle protocols. The results show increased prediction accuracy when the data is assimilated every 30s. High accuracy of the estimated states is exploited to infer temperature dependent behavior of the lithium-ion cell.
Regenerating time series from ordinal networks.
McCullough, Michael; Sakellariou, Konstantinos; Stemler, Thomas; Small, Michael
2017-03-01
Recently proposed ordinal networks not only afford novel methods of nonlinear time series analysis but also constitute stochastic approximations of the deterministic flow time series from which the network models are constructed. In this paper, we construct ordinal networks from discrete sampled continuous chaotic time series and then regenerate new time series by taking random walks on the ordinal network. We then investigate the extent to which the dynamics of the original time series are encoded in the ordinal networks and retained through the process of regenerating new time series by using several distinct quantitative approaches. First, we use recurrence quantification analysis on traditional recurrence plots and order recurrence plots to compare the temporal structure of the original time series with random walk surrogate time series. Second, we estimate the largest Lyapunov exponent from the original time series and investigate the extent to which this invariant measure can be estimated from the surrogate time series. Finally, estimates of correlation dimension are computed to compare the topological properties of the original and surrogate time series dynamics. Our findings show that ordinal networks constructed from univariate time series data constitute stochastic models which approximate important dynamical properties of the original systems.
Regenerating time series from ordinal networks
NASA Astrophysics Data System (ADS)
McCullough, Michael; Sakellariou, Konstantinos; Stemler, Thomas; Small, Michael
2017-03-01
Recently proposed ordinal networks not only afford novel methods of nonlinear time series analysis but also constitute stochastic approximations of the deterministic flow time series from which the network models are constructed. In this paper, we construct ordinal networks from discrete sampled continuous chaotic time series and then regenerate new time series by taking random walks on the ordinal network. We then investigate the extent to which the dynamics of the original time series are encoded in the ordinal networks and retained through the process of regenerating new time series by using several distinct quantitative approaches. First, we use recurrence quantification analysis on traditional recurrence plots and order recurrence plots to compare the temporal structure of the original time series with random walk surrogate time series. Second, we estimate the largest Lyapunov exponent from the original time series and investigate the extent to which this invariant measure can be estimated from the surrogate time series. Finally, estimates of correlation dimension are computed to compare the topological properties of the original and surrogate time series dynamics. Our findings show that ordinal networks constructed from univariate time series data constitute stochastic models which approximate important dynamical properties of the original systems.
Implementation of the Iterative Proportion Fitting Algorithm for Geostatistical Facies Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Yupeng, E-mail: yupeng@ualberta.ca; Deutsch, Clayton V.
2012-06-15
In geostatistics, most stochastic algorithm for simulation of categorical variables such as facies or rock types require a conditional probability distribution. The multivariate probability distribution of all the grouped locations including the unsampled location permits calculation of the conditional probability directly based on its definition. In this article, the iterative proportion fitting (IPF) algorithm is implemented to infer this multivariate probability. Using the IPF algorithm, the multivariate probability is obtained by iterative modification to an initial estimated multivariate probability using lower order bivariate probabilities as constraints. The imposed bivariate marginal probabilities are inferred from profiles along drill holes or wells.more » In the IPF process, a sparse matrix is used to calculate the marginal probabilities from the multivariate probability, which makes the iterative fitting more tractable and practical. This algorithm can be extended to higher order marginal probability constraints as used in multiple point statistics. The theoretical framework is developed and illustrated with estimation and simulation example.« less
Control design for robust stability in linear regulators: Application to aerospace flight control
NASA Technical Reports Server (NTRS)
Yedavalli, R. K.
1986-01-01
Time domain stability robustness analysis and design for linear multivariable uncertain systems with bounded uncertainties is the central theme of the research. After reviewing the recently developed upper bounds on the linear elemental (structured), time varying perturbation of an asymptotically stable linear time invariant regulator, it is shown that it is possible to further improve these bounds by employing state transformations. Then introducing a quantitative measure called the stability robustness index, a state feedback conrol design algorithm is presented for a general linear regulator problem and then specialized to the case of modal systems as well as matched systems. The extension of the algorithm to stochastic systems with Kalman filter as the state estimator is presented. Finally an algorithm for robust dynamic compensator design is presented using Parameter Optimization (PO) procedure. Applications in a aircraft control and flexible structure control are presented along with a comparison with other existing methods.
Time-varying Concurrent Risk of Extreme Droughts and Heatwaves in California
NASA Astrophysics Data System (ADS)
Sarhadi, A.; Diffenbaugh, N. S.; Ausin, M. C.
2016-12-01
Anthropogenic global warming has changed the nature and the risk of extreme climate phenomena such as droughts and heatwaves. The concurrent of these nature-changing climatic extremes may result in intensifying undesirable consequences in terms of human health and destructive effects in water resources. The present study assesses the risk of concurrent extreme droughts and heatwaves under dynamic nonstationary conditions arising from climate change in California. For doing so, a generalized fully Bayesian time-varying multivariate risk framework is proposed evolving through time under dynamic human-induced environment. In this methodology, an extreme, Bayesian, dynamic copula (Gumbel) is developed to model the time-varying dependence structure between the two different climate extremes. The time-varying extreme marginals are previously modeled using a Generalized Extreme Value (GEV) distribution. Bayesian Markov Chain Monte Carlo (MCMC) inference is integrated to estimate parameters of the nonstationary marginals and copula using a Gibbs sampling method. Modelled marginals and copula are then used to develop a fully Bayesian, time-varying joint return period concept for the estimation of concurrent risk. Here we argue that climate change has increased the chance of concurrent droughts and heatwaves over decades in California. It is also demonstrated that a time-varying multivariate perspective should be incorporated to assess realistic concurrent risk of the extremes for water resources planning and management in a changing climate in this area. The proposed generalized methodology can be applied for other stochastic nature-changing compound climate extremes that are under the influence of climate change.
Time-ordered product expansions for computational stochastic system biology.
Mjolsness, Eric
2013-06-01
The time-ordered product framework of quantum field theory can also be used to understand salient phenomena in stochastic biochemical networks. It is used here to derive Gillespie's stochastic simulation algorithm (SSA) for chemical reaction networks; consequently, the SSA can be interpreted in terms of Feynman diagrams. It is also used here to derive other, more general simulation and parameter-learning algorithms including simulation algorithms for networks of stochastic reaction-like processes operating on parameterized objects, and also hybrid stochastic reaction/differential equation models in which systems of ordinary differential equations evolve the parameters of objects that can also undergo stochastic reactions. Thus, the time-ordered product expansion can be used systematically to derive simulation and parameter-fitting algorithms for stochastic systems.
Optimal Control for Stochastic Delay Evolution Equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Qingxin, E-mail: mqx@hutc.zj.cn; Shen, Yang, E-mail: skyshen87@gmail.com
2016-08-15
In this paper, we investigate a class of infinite-dimensional optimal control problems, where the state equation is given by a stochastic delay evolution equation with random coefficients, and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation. We first prove the continuous dependence theorems for stochastic delay evolution equations and anticipated backward stochastic evolution equations, and show the existence and uniqueness of solutions to anticipated backward stochastic evolution equations. Then we establish necessary and sufficient conditions for optimality of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, we applymore » stochastic maximum principles to study two examples, an infinite-dimensional linear-quadratic control problem with delay and an optimal control of a Dirichlet problem for a stochastic partial differential equation with delay. Further applications of the two examples to a Cauchy problem for a controlled linear stochastic partial differential equation and an optimal harvesting problem are also considered.« less
Stochastic simulation by image quilting of process-based geological models
NASA Astrophysics Data System (ADS)
Hoffimann, Júlio; Scheidt, Céline; Barfod, Adrian; Caers, Jef
2017-09-01
Process-based modeling offers a way to represent realistic geological heterogeneity in subsurface models. The main limitation lies in conditioning such models to data. Multiple-point geostatistics can use these process-based models as training images and address the data conditioning problem. In this work, we further develop image quilting as a method for 3D stochastic simulation capable of mimicking the realism of process-based geological models with minimal modeling effort (i.e. parameter tuning) and at the same time condition them to a variety of data. In particular, we develop a new probabilistic data aggregation method for image quilting that bypasses traditional ad-hoc weighting of auxiliary variables. In addition, we propose a novel criterion for template design in image quilting that generalizes the entropy plot for continuous training images. The criterion is based on the new concept of voxel reuse-a stochastic and quilting-aware function of the training image. We compare our proposed method with other established simulation methods on a set of process-based training images of varying complexity, including a real-case example of stochastic simulation of the buried-valley groundwater system in Denmark.
Stochastic oscillations in models of epidemics on a network of cities
NASA Astrophysics Data System (ADS)
Rozhnova, G.; Nunes, A.; McKane, A. J.
2011-11-01
We carry out an analytic investigation of stochastic oscillations in a susceptible-infected-recovered model of disease spread on a network of n cities. In the model a fraction fjk of individuals from city k commute to city j, where they may infect, or be infected by, others. Starting from a continuous-time Markov description of the model the deterministic equations, which are valid in the limit when the population of each city is infinite, are recovered. The stochastic fluctuations about the fixed point of these equations are derived by use of the van Kampen system-size expansion. The fixed point structure of the deterministic equations is remarkably simple: A unique nontrivial fixed point always exists and has the feature that the fraction of susceptible, infected, and recovered individuals is the same for each city irrespective of its size. We find that the stochastic fluctuations have an analogously simple dynamics: All oscillations have a single frequency, equal to that found in the one-city case. We interpret this phenomenon in terms of the properties of the spectrum of the matrix of the linear approximation of the deterministic equations at the fixed point.
Jiménez-Hernández, Hugo; González-Barbosa, Jose-Joel; Garcia-Ramírez, Teresa
2010-01-01
This investigation demonstrates an unsupervised approach for modeling traffic flow and detecting abnormal vehicle behaviors at intersections. In the first stage, the approach reveals and records the different states of the system. These states are the result of coding and grouping the historical motion of vehicles as long binary strings. In the second stage, using sequences of the recorded states, a stochastic graph model based on a Markovian approach is built. A behavior is labeled abnormal when current motion pattern cannot be recognized as any state of the system or a particular sequence of states cannot be parsed with the stochastic model. The approach is tested with several sequences of images acquired from a vehicular intersection where the traffic flow and duration used in connection with the traffic lights are continuously changed throughout the day. Finally, the low complexity and the flexibility of the approach make it reliable for use in real time systems. PMID:22163616
Jiménez-Hernández, Hugo; González-Barbosa, Jose-Joel; Garcia-Ramírez, Teresa
2010-01-01
This investigation demonstrates an unsupervised approach for modeling traffic flow and detecting abnormal vehicle behaviors at intersections. In the first stage, the approach reveals and records the different states of the system. These states are the result of coding and grouping the historical motion of vehicles as long binary strings. In the second stage, using sequences of the recorded states, a stochastic graph model based on a Markovian approach is built. A behavior is labeled abnormal when current motion pattern cannot be recognized as any state of the system or a particular sequence of states cannot be parsed with the stochastic model. The approach is tested with several sequences of images acquired from a vehicular intersection where the traffic flow and duration used in connection with the traffic lights are continuously changed throughout the day. Finally, the low complexity and the flexibility of the approach make it reliable for use in real time systems.
NASA Astrophysics Data System (ADS)
Yang, Wen; Fung, Richard Y. K.
2014-06-01
This article considers an order acceptance problem in a make-to-stock manufacturing system with multiple demand classes in a finite time horizon. Demands in different periods are random variables and are independent of one another, and replenishments of inventory deviate from the scheduled quantities. The objective of this work is to maximize the expected net profit over the planning horizon by deciding the fraction of the demand that is going to be fulfilled. This article presents a stochastic order acceptance optimization model and analyses the existence of the optimal promising policies. An example of a discrete problem is used to illustrate the policies by applying the dynamic programming method. In order to solve the continuous problems, a heuristic algorithm based on stochastic approximation (HASA) is developed. Finally, the computational results of a case example illustrate the effectiveness and efficiency of the HASA approach, and make the application of the proposed model readily acceptable.
NASA Astrophysics Data System (ADS)
Corwin, Ivan; Dimitrov, Evgeni
2018-05-01
We consider the ASEP and the stochastic six vertex model started with step initial data. After a long time, T, it is known that the one-point height function fluctuations for these systems are of order T 1/3. We prove the KPZ prediction of T 2/3 scaling in space. Namely, we prove tightness (and Brownian absolute continuity of all subsequential limits) as T goes to infinity of the height function with spatial coordinate scaled by T 2/3 and fluctuations scaled by T 1/3. The starting point for proving these results is a connection discovered recently by Borodin-Bufetov-Wheeler between the stochastic six vertex height function and the Hall-Littlewood process (a certain measure on plane partitions). Interpreting this process as a line ensemble with a Gibbsian resampling invariance, we show that the one-point tightness of the top curve can be propagated to the tightness of the entire curve.
A Surrogate Technique for Investigating Deterministic Dynamics in Discrete Human Movement.
Taylor, Paul G; Small, Michael; Lee, Kwee-Yum; Landeo, Raul; O'Meara, Damien M; Millett, Emma L
2016-10-01
Entropy is an effective tool for investigation of human movement variability. However, before applying entropy, it can be beneficial to employ analyses to confirm that observed data are not solely the result of stochastic processes. This can be achieved by contrasting observed data with that produced using surrogate methods. Unlike continuous movement, no appropriate method has been applied to discrete human movement. This article proposes a novel surrogate method for discrete movement data, outlining the processes for determining its critical values. The proposed technique reliably generated surrogates for discrete joint angle time series, destroying fine-scale dynamics of the observed signal, while maintaining macro structural characteristics. Comparison of entropy estimates indicated observed signals had greater regularity than surrogates and were not only the result of stochastic but also deterministic processes. The proposed surrogate method is both a valid and reliable technique to investigate determinism in other discrete human movement time series.
Experimental nonlinear dynamical studies in cesium magneto-optical trap using time-series analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anwar, M., E-mail: mamalik2000@gmail.com; Islam, R.; Faisal, M.
2015-03-30
A magneto-optical trap of neutral atoms is essentially a dissipative quantum system. The fast thermal atoms continuously dissipate their energy to the environment via spontaneous emissions during the cooling. The atoms are, therefore, strongly coupled with the vacuum reservoir and the laser field. The vacuum fluctuations as well as the field fluctuations are imparted to the atoms as random photon recoils. Consequently, the external and internal dynamics of atoms becomes stochastic. In this paper, we have investigated the stochastic dynamics of the atoms in a magneto-optical trap during the loading process. The time series analysis of the fluorescence signal showsmore » that the dynamics of the atoms evolves, like all dissipative systems, from deterministic to the chaotic regime. The subsequent disappearance and revival of chaos was attributed to chaos synchronization between spatially different atoms in the magneto-optical trap.« less
Dimension reduction of frequency-based direct Granger causality measures on short time series.
Siggiridou, Elsa; Kimiskidis, Vasilios K; Kugiumtzis, Dimitris
2017-09-01
The mainstream in the estimation of effective brain connectivity relies on Granger causality measures in the frequency domain. If the measure is meant to capture direct causal effects accounting for the presence of other observed variables, as in multi-channel electroencephalograms (EEG), typically the fit of a vector autoregressive (VAR) model on the multivariate time series is required. For short time series of many variables, the estimation of VAR may not be stable requiring dimension reduction resulting in restricted or sparse VAR models. The restricted VAR obtained by the modified backward-in-time selection method (mBTS) is adapted to the generalized partial directed coherence (GPDC), termed restricted GPDC (RGPDC). Dimension reduction on other frequency based measures, such the direct directed transfer function (dDTF), is straightforward. First, a simulation study using linear stochastic multivariate systems is conducted and RGPDC is favorably compared to GPDC on short time series in terms of sensitivity and specificity. Then the two measures are tested for their ability to detect changes in brain connectivity during an epileptiform discharge (ED) from multi-channel scalp EEG. It is shown that RGPDC identifies better than GPDC the connectivity structure of the simulated systems, as well as changes in the brain connectivity, and is less dependent on the free parameter of VAR order. The proposed dimension reduction in frequency measures based on VAR constitutes an appropriate strategy to estimate reliably brain networks within short-time windows. Copyright © 2017 Elsevier B.V. All rights reserved.
Schilde, M.; Doerner, K.F.; Hartl, R.F.
2014-01-01
In urban areas, logistic transportation operations often run into problems because travel speeds change, depending on the current traffic situation. If not accounted for, time-dependent and stochastic travel speeds frequently lead to missed time windows and thus poorer service. Especially in the case of passenger transportation, it often leads to excessive passenger ride times as well. Therefore, time-dependent and stochastic influences on travel speeds are relevant for finding feasible and reliable solutions. This study considers the effect of exploiting statistical information available about historical accidents, using stochastic solution approaches for the dynamic dial-a-ride problem (dynamic DARP). The authors propose two pairs of metaheuristic solution approaches, each consisting of a deterministic method (average time-dependent travel speeds for planning) and its corresponding stochastic version (exploiting stochastic information while planning). The results, using test instances with up to 762 requests based on a real-world road network, show that in certain conditions, exploiting stochastic information about travel speeds leads to significant improvements over deterministic approaches. PMID:25844013
Statistics of particle time-temperature histories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hewson, John C.; Lignell, David O.; Sun, Guangyuan
2014-10-01
Particles in non - isothermal turbulent flow are subject to a stochastic environment tha t produces a distribution of particle time - temperature histories. This distribution is a function of the dispersion of the non - isothermal (continuous) gas phase and the distribution of particles relative to that gas phase. In this work we extend the one - dimensional turbulence (ODT) model to predict the joint dispersion of a dispersed particle phase and a continuous phase. The ODT model predicts the turbulent evolution of continuous scalar fields with a model for the cascade of fluctuations to smaller sc ales (themore » 'triplet map') at a rate that is a function of the fully resolved one - dimens ional velocity field . Stochastic triplet maps also drive Lagrangian particle dispersion with finite Stokes number s including inertial and eddy trajectory - crossing effect s included. Two distinct approaches to this coupling between triplet maps and particle dispersion are developed and implemented along with a hybrid approach. An 'instantaneous' particle displacement model matches the tracer particle limit and provide s an accurate description of particle dispersion. A 'continuous' particle displacement m odel translates triplet maps into a continuous velocity field to which particles respond. Particles can alter the turbulence, and modifications to the stochastic rate expr ession are developed for two - way coupling between particles and the continuous phase. Each aspect of model development is evaluated in canonical flows (homogeneous turbulence, free - shear flows and wall - bounded flows) for which quality measurements are ava ilable. ODT simulations of non - isothermal flows provide statistics for particle heating. These simulations show the significance of accurately predicting the joint statistics of particle and fluid dispersion . Inhomogeneous turbulence coupled with the in fluence of the mean flow fields on particles of varying properties alter s particle dispersion. The joint particle - temperature dispersion leads to a distribution of temperature histories predicted by the ODT . Predictions are shown for the lower moments an d the full distributions of the particle positions, particle - observed gas temperatures and particle temperatures. An analysis of the time scales affecting particle - temperature interactions covers Lagrangian integral time scales based on temperature autoco rrelations, rates of temperature change associated with particle motion relative to the temperature field and rates of diffusional change of temperatures. These latter two time scales have not been investigated previously; they are shown to be strongly in termittent having peaked distributions with long tails. The logarithm of the absolute value of these time scales exhibits a distribution closer to normal. A cknowledgements This work is supported by the Defense Threat Reduction Agency (DTRA) under their Counter - Weapons of Mass Destruction Basic Research Program in the area of Chemical and Biological Agent Defeat under award number HDTRA1 - 11 - 4503I to Sandia National Laboratories. The authors would like to express their appreciation for the guidance provi ded by Dr. Suhithi Peiris to this project and to the Science to Defeat Weapons of Mass Destruction program.« less
NASA Astrophysics Data System (ADS)
Kuan, Jeffrey
2018-03-01
A recent paper (Kuniba in Nucl Phys B 913:248-277, 2016) introduced the stochastic U}_q(A_n^{(1)})} vertex model. The stochastic S-matrix is related to the R-matrix of the quantum group {U_q(A_n^{(1)})} by a gauge transformation. We will show that a certain function {D^+_{m intertwines with the transfer matrix and its space reversal. When interpreting the transfer matrix as the transition matrix of a discrete-time totally asymmetric particle system on the one-dimensional lattice Z , the function {D^+m} becomes a Markov duality function {Dm} which only depends on q and the vertical spin parameters μ_x. By considering degenerations in the spectral parameter, the duality results also hold on a finite lattice with closed boundary conditions, and for a continuous-time degeneration. This duality function had previously appeared in a multi-species ASEP(q, j) process (Kuan in A multi-species ASEP(q, j) and q-TAZRP with stochastic duality, 2017). The proof here uses that the R-matrix intertwines with the co-product, but does not explicitly use the Yang-Baxter equation. It will also be shown that the stochastic U}_q(A_n^{(1)})} is a multi-species version of a stochastic vertex model studied in Borodin and Petrov (Higher spin six vertex model and symmetric rational functions, 2016) and Corwin and Petrov (Commun Math Phys 343:651-700, 2016). This will be done by generalizing the fusion process of Corwin and Petrov (2016) and showing that it matches the fusion of Kulish and yu (Lett Math Phys 5:393-403, 1981) up to the gauge transformation. We also show, by direct computation, that the multi-species q-Hahn Boson process (which arises at a special value of the spectral parameter) also satisfies duality with respect to D_∞, generalizing the single-species result of Corwin (Int Math Res Not 2015:5577-5603, 2015).
NASA Astrophysics Data System (ADS)
Liu, Zhiyuan; Meng, Qiang
2014-05-01
This paper focuses on modelling the network flow equilibrium problem on a multimodal transport network with bus-based park-and-ride (P&R) system and congestion pricing charges. The multimodal network has three travel modes: auto mode, transit mode and P&R mode. A continuously distributed value-of-time is assumed to convert toll charges and transit fares to time unit, and the users' route choice behaviour is assumed to follow the probit-based stochastic user equilibrium principle with elastic demand. These two assumptions have caused randomness to the users' generalised travel times on the multimodal network. A comprehensive network framework is first defined for the flow equilibrium problem with consideration of interactions between auto flows and transit (bus) flows. Then, a fixed-point model with unique solution is proposed for the equilibrium flows, which can be solved by a convergent cost averaging method. Finally, the proposed methodology is tested by a network example.
NASA Astrophysics Data System (ADS)
Horowitz, Jordan M.
2015-07-01
The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.
Horowitz, Jordan M
2015-07-28
The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.
Stochastic Dynamic Mixed-Integer Programming (SD-MIP)
2015-05-05
stochastic linear programming ( SLP ) problems. By using a combination of ideas from cutting plane theory of deterministic MIP (especially disjunctive...developed to date. b) As part of this project, we have also developed tools for very large scale Stochastic Linear Programming ( SLP ). There are...several reasons for this. First, SLP models continue to challenge many of the fastest computers to date, and many applications within the DoD (e.g
Planning with Continuous Resources in Stochastic Domains
NASA Technical Reports Server (NTRS)
Mausam, Mausau; Benazera, Emmanuel; Brafman, Roneu; Hansen, Eric
2005-01-01
We consider the problem of optimal planning in stochastic domains with metric resource constraints. Our goal is to generate a policy whose expected sum of rewards is maximized for a given initial state. We consider a general formulation motivated by our application domain--planetary exploration--in which the choice of an action at each step may depend on the current resource levels. We adapt the forward search algorithm AO* to handle our continuous state space efficiently.
Data-driven non-Markovian closure models
NASA Astrophysics Data System (ADS)
Kondrashov, Dmitri; Chekroun, Mickaël D.; Ghil, Michael
2015-03-01
This paper has two interrelated foci: (i) obtaining stable and efficient data-driven closure models by using a multivariate time series of partial observations from a large-dimensional system; and (ii) comparing these closure models with the optimal closures predicted by the Mori-Zwanzig (MZ) formalism of statistical physics. Multilayer stochastic models (MSMs) are introduced as both a generalization and a time-continuous limit of existing multilevel, regression-based approaches to closure in a data-driven setting; these approaches include empirical model reduction (EMR), as well as more recent multi-layer modeling. It is shown that the multilayer structure of MSMs can provide a natural Markov approximation to the generalized Langevin equation (GLE) of the MZ formalism. A simple correlation-based stopping criterion for an EMR-MSM model is derived to assess how well it approximates the GLE solution. Sufficient conditions are derived on the structure of the nonlinear cross-interactions between the constitutive layers of a given MSM to guarantee the existence of a global random attractor. This existence ensures that no blow-up can occur for a broad class of MSM applications, a class that includes non-polynomial predictors and nonlinearities that do not necessarily preserve quadratic energy invariants. The EMR-MSM methodology is first applied to a conceptual, nonlinear, stochastic climate model of coupled slow and fast variables, in which only slow variables are observed. It is shown that the resulting closure model with energy-conserving nonlinearities efficiently captures the main statistical features of the slow variables, even when there is no formal scale separation and the fast variables are quite energetic. Second, an MSM is shown to successfully reproduce the statistics of a partially observed, generalized Lotka-Volterra model of population dynamics in its chaotic regime. The challenges here include the rarity of strange attractors in the model's parameter space and the existence of multiple attractor basins with fractal boundaries. The positivity constraint on the solutions' components replaces here the quadratic-energy-preserving constraint of fluid-flow problems and it successfully prevents blow-up.
Maximum principle for a stochastic delayed system involving terminal state constraints.
Wen, Jiaqiang; Shi, Yufeng
2017-01-01
We investigate a stochastic optimal control problem where the controlled system is depicted as a stochastic differential delayed equation; however, at the terminal time, the state is constrained in a convex set. We firstly introduce an equivalent backward delayed system depicted as a time-delayed backward stochastic differential equation. Then a stochastic maximum principle is obtained by virtue of Ekeland's variational principle. Finally, applications to a state constrained stochastic delayed linear-quadratic control model and a production-consumption choice problem are studied to illustrate the main obtained result.
NASA Astrophysics Data System (ADS)
Guevara Hidalgo, Esteban; Nemoto, Takahiro; Lecomte, Vivien
Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provide a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to a selection rule that favors the rare trajectories of interest. However, such algorithms are plagued by finite simulation time- and finite population size- effects that can render their use delicate. Using the continuous-time cloning algorithm, we analyze the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of the rare trajectories. We use these scalings in order to propose a numerical approach which allows to extract the infinite-time and infinite-size limit of these estimators.
Data-driven Climate Modeling and Prediction
NASA Astrophysics Data System (ADS)
Kondrashov, D. A.; Chekroun, M.
2016-12-01
Global climate models aim to simulate a broad range of spatio-temporal scales of climate variability with state vector having many millions of degrees of freedom. On the other hand, while detailed weather prediction out to a few days requires high numerical resolution, it is fairly clear that a major fraction of large-scale climate variability can be predicted in a much lower-dimensional phase space. Low-dimensional models can simulate and predict this fraction of climate variability, provided they are able to account for linear and nonlinear interactions between the modes representing large scales of climate dynamics, as well as their interactions with a much larger number of modes representing fast and small scales. This presentation will highlight several new applications by Multilayered Stochastic Modeling (MSM) [Kondrashov, Chekroun and Ghil, 2015] framework that has abundantly proven its efficiency in the modeling and real-time forecasting of various climate phenomena. MSM is a data-driven inverse modeling technique that aims to obtain a low-order nonlinear system of prognostic equations driven by stochastic forcing, and estimates both the dynamical operator and the properties of the driving noise from multivariate time series of observations or a high-end model's simulation. MSM leads to a system of stochastic differential equations (SDEs) involving hidden (auxiliary) variables of fast-small scales ranked by layers, which interact with the macroscopic (observed) variables of large-slow scales to model the dynamics of the latter, and thus convey memory effects. New MSM climate applications focus on development of computationally efficient low-order models by using data-adaptive decomposition methods that convey memory effects by time-embedding techniques, such as Multichannel Singular Spectrum Analysis (M-SSA) [Ghil et al. 2002] and recently developed Data-Adaptive Harmonic (DAH) decomposition method [Chekroun and Kondrashov, 2016]. In particular, new results by DAH-MSM modeling and prediction of Arctic Sea Ice, as well as decadal predictions of near-surface Earth temperatures will be presented.
Hybrid suboptimal control of multi-rate multi-loop sampled-data systems
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Chen, Gwangchywan; Tsai, Jason S. H.
1992-01-01
A hybrid state-space controller is developed for suboptimal digital control of multirate multiloop multivariable continuous-time systems. First, an LQR is designed for a continuous-time subsystem which has a large bandwidth and is connnected in the inner loop of the overall system. The designed LQR would optimally place the eigenvalues of a closed-loop subsystem in the common region of an open sector bounded by sector angles + or - pi/2k for k = 2 or 3 from the negative real axis and the left-hand side of a vertical line on the negative real axis in the s-plane. Then, the developed continuous-time state-feedback gain is converted into an equivalent fast-rate discrete-time state-feedback gain via a digital redesign technique (Tsai et al. 1989, Shieh et al. 1990) reviewed here. A real state reconstructor is redeveloped utilizing the fast-rate input-output data of the system of interest. The design procedure of multiloop multivariable systems using multirate samplers is shown, and a terminal homing missile system example is used to demonstrate the effectiveness of the proposed method.
A stochastic differential equation model of diurnal cortisol patterns
NASA Technical Reports Server (NTRS)
Brown, E. N.; Meehan, P. M.; Dempster, A. P.
2001-01-01
Circadian modulation of episodic bursts is recognized as the normal physiological pattern of diurnal variation in plasma cortisol levels. The primary physiological factors underlying these diurnal patterns are the ultradian timing of secretory events, circadian modulation of the amplitude of secretory events, infusion of the hormone from the adrenal gland into the plasma, and clearance of the hormone from the plasma by the liver. Each measured plasma cortisol level has an error arising from the cortisol immunoassay. We demonstrate that all of these three physiological principles can be succinctly summarized in a single stochastic differential equation plus measurement error model and show that physiologically consistent ranges of the model parameters can be determined from published reports. We summarize the model parameters in terms of the multivariate Gaussian probability density and establish the plausibility of the model with a series of simulation studies. Our framework makes possible a sensitivity analysis in which all model parameters are allowed to vary simultaneously. The model offers an approach for simultaneously representing cortisol's ultradian, circadian, and kinetic properties. Our modeling paradigm provides a framework for simulation studies and data analysis that should be readily adaptable to the analysis of other endocrine hormone systems.
A new method for reconstruction of solar irradiance
NASA Astrophysics Data System (ADS)
Privalsky, Victor
2018-07-01
The purpose of this research is to show how time series should be reconstructed using an example with the data on total solar irradiation (TSI) of the Earth and on sunspot numbers (SSN) since 1749. The traditional approach through regression equation(s) is designed for time-invariant vectors of random variables and is not applicable to time series, which present random functions of time. The autoregressive reconstruction (ARR) method suggested here requires fitting a multivariate stochastic difference equation to the target/proxy time series. The reconstruction is done through the scalar equation for the target time series with the white noise term excluded. The time series approach is shown to provide a better reconstruction of TSI than the correlation/regression method. A reconstruction criterion is introduced which allows one to define in advance the achievable level of success in the reconstruction. The conclusion is that time series, including the total solar irradiance, cannot be reconstructed properly if the data are not treated as sample records of random processes and analyzed in both time and frequency domains.
A chance-constrained stochastic approach to intermodal container routing problems.
Zhao, Yi; Liu, Ronghui; Zhang, Xi; Whiteing, Anthony
2018-01-01
We consider a container routing problem with stochastic time variables in a sea-rail intermodal transportation system. The problem is formulated as a binary integer chance-constrained programming model including stochastic travel times and stochastic transfer time, with the objective of minimising the expected total cost. Two chance constraints are proposed to ensure that the container service satisfies ship fulfilment and cargo on-time delivery with pre-specified probabilities. A hybrid heuristic algorithm is employed to solve the binary integer chance-constrained programming model. Two case studies are conducted to demonstrate the feasibility of the proposed model and to analyse the impact of stochastic variables and chance-constraints on the optimal solution and total cost.
A chance-constrained stochastic approach to intermodal container routing problems
Zhao, Yi; Zhang, Xi; Whiteing, Anthony
2018-01-01
We consider a container routing problem with stochastic time variables in a sea-rail intermodal transportation system. The problem is formulated as a binary integer chance-constrained programming model including stochastic travel times and stochastic transfer time, with the objective of minimising the expected total cost. Two chance constraints are proposed to ensure that the container service satisfies ship fulfilment and cargo on-time delivery with pre-specified probabilities. A hybrid heuristic algorithm is employed to solve the binary integer chance-constrained programming model. Two case studies are conducted to demonstrate the feasibility of the proposed model and to analyse the impact of stochastic variables and chance-constraints on the optimal solution and total cost. PMID:29438389
Effect of sample volume on metastable zone width and induction time
NASA Astrophysics Data System (ADS)
Kubota, Noriaki
2012-04-01
The metastable zone width (MSZW) and the induction time, measured for a large sample (say>0.1 L) are reproducible and deterministic, while, for a small sample (say<1 mL), these values are irreproducible and stochastic. Such behaviors of MSZW and induction time were theoretically discussed both with stochastic and deterministic models. Equations for the distribution of stochastic MSZW and induction time were derived. The average values of stochastic MSZW and induction time both decreased with an increase in sample volume, while, the deterministic MSZW and induction time remained unchanged. Such different behaviors with variation in sample volume were explained in terms of detection sensitivity of crystallization events. The average values of MSZW and induction time in the stochastic model were compared with the deterministic MSZW and induction time, respectively. Literature data reported for paracetamol aqueous solution were explained theoretically with the presented models.
A stochastic maximum principle for backward control systems with random default time
NASA Astrophysics Data System (ADS)
Shen, Yang; Kuen Siu, Tak
2013-05-01
This paper establishes a necessary and sufficient stochastic maximum principle for backward systems, where the state processes are governed by jump-diffusion backward stochastic differential equations with random default time. An application of the sufficient stochastic maximum principle to an optimal investment and capital injection problem in the presence of default risk is discussed.
Stochastic Stabilityfor Contracting Lorenz Maps and Flows
NASA Astrophysics Data System (ADS)
Metzger, R. J.
In a previous work [M], we proved the existence of absolutely continuous invariant measures for contracting Lorenz-like maps, and constructed Sinai-Ruelle-Bowen measures f or the flows that generate them. Here, we prove stochastic stability for such one-dimensional maps and use this result to prove that the corresponding flows generating these maps are stochastically stable under small diffusion-type perturbations, even though, as shown by Rovella [Ro], they are persistent only in a measure theoretical sense in a parameter space. For the one-dimensional maps we also prove strong stochastic stability in the sense of Baladi and Viana[BV].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Jianbo, E-mail: jianbocui@lsec.cc.ac.cn; Hong, Jialin, E-mail: hjl@lsec.cc.ac.cn; Liu, Zhihui, E-mail: liuzhihui@lsec.cc.ac.cn
We indicate that the nonlinear Schrödinger equation with white noise dispersion possesses stochastic symplectic and multi-symplectic structures. Based on these structures, we propose the stochastic symplectic and multi-symplectic methods, which preserve the continuous and discrete charge conservation laws, respectively. Moreover, we show that the proposed methods are convergent with temporal order one in probability. Numerical experiments are presented to verify our theoretical results.
Stock market context of the Lévy walks with varying velocity
NASA Astrophysics Data System (ADS)
Kutner, Ryszard
2002-11-01
We developed the most general Lévy walks with varying velocity, shorter called the Weierstrass walks (WW) model, by which one can describe both stationary and non-stationary stochastic time series. We considered a non-Brownian random walk where the walker moves, in general, with a velocity that assumes a different constant value between the successive turning points, i.e., the velocity is a piecewise constant function. This model is a kind of Lévy walks where we assume a hierarchical, self-similar in a stochastic sense, spatio-temporal representation of the main quantities such as waiting-time distribution and sojourn probability density (which are principal quantities in the continuous-time random walk formalism). The WW model makes possible to analyze both the structure of the Hurst exponent and the power-law behavior of kurtosis. This structure results from the hierarchical, spatio-temporal coupling between the walker displacement and the corresponding time of the walks. The analysis uses both the fractional diffusion and the super Burnett coefficients. We constructed the diffusion phase diagram which distinguishes regions occupied by classes of different universality. We study only such classes which are characteristic for stationary situations. We thus have a model ready for describing the data presented, e.g., in the form of moving averages; the operation is often used for stochastic time series, especially financial ones. The model was inspired by properties of financial time series and tested for empirical data extracted from the Warsaw stock exchange since it offers an opportunity to study in an unbiased way several features of stock exchange in its early stage.
Johnson, Paul; Howell, Sydney; Duck, Peter
2017-08-13
A mixed financial/physical partial differential equation (PDE) can optimize the joint earnings of a single wind power generator (WPG) and a generic energy storage device (ESD). Physically, the PDE includes constraints on the ESD's capacity, efficiency and maximum speeds of charge and discharge. There is a mean-reverting daily stochastic cycle for WPG power output. Physically, energy can only be produced or delivered at finite rates. All suppliers must commit hourly to a finite rate of delivery C , which is a continuous control variable that is changed hourly. Financially, we assume heavy 'system balancing' penalties in continuous time, for deviations of output rate from the commitment C Also, the electricity spot price follows a mean-reverting stochastic cycle with a strong evening peak, when system balancing penalties also peak. Hence the economic goal of the WPG plus ESD, at each decision point, is to maximize expected net present value (NPV) of all earnings (arbitrage) minus the NPV of all expected system balancing penalties, along all financially/physically feasible future paths through state space. Given the capital costs for the various combinations of the physical parameters, the design and operating rules for a WPG plus ESD in a finite market may be jointly optimizable.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).
A class of generalized Ginzburg-Landau equations with random switching
NASA Astrophysics Data System (ADS)
Wu, Zheng; Yin, George; Lei, Dongxia
2018-09-01
This paper focuses on a class of generalized Ginzburg-Landau equations with random switching. In our formulation, the nonlinear term is allowed to have higher polynomial growth rate than the usual cubic polynomials. The random switching is modeled by a continuous-time Markov chain with a finite state space. First, an explicit solution is obtained. Then properties such as stochastic-ultimate boundedness and permanence of the solution processes are investigated. Finally, two-time-scale models are examined leading to a reduction of complexity.
Aralis, Hilary; Brookmeyer, Ron
2017-01-01
Multistate models provide an important method for analyzing a wide range of life history processes including disease progression and patient recovery following medical intervention. Panel data consisting of the states occupied by an individual at a series of discrete time points are often used to estimate transition intensities of the underlying continuous-time process. When transition intensities depend on the time elapsed in the current state and back transitions between states are possible, this intermittent observation process presents difficulties in estimation due to intractability of the likelihood function. In this manuscript, we present an iterative stochastic expectation-maximization algorithm that relies on a simulation-based approximation to the likelihood function and implement this algorithm using rejection sampling. In a simulation study, we demonstrate the feasibility and performance of the proposed procedure. We then demonstrate application of the algorithm to a study of dementia, the Nun Study, consisting of intermittently-observed elderly subjects in one of four possible states corresponding to intact cognition, impaired cognition, dementia, and death. We show that the proposed stochastic expectation-maximization algorithm substantially reduces bias in model parameter estimates compared to an alternative approach used in the literature, minimal path estimation. We conclude that in estimating intermittently observed semi-Markov models, the proposed approach is a computationally feasible and accurate estimation procedure that leads to substantial improvements in back transition estimates.
A stochastic approach for quantifying immigrant integration: the Spanish test case
NASA Astrophysics Data System (ADS)
Agliari, Elena; Barra, Adriano; Contucci, Pierluigi; Sandell, Richard; Vernia, Cecilia
2014-10-01
We apply stochastic process theory to the analysis of immigrant integration. Using a unique and detailed data set from Spain, we study the relationship between local immigrant density and two social and two economic immigration quantifiers for the period 1999-2010. As opposed to the classic time-series approach, by letting immigrant density play the role of ‘time’ and the quantifier the role of ‘space,’ it becomes possible to analyse the behavior of the quantifiers by means of continuous time random walks. Two classes of results are then obtained. First, we show that social integration quantifiers evolve following diffusion law, while the evolution of economic quantifiers exhibits ballistic dynamics. Second, we make predictions of best- and worst-case scenarios taking into account large local fluctuations. Our stochastic process approach to integration lends itself to interesting forecasting scenarios which, in the hands of policy makers, have the potential to improve political responses to integration problems. For instance, estimating the standard first-passage time and maximum-span walk reveals local differences in integration performance for different immigration scenarios. Thus, by recognizing the importance of local fluctuations around national means, this research constitutes an important tool to assess the impact of immigration phenomena on municipal budgets and to set up solid multi-ethnic plans at the municipal level as immigration pressures build.
From empirical data to time-inhomogeneous continuous Markov processes.
Lencastre, Pedro; Raischel, Frank; Rogers, Tim; Lind, Pedro G
2016-03-01
We present an approach for testing for the existence of continuous generators of discrete stochastic transition matrices. Typically, existing methods to ascertain the existence of continuous Markov processes are based on the assumption that only time-homogeneous generators exist. Here a systematic extension to time inhomogeneity is presented, based on new mathematical propositions incorporating necessary and sufficient conditions, which are then implemented computationally and applied to numerical data. A discussion concerning the bridging between rigorous mathematical results on the existence of generators to its computational implementation is presented. Our detection algorithm shows to be effective in more than 60% of tested matrices, typically 80% to 90%, and for those an estimate of the (nonhomogeneous) generator matrix follows. We also solve the embedding problem analytically for the particular case of three-dimensional circulant matrices. Finally, a discussion of possible applications of our framework to problems in different fields is briefly addressed.
Goal-oriented sensitivity analysis for lattice kinetic Monte Carlo simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arampatzis, Georgios, E-mail: garab@math.uoc.gr; Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003; Katsoulakis, Markos A., E-mail: markos@math.umass.edu
2014-03-28
In this paper we propose a new class of coupling methods for the sensitivity analysis of high dimensional stochastic systems and in particular for lattice Kinetic Monte Carlo (KMC). Sensitivity analysis for stochastic systems is typically based on approximating continuous derivatives with respect to model parameters by the mean value of samples from a finite difference scheme. Instead of using independent samples the proposed algorithm reduces the variance of the estimator by developing a strongly correlated-“coupled”- stochastic process for both the perturbed and unperturbed stochastic processes, defined in a common state space. The novelty of our construction is that themore » new coupled process depends on the targeted observables, e.g., coverage, Hamiltonian, spatial correlations, surface roughness, etc., hence we refer to the proposed method as goal-oriented sensitivity analysis. In particular, the rates of the coupled Continuous Time Markov Chain are obtained as solutions to a goal-oriented optimization problem, depending on the observable of interest, by considering the minimization functional of the corresponding variance. We show that this functional can be used as a diagnostic tool for the design and evaluation of different classes of couplings. Furthermore, the resulting KMC sensitivity algorithm has an easy implementation that is based on the Bortz–Kalos–Lebowitz algorithm's philosophy, where events are divided in classes depending on level sets of the observable of interest. Finally, we demonstrate in several examples including adsorption, desorption, and diffusion Kinetic Monte Carlo that for the same confidence interval and observable, the proposed goal-oriented algorithm can be two orders of magnitude faster than existing coupling algorithms for spatial KMC such as the Common Random Number approach. We also provide a complete implementation of the proposed sensitivity analysis algorithms, including various spatial KMC examples, in a supplementary MATLAB source code.« less
Analytic continuation of quantum Monte Carlo data by stochastic analytical inference.
Fuchs, Sebastian; Pruschke, Thomas; Jarrell, Mark
2010-05-01
We present an algorithm for the analytic continuation of imaginary-time quantum Monte Carlo data which is strictly based on principles of Bayesian statistical inference. Within this framework we are able to obtain an explicit expression for the calculation of a weighted average over possible energy spectra, which can be evaluated by standard Monte Carlo simulations, yielding as by-product also the distribution function as function of the regularization parameter. Our algorithm thus avoids the usual ad hoc assumptions introduced in similar algorithms to fix the regularization parameter. We apply the algorithm to imaginary-time quantum Monte Carlo data and compare the resulting energy spectra with those from a standard maximum-entropy calculation.
Random Walks in a One-Dimensional Lévy Random Environment
NASA Astrophysics Data System (ADS)
Bianchi, Alessandra; Cristadoro, Giampaolo; Lenci, Marco; Ligabò, Marilena
2016-04-01
We consider a generalization of a one-dimensional stochastic process known in the physical literature as Lévy-Lorentz gas. The process describes the motion of a particle on the real line in the presence of a random array of marked points, whose nearest-neighbor distances are i.i.d. and long-tailed (with finite mean but possibly infinite variance). The motion is a continuous-time, constant-speed interpolation of a symmetric random walk on the marked points. We first study the quenched random walk on the point process, proving the CLT and the convergence of all the accordingly rescaled moments. Then we derive the quenched and annealed CLTs for the continuous-time process.
FREQ: A computational package for multivariable system loop-shaping procedures
NASA Technical Reports Server (NTRS)
Giesy, Daniel P.; Armstrong, Ernest S.
1989-01-01
Many approaches in the field of linear, multivariable time-invariant systems analysis and controller synthesis employ loop-sharing procedures wherein design parameters are chosen to shape frequency-response singular value plots of selected transfer matrices. A software package, FREQ, is documented for computing within on unified framework many of the most used multivariable transfer matrices for both continuous and discrete systems. The matrices are evaluated at user-selected frequency-response values, and singular values against frequency. Example computations are presented to demonstrate the use of the FREQ code.
An error bound for a discrete reduced order model of a linear multivariable system
NASA Technical Reports Server (NTRS)
Al-Saggaf, Ubaid M.; Franklin, Gene F.
1987-01-01
The design of feasible controllers for high dimension multivariable systems can be greatly aided by a method of model reduction. In order for the design based on the order reduction to include a guarantee of stability, it is sufficient to have a bound on the model error. Previous work has provided such a bound for continuous-time systems for algorithms based on balancing. In this note an L-infinity bound is derived for model error for a method of order reduction of discrete linear multivariable systems based on balancing.
NASA Technical Reports Server (NTRS)
Narasimhan, Sriram; Dearden, Richard; Benazera, Emmanuel
2004-01-01
Fault detection and isolation are critical tasks to ensure correct operation of systems. When we consider stochastic hybrid systems, diagnosis algorithms need to track both the discrete mode and the continuous state of the system in the presence of noise. Deterministic techniques like Livingstone cannot deal with the stochasticity in the system and models. Conversely Bayesian belief update techniques such as particle filters may require many computational resources to get a good approximation of the true belief state. In this paper we propose a fault detection and isolation architecture for stochastic hybrid systems that combines look-ahead Rao-Blackwellized Particle Filters (RBPF) with the Livingstone 3 (L3) diagnosis engine. In this approach RBPF is used to track the nominal behavior, a novel n-step prediction scheme is used for fault detection and L3 is used to generate a set of candidates that are consistent with the discrepant observations which then continue to be tracked by the RBPF scheme.
NASA Astrophysics Data System (ADS)
Wahl, Thomas; Jensen, Jürgen; Mudersbach, Christoph
2010-05-01
Storm surges along the German North Sea coastline led to major damages in the past and the risk of inundation is expected to increase in the course of an ongoing climate change. The knowledge of the characteristics of possible storm surges is essential for the performance of integrated risk analyses, e.g. based on the source-pathway-receptor concept. The latter includes the storm surge simulation/analyses (source), modelling of dike/dune breach scenarios (pathway) and the quantification of potential losses (receptor). In subproject 1b of the German joint research project XtremRisK (www.xtremrisk.de), a stochastic storm surge generator for the south-eastern North Sea area is developed. The input data for the multivariate model are high resolution sea level observations from tide gauges during extreme events. Based on 25 parameters (19 sea level parameters and 6 time parameters) observed storm surge hydrographs consisting of three tides are parameterised. Followed by the adaption of common parametric probability distributions and a large number of Monte-Carlo-Simulations, the final reconstruction leads to a set of 100.000 (default) synthetic storm surge events with a one-minute resolution. Such a data set can potentially serve as the basis for a large number of applications. For risk analyses, storm surges with peak water levels exceeding the design water levels are of special interest. The occurrence probabilities of the simulated extreme events are estimated based on multivariate statistics, considering the parameters "peak water level" and "fullness/intensity". In the past, most studies considered only the peak water levels during extreme events, which might not be the most important parameter in any cases. Here, a 2D-Archimedian copula model is used for the estimation of the joint probabilities of the selected parameters, accounting for the structures of dependence overlooking the margins. In coordination with subproject 1a, the results will be used as the input for the XtremRisK subprojects 2 to 4. The project is funded by the German Federal Ministry of Education and Research (BMBF) (Project No. 03 F 0483 B).
Fast smooth second-order sliding mode control for stochastic systems with enumerable coloured noises
NASA Astrophysics Data System (ADS)
Yang, Peng-fei; Fang, Yang-wang; Wu, You-li; Zhang, Dan-xu; Xu, Yang
2018-01-01
A fast smooth second-order sliding mode control is presented for a class of stochastic systems driven by enumerable Ornstein-Uhlenbeck coloured noises with time-varying coefficients. Instead of treating the noise as bounded disturbance, the stochastic control techniques are incorporated into the design of the control. The finite-time mean-square practical stability and finite-time mean-square practical reachability are first introduced. Then the prescribed sliding variable dynamic is presented. The sufficient condition guaranteeing its finite-time convergence is given and proved using stochastic Lyapunov-like techniques. The proposed sliding mode controller is applied to a second-order nonlinear stochastic system. Simulation results are given comparing with smooth second-order sliding mode control to validate the analysis.
Oscillatory regulation of Hes1: Discrete stochastic delay modelling and simulation.
Barrio, Manuel; Burrage, Kevin; Leier, André; Tian, Tianhai
2006-09-08
Discrete stochastic simulations are a powerful tool for understanding the dynamics of chemical kinetics when there are small-to-moderate numbers of certain molecular species. In this paper we introduce delays into the stochastic simulation algorithm, thus mimicking delays associated with transcription and translation. We then show that this process may well explain more faithfully than continuous deterministic models the observed sustained oscillations in expression levels of hes1 mRNA and Hes1 protein.
Path probability of stochastic motion: A functional approach
NASA Astrophysics Data System (ADS)
Hattori, Masayuki; Abe, Sumiyoshi
2016-06-01
The path probability of a particle undergoing stochastic motion is studied by the use of functional technique, and the general formula is derived for the path probability distribution functional. The probability of finding paths inside a tube/band, the center of which is stipulated by a given path, is analytically evaluated in a way analogous to continuous measurements in quantum mechanics. Then, the formalism developed here is applied to the stochastic dynamics of stock price in finance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettersson, Per, E-mail: per.pettersson@uib.no; Nordström, Jan, E-mail: jan.nordstrom@liu.se; Doostan, Alireza, E-mail: alireza.doostan@colorado.edu
2016-02-01
We present a well-posed stochastic Galerkin formulation of the incompressible Navier–Stokes equations with uncertainty in model parameters or the initial and boundary conditions. The stochastic Galerkin method involves representation of the solution through generalized polynomial chaos expansion and projection of the governing equations onto stochastic basis functions, resulting in an extended system of equations. A relatively low-order generalized polynomial chaos expansion is sufficient to capture the stochastic solution for the problem considered. We derive boundary conditions for the continuous form of the stochastic Galerkin formulation of the velocity and pressure equations. The resulting problem formulation leads to an energy estimatemore » for the divergence. With suitable boundary data on the pressure and velocity, the energy estimate implies zero divergence of the velocity field. Based on the analysis of the continuous equations, we present a semi-discretized system where the spatial derivatives are approximated using finite difference operators with a summation-by-parts property. With a suitable choice of dissipative boundary conditions imposed weakly through penalty terms, the semi-discrete scheme is shown to be stable. Numerical experiments in the laminar flow regime corroborate the theoretical results and we obtain high-order accurate results for the solution variables and the velocity divergence converges to zero as the mesh is refined.« less
Three Dimensional Time Dependent Stochastic Method for Cosmic-ray Modulation
NASA Astrophysics Data System (ADS)
Pei, C.; Bieber, J. W.; Burger, R. A.; Clem, J. M.
2009-12-01
A proper understanding of the different behavior of intensities of galactic cosmic rays in different solar cycle phases requires solving the modulation equation with time dependence. We present a detailed description of our newly developed stochastic approach for cosmic ray modulation which we believe is the first attempt to solve the time dependent Parker equation in 3D evolving from our 3D steady state stochastic approach, which has been benchmarked extensively by using the finite difference method. Our 3D stochastic method is different from other stochastic approaches in literature (Ball et al 2005, Miyake et al 2005, and Florinski 2008) in several ways. For example, we employ spherical coordinates which makes the code much more efficient by reducing coordinate transformations. What's more, our stochastic differential equations are different from others because our map from Parker's original equation to the Fokker-Planck equation extends the method used by Jokipii and Levy 1977 while others don't although all 3D stochastic methods are essentially based on Ito formula. The advantage of the stochastic approach is that it also gives the probability information of travel times and path lengths of cosmic rays besides the intensities. We show that excellent agreement exists between solutions obtained by our steady state stochastic method and by the traditional finite difference method. We also show time dependent solutions for an idealized heliosphere which has a Parker magnetic field, a planar current sheet, and a simple initial condition.
NASA Astrophysics Data System (ADS)
Lopes, Artur O.; Neumann, Adriana
2015-05-01
In the present paper, we consider a family of continuous time symmetric random walks indexed by , . For each the matching random walk take values in the finite set of states ; notice that is a subset of , where is the unitary circle. The infinitesimal generator of such chain is denoted by . The stationary probability for such process converges to the uniform distribution on the circle, when . Here we want to study other natural measures, obtained via a limit on , that are concentrated on some points of . We will disturb this process by a potential and study for each the perturbed stationary measures of this new process when . We disturb the system considering a fixed potential and we will denote by the restriction of to . Then, we define a non-stochastic semigroup generated by the matrix , where is the infinifesimal generator of . From the continuous time Perron's Theorem one can normalized such semigroup, and, then we get another stochastic semigroup which generates a continuous time Markov Chain taking values on . This new chain is called the continuous time Gibbs state associated to the potential , see (Lopes et al. in J Stat Phys 152:894-933, 2013). The stationary probability vector for such Markov Chain is denoted by . We assume that the maximum of is attained in a unique point of , and from this will follow that . Thus, here, our main goal is to analyze the large deviation principle for the family , when . The deviation function , which is defined on , will be obtained from a procedure based on fixed points of the Lax-Oleinik operator and Aubry-Mather theory. In order to obtain the associated Lax-Oleinik operator we use the Varadhan's Lemma for the process . For a careful analysis of the problem we present full details of the proof of the Large Deviation Principle, in the Skorohod space, for such family of Markov Chains, when . Finally, we compute the entropy of the invariant probabilities on the Skorohod space associated to the Markov Chains we analyze.
Structured population dynamics: continuous size and discontinuous stage structures.
Buffoni, Giuseppe; Pasquali, Sara
2007-04-01
A nonlinear stochastic model for the dynamics of a population with either a continuous size structure or a discontinuous stage structure is formulated in the Eulerian formalism. It takes into account dispersion effects due to stochastic variability of the development process of the individuals. The discrete equations of the numerical approximation are derived, and an analysis of the existence and stability of the equilibrium states is performed. An application to a copepod population is illustrated; numerical results of Eulerian and Lagrangian models are compared.
Analytical Models of Cross-Layer Protocol Optimization in Real-Time Wireless Sensor Ad Hoc Networks
NASA Astrophysics Data System (ADS)
Hortos, William S.
The real-time interactions among the nodes of a wireless sensor network (WSN) to cooperatively process data from multiple sensors are modeled. Quality-of-service (QoS) metrics are associated with the quality of fused information: throughput, delay, packet error rate, etc. Multivariate point process (MVPP) models of discrete random events in WSNs establish stochastic characteristics of optimal cross-layer protocols. Discrete-event, cross-layer interactions in mobile ad hoc network (MANET) protocols have been modeled using a set of concatenated design parameters and associated resource levels by the MVPPs. Characterization of the "best" cross-layer designs for a MANET is formulated by applying the general theory of martingale representations to controlled MVPPs. Performance is described in terms of concatenated protocol parameters and controlled through conditional rates of the MVPPs. Modeling limitations to determination of closed-form solutions versus explicit iterative solutions for ad hoc WSN controls are examined.
Data-driven Analysis and Prediction of Arctic Sea Ice
NASA Astrophysics Data System (ADS)
Kondrashov, D. A.; Chekroun, M.; Ghil, M.; Yuan, X.; Ting, M.
2015-12-01
We present results of data-driven predictive analyses of sea ice over the main Arctic regions. Our approach relies on the Multilayer Stochastic Modeling (MSM) framework of Kondrashov, Chekroun and Ghil [Physica D, 2015] and it leads to prognostic models of sea ice concentration (SIC) anomalies on seasonal time scales.This approach is applied to monthly time series of leading principal components from the multivariate Empirical Orthogonal Function decomposition of SIC and selected climate variables over the Arctic. We evaluate the predictive skill of MSM models by performing retrospective forecasts with "no-look ahead" forup to 6-months ahead. It will be shown in particular that the memory effects included in our non-Markovian linear MSM models improve predictions of large-amplitude SIC anomalies in certain Arctic regions. Furtherimprovements allowed by the MSM framework will adopt a nonlinear formulation, as well as alternative data-adaptive decompositions.
NASA Astrophysics Data System (ADS)
Cosso, Andrea; Russo, Francesco
2016-11-01
Functional Itô calculus was introduced in order to expand a functional F(t,Xṡ+t,Xt) depending on time t, past and present values of the process X. Another possibility to expand F(t,Xṡ+t,Xt) consists in considering the path Xṡ+t = {Xx+t,x ∈ [-T, 0]} as an element of the Banach space of continuous functions on C([-T, 0]) and to use Banach space stochastic calculus. The aim of this paper is threefold. (1) To reformulate functional Itô calculus, separating time and past, making use of the regularization procedures which match more naturally the notion of horizontal derivative which is one of the tools of that calculus. (2) To exploit this reformulation in order to discuss the (not obvious) relation between the functional and the Banach space approaches. (3) To study existence and uniqueness of smooth solutions to path-dependent partial differential equations which naturally arise in the study of functional Itô calculus. More precisely, we study a path-dependent equation of Kolmogorov type which is related to the window process of the solution to an Itô stochastic differential equation with path-dependent coefficients. We also study a semilinear version of that equation.
Hasenauer, J; Wolf, V; Kazeroonian, A; Theis, F J
2014-09-01
The time-evolution of continuous-time discrete-state biochemical processes is governed by the Chemical Master Equation (CME), which describes the probability of the molecular counts of each chemical species. As the corresponding number of discrete states is, for most processes, large, a direct numerical simulation of the CME is in general infeasible. In this paper we introduce the method of conditional moments (MCM), a novel approximation method for the solution of the CME. The MCM employs a discrete stochastic description for low-copy number species and a moment-based description for medium/high-copy number species. The moments of the medium/high-copy number species are conditioned on the state of the low abundance species, which allows us to capture complex correlation structures arising, e.g., for multi-attractor and oscillatory systems. We prove that the MCM provides a generalization of previous approximations of the CME based on hybrid modeling and moment-based methods. Furthermore, it improves upon these existing methods, as we illustrate using a model for the dynamics of stochastic single-gene expression. This application example shows that due to the more general structure, the MCM allows for the approximation of multi-modal distributions.
Continuous-time random walks with reset events. Historical background and new perspectives
NASA Astrophysics Data System (ADS)
Montero, Miquel; Masó-Puigdellosas, Axel; Villarroel, Javier
2017-09-01
In this paper, we consider a stochastic process that may experience random reset events which relocate the system to its starting position. We focus our attention on a one-dimensional, monotonic continuous-time random walk with a constant drift: the process moves in a fixed direction between the reset events, either by the effect of the random jumps, or by the action of a deterministic bias. However, the orientation of its motion is randomly determined after each restart. As a result of these alternating dynamics, interesting properties do emerge. General formulas for the propagator as well as for two extreme statistics, the survival probability and the mean first-passage time, are also derived. The rigor of these analytical results is verified by numerical estimations, for particular but illuminating examples.
Analytical pricing formulas for hybrid variance swaps with regime-switching
NASA Astrophysics Data System (ADS)
Roslan, Teh Raihana Nazirah; Cao, Jiling; Zhang, Wenjun
2017-11-01
The problem of pricing discretely-sampled variance swaps under stochastic volatility, stochastic interest rate and regime-switching is being considered in this paper. An extension of the Heston stochastic volatility model structure is done by adding the Cox-Ingersoll-Ross (CIR) stochastic interest rate model. In addition, the parameters of the model are permitted to have transitions following a Markov chain process which is continuous and discoverable. This hybrid model can be used to illustrate certain macroeconomic conditions, for example the changing phases of business stages. The outcome of our regime-switching hybrid model is presented in terms of analytical pricing formulas for variance swaps.
Effects of stochastic time-delayed feedback on a dynamical system modeling a chemical oscillator.
González Ochoa, Héctor O; Perales, Gualberto Solís; Epstein, Irving R; Femat, Ricardo
2018-05-01
We examine how stochastic time-delayed negative feedback affects the dynamical behavior of a model oscillatory reaction. We apply constant and stochastic time-delayed negative feedbacks to a point Field-Körös-Noyes photosensitive oscillator and compare their effects. Negative feedback is applied in the form of simulated inhibitory electromagnetic radiation with an intensity proportional to the concentration of oxidized light-sensitive catalyst in the oscillator. We first characterize the system under nondelayed inhibitory feedback; then we explore and compare the effects of constant (deterministic) versus stochastic time-delayed feedback. We find that the oscillatory amplitude, frequency, and waveform are essentially preserved when low-dispersion stochastic delayed feedback is used, whereas small but measurable changes appear when a large dispersion is applied.
Effects of stochastic time-delayed feedback on a dynamical system modeling a chemical oscillator
NASA Astrophysics Data System (ADS)
González Ochoa, Héctor O.; Perales, Gualberto Solís; Epstein, Irving R.; Femat, Ricardo
2018-05-01
We examine how stochastic time-delayed negative feedback affects the dynamical behavior of a model oscillatory reaction. We apply constant and stochastic time-delayed negative feedbacks to a point Field-Körös-Noyes photosensitive oscillator and compare their effects. Negative feedback is applied in the form of simulated inhibitory electromagnetic radiation with an intensity proportional to the concentration of oxidized light-sensitive catalyst in the oscillator. We first characterize the system under nondelayed inhibitory feedback; then we explore and compare the effects of constant (deterministic) versus stochastic time-delayed feedback. We find that the oscillatory amplitude, frequency, and waveform are essentially preserved when low-dispersion stochastic delayed feedback is used, whereas small but measurable changes appear when a large dispersion is applied.
A New Time-varying Concept of Risk in a Changing Climate.
Sarhadi, Ali; Ausín, María Concepción; Wiper, Michael P
2016-10-20
In a changing climate arising from anthropogenic global warming, the nature of extreme climatic events is changing over time. Existing analytical stationary-based risk methods, however, assume multi-dimensional extreme climate phenomena will not significantly vary over time. To strengthen the reliability of infrastructure designs and the management of water systems in the changing environment, multidimensional stationary risk studies should be replaced with a new adaptive perspective. The results of a comparison indicate that current multi-dimensional stationary risk frameworks are no longer applicable to projecting the changing behaviour of multi-dimensional extreme climate processes. Using static stationary-based multivariate risk methods may lead to undesirable consequences in designing water system infrastructures. The static stationary concept should be replaced with a flexible multi-dimensional time-varying risk framework. The present study introduces a new multi-dimensional time-varying risk concept to be incorporated in updating infrastructure design strategies under changing environments arising from human-induced climate change. The proposed generalized time-varying risk concept can be applied for all stochastic multi-dimensional systems that are under the influence of changing environments.
Optimal harvesting of a stochastic delay tri-trophic food-chain model with Lévy jumps
NASA Astrophysics Data System (ADS)
Qiu, Hong; Deng, Wenmin
2018-02-01
In this paper, the optimal harvesting of a stochastic delay tri-trophic food-chain model with Lévy jumps is considered. We introduce two kinds of environmental perturbations in this model. One is called white noise which is continuous and is described by a stochastic integral with respect to the standard Brownian motion. And the other one is jumping noise which is modeled by a Lévy process. Under some mild assumptions, the critical values between extinction and persistent in the mean of each species are established. The sufficient and necessary criteria for the existence of optimal harvesting policy are established and the optimal harvesting effort and the maximum of sustainable yield are also obtained. We utilize the ergodic method to discuss the optimal harvesting problem. The results show that white noises and Lévy noises significantly affect the optimal harvesting policy while time delays is harmless for the optimal harvesting strategy in some cases. At last, some numerical examples are introduced to show the validity of our results.
Stochastic theory of nonequilibrium steady states and its applications. Part I
NASA Astrophysics Data System (ADS)
Zhang, Xue-Juan; Qian, Hong; Qian, Min
2012-01-01
The concepts of equilibrium and nonequilibrium steady states are introduced in the present review as mathematical concepts associated with stationary Markov processes. For both discrete stochastic systems with master equations and continuous diffusion processes with Fokker-Planck equations, the nonequilibrium steady state (NESS) is characterized in terms of several key notions which are originated from nonequilibrium physics: time irreversibility, breakdown of detailed balance, free energy dissipation, and positive entropy production rate. After presenting this NESS theory in pedagogically accessible mathematical terms that require only a minimal amount of prerequisites in nonlinear differential equations and the theory of probability, it is applied, in Part I, to two widely studied problems: the stochastic resonance (also known as coherent resonance) and molecular motors (also known as Brownian ratchet). Although both areas have advanced rapidly on their own with a vast amount of literature, the theory of NESS provides them with a unifying mathematical foundation. Part II of this review contains applications of the NESS theory to processes from cellular biochemistry, ranging from enzyme catalyzed reactions, kinetic proofreading, to zeroth-order ultrasensitivity.
Explore Stochastic Instabilities of Periodic Points by Transition Path Theory
NASA Astrophysics Data System (ADS)
Cao, Yu; Lin, Ling; Zhou, Xiang
2016-06-01
We consider the noise-induced transitions from a linearly stable periodic orbit consisting of T periodic points in randomly perturbed discrete logistic map. Traditional large deviation theory and asymptotic analysis at small noise limit cannot distinguish the quantitative difference in noise-induced stochastic instabilities among the T periodic points. To attack this problem, we generalize the transition path theory to the discrete-time continuous-space stochastic process. In our first criterion to quantify the relative instability among T periodic points, we use the distribution of the last passage location related to the transitions from the whole periodic orbit to a prescribed disjoint set. This distribution is related to individual contributions to the transition rate from each periodic points. The second criterion is based on the competency of the transition paths associated with each periodic point. Both criteria utilize the reactive probability current in the transition path theory. Our numerical results for the logistic map reveal the transition mechanism of escaping from the stable periodic orbit and identify which periodic point is more prone to lose stability so as to make successful transitions under random perturbations.
NASA Astrophysics Data System (ADS)
Papalexiou, Simon Michael
2018-05-01
Hydroclimatic processes come in all "shapes and sizes". They are characterized by different spatiotemporal correlation structures and probability distributions that can be continuous, mixed-type, discrete or even binary. Simulating such processes by reproducing precisely their marginal distribution and linear correlation structure, including features like intermittency, can greatly improve hydrological analysis and design. Traditionally, modelling schemes are case specific and typically attempt to preserve few statistical moments providing inadequate and potentially risky distribution approximations. Here, a single framework is proposed that unifies, extends, and improves a general-purpose modelling strategy, based on the assumption that any process can emerge by transforming a specific "parent" Gaussian process. A novel mathematical representation of this scheme, introducing parametric correlation transformation functions, enables straightforward estimation of the parent-Gaussian process yielding the target process after the marginal back transformation, while it provides a general description that supersedes previous specific parameterizations, offering a simple, fast and efficient simulation procedure for every stationary process at any spatiotemporal scale. This framework, also applicable for cyclostationary and multivariate modelling, is augmented with flexible parametric correlation structures that parsimoniously describe observed correlations. Real-world simulations of various hydroclimatic processes with different correlation structures and marginals, such as precipitation, river discharge, wind speed, humidity, extreme events per year, etc., as well as a multivariate example, highlight the flexibility, advantages, and complete generality of the method.
Oscillatory Regulation of Hes1: Discrete Stochastic Delay Modelling and Simulation
Barrio, Manuel; Burrage, Kevin; Leier, André; Tian, Tianhai
2006-01-01
Discrete stochastic simulations are a powerful tool for understanding the dynamics of chemical kinetics when there are small-to-moderate numbers of certain molecular species. In this paper we introduce delays into the stochastic simulation algorithm, thus mimicking delays associated with transcription and translation. We then show that this process may well explain more faithfully than continuous deterministic models the observed sustained oscillations in expression levels of hes1 mRNA and Hes1 protein. PMID:16965175
Sheng, Li; Wang, Zidong; Tian, Engang; Alsaadi, Fuad E
2016-12-01
This paper deals with the H ∞ state estimation problem for a class of discrete-time neural networks with stochastic delays subject to state- and disturbance-dependent noises (also called (x,v)-dependent noises) and fading channels. The time-varying stochastic delay takes values on certain intervals with known probability distributions. The system measurement is transmitted through fading channels described by the Rice fading model. The aim of the addressed problem is to design a state estimator such that the estimation performance is guaranteed in the mean-square sense against admissible stochastic time-delays, stochastic noises as well as stochastic fading signals. By employing the stochastic analysis approach combined with the Kronecker product, several delay-distribution-dependent conditions are derived to ensure that the error dynamics of the neuron states is stochastically stable with prescribed H ∞ performance. Finally, a numerical example is provided to illustrate the effectiveness of the obtained results. Copyright © 2016 Elsevier Ltd. All rights reserved.
TORABIPOUR, Amin; ZERAATI, Hojjat; ARAB, Mohammad; RASHIDIAN, Arash; AKBARI SARI, Ali; SARZAIEM, Mahmuod Reza
2016-01-01
Background: To determine the hospital required beds using stochastic simulation approach in cardiac surgery departments. Methods: This study was performed from Mar 2011 to Jul 2012 in three phases: First, collection data from 649 patients in cardiac surgery departments of two large teaching hospitals (in Tehran, Iran). Second, statistical analysis and formulate a multivariate linier regression model to determine factors that affect patient's length of stay. Third, develop a stochastic simulation system (from admission to discharge) based on key parameters to estimate required bed capacity. Results: Current cardiac surgery department with 33 beds can only admit patients in 90.7% of days. (4535 d) and will be required to over the 33 beds only in 9.3% of days (efficient cut off point). According to simulation method, studied cardiac surgery department will requires 41–52 beds for admission of all patients in the 12 next years. Finally, one-day reduction of length of stay lead to decrease need for two hospital beds annually. Conclusion: Variation of length of stay and its affecting factors can affect required beds. Statistic and stochastic simulation model are applied and useful methods to estimate and manage hospital beds based on key hospital parameters. PMID:27957466
Role of sufficient statistics in stochastic thermodynamics and its implication to sensory adaptation
NASA Astrophysics Data System (ADS)
Matsumoto, Takumi; Sagawa, Takahiro
2018-04-01
A sufficient statistic is a significant concept in statistics, which means a probability variable that has sufficient information required for an inference task. We investigate the roles of sufficient statistics and related quantities in stochastic thermodynamics. Specifically, we prove that for general continuous-time bipartite networks, the existence of a sufficient statistic implies that an informational quantity called the sensory capacity takes the maximum. Since the maximal sensory capacity imposes a constraint that the energetic efficiency cannot exceed one-half, our result implies that the existence of a sufficient statistic is inevitably accompanied by energetic dissipation. We also show that, in a particular parameter region of linear Langevin systems there exists the optimal noise intensity at which the sensory capacity, the information-thermodynamic efficiency, and the total entropy production are optimized at the same time. We apply our general result to a model of sensory adaptation of E. coli and find that the sensory capacity is nearly maximal with experimentally realistic parameters.
Renormalizing a viscous fluid model for large scale structure formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Führer, Florian; Rigopoulos, Gerasimos, E-mail: fuhrer@thphys.uni-heidelberg.de, E-mail: gerasimos.rigopoulos@ncl.ac.uk
2016-02-01
Using the Stochastic Adhesion Model (SAM) as a simple toy model for cosmic structure formation, we study renormalization and the removal of the cutoff dependence from loop integrals in perturbative calculations. SAM shares the same symmetry with the full system of continuity+Euler equations and includes a viscosity term and a stochastic noise term, similar to the effective theories recently put forward to model CDM clustering. We show in this context that if the viscosity and noise terms are treated as perturbative corrections to the standard eulerian perturbation theory, they are necessarily non-local in time. To ensure Galilean Invariance higher ordermore » vertices related to the viscosity and the noise must then be added and we explicitly show at one-loop that these terms act as counter terms for vertex diagrams. The Ward Identities ensure that the non-local-in-time theory can be renormalized consistently. Another possibility is to include the viscosity in the linear propagator, resulting in exponential damping at high wavenumber. The resulting local-in-time theory is then renormalizable to one loop, requiring less free parameters for its renormalization.« less
Hybrid modeling in biochemical systems theory by means of functional petri nets.
Wu, Jialiang; Voit, Eberhard
2009-02-01
Many biological systems are genuinely hybrids consisting of interacting discrete and continuous components and processes that often operate at different time scales. It is therefore desirable to create modeling frameworks capable of combining differently structured processes and permitting their analysis over multiple time horizons. During the past 40 years, Biochemical Systems Theory (BST) has been a very successful approach to elucidating metabolic, gene regulatory, and signaling systems. However, its foundation in ordinary differential equations has precluded BST from directly addressing problems containing switches, delays, and stochastic effects. In this study, we extend BST to hybrid modeling within the framework of Hybrid Functional Petri Nets (HFPN). First, we show how the canonical GMA and S-system models in BST can be directly implemented in a standard Petri Net framework. In a second step we demonstrate how to account for different types of time delays as well as for discrete, stochastic, and switching effects. Using representative test cases, we validate the hybrid modeling approach through comparative analyses and simulations with other approaches and highlight the feasibility, quality, and efficiency of the hybrid method.
Critical thresholds for eventual extinction in randomly disturbed population growth models.
Peckham, Scott D; Waymire, Edward C; De Leenheer, Patrick
2018-02-16
This paper considers several single species growth models featuring a carrying capacity, which are subject to random disturbances that lead to instantaneous population reduction at the disturbance times. This is motivated in part by growing concerns about the impacts of climate change. Our main goal is to understand whether or not the species can persist in the long run. We consider the discrete-time stochastic process obtained by sampling the system immediately after the disturbances, and find various thresholds for several modes of convergence of this discrete process, including thresholds for the absence or existence of a positively supported invariant distribution. These thresholds are given explicitly in terms of the intensity and frequency of the disturbances on the one hand, and the population's growth characteristics on the other. We also perform a similar threshold analysis for the original continuous-time stochastic process, and obtain a formula that allows us to express the invariant distribution for this continuous-time process in terms of the invariant distribution of the discrete-time process, and vice versa. Examples illustrate that these distributions can differ, and this sends a cautionary message to practitioners who wish to parameterize these and related models using field data. Our analysis relies heavily on a particular feature shared by all the deterministic growth models considered here, namely that their solutions exhibit an exponentially weighted averaging property between a function of the initial condition, and the same function applied to the carrying capacity. This property is due to the fact that these systems can be transformed into affine systems.
Computational singular perturbation analysis of stochastic chemical systems with stiffness
NASA Astrophysics Data System (ADS)
Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; Najm, Habib N.
2017-04-01
Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to not only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. The algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.
Stochastic Evolution Equations Driven by Fractional Noises
2016-11-28
rate of convergence to zero or the error and the limit in distribution of the error fluctuations. We have studied time discrete numerical schemes...error fluctuations. We have studied time discrete numerical schemes based on Taylor expansions for rough differential equations and for stochastic...variations of the time discrete Taylor schemes for rough differential equations and for stochastic differential equations driven by fractional Brownian
Daniel, Colin J.; Sleeter, Benjamin M.; Frid, Leonardo; Fortin, Marie-Josée
2018-01-01
State-and-transition simulation models (STSMs) provide a general framework for forecasting landscape dynamics, including projections of both vegetation and land-use/land-cover (LULC) change. The STSM method divides a landscape into spatially-referenced cells and then simulates the state of each cell forward in time, as a discrete-time stochastic process using a Monte Carlo approach, in response to any number of possible transitions. A current limitation of the STSM method, however, is that all of the state variables must be discrete.Here we present a new approach for extending a STSM, in order to account for continuous state variables, called a state-and-transition simulation model with stocks and flows (STSM-SF). The STSM-SF method allows for any number of continuous stocks to be defined for every spatial cell in the STSM, along with a suite of continuous flows specifying the rates at which stock levels change over time. The change in the level of each stock is then simulated forward in time, for each spatial cell, as a discrete-time stochastic process. The method differs from the traditional systems dynamics approach to stock-flow modelling in that the stocks and flows can be spatially-explicit, and the flows can be expressed as a function of the STSM states and transitions.We demonstrate the STSM-SF method by integrating a spatially-explicit carbon (C) budget model with a STSM of LULC change for the state of Hawai'i, USA. In this example, continuous stocks are pools of terrestrial C, while the flows are the possible fluxes of C between these pools. Importantly, several of these C fluxes are triggered by corresponding LULC transitions in the STSM. Model outputs include changes in the spatial and temporal distribution of C pools and fluxes across the landscape in response to projected future changes in LULC over the next 50 years.The new STSM-SF method allows both discrete and continuous state variables to be integrated into a STSM, including interactions between them. With the addition of stocks and flows, STSMs provide a conceptually simple yet powerful approach for characterizing uncertainties in projections of a wide range of questions regarding landscape change.
Finite-time H∞ filtering for non-linear stochastic systems
NASA Astrophysics Data System (ADS)
Hou, Mingzhe; Deng, Zongquan; Duan, Guangren
2016-09-01
This paper describes the robust H∞ filtering analysis and the synthesis of general non-linear stochastic systems with finite settling time. We assume that the system dynamic is modelled by Itô-type stochastic differential equations of which the state and the measurement are corrupted by state-dependent noises and exogenous disturbances. A sufficient condition for non-linear stochastic systems to have the finite-time H∞ performance with gain less than or equal to a prescribed positive number is established in terms of a certain Hamilton-Jacobi inequality. Based on this result, the existence of a finite-time H∞ filter is given for the general non-linear stochastic system by a second-order non-linear partial differential inequality, and the filter can be obtained by solving this inequality. The effectiveness of the obtained result is illustrated by a numerical example.
Copula-based analysis of rhythm
NASA Astrophysics Data System (ADS)
García, J. E.; González-López, V. A.; Viola, M. L. Lanfredi
2016-06-01
In this paper we establish stochastic profiles of the rhythm for three languages: English, Japanese and Spanish. We model the increase or decrease of the acoustical energy, collected into three bands coming from the acoustic signal. The number of parameters needed to specify a discrete multivariate Markov chain grows exponentially with the order and dimension of the chain. In this case the size of the database is not large enough for a consistent estimation of the model. We apply a strategy to estimate a multivariate process with an order greater than the order achieved using standard procedures. The new strategy consist on obtaining a partition of the state space which is constructed from a combination of the partitions corresponding to the three marginal processes, one for each band of energy, and the partition coming from to the multivariate Markov chain. Then, all the partitions are linked using a copula, in order to estimate the transition probabilities.
Pritikin, Joshua N; Brick, Timothy R; Neale, Michael C
2018-04-01
A novel method for the maximum likelihood estimation of structural equation models (SEM) with both ordinal and continuous indicators is introduced using a flexible multivariate probit model for the ordinal indicators. A full information approach ensures unbiased estimates for data missing at random. Exceeding the capability of prior methods, up to 13 ordinal variables can be included before integration time increases beyond 1 s per row. The method relies on the axiom of conditional probability to split apart the distribution of continuous and ordinal variables. Due to the symmetry of the axiom, two similar methods are available. A simulation study provides evidence that the two similar approaches offer equal accuracy. A further simulation is used to develop a heuristic to automatically select the most computationally efficient approach. Joint ordinal continuous SEM is implemented in OpenMx, free and open-source software.
Energy-optimal path planning by stochastic dynamically orthogonal level-set optimization
NASA Astrophysics Data System (ADS)
Subramani, Deepak N.; Lermusiaux, Pierre F. J.
2016-04-01
A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. Based on partial differential equations, the methodology rigorously leverages the level-set equation that governs time-optimal reachability fronts for a given relative vehicle-speed function. To set up the energy optimization, the relative vehicle-speed and headings are considered to be stochastic and new stochastic Dynamically Orthogonal (DO) level-set equations are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. Numerical schemes to solve the reduced stochastic DO level-set equations are obtained, and accuracy and efficiency considerations are discussed. These reduced equations are first shown to be efficient at solving the governing stochastic level-sets, in part by comparisons with direct Monte Carlo simulations. To validate the methodology and illustrate its accuracy, comparisons with semi-analytical energy-optimal path solutions are then completed. In particular, we consider the energy-optimal crossing of a canonical steady front and set up its semi-analytical solution using a energy-time nested nonlinear double-optimization scheme. We then showcase the inner workings and nuances of the energy-optimal path planning, considering different mission scenarios. Finally, we study and discuss results of energy-optimal missions in a wind-driven barotropic quasi-geostrophic double-gyre ocean circulation.
Occurrence analysis of daily rainfalls by using non-homogeneous Poissonian processes
NASA Astrophysics Data System (ADS)
Sirangelo, B.; Ferrari, E.; de Luca, D. L.
2009-09-01
In recent years several temporally homogeneous stochastic models have been applied to describe the rainfall process. In particular stochastic analysis of daily rainfall time series may contribute to explain the statistic features of the temporal variability related to the phenomenon. Due to the evident periodicity of the physical process, these models have to be used only to short temporal intervals in which occurrences and intensities of rainfalls can be considered reliably homogeneous. To this aim, occurrences of daily rainfalls can be considered as a stationary stochastic process in monthly periods. In this context point process models are widely used for at-site analysis of daily rainfall occurrence; they are continuous time series models, and are able to explain intermittent feature of rainfalls and simulate interstorm periods. With a different approach, periodic features of daily rainfalls can be interpreted by using a temporally non-homogeneous stochastic model characterized by parameters expressed as continuous functions in the time. In this case, great attention has to be paid to the parsimony of the models, as regards the number of parameters and the bias introduced into the generation of synthetic series, and to the influence of threshold values in extracting peak storm database from recorded daily rainfall heights. In this work, a stochastic model based on a non-homogeneous Poisson process, characterized by a time-dependent intensity of rainfall occurrence, is employed to explain seasonal effects of daily rainfalls exceeding prefixed threshold values. In particular, variation of rainfall occurrence intensity ? (t) is modelled by using Fourier series analysis, in which the non-homogeneous process is transformed into a homogeneous and unit one through a proper transformation of time domain, and the choice of the minimum number of harmonics is evaluated applying available statistical tests. The procedure is applied to a dataset of rain gauges located in different geographical zones of Mediterranean area. Time series have been selected on the basis of the availability of at least 50 years in the time period 1921-1985, chosen as calibration period, and of all the years of observation in the subsequent validation period 1986-2005, whose daily rainfall occurrence process variability is under hypothesis. Firstly, for each time series and for each fixed threshold value, parameters estimation of the non-homogeneous Poisson model is carried out, referred to calibration period. As second step, in order to test the hypothesis that daily rainfall occurrence process preserves the same behaviour in more recent time periods, the intensity distribution evaluated for calibration period is also adopted for the validation period. Starting from this and using a Monte Carlo approach, 1000 synthetic generations of daily rainfall occurrences, of length equal to validation period, have been carried out, and for each simulation sample ?(t) has been evaluated. This procedure is adopted because of the complexity of determining analytical statistical confidence limits referred to the sample intensity ?(t). Finally, sample intensity, theoretical function of the calibration period and 95% statistical band, evaluated by Monte Carlo approach, are matching, together with considering, for each threshold value, the mean square error (MSE) between the theoretical ?(t) and the sample one of recorded data, and his correspondent 95% one tail statistical band, estimated from the MSE values between the sample ?(t) of each synthetic series and the theoretical one. The results obtained may be very useful in the context of the identification and calibration of stochastic rainfall models based on historical precipitation data. Further applications of the non-homogeneous Poisson model will concern the joint analyses of the storm occurrence process with the rainfall height marks, interpreted by using a temporally homogeneous model in proper sub-year intervals.
Stochastic simulations on a model of circadian rhythm generation.
Miura, Shigehiro; Shimokawa, Tetsuya; Nomura, Taishin
2008-01-01
Biological phenomena are often modeled by differential equations, where states of a model system are described by continuous real values. When we consider concentrations of molecules as dynamical variables for a set of biochemical reactions, we implicitly assume that numbers of the molecules are large enough so that their changes can be regarded as continuous and they are described deterministically. However, for a system with small numbers of molecules, changes in their numbers are apparently discrete and molecular noises become significant. In such cases, models with deterministic differential equations may be inappropriate, and the reactions must be described by stochastic equations. In this study, we focus a clock gene expression for a circadian rhythm generation, which is known as a system involving small numbers of molecules. Thus it is appropriate for the system to be modeled by stochastic equations and analyzed by methodologies of stochastic simulations. The interlocked feedback model proposed by Ueda et al. as a set of deterministic ordinary differential equations provides a basis of our analyses. We apply two stochastic simulation methods, namely Gillespie's direct method and the stochastic differential equation method also by Gillespie, to the interlocked feedback model. To this end, we first reformulated the original differential equations back to elementary chemical reactions. With those reactions, we simulate and analyze the dynamics of the model using two methods in order to compare them with the dynamics obtained from the original deterministic model and to characterize dynamics how they depend on the simulation methodologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Fengbin, E-mail: fblu@amss.ac.cn
This paper proposes a new time-varying coefficient vector autoregressions (VAR) model, in which the coefficient is a linear function of dynamic lagged correlation. The proposed model allows for flexibility in choices of dynamic correlation models (e.g. dynamic conditional correlation generalized autoregressive conditional heteroskedasticity (GARCH) models, Markov-switching GARCH models and multivariate stochastic volatility models), which indicates that it can describe many types of time-varying causal effects. Time-varying causal relations between West Texas Intermediate (WTI) crude oil and the US Standard and Poor’s 500 (S&P 500) stock markets are examined by the proposed model. The empirical results show that their causal relationsmore » evolve with time and display complex characters. Both positive and negative causal effects of the WTI on the S&P 500 in the subperiods have been found and confirmed by the traditional VAR models. Similar results have been obtained in the causal effects of S&P 500 on WTI. In addition, the proposed model outperforms the traditional VAR model.« less
Lu, Fengbin; Qiao, Han; Wang, Shouyang; Lai, Kin Keung; Li, Yuze
2017-01-01
This paper proposes a new time-varying coefficient vector autoregressions (VAR) model, in which the coefficient is a linear function of dynamic lagged correlation. The proposed model allows for flexibility in choices of dynamic correlation models (e.g. dynamic conditional correlation generalized autoregressive conditional heteroskedasticity (GARCH) models, Markov-switching GARCH models and multivariate stochastic volatility models), which indicates that it can describe many types of time-varying causal effects. Time-varying causal relations between West Texas Intermediate (WTI) crude oil and the US Standard and Poor's 500 (S&P 500) stock markets are examined by the proposed model. The empirical results show that their causal relations evolve with time and display complex characters. Both positive and negative causal effects of the WTI on the S&P 500 in the subperiods have been found and confirmed by the traditional VAR models. Similar results have been obtained in the causal effects of S&P 500 on WTI. In addition, the proposed model outperforms the traditional VAR model. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bäumer, Richard; Terrill, Richard; Wollnack, Simon; Werner, Herbert; Starossek, Uwe
2018-01-01
The twin rotor damper (TRD), an active mass damper, uses the centrifugal forces of two eccentrically rotating control masses. In the continuous rotation mode, the preferred mode of operation, the two eccentric control masses rotate with a constant angular velocity about two parallel axes, creating, under further operational constraints, a harmonic control force in a single direction. In previous theoretical work, it was shown that this mode of operation is effective for the damping of large, harmonic vibrations of a single degree of freedom (SDOF) oscillator. In this paper, the SDOF oscillator is assumed to be affected by a stochastic excitation force and consequently responds with several frequencies. Therefore, the TRD must deviate from the continuous rotation mode to ensure the anti-phasing between the harmonic control force of the TRD and the velocity of the SDOF oscillator. It is found that the required deviation from the continuous rotation mode increases with lower vibration amplitude. Therefore, an operation of the TRD in the continuous rotation mode is no longer efficient below a specific vibration-amplitude threshold. To additionally dampen vibrations below this threshold, the TRD can switch to another, more energy-consuming mode of operation, the swinging mode in which both control masses oscillate about certain angular positions. A power-efficient control algorithm is presented which uses the continuous rotation mode for large vibrations and the swinging mode for small vibrations. To validate the control algorithm, numerical and experimental investigations are performed for a single degree of freedom oscillator under stochastic excitation. Using both modes of operation, it is shown that the control algorithm is effective for the cases of free and stochastically forced vibrations of arbitrary amplitude.
A multi-site stochastic weather generator of daily precipitation and temperature
USDA-ARS?s Scientific Manuscript database
Stochastic weather generators are used to generate time series of climate variables that have statistical properties similar to those of observed data. Most stochastic weather generators work for a single site, and can only generate climate data at a single point, or independent time series at sever...
Leander, Jacob; Lundh, Torbjörn; Jirstrand, Mats
2014-05-01
In this paper we consider the problem of estimating parameters in ordinary differential equations given discrete time experimental data. The impact of going from an ordinary to a stochastic differential equation setting is investigated as a tool to overcome the problem of local minima in the objective function. Using two different models, it is demonstrated that by allowing noise in the underlying model itself, the objective functions to be minimized in the parameter estimation procedures are regularized in the sense that the number of local minima is reduced and better convergence is achieved. The advantage of using stochastic differential equations is that the actual states in the model are predicted from data and this will allow the prediction to stay close to data even when the parameters in the model is incorrect. The extended Kalman filter is used as a state estimator and sensitivity equations are provided to give an accurate calculation of the gradient of the objective function. The method is illustrated using in silico data from the FitzHugh-Nagumo model for excitable media and the Lotka-Volterra predator-prey system. The proposed method performs well on the models considered, and is able to regularize the objective function in both models. This leads to parameter estimation problems with fewer local minima which can be solved by efficient gradient-based methods. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horowitz, Jordan M., E-mail: jordan.horowitz@umb.edu
The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochasticmore » thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.« less
Agent based reasoning for the non-linear stochastic models of long-range memory
NASA Astrophysics Data System (ADS)
Kononovicius, A.; Gontis, V.
2012-02-01
We extend Kirman's model by introducing variable event time scale. The proposed flexible time scale is equivalent to the variable trading activity observed in financial markets. Stochastic version of the extended Kirman's agent based model is compared to the non-linear stochastic models of long-range memory in financial markets. The agent based model providing matching macroscopic description serves as a microscopic reasoning of the earlier proposed stochastic model exhibiting power law statistics.
Cao, Boqiang; Zhang, Qimin; Ye, Ming
2016-11-29
We present a mean-square exponential stability analysis for impulsive stochastic genetic regulatory networks (GRNs) with time-varying delays and reaction-diffusion driven by fractional Brownian motion (fBm). By constructing a Lyapunov functional and using linear matrix inequality for stochastic analysis we derive sufficient conditions to guarantee the exponential stability of the stochastic model of impulsive GRNs in the mean-square sense. Meanwhile, the corresponding results are obtained for the GRNs with constant time delays and standard Brownian motion. Finally, an example is presented to illustrate our results of the mean-square exponential stability analysis.
Review of stochastic hybrid systems with applications in biological systems modeling and analysis.
Li, Xiangfang; Omotere, Oluwaseyi; Qian, Lijun; Dougherty, Edward R
2017-12-01
Stochastic hybrid systems (SHS) have attracted a lot of research interests in recent years. In this paper, we review some of the recent applications of SHS to biological systems modeling and analysis. Due to the nature of molecular interactions, many biological processes can be conveniently described as a mixture of continuous and discrete phenomena employing SHS models. With the advancement of SHS theory, it is expected that insights can be obtained about biological processes such as drug effects on gene regulation. Furthermore, combining with advanced experimental methods, in silico simulations using SHS modeling techniques can be carried out for massive and rapid verification or falsification of biological hypotheses. The hope is to substitute costly and time-consuming in vitro or in vivo experiments or provide guidance for those experiments and generate better hypotheses.
Li, Michael; Dushoff, Jonathan; Bolker, Benjamin M
2018-07-01
Simple mechanistic epidemic models are widely used for forecasting and parameter estimation of infectious diseases based on noisy case reporting data. Despite the widespread application of models to emerging infectious diseases, we know little about the comparative performance of standard computational-statistical frameworks in these contexts. Here we build a simple stochastic, discrete-time, discrete-state epidemic model with both process and observation error and use it to characterize the effectiveness of different flavours of Bayesian Markov chain Monte Carlo (MCMC) techniques. We use fits to simulated data, where parameters (and future behaviour) are known, to explore the limitations of different platforms and quantify parameter estimation accuracy, forecasting accuracy, and computational efficiency across combinations of modeling decisions (e.g. discrete vs. continuous latent states, levels of stochasticity) and computational platforms (JAGS, NIMBLE, Stan).
Stochastic Model of Seasonal Runoff Forecasts
NASA Astrophysics Data System (ADS)
Krzysztofowicz, Roman; Watada, Leslie M.
1986-03-01
Each year the National Weather Service and the Soil Conservation Service issue a monthly sequence of five (or six) categorical forecasts of the seasonal snowmelt runoff volume. To describe uncertainties in these forecasts for the purposes of optimal decision making, a stochastic model is formulated. It is a discrete-time, finite, continuous-space, nonstationary Markov process. Posterior densities of the actual runoff conditional upon a forecast, and transition densities of forecasts are obtained from a Bayesian information processor. Parametric densities are derived for the process with a normal prior density of the runoff and a linear model of the forecast error. The structure of the model and the estimation procedure are motivated by analyses of forecast records from five stations in the Snake River basin, from the period 1971-1983. The advantages of supplementing the current forecasting scheme with a Bayesian analysis are discussed.
Stochastic simulation of multiscale complex systems with PISKaS: A rule-based approach.
Perez-Acle, Tomas; Fuenzalida, Ignacio; Martin, Alberto J M; Santibañez, Rodrigo; Avaria, Rodrigo; Bernardin, Alejandro; Bustos, Alvaro M; Garrido, Daniel; Dushoff, Jonathan; Liu, James H
2018-03-29
Computational simulation is a widely employed methodology to study the dynamic behavior of complex systems. Although common approaches are based either on ordinary differential equations or stochastic differential equations, these techniques make several assumptions which, when it comes to biological processes, could often lead to unrealistic models. Among others, model approaches based on differential equations entangle kinetics and causality, failing when complexity increases, separating knowledge from models, and assuming that the average behavior of the population encompasses any individual deviation. To overcome these limitations, simulations based on the Stochastic Simulation Algorithm (SSA) appear as a suitable approach to model complex biological systems. In this work, we review three different models executed in PISKaS: a rule-based framework to produce multiscale stochastic simulations of complex systems. These models span multiple time and spatial scales ranging from gene regulation up to Game Theory. In the first example, we describe a model of the core regulatory network of gene expression in Escherichia coli highlighting the continuous model improvement capacities of PISKaS. The second example describes a hypothetical outbreak of the Ebola virus occurring in a compartmentalized environment resembling cities and highways. Finally, in the last example, we illustrate a stochastic model for the prisoner's dilemma; a common approach from social sciences describing complex interactions involving trust within human populations. As whole, these models demonstrate the capabilities of PISKaS providing fertile scenarios where to explore the dynamics of complex systems. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Buesing, Lars; Bill, Johannes; Nessler, Bernhard; Maass, Wolfgang
2011-01-01
The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by sampling, which can explain a large number of macroscopic experimental data in neuroscience and cognitive science. But it has turned out to be surprisingly difficult to create a link between these abstract models for stochastic computations and more detailed models of the dynamics of networks of spiking neurons. Here we create such a link and show that under some conditions the stochastic firing activity of networks of spiking neurons can be interpreted as probabilistic inference via Markov chain Monte Carlo (MCMC) sampling. Since common methods for MCMC sampling in distributed systems, such as Gibbs sampling, are inconsistent with the dynamics of spiking neurons, we introduce a different approach based on non-reversible Markov chains that is able to reflect inherent temporal processes of spiking neuronal activity through a suitable choice of random variables. We propose a neural network model and show by a rigorous theoretical analysis that its neural activity implements MCMC sampling of a given distribution, both for the case of discrete and continuous time. This provides a step towards closing the gap between abstract functional models of cortical computation and more detailed models of networks of spiking neurons. PMID:22096452
A new order splitting model with stochastic lead times for deterioration items
NASA Astrophysics Data System (ADS)
Sazvar, Zeinab; Akbari Jokar, Mohammad Reza; Baboli, Armand
2014-09-01
In unreliable supply environments, the strategy of pooling lead time risks by splitting replenishment orders among multiple suppliers simultaneously is an attractive sourcing policy that has captured the attention of academic researchers and corporate managers alike. While various assumptions are considered in the models developed, researchers tend to overlook an important inventory category in order splitting models: deteriorating items. In this paper, we study an order splitting policy for a retailer that sells a deteriorating product. The inventory system is modelled as a continuous review system (s, Q) under stochastic lead time. Demand rate per unit time is assumed to be constant over an infinite planning horizon and shortages are backordered completely. We develop two inventory models. In the first model, it is assumed that all the requirements are supplied by only one source, whereas in the second, two suppliers are available. We use sensitivity analysis to determine the situations in which each sourcing policy is the most economic. We then study a real case from the European pharmaceutical industry to demonstrate the applicability and effectiveness of the proposed models. Finally, more promising directions are suggested for future research.
Robustness properties of discrete time regulators, LOG regulators and hybrid systems
NASA Technical Reports Server (NTRS)
Stein, G.; Athans, M.
1979-01-01
Robustness properites of sample-data LQ regulators are derived which show that these regulators have fundamentally inferior uncertainty tolerances when compared to their continuous-time counterparts. Results are also presented in stability theory, multivariable frequency domain analysis, LQG robustness, and mathematical representations of hybrid systems.
Stochastic Modelling, Analysis, and Simulations of the Solar Cycle Dynamic Process
NASA Astrophysics Data System (ADS)
Turner, Douglas C.; Ladde, Gangaram S.
2018-03-01
Analytical solutions, discretization schemes and simulation results are presented for the time delay deterministic differential equation model of the solar dynamo presented by Wilmot-Smith et al. In addition, this model is extended under stochastic Gaussian white noise parametric fluctuations. The introduction of stochastic fluctuations incorporates variables affecting the dynamo process in the solar interior, estimation error of parameters, and uncertainty of the α-effect mechanism. Simulation results are presented and analyzed to exhibit the effects of stochastic parametric volatility-dependent perturbations. The results generalize and extend the work of Hazra et al. In fact, some of these results exhibit the oscillatory dynamic behavior generated by the stochastic parametric additative perturbations in the absence of time delay. In addition, the simulation results of the modified stochastic models influence the change in behavior of the very recently developed stochastic model of Hazra et al.
NASA Astrophysics Data System (ADS)
Herath, Narmada; Del Vecchio, Domitilla
2018-03-01
Biochemical reaction networks often involve reactions that take place on different time scales, giving rise to "slow" and "fast" system variables. This property is widely used in the analysis of systems to obtain dynamical models with reduced dimensions. In this paper, we consider stochastic dynamics of biochemical reaction networks modeled using the Linear Noise Approximation (LNA). Under time-scale separation conditions, we obtain a reduced-order LNA that approximates both the slow and fast variables in the system. We mathematically prove that the first and second moments of this reduced-order model converge to those of the full system as the time-scale separation becomes large. These mathematical results, in particular, provide a rigorous justification to the accuracy of LNA models derived using the stochastic total quasi-steady state approximation (tQSSA). Since, in contrast to the stochastic tQSSA, our reduced-order model also provides approximations for the fast variable stochastic properties, we term our method the "stochastic tQSSA+". Finally, we demonstrate the application of our approach on two biochemical network motifs found in gene-regulatory and signal transduction networks.
A climate-based multivariate extreme emulator of met-ocean-hydrological events for coastal flooding
NASA Astrophysics Data System (ADS)
Camus, Paula; Rueda, Ana; Mendez, Fernando J.; Tomas, Antonio; Del Jesus, Manuel; Losada, Iñigo J.
2015-04-01
Atmosphere-ocean general circulation models (AOGCMs) are useful to analyze large-scale climate variability (long-term historical periods, future climate projections). However, applications such as coastal flood modeling require climate information at finer scale. Besides, flooding events depend on multiple climate conditions: waves, surge levels from the open-ocean and river discharge caused by precipitation. Therefore, a multivariate statistical downscaling approach is adopted to reproduce relationships between variables and due to its low computational cost. The proposed method can be considered as a hybrid approach which combines a probabilistic weather type downscaling model with a stochastic weather generator component. Predictand distributions are reproduced modeling the relationship with AOGCM predictors based on a physical division in weather types (Camus et al., 2012). The multivariate dependence structure of the predictand (extreme events) is introduced linking the independent marginal distributions of the variables by a probabilistic copula regression (Ben Ayala et al., 2014). This hybrid approach is applied for the downscaling of AOGCM data to daily precipitation and maximum significant wave height and storm-surge in different locations along the Spanish coast. Reanalysis data is used to assess the proposed method. A commonly predictor for the three variables involved is classified using a regression-guided clustering algorithm. The most appropriate statistical model (general extreme value distribution, pareto distribution) for daily conditions is fitted. Stochastic simulation of the present climate is performed obtaining the set of hydraulic boundary conditions needed for high resolution coastal flood modeling. References: Camus, P., Menéndez, M., Méndez, F.J., Izaguirre, C., Espejo, A., Cánovas, V., Pérez, J., Rueda, A., Losada, I.J., Medina, R. (2014b). A weather-type statistical downscaling framework for ocean wave climate. Journal of Geophysical Research, doi: 10.1002/2014JC010141. Ben Ayala, M.A., Chebana, F., Ouarda, T.B.M.J. (2014). Probabilistic Gaussian Copula Regression Model for Multisite and Multivariable Downscaling, Journal of Climate, 27, 3331-3347.
Estimation and Control for Linear Systems with Additive Cauchy Noise
2013-12-17
man & Hall, New York, 1994. [11] J. L. Speyer and W. H. Chung, Stochastic Processes, Estimation, and Control, SIAM, 2008. [12] Nassim N. Taleb ...Gaussian control algorithms. 18 4 References [1] N. N. Taleb . The Black Swan: The Impact of the Highly Improbable...the multivariable system. The estimator was then evaluated numerically for a third-order example. REFERENCES [1] N. N. Taleb , The Black Swan: The
Discrete, continuous, and stochastic models of protein sorting in the Golgi apparatus
Gong, Haijun; Guo, Yusong; Linstedt, Adam
2017-01-01
The Golgi apparatus plays a central role in processing and sorting proteins and lipids in eukaryotic cells. Golgi compartments constantly exchange material with each other and with other cellular components, allowing them to maintain and reform distinct identities despite dramatic changes in structure and size during cell division, development, and osmotic stress. We have developed three minimal models of membrane and protein exchange in the Golgi—a discrete, stochastic model, a continuous ordinary differential equation model, and a continuous stochastic differential equation model—each based on two fundamental mechanisms: vesicle-coat-mediated selective concentration of cargoes and soluble N-ethylmaleimide-sensitive factor attachment protein receptor SNARE proteins during vesicle formation and SNARE-mediated selective fusion of vesicles. By exploring where the models differ, we hope to discover whether the discrete, stochastic nature of vesicle-mediated transport is likely to have appreciable functional consequences for the Golgi. All three models show similar ability to restore and maintain distinct identities over broad parameter ranges. They diverge, however, in conditions corresponding to collapse and reassembly of the Golgi. The results suggest that a continuum model provides a good description of Golgi maintenance but that considering the discrete nature of vesicle-based traffic is important to understanding assembly and disassembly of the Golgi. Experimental analysis validates a prediction of the models that altering guanine nucleotide exchange factor expression levels will modulate Golgi size. PMID:20365406
High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics
Carvalho, Carlos M.; Chang, Jeffrey; Lucas, Joseph E.; Nevins, Joseph R.; Wang, Quanli; West, Mike
2010-01-01
We describe studies in molecular profiling and biological pathway analysis that use sparse latent factor and regression models for microarray gene expression data. We discuss breast cancer applications and key aspects of the modeling and computational methodology. Our case studies aim to investigate and characterize heterogeneity of structure related to specific oncogenic pathways, as well as links between aggregate patterns in gene expression profiles and clinical biomarkers. Based on the metaphor of statistically derived “factors” as representing biological “subpathway” structure, we explore the decomposition of fitted sparse factor models into pathway subcomponents and investigate how these components overlay multiple aspects of known biological activity. Our methodology is based on sparsity modeling of multivariate regression, ANOVA, and latent factor models, as well as a class of models that combines all components. Hierarchical sparsity priors address questions of dimension reduction and multiple comparisons, as well as scalability of the methodology. The models include practically relevant non-Gaussian/nonparametric components for latent structure, underlying often quite complex non-Gaussianity in multivariate expression patterns. Model search and fitting are addressed through stochastic simulation and evolutionary stochastic search methods that are exemplified in the oncogenic pathway studies. Supplementary supporting material provides more details of the applications, as well as examples of the use of freely available software tools for implementing the methodology. PMID:21218139
Capabilities of stochastic rainfall models as data providers for urban hydrology
NASA Astrophysics Data System (ADS)
Haberlandt, Uwe
2017-04-01
For planning of urban drainage systems using hydrological models, long, continuous precipitation series with high temporal resolution are needed. Since observed time series are often too short or not available everywhere, the use of synthetic precipitation is a common alternative. This contribution compares three precipitation models regarding their suitability to provide 5 minute continuous rainfall time series for a) sizing of drainage networks for urban flood protection and b) dimensioning of combined sewage systems for pollution reduction. The rainfall models are a parametric stochastic model (Haberlandt et al., 2008), a non-parametric probabilistic approach (Bárdossy, 1998) and a stochastic downscaling of dynamically simulated rainfall (Berg et al., 2013); all models are operated both as single site and multi-site generators. The models are applied with regionalised parameters assuming that there is no station at the target location. Rainfall and discharge characteristics are utilised for evaluation of the model performance. The simulation results are compared against results obtained from reference rainfall stations not used for parameter estimation. The rainfall simulations are carried out for the federal states of Baden-Württemberg and Lower Saxony in Germany and the discharge simulations for the drainage networks of the cities of Hamburg, Brunswick and Freiburg. Altogether, the results show comparable simulation performance for the three models, good capabilities for single site simulations but low skills for multi-site simulations. Remarkably, there is no significant difference in simulation performance comparing the tasks flood protection with pollution reduction, so the models are finally able to simulate both the extremes and the long term characteristics of rainfall equally well. Bárdossy, A., 1998. Generating precipitation time series using simulated annealing. Wat. Resour. Res., 34(7): 1737-1744. Berg, P., Wagner, S., Kunstmann, H., Schädler, G., 2013. High resolution regional climate model simulations for Germany: part I — validation. Climate Dynamics, 40(1): 401-414. Haberlandt, U., Ebner von Eschenbach, A.-D., Buchwald, I., 2008. A space-time hybrid hourly rainfall model for derived flood frequency analysis. Hydrol. Earth Syst. Sci., 12: 1353-1367.
About the discrete-continuous nature of a hematopoiesis model for Chronic Myeloid Leukemia.
Gaudiano, Marcos E; Lenaerts, Tom; Pacheco, Jorge M
2016-12-01
Blood of mammals is composed of a variety of cells suspended in a fluid medium known as plasma. Hematopoiesis is the biological process of birth, replication and differentiation of blood cells. Despite of being essentially a stochastic phenomenon followed by a huge number of discrete entities, blood formation has naturally an associated continuous dynamics, because the cellular populations can - on average - easily be described by (e.g.) differential equations. This deterministic dynamics by no means contemplates some important stochastic aspects related to abnormal hematopoiesis, that are especially significant for studying certain blood cancer deceases. For instance, by mere stochastic competition against the normal cells, leukemic cells sometimes do not reach the population thereshold needed to kill the organism. Of course, a pure discrete model able to follow the stochastic paths of billons of cells is computationally impossible. In order to avoid this difficulty, we seek a trade-off between the computationally feasible and the biologically realistic, deriving an equation able to size conveniently both the discrete and continuous parts of a model for hematopoiesis in terrestrial mammals, in the context of Chronic Myeloid Leukemia. Assuming the cancer is originated from a single stem cell inside of the bone marrow, we also deduce a theoretical formula for the probability of non-diagnosis as a function of the mammal average adult mass. In addition, this work cellular dynamics analysis may shed light on understanding Peto's paradox, which is shown here as an emergent property of the discrete-continuous nature of the system. Copyright © 2016 Elsevier Inc. All rights reserved.
Stochastic Approach to Determine CO2 Hydrate Induction Time in Clay Mineral Suspensions
NASA Astrophysics Data System (ADS)
Lee, K.; Lee, S.; Lee, W.
2008-12-01
A large number of induction time data for carbon dioxide hydrate formation were obtained from a batch reactor consisting of four independent reaction cells. Using resistance temperature detector(RTD)s and a digital microscope, we successfully monitored the whole process of hydrate formation (i.e., nucleation and crystal growth) and detected the induction time. The experiments were carried out in kaolinite and montmorillonite suspensions at temperatures between 274 and 277 K and pressures ranging from 3.0 to 4.0 MPa. Each set of data was analyzed beforehand whether to be treated by stochastic manner or not. Geochemical factors potentially influencing the hydrate induction time under different experimental conditions were investigated by stochastic analyses. We observed that clay mineral type, pressure, and temperature significantly affect the stochastic behavior of the induction times for CO2 hydrate formation in this study. The hydrate formation kinetics along with stochastic analyses can provide basic understanding for CO2 hydrate storage in deep-sea sediment and geologic formation, securing its stability under the environments.
Murakami, Masayoshi; Shteingart, Hanan; Loewenstein, Yonatan; Mainen, Zachary F
2017-05-17
The selection and timing of actions are subject to determinate influences such as sensory cues and internal state as well as to effectively stochastic variability. Although stochastic choice mechanisms are assumed by many theoretical models, their origin and mechanisms remain poorly understood. Here we investigated this issue by studying how neural circuits in the frontal cortex determine action timing in rats performing a waiting task. Electrophysiological recordings from two regions necessary for this behavior, medial prefrontal cortex (mPFC) and secondary motor cortex (M2), revealed an unexpected functional dissociation. Both areas encoded deterministic biases in action timing, but only M2 neurons reflected stochastic trial-by-trial fluctuations. This differential coding was reflected in distinct timescales of neural dynamics in the two frontal cortical areas. These results suggest a two-stage model in which stochastic components of action timing decisions are injected by circuits downstream of those carrying deterministic bias signals. Copyright © 2017 Elsevier Inc. All rights reserved.
The continuous time random walk, still trendy: fifty-year history, state of art and outlook
NASA Astrophysics Data System (ADS)
Kutner, Ryszard; Masoliver, Jaume
2017-03-01
In this article we demonstrate the very inspiring role of the continuous-time random walk (CTRW) formalism, the numerous modifications permitted by its flexibility, its various applications, and the promising perspectives in the various fields of knowledge. A short review of significant achievements and possibilities is given. However, this review is still far from completeness. We focused on a pivotal role of CTRWs mainly in anomalous stochastic processes discovered in physics and beyond. This article plays the role of an extended announcement of the Eur. Phys. J. B Special Issue [
Forecasting the Relative and Cumulative Effects of Multiple Stressors on At-risk Populations
2011-08-01
Vitals (observed vital rates), Movement, Ranges, Barriers (barrier interactions), Stochasticity (a time series of stochasticity indices...Simulation Viewer are themselves stochastic . They can change each time it is run. B. 196 Analysis If multiple Census events are present in the life...30-year period. A monthly time series was generated for the 20th-century using monthly anomalies for temperature, precipitation, and percent
Stochastically gated local and occupation times of a Brownian particle
NASA Astrophysics Data System (ADS)
Bressloff, Paul C.
2017-01-01
We generalize the Feynman-Kac formula to analyze the local and occupation times of a Brownian particle moving in a stochastically gated one-dimensional domain. (i) The gated local time is defined as the amount of time spent by the particle in the neighborhood of a point in space where there is some target that only receives resources from (or detects) the particle when the gate is open; the target does not interfere with the motion of the Brownian particle. (ii) The gated occupation time is defined as the amount of time spent by the particle in the positive half of the real line, given that it can only cross the origin when a gate placed at the origin is open; in the closed state the particle is reflected. In both scenarios, the gate randomly switches between the open and closed states according to a two-state Markov process. We derive a stochastic, backward Fokker-Planck equation (FPE) for the moment-generating function of the two types of gated Brownian functional, given a particular realization of the stochastic gate, and analyze the resulting stochastic FPE using a moments method recently developed for diffusion processes in randomly switching environments. In particular, we obtain dynamical equations for the moment-generating function, averaged with respect to realizations of the stochastic gate.
White, Richard S A; Wintle, Brendan A; McHugh, Peter A; Booker, Douglas J; McIntosh, Angus R
2017-06-14
Despite growing concerns regarding increasing frequency of extreme climate events and declining population sizes, the influence of environmental stochasticity on the relationship between population carrying capacity and time-to-extinction has received little empirical attention. While time-to-extinction increases exponentially with carrying capacity in constant environments, theoretical models suggest increasing environmental stochasticity causes asymptotic scaling, thus making minimum viable carrying capacity vastly uncertain in variable environments. Using empirical estimates of environmental stochasticity in fish metapopulations, we showed that increasing environmental stochasticity resulting from extreme droughts was insufficient to create asymptotic scaling of time-to-extinction with carrying capacity in local populations as predicted by theory. Local time-to-extinction increased with carrying capacity due to declining sensitivity to demographic stochasticity, and the slope of this relationship declined significantly as environmental stochasticity increased. However, recent 1 in 25 yr extreme droughts were insufficient to extirpate populations with large carrying capacity. Consequently, large populations may be more resilient to environmental stochasticity than previously thought. The lack of carrying capacity-related asymptotes in persistence under extreme climate variability reveals how small populations affected by habitat loss or overharvesting, may be disproportionately threatened by increases in extreme climate events with global warming. © 2017 The Author(s).
van Rosmalen, Joost; Toy, Mehlika; O'Mahony, James F
2013-08-01
Markov models are a simple and powerful tool for analyzing the health and economic effects of health care interventions. These models are usually evaluated in discrete time using cohort analysis. The use of discrete time assumes that changes in health states occur only at the end of a cycle period. Discrete-time Markov models only approximate the process of disease progression, as clinical events typically occur in continuous time. The approximation can yield biased cost-effectiveness estimates for Markov models with long cycle periods and if no half-cycle correction is made. The purpose of this article is to present an overview of methods for evaluating Markov models in continuous time. These methods use mathematical results from stochastic process theory and control theory. The methods are illustrated using an applied example on the cost-effectiveness of antiviral therapy for chronic hepatitis B. The main result is a mathematical solution for the expected time spent in each state in a continuous-time Markov model. It is shown how this solution can account for age-dependent transition rates and discounting of costs and health effects, and how the concept of tunnel states can be used to account for transition rates that depend on the time spent in a state. The applied example shows that the continuous-time model yields more accurate results than the discrete-time model but does not require much computation time and is easily implemented. In conclusion, continuous-time Markov models are a feasible alternative to cohort analysis and can offer several theoretical and practical advantages.
Stochastic Education in Childhood: Examining the Learning of Teachers and Students
ERIC Educational Resources Information Center
de Souza, Antonio Carlos; Lopes, Celi Espasandin; de Oliveira, Débora
2014-01-01
This paper presents discussions on stochastic education in early childhood, based on two doctoral research projects carried out with groups of preschool teachers from public schools in the Brazilian cities of Suzano and São Paulo who were participating in a continuing education program. The objective is to reflect on the analysis of two didactic…
Anomaly detection of microstructural defects in continuous fiber reinforced composites
NASA Astrophysics Data System (ADS)
Bricker, Stephen; Simmons, J. P.; Przybyla, Craig; Hardie, Russell
2015-03-01
Ceramic matrix composites (CMC) with continuous fiber reinforcements have the potential to enable the next generation of high speed hypersonic vehicles and/or significant improvements in gas turbine engine performance due to their exhibited toughness when subjected to high mechanical loads at extreme temperatures (2200F+). Reinforced fiber composites (RFC) provide increased fracture toughness, crack growth resistance, and strength, though little is known about how stochastic variation and imperfections in the material effect material properties. In this work, tools are developed for quantifying anomalies within the microstructure at several scales. The detection and characterization of anomalous microstructure is a critical step in linking production techniques to properties, as well as in accurate material simulation and property prediction for the integrated computation materials engineering (ICME) of RFC based components. It is desired to find statistical outliers for any number of material characteristics such as fibers, fiber coatings, and pores. Here, fiber orientation, or `velocity', and `velocity' gradient are developed and examined for anomalous behavior. Categorizing anomalous behavior in the CMC is approached by multivariate Gaussian mixture modeling. A Gaussian mixture is employed to estimate the probability density function (PDF) of the features in question, and anomalies are classified by their likelihood of belonging to the statistical normal behavior for that feature.
Computational singular perturbation analysis of stochastic chemical systems with stiffness
Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; ...
2017-01-25
Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to notmore » only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. Furthermore, the algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.« less
1986-10-01
35 ~- 2.3.12. Remark: Let X. Y be the processes given in the example :after Lemma 2.3.3. Take the same probability space as in that example and...z(s) =zjO) + ’ A zis).1als) + ’~ zsMs 0O<s<t 0O<s<t 0<~ Fix n>1I; then if s Is a point of increase of a, (that is. if Aa(s)=Al). then ri(s) = q(s...Absolute Continuity and Singularity of Locally Absolutely Continuous Probability Distributions. I. Math USSR Sbornik Vol. 35 , No 5, 631-680. Kabanov
Mean-Potential Law in Evolutionary Games
NASA Astrophysics Data System (ADS)
Nałecz-Jawecki, Paweł; Miekisz, Jacek
2018-01-01
The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of a potential function for discrete-space stochastic systems. It is based on a correspondence between one-dimensional stochastic differential equations and random walks, which may be exact not only in the continuous limit but also in finite-state spaces. Our method is useful for computation of fixation probabilities in discrete stochastic dynamical systems with two absorbing states. We apply it to evolutionary games, formulating two simple and intuitive criteria for evolutionary stability of pure Nash equilibria in finite populations. In particular, we show that the 1 /3 law of evolutionary games, introduced by Nowak et al. [Nature, 2004], follows from a more general mean-potential law.
Efficient estimators for likelihood ratio sensitivity indices of complex stochastic dynamics.
Arampatzis, Georgios; Katsoulakis, Markos A; Rey-Bellet, Luc
2016-03-14
We demonstrate that centered likelihood ratio estimators for the sensitivity indices of complex stochastic dynamics are highly efficient with low, constant in time variance and consequently they are suitable for sensitivity analysis in long-time and steady-state regimes. These estimators rely on a new covariance formulation of the likelihood ratio that includes as a submatrix a Fisher information matrix for stochastic dynamics and can also be used for fast screening of insensitive parameters and parameter combinations. The proposed methods are applicable to broad classes of stochastic dynamics such as chemical reaction networks, Langevin-type equations and stochastic models in finance, including systems with a high dimensional parameter space and/or disparate decorrelation times between different observables. Furthermore, they are simple to implement as a standard observable in any existing simulation algorithm without additional modifications.
Efficient estimators for likelihood ratio sensitivity indices of complex stochastic dynamics
NASA Astrophysics Data System (ADS)
Arampatzis, Georgios; Katsoulakis, Markos A.; Rey-Bellet, Luc
2016-03-01
We demonstrate that centered likelihood ratio estimators for the sensitivity indices of complex stochastic dynamics are highly efficient with low, constant in time variance and consequently they are suitable for sensitivity analysis in long-time and steady-state regimes. These estimators rely on a new covariance formulation of the likelihood ratio that includes as a submatrix a Fisher information matrix for stochastic dynamics and can also be used for fast screening of insensitive parameters and parameter combinations. The proposed methods are applicable to broad classes of stochastic dynamics such as chemical reaction networks, Langevin-type equations and stochastic models in finance, including systems with a high dimensional parameter space and/or disparate decorrelation times between different observables. Furthermore, they are simple to implement as a standard observable in any existing simulation algorithm without additional modifications.
Efficient estimators for likelihood ratio sensitivity indices of complex stochastic dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arampatzis, Georgios; Katsoulakis, Markos A.; Rey-Bellet, Luc
2016-03-14
We demonstrate that centered likelihood ratio estimators for the sensitivity indices of complex stochastic dynamics are highly efficient with low, constant in time variance and consequently they are suitable for sensitivity analysis in long-time and steady-state regimes. These estimators rely on a new covariance formulation of the likelihood ratio that includes as a submatrix a Fisher information matrix for stochastic dynamics and can also be used for fast screening of insensitive parameters and parameter combinations. The proposed methods are applicable to broad classes of stochastic dynamics such as chemical reaction networks, Langevin-type equations and stochastic models in finance, including systemsmore » with a high dimensional parameter space and/or disparate decorrelation times between different observables. Furthermore, they are simple to implement as a standard observable in any existing simulation algorithm without additional modifications.« less
Bressloff, Paul C
2015-01-01
We consider applications of path-integral methods to the analysis of a stochastic hybrid model representing a network of synaptically coupled spiking neuronal populations. The state of each local population is described in terms of two stochastic variables, a continuous synaptic variable and a discrete activity variable. The synaptic variables evolve according to piecewise-deterministic dynamics describing, at the population level, synapses driven by spiking activity. The dynamical equations for the synaptic currents are only valid between jumps in spiking activity, and the latter are described by a jump Markov process whose transition rates depend on the synaptic variables. We assume a separation of time scales between fast spiking dynamics with time constant [Formula: see text] and slower synaptic dynamics with time constant τ. This naturally introduces a small positive parameter [Formula: see text], which can be used to develop various asymptotic expansions of the corresponding path-integral representation of the stochastic dynamics. First, we derive a variational principle for maximum-likelihood paths of escape from a metastable state (large deviations in the small noise limit [Formula: see text]). We then show how the path integral provides an efficient method for obtaining a diffusion approximation of the hybrid system for small ϵ. The resulting Langevin equation can be used to analyze the effects of fluctuations within the basin of attraction of a metastable state, that is, ignoring the effects of large deviations. We illustrate this by using the Langevin approximation to analyze the effects of intrinsic noise on pattern formation in a spatially structured hybrid network. In particular, we show how noise enlarges the parameter regime over which patterns occur, in an analogous fashion to PDEs. Finally, we carry out a [Formula: see text]-loop expansion of the path integral, and use this to derive corrections to voltage-based mean-field equations, analogous to the modified activity-based equations generated from a neural master equation.
Scenario generation for stochastic optimization problems via the sparse grid method
Chen, Michael; Mehrotra, Sanjay; Papp, David
2015-04-19
We study the use of sparse grids in the scenario generation (or discretization) problem in stochastic programming problems where the uncertainty is modeled using a continuous multivariate distribution. We show that, under a regularity assumption on the random function involved, the sequence of optimal objective function values of the sparse grid approximations converges to the true optimal objective function values as the number of scenarios increases. The rate of convergence is also established. We treat separately the special case when the underlying distribution is an affine transform of a product of univariate distributions, and show how the sparse grid methodmore » can be adapted to the distribution by the use of quadrature formulas tailored to the distribution. We numerically compare the performance of the sparse grid method using different quadrature rules with classic quasi-Monte Carlo (QMC) methods, optimal rank-one lattice rules, and Monte Carlo (MC) scenario generation, using a series of utility maximization problems with up to 160 random variables. The results show that the sparse grid method is very efficient, especially if the integrand is sufficiently smooth. In such problems the sparse grid scenario generation method is found to need several orders of magnitude fewer scenarios than MC and QMC scenario generation to achieve the same accuracy. As a result, it is indicated that the method scales well with the dimension of the distribution--especially when the underlying distribution is an affine transform of a product of univariate distributions, in which case the method appears scalable to thousands of random variables.« less
Derivation and computation of discrete-delay and continuous-delay SDEs in mathematical biology.
Allen, Edward J
2014-06-01
Stochastic versions of several discrete-delay and continuous-delay differential equations, useful in mathematical biology, are derived from basic principles carefully taking into account the demographic, environmental, or physiological randomness in the dynamic processes. In particular, stochastic delay differential equation (SDDE) models are derived and studied for Nicholson's blowflies equation, Hutchinson's equation, an SIS epidemic model with delay, bacteria/phage dynamics, and glucose/insulin levels. Computational methods for approximating the SDDE models are described. Comparisons between computational solutions of the SDDEs and independently formulated Monte Carlo calculations support the accuracy of the derivations and of the computational methods.
Black-Scholes model under subordination
NASA Astrophysics Data System (ADS)
Stanislavsky, A. A.
2003-02-01
In this paper, we consider a new mathematical extension of the Black-Scholes (BS) model in which the stochastic time and stock share price evolution is described by two independent random processes. The parent process is Brownian, and the directing process is inverse to the totally skewed, strictly α-stable process. The subordinated process represents the Brownian motion indexed by an independent, continuous and increasing process. This allows us to introduce the long-term memory effects in the classical BS model.
Stochastic von Bertalanffy models, with applications to fish recruitment.
Lv, Qiming; Pitchford, Jonathan W
2007-02-21
We consider three individual-based models describing growth in stochastic environments. Stochastic differential equations (SDEs) with identical von Bertalanffy deterministic parts are formulated, with a stochastic term which decreases, remains constant, or increases with organism size, respectively. Probability density functions for hitting times are evaluated in the context of fish growth and mortality. Solving the hitting time problem analytically or numerically shows that stochasticity can have a large positive impact on fish recruitment probability. It is also demonstrated that the observed mean growth rate of surviving individuals always exceeds the mean population growth rate, which itself exceeds the growth rate of the equivalent deterministic model. The consequences of these results in more general biological situations are discussed.
Automated Flight Routing Using Stochastic Dynamic Programming
NASA Technical Reports Server (NTRS)
Ng, Hok K.; Morando, Alex; Grabbe, Shon
2010-01-01
Airspace capacity reduction due to convective weather impedes air traffic flows and causes traffic congestion. This study presents an algorithm that reroutes flights in the presence of winds, enroute convective weather, and congested airspace based on stochastic dynamic programming. A stochastic disturbance model incorporates into the reroute design process the capacity uncertainty. A trajectory-based airspace demand model is employed for calculating current and future airspace demand. The optimal routes minimize the total expected traveling time, weather incursion, and induced congestion costs. They are compared to weather-avoidance routes calculated using deterministic dynamic programming. The stochastic reroutes have smaller deviation probability than the deterministic counterpart when both reroutes have similar total flight distance. The stochastic rerouting algorithm takes into account all convective weather fields with all severity levels while the deterministic algorithm only accounts for convective weather systems exceeding a specified level of severity. When the stochastic reroutes are compared to the actual flight routes, they have similar total flight time, and both have about 1% of travel time crossing congested enroute sectors on average. The actual flight routes induce slightly less traffic congestion than the stochastic reroutes but intercept more severe convective weather.
Examining solutions to missing data in longitudinal nursing research.
Roberts, Mary B; Sullivan, Mary C; Winchester, Suzy B
2017-04-01
Longitudinal studies are highly valuable in pediatrics because they provide useful data about developmental patterns of child health and behavior over time. When data are missing, the value of the research is impacted. The study's purpose was to (1) introduce a three-step approach to assess and address missing data and (2) illustrate this approach using categorical and continuous-level variables from a longitudinal study of premature infants. A three-step approach with simulations was followed to assess the amount and pattern of missing data and to determine the most appropriate imputation method for the missing data. Patterns of missingness were Missing Completely at Random, Missing at Random, and Not Missing at Random. Missing continuous-level data were imputed using mean replacement, stochastic regression, multiple imputation, and fully conditional specification (FCS). Missing categorical-level data were imputed using last value carried forward, hot-decking, stochastic regression, and FCS. Simulations were used to evaluate these imputation methods under different patterns of missingness at different levels of missing data. The rate of missingness was 16-23% for continuous variables and 1-28% for categorical variables. FCS imputation provided the least difference in mean and standard deviation estimates for continuous measures. FCS imputation was acceptable for categorical measures. Results obtained through simulation reinforced and confirmed these findings. Significant investments are made in the collection of longitudinal data. The prudent handling of missing data can protect these investments and potentially improve the scientific information contained in pediatric longitudinal studies. © 2017 Wiley Periodicals, Inc.
Random walk, diffusion and mixing in simulations of scalar transport in fluid flows
NASA Astrophysics Data System (ADS)
Klimenko, A. Y.
2008-12-01
Physical similarity and mathematical equivalence of continuous diffusion and particle random walk form one of the cornerstones of modern physics and the theory of stochastic processes. In many applied models used in simulation of turbulent transport and turbulent combustion, mixing between particles is used to reflect the influence of the continuous diffusion terms in the transport equations. We show that the continuous scalar transport and diffusion can be accurately specified by means of mixing between randomly walking Lagrangian particles with scalar properties and assess errors associated with this scheme. This gives an alternative formulation for the stochastic process which is selected to represent the continuous diffusion. This paper focuses on statistical errors and deals with relatively simple cases, where one-particle distributions are sufficient for a complete description of the problem.
Falcaro, Milena; Pickles, Andrew
2007-02-10
We focus on the analysis of multivariate survival times with highly structured interdependency and subject to interval censoring. Such data are common in developmental genetics and genetic epidemiology. We propose a flexible mixed probit model that deals naturally with complex but uninformative censoring. The recorded ages of onset are treated as possibly censored ordinal outcomes with the interval censoring mechanism seen as arising from a coarsened measurement of a continuous variable observed as falling between subject-specific thresholds. This bypasses the requirement for the failure times to be observed as falling into non-overlapping intervals. The assumption of a normal age-of-onset distribution of the standard probit model is relaxed by embedding within it a multivariate Box-Cox transformation whose parameters are jointly estimated with the other parameters of the model. Complex decompositions of the underlying multivariate normal covariance matrix of the transformed ages of onset become possible. The new methodology is here applied to a multivariate study of the ages of first use of tobacco and first consumption of alcohol without parental permission in twins. The proposed model allows estimation of the genetic and environmental effects that are shared by both of these risk behaviours as well as those that are specific. 2006 John Wiley & Sons, Ltd.
Chow, Sy-Miin; Lu, Zhaohua; Sherwood, Andrew; Zhu, Hongtu
2016-03-01
The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation-maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed.
Chow, Sy- Miin; Lu, Zhaohua; Zhu, Hongtu; Sherwood, Andrew
2014-01-01
The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation–maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed. PMID:25416456
NASA Astrophysics Data System (ADS)
Evin, Guillaume; Favre, Anne-Catherine; Hingray, Benoit
2018-02-01
We present a multi-site stochastic model for the generation of average daily temperature, which includes a flexible parametric distribution and a multivariate autoregressive process. Different versions of this model are applied to a set of 26 stations located in Switzerland. The importance of specific statistical characteristics of the model (seasonality, marginal distributions of standardized temperature, spatial and temporal dependence) is discussed. In particular, the proposed marginal distribution is shown to improve the reproduction of extreme temperatures (minima and maxima). We also demonstrate that the frequency and duration of cold spells and heat waves are dramatically underestimated when the autocorrelation of temperature is not taken into account in the model. An adequate representation of these characteristics can be crucial depending on the field of application, and we discuss potential implications in different contexts (agriculture, forestry, hydrology, human health).
Sivak, David A; Chodera, John D; Crooks, Gavin E
2014-06-19
When simulating molecular systems using deterministic equations of motion (e.g., Newtonian dynamics), such equations are generally numerically integrated according to a well-developed set of algorithms that share commonly agreed-upon desirable properties. However, for stochastic equations of motion (e.g., Langevin dynamics), there is still broad disagreement over which integration algorithms are most appropriate. While multiple desiderata have been proposed throughout the literature, consensus on which criteria are important is absent, and no published integration scheme satisfies all desiderata simultaneously. Additional nontrivial complications stem from simulating systems driven out of equilibrium using existing stochastic integration schemes in conjunction with recently developed nonequilibrium fluctuation theorems. Here, we examine a family of discrete time integration schemes for Langevin dynamics, assessing how each member satisfies a variety of desiderata that have been enumerated in prior efforts to construct suitable Langevin integrators. We show that the incorporation of a novel time step rescaling in the deterministic updates of position and velocity can correct a number of dynamical defects in these integrators. Finally, we identify a particular splitting (related to the velocity Verlet discretization) that has essentially universally appropriate properties for the simulation of Langevin dynamics for molecular systems in equilibrium, nonequilibrium, and path sampling contexts.
Energy Optimal Path Planning: Integrating Coastal Ocean Modelling with Optimal Control
NASA Astrophysics Data System (ADS)
Subramani, D. N.; Haley, P. J., Jr.; Lermusiaux, P. F. J.
2016-02-01
A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. To set up the energy optimization, the relative vehicle speed and headings are considered to be stochastic, and new stochastic Dynamically Orthogonal (DO) level-set equations that govern their stochastic time-optimal reachability fronts are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. The accuracy and efficiency of the DO level-set equations for solving the governing stochastic level-set reachability fronts are quantitatively assessed, including comparisons with independent semi-analytical solutions. Energy-optimal missions are studied in wind-driven barotropic quasi-geostrophic double-gyre circulations, and in realistic data-assimilative re-analyses of multiscale coastal ocean flows. The latter re-analyses are obtained from multi-resolution 2-way nested primitive-equation simulations of tidal-to-mesoscale dynamics in the Middle Atlantic Bight and Shelbreak Front region. The effects of tidal currents, strong wind events, coastal jets, and shelfbreak fronts on the energy-optimal paths are illustrated and quantified. Results showcase the opportunities for longer-duration missions that intelligently utilize the ocean environment to save energy, rigorously integrating ocean forecasting with optimal control of autonomous vehicles.
Stochastic simulation and analysis of biomolecular reaction networks
Frazier, John M; Chushak, Yaroslav; Foy, Brent
2009-01-01
Background In recent years, several stochastic simulation algorithms have been developed to generate Monte Carlo trajectories that describe the time evolution of the behavior of biomolecular reaction networks. However, the effects of various stochastic simulation and data analysis conditions on the observed dynamics of complex biomolecular reaction networks have not recieved much attention. In order to investigate these issues, we employed a a software package developed in out group, called Biomolecular Network Simulator (BNS), to simulate and analyze the behavior of such systems. The behavior of a hypothetical two gene in vitro transcription-translation reaction network is investigated using the Gillespie exact stochastic algorithm to illustrate some of the factors that influence the analysis and interpretation of these data. Results Specific issues affecting the analysis and interpretation of simulation data are investigated, including: (1) the effect of time interval on data presentation and time-weighted averaging of molecule numbers, (2) effect of time averaging interval on reaction rate analysis, (3) effect of number of simulations on precision of model predictions, and (4) implications of stochastic simulations on optimization procedures. Conclusion The two main factors affecting the analysis of stochastic simulations are: (1) the selection of time intervals to compute or average state variables and (2) the number of simulations generated to evaluate the system behavior. PMID:19534796
Quantum stochastic calculus associated with quadratic quantum noises
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Un Cig, E-mail: uncigji@chungbuk.ac.kr; Sinha, Kalyan B., E-mail: kbs-jaya@yahoo.co.in
2016-02-15
We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie †-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Itô formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculusmore » extends the Hudson-Parthasarathy quantum stochastic calculus.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glatt-Holtz, Nathan, E-mail: negh@vt.edu; Kukavica, Igor, E-mail: kukavica@usc.edu; Ziane, Mohammed, E-mail: ziane@usc.edu
2014-05-15
We establish the continuity of the Markovian semigroup associated with strong solutions of the stochastic 3D Primitive Equations, and prove the existence of an invariant measure. The proof is based on new moment bounds for strong solutions. The invariant measure is supported on strong solutions and is furthermore shown to have higher regularity properties.
1982-11-01
D- R136 495 RETURN DIFFERENCE FEEDBACK DESIGN FOR ROBUSTj/ UNCERTAINTY TOLERANCE IN STO..(U) UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES DEPT OF...State and ZIP Code) 7. b6 ADORESS (City. Staft and ZIP Code) Department of Electrical Engineering -’M Directorate of Mathematical & Information Systems ...13. SUBJECT TERMS Continur on rverse ineeesaty and identify by block nmber) FIELD GROUP SUE. GR. Systems theory; control; feedback; automatic control
REGIONAL-SCALE WIND FIELD CLASSIFICATION EMPLOYING CLUSTER ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glascoe, L G; Glaser, R E; Chin, H S
2004-06-17
The classification of time-varying multivariate regional-scale wind fields at a specific location can assist event planning as well as consequence and risk analysis. Further, wind field classification involves data transformation and inference techniques that effectively characterize stochastic wind field variation. Such a classification scheme is potentially useful for addressing overall atmospheric transport uncertainty and meteorological parameter sensitivity issues. Different methods to classify wind fields over a location include the principal component analysis of wind data (e.g., Hardy and Walton, 1978) and the use of cluster analysis for wind data (e.g., Green et al., 1992; Kaufmann and Weber, 1996). The goalmore » of this study is to use a clustering method to classify the winds of a gridded data set, i.e, from meteorological simulations generated by a forecast model.« less
Huang, Wei; Shi, Jun; Yen, R T
2012-12-01
The objective of our study was to develop a computing program for computing the transit time frequency distributions of red blood cell in human pulmonary circulation, based on our anatomic and elasticity data of blood vessels in human lung. A stochastic simulation model was introduced to simulate blood flow in human pulmonary circulation. In the stochastic simulation model, the connectivity data of pulmonary blood vessels in human lung was converted into a probability matrix. Based on this model, the transit time of red blood cell in human pulmonary circulation and the output blood pressure were studied. Additionally, the stochastic simulation model can be used to predict the changes of blood flow in human pulmonary circulation with the advantage of the lower computing cost and the higher flexibility. In conclusion, a stochastic simulation approach was introduced to simulate the blood flow in the hierarchical structure of a pulmonary circulation system, and to calculate the transit time distributions and the blood pressure outputs.
Anomalous transport and stochastic processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balescu, R.
1996-03-01
The relation between kinetic transport theory and theory of stochastic processes is reviewed. The Langevin equation formalism provides important, but rather limited information about diffusive processes. A quite promising new approach to modeling complex situations, such as transport in incompletely destroyed magnetic surfaces, is provided by the theory of Continuous Time Random Walks (CTRW), which is presented in some detail. An academic test problem is discussed in great detail: transport of particles in a fluctuating magnetic field, in the limit of infinite perpendicular correlation length. The well-known subdiffusive behavior of the Mean Square Displacement (MSD), proportional to t{sup 1/2}, ismore » recovered by a CTRW, but the complete density profile is not. However, the quasilinear approximation of the kinetic equation has the form of a non-Markovian diffusion equation and can thus be generated by a CTRW. 16 refs., 3 figs.« less
Fluid Stochastic Petri Nets: Theory, Applications, and Solution
NASA Technical Reports Server (NTRS)
Horton, Graham; Kulkarni, Vidyadhar G.; Nicol, David M.; Trivedi, Kishor S.
1996-01-01
In this paper we introduce a new class of stochastic Petri nets in which one or more places can hold fluid rather than discrete tokens. We define a class of fluid stochastic Petri nets in such a way that the discrete and continuous portions may affect each other. Following this definition we provide equations for their transient and steady-state behavior. We present several examples showing the utility of the construct in communication network modeling and reliability analysis, and discuss important special cases. We then discuss numerical methods for computing the transient behavior of such nets. Finally, some numerical examples are presented.
NASA Astrophysics Data System (ADS)
Pei, C.; Bieber, J. W.; Burger, R. A.; Clem, J.
2010-12-01
We present a detailed description of our newly developed stochastic approach for solving Parker's transport equation, which we believe is the first attempt to solve it with time dependence in 3-D, evolving from our 3-D steady state stochastic approach. Our formulation of this method is general and is valid for any type of heliospheric magnetic field, although we choose the standard Parker field as an example to illustrate the steps to calculate the transport of galactic cosmic rays. Our 3-D stochastic method is different from other stochastic approaches in the literature in several ways. For example, we employ spherical coordinates to integrate directly, which makes the code much more efficient by reducing coordinate transformations. What is more, the equivalence between our stochastic differential equations and Parker's transport equation is guaranteed by Ito's theorem in contrast to some other approaches. We generalize the technique for calculating particle flux based on the pseudoparticle trajectories for steady state solutions and for time-dependent solutions in 3-D. To validate our code, first we show that good agreement exists between solutions obtained by our steady state stochastic method and a traditional finite difference method. Then we show that good agreement also exists for our time-dependent method for an idealized and simplified heliosphere which has a Parker magnetic field and a simple initial condition for two different inner boundary conditions.
Zhao, Zhibiao
2011-06-01
We address the nonparametric model validation problem for hidden Markov models with partially observable variables and hidden states. We achieve this goal by constructing a nonparametric simultaneous confidence envelope for transition density function of the observable variables and checking whether the parametric density estimate is contained within such an envelope. Our specification test procedure is motivated by a functional connection between the transition density of the observable variables and the Markov transition kernel of the hidden states. Our approach is applicable for continuous time diffusion models, stochastic volatility models, nonlinear time series models, and models with market microstructure noise.
Data compression and information retrieval via symbolization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, X.Z.; Tracy, E.R.
Converting a continuous signal into a multisymbol stream is a simple method of data compression which preserves much of the dynamical information present in the original signal. The retrieval of selected types of information from symbolic data involves binary operations and is therefore optimal for digital computers. For example, correlation time scales can be easily recovered, even at high noise levels, by varying the time delay for symbolization. Also, the presence of periodicity in the signal can be reliably detected even if it is weak and masked by a dominant chaotic/stochastic background. {copyright} {ital 1998 American Institute of Physics.}
The exact fundamental solution for the Benes tracking problem
NASA Astrophysics Data System (ADS)
Balaji, Bhashyam
2009-05-01
The universal continuous-discrete tracking problem requires the solution of a Fokker-Planck-Kolmogorov forward equation (FPKfe) for an arbitrary initial condition. Using results from quantum mechanics, the exact fundamental solution for the FPKfe is derived for the state model of arbitrary dimension with Benes drift that requires only the computation of elementary transcendental functions and standard linear algebra techniques- no ordinary or partial differential equations need to be solved. The measurement process may be an arbitrary, discrete-time nonlinear stochastic process, and the time step size can be arbitrary. Numerical examples are included, demonstrating its utility in practical implementation.
Robust stability for uncertain stochastic fuzzy BAM neural networks with time-varying delays
NASA Astrophysics Data System (ADS)
Syed Ali, M.; Balasubramaniam, P.
2008-07-01
In this Letter, by utilizing the Lyapunov functional and combining with the linear matrix inequality (LMI) approach, we analyze the global asymptotic stability of uncertain stochastic fuzzy Bidirectional Associative Memory (BAM) neural networks with time-varying delays which are represented by the Takagi-Sugeno (TS) fuzzy models. A new class of uncertain stochastic fuzzy BAM neural networks with time varying delays has been studied and sufficient conditions have been derived to obtain conservative result in stochastic settings. The developed results are more general than those reported in the earlier literatures. In addition, the numerical examples are provided to illustrate the applicability of the result using LMI toolbox in MATLAB.
Impulsive synchronization of stochastic reaction-diffusion neural networks with mixed time delays.
Sheng, Yin; Zeng, Zhigang
2018-07-01
This paper discusses impulsive synchronization of stochastic reaction-diffusion neural networks with Dirichlet boundary conditions and hybrid time delays. By virtue of inequality techniques, theories of stochastic analysis, linear matrix inequalities, and the contradiction method, sufficient criteria are proposed to ensure exponential synchronization of the addressed stochastic reaction-diffusion neural networks with mixed time delays via a designed impulsive controller. Compared with some recent studies, the neural network models herein are more general, some restrictions are relaxed, and the obtained conditions enhance and generalize some published ones. Finally, two numerical simulations are performed to substantiate the validity and merits of the developed theoretical analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fast smooth second-order sliding mode control for systems with additive colored noises.
Yang, Pengfei; Fang, Yangwang; Wu, Youli; Liu, Yunxia; Zhang, Danxu
2017-01-01
In this paper, a fast smooth second-order sliding mode control is presented for a class of stochastic systems with enumerable Ornstein-Uhlenbeck colored noises. The finite-time mean-square practical stability and finite-time mean-square practical reachability are first introduced. Instead of treating the noise as bounded disturbance, the stochastic control techniques are incorporated into the design of the controller. The finite-time convergence of the prescribed sliding variable dynamics system is proved by using stochastic Lyapunov-like techniques. Then the proposed sliding mode controller is applied to a second-order nonlinear stochastic system. Simulation results are presented comparing with smooth second-order sliding mode control to validate the analysis.
NASA Astrophysics Data System (ADS)
Lipan, Ovidiu; Ferwerda, Cameron
2018-02-01
The deterministic Hill function depends only on the average values of molecule numbers. To account for the fluctuations in the molecule numbers, the argument of the Hill function needs to contain the means, the standard deviations, and the correlations. Here we present a method that allows for stochastic Hill functions to be constructed from the dynamical evolution of stochastic biocircuits with specific topologies. These stochastic Hill functions are presented in a closed analytical form so that they can be easily incorporated in models for large genetic regulatory networks. Using a repressive biocircuit as an example, we show by Monte Carlo simulations that the traditional deterministic Hill function inaccurately predicts time of repression by an order of two magnitudes. However, the stochastic Hill function was able to capture the fluctuations and thus accurately predicted the time of repression.
NASA Astrophysics Data System (ADS)
Kwon, J.; Yang, H.
2006-12-01
Although GPS provides continuous and accurate position information, there are still some rooms for improvement of its positional accuracy, especially in the medium and long range baseline determination. In general, in case of more than 50 km baseline length, the effect of ionospheric delay is the one causing the largest degradation in positional accuracy. For example, the ionospheric delay in terms of double differenced mode easily reaches 10 cm with baseline length of 101 km. Therefore, many researchers have been tried to mitigate/reduce the effect using various modeling methods. In this paper, the optimal stochastic modeling of the ionospheric delay in terms of baseline length is presented. The data processing has been performed by constructing a Kalman filter with states of positions, ambiguities, and the ionospheric delays in the double differenced mode. Considering the long baseline length, both double differenced GPS phase and code observations are used as observables and LAMBDA has been applied to fix the ambiguities. Here, the ionospheric delay is stochastically modeled by well-known Gaussian, 1st and 3rd order Gauss-Markov process. The parameters required in those models such as correlation distance and time is determined by the least-square adjustment using ionosphere-only observables. Mainly the results and analysis from this study show the effect of stochastic models of the ionospheric delay in terms of the baseline length, models, and parameters used. In the above example with 101 km baseline length, it was found that the positional accuracy with appropriate ionospheric modeling (Gaussian) was about ±2 cm whereas it reaches about ±15 cm with no stochastic modeling. It is expected that the approach in this study contributes to improve positional accuracy, especially in medium and long range baseline determination.
Acceleration of discrete stochastic biochemical simulation using GPGPU.
Sumiyoshi, Kei; Hirata, Kazuki; Hiroi, Noriko; Funahashi, Akira
2015-01-01
For systems made up of a small number of molecules, such as a biochemical network in a single cell, a simulation requires a stochastic approach, instead of a deterministic approach. The stochastic simulation algorithm (SSA) simulates the stochastic behavior of a spatially homogeneous system. Since stochastic approaches produce different results each time they are used, multiple runs are required in order to obtain statistical results; this results in a large computational cost. We have implemented a parallel method for using SSA to simulate a stochastic model; the method uses a graphics processing unit (GPU), which enables multiple realizations at the same time, and thus reduces the computational time and cost. During the simulation, for the purpose of analysis, each time course is recorded at each time step. A straightforward implementation of this method on a GPU is about 16 times faster than a sequential simulation on a CPU with hybrid parallelization; each of the multiple simulations is run simultaneously, and the computational tasks within each simulation are parallelized. We also implemented an improvement to the memory access and reduced the memory footprint, in order to optimize the computations on the GPU. We also implemented an asynchronous data transfer scheme to accelerate the time course recording function. To analyze the acceleration of our implementation on various sizes of model, we performed SSA simulations on different model sizes and compared these computation times to those for sequential simulations with a CPU. When used with the improved time course recording function, our method was shown to accelerate the SSA simulation by a factor of up to 130.
Acceleration of discrete stochastic biochemical simulation using GPGPU
Sumiyoshi, Kei; Hirata, Kazuki; Hiroi, Noriko; Funahashi, Akira
2015-01-01
For systems made up of a small number of molecules, such as a biochemical network in a single cell, a simulation requires a stochastic approach, instead of a deterministic approach. The stochastic simulation algorithm (SSA) simulates the stochastic behavior of a spatially homogeneous system. Since stochastic approaches produce different results each time they are used, multiple runs are required in order to obtain statistical results; this results in a large computational cost. We have implemented a parallel method for using SSA to simulate a stochastic model; the method uses a graphics processing unit (GPU), which enables multiple realizations at the same time, and thus reduces the computational time and cost. During the simulation, for the purpose of analysis, each time course is recorded at each time step. A straightforward implementation of this method on a GPU is about 16 times faster than a sequential simulation on a CPU with hybrid parallelization; each of the multiple simulations is run simultaneously, and the computational tasks within each simulation are parallelized. We also implemented an improvement to the memory access and reduced the memory footprint, in order to optimize the computations on the GPU. We also implemented an asynchronous data transfer scheme to accelerate the time course recording function. To analyze the acceleration of our implementation on various sizes of model, we performed SSA simulations on different model sizes and compared these computation times to those for sequential simulations with a CPU. When used with the improved time course recording function, our method was shown to accelerate the SSA simulation by a factor of up to 130. PMID:25762936
Extracting information from AGN variability
NASA Astrophysics Data System (ADS)
Kasliwal, Vishal P.; Vogeley, Michael S.; Richards, Gordon T.
2017-09-01
Active galactic nuclei (AGNs) exhibit rapid, high-amplitude stochastic flux variations across the entire electromagnetic spectrum on time-scales ranging from hours to years. The cause of this variability is poorly understood. We present a Green's function-based method for using variability to (1) measure the time-scales on which flux perturbations evolve and (2) characterize the driving flux perturbations. We model the observed light curve of an AGN as a linear differential equation driven by stochastic impulses. We analyse the light curve of the Kepler AGN Zw 229-15 and find that the observed variability behaviour can be modelled as a damped harmonic oscillator perturbed by a coloured noise process. The model power spectrum turns over on time-scale 385 d. On shorter time-scales, the log-power-spectrum slope varies between 2 and 4, explaining the behaviour noted by previous studies. We recover and identify both the 5.6 and 67 d time-scales reported by previous work using the Green's function of the Continuous-time AutoRegressive Moving Average equation rather than by directly fitting the power spectrum of the light curve. These are the time-scales on which flux perturbations grow, and on which flux perturbations decay back to the steady-state flux level, respectively. We make the software package kālī used to study light curves using our method available to the community.
Algorithm refinement for stochastic partial differential equations: II. Correlated systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, Francis J.; Garcia, Alejandro L.; Tartakovsky, Daniel M.
2005-08-10
We analyze a hybrid particle/continuum algorithm for a hydrodynamic system with long ranged correlations. Specifically, we consider the so-called train model for viscous transport in gases, which is based on a generalization of the random walk process for the diffusion of momentum. This discrete model is coupled with its continuous counterpart, given by a pair of stochastic partial differential equations. At the interface between the particle and continuum computations the coupling is by flux matching, giving exact mass and momentum conservation. This methodology is an extension of our stochastic Algorithm Refinement (AR) hybrid for simple diffusion [F. Alexander, A. Garcia,more » D. Tartakovsky, Algorithm refinement for stochastic partial differential equations: I. Linear diffusion, J. Comput. Phys. 182 (2002) 47-66]. Results from a variety of numerical experiments are presented for steady-state scenarios. In all cases the mean and variance of density and velocity are captured correctly by the stochastic hybrid algorithm. For a non-stochastic version (i.e., using only deterministic continuum fluxes) the long-range correlations of velocity fluctuations are qualitatively preserved but at reduced magnitude.« less
Mean-Potential Law in Evolutionary Games.
Nałęcz-Jawecki, Paweł; Miękisz, Jacek
2018-01-12
The Letter presents a novel way to connect random walks, stochastic differential equations, and evolutionary game theory. We introduce a new concept of a potential function for discrete-space stochastic systems. It is based on a correspondence between one-dimensional stochastic differential equations and random walks, which may be exact not only in the continuous limit but also in finite-state spaces. Our method is useful for computation of fixation probabilities in discrete stochastic dynamical systems with two absorbing states. We apply it to evolutionary games, formulating two simple and intuitive criteria for evolutionary stability of pure Nash equilibria in finite populations. In particular, we show that the 1/3 law of evolutionary games, introduced by Nowak et al. [Nature, 2004], follows from a more general mean-potential law.
Lu, Tsui-Shan; Longnecker, Matthew P.; Zhou, Haibo
2016-01-01
Outcome-dependent sampling (ODS) scheme is a cost-effective sampling scheme where one observes the exposure with a probability that depends on the outcome. The well-known such design is the case-control design for binary response, the case-cohort design for the failure time data and the general ODS design for a continuous response. While substantial work has been done for the univariate response case, statistical inference and design for the ODS with multivariate cases remain under-developed. Motivated by the need in biological studies for taking the advantage of the available responses for subjects in a cluster, we propose a multivariate outcome dependent sampling (Multivariate-ODS) design that is based on a general selection of the continuous responses within a cluster. The proposed inference procedure for the Multivariate-ODS design is semiparametric where all the underlying distributions of covariates are modeled nonparametrically using the empirical likelihood methods. We show that the proposed estimator is consistent and developed the asymptotically normality properties. Simulation studies show that the proposed estimator is more efficient than the estimator obtained using only the simple-random-sample portion of the Multivariate-ODS or the estimator from a simple random sample with the same sample size. The Multivariate-ODS design together with the proposed estimator provides an approach to further improve study efficiency for a given fixed study budget. We illustrate the proposed design and estimator with an analysis of association of PCB exposure to hearing loss in children born to the Collaborative Perinatal Study. PMID:27966260
Stochastic Generation of Spatiotemporal Rainfall Events for Flood Risk Assessment
NASA Astrophysics Data System (ADS)
Diederen, D.; Liu, Y.; Gouldby, B.; Diermanse, F.
2017-12-01
Current flood risk analyses that only consider peaks of hydrometeorological forcing variables have limitations regarding their representation of reality. Simplistic assumptions regarding antecedent conditions are required, often different sources of flooding are considered in isolation, and the complex temporal and spatial evolution of the events is not considered. Mid-latitude storms, governed by large scale climatic conditions, often exhibit a high degree of temporal dependency, for example. For sustainable flood risk management, that accounts appropriately for climate change, it is desirable for flood risk analyses to reflect reality more appropriately. Analysis of risk mitigation measures and comparison of their relative performance is therefore likely to be more robust and lead to improved solutions. We provide a new framework for the provision of boundary conditions to flood risk analyses that more appropriately reflects reality. The boundary conditions capture the temporal dependencies of complex storms whilst preserving the extreme values and associated spatial dependencies. We demonstrate the application of this framework to generate a synthetic rainfall events time series boundary condition set from reanalysis rainfall data (CFSR) on the continental scale. We define spatiotemporal clusters of rainfall as events, extract hydrological parameters for each event, generate synthetic parameter sets with a multivariate distribution with a focus on the joint tail probability [Heffernan and Tawn, 2004], and finally create synthetic events from the generated synthetic parameters. We highlight the stochastic integration of (a) spatiotemporal features, e.g. event occurrence intensity over space-time, or time to previous event, which we use for the spatial placement and sequencing of the synthetic events, and (b) value-specific parameters, e.g. peak intensity and event extent. We contrast this to more traditional approaches to highlight the significant improvements in terms of representing the reality of extreme flood events.
Stochastic goal-oriented error estimation with memory
NASA Astrophysics Data System (ADS)
Ackmann, Jan; Marotzke, Jochem; Korn, Peter
2017-11-01
We propose a stochastic dual-weighted error estimator for the viscous shallow-water equation with boundaries. For this purpose, previous work on memory-less stochastic dual-weighted error estimation is extended by incorporating memory effects. The memory is introduced by describing the local truncation error as a sum of time-correlated random variables. The random variables itself represent the temporal fluctuations in local truncation errors and are estimated from high-resolution information at near-initial times. The resulting error estimator is evaluated experimentally in two classical ocean-type experiments, the Munk gyre and the flow around an island. In these experiments, the stochastic process is adapted locally to the respective dynamical flow regime. Our stochastic dual-weighted error estimator is shown to provide meaningful error bounds for a range of physically relevant goals. We prove, as well as show numerically, that our approach can be interpreted as a linearized stochastic-physics ensemble.
p-adic stochastic hidden variable model
NASA Astrophysics Data System (ADS)
Khrennikov, Andrew
1998-03-01
We propose stochastic hidden variables model in which hidden variables have a p-adic probability distribution ρ(λ) and at the same time conditional probabilistic distributions P(U,λ), U=A,A',B,B', are ordinary probabilities defined on the basis of the Kolmogorov measure-theoretical axiomatics. A frequency definition of p-adic probability is quite similar to the ordinary frequency definition of probability. p-adic frequency probability is defined as the limit of relative frequencies νn but in the p-adic metric. We study a model with p-adic stochastics on the level of the hidden variables description. But, of course, responses of macroapparatuses have to be described by ordinary stochastics. Thus our model describes a mixture of p-adic stochastics of the microworld and ordinary stochastics of macroapparatuses. In this model probabilities for physical observables are the ordinary probabilities. At the same time Bell's inequality is violated.
Multivariate assessment of event-related potentials with the t-CWT method.
Bostanov, Vladimir
2015-11-05
Event-related brain potentials (ERPs) are usually assessed with univariate statistical tests although they are essentially multivariate objects. Brain-computer interface applications are a notable exception to this practice, because they are based on multivariate classification of single-trial ERPs. Multivariate ERP assessment can be facilitated by feature extraction methods. One such method is t-CWT, a mathematical-statistical algorithm based on the continuous wavelet transform (CWT) and Student's t-test. This article begins with a geometric primer on some basic concepts of multivariate statistics as applied to ERP assessment in general and to the t-CWT method in particular. Further, it presents for the first time a detailed, step-by-step, formal mathematical description of the t-CWT algorithm. A new multivariate outlier rejection procedure based on principal component analysis in the frequency domain is presented as an important pre-processing step. The MATLAB and GNU Octave implementation of t-CWT is also made publicly available for the first time as free and open source code. The method is demonstrated on some example ERP data obtained in a passive oddball paradigm. Finally, some conceptually novel applications of the multivariate approach in general and of the t-CWT method in particular are suggested and discussed. Hopefully, the publication of both the t-CWT source code and its underlying mathematical algorithm along with a didactic geometric introduction to some basic concepts of multivariate statistics would make t-CWT more accessible to both users and developers in the field of neuroscience research.
Real-time estimation of incident delay in dynamic and stochastic networks
DOT National Transportation Integrated Search
1997-01-01
The ability to predict the link travel times is a necessary requirement for most intelligent transportation systems (ITS) applications such as route guidance systems. In an urban traffic environment, these travel times are dynamic and stochastic and ...
Linear theory for filtering nonlinear multiscale systems with model error
Berry, Tyrus; Harlim, John
2014-01-01
In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online, as part of a filtering procedure, simultaneously produce accurate filtering and equilibrium statistical prediction. In contrast, an offline estimation technique based on a linear regression, which fits the parameters to a training dataset without using the filter, yields filter estimates which are worse than the observations or even divergent when the slow variables are not fully observed. This finding does not imply that all offline methods are inherently inferior to the online method for nonlinear estimation problems, it only suggests that an ideal estimation technique should estimate all parameters simultaneously whether it is online or offline. PMID:25002829
NASA Astrophysics Data System (ADS)
García, Constantino A.; Otero, Abraham; Félix, Paulo; Presedo, Jesús; Márquez, David G.
2018-07-01
In the past few decades, it has been recognized that 1 / f fluctuations are ubiquitous in nature. The most widely used mathematical models to capture the long-term memory properties of 1 / f fluctuations have been stochastic fractal models. However, physical systems do not usually consist of just stochastic fractal dynamics, but they often also show some degree of deterministic behavior. The present paper proposes a model based on fractal stochastic and deterministic components that can provide a valuable basis for the study of complex systems with long-term correlations. The fractal stochastic component is assumed to be a fractional Brownian motion process and the deterministic component is assumed to be a band-limited signal. We also provide a method that, under the assumptions of this model, is able to characterize the fractal stochastic component and to provide an estimate of the deterministic components present in a given time series. The method is based on a Bayesian wavelet shrinkage procedure that exploits the self-similar properties of the fractal processes in the wavelet domain. This method has been validated over simulated signals and over real signals with economical and biological origin. Real examples illustrate how our model may be useful for exploring the deterministic-stochastic duality of complex systems, and uncovering interesting patterns present in time series.
Delay-induced stochastic bifurcations in a bistable system under white noise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Zhongkui, E-mail: sunzk@nwpu.edu.cn; Fu, Jin; Xu, Wei
2015-08-15
In this paper, the effects of noise and time delay on stochastic bifurcations are investigated theoretically and numerically in a time-delayed Duffing-Van der Pol oscillator subjected to white noise. Due to the time delay, the random response is not Markovian. Thereby, approximate methods have been adopted to obtain the Fokker-Planck-Kolmogorov equation and the stationary probability density function for amplitude of the response. Based on the knowledge that stochastic bifurcation is characterized by the qualitative properties of the steady-state probability distribution, it is found that time delay and feedback intensity as well as noise intensity will induce the appearance of stochasticmore » P-bifurcation. Besides, results demonstrated that the effects of the strength of the delayed displacement feedback on stochastic bifurcation are accompanied by the sensitive dependence on time delay. Furthermore, the results from numerical simulations best confirm the effectiveness of the theoretical analyses.« less
NASA Astrophysics Data System (ADS)
Wei, Xinjiang; Sun, Shixiang
2018-03-01
An elegant anti-disturbance control (EADC) strategy for a class of discrete-time stochastic systems with both nonlinearity and multiple disturbances, which include the disturbance with partially known information and a sequence of random vectors, is proposed in this paper. A stochastic disturbance observer is constructed to estimate the disturbance with partially known information, based on which, an EADC scheme is proposed by combining pole placement and linear matrix inequality methods. It is proved that the two different disturbances can be rejected and attenuated, and the corresponding desired performances can be guaranteed for discrete-time stochastic systems with known and unknown nonlinear dynamics, respectively. Simulation examples are given to demonstrate the effectiveness of the proposed schemes compared with some existing results.
Stochastic differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobczyk, K.
1990-01-01
This book provides a unified treatment of both regular (or random) and Ito stochastic differential equations. It focuses on solution methods, including some developed only recently. Applications are discussed, in particular an insight is given into both the mathematical structure, and the most efficient solution methods (analytical as well as numerical). Starting from basic notions and results of the theory of stochastic processes and stochastic calculus (including Ito's stochastic integral), many principal mathematical problems and results related to stochastic differential equations are expounded here for the first time. Applications treated include those relating to road vehicles, earthquake excitations and offshoremore » structures.« less
Characterization of within-day beginning times of storms for stochastic simulation
USDA-ARS?s Scientific Manuscript database
The beginning times of storms within a day are often required for stochastic modeling purposes and for studies on plant growth. This study investigated the variation in frequency distributions of storm-initiation time (SI time) within a day due to elevation changes and month. Actual storms without 2...
Adaptive logical stochastic resonance in time-delayed synthetic genetic networks
NASA Astrophysics Data System (ADS)
Zhang, Lei; Zheng, Wenbin; Song, Aiguo
2018-04-01
In the paper, the concept of logical stochastic resonance is applied to implement logic operation and latch operation in time-delayed synthetic genetic networks derived from a bacteriophage λ. Clear logic operation and latch operation can be obtained when the network is tuned by modulated periodic force and time-delay. In contrast with the previous synthetic genetic networks based on logical stochastic resonance, the proposed system has two advantages. On one hand, adding modulated periodic force to the background noise can increase the length of the optimal noise plateau of obtaining desired logic response and make the system adapt to varying noise intensity. On the other hand, tuning time-delay can extend the optimal noise plateau to larger range. The result provides possible help for designing new genetic regulatory networks paradigm based on logical stochastic resonance.
NASA Astrophysics Data System (ADS)
Mokem Fokou, I. S.; Nono Dueyou Buckjohn, C.; Siewe Siewe, M.; Tchawoua, C.
2018-03-01
In this manuscript, a hybrid energy harvesting system combining piezoelectric and electromagnetic transduction and subjected to colored noise is investigated. By using the stochastic averaging method, the stationary probability density functions of amplitudes are obtained and reveal interesting dynamics related to the long term behavior of the device. From stationary probability densities, we discuss the stochastic bifurcation through the qualitative change which shows that noise intensity, correlation time and other system parameters can be treated as bifurcation parameters. Numerical simulations are made for a comparison with analytical findings. The Mean first passage time (MFPT) is numerical provided in the purpose to investigate the system stability. By computing the Mean residence time (TMR), we explore the stochastic resonance phenomenon; we show how it is related to the correlation time of colored noise and high output power.
NASA Astrophysics Data System (ADS)
Liu, Hongjian; Wang, Zidong; Shen, Bo; Alsaadi, Fuad E.
2016-07-01
This paper deals with the robust H∞ state estimation problem for a class of memristive recurrent neural networks with stochastic time-delays. The stochastic time-delays under consideration are governed by a Bernoulli-distributed stochastic sequence. The purpose of the addressed problem is to design the robust state estimator such that the dynamics of the estimation error is exponentially stable in the mean square, and the prescribed ? performance constraint is met. By utilizing the difference inclusion theory and choosing a proper Lyapunov-Krasovskii functional, the existence condition of the desired estimator is derived. Based on it, the explicit expression of the estimator gain is given in terms of the solution to a linear matrix inequality. Finally, a numerical example is employed to demonstrate the effectiveness and applicability of the proposed estimation approach.
BACKWARD ESTIMATION OF STOCHASTIC PROCESSES WITH FAILURE EVENTS AS TIME ORIGINS1
Gary Chan, Kwun Chuen; Wang, Mei-Cheng
2011-01-01
Stochastic processes often exhibit sudden systematic changes in pattern a short time before certain failure events. Examples include increase in medical costs before death and decrease in CD4 counts before AIDS diagnosis. To study such terminal behavior of stochastic processes, a natural and direct way is to align the processes using failure events as time origins. This paper studies backward stochastic processes counting time backward from failure events, and proposes one-sample nonparametric estimation of the mean of backward processes when follow-up is subject to left truncation and right censoring. We will discuss benefits of including prevalent cohort data to enlarge the identifiable region and large sample properties of the proposed estimator with related extensions. A SEER–Medicare linked data set is used to illustrate the proposed methodologies. PMID:21359167
Xie, Ping; Wu, Zi Yi; Zhao, Jiang Yan; Sang, Yan Fang; Chen, Jie
2018-04-01
A stochastic hydrological process is influenced by both stochastic and deterministic factors. A hydrological time series contains not only pure random components reflecting its inheri-tance characteristics, but also deterministic components reflecting variability characteristics, such as jump, trend, period, and stochastic dependence. As a result, the stochastic hydrological process presents complicated evolution phenomena and rules. To better understand these complicated phenomena and rules, this study described the inheritance and variability characteristics of an inconsistent hydrological series from two aspects: stochastic process simulation and time series analysis. In addition, several frequency analysis approaches for inconsistent time series were compared to reveal the main problems in inconsistency study. Then, we proposed a new concept of hydrological genes origined from biological genes to describe the inconsistent hydrolocal processes. The hydrologi-cal genes were constructed using moments methods, such as general moments, weight function moments, probability weight moments and L-moments. Meanwhile, the five components, including jump, trend, periodic, dependence and pure random components, of a stochastic hydrological process were defined as five hydrological bases. With this method, the inheritance and variability of inconsistent hydrological time series were synthetically considered and the inheritance, variability and evolution principles were fully described. Our study would contribute to reveal the inheritance, variability and evolution principles in probability distribution of hydrological elements.
Samant, Asawari; Ogunnaike, Babatunde A; Vlachos, Dionisios G
2007-05-24
The fundamental role that intrinsic stochasticity plays in cellular functions has been shown via numerous computational and experimental studies. In the face of such evidence, it is important that intracellular networks are simulated with stochastic algorithms that can capture molecular fluctuations. However, separation of time scales and disparity in species population, two common features of intracellular networks, make stochastic simulation of such networks computationally prohibitive. While recent work has addressed each of these challenges separately, a generic algorithm that can simultaneously tackle disparity in time scales and population scales in stochastic systems is currently lacking. In this paper, we propose the hybrid, multiscale Monte Carlo (HyMSMC) method that fills in this void. The proposed HyMSMC method blends stochastic singular perturbation concepts, to deal with potential stiffness, with a hybrid of exact and coarse-grained stochastic algorithms, to cope with separation in population sizes. In addition, we introduce the computational singular perturbation (CSP) method as a means of systematically partitioning fast and slow networks and computing relaxation times for convergence. We also propose a new criteria of convergence of fast networks to stochastic low-dimensional manifolds, which further accelerates the algorithm. We use several prototype and biological examples, including a gene expression model displaying bistability, to demonstrate the efficiency, accuracy and applicability of the HyMSMC method. Bistable models serve as stringent tests for the success of multiscale MC methods and illustrate limitations of some literature methods.
1984-07-01
34robustness" analysis for multiloop feedback systems. Reference [55] describes a simple method based on the Perron - Frobenius Theory of non-negative...Viewpoint, " Operator Theory : Advances and Applications, 12, pp. 277-302, 1984. - E. A. Jonckheere, "New Bound on the Sensitivity -- of the Solution of...Reidel, Dordrecht, Holland, 1984. M. G. Safonov, "Comments on Singular Value Theory in Uncertain Feedback Systems, " to appear IEEE Trans. on Automatic
Basic Research in Digital Stochastic Model Algorithmic Control.
1980-11-01
IDCOM Description 115 8.2 Basic Control Computation 117 8.3 Gradient Algorithm 119 8.4 Simulation Model 119 8.5 Model Modifications 123 8.6 Summary 124...constraints, and 3) control traJectorv comouta- tion. 2.1.1 Internal Model of the System The multivariable system to be controlled is represented by a...more flexible and adaptive, since the model , criteria, and sampling rates can be adjusted on-line. This flexibility comes from the use of the impulse
Evaluation of the path integral for flow through random porous media
NASA Astrophysics Data System (ADS)
Westbroek, Marise J. E.; Coche, Gil-Arnaud; King, Peter R.; Vvedensky, Dimitri D.
2018-04-01
We present a path integral formulation of Darcy's equation in one dimension with random permeability described by a correlated multivariate lognormal distribution. This path integral is evaluated with the Markov chain Monte Carlo method to obtain pressure distributions, which are shown to agree with the solutions of the corresponding stochastic differential equation for Dirichlet and Neumann boundary conditions. The extension of our approach to flow through random media in two and three dimensions is discussed.
A stochastic hybrid systems based framework for modeling dependent failure processes
Fan, Mengfei; Zeng, Zhiguo; Zio, Enrico; Kang, Rui; Chen, Ying
2017-01-01
In this paper, we develop a framework to model and analyze systems that are subject to dependent, competing degradation processes and random shocks. The degradation processes are described by stochastic differential equations, whereas transitions between the system discrete states are triggered by random shocks. The modeling is, then, based on Stochastic Hybrid Systems (SHS), whose state space is comprised of a continuous state determined by stochastic differential equations and a discrete state driven by stochastic transitions and reset maps. A set of differential equations are derived to characterize the conditional moments of the state variables. System reliability and its lower bounds are estimated from these conditional moments, using the First Order Second Moment (FOSM) method and Markov inequality, respectively. The developed framework is applied to model three dependent failure processes from literature and a comparison is made to Monte Carlo simulations. The results demonstrate that the developed framework is able to yield an accurate estimation of reliability with less computational costs compared to traditional Monte Carlo-based methods. PMID:28231313
A stochastic hybrid systems based framework for modeling dependent failure processes.
Fan, Mengfei; Zeng, Zhiguo; Zio, Enrico; Kang, Rui; Chen, Ying
2017-01-01
In this paper, we develop a framework to model and analyze systems that are subject to dependent, competing degradation processes and random shocks. The degradation processes are described by stochastic differential equations, whereas transitions between the system discrete states are triggered by random shocks. The modeling is, then, based on Stochastic Hybrid Systems (SHS), whose state space is comprised of a continuous state determined by stochastic differential equations and a discrete state driven by stochastic transitions and reset maps. A set of differential equations are derived to characterize the conditional moments of the state variables. System reliability and its lower bounds are estimated from these conditional moments, using the First Order Second Moment (FOSM) method and Markov inequality, respectively. The developed framework is applied to model three dependent failure processes from literature and a comparison is made to Monte Carlo simulations. The results demonstrate that the developed framework is able to yield an accurate estimation of reliability with less computational costs compared to traditional Monte Carlo-based methods.
NASA Astrophysics Data System (ADS)
Morales, V. L.; Carrel, M.; Dentz, M.; Derlon, N.; Morgenroth, E.; Holzner, M.
2017-12-01
Biofilms are ubiquitous bacterial communities growing in various porous media including soils, trickling and sand filters and are relevant for applications such as the degradation of pollutants for bioremediation, waste water or drinking water production purposes. By their development, biofilms dynamically change the structure of porous media, increasing the heterogeneity of the pore network and the non-Fickian or anomalous dispersion. In this work, we use an experimental approach to investigate the influence of biofilm growth on pore scale hydrodynamics and transport processes and propose a correlated continuous time random walk model capturing these observations. We perform three-dimensional particle tracking velocimetry at four different time points from 0 to 48 hours of biofilm growth. The biofilm growth notably impacts pore-scale hydrodynamics, as shown by strong increase of the average velocity and in tailing of Lagrangian velocity probability density functions. Additionally, the spatial correlation length of the flow increases substantially. This points at the formation of preferential flow pathways and stagnation zones, which ultimately leads to an increase of anomalous transport in the porous media considered, characterized by non-Fickian scaling of mean-squared displacements and non-Gaussian distributions of the displacement probability density functions. A gamma distribution provides a remarkable approximation of the bulk and the high tail of the Lagrangian pore-scale velocity magnitude, indicating a transition from a parallel pore arrangement towards a more serial one. Finally, a correlated continuous time random walk based on a stochastic relation velocity model accurately reproduces the observations and could be used to predict transport beyond the time scales accessible to the experiment.
Maximum-entropy description of animal movement.
Fleming, Chris H; Subaşı, Yiğit; Calabrese, Justin M
2015-03-01
We introduce a class of maximum-entropy states that naturally includes within it all of the major continuous-time stochastic processes that have been applied to animal movement, including Brownian motion, Ornstein-Uhlenbeck motion, integrated Ornstein-Uhlenbeck motion, a recently discovered hybrid of the previous models, and a new model that describes central-place foraging. We are also able to predict a further hierarchy of new models that will emerge as data quality improves to better resolve the underlying continuity of animal movement. Finally, we also show that Langevin equations must obey a fluctuation-dissipation theorem to generate processes that fall from this class of maximum-entropy distributions when the constraints are purely kinematic.
A Note on the Stochastic Nature of Feynman Quantum Paths
NASA Astrophysics Data System (ADS)
Botelho, Luiz C. L.
2016-11-01
We propose a Fresnel stochastic white noise framework to analyze the stochastic nature of the Feynman paths entering on the Feynman Path Integral expression for the Feynman Propagator of a particle quantum mechanically moving under a time-independent potential.
Stochastic Games for Continuous-Time Jump Processes Under Finite-Horizon Payoff Criterion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Qingda, E-mail: weiqd@hqu.edu.cn; Chen, Xian, E-mail: chenxian@amss.ac.cn
In this paper we study two-person nonzero-sum games for continuous-time jump processes with the randomized history-dependent strategies under the finite-horizon payoff criterion. The state space is countable, and the transition rates and payoff functions are allowed to be unbounded from above and from below. Under the suitable conditions, we introduce a new topology for the set of all randomized Markov multi-strategies and establish its compactness and metrizability. Then by constructing the approximating sequences of the transition rates and payoff functions, we show that the optimal value function for each player is a unique solution to the corresponding optimality equation andmore » obtain the existence of a randomized Markov Nash equilibrium. Furthermore, we illustrate the applications of our main results with a controlled birth and death system.« less
Rupert, C.P.; Miller, C.T.
2008-01-01
We examine a variety of polynomial-chaos-motivated approximations to a stochastic form of a steady state groundwater flow model. We consider approaches for truncating the infinite dimensional problem and producing decoupled systems. We discuss conditions under which such decoupling is possible and show that to generalize the known decoupling by numerical cubature, it would be necessary to find new multivariate cubature rules. Finally, we use the acceleration of Monte Carlo to compare the quality of polynomial models obtained for all approaches and find that in general the methods considered are more efficient than Monte Carlo for the relatively small domains considered in this work. A curse of dimensionality in the series expansion of the log-normal stochastic random field used to represent hydraulic conductivity provides a significant impediment to efficient approximations for large domains for all methods considered in this work, other than the Monte Carlo method. PMID:18836519
Cash transportation vehicle routing and scheduling under stochastic travel times
NASA Astrophysics Data System (ADS)
Yan, Shangyao; Wang, Sin-Siang; Chang, Yu-Hsuan
2014-03-01
Stochastic disturbances occurring in real-world operations could have a significant influence on the planned routing and scheduling results of cash transportation vehicles. In this study, a time-space network flow technique is utilized to construct a cash transportation vehicle routing and scheduling model incorporating stochastic travel times. In addition, to help security carriers to formulate more flexible routes and schedules, a concept of the similarity of time and space for vehicle routing and scheduling is incorporated into the model. The test results show that the model could be useful for security carriers in actual practice.
A coupled stochastic rainfall-evapotranspiration model for hydrological impact analysis
NASA Astrophysics Data System (ADS)
Pham, Minh Tu; Vernieuwe, Hilde; De Baets, Bernard; Verhoest, Niko E. C.
2018-02-01
A hydrological impact analysis concerns the study of the consequences of certain scenarios on one or more variables or fluxes in the hydrological cycle. In such an exercise, discharge is often considered, as floods originating from extremely high discharges often cause damage. Investigating the impact of extreme discharges generally requires long time series of precipitation and evapotranspiration to be used to force a rainfall-runoff model. However, such kinds of data may not be available and one should resort to stochastically generated time series, even though the impact of using such data on the overall discharge, and especially on the extreme discharge events, is not well studied. In this paper, stochastically generated rainfall and corresponding evapotranspiration time series, generated by means of vine copulas, are used to force a simple conceptual hydrological model. The results obtained are comparable to the modelled discharge using observed forcing data. Yet, uncertainties in the modelled discharge increase with an increasing number of stochastically generated time series used. Notwithstanding this finding, it can be concluded that using a coupled stochastic rainfall-evapotranspiration model has great potential for hydrological impact analysis.
Continuous measurement of an atomic current
NASA Astrophysics Data System (ADS)
Laflamme, C.; Yang, D.; Zoller, P.
2017-04-01
We are interested in dynamics of quantum many-body systems under continuous observation, and its physical realizations involving cold atoms in lattices. In the present work we focus on continuous measurement of atomic currents in lattice models, including the Hubbard model. We describe a Cavity QED setup, where measurement of a homodyne current provides a faithful representation of the atomic current as a function of time. We employ the quantum optical description in terms of a diffusive stochastic Schrödinger equation to follow the time evolution of the atomic system conditional to observing a given homodyne current trajectory, thus accounting for the competition between the Hamiltonian evolution and measurement back action. As an illustration, we discuss minimal models of atomic dynamics and continuous current measurement on rings with synthetic gauge fields, involving both real space and synthetic dimension lattices (represented by internal atomic states). Finally, by "not reading" the current measurements the time evolution of the atomic system is governed by a master equation, where—depending on the microscopic details of our CQED setups—we effectively engineer a current coupling of our system to a quantum reservoir. This provides interesting scenarios of dissipative dynamics generating "dark" pure quantum many-body states.
Bustamante, Carlos D.; Valero-Cuevas, Francisco J.
2010-01-01
The field of complex biomechanical modeling has begun to rely on Monte Carlo techniques to investigate the effects of parameter variability and measurement uncertainty on model outputs, search for optimal parameter combinations, and define model limitations. However, advanced stochastic methods to perform data-driven explorations, such as Markov chain Monte Carlo (MCMC), become necessary as the number of model parameters increases. Here, we demonstrate the feasibility and, what to our knowledge is, the first use of an MCMC approach to improve the fitness of realistically large biomechanical models. We used a Metropolis–Hastings algorithm to search increasingly complex parameter landscapes (3, 8, 24, and 36 dimensions) to uncover underlying distributions of anatomical parameters of a “truth model” of the human thumb on the basis of simulated kinematic data (thumbnail location, orientation, and linear and angular velocities) polluted by zero-mean, uncorrelated multivariate Gaussian “measurement noise.” Driven by these data, ten Markov chains searched each model parameter space for the subspace that best fit the data (posterior distribution). As expected, the convergence time increased, more local minima were found, and marginal distributions broadened as the parameter space complexity increased. In the 36-D scenario, some chains found local minima but the majority of chains converged to the true posterior distribution (confirmed using a cross-validation dataset), thus demonstrating the feasibility and utility of these methods for realistically large biomechanical problems. PMID:19272906
Gentilini, Davide; Garagnani, Paolo; Pisoni, Serena; Bacalini, Maria Giulia; Calzari, Luciano; Mari, Daniela; Vitale, Giovanni; Franceschi, Claudio; Di Blasio, Anna Maria
2015-08-01
In this study we applied a new analytical strategy to investigate the relations between stochastic epigenetic mutations (SEMs) and aging. We analysed methylation levels through the Infinium HumanMethylation27 and HumanMethylation450 BeadChips in a population of 178 subjects ranging from 3 to 106 years. For each CpG probe, epimutated subjects were identified as the extreme outliers with methylation level exceeding three times interquartile ranges the first quartile (Q1-(3 x IQR)) or the third quartile (Q3+(3 x IQR)). We demonstrated that the number of SEMs was low in childhood and increased exponentially during aging. Using the HUMARA method, skewing of X chromosome inactivation (XCI) was evaluated in heterozygotes women. Multivariate analysis indicated a significant correlation between log(SEMs) and degree of XCI skewing after adjustment for age (β = 0.41; confidence interval: 0.14, 0.68; p-value = 0.0053). The PATH analysis tested the complete model containing the variables: skewing of XCI, age, log(SEMs) and overall CpG methylation. After adjusting for the number of epimutations we failed to confirm the well reported correlation between skewing of XCI and aging. This evidence might suggest that the known correlation between XCI skewing and aging could not be a direct association but mediated by the number of SEMs.
Inflow forecasting model construction with stochastic time series for coordinated dam operation
NASA Astrophysics Data System (ADS)
Kim, T.; Jung, Y.; Kim, H.; Heo, J. H.
2014-12-01
Dam inflow forecasting is one of the most important tasks in dam operation for an effective water resources management and control. In general, dam inflow forecasting with stochastic time series model is possible to apply when the data is stationary because most of stochastic process based on stationarity. However, recent hydrological data cannot be satisfied the stationarity anymore because of climate change. Therefore a stochastic time series model, which can consider seasonality and trend in the data series, named SARIMAX(Seasonal Autoregressive Integrated Average with eXternal variable) model were constructed in this study. This SARIMAX model could increase the performance of stochastic time series model by considering the nonstationarity components and external variable such as precipitation. For application, the models were constructed for four coordinated dams on Han river in South Korea with monthly time series data. As a result, the models of each dam have similar performance and it would be possible to use the model for coordinated dam operation.Acknowledgement This research was supported by a grant 'Establishing Active Disaster Management System of Flood Control Structures by using 3D BIM Technique' [NEMA-NH-12-57] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea.
Two-time scale subordination in physical processes with long-term memory
NASA Astrophysics Data System (ADS)
Stanislavsky, Aleksander; Weron, Karina
2008-03-01
We describe dynamical processes in continuous media with a long-term memory. Our consideration is based on a stochastic subordination idea and concerns two physical examples in detail. First we study a temporal evolution of the species concentration in a trapping reaction in which a diffusing reactant is surrounded by a sea of randomly moving traps. The analysis uses the random-variable formalism of anomalous diffusive processes. We find that the empirical trapping-reaction law, according to which the reactant concentration decreases in time as a product of an exponential and a stretched exponential function, can be explained by a two-time scale subordination of random processes. Another example is connected with a state equation for continuous media with memory. If the pressure and the density of a medium are subordinated in two different random processes, then the ordinary state equation becomes fractional with two-time scales. This allows one to arrive at the Bagley-Torvik type of state equation.
Backward jump continuous-time random walk: An application to market trading
NASA Astrophysics Data System (ADS)
Gubiec, Tomasz; Kutner, Ryszard
2010-10-01
The backward jump modification of the continuous-time random walk model or the version of the model driven by the negative feedback was herein derived for spatiotemporal continuum in the context of a share price evolution on a stock exchange. In the frame of the model, we described stochastic evolution of a typical share price on a stock exchange with a moderate liquidity within a high-frequency time scale. The model was validated by satisfactory agreement of the theoretical velocity autocorrelation function with its empirical counterpart obtained for the continuous quotation. This agreement is mainly a result of a sharp backward correlation found and considered in this article. This correlation is a reminiscence of such a bid-ask bounce phenomenon where backward price jump has the same or almost the same length as preceding jump. We suggested that this correlation dominated the dynamics of the stock market with moderate liquidity. Although assumptions of the model were inspired by the market high-frequency empirical data, its potential applications extend beyond the financial market, for instance, to the field covered by the Le Chatelier-Braun principle of contrariness.
Backward jump continuous-time random walk: an application to market trading.
Gubiec, Tomasz; Kutner, Ryszard
2010-10-01
The backward jump modification of the continuous-time random walk model or the version of the model driven by the negative feedback was herein derived for spatiotemporal continuum in the context of a share price evolution on a stock exchange. In the frame of the model, we described stochastic evolution of a typical share price on a stock exchange with a moderate liquidity within a high-frequency time scale. The model was validated by satisfactory agreement of the theoretical velocity autocorrelation function with its empirical counterpart obtained for the continuous quotation. This agreement is mainly a result of a sharp backward correlation found and considered in this article. This correlation is a reminiscence of such a bid-ask bounce phenomenon where backward price jump has the same or almost the same length as preceding jump. We suggested that this correlation dominated the dynamics of the stock market with moderate liquidity. Although assumptions of the model were inspired by the market high-frequency empirical data, its potential applications extend beyond the financial market, for instance, to the field covered by the Le Chatelier-Braun principle of contrariness.
NASA Astrophysics Data System (ADS)
Guo, Feng; Wang, Xue-Yuan; Zhu, Cheng-Yin; Cheng, Xiao-Feng; Zhang, Zheng-Yu; Huang, Xu-Hui
2017-12-01
The stochastic resonance for a fractional oscillator with time-delayed kernel and quadratic trichotomous noise is investigated. Applying linear system theory and Laplace transform, the system output amplitude (SPA) for the fractional oscillator is obtained. It is found that the SPA is a periodical function of the kernel delayed-time. Stochastic multiplicative phenomenon appears on the SPA versus the driving frequency, versus the noise amplitude, and versus the fractional exponent. The non-monotonous dependence of the SPA on the system parameters is also discussed.
Estimation of stochastic volatility by using Ornstein-Uhlenbeck type models
NASA Astrophysics Data System (ADS)
Mariani, Maria C.; Bhuiyan, Md Al Masum; Tweneboah, Osei K.
2018-02-01
In this study, we develop a technique for estimating the stochastic volatility (SV) of a financial time series by using Ornstein-Uhlenbeck type models. Using the daily closing prices from developed and emergent stock markets, we conclude that the incorporation of stochastic volatility into the time varying parameter estimation significantly improves the forecasting performance via Maximum Likelihood Estimation. Furthermore, our estimation algorithm is feasible with large data sets and have good convergence properties.
Stochastic modeling of experimental chaotic time series.
Stemler, Thomas; Werner, Johannes P; Benner, Hartmut; Just, Wolfram
2007-01-26
Methods developed recently to obtain stochastic models of low-dimensional chaotic systems are tested in electronic circuit experiments. We demonstrate that reliable drift and diffusion coefficients can be obtained even when no excessive time scale separation occurs. Crisis induced intermittent motion can be described in terms of a stochastic model showing tunneling which is dominated by state space dependent diffusion. Analytical solutions of the corresponding Fokker-Planck equation are in excellent agreement with experimental data.
Theory of Stochastic Duels - Miscellaneous Results
1978-03-01
TECHNICAL MEMORANDUM 2-77, "THEORY OF STOCHASTIC DUELS - MISCELLANEOUS RESULTS"______________ 6. PERFORMING ORG. REPORT NUMBER _USA TRASANA 7. AUT)IOR...Identify by block number) This memorandum presents particular applications of various aspects of the theory of stochastic duels that the author has...Marksman Problem with Erlang n Firing Time 1 Distribution 2.3 Tactical Equity Duel with Erlang 2 Firing Times 4 2.4 Different Tactical Equity Duel 6 S2.5
Memory effects on stochastic resonance
NASA Astrophysics Data System (ADS)
Neiman, Alexander; Sung, Wokyung
1996-02-01
We study the phenomenon of stochastic resonance (SR) in a bistable system with internal colored noise. In this situation the system possesses time-dependent memory friction connected with noise via the fluctuation-dissipation theorem, so that in the absence of periodic driving the system approaches the thermodynamic equilibrium state. For this non-Markovian case we find that memory usually suppresses stochastic resonance. However, for a large memory time SR can be enhanced by the memory.
ERIC Educational Resources Information Center
Hannan, Michael T.
This document is part of a series of chapters described in SO 011 759. Stochastic models for the sociological analysis of change and the change process in quantitative variables are presented. The author lays groundwork for the statistical treatment of simple stochastic differential equations (SDEs) and discusses some of the continuities of…
Carrera, Renato Melli; Cendoroglo, Miguel; Gonçales, Paulo David Scatena; Marques, Flavio Rocha Brito; Sardenberg, Camila; Glezer, Milton; dos Santos, Oscar Fernando Pavão; Rizzo, Luiz Vicente; Lottenberg, Claudio Luiz; Schvartsman, Cláudio
2015-01-01
Objective Physician participation in Continuing Medical Education programs may be influenced by a number of factors. To evaluate the factors associated with compliance with the Continuing Medical Education requirements at a private hospital, we investigated whether physicians’ activity, measured by volumes of admissions and procedures, was associated with obtaining 40 Continuing Medical Education credits (40 hours of activities) in a 12-month cycle. Methods In an exclusive and non-mandatory Continuing Medical Education program, we collected physicians’ numbers of hospital admissions and numbers of surgical procedures performed. We also analyzed data on physicians’ time since graduation, age, and gender. Results A total of 3,809 credentialed, free-standing, private practice physicians were evaluated. Univariate analysis showed that the Continuing Medical Education requirements were more likely to be achieved by male physicians (odds ratio 1.251; p=0.009) and who had a higher number of hospital admissions (odds ratio 1.022; p<0.001). Multivariate analysis showed that age and number of hospital admissions were associated with achievement of the Continuing Medical Education requirements. Each hospital admission increased the chance of achieving the requirements by 0.4%. Among physicians who performed surgical procedures, multivariate analysis showed that male physicians were 1.3 time more likely to achieve the Continuing Medical Education requirements than female physicians. Each surgical procedure performed increased the chance of achieving the requirements by 1.4%. Conclusion The numbers of admissions and number of surgical procedures performed by physicians at our hospital were associated with the likelihood of meeting the Continuing Medical Education requirements. These findings help to shed new light on our Continuing Medical Education program. PMID:25807247
Examining Solutions to Missing Data in Longitudinal Nursing Research
Roberts, Mary B.; Sullivan, Mary C.; Winchester, Suzy B.
2017-01-01
Purpose Longitudinal studies are highly valuable in pediatrics because they provide useful data about developmental patterns of child health and behavior over time. When data are missing, the value of the research is impacted. The study’s purpose was to: (1) introduce a 3-step approach to assess and address missing data; (2) illustrate this approach using categorical and continuous level variables from a longitudinal study of premature infants. Methods A three-step approach with simulations was followed to assess the amount and pattern of missing data and to determine the most appropriate imputation method for the missing data. Patterns of missingness were Missing Completely at Random, Missing at Random, and Not Missing at Random. Missing continuous-level data were imputed using mean replacement, stochastic regression, multiple imputation, and fully conditional specification. Missing categorical-level data were imputed using last value carried forward, hot-decking, stochastic regression, and fully conditional specification. Simulations were used to evaluate these imputation methods under different patterns of missingness at different levels of missing data. Results The rate of missingness was 16–23% for continuous variables and 1–28% for categorical variables. Fully conditional specification imputation provided the least difference in mean and standard deviation estimates for continuous measures. Fully conditional specification imputation was acceptable for categorical measures. Results obtained through simulation reinforced and confirmed these findings. Practice Implications Significant investments are made in the collection of longitudinal data. The prudent handling of missing data can protect these investments and potentially improve the scientific information contained in pediatric longitudinal studies. PMID:28425202
Transient ensemble dynamics in time-independent galactic potentials
NASA Astrophysics Data System (ADS)
Mahon, M. Elaine; Abernathy, Robert A.; Bradley, Brendan O.; Kandrup, Henry E.
1995-07-01
This paper summarizes a numerical investigation of the short-time, possibly transient, behaviour of ensembles of stochastic orbits evolving in fixed non-integrable potentials, with the aim of deriving insights into the structure and evolution of galaxies. The simulations involved three different two-dimensional potentials, quite different in appearance. However, despite these differences, ensembles in all three potentials exhibit similar behaviour. This suggests that the conclusions inferred from the simulations are robust, relying only on basic topological properties, e.g., the existence of KAM tori and cantori. Generic ensembles of initial conditions, corresponding to stochastic orbits, exhibit a rapid coarse-grained approach towards a near-invariant distribution on a time-scale <
Gao, Qing; Feng, Gang; Xi, Zhiyu; Wang, Yong; Qiu, Jianbin
2014-09-01
In this paper, a novel dynamic sliding mode control scheme is proposed for a class of uncertain stochastic nonlinear time-delay systems represented by Takagi-Sugeno fuzzy models. The key advantage of the proposed scheme is that two very restrictive assumptions in most existing sliding mode control approaches for stochastic fuzzy systems have been removed. It is shown that the closed-loop control system trajectories can be driven onto the sliding surface in finite time almost certainly. It is also shown that the stochastic stability of the resulting sliding motion can be guaranteed in terms of linear matrix inequalities; moreover, the sliding-mode controller can be obtained simultaneously. Simulation results illustrating the advantages and effectiveness of the proposed approaches are also provided.
Yang, Shaofu; Guo, Zhenyuan; Wang, Jun
2017-07-01
In this paper, new results on the global synchronization of multiple recurrent neural networks (NNs) with time delays via impulsive interactions are presented. Impulsive interaction means that a number of NNs communicate with each other at impulse instants only, while they are independent at the remaining time. The communication topology among NNs is not required to be always connected and can switch ON and OFF at different impulse instants. By using the concept of sequential connectivity and the properties of stochastic matrices, a set of sufficient conditions depending on time delays is derived to ascertain global synchronization of multiple continuous-time recurrent NNs. In addition, a counterpart on the global synchronization of multiple discrete-time NNs is also discussed. Finally, two examples are presented to illustrate the results.
NASA Astrophysics Data System (ADS)
Cao, Robin; Braun, Jochen; Mattia, Maurizio
2014-08-01
The timing of certain mental events is thought to reflect random walks performed by underlying neural dynamics. One class of such events—stochastic reversals of multistable perceptions—exhibits a unique scalar property: even though timing densities vary widely, higher moments stay in particular proportions to the mean. We show that stochastic accumulation of activity in a finite number of idealized cortical columns—realizing a generalized Ehrenfest urn model—may explain these observations. Modeling stochastic reversals as the first-passage time of a threshold number of active columns, we obtain higher moments of the first-passage time density. We derive analytical expressions for noninteracting columns and generalize the results to interacting columns in simulations. The scalar property of multistable perception is reproduced by a dynamic regime with a fixed, low threshold, in which the activation of a few additional columns suffices for a reversal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youngren, M.A.
1989-11-01
An analytic probability model of tactical nuclear warfare in the theater is presented in this paper. The model addresses major problems associated with representing nuclear warfare in the theater. Current theater representations of a potential nuclear battlefield are developed in context of low-resolution, theater-level models or scenarios. These models or scenarios provide insufficient resolution in time and space for modeling a nuclear exchange. The model presented in this paper handles the spatial uncertainty in potentially targeted unit locations by proposing two-dimensional multivariate probability models for the actual and perceived locations of units subordinate to the major (division-level) units represented inmore » theater scenarios. The temporal uncertainty in the activities of interest represented in our theater-level Force Evaluation Model (FORCEM) is handled through probability models of the acquisition and movement of potential nuclear target units.« less
Lu, Tsui-Shan; Longnecker, Matthew P; Zhou, Haibo
2017-03-15
Outcome-dependent sampling (ODS) scheme is a cost-effective sampling scheme where one observes the exposure with a probability that depends on the outcome. The well-known such design is the case-control design for binary response, the case-cohort design for the failure time data, and the general ODS design for a continuous response. While substantial work has been carried out for the univariate response case, statistical inference and design for the ODS with multivariate cases remain under-developed. Motivated by the need in biological studies for taking the advantage of the available responses for subjects in a cluster, we propose a multivariate outcome-dependent sampling (multivariate-ODS) design that is based on a general selection of the continuous responses within a cluster. The proposed inference procedure for the multivariate-ODS design is semiparametric where all the underlying distributions of covariates are modeled nonparametrically using the empirical likelihood methods. We show that the proposed estimator is consistent and developed the asymptotically normality properties. Simulation studies show that the proposed estimator is more efficient than the estimator obtained using only the simple-random-sample portion of the multivariate-ODS or the estimator from a simple random sample with the same sample size. The multivariate-ODS design together with the proposed estimator provides an approach to further improve study efficiency for a given fixed study budget. We illustrate the proposed design and estimator with an analysis of association of polychlorinated biphenyl exposure to hearing loss in children born to the Collaborative Perinatal Study. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
El-Diasty, Mohammed; Pagiatakis, Spiros
2009-01-01
In this paper, we examine the effect of changing the temperature points on MEMS-based inertial sensor random error. We collect static data under different temperature points using a MEMS-based inertial sensor mounted inside a thermal chamber. Rigorous stochastic models, namely Autoregressive-based Gauss-Markov (AR-based GM) models are developed to describe the random error behaviour. The proposed AR-based GM model is initially applied to short stationary inertial data to develop the stochastic model parameters (correlation times). It is shown that the stochastic model parameters of a MEMS-based inertial unit, namely the ADIS16364, are temperature dependent. In addition, field kinematic test data collected at about 17 °C are used to test the performance of the stochastic models at different temperature points in the filtering stage using Unscented Kalman Filter (UKF). It is shown that the stochastic model developed at 20 °C provides a more accurate inertial navigation solution than the ones obtained from the stochastic models developed at -40 °C, -20 °C, 0 °C, +40 °C, and +60 °C. The temperature dependence of the stochastic model is significant and should be considered at all times to obtain optimal navigation solution for MEMS-based INS/GPS integration.
Cutting planes for the multistage stochastic unit commitment problem
Jiang, Ruiwei; Guan, Yongpei; Watson, Jean -Paul
2016-04-20
As renewable energy penetration rates continue to increase in power systems worldwide, new challenges arise for system operators in both regulated and deregulated electricity markets to solve the security-constrained coal-fired unit commitment problem with intermittent generation (due to renewables) and uncertain load, in order to ensure system reliability and maintain cost effectiveness. In this paper, we study a security-constrained coal-fired stochastic unit commitment model, which we use to enhance the reliability unit commitment process for day-ahead power system operations. In our approach, we first develop a deterministic equivalent formulation for the problem, which leads to a large-scale mixed-integer linear program.more » Then, we verify that the turn on/off inequalities provide a convex hull representation of the minimum-up/down time polytope under the stochastic setting. Next, we develop several families of strong valid inequalities mainly through lifting schemes. In particular, by exploring sequence independent lifting and subadditive approximation lifting properties for the lifting schemes, we obtain strong valid inequalities for the ramping and general load balance polytopes. Lastly, branch-and-cut algorithms are developed to employ these valid inequalities as cutting planes to solve the problem. Our computational results verify the effectiveness of the proposed approach.« less
Cutting planes for the multistage stochastic unit commitment problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Ruiwei; Guan, Yongpei; Watson, Jean -Paul
As renewable energy penetration rates continue to increase in power systems worldwide, new challenges arise for system operators in both regulated and deregulated electricity markets to solve the security-constrained coal-fired unit commitment problem with intermittent generation (due to renewables) and uncertain load, in order to ensure system reliability and maintain cost effectiveness. In this paper, we study a security-constrained coal-fired stochastic unit commitment model, which we use to enhance the reliability unit commitment process for day-ahead power system operations. In our approach, we first develop a deterministic equivalent formulation for the problem, which leads to a large-scale mixed-integer linear program.more » Then, we verify that the turn on/off inequalities provide a convex hull representation of the minimum-up/down time polytope under the stochastic setting. Next, we develop several families of strong valid inequalities mainly through lifting schemes. In particular, by exploring sequence independent lifting and subadditive approximation lifting properties for the lifting schemes, we obtain strong valid inequalities for the ramping and general load balance polytopes. Lastly, branch-and-cut algorithms are developed to employ these valid inequalities as cutting planes to solve the problem. Our computational results verify the effectiveness of the proposed approach.« less
Quasi-continuous stochastic simulation framework for flood modelling
NASA Astrophysics Data System (ADS)
Moustakis, Yiannis; Kossieris, Panagiotis; Tsoukalas, Ioannis; Efstratiadis, Andreas
2017-04-01
Typically, flood modelling in the context of everyday engineering practices is addressed through event-based deterministic tools, e.g., the well-known SCS-CN method. A major shortcoming of such approaches is the ignorance of uncertainty, which is associated with the variability of soil moisture conditions and the variability of rainfall during the storm event.In event-based modeling, the sole expression of uncertainty is the return period of the design storm, which is assumed to represent the acceptable risk of all output quantities (flood volume, peak discharge, etc.). On the other hand, the varying antecedent soil moisture conditions across the basin are represented by means of scenarios (e.g., the three AMC types by SCS),while the temporal distribution of rainfall is represented through standard deterministic patterns (e.g., the alternative blocks method). In order to address these major inconsistencies,simultaneously preserving the simplicity and parsimony of the SCS-CN method, we have developed a quasi-continuous stochastic simulation approach, comprising the following steps: (1) generation of synthetic daily rainfall time series; (2) update of potential maximum soil moisture retention, on the basis of accumulated five-day rainfall; (3) estimation of daily runoff through the SCS-CN formula, using as inputs the daily rainfall and the updated value of soil moisture retention;(4) selection of extreme events and application of the standard SCS-CN procedure for each specific event, on the basis of synthetic rainfall.This scheme requires the use of two stochastic modelling components, namely the CastaliaR model, for the generation of synthetic daily data, and the HyetosMinute model, for the disaggregation of daily rainfall to finer temporal scales. Outcomes of this approach are a large number of synthetic flood events, allowing for expressing the design variables in statistical terms and thus properly evaluating the flood risk.
Nonparametric model validations for hidden Markov models with applications in financial econometrics
Zhao, Zhibiao
2011-01-01
We address the nonparametric model validation problem for hidden Markov models with partially observable variables and hidden states. We achieve this goal by constructing a nonparametric simultaneous confidence envelope for transition density function of the observable variables and checking whether the parametric density estimate is contained within such an envelope. Our specification test procedure is motivated by a functional connection between the transition density of the observable variables and the Markov transition kernel of the hidden states. Our approach is applicable for continuous time diffusion models, stochastic volatility models, nonlinear time series models, and models with market microstructure noise. PMID:21750601
Semiclassical Wheeler-DeWitt equation: Solutions for long-wavelength fields
NASA Astrophysics Data System (ADS)
Salopek, D. S.; Stewart, J. M.; Parry, J.
1993-07-01
In the long-wavelength approximation, a general set of semiclassical wave functionals is given for gravity and matter interacting in 3+1 dimensions. In the long-wavelength theory, one neglects second-order spatial gradients in the energy constraint. These solutions satisfy the Hamilton-Jacobi equation, the momentum constraint, and the equation of continuity. It is essential to introduce inhomogeneities to discuss the role of time. The time hypersurface is chosen to be a homogeneous field in the wave functional. It is shown how to introduce tracer particles through a dust field χ into the dynamical system. The formalism can be used to describe stochastic inflation.
Diffusion limit of Lévy-Lorentz gas is Brownian motion
NASA Astrophysics Data System (ADS)
Magdziarz, Marcin; Szczotka, Wladyslaw
2018-07-01
In this paper we analyze asymptotic behaviour of a stochastic process called Lévy-Lorentz gas. This process is aspecial kind of continuous-time random walk in which walker moves in the fixed environment composed of scattering points. Upon each collision the walker performs a flight to the nearest scattering point. This type of dynamics is observed in Lévy glasses or long quenched polymers. We show that the diffusion limit of Lévy-Lorentz gas with finite mean distance between scattering centers is the standard Brownian motion. Thus, for long times the behaviour of the Lévy-Lorentz gas is close to the diffusive regime.
Lognormals for SETI, Evolution and Mass Extinctions
NASA Astrophysics Data System (ADS)
Maccone, Claudio
2014-12-01
In a series of recent papers (Refs. [1-5,7,8]) and in a book (Ref. [6]), this author suggested a new mathematical theory capable of merging Darwinian Evolution and SETI into a unified statistical framework. In this new vision, Darwinian Evolution, as it unfolded on Earth over the last 3.5 billion years, is defined as just one particular realization of a certain lognormal stochastic process in the number of living species on Earth, whose mean value increased in time exponentially. SETI also may be brought into this vision since the number of communicating civilizations in the Galaxy is given by a lognormal distribution (Statistical Drake Equation). Now, in this paper we further elaborate on all that particularly with regard to two important topics: The introduction of the general lognormal stochastic process L(t) whose mean value may be an arbitrary continuous function of the time, m(t), rather than just the exponential mGBM (t) =N0eμt typical of the Geometric Brownian Motion (GBM). This is a considerable generalization of the GBM-based theory used in Refs. [1-8]. The particular application of the general stochastic process L(t) to the understanding of Mass Extinctions like the K-Pg one that marked the dinosaurs' end 65 million years ago. We first model this Mass Extinction as a decreasing Geometric Brownian Motion (GBM) extending from the asteroid's impact time all through the ensuing 'nuclear winter'. However, this model has a flaw: the 'final value' of the GBM cannot have a horizontal tangent, as requested to enable the recovery of life again after this 'final extinction value'. That flaw, however, is removed if the rapidly decreasing mean value function of L(t) is the left branch of a parabola extending from the asteroid's impact time all through the ensuing 'nuclear winter' and up to the time when the number of living species on Earth started growing up again, as we show mathematically in Section 3. In conclusion, we have uncovered an important generalization of the GBM into the general lognormal stochastic process L(t), paving the way to a better, future understanding the evolution of life on Exoplanets on the basis of what Evolution unfolded on Earth in the last 3.5 billion years. That will be the goal of further research papers in the future.
Koh, Wonryull; Blackwell, Kim T
2011-04-21
Stochastic simulation of reaction-diffusion systems enables the investigation of stochastic events arising from the small numbers and heterogeneous distribution of molecular species in biological cells. Stochastic variations in intracellular microdomains and in diffusional gradients play a significant part in the spatiotemporal activity and behavior of cells. Although an exact stochastic simulation that simulates every individual reaction and diffusion event gives a most accurate trajectory of the system's state over time, it can be too slow for many practical applications. We present an accelerated algorithm for discrete stochastic simulation of reaction-diffusion systems designed to improve the speed of simulation by reducing the number of time-steps required to complete a simulation run. This method is unique in that it employs two strategies that have not been incorporated in existing spatial stochastic simulation algorithms. First, diffusive transfers between neighboring subvolumes are based on concentration gradients. This treatment necessitates sampling of only the net or observed diffusion events from higher to lower concentration gradients rather than sampling all diffusion events regardless of local concentration gradients. Second, we extend the non-negative Poisson tau-leaping method that was originally developed for speeding up nonspatial or homogeneous stochastic simulation algorithms. This method calculates each leap time in a unified step for both reaction and diffusion processes while satisfying the leap condition that the propensities do not change appreciably during the leap and ensuring that leaping does not cause molecular populations to become negative. Numerical results are presented that illustrate the improvement in simulation speed achieved by incorporating these two new strategies.
Refractory pulse counting processes in stochastic neural computers.
McNeill, Dean K; Card, Howard C
2005-03-01
This letter quantitiatively investigates the effect of a temporary refractory period or dead time in the ability of a stochastic Bernoulli processor to record subsequent pulse events, following the arrival of a pulse. These effects can arise in either the input detectors of a stochastic neural network or in subsequent processing. A transient period is observed, which increases with both the dead time and the Bernoulli probability of the dead-time free system, during which the system reaches equilibrium. Unless the Bernoulli probability is small compared to the inverse of the dead time, the mean and variance of the pulse count distributions are both appreciably reduced.
2014-11-13
Cm) in a given set C ⊂ IRm . (5.7) Motivation for generalized regression comes from applications in which Y has the cost/loss orien- tation that we have...distribution. The corresponding probability measure on IRm is induced then by the multivariate distribution function FV1,...,Vm(v1, . . . , vm) = prob { (V1...could be generated by future observations of some variables V1, . . . , Vm, as above, in which case Ω would be a subset of IRm with elements ω = (v1
Multivariate Autoregressive Modeling and Granger Causality Analysis of Multiple Spike Trains
Krumin, Michael; Shoham, Shy
2010-01-01
Recent years have seen the emergence of microelectrode arrays and optical methods allowing simultaneous recording of spiking activity from populations of neurons in various parts of the nervous system. The analysis of multiple neural spike train data could benefit significantly from existing methods for multivariate time-series analysis which have proven to be very powerful in the modeling and analysis of continuous neural signals like EEG signals. However, those methods have not generally been well adapted to point processes. Here, we use our recent results on correlation distortions in multivariate Linear-Nonlinear-Poisson spiking neuron models to derive generalized Yule-Walker-type equations for fitting ‘‘hidden” Multivariate Autoregressive models. We use this new framework to perform Granger causality analysis in order to extract the directed information flow pattern in networks of simulated spiking neurons. We discuss the relative merits and limitations of the new method. PMID:20454705
Parent Influences on Early Childhood Internalizing Difficulties
ERIC Educational Resources Information Center
Bayer, Jordana, K.; Sanson, Ann, V.; Hemphill, Sheryl A.
2006-01-01
Children's internalizing problems are a concerning mental health issue, due to significant prevalence and continuity over time. This study tested a multivariate model predicting young children's internalizing behaviors from parenting practices, parents' anxiety-depression and family stressors. A community sample of 2 year old children (N=112) was…
Extracting features of Gaussian self-similar stochastic processes via the Bandt-Pompe approach.
Rosso, O A; Zunino, L; Pérez, D G; Figliola, A; Larrondo, H A; Garavaglia, M; Martín, M T; Plastino, A
2007-12-01
By recourse to appropriate information theory quantifiers (normalized Shannon entropy and Martín-Plastino-Rosso intensive statistical complexity measure), we revisit the characterization of Gaussian self-similar stochastic processes from a Bandt-Pompe viewpoint. We show that the ensuing approach exhibits considerable advantages with respect to other treatments. In particular, clear quantifiers gaps are found in the transition between the continuous processes and their associated noises.
On Volterra quadratic stochastic operators with continual state space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganikhodjaev, Nasir; Hamzah, Nur Zatul Akmar
2015-05-15
Let (X,F) be a measurable space, and S(X,F) be the set of all probability measures on (X,F) where X is a state space and F is σ - algebraon X. We consider a nonlinear transformation (quadratic stochastic operator) defined by (Vλ)(A) = ∫{sub X}∫{sub X}P(x,y,A)dλ(x)dλ(y), where P(x, y, A) is regarded as a function of two variables x and y with fixed A ∈ F . A quadratic stochastic operator V is called a regular, if for any initial measure the strong limit lim{sub n→∞} V{sup n }(λ) is exists. In this paper, we construct a family of quadratic stochastic operators defined on themore » segment X = [0,1] with Borel σ - algebra F on X , prove their regularity and show that the limit measure is a Dirac measure.« less
Intrinsic optimization using stochastic nanomagnets
Sutton, Brian; Camsari, Kerem Yunus; Behin-Aein, Behtash; Datta, Supriyo
2017-01-01
This paper draws attention to a hardware system which can be engineered so that its intrinsic physics is described by the generalized Ising model and can encode the solution to many important NP-hard problems as its ground state. The basic constituents are stochastic nanomagnets which switch randomly between the ±1 Ising states and can be monitored continuously with standard electronics. Their mutual interactions can be short or long range, and their strengths can be reconfigured as needed to solve specific problems and to anneal the system at room temperature. The natural laws of statistical mechanics guide the network of stochastic nanomagnets at GHz speeds through the collective states with an emphasis on the low energy states that represent optimal solutions. As proof-of-concept, we present simulation results for standard NP-complete examples including a 16-city traveling salesman problem using experimentally benchmarked models for spin-transfer torque driven stochastic nanomagnets. PMID:28295053
Intrinsic optimization using stochastic nanomagnets
NASA Astrophysics Data System (ADS)
Sutton, Brian; Camsari, Kerem Yunus; Behin-Aein, Behtash; Datta, Supriyo
2017-03-01
This paper draws attention to a hardware system which can be engineered so that its intrinsic physics is described by the generalized Ising model and can encode the solution to many important NP-hard problems as its ground state. The basic constituents are stochastic nanomagnets which switch randomly between the ±1 Ising states and can be monitored continuously with standard electronics. Their mutual interactions can be short or long range, and their strengths can be reconfigured as needed to solve specific problems and to anneal the system at room temperature. The natural laws of statistical mechanics guide the network of stochastic nanomagnets at GHz speeds through the collective states with an emphasis on the low energy states that represent optimal solutions. As proof-of-concept, we present simulation results for standard NP-complete examples including a 16-city traveling salesman problem using experimentally benchmarked models for spin-transfer torque driven stochastic nanomagnets.
NASA Astrophysics Data System (ADS)
Sato, Aki-Hiro
2010-12-01
This study considers q-Gaussian distributions and stochastic differential equations with both multiplicative and additive noises. In the M-dimensional case a q-Gaussian distribution can be theoretically derived as a stationary probability distribution of the multiplicative stochastic differential equation with both mutually independent multiplicative and additive noises. By using the proposed stochastic differential equation a method to evaluate a default probability under a given risk buffer is proposed.
PROPAGATOR: a synchronous stochastic wildfire propagation model with distributed computation engine
NASA Astrophysics Data System (ADS)
D´Andrea, M.; Fiorucci, P.; Biondi, G.; Negro, D.
2012-04-01
PROPAGATOR is a stochastic model of forest fire spread, useful as a rapid method for fire risk assessment. The model is based on a 2D stochastic cellular automaton. The domain of simulation is discretized using a square regular grid with cell size of 20x20 meters. The model uses high-resolution information such as elevation and type of vegetation on the ground. Input parameters are wind direction, speed and the ignition point of fire. The simulation of fire propagation is done via a stochastic mechanism of propagation between a burning cell and a non-burning cell belonging to its neighbourhood, i.e. the 8 adjacent cells in the rectangular grid. The fire spreads from one cell to its neighbours with a certain base probability, defined using vegetation types of two adjacent cells, and modified by taking into account the slope between them, wind direction and speed. The simulation is synchronous, and takes into account the time needed by the burning fire to cross each cell. Vegetation cover, slope, wind speed and direction affect the fire-propagation speed from cell to cell. The model simulates several mutually independent realizations of the same stochastic fire propagation process. Each of them provides a map of the area burned at each simulation time step. Propagator simulates self-extinction of the fire, and the propagation process continues until at least one cell of the domain is burning in each realization. The output of the model is a series of maps representing the probability of each cell of the domain to be affected by the fire at each time-step: these probabilities are obtained by evaluating the relative frequency of ignition of each cell with respect to the complete set of simulations. Propagator is available as a module in the OWIS (Opera Web Interfaces) system. The model simulation runs on a dedicated server and it is remote controlled from the client program, NAZCA. Ignition points of the simulation can be selected directly in a high-resolution, three-dimensional graphical representation of the Italian territory within NAZCA. The other simulation parameters, namely wind speed and direction, number of simulations, computing grid size and temporal resolution, can be selected from within the program interface. The output of the simulation is showed in real-time during the simulation, and are also available off-line and on the DEWETRA system, a Web GIS-based system for environmental risk assessment, developed according to OGC-INSPIRE standards. The model execution is very fast, providing a full prevision for the scenario in few minutes, and can be useful for real-time active fire management and suppression.
NASA Astrophysics Data System (ADS)
Dodov, B.
2017-12-01
Stochastic simulation of realistic and statistically robust patterns of Tropical Cyclone (TC) induced precipitation is a challenging task. It is even more challenging in a catastrophe modeling context, where tens of thousands of typhoon seasons need to be simulated in order to provide a complete view of flood risk. Ultimately, one could run a coupled global climate model and regional Numerical Weather Prediction (NWP) model, but this approach is not feasible in the catastrophe modeling context and, most importantly, may not provide TC track patterns consistent with observations. Rather, we propose to leverage NWP output for the observed TC precipitation patterns (in terms of downscaled reanalysis 1979-2015) collected on a Lagrangian frame along the historical TC tracks and reduced to the leading spatial principal components of the data. The reduced data from all TCs is then grouped according to timing, storm evolution stage (developing, mature, dissipating, ETC transitioning) and central pressure and used to build a dictionary of stationary (within a group) and non-stationary (for transitions between groups) covariance models. Provided that the stochastic storm tracks with all the parameters describing the TC evolution are already simulated, a sequence of conditional samples from the covariance models chosen according to the TC characteristics at a given moment in time are concatenated, producing a continuous non-stationary precipitation pattern in a Lagrangian framework. The simulated precipitation for each event is finally distributed along the stochastic TC track and blended with a non-TC background precipitation using a data assimilation technique. The proposed framework provides means of efficient simulation (10000 seasons simulated in a couple of days) and robust typhoon precipitation patterns consistent with observed regional climate and visually undistinguishable from high resolution NWP output. The framework is used to simulate a catalog of 10000 typhoon seasons implemented in a flood risk model for Japan.
Optimal Search for an Astrophysical Gravitational-Wave Background
NASA Astrophysics Data System (ADS)
Smith, Rory; Thrane, Eric
2018-04-01
Roughly every 2-10 min, a pair of stellar-mass black holes merge somewhere in the Universe. A small fraction of these mergers are detected as individually resolvable gravitational-wave events by advanced detectors such as LIGO and Virgo. The rest contribute to a stochastic background. We derive the statistically optimal search strategy (producing minimum credible intervals) for a background of unresolved binaries. Our method applies Bayesian parameter estimation to all available data. Using Monte Carlo simulations, we demonstrate that the search is both "safe" and effective: it is not fooled by instrumental artifacts such as glitches and it recovers simulated stochastic signals without bias. Given realistic assumptions, we estimate that the search can detect the binary black hole background with about 1 day of design sensitivity data versus ≈40 months using the traditional cross-correlation search. This framework independently constrains the merger rate and black hole mass distribution, breaking a degeneracy present in the cross-correlation approach. The search provides a unified framework for population studies of compact binaries, which is cast in terms of hyperparameter estimation. We discuss a number of extensions and generalizations, including application to other sources (such as binary neutron stars and continuous-wave sources), simultaneous estimation of a continuous Gaussian background, and applications to pulsar timing.
Doubly stochastic Poisson process models for precipitation at fine time-scales
NASA Astrophysics Data System (ADS)
Ramesh, Nadarajah I.; Onof, Christian; Xie, Dichao
2012-09-01
This paper considers a class of stochastic point process models, based on doubly stochastic Poisson processes, in the modelling of rainfall. We examine the application of this class of models, a neglected alternative to the widely-known Poisson cluster models, in the analysis of fine time-scale rainfall intensity. These models are mainly used to analyse tipping-bucket raingauge data from a single site but an extension to multiple sites is illustrated which reveals the potential of this class of models to study the temporal and spatial variability of precipitation at fine time-scales.
The stochastic dance of early HIV infection
NASA Astrophysics Data System (ADS)
Merrill, Stephen J.
2005-12-01
The stochastic nature of early HIV infection is described in a series of models, each of which captures aspects of the dance of HIV during the early stages of infection. It is to this highly variable target that the immune response must respond. The adaptability of the various components of the immune response is an important aspect of the system's operation, as the nature of the pathogens that the response will be required to respond to and the order in which those responses must be made cannot be known beforehand. As HIV infection has direct influence over cells responsible for the immune response, the dance predicts that the immune response will be also in a variable state of readiness and capability for this task of adaptation. The description of the stochastic dance of HIV here will use the tools of stochastic models, and for the most part, simulation. The justification for this approach is that the early stages and the development of HIV diversity require that the model to be able to describe both individual sample path and patient-to-patient variability. In addition, as early viral dynamics are best described using branching processes, the explosive growth of these models both predicts high variability and rapid response of HIV to changes in system parameters.In this paper, a basic viral growth model based on a time dependent continuous-time branching process is used to describe the growth of HIV infected cells in the macrophage and lymphocyte populations. Immigration from the reservoir population is added to the basic model to describe the incubation time distribution. This distribution is deduced directly from the modeling assumptions and the model of viral growth. A system of two branching processes, one in the infected macrophage population and one in the infected lymphocyte population is used to provide a description of the relationship between the development of HIV diversity as it relates to tropism (host cell preference). The role of the immune response to HIV and HIV infected cells is used to describe the movement of the infection from a few infected macrophages to a disease of infected CD4+ T lymphocytes.
Distributed Consensus of Stochastic Delayed Multi-agent Systems Under Asynchronous Switching.
Wu, Xiaotai; Tang, Yang; Cao, Jinde; Zhang, Wenbing
2016-08-01
In this paper, the distributed exponential consensus of stochastic delayed multi-agent systems with nonlinear dynamics is investigated under asynchronous switching. The asynchronous switching considered here is to account for the time of identifying the active modes of multi-agent systems. After receipt of confirmation of mode's switching, the matched controller can be applied, which means that the switching time of the matched controller in each node usually lags behind that of system switching. In order to handle the coexistence of switched signals and stochastic disturbances, a comparison principle of stochastic switched delayed systems is first proved. By means of this extended comparison principle, several easy to verified conditions for the existence of an asynchronously switched distributed controller are derived such that stochastic delayed multi-agent systems with asynchronous switching and nonlinear dynamics can achieve global exponential consensus. Two examples are given to illustrate the effectiveness of the proposed method.
Smith, Jason F.; Chen, Kewei; Pillai, Ajay S.; Horwitz, Barry
2013-01-01
The number and variety of connectivity estimation methods is likely to continue to grow over the coming decade. Comparisons between methods are necessary to prune this growth to only the most accurate and robust methods. However, the nature of connectivity is elusive with different methods potentially attempting to identify different aspects of connectivity. Commonalities of connectivity definitions across methods upon which base direct comparisons can be difficult to derive. Here, we explicitly define “effective connectivity” using a common set of observation and state equations that are appropriate for three connectivity methods: dynamic causal modeling (DCM), multivariate autoregressive modeling (MAR), and switching linear dynamic systems for fMRI (sLDSf). In addition while deriving this set, we show how many other popular functional and effective connectivity methods are actually simplifications of these equations. We discuss implications of these connections for the practice of using one method to simulate data for another method. After mathematically connecting the three effective connectivity methods, simulated fMRI data with varying numbers of regions and task conditions is generated from the common equation. This simulated data explicitly contains the type of the connectivity that the three models were intended to identify. Each method is applied to the simulated data sets and the accuracy of parameter identification is analyzed. All methods perform above chance levels at identifying correct connectivity parameters. The sLDSf method was superior in parameter estimation accuracy to both DCM and MAR for all types of comparisons. PMID:23717258
Stochastic 3D modeling of Ostwald ripening at ultra-high volume fractions of the coarsening phase
NASA Astrophysics Data System (ADS)
Spettl, A.; Wimmer, R.; Werz, T.; Heinze, M.; Odenbach, S.; Krill, C. E., III; Schmidt, V.
2015-09-01
We present a (dynamic) stochastic simulation model for 3D grain morphologies undergoing a grain coarsening phenomenon known as Ostwald ripening. For low volume fractions of the coarsening phase, the classical LSW theory predicts a power-law evolution of the mean particle size and convergence toward self-similarity of the particle size distribution; experiments suggest that this behavior holds also for high volume fractions. In the present work, we have analyzed 3D images that were recorded in situ over time in semisolid Al-Cu alloys manifesting ultra-high volume fractions of the coarsening (solid) phase. Using this information we developed a stochastic simulation model for the 3D morphology of the coarsening grains at arbitrary time steps. Our stochastic model is based on random Laguerre tessellations and is by definition self-similar—i.e. it depends only on the mean particle diameter, which in turn can be estimated at each point in time. For a given mean diameter, the stochastic model requires only three additional scalar parameters, which influence the distribution of particle sizes and their shapes. An evaluation shows that even with this minimal information the stochastic model yields an excellent representation of the statistical properties of the experimental data.
Front propagation and effect of memory in stochastic desertification models with an absorbing state
NASA Astrophysics Data System (ADS)
Herman, Dor; Shnerb, Nadav M.
2017-08-01
Desertification in dryland ecosystems is considered to be a major environmental threat that may lead to devastating consequences. The concern increases when the system admits two alternative steady states and the transition is abrupt and irreversible (catastrophic shift). However, recent studies show that the inherent stochasticity of the birth-death process, when superimposed on the presence of an absorbing state, may lead to a continuous (second order) transition even if the deterministic dynamics supports a catastrophic transition. Following these works we present here a numerical study of a one-dimensional stochastic desertification model, where the deterministic predictions are confronted with the observed dynamics. Our results suggest that a stochastic spatial system allows for a propagating front only when its active phase invades the inactive (desert) one. In the extinction phase one observes transient front propagation followed by a global collapse. In the presence of a seed bank the vegetation state is shown to be more robust against demographic stochasticity, but the transition in that case still belongs to the directed percolation equivalence class.
2–stage stochastic Runge–Kutta for stochastic delay differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosli, Norhayati; Jusoh Awang, Rahimah; Bahar, Arifah
2015-05-15
This paper proposes a newly developed one-step derivative-free method, that is 2-stage stochastic Runge-Kutta (SRK2) to approximate the solution of stochastic delay differential equations (SDDEs) with a constant time lag, r > 0. General formulation of stochastic Runge-Kutta for SDDEs is introduced and Stratonovich Taylor series expansion for numerical solution of SRK2 is presented. Local truncation error of SRK2 is measured by comparing the Stratonovich Taylor expansion of the exact solution with the computed solution. Numerical experiment is performed to assure the validity of the method in simulating the strong solution of SDDEs.
Extended Plefka expansion for stochastic dynamics
NASA Astrophysics Data System (ADS)
Bravi, B.; Sollich, P.; Opper, M.
2016-05-01
We propose an extension of the Plefka expansion, which is well known for the dynamics of discrete spins, to stochastic differential equations with continuous degrees of freedom and exhibiting generic nonlinearities. The scenario is sufficiently general to allow application to e.g. biochemical networks involved in metabolism and regulation. The main feature of our approach is to constrain in the Plefka expansion not just first moments akin to magnetizations, but also second moments, specifically two-time correlations and responses for each degree of freedom. The end result is an effective equation of motion for each single degree of freedom, where couplings to other variables appear as a self-coupling to the past (i.e. memory term) and a coloured noise. This constitutes a new mean field approximation that should become exact in the thermodynamic limit of a large network, for suitably long-ranged couplings. For the analytically tractable case of linear dynamics we establish this exactness explicitly by appeal to spectral methods of random matrix theory, for Gaussian couplings with arbitrary degree of symmetry.
Hybrid pathwise sensitivity methods for discrete stochastic models of chemical reaction systems.
Wolf, Elizabeth Skubak; Anderson, David F
2015-01-21
Stochastic models are often used to help understand the behavior of intracellular biochemical processes. The most common such models are continuous time Markov chains (CTMCs). Parametric sensitivities, which are derivatives of expectations of model output quantities with respect to model parameters, are useful in this setting for a variety of applications. In this paper, we introduce a class of hybrid pathwise differentiation methods for the numerical estimation of parametric sensitivities. The new hybrid methods combine elements from the three main classes of procedures for sensitivity estimation and have a number of desirable qualities. First, the new methods are unbiased for a broad class of problems. Second, the methods are applicable to nearly any physically relevant biochemical CTMC model. Third, and as we demonstrate on several numerical examples, the new methods are quite efficient, particularly if one wishes to estimate the full gradient of parametric sensitivities. The methods are rather intuitive and utilize the multilevel Monte Carlo philosophy of splitting an expectation into separate parts and handling each in an efficient manner.
Increasing frequency of extremely severe cyclonic storms over the Arabian Sea
NASA Astrophysics Data System (ADS)
Murakami, Hiroyuki; Vecchi, Gabriel A.; Underwood, Seth
2017-12-01
In 2014 and 2015, post-monsoon extremely severe cyclonic storms (ESCS)—defined by the WMO as tropical storms with lifetime maximum winds greater than 46 m s-1—were first observed over the Arabian Sea (ARB), causing widespread damage. However, it is unknown to what extent this abrupt increase in post-monsoon ESCSs can be linked to anthropogenic warming, natural variability, or stochastic behaviour. Here, using a suite of high-resolution global coupled model experiments that accurately simulate the climatological distribution of ESCSs, we show that anthropogenic forcing has likely increased the probability of late-season ECSCs occurring in the ARB since the preindustrial era. However, the specific timing of observed late-season ESCSs in 2014 and 2015 was likely due to stochastic processes. It is further shown that natural variability played a minimal role in the observed increase of ESCSs. Thus, continued anthropogenic forcing will further amplify the risk of cyclones in the ARB, with corresponding socio-economic implications.
Optimizing Multi-Product Multi-Constraint Inventory Control Systems with Stochastic Replenishments
NASA Astrophysics Data System (ADS)
Allah Taleizadeh, Ata; Aryanezhad, Mir-Bahador; Niaki, Seyed Taghi Akhavan
Multi-periodic inventory control problems are mainly studied employing two assumptions. The first is the continuous review, where depending on the inventory level orders can happen at any time and the other is the periodic review, where orders can only happen at the beginning of each period. In this study, we relax these assumptions and assume that the periodic replenishments are stochastic in nature. Furthermore, we assume that the periods between two replenishments are independent and identically random variables. For the problem at hand, the decision variables are of integer-type and there are two kinds of space and service level constraints for each product. We develop a model of the problem in which a combination of back-order and lost-sales are considered for the shortages. Then, we show that the model is of an integer-nonlinear-programming type and in order to solve it, a search algorithm can be utilized. We employ a simulated annealing approach and provide a numerical example to demonstrate the applicability of the proposed methodology.
Model reduction of multiscale chemical langevin equations: a numerical case study.
Sotiropoulos, Vassilios; Contou-Carrere, Marie-Nathalie; Daoutidis, Prodromos; Kaznessis, Yiannis N
2009-01-01
Two very important characteristics of biological reaction networks need to be considered carefully when modeling these systems. First, models must account for the inherent probabilistic nature of systems far from the thermodynamic limit. Often, biological systems cannot be modeled with traditional continuous-deterministic models. Second, models must take into consideration the disparate spectrum of time scales observed in biological phenomena, such as slow transcription events and fast dimerization reactions. In the last decade, significant efforts have been expended on the development of stochastic chemical kinetics models to capture the dynamics of biomolecular systems, and on the development of robust multiscale algorithms, able to handle stiffness. In this paper, the focus is on the dynamics of reaction sets governed by stiff chemical Langevin equations, i.e., stiff stochastic differential equations. These are particularly challenging systems to model, requiring prohibitively small integration step sizes. We describe and illustrate the application of a semianalytical reduction framework for chemical Langevin equations that results in significant gains in computational cost.
Stochastic modelling of animal movement.
Smouse, Peter E; Focardi, Stefano; Moorcroft, Paul R; Kie, John G; Forester, James D; Morales, Juan M
2010-07-27
Modern animal movement modelling derives from two traditions. Lagrangian models, based on random walk behaviour, are useful for multi-step trajectories of single animals. Continuous Eulerian models describe expected behaviour, averaged over stochastic realizations, and are usefully applied to ensembles of individuals. We illustrate three modern research arenas. (i) Models of home-range formation describe the process of an animal 'settling down', accomplished by including one or more focal points that attract the animal's movements. (ii) Memory-based models are used to predict how accumulated experience translates into biased movement choices, employing reinforced random walk behaviour, with previous visitation increasing or decreasing the probability of repetition. (iii) Lévy movement involves a step-length distribution that is over-dispersed, relative to standard probability distributions, and adaptive in exploring new environments or searching for rare targets. Each of these modelling arenas implies more detail in the movement pattern than general models of movement can accommodate, but realistic empiric evaluation of their predictions requires dense locational data, both in time and space, only available with modern GPS telemetry.
Universality in stochastic exponential growth.
Iyer-Biswas, Srividya; Crooks, Gavin E; Scherer, Norbert F; Dinner, Aaron R
2014-07-11
Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.
Universality in Stochastic Exponential Growth
NASA Astrophysics Data System (ADS)
Iyer-Biswas, Srividya; Crooks, Gavin E.; Scherer, Norbert F.; Dinner, Aaron R.
2014-07-01
Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.
Stochastic description of quantum Brownian dynamics
NASA Astrophysics Data System (ADS)
Yan, Yun-An; Shao, Jiushu
2016-08-01
Classical Brownian motion has well been investigated since the pioneering work of Einstein, which inspired mathematicians to lay the theoretical foundation of stochastic processes. A stochastic formulation for quantum dynamics of dissipative systems described by the system-plus-bath model has been developed and found many applications in chemical dynamics, spectroscopy, quantum transport, and other fields. This article provides a tutorial review of the stochastic formulation for quantum dissipative dynamics. The key idea is to decouple the interaction between the system and the bath by virtue of the Hubbard-Stratonovich transformation or Itô calculus so that the system and the bath are not directly entangled during evolution, rather they are correlated due to the complex white noises introduced. The influence of the bath on the system is thereby defined by an induced stochastic field, which leads to the stochastic Liouville equation for the system. The exact reduced density matrix can be calculated as the stochastic average in the presence of bath-induced fields. In general, the plain implementation of the stochastic formulation is only useful for short-time dynamics, but not efficient for long-time dynamics as the statistical errors go very fast. For linear and other specific systems, the stochastic Liouville equation is a good starting point to derive the master equation. For general systems with decomposable bath-induced processes, the hierarchical approach in the form of a set of deterministic equations of motion is derived based on the stochastic formulation and provides an effective means for simulating the dissipative dynamics. A combination of the stochastic simulation and the hierarchical approach is suggested to solve the zero-temperature dynamics of the spin-boson model. This scheme correctly describes the coherent-incoherent transition (Toulouse limit) at moderate dissipation and predicts a rate dynamics in the overdamped regime. Challenging problems such as the dynamical description of quantum phase transition (local- ization) and the numerical stability of the trace-conserving, nonlinear stochastic Liouville equation are outlined.
NASA Astrophysics Data System (ADS)
Ingo, Carson; Sui, Yi; Chen, Yufen; Parrish, Todd; Webb, Andrew; Ronen, Itamar
2015-03-01
In this paper, we provide a context for the modeling approaches that have been developed to describe non-Gaussian diffusion behavior, which is ubiquitous in diffusion weighted magnetic resonance imaging of water in biological tissue. Subsequently, we focus on the formalism of the continuous time random walk theory to extract properties of subdiffusion and superdiffusion through novel simplifications of the Mittag-Leffler function. For the case of time-fractional subdiffusion, we compute the kurtosis for the Mittag-Leffler function, which provides both a connection and physical context to the much-used approach of diffusional kurtosis imaging. We provide Monte Carlo simulations to illustrate the concepts of anomalous diffusion as stochastic processes of the random walk. Finally, we demonstrate the clinical utility of the Mittag-Leffler function as a model to describe tissue microstructure through estimations of subdiffusion and kurtosis with diffusion MRI measurements in the brain of a chronic ischemic stroke patient.
NASA Astrophysics Data System (ADS)
Chen, Yen-Luan; Chang, Chin-Chih; Sheu, Dwan-Fang
2016-04-01
This paper proposes the generalised random and age replacement policies for a multi-state system composed of multi-state elements. The degradation of the multi-state element is assumed to follow the non-homogeneous continuous time Markov process which is a continuous time and discrete state process. A recursive approach is presented to efficiently compute the time-dependent state probability distribution of the multi-state element. The state and performance distribution of the entire multi-state system is evaluated via the combination of the stochastic process and the Lz-transform method. The concept of customer-centred reliability measure is developed based on the system performance and the customer demand. We develop the random and age replacement policies for an aging multi-state system subject to imperfect maintenance in a failure (or unacceptable) state. For each policy, the optimum replacement schedule which minimises the mean cost rate is derived analytically and discussed numerically.
Two-layer symbolic representation for stochastic models with phase-type distributed events
NASA Astrophysics Data System (ADS)
Longo, Francesco; Scarpa, Marco
2015-07-01
Among the techniques that have been proposed for the analysis of non-Markovian models, the state space expansion approach showed great flexibility in terms of modelling capacities.The principal drawback is the explosion of the state space. This paper proposes a two-layer symbolic method for efficiently storing the expanded reachability graph of a non-Markovian model in the case in which continuous phase-type distributions are associated with the firing times of system events, and different memory policies are considered. At the lower layer, the reachability graph is symbolically represented in the form of a set of Kronecker matrices, while, at the higher layer, all the information needed to correctly manage event memory is stored in a multi-terminal multi-valued decision diagram. Such an information is collected by applying a symbolic algorithm, which is based on a couple of theorems. The efficiency of the proposed approach, in terms of memory occupation and execution time, is shown by applying it to a set of non-Markovian stochastic Petri nets and comparing it with a classical explicit expansion algorithm. Moreover, a comparison with a classical symbolic approach is performed whenever possible.
Soltani, Mohammad; Vargas-Garcia, Cesar A.; Antunes, Duarte; Singh, Abhyudai
2016-01-01
Inside individual cells, expression of genes is inherently stochastic and manifests as cell-to-cell variability or noise in protein copy numbers. Since proteins half-lives can be comparable to the cell-cycle length, randomness in cell-division times generates additional intercellular variability in protein levels. Moreover, as many mRNA/protein species are expressed at low-copy numbers, errors incurred in partitioning of molecules between two daughter cells are significant. We derive analytical formulas for the total noise in protein levels when the cell-cycle duration follows a general class of probability distributions. Using a novel hybrid approach the total noise is decomposed into components arising from i) stochastic expression; ii) partitioning errors at the time of cell division and iii) random cell-division events. These formulas reveal that random cell-division times not only generate additional extrinsic noise, but also critically affect the mean protein copy numbers and intrinsic noise components. Counter intuitively, in some parameter regimes, noise in protein levels can decrease as cell-division times become more stochastic. Computations are extended to consider genome duplication, where transcription rate is increased at a random point in the cell cycle. We systematically investigate how the timing of genome duplication influences different protein noise components. Intriguingly, results show that noise contribution from stochastic expression is minimized at an optimal genome-duplication time. Our theoretical results motivate new experimental methods for decomposing protein noise levels from synchronized and asynchronized single-cell expression data. Characterizing the contributions of individual noise mechanisms will lead to precise estimates of gene expression parameters and techniques for altering stochasticity to change phenotype of individual cells. PMID:27536771
The viability of ADVANTG deterministic method for synthetic radiography generation
NASA Astrophysics Data System (ADS)
Bingham, Andrew; Lee, Hyoung K.
2018-07-01
Fast simulation techniques to generate synthetic radiographic images of high resolution are helpful when new radiation imaging systems are designed. However, the standard stochastic approach requires lengthy run time with poorer statistics at higher resolution. The investigation of the viability of a deterministic approach to synthetic radiography image generation was explored. The aim was to analyze a computational time decrease over the stochastic method. ADVANTG was compared to MCNP in multiple scenarios including a small radiography system prototype, to simulate high resolution radiography images. By using ADVANTG deterministic code to simulate radiography images the computational time was found to decrease 10 to 13 times compared to the MCNP stochastic approach while retaining image quality.
Climate change threatens polar bear populations: a stochastic demographic analysis.
Hunter, Christine M; Caswell, Hal; Runge, Michael C; Regehr, Eric V; Amstrup, Steve C; Stirling, Ian
2010-10-01
The polar bear (Ursus maritimus) depends on sea ice for feeding, breeding, and movement. Significant reductions in Arctic sea ice are forecast to continue because of climate warming. We evaluated the impacts of climate change on polar bears in the southern Beaufort Sea by means of a demographic analysis, combining deterministic, stochastic, environment-dependent matrix population models with forecasts of future sea ice conditions from IPCC general circulation models (GCMs). The matrix population models classified individuals by age and breeding status; mothers and dependent cubs were treated as units. Parameter estimates were obtained from a capture-recapture study conducted from 2001 to 2006. Candidate statistical models allowed vital rates to vary with time and as functions of a sea ice covariate. Model averaging was used to produce the vital rate estimates, and a parametric bootstrap procedure was used to quantify model selection and parameter estimation uncertainty. Deterministic models projected population growth in years with more extensive ice coverage (2001-2003) and population decline in years with less ice coverage (2004-2005). LTRE (life table response experiment) analysis showed that the reduction in lambda in years with low sea ice was due primarily to reduced adult female survival, and secondarily to reduced breeding. A stochastic model with two environmental states, good and poor sea ice conditions, projected a declining stochastic growth rate, log lambdas, as the frequency of poor ice years increased. The observed frequency of poor ice years since 1979 would imply log lambdas approximately - 0.01, which agrees with available (albeit crude) observations of population size. The stochastic model was linked to a set of 10 GCMs compiled by the IPCC; the models were chosen for their ability to reproduce historical observations of sea ice and were forced with "business as usual" (A1B) greenhouse gas emissions. The resulting stochastic population projections showed drastic declines in the polar bear population by the end of the 21st century. These projections were instrumental in the decision to list the polar bear as a threatened species under the U.S. Endangered Species Act.
Climate change threatens polar bear populations: A stochastic demographic analysis
Hunter, C.M.; Caswell, H.; Runge, M.C.; Regehr, E.V.; Amstrup, Steven C.; Stirling, I.
2010-01-01
The polar bear (Ursus maritimus) depends on sea ice for feeding, breeding, and movement. Significant reductions in Arctic sea ice are forecast to continue because of climate warming. We evaluated the impacts of climate change on polar bears in the southern Beaufort Sea by means of a demographic analysis, combining deterministic, stochastic, environment-dependent matrix population models with forecasts of future sea ice conditions from IPCC general circulation models (GCMs). The matrix population models classified individuals by age and breeding status; mothers and dependent cubs were treated as units. Parameter estimates were obtained from a capture-recapture study conducted from 2001 to 2006. Candidate statistical models allowed vital rates to vary with time and as functions of a sea ice covariate. Model averaging was used to produce the vital rate estimates, and a parametric bootstrap procedure was used to quantify model selection and parameter estimation uncertainty. Deterministic models projected population growth in years with more extensive ice coverage (2001-2003) and population decline in years with less ice coverage (2004-2005). LTRE (life table response experiment) analysis showed that the reduction in ?? in years with low sea ice was due primarily to reduced adult female survival, and secondarily to reduced breeding. A stochastic model with two environmental states, good and poor sea ice conditions, projected a declining stochastic growth rate, log ??s, as the frequency of poor ice years increased. The observed frequency of poor ice years since 1979 would imply log ??s ' - 0.01, which agrees with available (albeit crude) observations of population size. The stochastic model was linked to a set of 10 GCMs compiled by the IPCC; the models were chosen for their ability to reproduce historical observations of sea ice and were forced with "business as usual" (A1B) greenhouse gas emissions. The resulting stochastic population projections showed drastic declines in the polar bear population by the end of the 21st century. These projections were instrumental in the decision to list the polar bear as a threatened species under the U.S. Endangered Species Act. ?? 2010 by the Ecological Society of America.
Stochastic analysis of epidemics on adaptive time varying networks
NASA Astrophysics Data System (ADS)
Kotnis, Bhushan; Kuri, Joy
2013-06-01
Many studies investigating the effect of human social connectivity structures (networks) and human behavioral adaptations on the spread of infectious diseases have assumed either a static connectivity structure or a network which adapts itself in response to the epidemic (adaptive networks). However, human social connections are inherently dynamic or time varying. Furthermore, the spread of many infectious diseases occur on a time scale comparable to the time scale of the evolving network structure. Here we aim to quantify the effect of human behavioral adaptations on the spread of asymptomatic infectious diseases on time varying networks. We perform a full stochastic analysis using a continuous time Markov chain approach for calculating the outbreak probability, mean epidemic duration, epidemic reemergence probability, etc. Additionally, we use mean-field theory for calculating epidemic thresholds. Theoretical predictions are verified using extensive simulations. Our studies have uncovered the existence of an “adaptive threshold,” i.e., when the ratio of susceptibility (or infectivity) rate to recovery rate is below the threshold value, adaptive behavior can prevent the epidemic. However, if it is above the threshold, no amount of behavioral adaptations can prevent the epidemic. Our analyses suggest that the interaction patterns of the infected population play a major role in sustaining the epidemic. Our results have implications on epidemic containment policies, as awareness campaigns and human behavioral responses can be effective only if the interaction levels of the infected populace are kept in check.
NASA Astrophysics Data System (ADS)
Valent, Peter; Paquet, Emmanuel
2017-09-01
A reliable estimate of extreme flood characteristics has always been an active topic in hydrological research. Over the decades a large number of approaches and their modifications have been proposed and used, with various methods utilizing continuous simulation of catchment runoff, being the subject of the most intensive research in the last decade. In this paper a new and promising stochastic semi-continuous method is used to estimate extreme discharges in two mountainous Slovak catchments of the rivers Váh and Hron, in which snow-melt processes need to be taken into account. The SCHADEX method used, couples a precipitation probabilistic model with a rainfall-runoff model used to both continuously simulate catchment hydrological conditions and to transform generated synthetic rainfall events into corresponding discharges. The stochastic nature of the method means that a wide range of synthetic rainfall events were simulated on various historical catchment conditions, taking into account not only the saturation of soil, but also the amount of snow accumulated in the catchment. The results showed that the SCHADEX extreme discharge estimates with return periods of up to 100 years were comparable to those estimated by statistical approaches. In addition, two reconstructed historical floods with corresponding return periods of 100 and 1000 years were compared to the SCHADEX estimates. The results confirmed the usability of the method for estimating design discharges with a recurrence interval of more than 100 years and its applicability in Slovak conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Haitao; Guo, Xinmeng; Wang, Jiang, E-mail: jiangwang@tju.edu.cn
2014-09-01
The phenomenon of stochastic resonance in Newman-Watts small-world neuronal networks is investigated when the strength of synaptic connections between neurons is adaptively adjusted by spike-time-dependent plasticity (STDP). It is shown that irrespective of the synaptic connectivity is fixed or adaptive, the phenomenon of stochastic resonance occurs. The efficiency of network stochastic resonance can be largely enhanced by STDP in the coupling process. Particularly, the resonance for adaptive coupling can reach a much larger value than that for fixed one when the noise intensity is small or intermediate. STDP with dominant depression and small temporal window ratio is more efficient formore » the transmission of weak external signal in small-world neuronal networks. In addition, we demonstrate that the effect of stochastic resonance can be further improved via fine-tuning of the average coupling strength of the adaptive network. Furthermore, the small-world topology can significantly affect stochastic resonance of excitable neuronal networks. It is found that there exists an optimal probability of adding links by which the noise-induced transmission of weak periodic signal peaks.« less
Time-varying nonstationary multivariate risk analysis using a dynamic Bayesian copula
NASA Astrophysics Data System (ADS)
Sarhadi, Ali; Burn, Donald H.; Concepción Ausín, María.; Wiper, Michael P.
2016-03-01
A time-varying risk analysis is proposed for an adaptive design framework in nonstationary conditions arising from climate change. A Bayesian, dynamic conditional copula is developed for modeling the time-varying dependence structure between mixed continuous and discrete multiattributes of multidimensional hydrometeorological phenomena. Joint Bayesian inference is carried out to fit the marginals and copula in an illustrative example using an adaptive, Gibbs Markov Chain Monte Carlo (MCMC) sampler. Posterior mean estimates and credible intervals are provided for the model parameters and the Deviance Information Criterion (DIC) is used to select the model that best captures different forms of nonstationarity over time. This study also introduces a fully Bayesian, time-varying joint return period for multivariate time-dependent risk analysis in nonstationary environments. The results demonstrate that the nature and the risk of extreme-climate multidimensional processes are changed over time under the impact of climate change, and accordingly the long-term decision making strategies should be updated based on the anomalies of the nonstationary environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Qing, E-mail: qing.gao.chance@gmail.com; Dong, Daoyi, E-mail: daoyidong@gmail.com; Petersen, Ian R., E-mail: i.r.petersen@gmai.com
The purpose of this paper is to solve the fault tolerant filtering and fault detection problem for a class of open quantum systems driven by a continuous-mode bosonic input field in single photon states when the systems are subject to stochastic faults. Optimal estimates of both the system observables and the fault process are simultaneously calculated and characterized by a set of coupled recursive quantum stochastic differential equations.
Stochastic search in structural optimization - Genetic algorithms and simulated annealing
NASA Technical Reports Server (NTRS)
Hajela, Prabhat
1993-01-01
An account is given of illustrative applications of genetic algorithms and simulated annealing methods in structural optimization. The advantages of such stochastic search methods over traditional mathematical programming strategies are emphasized; it is noted that these methods offer a significantly higher probability of locating the global optimum in a multimodal design space. Both genetic-search and simulated annealing can be effectively used in problems with a mix of continuous, discrete, and integer design variables.
Target Lagrangian kinematic simulation for particle-laden flows.
Murray, S; Lightstone, M F; Tullis, S
2016-09-01
The target Lagrangian kinematic simulation method was motivated as a stochastic Lagrangian particle model that better synthesizes turbulence structure, relative to stochastic separated flow models. By this method, the trajectories of particles are constructed according to synthetic turbulent-like fields, which conform to a target Lagrangian integral timescale. In addition to recovering the expected Lagrangian properties of fluid tracers, this method is shown to reproduce the crossing trajectories and continuity effects, in agreement with an experimental benchmark.
1990-08-31
IPATRr 3DOFN) = 0 110 CONTINUEI CCTMX(IPATR) = 0. CCTMY(IPATR) = 0. 120 CONTINUE C START SEARCHING :1ST IF ( XCONN(1,ICOLl) .EQ.0. )GO TO 300 NCTM (,1...EQ.ICOL1.OR.ICOL4.EQ.1COL2 ) GO TO 270 NCTMX(4,1) = ICOL3 NCTM ~X(4,2) = ICOL4I CCTMX(4) = XCONN(ICOL3,ICOL4) CCTMY(4) = YCONN(ICOL3,ICOL4) IT ( CCTMX(4
Stochastic resonance enhancement of small-world neural networks by hybrid synapses and time delay
NASA Astrophysics Data System (ADS)
Yu, Haitao; Guo, Xinmeng; Wang, Jiang
2017-01-01
The synergistic effect of hybrid electrical-chemical synapses and information transmission delay on the stochastic response behavior in small-world neuronal networks is investigated. Numerical results show that, the stochastic response behavior can be regulated by moderate noise intensity to track the rhythm of subthreshold pacemaker, indicating the occurrence of stochastic resonance (SR) in the considered neural system. Inheriting the characteristics of two types of synapses-electrical and chemical ones, neural networks with hybrid electrical-chemical synapses are of great improvement in neuron communication. Particularly, chemical synapses are conducive to increase the network detectability by lowering the resonance noise intensity, while the information is better transmitted through the networks via electrical coupling. Moreover, time delay is able to enhance or destroy the periodic stochastic response behavior intermittently. In the time-delayed small-world neuronal networks, the introduction of electrical synapses can significantly improve the signal detection capability by widening the range of optimal noise intensity for the subthreshold signal, and the efficiency of SR is largely amplified in the case of pure chemical couplings. In addition, the stochastic response behavior is also profoundly influenced by the network topology. Increasing the rewiring probability in pure chemically coupled networks can always enhance the effect of SR, which is slightly influenced by information transmission delay. On the other hand, the capacity of information communication is robust to the network topology within the time-delayed neuronal systems including electrical couplings.
Clustering Multivariate Time Series Using Hidden Markov Models
Ghassempour, Shima; Girosi, Federico; Maeder, Anthony
2014-01-01
In this paper we describe an algorithm for clustering multivariate time series with variables taking both categorical and continuous values. Time series of this type are frequent in health care, where they represent the health trajectories of individuals. The problem is challenging because categorical variables make it difficult to define a meaningful distance between trajectories. We propose an approach based on Hidden Markov Models (HMMs), where we first map each trajectory into an HMM, then define a suitable distance between HMMs and finally proceed to cluster the HMMs with a method based on a distance matrix. We test our approach on a simulated, but realistic, data set of 1,255 trajectories of individuals of age 45 and over, on a synthetic validation set with known clustering structure, and on a smaller set of 268 trajectories extracted from the longitudinal Health and Retirement Survey. The proposed method can be implemented quite simply using standard packages in R and Matlab and may be a good candidate for solving the difficult problem of clustering multivariate time series with categorical variables using tools that do not require advanced statistic knowledge, and therefore are accessible to a wide range of researchers. PMID:24662996
NASA Astrophysics Data System (ADS)
Most, Sebastian; Nowak, Wolfgang; Bijeljic, Branko
2015-04-01
Fickian transport in groundwater flow is the exception rather than the rule. Transport in porous media is frequently simulated via particle methods (i.e. particle tracking random walk (PTRW) or continuous time random walk (CTRW)). These methods formulate transport as a stochastic process of particle position increments. At the pore scale, geometry and micro-heterogeneities prohibit the commonly made assumption of independent and normally distributed increments to represent dispersion. Many recent particle methods seek to loosen this assumption. Hence, it is important to get a better understanding of the processes at pore scale. For our analysis we track the positions of 10.000 particles migrating through the pore space over time. The data we use come from micro CT scans of a homogeneous sandstone and encompass about 10 grain sizes. Based on those images we discretize the pore structure and simulate flow at the pore scale based on the Navier-Stokes equation. This flow field realistically describes flow inside the pore space and we do not need to add artificial dispersion during the transport simulation. Next, we use particle tracking random walk and simulate pore-scale transport. Finally, we use the obtained particle trajectories to do a multivariate statistical analysis of the particle motion at the pore scale. Our analysis is based on copulas. Every multivariate joint distribution is a combination of its univariate marginal distributions. The copula represents the dependence structure of those univariate marginals and is therefore useful to observe correlation and non-Gaussian interactions (i.e. non-Fickian transport). The first goal of this analysis is to better understand the validity regions of commonly made assumptions. We are investigating three different transport distances: 1) The distance where the statistical dependence between particle increments can be modelled as an order-one Markov process. This would be the Markovian distance for the process, where the validity of yet-unexplored non-Gaussian-but-Markovian random walks start. 2) The distance where bivariate statistical dependence simplifies to a multi-Gaussian dependence based on simple linear correlation (validity of correlated PTRW/CTRW). 3) The distance of complete statistical independence (validity of classical PTRW/CTRW). The second objective is to reveal characteristic dependencies influencing transport the most. Those dependencies can be very complex. Copulas are highly capable of representing linear dependence as well as non-linear dependence. With that tool we are able to detect persistent characteristics dominating transport even across different scales. The results derived from our experimental data set suggest that there are many more non-Fickian aspects of pore-scale transport than the univariate statistics of longitudinal displacements. Non-Fickianity can also be found in transverse displacements, and in the relations between increments at different time steps. Also, the found dependence is non-linear (i.e. beyond simple correlation) and persists over long distances. Thus, our results strongly support the further refinement of techniques like correlated PTRW or correlated CTRW towards non-linear statistical relations.
NASA Astrophysics Data System (ADS)
Caballero, R. N.; Lee, K. J.; Lentati, L.; Desvignes, G.; Champion, D. J.; Verbiest, J. P. W.; Janssen, G. H.; Stappers, B. W.; Kramer, M.; Lazarus, P.; Possenti, A.; Tiburzi, C.; Perrodin, D.; Osłowski, S.; Babak, S.; Bassa, C. G.; Brem, P.; Burgay, M.; Cognard, I.; Gair, J. R.; Graikou, E.; Guillemot, L.; Hessels, J. W. T.; Karuppusamy, R.; Lassus, A.; Liu, K.; McKee, J.; Mingarelli, C. M. F.; Petiteau, A.; Purver, M. B.; Rosado, P. A.; Sanidas, S.; Sesana, A.; Shaifullah, G.; Smits, R.; Taylor, S. R.; Theureau, G.; van Haasteren, R.; Vecchio, A.
2016-04-01
The sensitivity of Pulsar Timing Arrays to gravitational waves (GWs) depends on the noise present in the individual pulsar timing data. Noise may be either intrinsic or extrinsic to the pulsar. Intrinsic sources of noise will include rotational instabilities, for example. Extrinsic sources of noise include contributions from physical processes which are not sufficiently well modelled, for example, dispersion and scattering effects, analysis errors and instrumental instabilities. We present the results from a noise analysis for 42 millisecond pulsars (MSPs) observed with the European Pulsar Timing Array. For characterizing the low-frequency, stochastic and achromatic noise component, or `timing noise', we employ two methods, based on Bayesian and frequentist statistics. For 25 MSPs, we achieve statistically significant measurements of their timing noise parameters and find that the two methods give consistent results. For the remaining 17 MSPs, we place upper limits on the timing noise amplitude at the 95 per cent confidence level. We additionally place an upper limit on the contribution to the pulsar noise budget from errors in the reference terrestrial time standards (below 1 per cent), and we find evidence for a noise component which is present only in the data of one of the four used telescopes. Finally, we estimate that the timing noise of individual pulsars reduces the sensitivity of this data set to an isotropic, stochastic GW background by a factor of >9.1 and by a factor of >2.3 for continuous GWs from resolvable, inspiralling supermassive black hole binaries with circular orbits.