2008-01-30
that will use conventional diode- or hotomultiplier-tube-based optical detectors , which are xtremely sensitive . . HEATING AND FREE-CARRIER IMITATIONS...CONTRACT NUMBER IN-HOUSE Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides 5b. GRANT...B 261Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides T. Baehr-Jones,1,* M. Hochberg,1,3
Continuous-wave, single-frequency 229 nm laser source for laser cooling of cadmium atoms.
Kaneda, Yushi; Yarborough, J M; Merzlyak, Yevgeny; Yamaguchi, Atsushi; Hayashida, Keitaro; Ohmae, Noriaki; Katori, Hidetoshi
2016-02-15
Continuous-wave output at 229 nm for the application of laser cooling of Cd atoms was generated by the fourth harmonic using two successive second-harmonic generation stages. Employing a single-frequency optically pumped semiconductor laser as a fundamental source, 0.56 W of output at 229 nm was observed with a 10-mm long, Brewster-cut BBO crystal in an external cavity with 1.62 W of 458 nm input. Conversion efficiency from 458 nm to 229 nm was more than 34%. By applying a tapered amplifier (TA) as a fundamental source, we demonstrated magneto-optical trapping of all stable Cd isotopes including isotopes Cd111 and Cd113, which are applicable to optical lattice clocks.
The 25 mA continuous-wave surface-plasma source of H{sup −} ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belchenko, Yu., E-mail: belchenko@inp.nsk.su; Gorbovsky, A.; Sanin, A.
The ion source with the Penning geometry of electrodes producing continuous-wave beam of H{sup −} ions with current up to 25 mA was developed. Several improvements were introduced to increase source intensity, reliability, and lifetime. The collar around the emission aperture increases the electrons filtering. The apertures’ diameters of the ion-optical system electrodes were increased to generate the beam with higher intensity. An optimization of electrodes’ temperature was performed.
Continuous wave terahertz radiation from an InAs/GaAs quantum-dot photomixer device
NASA Astrophysics Data System (ADS)
Kruczek, T.; Leyman, R.; Carnegie, D.; Bazieva, N.; Erbert, G.; Schulz, S.; Reardon, C.; Reynolds, S.; Rafailov, E. U.
2012-08-01
Generation of continuous wave radiation at terahertz (THz) frequencies from a heterodyne source based on quantum-dot (QD) semiconductor materials is reported. The source comprises an active region characterised by multiple alternating photoconductive and QD carrier trapping layers and is pumped by two infrared optical signals with slightly offset wavelengths, allowing photoconductive device switching at the signals' difference frequency ˜1 THz.
A fiber-laser-pumped four-wavelength continuous-wave mid-infrared optical parametric oscillator
NASA Astrophysics Data System (ADS)
Wang, Peng; Shang, Yaping; Li, Xiao; Xu, Xiaojun
2017-10-01
In this paper, a four-wavelength continuous-wave mid-infrared optical parametric oscillator was demonstrated for the first time. The pump source was a home-built linearly polarized Yb-doped fiber laser and the maximum output power was 72.5 W. The pump source had three central wavelengths locating at 1060 nm, 1065 nm and 1080 nm. Four idler emissions with different wavelengths were generated which were 3132 nm, 3171 nm, 3310 nm and 3349 nm under the maximum pump power. The maximum idler output reached 8.7 W, indicating a 15% pump-to-idler slope efficiency. The signal wave generated in the experiment had two wavelengths which were 1595 nm and 1603 nm under the maximum pump power. It was analyzed that four nonlinear progresses occurred in the experiment, two of them being optical parametric oscillation and the rest two being intracavity difference frequency generation.
Continuous-wave optical parametric oscillators on their way to the terahertz range
NASA Astrophysics Data System (ADS)
Sowade, Rosita; Breunig, Ingo; Kiessling, Jens; Buse, Karsten
2010-02-01
Continuous-wave optical parametric oscillators (OPOs) are known to be working horses for spectroscopy in the near- and mid-infrared. However, strong absorption in nonlinear media like lithium niobate complicates the generation of far-infrared light. This absorption leads to pump thresholds vastly exceeding the power of standard pump lasers. Our first approach was, therefore, to combine the established technique of photomixing with optical parametric oscillators. Here, two OPOs provide one wave each, with a tunable difference frequency. These waves are combined to a beat signal as a source for photomixers. Terahertz radiation between 0.065 and 1.018 THz is generated with powers in the order of nanowatts. To overcome the upper frequency limit of the opto-electronic photomixers, terahertz generation has to rely entirely on optical methods. Our all-optical approach, getting around the high thresholds for terahertz generation, is based on cascaded nonlinear processes: the resonantly enhanced signal field, generated in the primary parametric process, is intense enough to act as the pump for a secondary process, creating idler waves with frequencies in the terahertz regime. The latter ones are monochromatic and tunable with detected powers of more than 2 μW at 1.35 THz. Thus, continuous-wave optical parametric oscillators have entered the field of terahertz photonics.
NASA Astrophysics Data System (ADS)
Suhaimi, N. Sheeda; Ohae, C.; Gavara, T.; Nakagawa, K.; Hong, F.-L.; Katsuragawa, M.
2017-08-01
We have successfully generated a new broadband coherent light source in the continuous wave (CW) regime which is an ensemble of multi-harmonic radiations (2403, 1201, 801, 600 and 480 nm) by implementing a frequency dividing technology. The system is uniquely designed that all the harmonics are generated and propagate coaxially which gives the advantage of robustly maintaining the phase coherence among the harmonics. The highlight is its huge potential for the arbitrary optical waveform synthesis in the CW regime which has not been performed yet due to the limitation of the existing light source.
Nan, Yinbo; Huo, Li; Lou, Caiyun
2005-05-20
We present a theoretical study of a supercontinuum (SC) continuous-wave (cw) optical source generation in highly nonlinear fiber and its noise properties through numerical simulations based on the nonlinear Schrödinger equation. Fluctuations of pump pulses generate substructures between the longitudinal modes that result in the generation of white noise and then in degradation of coherence and in a decrease of the modulation depths and the signal-to-noise ratio (SNR). A scheme for improvement of the SNR of a multiwavelength cw optical source based on a SC by use of the combination of a highly nonlinear fiber (HNLF), an optical bandpass filter, and a Fabry-Perot (FP) filter is presented. Numerical simulations show that the improvement in modulation depth is relative to the HNLF's length, the 3-dB bandwidth of the optical bandpass filter, and the reflection ratio of the FP filter and that the average improvement in modulation depth is 13.7 dB under specified conditions.
A scalable and continuous-upgradable optical wireless and wired convergent access network.
Sung, J Y; Cheng, K T; Chow, C W; Yeh, C H; Pan, C-L
2014-06-02
In this work, a scalable and continuous upgradable convergent optical access network is proposed. By using a multi-wavelength coherent comb source and a programmable waveshaper at the central office (CO), optical millimeter-wave (mm-wave) signals of different frequencies (from baseband to > 100 GHz) can be generated. Hence, it provides a scalable and continuous upgradable solution for end-user who needs 60 GHz wireless services now and > 100 GHz wireless services in the future. During the upgrade, user only needs to upgrade their optical networking unit (ONU). A programmable waveshaper is used to select the suitable optical tones with wavelength separation equals to the desired mm-wave frequency; while the CO remains intact. The centralized characteristics of the proposed system can easily add any new service and end-user. The centralized control of the wavelength makes the system more stable. Wired data rate of 17.45 Gb/s and w-band wireless data rate up to 3.36 Gb/s were demonstrated after transmission over 40 km of single-mode fiber (SMF).
Nonlinear optical detection of terahertz-wave radiation from resonant tunneling diodes.
Takida, Yuma; Nawata, Kouji; Suzuki, Safumi; Asada, Masahiro; Minamide, Hiroaki
2017-03-06
The sensitive detection of terahertz (THz)-wave radiation from compact sources at room temperature is crucial for real-world THz-wave applications. Here, we demonstrate the nonlinear optical detection of THz-wave radiation from continuous-wave (CW) resonant tunneling diodes (RTDs) at 0.58, 0.78, and 1.14 THz. The up-conversion process in a MgO:LiNbO3 crystal under the noncollinear phase-matching condition offers efficient wavelength conversion from a THz wave to a near-infrared (NIR) wave that is detected using a commercial NIR photodetector. The minimum detection limit of CW THz-wave power is as low as 5 nW at 1.14 THz, corresponding to 2-aJ energy and 2.7 × 103 photons within the time window of a 0.31-ns pump pulse. Our results show that the input frequency and power of RTD devices can be calibrated by measuring the output wavelength and energy of up-converted waves, respectively. This optical detection technique for compact electronic THz-wave sources will open up a new opportunity for the realization of real-world THz-wave applications.
Photoacoustic Effect Generated from an Expanding Spherical Source
NASA Astrophysics Data System (ADS)
Bai, Wenyu; Diebold, Gerald J.
2018-02-01
Although the photoacoustic effect is typically generated by amplitude-modulated continuous or pulsed radiation, the form of the wave equation for pressure that governs the generation of sound indicates that optical sources moving in an absorbing fluid can produce sound as well. Here, the characteristics of the acoustic wave produced by a radially symmetric Gaussian source expanding outwardly from the origin are found. The unique feature of the photoacoustic effect from the spherical source is a trailing compressive wave that arises from reflection of an inwardly propagating component of the wave. Similar to the one-dimensional geometry, an unbounded amplification effect is found for the Gaussian source expanding at the sound speed.
Kim, Namje; Shin, Jaeheon; Sim, Eundeok; Lee, Chul Wook; Yee, Dae-Su; Jeon, Min Yong; Jang, Yudong; Park, Kyung Hyun
2009-08-03
We report on a monolithic dual-mode semiconductor laser operating in the 1550-nm range as a compact optical beat source for tunable continuous-wave (CW) terahertz (THz) generation. It consists of two distributed feedback (DFB) laser sections and one phase section between them. Each wavelength of the two modes can be independently tuned by adjusting currents in micro-heaters which are fabricated on the top of the each DFB section. The continuous tuning of the CW THz emission from Fe(+)-implanted InGaAs photomixers is successfully demonstrated using our dual-mode laser as the excitation source. The CW THz frequency is continuously tuned from 0.17 to 0.49 THz.
A broadband LED source in visible to short-wave-infrared wavelengths for spectral tumor diagnostics
NASA Astrophysics Data System (ADS)
Hayashi, Daiyu; van Dongen, Anne Marie; Boerekamp, Jack; Spoor, Sandra; Lucassen, Gerald; Schleipen, Jean
2017-06-01
Various tumor types exhibit the spectral fingerprints in the absorption and reflection spectra in visible and especially in near- to short-wave-infrared wavelength ranges. For the purpose of spectral tumor diagnostics by means of diffuse reflectance spectroscopy, we developed a broadband light emitting diode (LED) source consisting of a blue LED for optical excitation, Lu3Al5O12:Ce3+,Cr3+ luminescent garnet for visible to near infrared emissions, and Bismuth doped GeO2 luminescent glass for near-infrared to short-wave infrared emissions. It emits broad-band light emissions continuously in 470-1600 nm with a spectral gap at 900-1000 nm. In comparison to the currently available broadband light sources like halogen lamps, high-pressure discharge lamps and super continuum lasers, the light sources of this paper has significant advantages for spectral tissue diagnostics in high-spectral stability, improved light coupling to optical fibers, potential in low light source cost and enabling battery-drive.
Radio-Frequency Down-Conversion via Sampled Analog Optical Links
2010-08-09
temporal intensity Popt(ω) includes intensity noise quantities arising from the optical source (e.g. laser intensity noise, amplified spontaneous emission...nm distributed feedback laser RF Down-Conversion via Sampled Links 5 (DFB, EM4, Inc.) the output of which is modulated via a low-biased Mach-Zehnder...Figure 5 (a). For comparison purposes the RF gain of one arm of the balanced link (utilizing a continuous- wave laser source) is measured and
Photonic Applications Using Electrooptic Optical Signal Processors
2011-11-16
analog-to-digital conversion using a continuous wave multiwavelength source and phase modulation Author(s): Bortnik, B.J.; Fetterman, H.R. Source... multiwavelength source and phase modulation Bartosz J. Bortnik* and Harold R. Fetterman Department of Electrical Engineering, University of California Los...utilizing a cw multiwavelength source and phase modulation instead of a mode-locked laser is presented. The output of the cw multiwave- length source
Probing Many-Body Interactions in an Optical Lattice Clock (Preprint)
2013-10-23
impressive potential gain over their microwave counterparts. Optical frequencies on the other hand are very difficult to measure, as the oscillations ...source can be compared. Here, the laboratory radiation source is an ultra-stable continuous-wave laser. It acts as the local oscillator (or pendulum...where φ Z 0 is the ground longitudinal mode in a lattice site and φn are transverse harmonic oscillator eigenmodes. ĉ†αn creates a fermion in mode n
Devi, Kavita; Kumar, S Chaitanya; Ebrahim-Zadeh, M
2013-10-21
We report a continuous-wave (cw) source of tunable radiation across 333-345 nm in the ultraviolet (UV) using bismuth triborate, BiB₃O₆ (BIBO) as the nonlinear gain material. The source is based on internal sum-frequency-generation (SFG) in a cw singly-resonant optical parametric oscillator (OPO) pumped at 532 nm. The compact tunable source employs a 30-mm-long MgO:sPPLT crystal as the OPO gain medium and a 5-mm-long BIBO crystal for intracavity SFG of the signal and pump, providing up to 21.6 mW of UV power at 339.7 nm, with >15 mW over 64% of the SFG tuning range. The cw OPO is also tunable across 1158-1312 nm in the idler, delivering as much as 1.7 W at 1247 nm, with >1W over 65% of the tuning range. The UV output at maximum power exhibits passive power stability better than 3.4% rms and frequency stability of 193 GHz over more than one minute.
NASA Astrophysics Data System (ADS)
Wade, A. R.; Mansell, G. L.; McRae, T. G.; Chua, S. S. Y.; Yap, M. J.; Ward, R. L.; Slagmolen, B. J. J.; Shaddock, D. A.; McClelland, D. E.
2016-06-01
With the recent detection of gravitational waves, non-classical light sources are likely to become an essential element of future detectors engaged in gravitational wave astronomy and cosmology. Operating a squeezed light source under high vacuum has the advantages of reducing optical losses and phase noise compared to techniques where the squeezed light is introduced from outside the vacuum. This will ultimately provide enhanced sensitivity for modern interferometric gravitational wave detectors that will soon become limited by quantum noise across much of the detection bandwidth. Here we describe the optomechanical design choices and construction techniques of a near monolithic glass optical parametric oscillator that has been operated under a vacuum of 10-6 mbar. The optical parametric oscillator described here has been shown to produce 8.6 dB of quadrature squeezed light in the audio frequency band down to 10 Hz. This performance has been maintained for periods of around an hour and the system has been under vacuum continuously for several months without a degradation of this performance.
Wade, A R; Mansell, G L; McRae, T G; Chua, S S Y; Yap, M J; Ward, R L; Slagmolen, B J J; Shaddock, D A; McClelland, D E
2016-06-01
With the recent detection of gravitational waves, non-classical light sources are likely to become an essential element of future detectors engaged in gravitational wave astronomy and cosmology. Operating a squeezed light source under high vacuum has the advantages of reducing optical losses and phase noise compared to techniques where the squeezed light is introduced from outside the vacuum. This will ultimately provide enhanced sensitivity for modern interferometric gravitational wave detectors that will soon become limited by quantum noise across much of the detection bandwidth. Here we describe the optomechanical design choices and construction techniques of a near monolithic glass optical parametric oscillator that has been operated under a vacuum of 10(-6) mbar. The optical parametric oscillator described here has been shown to produce 8.6 dB of quadrature squeezed light in the audio frequency band down to 10 Hz. This performance has been maintained for periods of around an hour and the system has been under vacuum continuously for several months without a degradation of this performance.
Frequency-tunable continuous-wave terahertz sources based on GaAs plasmonic photomixers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shang-Hua; Jarrahi, Mona; Electrical Engineering Department, University of California Los Angeles, Los Angeles, California 90095
2015-09-28
We present frequency-tunable, continuous-wave terahertz sources based on GaAs plasmonic photomixers, which offer high terahertz radiation power levels at 50% radiation duty cycle. The use of plasmonic contact electrodes enhances photomixer quantum efficiency while maintaining its ultrafast operation by concentrating a large number of photocarriers in close proximity to the device contact electrodes. Additionally, the relatively high thermal conductivity and high resistivity of GaAs allow operation under high optical pump power levels and long duty cycles without reaching the thermal breakdown limit of the photomixer. We experimentally demonstrate continuous-wave terahertz radiation with a radiation frequency tuning range of more thanmore » 2 THz and a record-high radiation power of 17 μW at 1 THz through plasmonic photomixers fabricated on a low temperature grown GaAs substrate at 50% radiation duty cycle.« less
Generation of continuous-wave 194 nm laser for mercury ion optical frequency standard
NASA Astrophysics Data System (ADS)
Zou, Hongxin; Wu, Yue; Chen, Guozhu; Shen, Yong; Liu, Qu; Precision measurement; atomic clock Team
2015-05-01
194 nm continuous-wave (CW) laser is an essential part in mercury ion optical frequency standard. The continuous-wave tunable radiation sources in the deep ultraviolet (DUV) region of the spectrum is also serviceable in high-resolution spectroscopy with many atomic and molecular lines. We introduce a scheme to generate continuous-wave 194 nm radiation with SFM in a Beta Barium Borate (BBO) crystal here. The two source beams are at 718 nm and 266 nm, respectively. Due to the property of BBO, critical phase matching (CPM) is implemented. One bow-tie cavity is used to resonantly enhance the 718 nm beam while the 266 nm makes a single pass, which makes the configuration easy to implement. Considering the walk-off effect in CPM, the cavity mode is designed to be elliptical so that the conversion efficiency can be promoted. Since the 266 nm radiation is generated by a 532 nm laser through SHG in a BBO crystal with a large walk-off angle, the output mode is quite non-Gaussian. To improve mode matching, we shaped the 266 nm beam into Gaussian modes with a cylindrical lens and iris diaphragm. As a result, 2.05 mW 194 nm radiation can be generated. As we know, this is the highest power for 194 nm CW laser using SFM in BBO with just single resonance. The work is supported by the National Natural Science Foundation of China (Grant No. 91436103 and No. 11204374).
Continuous-wave deep ultraviolet sources for resonance Raman explosive sensing
NASA Astrophysics Data System (ADS)
Yellampalle, Balakishore; Martin, Robert; Sluch, Mikhail; McCormick, William; Ice, Robert; Lemoff, Brian
2015-05-01
A promising approach to stand-off detection of explosive traces is using resonance Raman spectroscopy with Deepultraviolet (DUV) light. The DUV region offers two main advantages: strong explosive signatures due to resonant and λ- 4 enhancement of Raman cross-section, and lack of fluorescence and solar background. For DUV Raman spectroscopy, continuous-wave (CW) or quasi-CW lasers are preferable to high peak powered pulsed lasers because Raman saturation phenomena and sample damage can be avoided. In this work we present a very compact DUV source that produces greater than 1 mw of CW optical power. The source has high optical-to-optical conversion efficiency, greater than 5 %, as it is based on second harmonic generation (SHG) of a blue/green laser source using a nonlinear crystal placed in an external resonant enhancement cavity. The laser system is extremely compact, lightweight, and can be battery powered. Using two such sources, one each at 236.5 nm and 257.5 nm, we are building a second generation explosive detection system called Dual-Excitation-Wavelength Resonance-Raman Detector (DEWRRED-II). The DEWRRED-II system also includes a compact dual-band high throughput DUV spectrometer, and a highly-sensitive detection algorithm. The DEWRRED technique exploits the DUV excitation wavelength dependence of Raman signal strength, arising from complex interplay of resonant enhancement, self-absorption and laser penetration depth. We show sensor measurements from explosives/precursor materials at different standoff distances.
NASA Astrophysics Data System (ADS)
Hoi, Jennifer W.; Kim, Hyun K.; Khalil, Michael A.; Fong, Christopher J.; Marone, Alessandro; Shrikhande, Gautam; Hielscher, Andreas H.
2015-03-01
Dynamic optical tomographic imaging has shown promise in diagnosing and monitoring peripheral arterial disease (PAD), which affects 8 to 12 million in the United States. PAD is the narrowing of the arteries that supply blood to the lower extremities. Prolonged reduced blood flow to the foot leads to ulcers and gangrene, which makes placement of optical fibers for contact-based optical tomography systems difficult and cumbersome. Since many diabetic PAD patients have foot wounds, a non-contact interface is highly desirable. We present a novel non-contact dynamic continuous-wave optical tomographic imaging system that images the vasculature in the foot for evaluating PAD. The system images at up to 1Hz by delivering 2 wavelengths of light to the top of the foot at up to 20 source positions through collimated source fibers. Transmitted light is collected with an electron multiplying charge couple device (EMCCD) camera. We demonstrate that the system can resolve absorbers at various locations in a phantom study and show the system's first clinical 3D images of total hemoglobin changes in the foot during venous occlusion at the thigh. Our initial results indicate that this system is effective in capturing the vascular dynamics within the foot and can be used to diagnose and monitor treatment of PAD in diabetic patients.
NASA Astrophysics Data System (ADS)
Richter, A.; Pavel, N.; Heumann, E.; Huber, G.; Parisi, D.; Toncelli, A.; Tonelli, M.; Diening, A.; Seelert, W.
2006-04-01
We describe a new approach for the generation of coherent ultraviolet radiation. Continuous-wave ultraviolet light at 320 nm has been obtained by intracavity frequency doubling of red-emitting Praseodymium lasers. Lasing at the 640-nm fundamental wavelength in Pr:LiYF4 and Pr:BaY2F8 was realized by employing an optically pumped semiconductor laser at 480 nm as pump source.Using LiB3O5 as nonlinear medium, ~19 mW of ultraviolet radiation with ~9% optical efficiency with respect to absorbed power was reached for both laser crystals; the visible-to-ultraviolet conversion efficiency was 26% and 35% for Pr:LiYF4 and Pr:BaY2F8, respectively.
Yao, Wenming; Gao, Jing; Zhang, Long; Li, Jiang; Tian, Yubing; Ma, Yufei; Wu, Xiaodong; Ma, Gangfei; Yang, Jianming; Pan, Yubai; Dai, Xianjin
2015-06-20
We present what is, to the best of our knowledge, the first report on yellow-green laser generation based on the frequency doubling of the 1.1 μm transitions in Nd:YAG ceramics. By employing an 885 nm diode laser as the end-pumping source and a lithium triborate crystal as the frequency doubler, the highest continuous wave output powers of 1.4, 0.5, and 1.1 W at 556, 558, and 561 nm are achieved, respectively. These result in optical-to-optical efficiencies of 6.9%, 2.5%, and 5.4% with respect to the absorbed pump power, respectively.
Real-time high-resolution heterodyne-based measurements of spectral dynamics in fibre lasers
Sugavanam, Srikanth; Fabbri, Simon; Le, Son Thai; Lobach, Ivan; Kablukov, Sergey; Khorev, Serge; Churkin, Dmitry
2016-01-01
Conventional tools for measurement of laser spectra (e.g. optical spectrum analysers) capture data averaged over a considerable time period. However, the generation spectrum of many laser types may involve spectral dynamics whose relatively fast time scale is determined by their cavity round trip period, calling for instrumentation featuring both high temporal and spectral resolution. Such real-time spectral characterisation becomes particularly challenging if the laser pulses are long, or they have continuous or quasi-continuous wave radiation components. Here we combine optical heterodyning with a technique of spatio-temporal intensity measurements that allows the characterisation of such complex sources. Fast, round-trip-resolved spectral dynamics of cavity-based systems in real-time are obtained, with temporal resolution of one cavity round trip and frequency resolution defined by its inverse (85 ns and 24 MHz respectively are demonstrated). We also show how under certain conditions for quasi-continuous wave sources, the spectral resolution could be further increased by a factor of 100 by direct extraction of phase information from the heterodyned dynamics or by using double time scales within the spectrogram approach. PMID:26984634
Kim, Namje; Han, Sang-Pil; Ko, Hyunsung; Leem, Young Ahn; Ryu, Han-Cheol; Lee, Chul Wook; Lee, Donghun; Jeon, Min Yong; Noh, Sam Kyu; Park, Kyung Hyun
2011-08-01
We demonstrate a tunable continuous-wave (CW) terahertz (THz) homodyne system with a novel detuned dual-mode laser diode (DML) and low-temperature-grown (LTG) InGaAs photomixers. The optical beat source with the detuned DML showed a beat frequency tuning range of 0.26 to over 1.07 THz. Log-spiral antenna integrated LTG InGaAs photomixers are used as THz wave generators and detectors. The CW THz radiation frequency was continuously tuned to over 1 THz. Our results clearly show the feasibility of a compact and fast scanning CW THz spectrometer consisting of a fiber-coupled detuned DML and photomixers operating in the 1.55-μm range.
Fujimoto, Takahiro; Imai, Yusuke; Tei, Kazuyoku; Ito, Shinobu; Kanazawa, Hideko; Yamaguchi, Shigeru
2014-01-01
We investigate a technology to create a high temperature heat source on the tip surface of the glass fiber proposed for medical surgery applications. Using 4 to 6 W power level semiconductor lasers at a wavelength of 980 nm, a laser coupled fiber tip was preprocessed to contain a certain amount of titanium oxide powder with a depth of 100 μm from the tip surface so that the irradiated low laser energy could be perfectly absorbed to be transferred to thermal energy. Thus, the laser treatment can be performed without suffering from any optical characteristic of the material. A semiconductor laser was operated quasi-continuous wave mode pulse time duration of 180 ms and >95% of the laser energy was converted to thermal energy in the fiber tip. Based on two-color thermometry, by using a gated optical multichannel analyzer with a 0.25 m spectrometer in visible wavelength region, the temperature of the fiber tip was analyzed. The temperature of the heat source was measured to be in excess 3100 K.
Ultra-low power generation of twin photons in a compact silicon ring resonator.
Azzini, Stefano; Grassani, Davide; Strain, Michael J; Sorel, Marc; Helt, L G; Sipe, J E; Liscidini, Marco; Galli, Matteo; Bajoni, Daniele
2012-10-08
We demonstrate efficient generation of correlated photon pairs by spontaneous four wave mixing in a 5 μm radius silicon ring resonator in the telecom band around 1550 nm. By optically pumping our device with a 200 μW continuous wave laser, we obtain a pair generation rate of 0.2 MHz and demonstrate photon time correlations with a coincidence-to-accidental ratio as high as 250. The results are in good agreement with theoretical predictions and show the potential of silicon micro-ring resonators as room temperature sources for integrated quantum optics applications.
Frequency-noise measurements of optical frequency combs by multiple fringe-side discriminator
Coluccelli, Nicola; Cassinerio, Marco; Gambetta, Alessio; Laporta, Paolo; Galzerano, Gianluca
2015-01-01
The frequency noise of an optical frequency comb is routinely measured through the hetherodyne beat of one comb tooth against a stable continuous-wave laser. After frequency-to-voltage conversion, the beatnote is sent to a spectrum analyzer to retrive the power spectral density of the frequency noise. Because narrow-linewidth continuous-wave lasers are available only at certain wavelengths, heterodyning the comb tooth can be challenging. We present a new technique for direct characterization of the frequency noise of an optical frequency comb, requiring no supplementary reference lasers and easily applicable in all spectral regions from the terahertz to the ultraviolet. The technique is based on the combination of a low finesse Fabry-Perot resonator and the so-called “fringe-side locking” method, usually adopted to characterize the spectral purity of single-frequency lasers, here generalized to optical frequency combs. The effectiveness of this technique is demonstrated with an Er-fiber comb source across the wavelength range from 1 to 2 μm. PMID:26548900
NASA Technical Reports Server (NTRS)
Ridgway, Stephen; Wilson, Robert W.; Begelman, Mitchell C.; Bender, Peter; Burke, Bernard F.; Cornwell, Tim; Drever, Ronald; Dyck, H. Melvin; Johnston, Kenneth J.; Kibblewhite, Edward
1991-01-01
The following recommended programs are reviewed: (1) infrared and optical interferometry (a ground-based and space programs); (2) compensation for the atmosphere with adaptive optics (a program for development and implementation of adaptive optics); and (3) gravitational waves (high frequency gravitational wave sources (LIGO), low frequency gravitational wave sources (LAGOS), a gravitational wave observatory program, laser gravitational wave observatory in space, and technology development during the 1990's). Prospects for international collaboration and related issues are also discussed.
Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators
Wang, C. Y.; Herr, T.; Del’Haye, P.; Schliesser, A.; Hofer, J.; Holzwarth, R.; Hänsch, T. W.; Picqué, N.; Kippenberg, T. J.
2013-01-01
The mid-infrared spectral range (λ~2–20 μm) is of particular importance as many molecules exhibit strong vibrational fingerprints in this region. Optical frequency combs—broadband optical sources consisting of equally spaced and mutually coherent sharp lines—are creating new opportunities for advanced spectroscopy. Here we demonstrate a novel approach to create mid-infrared optical frequency combs via four-wave mixing in a continuous-wave pumped ultra-high Q crystalline microresonator made of magnesium fluoride. Careful choice of the resonator material and design made it possible to generate a broadband, low-phase noise Kerr comb at λ=2.5 μm spanning 200 nm (≈10 THz) with a line spacing of 100 GHz. With its distinguishing features of compactness, efficient conversion, large mode spacing and high power per comb line, this novel frequency comb source holds promise for new approaches to molecular spectroscopy and is suitable to be extended further into the mid-infrared. PMID:23299895
A Wave-Optics Approach to Paraxial Geometrical Laws Based on Continuity at Boundaries
ERIC Educational Resources Information Center
Linares, J.; Nistal, M. C.
2011-01-01
We present a derivation of the paraxial geometrical laws starting from a wave-optics approach, in particular by using simple continuity conditions of paraxial spherical waves at boundaries (discontinuities) between optical media. Paraxial geometrical imaging and magnification laws, under refraction and reflection at boundaries, are derived for…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wade, A. R.; Mansell, G. L.; McRae, T. G., E-mail: Terry.Mcrae@anu.edu.au
With the recent detection of gravitational waves, non-classical light sources are likely to become an essential element of future detectors engaged in gravitational wave astronomy and cosmology. Operating a squeezed light source under high vacuum has the advantages of reducing optical losses and phase noise compared to techniques where the squeezed light is introduced from outside the vacuum. This will ultimately provide enhanced sensitivity for modern interferometric gravitational wave detectors that will soon become limited by quantum noise across much of the detection bandwidth. Here we describe the optomechanical design choices and construction techniques of a near monolithic glass opticalmore » parametric oscillator that has been operated under a vacuum of 10{sup −6} mbar. The optical parametric oscillator described here has been shown to produce 8.6 dB of quadrature squeezed light in the audio frequency band down to 10 Hz. This performance has been maintained for periods of around an hour and the system has been under vacuum continuously for several months without a degradation of this performance.« less
Multipoint sensing with a low-coherence source using single-arm frequency-shifted interferometry
Zhang, Yiwei; Ye, Fei; Qi, Bing; ...
2016-07-12
We demonstrate that multiple-site sensing along an optical fiber can be done with incoherent continuous-wave light. Here, using a broadband low-coherence noise source, a slow detector, and an optical modulator, we construct a single-arm frequency-shifted interferometer (SA-FSI) capable of simultaneously sensing multiple weak-reflection sites distributed either in parallel or in series along fiber links. By scanning the driving frequency of an electro-optic amplitude modulator in the range of 2.7–3.2 GHz at steps of 41.7 KHz, we demonstrate a spatial resolution of 0.3 m and a measurement range of over 1 km.
Non-optically combined multispectral source for IR, visible, and laser testing
NASA Astrophysics Data System (ADS)
Laveigne, Joe; Rich, Brian; McHugh, Steve; Chua, Peter
2010-04-01
Electro Optical technology continues to advance, incorporating developments in infrared and laser technology into smaller, more tightly-integrated systems that can see and discriminate military targets at ever-increasing distances. New systems incorporate laser illumination and ranging with gated sensors that allow unparalleled vision at a distance. These new capabilities augment existing all-weather performance in the mid-wave infrared (MWIR) and long-wave infrared (LWIR), as well as low light level visible and near infrared (VNIR), giving the user multiple means of looking at targets of interest. There is a need in the test industry to generate imagery in the relevant spectral bands, and to provide temporal stimulus for testing range-gated systems. Santa Barbara Infrared (SBIR) has developed a new means of combining a uniform infrared source with uniform laser and visible sources for electro-optics (EO) testing. The source has been designed to allow laboratory testing of surveillance systems incorporating an infrared imager and a range-gated camera; and for field testing of emerging multi-spectral/fused sensor systems. A description of the source will be presented along with performance data relating to EO testing, including output in pertinent spectral bands, stability and resolution.
NASA Astrophysics Data System (ADS)
Kiessling, J.; Breunig, I.; Schunemann, P. G.; Buse, K.; Vodopyanov, K. L.
2013-10-01
We report a diffraction-limited photonic terahertz (THz) source with linewidth <10 MHz that can be used for nonlinear THz studies in the continuous wave (CW) regime with uninterrupted tunability in a broad range of THz frequencies. THz output is produced in orientation-patterned (OP) gallium arsenide (GaAs) via intracavity frequency mixing between the two closely spaced resonating signal and idler waves of an optical parametric oscillator (OPO) operating near λ = 2 μm. The doubly resonant type II OPO is based on a periodically poled lithium niobate (PPLN) pumped by a single-frequency Yb:YAG disc laser at 1030 nm. We take advantage of the enhancement of both optical fields inside a high-finesse OPO cavity: with 10 W of 1030 nm pump, 100 W of intracavity power near 2 μm was attained with GaAs inside cavity. This allows dramatic improvement in terms of generated THz power, as compared to the state-of-the art CW methods. We achieved >25 μW of single-frequency tunable CW THz output power scalable to >1 mW with proper choice of pump laser wavelength.
Comparative study of shear wave-based elastography techniques in optical coherence tomography
NASA Astrophysics Data System (ADS)
Zvietcovich, Fernando; Rolland, Jannick P.; Yao, Jianing; Meemon, Panomsak; Parker, Kevin J.
2017-03-01
We compare five optical coherence elastography techniques able to estimate the shear speed of waves generated by one and two sources of excitation. The first two techniques make use of one piezoelectric actuator in order to produce a continuous shear wave propagation or a tone-burst propagation (TBP) of 400 Hz over a gelatin tissue-mimicking phantom. The remaining techniques utilize a second actuator located on the opposite side of the region of interest in order to create three types of interference patterns: crawling waves, swept crawling waves, and standing waves, depending on the selection of the frequency difference between the two actuators. We evaluated accuracy, contrast to noise ratio, resolution, and acquisition time for each technique during experiments. Numerical simulations were also performed in order to support the experimental findings. Results suggest that in the presence of strong internal reflections, single source methods are more accurate and less variable when compared to the two-actuator methods. In particular, TBP reports the best performance with an accuracy error <4.1%. Finally, the TBP was tested in a fresh chicken tibialis anterior muscle with a localized thermally ablated lesion in order to evaluate its performance in biological tissue.
Microresonator-based solitons for massively parallel coherent optical communications
NASA Astrophysics Data System (ADS)
Marin-Palomo, Pablo; Kemal, Juned N.; Karpov, Maxim; Kordts, Arne; Pfeifle, Joerg; Pfeiffer, Martin H. P.; Trocha, Philipp; Wolf, Stefan; Brasch, Victor; Anderson, Miles H.; Rosenberger, Ralf; Vijayan, Kovendhan; Freude, Wolfgang; Kippenberg, Tobias J.; Koos, Christian
2017-06-01
Solitons are waveforms that preserve their shape while propagating, as a result of a balance of dispersion and nonlinearity. Soliton-based data transmission schemes were investigated in the 1980s and showed promise as a way of overcoming the limitations imposed by dispersion of optical fibres. However, these approaches were later abandoned in favour of wavelength-division multiplexing schemes, which are easier to implement and offer improved scalability to higher data rates. Here we show that solitons could make a comeback in optical communications, not as a competitor but as a key element of massively parallel wavelength-division multiplexing. Instead of encoding data on the soliton pulse train itself, we use continuous-wave tones of the associated frequency comb as carriers for communication. Dissipative Kerr solitons (DKSs) (solitons that rely on a double balance of parametric gain and cavity loss, as well as dispersion and nonlinearity) are generated as continuously circulating pulses in an integrated silicon nitride microresonator via four-photon interactions mediated by the Kerr nonlinearity, leading to low-noise, spectrally smooth, broadband optical frequency combs. We use two interleaved DKS frequency combs to transmit a data stream of more than 50 terabits per second on 179 individual optical carriers that span the entire telecommunication C and L bands (centred around infrared telecommunication wavelengths of 1.55 micrometres). We also demonstrate coherent detection of a wavelength-division multiplexing data stream by using a pair of DKS frequency combs—one as a multi-wavelength light source at the transmitter and the other as the corresponding local oscillator at the receiver. This approach exploits the scalability of microresonator-based DKS frequency comb sources for massively parallel optical communications at both the transmitter and the receiver. Our results demonstrate the potential of these sources to replace the arrays of continuous-wave lasers that are currently used in high-speed communications. In combination with advanced spatial multiplexing schemes and highly integrated silicon photonic circuits, DKS frequency combs could bring chip-scale petabit-per-second transceivers into reach.
Chen, Xiaoming; Lu, Yanhua; Hu, Hao; Tong, Lixin; Zhang, Lei; Yu, Yi; Wang, Juntao; Ren, Huaijin; Xu, Liu
2018-03-05
We present investigations into a narrow-linewidth, quasi-continuous-wave pulsed all-solid-state amplified spontaneous emission (ASE) source by use of a novel multiple-pass zigzag slab amplifier. The SE fluorescence emitted from a Nd:YAG slab active medium acts as the seed and is amplified back and forth 8 times through the same slab. Thanks to the angular multiplexing nature of the zigzag slab, high-intensity 1064-nm ASE output can be produced without unwanted self-lasing in this configuration. Experimentally, the output energy, optical conversion efficiency, pulse dynamics, spectral property, and beam quality of the ASE source are studied when the Nd:YAG slab end-pumped by two high-brightness laser diode arrays. The maximum single pulse energy of 347 mJ is generated with an optical efficiency of ~5.9% and a beam quality of 3.5/17 in the thickness/width direction of the slab. As expected, smooth pulses without relaxing spikes and continuous spectra are achieved. Moreover, the spectral width of the ASE source narrows versus the pump energy, getting a 3-dB linewidth of as narrow as 20 pm (i.e. 5.3 GHz). Via the sum frequency generation, high-intensity, smooth-pulse, and narrow-linewidth ASE sources are preferred for solving the major problem of saturation of the mesospheric sodium atoms and can create a much brighter sodium guide star to meet the needs of adaptive imaging applications in astronomy.
Methods and apparatus for broadband frequency comb stabilization
Cox, Jonathan A; Kaertner, Franz X
2015-03-17
Feedback loops can be used to shift and stabilize the carrier-envelope phase of a frequency comb from a mode-locked fibers laser or other optical source. Compared to other frequency shifting and stabilization techniques, feedback-based techniques provide a wideband closed-loop servo bandwidth without optical filtering, beam pointing errors, or group velocity dispersion. It also enables phase locking to a stable reference, such as a Ti:Sapphire laser, continuous-wave microwave or optical source, or self-referencing interferometer, e.g., to within 200 mrad rms from DC to 5 MHz. In addition, stabilized frequency combs can be coherently combined with other stable signals, including other stabilized frequency combs, to synthesize optical pulse trains with pulse durations of as little as a single optical cycle. Such a coherent combination can be achieved via orthogonal control, using balanced optical cross-correlation for timing stabilization and balanced homodyne detection for phase stabilization.
Continuous-wave mid-infrared photonic crystal light emitters at room temperature
NASA Astrophysics Data System (ADS)
Weng, Binbin; Qiu, Jijun; Shi, Zhisheng
2017-01-01
Mid-infrared photonic crystal enhanced lead-salt light emitters operating under continuous-wave mode at room temperature were investigated in this work. For the device, an active region consisting of 9 pairs of PbSe/Pb0.96Sr0.04Se quantum wells was grown by molecular beam epitaxy method on top of a Si(111) substrate which was initially dry-etched with a two-dimensional photonic crystal structure in a pattern of hexagonal holes. Because of the photonic crystal structure, an optical band gap between 3.49 and 3.58 µm was formed, which matched with the light emission spectrum of the quantum wells at room temperature. As a result, under optical pumping, using a near-infrared continuous-wave semiconductor laser, the device exhibited strong photonic crystal band-edge mode emissions and delivered over 26.5 times higher emission efficiency compared to the one without photonic crystal structure. The output power obtained was up to 7.68 mW (the corresponding power density was 363 mW/cm2), and a maximum quantum efficiency reached to 1.2%. Such photonic crystal emitters can be used as promising light sources for novel miniaturized gas-sensing systems.
Guzmán, R; Carpintero, G; Gordon, C; Orbe, L
2016-10-15
We demonstrate and compare two different photonic-based signal sources for generating the carrier wave in a wireless communication link operating in the millimeter-wave range. The first signal source uses the optical heterodyne technique to generate a 113 GHz carrier wave frequency, while the second employs a different technique based on a pulsed mode-locked source with 100 GHz repetition rate frequency. The two optical sources were fabricated in a multi-project wafer run from an active/passive generic integration platform process using standardized building blocks, including multimode interference reflectors which allow us to define the structures on chip, without the need for cleaved facet mirrors. We highlight the superior performance of the mode-locked sources over an optical heterodyne technique. Error-free transmission was achieved in this experiment.
Spectrally pure RF photonic source based on a resonant optical hyper-parametric oscillator
NASA Astrophysics Data System (ADS)
Liang, W.; Eliyahu, D.; Matsko, A. B.; Ilchenko, V. S.; Seidel, D.; Maleki, L.
2014-03-01
We demonstrate a free running 10 GHz microresonator-based RF photonic hyper-parametric oscillator characterized with phase noise better than -60 dBc/Hz at 10 Hz, -90 dBc/Hz at 100 Hz, and -150 dBc/Hz at 10 MHz. The device consumes less than 25 mW of optical power. A correlation between the frequency of the continuous wave laser pumping the nonlinear resonator and the generated RF frequency is confirmed. The performance of the device is compared with the performance of a standard optical fiber based coupled opto-electronic oscillator of OEwaves.
NASA Astrophysics Data System (ADS)
Ma, Jianxin
2016-07-01
A full-duplex radio-over fiber (RoF) link scheme based on single sideband (SSB) optical millimeter (mm)-wave signal with polarization-rotated optical carrier is proposed to realize the source-free colorless base station (BS), in which a polarization beam splitter (PBS) is used to abstract part of the optical carrier for conveying the uplink data. Since the optical carrier for the uplink does not bear the downlink signal, no cross-talk from the downlink contaminates the uplink signal. The simulation results demonstrate that both down- and up-links maintain good performance. The mm-wave signal distribution network based on the proposed full duplex fiber link scheme can use the uniform source-free colorless BSs, which makes the access system very simpler.
Sound field reproduction as an equivalent acoustical scattering problem.
Fazi, Filippo Maria; Nelson, Philip A
2013-11-01
Given a continuous distribution of acoustic sources, the determination of the source strength that ensures the synthesis of a desired sound field is shown to be identical to the solution of an equivalent acoustic scattering problem. The paper begins with the presentation of the general theory that underpins sound field reproduction with secondary sources continuously arranged on the boundary of the reproduction region. The process of reproduction by a continuous source distribution is modeled by means of an integral operator (the single layer potential). It is then shown how the solution of the sound reproduction problem corresponds to that of an equivalent scattering problem. Analytical solutions are computed for two specific instances of this problem, involving, respectively, the use of a secondary source distribution in spherical and planar geometries. The results are shown to be the same as those obtained with analyses based on High Order Ambisonics and Wave Field Synthesis, respectively, thus bringing to light a fundamental analogy between these two methods of sound reproduction. Finally, it is shown how the physical optics (Kirchhoff) approximation enables the derivation of a high-frequency simplification for the problem under consideration, this in turn being related to the secondary source selection criterion reported in the literature on Wave Field Synthesis.
Klehr, A; Wenzel, H; Fricke, J; Bugge, F; Erbert, G
2014-10-06
We have developed a diode-laser based master oscillator power amplifier (MOPA) light source which emits high-power spectrally stabilized and nearly-diffraction limited optical pulses in the nanoseconds range as required by many applications. The MOPA consists of a distributed Bragg reflector (DBR) laser as master oscillator driven by a constant current and a ridge waveguide power amplifier (PA) which can be driven by a constant current (DC) or by rectangular current pulses with a width of 5 ns at a repetition frequency of 200 kHz. Under pulsed operation the amplifier acts as an optical gate, converting the CW input beam emitted by the DBR laser into a train of short amplified optical pulses. With this experimental MOPA arrangement no relaxation oscillations occur. A continuous wave power of 1 W under DC injection and a pulse power of 4 W under pulsed operation are reached. For both operational modes the optical spectrum of the emission of the amplifier exhibits a peak at a constant wavelength of 973.5 nm with a spectral width < 10 pm.
NASA Astrophysics Data System (ADS)
Nadhira, Vebi; Kurniadi, Deddy; Juliastuti, E.; Sutiswan, Adeline
2014-03-01
The importance of monitoring the quality of vegetables and fruits is prosperity by giving a competitive advantage for producer and providing a more healthy food for consumer. Diffuse Optical Tomography (DOT) is offering the possibility to detect the internal defects of the agricultural produce quality. Fluorescence diffuse optical tomography (FDOT) is the development of DOT, offering the possibilities to improve spatial resolution and to contrast image. The purpose of this research is to compare FDOT and DOT in forward analysis with continuous wave approach. The scattering and absorbing parameters of potatoes are used to represent the real condition. The object was illuminated by the NIR source from some positions on the boundary of object. A set of NIR detector are placed on the peripheral position of the object to measure the intensity of propagated or emitted light. In the simulation, we varied a condition of object then we analyzed the sensitivity of forward problem. The result of this study shows that FDOT has a better sensitivity than DOT and a better potential to monitor internal defects of agricultural produce because of the contrast value between optical and fluorescence properties of agricultural produce normal tissue and defects.
Miniaturized pulsed laser source for time-domain diffuse optics routes to wearable devices
NASA Astrophysics Data System (ADS)
Di Sieno, Laura; Nissinen, Jan; Hallman, Lauri; Martinenghi, Edoardo; Contini, Davide; Pifferi, Antonio; Kostamovaara, Juha; Mora, Alberto Dalla
2017-08-01
We validate a miniaturized pulsed laser source for use in time-domain (TD) diffuse optics, following rigorous and shared protocols for performance assessment of this class of devices. This compact source (12×6 mm2) has been previously developed for range finding applications and is able to provide short, high energy (˜100 ps, ˜0.5 nJ) optical pulses at up to 1 MHz repetition rate. Here, we start with a basic level laser characterization with an analysis of suitability of this laser for the diffuse optics application. Then, we present a TD optical system using this source and its performances in both recovering optical properties of tissue-mimicking homogeneous phantoms and in detecting localized absorption perturbations. Finally, as a proof of concept of in vivo application, we demonstrate that the system is able to detect hemodynamic changes occurring in the arm of healthy volunteers during a venous occlusion. Squeezing the laser source in a small footprint removes a key technological bottleneck that has hampered so far the realization of a miniaturized TD diffuse optics system, able to compete with already assessed continuous-wave devices in terms of size and cost, but with wider performance potentialities, as demonstrated by research over the last two decades.
Multi-channel photon counting DOT system based on digital lock-in detection technique
NASA Astrophysics Data System (ADS)
Wang, Tingting; Zhao, Huijuan; Wang, Zhichao; Hou, Shaohua; Gao, Feng
2011-02-01
Relying on deeper penetration of light in the tissue, Diffuse Optical Tomography (DOT) achieves organ-level tomography diagnosis, which can provide information on anatomical and physiological features. DOT has been widely used in imaging of breast, neonatal cerebral oxygen status and blood oxygen kinetics observed by its non-invasive, security and other advantages. Continuous wave DOT image reconstruction algorithms need the measurement of the surface distribution of the output photon flow inspired by more than one driving source, which means that source coding is necessary. The most currently used source coding in DOT is time-division multiplexing (TDM) technology, which utilizes the optical switch to switch light into optical fiber of different locations. However, in case of large amounts of the source locations or using the multi-wavelength, the measurement time with TDM and the measurement interval between different locations within the same measurement period will therefore become too long to capture the dynamic changes in real-time. In this paper, a frequency division multiplexing source coding technology is developed, which uses light sources modulated by sine waves with different frequencies incident to the imaging chamber simultaneously. Signal corresponding to an individual source is obtained from the mixed output light using digital phase-locked detection technology at the detection end. A digital lock-in detection circuit for photon counting measurement system is implemented on a FPGA development platform. A dual-channel DOT photon counting experimental system is preliminary established, including the two continuous lasers, photon counting detectors, digital lock-in detection control circuit, and codes to control the hardware and display the results. A series of experimental measurements are taken to validate the feasibility of the system. This method developed in this paper greatly accelerates the DOT system measurement, and can also obtain the multiple measurements in different source-detector locations.
Biobeam—Multiplexed wave-optical simulations of light-sheet microscopy
Weigert, Martin; Bundschuh, Sebastian T.
2018-01-01
Sample-induced image-degradation remains an intricate wave-optical problem in light-sheet microscopy. Here we present biobeam, an open-source software package that enables simulation of operational light-sheet microscopes by combining data from 105–106 multiplexed and GPU-accelerated point-spread-function calculations. The wave-optical nature of these simulations leads to the faithful reproduction of spatially varying aberrations, diffraction artifacts, geometric image distortions, adaptive optics, and emergent wave-optical phenomena, and renders image-formation in light-sheet microscopy computationally tractable. PMID:29652879
Han, Sang-Pil; Ko, Hyunsung; Kim, Namje; Lee, Won-Hui; Moon, Kiwon; Lee, Il-Min; Lee, Eui Su; Lee, Dong Hun; Lee, Wangjoo; Han, Seong-Tae; Choi, Sung-Wook; Park, Kyung Hyun
2014-11-17
We demonstrate real-time continuous-wave terahertz (THz) line-scanned imaging based on a 1 × 240 InGaAs Schottky barrier diode (SBD) array detector with a scan velocity of 25 cm/s, a scan line length of 12 cm, and a pixel size of 0.5 × 0.5 mm². Foreign substances, such as a paper clip with a spatial resolution of approximately 1 mm that is hidden under a cracker, are clearly detected by this THz line-scanning system. The system consists of the SBD array detector, a 200-GHz gyrotron source, a conveyor system, and several optical components such as a high-density polyethylene cylindrical lens, metal cylindrical mirror, and THz wire-grid polarizer. Using the THz polarizer, the signal-to-noise ratio of the SBD array detector improves because the quality of the source beam is enhanced.
LOOC UP: Locating and Observing Optical Counterparts to Unmodeled Pulses in Gravitational Waves
NASA Astrophysics Data System (ADS)
Piscionere, Jennifer; Marka, S.; Shawhan, P. S.; Kanner, J.; Huard, T. L.; Murphy, D. C.
2007-12-01
We have begun a program, "Locating and Observing Optical Counterparts to Unmodeled Pulses in Gravitational Waves" (LOOC UP), to search promptly for optical counterparts to potential candidates for gravitational wave (GW) bursts. Several plausible GW sources are likely to also emit light, so the identification of a transient optical counterpart would confirm the GW signal and provide additional information about the progenitor. For example, it is expected that a merger of two neutron stars in a binary system close enough to be detectable in GWs may exhibit an optical counterpart as bright as R=13 magnitude initially, with a dimming of 1 magnitude per night. We carried out a pilot study in the summer of 2007 to develop methods and software tools for such a search. The first stage involves identifying potential GW burst candidates, or "triggers", by near real-time analysis of signals from the two Laser Interferometer Gravitational-Wave Observatory (LIGO) detector sites plus the Virgo GW detector in Europe, using very low thresholds on signal amplitude and requiring coincidence among the detectors. (At such low thresholds, typical noise fluctuations in the detectors produce a false trigger rate of one or more per hour.) Rough positions of putative sources are estimated from the GW data using the timing differences among detectors; this information is then used to select follow-up targets, giving preference to nearby galaxies and Milky Way globular clusters. A large number of nominal trigger times and targets were selected in this way for the pilot study. Using Las Campanas and MDM observatories, repeated optical observations of fields containing these targets were obtained starting a few hours after each trigger and continuing for several nights. We will present the methods we have developed for choosing targets for follow-ups and analyzing the optical image data for transients.
Naser, Mohamed A.; Patterson, Michael S.
2010-01-01
Reconstruction algorithms are presented for a two-step solution of the bioluminescence tomography (BLT) problem. In the first step, a priori anatomical information provided by x-ray computed tomography or by other methods is used to solve the continuous wave (cw) diffuse optical tomography (DOT) problem. A Taylor series expansion approximates the light fluence rate dependence on the optical properties of each region where first and second order direct derivatives of the light fluence rate with respect to scattering and absorption coefficients are obtained and used for the reconstruction. In the second step, the reconstructed optical properties at different wavelengths are used to calculate the Green’s function of the system. Then an iterative minimization solution based on the L1 norm shrinks the permissible regions where the sources are allowed by selecting points with higher probability to contribute to the source distribution. This provides an efficient BLT reconstruction algorithm with the ability to determine relative source magnitudes and positions in the presence of noise. PMID:21258486
NASA Astrophysics Data System (ADS)
Choudhury, Vishal; Prakash, Roopa; Nagarjun, K. P.; Supradeepa, V. R.
2018-02-01
A simple and powerful method using continuous wave supercontinuum lasers is demonstrated to perform spectrally resolved, broadband frequency response characterization of photodetectors in the NIR Band. In contrast to existing techniques, this method allows for a simple system to achieve the goal, requiring just a standard continuous wave(CW) high-power fiber laser source and an RF spectrum analyzer. From our recent work, we summarize methods to easily convert any high-power fiber laser into a CW supercontinuum. These sources in the time domain exhibit interesting properties all the way down to the femtosecond time scale. This enables measurement of broadband frequency response of photodetectors while the wide optical spectrum of the supercontinuum can be spectrally filtered to obtain this information in a spectrally resolved fashion. The method involves looking at the RF spectrum of the output of a photodetector under test when incident with the supercontinuum. By using prior knowledge of the RF spectrum of the source, the frequency response can be calculated. We utilize two techniques for calibration of the source spectrum, one using a prior measurement and the other relying on a fitted model. Here, we characterize multiple photodetectors from 150MHz bandwidth to >20GHz bandwidth at multiple bands in the NIR region. We utilize a supercontinuum source spanning over 700nm bandwidth from 1300nm to 2000nm. For spectrally resolved measurement, we utilize multiple wavelength bands such as around 1400nm and 1600nm. Interesting behavior was observed in the frequency response of the photodetectors when comparing broadband spectral excitation versus narrower band excitation.
Scalar wave-optical reconstruction of plenoptic camera images.
Junker, André; Stenau, Tim; Brenner, Karl-Heinz
2014-09-01
We investigate the reconstruction of plenoptic camera images in a scalar wave-optical framework. Previous publications relating to this topic numerically simulate light propagation on the basis of ray tracing. However, due to continuing miniaturization of hardware components it can be assumed that in combination with low-aperture optical systems this technique may not be generally valid. Therefore, we study the differences between ray- and wave-optical object reconstructions of true plenoptic camera images. For this purpose we present a wave-optical reconstruction algorithm, which can be run on a regular computer. Our findings show that a wave-optical treatment is capable of increasing the detail resolution of reconstructed objects.
Field test investigation of high sensitivity fiber optic seismic geophone
NASA Astrophysics Data System (ADS)
Wang, Meng; Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, Shujuan; Wang, Chang; Zhao, Zhong; Hao, Guanghu
2017-10-01
Seismic reflection, whose measured signal is the artificial seismic waves ,is the most effective method and widely used in the geophysical prospecting. And this method can be used for exploration of oil, gas and coal. When a seismic wave travelling through the Earth encounters an interface between two materials with different acoustic impedances, some of the wave energy will reflect off the interface and some will refract through the interface. At its most basic, the seismic reflection technique consists of generating seismic waves and measuring the time taken for the waves to travel from the source, reflect off an interface and be detected by an array of geophones at the surface. Compared to traditional geophones such as electric, magnetic, mechanical and gas geophone, optical fiber geophones have many advantages. Optical fiber geophones can achieve sensing and signal transmission simultaneously. With the development of fiber grating sensor technology, fiber bragg grating (FBG) is being applied in seismic exploration and draws more and more attention to its advantage of anti-electromagnetic interference, high sensitivity and insensitivity to meteorological conditions. In this paper, we designed a high sensitivity geophone and tested its sensitivity, based on the theory of FBG sensing. The frequency response range is from 10 Hz to 100 Hz and the acceleration of the fiber optic seismic geophone is over 1000pm/g. sixteen-element fiber optic seismic geophone array system is presented and the field test is performed in Shengli oilfield of China. The field test shows that: (1) the fiber optic seismic geophone has a higher sensitivity than the traditional geophone between 1-100 Hz;(2) The low frequency reflection wave continuity of fiber Bragg grating geophone is better.
Miniaturized pulsed laser source for time-domain diffuse optics routes to wearable devices.
Di Sieno, Laura; Nissinen, Jan; Hallman, Lauri; Martinenghi, Edoardo; Contini, Davide; Pifferi, Antonio; Kostamovaara, Juha; Mora, Alberto Dalla
2017-08-01
We validate a miniaturized pulsed laser source for use in time-domain (TD) diffuse optics, following rigorous and shared protocols for performance assessment of this class of devices. This compact source (12×6 mm2) has been previously developed for range finding applications and is able to provide short, high energy (∼100 ps, ∼0.5 nJ) optical pulses at up to 1 MHz repetition rate. Here, we start with a basic level laser characterization with an analysis of suitability of this laser for the diffuse optics application. Then, we present a TD optical system using this source and its performances in both recovering optical properties of tissue-mimicking homogeneous phantoms and in detecting localized absorption perturbations. Finally, as a proof of concept of in vivo application, we demonstrate that the system is able to detect hemodynamic changes occurring in the arm of healthy volunteers during a venous occlusion. Squeezing the laser source in a small footprint removes a key technological bottleneck that has hampered so far the realization of a miniaturized TD diffuse optics system, able to compete with already assessed continuous-wave devices in terms of size and cost, but with wider performance potentialities, as demonstrated by research over the last two decades. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Relaxation oscillation suppression in continuous-wave intracavity optical parametric oscillators.
Stothard, David J M; Dunn, Malcolm H
2010-01-18
We report a solution to the long standing problem of the occurrence of spontaneous and long-lived bursts of relaxation oscillations which occur when a continuous-wave optical parametric oscillator is operated within the cavity of the parent pump-laser. By placing a second nonlinear crystal within the pump-wave cavity for the purpose of second-harmonic-generation of the pump-wave the additional nonlinear loss thereby arising due to up-conversion effectively suppresses the relaxation oscillations with very little reduction in down-converted power.
Optical trapping of nanoparticles by ultrashort laser pulses.
Usman, Anwar; Chiang, Wei-Yi; Masuhara, Hiroshi
2013-01-01
Optical trapping with continuous-wave lasers has been a fascinating field in the optical manipulation. It has become a powerful tool for manipulating micrometer-sized objects, and has been widely applied in physics, chemistry, biology, material, and colloidal science. Replacing the continuous-wave- with pulsed-mode laser in optical trapping has already revealed some novel phenomena, including the stable trap, modifiable trapping positions, and controllable directional optical ejections of particles in nanometer scales. Due to two distinctive features; impulsive peak powers and relaxation time between consecutive pulses, the optical trapping with the laser pulses has been demonstrated to have some advantages over conventional continuous-wave lasers, particularly when the particles are within Rayleigh approximation. This would open unprecedented opportunities in both fundamental science and application. This Review summarizes recent advances in the optical trapping with laser pulses and discusses the electromagnetic formulations and physical interpretations of the new phenomena. Its aim is rather to show how beautiful and promising this field will be, and to encourage the in-depth study of this field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliyahu, Danny; Yariv, Amnon
1997-05-01
Using the time domain master equation for a complex electric-field pulse envelope, we find analytical results for the optical spectra of passively mode-locked semiconductor lasers. The analysis includes the effect of optical nonlinearity of semiconductor lasers, which is characterized by a slow saturable amplifier and absorber. Group velocity dispersion, bandwidth limiting, and self-phase modulation were considered as well. The FWHM of the spectrum profile was found to have a strong dependence on group velocity dispersion and self-phase modulation. For large absolute values of the chirp parameter, the optical spectra result in equispaced continuous wave frequencies, a large fraction of whichmore » have equal power. {copyright} 1997 Optical Society of America« less
Tang, W W; Shu, C
2005-02-21
We demonstrate a regeneratively mode-locked optical pulse source at about 10 GHz using an optoelectronic oscillator constructed with an electro-absorption modulator integrated distributed feedback laser diode. The 10 GHz RF component is derived from the interaction between the pump wave and the backscattered, frequency-downshifted Stokes wave resulted from stimulated Brillouin scattering in an optical fiber. The component serves as a modulation source for the 1556 nm laser diode without the need for any electrical or optical RF filter to perform the frequency extraction. Dispersion-compensated fiber, dispersion-shifted fiber, and standard single-mode fiber have been used respectively to generate optical pulses at variable repetition rates.
Smart optical writing head design for laser-based manufacturing
NASA Astrophysics Data System (ADS)
Amin, M. Junaid; Riza, Nabeel A.
2014-03-01
Proposed is a smart optical writing head design suitable for high precision industrial laser based machining and manufacturing applications. The design uses an Electronically Controlled Variable Focus Lens (ECVFL) which enables the highest achievable spatial resolution of writing head spot sizes for axial target distances reaching 8 meters. A proof-of-concept experiment is conducted using a visible wavelength laser with a collimated beam that is coupled to beam conditioning optics which includes an electromagnetically actuated deformable membrane liquid ECVFL cascaded with a bias convex lens of fixed focal length. Electronic tuning and control of the ECVFL keeps the laser writing head far-field spot beam radii under 1 mm that is demonstrated over a target range of 20 cm to 800 cm. Applications for the proposed writing head design, which can accommodate both continuous wave and pulsed wave sources, include laser machining, high precision industrial molding of components, as well as materials processing requiring material sensitive optical power density control.
Bortnik, Bartosz J; Fetterman, Harold R
2008-10-01
A more simple photonically assisted analog-to-digital conversion system utilizing a cw multiwavelength source and phase modulation instead of a mode-locked laser is presented. The output of the cw multiwavelength source is launched into a dispersive device (such as a single-mode fiber). This fiber creates a pulse train, where the central wavelength of each pulse corresponds to a spectral line of the optical source. The pulses can then be either dispersed again to perform discrete wavelength time stretching or demultiplexed for continuous time analog-to-digital conversion. We experimentally demonstrate the operation of both time stretched and interleaved systems at 38 GHz. The potential of integrating this type of system on a monolithic chip is discussed.
NASA Astrophysics Data System (ADS)
Aktas, Metin; Maral, Hakan; Akgun, Toygar
2018-02-01
Extinction ratio is an inherent limiting factor that has a direct effect on the detection performance of phase-OTDR based distributed acoustics sensing systems. In this work we present a model based analysis of Rayleigh scattering to simulate the effects of extinction ratio on the received signal under varying signal acquisition scenarios and system parameters. These signal acquisition scenarios are constructed to represent typically observed cases such as multiple vibration sources cluttered around the target vibration source to be detected, continuous wave light sources with center frequency drift, varying fiber optic cable lengths and varying ADC bit resolutions. Results show that an insufficient ER can result in high optical noise floor and effectively hide the effects of elaborate system improvement efforts.
1977-12-30
ACOUSTO - OPTIC INTERACTION IN SURFACE ACOUSTIC WAVES AND ITS APP--ETC(U) DEC 77 0 SCHUMER, P DAS NOOOIJ -75-C-0772 NCLASSIFIED MA-ONR-30 Nt.EE E’h...CHART NAT*NAL BUREAU OF STANDARDS 1-63- ACOUSTO - OPTIC INTERACTION IN SURFACE ACOUSTIC WAVES AND ITS APPLICATION TO REAL TIME SIGNAL PROCESSING By 00 D... Acousto - optics , Integrated optics, Optical Signal Processing. 20. AbSKTRACT (Continue an reverse side it neceary and idewnt& by block mum ber) The
Taylor, Adam B; Kim, Jooho; Chon, James W M
2012-02-27
In a multilayered structure of absorptive optical recording media, continuous-wave laser operation is highly disadvantageous due to heavy beam extinction. For a gold nanorod based recording medium, the narrow surface plasmon resonance (SPR) profile of gold nanorods enables the variation of extinction through mulilayers by a simple detuning of the readout wavelength from the SPR peak. The level of signal extinction through the layers can then be greatly reduced, resulting more efficient readout at deeper layers. The scattering signal strength may be decreased at the detuned wavelength, but balancing these two factors results an optimal scattering peak wavelength that is specific to each layer. In this paper, we propose to use detuned SPR scattering from gold nanorods as a new mechanism for continuous-wave readout scheme on gold nanorod based multilayered optical storage. Using this detuned scattering method, readout using continuous-wave laser is demonstrated on a 16 layer optical recording medium doped with heavily distributed, randomly oriented gold nanorods. Compared to SPR on-resonant readout, this method reduced the required readout power more than one order of magnitude, with only 60 nm detuning from SPR peak. The proposed method will be highly beneficial to multilayered optical storage applications as well as applications using a continuous medium doped heavily with plasmonic nanoparticles.
NASA Astrophysics Data System (ADS)
Kwiatkowski, Jacek; Zendzian, Waldemar; Jabczynski, Jan K.
2016-12-01
A detailed study of a Tm:YAP laser in continuous-wave (CW), single-pass end-pumped by a 793 nm diode laser is presented. The laser based on c-cut 3 at. % Tm:YAP crystal was experimentally examined and presented in the dependence on transmittance and radius of curvature of output coupling mirrors. A detailed spectral analysis was presented. The influence of a heat-sink cooling water temperature on the laser performance was studied. At room temperature, for an output coupling transmission of 19.5%, the maximum CW output power of 4.53 W was achieved, corresponding to a slope efficiency of 41.5% and an optical-to-optical conversion efficiency of 25.7% with respect to the incident pump power, respectively. We have shown that the output spectrum at a certain wavelength (e.g. 1940 nm) for a given pump power can be realized via the change of resonator parameters (OC transmittance, mode size).
Heebner, John E [Livermore, CA
2010-08-03
In one general embodiment, a method for ultrafast optical signal detecting is provided. In operation, a first optical input signal is propagated through a first wave guiding layer of a waveguide. Additionally, a second optical input signal is propagated through a second wave guiding layer of the waveguide. Furthermore, an optical control signal is applied to a top of the waveguide, the optical control signal being oriented diagonally relative to the top of the waveguide such that the application is used to influence at least a portion of the first optical input signal propagating through the first wave guiding layer of the waveguide. In addition, the first and the second optical input signals output from the waveguide are combined. Further, the combined optical signals output from the waveguide are detected. In another general embodiment, a system for ultrafast optical signal recording is provided comprising a waveguide including a plurality of wave guiding layers, an optical control source positioned to propagate an optical control signal towards the waveguide in a diagonal orientation relative to a top of the waveguide, at least one optical input source positioned to input an optical input signal into at least a first and a second wave guiding layer of the waveguide, and a detector for detecting at least one interference pattern output from the waveguide, where at least one of the interference patterns results from a combination of the optical input signals input into the first and the second wave guiding layer. Furthermore, propagation of the optical control signal is used to influence at least a portion of the optical input signal propagating through the first wave guiding layer of the waveguide.
Ultrabright continuously tunable terahertz-wave generation at room temperature
Hayashi, Shin'ichiro; Nawata, Kouji; Taira, Takunori; Shikata, Jun-ichi; Kawase, Kodo; Minamide, Hiroaki
2014-01-01
The hottest frequency region in terms of research currently lies in the ‘frequency gap' region between microwaves and infrared: terahertz waves. Although new methods for generating terahertz radiation have been developed, most sources cannot generate high-brightness terahertz beams. Here we demonstrate the generation of ultrabright terahertz waves (brightness ~0.2 GW/sr·cm2, brightness temperature of ~1018 K, peak power of >50 kW) using parametric wavelength conversion in a nonlinear crystal; this is brighter than many specialized sources such as far-infrared free-electron lasers (~1016 K, ~2 kW). We revealed novel parametric wavelength conversion using stimulated Raman scattering in LiNbO3 without stimulated Brillouin scattering using recently-developed microchip laser. Furthermore, nonlinear up-conversion techniques allow the intense terahertz waves to be visualized and their frequency determined. These results are very promising for extending applied research into the terahertz region, and we expect that this source will open up new research fields such as nonlinear optics in the terahertz region. PMID:24898269
Ultrabright continuously tunable terahertz-wave generation at room temperature.
Hayashi, Shin'ichiro; Nawata, Kouji; Taira, Takunori; Shikata, Jun-ichi; Kawase, Kodo; Minamide, Hiroaki
2014-06-05
The hottest frequency region in terms of research currently lies in the 'frequency gap' region between microwaves and infrared: terahertz waves. Although new methods for generating terahertz radiation have been developed, most sources cannot generate high-brightness terahertz beams. Here we demonstrate the generation of ultrabright terahertz waves (brightness ~0.2 GW/sr·cm(2), brightness temperature of ~10(18) K, peak power of >50 kW) using parametric wavelength conversion in a nonlinear crystal; this is brighter than many specialized sources such as far-infrared free-electron lasers (~10(16) K, ~2 kW). We revealed novel parametric wavelength conversion using stimulated Raman scattering in LiNbO3 without stimulated Brillouin scattering using recently-developed microchip laser. Furthermore, nonlinear up-conversion techniques allow the intense terahertz waves to be visualized and their frequency determined. These results are very promising for extending applied research into the terahertz region, and we expect that this source will open up new research fields such as nonlinear optics in the terahertz region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Centeno, R.; Marchenko, D.; Mandon, J.
We present a high power, widely tunable, continuous wave external cavity quantum cascade laser designed for infrared vibrational spectroscopy of molecules exhibiting broadband and single line absorption features. The laser source exhibits single mode operation with a tunability up to 303 cm{sup −1} (∼24% of the center wavelength) at 8 μm, with a maximum optical output power of 200 mW. In combination with off-axis integrated output spectroscopy, trace-gas detection of broadband absorption gases such as acetone was performed and a noise equivalent absorption sensitivity of 3.7 × 10{sup −8 }cm{sup −1 }Hz{sup −1/2} was obtained.
Lee, Ju Han; Takushima, Yuichi; Kikuchi, Kazuro
2005-10-01
We experimentally demonstrate a novel erbium-doped fiber based continuous-wave (cw) supercontinuum laser. The laser has a simple ring-cavity structure incorporating an erbium-doped fiber and a highly nonlinear dispersion-shifted fiber (HNL-DSF). Differently from previously demonstrated cw supercontinuum sources based on single propagation of a strong Raman pump laser beam through a highly nonlinear fiber, erbium gain inside the cavity generates a seed light oscillation, and the oscillated light subsequently evolves into a supercontinuum by nonlinear effects such as modulation instability and stimulated Raman scattering in the HNL-DSF. High quality of the depolarized supercontinuum laser output with a spectral bandwidth larger than 250 nm is readily achieved.
An acousto-optic sensor based on resonance grating waveguide structure
Xie, Antonio Jou; Song, Fuchuan; Seo, Sang-Woo
2014-01-01
This paper presents an acousto-optic (AO) sensor based on resonance grating waveguide structure. The sensor is fabricated using elastic polymer materials to achieve a good sensitivity to ultrasound pressure waves. Ultrasound pressure waves modify the structural parameters of the sensor and result in the optical resonance shift of the sensor. This converts into a light intensity modulation. A commercial ultrasound transducer at 20 MHz is used to characterize a fabricated sensor and detection sensitivity at different optical source wavelength within a resonance spectrum is investigated. Practical use of the sensor at a fixed optical source wavelength is presented. Ultimately, the geometry of the planar sensor structure is suitable for two-dimensional, optical pressure imaging applications such as pressure wave detection and mapping, and ultrasound imaging. PMID:25045203
NASA Astrophysics Data System (ADS)
Okishev, Andrey V.; Zuegel, Jonathan D.
2006-12-01
Intracavity-pumped Raman laser action in a fiber-laser pumped, single-resonant, continuous-wave (cw) MgO:PPLN optical parametric oscillator with a high-Q linear resonator has been observed for the first time to our knowledge. Experimental results of this phenomenon investigation will be discussed.
Room temperature continuous wave mid-infrared VCSEL operating at 3.35 μm
NASA Astrophysics Data System (ADS)
Jayaraman, V.; Segal, S.; Lascola, K.; Burgner, C.; Towner, F.; Cazabat, A.; Cole, G. D.; Follman, D.; Heu, P.; Deutsch, C.
2018-02-01
Tunable vertical cavity surface emitting lasers (VCSELs) offer a potentially low cost tunable optical source in the 3-5 μm range that will enable commercial spectroscopic sensing of numerous environmentally and industrially important gases including methane, ethane, nitrous oxide, and carbon monoxide. Thus far, achieving room temperature continuous wave (RTCW) VCSEL operation at wavelengths beyond 3 μm has remained an elusive goal. In this paper, we introduce a new device structure that has enabled RTCW VCSEL operation near the methane absorption lines at 3.35 μm. This device structure employs two GaAs/AlGaAs mirrors wafer-bonded to an optically pumped active region comprising compressively strained type-I InGaAsSb quantum wells grown on a GaSb substrate. This substrate is removed in processing, as is one of the GaAs mirror substrates. The VCSEL structure is optically pumped at room temperature with a CW 1550 nm laser through the GaAs substrate, while the emitted 3.3 μm light is captured out of the top of the device. Power and spectrum shape measured as a function of pump power exhibit clear threshold behavior and robust singlemode spectra.
Bi-directional ultrasonic wave coupling to FBGs in continuously bonded optical fiber sensing.
Wee, Junghyun; Hackney, Drew; Bradford, Philip; Peters, Kara
2017-09-01
Fiber Bragg grating (FBG) sensors are typically spot-bonded onto the surface of a structure to detect ultrasonic waves in laboratory demonstrations. However, to protect the rest of the optical fiber from any environmental damage during real applications, bonding the entire length of fiber, called continuous bonding, is commonly done. In this paper, we investigate the impact of continuously bonding FBGs on the measured Lamb wave signal. In theory, the ultrasonic wave signal can bi-directionally transfer between the optical fiber and the plate at any adhered location, which could potentially produce output signal distortion for the continuous bonding case. Therefore, an experiment is performed to investigate the plate-to-fiber and fiber-to-plate signal transfer, from which the signal coupling coefficient of each case is theoretically estimated based on the experimental data. We demonstrate that the two coupling coefficients are comparable, with the plate-to-fiber case approximately 19% larger than the fiber-to-plate case. Finally, the signal waveform and arrival time of the output FBG responses are compared between the continuous and spot bonding cases. The results indicate that the resulting Lamb wave signal output is only that directly detected at the FBG location; however, a slight difference in signal waveform is observed between the two bonding configurations. This paper demonstrates the practicality of using continuously bonded FBGs for ultrasonic wave detection in structural health monitoring (SHM) applications.
Lee, Ju Han; Chang, You Min; Han, Young-Geun; Lee, Sang Bae; Chung, Hae Yang
2007-08-01
The combined use of a programmable, digital micromirror device (DMD) and an ultrabroadband, cw, incoherent supercontinuum (SC) source is experimentally demonstrated to fully explore various aspects on the reconfiguration of a microwave filter transfer function by creating a range of multiwavelength optical filter shapes. Owing to both the unique characteristic of the DMD that an arbitrary optical filter shape can be readily produced and the ultrabroad bandwidth of the cw SC source that is 3 times larger than that of Er-amplified spontaneous emission, a multiwavelength optical beam pattern can be generated with a large number of wavelength filter taps apodized by an arbitrary amplitude window. Therefore various types of high-quality microwave filter can be readily achieved through the spectrum slicing-based photonic microwave transversal filter scheme. The experimental demonstration is performed in three aspects: the tuning of a filter resonance bandwidth at a fixed resonance frequency, filter resonance frequency tuning at a fixed resonance frequency, and flexible microwave filter shape reconstruction.
Decreased oscillation threshold of a continuous-wave OPO using a semiconductor gain mirror.
Siltanen, Mikael; Leinonen, Tomi; Halonen, Lauri
2011-09-26
We have constructed a singly resonant, continuous-wave optical parametric oscillator, where the signal beam resonates and is amplified by a semiconductor gain mirror. The gain mirror can significantly decrease the oscillation threshold compared to an identical system with conventional mirrors. The largest idler beam tuning range reached by changing the pump laser wavelength alone is from 3.6 to 4.7 µm. The single mode output power is limited but can be continuously scanned for at least 220 GHz by adding optical components in the oscillator cavity for increased stability. © 2011 Optical Society of America
Spatiotemporal optical dark X solitary waves.
Baronio, Fabio; Chen, Shihua; Onorato, Miguel; Trillo, Stefano; Wabnitz, Stefan; Kodama, Yuji
2016-12-01
We introduce spatiotemporal optical dark X solitary waves of the (2+1)D hyperbolic nonlinear Schrödinger equation (NLSE), which rules wave propagation in a self-focusing and normally dispersive medium. These analytical solutions are derived by exploiting the connection between the NLSE and a well-known equation of hydrodynamics, namely the type II Kadomtsev-Petviashvili (KP-II) equation. As a result, families of shallow water X soliton solutions of the KP-II equation are mapped into optical dark X solitary wave solutions of the NLSE. Numerical simulations show that optical dark X solitary waves may propagate for long distances (tens of nonlinear lengths) before they eventually break up, owing to the modulation instability of the continuous wave background. This finding opens a novel path for the excitation and control of X solitary waves in nonlinear optics.
NASA Astrophysics Data System (ADS)
Ghasemi, Fatemeh; Razi, Sepehr; Madanipour, Khosro
2018-02-01
The synthesis of reduced graphene oxide using pulsed laser irradiation is experimentally investigated. For this purpose, various irradiation conditions were selected and the chemical features of the different products were explored using ultraviolet-visible, Fourier transform infrared and Raman spectroscopy techniques. Moreover, the nonlinear optical properties of the synthesized products were assessed by using open and closed aperture Z-scan techniques, in which continuous wave laser irradiating at 532-nm wavelength was utilized as the exciting source. The results clearly revealed that the degree of graphene oxide reduction not only depends on the amount of the irradiation dose (energy of the laser beam × exposure time) but also on the light source wavelength. Furthermore, strong dependency between the nonlinear optical properties of the products and the amount of the de-oxygenation was observed. The experimental results are discussed in detail.
Digital optical tomography system for dynamic breast imaging
NASA Astrophysics Data System (ADS)
Flexman, Molly L.; Khalil, Michael A.; Al Abdi, Rabah; Kim, Hyun K.; Fong, Christopher J.; Desperito, Elise; Hershman, Dawn L.; Barbour, Randall L.; Hielscher, Andreas H.
2011-07-01
Diffuse optical tomography has shown promising results as a tool for breast cancer screening and monitoring response to chemotherapy. Dynamic imaging of the transient response of the breast to an external stimulus, such as pressure or a respiratory maneuver, can provide additional information that can be used to detect tumors. We present a new digital continuous-wave optical tomography system designed to simultaneously image both breasts at fast frame rates and with a large number of sources and detectors. The system uses a master-slave digital signal processor-based detection architecture to achieve a dynamic range of 160 dB and a frame rate of 1.7 Hz with 32 sources, 64 detectors, and 4 wavelengths per breast. Included is a preliminary study of one healthy patient and two breast cancer patients showing the ability to identify an invasive carcinoma based on the hemodynamic response to a breath hold.
Directly driven source of multi-gigahertz, sub-picosecond optical pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messerly, Michael J.; Dawson, Jay W.; Barty, Christopher P.J.
2015-10-20
A robust, compact optical pulse train source is described, with the capability of generating sub-picosecond micro-pulse sequences, which can be periodic as well as non-periodic, and at repetition rates tunable over decades of baseline frequencies, from MHz to multi-GHz regimes. The micro-pulses can be precisely controlled and formatted to be in the range of many ps in duration to as short as several fs in duration. The system output can be comprised of a continuous wave train of optical micro-pulses or can be programmed to provide gated bursts of macro-pulses, with each macro-pulse consisting of a specific number of micro-pulsesmore » or a single pulse picked from the higher frequency train at a repetition rate lower than the baseline frequency. These pulses could then be amplified in energy anywhere from the nJ to MJ range.« less
NASA Astrophysics Data System (ADS)
Ramanujam, Nirmala; Vishnoi, Gargi; Hielscher, Andreas H.; Rode, Martha; Forouzan, Iraj; Chance, Britton
2000-04-01
Near infrared (NIR) measurements were made from the maternal abdomen (clinical studies) and laboratory tissue phantoms (experimental studies) to gain insight into photon migration through the fetal head in utero. Specifically, a continuous wave spectrometer was modified and employed to make NIR measurements at 760 and 850 nm, at a large (10 cm) and small (2.5/4 cm) source-detector separation, simultaneously, on the maternal abdomen, directly above the fetal head. A total of 19 patients were evaluated, whose average gestational age and fetal head depth, were 37 weeks +/- 3 and 2.25 cm +/- 0.7, respectively. At the large source-detector separation, the photons are expected to migrate through both the underlying maternal and fetal tissues before being detected at the surface, while at the short source-detector separation, the photons are expected to migrate primarily through the superficial maternal tissues before being detected. Second, similar NIR measurements were made on laboratory tissue phantoms, with variable optical properties and physical geometries. The variable optical properties were obtained using different concentrations of India ink and Intralipid in water, while the variable physical geometries were realized by employing glass containers of different shapes and sizes. Third, the NIR measurements, which were made on the laboratory tissue phantoms, were compared to the NIR measurements made on the maternal abdomen to determine which tissue phantom best simulates the photon migration path through the fetal head in utero. The results of the comparison were used to provide insight into the optical properties and physical geometry of the maternal and fetal tissues in the photon migration path.
One step linear reconstruction method for continuous wave diffuse optical tomography
NASA Astrophysics Data System (ADS)
Ukhrowiyah, N.; Yasin, M.
2017-09-01
The method one step linear reconstruction method for continuous wave diffuse optical tomography is proposed and demonstrated for polyvinyl chloride based material and breast phantom. Approximation which used in this method is selecting regulation coefficient and evaluating the difference between two states that corresponding to the data acquired without and with a change in optical properties. This method is used to recovery of optical parameters from measured boundary data of light propagation in the object. The research is demonstrated by simulation and experimental data. Numerical object is used to produce simulation data. Chloride based material and breast phantom sample is used to produce experimental data. Comparisons of results between experiment and simulation data are conducted to validate the proposed method. The results of the reconstruction image which is produced by the one step linear reconstruction method show that the image reconstruction almost same as the original object. This approach provides a means of imaging that is sensitive to changes in optical properties, which may be particularly useful for functional imaging used continuous wave diffuse optical tomography of early diagnosis of breast cancer.
Precision ephemerides for gravitational-wave searches - III. Revised system parameters of Sco X-1
NASA Astrophysics Data System (ADS)
Wang, L.; Steeghs, D.; Galloway, D. K.; Marsh, T.; Casares, J.
2018-06-01
Neutron stars in low-mass X-ray binaries are considered promising candidate sources of continuous gravitational-waves. These neutron stars are typically rotating many hundreds of times a second. The process of accretion can potentially generate and support non-axisymmetric distortions to the compact object, resulting in persistent emission of gravitational-waves. We present a study of existing optical spectroscopic data for Sco X-1, a prime target for continuous gravitational-wave searches, with the aim of providing revised constraints on key orbital parameters required for a directed search with advanced-LIGO data. From a circular orbit fit to an improved radial velocity curve of the Bowen emission components, we derived an updated orbital period and ephemeris. Centre of symmetry measurements from the Bowen Doppler tomogram yield a centre of the disc component of 90 km s-1, which we interpret as a revised upper limit to the projected orbital velocity of the NS K1. By implementing Monte Carlo binary parameter calculations, and imposing new limits on K1 and the rotational broadening, we obtained a complete set of dynamical system parameter constraints including a new range for K1 of 40-90 km s-1. Finally, we discussed the implications of the updated orbital parameters for future continuous-waves searches.
NASA Astrophysics Data System (ADS)
Zimmermann, Bernhard B.; Deng, Bin; Singh, Bhawana; Martino, Mark; Selb, Juliette; Fang, Qianqian; Sajjadi, Amir Y.; Cormier, Jayne; Moore, Richard H.; Kopans, Daniel B.; Boas, David A.; Saksena, Mansi A.; Carp, Stefan A.
2017-04-01
Diffuse optical tomography (DOT) is emerging as a noninvasive functional imaging method for breast cancer diagnosis and neoadjuvant chemotherapy monitoring. In particular, the multimodal approach of combining DOT with x-ray digital breast tomosynthesis (DBT) is especially synergistic as DBT prior information can be used to enhance the DOT reconstruction. DOT, in turn, provides a functional information overlay onto the mammographic images, increasing sensitivity and specificity to cancer pathology. We describe a dynamic DOT apparatus designed for tight integration with commercial DBT scanners and providing a fast (up to 1 Hz) image acquisition rate to enable tracking hemodynamic changes induced by the mammographic breast compression. The system integrates 96 continuous-wave and 24 frequency-domain source locations as well as 32 continuous wave and 20 frequency-domain detection locations into low-profile plastic plates that can easily mate to the DBT compression paddle and x-ray detector cover, respectively. We demonstrate system performance using static and dynamic tissue-like phantoms as well as in vivo images acquired from the pool of patients recalled for breast biopsies at the Massachusetts General Hospital Breast Imaging Division.
Song, Shaozhen; Le, Nhan Minh; Huang, Zhihong; Shen, Tueng; Wang, Ruikang K
2015-11-01
The purpose of this study is to implement a beam-steering ultrasound as the wave source for shear-wave optical coherence elastography (SW-OCE) to achieve an extended range of elastic imaging of the tissue sample. We introduce a linear phased array ultrasound transducer (LPAUT) as the remote and programmable wave source and a phase-sensitive optical coherence tomography (OCT) as the sensitive shear-wave detector. The LPAUT is programmed to launch acoustic radiation force impulses (ARFI) focused at desired locations within the range of OCT imaging, upon which the elasticity map of the entire OCT B-scan cross section is recovered by spatial compounding of the elastic maps derived from each launch of AFRIs. We also propose a directional filter to separate the shear-wave propagation at different directions in order to reduce the effect of tissue heterogeneity on the shear-wave propagation within tissue. The feasibility of this proposed approach is then demonstrated by determining the stiffness of tissue-mimicking phantoms with agarose concentrations of 0.5% and 1% and also by imaging the Young's modulus of retinal and choroidal tissues within a porcine eye ball ex vivo. The approach opens up opportunities to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative assessment of tissue biomechanical property.
Optical Kerr spatiotemporal dark extreme waves
NASA Astrophysics Data System (ADS)
Wabnitz, Stefan; Kodama, Yuji; Baronio, Fabio
2018-02-01
We study the existence and propagation of multidimensional dark non-diffractive and non-dispersive spatiotemporal optical wave-packets in nonlinear Kerr media. We report analytically and confirm numerically the properties of spatiotemporal dark lines, X solitary waves and lump solutions of the (2 + 1)D nonlinear Schr odinger equation (NLSE). Dark lines, X waves and lumps represent holes of light on a continuous wave background. These solitary waves are derived by exploiting the connection between the (2 + 1)D NLSE and a well-known equation of hydrodynamics, namely the (2+1)D Kadomtsev-Petviashvili (KP) equation. This finding opens a novel path for the excitation and control of spatiotemporal optical solitary and rogue waves, of hydrodynamic nature.
A simple system for 160GHz optical terahertz wave generation and data modulation
NASA Astrophysics Data System (ADS)
Li, Yihan; He, Jingsuo; Sun, Xueming; Shi, Zexia; Wang, Ruike; Cui, Hailin; Su, Bo; Zhang, Cunlin
2018-01-01
A simple system based on two cascaded Mach-Zehnder modulators, which can generate 160GHz optical terahertz waves from 40GHz microwave sources, is simulated and tested in this paper. Fiber grating filter is used in the system to filter out optical carrier. By properly adjusting the modulator DC bias voltages and the signal voltages and phases, 4-tupling optical terahertz wave can be generated with fiber grating. This notch fiber grating filter is greatly suitable for terahertz over fiber (TOF) communication system. This scheme greatly reduces the cost of long-distance terahertz communication. Furthermore, 10Gbps digital signal is modulated in the 160GHz optical terahertz wave.
Phase-locking and coherent power combining of broadband linearly chirped optical waves.
Satyan, Naresh; Vasilyev, Arseny; Rakuljic, George; White, Jeffrey O; Yariv, Amnon
2012-11-05
We propose, analyze and demonstrate the optoelectronic phase-locking of optical waves whose frequencies are chirped continuously and rapidly with time. The optical waves are derived from a common optoelectronic swept-frequency laser based on a semiconductor laser in a negative feedback loop, with a precisely linear frequency chirp of 400 GHz in 2 ms. In contrast to monochromatic waves, a differential delay between two linearly chirped optical waves results in a mutual frequency difference, and an acoustooptic frequency shifter is therefore used to phase-lock the two waves. We demonstrate and characterize homodyne and heterodyne optical phase-locked loops with rapidly chirped waves, and show the ability to precisely control the phase of the chirped optical waveform using a digital electronic oscillator. A loop bandwidth of ~ 60 kHz, and a residual phase error variance of < 0.01 rad(2) between the chirped waves is obtained. Further, we demonstrate the simultaneous phase-locking of two optical paths to a common master waveform, and the ability to electronically control the resultant two-element optical phased array. The results of this work enable coherent power combining of high-power fiber amplifiers-where a rapidly chirping seed laser reduces stimulated Brillouin scattering-and electronic beam steering of chirped optical waves.
CW injection locking for long-term stability of frequency combs
NASA Astrophysics Data System (ADS)
Williams, Charles; Quinlan, Franklyn; Delfyett, Peter J.
2009-05-01
Harmonically mode-locked semiconductor lasers with external ring cavities offer high repetition rate pulse trains while maintaining low optical linewidth via long cavity storage times. Continuous wave (CW) injection locking further reduces linewidth and stabilizes the optical frequencies. The output can be stabilized long-term with the help of a modified Pound-Drever-Hall feedback loop. Optical sidemode suppression of 36 dB has been shown, as well as RF supermode noise suppression of 14 dB for longer than 1 hour. In addition to the injection locking of harmonically mode-locked lasers requiring an external frequency source, recent work shows the viability of the injection locking technique for regeneratively mode-locked lasers, or Coupled Opto-Electronic Oscillators (COEO).
Bilenca, A; Yun, S H; Tearney, G J; Bouma, B E
2006-03-15
Recent results have demonstrated unprecedented wavelength-tuning speed and repetition rate performance of semiconductor ring lasers incorporating scanning filters. However, several unique operational characteristics of these lasers have not been adequately explained, and the lack of an accurate model has hindered optimization. We numerically investigated the characteristics of these sources, using a semiconductor optical amplifier (SOA) traveling-wave Langevin model, and found good agreement with experimental measurements. In particular, we explored the role of the SOA refractive-index nonlinearities in determining the intracavity frequency-shift-broadening and the emitted power dependence on scan speed and direction. Our model predicts both continuous-wave and pulse operation and shows a universal relationship between the output power of lasers that have different cavity lengths and the filter peak frequency shift per round trip, therefore revealing the advantage of short cavities for high-speed biomedical imaging.
Asadi, R; Ouyang, Z; Mohammd, M M
2015-07-14
We design a compact, all-optical THz wave generator based on self-modulation in a 1-D slab photonic crystal (PhC) waveguide with a single sub-nanometer graphene layer by using enhanced nonlinearity of graphene. It has been shown that at the bandgap edge of higher bands of a 1-D slab PhC, through only one sub-nanometer graphene layer we can obtain a compact, high modulation factor (about 0.98 percent), self-intensity modulator at a high frequency (about 0.6 THz) and low threshold intensity (about 15 MW per square centimeter), and further a compact, all-optical THz wave generator by integrating the self-modulator with a THz photodiode or photonic mixer. Such a THz source is expected to have a relatively high efficiency compared with conventional sources based on optical methods. The proposed THz source can find wide applications in THz science and technology, e.g., in THz imaging, THz sensors and detectors, THz communication systems, and THz optical integrated logic circuits.
Continuous wave room temperature external ring cavity quantum cascade laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Revin, D. G., E-mail: d.revin@sheffield.ac.uk; Hemingway, M.; Vaitiekus, D.
2015-06-29
An external ring cavity quantum cascade laser operating at ∼5.2 μm wavelength in a continuous-wave regime at the temperature of 15 °C is demonstrated. Out-coupled continuous-wave optical powers of up to 23 mW are observed for light of one propagation direction with an estimated total intra-cavity optical power flux in excess of 340 mW. The uni-directional regime characterized by the intensity ratio of more than 60 for the light propagating in the opposite directions was achieved. A single emission peak wavelength tuning range of 90 cm{sup −1} is realized by the incorporation of a diffraction grating into the cavity.
NASA Astrophysics Data System (ADS)
Chow, C. W.; Yang, L. G.; Yeh, C. H.; Huang, C. B.; Shi, J. W.; Pan, C. L.
2012-10-01
Millimeter-wave (mm-wave) operated in W-band (75 GHz-0.11 THz) is of particular interests, since this frequency band can carry signals at much higher data rates. We demonstrate a 10 Gb/s optical carrier-distributed network with the wireless communication system. The mm-wave signal at carrier frequency of 0.1 THz is generated by a high speed near-ballistic uni-traveling carrier photodiode (NBUTC-PD) based transmitter (Tx), which is optically excited by optical short pulses. The optical pulse source is produced from a self-developed photonic mm-wave waveform generator (PMWG), which allows spectral line-by-line pulse shaping. Hence these optical pulses have high tolerance to fiber chromatic dispersion. The W-band 10 Gb/s wireless data is transmitted and received via a pair of horn antennas. The received 10 Gb/s data is envelope-detected and then used to drive an optical modulator at the remote antenna unit (RAU) to produce the upstream signal sending back to the central office (CO). 20 km single mode fiber (SMF) error free transmission is achieved. Analysis about the optimum repetition rate of the optical pulse source and the transmission performance of the upstream signal are also performed and discussed.
Nonlinear optical measurements of conducting copolymers of aniline under CW laser excitation
NASA Astrophysics Data System (ADS)
Pramodini, S.; Poornesh, P.
2015-08-01
Synthesis and measurements of third-order optical nonlinearity and optical limiting of conducting copolymers of aniline are presented. Single beam z-scan technique was employed for the nonlinear optical studies. Continuous wave He-Ne laser operating at 633 nm was used as the source of excitation. Copolymer samples exhibited reverse saturable absorption (RSA) process. The nonlinear refraction studies depict that the copolymers exhibit self-defocusing property. The estimated values of βeff, n2 and χ(3) were found to be of the order of 10-2 cm/W, 10-5 esu and 10-7 esu respectively. Self-diffraction rings were observed due to refractive index change when exposed to the laser beam. A good optical limiting and clamping of power of ∼0.9 mW and ∼0.05 mW was observed. Therefore, copolymers of aniline emerge as a potential candidate for photonic device applications.
Two-mode squeezed light source for quantum illumination and quantum imaging
NASA Astrophysics Data System (ADS)
Masada, Genta
2015-09-01
We started to research quantum illumination radar and quantum imaging by utilizing high quality continuous-wave two-mode squeezed light source as a quantum entanglement resource. Two-mode squeezed light is a macroscopic quantum entangled state of the electro-magnetic field and shows strong correlation between quadrature phase amplitudes of each optical field. One of the most effective methods to generate two-mode squeezed light is combining two independent single-mode squeezed lights by using a beam splitter with relative phase of 90 degrees between each optical field. As a first stage of our work we are developing two-mode squeezed light source for exploring the possibility of quantum illumination radar and quantum imaging. In this article we introduce current development of experimental investigation of single-mode squeezed light. We utilize a sub-threshold optical parametric oscillator with bow-tie configuration which includes a periodically-polled potassium titanyl phosphate crystal as a nonlinear optical medium. We observed the noise level of squeezed quadrature -3.08+/-0.13 dB and anti-squeezed quadrature at 9.29+/-0.13 dB, respectively. We also demonstrated the remote tuning of squeezing level of the light source which leads to the technology for tuning the quantum entanglement in order to adapt to the actual environmental condition.
Continuous wave operation of quantum cascade lasers with frequency-shifted feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyakh, A., E-mail: arkadiy.lyakh@ucf.edu; NanoScience Technology Center, University of Central Florida, 12424 Research Pkwy, Orlando, FL 32826; College of Optics and Photonics, University of Central Florida, 304 Scorpius St, Orlando, FL 32826
2016-01-15
Operation of continuous wave quantum cascade lasers with a frequency-shifted feedback provided by an acousto-optic modulator is reported. Measured linewidth of 1.7 cm{sup −1} for these devices, under CW operating conditions, was in a good agreement with predictions of a model based on frequency-shifted feedback seeded by spontaneous emission. Linewidth broadening was observed for short sweep times, consistent with sound wave grating period variation across the illuminated area on the acousto-optic modulator. Standoff detection capability of the AOM-based QCL setup was demonstrated for several solid materials.
Optical rogue waves and stimulated supercontinuum generation
NASA Astrophysics Data System (ADS)
Solli, Daniel R.; Ropers, Claus; Jalali, Bahram
2010-06-01
Nonlinear action is known for its ability to create unusual phenomena and unexpected events. Optical rogue waves-freak pulses of broadband light arising in nonlinear fiber-testify to the fact that optical nonlinearities are no less capable of generating anomalous events than those in other physical contexts. In this paper, we will review our work on optical rogue waves, an ultrafast phenomenon counterpart to the freak ocean waves known to roam the open oceans. We will discuss the experimental observation of these rare events in real time and the measurement of their heavytailed statistical properties-a probabilistic form known to appear in a wide variety of other complex systems from financial markets to genetics. The nonlinear Schrödinger equation predicts the existence of optical rogue waves, offering a means to study their origins with simulations. We will also discuss the type of initial conditions behind optical rogue waves. Because a subtle but specific fluctuation leads to extreme waves, the rogue wave instability can be harnessed to produce these events on demand. By exploiting this property, it is possible to produce a new type of optical switch as well as a supercontinuum source that operates in the long pulse regime but still achieves a stable, coherent output.
Method and apparatus for detecting internal structures of bulk objects using acoustic imaging
Deason, Vance A.; Telschow, Kenneth L.
2002-01-01
Apparatus for producing an acoustic image of an object according to the present invention may comprise an excitation source for vibrating the object to produce at least one acoustic wave therein. The acoustic wave results in the formation of at least one surface displacement on the surface of the object. A light source produces an optical object wavefront and an optical reference wavefront and directs the optical object wavefront toward the surface of the object to produce a modulated optical object wavefront. A modulator operatively associated with the optical reference wavefront modulates the optical reference wavefront in synchronization with the acoustic wave to produce a modulated optical reference wavefront. A sensing medium positioned to receive the modulated optical object wavefront and the modulated optical reference wavefront combines the modulated optical object and reference wavefronts to produce an image related to the surface displacement on the surface of the object. A detector detects the image related to the surface displacement produced by the sensing medium. A processing system operatively associated with the detector constructs an acoustic image of interior features of the object based on the phase and amplitude of the surface displacement on the surface of the object.
Optical Kerr Spatiotemporal Dark-Lump Dynamics of Hydrodynamic Origin
NASA Astrophysics Data System (ADS)
Baronio, Fabio; Wabnitz, Stefan; Kodama, Yuji
2016-04-01
There is considerable fundamental and applicative interest in obtaining nondiffractive and nondispersive spatiotemporal localized wave packets propagating in optical cubic nonlinear or Kerr media. Here, we analytically predict the existence of a novel family of spatiotemporal dark lump solitary wave solutions of the (2 +1 )D nonlinear Schrödinger equation. Dark lumps represent multidimensional holes of light on a continuous wave background. We analytically derive the dark lumps from the hydrodynamic exact soliton solutions of the (2 +1 )D shallow water Kadomtsev-Petviashvili model, inheriting their complex interaction properties. This finding opens a novel path for the excitation and control of optical spatiotemporal waveforms of hydrodynamic footprint and multidimensional optical extreme wave phenomena.
Optical Kerr Spatiotemporal Dark-Lump Dynamics of Hydrodynamic Origin.
Baronio, Fabio; Wabnitz, Stefan; Kodama, Yuji
2016-04-29
There is considerable fundamental and applicative interest in obtaining nondiffractive and nondispersive spatiotemporal localized wave packets propagating in optical cubic nonlinear or Kerr media. Here, we analytically predict the existence of a novel family of spatiotemporal dark lump solitary wave solutions of the (2+1)D nonlinear Schrödinger equation. Dark lumps represent multidimensional holes of light on a continuous wave background. We analytically derive the dark lumps from the hydrodynamic exact soliton solutions of the (2+1)D shallow water Kadomtsev-Petviashvili model, inheriting their complex interaction properties. This finding opens a novel path for the excitation and control of optical spatiotemporal waveforms of hydrodynamic footprint and multidimensional optical extreme wave phenomena.
Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source
NASA Astrophysics Data System (ADS)
Coulter, D. A.; Foley, R. J.; Kilpatrick, C. D.; Drout, M. R.; Piro, A. L.; Shappee, B. J.; Siebert, M. R.; Simon, J. D.; Ulloa, N.; Kasen, D.; Madore, B. F.; Murguia-Berthier, A.; Pan, Y.-C.; Prochaska, J. X.; Ramirez-Ruiz, E.; Rest, A.; Rojas-Bravo, C.
2017-12-01
Two neutron stars merging together generate a gravitational wave signal and have also been predicted to emit electromagnetic radiation. When the gravitational wave event GW170817 was detected, astronomers rushed to search for the source using conventional telescopes (see the Introduction by Smith). Coulter et al. describe how the One-Meter Two-Hemispheres (1M2H) collaboration was the first to locate the electromagnetic source. Drout et al. present the 1M2H measurements of its optical and infrared brightness, and Shappee et al. report their spectroscopy of the event, which is unlike previously detected astronomical transient sources. Kilpatrick et al. show how these observations can be explained by an explosion known as a kilonova, which produces large quantities of heavy elements in nuclear reactions.
Resonant optical pulses on a continuous-wave background in two-level active media
NASA Astrophysics Data System (ADS)
Li, Sitai; Biondini, Gino; Kovačič, Gregor; Gabitov, Ildar
2018-01-01
We present exact N-soliton optical pulses riding on a continuous-wave (c.w.) beam that propagate through and interact with a two-level active optical medium. Their representation is derived via an appropriate generalization of the inverse scattering transform for the corresponding Maxwell-Bloch equations. We describe the single-soliton solutions in detail and classify them into several distinct families. In addition to the analogues of traveling-wave soliton pulses that arise in the absence of a c.w. beam, we obtain breather-like structures, periodic pulse-trains and rogue-wave-type (i.e., rational) pulses, whose existence is directly due to the presence of the c.w. beam. These soliton solutions are the analogues for Maxwell-Bloch systems of the four classical solution types of the focusing nonlinear Schrödinger equation with non-zero background, although the physical behavior of the corresponding solutions is quite different.
Remote creation of hybrid entanglement between particle-like and wave-like optical qubits
NASA Astrophysics Data System (ADS)
Morin, Olivier; Huang, Kun; Liu, Jianli; Le Jeannic, Hanna; Fabre, Claude; Laurat, Julien
2014-07-01
The wave-particle duality of light has led to two different encodings for optical quantum information processing. Several approaches have emerged based either on particle-like discrete-variable states (that is, finite-dimensional quantum systems) or on wave-like continuous-variable states (that is, infinite-dimensional systems). Here, we demonstrate the generation of entanglement between optical qubits of these different types, located at distant places and connected by a lossy channel. Such hybrid entanglement, which is a key resource for a variety of recently proposed schemes, including quantum cryptography and computing, enables information to be converted from one Hilbert space to the other via teleportation and therefore the connection of remote quantum processors based upon different encodings. Beyond its fundamental significance for the exploration of entanglement and its possible instantiations, our optical circuit holds promise for implementations of heterogeneous network, where discrete- and continuous-variable operations and techniques can be efficiently combined.
Quantum state engineering of light with continuous-wave optical parametric oscillators.
Morin, Olivier; Liu, Jianli; Huang, Kun; Barbosa, Felippe; Fabre, Claude; Laurat, Julien
2014-05-30
Engineering non-classical states of the electromagnetic field is a central quest for quantum optics(1,2). Beyond their fundamental significance, such states are indeed the resources for implementing various protocols, ranging from enhanced metrology to quantum communication and computing. A variety of devices can be used to generate non-classical states, such as single emitters, light-matter interfaces or non-linear systems(3). We focus here on the use of a continuous-wave optical parametric oscillator(3,4). This system is based on a non-linear χ(2) crystal inserted inside an optical cavity and it is now well-known as a very efficient source of non-classical light, such as single-mode or two-mode squeezed vacuum depending on the crystal phase matching. Squeezed vacuum is a Gaussian state as its quadrature distributions follow a Gaussian statistics. However, it has been shown that number of protocols require non-Gaussian states(5). Generating directly such states is a difficult task and would require strong χ(3) non-linearities. Another procedure, probabilistic but heralded, consists in using a measurement-induced non-linearity via a conditional preparation technique operated on Gaussian states. Here, we detail this generation protocol for two non-Gaussian states, the single-photon state and a superposition of coherent states, using two differently phase-matched parametric oscillators as primary resources. This technique enables achievement of a high fidelity with the targeted state and generation of the state in a well-controlled spatiotemporal mode.
Wavelength-agile near-IR optical parametric oscillator using a deposited silicon waveguide.
Wang, Ke-Yao; Foster, Mark A; Foster, Amy C
2015-06-15
Using a deposited hydrogenated amorphous silicon (a-Si:H) waveguide, we demonstrate ultra-broad bandwidth (60 THz) parametric amplification via four-wave mixing (FWM), and subsequently achieve the first silicon optical parametric oscillator (OPO) at near-IR wavelengths. Utilization of the time-dispersion-tuned technique provides an optical source with active wavelength tuning over 42 THz with a fixed pump wave.
Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs
Posada-Roman, Julio E.; Garcia-Souto, Jose A.; Poiana, Dragos A.; Acedo, Pablo
2016-01-01
Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal. PMID:27898043
Fast Interrogation of Fiber Bragg Gratings with Electro-Optical Dual Optical Frequency Combs.
Posada-Roman, Julio E; Garcia-Souto, Jose A; Poiana, Dragos A; Acedo, Pablo
2016-11-26
Optical frequency combs (OFC) generated by electro-optic modulation of continuous-wave lasers provide broadband coherent sources with high power per line and independent control of line spacing and the number of lines. In addition to their application in spectroscopy, they offer flexible and optimized sources for the interrogation of other sensors based on wavelength change or wavelength filtering, such as fiber Bragg grating (FBG) sensors. In this paper, a dual-OFC FBG interrogation system based on a single laser and two optical-phase modulators is presented. This architecture allows for the configuration of multimode optical source parameters such as the number of modes and their position within the reflected spectrum of the FBG. A direct read-out is obtained by mapping the optical spectrum onto the radio-frequency spectrum output of the dual-comb. This interrogation scheme is proposed for measuring fast phenomena such as vibrations and ultrasounds. Results are presented for dual-comb operation under optimized control. The optical modes are mapped onto detectable tones that are multiples of 0.5 MHz around a center radiofrequency tone (40 MHz). Measurements of ultrasounds (40 kHz and 120 kHz) are demonstrated with this sensing system. Ultrasounds induce dynamic strain onto the fiber, which generates changes in the reflected Bragg wavelength and, hence, modulates the amplitude of the OFC modes within the reflected spectrum. The amplitude modulation of two counterphase tones is detected to obtain a differential measurement proportional to the ultrasound signal.
Wang, Haomin; Wang, Le; Xu, Xiaoji G.
2016-01-01
Scattering-type scanning near-field optical microscopy (s-SNOM) allows spectroscopic imaging with spatial resolution below the diffraction limit. With suitable light sources, s-SNOM is instrumental in numerous discoveries at the nanoscale. So far, the light sources have been limited to continuous wave or high-repetition-rate pulsed lasers. Low-repetition-rate pulsed sources cannot be used, due to the limitation of the lock-in detection mechanism that is required for current s-SNOM techniques. Here, we report a near-field signal extraction method that enables low-repetition-rate pulsed light sources. The method correlates scattering signals from pulses with the mechanical phases of the oscillating s-SNOM probe to obtain near-field signal, by-passing the apparent restriction imposed by the Nyquist–Shannon sampling theorem on the repetition rate. The method shall enable s-SNOM with low-repetition-rate pulses with high-peak-powers, such as femtosecond laser amplifiers, to facilitate investigations of strong light–matter interactions and nonlinear processes at the nanoscale. PMID:27748360
Munro, Peter R.T.; Ignatyev, Konstantin; Speller, Robert D.; Olivo, Alessandro
2013-01-01
X-ray phase contrast imaging is a very promising technique which may lead to significant advancements in medical imaging. One of the impediments to the clinical implementation of the technique is the general requirement to have an x-ray source of high coherence. The radiation physics group at UCL is currently developing an x-ray phase contrast imaging technique which works with laboratory x-ray sources. Validation of the system requires extensive modelling of relatively large samples of tissue. To aid this, we have undertaken a study of when geometrical optics may be employed to model the system in order to avoid the need to perform a computationally expensive wave optics calculation. In this paper, we derive the relationship between the geometrical and wave optics model for our system imaging an infinite cylinder. From this model we are able to draw conclusions regarding the general applicability of the geometrical optics approximation. PMID:20389424
Munro, Peter R T; Ignatyev, Konstantin; Speller, Robert D; Olivo, Alessandro
2010-03-01
X-ray phase contrast imaging is a very promising technique which may lead to significant advancements in medical imaging. One of the impediments to the clinical implementation of the technique is the general requirement to have an x-ray source of high coherence. The radiation physics group at UCL is currently developing an x-ray phase contrast imaging technique which works with laboratory x-ray sources. Validation of the system requires extensive modelling of relatively large samples of tissue. To aid this, we have undertaken a study of when geometrical optics may be employed to model the system in order to avoid the need to perform a computationally expensive wave optics calculation. In this paper, we derive the relationship between the geometrical and wave optics model for our system imaging an infinite cylinder. From this model we are able to draw conclusions regarding the general applicability of the geometrical optics approximation.
Real-time, continuous-wave terahertz imaging using a microbolometer focal-plane array
NASA Technical Reports Server (NTRS)
Hu, Qing (Inventor); Min Lee, Alan W. (Inventor)
2010-01-01
The present invention generally provides a terahertz (THz) imaging system that includes a source for generating radiation (e.g., a quantum cascade laser) having one or more frequencies in a range of about 0.1 THz to about 10 THz, and a two-dimensional detector array comprising a plurality of radiation detecting elements that are capable of detecting radiation in that frequency range. An optical system directs radiation from the source to an object to be imaged. The detector array detects at least a portion of the radiation transmitted through the object (or reflected by the object) so as to form a THz image of that object.
Millimeter-wave generation and characterization of a GaAs FET by optical mixing
NASA Technical Reports Server (NTRS)
Ni, David C.; Fetterman, Harold R.; Chew, Wilbert
1990-01-01
Coherent mixing of optical radiation from a tunable continuous-wave dye laser and a stabilized He-Ne laser was used to generate millimeter-wave signals in GaAs FETs attached to printed-circuit millimeter-wave antennas. The generated signal was further down-converted to a 2-GHz IF by an antenna-coupled millimeter-wave local oscillator at 62 GHz. Detailed characterizations of power and S/N under different bias conditions have been performed. This technique is expected to allow signal generation and frequency-response evaluation of millimeter-wave devices at frequencies as high as 100 GHz.
Highly efficient quantum dot-based photoconductive THz materials and devices
NASA Astrophysics Data System (ADS)
Rafailov, E. U.; Leyman, R.; Carnegie, D.; Bazieva, N.
2013-09-01
We demonstrate Terahertz (THz) signal sources based on photoconductive (PC) antenna devices comprising active layers of InAs semiconductor quantum dots (QDs) on GaAs. Antenna structures comprised of multiple active layers of InAs:GaAs PC materials are optically pumped using ultrashort pulses generated by a Ti:Sapphire laser and CW dualwavelength laser diodes. We also characterised THz output signals using a two-antenna coherent detection system. We discuss preliminary performance data from such InAs:GaAs THz devices which exhibit efficient emission of both pulsed and continuous wave (CW) THz signals and significant optical-to-THz conversion at both absorption wavelength ranges, <=850 nm and <=1300 nm.
Nonlinear Light Dynamics in Multi-Core Structures
2017-02-27
be generated in continuous- discrete optical media such as multi-core optical fiber or waveguide arrays; localisation dynamics in a continuous... discrete nonlinear system. Detailed theoretical analysis is presented of the existence and stability of the discrete -continuous light bullets using a very...and pulse compression using wave collapse (self-focusing) energy localisation dynamics in a continuous- discrete nonlinear system, as implemented in a
System and Method for Measuring the Transfer Function of a Guided Wave Device
NASA Technical Reports Server (NTRS)
Froggatt, Mark E. (Inventor); Erdogan, Turan (Inventor)
2002-01-01
A method/system are provided for measuring the NxN scalar transfer function elements for an N-port guided wave device. Optical energy of a selected wavelength is generated at a source and directed along N reference optical paths having N reference path lengths. Each reference optical path terminates in one of N detectors such that N reference signals are produced at the N detectors. The reference signals are indicative of amplitude, phase and frequency of the optical energy carried along the N reference optical paths. The optical energy from the source is also directed to the N-ports of the guided wave device and then on to each of the N detectors such that N measurement optical paths are defined between the source and each of the N detectors. A portion of the optical energy is modified in terms of at least one of the amplitude and phase to produce N modified signals at each of the N detectors. At each of the N detectors, each of the N modified signals is combined with a corresponding one of the N reference signals to produce corresponding N combined signals at each of the N detectors. A total of N(sup 2) measurement signals are generated by the N detectors. Each of the N(sup 2) measurement signals is sampled at a wave number increment (Delta)k so that N(sup 2) sampled signals are produced. The NxN transfer function elements are generated using the N(sup 2) sampled signals. Reference and measurement path length constraints are defined such that the N combined signals at each of the N detectors are spatially separated from one another in the time domain.
Cancellation of spurious arrivals in Green's function extraction and the generalized optical theorem
Snieder, R.; Van Wijk, K.; Haney, M.; Calvert, R.
2008-01-01
The extraction of the Green's function by cross correlation of waves recorded at two receivers nowadays finds much application. We show that for an arbitrary small scatterer, the cross terms of scattered waves give an unphysical wave with an arrival time that is independent of the source position. This constitutes an apparent inconsistency because theory predicts that such spurious arrivals do not arise, after integration over a complete source aperture. This puzzling inconsistency can be resolved for an arbitrary scatterer by integrating the contribution of all sources in the stationary phase approximation to show that the stationary phase contributions to the source integral cancel the spurious arrival by virtue of the generalized optical theorem. This work constitutes an alternative derivation of this theorem. When the source aperture is incomplete, the spurious arrival is not canceled and could be misinterpreted to be part of the Green's function. We give an example of how spurious arrivals provide information about the medium complementary to that given by the direct and scattered waves; the spurious waves can thus potentially be used to better constrain the medium. ?? 2008 The American Physical Society.
NASA Astrophysics Data System (ADS)
Ortiz-Rivera, William; Pacheco-Londoño, Leonardo C.; Hernández-Rivera, Samuel P.
2010-09-01
This study describes the design, assembly, testing and comparison of two Remote Raman Spectroscopy (RRS) systems intended for standoff detection of hazardous chemical liquids. Raman spectra of Chemical Warfare Agents Simulants (CWAS) and Toxic Industrial Compounds (TIC) were measured in the laboratory at a 6.6 m source-target distance using continuous wave (CW) laser detection. Standoff distances for pulsed measurements were 35 m for dimethyl methylphosphonate (DMMP) detection and 60, 90 and 140 m for cyclohexane detection. The prototype systems consisted of a Raman spectrometer equipped with a CCD detector (for CW measurements) and an I-CCD camera with time-gated electronics (for pulsed laser measurements), a reflecting telescope, a fiber optic assembly, a single-line CW laser source (514.5, 488.0, 351.1 and 363.8 nm) and a frequency-doubled single frequency Nd:YAG 532 nm laser (5 ns pulses at 10 Hz). The telescope was coupled to the spectrograph using an optical fiber, and filters were used to reject laser radiation and Rayleigh scattering. Two quartz convex lenses were used to collimate the light from the telescope from which the telescope-focusing eyepiece was removed, and direct it to the fiber optic assembly. To test the standoff sensing system, the Raman Telescope was used in the detection of liquid TIC: benzene, chlorobenzene, toluene, carbon tetrachloride, cyclohexane and carbon disulfide. Other compounds studied were CWAS: dimethylmethyl phosphonate, 2-chloroethyl ethyl sulfide and 2-(butylamino)-ethanethiol. Relative Raman scattering cross sections of liquid CWAS were measured using single-line sources at 532.0, 488.0, 363.8 and 351.1 nm. Samples were placed in glass and quartz vials at the standoff distances from the telescope for the Remote Raman measurements. The mass of DMMP present in water solutions was also quantified as part of the system performance tests.
NASA Astrophysics Data System (ADS)
Ding, Xuemei; Wang, Bingyuan; Liu, Dongyuan; Zhang, Yao; He, Jie; Zhao, Huijuan; Gao, Feng
2018-02-01
During the past two decades there has been a dramatic rise in the use of functional near-infrared spectroscopy (fNIRS) as a neuroimaging technique in cognitive neuroscience research. Diffuse optical tomography (DOT) and optical topography (OT) can be employed as the optical imaging techniques for brain activity investigation. However, most current imagers with analogue detection are limited by sensitivity and dynamic range. Although photon-counting detection can significantly improve detection sensitivity, the intrinsic nature of sequential excitations reduces temporal resolution. To improve temporal resolution, sensitivity and dynamic range, we develop a multi-channel continuous-wave (CW) system for brain functional imaging based on a novel lock-in photon-counting technique. The system consists of 60 Light-emitting device (LED) sources at three wavelengths of 660nm, 780nm and 830nm, which are modulated by current-stabilized square-wave signals at different frequencies, and 12 photomultiplier tubes (PMT) based on lock-in photon-counting technique. This design combines the ultra-high sensitivity of the photon-counting technique with the parallelism of the digital lock-in technique. We can therefore acquire the diffused light intensity for all the source-detector pairs (SD-pairs) in parallel. The performance assessments of the system are conducted using phantom experiments, and demonstrate its excellent measurement linearity, negligible inter-channel crosstalk, strong noise robustness and high temporal resolution.
Beam Wave Considerations for Optical Link Budget Calculations
NASA Technical Reports Server (NTRS)
Manning, Robert M.
2016-01-01
The bounded beam wave nature of electromagnetic radiation emanating from a finite size aperture is considered for diffraction-based link power budget calculations for an optical communications system. Unlike at radio frequency wavelengths, diffraction effects are very important at optical wavelengths. In the general case, the situation cannot be modeled by supposing isotropic radiating antennas and employing the concept of effective isotropic radiated power. It is shown here, however, that these considerations are no more difficult to treat than spherical-wave isotopic based calculations. From first principles, a general expression governing the power transfer for a collimated beam wave is derived and from this are defined the three regions of near-field, first Fresnel zone, and far-field behavior. Corresponding equations for the power transfer are given for each region. It is shown that although the well-known linear expressions for power transfer in the far-field hold for all distances between source and receiver in the radio frequency case, nonlinear behavior within the first Fresnel zone must be accounted for in the optical case at 1550 nm with typical aperture sizes at source/receiver separations less that 100 km.
Phase-shifting point diffraction interferometer
Medecki, H.
1998-11-10
Disclosed is a point diffraction interferometer for evaluating the quality of a test optic. In operation, the point diffraction interferometer includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams. 8 figs.
Phase-shifting point diffraction interferometer
Medecki, Hector
1998-01-01
Disclosed is a point diffraction interferometer for evaluating the quality of a test optic. In operation, the point diffraction interferometer includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams.
Frequency Domain Fluorescent Molecular Tomography and Molecular Probes for Small Animal Imaging
NASA Astrophysics Data System (ADS)
Kujala, Naresh Gandhi
Fluorescent molecular tomography (FMT) is a noninvasive biomedical optical imaging that enables 3-dimensional quantitative determination of fluorochromes distributed in biological tissues. There are three methods for imaging large volume tissues based on different light sources: (a) using a light source of constant intensity, through a continuous or constant wave, (b) using a light source that is intensity modulated with a radio frequency (RF), and (c) using ultrafast pulses in the femtosecond range. In this study, we have developed a frequency domain fluorescent molecular tomographic system based on the heterodyne technique, using a single source and detector pair that can be used for small animal imaging. In our system, the intensity of the laser source is modulated with a RF frequency to produce a diffuse photon density wave in the tissue. The phase of the diffuse photon density wave is measured by comparing the reference signal with the signal from the tissue using a phasemeter. The data acquisition was performed by using a Labview program. The results suggest that we can measure the phase change from the heterogeneous inside tissue. Combined with fiber optics and filter sets, the system can be used to sensitively image the targeted fluorescent molecular probes, allowing the detection of cancer at an early stage. We used the system to detect the tumor-targeting molecular probe Alexa Fluor 680 and Alexa Fluor 750 bombesin peptide conjugates in phantoms as well as mouse tissues. We also developed and evaluated fluorescent Bombesin (BBN) probes to target gastrin-releasing peptide (GRP) receptors for optical molecular imaging. GRP receptors are over-expressed in several types of human cancer cells, including breast, prostate, small cell lung, and pancreatic cancers. BBN is a 14 amino acid peptide that is an analogue to human gastrin-releasing peptide that binds specifically to GRPr receptors. BBN conjugates are significant in cancer detection and therapy. The optical molecular probe AF750 BBN peptide exhibits optimal pharmacokinetic properties for targeting GRPr in mice. Fluorescent microscopic imaging of the molecular probe in PC-3 prostate and T-47D breast cancer cell lines indicated specific uptake, internalization, and receptor blocking of these probes. In vivo investigations in severely compromised immunodeficient (SCID) mice bearing xenografted PC-3 prostate and T47-D breast cancer lesions demonstrated the ability of this new molecular probe to specifically target tumor tissue with high selectively and affinity.
Optical-fiber-connected 300-GHz FM-CW radar system
NASA Astrophysics Data System (ADS)
Kanno, Atsushi; Sekine, Norihiko; Kasamatsu, Akifumi; Yamamoto, Naokatsu; Kawanishi, Tetsuya
2017-05-01
300-GHz frequency-modulated continuous-wave (FM-CW) radar system operated by radio over fiber technologies is configured and demonstrated. Centralized signal generator, which is based on an optical frequency comb generation, provides high-precise FM-CW radar signal. The optical signal is easy to be transported to radar heads through an optical fiber network. Optical-modulator-based optical frequency comb generator is utilized as an optical frequency multiplier from a microwave signal to a 300-GHz terahertz signal by an optical modulation technique. In the study, we discuss the configuration of the network, signal generator and remote radar head for terahertz-wave multi-static radar system.
Photoacoustic effect generated by moving optical sources: Motion in one dimension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Wenyu; Diebold, Gerald J.
2016-03-28
Although the photoacoustic effect is typically generated by pulsed or amplitude modulated optical beams, it is clear from examination of the wave equation for pressure that motion of an optical source in space will result in the production of sound as well. Here, the properties of the photoacoustic effect generated by moving sources in one dimension are investigated. The cases of a moving Gaussian beam, an oscillating delta function source, and an accelerating Gaussian optical sources are reported. The salient feature of one-dimensional sources in the linear acoustic limit is that the amplitude of the beam increases in time withoutmore » bound.« less
A solid state source of photon triplets based on quantum dot molecules
Khoshnegar, Milad; Huber, Tobias; Predojević, Ana; Dalacu, Dan; Prilmüller, Maximilian; Lapointe, Jean; Wu, Xiaohua; Tamarat, Philippe; Lounis, Brahim; Poole, Philip; Weihs, Gregor; Majedi, Hamed
2017-01-01
Producing advanced quantum states of light is a priority in quantum information technologies. In this context, experimental realizations of multipartite photon states would enable improved tests of the foundations of quantum mechanics as well as implementations of complex quantum optical networks and protocols. It is favourable to directly generate these states using solid state systems, for simpler handling and the promise of reversible transfer of quantum information between stationary and flying qubits. Here we use the ground states of two optically active coupled quantum dots to directly produce photon triplets. The formation of a triexciton in these ground states leads to a triple cascade recombination and sequential emission of three photons with strong correlations. We record 65.62 photon triplets per minute under continuous-wave pumping, surpassing rates of earlier reported sources. Our structure and data pave the way towards implementing multipartite photon entanglement and multi-qubit readout schemes in solid state devices. PMID:28604705
NASA Astrophysics Data System (ADS)
Sampathkumar, Ashwin
2014-05-01
Conventional photoacoustic imaging (PAI) employs light pulses to produce a photoacoustic (PA) effect and detects the resulting acoustic waves using an ultrasound transducer acoustically coupled to the target tissue. The resolution of conventional PAI is limited by the sensitivity and bandwidth of the ultrasound transducer. We have developed an all-optical versatile PAI system for characterizing ex vivo and in vivo biological specimens. The system employs noncontact interferometric detection of the acoustic signals that overcomes limitations of conventional PAI. A 532-nm pump laser with a pulse duration of 5 ns excited the PA effect in tissue. Resulting acoustic waves produced surface displacements that were sensed using a 532-nm continuous-wave (CW) probe laser in a Michelson interferometer with a GHz bandwidth. The pump and probe beams were coaxially focused using a 50X objective giving a diffraction-limited spot size of 0.48 μm. The phase-encoded probe beam was demodulated using a homodyne interferometer. The detected time-domain signal was time reversed using k-space wave-propagation methods to produce a spatial distribution of PA sources in the target tissue. Performance was assessed using PA images of ex vivo rabbit lymph node specimens and human tooth samples. A minimum peak surface displacement sensitivity of 0.19 pm was measured. The all-optical PAI (AOPAI) system is well suited for assessment of retinal diseases, caries lesion detection, skin burns, section less histology and pressure or friction ulcers.
NASA Astrophysics Data System (ADS)
Vishnoi, Gargi; Hielscher, Andreas H.; Ramanujam, Nirmala; Chance, Britton
2000-04-01
In this work experimental tissue phantoms and numerical models were developed to estimate photon migration through the fetal head in utero. The tissue phantoms incorporate a fetal head within an amniotic fluid sac surrounded by a maternal tissue layer. A continuous wave, dual-wavelength ((lambda) equals 760 and 850 nm) spectrometer was employed to make near-infrared measurements on the tissue phantoms for various source-detector separations, fetal-head positions, and fetal-head optical properties. In addition, numerical simulations of photon propagation were performed with finite-difference algorithms that provide solutions to the equation of radiative transfer as well as the diffusion equation. The simulations were compared with measurements on tissue phantoms to determine the best numerical model to describe photon migration through the fetal head in utero. Evaluation of the results indicates that tissue phantoms in which the contact between fetal head and uterine wall is uniform best simulates the fetal head in utero for near-term pregnancies. Furthermore, we found that maximum sensitivity to the head can be achieved if the source of the probe is positioned directly above the fetal head. By optimizing the source-detector separation, this signal originating from photons that have traveled through the fetal head can drastically be increased.
High-power, continuous-wave, single-frequency, all-periodically-poled, near-infrared source.
Devi, Kavita; Chaitanya Kumar, S; Ebrahim-Zadeh, M
2012-12-15
We report a high-power, single-frequency, continuous-wave (cw) source tunable across 775-807 nm in the near-infrared, based on internal second harmonic generation (SHG) of a cw singly-resonant optical parametric oscillator (OPO) pumped by a Yb-fiber laser. The compact, all-periodically-poled source employs a 48-mm-long, multigrating MgO doped periodically poled lithium niobate (MgO:PPLN) crystal for the OPO and a 30-mm-long, fan-out grating MgO-doped stoichiometric periodically poled lithium tantalate (MgO:sPPLT) crystal for intracavity SHG, providing as much as 3.7 W of near-infrared power at 793 nm, together with 4 W of idler power at 3232 nm, at an overall extraction efficiency of 28%. Further, the cw OPO is tunable across 3125-3396 nm in the idler, providing as much as 4.3 W at 3133 nm with >3.8 W over 77% of the tuning range together with >3 W of near-infrared power across 56% of SHG tuning range, in high-spatial beam-quality with M2<1.4. The SHG output has an instantaneous linewidth of 8.5 MHz and exhibits a passive power stability better than 3.5% rms over more than 1 min.
NASA Astrophysics Data System (ADS)
Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Liero, A.; Hoffmann, Th.; Erbert, G.; Tränkle, G.
2015-03-01
Semiconductor based sources which emit high-power spectrally stable nearly diffraction-limited optical pulses in the nanosecond range are ideally suited for a lot of applications, such as free-space communications, metrology, material processing, seed lasers for fiber or solid state lasers, spectroscopy, LIDAR and frequency doubling. Detailed experimental investigations of 975 nm and 800 nm diode lasers based on master oscillator power amplifier (MOPA) light sources are presented. The MOPA systems consist of distributed Bragg reflector lasers (DBR) as master oscillators driven by a constant current and ridge waveguide power amplifiers which can be driven DC and by current pulses. In pulse regime the amplifiers modulated with rectangular current pulses of about 5 ns width and a repetition frequency of 200 kHz act as optical gates, converting the continuous wave (CW) input beam emitted by the DBR lasers into a train of short optical pulses which are amplified. With these experimental MOPA arrangements no relaxation oscillations in the pulse power occur. With a seed power of about 5 mW at a wavelength of 973 nm output powers behind the amplifier of about 1 W under DC injection and 4 W under pulsed operation, corresponding to amplification factors of 200 (amplifier gain 23 dB) and 800 (gain 29 dB) respectively, are reached. At 800 nm a CW power of 1 W is obtained for a seed power of 40 mW. The optical spectra of the emission of the amplifiers exhibit a single peak at a constant wavelength with a line width < 10 pm in the whole investigated current ranges. The ratios between laser and ASE levels were > 50 dB. The output beams are nearly diffraction limited with beam propagation ratios M2lat ~ 1.1 and M2ver ~ 1.2 up to 4 W pulse power.
Characteristics of exploding metal wires in water with three discharge types
NASA Astrophysics Data System (ADS)
Han, Ruoyu; Wu, Jiawei; Zhou, Haibin; Ding, Weidong; Qiu, Aici; Clayson, Thomas; Wang, Yanan; Ren, Hang
2017-07-01
This paper presents the characteristics of underwater electrical wire explosion (UEWE) with three discharge types, namely, Type-A, Type-B, and Type-C. Experiments were carried out with copper and tungsten wires (4 cm long and 50-300 μm in diameter) driven by a microsecond time-scale pulsed current source with 500 J stored energy. A time-integrated spectrometer and a photodiode were used to measure the optical emission of UEWE. A Polyvinylidene Fluoride probe was adopted to record the pressure waveforms. Experimental results indicate that from Type-A to Type-C, more energy deposits prior to the voltage peak and the first peak power increases drastically. This variation of energy deposition influences the optical emission and shock wave generation process. Specifically, the light intensity decreases by more than 90% and the peak of continuous spectra moves from ˜400 nm to ˜700 nm. In addition, the peak pressure of the first shock wave increases from ˜2 MPa to more than 7.5 MPa.
NASA Astrophysics Data System (ADS)
Sowade, R.; Breunig, I.; Kiessling, J.; Buse, K.
2009-07-01
We demonstrate that for a given pump source, there is an optimum pump threshold to achieve the maximum single-frequency output power in singly resonant optical parametric oscillators. Therefore, cavity losses and parametric amplification have to be adjusted. In particular, continuous-wave output powers of 1.5 W were achieved with a 2.5 cm lithium niobate crystal in comparison with 0.5 W by a 5 cm long crystal within the same cavity design. This counter-intuitive result of weaker amplification leading to larger powers can be explained using a model from L.B. Kreuzer (Proc. Joint Conf. Lasers and Opt.-Elect., p. 52, 1969). Kreuzer also states that single-mode operation is possible only up to pump powers which are 4.6 times the threshold value. Additionally, implementing an outcoupling mirror to increase losses, single-frequency waves with powers of 3 W at 3.2 µm and 7 W at 1.5 µm could be generated simultaneously.
High bandwidth underwater optical communication.
Hanson, Frank; Radic, Stojan
2008-01-10
We report error-free underwater optical transmission measurements at 1 Gbit/s (10(9) bits/s) over a 2 m path in a laboratory water pipe with up to 36 dB of extinction. The source at 532 nm was derived from a 1064 nm continuous-wave laser diode that was intensity modulated, amplified, and frequency doubled in periodically poled lithium niobate. Measurements were made over a range of extinction by the addition of a Mg(OH)(2) and Al(OH)(3) suspension to the water path, and we were not able to observe any evidence of temporal pulse broadening. Results of Monte Carlo simulations over ocean water paths of several tens of meters indicate that optical communication data rates >1 Gbit/s can be supported and are compatible with high-capacity data transfer applications that require no physical contact.
NASA Astrophysics Data System (ADS)
Li, Z. P.; Duan, Y. M.; Wu, K. R.; Zhang, G.; Zhu, H. Y.; Wang, X. L.; Chen, Y. H.; Xue, Z. Q.; Lin, Q.; Song, G. C.; Su, H.
2013-05-01
We report a continuous-wave (CW), intra-cavity singly resonant optical parametric oscillator (OPO), based on periodically poled MgO:LiNbO3 pumped by a diode-end-pumped CW Nd:YVO4 laser, and calculate the gain of optical parametric amplification as a function of pump beam waist (at 1064 nm) in the singly resonant OPO (SRO) cavity, to balance the mode-matching and the intensity for the higher gain of a signal wave in the operation of the SRO. In order to achieve maximum gain, we use a convex lens to limit the 1064 nm beam waist. In the experiment, a tunable signal output from 1492 to 1614 nm and an idler output from 3122 to 3709 nm are obtained. For an 808 nm pump power of 11.5 W, a maximum signal output power of up to 2.48 W at 1586 nm and an idler output power of 1.1 W at 3232 nm are achieved with a total optical-to-optical conversion efficiency of 31%.
NASA Astrophysics Data System (ADS)
Hu, Lei; Wu, Xuefeng; Andreoni, Igor; Ashley, Michael C. B.; Cooke, Jeff; Cui, Xiangqun; Du, Fujia; Dai, Zigao; Gu, Bozhong; Hu, Yi; Lu, Haiping; Li, Xiaoyan; Li, Zhengyang; Liang, Ensi; Liu, Liangduan; Ma, Bin; Shang, Zhaohui; Sun, Tianrui; Suntzeff, N. B.; Tao, Charling; Udden, Syed A.; Wang, Lifan; Wang, Xiaofeng; Wen, Haikun; Xiao, Di; Su, Jin; Yang, Ji; Yang, Shihai; Yuan, Xiangyan; Zhou, Hongyan; Zhang, Hui; Zhou, Jilin; Zhu, Zonghong
2017-10-01
The LIGO detection of gravitational waves (GW) from merging black holes in 2015 marked the beginning of a new era in observational astronomy. The detection of an electromagnetic signal from a GW source is the critical next step to explore in detail the physics involved. The Antarctic Survey Telescopes (AST3), located at Dome A, Antarctica, is uniquely situated for rapid response time-domain astronomy with its continuous night-time coverage during the austral winter. We report optical observations of the GW source (GW 170817) in the nearby galaxy NGC 4993 using AST3. The data show a rapidly fading transient at around 1 day after the GW trigger, with the i-band magnitude declining from 17.23±0.13 magnitude to 17.72±0.09 magnitude in ˜ 0.8 hour. The brightness and time evolution of the optical transient associated with GW 170817 are broadly consistent with the predictions of models involving merging binary neutron stars. We infer from our data that the merging process ejected about ˜ 10^{-2} solar mass of radioactive material at a speed of up to 30% the speed of light.
Spectral and multi-wavelength continuous-wave laser properties of Yb3+:BaLaGa3O7
NASA Astrophysics Data System (ADS)
Gao, Shufang; Xu, Shan
2018-05-01
Yb3+ doped BaLaGa3O7 crystal has been successfully grown by Czochralski method. The polarized absorption spectra, the fluorescence spectra and the fluorescence decay lifetime of Yb3+:BaLaGa3O7 crystal were measured at room temperature. The spectroscopic parameters of Yb3+:BaLaGa3O7 crystal are calculated. A continuous wave output power of 1.32W was obtained with four-wavelength emission corresponding to an optical-optical slope efficiency of 55%.
Razani, Marjan; Luk, Timothy W.H.; Mariampillai, Adrian; Siegler, Peter; Kiehl, Tim-Rasmus; Kolios, Michael C.; Yang, Victor X.D.
2014-01-01
In this work, we explored the potential of measuring shear wave propagation using optical coherence elastography (OCE) in an inhomogeneous phantom and carotid artery samples based on a swept-source optical coherence tomography (OCT) system. Shear waves were generated using a piezoelectric transducer transmitting sine-wave bursts of 400 μs duration, applying acoustic radiation force (ARF) to inhomogeneous phantoms and carotid artery samples, synchronized with a swept-source OCT (SS-OCT) imaging system. The phantoms were composed of gelatin and titanium dioxide whereas the carotid artery samples were embedded in gel. Differential OCT phase maps, measured with and without the ARF, detected the microscopic displacement generated by shear wave propagation in these phantoms and samples of different stiffness. We present the technique for calculating tissue mechanical properties by propagating shear waves in inhomogeneous tissue equivalent phantoms and carotid artery samples using the ARF of an ultrasound transducer, and measuring the shear wave speed and its associated properties in the different layers with OCT phase maps. This method lays the foundation for future in-vitro and in-vivo studies of mechanical property measurements of biological tissues such as vascular tissues, where normal and pathological structures may exhibit significant contrast in the shear modulus. PMID:24688822
Blin, Stéphane; Vaudel, Olivier; Besnard, Pascal; Gabet, Renaud
2009-05-25
Bistabilities between a steady (or pulsating, chaotic) and different pulsating regimes are investigated for an optically injected semi-conductor laser. Both numerical and experimental studies are reported for continuous-wave single-mode semiconductor distributed-feedback lasers emitting at 1.55 microm. Hysteresis are driven by either changing the optically injected power or the frequency difference between both lasers. The effect of the injected laser pumping rate is also examined. Systematic mappings of the possible laser outputs (injection locking, bimodal, wave mixing, chaos or relaxation oscillations) are carried out. At small pumping rates (1.2 times threshold), only locking and bimodal regimes are observed. The extent of the bistable area is either 11 dB or 35 GHz, depending on the varying parameters. At high pumping rates (4 times threshold), numerous injection regimes are observed. Injection locking and its bistabilities are also reported for secondary longitudinal modes.
Investigation of SOI Raman Lasers for Mid-Infrared Gas Sensing
Passaro, Vittorio M.N.; De Leonardis, Francesco
2009-01-01
In this paper, the investigation and detailed modeling of a cascaded Raman laser, operating in the midwave infrared region, is described. The device is based on silicon-on-insulator optical waveguides and a coupled resonant microcavity. Theoretical results are compared with recent experiments, demonstrating a very good agreement. Design criteria are derived for cascaded Raman lasers working as continuous wave light sources to simultaneously sense two types of gases, namely C2H6 and CO2, at a moderate power level of 130 mW. PMID:22408481
Yuldashev, Petr; Karzova, Maria; Khokhlova, Vera; Ollivier, Sébastien; Blanc-Benon, Philippe
2015-06-01
A Mach-Zehnder interferometer is used to measure spherically diverging N-waves in homogeneous air. An electrical spark source is used to generate high-amplitude (1800 Pa at 15 cm from the source) and short duration (50 μs) N-waves. Pressure waveforms are reconstructed from optical phase signals using an Abel-type inversion. It is shown that the interferometric method allows one to reach 0.4 μs of time resolution, which is 6 times better than the time resolution of a 1/8-in. condenser microphone (2.5 μs). Numerical modeling is used to validate the waveform reconstruction method. The waveform reconstruction method provides an error of less than 2% with respect to amplitude in the given experimental conditions. Optical measurement is used as a reference to calibrate a 1/8-in. condenser microphone. The frequency response function of the microphone is obtained by comparing the spectra of the waveforms resulting from optical and acoustical measurements. The optically measured pressure waveforms filtered with the microphone frequency response are in good agreement with the microphone output voltage. Therefore, an optical measurement method based on the Mach-Zehnder interferometer is a reliable tool to accurately characterize evolution of weak shock waves in air and to calibrate broadband acoustical microphones.
Kim, Yune; Kim, Nam; Chung, Youngjoo; Paek, Un-Chul; Han, Won-Taek
2004-02-23
We propose a new fiber-type all-optical switching device based on the optical nonlinearity of Yb(3+) doped fiber and a long-period fiber gratings(LPG) pair. The all-optical ON-OFF switching with the continuous wave laser signal at ~1556nm in the LPG pair including the 25.5cm long Yb(3+) doped fiber was demonstrated up to ~200Hz upon pumping with the modulated square wave pulses at 976nm, where a full optical switching with the ~18dB extinction ratio was obtained at the launched pump power of ~35mW.
NASA Astrophysics Data System (ADS)
Cochran, Jeffrey M.; Busch, David R.; Ban, Han Y.; Kavuri, Venkaiah C.; Schweiger, Martin J.; Arridge, Simon R.; Yodh, Arjun G.
2017-02-01
We present high spatial density, multi-modal, parallel-plate Diffuse Optical Tomography (DOT) imaging systems for the purpose of breast tumor detection. One hybrid instrument provides time domain (TD) and continuous wave (CW) DOT at 64 source fiber positions. The TD diffuse optical spectroscopy with PMT- detection produces low-resolution images of absolute tissue scattering and absorption while the spatially dense array of CCD-coupled detector fibers (108 detectors) provides higher-resolution CW images of relative tissue optical properties. Reconstruction of the tissue optical properties, along with total hemoglobin concentration and tissue oxygen saturation, is performed using the TOAST software suite. Comparison of the spatially-dense DOT images and MR images allows for a robust validation of DOT against an accepted clinical modality. Additionally, the structural information from co-registered MR images is used as a spatial prior to improve the quality of the functional optical images and provide more accurate quantification of the optical and hemodynamic properties of tumors. We also present an optical-only imaging system that provides frequency domain (FD) DOT at 209 source positions with full CCD detection and incorporates optical fringe projection profilometry to determine the breast boundary. This profilometry serves as a spatial constraint, improving the quality of the DOT reconstructions while retaining the benefits of an optical-only device. We present initial images from both human subjects and phantoms to display the utility of high spatial density data and multi-modal information in DOT reconstruction with the two systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Shaozhen; Wei, Wei; Hsieh, Bao-Yu
We present single-shot phase-sensitive imaging of propagating mechanical waves within tissue, enabled by an ultrafast optical coherence tomography (OCT) system powered by a 1.628 MHz Fourier domain mode-locked (FDML) swept laser source. We propose a practical strategy for phase-sensitive measurement by comparing the phases between adjacent OCT B-scans, where the B-scan contains a number of A-scans equaling an integer number of FDML buffers. With this approach, we show that micro-strain fields can be mapped with ∼3.0 nm sensitivity at ∼16 000 fps. The system's capabilities are demonstrated on porcine cornea by imaging mechanical wave propagation launched by a pulsed UV laser beam, promisingmore » non-contact, real-time, and high-resolution optical coherence elastography.« less
Chang, Chao; Tang, Chuanxiang; Wu, Juhao
2017-05-09
An improved optical undulator for use in connection with free electron radiation sources is provided. A tilt is introduced between phase fronts of an optical pulse and the pulse front. Two such pulses in a counter-propagating geometry overlap to create a standing wave pattern. A line focus is used to increase the intensity of this standing wave pattern. An electron beam is aligned with the line focus. The relative angle between pulse front and phase fronts is adjusted such that there is a velocity match between the electron beam and the overlapping optical pulses along the line focus. This allows one to provide a long interaction length using short and intense optical pulses, thereby greatly increasing the radiation output from the electron beam as it passes through this optical undulator.
NASA Astrophysics Data System (ADS)
Giacometti, Paolo; Diamond, Solomon G.
Diffuse optical tomography (DOT) is a functional brain imaging technique that measures cerebral blood oxygenation and blood volume changes. This technique is particularly useful in human neuroimaging measurements because of the coupling between neural and hemodynamic activity in the brain. DOT is a multichannel imaging extension of near-infrared spectroscopy (NIRS). NIRS uses laser sources and light detectors on the scalp to obtain noninvasive hemodynamic measurements from spectroscopic analysis of the remitted light. This review explains how NIRS data analysis is performed using a combination of the modified Beer-Lambert law (MBLL) and the diffusion approximation to the radiative transport equation (RTE). Laser diodes, photodiode detectors, and optical terminals that contact the scalp are the main components in most NIRS systems. Placing multiple sources and detectors over the surface of the scalp allows for tomographic reconstructions that extend the individual measurements of NIRS into DOT. Mathematically arranging the DOT measurements into a linear system of equations that can be inverted provides a way to obtain tomographic reconstructions of hemodynamics in the brain.
Picosecond, tunable, high-brightness hard x-ray inverse Compton source at Duke storage ring
NASA Astrophysics Data System (ADS)
Litvinenko, Vladimir N.; Wu, Ying; Burnham, Bentley; Barnett, Genevieve A.; Madey, John M. J.
1995-09-01
We suggest a state-of-the art x-ray source using a compact electron storage ring with modest energy (less than 1 GeV) and a high power mm-wave as an undulator. A source of this type has x-ray energies and brightness comparable with third generation synchrotron light sources while it can be very compact and fit in a small university or industrial laboratory or hospital. We propose to operate an isochronous mm-wave FEL and a hard x-ray inverse Compton source at the Duke storage ring to test this concept. Resonant FEL conditions for the mm- wave will be provided by the off-axis interaction with an electromagnetic wave. A special optical resonator with holes for the e-beam is proposed for pumping a hard x-ray inverse Compton source with very high brightness. Simulation results of mm-wave FEL operation of the Duke storage ring are discussed. Expected performance of mm-wave FEL and hard x-ray inverse Compton source are presented.
Towards next generation time-domain diffuse optics devices
NASA Astrophysics Data System (ADS)
Dalla Mora, Alberto; Contini, Davide; Arridge, Simon R.; Martelli, Fabrizio; Tosi, Alberto; Boso, Gianluca; Farina, Andrea; Durduran, Turgut; Martinenghi, Edoardo; Torricelli, Alessandro; Pifferi, Antonio
2015-03-01
Diffuse Optics is growing in terms of applications ranging from e.g. oximetry, to mammography, molecular imaging, quality assessment of food and pharmaceuticals, wood optics, physics of random media. Time-domain (TD) approaches, although appealing in terms of quantitation and depth sensibility, are presently limited to large fiber-based systems, with limited number of source-detector pairs. We present a miniaturized TD source-detector probe embedding integrated laser sources and single-photon detectors. Some electronics are still external (e.g. power supply, pulse generators, timing electronics), yet full integration on-board using already proven technologies is feasible. The novel devices were successfully validated on heterogeneous phantoms showing performances comparable to large state-of-the-art TD rack-based systems. With an investigation based on simulations we provide numerical evidence that the possibility to stack many TD compact source-detector pairs in a dense, null source-detector distance arrangement could yield on the brain cortex about 1 decade higher contrast as compared to a continuous wave (CW) approach. Further, a 3-fold increase in the maximum depth (down to 6 cm) is estimated, opening accessibility to new organs such as the lung or the heart. Finally, these new technologies show the way towards compact and wearable TD probes with orders of magnitude reduction in size and cost, for a widespread use of TD devices in real life.
Optical Rogue Waves: Theory and Experiments
NASA Astrophysics Data System (ADS)
Taki, M.; Mussot, A.; Kudlinski, A.; Louvergneaux, E.; Kolobov, M.
2010-05-01
In the ocean, giant waves (also called killer waves, freak or rogue waves) are extremely rare and strong events. They are not well understood yet and the conditions which favour their emergence are unclear. Very recently, it was shown that the governing equations [1] as well as the statistical properties of an optical pulse propagating inside an optical fibre [2] mimic very well these gigantic surface waves in the ocean. Here we generate both experimentally and numerically optical rogue waves in a photonic crystal fiber (microstructured fiber) with continuous wave (CW) pumps. This is relevant for establishing an analogy with rogue waves in an open ocean. After recalling fundamental rogue waves [3] known as Akhmediev breathers that are solutions of pure nonlinear Schrödinger (NLS) equation, we analytically demonstrate that a generalized NLS equation, which governs the propagation of light in the fiber, exhibits convective modulationnal instability [4]. The latter provides one of the main explanations of the optical rogue wave extreme sensitivity to noisy initial conditions at the linear stage of their formation [5]. In the highly nonlinear regime, we provide the evidence that optical rogue waves result from soliton collisions leading to the rapid appearance/disappearance of a powerful optical pulse [6]. REFERENCES [1] C. Kharif, E. Pelinovsky, and A. Slunyaev, "Rogue Waves in the ocean", Springer Berlin Heidelberg, 2009 [2] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, "Optical rogue waves" Nature 450, 1054-1058, (2008). [3] N. Akhmediev, A. Ankiewicz, and M. Taki, "Waves that appear from nowhere and disappear without a trace", Phys. Lett. A 373, 675 (2009). [4] A. Mussot, E. Louvergneaux, N. Akhmediev, F. Reynaud, Delage, and M. Taki, "Optical fiber systems are convectively unstable", Phys. Rev. Lett. 101, 113904 (2008). [5] M. Taki, A. Mussot, A. Kudlinski, E. Louvergneaux, M. Kolobov, M. Douay, "Third-order dispersion for generating optical rogue solitons", Phys. Lett. A 374, 691-695 (2010). [6] A. Mussot, A. Kudlinski, M. Kolobov, E. Louvergneaux, M. Douay and M. Taki, "Observation of extreme temporal events in CW-pumped supercontinuum", Opt. Express 17 (19), 17010 (2009).
Levesque, Daniel; Moreau, Andre; Dubois, Marc; Monchalin, Jean-Pierre; Bussiere, Jean; Lord, Martin; Padioleau, Christian
2000-01-01
Apparatus and method for detecting shear resonances includes structure and steps for applying a radiation pulse from a pulsed source of radiation to an object to generate elastic waves therein, optically detecting the elastic waves generated in the object, and analyzing the elastic waves optically detected in the object. These shear resonances, alone or in combination with other information, may be used in the present invention to improve thickness measurement accuracy and to determine geometrical, microstructural, and physical properties of the object. At least one shear resonance in the object is detected with the elastic waves optically detected in the object. Preferably, laser-ultrasound spectroscopy is utilized to detect the shear resonances.
Frequency-time coherence for all-optical sampling without optical pulse source
Preußler, Stefan; Raoof Mehrpoor, Gilda; Schneider, Thomas
2016-01-01
Sampling is the first step to convert an analogue optical signal into a digital electrical signal. The latter can be further processed and analysed by well-known electrical signal processing methods. Optical pulse sources like mode-locked lasers are commonly incorporated for all-optical sampling, but have several drawbacks. A novel approach for a simple all-optical sampling is to utilise the frequency-time coherence of each signal. The method is based on only using two coupled modulators driven with an electrical sine wave. Since no optical source is required, a simple integration in appropriate platforms, such as Silicon Photonics might be possible. The presented method grants all-optical sampling with electrically tunable bandwidth, repetition rate and time shift. PMID:27687495
Recent searches for continuous gravitational waves
NASA Astrophysics Data System (ADS)
Riles, Keith
2017-12-01
Gravitational wave astronomy opened dramatically in September 2015 with the LIGO discovery of a distant and massive binary black hole coalescence. The more recent discovery of a binary neutron star merger, followed by a gamma ray burst (GRB) and a kilonova, reinforces the excitement of this new era, in which we may soon see other sources of gravitational waves, including continuous, nearly monochromatic signals. Potential continuous wave (CW) sources include rapidly spinning galactic neutron stars and more exotic possibilities, such as emission from axion Bose Einstein “clouds” surrounding black holes. Recent searches in Advanced LIGO data are presented, and prospects for more sensitive future searches are discussed.
Continuous-wave lasing from InP/InGaAs nanoridges at telecommunication wavelengths
NASA Astrophysics Data System (ADS)
Han, Yu; Li, Qiang; Zhu, Si; Ng, Kar Wei; Lau, Kei May
2017-11-01
We report continuous-wave lasing from InP/InGaAs nanoridges grown on a patterned (001) Si substrate by aspect ratio trapping. Multi-InGaAs ridge quantum wells inside InP nanoridges are designed as active gain materials for emission in the 1500 nm band. The good crystalline quality and optical property of the InGaAs quantum wells are attested by transmission electron microscopy and microphotoluminescence measurements. After transfer of the InP/InGaAs nanoridges onto a SiO2/Si substrate, amplified Fabry-Perot resonant modes at room temperature and multi-mode lasing behavior in the 1400 nm band under continuous-wave optical pumping at 4.5 K are observed. This result thus marks an important step towards integrating InP/InGaAs nanolasers directly grown on microelectronic standard (001) Si substrates.
Sinha, Raju; Karabiyik, Mustafa; Al-Amin, Chowdhury; Vabbina, Phani K; Güney, Durdu Ö; Pala, Nezih
2015-03-24
We propose and systematically investigate a novel tunable, compact room temperature terahertz (THz) source based on difference frequency generation in a hybrid optical and THz micro-ring resonator. We describe detailed design steps of the source capable of generating THz wave in 0.5-10 THz with a tunability resolution of 0.05 THz by using high second order optical susceptibility (χ((2))) in crystals and polymers. In order to enhance THz generation compared to bulk nonlinear material, we employ a nonlinear optical micro-ring resonator with high-Q resonant modes for infrared input waves. Another ring oscillator with the same outer radius underneath the nonlinear ring with an insulation of SiO2 layer supports the generated THz with resonant modes and out-couples them into a THz waveguide. The phase matching condition is satisfied by engineering both the optical and THz resonators with appropriate effective indices. We analytically estimate THz output power of the device by using practical values of susceptibility in available crystals and polymers. The proposed source can enable tunable, compact THz emitters, on-chip integrated spectrometers, inspire a broader use of THz sources and motivate many important potential THz applications in different fields.
Sinha, Raju; Karabiyik, Mustafa; Al-Amin, Chowdhury; Vabbina, Phani K.; Güney, Durdu Ö.; Pala, Nezih
2015-01-01
We propose and systematically investigate a novel tunable, compact room temperature terahertz (THz) source based on difference frequency generation in a hybrid optical and THz micro-ring resonator. We describe detailed design steps of the source capable of generating THz wave in 0.5–10 THz with a tunability resolution of 0.05 THz by using high second order optical susceptibility (χ(2)) in crystals and polymers. In order to enhance THz generation compared to bulk nonlinear material, we employ a nonlinear optical micro-ring resonator with high-Q resonant modes for infrared input waves. Another ring oscillator with the same outer radius underneath the nonlinear ring with an insulation of SiO2 layer supports the generated THz with resonant modes and out-couples them into a THz waveguide. The phase matching condition is satisfied by engineering both the optical and THz resonators with appropriate effective indices. We analytically estimate THz output power of the device by using practical values of susceptibility in available crystals and polymers. The proposed source can enable tunable, compact THz emitters, on-chip integrated spectrometers, inspire a broader use of THz sources and motivate many important potential THz applications in different fields. PMID:25800287
NASA Astrophysics Data System (ADS)
Beck, Jeffrey; Bos, Jeremy P.
2017-05-01
We compare several modifications to the open-source wave optics package, WavePy, intended to improve execution time. Specifically, we compare the relative performance of the Intel MKL, a CPU based OpenCV distribution, and GPU-based version. Performance is compared between distributions both on the same compute platform and between a fully-featured computing workstation and the NVIDIA Jetson TX1 platform. Comparisons are drawn in terms of both execution time and power consumption. We have found that substituting the Fast Fourier Transform operation from OpenCV provides a marked improvement on all platforms. In addition, we show that embedded platforms offer some possibility for extensive improvement in terms of efficiency compared to a fully featured workstation.
NASA Astrophysics Data System (ADS)
Sui, Xiao-lin; Zhou, Shou-huan
2013-05-01
The design and performance of Optical frequency modulation continuous wave (OFMCW) coherent laser radar is presented. By employing a combination of optical heterodyne and linear frequency modulation techniques and utilizing fiber optic technologies, highly efficient, compact and reliable laser radar suitable for operation in a space environment is being developed.We also give a hardware structure of the OFMCW coherent laser radar. We made a detailed analysis of the measurement error. Its accuracy in the speed range is less than 0.5%.Measurement results for the movement of the carrier has also made a detailed assessment. The results show that its acceleration vector has better adaptability. The circuit structure is also given a detailed design. At the end of the article, we give the actual authentication method and experimental results.
NASA Astrophysics Data System (ADS)
Sampathkumar, Ashwin; Chitnis, Parag V.; Silverman, Ronald H.
2014-03-01
Conventional photoacoustic microscopy (PAM) employs light pulses to produce a photoacoustic (PA) effect and detects the resulting acoustic waves using an ultrasound transducer acoustically coupled to the target. The resolution of conventional PAM is limited by the sensitivity and bandwidth of the ultrasound transducer. We investigated a versatile, all-optical PAM (AOPAM) system for characterizing in vivo as well as ex vivo biological specimens. The system employs non-contact interferometric detection of PA signals that overcomes limitations of conventional PAM. A 532-nm pump laser with a pulse duration of 5 ns excites the PA effect in tissue. Resulting acoustic waves produce surface displacements that are sensed using a 532-nm continuous-wave (CW) probe laser in a Michelson interferometer with a 1- GHz bandwidth. The pump and probe beams are coaxially focused using a 50X objective giving a diffraction-limited spot size of 0.48 μm. The phase-encoded probe beam is demodulated using homodyne methods. The detected timedomain signal is time reversed using k-space wave-propagation methods to produce a spatial distribution of PA sources in the target tissue. A minimum surface-displacement sensitivity of 0.19 pm was measured. PA-induced surface displacements are very small; therefore, they impose stringent detection requirements and determine the feasibility of implementing an all-optical PAM in biomedical applications. 3D PA images of ex vivo porcine retina specimens were generated successfully. We believe the AOPAM system potentially is well suited for assessing retinal diseases and other near-surface biomedical applications such as sectionless histology and evaluation of skin burns and pressure or friction ulcers.
Acoustic waves in tilted fiber Bragg gratings for sensing applications
NASA Astrophysics Data System (ADS)
Marques, Carlos A. F.; Alberto, Nélia J.; Domingues, Fátima; Leitão, Cátia; Antunes, Paulo; Pinto, João. L.; André, Paulo
2017-05-01
Tilted fiber Bragg gratings (TFBGs) are one of the most attractive kind of optical fiber sensor technology due to their intrinsic properties. On the other hand, the acousto-optic effect is an important, fast and accurate mechanism that can be used to change and control several properties of fiber gratings in silica and polymer optical fiber. Several all-optical devices for optical communications and sensing have been successfully designed and constructed using this effect. In this work, we present the recent results regarding the production of optical sensors, through the acousto-optic effect in TFBGs. The cladding and core modes amplitude of a TFBG can be controlled by means of the power levels from acoustic wave source. Also, the cladding modes of a TFBG can be coupled back to the core mode by launching acoustic waves. Induced bands are created on the left side of the original Bragg wavelength due to phase matching to be satisfied. The refractive index (RI) is analyzed in detail when acoustic waves are turned on using saccharose solutions with different RI from 1.33 to 1.43.
Ulvila, Ville; Phillips, C R; Halonen, Lauri; Vainio, Markku
2013-11-01
We report optical frequency comb generation by a continuous-wave pumped optical parametric oscillator (OPO) without any active modulation. The OPO is configured as singly resonant with an additional nonlinear crystal (periodically poled MgO:LiNbO3) placed inside the OPO for phase mismatched second harmonic generation (SHG) of the resonating signal beam. The phase mismatched SHG causes cascading χ(2) nonlinearities, which can substantially increase the effective χ(3) nonlinearity in MgO:LiNbO3, leading to spectral broadening of the OPO signal beam via self-phase modulation. The OPO generates a stable 4 THz wide (-30 dB) frequency comb centered at 1.56 μm.
Nanotechnology in lithium niobate for integrated optic frequency conversion in the UV
NASA Astrophysics Data System (ADS)
Busacca, Alessandro C.; Santini, Claudia; Oliveri, Luigi; Riva-Sanseverino, Stefano; Parisi, Antonino; Cino, Alfonso C.; Assanto, Gaetano
2017-11-01
In the domain of Earth Explorer satellites nanoengineered nonlinear crystals can optimize UV tunable solid-state laser converters. Lightweight sources can be based on Lithium Niobate (LN) domain engineering by electric field poling and guided wave interactions. In this Communication we report the preliminary experimental results and the very first demonstration of UltraViolet second-harmonic generation by first-order quasi-phase-matching in a surface-periodically-poled proton-exchanged LN waveguide. The pump source was a Ti-Sapphire laser with a tunability range of 700- 980 nm and a 40 GHz linewidth. We have measured UV continuous-wave light at 390 nm by means of a lock-in amplifier and of a photodiode with enhanced response in the UV. Measured conversion efficiency was about 1%W-1cm-2. QPM experiments show good agreement with theory and pave the way for a future implementation of the technique in materials less prone to photorefractive damage and wider transparency in the UV, such as Lithium Tantalate.
Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs.
Durán, Vicente; Schnébelin, Cȏme; Guillet de Chatellus, Hugues
2018-05-28
We propose and characterize experimentally a new source of optical frequency combs for performing multi-heterodyne spectrometry. This comb modality is based on a frequency-shifting loop seeded with a continuous-wave (CW) monochromatic laser. The comb lines are generated by successive passes of the CW laser through an acousto-optic frequency shifter. We report the generation of frequency combs with more than 1500 mutually coherent lines, without resorting to non-linear broadening phenomena or external electronic modulation. The comb line spacing is easily reconfigurable from tens of MHz down to the kHz region. We first use a single acousto-optic frequency comb to conduct self-heterodyne interferometry with a high frequency resolution (500 kHz). By increasing the line spacing to 80 MHz, we demonstrate molecular spectroscopy on the sub-millisecond time scale. In order to reduce the detection bandwidth, we subsequently implement an acousto-optic dual-comb spectrometer with the aid of two mutually coherent frequency shifting loops. In each architecture, the potentiality of acousto-optic frequency combs for spectroscopy is validated by spectral measurements of hydrogen cyanide in the near-infrared region.
Naser, Mohamed A.; Patterson, Michael S.
2011-01-01
Reconstruction algorithms are presented for two-step solutions of the bioluminescence tomography (BLT) and the fluorescence tomography (FT) problems. In the first step, a continuous wave (cw) diffuse optical tomography (DOT) algorithm is used to reconstruct the tissue optical properties assuming known anatomical information provided by x-ray computed tomography or other methods. Minimization problems are formed based on L1 norm objective functions, where normalized values for the light fluence rates and the corresponding Green’s functions are used. Then an iterative minimization solution shrinks the permissible regions where the sources are allowed by selecting points with higher probability to contribute to the source distribution. Throughout this process the permissible region shrinks from the entire object to just a few points. The optimum reconstructed bioluminescence and fluorescence distributions are chosen to be the results of the iteration corresponding to the permissible region where the objective function has its global minimum This provides efficient BLT and FT reconstruction algorithms without the need for a priori information about the bioluminescence sources or the fluorophore concentration. Multiple small sources and large distributed sources can be reconstructed with good accuracy for the location and the total source power for BLT and the total number of fluorophore molecules for the FT. For non-uniform distributed sources, the size and magnitude become degenerate due to the degrees of freedom available for possible solutions. However, increasing the number of data points by increasing the number of excitation sources can improve the accuracy of reconstruction for non-uniform fluorophore distributions. PMID:21326647
Estimation of viscoelastic surface wave parameters using a low cost optical deflection method
NASA Astrophysics Data System (ADS)
Brum, J.; Balay, G.; Arzúa, A.; Núñez, I.; Negreira, C.
2010-01-01
In this work an optical deflection method was used to study surface vibrations created by a low frequency source placed on the sample's surface. The optical method consists in placing a laser beam perpendicularly the sample's surface (gelatine based phantom). A beam-splitter is placed between the laser and the sample to project the reflected beam into a screen. As the surface moves due to the action of the low frequency source the laser beam on the screen also moves. Recording this movement with a digital camera allow us to reconstruct de surface motion using the light reflection law. If the scattering of the surface is very strong (such the one in biological tissue) a lens is placed between the surface and the beam-splitter to collect the scattered light. As validation method the surface movement was measured using a 10 MHz ultrasonic transducer placed normal to the surface in pulse-eco mode. The optical measurements were in complete agreement with the acoustical measurements. The optical measurement has the following advantages over the acoustic: 2-dimensional motion could be recorded and it is low cost. Since the acquisition was synchronized and the source-laser beam distance is known, measuring the time of flight an estimation of the surface wave velocity is obtained in order to measure the elasticity of the sample. The authors conclude that a reliable optical, low cost method for obtaining surface wave parameters of biological tissue was developed and successfully validate.
From photons to phonons and back: a THz optical memory in diamond.
England, D G; Bustard, P J; Nunn, J; Lausten, R; Sussman, B J
2013-12-13
Optical quantum memories are vital for the scalability of future quantum technologies, enabling long-distance secure communication and local synchronization of quantum components. We demonstrate a THz-bandwidth memory for light using the optical phonon modes of a room temperature diamond. This large bandwidth makes the memory compatible with down-conversion-type photon sources. We demonstrate that four-wave mixing noise in this system is suppressed by material dispersion. The resulting noise floor is just 7×10(-3) photons per pulse, which establishes that the memory is capable of storing single quanta. We investigate the principle sources of noise in this system and demonstrate that high material dispersion can be used to suppress four-wave mixing noise in Λ-type systems.
Gravitational wave discovery and characterization of the binary neutron star inspiral GW170817
NASA Astrophysics Data System (ADS)
Littenberg, Tyson; LIGO Scientific Collaboration and Virgo Collaboration
2018-01-01
On August 17, 2017 the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a binary neutron star inspiral. The source, GW170817, was the closest, loudest, and best localized gravitational-wave observation to date and was part of the spectacular multi-messenger observing campaign including the associated gamma-ray burst, a transient counterpart discovered in the optical, and late-time X-ray and radio emission. This talk will overview the discovery of GW170817 and what has been learned about the source from the gravitational-wave observations.
Progress in high-power continuous-wave quantum cascade lasers [Invited].
Figueiredo, Pedro; Suttinger, Matthew; Go, Rowel; Tsvid, Eugene; Patel, C Kumar N; Lyakh, Arkadiy
2017-11-01
Multi-watt continuous-wave room temperature operation with efficiency exceeding 10% has been demonstrated for quantum cascade lasers essentially in the entire mid-wave and long-wave infrared spectral regions. Along with interband cascade lasers, these devices are the only room-temperature lasers that directly convert electrical power into mid- and long-infrared optical power. In this paper, we review the progress in high-power quantum cascade lasers made over the last 10 years. Specifically, an overview of the most important active region, waveguide, and thermal design techniques is presented, and various aspects of die packaging for high-power applications are discussed. Prospects of power scaling with lateral device dimensions for reaching optical power level in the range from 10 W to 20 W are also analyzed. Finally, coherent and spectral beam-combining techniques for very high-power infrared platforms are discussed.
NASA Astrophysics Data System (ADS)
Simmonds, Boris; Wang, Chun-Wei; Kapoor, Rakesh
2010-02-01
This document reports a novel method of measuring association rate constant (ka) for antibody-antigen interaction using evanescent wave-based combination tapered fiber-optic biosensor (CTFOB) dip-probes. The method was demonstrated by measuring association rate constant for bovine serum albumin (BSA) and anti-BSA antibody interaction. "Direct method" was used for detection; goat anti-BSA "capture" antibodies were immobilized on the probe surfaces while the antigen (BSA) was directly labeled with Alexa 488 dye. The probes were subsequently submerged in 3nM Labeled BSA in egg albumin (1 mg/ml). The fluorescence signal recorded was proportional to BSA anti-BSA conjugates and continuous signal was acquired suing a fiber optic spectrometer (Ocean Optics, Inc.). A 476 nm diode laser was use as an excitation source. Association constant was estimated from a plot of signal as a function of time. Measured association rate constant ka for the binding of BSA with anti-BSA at room temperature is (8.33 +/- 0.01) x 104 M-1s-1.
Chitnis, Danial; Cooper, Robert J; Dempsey, Laura; Powell, Samuel; Quaggia, Simone; Highton, David; Elwell, Clare; Hebden, Jeremy C; Everdell, Nicholas L
2016-10-01
We present the first three-dimensional, functional images of the human brain to be obtained using a fibre-less, high-density diffuse optical tomography system. Our technology consists of independent, miniaturized, silicone-encapsulated DOT modules that can be placed directly on the scalp. Four of these modules were arranged to provide up to 128, dual-wavelength measurement channels over a scalp area of approximately 60 × 65 mm 2 . Using a series of motor-cortex stimulation experiments, we demonstrate that this system can obtain high-quality, continuous-wave measurements at source-detector separations ranging from 14 to 55 mm in adults, in the presence of hair. We identify robust haemodynamic response functions in 5 out of 5 subjects, and present diffuse optical tomography images that depict functional haemodynamic responses that are well-localized in all three dimensions at both the individual and group levels. This prototype modular system paves the way for a new generation of wearable, wireless, high-density optical neuroimaging technologies.
Directly Phase-Modulated Light Source
NASA Astrophysics Data System (ADS)
Yuan, Z. L.; Fröhlich, B.; Lucamarini, M.; Roberts, G. L.; Dynes, J. F.; Shields, A. J.
2016-07-01
The art of imparting information onto a light wave by optical signal modulation is fundamental to all forms of optical communication. Among many schemes, direct modulation of laser diodes stands out as a simple, robust, and cost-effective method. However, the simultaneous changes in intensity, frequency, and phase have prevented its application in the field of secure quantum communication. Here, we propose and experimentally demonstrate a directly phase-modulated light source which overcomes the main disadvantages associated with direct modulation and is suitable for diverse applications such as coherent communications and quantum cryptography. The source separates the tasks of phase preparation and pulse generation between a pair of semiconductor lasers leading to very pure phase states. Moreover, the cavity-enhanced electro-optic effect enables the first example of subvolt half-wave phase modulation at high signal rates. The source is compact, stable, and versatile, and we show its potential to become the standard transmitter for future quantum communication networks based on attenuated laser pulses.
Efficient, High-Power Mid-Infrared Laser for National Securityand Scientific Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiani, Leily S.
The LLNL fiber laser group developed a unique short-wave-infrared, high-pulse energy, highaverage- power fiber based laser. This unique laser source has been used in combination with a nonlinear frequency converter to generate wavelengths, useful for remote sensing and other applications in the mid-wave infrared (MWIR). Sources with high average power and high efficiency in this MWIR wavelength region are not yet available with the size, weight, and power requirements or energy efficiency necessary for future deployment. The LLNL developed Fiber Laser Pulsed Source (FiLPS) design was adapted to Erbium doped silica fibers for 1.55 μm pumping of Cadmium Silicon Phosphidemore » (CSP). We have demonstrated, for the first time optical parametric amplification of 2.4 μm light via difference frequency generation using CSP with an Erbium doped fiber source. In addition, for efficiency comparison purposes, we also demonstrated direct optical parametric generation (OPG) as well as optical parametric oscillation (OPO).« less
Carpintero, Guillermo; Hisatake, Shintaro; de Felipe, David; Guzman, Robinson; Nagatsuma, Tadao; Keil, Norbert
2018-02-14
We report for the first time the successful wavelength stabilization of two hybrid integrated InP/Polymer DBR lasers through optical injection. The two InP/Polymer DBR lasers are integrated into a photonic integrated circuit, providing an ideal source for millimeter and Terahertz wave generation by optical heterodyne technique. These lasers offer the widest tuning range of the carrier wave demonstrated to date up into the Terahertz range, about 20 nm (2.5 THz) on a single photonic integrated circuit. We demonstrate the application of this source to generate a carrier wave at 330 GHz to establish a wireless data transmission link at a data rate up to 18 Gbit/s. Using a coherent detection scheme we increase the sensitivity by more than 10 dB over direct detection.
Electromagnetic evidence that SSS17a is the result of a binary neutron star merger
NASA Astrophysics Data System (ADS)
Kilpatrick, C. D.; Foley, R. J.; Kasen, D.; Murguia-Berthier, A.; Ramirez-Ruiz, E.; Coulter, D. A.; Drout, M. R.; Piro, A. L.; Shappee, B. J.; Boutsia, K.; Contreras, C.; Di Mille, F.; Madore, B. F.; Morrell, N.; Pan, Y.-C.; Prochaska, J. X.; Rest, A.; Rojas-Bravo, C.; Siebert, M. R.; Simon, J. D.; Ulloa, N.
2017-12-01
Eleven hours after the detection of gravitational wave source GW170817 by the Laser Interferometer Gravitational-Wave Observatory and Virgo Interferometers, an associated optical transient, SSS17a, was identified in the galaxy NGC 4993. Although the gravitational wave data indicate that GW170817 is consistent with the merger of two compact objects, the electromagnetic observations provide independent constraints on the nature of that system. We synthesize the optical to near-infrared photometry and spectroscopy of SSS17a collected by the One-Meter Two-Hemisphere collaboration, finding that SSS17a is unlike other known transients. The source is best described by theoretical models of a kilonova consisting of radioactive elements produced by rapid neutron capture (the r-process). We conclude that SSS17a was the result of a binary neutron star merger, reinforcing the gravitational wave result.
Electromagnetic evidence that SSS17a is the result of a binary neutron star merger.
Kilpatrick, C D; Foley, R J; Kasen, D; Murguia-Berthier, A; Ramirez-Ruiz, E; Coulter, D A; Drout, M R; Piro, A L; Shappee, B J; Boutsia, K; Contreras, C; Di Mille, F; Madore, B F; Morrell, N; Pan, Y-C; Prochaska, J X; Rest, A; Rojas-Bravo, C; Siebert, M R; Simon, J D; Ulloa, N
2017-12-22
Eleven hours after the detection of gravitational wave source GW170817 by the Laser Interferometer Gravitational-Wave Observatory and Virgo Interferometers, an associated optical transient, SSS17a, was identified in the galaxy NGC 4993. Although the gravitational wave data indicate that GW170817 is consistent with the merger of two compact objects, the electromagnetic observations provide independent constraints on the nature of that system. We synthesize the optical to near-infrared photometry and spectroscopy of SSS17a collected by the One-Meter Two-Hemisphere collaboration, finding that SSS17a is unlike other known transients. The source is best described by theoretical models of a kilonova consisting of radioactive elements produced by rapid neutron capture (the r-process). We conclude that SSS17a was the result of a binary neutron star merger, reinforcing the gravitational wave result. Copyright © 2017, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Vengelis, Julius; Tumas, Adomas; Pipinytė, Ieva; Kuliešaitė, Miglė; Tamulienė, Viktorija; Jarutis, Vygandas; Grigonis, Rimantas; Sirutkaitis, Valdas
2018-03-01
We present experimental data and numerical simulation results obtained during investigation of synchronously pumped optical parametric oscillator (SPOPO) pumped by femtosecond Yb:KGW laser (central wavelength at 1033 nm). The nonlinear medium for parametric generation was periodically poled potassium titanyl phosphate crystal (PPKTP). Maximum parametric light conversion efficiency from pump power to signal power was more than 37.5% at λs=1530 nm wavelength, whereas the achieved signal wave continuous tuning range was from 1470 nm to 1970 nm with signal pulse durations ranging from 91 fs to roughly 280 fs. We demonstrated wavelength tuning by changing cavity length and PPKTP crystal grating period and also discussed net cavity group delay dispersion (GDD) influence on SPOPO output radiation characteristics. The achieved high pump to signal conversion efficiency and easy wavelength tuning make this device a very promising alternative to Ti:sapphire based SPOPOs as a source of continuously tunable femtosecond laser radiation in the near and mid-IR range.
Richter, H; Greiner-Bär, M; Pavlov, S G; Semenov, A D; Wienold, M; Schrottke, L; Giehler, M; Hey, R; Grahn, H T; Hübers, H-W
2010-05-10
We report on the development of a compact, easy-to-use terahertz radiation source, which combines a quantum-cascade laser (QCL) operating at 3.1 THz with a compact, low-input-power Stirling cooler. The QCL, which is based on a two-miniband design, has been developed for high output and low electrical pump power. The amount of generated heat complies with the nominal cooling capacity of the Stirling cooler of 7 W at 65 K with 240 W of electrical input power. Special care has been taken to achieve a good thermal coupling between the QCL and the cold finger of the cooler. The whole system weighs less than 15 kg including the cooler and power supplies. The maximum output power is 8 mW at 3.1 THz. With an appropriate optical beam shaping, the emission profile of the laser is fundamental Gaussian. The applicability of the system is demonstrated by imaging and molecular-spectroscopy experiments. (c) 2010 Optical Society of America.
NASA Astrophysics Data System (ADS)
Hisatake, Shintaro; Yamaguchi, Koki; Uchida, Hirohisa; Tojyo, Makoto; Oikawa, Yoichi; Miyaji, Kunio; Nagatsuma, Tadao
2018-04-01
We propose a new asynchronous measurement system to visualize the amplitude and phase distribution of a frequency-modulated electromagnetic wave. The system consists of three parts: a nonpolarimetric electro-optic frequency down-conversion part, a phase-noise-canceling part, and a frequency-tracking part. The photonic local oscillator signal generated by electro-optic phase modulation is controlled to track the frequency of the radio frequency (RF) signal to significantly enhance the measurable RF bandwidth. We demonstrate amplitude and phase measurement of a quasi-millimeter-wave frequency-modulated continuous-wave signal (24 GHz ± 80 MHz with a 2.5 ms period) as a proof-of-concept experiment.
High on/off ratio nanosecond laser pulses for a triggered single-photon source
NASA Astrophysics Data System (ADS)
Jin, Gang; Liu, Bei; He, Jun; Wang, Junmin
2016-07-01
An 852 nm nanosecond laser pulse chain with a high on/off ratio is generated by chopping a continuous-wave laser beam using a Mach-Zehnder-type electro-optic intensity modulator (MZ-EOIM). The detailed dependence of the MZ-EOIM’s on/off ratio on various parameters is characterized. By optimizing the incident beam polarization and stabilizing the MZ-EOIM temperature, a static on/off ratio of 12600:1 is achieved. The dynamic on/off ratios versus the pulse repetition rate and the pulse duty cycle are measured and discussed. The high-on/off-ratio nanosecond pulsed laser system was used in a triggered single-photon source based on a trapped single cesium atom, which reveals clear antibunching.
Advanced technologies for future ground-based, laser-interferometric gravitational wave detectors
Hammond, Giles; Hild, Stefan; Pitkin, Matthew
2014-01-01
We present a review of modern optical techniques being used and developed for the field of gravitational wave detection. We describe the current state-of-the-art of gravitational waves detector technologies with regard to optical layouts, suspensions and test masses. We discuss the dominant sources and noise in each of these subsystems and the developments that will help mitigate them for future generations of detectors. We very briefly summarise some of the novel astrophysics that will be possible with these upgraded detectors. PMID:25705087
Kim, Namje; Han, Sang-Pil; Ryu, Han-Cheol; Ko, Hyunsung; Park, Jeong-Woo; Lee, Donghun; Jeon, Min Yong; Park, Kyung Hyun
2012-07-30
A widely tunable dual mode laser diode with a single cavity structure is demonstrated. This novel device consists of a distributed feedback (DFB) laser diode and distributed Bragg reflector (DBR). Micro-heaters are integrated on the top of each section for continuous and independent wavelength tuning of each mode. By using a single gain medium in the DFB section, an effective common optical cavity and common modes are realized. The laser diode shows a wide tunability of the optical beat frequency, from 0.48 THz to over 2.36 THz. Continuous wave THz radiation is also successfully generated with low-temperature grown InGaAs photomixers from 0.48 GHz to 1.5 THz.
Non-Gaussian statistics and optical rogue waves in stimulated Raman scattering.
Monfared, Yashar E; Ponomarenko, Sergey A
2017-03-20
We explore theoretically and numerically optical rogue wave formation in stimulated Raman scattering inside a hydrogen filled hollow core photonic crystal fiber. We assume a weak noisy Stokes pulse input and explicitly construct the input Stokes pulse ensemble using the coherent mode representation of optical coherence theory, thereby providing a link between optical coherence and rogue wave theories. We show that the Stokes pulse peak power probability distribution function (PDF) acquires a long tail in the limit of nearly incoherent input Stokes pulses. We demonstrate a clear link between the PDF tail magnitude and the source coherence time. Thus, the latter can serve as a convenient parameter to control the former. We explain our findings qualitatively using the concepts of statistical granularity and global degree of coherence.
Geometrical and wave optics of paraxial beams.
Meron, M; Viccaro, P J; Lin, B
1999-06-01
Most calculational techniques used to evaluate beam propagation are geared towards either fully coherent or fully incoherent beams. The intermediate partial-coherence regime, while in principle known for a long time, has received comparably little attention so far. The resulting shortage of adequate calculational techniques is currently being felt in the realm of x-ray optics where, with the advent of third generation synchrotron light sources, partially coherent beams become increasingly common. The purpose of this paper is to present a calculational approach which, utilizing a "variance matrix" representation of paraxial beams, allows for a straightforward evaluation of wave propagation through an optical system. Being capable of dealing with an arbitrary degree of coherence, this approach covers the whole range from wave to ray optics, in a seamless fashion.
Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zajnulina, M.; Giannone, D.; Haynes, R.
We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromaticmore » input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.« less
Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers.
Zajnulina, M; Böhm, M; Blow, K; Rieznik, A A; Giannone, D; Haynes, R; Roth, M M
2015-10-01
We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.
Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers
NASA Astrophysics Data System (ADS)
Zajnulina, M.; Böhm, M.; Blow, K.; Rieznik, A. A.; Giannone, D.; Haynes, R.; Roth, M. M.
2015-10-01
We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.
Continuous-wave modulation of a femtosecond oscillator using coherent molecules.
Gold, D C; Karpel, J T; Mueller, E A; Yavuz, D D
2018-03-01
We describe a new method to broaden the frequency spectrum of a femtosecond oscillator in the continuous-wave (CW) domain. The method relies on modulating the femtosecond laser using four-wave mixing inside a Raman-based optical modulator. We prepare the modulator by placing deuterium molecules inside a high-finesse cavity and driving their fundamental vibrational transition using intense pump and Stokes lasers that are locked to the cavity modes. With the molecules prepared, any laser within the optical region of the spectrum can pass through the system and be modulated in a single pass. This constitutes a CW optical modulator at a frequency of 90 THz with a steady-state single-pass efficiency of ∼10 -6 and transient (10 μs-time-scale) single-pass efficiency of ∼10 -4 . Using our modulator, we broaden the initial Ti:sapphire spectrum centered at 800 nm and produce upshifted and downshifted sidebands centered at wavelengths of 650 nm and 1.04 μm, respectively.
1988-10-01
A statistical analysis on the output signals of an acousto - optic spectrum analyzer (AOSA) is performed for the case when the input signal is a...processing, Electronic warfare, Radar countermeasures, Acousto - optic , Spectrum analyzer, Statistical analysis, Detection, Estimation, Canada, Modelling.
Thermal noise from optical coatings in gravitational wave detectors.
Harry, Gregory M; Armandula, Helena; Black, Eric; Crooks, D R M; Cagnoli, Gianpietro; Hough, Jim; Murray, Peter; Reid, Stuart; Rowan, Sheila; Sneddon, Peter; Fejer, Martin M; Route, Roger; Penn, Steven D
2006-03-01
Gravitational waves are a prediction of Einstein's general theory of relativity. These waves are created by massive objects, like neutron stars or black holes, oscillating at speeds appreciable to the speed of light. The detectable effect on the Earth of these waves is extremely small, however, creating strains of the order of 10(-21). There are a number of basic physics experiments around the world designed to detect these waves by using interferometers with very long arms, up to 4 km in length. The next-generation interferometers are currently being designed, and the thermal noise in the mirrors will set the sensitivity over much of the usable bandwidth. Thermal noise arising from mechanical loss in the optical coatings put on the mirrors will be a significant source of noise. Achieving higher sensitivity through lower mechanical loss coatings, while preserving the crucial optical and thermal properties, is an area of active research right now.
Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source.
Coulter, D A; Foley, R J; Kilpatrick, C D; Drout, M R; Piro, A L; Shappee, B J; Siebert, M R; Simon, J D; Ulloa, N; Kasen, D; Madore, B F; Murguia-Berthier, A; Pan, Y-C; Prochaska, J X; Ramirez-Ruiz, E; Rest, A; Rojas-Bravo, C
2017-12-22
On 17 August 2017, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Virgo interferometer detected gravitational waves (GWs) emanating from a binary neutron star merger, GW170817. Nearly simultaneously, the Fermi and INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory) telescopes detected a gamma-ray transient, GRB 170817A. At 10.9 hours after the GW trigger, we discovered a transient and fading optical source, Swope Supernova Survey 2017a (SSS17a), coincident with GW170817. SSS17a is located in NGC 4993, an S0 galaxy at a distance of 40 megaparsecs. The precise location of GW170817 provides an opportunity to probe the nature of these cataclysmic events by combining electromagnetic and GW observations. Copyright © 2017, American Association for the Advancement of Science.
Detecting high-frequency gravitational waves with optically levitated sensors.
Arvanitaki, Asimina; Geraci, Andrew A
2013-02-15
We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or microdisks. The technique we describe can exceed the sensitivity of laser-based gravitational wave observatories in this frequency range, using an instrument of only a few percent of their size. Such a device extends the search volume for gravitational wave sources above 100 kHz by 1 to 3 orders of magnitude, and could detect monochromatic gravitational radiation from the annihilation of QCD axions in the cloud they form around stellar mass black holes within our galaxy due to the superradiance effect.
NASA Astrophysics Data System (ADS)
Liu, Guoyan; Gao, Kun; Liu, Xuefeng; Ni, Guoqiang
2016-10-01
We report a new method, polarization parameters indirect microscopic imaging with a high transmission infrared light source, to detect the morphology and component of human skin. A conventional reflection microscopic system is used as the basic optical system, into which a polarization-modulation mechanics is inserted and a high transmission infrared light source is utilized. The near-field structural characteristics of human skin can be delivered by infrared waves and material coupling. According to coupling and conduction physics, changes of the optical wave parameters can be calculated and curves of the intensity of the image can be obtained. By analyzing the near-field polarization parameters in nanoscale, we can finally get the inversion images of human skin. Compared with the conventional direct optical microscope, this method can break diffraction limit and achieve a super resolution of sub-100nm. Besides, the method is more sensitive to the edges, wrinkles, boundaries and impurity particles.
Deep Rapid Optical Follow-Up of Gravitational Wave Sources with the Dark Energy Camera
NASA Astrophysics Data System (ADS)
Cowperthwaite, Philip
2018-01-01
The detection of an electromagnetic counterpart associated with a gravitational wave detection by the Advanced LIGO and VIRGO interferometers is one of the great observational challenges of our time. The large localization regions and potentially faint counterparts require the use of wide-field, large aperture telescopes. As a result, the Dark Energy Camera, a 3.3 sq deg CCD imager on the 4-m Blanco telescope at CTIO in Chile is the most powerful instrument for this task in the Southern Hemisphere. I will report on the results from our joint program between the community and members of the dark energy survey to conduct rapid and efficient follow-up of gravitational wave sources. This includes systematic searches for optical counterparts, as well as developing an understanding of contaminating sources on timescales not normally probed by traditional untargeted supernova surveys. I will additionally comment on the immense science gains to be made by a joint detection and discuss future prospects from the standpoint of both next generation wide-field telescopes and next generation gravitational wave detectors.
NASA Astrophysics Data System (ADS)
Kamp, E. J.; Carvajal, B.; Samarth, N.
2018-01-01
The ready optical detection and manipulation of bright nitrogen vacancy center spins in diamond plays a key role in contemporary quantum information science and quantum metrology. Other optically dark defects such as substitutional nitrogen atoms (`P1 centers') could also become potentially useful in this context if they could be as easily optically detected and manipulated. We develop a relatively straightforward continuous wave protocol that takes advantage of the dipolar coupling between nitrogen vacancy and P1 centers in type 1b diamond to detect and polarize the dark P1 spins. By combining mutual spin flip transitions with radio frequency driving, we demonstrate the simultaneous optical polarization and detection of the electron spin resonance of the P1 center. This technique should be applicable to detecting and manipulating a broad range of dark spin populations that couple to the nitrogen vacancy center via dipolar fields, allowing for quantum metrology using these spin populations.
Continuous-wave and Q-switched microchip laser performance of Yb:Y3Sc2Al3O12 crystals.
Dong, Jun; Ueda, Ken-ichi; Kaminskii, Alexander A
2008-04-14
Optical properties of Yb:Y(3)Sc(2)Al(3)O(12) crystal were investigated and compared with those from Yb:YAG crystals. The broad absorption and emission spectra of Yb:Y(3)Sc(2)Al(3)O(12) show that this crystal is very suitable for laser-diode pumping and ultrafast laser pulse generation. Laser-diode pumped continuous-wave and passively Q-switched Yb:Y(3)Sc(2)Al(3)O(12) lasers with Cr(4+):YAG crystals as saturable absorber have been demonstrated for the first time. Continuous-wave output power of 1.12 W around 1032 nm (multi-longitudinal modes) was measured with an optical-to-optical efficiency of 30%. Laser pulses with pulse energy of over 31 microJ and pulse width of 2.5 ns were measured at repetition rate of over 12.7 kHz; a corresponding peak power of over 12 kW was obtained. The longitudinal mode selection by a thin plate of Cr(4+):YAG as an intracavity etalon was also observed in passively Q-switched Yb:Y(3)Sc(2)Al(2)O(12) microchip lasers.
Lagrangian geometrical optics of nonadiabatic vector waves and spin particles
Ruiz, D. E.; Dodin, I. Y.
2015-07-29
Linear vector waves, both quantum and classical, experience polarization-driven bending of ray trajectories and polarization dynamics that can be interpreted as the precession of the "wave spin". Here, both phenomena are governed by an effective gauge Hamiltonian vanishing in leading-order geometrical optics. This gauge Hamiltonian can be recognized as a generalization of the Stern-Gerlach Hamiltonian that is commonly known for spin-1/2 quantum particles. The corresponding reduced Lagrangians for continuous nondissipative waves and their geometrical-optics rays are derived from the fundamental wave Lagrangian. The resulting Euler-Lagrange equations can describe simultaneous interactions of N resonant modes, where N is arbitrary, and leadmore » to equations for the wave spin, which happens to be an (N 2 - 1)-dimensional spin vector. As a special case, classical equations for a Dirac particle (N = 2) are deduced formally, without introducing additional postulates or interpretations, from the Dirac quantum Lagrangian with the Pauli term. The model reproduces the Bargmann-Michel-Telegdi equations with added Stern-Gerlach force.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, C. J., E-mail: c.price10@imperial.ac.uk; Giltrap, S.; Stuart, N. H.
2015-03-15
We report on the design, construction, and characterisation of a new class of in-vacuo optical levitation trap optimised for use in high-intensity, high-energy laser interaction experiments. The system uses a focused, vertically propagating continuous wave laser beam to capture and manipulate micro-targets by photon momentum transfer at much longer working distances than commonly used by optical tweezer systems. A high speed (10 kHz) optical imaging and signal acquisition system was implemented for tracking the levitated droplets position and dynamic behaviour under atmospheric and vacuum conditions, with ±5 μm spatial resolution. Optical trapping of 10 ± 4 μm oil droplets inmore » vacuum was demonstrated, over timescales of >1 h at extended distances of ∼40 mm from the final focusing optic. The stability of the levitated droplet was such that it would stay in alignment with a ∼7 μm irradiating beam focal spot for up to 5 min without the need for re-adjustment. The performance of the trap was assessed in a series of high-intensity (10{sup 17} W cm{sup −2}) laser experiments that measured the X-ray source size and inferred free-electron temperature of a single isolated droplet target, along with a measurement of the emitted radio-frequency pulse. These initial tests demonstrated the use of optically levitated microdroplets as a robust target platform for further high-intensity laser interaction and point source studies.« less
NASA Astrophysics Data System (ADS)
Price, C. J.; Donnelly, T. D.; Giltrap, S.; Stuart, N. H.; Parker, S.; Patankar, S.; Lowe, H. F.; Drew, D.; Gumbrell, E. T.; Smith, R. A.
2015-03-01
We report on the design, construction, and characterisation of a new class of in-vacuo optical levitation trap optimised for use in high-intensity, high-energy laser interaction experiments. The system uses a focused, vertically propagating continuous wave laser beam to capture and manipulate micro-targets by photon momentum transfer at much longer working distances than commonly used by optical tweezer systems. A high speed (10 kHz) optical imaging and signal acquisition system was implemented for tracking the levitated droplets position and dynamic behaviour under atmospheric and vacuum conditions, with ±5 μm spatial resolution. Optical trapping of 10 ± 4 μm oil droplets in vacuum was demonstrated, over timescales of >1 h at extended distances of ˜40 mm from the final focusing optic. The stability of the levitated droplet was such that it would stay in alignment with a ˜7 μm irradiating beam focal spot for up to 5 min without the need for re-adjustment. The performance of the trap was assessed in a series of high-intensity (1017 W cm-2) laser experiments that measured the X-ray source size and inferred free-electron temperature of a single isolated droplet target, along with a measurement of the emitted radio-frequency pulse. These initial tests demonstrated the use of optically levitated microdroplets as a robust target platform for further high-intensity laser interaction and point source studies.
Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles
Benjamin, R.F.
1983-10-18
An apparatus for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously.
Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles
Benjamin, Robert F.
1987-01-01
An apparatus for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously.
Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles
Benjamin, R.F.
1987-03-10
An apparatus is disclosed for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously. 3 figs.
NASA Technical Reports Server (NTRS)
Spencer, Michael G. (Inventor); Maserjian, Joseph (Inventor)
1995-01-01
A submillimeter wave-generating integrated circuit includes an array of N photoconductive switches biased across a common voltage source and an optical path difference from a common optical pulse of repetition rate f sub 0 providing a different optical delay to each of the switches. In one embodiment, each incoming pulse is applied to successive ones of the N switches with successive delays. The N switches are spaced apart with a suitable switch-to-switch spacing so as to generate at the output load or antenna radiation of a submillimeter wave frequency f on the order of N f sub 0. Preferably, the optical pulse has a repetition rate of at least 10 GHz and N is of the order of 100, so that the circuit generates radiation of frequency of the order of or greater than 1 Terahertz.
Studies of third-order optical nonlinearities and optical limiting properties of azo dyes.
Gayathri, C; Ramalingam, A
2008-03-01
In order to protect optical sensors and human eyes from debilitating laser effects, the intensity of the incoming laser light has to be opportunely reduced. Here, we report our results on the third-order optical nonlinearity and optical limiting properties of three azo dyes exposed to a 532nm continuous wave laser. We have observed low power optical limiting based on nonlinear refraction in our samples.
A gravitational-wave standard siren measurement of the Hubble constant.
2017-11-02
On 17 August 2017, the Advanced LIGO and Virgo detectors observed the gravitational-wave event GW170817-a strong signal from the merger of a binary neutron-star system. Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source. This sky region was subsequently observed by optical astronomy facilities, resulting in the identification of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first 'multi-messenger' astronomical observation. Such observations enable GW170817 to be used as a 'standard siren' (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic 'distance ladder': the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements, while being completely independent of them. Additional standard siren measurements from future gravitational-wave sources will enable the Hubble constant to be constrained to high precision.
A gravitational-wave standard siren measurement of the Hubble constant
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; Aultoneal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; da Silva Costa, C. F.; Datrier, L. E. H.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; de, S.; Debra, D.; Degallaix, J.; de Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; de Pietri, R.; Dergachev, V.; De Rosa, R.; Derosa, R. T.; de Rossi, C.; Desalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; di Fiore, L.; di Giovanni, M.; di Girolamo, T.; di Lieto, A.; di Pace, S.; di Palma, I.; di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Liu, X.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; Macinnis, M.; MacLeod, D. M.; Hernandez, I. Magaña; Magaña-Sandoval, F.; Zertuche, L. Magaña; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steer, D.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; Foley, R. J.; Coulter, D. A.; Drout, M. R.; Kasen, D.; Kilpatrick, C. D.; Madore, B. F.; Murguia-Berthier, A.; Pan, Y.-C.; Piro, A. L.; Prochaska, J. X.; Ramirez-Ruiz, E.; Rest, A.; Rojas-Bravo, C.; Shappee, B. J.; Siebert, M. R.; Simon, J. D.; Ulloa, N.; Annis, J.; Soares-Santos, M.; Brout, D.; Scolnic, D.; Diehl, H. T.; Frieman, J.; Berger, E.; Alexander, K. D.; Allam, S.; Balbinot, E.; Blanchard, P.; Butler, R. E.; Chornock, R.; Cook, E. R.; Cowperthwaite, P.; Drlica-Wagner, A.; Drout, M. R.; Durret, F.; Eftekhari, T.; Finley, D. A.; Fong, W.; Fryer, C. L.; García-Bellido, J.; Gill, M. S. S.; Gruendl, R. A.; Hanna, C.; Hartley, W.; Herner, K.; Huterer, D.; Kasen, D.; Kessler, R.; Li, T. S.; Lin, H.; Lopes, P. A. A.; Lourenço, A. C. C.; Margutti, R.; Marriner, J.; Marshall, J. L.; Matheson, T.; Medina, G. E.; Metzger, B. D.; Muñoz, R. R.; Muir, J.; Nicholl, M.; Nugent, P.; Palmese, A.; Paz-Chinchón, F.; Quataert, E.; Sako, M.; Sauseda, M.; Schlegel, D. J.; Secco, L. F.; Smith, N.; Sobreira, F.; Stebbins, A.; Villar, V. A.; Vivas, A. K.; Wester, W.; Williams, P. K. G.; Yanny, B.; Zenteno, A.; Abbott, T. M. C.; Abdalla, F. B.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Bridle, S. L.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Castander, F. J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; Depoy, D. L.; Desai, S.; Dietrich, J. P.; Estrada, J.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruen, D.; Gutierrez, G.; Hartley, W. G.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Johnson, M. W. G.; Kent, S.; Krause, E.; Kron, R.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nord, B.; Ogando, R. L. C.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Suchyta, E.; Tarle, G.; Thomas, D.; Thomas, R. C.; Troxel, M. A.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller, J.; Zhang, Y.; Haislip, J. B.; Kouprianov, V. V.; Reichart, D. E.; Tartaglia, L.; Sand, D. J.; Valenti, S.; Yang, S.; Arcavi, Iair; Hosseinzadeh, Griffin; Howell, D. Andrew; McCully, Curtis; Poznanski, Dovi; Vasylyev, Sergiy; Tanvir, N. R.; Levan, A. J.; Hjorth, J.; Cano, Z.; Copperwheat, C.; de Ugarte-Postigo, A.; Evans, P. A.; Fynbo, J. P. U.; González-Fernández, C.; Greiner, J.; Irwin, M.; Lyman, J.; Mandel, I.; McMahon, R.; Milvang-Jensen, B.; O'Brien, P.; Osborne, J. P.; Perley, D. A.; Pian, E.; Palazzi, E.; Rol, E.; Rosetti, S.; Rosswog, S.; Rowlinson, A.; Schulze, S.; Steeghs, D. T. H.; Thöne, C. C.; Ulaczyk, K.; Watson, D.; Wiersema, K.; Lipunov, V. M.; Gorbovskoy, E.; Kornilov, V. G.; Tyurina, N.; Balanutsa, P.; Vlasenko, D.; Gorbunov, I.; Podesta, R.; Levato, H.; Saffe, C.; Buckley, D. A. H.; Budnev, N. M.; Gress, O.; Yurkov, V.; Rebolo, R.; Serra-Ricart, M.
2017-11-01
On 17 August 2017, the Advanced LIGO and Virgo detectors observed the gravitational-wave event GW170817—a strong signal from the merger of a binary neutron-star system. Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source. This sky region was subsequently observed by optical astronomy facilities, resulting in the identification of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first ‘multi-messenger’ astronomical observation. Such observations enable GW170817 to be used as a ‘standard siren’ (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic ‘distance ladder’: the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements, while being completely independent of them. Additional standard siren measurements from future gravitational-wave sources will enable the Hubble constant to be constrained to high precision.
1300 nm optically pumped quantum dot spin vertical external-cavity surface-emitting laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alharthi, S. S., E-mail: ssmalh@essex.ac.uk; Henning, I. D.; Adams, M. J.
We report a room temperature optically pumped Quantum Dot-based Spin-Vertical-External-Cavity Surface-Emitting laser (QD Spin-VECSEL) operating at the telecom wavelength of 1.3 μm. The active medium was composed of 5 × 3 QD layers; each threefold group was positioned at an antinode of the standing wave of the optical field. Circularly polarized lasing in the QD-VECSEL under Continuous-Wave optical pumping has been realized with a threshold pump power of 11 mW. We further demonstrate at room temperature control of the QD-VECSEL output polarization ellipticity via the pump polarization.
NASA Astrophysics Data System (ADS)
Ma, Jianxin; Zhang, Junjie
2015-03-01
A novel full-duplex fiber-wireless link based on single sideband (SSB) optical millimeter (mm)-wave with 10 Gbit/s 4-pulse amplitude modulation (PAM) signal is proposed to provide alternative wired and 40 GHz wireless accesses for the user terminals. The SSB optical mm-wave with 4-PAM signal consists of two tones: one bears the 4-PAM signal and the other is unmodulated with high power. After transmission over the fiber to the hybrid optical network unit (HONU), the SSB optical mm-wave signal can be decomposed by fiber Bragg gratings (FBGs) as the SSB optical mm-wave signal with reduced carrier-to-sideband ratio (the baseband 4-PAM optical signal) and the uplink optical carrier for the wireless (wired) access. This makes the HONU free from the laser source. For the uplink, since the wireless access signal is converted to the baseband by power detection, both the transmitter in the HONU and the receiver in optical line terminal (OLT) are co-shared for both wireless and wired accesses, which makes the full duplex link much simpler. In our scheme, the optical electrical field of the square-root increment level 4-PAM signal assures an equal level spacing receiving for both the downlink wired and wireless accesses. Since the downlink wireless signal is down-converted to the baseband by power detection, RF local oscillator is unnecessary. To confirm the feasibility of our proposed scheme, a simulation full duplex link with 40 GHz SSB optical mm-wave with 10 Gbit/s 4-PAM signal is built. The simulation results show that both down- and up-links for either wired or wireless access can keep good performance even if the link length of the SSMF is extended to 40 km.
Tu, Haohua; Lægsgaard, Jesper; Zhang, Rui; Tong, Shi; Liu, Yuan; Boppart, Stephen A.
2013-01-01
We predict and realize the targeted wavelength conversion from the 1550-nm band of a fs Er:fiber laser to an isolated band inside 370-850 nm, corresponding to a blue-shift of 700-1180 nm. The conversion utilizes resonant dispersive wave generation in widely available optical fibers with good efficiency (~7%). The converted band has a large pulse energy (~1 nJ), high spectral brightness (~1 mW/nm), and broad Gaussian-like spectrum compressible to clean transform-limited ~17 fs pulses. The corresponding coherent fiber sources open up portable applications of optical parametric oscillators and dual-output synchronized ultrafast lasers. PMID:24104233
Directed searches for continuous gravitational waves from spinning neutron stars in binary systems
NASA Astrophysics Data System (ADS)
Meadors, Grant David
2014-09-01
Gravitational wave detectors such as the Laser Interferometer Gravitational-wave Observatory (LIGO) seek to observe ripples in space predicted by General Relativity. Black holes, neutron stars, supernovae, the Big Bang and other sources can radiate gravitational waves. Original contributions to the LIGO effort are presented in this thesis: feedforward filtering, directed binary neutron star searches for continuous waves, and scientific outreach and education, as well as advances in quantum optical squeezing. Feedforward filtering removes extraneous noise from servo-controlled instruments. Filtering of the last science run, S6, improves LIGO's astrophysical range (+4.14% H1, +3.60% L1: +12% volume) after subtracting noise from auxiliary length control channels. This thesis shows how filtering enhances the scientific sensitivity of LIGO's data set during and after S6. Techniques for non-stationarity and verifying calibration and integrity may apply to Advanced LIGO. Squeezing is planned for future interferometers to exceed the standard quantum limit on noise from electromagnetic vacuum fluctuations; this thesis discusses the integration of a prototype squeezer at LIGO Hanford Observatory and impact on astrophysical sensitivity. Continuous gravitational waves may be emitted by neutron stars in low-mass X-ray binary systems such as Scorpius X-1. The TwoSpect directed binary search is designed to detect these waves. TwoSpect is the most sensitive of 4 methods in simulated data, projecting an upper limit of 4.23e-25 in strain, given a year-long data set at an Advanced LIGO design sensitivity of 4e-24 Hz. (-1/2). TwoSpect is also used on real S6 data to set 95% confidence upper limits (40 Hz to 2040 Hz) on strain from Scorpius X-1. A millisecond pulsar, X-ray transient J1751-305, is similarly considered. Search enhancements for Advanced LIGO are proposed. Advanced LIGO and fellow interferometers should detect gravitational waves in the coming decade. Methods in these thesis will benefit both the instrumental and analytical sides of observation.
A numerical wave-optical approach for the simulation of analyzer-based x-ray imaging
NASA Astrophysics Data System (ADS)
Bravin, A.; Mocella, V.; Coan, P.; Astolfo, A.; Ferrero, C.
2007-04-01
An advanced wave-optical approach for simulating a monochromator-analyzer set-up in Bragg geometry with high accuracy is presented. The polychromaticity of the incident wave on the monochromator is accounted for by using a distribution of incoherent point sources along the surface of the crystal. The resulting diffracted amplitude is modified by the sample and can be well represented by a scalar representation of the optical field where the limitations of the usual ‘weak object’ approximation are removed. The subsequent diffraction mechanism on the analyzer is described by the convolution of the incoming wave with the Green-Riemann function of the analyzer. The free space propagation up to the detector position is well reproduced by a classical Fresnel-Kirchhoff integral. The preliminary results of this innovative approach show an excellent agreement with experimental data.
High frequency optical communications; Proceedings of the Meeting, Cambridge, MA, Sept. 23, 24, 1986
NASA Astrophysics Data System (ADS)
Ramer, O. Glenn; Sierak, Paul
Topics discussed in this volume include systems and applications, detectors, sources, and coherent communications. Papers are presented on RF fiber optic links for avionics applications, fiber optics and optoelectronics for radar and electronic warfare applications, symmetric coplanar electrodes for high-speed Ti:LiNbO3 devices, and surface wave electrooptic modulator. Attention is given to X-band RF fiber-optic links, fiber-optic links for microwave signal transmission, GaAs monolithic receiver and laser driver for GHz transmission rates, and monolithically integrable high-speed photodetectors. Additional papers are on irregular and chaotic behavior of semiconductor lasers under modulation, high-frequency laser package for microwave optical communications, receiver modeling for coherent light wave communications, and polarization sensors and controllers for coherent optical communication systems.
Optical Counterparts to Gravitational Waves
NASA Astrophysics Data System (ADS)
Beroiz, Martin
The novel field of Gravitational Wave Astronomy has opened a new window to the universe. Never before had we received gravitational waves from the distant celestial bodies carried away by space-time perturbations, until the detection of GW150914 on September 14, 2015. But these signals, however faint, carry very little information about their positions on the sky. The sky localization can have uncertainties that span up to a few hundreds square degrees, which makes locating the sources very difficult. Traditional Astronomy can complement this limitation of gravitational wave detection where optical astronomy is stronger: localization. However, this poses other technological challenges of a different kind. In the era of multi-messenger Astronomy, a low latency response time after detection is crucial in order to have any hope of detecting the optically faint electromagnetic counterparts of the event. The mission of the Transient Optical Robotic Observatory of the South (TOROS), in the context of multi-messenger and time-domain astronomy, is to create a facility ready to respond to gravitational wave detections for prompt follow-up observations searching for optical counterparts. This dissertation discusses the implementation of a software pipeline for the TOROS project and the results obtained during the O1 campaign of Advanced LIGO.
High power continuous-wave titanium:sapphire laser
Erbert, G.V.; Bass, I.L.; Hackel, R.P.; Jenkins, S.L.; Kanz, V.K.; Paisner, J.A.
1993-09-21
A high-power continuous-wave laser resonator is provided, wherein first, second, third, fourth, fifth and sixth mirrors form a double-Z optical cavity. A first Ti:sapphire rod is disposed between the second and third mirrors and at the mid-point of the length of the optical cavity, and a second Ti:sapphire rod is disposed between the fourth and fifth mirrors at a quarter-length point in the optical cavity. Each Ti:sapphire rod is pumped by two counter-propagating pump beams from a pair of argon-ion lasers. For narrow band operation, a 3-plate birefringent filter and an etalon are disposed in the optical cavity so that the spectral output of the laser consists of 5 adjacent cavity modes. For increased power, seventy and eighth mirrors are disposed between the first and second mirrors to form a triple-Z optical cavity. A third Ti:sapphire rod is disposed between the seventh and eighth mirrors at the other quarter-length point in the optical cavity, and is pumped by two counter-propagating pump beams from a third pair of argon-ion lasers. 5 figures.
First Searches for Optical Counterparts to Gravitational-wave Candidate Events
NASA Astrophysics Data System (ADS)
Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M., Jr.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Deleeuw, E.; Deléglise, S.; Denker, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Neri, I.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poole, V.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Akerlof, C.; Baltay, C.; Bloom, J. S.; Cao, Y.; Cenko, S. B.; Ćwiek, A.; Ćwiok, M.; Dhillon, V.; Fox, D. B.; Gal-Yam, A.; Kasliwal, M. M.; Klotz, A.; Laas-Bourez, M.; Laher, R. R.; Law, N. M.; Majcher, A.; Małek, K.; Mankiewicz, L.; Nawrocki, K.; Nissanke, S.; Nugent, P. E.; Ofek, E. O.; Opiela, R.; Piotrowski, L.; Poznanski, D.; Rabinowitz, D.; Rapoport, S.; Richards, J. W.; Schmidt, B.; Siudek, M.; Sokołowski, M.; Steele, I. A.; Sullivan, M.; Żarnecki, A. F.; Zheng, W.
2014-03-01
During the Laser Interferometer Gravitational-wave Observatory and Virgo joint science runs in 2009-2010, gravitational wave (GW) data from three interferometer detectors were analyzed within minutes to select GW candidate events and infer their apparent sky positions. Target coordinates were transmitted to several telescopes for follow-up observations aimed at the detection of an associated optical transient. Images were obtained for eight such GW candidates. We present the methods used to analyze the image data as well as the transient search results. No optical transient was identified with a convincing association with any of these candidates, and none of the GW triggers showed strong evidence for being astrophysical in nature. We compare the sensitivities of these observations to several model light curves from possible sources of interest, and discuss prospects for future joint GW-optical observations of this type.
First Searches for Optical Counterparts to Gravitational-Wave Candidate Events
NASA Technical Reports Server (NTRS)
Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.;
2014-01-01
During the Laser Interferometer Gravitational-wave Observatory and Virgo joint science runs in 2009-2010, gravitational wave (GW) data from three interferometer detectors were analyzed within minutes to select GW candidate events and infer their apparent sky positions. Target coordinates were transmitted to several telescopes for follow-up observations aimed at the detection of an associated optical transient. Images were obtained for eight such GW candidates. We present the methods used to analyze the image data as well as the transient search results. No optical transient was identified with a convincing association with any of these candidates, and none of the GW triggers showed strong evidence for being astrophysical in nature. We compare the sensitivities of these observations to several model light curves from possible sources of interest, and discuss prospects for future joint GW-optical observations of this type.
A 24 km fiber-based discretely signaled continuous variable quantum key distribution system.
Dinh Xuan, Quyen; Zhang, Zheshen; Voss, Paul L
2009-12-21
We report a continuous variable key distribution system that achieves a final secure key rate of 3.45 kilobits/s over a distance of 24.2 km of optical fiber. The protocol uses discrete signaling and post-selection to improve reconciliation speed and quantifies security by means of quantum state tomography. Polarization multiplexing and a frequency translation scheme permit transmission of a continuous wave local oscillator and suppression of noise from guided acoustic wave Brillouin scattering by more than 27 dB.
Peregrine rogue waves induced by the interaction between a continuous wave and a soliton.
Yang, Guangye; Li, Lu; Jia, Suotang
2012-04-01
Based on the soliton solution on a continuous wave background for an integrable Hirota equation, the reduction mechanism and the characteristics of the Peregrine rogue wave in the propagation of femtosecond pulses of optical fiber are discussed. The results show that there exist two processes of the formation of the Peregrine rogue wave: one is the localized process of the continuous wave background, and the other is the reduction process of the periodization of the bright soliton. The characteristics of the Peregrine rogue wave are exhibited by strong temporal and spatial localization. Also, various initial excitations of the Peregrine rogue wave are performed and the results show that the Peregrine rogue wave can be excited by a small localized (single peak) perturbation pulse of the continuous wave background, even for the nonintegrable case. The numerical simulations show that the Peregrine rogue wave is unstable. Finally, through a realistic example, the influence of the self-frequency shift to the dynamics of the Peregrine rogue wave is discussed. The results show that in the absence of the self-frequency shift, the Peregrine rogue wave can split into several subpulses; however, when the self-frequency shift is considered, the Peregrine rogue wave no longer splits and exhibits mainly a peak changing and an increasing evolution property of the field amplitude.
Multi-wavelength Yb:YAG/Nd3+:YVO4 continuous-wave microchip Raman laser.
Wang, Xiao-Lei; Dong, Jun; Wang, Xiao-Jie; Xu, Jie; Ueda, Ken-Ichi; Kaminskii, Alexander A
2016-08-01
Multi-wavelength continuous-wave (CW) Raman lasers in a laser diode pumped Yb:YAG/Nd3+:YVO4 microchip Raman laser have been demonstrated for the first time to our best knowledge. The multi-wavelength laser of the first Stokes radiation around 1.08 μm has been achieved with a Raman shift of 261 cm-1 for a-cut Nd:YVO4 crystal corresponding to the fundamental wavelength at 1.05 μm. Multi-wavelength laser operation simultaneously around 1.05 and 1.08 μm has been achieved under the incident pump power between 1.5 and 1.7 W. Multi-wavelength Raman laser with frequency separation of 1 THz around 1.08 μm has been obtained when the incident pump power is higher than 1.7 W. The maximum Raman laser output power of 260 mW at 1.08 μm is obtained and the corresponding optical-to-optical conversion efficiency is 4.2%. Elliptically polarized fundamental laser and linearly polarized Raman laser were observed in an Yb:YAG/Nd:YVO4 CW microchip Raman laser. The experimental results of linearly polarized, multi-wavelength Yb:YAG/Nd:YVO4 CW microchip Raman laser with adjustable frequency separation provide a novel approach for developing potential compact laser sources for Terahertz generation.
Toward continuous-wave operation of organic semiconductor lasers
Sandanayaka, Atula S. D.; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya
2017-01-01
The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi–continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture. PMID:28508042
Toward continuous-wave operation of organic semiconductor lasers.
Sandanayaka, Atula S D; Matsushima, Toshinori; Bencheikh, Fatima; Yoshida, Kou; Inoue, Munetomo; Fujihara, Takashi; Goushi, Kenichi; Ribierre, Jean-Charles; Adachi, Chihaya
2017-04-01
The demonstration of continuous-wave lasing from organic semiconductor films is highly desirable for practical applications in the areas of spectroscopy, data communication, and sensing, but it still remains a challenging objective. We report low-threshold surface-emitting organic distributed feedback lasers operating in the quasi-continuous-wave regime at 80 MHz as well as under long-pulse photoexcitation of 30 ms. This outstanding performance was achieved using an organic semiconductor thin film with high optical gain, high photoluminescence quantum yield, and no triplet absorption losses at the lasing wavelength combined with a mixed-order distributed feedback grating to achieve a low lasing threshold. A simple encapsulation technique greatly reduced the laser-induced thermal degradation and suppressed the ablation of the gain medium otherwise taking place under intense continuous-wave photoexcitation. Overall, this study provides evidence that the development of a continuous-wave organic semiconductor laser technology is possible via the engineering of the gain medium and the device architecture.
NASA Astrophysics Data System (ADS)
Fujimoto, Takahiro; Imai, Yusuke; Tei, Kazuyoku; Fujioka, Tomoo; Yamaguchi, Shigeru
2013-03-01
In most of medical and dental laser treatments, high power pulsed laser have been used as desirable light sources employing with an optical fiber delivery system. The treatment process involves high temperature thermal effect associated with direct laser absorption of the materials such as hard and soft tissues, tooth, bones and so on. Such treatments sometimes face technical difficulties suffering from their optical absorption properties. We investigate a new technology to create high temperature heat source on the tip surface of the glass fiber proposed for the medical surgery applications. Using a low power level (4 6W) semiconductor laser at a wavelength of 980nm, a laser coupled fiber tip was pre-processed to contain certain amount of TiO2 powder with a depth of 400μm from the tip surface so that the irradiated low laser energy could be perfectly absorbed to be transferred to thermal energy. Thus the laser treatment can be performed without suffering from any optical characteristic of the material. Semiconductor laser was operated quasi-CW mode pulse time duration of 180ms and more than 95% of the laser energy was converted to thermal energy in the fiber tip. by Based on twocolor thermometry by using a gated optical multichannel analyzer with 0.25m spectrometer in visible wavelength region, the temperature of the fiber tip was analyzed. The temperature of the heat source was measured to be approximately 3000K. Demonstration of laser processing employing this system was successfully carried out drilling through holes in ceramic materials simulating bone surgery.
NASA Astrophysics Data System (ADS)
Stasicki, Bolesław; Schröder, Andreas; Boden, Fritz; Ludwikowski, Krzysztof
2017-06-01
The rapid progress of light emitting diode (LED) technology has recently resulted in the availability of high power devices with unprecedented light emission intensities comparable to those of visible laser light sources. On this basis two versatile devices have been developed, constructed and tested. The first one is a high-power, single-LED illuminator equipped with exchangeable projection lenses providing a homogenous light spot of defined diameter. The second device is a multi-LED illuminator array consisting of a number of high-power LEDs, each integrated with a separate collimating lens. These devices can emit R, G, CG, B, UV or white light and can be operated in pulsed or continuous wave (CW) mode. Using an external trigger signal they can be easily synchronized with cameras or other devices. The mode of operation and all parameters can be controlled by software. Various experiments have shown that these devices have become a versatile and competitive alternative to laser and xenon lamp based light sources. The principle, design, achieved performances and application examples are given in this paper.
Spontaneous generation of frequency combs in QD lasers
NASA Astrophysics Data System (ADS)
Columbo, Lorenzo Luigi; Bardella, Paolo; Gioannini, Mariangela
2018-02-01
We report a systematic analysis of the phenomenon of self-generation of optical frequency combs in single section Fabry-Perot Quantum Dot lasers using a Time Domain Travelling Wave model. We show that the carriers grating due to the standing wave pattern (spatial hole burning) peculiar of Quantum Dots laser and the Four Wave Mixing are the key ingredients to explain spontaneous Optical Frequency Combs in these devices. Our results well agree with recent experimental evidences reported in semiconductor lasers based on Quantum Dots and Quantum Dashes active material and pave the way to the development of a simulation tool for the design of these comb laser sources for innovative applications in the field of high-data rate optical communications.
NASA Astrophysics Data System (ADS)
Taira, Yoshitaka; Katoh, Masahiro
2018-06-01
We theoretically verify that optical vortices carrying orbital angular momentum are generated in various astrophysical situations via nonlinear inverse Thomson scattering. Arbitrary angle collisions between relativistic electrons and circularly polarized strong electromagnetic waves are treated. We reveal that the higher harmonic components of scattered photons carry well-defined orbital angular momentum under a specific condition that the Lorentz factor of the electron is much larger than the field strength parameter of the electromagnetic wave. Our study indicates that optical vortices in a wide frequency range from radio waves to gamma-rays are naturally generated in environments where high-energy electrons interact with circularly polarized strong electromagnetic waves at various interaction angles. Optical vortices should be a new multi-messenger member carrying information concerning the physical circumstances of their sources, e.g., the magnetic and radiation fields. Moreover, their interactions with matter via their orbital angular momenta may play an important role in the evolution of matter in the universe.
NASA Astrophysics Data System (ADS)
Steiniger, Klaus; Albach, Daniel; Debus, Alexander; Loeser, Markus; Pausch, Richard; Roeser, Fabian; Schramm, Ulrich; Siebold, Matthias; Bussmann, Michael
2017-05-01
Traveling-Wave Thomson-Scattering (TWTS) allows for the realization of optical free-electron lasers (OFELs) from the interaction of short, high-power laser pulses with brilliant relativistic electron bunches. The laser field provides the optical undulator which is traversed by the electrons. In order to achieve coherent amplification of radiation through electron microbunching the interaction between electrons and laser must be maintained over hundreds to thousands of undulator periods. Traveling-Wave Thomson-Scattering is the only scattering geometry so far allowing for the realization of optical undulators of this length which is at the same time scalable from extreme ultraviolet to X-ray photon energies. TWTS is also applicable for the realization of incoherent high peak brightness hard X-ray to gamma-ray sources which can provide orders of magnitude higher photon output than classic head-on Thomson sources. In contrast to head-on Thomson sources TWTS employs a side-scattering geometry where laser and electron propagation direction of motion enclose an angle. Tilting the laser pulse front with respect to the wave front by half of this interaction angle optimizes electron and laser pulse overlap. In the side-scattering geometry the tilt of the pulse-front compensates the spatial offset between electrons and laser pulse-front which would be present otherwise for an electron bunch far from the interaction point where it overlaps with the laser pulse center. Thus the laser pulse-front tilt ensures continuous overlap between laser pulse and electrons while these traverse the laser pulse cross-sectional area. This allows to control the interaction distance in TWTS by the laser pulse width rather than laser pulse duration as is the case for head-on Thomson scattering. Utilizing petawatt class laser pulses with millimeter to centimeter scale width allows for the realization of compact optical undulators with thousands of periods. When laser pulses for TWTS are prepared, care has to be taken of laser dispersion. Especially for scenarios featuring interaction angles of several ten to over one hundred degree the angular dispersion originating from laser pulse-front tilt can significantly prolong the pulse duration during the interaction which leads to a decrease in optical undulator amplitude and eventually terminates the interaction long before the target interaction distance is reached. In the talk it is shown how a pair of two gratings can be used to first generate the pulse-front tilt and second control and compensate dispersion during the interaction by utilizing the plane of optimum compression. Furthermore an experimental setup strategy is presented allowing for an interaction outside the laser pulse focus. This is a necessity for TWTS OFELs requiring focusing to reach optical undulator strengths on the order of unity since the centimeter scale laser pulse width at the interaction point result in turn in Rayleigh lengths on the order of one hundred meter and thus in laser focusing distances of several hundred meter. The talk shows how an out-of-focus interaction geometry utilizing strong focusing of the incident laser pulse needs to be designed in order to regain compactness by reducing the focusing distance by one to two orders of magnitude.
Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho
2016-01-01
An inexpensive and compact frequency multi-mode diode laser enables a compact two-photon polarization entanglement source via the continuous wave broadband pumped spontaneous parametric down-conversion (SPDC) process. Entanglement degradation caused by polarization mode dispersion (PMD) is one of the critical issues in optical fiber-based polarization entanglement distribution. We theoretically and experimentally investigate how the initial entanglement is degraded when the two-photon polarization entangled state undergoes PMD. We report an effect of PMD unique to broadband pumped SPDC, equally applicable to pulsed pumping as well as cw broadband pumping, which is that the amount of the entanglement degradation is asymmetrical to the PMD introduced to each quantum channel. We believe that our results have important applications in long-distance distribution of polarization entanglement via optical fiber channels. PMID:27174100
CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer.
Li, Yan; Zhou, Zhi-Yuan; Ding, Dong-Sheng; Shi, Bao-Sen
2015-11-02
Polarization entangled photon pair source is widely used in many quantum information processing applications such as teleportation, quantum communications, quantum computation and high precision quantum metrology. We report on the generation of a continuous-wave pumped 1550 nm polarization entangled photon pair source at telecom wavelength using a type-II periodically poled KTiOPO(4) (PPKTP) crystal in a Sagnac interferometer. Hong-Ou-Mandel (HOM) interference measurement yields signal and idler photon bandwidth of 2.4 nm. High quality of entanglement is verified by various kinds of measurements, for example two-photon interference fringes, Bell inequality and quantum states tomography. The source can be tuned over a broad range against temperature or pump power without loss of visibilities. This source will be used in our future experiments such as generation of orbital angular momentum entangled source at telecom wavelength for quantum frequency up-conversion, entanglement based quantum key distributions and many other quantum optics experiments at telecom wavelengths.
Scintillation analysis of truncated Bessel beams via numerical turbulence propagation simulation.
Eyyuboğlu, Halil T; Voelz, David; Xiao, Xifeng
2013-11-20
Scintillation aspects of truncated Bessel beams propagated through atmospheric turbulence are investigated using a numerical wave optics random phase screen simulation method. On-axis, aperture averaged scintillation and scintillation relative to a classical Gaussian beam of equal source power and scintillation per unit received power are evaluated. It is found that in almost all circumstances studied, the zeroth-order Bessel beam will deliver the lowest scintillation. Low aperture averaged scintillation levels are also observed for the fourth-order Bessel beam truncated by a narrower source window. When assessed relative to the scintillation of a Gaussian beam of equal source power, Bessel beams generally have less scintillation, particularly at small receiver aperture sizes and small beam orders. Upon including in this relative performance measure the criteria of per unit received power, this advantageous position of Bessel beams mostly disappears, but zeroth- and first-order Bessel beams continue to offer some advantage for relatively smaller aperture sizes, larger source powers, larger source plane dimensions, and intermediate propagation lengths.
NASA Astrophysics Data System (ADS)
Sutherland, Brandon R.; Sargent, Edward H.
2016-05-01
The field of solution-processed semiconductors has made great strides; however, it has yet to enable electrically driven lasers. To achieve this goal, improved materials are required that combine efficient (>50% quantum yield) radiative recombination under high injection, large and balanced charge-carrier mobilities in excess of 10 cm2 V-1 s-1, free-carrier densities greater than 1017 cm-3 and gain coefficients exceeding 104 cm-1. Solid-state perovskites are -- in addition to galvanizing the field of solar electricity -- showing great promise in photonic sources, and may be the answer to realizing solution-cast laser diodes. Here, we discuss the properties of perovskites that benefit light emission, review recent progress in perovskite electroluminescent diodes and optically pumped lasers, and examine the remaining challenges in achieving continuous-wave and electrically driven lasing.
Large depth high-precision FMCW tomography using a distributed feedback laser array
NASA Astrophysics Data System (ADS)
DiLazaro, Thomas; Nehmetallah, George
2018-02-01
Swept-source optical coherence tomography (SS-OCT) has been widely employed in the medical industry for the high resolution imaging of subsurface biological structures. SS-OCT typically exhibits axial resolutions on the order of tens of microns at speeds of hundreds of kilohertz. Using the same coherent heterodyne detection technique, frequency modulated continuous wave (FMCW) ladar has been used for highly precise ranging for distances up to kilometers. Distributed feedback lasers (DFBs) have been used as a simple and inexpensive source for FMCW ranging. Here, we use a bandwidth-combined DFB array for sub-surface volume imaging at a 27 μm axial resolution over meters of distance. 2D and 3D tomographic images of several semi-transparent and diffuse objects at distances up to 10 m will be presented.
NASA Astrophysics Data System (ADS)
Cheng, Yazhou; Jia, Yuechen; Akhmadaliev, Shavkat; Zhou, Shengqiang; Chen, Feng
2014-11-01
We report on the guided-wave second-harmonic generation in a KTiOPO4 nonlinear optical waveguide fabricated by a 17 MeV O5+ ion irradiation at a fluence of 1.5×1015 ions/cm2. The waveguide guides light along both TE and TM polarizations, which is suitable for phase-matching frequency doubling. Second harmonics of green light at a wavelength of 532 nm have been generated through the KTiOPO4 waveguide platform under an optical pump of fundamental wave at 1064 nm in both continuous-wave and pulsed regimes, reaching optical conversion efficiencies of 5.36%/W and 11.5%, respectively. The propagation losses have been determined to be ˜3.1 and ˜5.7 dB/cm for the TE and TM polarizations at a wavelength of 632.8 nm, respectively.
NASA Astrophysics Data System (ADS)
Kumara, K.; Shetty, T. C. S.; Patil, P. S.; Dharmaprakash, S. M.
2018-05-01
The present study investigates linear and third order nonlinear optical (TNLO) properties of nitrogen incorporated graphene oxide (NGO). A simple pyrolysis method is followed to obtain NGO powder which is soluble in polar aprotic and protic solvents. The normalized emission intensity of NGO for aprotic solvents shows better than polar protic solvents. The surface morphology and element analysis of NGO displayed a leaf like morphology and the elemental compositions of carbon, nitrogen and oxygen in NGO respectively. TNLO property of NGO is investigated by employing z-scan technique in which a continuous wave of wavelength 632.8 nm from He-Ne source was used. This investigation reveals the reverse saturation behaviour and negative nonlinear refractive (NLR) index in NGO. Negative NLR index sign arises mainly from local heating of solvents during continuous interactions of NGO with laser beam. The photoluminescence and TNLO data recorded for NGO revealed its potentiality for bio-sensing, bio-imaging and optoelectronic applications.
NASA Astrophysics Data System (ADS)
Ma, Yufei; He, Ying; Peng, Zhenfang; Sun, Haiyue; Peng, Fang; Yan, Renpeng; Li, Xudong; Yu, Xin; Zhang, Qingli; Ding, Shoujun
2018-05-01
A diode-pumped acousto-optically (AO) Q-switched 1066 nm laser with a novel Nd:GdTaO4 crystal was demonstrated for the first time to the best of our knowledge. The optimization selection of output coupler was carried out in the continuous-wave (CW) operation. After that the pulsed Nd:GdTaO4 laser performances using different modulation repetition rates of 10 kHz and 20 kHz were investigated. At an absorbed pump power of 10 W and repetition rates of 10 kHz, the obtained minimum pulse width was 28 ns and the maximum peak power was 5.4 kW.
Characterization of photoacoustic sources in tissue using time domain measurements
NASA Astrophysics Data System (ADS)
Viator, John Andrew
Photoacoustic phenomenon in tissue and tissue phantoms is investigated with the particular goal of discrimination of diseased and healthy tissue. Propagation of broadband photoacoustic sources in tissue phantoms is studied with emphasis on attenuation, dispersion, and diffraction. Attenuation of photoacoustic waves induced by a circular laser spot on an absorber/air interface is modeled by the on-axis approximation of the acoustic field of a baffled piston source. Dispersion is studied in a diffraction free situation, where the disk of irradiation was created by a 5 mm laser spot on a 200 cm -1 solution. The genesis of diffraction in an absorbing solution was displayed by showing the merging of a boundary wave with a plane wave from a circular laser spot on an absorbing solution. Depth profiling of absorbing tissue phantoms and stained tissue was shown using a photoacoustic method. Acrylamide gels with layers of different optical absorption and stained elastin biomaterials were irradiated with stress confined laser pulses. The resulting acoustic waves were detected with a lithium niobate wideband acoustic transducer and processed in an algorithm to determine absorption coefficient as a function of depth. Spherical photoacoustic sources were generated in optically clear and turbid tissue phantoms. Propagation time and acoustic pulse duration were used to determine location and size, respectively. The photoacoustic sources were imaged using a multiplicative backprojection scheme. Image sources from acoustic boundaries were detected and dipole sources were detected and imaged. Finally an endoscopic photoacoustic probe was designed, built, and tested for use in determining treatment depth after palliative photodynamic therapy of esophageal cancer. The probe was less than 2.5 mm in diameter and consisted of a side firing 600 mum optical fiber to deliver laser energy and a 890 mum diameter, side viewing piezoelectric detector. The sensitivity of the probe was determined. The probe was also tested on coagulated and non-coagulated liver, ex vivo and on normally perfused and underperfused human skin, in vivo.
NASA Astrophysics Data System (ADS)
Sharma, Ramesh C.; Waigh, Thomas A.; Singh, Jagdish P.
2008-03-01
The optical phase conjugation signal in nearly nondegenerate four wave mixing was studied using a rhodamine 110 doped boric acid glass saturable absorber nonlinear medium. We have demonstrated a narrow band optical filter (2.56±0.15Hz) using an optical phase conjugation signal in the frequency modulation of a weak probe beam in the presence of two strong counterpropagating pump beams in rhodamine 110 doped boric acid glass thin films (10-4m). Both the pump beams and the probe beam are at a wavelength of 488nm (continuous-wave Ar+ laser). The probe beam frequency was detuned with a ramp signal using a piezoelectric transducer mirror.
Experimental implementation of optical clockwork without carrier-envelope phase control.
Mücke, O D; Kuzucu, O; Wong, F N C; Ippen, E P; Kärtner, F X; Foreman, S M; Jones, D J; Ma, L S; Hall, J L; Ye, J
2004-12-01
We demonstrate optical clockwork without the need for carrier-envelope phase control by use of sum-frequency generation between a continuous-wave optical parametric oscillator at 3.39 microm and a femtosecond mode-locked Ti:sapphire laser with two strong spectral peaks at 834 and 670 nm, a spectral difference matched by the 3.39-microm radiation.
All-periodically poled, high-power, continuous-wave, single-frequency tunable UV source.
Aadhi, A; Chaitanya N, Apurv; Jabir, M V; Singh, R P; Samanta, G K
2015-01-01
We report on experimental demonstration of an all-periodically poled, continuous-wave (CW), high-power, single-frequency, ultra-violet (UV) source. Based on internal second-harmonic-generation (SHG) of a CW singly resonant optical parametric oscillator (OPO) pumped in the green, the UV source provides tunable radiation across 398.94-417.08 nm. The compact source comprising of a 25-mm-long MgO-doped periodically poled stoichiometric lithium tantalate (MgO:sPPLT) crystal of period Λ(SLT)=8.5 μm for OPO and a 5-mm-long, multi-grating (Λ(KTP)=3.3, 3.4, 3.6 and 3.8 μm), periodically poled potassium titanium phosphate (PPKTP) for intra-cavity SHG, provides as much as 336 mW of UV power at 398.94 nm, corresponding to a green-to-UV conversion efficiency of ∼6.7%. In addition, the singly resonant OPO (SRO) provides 840 mW of idler at 1541.61 nm and substantial signal power of 108 mW at 812.33 nm transmitted through the high reflective cavity mirrors. UV source provides single-frequency radiation with instantaneous line-width of ∼18.3 MHz and power >100 mW in Gaussian beam profile (ellipticity >92%) across the entire tuning range. Access to lower UV wavelengths requires smaller grating periods to compensate high phase-mismatch resulting from high material dispersion in the UV wavelength range. Additionally, we have measured the normalized temperature and spectral acceptance bandwidth of PPKTP crystal in the UV wavelength range to be ∼2.25°C·cm and ∼0.15 nm·cm, respectively.
Närhi, Mikko; Wetzel, Benjamin; Billet, Cyril; Toenger, Shanti; Sylvestre, Thibaut; Merolla, Jean-Marc; Morandotti, Roberto; Dias, Frederic; Genty, Goëry; Dudley, John M.
2016-01-01
Modulation instability is a fundamental process of nonlinear science, leading to the unstable breakup of a constant amplitude solution of a physical system. There has been particular interest in studying modulation instability in the cubic nonlinear Schrödinger equation, a generic model for a host of nonlinear systems including superfluids, fibre optics, plasmas and Bose–Einstein condensates. Modulation instability is also a significant area of study in the context of understanding the emergence of high amplitude events that satisfy rogue wave statistical criteria. Here, exploiting advances in ultrafast optical metrology, we perform real-time measurements in an optical fibre system of the unstable breakup of a continuous wave field, simultaneously characterizing emergent modulation instability breather pulses and their associated statistics. Our results allow quantitative comparison between experiment, modelling and theory, and are expected to open new perspectives on studies of instability dynamics in physics. PMID:27991513
NASA Astrophysics Data System (ADS)
Niwayama, Masatsugu
2018-03-01
We quantitatively investigated the measurement sensitivity of spatially resolved spectroscopy (SRS) across six tissue models: cerebral tissue, a small animal brain, the forehead of a fetus, an adult brain, forearm muscle, and thigh muscle. The optical path length in the voxel of the model was analyzed using Monte Carlo simulations. It was found that the measurement sensitivity can be represented as the product of the change in the absorption coefficient and the difference in optical path length in two states with different source-detector distances. The results clarified the sensitivity ratio between the surface layer and the deep layer at each source-detector distance for each model and identified changes in the deep measurement area when one of the detectors was close to the light source. A comparison was made with the results from continuous-wave spectroscopy. The study also identified measurement challenges that arise when the surface layer is inhomogeneous. Findings on the measurement sensitivity of SRS at each voxel and in each layer can support the correct interpretation of measured values when near-infrared oximetry or functional near-infrared spectroscopy is used to investigate different tissue structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savanier, Marc, E-mail: msavanier@eng.ucsd.edu; Mookherjea, Shayan, E-mail: smookherjea@eng.ucsd.edu
Generation of photon pairs from compact, manufacturable, and inexpensive silicon (Si) photonic devices at room temperature may help develop practical applications of quantum photonics. An important characteristic of photon-pair generation is the two-photon joint spectral intensity, which describes the frequency correlations of the photon pair. Recent attempts to generate a factorizable photon-pair state suitable for heralding have used short optical pump pulses from mode-locked lasers, which are much more expensive and bigger table-top or rack-sized instruments compared with the Si microchip used for generating photon pairs, and thus dominate the cost and inhibit the miniaturization of the source. Here, wemore » generate photon pairs from an Si microring resonator by using an electronic step-recovery diode to drive an electro-optic modulator which carves the pump light from a continuous-wave laser diode into pulses of the appropriate width, thus potentially eliminating the need for optical mode-locked lasers.« less
NASA Astrophysics Data System (ADS)
Savanier, Marc; Mookherjea, Shayan
2016-06-01
Generation of photon pairs from compact, manufacturable, and inexpensive silicon (Si) photonic devices at room temperature may help develop practical applications of quantum photonics. An important characteristic of photon-pair generation is the two-photon joint spectral intensity, which describes the frequency correlations of the photon pair. Recent attempts to generate a factorizable photon-pair state suitable for heralding have used short optical pump pulses from mode-locked lasers, which are much more expensive and bigger table-top or rack-sized instruments compared with the Si microchip used for generating photon pairs, and thus dominate the cost and inhibit the miniaturization of the source. Here, we generate photon pairs from an Si microring resonator by using an electronic step-recovery diode to drive an electro-optic modulator which carves the pump light from a continuous-wave laser diode into pulses of the appropriate width, thus potentially eliminating the need for optical mode-locked lasers.
Simultaneous observation of the gamma-ray binary LS I+61 303 with GLAST and Suzaku
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Takuya; Fukazawa, Yasushi; Mizuno, Tsunefumi
2007-07-12
The gamma-ray binary LS I+61 303 is a bright gamma-ray source, and thus an attracting object for GLAST. We proposed to observe this object with the X-ray satellite Suzaku (AO-2), simultaneously with GLAST, radio wave, and optical spectro-polarimetry, in order to probe the geometrical state of the binary system emitting the gamma-ray radiation, as a function of the binary orbital phase for the first time. This is essential to understand the mechanism of jet production and gamma-ray emission. The idea is not only to measure the multi-band overall continuum shape, but also to make use of continuous monitoring capability ofmore » GLAST, wide X-ray band of Suzaku, and good accessibility of the Kanata optical/NIR telescope (Hiroshima University) with the sensitive optical spectro-polarimetry. Further collaboration with TeV gamma-ray telescopes is also hoped to constrain the jet constitution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsujii, N.; Porkolab, M.; Edlund, E. M.
2009-11-26
Mode converted ion cyclotron wave (ICW) has been observed with phase contrast imaging (PCI) in D-{sup 3}He plasmas in Alcator C-Mod. The measurements were carried out with the optical heterodyne technique using acousto-optic modulators which modulate the CO2 laser beam intensity near the ion cyclotron frequency. With recently improved calibration of the PCI system using a calibrated sound wave source, the measurements have been compared with the full-wave code TORIC, as interpreted by a synthetic diagnostic. Because of the line-integrated nature of the PCI signal, the predictions are sensitive to the exact wave field pattern. The simulations are found tomore » be in qualitative agreement with the measurements.« less
Efficient Tm:Fiber Pumped Solid-State Ho:YLF 2-micrometer Laser for Remote Sensing Applications
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Bai, Yingxin; Yu, Jirong; Petros, Mulugeta
2012-01-01
An efficient 19 W, TEM(sub 00) mode, Ho:YLF laser pumped by continuous wave Tm:fiber laser has been demonstrated at the room temperature. The slope efficiency and optical-to-optical efficiency are 65% and 55%, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chizhov, P A; Ushakov, A A; Bukin, V V
2015-05-31
We propose a scheme for measuring the spatial distribution of the THz pulse electric field strength in an electro-optic crystal using optical interferometry. The resulting images of the field distribution from a test source with a spherical wave front are presented. (extreme light fields and their applications)
Geiregat, Pieter; Houtepen, Arjan J; Sagar, Laxmi Kishore; Infante, Ivan; Zapata, Felipe; Grigel, Valeriia; Allan, Guy; Delerue, Christophe; Van Thourhout, Dries; Hens, Zeger
2018-01-01
Colloidal quantum dots (QDs) raise more and more interest as solution-processable and tunable optical gain materials. However, especially for infrared active QDs, optical gain remains inefficient. Since stimulated emission involves multifold degenerate band-edge states, population inversion can be attained only at high pump power and must compete with efficient multi-exciton recombination. Here, we show that mercury telluride (HgTe) QDs exhibit size-tunable stimulated emission throughout the near-infrared telecom window at thresholds unmatched by any QD studied before. We attribute this unique behaviour to surface-localized states in the bandgap that turn HgTe QDs into 4-level systems. The resulting long-lived population inversion induces amplified spontaneous emission under continuous-wave optical pumping at power levels compatible with solar irradiation and direct current electrical pumping. These results introduce an alternative approach for low-threshold QD-based gain media based on intentional trap states that paves the way for solution-processed infrared QD lasers and amplifiers.
NASA Astrophysics Data System (ADS)
Geiregat, Pieter; Houtepen, Arjan J.; Sagar, Laxmi Kishore; Infante, Ivan; Zapata, Felipe; Grigel, Valeriia; Allan, Guy; Delerue, Christophe; van Thourhout, Dries; Hens, Zeger
2018-01-01
Colloidal quantum dots (QDs) raise more and more interest as solution-processable and tunable optical gain materials. However, especially for infrared active QDs, optical gain remains inefficient. Since stimulated emission involves multifold degenerate band-edge states, population inversion can be attained only at high pump power and must compete with efficient multi-exciton recombination. Here, we show that mercury telluride (HgTe) QDs exhibit size-tunable stimulated emission throughout the near-infrared telecom window at thresholds unmatched by any QD studied before. We attribute this unique behaviour to surface-localized states in the bandgap that turn HgTe QDs into 4-level systems. The resulting long-lived population inversion induces amplified spontaneous emission under continuous-wave optical pumping at power levels compatible with solar irradiation and direct current electrical pumping. These results introduce an alternative approach for low-threshold QD-based gain media based on intentional trap states that paves the way for solution-processed infrared QD lasers and amplifiers.
NASA Astrophysics Data System (ADS)
Flanigan, D.; McCarrick, H.; Jones, G.; Johnson, B. R.; Abitbol, M. H.; Ade, P.; Araujo, D.; Bradford, K.; Cantor, R.; Che, G.; Day, P.; Doyle, S.; Kjellstrand, C. B.; Leduc, H.; Limon, M.; Luu, V.; Mauskopf, P.; Miller, A.; Mroczkowski, T.; Tucker, C.; Zmuidzinas, J.
2016-02-01
We report photon-noise limited performance of horn-coupled, aluminum lumped-element kinetic inductance detectors at millimeter wavelengths. The detectors are illuminated by a millimeter-wave source that uses an active multiplier chain to produce radiation between 140 and 160 GHz. We feed the multiplier with either amplified broadband noise or a continuous-wave tone from a microwave signal generator. We demonstrate that the detector response over a 40 dB range of source power is well-described by a simple model that considers the number of quasiparticles. The detector noise-equivalent power (NEP) is dominated by photon noise when the absorbed power is greater than approximately 1 pW, which corresponds to NEP≈2 ×10-17 W Hz-1 /2 , referenced to absorbed power. At higher source power levels, we observe the relationships between noise and power expected from the photon statistics of the source signal: NEP∝P for broadband (chaotic) illumination and NEP∝P1 /2 for continuous-wave (coherent) illumination.
Telschow, K.L.; Siu, B.K.
1996-07-09
A method of evaluating integrity of adherence of a conductor bond to a substrate includes: (a) impinging a plurality of light sources onto a substrate; (b) detecting optical reflective signatures emanating from the substrate from the impinged light; (c) determining location of a selected conductor bond on the substrate from the detected reflective signatures; (d) determining a target site on the selected conductor bond from the detected reflective signatures; (e) optically imparting an elastic wave at the target site through the selected conductor bond and into the substrate; (f) optically detecting an elastic wave signature emanating from the substrate resulting from the optically imparting step; and (g) determining integrity of adherence of the selected conductor bond to the substrate from the detected elastic wave signature emanating from the substrate. A system is disclosed which is capable of conducting the method. 13 figs.
Telschow, Kenneth L.; Siu, Bernard K.
1996-01-01
A method of evaluating integrity of adherence of a conductor bond to a substrate includes: a) impinging a plurality of light sources onto a substrate; b) detecting optical reflective signatures emanating from the substrate from the impinged light; c) determining location of a selected conductor bond on the substrate from the detected reflective signatures; d) determining a target site on the selected conductor bond from the detected reflective signatures; e) optically imparting an elastic wave at the target site through the selected conductor bond and into the substrate; f) optically detecting an elastic wave signature emanating from the substrate resulting from the optically imparting step; and g) determining integrity of adherence of the selected conductor bond to the substrate from the detected elastic wave signature emanating from the substrate. A system is disclosed which is capable of conducting the method.
The advanced LIGO input optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Chris L., E-mail: cmueller@phys.ufl.edu; Arain, Muzammil A.; Ciani, Giacomo
The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions requiredmore » every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design.« less
In-vivo digital wavefront sensing using swept source OCT
Kumar, Abhishek; Wurster, Lara M.; Salas, Matthias; Ginner, Laurin; Drexler, Wolfgang; Leitgeb, Rainer A.
2017-01-01
Sub-aperture based digital adaptive optics is demonstrated in a fiber based point scanning optical coherence tomography system using a 1060 nm swept source laser. To detect optical aberrations in-vivo, a small lateral field of view of ~150×150 μm2 is scanned on the sample at a high volume rate of 17 Hz (~1.3 kHz B-scan rate) to avoid any significant lateral and axial motion of the sample, and is used as a “guide star” for the sub-aperture based DAO. The proof of principle is demonstrated using a micro-beads phantom sample, wherein a significant root mean square wavefront error (RMS WFE) of 1.48 waves (> 1μm) is detected. In-vivo aberration measurement with a RMS WFE of 0.33 waves, which is ~5 times higher than the Marechal’s criterion of 1/14 waves for the diffraction limited performance, is shown for a human retinal OCT. Attempt has been made to validate the experimental results with the conventional Shack-Hartmann wavefront sensor within reasonable limitations. PMID:28717573
Electro-optic voltage sensor for sensing voltage in an E-field
Davidson, James R.; Crawford, Thomas M.; Seifert, Gary D.
2002-03-26
A miniature electro-optic voltage sensor and system capable of accurate operation at high voltages has a sensor body disposed in an E-field. The body receives a source beam of electromagnetic radiation. A polarization beam displacer separates the source light beam into two beams with orthogonal linear polarizations. A wave plate rotates the linear polarization to rotated polarization. A transducer utilizes Pockels electro-optic effect and induces a differential phase shift on the major and minor axes of the rotated polarization in response to the E-field. A prism redirects the beam back through the transducer, wave plate, and polarization beam displacer. The prism also converts the rotated polarization to circular or elliptical polarization. The wave plate rotates the major and minor axes of the circular or elliptical polarization to linear polarization. The polarization beam displacer separates the beam into two beams of orthogonal linear polarization representing the major and minor axes. The system may have a transmitter for producing the beam of electro-magnetic radiation; a detector for converting the two beams into electrical signals; and a signal processor for determining the voltage.
1.083 μm laser operation in Nd,Mg:LiTaO3 crystal
NASA Astrophysics Data System (ADS)
Hu, P. C.; Hang, Y.; Li, R.; Gong, J.; Yin, J. G.; Zhao, C. C.; He, X. M.; Yu, T.; Zhang, L. H.; Chen, W. B.; Zhu, Y. Y.
2011-10-01
Nd,Mg:LiTaO3 single crystal with high optical quality was grown by Czochralski technique. Absorption and fluorescence spectra were investigated. The peak absorption cross section at 806.5 nm and peak emission cross section at 1091 nm are 6.81×10-20 and 3.28×10-20 cm2, respectively. The fluorescence lifetime was measured to be 129 μs. With a laser-diode as the pump source, a maximum 375 mW continuous-wave laser output at 1083 nm has been obtained with a slope efficiency of 7.2% with respect to the pump power.
Fully-resonant, tunable, monolithic frequency conversion as a coherent UVA source.
Zielińska, Joanna A; Zukauskas, Andrius; Canalias, Carlota; Noyan, Mehmet A; Mitchell, Morgan W
2017-01-23
We demonstrate a monolithic frequency converter incorporating up to four tuning degrees of freedom, three temperature and one strain, allowing resonance of pump and generated wavelengths simultaneous with optimal phase-matching. With a Rb-doped periodically-poled potassium titanyl phosphate (KTP) implementation, we demonstrate efficient continuous-wave second harmonic generation from 795 to 397, with low-power efficiency of 72% and high-power slope efficiency of 4.5%. The measured performance shows good agreement with theoretical modeling of the device. We measure optical bistability effects, and show how they can be used to improve the stability of the output against pump frequency and amplitude variations.
NASA Astrophysics Data System (ADS)
Zisis, G.; Martinez-Jimenez, G.; Franz, Y.; Healy, N.; Masaud, T. M.; Chong, H. M. H.; Soergel, E.; Peacock, A. C.; Mailis, S.
2017-08-01
We report laser-induced poling inhibition and direct poling in lithium niobate crystals (LiNbO3), covered with an amorphous silicon (a-Si) light-absorbing layer, using a visible (488 nm) continuous wave laser source. Our results show that the use of the a-Si overlayer produces deeper poling inhibited domains with minimum surface damage, as compared to previously reported UV laser writing experiments on uncoated crystals, thus increasing the applicability of this method in the production of ferroelectric domain engineered structures for nonlinear optical applications. The characteristics of the poling inhibited domains were investigated using differential etching and piezoresponse force microscopy.
Optical Riblet Sensor: Beam Parameter Requirements for the Probing Laser Source.
Tschentscher, Juliane; Hochheim, Sven; Brüning, Hauke; Brune, Kai; Voit, Kay-Michael; Imlau, Mirco
2016-03-30
Beam parameters of a probing laser source in an optical riblet sensor are studied by considering the high demands on a sensors' precision and reliability for the determination of deviations of the geometrical shape of a riblet. Mandatory requirements, such as minimum intensity and light polarization, are obtained by means of detailed inspection of the optical response of the riblet using ray and wave optics; the impact of wavelength is studied. Novel measures for analyzing the riblet shape without the necessity of a measurement with a reference sample are derived; reference values for an ideal riblet structure obtained with the optical riblet sensor are given. The application of a low-cost, frequency-doubled Nd:YVO₄ laser pointer sufficient to serve as a reliable laser source in an appropriate optical riblet sensor is discussed.
Optical Riblet Sensor: Beam Parameter Requirements for the Probing Laser Source
Tschentscher, Juliane; Hochheim, Sven; Brüning, Hauke; Brune, Kai; Voit, Kay-Michael; Imlau, Mirco
2016-01-01
Beam parameters of a probing laser source in an optical riblet sensor are studied by considering the high demands on a sensors’ precision and reliability for the determination of deviations of the geometrical shape of a riblet. Mandatory requirements, such as minimum intensity and light polarization, are obtained by means of detailed inspection of the optical response of the riblet using ray and wave optics; the impact of wavelength is studied. Novel measures for analyzing the riblet shape without the necessity of a measurement with a reference sample are derived; reference values for an ideal riblet structure obtained with the optical riblet sensor are given. The application of a low-cost, frequency-doubled Nd:YVO4 laser pointer sufficient to serve as a reliable laser source in an appropriate optical riblet sensor is discussed. PMID:27043567
NASA Astrophysics Data System (ADS)
Choi, S.; Mandelis, A.; Guo, X.; Lashkari, B.; Kellnberger, S.; Ntziachristos, V.
2015-06-01
In the field of medical diagnostics, biomedical photoacoustics (PA) is a non-invasive hybrid optical-ultrasonic imaging modality. Due to the unique hybrid capability of optical and acoustic imaging, PA imaging has risen to the frontiers of medical diagnostic procedures such as human breast cancer detection. While conventional PA imaging has been mainly carried out by a high-power pulsed laser, an alternative technology, the frequency domain biophotoacoustic radar (FD-PAR) is under intensive development. It utilizes a continuous wave optical source with the laser intensity modulated by a frequency-swept waveform for acoustic wave generation. The small amplitude of the generated acoustic wave is significantly compensated by increased signal-to-noise ratio (several orders of magnitude) using matched-filter and pulse compression correlation processing in a manner similar to radar systems. The current study introduces the theory of a novel FD-PAR modality for ultra-sensitive characterization of functional information for breast cancer imaging. The newly developed theory of wavelength-modulated differential PA spectroscopy (WM-DPAS) detection has been introduced to address angiogenesis and hypoxia monitoring, two well-known benchmarks of breast tumor formation. Based on the WM-DPAS theory, this modality efficiently suppresses background absorptions and is expected to detect very small changes in total hemoglobin concentration and oxygenation levels, thereby identifying pre-malignant tumors before they are anatomically apparent. An experimental system design for the WM-DPAS is presented and preliminary single-ended laser experimental results were obtained and compared to a limiting case of the developed theoretical formalism.
Barnes, Ronald A; Maswadi, Saher; Glickman, Randolph; Shadaram, Mehdi
2014-01-20
The goal of this paper is to demonstrate the unique capability of measuring the vector or angular information of propagating acoustic waves using an optical sensor. Acoustic waves were generated using photoacoustic interaction and detected by the probe beam deflection technique. Experiments and simulations were performed to study the interaction of acoustic emissions with an optical sensor in a coupling medium. The simulated results predict the probe beam and wavefront interaction and produced simulated signals that are verified by experiment.
Research and evolution of mid-infrared optical source
NASA Astrophysics Data System (ADS)
Chen, Changshui; Hu, Hui; Xu, Lei
2016-10-01
3-5 μm mid-infrared wave band is in the atmosphere window, it has lots of promising applications on the spectroscopy, remote sensing, medical treatment, environmental protection and military affairs. So, it has been a hot topic around the world to research the lasers at this wave band. In recent years, adiabatic passage technology has been applied in frequency conversion area, which borrowed from atomic physics. In this paper we will introduce efficient nonlinear optics frequency conversion by suing this technology.
A computer program to evaluate optical systems
NASA Technical Reports Server (NTRS)
Innes, D.
1972-01-01
A computer program is used to evaluate a 25.4 cm X-ray telescope at a field angle of 20 minutes of arc by geometrical analysis. The object is regarded as a point source of electromagnetic radiation, and the optical surfaces are treated as boundary conditions in the solution of the electromagnetic wave propagation equation. The electric field distribution is then determined in the region of the image and the intensity distribution inferred. A comparison of wave analysis results and photographs taken through the telescope shows excellent agreement.
NASA Astrophysics Data System (ADS)
Milej, Daniel; Janusek, Dariusz; Gerega, Anna; Wojtkiewicz, Stanislaw; Sawosz, Piotr; Treszczanowicz, Joanna; Weigl, Wojciech; Liebert, Adam
2015-10-01
The aim of the study was to determine optimal measurement conditions for assessment of brain perfusion with the use of optical contrast agent and time-resolved diffuse reflectometry in the near-infrared wavelength range. The source-detector separation at which the distribution of time of flights (DTOF) of photons provided useful information on the inflow of the contrast agent to the intracerebral brain tissue compartments was determined. Series of Monte Carlo simulations was performed in which the inflow and washout of the dye in extra- and intracerebral tissue compartments was modeled and the DTOFs were obtained at different source-detector separations. Furthermore, tests on diffuse phantoms were carried out using a time-resolved setup allowing the measurement of DTOFs at 16 source-detector separations. Finally, the setup was applied in experiments carried out on the heads of adult volunteers during intravenous injection of indocyanine green. Analysis of statistical moments of the measured DTOFs showed that the source-detector separation of 6 cm is recommended for monitoring of inflow of optical contrast to the intracerebral brain tissue compartments with the use of continuous wave reflectometry, whereas the separation of 4 cm is enough when the higher-order moments of DTOFs are available.
A New Optical Bench Concept for Space-Based Laser Interferometric Gravitational Wave Missions
NASA Astrophysics Data System (ADS)
Chilton, Andrew; Apple, Stephen; Ciani, Giacomo; Olatunde, Taiwo; Conklin, John; Mueller, Guido
2015-04-01
Space-based interferometric gravitational wave detectors such as LISA have been proposed to detect low-frequency gravitational wave sources such as the inspirals of compact objects into massive black holes or two massive black holes into each other. The optical components used to perform the high-precision interferometry required to make these measurements have historically been bonded to Zerodur optical benches, which are thermally ultrastable but difficult and time-consuming to manufacture. More modern implementations of LISA-like interferometry have reduced the length stability requirement on these benches from 30fm/√{Hz} to a few pm √{ Hz}. We therefore propose to alter the design of the optical bench in such a way as to no longer require the use of Zerodur; instead, we plan to replace it with more easily-used materials such as titanium or molybdenum. In this presentation, we discuss the current status of and future plans for the construction and testing of such an optical bench.
2 μm laser oscillation of Ho3+:Tm3+-codoped silica microspheres.
Peng, Longxiang; Huang, Yantang; Duan, Yafan; Zhuang, Shijian; Liao, Tingdi; Xu, Canhua
2017-09-10
2 μm laser oscillation with a low threshold has been achieved in Ho 3+ :Tm 3+ -codoped silica microspheres (HTCSMs). Ho 3+ :Tm 3+ -codoped solgel functionalization film is applied to the surface of a silica microsphere, and an optical tapered fiber is adopted to couple an 808 nm continuous-wave laser to serve as the pump light source. Multimode and single-mode laser oscillations around 2 μm within the eye-safe wave band are observed due to the I 7 5→I 8 5 transitions of Ho 3+ ions sensitized by Tm 3+ . The morphology characteristics of microspheres determine the multimode laser oscillation spectrum. The free spectral range is in good accordance with the calculated value based on Mie scattering theory. The HTCSM laser oscillation shows characteristics of good capability, simple process, high flexibility, and low cost.
Efficient laser-diode end-pumped Nd:GGG lasers at 1054 and 1067 nm.
Xu, Bin; Xu, Huiying; Cai, Zhiping; Camy, P; Doualan, J L; Moncorgé, R
2014-10-10
Efficient and compact laser-diode end-pumped Nd:GGG simultaneous multiwavelength continuous-wave lasers at ∼1059, ∼1060 and ∼1062 nm were first demonstrated in a free-running 30 mm plano-concave laser cavity. The maximum output power was up to 3.92 W with a slope efficiency of about 53.6% with respect to the absorbed pump power. By inserting a 0.1 mm optical glass plate acting as a Fabry-Pérot etalon, a single-wavelength laser at ∼1067 nm with a maximum output power of 1.95 W and a slope efficiency of 28.5% can be obtained. Multiwavelength lasers, including those at ∼1054 or ∼1067 nm, were also achievable by suitably tilting the glass etalon. These simultaneous multiwavelength lasers provide a potential source for terahertz wave generation.
Gravitational Wave Experiments - Proceedings of the First Edoardo Amaldi Conference
NASA Astrophysics Data System (ADS)
Coccia, E.; Pizzella, G.; Ronga, F.
1995-07-01
The Table of Contents for the full book PDF is as follows: * Foreword * Notes on Edoardo Amaldi's Life and Activity * PART I. INVITED LECTURES * Sources and Telescopes * Sources of Gravitational Radiation for Detectors of the 21st Century * Neutrino Telescopes * γ-Ray Bursts * Space Detectors * LISA — Laser Interferometer Space Antenna for Gravitational Wave Measurements * Search for Massive Coalescing Binaries with the Spacecraft ULYSSES * Interferometers * The LIGO Project: Progress and Prospects * The VIRGO Experiment: Status of the Art * GEO 600 — A 600-m Laser Interferometric Gravitational Wave Antenna * 300-m Laser Interferometer Gravitational Wave Detector (TAMA300) in Japan * Resonant Detectors * Search for Continuous Gravitational Wave from Pulsars with Resonant Detector * Operation of the ALLEGRO Detector at LSU * Preliminary Results of the New Run of Measurements with the Resonant Antenna EXPLORER * Operation of the Perth Cryogenic Resonant-Bar Gravitational Wave Detector * The NAUTILUS Experiment * Status of the AURIGA Gravitational Wave Antenna and Perspectives for the Gravitational Waves Search with Ultracryogenic Resonant Detectors * Ultralow Temperature Resonant-Mass Gravitational Radiation Detectors: Current Status of the Stanford Program * Electromechanical Transducers and Bandwidth of Resonant-Mass Gravitational-Wave Detectors * Fully Numerical Data Analysis for Resonant Gravitational Wave Detectors: Optimal Filter and Available Information * PART II. CONTRIBUTED PAPERS * Sources and Telescopes * The Local Supernova Production * Periodic Gravitational Signals from Galactic Pulsars * On a Possibility of Scalar Gravitational Wave Detection from the Binary Pulsars PSR 1913+16 * Kazan Gravitational Wave Detector “Dulkyn”: General Concept and Prospects of Construction * Hierarchical Approach to the Theory of Detection of Periodic Gravitational Radiation * Application of Gravitational Antennae for Fundamental Geophysical Problems * On Production of Gravitational Radiation by Particle Accelerators and by High Power Lasers * NESTOR: An Underwater Cerenkov Detector for Neutrino Astronomy * A Cosmic-Ray Veto System for the Gravitational Wave Detector NAUTLUS * Interferometers * Development of a 20m Prototype Laser Interferometric Gravitational Wave Detector at NAO * Production of Higher-Order Light Modes by High Quality Optical Components * Vibration Isolation and Suspension Systems for Laser Interferometer Gravitational Wave Detectors * Quality Factors of Stainless Steel Pendulum Wires * Reduction of Suspension Thermal Noises in Laser Free Masses Gravitational Antenna by Correlation of the Output with Additional Optical Signal * Resonant Detectors * Regeneration Effects in a Resonant Gravitational Wave Detector * A Cryogenic Sapphire Transducer with Double Frequency Pumping for Resonant Mass GW Detectors * Effect of Parametric Instability of Gravitational Wave Antenna with Microwave Cavity Transducer * Resonators of Novel Geometry for Large Mass Resonant Transducers * Measurements on the Gravitational Wave Antenna ALTAIR Equipped with a BAE Transducer * The Rome BAE Transducer: Perspectives of its Application to Ultracryogenic Gravitational Wave Antennas * Behavior of a de SQUID Tightly Coupled to a High-Q Resonant Transducer * High Q-Factor LC Resonators for Optimal Coupling * Comparison Between Different Data Analysis Procedures for Gravitational Wave Pulse Detection * Supernova 1987A Rome Maryland Gravitational Radiation Antenna Observations * Analysis of the Data Recorded by the Maryland and Rome Gravitational-Wave Detectors and the Seismic Data from Moscow and Obninsk Station during SN1987A * Multitransducer Resonant Gravitational Antennas * Local Array of High Frequency Antennas * Interaction Cross-Sections for Spherical Resonant GW Antennae * Signal-To-Noise Analysis for a Spherical Gravitational Wave Antenna Instrumented with Multiple Transducers * On the Design of Ultralow Temperature Spherical Gravitational Wave Detectors * List of Participants
The local nanohertz gravitational-wave landscape from supermassive black hole binaries
NASA Astrophysics Data System (ADS)
Mingarelli, Chiara M. F.; Lazio, T. Joseph W.; Sesana, Alberto; Greene, Jenny E.; Ellis, Justin A.; Ma, Chung-Pei; Croft, Steve; Burke-Spolaor, Sarah; Taylor, Stephen R.
2017-12-01
Supermassive black hole binary systems form in galaxy mergers and reside in galactic nuclei with large and poorly constrained concentrations of gas and stars. These systems emit nanohertz gravitational waves that will be detectable by pulsar timing arrays. Here we estimate the properties of the local nanohertz gravitational-wave landscape that includes individual supermassive black hole binaries emitting continuous gravitational waves and the gravitational-wave background that they generate. Using the 2 Micron All-Sky Survey, together with galaxy merger rates from the Illustris simulation project, we find that there are on average 91 ± 7 continuous nanohertz gravitational-wave sources, and 7 ± 2 binaries that will never merge, within 225 Mpc. These local unresolved gravitational-wave sources can generate a departure from an isotropic gravitational-wave background at a level of about 20 per cent, and if the cosmic gravitational-wave background can be successfully isolated, gravitational waves from at least one local supermassive black hole binary could be detected in 10 years with pulsar timing arrays.
The Tea-Carbon Dioxide Laser as a Means of Generating Ultrasound in Solids
NASA Astrophysics Data System (ADS)
Taylor, Gregory Stuart
1990-01-01
Available from UMI in association with The British Library. Requires signed TDF. The aim of this thesis is to characterise the interaction between pulsed, high power, 10.6 mu m radiation and solids. The work is considered both in the general context of laser generation of ultrasound and specifically to gain a deeper understanding of the interaction between a laser supported plasma and a solid. The predominant experimental tools used are the homodyne Michelson interferometer and a range of electromagnetic acoustic transducers. To complement the ultrasonic data, various plasma inspection techniques, such as high speed, streak camera photography and reflection photometry, have been used to correlate the plasma properties with those of the ultrasonic transients. The work involving the characterisation of a laser supported plasma with a solid, which is based on previous experimental and theoretical analysis, gives an increased understanding of the plasma's ultrasonic generation mechanism. The ability to record the entire plasma-sample interaction, time history yields information of the internal dynamics of the plasma growth and shock wave generation. The interaction of the radiation with a solid is characterised in both the plasma breakdown and non-breakdown regimes by a wide ultrasonic source. The variation in source diameter enables the transition from a point to a near planar ultrasonic source to be studied. The resultant ultrasonic modifications are examined in terms of the wave structure and the directivity pattern. The wave structure is analysed in terms of existing wide source, bulk wave theories and extended to consider the effects on surface and Lamb waves. The directivity patterns of the longitudinal and shear waves are analysed in terms of top-hat and non -uniform source profiles, giving additional information into the radiation-solid interaction. The wide, one dimensional source analysis is continued to a two dimensional, extended ultrasonic source, generated on non-metals by the optical penetration of radiation within the target. The generation of ultrasound in both metals and non-metals, using the CO_2 laser, is shown to be an efficient process and may be employed almost totally non-destructively. Such a laser may therefore be used effectively on a greatly enhanced range of materials than those tested to-date via laser generation, resulting in the increased suitability of the laser technique within the field of Non Destructive Testing.
Continuous-wave infrared optical nerve stimulation for potential diagnostic applications
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Cilip, Christopher M.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2010-09-01
Optical nerve stimulation using infrared laser radiation has recently been developed as a potential alternative to electrical nerve stimulation. However, recent studies have focused primarily on pulsed delivery of the laser radiation and at relatively low pulse rates. The objective of this study is to demonstrate faster optical stimulation of the prostate cavernous nerves using continuous-wave (cw) infrared laser radiation for potential diagnostic applications. A thulium fiber laser (λ=1870 nm) is used for noncontact optical stimulation of the rat prostate cavernous nerves in vivo. Optical nerve stimulation, as measured by an intracavernous pressure (ICP) response in the penis, is achieved with the laser operating in either cw mode, or with a 5-ms pulse duration at 10, 20, 30, 40, 50, and 100 Hz. Successful optical stimulation is observed to be primarily dependent on a threshold nerve temperature (42 to 45 °C), rather than an incident fluence, as previously reported. cw optical nerve stimulation provides a significantly faster ICP response time using a lower power (and also less expensive) laser than pulsed stimulation. cw optical nerve stimulation may therefore represent an alternative mode of stimulation for intraoperative diagnostic applications where a rapid response is critical, such as identification of the cavernous nerves during prostate cancer surgery.
Proceedings of the 10th international workshop on ECR ion sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, F W; Kirkpatrick, M I
This report contains papers on the following topics: Recent Developments and Future Projects on ECR Ion Sources; Operation of the New KVI ECR Ion Source at 10 GHz; Operational Experience and Status of the INS SF-ECR Ion Source; Results of the New ECR4'' 14.5 GHz ECRIS; Preliminary Performance of the AECR; Experimental Study of the Parallel and Perpendicular Particle Losses from an ECRIS Plasma; Plasma Instability in Electron Cyclotron Resonance Heated Ion Sources; The Hyperbolic Energy Analyzer; Status of ECR Source Development; The New 10 GHz CAPRICE Source; First Operation of the Texas A M ECR Ion Source; Recent Developmentsmore » of the RIKEN ECR Ion Sources; The 14 GHz CAPRICE Source; Characteristics and Potential Applications of an ORNL Microwave ECR Multicusp Plasma Ion Source; ECRIPAC: The Production and Acceleration of Multiply Charged Ions Using an ECR Plasma; ECR Source for the HHIRF Tandem Accelerator; Feasibility Studies for an ECR-Generated Plasma Stripper; Production of Ion Beams by using the ECR Plasmas Cathode; A Single Stage ECR Source for Efficient Production of Radioactive Ion Beams; The Single Staged ECR Source at the TRIUMF Isotope Separator TISOL; The Continuous Wave, Optically Pumped H{sup {minus}} Source; The H{sup +} ECR Source for the LAMPF Optically Pumped Polarized Ion Source; Present Status of the Warsaw CUSP ECR Ion Source; An ECR Source for Negative Ion Production; GYRAC-D: A Device for a 200 keV ECR Plasma Production and Accumulation; Status Report of the 14.4 GHZ ECR in Legnaro; Status of JYFL-ECRIS; Report on the Uppsala ECRIS Facility and Its Planned Use for Atomic Physics; A 10 GHz ECR Ion Source for Ion-Electron and Ion-Atom Collision Studies; and Status of the ORNL ECR Source Facility for Multicharged Ion Collision Research.« less
Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography
NASA Astrophysics Data System (ADS)
Zhu, Jiang; Miao, Yusi; Qi, Li; Qu, Yueqiao; He, Youmin; Yang, Qiang; Chen, Zhongping
2017-05-01
Shear wave measurements for the determination of tissue elastic properties have been used in clinical diagnosis and soft tissue assessment. A shear wave propagates as a transverse wave where vibration is perpendicular to the wave propagation direction. Previous transverse shear wave measurements could detect the shear modulus in the lateral region of the force; however, they could not provide the elastic information in the axial region of the force. In this study, we report the imaging and quantification of longitudinal shear wave propagation using optical coherence tomography to measure the elastic properties along the force direction. The experimental validation and finite element simulations show that the longitudinal shear wave propagates along the vibration direction as a plane wave in the near field of a planar source. The wave velocity measurement can quantify the shear moduli in a homogeneous phantom and a side-by-side phantom. Combining the transverse shear wave and longitudinal shear wave measurements, this system has great potential to detect the directionally dependent elastic properties in tissues without a change in the force direction.
High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)
NASA Astrophysics Data System (ADS)
Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; O'Donnell, Matthew; Wang, Ruikang K.
2016-03-01
Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.
Fumeaux, Christophe; Lin, Hungyen; Serita, Kazunori; Withayachumnankul, Withawat; Kaufmann, Thomas; Tonouchi, Masayoshi; Abbott, Derek
2012-07-30
The process of terahertz generation through optical rectification in a nonlinear crystal is modeled using discretized equivalent current sources. The equivalent terahertz sources are distributed in the active volume and computed based on a separately modeled near-infrared pump beam. This approach can be used to define an appropriate excitation for full-wave electromagnetic numerical simulations of the generated terahertz radiation. This enables predictive modeling of the near-field interactions of the terahertz beam with micro-structured samples, e.g. in a near-field time-resolved microscopy system. The distributed source model is described in detail, and an implementation in a particular full-wave simulation tool is presented. The numerical results are then validated through a series of measurements on square apertures. The general principle can be applied to other nonlinear processes with possible implementation in any full-wave numerical electromagnetic solver.
Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides.
Wang, Ke-Yao; Foster, Amy C
2012-04-15
We demonstrate wavelength conversion through nonlinear parametric processes in hydrogenated amorphous silicon (a-Si:H) with maximum conversion efficiency of -13 dB at telecommunication data rates (10 GHz) using only 15 mW of pump peak power. Conversion bandwidths as large as 150 nm (20 THz) are measured in continuous-wave regime at telecommunication wavelengths. The nonlinear refractive index of the material is determined by four-wave mixing (FWM) to be n(2)=7.43×10(-13) cm(2)/W, approximately an order of magnitude larger than that of single crystal silicon. © 2012 Optical Society of America
LSPV+7, a branch-point-tolerant reconstructor for strong turbulence adaptive optics.
Steinbock, Michael J; Hyde, Milo W; Schmidt, Jason D
2014-06-20
Optical wave propagation through long paths of extended turbulence presents unique challenges to adaptive optics (AO) systems. As scintillation and branch points develop in the beacon phase, challenges arise in accurately unwrapping the received wavefront and optimizing the reconstructed phase with respect to branch cut placement on a continuous facesheet deformable mirror. Several applications are currently restricted by these capability limits: laser communication, laser weapons, remote sensing, and ground-based astronomy. This paper presents a set of temporally evolving AO simulations comparing traditional least-squares reconstruction techniques to a complex-exponential reconstructor and several other reconstructors derived from the postprocessing congruence operation. The reconstructors' behavior in closed-loop operation is compared and discussed, providing several insights into the fundamental strengths and limitations of each reconstructor type. This research utilizes a self-referencing interferometer (SRI) as the high-order wavefront sensor, driving a traditional linear control law in conjunction with a cooperative point source beacon. The SRI model includes practical optical considerations and frame-by-frame fiber coupling effects to allow for realistic noise modeling. The "LSPV+7" reconstructor is shown to offer the best performance in terms of Strehl ratio and correction stability-outperforming the traditional least-squares reconstructed system by an average of 120% in the studied scenarios. Utilizing a continuous facesheet deformable mirror, these reconstructors offer significant AO performance improvements in strong turbulence applications without the need for segmented deformable mirrors.
Integrated coherent matter wave circuits
Ryu, C.; Boshier, M. G.
2015-09-21
An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmore » electric polarizability. Moreover, the source of coherent matter waves is a Bose–Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.« less
NASA Astrophysics Data System (ADS)
Baraskar, Priyanka; Chouhan, Romita; Agrawal, Arpana; Choudhary, R. J.; Sen, Pranay K.; Sen, Pratima
2018-03-01
We report the magnetic field effect on the linear and nonlinear optical properties of pulse laser ablated Ti-incorporated Cr2O3 nanostructured thin film. Optical properties have been experimentally analyzed under Voigt geometry by performing ultraviolet-visible spectroscopy and closed aperture Z-scan technique using a continuous wave He-Ne laser source. Nonlinear optical response reveals a single peak-valley feature in the far field diffraction pattern in absence of magnetic field (B = 0) confirming self-defocussing effect. This feature switches to a valley-peak configuration for B = 5000G, suggesting self-focusing effect. For B ≤ 750G, oscillations were observed revealing the occurrence of higher order nonlinearity. Origin of nonlinearity is attributed to the near resonant d-d transitions observed from the broad peak occurring around 2 eV. These transitions are of magnetic origin and get modified under the application of external magnetic field. Our results suggest that magnetic field can be used as an effective tool to monitor the sign of optical nonlinearity and hence the thermal expansion in Ti-incorporated Cr2O3 nanostructured thin film.
Seismic noise frequency dependent P and S wave sources
NASA Astrophysics Data System (ADS)
Stutzmann, E.; Schimmel, M.; Gualtieri, L.; Farra, V.; Ardhuin, F.
2013-12-01
Seismic noise in the period band 3-10 sec is generated in the oceans by the interaction of ocean waves. Noise signal is dominated by Rayleigh waves but body waves can be extracted using a beamforming approach. We select the TAPAS array deployed in South Spain between June 2008 and September 2009 and we use the vertical and horizontal components to extract noise P and S waves, respectively. Data are filtered in narrow frequency bands and we select beam azimuths and slownesses that correspond to the largest continuous sources per day. Our procedure automatically discard earthquakes which are localized during short time durations. Using this approach, we detect many more noise P-waves than S-waves. Source locations are determined by back-projecting the detected slowness/azimuth. P and S waves are generated in nearby areas and both source locations are frequency dependent. Long period sources are dominantly in the South Atlantic and Indian Ocean whereas shorter period sources are rather in the North Atlantic Ocean. We further show that the detected S-waves are dominantly Sv-waves. We model the observed body waves using an ocean wave model that takes into account all possible wave interactions including coastal reflection. We use the wave model to separate direct and multiply reflected phases for P and S waves respectively. We show that in the South Atlantic the complex source pattern can be explained by the existence of both coastal and pelagic sources whereas in the North Atlantic most body wave sources are pelagic. For each detected source, we determine the equivalent source magnitude which is compared to the model.
Fiber optic device for sensing the presence of a gas
Benson, David K.; Bechinger, Clemens S.; Tracy, C. Edwin
1998-01-01
A fiber-optic device for sensing the presence of a gas in an environment is provided. The device comprises a light source for directing a light beam to a layer system having a first surface and a second surface opposite the first surface. The first surface is exposable to the light beam and the second surface is exposable to the environment. A first light portion encounters and reflects from the first surface at an angle of incidence free from optical wave guide resonance phenomenon and the second light portion encounters and reflects from the first surface at an angle of incidence enabling an optical wave guide resonance phenomenon. The layer system is selected to reversibly react with the gas to be detected. The reaction between the gas and the material changes the material's optical properties and the wavelength at which the optical wave guide resonance occurs. Furthermore, a mechanism for measuring the intensity of the reflected first light portion relative to the reflected second light portion is provided with the ratio of the first and second light portions indicating the concentration of the gas presence in the environment.
Gold nanorod reshaping in vitro and in vivo using a continuous wave laser
Zhou, Yu; Shah, Anant; Ruenraroengsak, Pakatip; Gallina, Maria Elena; Hanna, George B.; Cass, Anthony E. G.; Porter, Alexandra E.; Bamber, Jeffrey; Elson, Daniel S.
2017-01-01
Gold nanorods (GNRs) are increasingly being investigated for cancer theranostics as they possess features which lend themselves in equal measures as contrast agents and catalysts for photothermal therapy. Their optical absorption spectral peak wavelength is determined by their size and shape. Photothermal therapy using GNRs is typically established using near infrared light as this allows sufficient penetration into the tumour matrix. Continuous wave (CW) lasers are the most commonly applied source of near infrared irradiation on GNRs for tumour photothermal therapy. It is perceived that large tumours may require fractionated or prolonged irradiation. However the true efficacy of repeated or protracted CW irradiation on tumour sites using the original sample of GNRs remains unclear. In this study spectroscopy and transmission electron microscopy are used to demonstrate that GNRs reshape both in vitro and in vivo after CW irradiation, which reduces their absorption efficiency. These changes were sustained throughout and beyond the initial period of irradiation, resulting from a spectral blue-shift and a considerable diminution in the absorption peak of GNRs. Solid subcutaneous tumours in immunodeficient BALB/c mice were subjected to GNRs and analysed with electron microscopy pre- and post-CW laser irradiation. This phenomenon of thermally induced GNR reshaping can occur at relatively low bulk temperatures, well below the bulk melting point of gold. Photoacoustic monitoring of GNR reshaping is also evaluated as a potential clinical aid to determine GNR absorption and reshaping during photothermal therapy. Aggregation of particles was coincidentally observed following CW irradiation, which would further diminish the subsequent optical absorption capacity of irradiated GNRs. It is thus established that sequential or prolonged applications of CW laser will not confer any additional photothermal effect on tumours due to significant attenuations in the peak optical absorption properties of GNRs following primary laser irradiation. PMID:29045438
A gravitational-wave standard siren measurement of the Hubble constant
Abbott, B. P.; Abbott, R.; Abbott, T. D.; ...
2017-10-16
On 17 August 2017, the Advanced LIGO and Virgo detectors observed the gravitational-wave event GW170817—a strong signal from the merger of a binary neutron-star system. Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO–Virgo-derived location of the gravitational-wave source. This sky region was subsequently observed by optical astronomy facilities, resulting in the identificationof an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first ‘multi-messenger’ astronomical observation. Such observationsmore » enable GW170817 to be used as a ‘standard siren’ (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic ‘distance ladder’: the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. Furthermore, this value is consistent with existing measurements, while being completely independent of them. Additional standard siren measurements from future gravitational-wave sources will enable the Hubble constant to be constrained to high precision.« less
A gravitational-wave standard siren measurement of the Hubble constant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, B. P.; Abbott, R.; Abbott, T. D.
On 17 August 2017, the Advanced LIGO and Virgo detectors observed the gravitational-wave event GW170817—a strong signal from the merger of a binary neutron-star system. Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO–Virgo-derived location of the gravitational-wave source. This sky region was subsequently observed by optical astronomy facilities, resulting in the identificationof an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first ‘multi-messenger’ astronomical observation. Such observationsmore » enable GW170817 to be used as a ‘standard siren’ (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic ‘distance ladder’: the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. Furthermore, this value is consistent with existing measurements, while being completely independent of them. Additional standard siren measurements from future gravitational-wave sources will enable the Hubble constant to be constrained to high precision.« less
Quantum information processing with a travelling wave of light
NASA Astrophysics Data System (ADS)
Serikawa, Takahiro; Shiozawa, Yu; Ogawa, Hisashi; Takanashi, Naoto; Takeda, Shuntaro; Yoshikawa, Jun-ichi; Furusawa, Akira
2018-02-01
We exploit quantum information processing on a traveling wave of light, expecting emancipation from thermal noise, easy coupling to fiber communication, and potentially high operation speed. Although optical memories are technically challenging, we have an alternative approach to apply multi-step operations on traveling light, that is, continuous-variable one-way computation. So far our achievement includes generation of a one-million-mode entangled chain in time-domain, mode engineering of nonlinear resource states, and real-time nonlinear feedforward. Although they are implemented with free space optics, we are also investigating photonic integration and performed quantum teleportation with a passive liner waveguide chip as a demonstration of entangling, measurement, and feedforward. We also suggest a loop-based architecture as another model of continuous-variable computing.
A continuous-wave and passively Q-switched Nd:LaGGG laser at 937 nm
NASA Astrophysics Data System (ADS)
Li, Z.-Y.; Ying, H.-Y.; Yang, H.; He, J.-L.
2013-10-01
A diode-end-pumped continuous-wave (CW) and passively Q-switched Nd:LaGGG (GGG: gadolinium gallium garnet) laser at about 937 nm was demonstrated for the first time. The maximum CW output power of 540 mW was obtained with the optical-optical conversion efficiency of 3.2% and the slope efficiency of 4.4%. A V3+:YAG (yttrium aluminum garnet) saturable absorber with the initial transmission of 97% was used for the passive Q-switching regime. The shortest pulse width was achieved as 500 ns with the pulse repetition rate of 96 kHz. The corresponding single-pulse energy and pulse peak power were determined as 1.56 μJ and 3.12 W, respectively.
10Gbps monolithic silicon FTTH transceiver for PON
NASA Astrophysics Data System (ADS)
Zhang, J.; Liow, T. Y.; Lo, G. Q.; Kwong, D. L.
2010-05-01
We propose a new passive optical network (PON) configuration and a novel silicon photonic transceiver architecture for optical network unit (ONU), eliminating the need for an internal laser source in ONU. We adopt dual fiber network configuration. The internal light source in each of the ONUs is eliminated. Instead, an extra seed laser source in the optical line termination (OLT) operates in continuous wave mode to serve the ONUs in the PON as a shared and centralized laser source. λ1 from OLT Tx and λ2 from the seed laser are combined by using a WDM combiner and connected to serve the multiple ONUs through the downstream fibers. The ONUs receive the data in λ1. Meanwhile, the ONUs encode and transmit data in λ2, which are sent back to OLT. The monolithic ONU transceiver contains a wavelength-division-multiplexing (WDM) filter component, a silicon modulator and a Ge photo-detector. The WDM in ONU selectively guides λ1 to the Ge-PD where the data in λ1 are detected and converted to electrical signals, and λ2 to the transmitter where the light is modulated by upstream data. The modulated optical signals in λ2 from ONUs are connected back to OLT through upstream fibers. The monolithic ONU transceiver chip size is only 2mm by 4mm. The crosstalk between the Tx and Rx is measured to be less than -20dB. The transceiver chip is integrated on a SFP+ transceiver board. Both Tx and Rx demonstrated data rate capabilities of up to 10Gbps. By implementing this scheme, the ONU transceiver size can be significantly reduced and the assembly processes will be greatly simplified. The results demonstrate the feasibility of mass manufacturing monolithic silicon ONU transceivers via low cost
Spatial and temporal control of thermal waves by using DMDs for interference based crack detection
NASA Astrophysics Data System (ADS)
Thiel, Erik; Kreutzbruck, Marc; Ziegler, Mathias
2016-02-01
Active Thermography is a well-established non-destructive testing method and used to detect cracks, voids or material inhomogeneities. It is based on applying thermal energy to a samples' surface whereas inner defects alter the nonstationary heat flow. Conventional excitation of a sample is hereby done spatially, either planar (e.g. using a lamp) or local (e.g. using a focused laser) and temporally, either pulsed or periodical. In this work we combine a high power laser with a Digital Micromirror Device (DMD) allowing us to merge all degrees of freedom to a spatially and temporally controlled heat source. This enables us to exploit the possibilities of coherent thermal wave shaping. Exciting periodically while controlling at the same time phase and amplitude of the illumination source induces - via absorption at the sample's surface - a defined thermal wave propagation through a sample. That means thermal waves can be controlled almost like acoustical or optical waves. However, in contrast to optical or acoustical waves, thermal waves are highly damped due to the diffusive character of the thermal heat flow and therefore limited in penetration depth in relation to the achievable resolution. Nevertheless, the coherence length of thermal waves can be chosen in the mmrange for modulation frequencies below 10 Hz which is perfectly met by DMD technology. This approach gives us the opportunity to transfer known technologies from wave shaping techniques to thermography methods. We will present experiments on spatial and temporal wave shaping, demonstrating interference based crack detection.
Development of a 9.3 micrometer CW LIDAR for the study of atmospheric aerosol
NASA Technical Reports Server (NTRS)
Whiteside, B. N.; Schotland, R. M.
1993-01-01
This report provides a brief summary of the basic requirements to obtain coherent or heterodyne mixing of the optical radiation backscattered by atmospheric aerosols with that from a fixed frequency source. The continuous wave (CW) mode of operation for a coherent lidar is reviewed along with the associated lidar transfer equation. A complete optical design of the three major subsystems of a CW, coherent lidar is given. Lens design software is implemented to model and optimize receiver performance. Techniques for the opto-mechanical assembly and some of the critical tolerances of the coherent lidar are provided along with preliminary tests of the subsystems. Included in these tests is a comparison of the experimental and the theoretical average power signal-to-noise ratio. The analog to digital software used to evaluate the power spectrum of the backscattered signal is presented in the Appendix of this report.
Mid-Ir Cavity Ring-Down Spectrometer for Biological Trace Nitric Oxide Detection
NASA Astrophysics Data System (ADS)
Kan, Vincent; Ragab, Ahemd; Stsiapura, Vitali; Lehmann, Kevin K.; Gaston, Benjamin M.
2011-06-01
S-nitrosothiols have received much attention in biochemistry and medicine as donors of nitrosonium ion (NO^+) and nitric oxide (NO) - physiologically active molecules involved in vasodilation and signal transduction. Determination of S-nitrosothiols content in cells and tissues is of great importance for fundamental research and medical applications. We will report on our ongoing development of a instrument to measure trace levels of nitric oxide gas (NO), released from S-nitrosothiols after exposure to UV light (340 nm) or reaction with L-Cysteine+CuCl mixture. The instrument uses the method of cavity ring-down spectroscopy, probing rotationally resolved lines in the vibrational fundamental transition near 5.2 μm. The laser source is a continuous-wave, room temperature external cavity quantum cascade laser. An acousto-optic modulator is used to abruptly turn off the optical power incident on the cavity when the laser and cavity pass through resonance.
Dam, Jan S; Yavari, Nazila; Sørensen, Søren; Andersson-Engels, Stefan
2005-07-10
We present a fast and accurate method for real-time determination of the absorption coefficient, the scattering coefficient, and the anisotropy factor of thin turbid samples by using simple continuous-wave noncoherent light sources. The three optical properties are extracted from recordings of angularly resolved transmittance in addition to spatially resolved diffuse reflectance and transmittance. The applied multivariate calibration and prediction techniques are based on multiple polynomial regression in combination with a Newton--Raphson algorithm. The numerical test results based on Monte Carlo simulations showed mean prediction errors of approximately 0.5% for all three optical properties within ranges typical for biological media. Preliminary experimental results are also presented yielding errors of approximately 5%. Thus the presented methods show a substantial potential for simultaneous absorption and scattering characterization of turbid media.
The mm-wave compact component of an AGN
NASA Astrophysics Data System (ADS)
Behar, Ehud; Vogel, Stuart; Baldi, Ranieri D.; Smith, Krista L.; Mushotzky, Richard F.
2018-07-01
mm-wave emission from active galactic nuclei (AGNs) may hold the key to understanding the physical origin of their radio cores. The correlation between radio/mm and X-ray luminosity may suggest a similar physical origin of the two sources. Since synchrotron self-absorption decreases with frequency, mm-waves probe smaller length-scales than cm-waves. We report on 100 GHz (3 mm) observations with the Combined Array for Research in Millimeter-wave Astronomy of 26 AGNs selected from the hard X-ray Swift/Burst Alert Telescope survey. 20/26 targets were detected at 100 GHz down to the 1 mJy (3σ) sensitivity, which corresponds to optically thick synchrotron source sizes of 10-4-10-3 pc. Most sources show a 100 GHz flux excess with respect to the spectral slope extrapolated from low frequencies. This mm spectral component likely originates from smaller scales than the few-GHz emission. The measured mm sources lie roughly around the Lmm (100 GHz) ˜10-4LX (2-10 keV) relation, similar to a few previously published X-ray selected sources, and hinting perhaps at a common coronal origin.
Early spectra of the gravitational wave source GW170817: Evolution of a neutron star merger
NASA Astrophysics Data System (ADS)
Shappee, B. J.; Simon, J. D.; Drout, M. R.; Piro, A. L.; Morrell, N.; Prieto, J. L.; Kasen, D.; Holoien, T. W.-S.; Kollmeier, J. A.; Kelson, D. D.; Coulter, D. A.; Foley, R. J.; Kilpatrick, C. D.; Siebert, M. R.; Madore, B. F.; Murguia-Berthier, A.; Pan, Y.-C.; Prochaska, J. X.; Ramirez-Ruiz, E.; Rest, A.; Adams, C.; Alatalo, K.; Bañados, E.; Baughman, J.; Bernstein, R. A.; Bitsakis, T.; Boutsia, K.; Bravo, J. R.; Di Mille, F.; Higgs, C. R.; Ji, A. P.; Maravelias, G.; Marshall, J. L.; Placco, V. M.; Prieto, G.; Wan, Z.
2017-12-01
Two neutron stars merging together generate a gravitational wave signal and have also been predicted to emit electromagnetic radiation. When the gravitational wave event GW170817 was detected, astronomers rushed to search for the source using conventional telescopes (see the Introduction by Smith). Coulter et al. describe how the One-Meter Two-Hemispheres (1M2H) collaboration was the first to locate the electromagnetic source. Drout et al. present the 1M2H measurements of its optical and infrared brightness, and Shappee et al. report their spectroscopy of the event, which is unlike previously detected astronomical transient sources. Kilpatrick et al. show how these observations can be explained by an explosion known as a kilonova, which produces large quantities of heavy elements in nuclear reactions.
A two-channel, spectrally degenerate polarization entangled source on chip
NASA Astrophysics Data System (ADS)
Sansoni, Linda; Luo, Kai Hong; Eigner, Christof; Ricken, Raimund; Quiring, Viktor; Herrmann, Harald; Silberhorn, Christine
2017-12-01
Integrated optics provides the platform for the experimental implementation of highly complex and compact circuits for quantum information applications. In this context integrated waveguide sources represent a powerful resource for the generation of quantum states of light due to their high brightness and stability. However, the confinement of the light in a single spatial mode limits the realization of multi-channel sources. Due to this challenge one of the most adopted sources in quantum information processes, i.e. a source which generates spectrally indistinguishable polarization entangled photons in two different spatial modes, has not yet been realized in a fully integrated platform. Here we overcome this limitation by suitably engineering two periodically poled waveguides and an integrated polarization splitter in lithium niobate. This source produces polarization entangled states with fidelity of F = 0.973 ±0.003 and a test of Bell's inequality results in a violation larger than 14 standard deviations. It can work both in pulsed and continuous wave regime. This device represents a new step toward the implementation of fully integrated circuits for quantum information applications.
NASA Astrophysics Data System (ADS)
Rawlins, W. T.; Galbally-Kinney, K. L.; Davis, S. J.; Hoskinson, A. R.; Hopwood, J. A.
2014-03-01
The optically pumped rare-gas metastable laser is a chemically inert analogue to diode-pumped alkali (DPAL) and alkali-exciplex (XPAL) laser systems. Scaling of these devices requires efficient generation of electronically excited metastable atoms in a continuous-wave electric discharge in flowing gas mixtures at atmospheric pressure. This paper describes initial investigations of the use of linear microwave micro-discharge arrays to generate metastable rare-gas atoms at atmospheric pressure in optical pump-and-probe experiments for laser development. Power requirements to ignite and sustain the plasma at 1 atm are low, <30 W. We report on the laser excitation dynamics of argon metastables, Ar (4s, 1s5) (Paschen notation), generated in flowing mixtures of Ar and He at 1 atm. Tunable diode laser absorption measurements indicate Ar(1s5) concentrations near 3 × 1012 cm-3 at 1 atm. The metastables are optically pumped by absorption of a focused beam from a continuous-wave Ti:S laser, and spectrally selected fluorescence is observed with an InGaAs camera and an InGaAs array spectrometer. We observe the optical excitation of the 1s5-->2p9 transition at 811.5 nm and the corresponding laser-induced fluorescence on the 2p10-->1s5 transition at 912.3 nm; the 2p10 state is efficiently populated by collisional energy transfer from 2p9. Using tunable diode laser absorption/gain spectroscopy, we observe small-signal gains of ~1 cm-1 over a 1.9 cm path. We also observe stable, continuous-wave laser oscillation at 912.3 nm, with preliminary optical efficiency ~55%. These results are consistent with efficient collisional coupling within the Ar(4s) manifold.
A DECam Search for an Optical Counterpart to the LIGO Gravitational Wave Event GW151226
Cowperthwaite, P. S.
2016-07-29
We report the results of a Dark Energy Camera optical follow-up of the gravitational-wave (GW) event GW151226, discovered by the Advanced Laser Interferometer Gravitational-wave Observatory detectors. Our observations cover 28.8 deg(2) of the localization region in the i and z bands (containing 3% of the BAYESTAR localization probability), starting 10 hr after the event was announced and spanning four epochs at 2–24 days after the GW detection. We achievemore » $$5\\sigma $$ point-source limiting magnitudes of $$i\\approx 21.7$$ and $$z\\approx 21.5$$, with a scatter of 0.4 mag, in our difference images. Given the two-day delay, we search this area for a rapidly declining optical counterpart with $$\\gtrsim 3\\sigma $$ significance steady decline between the first and final observations. We recover four sources that pass our selection criteria, of which three are cataloged active galactic nuclei. The fourth source is offset by 5.8 arcsec from the center of a galaxy at a distance of 187 Mpc, exhibits a rapid decline by 0.5 mag over 4 days, and has a red color of $$i-z\\approx 0.3$$ mag. These properties could satisfy a set of cuts designed to identify kilonovae. However, this source was detected several times, starting 94 days prior to GW151226, in the Pan-STARRS Survey for Transients (dubbed as PS15cdi) and is therefore unrelated to the GW event. Given its long-term behavior, PS15cdi is likely a Type IIP supernova that transitioned out of its plateau phase during our observations, mimicking a kilonova-like behavior. We comment on the implications of this detection for contamination in future optical follow-up observations.« less
Lu, Quanyong; Wu, Donghai; Sengupta, Saumya; Slivken, Steven; Razeghi, Manijeh
2016-01-01
A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range (ν ~ 1–5 THz) is of great importance to terahertz system development for applications in spectroscopy, communication, sensing, and imaging. Here, we present a strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based on intracavity difference frequency generation. Room temperature continuous wave emission at 3.41 THz with a side-mode suppression ratio of 30 dB and output power up to 14 μW is achieved with a wall-plug efficiency about one order of magnitude higher than previous demonstrations. With this highly efficient design, continuous wave, single mode THz emissions with a wide frequency tuning range of 2.06–4.35 THz and an output power up to 4.2 μW are demonstrated at room temperature from two monolithic three-section sampled grating distributed feedback-distributed Bragg reflector lasers. PMID:27009375
Lu, Quanyong; Wu, Donghai; Sengupta, Saumya; Slivken, Steven; Razeghi, Manijeh
2016-03-24
A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range (ν~1-5 THz) is of great importance to terahertz system development for applications in spectroscopy, communication, sensing, and imaging. Here, we present a strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based on intracavity difference frequency generation. Room temperature continuous wave emission at 3.41 THz with a side-mode suppression ratio of 30 dB and output power up to 14 μW is achieved with a wall-plug efficiency about one order of magnitude higher than previous demonstrations. With this highly efficient design, continuous wave, single mode THz emissions with a wide frequency tuning range of 2.06-4.35 THz and an output power up to 4.2 μW are demonstrated at room temperature from two monolithic three-section sampled grating distributed feedback-distributed Bragg reflector lasers.
Optical Modeling and Polarization Calibration for CMB Measurements with Actpol and Advanced Actpol
NASA Technical Reports Server (NTRS)
Koopman, Brian; Austermann, Jason; Cho, Hsiao-Mei; Coughlin, Kevin P.; Duff, Shannon M.; Gallardo, Patricio A.; Hasselfield, Matthew; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hubmayr, Johannes;
2016-01-01
The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade to the Atacama Cosmology Telescope, located at an elevation of 5190 m on Cerro Toco in Chile. ACTPol uses transition edge sensor bolometers coupled to orthomode transducers to measure both the temperature and polarization of the Cosmic Microwave Background (CMB). Calibration of the detector angles is a critical step in producing polarization maps of the CMB. Polarization angle offsets in the detector calibration can cause leakage in polarization from E to B modes and induce a spurious signal in the EB and TB cross correlations, which eliminates our ability to measure potential cosmological sources of EB and TB signals, such as cosmic birefringence. We calibrate the ACTPol detector angles by ray tracing the designed detector angle through the entire optical chain to determine the projection of each detector angle on the sky. The distribution of calibrated detector polarization angles are consistent with a global offset angle from zero when compared to the EB-nulling offset angle, the angle required to null the EB cross-correlation power spectrum. We present the optical modeling process. The detector angles can be cross checked through observations of known polarized sources, whether this be a galactic source or a laboratory reference standard. To cross check the ACTPol detector angles, we use a thin film polarization grid placed in front of the receiver of the telescope, between the receiver and the secondary reflector. Making use of a rapidly rotating half-wave plate (HWP) mount we spin the polarizing grid at a constant speed, polarizing and rotating the incoming atmospheric signal. The resulting sinusoidal signal is used to determine the detector angles. The optical modeling calibration was shown to be consistent with a global offset angle of zero when compared to EB nulling in the first ACTPol results and will continue to be a part of our calibration implementation. The first array of detectors for Advanced ACTPol, the next generation upgrade to ACTPol, will be deployed in 2016.We plan to continue using both techniques and compare them to astrophysical source measurements for the Advanced ACTPol polarization calibration.
Optical modeling and polarization calibration for CMB measurements with ACTPol and Advanced ACTPol
NASA Astrophysics Data System (ADS)
Koopman, Brian; Austermann, Jason; Cho, Hsiao-Mei; Coughlin, Kevin P.; Duff, Shannon M.; Gallardo, Patricio A.; Hasselfield, Matthew; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hubmayr, Johannes; Irwin, Kent D.; Li, Dale; McMahon, Jeff; Nati, Federico; Niemack, Michael D.; Newburgh, Laura; Page, Lyman A.; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L.; Simon, Sara M.; Vavagiakis, Eve M.; Ward, Jonathan T.; Wollack, Edward J.
2016-07-01
The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade to the Atacama Cosmology Telescope, located at an elevation of 5190 m on Cerro Toco in Chile. ACTPol uses transition edge sensor bolometers coupled to orthomode transducers to measure both the temperature and polarization of the Cosmic Microwave Background (CMB). Calibration of the detector angles is a critical step in producing polarization maps of the CMB. Polarization angle offsets in the detector calibration can cause leakage in polarization from E to B modes and induce a spurious signal in the EB and TB cross correlations, which eliminates our ability to measure potential cosmological sources of EB and TB signals, such as cosmic birefringence. We calibrate the ACTPol detector angles by ray tracing the designed detector angle through the entire optical chain to determine the projection of each detector angle on the sky. The distribution of calibrated detector polarization angles are consistent with a global offset angle from zero when compared to the EB-nulling offset angle, the angle required to null the EB cross-correlation power spectrum. We present the optical modeling process. The detector angles can be cross checked through observations of known polarized sources, whether this be a galactic source or a laboratory reference standard. To cross check the ACTPol detector angles, we use a thin film polarization grid placed in front of the receiver of the telescope, between the receiver and the secondary reflector. Making use of a rapidly rotating half-wave plate (HWP) mount we spin the polarizing grid at a constant speed, polarizing and rotating the incoming atmospheric signal. The resulting sinusoidal signal is used to determine the detector angles. The optical modeling calibration was shown to be consistent with a global offset angle of zero when compared to EB nulling in the first ACTPol results and will continue to be a part of our calibration implementation. The first array of detectors for Advanced ACTPol, the next generation upgrade to ACTPol, will be deployed in 2016. We plan to continue using both techniques and compare them to astrophysical source measurements for the Advanced ACTPol polarization calibration.
High-power, continuous-wave, solid-state, single-frequency, tunable source for the ultraviolet.
Aadhi, A; Apurv Chaitanya, N; Singh, R P; Samanta, G K
2014-06-15
We report the development of a compact, high-power, continuous-wave, single-frequency, ultraviolet (UV) source with extended wavelength tunability. The device is based on single-pass, intracavity, second-harmonic-generation (SHG) of the signal radiation of a singly resonant optical parametric oscillator (SRO) working in the visible and near-IR wavelength range. The SRO is pumped in the green with a 25-mm-long, multigrating, MgO doped periodically poled stoichiometric lithium tantalate (MgO:sPPLT) as nonlinear crystal. Using three grating periods, 8.5, 9.0, and 9.5 μm of the MgO:sPPLT crystal and a single set of cavity mirrors, the SRO can be tuned continuously across 710.7-836.3 nm in the signal and corresponding idler across 2115.8-1462.1 nm with maximum idler power of 1.9 W and maximum out-coupled signal power of 254 mW. By frequency-doubling the intracavity signal with a 5-mm-long bismuth borate (BIBO) crystal, we can further tune the SRO continuously over 62.8 nm across 355.4-418.2 nm in the UV with maximum single-frequency UV power, as much as 770 mW at 398.28 nm in a Gaussian beam profile. The UV radiation has an instantaneous line-width of ∼14.5 MHz and peak-peak frequency stability of 151 MHz over 100 s. More than 95% of the tuning range provides UV power >260 mW. Access to lower UV wavelengths can in principle be realized by operating the SRO in the visible using shorter grating periods.
Visconti, Paolo; Primiceri, Patrizio; Longo, Daniele; Strafella, Luciano; Carlucci, Paolo; Lomascolo, Mauro; Cretì, Arianna; Mele, Giuseppe
2017-01-01
This work aims to investigate and characterize the photo-ignition phenomenon of MWCNT/ferrocene mixtures by using a continuous wave (CW) xenon (Xe) light source, in order to find the power ignition threshold by employing a different type of light source as was used in previous research (i.e., pulsed Xe lamp). The experimental photo-ignition tests were carried out by varying the weight ratio of the used mixtures, luminous power, and wavelength range of the incident Xe light by using selective optical filters. For a better explanation of the photo-induced ignition process, the absorption spectra of MWCNT/ferrocene mixtures and ferrocene only were obtained. The experimental results show that the luminous power (related to the entire spectrum of the Xe lamp) needed to trigger the ignition of MWCNT/ferrocene mixtures decreases with increasing metal nanoparticles content according to previously published results when using a different type of light source (i.e., pulsed vs CW Xe light source). Furthermore, less light power is required to trigger photo-ignition when moving towards the ultraviolet (UV) region. This is in agreement with the measured absorption spectra, which present higher absorption values in the UV-vis region for both MWCNT/ferrocene mixtures and ferrocene only diluted in toluene. Finally, a chemo-physical interpretation of the ignition phenomenon is proposed whereby ferrocene photo-excitation, due to photon absorption, produces ferrocene itself in its excited form and is thus capable of promoting electron transfer to MWCNTs. In this way, the resulting radical species, FeCp2 +∙ and MWCNT - , easily react with oxygen giving rise to the ignition of MWCNT/ferrocene samples.
Primiceri, Patrizio; Longo, Daniele; Strafella, Luciano; Carlucci, Paolo; Lomascolo, Mauro; Cretì, Arianna; Mele, Giuseppe
2017-01-01
This work aims to investigate and characterize the photo-ignition phenomenon of MWCNT/ferrocene mixtures by using a continuous wave (CW) xenon (Xe) light source, in order to find the power ignition threshold by employing a different type of light source as was used in previous research (i.e., pulsed Xe lamp). The experimental photo-ignition tests were carried out by varying the weight ratio of the used mixtures, luminous power, and wavelength range of the incident Xe light by using selective optical filters. For a better explanation of the photo-induced ignition process, the absorption spectra of MWCNT/ferrocene mixtures and ferrocene only were obtained. The experimental results show that the luminous power (related to the entire spectrum of the Xe lamp) needed to trigger the ignition of MWCNT/ferrocene mixtures decreases with increasing metal nanoparticles content according to previously published results when using a different type of light source (i.e., pulsed vs CW Xe light source). Furthermore, less light power is required to trigger photo-ignition when moving towards the ultraviolet (UV) region. This is in agreement with the measured absorption spectra, which present higher absorption values in the UV–vis region for both MWCNT/ferrocene mixtures and ferrocene only diluted in toluene. Finally, a chemo-physical interpretation of the ignition phenomenon is proposed whereby ferrocene photo-excitation, due to photon absorption, produces ferrocene itself in its excited form and is thus capable of promoting electron transfer to MWCNTs. In this way, the resulting radical species, FeCp2+∙ and MWCNT−, easily react with oxygen giving rise to the ignition of MWCNT/ferrocene samples. PMID:28144572
High-frequency response of subwavelength-structured metals in the petahertz domain.
Weiner, J; Nunes, Frederico D
2008-12-22
Electromagnetic plane waves, incident on and reflecting from a dielectric-conductor interface, set up a standing wave in the dielectric with the B-field adjacent to the conductor. It is shown here how the harmonic time variation of this B-field induces an E-field and a conduction current J (c) within the skin depth of a real metal; and that at frequencies in the visible and near-infrared range, the imaginary term sigmai of the complex conductivity sigma = sigma(r) + isigma(i) dominates the optical response. Continuity conditions of the E-field through the surface together with the in-quadrature response of the conductivity determine the phase relation between the incident E-M field and J(c). If slits or grooves are milled into the metal surface, a displacement current in the dielectric gap and oscillating charge dipoles at the structure edges are established in quadrature phase with incident field. These dipoles radiate into the aperture and launch surface waves from the edges. They are the principle source of light transmission through the apertures.
Li, Rui; Elson, Daniel S; Dunsby, Chris; Eckersley, Robert; Tang, Meng-Xing
2011-04-11
Ultrasound-modulated optical tomography (UOT) combines optical contrast with ultrasound spatial resolution and has great potential for soft tissue functional imaging. One current problem with this technique is the weak optical modulation signal, primarily due to strong optical scattering in diffuse media and minimal acoustically induced modulation. The acoustic radiation force (ARF) can create large particle displacements in tissue and has been shown to be able to improve optical modulation signals. However, shear wave propagation induced by the ARF can be a significant source of nonlocal optical modulation which may reduce UOT spatial resolution and contrast. In this paper, the time evolution of shear waves was examined on tissue mimicking-phantoms exposed to 5 MHz ultrasound and 532 nm optical radiation and measured with a CCD camera. It has been demonstrated that by generating an ARF with an acoustic burst and adjusting both the timing and the exposure time of the CCD measurement, optical contrast and spatial resolution can be improved by ~110% and ~40% respectively when using the ARF rather than 5 MHz ultrasound alone. Furthermore, it has been demonstrated that this technique simultaneously detects both optical and mechanical contrast in the medium and the optical and mechanical contrast can be distinguished by adjusting the CCD exposure time. © 2011 Optical Society of America
Generalized radially self-accelerating helicon beams.
Vetter, Christian; Eichelkraut, Toni; Ornigotti, Marco; Szameit, Alexander
2014-10-31
We report, in theory and experiment, on a new class of optical beams that are radially self-accelerating and nondiffracting. These beams continuously evolve on spiraling trajectories while maintaining their amplitude and phase distribution in their rotating rest frame. We provide a detailed insight into the theoretical origin and characteristics of radial self-acceleration and prove our findings experimentally. As radially self-accelerating beams are nonparaxial and a solution to the full scalar Helmholtz equation, they can be implemented in many linear wave systems beyond optics, from acoustic and elastic waves to surface waves in fluids and soft matter. Our work generalized the study of classical helicon beams to a complete set of solutions for rotating complex fields.
NASA Astrophysics Data System (ADS)
Nakamura, Kouji; Fujimoto, Masa-Katsu
2018-05-01
An extension of the input-output relation for a conventional Michelson interferometric gravitational-wave detector is carried out to treat an arbitrary coherent state for the injected optical beam. This extension is one of necessary researches toward the clarification of the relation between conventional gravitational-wave detectors and a simple model of a gravitational-wave detector inspired by weak-measurements in Nishizawa (2015). The derived input-output relation describes not only a conventional Michelson-interferometric gravitational-wave detector but also the situation of weak measurements. As a result, we may say that a conventional Michelson gravitational-wave detector already includes the essence of the weak-value amplification as the reduction of the quantum noise from the light source through the measurement at the dark port.
Chemical detection demonstrated using an evanescent wave graphene optical sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maliakal, Ashok; Reith, Leslie; Cabot, Steve
Graphene devices have been constructed on silicon mirrors, and the graphene is optically probed through an evanescent wave interaction in an attenuated total reflectance configuration using an infrared spectrometer. The graphene is electrically biased in order to tune its optical properties. Exposure of the device to the chemicals iodine and ammonia causes observable and reversible changes to graphene's optical absorption spectra in the mid to near infrared range which can be utilized for the purpose of sensing. Electrical current measurements through the graphene are made simultaneously with optical measurements allowing for simultaneous sensing using two separate detection modalities. Our currentmore » results reveal sub-ppm detection limits for iodine and approximately 100 ppm detection limits for ammonia. We have also demonstrated that this approach will work at 1.55 μm, which opens up the possibility for graphene optical sensors that leverage commercial telecom light sources.« less
Continuous wave channel waveguide lasers in Nd:LuVO4 fabricated by direct femtosecond laser writing.
Ren, Yingying; Dong, Ningning; Macdonald, John; Chen, Feng; Zhang, Huaijin; Kar, Ajoy K
2012-01-30
Buried channel waveguides in Nd:LuVO<4 were fabricated by femtosecond laser writing with the double-line technique. The photoluminescence properties of the bulk materials were found to be well preserved within the waveguide core region. Continuous-wave laser oscillation at 1066.4 nm was observed from the waveguide under ~809 nm optical excitation, with the absorbed pump power at threshold and laser slope efficiency of 98 mW and 14%, respectively.
Hierarchical multistage MCMC follow-up of continuous gravitational wave candidates
NASA Astrophysics Data System (ADS)
Ashton, G.; Prix, R.
2018-05-01
Leveraging Markov chain Monte Carlo optimization of the F statistic, we introduce a method for the hierarchical follow-up of continuous gravitational wave candidates identified by wide-parameter space semicoherent searches. We demonstrate parameter estimation for continuous wave sources and develop a framework and tools to understand and control the effective size of the parameter space, critical to the success of the method. Monte Carlo tests of simulated signals in noise demonstrate that this method is close to the theoretical optimal performance.
NASA Astrophysics Data System (ADS)
Temkin, Richard J.
Recent advances in IR and mm-wave (MMW) physics, astrophysics, devices, and applications are examined in reviews and reports. Sections are devoted to MMW sources, MMW modulation of light, MMW antennas, FELs, MMW optical technology, astronomy, MMW systems, microwave-optical interactions, MMW waveguides, MMW detectors and mixers, plasma diagnostics, and atmospheric physics. Also considered are gyrotrons, guided propagation, high-Tc superconductors, sub-MMW detectors and related devices, ICs, near-MMW measurements and techniques, lasers, material characterization, semiconductors, and atmospheric propagation.
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory (Inventor)
1991-01-01
A fiber optic interferometer utilizes a low coherence light emitting diode (LED) laser as a light source which is filtered and driven at two RF frequencies, high and low, that are specific to the initial length of the resonator chamber. A displacement of a reflecting mirror changes the length traveled by the nonreferencing signal. The low frequency light undergoes destructive interference which reduces the average intensity of the wave while the high frequency light undergoes constructive interference which increases the average intensity of the wave. The ratio of these two intensity measurements is proportional to the displacement incurred.
Optical fiber sensor for the detection of laser-generated ultrasound in arterial tissues
NASA Astrophysics Data System (ADS)
Beard, Paul C.; Mills, Timothy N.
1995-02-01
Theoretical and experimental aspects of an extrinsic Fabry-Perot optical fiber ultrasound sensor for use in a photoacoustic-guided laser angioplasty system are described. The sensor has been characterized using laser generated thermoelastic waves as a source of wideband ultrasound. A system sensitivity of 25 mV/MPa and an acoustic noise floor of 2 Pa/Hz1/2 are reported using a transparent polymer film as the sensing element. The system demonstrates the required bandwidth for sensing thermoelastic waves containing frequency components up to 20 MHz.
University Physics, Study Guide, Revised Edition
NASA Astrophysics Data System (ADS)
Benson, Harris
1996-01-01
Partial table of contents: Vectors. One-Dimensional Kinematics. Particle Dynamics II. Work and Energy. Linear Momentum. Systems of Particles. Angular Momentum and Statics. Gravitation. Solids and Fluids. Oscillations. Mechanical Waves. Sound. First Law of Thermodynamics. Kinetic Theory. Entropy and the Second Law of Thermodynamics. Electrostatics. The Electric Field. Gauss's Law. Electric Potential. Current and Resistance. The Magnetic Field. Sources of the Magnetic Field. Electromagnetic Induction. Light: Reflection and Refraction. Lenses and Optical Instruments. Wave Optics I. Special Relativity. Early Quantum Theory. Nuclear Physics. Appendices. Answers to Odd-Numbered Exercises and Problems. Index.
Nonreciprocal Transverse Photonic Spin and Magnetization-Induced Electromagnetic Spin-Orbit Coupling
Levy, Miguel; Karki, Dolendra
2017-01-01
We present a formulation of electromagnetic spin-orbit coupling in magneto-optic media, and propose an alternative source of spin-orbit coupling to non-paraxial optics vortices. Our treatment puts forth a formulation of nonreciprocal transverse-spin angular-momentum-density shifts for evanescent waves in magneto-optic waveguide media. It shows that magnetization-induced electromagnetic spin-orbit coupling is possible, and that it leads to unequal spin to orbital angular momentum conversion in magneto-optic media evanescent waves in opposite propagation-directions. Generation of free-space helicoidal beams based on this conversion is shown to be spin-helicity- and magnetization-dependent. We show that transverse-spin to orbital angular momentum coupling into magneto-optic waveguide media engenders spin-helicity-dependent unidirectional propagation. This unidirectional effect produces different orbital angular momenta in opposite directions upon excitation-spin-helicity reversals. PMID:28059120
The Dynamics and Evolution of Poles and Rogue Waves for Nonlinear Schrödinger Equations*
NASA Astrophysics Data System (ADS)
Chiu, Tin Lok; Liu, Tian Yang; Chan, Hiu Ning; Wing Chow, Kwok
2017-09-01
Rogue waves are unexpectedly large deviations from equilibrium or otherwise calm positions in physical systems, e.g. hydrodynamic waves and optical beam intensities. The profiles and points of maximum displacements of these rogue waves are correlated with the movement of poles of the exact solutions extended to the complex plane through analytic continuation. Such links are shown to be surprisingly precise for the first order rogue wave of the nonlinear Schrödinger (NLS) and the derivative NLS equations. A computational study on the second order rogue waves of the NLS equation also displays remarkable agreements.
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2011-03-01
Optical nerve stimulation (ONS) has recently been reported as a potential alternative to electrical nerve stimulation. Continuous-wave (CW) laser stimulation of the prostate cavernous nerves (CN) in a rat model, in vivo, has also been demonstrated in our previous studies. The objective of this study is to present a new all-single-mode-fiber configuration for ONS with the laser operating in CW mode for potential diagnostic applications. An infrared pigtailed single-mode diode laser (λ = 1455 nm) was used in this study for noncontact ONS. This new all-fiber approach introduces several advantages including: (1) a less expensive and more compact ONS system, (2) elimination of alignment of optical components, and (3) an improved spatial beam profile. Successful optical stimulation of the rat CN using this new design was observed after the CN reached a threshold temperature of ~ 41 °C with response times as short as 3 s. Upon further study, this configuration may be useful for identification and preservation of the cavernous nerves during prostate cancer surgery.
Tolerance of the frequency deviation of LO sources at a MIMO system
NASA Astrophysics Data System (ADS)
Xiao, Jiangnan; Li, Xingying; Zhang, Zirang; Xu, Yuming; Chen, Long; Yu, Jianjun
2015-11-01
We analyze and simulate the tolerance of frequency offset at a W-band optical-wireless transmission system. The transmission system adopts optical polarization division multiplexing (PDM), and multiple-input multiple-output (MIMO) reception. The transmission signal adopts optical quadrature phase shift keying (QPSK) modulation, and the generation of millimeter-wave is based on the optical heterodyning technique. After 20-km single-mode fiber-28 (SMF-28) transmission, tens of Gb/s millimeter-wave signal is delivered. At the receiver, two millimeter-wave signals are down-converted into electrical intermediate-frequency (IF) signals in the analog domain by mixing with two electrical local oscillators (LOs) with different frequencies. We investigate the different frequency LO effect on the 2×2 MIMO system performance for the first time, finding that the process during DSP of implementing frequency offset estimation (FOE) before cascaded multi-modulus-algorithm (CMMA) equalization can get rid of the inter-channel interference (ICI) and improve system bit-error-ratio (BER) performance in this type of transmission system.
A fiber-based quasi-continuous-wave quantum key distribution system
Shen, Yong; Chen, Yan; Zou, Hongxin; Yuan, Jianmin
2014-01-01
We report a fiber-based quasi-continuous-wave (CW) quantum key distribution (QKD) system with continuous variables (CV). This system employs coherent light pulses and time multiplexing to maximally reduce cross talk in the fiber. No-switching detection scheme is adopted to optimize the repetition rate. Information is encoded on the sideband of the pulsed coherent light to fully exploit the continuous wave nature of laser field. With this configuration, high secret key rate can be achieved. For the 50 MHz detected bandwidth in our experiment, when the multidimensional reconciliation protocol is applied, a secret key rate of 187 kb/s can be achieved over 50 km of optical fiber against collective attacks, which have been shown to be asymptotically optimal. Moreover, recently studied loopholes have been fixed in our system. PMID:24691409
Target-based coherent beam combining of an optical phased array fed by a broadband laser source
NASA Astrophysics Data System (ADS)
Hyde, Milo W., IV; McCrae, Jack E.; Tyler, Glenn A.
2017-11-01
The target-based phasing of an optical phased array (OPA) fed by a broadband master oscillator laser source is investigated. The specific scenario examined here considers an OPA phasing through atmospheric turbulence on a rough curved object. An analytical expression for the detected or received intensity is derived. Gleaned from this expression are the conditions under which target-based phasing is possible. A detailed OPA wave optics simulation is performed to validate the theoretical findings. Key aspects of the simulation set-up as well as the results are thoroughly discussed.
Finite Element Methods for Modelling Mechanical Loss in LIGO coating optics.
NASA Astrophysics Data System (ADS)
Newport, Jonathan; Harry, Gregg; LIGO Collaboration
2015-04-01
Gravitational waves from sources such as binary star systems, supernovae explosions and stochastic background radiation have yet to be directly detected by experimental observations. Alongside international collaborators, the Laser Interferometer Gravitational-Wave Observatory (LIGO) is designed to realize detection of gravitational waves using interferometric techniques. The second generation of gravitational wave observatories, known as Advanced LIGO, are currently undergoing installation and commissioning at sites in Hanford, Washington and Livingston, Louisiana. The ultimate sensitivity of Advanced LIGO within select spectral bands is limited by thermal noise in the coatings of the interferometer optics. The LIGO lab at American University is measuring the mechanical loss of coated substrates to predict thermal noise within these spectral bands. These predictions use increasingly sophisticated finite element models to ensure the ultimate design sensitivity of Advanced LIGO and to study coating and substrate materials for future gravitational wave detectors.
NASA Astrophysics Data System (ADS)
Tokizane, Yu; Nawata, Kouji; Han, Zhengli; Koyama, Mio; Notake, Takashi; Takida, Yuma; Minamide, Hiroaki
2017-02-01
We developed a widely tunable terahertz (THz)-wave source covering the sub-THz frequency by difference frequency generation using a 4-dimethylamino-N‧-methyl-4‧-stibazolium tosylate (DAST) crystal. Near-infrared waves generated by dual-wavelength injection-seeded β-BaB2O4 optical parametric generation (is-BBO-OPG) were used for pumping the DAST crystal, which had separated wavelengths in the spectrum with a difference frequency of sub-THz. Furthermore, the non-collinear phase-matching condition was designed to compensate the walk-off effect of the BBO crystal. Consequently, tunable THz-waves from 0.3 to 4 THz were generated by tuning the wavelength of one of the seeding beams. The generated sub-THz-waves were monochromatic (dν < 33 GHz) with a maximum energy of 80 pJ at 0.65 THz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, C.; Boshier, M. G.
An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmore » electric polarizability. Moreover, the source of coherent matter waves is a Bose–Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.« less
Diode-side-pumped continuous wave Nd³⁺ : YVO₄ self-Raman laser at 1176 nm.
Kores, Cristine Calil; Jakutis-Neto, Jonas; Geskus, Dimitri; Pask, Helen M; Wetter, Niklaus U
2015-08-01
Here we report, to the best of our knowledge, the first diode-side-pumped continuous wave (cw) Nd3+:YVO4 self-Raman laser operating at 1176 nm. The compact cavity design is based on the total internal reflection of the laser beam at the pumped side of the Nd3+:YVO4 crystal. Configurations with a single bounce and a double bounce of the laser beam at the pumped faced have been characterized, providing a quasi-cw peak output power of more than 8 W (multimode) with an optical conversion efficiency of 11.5% and 3.7 W (TEM00) having an optical conversion efficiency of 5.4%, respectively. Cw output power of 1.8 W has been demonstrated.
Continuous-wave Nd:YVO4/KTiOPO4 green laser at 542 nm under diode pumping into the emitting level
NASA Astrophysics Data System (ADS)
Liu, J. H.
2012-10-01
We report a green laser at 542 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a 1086 nm Nd:YVO4 laser under 880 nm diode pumping into the emitting level 4 F 3/2. A KTiOPO4 (KTP) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 14.5 W, as high as 1.33 W of CW output power at 542 nm is achieved. The optical-to-optical conversion efficiency is up to 9.2%, and the fluctuation of the green output power was better than 3.8% in the given 30 min.
Stimulated Brillouin scattering continuous wave phase conjugation in step-index fiber optics.
Massey, Steven M; Spring, Justin B; Russell, Timothy H
2008-07-21
Continuous wave (CW) stimulated Brillouin scattering (SBS) phase conjugation in step-index optical fibers was studied experimentally and modeled as a function of fiber length. A phase conjugate fidelity over 80% was measured from SBS in a 40 m fiber using a pinhole technique. Fidelity decreases with fiber length, and a fiber with a numerical aperture (NA) of 0.06 was found to generate good phase conjugation fidelity over longer lengths than a fiber with 0.13 NA. Modeling and experiment support previous work showing the maximum interaction length which yields a high fidelity phase conjugate beam is inversely proportional to the fiber NA(2), but find that fidelity remains high over much longer fiber lengths than previous models calculated. Conditions for SBS beam cleanup in step-index fibers are discussed.
Lyakh, A.; Maulini, R.; Tsekoun, A.; Go, R.; Von der Porten, S.; Pflügl, C.; Diehl, L.; Capasso, Federico; Patel, C. Kumar N.
2010-01-01
A strain-balanced, AlInAs/InGaAs/InP quantum cascade laser structure, designed for light emission at 4.0 μm using nonresonant extraction design approach, was grown by molecular beam epitaxy. Laser devices were processed in buried heterostructure geometry. An air-cooled laser system incorporating a 10-mm × 11.5-μm laser with antireflection-coated front facet and high-reflection-coated back facet delivered over 2 W of single-ended optical power in a collimated beam. Maximum continuous-wave room temperature wall plug efficiency of 5.0% was demonstrated for a high-reflection-coated 3.65-mm × 8.7-μm laser mounted on an aluminum nitride submount.
Delgado-Pinar, M; Mora, J; Díez, A; Andrés, M V; Ortega, B; Capmany, J
2005-01-01
We present an all-optical novel configuration for implementing multitap transversal filters by use of a broadband source sliced by fiber Bragg grating arrays generated by propagating an acoustic wave along a strong uniform fiber Bragg grating. The tunability and reconfigurability of the microwave filter are demonstrated.
Nonlinear optics of fibre event horizons.
Webb, Karen E; Erkintalo, Miro; Xu, Yiqing; Broderick, Neil G R; Dudley, John M; Genty, Goëry; Murdoch, Stuart G
2014-09-17
The nonlinear interaction of light in an optical fibre can mimic the physics at an event horizon. This analogue arises when a weak probe wave is unable to pass through an intense soliton, despite propagating at a different velocity. To date, these dynamics have been described in the time domain in terms of a soliton-induced refractive index barrier that modifies the velocity of the probe. Here we complete the physical description of fibre-optic event horizons by presenting a full frequency-domain description in terms of cascaded four-wave mixing between discrete single-frequency fields, and experimentally demonstrate signature frequency shifts using continuous wave lasers. Our description is confirmed by the remarkable agreement with experiments performed in the continuum limit, reached using ultrafast lasers. We anticipate that clarifying the description of fibre event horizons will significantly impact on the description of horizon dynamics and soliton interactions in photonics and other systems.
Intermode Breather Solitons in Optical Microresonators
NASA Astrophysics Data System (ADS)
Guo, Hairun; Lucas, Erwan; Pfeiffer, Martin H. P.; Karpov, Maxim; Anderson, Miles; Liu, Junqiu; Geiselmann, Michael; Jost, John D.; Kippenberg, Tobias J.
2017-10-01
Dissipative solitons can be found in a variety of systems resulting from the double balance between dispersion and nonlinearity, as well as gain and loss. Recently, they have been observed to spontaneously form in Kerr nonlinear microresonators driven by a continuous wave laser, providing a compact source of coherent optical frequency combs. As optical microresonators are commonly multimode, intermode interactions, which give rise to avoided mode crossings, frequently occur and can alter the soliton properties. Recent works have shown that avoided mode crossings cause the soliton to acquire a single-mode dispersive wave, a recoil in the spectrum, or lead to soliton decay. Here, we show that avoided mode crossings can also trigger the formation of breather solitons, solitons that undergo a periodic evolution in their amplitude and duration. This new breather soliton, referred to as an intermode breather soliton, occurs within a laser detuning range where conventionally stationary (i.e., stable) dissipative Kerr solitons are expected. We experimentally demonstrate the phenomenon in two microresonator platforms (crystalline magnesium fluoride and photonic chip-based silicon nitride microresonators) and theoretically describe the dynamics based on a pair of coupled Lugiato-Lefever equations. We show that the breathing is associated with a periodic energy exchange between the soliton and a second optical mode family, a behavior that can be modeled by a response function acting on dissipative solitons described by the Lugiato-Lefever model. The observation of breathing dynamics in the conventionally stable soliton regime is relevant to applications in metrology such as low-noise microwave generation, frequency synthesis, or spectroscopy.
Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging.
Zhou, Jialing; He, Honghui; Chen, Zhenhua; Wang, Ye; Ma, Hui
2018-01-01
We have developed a polarization microscope based on a commercial transmission microscope. We replace the halogen light source by a collimated LED light source module of six different colors. We use achromatic polarized optical elements that can cover the six different wavelength ranges in the polarization state generator (PSG) and polarization state analyzer (PSA) modules. The dual-rotating wave plate method is used to measure the Mueller matrix of samples, which requires the simultaneous rotation of the two quarter-wave plates in both PSG and PSA at certain angular steps. A scientific CCD detector is used as the image receiving module. A LabView-based software is developed to control the rotation angels of the wave plates and the exposure time of the detector to allow the system to run fully automatically in preprogrammed schedules. Standard samples, such as air, polarizers, and quarter-wave plates, are used to calibrate the intrinsic Mueller matrix of optical components, such as the objectives, using the eigenvalue calibration method. Errors due to the images walk-off in the PSA are studied. Errors in the Mueller matrices are below 0.01 using air and polarizer as standard samples. Data analysis based on Mueller matrix transformation and Mueller matrix polarization decomposition is used to demonstrate the potential application of this microscope in pathological diagnosis. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
High power continuous-wave titanium:sapphire laser
Erbert, Gaylen V.; Bass, Isaac L.; Hackel, Richard P.; Jenkins, Sherman L.; Kanz, Vernon K.; Paisner, Jeffrey A.
1993-01-01
A high-power continuous-wave laser resonator (10) is provided, wherein first, second, third, fourth, fifth and sixth mirrors (11-16) form a double-Z optical cavity. A first Ti:Sapphire rod (17) is disposed between the second and third mirrors (12,13) and at the mid-point of the length of the optical cavity, and a second Ti:Sapphire rod (18) is disposed between the fourth and fifth mirrors (14,15) at a quarter-length point in the optical cavity. Each Ti:Sapphire rod (17,18) is pumped by two counter-propagating pump beams from a pair of argon-ion lasers (21-22, 23-24). For narrow band operation, a 3-plate birefringent filter (36) and an etalon (37) are disposed in the optical cavity so that the spectral output of the laser consists of 5 adjacent cavity modes. For increased power, seventy and eighth mirrors (101, 192) are disposed between the first and second mirrors (11, 12) to form a triple-Z optical cavity. A third Ti:Sapphire rod (103) is disposed between the seventh and eighth mirrors (101, 102) at the other quarter-length point in the optical cavity, and is pumped by two counter-propagating pump beams from a third pair of argon-ion lasers (104, 105).
Wide band continuous all-fiber comb generator at 1.5 micron
NASA Astrophysics Data System (ADS)
Lemaître, François; Mondin, Linda; Orlik, X.
2017-11-01
We present an all-fiber continuous optical frequency comb-generator (OFCG) able to generate over 6 nm (750 GHz) at 1560 nm using a combination of electro-optic and acousto-optic modulations. As opposed to numerous experimental setups that use the longitudinal modes of an optical cavity to generate continuous optical frequency combs, our setup doesn't need any active stabilization of the cavity length since we use the intrinsically high stability of radiofrequency sources to generate the multiple lines of the comb laser. Moreover, compared to the work of ref [1], the hybrid optical modulation we use allows to suppress the problem of instability due interferences between the generated lines. We notice that these lines benefit from the spectral quality of the seed laser because the spectral width of the synthesized hyperfrequency and radiofrequency signals are generally narrower than laser sources.
Directional Emission from Dielectric Leaky-Wave Nanoantennas
NASA Astrophysics Data System (ADS)
Peter, Manuel; Hildebrandt, Andre; Schlickriede, Christian; Gharib, Kimia; Zentgraf, Thomas; Förstner, Jens; Linden, Stefan
2017-07-01
An important source of innovation in nanophotonics is the idea to scale down known radio wave technologies to the optical regime. One thoroughly investigated example of this approach are metallic nanoantennas which employ plasmonic resonances to couple localized emitters to selected far-field modes. While metals can be treated as perfect conductors in the microwave regime, their response becomes Drude-like at optical frequencies. Thus, plasmonic nanoantennas are inherently lossy. Moreover, their resonant nature requires precise control of the antenna geometry. A promising way to circumvent these problems is the use of broadband nanoantennas made from low-loss dielectric materials. Here, we report on highly directional emission from active dielectric leaky-wave nanoantennas made of Hafnium dioxide. Colloidal semiconductor quantum dots deposited in the nanoantenna feed gap serve as a local light source. The emission patterns of active nanoantennas with different sizes are measured by Fourier imaging. We find for all antenna sizes a highly directional emission, underlining the broadband operation of our design.
Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies.
Balal, Nezah; Pinhasi, Gad A; Pinhasi, Yosef
2016-05-23
The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide "chirped" Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution.
Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies
Balal, Nezah; Pinhasi, Gad A.; Pinhasi, Yosef
2016-01-01
The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide “chirped” Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution. PMID:27223286
CASOAR - An infrared active wave front sensor for atmospheric turbulence analysis
NASA Astrophysics Data System (ADS)
Cariou, Jean-Pierre; Dolfi, Agnes
1992-12-01
Knowledge of deformation of every point of a wave front over time allows statistical turbulence parameters to be analyzed, and the definition of real time adaptive optics to be designed. An optical instrumentation was built to meet this need. Integrated in a compact enclosure for experiments on outdoor sites, the CASOAR allows the deformations of a wave front to be measured rapidly (100 Hz) and with accuracy (1 deg). The CASOAR is an active system: it includes its own light source (CW CO2 laser), making it self-contained, self-aligned and insensitive to spurious light rays. After being reflected off a mirror located beyond the atmospheric layer to be analyzed (range of several kilometers), the beam is received and detected by coherent mixing. Electronic phase is converted in optical phase and recorded or displayed in real time on a monitor. Experimental results are shown, pointing out the capabilities of this device.
NASA Astrophysics Data System (ADS)
Hulvershorn, Justin; Bloy, Luke; Leigh, John S.; Elliott, Mark A.
2003-09-01
A continuous wave near infrared three-wavelength laser diode spectroscopic (NIRS) system designed for use in magnetic resonance imaging (MRI) scanners is described. This system measures in vivo changes in the concentrations of oxyhemoglobin (HbO) and deoxyhemoglobin (Hb) in humans. An algorithm is implemented to map changes in light intensity to changes in the concentrations of Hb and HbO. The system's signal to noise ratio is 3.4×103 per wavelength on an intralipid phantom with 10 Hz resolution. To demonstrate the system's performance in vivo, data taken on the human forearm during arterial occlusion, as well as data taken on the forehead during extended breath holds, are presented. The results show that the instrument is an extremely sensitive detector of hemodynamic changes in human tissue at high temporal resolution. NIRS directly measures changes in the concentrations of hemoglobin species. For this reason, NIRS will be useful in determining the sources of MRI signal changes in the body due to hemodynamic causes, while the precise anatomic information provided by MRI will aid in localizing NIRS contrast and improving the accuracy of models of light transport through tissue.
Fiber optic device for sensing the presence of a gas
Benson, D.K.; Bechinger, C.S.; Tracy, C.E.
1998-01-13
A fiber-optic device for sensing the presence of a gas in an environment is provided. The device comprises a light source for directing a light beam to a layer system having a first surface and a second surface opposite the first surface. The first surface is exposable to the light beam and the second surface is exposable to the environment. A first light portion encounters and reflects from the first surface at an angle of incidence free from optical wave guide resonance phenomenon and the second light portion encounters and reflects from the first surface at an angle of incidence enabling an optical wave guide resonance phenomenon. The layer system is selected to reversibly react with the gas to be detected. The reaction between the gas and the material changes the material`s optical properties and the wavelength at which the optical wave guide resonance occurs. Furthermore, a mechanism for measuring the intensity of the reflected first light portion relative to the reflected second light portion is provided with the ratio of the first and second light portions indicating the concentration of the gas presence in the environment. 5 figs.
NASA Astrophysics Data System (ADS)
Patra, Rusha; Dutta, Pranab K.
2015-07-01
Reconstruction of the absorption coefficient of tissue with good contrast is of key importance in functional diffuse optical imaging. A hybrid approach using model-based iterative image reconstruction and a genetic algorithm is proposed to enhance the contrast of the reconstructed image. The proposed method yields an observed contrast of 98.4%, mean square error of 0.638×10-3, and object centroid error of (0.001 to 0.22) mm. Experimental validation of the proposed method has also been provided with tissue-like phantoms which shows a significant improvement in image quality and thus establishes the potential of the method for functional diffuse optical tomography reconstruction with continuous wave setup. A case study of finger joint imaging is illustrated as well to show the prospect of the proposed method in clinical diagnosis. The method can also be applied to the concentration measurement of a region of interest in a turbid medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miah, M. J., E-mail: jarez.miah@tu-berlin.de; Posilovic, K.; Kalosha, V. P.
2014-10-13
High-brightness edge-emitting semiconductor lasers having a vertically extended waveguide structure emitting in the 1060 nm range are investigated. Ridge waveguide (RW) lasers with 9 μm stripe width and 2.64 mm cavity length yield highest to date single transverse mode output power for RW lasers in the 1060 nm range. The lasers provide 1.9 W single transverse mode optical power under continuous-wave (cw) operation with narrow beam divergences of 9° in lateral and 14° (full width at half maximum) in vertical direction. The beam quality factor M{sup 2} is less than 1.9 up to 1.9 W optical power. A maximum brightness of 72 MWcm{sup −2}sr{supmore » −1} is obtained. 100 μm wide and 3 mm long unpassivated broad area lasers provide more than 9 W optical power in cw operation.« less
Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers.
Eigenwillig, Christoph M; Wieser, Wolfgang; Todor, Sebastian; Biedermann, Benjamin R; Klein, Thomas; Jirauschek, Christian; Huber, Robert
2013-01-01
Ultrafast lasers have a crucial function in many fields of science; however, up to now, high-energy pulses directly from compact, efficient and low-power semiconductor lasers are not available. Therefore, we introduce a new approach based on temporal compression of the continuous-wave, wavelength-swept output of Fourier domain mode-locked lasers, where a narrowband optical filter is tuned synchronously to the round-trip time of light in a kilometre-long laser cavity. So far, these rapidly swept lasers enabled orders-of-magnitude speed increase in optical coherence tomography. Here we report on the generation of ~60-70 ps pulses at 390 kHz repetition rate. As energy is stored optically in the long-fibre delay line and not as population inversion in the laser-gain medium, high-energy pulses can now be generated directly from a low-power, compact semiconductor-based oscillator. Our theory predicts subpicosecond pulses with this new technique in the future.
Picosecond pulses from wavelength-swept continuous-wave Fourier domain mode-locked lasers
NASA Astrophysics Data System (ADS)
Eigenwillig, Christoph M.; Wieser, Wolfgang; Todor, Sebastian; Biedermann, Benjamin R.; Klein, Thomas; Jirauschek, Christian; Huber, Robert
2013-05-01
Ultrafast lasers have a crucial function in many fields of science; however, up to now, high-energy pulses directly from compact, efficient and low-power semiconductor lasers are not available. Therefore, we introduce a new approach based on temporal compression of the continuous-wave, wavelength-swept output of Fourier domain mode-locked lasers, where a narrowband optical filter is tuned synchronously to the round-trip time of light in a kilometre-long laser cavity. So far, these rapidly swept lasers enabled orders-of-magnitude speed increase in optical coherence tomography. Here we report on the generation of ~60-70 ps pulses at 390 kHz repetition rate. As energy is stored optically in the long-fibre delay line and not as population inversion in the laser-gain medium, high-energy pulses can now be generated directly from a low-power, compact semiconductor-based oscillator. Our theory predicts subpicosecond pulses with this new technique in the future.
NASA Astrophysics Data System (ADS)
Cowperthwaite, P. S.; Berger, E.; Rest, A.; Chornock, R.; Scolnic, D. M.; Williams, P. K. G.; Fong, W.; Drout, M. R.; Foley, R. J.; Margutti, R.; Lunnan, R.; Metzger, B. D.; Quataert, E.
2018-05-01
We present an empirical study of contamination in wide-field optical follow-up searches of gravitational wave sources from Advanced LIGO/Virgo using dedicated observations with the Dark Energy Camera. Our search covered ∼56 deg2, with two visits per night, in the i and z bands, followed by an additional set of griz images three weeks later to serve as reference images for subtraction. We achieve 5σ point-source limiting magnitudes of i ≈ 23.5 and z ≈ 22.4 mag in the coadded single-epoch images. We conduct a search for transient objects that mimic the i ‑ z color behavior of both red (i‑z > 0.5 mag) and blue (i‑z < 0 mag) kilonova emission, finding 11 and 10 contaminants, respectively. Independent of color, we identify 48 transients of interest. Additionally, we leverage the rapid cadence of our observations to search for sources with characteristic timescales of ≈1 day and ≈3 hr, finding no potential contaminants. We assess the efficiency of our search with injected point sources, finding that we are 90% (60%) efficient when searching for red (blue) kilonova-like sources to a limiting magnitude of i ≲ 22.5 mag. Using our efficiencies, we derive sky rates for kilonova contaminants of {{ \\mathcal R }}red} ≈ 0.16 deg‑2 and {{ \\mathcal R }}blue}≈ 0.80 deg‑2. The total contamination rate is {{ \\mathcal R }}all}≈ 1.79 deg‑2. We compare our results to previous optical follow-up efforts and comment on the outlook for gravitational wave follow-up searches as additional detectors (e.g., KAGRA, LIGO India) come online in the next decade.
NASA Astrophysics Data System (ADS)
McLaughlin, David W.
1995-08-01
The principal investigator, together with a post-doctoral fellows Tetsuji Ueda and Xiao Wang, several graduate students, and colleagues, has applied the modern mathematical theory of nonlinear waves to problems in nonlinear optics and to equations directly relevant to nonlinear optics. Projects included the interaction of laser light with nematic liquid crystals and chaotic, homoclinic, small dispersive, and random behavior of solutions of the nonlinear Schroedinger equation. In project 1, the extremely strong nonlinear response of a continuous wave laser beam in a nematic liquid crystal medium has produced striking undulation and filamentation of the laser beam which has been observed experimentally and explained theoretically. In project 2, qualitative properties of the nonlinear Schroedinger equation (which is the fundamental equation for nonlinear optics) have been identified and studied. These properties include optical shocking behavior in the limit of very small dispersion, chaotic and homoclinic behavior in discretizations of the partial differential equation, and random behavior.
Light propagation in tissues with controlled optical properties
NASA Astrophysics Data System (ADS)
Tuchin, Valery V.; Maksimova, Irina L.; Zimnyakov, Dmitry A.; Kon, Irina L.; Mavlyutov, Albert H.; Mishin, Alexey A.
1997-10-01
Theoretical and computer modeling approaches, such as Mie theory, radiative transfer theory, diffusion wave correlation spectroscopy, and Monte Carlo simulation were used to analyze tissue optics during a process of optical clearing due to refractive index matching. Continuous wave transmittance and forward scattering measurement as well as intensity correlation experiments were used to monitor tissue structural and optical properties. As a control, tissue samples of the human sclera were taken. Osmotically active solutions, such as Trazograph, glucose, and polyethylene glycol, were used as chemicals. A characteristic time response of human scleral optical clearing the range 3 to 10 min was determined. The diffusion coefficients describing the permeability of the scleral samples to Trazograph were experimentally estimated; the average value was DT approximately equals (0.9 +/- 0.5) X 10-5 cm2/s. The results are general and can be used to describe many other fibrous tissues.
Broadband continuous wave source localization via pair-wise, cochleagram processing
NASA Astrophysics Data System (ADS)
Nosal, Eva-Marie; Frazer, L. Neil
2005-04-01
A pair-wise processor has been developed for the passive localization of broadband continuous-wave underwater sources. The algorithm uses sparse hydrophone arrays and does not require previous knowledge of the source signature. It is applicable in multiple source situations. A spectrogram/cochleagram version of the algorithm has been developed in order to utilize higher frequencies at longer ranges where signal incoherence, and limited computational resources, preclude the use of full waveforms. Simulations demonstrating the robustness of the algorithm with respect to noise and environmental mismatch will be presented, together with initial results from the analysis of humpback whale song recorded at the Pacific Missile Range Facility off Kauai. [Work supported by MHPCC and ONR.
Optical magnetic mirrors without metals
Liu, Sheng; Sinclair, Michael B.; Mahony, Thomas S.; ...
2014-01-01
The reflection of an optical wave from metal, arising from strong interactions between the optical electric field and the free carriers of the metal, is accompanied by a phase reversal of the reflected electric field. A far less common route to achieving high reflectivity exploits strong interactions between the material and the optical magnetic field to produce a “magnetic mirror” that does not reverse the phase of the reflected electric field. At optical frequencies, the magnetic properties required for strong interaction can be achieved only by using artificially tailored materials. Here, we experimentally demonstrate, for the first time to themore » best of our knowledge, the magnetic mirror behavior of a low-loss all-dielectric metasurface at infrared optical frequencies through direct measurements of the phase and amplitude of the reflected optical wave. The enhanced absorption and emission of transverse-electric dipoles placed close to magnetic mirrors can lead to exciting new advances in sensors, photodetectors, and light sources.« less
Doulgerakis, Matthaios; Eggebrecht, Adam; Wojtkiewicz, Stanislaw; Culver, Joseph; Dehghani, Hamid
2017-12-01
Parameter recovery in diffuse optical tomography is a computationally expensive algorithm, especially when used for large and complex volumes, as in the case of human brain functional imaging. The modeling of light propagation, also known as the forward problem, is the computational bottleneck of the recovery algorithm, whereby the lack of a real-time solution is impeding practical and clinical applications. The objective of this work is the acceleration of the forward model, within a diffusion approximation-based finite-element modeling framework, employing parallelization to expedite the calculation of light propagation in realistic adult head models. The proposed methodology is applicable for modeling both continuous wave and frequency-domain systems with the results demonstrating a 10-fold speed increase when GPU architectures are available, while maintaining high accuracy. It is shown that, for a very high-resolution finite-element model of the adult human head with ∼600,000 nodes, consisting of heterogeneous layers, light propagation can be calculated at ∼0.25 s/excitation source. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Valley-Selective Exciton Bistability in a Suspended Monolayer Semiconductor
NASA Astrophysics Data System (ADS)
Xie, Hongchao; Jiang, Shengwei; Shan, Jie; Mak, Kin Fai
2018-05-01
We demonstrate robust power- and wavelength-dependent optical bistability in fully suspended monolayers of WSe2 near the exciton resonance. Bistability has been achieved under continuous-wave optical excitation at an intensity level of 10^3 W/cm^2. The observed bistability is originated from a photo-thermal mechanism, which provides both optical nonlinearity and passive feedback, two essential elements for optical bistability. Under a finite magnetic field, the exciton bistability becomes helicity dependent, which enables repeatable switching of light purely by its polarization.
Optical coupling elements for coherent optical multiport receivers
NASA Astrophysics Data System (ADS)
Langenhorst, Ralf
1992-05-01
Three by three (3 by 3) and four by four (4 by 4) port coupling elements and receivers for heterodyne multiport systems are realized. Commercial (3 by 3) fiber coupling elements were used to achieve a usual (3 by 3) port receiver and a (3 by 3) port receiver in pushpull switching, whose concept was theoretically and experimentally analyzed. It is established that intensity oscillations of laser sources are suppressed by pushpull switching. The influence of thermal noise of opto-electronic input levels is shown to be weaker than in usual (3 by 3) port and (4 by 4) port receivers. Thermal noise effect in pushpull switching is similar to this one in heterodyne receivers. An integrated optical coupling element in LiNbO3 was made with bridge circuit from four waveguide coupling elements and two phase converters, which are electro-optically tunable so that a continuous regulation of intermediate frequency phase can be compensated by temperature variations of the element. To obtain fiber-to-fiber losses lower than a dB, a compact crystal optical coupling element was developed with reference to polarization properties of optical waves. This element supplied the eight necessary intermediate frequency output signals. A direct experimental comparison of bandwidth efficiency of multiport and heterodyne receivers shows a factor two in optical area and a factor three in electrical frequency area.
NASA Astrophysics Data System (ADS)
Roggemann, M.; Soehnel, G.; Archer, G.
Atmospheric turbulence degrades the resolution of images of space objects far beyond that predicted by diffraction alone. Adaptive optics telescopes have been widely used for compensating these effects, but as users seek to extend the envelopes of operation of adaptive optics telescopes to more demanding conditions, such as daylight operation, and operation at low elevation angles, the level of compensation provided will degrade. We have been investigating the use of advanced wave front reconstructors and post detection image reconstruction to overcome the effects of turbulence on imaging systems in these more demanding scenarios. In this paper we show results comparing the optical performance of the exponential reconstructor, the least squares reconstructor, and two versions of a reconstructor based on the stochastic parallel gradient descent algorithm in a closed loop adaptive optics system using a conventional continuous facesheet deformable mirror and a Hartmann sensor. The performance of these reconstructors has been evaluated under a range of source visual magnitudes and zenith angles ranging up to 70 degrees. We have also simulated satellite images, and applied speckle imaging, multi-frame blind deconvolution algorithms, and deconvolution algorithms that presume the average point spread function is known to compute object estimates. Our work thus far indicates that the combination of adaptive optics and post detection image processing will extend the useful envelope of the current generation of adaptive optics telescopes.
Illusion induced overlapped optics.
Zang, XiaoFei; Shi, Cheng; Li, Zhou; Chen, Lin; Cai, Bin; Zhu, YiMing; Zhu, HaiBin
2014-01-13
The traditional transformation-based cloak seems like it can only hide objects by bending the incident electromagnetic waves around the hidden region. In this paper, we prove that invisible cloaks can be applied to realize the overlapped optics. No matter how many in-phase point sources are located in the hidden region, all of them can overlap each other (this can be considered as illusion effect), leading to the perfect optical interference effect. In addition, a singular parameter-independent cloak is also designed to obtain quasi-overlapped optics. Even more amazing of overlapped optics is that if N identical separated in-phase point sources covered with the illusion media, the total power outside the transformation region is N2I0 (not NI0) (I0 is the power of just one point source, and N is the number point sources), which seems violating the law of conservation of energy. A theoretical model based on interference effect is proposed to interpret the total power of these two kinds of overlapped optics effects. Our investigation may have wide applications in high power coherent laser beams, and multiple laser diodes, and so on.
Beam steering performance of compressed Luneburg lens based on transformation optics
NASA Astrophysics Data System (ADS)
Gao, Ju; Wang, Cong; Zhang, Kuang; Hao, Yang; Wu, Qun
2018-06-01
In this paper, two types of compressed Luneburg lenses based on transformation optics are investigated and simulated using two different sources, namely, waveguides and dipoles, which represent plane and spherical wave sources, respectively. We determined that the largest beam steering angle and the related feed point are intrinsic characteristics of a certain type of compressed Luneburg lens, and that the optimized distance between the feed and lens, gain enhancement, and side-lobe suppression are related to the type of source. Based on our results, we anticipate that these lenses will prove useful in various future antenna applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, C. S., E-mail: csd203@exeter.ac.uk; Kruglyak, V. V.; Sadovnikov, A. V.
We have used Brillouin Light Scattering and micromagnetic simulations to demonstrate a point-like source of spin waves created by the inherently nonuniform internal magnetic field in the vicinity of an isolated antidot formed in a continuous film of yttrium-iron-garnet. The field nonuniformity ensures that only well-defined regions near the antidot respond in resonance to a continuous excitation of the entire sample with a harmonic microwave field. The resonantly excited parts of the sample then served as reconfigurable sources of spin waves propagating (across the considered sample) in the form of caustic beams. Our findings are relevant to further development ofmore » magnonic circuits, in which point-like spin wave stimuli could be required, and as a building block for interpretation of spin wave behavior in magnonic crystals formed by antidot arrays.« less
Modulated Fourier Transform Raman Fiber-Optic Spectroscopy
NASA Technical Reports Server (NTRS)
Jensen, Brian J. (Inventor); Cooper, John B. (Inventor); Wise, Kent L. (Inventor)
2000-01-01
A modification to a commercial Fourier Transform (FT) Raman spectrometer is presented for the elimination of thermal backgrounds in the FT Raman spectra. The modification involves the use of a mechanical optical chopper to modulate the continuous wave laser, remote collection of the signal via fiber optics, and connection of a dual-phase digital-signal-processor (DSP) lock-in amplifier between the detector and the spectrometer's collection electronics to demodulate and filter the optical signals. The resulting Modulated Fourier Transform Raman Fiber-Optic Spectrometer is capable of completely eliminating thermal backgrounds at temperatures exceeding 300 C.
Shock wave loading of a magnetic guide
NASA Astrophysics Data System (ADS)
Kindt, L.
2011-10-01
The atom laser has long been a holy grail within atom physics and with the creation of an atom laser we hope to bring a similar revolution in to the field of atom optics. With the creation of the Bose-Einstein Condensate (BEC) in 1995 the path to an atom laser was initiated. An atom laser is continues source of BEC. In a Bose condensate all the atoms occupy the same quantum state and can be described by the same wave function and phase. With an atom laser the De Broglie wavelength of atoms can be much smaller than the wavelength of light. Due to the ultimate control over the atoms the atom laser is very interesting for atom optics, lithography, metrology, etching and deposition of atoms on a surface. All previous atom lasers have been created from atoms coupled out from an existing Bose-Einstein Condensate. There are different approaches but common to them all is that the duration of the output of the atom laser is limited by the size of the initial BEC and they all have a low flux. This leaves the quest to build a continuous high flux atom laser. An alternative approach to a continuous BEC beam is to channel a continuous ultra cold atomic beam into a magnetic guide and then cool this beam down to degeneracy. Cooling down a continuous beam of atoms faces three large problems: The collision rate has to be large enough for effective rethermalization, since evaporative cooling in 2D is not as effective as in 3D and a large thermal conductivity due to atoms with a high angular momentum causes heating downstream in the guide. We have built a 4 meter magnetic guide that is placed on a downward slope with a magnetic barrier in the end. In the guide we load packets of ultra cold rubidium atoms with a frequency rate large enough for the packets to merge together to form a continuous atomic beam. The atomic beam is supersonic and when the beam reaches the end barrier it will return and collide with itself. The collisions lowers the velocity of the beam into subsonic velocities and a shock wave is created between the two velocity regions. In order to conserve number of particle, momentum and enthalpy the density of the atomic beam passing through the shock wave must increase. We have build such a shock wave in an atomic beam and observed the density increase due to this. As an extra feature having a subsonic beam on a downward slope adds an extra density increase due to gravitational compression. Loading ultra cold atoms into a 3D trap from the dense subsonic beam overcomes the problem with 2D cooling and thermal conductivity. This was done and evaporative cooling was applied creating an unprecedented large number rubidium BEC.
Tsujimoto, Yoshiaki; Tanaka, Motoki; Iwasaki, Nobuo; Ikuta, Rikizo; Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki
2018-01-23
We experimentally demonstrate a high-fidelity entanglement swapping and a generation of the Greenberger-Horne-Zeilinger (GHZ) state using polarization-entangled photon pairs at telecommunication wavelength produced by spontaneous parametric down conversion with continuous-wave pump light. While spatially separated sources asynchronously emit photon pairs, the time-resolved photon detection guarantees the temporal indistinguishability of photons without active timing synchronizations of pump lasers and/or adjustment of optical paths. In the experiment, photons are sufficiently narrowed by fiber-based Bragg gratings with the central wavelengths of 1541 nm & 1580 nm, and detected by superconducting nanowire single-photon detectors with low timing jitters. The observed fidelities of the final states for entanglement swapping and the generated three-qubit state were 0.84 ± 0.04 and 0.70 ± 0.05, respectively.
The mm-wave compact component of AGN
NASA Astrophysics Data System (ADS)
Behar, Ehud; Vogel, Stuart; Baldi, Ranieri D.; Smith, Krista L.; Mushotzky, Richard F.
2018-05-01
mm-wave emission from Active Galactic Nuclei (AGN) may hold the key to understanding the physical origin of their radio cores. The correlation between radio/mm and X-ray luminosity may suggest a similar physical origin of the two sources. Since synchrotron self absorption decreases with frequency, mm-waves probe smaller length scales than cm-waves. We report on 100 GHz (3 mm) observations with CARMA of 26 AGNs selected from the hard X-ray Swift/BAT survey. 20/26 targets were detected at 100 GHz down to the 1 mJy (3σ) sensitivity, which corresponds to optically thick synchrotron source sizes of 10-4 - 10-3 pc. Most sources show a 100 GHz flux excess with respect to the spectral slope extrapolated from low frequencies. This mm spectral component likely originates from smaller scales than the few-GHz emission. The measured mm sources lie roughly around the Lmm (100 GHz) ˜10-4LX (2-10 keV) relation, similar to a few previously published X-ray selected sources, and hinting perhaps at a common coronal origin.
Geographic and Annual Influences on Optical Follow-up of Gravitational Wave Events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, Varun; Bhalerao, Varun; Bose, Sukanta
2017-03-20
We investigate the effects of observatory location on the probability of discovering optical/infrared (OIR) counterparts of gravitational wave sources. We show that, for the LIGO–Virgo network, the odds of discovering OIR counterparts show some latitude dependence. A stronger effect is seen to arise from the timing of LIGO–Virgo observing runs during the year, with northern OIR observatories having a better chance of finding the counterparts in northern winters. Assuming identical technical capabilities, the tentative mid-2017 three-detector network observing run favors southern OIR observatories for the discovery of electromagnetic counterparts.
Poster Presentation: Optical Test of NGST Developmental Mirrors
NASA Technical Reports Server (NTRS)
Hadaway, James B.; Geary, Joseph; Reardon, Patrick; Peters, Bruce; Keidel, John; Chavers, Greg
2000-01-01
An Optical Testing System (OTS) has been developed to measure the figure and radius of curvature of NGST developmental mirrors in the vacuum, cryogenic environment of the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The OTS consists of a WaveScope Shack-Hartmann sensor from Adaptive Optics Associates as the main instrument, a Point Diffraction Interferometer (PDI), a Point Spread Function (PSF) imager, an alignment system, a Leica Disto Pro distance measurement instrument, and a laser source palette (632.8 nm wavelength) that is fiber-coupled to the sensor instruments. All of the instruments except the laser source palette are located on a single breadboard known as the Wavefront Sensor Pallet (WSP). The WSP is located on top of a 5-DOF motion system located at the center of curvature of the test mirror. Two PC's are used to control the OTS. The error in the figure measurement is dominated by the WaveScope's measurement error. An analysis using the absolute wavefront gradient error of 1/50 wave P-V (at 0.6328 microns) provided by the manufacturer leads to a total surface figure measurement error of approximately 1/100 wave rms. This easily meets the requirement of 1/10 wave P-V. The error in radius of curvature is dominated by the Leica's absolute measurement error of VI.5 mm and the focus setting error of Vi.4 mm, giving an overall error of V2 mm. The OTS is currently being used to test the NGST Mirror System Demonstrators (NMSD's) and the Subscale Beryllium Mirror Demonstrator (SBNM).
Purification of photon subtraction from continuous squeezed light by filtering
NASA Astrophysics Data System (ADS)
Yoshikawa, Jun-ichi; Asavanant, Warit; Furusawa, Akira
2017-11-01
Photon subtraction from squeezed states is a powerful scheme to create good approximation of so-called Schrödinger cat states. However, conventional continuous-wave-based methods actually involve some impurity in squeezing of localized wave packets, even in the ideal case of no optical losses. Here, we theoretically discuss this impurity by introducing mode match of squeezing. Furthermore, here we propose a method to remove this impurity by filtering the photon-subtraction field. Our method in principle enables creation of pure photon-subtracted squeezed states, which was not possible with conventional methods.
NASA Astrophysics Data System (ADS)
Yang, Shang-Hua; Salas, Rodolfo; Krivoy, Erica M.; Nair, Hari P.; Bank, Seth R.; Jarrahi, Mona
2016-07-01
We investigate the impact of ErAs:GaAs and LuAs:GaAs superlattice structures with different LuAs/ErAs nanoparticle depositions and superlattice geometries on terahertz radiation properties of plasmonic photomixers operating at a 780-nm optical wavelength. Our analysis indicates the crucial impact of carrier drift velocity and carrier lifetime on the performance of plasmonic photomixers. While higher carrier drift velocities enable higher optical-to-terahertz conversion efficiencies by offering higher quantum efficiencies, shorter carrier lifetimes allow achieving higher optical-to-terahertz conversion efficiencies by mitigating the negative impact of destructive terahertz radiation from slow photocarriers and preventing the carrier screening effect.
Detecting gravity waves from binary black holes
NASA Technical Reports Server (NTRS)
Wahlquist, Hugo D.
1989-01-01
One of the most attractive possible sources of strong gravitational waves would be a binary system comprising massive black holes (BH). The gravitational radiation from a binary is an elliptically polarized, periodic wave which could be observed continuously - or at intervals whenever a detector was available. This continuity of the signal is certainly appealing compared to waiting for individual pulses from infrequent random events. It also has the advantage over pulses that continued observation can increase the signal-to-noise ratio almost indefinitely. Furthermore, this system is dynamically simple; the theory of the generation of the radiation is unambiguous; all characteristics of the signal can be precisely related to the dynamical parameters of the source. The current situation is that while there is no observational evidence as yet for the existence of massive binary BH, their formation is theoretically plausible, and within certain coupled constraints of mass and location, their existence cannot be observationally excluded. Detecting gravitational waves from these objects might be the first observational proof of their existence.
NASA Astrophysics Data System (ADS)
Thiry, Nicolas; Vasile, Massimiliano
2017-03-01
This paper presents a theoretical model to evaluate the thrust generated by a continuous wave (CW) laser, operating at moderate intensity (<100 GW/m2), ablating an S-type asteroid made of Forsterite. The key metric to assess the performance of the laser system is the thrust coupling coefficient which is given by the ratio between thrust and associated optical power. Three different models are developed in the paper: a one dimensional steady state model, a full 3D steady state model and a one dimensional model accounting for transient effects resulting from the tumbling motion of the asteroid. The results obtained with these models are used to derive key requirements and constraints on the laser system that allow approaching the ideal performance in a realistic case.
NASA Astrophysics Data System (ADS)
Fu, S. C.; Wang, X.; Chu, H.
2013-02-01
We report the generation of a green laser at 543 nm by intracavity frequency doubling of the continuous-wave (cw) laser operation of a 1086 nm Nd:YVO4 laser under 888 nm diode pumping into the emitting level 4F3/2. An LiB3O5 (LBO) crystal, cut for critical type I phase matching at room temperature, is used for the laser second-harmonic generation. At an incident pump power of 17.8 W, as high as 4.53 W cw output power at 543 nm is achieved. The optical-to-optical conversion efficiency is up to 25.4%, and the fluctuation of the green output power is better than 2.3% in a 30 min period.
Active locking and entanglement in type II optical parametric oscillators
NASA Astrophysics Data System (ADS)
Ruiz-Rivas, Joaquín; de Valcárcel, Germán J.; Navarrete-Benlloch, Carlos
2018-02-01
Type II optical parametric oscillators are amongst the highest-quality sources of quantum-correlated light. In particular, when pumped above threshold, such devices generate a pair of bright orthogonally-polarized beams with strong continuous-variable entanglement. However, these sources are of limited practical use, because the entangled beams emerge with different frequencies and a diffusing phase difference. It has been proven that the use of an internal wave-plate coupling the modes with orthogonal polarization is capable of locking the frequencies of the emerging beams to half the pump frequency, as well as reducing the phase-difference diffusion, at the expense of reducing the entanglement levels. In this work we characterize theoretically an alternative locking mechanism: the injection of a laser at half the pump frequency. Apart from being less invasive, this method should allow for an easier real-time experimental control. We show that such an injection is capable of generating the desired phase locking between the emerging beams, while still allowing for large levels of entanglement. Moreover, we find an additional region of the parameter space (at relatively large injections) where a mode with well defined polarization is in a highly amplitude-squeezed state.
NASA Astrophysics Data System (ADS)
Wang, Jiang; Li, Yongfang; Wang, Zhaolu; Han, Jing; Huang, Nan; Liu, Hongjun
2018-01-01
Broadband wavelength conversion based on degenerate four-wave mixing is theoretically investigated in a hydrogenated amorphous silicon (a-Si:H) waveguide with silicon nitride inter-cladding layer (a-Si:HN). We have found that enhancement of the non-linear effect of a-Si:H waveguide nitride intermediate layer facilitates broadband wavelength conversion. Conversion bandwidth of 490 nm and conversion efficiency of 11.4 dB were achieved in a numerical simulation of a 4 mm-long a-Si:HN waveguide under 1.55 μm continuous wave pumping. This broadband continuous-wave wavelength converter has potential applications in photonic networks, a type of readily manufactured low-cost highly integrated optical circuits.
NASA Astrophysics Data System (ADS)
Khushaini, Muhammad Asif A.; Ibrahim, Abdel-Baset M. A.; Choudhury, P. K.
2018-05-01
In this paper, we provide a complete mathematical model of the phenomenon of optical bistability (OB) resulting from the degenerate two-wave mixing (TWM) process of laser beams interacting with a single nonlinear layer of ferroelectric material. Starting with the electromagnetic wave equation for optical wave propagating in nonlinear media, a nonlinear coupled wave (CW) system with both self-phase modulation (SPM) and cross-phase modulation (XPM) sources of nonlinearity are derived. The complete CW system with full nonlinearity is solved numerically and a comparison between both the cases of with and without SPM at various combinations of design parameters is given. Furthermore, to provide a reliable theoretical model for the OB via TWM process, the results obtained theoretically are compared with the available experimental data. We found that the nonlinear system without SPM fails to predict the bistable response at lower combinations of the input parameters. However, at relatively higher values, the solution without SPM shows a reduction in the switching contrast and period in the OB response. A comparison with the experimental results shows better agreement with the system with full nonlinearity.
Characteristics of microseisms in South China
NASA Astrophysics Data System (ADS)
Xiao, H.; Xue, M.; Pan, M.
2017-12-01
Microseisms are generated by coupling ocean waves and the solid earth, and their main frequencies and sources vary in different regions of the world. We use continuous waveforms from three arrays along the southern coast of China to study the types and sources of microseisms in South China. Using cross-correlation functions and a three-component F-K analysis, we found that the main type of microseisms in this area propagates as surface waves, arriving mainly from the east and southeast. We also found that the surface waves have different characteristics: the Rayleigh waves and Love waves have diverse sources, are frequency dependent and have no obvious seasonal changes. In the 0.2-0.25 Hz frequency band, the Rayleigh and Love waves at the W01, W02 and ST arrays show the influences of common microseisms sources from Taiwan and the Luzon Strait. However, in the 0.27-0.5 Hz frequency band, the energy of the microseisms tends to be governed by the offshore sources near the stations. In addition, the Love waves have broader back azimuths than those of the Rayleigh waves, which may due to the energy transfer between Rayleigh and Love waves in the thick sediment layers.
From supersonic shear wave imaging to full-field optical coherence shear wave elastography
NASA Astrophysics Data System (ADS)
Nahas, Amir; Tanter, Mickaël; Nguyen, Thu-Mai; Chassot, Jean-Marie; Fink, Mathias; Claude Boccara, A.
2013-12-01
Elasticity maps of tissue have proved to be particularly useful in providing complementary contrast to ultrasonic imaging, e.g., for cancer diagnosis at the millimeter scale. Optical coherence tomography (OCT) offers an endogenous contrast based on singly backscattered optical waves. Adding complementary contrast to OCT images by recording elasticity maps could also be valuable in improving OCT-based diagnosis at the microscopic scale. Static elastography has been successfully coupled with full-field OCT (FF-OCT) in order to realize both micrometer-scale sectioning and elasticity maps. Nevertheless, static elastography presents a number of drawbacks, mainly when stiffness quantification is required. Here, we describe the combination of two methods: transient elastography, based on speed measurements of shear waves induced by ultrasonic radiation forces, and FF-OCT, an en face OCT approach using an incoherent light source. The use of an ultrafast ultrasonic scanner and an ultrafast camera working at 10,000 to 30,000 images/s made it possible to follow shear wave propagation with both modalities. As expected, FF-OCT is found to be much more sensitive than ultrafast ultrasound to tiny shear vibrations (a few nanometers and micrometers, respectively). Stiffness assessed in gel phantoms and an ex vivo rat brain by FF-OCT is found to be in good agreement with ultrasound shear wave elastography.
NASA Astrophysics Data System (ADS)
Zvietcovich, Fernando; Rolland, Jannick P.; Grygotis, Emma; Wayson, Sarah; Helguera, Maria; Dalecki, Diane; Parker, Kevin J.
2018-02-01
Determining the mechanical properties of tissue such as elasticity and viscosity is fundamental for better understanding and assessment of pathological and physiological processes. Dynamic optical coherence elastography uses shear/surface wave propagation to estimate frequency-dependent wave speed and Young's modulus. However, for dispersive tissues, the displacement pulse is highly damped and distorted during propagation, diminishing the effectiveness of peak tracking approaches. The majority of methods used to determine mechanical properties assume a rheological model of tissue for the calculation of viscoelastic parameters. Further, plane wave propagation is sometimes assumed which contributes to estimation errors. To overcome these limitations, we invert a general wave propagation model which incorporates (1) the initial force shape of the excitation pulse in the space-time field, (2) wave speed dispersion, (3) wave attenuation caused by the material properties of the sample, (4) wave spreading caused by the outward cylindrical propagation of the wavefronts, and (5) the rheological-independent estimation of the dispersive medium. Experiments were conducted in elastic and viscous tissue-mimicking phantoms by producing a Gaussian push using acoustic radiation force excitation, and measuring the wave propagation using a swept-source frequency domain optical coherence tomography system. Results confirm the effectiveness of the inversion method in estimating viscoelasticity in both the viscous and elastic phantoms when compared to mechanical measurements. Finally, the viscoelastic characterization of collagen hydrogels was conducted. Preliminary results indicate a relationship between collagen concentration and viscoelastic parameters which is important for tissue engineering applications.
All-optical in-depth detection of the acoustic wave emitted by a single gold nanorod
NASA Astrophysics Data System (ADS)
Xu, Feng; Guillet, Yannick; Ravaine, Serge; Audoin, Bertrand
2018-04-01
A single gold nanorod dropped on the surface of a silica substrate is used as a transient optoacoustic source of gigahertz hypersounds. We demonstrate the all-optical detection of the as-generated acoustic wave front propagating in the silica substrate. For this purpose, time-resolved femtosecond pump-probe experiments are performed in a reflection configuration. The fundamental breathing mode of the nanorod is detected at 23 GHz by interferometry, and the longitudinal acoustic wave radiated in the silica substrate is detected by time-resolved Brillouin scattering. By tuning the optical probe wavelength from 750 to 900 nm, hypersounds with wavelengths of 260-315 nm are detected in the silica substrate, with corresponding acoustic frequencies in the range of 19-23 GHz. To confirm the origin of these hypersounds, we theoretically analyze the influence of the acoustic excitation spectrum on the temporal envelope of the transient reflectivity. This analysis proves that the acoustic wave detected in the silica substrate results from the excitation of the breathing mode of the nanorod. These results pave the way for performing local in-depth elastic nanoscopy.
Continuous-feed optical sorting of aerosol particles
Curry, J. J.; Levine, Zachary H.
2016-01-01
We consider the problem of sorting, by size, spherical particles of order 100 nm radius. The scheme we analyze consists of a heterogeneous stream of spherical particles flowing at an oblique angle across an optical Gaussian mode standing wave. Sorting is achieved by the combined spatial and size dependencies of the optical force. Particles of all sizes enter the flow at a point, but exit at different locations depending on size. Exiting particles may be detected optically or separated for further processing. The scheme has the advantages of accommodating a high throughput, producing a continuous stream of continuously dispersed particles, and exhibiting excellent size resolution. We performed detailed Monte Carlo simulations of particle trajectories through the optical field under the influence of convective air flow. We also developed a method for deriving effective velocities and diffusion constants from the Fokker-Planck equation that can generate equivalent results much more quickly. With an optical wavelength of 1064 nm, polystyrene particles with radii in the neighborhood of 275 nm, for which the optical force vanishes, may be sorted with a resolution below 1 nm. PMID:27410570
Laser-induced damage threshold of camera sensors and micro-optoelectromechanical systems
NASA Astrophysics Data System (ADS)
Schwarz, Bastian; Ritt, Gunnar; Koerber, Michael; Eberle, Bernd
2017-03-01
The continuous development of laser systems toward more compact and efficient devices constitutes an increasing threat to electro-optical imaging sensors, such as complementary metal-oxide-semiconductors (CMOS) and charge-coupled devices. These types of electronic sensors are used in day-to-day life but also in military or civil security applications. In camera systems dedicated to specific tasks, micro-optoelectromechanical systems, such as a digital micromirror device (DMD), are part of the optical setup. In such systems, the DMD can be located at an intermediate focal plane of the optics and it is also susceptible to laser damage. The goal of our work is to enhance the knowledge of damaging effects on such devices exposed to laser light. The experimental setup for the investigation of laser-induced damage is described in detail. As laser sources, both pulsed lasers and continuous-wave (CW)-lasers are used. The laser-induced damage threshold is determined by the single-shot method by increasing the pulse energy from pulse to pulse or in the case of CW-lasers, by increasing the laser power. Furthermore, we investigate the morphology of laser-induced damage patterns and the dependence of the number of destructive device elements on the laser pulse energy or laser power. In addition to the destruction of single pixels, we observe aftereffects, such as persistent dead columns or rows of pixels in the sensor image.
Savochkin, I V; Jäckl, M; Belotelov, V I; Akimov, I A; Kozhaev, M A; Sylgacheva, D A; Chernov, A I; Shaposhnikov, A N; Prokopov, A R; Berzhansky, V N; Yakovlev, D R; Zvezdin, A K; Bayer, M
2017-07-18
Currently spin waves are considered for computation and data processing as an alternative to charge currents. Generation of spin waves by ultrashort laser pulses provides several important advances with respect to conventional approaches using microwaves. In particular, focused laser spot works as a point source for spin waves and allows for directional control of spin waves and switching between their different types. For further progress in this direction it is important to manipulate with the spectrum of the optically generated spin waves. Here we tackle this problem by launching spin waves by a sequence of femtosecond laser pulses with pulse interval much shorter than the relaxation time of the magnetization oscillations. This leads to the cumulative phenomenon and allows us to generate magnons in a specific narrow range of wavenumbers. The wavelength of spin waves can be tuned from 15 μm to hundreds of microns by sweeping the external magnetic field by only 10 Oe or by slight variation of the pulse repetition rate. Our findings expand the capabilities of the optical spin pump-probe technique and provide a new method for the spin wave generation and control.
PAIR-DOMINATED GeV-OPTICAL FLASH IN GRB 130427A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vurm, Indrek; Hascoët, Romain; Beloborodov, Andrei M., E-mail: indrek.vurm@gmail.com
2014-07-10
We show that the light curve of the double GeV+optical flash in GRB 130427A is consistent with radiation from the blast wave in a wind-type medium with density parameter A = ρr {sup 2} ∼ 5 × 10{sup 10} g cm{sup –1}. The peak of the flash is emitted by copious e {sup ±} pairs created and heated in the blast wave; our first-principle calculation determines the pair-loading factor and temperature of the shocked plasma. Using detailed radiative transfer simulations, we reconstruct the observed double flash. The optical flash is dominated by synchrotron emission from the thermal plasma behind the forward shock, andmore » the GeV flash is produced via inverse Compton (IC) scattering by the same plasma. The seed photons for IC scattering are dominated by the prompt MeV radiation during the first tens of seconds, and by the optical to X-ray afterglow thereafter. IC cooling of the thermal plasma behind the forward shock reproduces all GeV data from a few seconds to ∼1 day. We find that the blast wave Lorentz factor at the peak of the flash is Γ ≈ 200, and the forward shock magnetization is ε{sub B} ∼ 2 × 10{sup –4}. An additional source is required by the data in the optical and X-ray bands at times >10{sup 2} s; we speculate that this additional source may be a long-lived reverse shock in the explosion ejecta.« less
Bakry, Ahmed
2014-01-01
This paper presents modeling and simulation on the characteristics of semiconductor laser modulated within a strong optical feedback (OFB-)induced photon-photon resonance over a passband of millimeter (mm) frequencies. Continuous wave (CW) operation of the laser under strong OFB is required to achieve the photon-photon resonance in the mm-wave band. The simulated time-domain characteristics of modulation include the waveforms of the intensity and frequency chirp as well as the associated distortions of the modulated mm-wave signal. The frequency domain characteristics include the intensity modulation (IM) and frequency modulation (FM) responses in addition to the associated relative intensity noise (RIN). The signal characteristics under modulations with both single and two mm-frequencies are considered. The harmonic distortion and the third order intermodulation distortion (IMD3) are examined and the spurious free dynamic range (SFDR) is calculated. PMID:25383381
Design of a compact all-permanent magnet ECR ion source injector for ReA at the MSU NSCL
NASA Astrophysics Data System (ADS)
Pham, Alfonse N.; Leitner, Daniela; Glennon, Patrick; Ottarson, Jack; Lawton, Don; Portillo, Mauricio; Machicoane, Guillaume; Wenstrom, John; Lajoie, Andrew
2016-06-01
The design of a compact all-permanent magnet electron cyclotron resonance (ECR) ion source injector for the ReAccelerator Facility (ReA) at the Michigan State University (MSU) National Superconducting Cyclotron Laboratory (NSCL) is currently being carried out. The ECR ion source injector will complement the electron beam ion trap (EBIT) charge breeder as an off-line stable ion beam injector for the ReA linac. The objective of the ECR ion source injector is to provide continuous-wave beams of heavy ions from hydrogen to masses up to 136Xe within the ReA charge-to-mass ratio (Q / A) operational range from 0.2 to 0.5. The ECR ion source will be mounted on a high-voltage platform that can be adjusted to obtain the required 12 keV/u injection energy into a room temperature radio-frequency quadrupole (RFQ) for further acceleration. The beam line consists of a 30 kV tetrode extraction system, mass analyzing section, and optical matching section for injection into the existing ReA low energy beam transport (LEBT) line. The design of the ECR ion source and the associated beam line are discussed.
Large dynamic range terahertz spectrometers based on plasmonic photomixers (Conference Presentation)
NASA Astrophysics Data System (ADS)
Wang, Ning; Javadi, Hamid; Jarrahi, Mona
2017-02-01
Heterodyne terahertz spectrometers are highly in demand for space explorations and astrophysics studies. A conventional heterodyne terahertz spectrometer consists of a terahertz mixer that mixes a received terahertz signal with a local oscillator signal to generate an intermediate frequency signal in the radio frequency (RF) range, where it can be easily processed and detected by RF electronics. Schottky diode mixers, superconductor-insulator-superconductor (SIS) mixers and hot electron bolometer (HEB) mixers are the most commonly used mixers in conventional heterodyne terahertz spectrometers. While conventional heterodyne terahertz spectrometers offer high spectral resolution and high detection sensitivity levels at cryogenic temperatures, their dynamic range and bandwidth are limited by the low radiation power of existing terahertz local oscillators and narrow bandwidth of existing terahertz mixers. To address these limitations, we present a novel approach for heterodyne terahertz spectrometry based on plasmonic photomixing. The presented design replaces terahertz mixer and local oscillator of conventional heterodyne terahertz spectrometers with a plasmonic photomixer pumped by an optical local oscillator. The optical local oscillator consists of two wavelength-tunable continuous-wave optical sources with a terahertz frequency difference. As a result, the spectrometry bandwidth and dynamic range of the presented heterodyne spectrometer is not limited by radiation frequency and power restrictions of conventional terahertz sources. We demonstrate a proof-of-concept terahertz spectrometer with more than 90 dB dynamic range and 1 THz spectrometry bandwidth.
NASA Astrophysics Data System (ADS)
Song, Shaozhen; Le, Nhan Minh; Wang, Ruikang K.; Huang, Zhihong
2015-03-01
Shear Wave Optical Coherence Elastography (SW-OCE) uses the speed of propagating shear waves to provide a quantitative measurement of localized shear modulus, making it a valuable technique for the elasticity characterization of tissues such as skin and ocular tissue. One of the main challenges in shear wave elastography is to induce a reliable source of shear wave; most of nowadays techniques use external vibrators which have several drawbacks such as limited wave propagation range and/or difficulties in non-invasive scans requiring precisions, accuracy. Thus, we propose linear phase array ultrasound transducer as a remote wave source, combined with the high-speed, 47,000-frame-per-second Shear-wave visualization provided by phase-sensitive OCT. In this study, we observed for the first time shear waves induced by a 128 element linear array ultrasound imaging transducer, while the ultrasound and OCT images (within the OCE detection range) were triggered simultaneously. Acoustic radiation force impulses are induced by emitting 10 MHz tone-bursts of sub-millisecond durations (between 50 μm - 100 μm). Ultrasound beam steering is achieved by programming appropriate phase delay, covering a lateral range of 10 mm and full OCT axial (depth) range in the imaging sample. Tissue-mimicking phantoms with agarose concentration of 0.5% and 1% was used in the SW-OCE measurements as the only imaging samples. The results show extensive improvements over the range of SW-OCE elasticity map; such improvements can also be seen over shear wave velocities in softer and stiffer phantoms, as well as determining the boundary of multiple inclusions with different stiffness. This approach opens up the feasibility to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative measurement of tissue biomechanical property.
High-power, continuous-wave, tunable mid-IR, higher-order vortex beam optical parametric oscillator
NASA Astrophysics Data System (ADS)
Aadhi, A.; Sharma, Varun; Samanta, G. K.
2018-05-01
We report on a novel experimental scheme to generate continuous-wave (cw), high power, and higher-order optical vortices tunable across mid-IR wavelength range. Using cw, two-crystal, singly resonant optical parametric oscillator (T-SRO) and pumping one of the crystals with Gaussian beam and the other crystal with optical vortices of orders, lp = 1 to 6, we have directly transferred the vortices at near-IR to the mid-IR wavelength range. The idler vortices of orders, li = 1 to 6, are tunable across 2276-3576 nm with a maximum output power of 6.8 W at order of, li = 1, for the pump power of 25 W corresponding to a near-IR vortex to mid-IR vortex conversion efficiency as high as 27.2%. Unlike the SROs generating optical vortices restricted to lower orders due to the elevated operation threshold with pump vortex orders, here, the coherent energy coupling between the resonant signals of the crystals of T-SRO facilitates the transfer of pump vortex of any order to the idler wavelength without stringent operation threshold condition. The generic experimental scheme can be used in any wavelength range across the electromagnetic spectrum and in all time scales from cw to ultrafast regime.
From Nonradiating Sources to Directionally Invisible Objects
NASA Astrophysics Data System (ADS)
Hurwitz, Elisa
The goal of this dissertation is to extend the understanding of invisible objects, in particular nonradiating sources and directional nonscattering scatterers. First, variations of null-field nonradiating sources are derived from Maxwell's equations. Next, it is shown how to design a nonscattering scatterer by applying the boundary conditions for nonradiating sources to the scalar wave equation, referred to here as the "field cloak method". This technique is used to demonstrate directionally invisible scatterers for an incident field with one direction of incidence, and the influence of symmetry on the directionality is explored. This technique, when applied to the scalar wave equation, is extended to show that a directionally invisible object may be invisible for multiple directions of incidence simultaneously. This opens the door to the creation of optically switchable, directionally invisible objects which could be implemented in couplers and other novel optical devices. Next, a version of the "field cloak method" is extended to the Maxwell's electro-magnetic vector equations, allowing more flexibility in the variety of directionally invisible objects that can be designed. This thesis concludes with examples of such objects and future applications.
NASA Astrophysics Data System (ADS)
Nguyen, Dam Thuy Trang; Tong, Quang Cong; Ledoux-Rak, Isabelle; Lai, Ngoc Diep
2016-01-01
In this work, local thermal effect induced by a continuous-wave laser has been investigated and exploited to optimize the low one-photon absorption (LOPA) direct laser writing (DLW) technique for fabrication of polymer-based microstructures. It was demonstrated that the temperature of excited SU8 photoresist at the focusing area increases to above 100 °C due to high excitation intensity and becomes stable at that temperature thanks to the use of a continuous-wave laser at 532 nm-wavelength. This optically induced thermal effect immediately completes the crosslinking process at the photopolymerized region, allowing obtain desired structures without using the conventional post-exposure bake (PEB) step, which is usually realized after the exposure. Theoretical calculation of the temperature distribution induced by local optical excitation using finite element method confirmed the experimental results. LOPA-based DLW technique combined with optically induced thermal effect (local PEB) shows great advantages over the traditional PEB, such as simple, short fabrication time, high resolution. In particular, it allowed the overcoming of the accumulation effect inherently existed in optical lithography by one-photon absorption process, resulting in small and uniform structures with very short lattice constant.
NASA Astrophysics Data System (ADS)
Gao, Shiyu
With increased demand for bandwidth-hungry applications such as video-on-demand, wavelength-division-multiplexing passive optical network (WDM-PON) has become a strong contender in overcoming the last mile bottle neck. However, the wide-scale deployment of WDM-PONs has been delayed mainly due to the high cost of wavelength-specific optical components. To realize cost-effective WDM-PONs, various wavelength-independent, so called colorless architectures, have been developed so that all the subscribers can have identical optical network units (ONUs). In such WDM-PONs, however, single-fiber bidirectional transmission results in degradation of system performance caused by interference between the signals and backreflections. This thesis investigates the impact of backreflections on single-fiber bidirectional WDM-PONs. A WDM-PON with various optical line terminals (OLTs) and colorless ONU configurations is presented. The dependence of the power penalty, caused by backreflections, on a variety of parameters is investigated. This includes parameters such as the source linewidths, receiver bandwidth, transmission line loss (TLL), ONU gain, chirp effect at the ONU and optical return loss (ORL), in various WDM-PON configurations. The WDM-PON with continuous wave (CW) seed light and remodulation schemes are both presented and studied experimentally. The impacts of the backreflections on the single-fiber bidirectional WDM-PON with various OLT and ONU configurations are compared and analyzed accordingly.
NASA Astrophysics Data System (ADS)
Kelley, Luke Zoltan; Mandel, Ilya; Ramirez-Ruiz, Enrico
2013-06-01
The detection of an electromagnetic transient which may originate from a binary neutron star merger can increase the probability that a given segment of data from the LIGO-Virgo ground-based gravitational-wave detector network contains a signal from a binary coalescence. Additional information contained in the electromagnetic signal, such as the sky location or distance to the source, can help rule out false alarms and thus lower the necessary threshold for a detection. Here, we develop a framework for determining how much sensitivity is added to a gravitational-wave search by triggering on an electromagnetic transient. We apply this framework to a variety of relevant electromagnetic transients, from short gamma-ray bursts (GRBs) to signatures of r-process heating to optical and radio orphan afterglows. We compute the expected rates of multimessenger observations in the advanced detector era and find that searches triggered on short GRBs—with current high-energy instruments, such as Fermi—and nucleosynthetic “kilonovae”—with future optical surveys, like the Large Synoptic Survey Telescope—can boost the number of multimessenger detections by 15% and 40%, respectively, for a binary neutron star progenitor model. Short GRB triggers offer precise merger timing but suffer from detection rates decreased by beaming and the high a priori probability that the source is outside the LIGO-Virgo sensitive volume. Isotropic kilonovae, on the other hand, could be commonly observed within the LIGO-Virgo sensitive volume with an instrument roughly an order of magnitude more sensitive than current optical surveys. We propose that the most productive strategy for making multimessenger gravitational-wave observations is using triggers from future deep, optical all-sky surveys, with characteristics comparable to the Large Synoptic Survey Telescope, which could make as many as ten such coincident observations a year.
Ultralow-threshold Raman lasing with CaF2 resonators.
Grudinin, Ivan S; Maleki, Lute
2007-01-15
We demonstrate efficient Raman lasing with CaF2 whispering-gallery-mode resonators. Continuous-wave emission threshold is shown to be possible below 1 microW with a 5mm cavity, which is to our knowledge orders of magnitude lower than in any other Raman source. Low-threshold lasing is made possible by the ultrahigh optical quality factor of the cavity, of the order of Q=5x10(10). Stokes components of up to the fifth order were observed at a pump power of 160 microW, and up to the eighth order at 1 mW. A lasing threshold of 15 microW was also observed in a 100 microm CaF2 microcavity. Potential applications are discussed.
Ultrasonically Encoded Photoacoustic Flowgraphy in Biological Tissue
NASA Astrophysics Data System (ADS)
Wang, Lidai; Xia, Jun; Yao, Junjie; Maslov, Konstantin I.; Wang, Lihong V.
2013-11-01
Blood flow speed is an important functional parameter. Doppler ultrasound flowmetry lacks sufficient sensitivity to slow blood flow (several to tens of millimeters per second) in deep tissue. To address this challenge, we developed ultrasonically encoded photoacoustic flowgraphy combining ultrasonic thermal tagging with photoacoustic imaging. Focused ultrasound generates a confined heat source in acoustically absorptive fluid. Thermal waves propagate with the flow and are directly visualized in pseudo color using photoacoustic computed tomography. The Doppler shift is employed to calculate the flow speed. This method requires only acoustic and optical absorption, and thus is applicable to continuous fluid. A blood flow speed as low as 0.24mm·s-1 was successfully measured. Deep blood flow imaging was experimentally demonstrated under 5-mm-thick chicken breast tissue.
Electrically-pumped compact hybrid silicon microring lasers for optical interconnects.
Liang, Di; Fiorentino, Marco; Okumura, Tadashi; Chang, Hsu-Hao; Spencer, Daryl T; Kuo, Ying-Hao; Fang, Alexander W; Dai, Daoxin; Beausoleil, Raymond G; Bowers, John E
2009-10-26
We demonstrate an electrically-pumped hybrid silicon microring laser fabricated by a self-aligned process. The compact structure (D = 50 microm) and small electrical and optical losses result in lasing threshold as low as 5.4 mA and up to 65 degrees C operation temperature in continuous-wave (cw) mode. The spectrum is single mode with large extinction ratio and small linewidth observed. Application as on-chip optical interconnects is discussed from a system perspective.
Chiarelli, Antonio M; Libertino, Sebania; Zappasodi, Filippo; Mazzillo, Massimo; Pompeo, Francesco Di; Merla, Arcangelo; Lombardo, Salvatore; Fallica, Giorgio
2017-07-01
We report development, testing, and in vivo characterization of a multichannel optical probe for continuous wave (CW) functional near-infrared spectroscopy (fNIRS) that relies on silicon photomultipliers (SiPMs) detectors. SiPMs are cheap, low voltage, and robust semiconductor light detectors with performances analogous to photomultiplier tubes (PMTs). In contrast with PMTs, SiPMs allow direct contact with the head and transfer of the analog signals through thin cables greatly increasing the system flexibility avoiding optical fibers. The coupling of SiPMs and light-emitting diodes (LEDs) made the optical probe lightweight and robust against motion artifacts. After characterization of SiPM performances, which was proven to provide a noise equivalent power below 3 fW, the apparatus was compared through an in vivo experiment to a commercial system relying on laser diodes, PMTs, and optical fibers for light probing and detection. The optical probes were located over the primary sensorimotor cortex and the similarities between the hemodynamic responses to the contralateral motor task were assessed. When compared to other state-of-the-art wearable fNIRS systems, where photodiode detectors are employed, the single photon sensitivity and dynamic range of SiPMs can fully exploit the long and variable interoptode distances needed for correct estimation of brain hemodynamics using CW-fNIRS.
Acousto-optical imaging using a powerful long pulse laser
NASA Astrophysics Data System (ADS)
Rousseau, Guy; Blouin, Alain; Monchalin, Jean-Pierre
2008-06-01
Acousto-optical imaging is an emerging biodiagnostic technique which provides an optical spectroscopic signature and a spatial localization of an optically absorbing target embedded in a strongly scattering medium. The transverse resolution of the technique is determined by the lateral extent of ultrasound beam focal zone while the axial resolution is obtained by using short ultrasound pulses. Although very promising for medical diagnostic, the practical application of this technique is presently limited by its poor sensitivity. Moreover, any method to enhance the signal-to-noise ratio must obviously satisfy the in vivo safety limits regarding the acceptable power level of both the ultrasonic pressure wave and the laser beam. In this paper, we propose to improve the sensitivity by using a pulsed single-frequency laser source to raise the optical peak power applied to the scattering medium and to collect more ultrasonically tagged photons. Such a laser source also allows illuminating the tissues mainly during the transit time of the ultrasonic wave to maintain the average optical power below the maximum permissible exposure. In our experiment, a single-frequency Nd:YAG laser emitting 500-μs pulses with a peak power superior to 100 W was used. Photons were tagged in few-cm thick optical phantoms with tone bursts generated by an ultrasonic transducer. Tagged photons were detected with a GaAs photorefractive interferometer characterized by a large optical etendue to process simultaneously a large number of speckle grains. When pumped by high intensity laser pulses, such an interferometer also provides the fast response time essential to obtain an apparatus insensitive to the speckle decorrelation due to mechanical vibrations or tissues movements. The use of a powerful long pulse laser appears promising to enhance the signal level in ultrasound modulated optical imaging. When combined with a photorefractive interferometer of large optical etendue, such a source could allow obtaining both the sensitivity and the fast response time necessary for biodiagnostic applications.
Kim, Young Hoon; Song, Kwang Yong
2017-06-26
A Brillouin optical time domain analysis (BOTDA) system utilizing tailored compensation for the propagation loss of the pump pulse is demonstrated for long-range and high-resolution distributed sensing. A continuous pump wave for distributed Brillouin amplification (DBA pump) of the pump pulse co-propagates with the probe wave, where gradual variation of the spectral width is additionally introduced to the DBA pump to obtain a uniform Brillouin gain along the position. In the experimental confirmation, a distributed strain measurement along a 51.2 km fiber under test is presented with a spatial resolution of 20 cm, in which the measurement error (σ) of less than 1.45 MHz and the near-constant Brillouin gain of the probe wave are maintained throughout the fiber.
Simulated electronic heterodyne recording and processing of pulsed-laser holograms
NASA Technical Reports Server (NTRS)
Decker, A. J.
1979-01-01
The electronic recording of pulsed-laser holograms is proposed. The polarization sensitivity of each resolution element of the detector is controlled independently to add an arbitrary phase to the image waves. This method which can be used to simulate heterodyne recording and to process three-dimensional optical images, is based on a similar method for heterodyne recording and processing of continuous-wave holograms.
NASA Astrophysics Data System (ADS)
Birch, James R.; Parker, Terence J.
Papers presented in these proceedings are grouped under the topics of FEL, detectors and sources, gas lasers, spectroscopy, windows for high-power applications, scattering, plasma diagnostics, waveguides, gyrotron, quasi-optical components, biological effects of IR and millimeter waves, and astronomical and atmospheric systems. Particular attention is given to the ENEA compact millimeter wave FEL, excitonic detectors of IR and submm waves, identification of submm CD2O lines, a two-frequency quasi-optical radiospectrometer for substance investigations, the effect of window tolerances on gyrotron performance, and analysis of scattering of the open resonator field from the cavity-backed aperture. Other papers are on submm laser interferometer-polarimeter for plasma diagnostics, the characteristics of the closed circular groove guide, a kW sixth-harmonic gyrofrequency multiplier, rugged FIR bandpass filters, millimeter waves and quantum medicines, and a horizontal atmospheric temperature sounder based on the 60-GHz oxygen absorptions.
Systems and methods for enhancing optical information
DeVore, Peter Thomas Setsuda; Chou, Jason T.
2018-01-02
An Optical Information Transfer Enhancer System includes a first system for producing an information bearing first optical wave that is impressed with a first information having a first information strength wherein the first optical wave has a first shape. A second system produces a second optical wave. An information strength enhancer module receives the first and said second optical waves and impresses the first optical wave upon the second optical wave via cross-phase modulation (XPM) to produce an information-strength-enhanced second optical wave having a second information strength that is greater than the first information strength of the first optical wave. Following a center-wavelength changer by an Optical Information Transfer Enhancer System improves its performance.
Surface wave chemical detector using optical radiation
Thundat, Thomas G.; Warmack, Robert J.
2007-07-17
A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.
Compact sub-kilohertz low-frequency quantum light source based on four-wave mixing in cesium vapor
NASA Astrophysics Data System (ADS)
Ma, Rong; Liu, Wei; Qin, Zhongzhong; Su, Xiaolong; Jia, Xiaojun; Zhang, Junxiang; Gao, Jiangrui
2018-03-01
Using a nondegenerate four-wave mixing (FWM) process based on a double-{\\Lambda} scheme in hot cesium vapor, we demonstrate a compact diode-laser-pumped quantum light source for the generation of quantum correlated twin beams with a maximum squeezing of 6.5 dB. The squeezing is observed at a Fourier frequency in the audio band down to 0.7 kHz which, to the best of our knowledge, is the first observation of sub-kilohertz intensity-difference squeezing in an atomic system so far. A phase-matching condition is also investigated in our system, which confirms the spatial-multi-mode characteristics of the FWM process. Our compact low-frequency squeezed light source may find applications in quantum imaging, quantum metrology, and the transfer of optical squeezing onto a matter wave.
TIM, a ray-tracing program for METATOY research and its dissemination
NASA Astrophysics Data System (ADS)
Lambert, Dean; Hamilton, Alasdair C.; Constable, George; Snehanshu, Harsh; Talati, Sharvil; Courtial, Johannes
2012-03-01
TIM (The Interactive METATOY) is a ray-tracing program specifically tailored towards our research in METATOYs, which are optical components that appear to be able to create wave-optically forbidden light-ray fields. For this reason, TIM possesses features not found in other ray-tracing programs. TIM can either be used interactively or by modifying the openly available source code; in both cases, it can easily be run as an applet embedded in a web page. Here we describe the basic structure of TIM's source code and how to extend it, and we give examples of how we have used TIM in our own research. Program summaryProgram title: TIM Catalogue identifier: AEKY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 124 478 No. of bytes in distributed program, including test data, etc.: 4 120 052 Distribution format: tar.gz Programming language: Java Computer: Any computer capable of running the Java Virtual Machine (JVM) 1.6 Operating system: Any; developed under Mac OS X Version 10.6 RAM: Typically 145 MB (interactive version running under Mac OS X Version 10.6) Classification: 14, 18 External routines: JAMA [1] (source code included) Nature of problem: Visualisation of scenes that include scene objects that create wave-optically forbidden light-ray fields. Solution method: Ray tracing. Unusual features: Specifically designed to visualise wave-optically forbidden light-ray fields; can visualise ray trajectories; can visualise geometric optic transformations; can create anaglyphs (for viewing with coloured "3D glasses") and random-dot autostereograms of the scene; integrable into web pages. Running time: Problem-dependent; typically seconds for a simple scene.
Experimental demonstration of deep frequency modulation interferometry.
Isleif, Katharina-Sophie; Gerberding, Oliver; Schwarze, Thomas S; Mehmet, Moritz; Heinzel, Gerhard; Cervantes, Felipe Guzmán
2016-01-25
Experiments for space and ground-based gravitational wave detectors often require a large dynamic range interferometric position readout of test masses with 1 pm/√Hz precision over long time scales. Heterodyne interferometer schemes that achieve such precisions are available, but they require complex optical set-ups, limiting their scalability for multiple channels. This article presents the first experimental results on deep frequency modulation interferometry, a new technique that combines sinusoidal laser frequency modulation in unequal arm length interferometers with a non-linear fit algorithm. We have tested the technique in a Michelson and a Mach-Zehnder Interferometer topology, respectively, demonstrated continuous phase tracking of a moving mirror and achieved a performance equivalent to a displacement sensitivity of 250 pm/Hz at 1 mHz between the phase measurements of two photodetectors monitoring the same optical signal. By performing time series fitting of the extracted interference signals, we measured that the linearity of the laser frequency modulation is on the order of 2% for the laser source used.
An overview of optical diagnostics developed for the Lockheed Martin compact fusion reactor
NASA Astrophysics Data System (ADS)
Sommers, Bradley; Raymond, Anthony; Gucker, Sarah; Lockheed Martin Compact Fusion Reactor Team
2017-10-01
The T4B experiment is a linear, encapsulated ring cusp confinement device, designed to develop a physics and technology basis for a follow-on high beta machine as part of the compact fusion reactor program. Toward this end, a collection of non-invasive optical diagnostics have been developed to investigate confinement, neutral beam heating, and source behavior on the T4B device. These diagnostics include: (1) a multipoint Thomson scattering system employing a 532 nm Nd:YAG laser and high throughput spectrometer to measure 1D profiles of electron density and temperature, (2) a dispersion interferometer utilizing a continuous-wave CO2 laser (10.6 μm) to measure time resolved, line-integrated electron density, and (3) a bolometer suite utilizing four AXUV photodiodes with 64 lines of sight to generate 2D reconstructions of total radiative power and soft x-ray emission (via beryllium filters). An overview of design methods, including laser systems, detection schemes, and data analysis techniques is presented as well as results to date.
NASA Astrophysics Data System (ADS)
Doulgerakis, Matthaios; Eggebrecht, Adam; Wojtkiewicz, Stanislaw; Culver, Joseph; Dehghani, Hamid
2017-12-01
Parameter recovery in diffuse optical tomography is a computationally expensive algorithm, especially when used for large and complex volumes, as in the case of human brain functional imaging. The modeling of light propagation, also known as the forward problem, is the computational bottleneck of the recovery algorithm, whereby the lack of a real-time solution is impeding practical and clinical applications. The objective of this work is the acceleration of the forward model, within a diffusion approximation-based finite-element modeling framework, employing parallelization to expedite the calculation of light propagation in realistic adult head models. The proposed methodology is applicable for modeling both continuous wave and frequency-domain systems with the results demonstrating a 10-fold speed increase when GPU architectures are available, while maintaining high accuracy. It is shown that, for a very high-resolution finite-element model of the adult human head with ˜600,000 nodes, consisting of heterogeneous layers, light propagation can be calculated at ˜0.25 s/excitation source.
Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor
NASA Astrophysics Data System (ADS)
Jia, Yufei; Kerner, Ross A.; Grede, Alex J.; Rand, Barry P.; Giebink, Noel C.
2017-12-01
Hybrid organic-inorganic perovskites have emerged as promising gain media for tunable, solution-processed semiconductor lasers. However, continuous-wave operation has not been achieved so far1-3. Here, we demonstrate that optically pumped continuous-wave lasing can be sustained above threshold excitation intensities of 17 kW cm-2 for over an hour in methylammonium lead iodide (MAPbI3) distributed feedback lasers that are maintained below the MAPbI3 tetragonal-to-orthorhombic phase transition temperature of T ≈ 160 K. In contrast with the lasing death phenomenon that occurs for pure tetragonal-phase MAPbI3 at T > 160 K (ref. 4), we find that continuous-wave gain becomes possible at T ≈ 100 K from tetragonal-phase inclusions that are photogenerated by the pump within the normally existing, larger-bandgap orthorhombic host matrix. In this mixed-phase system, the tetragonal inclusions function as carrier recombination sinks that reduce the transparency threshold, in loose analogy to inorganic semiconductor quantum wells, and may serve as a model for engineering improved perovskite gain media.
El-Ella, Haitham A R; Ahmadi, Sepehr; Wojciechowski, Adam M; Huck, Alexander; Andersen, Ulrik L
2017-06-26
Magnetometers based on ensembles of nitrogen-vacancy centres are a promising platform for continuously sensing static and low-frequency magnetic fields. Their combination with phase-sensitive (lock-in) detection creates a highly versatile sensor with a sensitivity that is proportional to the derivative of the optical magnetic resonance lock-in spectrum, which is in turn dependant on the lock-in modulation parameters. Here we study the dependence of the lock-in spectral slope on the modulation of the spin-driving microwave field. Given the presence of the intrinsic nitrogen hyperfine spin transitions, we experimentally show that when the ratio between the hyperfine linewidth and their separation is ≳ 1/4, square-wave based frequency modulation generates the steepest slope at modulation depths exceeding the separation of the hyperfine lines, compared to sine-wave based modulation. We formulate a model for calculating lock-in spectra which shows excellent agreement with our experiments, and which shows that an optimum slope is achieved when the linewidth/separation ratio is ≲ 1/4 and the modulation depth is less then the resonance linewidth, irrespective of the modulation function used.
Measurement of an image jitter of an extended incoherent radiation source
NASA Astrophysics Data System (ADS)
Lukin, V. P.; Nosov, V. V.
2017-06-01
A scheme of an image jitter measuring device, which uses an extended incoherent source as a radiation source, is presented. The efficiency of the measuring device is analysed analytically and numerically in order to justify the operation of the adaptive optical system that does not require special creation or formation of a reference source. The features of the formed image of incoherent radiation are considered, in particular from the point of view of its possible application for measuring the phase fluctuations of optical waves propagating in a turbulent atmosphere (the adaptive system monitors the image of a self-luminous object illuminated by extraneous sources). The possibility of utilising a Shack-Hartmann wavefront sensor in adaptive systems using the image of an arbitrary object (or its fragment) as a reference source is shown.
NASA Astrophysics Data System (ADS)
Hsieh, Bao-Yu; Song, Shaozhen; Nguyen, Thu-Mai; Yoon, Soon Joon; Shen, Tueng; Wang, Ruikang; O'Donnell, Matthew
2016-03-01
Phase-sensitive optical coherence tomography (PhS-OCT) can be utilized for quantitative shear-wave elastography using speckle tracking. However, current approaches cannot directly reconstruct elastic properties in speckle-less or speckle-free regions, for example within the crystalline lens in ophthalmology. Investigating the elasticity of the crystalline lens could improve understanding and help manage presbyopia-related pathologies that change biomechanical properties. We propose to reconstruct the elastic properties in speckle-less regions by sequentially launching shear waves with moving acoustic radiation force (mARF), and then detecting the displacement at a specific speckle-generating position, or limited set of positions, with PhS-OCT. A linear ultrasound array (with a center frequency of 5 MHz) interfaced with a programmable imaging system was designed to launch shear waves by mARF. Acoustic sources were electronically translated to launch shear waves at laterally shifted positions, where displacements were detected by speckle tracking images produced by PhS-OCT operating in M-B mode with a 125-kHz A-line rate. Local displacements were calculated and stitched together sequentially based on the distance between the acoustic source and the detection beam. Shear wave speed, and the associated elasticity map, were then reconstructed based on a time-of-flight algorithm. In this study, moving-source shear wave elasticity imaging (SWEI) can highlight a stiff inclusion within an otherwise homogeneous phantom but with a CNR increased by 3.15 dB compared to a similar image reconstructed with moving-detector SWEI. Partial speckle-free phantoms were also investigated to demonstrate that the moving-source sequence could reconstruct the elastic properties of speckle-free regions. Results show that harder inclusions within the speckle-free region can be detected, suggesting that this imaging method may be able to detect the elastic properties of the crystalline lens.
NASA Astrophysics Data System (ADS)
Pan, Honggang; Zhang, Ailing; Tong, Zhengrong; Zhang, Yue; Song, Hongyun; Yao, Yuan
2018-03-01
A width-tunable pulse laser via an optical injection induced gain modulation of a semiconductor optical amplifier (SOA) is demonstrated. When the pump current of the SOA is 330 mA or 400 mA and a continuous wave is injected into the laser cavity with different powers, bright or dark pulses with different pulse widths and frequency repetition rates are obtained. The bright and dark pulses are formed by the effect of gain dispersion and cross-gain modulation of the SOA.
NASA Astrophysics Data System (ADS)
Lieberman, Robert A.
Various paper on chemical, biochemical, and environmental fiber sensors are presented. Some of the individual topics addressed include: evanescent-wave fiber optic (FO) biosensor, refractive-index sensors based on coupling to high-index multimode overlays, advanced technique in FO sensors, design of luminescence-based temperature sensors, NIR fluorescence in FO applications, FO sensor based on microencapsulated reagents, emitters and detectors for optical gas and chemical sensing, tunable fiber laser source for methane detection at 1.68 micron, FO fluorometer based on a dual-wavelength laser excitation source, thin polymer films as active components of FO chemical sensors, submicron optical sources for single macromolecule detection, nanometer optical fiber pH sensor. Also discussed are: microfabrication of optical sensor array, luminescent FO sensor for the measurement of pH, time-domain fluorescence methods as applied to pH sensing, characterization of a sol-gel-entrapped artificial receptor, FO technology for nuclear waste cleanup, spectroscopic gas sensing with IR hollow waveguides, dissolved-oxygen quenching of in situ fluorescence measurements.
Calculation of periodic flows in a continuously stratified fluid
NASA Astrophysics Data System (ADS)
Vasiliev, A.
2012-04-01
Analytic theory of disturbances generated by an oscillating compact source in a viscous continuously stratified fluid was constructed. Exact solution of the internal waves generation problem was constructed taking into account diffusivity effects. This analysis is based on set of fundamental equations of incompressible flows. The linearized problem of periodic flows in a continuously stratified fluid, generated by an oscillating part of the inclined plane was solved by methods of singular perturbation theory. A rectangular or disc placed on a sloping plane and oscillating linearly in an arbitrary direction was selected as a source of disturbances. The solutions include regularly perturbed on dissipative component functions describing internal waves and a family of singularly perturbed functions. One of the functions from the singular components family has an analogue in a homogeneous fluid that is a periodic or Stokes' flow. Its thickness is defined by a universal micro scale depending on kinematics viscosity coefficient and a buoyancy frequency with a factor depending on the wave slope. Other singular perturbed functions are specific for stratified flows. Their thickness are defined the diffusion coefficient, kinematic viscosity and additional factor depending on geometry of the problem. Fields of fluid density, velocity, vorticity, pressure, energy density and flux as well as forces acting on the source are calculated for different types of the sources. It is shown that most effective source of waves is the bi-piston. Complete 3D problem is transformed in various limiting cases that are into 2D problem for source in stratified or homogeneous fluid and the Stokes problem for an oscillating infinite plane. The case of the "critical" angle that is equality of the emitting surface and the wave cone slope angles needs in separate investigations. In this case, the number of singular component is saved. Patterns of velocity and density fields were constructed and analyzed by methods of computational mathematics. Singular components of the solution affect the flow pattern of the inhomogeneous stratified fluid, not only near the source of the waves, but at a large distance. Analytical calculations of the structure of wave beams are matched with laboratory experiments. Some deviations at large distances from the source are formed due to the contribution of background wave field associated with seiches in the laboratory tank. In number of the experiments vortices with closed contours were observed on some distances from the disk. The work was supported by Ministry of Education and Science RF (Goscontract No. 16.518.11.7059), experiments were performed on set up USU "HPC IPMec RAS".
Analysis of phase conjugation in a turbid medium
NASA Astrophysics Data System (ADS)
Hollmann, Joseph L.; Cantero, Sergio; Tseng, Snow; DiMarzio, Charles A.
2014-03-01
The ability to focus light in most tissue degrades quickly with depth due to high optical scattering. Recently, researchers have found they can concentrate light tightly despite these scattering effects by using a guidestar and optical phase conjugation to focus light to greater distances in tissue. An optical or probe signal is transmitted through a scattering medium and its resulting wavefront is detected. The wavefront is then conjugated and utilized as a new optical source or delivery wave that focuses back to the guidestar's location with minimal scattering. The power in the delivery wave may be greatly increased for enhanced energy delivery at the focus. Modulation by an ultrasound (US) beam may be utilized to generate the guidestar dynamically and allow for US-resolution at depths of several millimeters. The delivery wave is successful at focusing light back at the guidestar because it creates constructive interference at the desired focus. However, if the phases of the field contributions change, we expect the delivered power at the focus to be reduced. This paper will analyze the robustness of this method when the probe beam is at one wavelength and the delivery wave is at another. This will allow us to characterize the deleterious effects of varying the phase contributions at the focus.
Frequency-Modulated, Continuous-Wave Laser Ranging Using Photon-Counting Detectors
NASA Technical Reports Server (NTRS)
Erkmen, Baris I.; Barber, Zeb W.; Dahl, Jason
2014-01-01
Optical ranging is a problem of estimating the round-trip flight time of a phase- or amplitude-modulated optical beam that reflects off of a target. Frequency- modulated, continuous-wave (FMCW) ranging systems obtain this estimate by performing an interferometric measurement between a local frequency- modulated laser beam and a delayed copy returning from the target. The range estimate is formed by mixing the target-return field with the local reference field on a beamsplitter and detecting the resultant beat modulation. In conventional FMCW ranging, the source modulation is linear in instantaneous frequency, the reference-arm field has many more photons than the target-return field, and the time-of-flight estimate is generated by balanced difference- detection of the beamsplitter output, followed by a frequency-domain peak search. This work focused on determining the maximum-likelihood (ML) estimation algorithm when continuous-time photoncounting detectors are used. It is founded on a rigorous statistical characterization of the (random) photoelectron emission times as a function of the incident optical field, including the deleterious effects caused by dark current and dead time. These statistics enable derivation of the Cramér-Rao lower bound (CRB) on the accuracy of FMCW ranging, and derivation of the ML estimator, whose performance approaches this bound at high photon flux. The estimation algorithm was developed, and its optimality properties were shown in simulation. Experimental data show that it performs better than the conventional estimation algorithms used. The demonstrated improvement is a factor of 1.414 over frequency-domainbased estimation. If the target interrogating photons and the local reference field photons are costed equally, the optimal allocation of photons between these two arms is to have them equally distributed. This is different than the state of the art, in which the local field is stronger than the target return. The optimal processing of the photocurrent processes at the outputs of the two detectors is to perform log-matched filtering followed by a summation and peak detection. This implies that neither difference detection, nor Fourier-domain peak detection, which are the staples of the state-of-the-art systems, is optimal when a weak local oscillator is employed.
Cryogenic ultra-high power infrared diode laser bars
NASA Astrophysics Data System (ADS)
Crump, Paul; Frevert, C.; Hösler, H.; Bugge, F.; Knigge, S.; Pittroff, W.; Erbert, G.; Tränkle, G.
2014-02-01
GaAs-based high power diode lasers are the most efficient source of optical energy, and are in wide use in industrial applications, either directly or as pump sources for other laser media. Increased output power per laser is required to enable new applications (increased optical power density) and to reduce cost (more output per component leads to lower cost in $/W). For example, laser bars in the 9xx nm wavelength range with the very highest power and efficiency are needed as pump sources for many high-energy-class solid-state laser systems. We here present latest performance progress using a novel design approach that leverages operation at temperatures below 0°C for increases in bar power and efficiency. We show experimentally that operation at -55°C increases conversion efficiency and suppresses thermal rollover, enabling peak quasi-continuous wave bar powers of Pout > 1.6 kW to be achieved (1.2 ms, 10 Hz), limited by the available current. The conversion efficiency at 1.6 kW is 53%. Following on from this demonstration work, the key open challenge is to develop designs that deliver higher efficiencies, targeting > 80% at 1.6 kW. We present an analysis of the limiting factors and show that low electrical resistance is crucial, meaning that long resonators and high fill factor are needed. We review also progress in epitaxial design developments that leverage low temperatures to enable both low resistance and high optical performance. Latest results will be presented, summarizing the impact on bar performance and options for further improvements to efficiency will also be reviewed.
NASA Astrophysics Data System (ADS)
Biss, Matthew; Murphy, Michael; Lieber, Mark
2017-06-01
Experiments were conducted in an effort to qualify a multi-diagnostic characterization procedure for the performance output of a detonator when fired into a poly(methyl methacrylate) (PMMA) witness block. A suite of optical diagnostics were utilized in combination to both bound the shock wave interaction state at the detonator/PMMA interface and characterize the nature of the shock wave decay in PMMA. The diagnostics included the Shock Wave Image Framing Technique (SWIFT), a photocathode tube streak camera, and photonic Doppler velocimetry (PDV). High-precision, optically clear witness blocks permitted dynamic flow visualization of the shock wave in PMMA via focused shadowgraphy. SWIFT- and streak-imaging diagnostics captured the spatiotemporally evolving shock wave, providing a two-dimensional temporally discrete image set and a one-dimensional temporally continuous image, respectively. PDV provided the temporal velocity history of the detonator output along the detonator axis. Through combination of the results obtained, a bound was able to be placed on the interface condition and a more-physical profile representing the shock wave decay in PMMA for an exploding-bridgewire detonator was achieved.
Rothschild, Freda; Bishop, Alexis I; Kitchen, Marcus J; Paganin, David M
2014-03-24
The Cornu spiral is, in essence, the image resulting from an Argand-plane map associated with monochromatic complex scalar plane waves diffracting from an infinite edge. Argand-plane maps can be useful in the analysis of more general optical fields. We experimentally study particular features of Argand-plane mappings known as "vorticity singularities" that are associated with mapping continuous single-valued complex scalar speckle fields to the Argand plane. Vorticity singularities possess a hierarchy of Argand-plane catastrophes including the fold, cusp and elliptic umbilic. We also confirm their connection to vortices in two-dimensional complex scalar waves. The study of vorticity singularities may also have implications for higher-dimensional fields such as coherence functions and multi-component fields such as vector and spinor fields.
Torregrosa, Adrián J; Maestre, Haroldo; Capmany, Juan
2013-11-18
The availability of reconfigurable all-optical wavelength converters for an efficient and flexible use of optical resources in WDM (wavelength division multiplexing) networks is still lacking at present. We propose and report preliminary results on a versatile active technique for multiple and tunable wavelength conversions in the 1500-1700 nm spectral region. The technique is based on combining broadband quasi-phase matched intra-cavity parametric single-pass difference-frequency generation close to degeneracy in a diode-pumped tunable laser. A periodically poled stoichiometric lithium tantalate crystal is used as the nonlinear medium, with a parametric pump wave generated in a continuous-wave self-injection locked Cr3+:LiCAF tunable laser operating at around 800 nm.
Evanescent wave assisted nanomaterial coating.
Mondal, Samir K; Pal, Sudipta Sarkar; Kumbhakar, Dharmadas; Tiwari, Umesh; Bhatnagar, Randhir
2013-08-01
In this work we present a novel nanomaterial coating technique using evanescent wave (EW). The gradient force in the EW is used as an optical tweezer for tweezing and self-assembling nanoparticles on the source of EW. As a proof of the concept, we have used a laser coupled etched multimode optical fiber, which generates EW for the EW assisted coating. The section-wise etched multimode optical fiber is horizontally and superficially dipped into a silver/gold nanoparticles solution while the laser is switched on. The fiber is left until the solution recedes due to evaporation leaving the fiber in air. The coating time usually takes 40-50 min at room temperature. The scanning electron microscope image shows uniform and thin coating of self-assembled nanoparticles due to EW around the etched section. A coating thickness <200 nm is achieved. The technique could be useful for making surface-plasmon-resonance-based optical fiber probes and other plasmonic circuits.
NASA Astrophysics Data System (ADS)
Liu, Yagang
A novel technique that combines microfluorometric detection and optical laser trapping has been developed for in-situ assessing the physiological state of an optically trapped biological sample. This optical diagnostic technique achieves high sensitivity (>30 dB signal -to-noise ratio) and high spatial resolution (~ 1 μm) over a broad spectral range (>400 nm). The fluorescence spectra derived from exogenous fluorescent probes, including laurdan, acridine orange, propidium iodide and Snarf, are used to assess the effects of optical confinement with respect to temperature, DNA structure, cell viability, and intracellular pH, respectively. In the latter three cases, fluorescence is excited via a two-photon absorption process, using the cw laser trap itself as the fluorescence excitation source. This enables the cw near infrared laser trapping beam to be used simultaneously as an optical diagnostic probe as well as an optical micromanipulator. Using microfluorometry, a temperature increase of less than several degrees centigrade was measured for test samples, including liposomes, Chinese hamster ovary (CHO) cells and human sperm cells that were held stationary by 1064 nm optical tweezers having a power density of ~10^7 W/cm^2. Additional physiological monitoring experiments indicated that there is no observable denaturation of DNA, or change of intracellular pH under typical continuous wave laser trapping conditions (P <= 400 mW). Under some circumstances, however, it was possible to achieve a decrease in cell viability with cw trapping, as monitored by a live/dead vital stain. In comparison, significant DNA denaturation and cellular physiological changes (e.g. cell death) were observed when a Q-switched pulsed laser at a threshold of ~30mu J/pulse was used as trapping source. These results generally support the conclusion that cw laser trapping at 1064 nm wavelength is a safe, non-invasive process and should prove to be of great value for understanding the mechanisms of laser microirradiation effects on living cells held stationary in a near-infrared trapping beam.
Generation of ultrasound in materials using continuous-wave lasers.
Caron, James N; DiComo, Gregory P; Nikitin, Sergei
2012-03-01
Generating and detecting ultrasound is a standard method of nondestructive evaluation of materials. Pulsed lasers are used to generate ultrasound remotely in situations that prohibit the use of contact transducers. The scanning rate is limited by the repetition rates of the pulsed lasers, ranging between 10 and 100 Hz for lasers with sufficient pulse widths and energies. Alternately, a high-power continuous-wave laser can be scanned across the surface, creating an ultrasonic wavefront. Since generation is continuous, the scanning rate can be as much as 4 orders of magnitude higher than with pulsed lasers. This paper introduces the concept, comparing the theoretical scanning speed with generation by pulsed laser. © 2012 Optical Society of America
Time-Frequency-Wavenumber Analysis of Surface Waves Using the Continuous Wavelet Transform
NASA Astrophysics Data System (ADS)
Poggi, V.; Fäh, D.; Giardini, D.
2013-03-01
A modified approach to surface wave dispersion analysis using active sources is proposed. The method is based on continuous recordings, and uses the continuous wavelet transform to analyze the phase velocity dispersion of surface waves. This gives the possibility to accurately localize the phase information in time, and to isolate the most significant contribution of the surface waves. To extract the dispersion information, then, a hybrid technique is applied to the narrowband filtered seismic recordings. The technique combines the flexibility of the slant stack method in identifying waves that propagate in space and time, with the resolution of f- k approaches. This is particularly beneficial for higher mode identification in cases of high noise levels. To process the continuous wavelet transform, a new mother wavelet is presented and compared to the classical and widely used Morlet type. The proposed wavelet is obtained from a raised-cosine envelope function (Hanning type). The proposed approach is particularly suitable when using continuous recordings (e.g., from seismological-like equipment) since it does not require any hardware-based source triggering. This can be subsequently done with the proposed method. Estimation of the surface wave phase delay is performed in the frequency domain by means of a covariance matrix averaging procedure over successive wave field excitations. Thus, no record stacking is necessary in the time domain and a large number of consecutive shots can be used. This leads to a certain simplification of the field procedures. To demonstrate the effectiveness of the method, we tested it on synthetics as well on real field data. For the real case we also combine dispersion curves from ambient vibrations and active measurements.
NASA Astrophysics Data System (ADS)
Poli, N.; Oates, C. W.; Gill, P.; Tino, G. M.
2013-12-01
In the last ten years extraordinary results in time and frequency metrology have been demonstrated. Frequency-stabilization techniques for continuous-wave lasers and femtosecond optical frequency combs have enabled a rapid development of frequency standards based on optical transitions in ultra-cold neutral atoms and trapped ions. As a result, today's best performing atomic clocks tick at an optical rate and allow scientists to perform high-resolution measurements with a precision approaching a few parts in 1018. This paper reviews the history and the state of the art in optical-clock research and addresses the implementation of optical clocks in a possible future redefinition of the SI second as well as in tests of fundamental physics.
Polarization switch of four-wave mixing in a lawtunable fiber optical parametric oscillator.
Yang, Kangwen; Ye, Pengbo; Zheng, Shikai; Jiang, Jieshi; Huang, Kun; Hao, Qiang; Zeng, Heping
2018-02-05
We reported the simultaneous generation and selective manipulation of scalar and cross-phase modulation instabilities in a fiber optical parametric oscillator. Numerical and experimental results show independent control of parametric gain by changing the input pump polarization state. The resonant cavity enables power enhancement of 45 dB for the spontaneous sidebands, generating laser pulses tunable from 783 to 791 nm and 896 to 1005 nm due to the combination of four-wave mixing, cascaded Raman scattering and other nonlinear effects. This gain controlled, wavelength tunable, fiber-based laser source may find applications in the fields of nonlinear biomedical imaging and stimulated Raman spectroscopy.
NASA Astrophysics Data System (ADS)
Nguyen, HoangViet
2015-03-01
We have investigated and demonstrated a novel scheme to generate 2.5 Gbit/s 64 QAM orthogonal frequency division multiplexing (OFDM) signals for Radio Over Fiber (ROF) systems. We employ Fiber Bragg Grating (FBG) because the repetitive frequency of the RF source and the bandwidth of the optical modulator are largely reduced and the architecture of the ROF system is simpler. Wavelength-Division-Multiplexed Passive Optical Network (WDM-PON) has been considered as a promising solution for future broadband access networks. Principle of WDM-PON access network compatible with OFDM-ROF systems is investigated. This novel scheme which has multiple double-frequency technique to generate mm-wave signal to carry OFDM signals is a practical scheme to be applied for future broadband access networks.
NASA Astrophysics Data System (ADS)
Kyrazis, D. T.; Weiland, T. L.
1990-10-01
The propagation of intense 3rd harmonic light (0.351 micron) through large optical components of the Nova laser results in fracture damage of the center of the component. This damage is caused by an intense acoustical wave brought to focus in the center by reflecting off the circular edge of the optic. The source of this wave is light generated by transverse stimulated Brillouin scattering (SBS). By taking into account the transient gain characteristics of the SBS, the pulse energy can be correctly predicted that would cause damage for any time variation in intensity in the pump beam, and predict the relative intensity of the Brillouin light. The model is based on the transient behavior of a first order linear system.
Reducing noise in a Raman quantum memory.
Bustard, Philip J; England, Duncan G; Heshami, Khabat; Kupchak, Connor; Sussman, Benjamin J
2016-11-01
Optical quantum memories are an important component of future optical and hybrid quantum technologies. Raman schemes are strong candidates for use with ultrashort optical pulses due to their broad bandwidth; however, the elimination of deleterious four-wave mixing noise from Raman memories is critical for practical applications. Here, we demonstrate a quantum memory using the rotational states of hydrogen molecules at room temperature. Polarization selection rules prohibit four-wave mixing, allowing the storage and retrieval of attenuated coherent states with a mean photon number 0.9 and a pulse duration 175 fs. The 1/e memory lifetime is 85.5 ps, demonstrating a time-bandwidth product of ≈480 in a memory that is well suited for use with broadband heralded down-conversion and fiber-based photon sources.
NASA Astrophysics Data System (ADS)
Covas, P. B.; Effler, A.; Goetz, E.; Meyers, P. M.; Neunzert, A.; Oliver, M.; Pearlstone, B. L.; Roma, V. J.; Schofield, R. M. S.; Adya, V. B.; Astone, P.; Biscoveanu, S.; Callister, T. A.; Christensen, N.; Colla, A.; Coughlin, E.; Coughlin, M. W.; Crowder, S. G.; Dwyer, S. E.; Eggenstein, H.-B.; Hourihane, S.; Kandhasamy, S.; Liu, W.; Lundgren, A. P.; Matas, A.; McCarthy, R.; McIver, J.; Mendell, G.; Ormiston, R.; Palomba, C.; Papa, M. A.; Piccinni, O. J.; Rao, K.; Riles, K.; Sammut, L.; Schlassa, S.; Sigg, D.; Strauss, N.; Tao, D.; Thorne, K. A.; Thrane, E.; Trembath-Reichert, S.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Adams, C.; Adhikari, R. X.; Ananyeva, A.; Appert, S.; Arai, K.; Aston, S. M.; Austin, C.; Ballmer, S. W.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Batch, J. C.; Bejger, M.; Bell, A. S.; Betzwieser, J.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blair, C. D.; Blair, R. M.; Bork, R.; Brooks, A. F.; Cao, H.; Ciani, G.; Clara, F.; Clearwater, P.; Cooper, S. J.; Corban, P.; Countryman, S. T.; Cowart, M. J.; Coyne, D. C.; Cumming, A.; Cunningham, L.; Danzmann, K.; Costa, C. F. Da Silva; Daw, E. J.; DeBra, D.; DeRosa, R. T.; DeSalvo, R.; Dooley, K. L.; Doravari, S.; Driggers, J. C.; Edo, T. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fair, H.; Galiana, A. Fernández; Ferreira, E. C.; Fisher, R. P.; Fong, H.; Frey, R.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gateley, B.; Giaime, J. A.; Giardina, K. D.; Goetz, R.; Goncharov, B.; Gras, S.; Gray, C.; Grote, H.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, E. D.; Hammond, G.; Hanks, J.; Hanson, J.; Hardwick, T.; Harry, G. M.; Heintze, M. C.; Heptonstall, A. W.; Hough, J.; Inta, R.; Izumi, K.; Jones, R.; Karki, S.; Kasprzack, M.; Kaufer, S.; Kawabe, K.; Kennedy, R.; Kijbunchoo, N.; Kim, W.; King, E. J.; King, P. J.; Kissel, J. S.; Korth, W. Z.; Kuehn, G.; Landry, M.; Lantz, B.; Laxen, M.; Liu, J.; Lockerbie, N. A.; Lormand, M.; MacInnis, M.; Macleod, D. M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Marsh, P.; Martin, I. W.; Martynov, D. V.; Mason, K.; Massinger, T. J.; Matichard, F.; Mavalvala, N.; McClelland, D. E.; McCormick, S.; McCuller, L.; McIntyre, G.; McRae, T.; Merilh, E. L.; Miller, J.; Mittleman, R.; Mo, G.; Mogushi, K.; Moraru, D.; Moreno, G.; Mueller, G.; Mukund, N.; Mullavey, A.; Munch, J.; Nelson, T. J. N.; Nguyen, P.; Nuttall, L. K.; Oberling, J.; Oktavia, O.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ottaway, D. J.; Overmier, H.; Palamos, J. R.; Parker, W.; Pele, A.; Penn, S.; Perez, C. J.; Phelps, M.; Pierro, V.; Pinto, I.; Principe, M.; Prokhorov, L. G.; Puncken, O.; Quetschke, V.; Quintero, E. A.; Radkins, H.; Raffai, P.; Ramirez, K. E.; Reid, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Romel, C. L.; Romie, J. H.; Ross, M. P.; Rowan, S.; Ryan, K.; Sadecki, T.; Sanchez, E. J.; Sanchez, L. E.; Sandberg, V.; Savage, R. L.; Sellers, D.; Shaddock, D. A.; Shaffer, T. J.; Shapiro, B.; Shoemaker, D. H.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Sorazu, B.; Spencer, A. P.; Staley, A.; Strain, K. A.; Sun, L.; Tanner, D. B.; Tasson, J. D.; Taylor, R.; Thomas, M.; Thomas, P.; Toland, K.; Torrie, C. I.; Traylor, G.; Tse, M.; Tuyenbayev, D.; Vajente, G.; Valdes, G.; van Veggel, A. A.; Vecchio, A.; Veitch, P. J.; Venkateswara, K.; Vo, T.; Vorvick, C.; Wade, M.; Walker, M.; Ward, R. L.; Warner, J.; Weaver, B.; Weiss, R.; Weßels, P.; Willke, B.; Wipf, C. C.; Wofford, J.; Worden, J.; Yamamoto, H.; Yancey, C. C.; Yu, Hang; Yu, Haocun; Zhang, L.; Zhu, S.; Zucker, M. E.; Zweizig, J.; LSC Instrument Authors
2018-04-01
Searches are under way in Advanced LIGO and Virgo data for persistent gravitational waves from continuous sources, e.g. rapidly rotating galactic neutron stars, and stochastic sources, e.g. relic gravitational waves from the Big Bang or superposition of distant astrophysical events such as mergers of black holes or neutron stars. These searches can be degraded by the presence of narrow spectral artifacts (lines) due to instrumental or environmental disturbances. We describe a variety of methods used for finding, identifying and mitigating these artifacts, illustrated with particular examples. Results are provided in the form of lists of line artifacts that can safely be treated as non-astrophysical. Such lists are used to improve the efficiencies and sensitivities of continuous and stochastic gravitational wave searches by allowing vetoes of false outliers and permitting data cleaning.
Directed search for continuous gravitational waves from the Galactic center
NASA Astrophysics Data System (ADS)
Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M., Jr.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Deleeuw, E.; Deléglise, S.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Neri, I.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Poeld, J.; Poggiani, R.; Poole, V.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2013-11-01
We present the results of a directed search for continuous gravitational waves from unknown, isolated neutron stars in the Galactic center region, performed on two years of data from LIGO’s fifth science run from two LIGO detectors. The search uses a semicoherent approach, analyzing coherently 630 segments, each spanning 11.5 hours, and then incoherently combining the results of the single segments. It covers gravitational wave frequencies in a range from 78 to 496 Hz and a frequency-dependent range of first-order spindown values down to -7.86×10-8Hz/s at the highest frequency. No gravitational waves were detected. The 90% confidence upper limits on the gravitational wave amplitude of sources at the Galactic center are ˜3.35×10-25 for frequencies near 150 Hz. These upper limits are the most constraining to date for a large-parameter-space search for continuous gravitational wave signals.
Caplan, Malcolm; Friedman, Herbert W.
2005-07-19
A system for beaming power to a high altitude platform is based upon a high power millimeter gyrotron source, optical transmission components, and a high-power receiving antenna (i.e., a rectenna) capable of rectifying received millimeter energy and converting such energy into useable electrical power.
The optical emission from oscillating white dwarf radiative shock waves
NASA Technical Reports Server (NTRS)
Imamura, James N.; Rashed, Hussain; Wolff, Michael T.
1991-01-01
The hypothesis that quasi-periodic oscillations (QPOs) are due to the oscillatory instability of radiative shock waves discovered by Langer et al. (1981, 1092) is examined. The time-dependent optical spectra of oscillating radiative shocks produced by flows onto magnetic white dwarfs are calculated. The results are compared with the observations of the AM Her QPO sources V834 Cen, AN UMa, EF Eri, and VV Pup. It is found that the shock oscillation model has difficulties with aspects of the observations for each of the sources. For VV Pup, AN UMa, and V834 Cen, the cyclotron luminosities for the observed magnetic fields of these systems, based on our calculations, are large. The strong cyclotron emission probably stabilizes the shock oscillations. For EF Eri, the mass of the white dwarf based on hard X-ray observations is greater than 0.6 solar mass.
Fiber-optic voltage sensor with cladded fiber and evanescent wave variation detection
Wood, Charles B.
1992-01-01
A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities.
Electron density measurement in gas discharge plasmas by optical and acoustic methods
NASA Astrophysics Data System (ADS)
Biagioni, A.; Anania, M. P.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Mostacci, A.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.
2016-08-01
Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.
Fiber-optic voltage sensor with cladded fiber and evanescent wave variation detection
Wood, C.B.
1992-12-15
A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities. 3 figs.
Nonlinear and anisotropic polarization rotation in two-dimensional Dirac materials
NASA Astrophysics Data System (ADS)
Singh, Ashutosh; Ghosh, Saikat; Agarwal, Amit
2018-05-01
We predict nonlinear optical polarization rotation in two-dimensional massless Dirac systems including graphene and 8-P m m n borophene. When illuminated, a continuous-wave optical field leads to a nonlinear steady state of photoexcited carriers in the medium. The photoexcited population inversion and the interband coherence give rise to a finite transverse optical conductivity σx y(ω ) . This in turn leads to definitive signatures in associated Kerr and Faraday polarization rotation, which are measurable in a realistic experimental scenario.
Modeling Ponderomotive Squeezed Light in Gravitational-Wave Laser Interferometers
NASA Astrophysics Data System (ADS)
Beckey, Jacob; Miao, Haixing; Töyrä, Daniel; Brown, Daniel; Freise, Andreas
2018-01-01
Earth-based gravitational wave detectors are plagued by many sources of noise. The sensitivity of these detectors is ultimately limited by Heisenberg’s Uncertainty Principle once all other noise sources (thermal, seismic, etc.) are mitigated. When varying laser power, the standard quantum limit of laser interferometric gravitational wave detectors is a trade-off between photon shot noise (due to statistical arrival times of photons) and radiation pressure noise. This project demonstrates a method of using squeezed states of light to lower noise levels below the standard quantum limit at certain frequencies. The squeezed state can be generated by either using nonlinear optics or the ponderomotive squeezer. The latter is the focus of this project. Ponderomotive squeezing occurs due to amplitude fluctuations in the laser being converted into phase fluctuations upon reflecting off of the interferometer’s end test masses. This correlated noise allows the standard quantum limit to be surpassed at certain frequencies. The ponderomotive generation of squeezed states is modeled using FINESSE, an open source interferometer modelling software. The project resulted in a stand-alone element to be implemented in the FINESSE code base that will allow users to model ponderomotive squeezing in their optical setups. Upcoming work will explore the effects of higher order modes of light and more realistic mirror surfaces on the ponderomotive squeezing of light.
Fizeau simultaneous phase-shifting interferometry based on extended source
NASA Astrophysics Data System (ADS)
Wang, Shanshan; Zhu, Qiudong; Hou, Yinlong; Cao, Zheng
2016-09-01
Coaxial Fizeau simultaneous phase-shifting interferometer plays an important role in many fields for its characteristics of long optical path, miniaturization, and elimination of reference surface high-frequency error. Based on the matching of coherence between extended source and interferometer, orthogonal polarization reference wave and measurement wave can be obtained by Fizeau interferometry with Michelson interferometer preposed. Through matching spatial coherence length between preposed interferometer and primary interferometer, high contrast interference fringes can be obtained and additional interference fringes can be eliminated. Thus, the problem of separation of measurement and reference surface in the common optical path Fizeau interferometer is solved. Numerical simulation and principle experiment is conducted to verify the feasibility of extended source interferometer. Simulation platform is established by using the communication technique of DDE (dynamic data exchange) to connect Zemax and Matlab. The modeling of the extended source interferometer is realized by using Zemax. Matlab codes are programmed to automatically rectify the field parameters of the optical system and conveniently calculate the visibility of interference fringes. Combined with the simulation, the experimental platform of the extended source interferometer is established. After experimental research on the influence law of scattering screen granularity to interference fringes, the granularity of scattering screen is determined. Based on the simulation platform and experimental platform, the impacts on phase measurement accuracy of the imaging system aberration and collimation system aberration of the interferometer are analyzed. Compared the visibility relation curves between experimental measurement and simulation result, the experimental result is in line with the theoretical result.
Numerical simulation of incoherent optical wave propagation in nonlinear fibers
NASA Astrophysics Data System (ADS)
Fernandez, Arnaud; Balac, Stéphane; Mugnier, Alain; Mahé, Fabrice; Texier-Picard, Rozenn; Chartier, Thierry; Pureur, David
2013-11-01
The present work concerns the study of pulsed laser systems containing a fiber amplifier for boosting optical output power. In this paper, this fiber amplification device is included into a MOPFA laser, a master oscillator coupled with fiber amplifier, usually a cladding-pumped high-power amplifier often based on an ytterbium-doped fiber. An experimental study has established that the observed nonlinear effects (such as Kerr effect, four waves mixing, Raman effect) could behave very differently depending on the characteristics of the optical source emitted by the master laser. However, it has not yet been possible to determine from the experimental data if the statistics of the photons is alone responsible for the various nonlinear scenarios observed. Therefore, we have developed a numerical simulation software for solving the generalized nonlinear Schrödinger equation with a stochastic source term in order to validate the hypothesis that the coherence properties of the master laser are mainly liable for the behavior of the observed nonlinear effects. Contribution to the Topical Issue "Numelec 2012", Edited by Adel Razek.
Near-field interferometry of a free-falling nanoparticle from a point-like source
NASA Astrophysics Data System (ADS)
Bateman, James; Nimmrichter, Stefan; Hornberger, Klaus; Ulbricht, Hendrik
2014-09-01
Matter-wave interferometry performed with massive objects elucidates their wave nature and thus tests the quantum superposition principle at large scales. Whereas standard quantum theory places no limit on particle size, alternative, yet untested theories—conceived to explain the apparent quantum to classical transition—forbid macroscopic superpositions. Here we propose an interferometer with a levitated, optically cooled and then free-falling silicon nanoparticle in the mass range of one million atomic mass units, delocalized over >150 nm. The scheme employs the near-field Talbot effect with a single standing-wave laser pulse as a phase grating. Our analysis, which accounts for all relevant sources of decoherence, indicates that this is a viable route towards macroscopic high-mass superpositions using available technology.
Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy.
Fan, Fengjia; Voznyy, Oleksandr; Sabatini, Randy P; Bicanic, Kristopher T; Adachi, Michael M; McBride, James R; Reid, Kemar R; Park, Young-Shin; Li, Xiyan; Jain, Ankit; Quintero-Bermudez, Rafael; Saravanapavanantham, Mayuran; Liu, Min; Korkusinski, Marek; Hawrylak, Pawel; Klimov, Victor I; Rosenthal, Sandra J; Hoogland, Sjoerd; Sargent, Edward H
2017-04-06
Colloidal quantum dots (CQDs) feature a low degeneracy of electronic states at the band edges compared with the corresponding bulk material, as well as a narrow emission linewidth. Unfortunately for potential laser applications, this degeneracy is incompletely lifted in the valence band, spreading the hole population among several states at room temperature. This leads to increased optical gain thresholds, demanding high photoexcitation levels to achieve population inversion (more electrons in excited states than in ground states-the condition for optical gain). This, in turn, increases Auger recombination losses, limiting the gain lifetime to sub-nanoseconds and preventing steady laser action. State degeneracy also broadens the photoluminescence linewidth at the single-particle level. Here we demonstrate a way to decrease the band-edge degeneracy and single-dot photoluminescence linewidth in CQDs by means of uniform biaxial strain. We have developed a synthetic strategy that we term facet-selective epitaxy: we first switch off, and then switch on, shell growth on the (0001) facet of wurtzite CdSe cores, producing asymmetric compressive shells that create built-in biaxial strain, while still maintaining excellent surface passivation (preventing defect formation, which otherwise would cause non-radiative recombination losses). Our synthesis spreads the excitonic fine structure uniformly and sufficiently broadly that it prevents valence-band-edge states from being thermally depopulated. We thereby reduce the optical gain threshold and demonstrate continuous-wave lasing from CQD solids, expanding the library of solution-processed materials that may be capable of continuous-wave lasing. The individual CQDs exhibit an ultra-narrow single-dot linewidth, and we successfully propagate this into the ensemble of CQDs.
NASA Astrophysics Data System (ADS)
Gupta, Samit Kumar
2018-03-01
Dynamic wave localization phenomena draw fundamental and technological interests in optics and photonics. Based on the recently proposed (Ablowitz and Musslimani, 2013) continuous nonlocal nonlinear Schrödinger system with parity-time symmetric Kerr nonlinearity (PTNLSE), a numerical investigation has been carried out for two first order Peregrine solitons as the initial ansatz. Peregrine soliton, as an exact solution to the PTNLSE, evokes a very potent question: what effects does the interaction of two first order Peregrine solitons have on the overall optical field dynamics. Upon numerical computation, we observe the appearance of Kuznetsov-Ma (KM) soliton trains in the unbroken PT-phase when the initial Peregrine solitons are in phase. In the out of phase condition, it shows repulsive nonlinear waves. Quite interestingly, our study shows that within a specific range of the interval factor in the transverse co-ordinate there exists a string of high intensity well-localized Peregrine rogue waves in the PT unbroken phase. We note that the interval factor as well as the transverse shift parameter play important roles in the nonlinear interaction and evolution dynamics of the optical fields. This could be important in developing fundamental understanding of nonlocal non-Hermitian NLSE systems and dynamic wave localization behaviors.
NASA Astrophysics Data System (ADS)
Bochner, Brett
The LIGO project is part of a world-wide effort to detect the influx of Gravitational Waves upon the earth from astrophysical sources, via their interaction with laser beams in interferometric detectors that are designed for extraordinarily high sensitivity. Central to the successful performance of LIGO detectors is the quality of their optical components, and the efficient optimization of interferometer configuration parameters. To predict LIGO performance with optics possessing realistic imperfections, we have developed a numerical simulation program to compute the steady-state electric fields of a complete, coupled-cavity LIGO interferometer. The program can model a wide variety of deformations, including laser beam mismatch and/or misalignment, finite mirror size, mirror tilts, curvature distortions, mirror surface roughness, and substrate inhomogeneities. Important interferometer parameters are automatically optimized during program execution to achieve the best possible sensitivity for each new set of perturbed mirrors. This thesis includes investigations of two interferometer designs: the initial LIGO system, and an advanced LIGO configuration called Dual Recycling. For Initial-LIGO simulations, the program models carrier and sideband frequency beams to compute the explicit shot-noise-limited gravitational wave sensitivity of the interferometer. It is demonstrated that optics of exceptional quality (root-mean-square deformations of less than ~1 nm in the central mirror regions) are necessary to meet Initial-LIGO performance requirements, but that they can be feasibly met. It is also shown that improvements in mirror quality can substantially increase LIGO's sensitivity to selected astrophysical sources. For Dual Recycling, the program models gravitational- wave-induced sidebands over a range of frequencies to demonstrate that the tuned and narrow-banded signal responses predicted for this configuration can be achieved with imperfect optics. Dual Recycling has lower losses at the interferometer signal port than the Initial-LIGO system, though not significantly improved tolerance to mirror roughness deformations in terms of maintaining high signals. Finally, it is shown that 'Wavefront Healing', the claim that losses can be re- injected into the system to feed the gravitational wave signals, is successful in theory, but limited in practice for optics which cause large scattering losses. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253- 1690.)
NASA Astrophysics Data System (ADS)
Bochner, Brett
1998-12-01
The LIGO project is part of a world-wide effort to detect the influx of Gravitational Waves upon the earth from astrophysical sources, via their interaction with laser beams in interferometric detectors that are designed for extraordinarily high sensitivity. Central to the successful performance of LIGO detectors is the quality of their optical components, and the efficient optimization of interferometer configuration parameters. To predict LIGO performance with optics possessing realistic imperfections, we have developed a numerical simulation program to compute the steady-state electric fields of a complete, coupled-cavity LIGO interferometer. The program can model a wide variety of deformations, including laser beam mismatch and/or misalignment, finite mirror size, mirror tilts, curvature distortions, mirror surface roughness, and substrate inhomogeneities. Important interferometer parameters are automatically optimized during program execution to achieve the best possible sensitivity for each new set of perturbed mirrors. This thesis includes investigations of two interferometer designs: the initial LIGO system, and an advanced LIGO configuration called Dual Recycling. For Initial-LIGO simulations, the program models carrier and sideband frequency beams to compute the explicit shot-noise-limited gravitational wave sensitivity of the interferometer. It is demonstrated that optics of exceptional quality (root-mean-square deformations of less than ~1 nm in the central mirror regions) are necessary to meet Initial-LIGO performance requirements, but that they can be feasibly met. It is also shown that improvements in mirror quality can substantially increase LIGO's sensitivity to selected astrophysical sources. For Dual Recycling, the program models gravitational- wave-induced sidebands over a range of frequencies to demonstrate that the tuned and narrow-banded signal responses predicted for this configuration can be achieved with imperfect optics. Dual Recycling has lower losses at the interferometer signal port than the Initial-LIGO system, though not significantly improved tolerance to mirror roughness deformations in terms of maintaining high signals. Finally, it is shown that 'Wavefront Healing', the claim that losses can be re- injected into the system to feed the gravitational wave signals, is successful in theory, but limited in practice for optics which cause large scattering losses. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253- 1690.)
The Swift/UVOT catalogue of NGC 4321 star-forming sources: a case against density wave theory
NASA Astrophysics Data System (ADS)
Ferreras, Ignacio; Cropper, Mark; Kawata, Daisuke; Page, Mat; Hoversten, Erik A.
2012-08-01
We study the star-forming regions in the spiral galaxy NGC 4321 (M100). We take advantage of the spatial resolution (2.5 arcsec full width at half-maximum) of the Swift/Ultraviolet/Optical Telescope camera and the availability of three ultraviolet (UV) passbands in the region 1600 < λ < 3000 Å, in combination with optical and infrared (IR) imaging from Sloan Digital Sky Survey, KPNO/Hα and Spitzer/IRAC, to obtain a catalogue of 787 star-forming regions out to three disc scalelengths. We use a large volume of star formation histories, combined with stellar population synthesis, to determine the properties of the young stellar component and its relationship with the spiral arms. The Hα luminosities of the sources have a strong decreasing radial trend, suggesting more massive star-forming regions in the central part of the galaxy. When segregated with respect to near-UV (NUV)-optical colour, blue sources have a significant excess of flux in the IR at 8 μm, revealing the contribution from polycyclic aromatic hydrocarbons, although the overall reddening of these sources stays below E(B - V) = 0.2 mag. The distribution of distances to the spiral arms is compared for subsamples selected according to Hα luminosity, NUV-optical colour or ages derived from a population synthesis model. An offset would be expected between these subsamples as a function of radius if the pattern speed of the spiral arm were constant - as predicted by classic density wave theory. No significant offsets are found, favouring instead a mechanism where the pattern speed has a radial dependence.
Detailed Comparisons of COMBAT Data to Wave-Optics Simulations
2015-10-18
2010 along the path between Mauna Loa and Haleakala and is one of many to investigate atmospheric effects in long horizontal optical paths [1-7]. The...Relatively strong jitter sources near transmitter ( atmosphere or telescope). Rationale: Turbulence -induced scintillation alone does not explain the...Characterization of atmospheric turbulence effects over 149 km propagation path using multi-wavelength laser beacons,” in Proceedings of the 2010 AMOS
Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion
Guo, Yinghui; Yan, Lianshan; Pan, Wei; Shao, Liyang
2016-01-01
The control of electromagnetic waves scattering is critical in wireless communications and stealth technology. Discrete metasurfaces not only increase the design and fabrication complex but also cause difficulties in obtaining simultaneous electric and optical functionality. On the other hand, discontinuous phase profiles fostered by discrete systems inevitably introduce phase noises to the scattering fields. Here we propose the principle of a scattering-harness mechanism by utilizing continuous gradient phase stemming from the spin-orbit interaction via sinusoidal metallic strips. Furthermore, by adjusting the amplitude and period of the sinusoidal metallic strip, the scattering characteristics of the underneath object can be greatly changed and thus result in electromagnetic illusion. The proposal is validated by full-wave simulations and experiment characterization in microwave band. Our approach featured by continuous phase profile, polarization independent performance and facile implementation may find widespread applications in electromagnetic wave manipulation. PMID:27439474
Scattering engineering in continuously shaped metasurface: An approach for electromagnetic illusion
NASA Astrophysics Data System (ADS)
Guo, Yinghui; Yan, Lianshan; Pan, Wei; Shao, Liyang
2016-07-01
The control of electromagnetic waves scattering is critical in wireless communications and stealth technology. Discrete metasurfaces not only increase the design and fabrication complex but also cause difficulties in obtaining simultaneous electric and optical functionality. On the other hand, discontinuous phase profiles fostered by discrete systems inevitably introduce phase noises to the scattering fields. Here we propose the principle of a scattering-harness mechanism by utilizing continuous gradient phase stemming from the spin-orbit interaction via sinusoidal metallic strips. Furthermore, by adjusting the amplitude and period of the sinusoidal metallic strip, the scattering characteristics of the underneath object can be greatly changed and thus result in electromagnetic illusion. The proposal is validated by full-wave simulations and experiment characterization in microwave band. Our approach featured by continuous phase profile, polarization independent performance and facile implementation may find widespread applications in electromagnetic wave manipulation.
NASA Astrophysics Data System (ADS)
Tozburun, Serhat; Stahl, Charlotte S. D.; Hutchens, Thomas C.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2013-03-01
Successful identification of the cavernous nerves (CN's) during radical prostatectomy requires detection of the CN's through a thin layer of overlying fascia. This study explores the 1490 nm infrared (IR) diode laser wavelength for rapid and deep subsurface CN stimulation in a rat model, in vivo. A 150-mW, 1490-nm diode laser providing an optical penetration depth of 520 μm was used to stimulate the CN's in 8 rats through a single mode fiber optic probe with 1-mm-diameter spot and 15 s irradiation time. Successful ONS was judged by an intracavernous pressure response (ICP) in the rat penis. Subsurface ONS at 1490 nm was also compared with previous studies using 1455 and 1550 nm IR diode laser wavelengths. ONS was observed through fascia layers up to 380 μm thick using an incident laser power of 50 mW. ICP response times as short as 4.6 +/- 0.2 s were recorded using higher laser powers bust still below the nerve damage threshold. The 1490-nm diode laser represents a compact, low cost, high power, and high quality infrared light source for use in ONS. This wavelength provides deeper optical penetration than 1455 nm and more rapid and efficient nerve stimulation than 1550 nm.
Online quality monitoring of welding processes by means of plasma optical spectroscopy
NASA Astrophysics Data System (ADS)
Ferrara, Michele; Ancona, Antonio; Lugara, Pietro M.; Sibilano, Michele
2000-02-01
An optical monitoring system for the welding process has been developed; it is based on the study of the optical emission of the welding plasma plume, created during the welding of stainless steels and other iron-based materials. In the first approach a continuous wave CO2 laser of 2500-Watt maximum power, available at the INFM Research Unit labs in Bari University, has been used as welding source. A detailed spectroscopic study of the visible and UV welding plasma emission has been carried out; many transition lines corresponding to the elements composing the material to be welded have been found. By means of an appropriate selection of these lines and suitable algorithms, the electronic temperature of the plasma plume has been calculated and its evolution recorded as a function of several welding parameters. The behavior of the registered signal has resulted to be correlated to the welded joint quality. These findings have allowed to design and assemble a portable, non-intrusive and real-time welding quality optical sensor which has been successfully tested for laser welding of metals in different geometrical configurations; it has been capable of detecting a wide range of weld defects normally occurring during industrial laser metal-working. This sensor has also been tested in arc welding industrial processes (TIG) with promising results.
Design investigation of solar-powered lasers for space applications
NASA Technical Reports Server (NTRS)
1982-01-01
The feasibility of using solar powered continuous wave (CW) lasers for space power transmission was investigated. Competing conceptual designs are considered. Optical pumping is summarized. Solar pumped Lasant type lasers are outlined. Indirect solar pumped lasers are considered.
NASA Astrophysics Data System (ADS)
Wei, Heming; Krishnaswamy, Sridhar
2017-04-01
Damages such as cracking or impact loading in civil, aerospace, and mechanical structures generate transient ultrasonic waves, which can be used to reveal the structural health condition. Hence, it is necessary to find a practical tool based on ultrasonic detection for structural health monitoring. In this work, we describe an intelligent fiber-optic ultrasonic sensing system, which is designed based on a fiber Bragg grating (FBG) and a reflective semiconductor optical amplifier (RSOA) used as an adaptive source, and demodulated by an adaptive photorefractive two wave mixing (TWM) technique without any active compensation of quasi-static strains and temperature. As the wavelength of the FBG shifts due to the excited ultrasonic waves, the wavelength of the optical output from the fiber cavity laser shifts accordingly. With regard to the shift of the FBG reflective spectrum, the adaptivity of the RSOA-based laser is analyzed theoretically and verified by the TWM demodulator. Additionally, due to the response time of the photorefractive crystal, the TWM demodulator is insensitive to low frequency-FBG spectral shift. The results demonstrate that this proposed FBG ultrasonic sensing system has high sensitivity and can respond the ultrasonic waves into the megahertz frequency range, which shows a potential for acoustic emission detection in practical applications.
NASA Astrophysics Data System (ADS)
Zocchi, Fabio E.
2017-10-01
One of the approaches that is being tested for the integration of the mirror modules of the advanced telescope for high-energy astrophysics x-ray mission of the European Space Agency consists in aligning each module on an optical bench operated at an ultraviolet wavelength. The mirror module is illuminated by a plane wave and, in order to overcome diffraction effects, the centroid of the image produced by the module is used as a reference to assess the accuracy of the optical alignment of the mirror module itself. Among other sources of uncertainty, the wave-front error of the plane wave also introduces an error in the position of the centroid, thus affecting the quality of the mirror module alignment. The power spectral density of the position of the point spread function centroid is here derived from the power spectral density of the wave-front error of the plane wave in the framework of the scalar theory of Fourier diffraction. This allows the defining of a specification on the collimator quality used for generating the plane wave starting from the contribution to the error budget allocated for the uncertainty of the centroid position. The theory generally applies whenever Fourier diffraction is a valid approximation, in which case the obtained result is identical to that derived by geometrical optics considerations.
NASA Astrophysics Data System (ADS)
Zhao, Zuomin; Moilanen, Petro; Karppinen, Pasi; Määttä, Mikko; Karppinen, Timo; Hæggström, Edward; Timonen, Jussi; Myllylä, Risto
2012-12-01
Photo-acoustic (PA) excitation was combined with skeletal quantitative ultrasound (QUS) for multi-mode ultrasonic assessment of human long bones. This approach permits tailoring of the ultrasonic excitation and detection so as to efficiently detect the fundamental flexural guided wave (FFGW) through a coating of soft tissue. FFGW is a clinically relevant indicator of cortical thickness. An OPO laser with tunable optical wavelength, was used to excite a photo-acoustic source in the shaft of a porcine femur. Ultrasonic signals were detected by a piezoelectric transducer, scanning along the long axis of the bone, 20-50 mm away from the source. Five femurs were measured without and with a soft coating. The coating was made of an aqueous gelatin-intralipid suspension that optically and acoustically mimicked real soft tissue. An even coating thickness was ensured by using a specific mold. The optical wave length of the source (1250 nm) was tuned to maximize the amplitude of FFGW excitation at 50 kHz frequency. The experimentally determined FFGW phase velocity in the uncoated samples was consistent with that of the fundamental antisymmetric Lamb mode (A0). Using appropriate signal processing, FFGW was also identified in the coated bone samples, this time with a phase velocity consistent with that theoretically predicted for the first mode of a fluid-solid bilayer waveguide (BL1). Our results suggest that photo-acoustic quantitative ultrasound enables assessment of the thickness-sensitive FFGW in bone through a layer of soft tissue. Photo-acoustic characterization of the cortical bone thickness may thus become possible.
Quantum interference of electrically generated single photons from a quantum dot.
Patel, Raj B; Bennett, Anthony J; Cooper, Ken; Atkinson, Paola; Nicoll, Christine A; Ritchie, David A; Shields, Andrew J
2010-07-09
Quantum interference lies at the foundation of many protocols for scalable quantum computing and communication with linear optics. To observe these effects the light source must emit photons that are indistinguishable. From a technological standpoint, it would be beneficial to have electrical control over the emission. Here we report of an electrically driven single-photon source emitting indistinguishable photons. The device consists of a layer of InAs quantum dots embedded in the intrinsic region of a p-i-n diode. Indistinguishability of consecutive photons is tested in a two-photon interference experiment under two modes of operation, continuous and pulsed current injection. We also present a complete theory based on the interference of photons with a Lorentzian spectrum which we compare to both our continuous wave and pulsed experiments. In the former case, a visibility was measured limited only by the timing resolution of our detection system. In the case of pulsed injection, we employ a two-pulse voltage sequence which suppresses multi-photon emission and allows us to carry out temporal filtering of photons which have undergone dephasing. The characteristic Hong-Ou-Mandel 'dip' is measured, resulting in a visibility of 64 +/- 4%.
Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging
NASA Astrophysics Data System (ADS)
Zhou, Jialing; He, Honghui; Chen, Zhenhua; Wang, Ye; Ma, Hui
2018-01-01
We have developed a polarization microscope based on a commercial transmission microscope. We replace the halogen light source by a collimated LED light source module of six different colors. We use achromatic polarized optical elements that can cover the six different wavelength ranges in the polarization state generator (PSG) and polarization state analyzer (PSA) modules. The dual-rotating wave plate method is used to measure the Mueller matrix of samples, which requires the simultaneous rotation of the two quarter-wave plates in both PSG and PSA at certain angular steps. A scientific CCD detector is used as the image receiving module. A LabView-based software is developed to control the rotation angels of the wave plates and the exposure time of the detector to allow the system to run fully automatically in preprogrammed schedules. Standard samples, such as air, polarizers, and quarter-wave plates, are used to calibrate the intrinsic Mueller matrix of optical components, such as the objectives, using the eigenvalue calibration method. Errors due to the images walk-off in the PSA are studied. Errors in the Mueller matrices are below 0.01 using air and polarizer as standard samples. Data analysis based on Mueller matrix transformation and Mueller matrix polarization decomposition is used to demonstrate the potential application of this microscope in pathological diagnosis.
NASA Astrophysics Data System (ADS)
McGeehin, Peter
2000-08-01
The contribution of the UK Optical Sensors Collaborative Association to the first wave of R&D on the application of fiber optics in sensing application is summarized. Safety related R&D has continued and the most recent results are presented. OSCA identified that a suitable component infrastructure for sensing had not yet been realized, and this is probably a significant part of the explanation for the relatively modest commercial impact of this technology at the present time. OSCA also identified the significance of white light interferometry, and realized the potential of silicon as a substrate for integrated optics. Alas, OSCA acted primarily as an onlooker to the important discovery of fiber Bragg gratings. Subsequent global efforts at commercialization have been admirable, but are not yet major in business terms. Distributed sensing has rather plodded along, through some progress is being made. It is argued that we are now on the leading edge of a second wave of development in fiber optic sensing. The emphasis in this wave is not sensing principles but the adaptation and employment of the components and signal processing methods being facilitated by the huge wave of commercialization in optoelectronics which is currently occurring, primarily stimulated by the internet explosion. For sensing systems it is judged that silicon ridge waveguide technology has the potential to create a standardized approach to optical sensing, in concept not dissimilar from the familiar standardized analogue electronic signal and transmission means (e.g. 4 - 20 mA).
WavePropaGator: interactive framework for X-ray free-electron laser optics design and simulations.
Samoylova, Liubov; Buzmakov, Alexey; Chubar, Oleg; Sinn, Harald
2016-08-01
This article describes the WavePropaGator ( WPG ) package, a new interactive software framework for coherent and partially coherent X-ray wavefront propagation simulations. The package has been developed at European XFEL for users at the existing and emerging free-electron laser (FEL) facilities, as well as at the third-generation synchrotron sources and future diffraction-limited storage rings. The WPG addresses the needs of beamline scientists and user groups to facilitate the design, optimization and improvement of X-ray optics to meet their experimental requirements. The package uses the Synchrotron Radiation Workshop ( SRW ) C/C++ library and its Python binding for numerical wavefront propagation simulations. The framework runs reliably under Linux, Microsoft Windows 7 and Apple Mac OS X and is distributed under an open-source license. The available tools allow for varying source parameters and optics layouts and visualizing the results interactively. The wavefront history structure can be used for tracking changes in every particular wavefront during propagation. The batch propagation mode enables processing of multiple wavefronts in workflow mode. The paper presents a general description of the package and gives some recent application examples, including modeling of full X-ray FEL beamlines and start-to-end simulation of experiments.
NASA Technical Reports Server (NTRS)
Ohara, Tetsuo
2012-01-01
A sub-aperture stitching optical interferometer can provide a cost-effective solution for an in situ metrology tool for large optics; however, the currently available technologies are not suitable for high-speed and real-time continuous scan. NanoWave s SPPE (Scanning Probe Position Encoder) has been proven to exhibit excellent stability and sub-nanometer precision with a large dynamic range. This same technology can transform many optical interferometers into real-time subnanometer precision tools with only minor modification. The proposed field-programmable gate array (FPGA) signal processing concept, coupled with a new-generation, high-speed, mega-pixel CMOS (complementary metal-oxide semiconductor) image sensor, enables high speed (>1 m/s) and real-time continuous surface profiling that is insensitive to variation of pixel sensitivity and/or optical transmission/reflection. This is especially useful for large optics surface profiling.
Longitudinally polarized shear wave optical coherence elastography (Conference Presentation)
NASA Astrophysics Data System (ADS)
Miao, Yusi; Zhu, Jiang; Qi, Li; Qu, Yueqiao; He, Youmin; Gao, Yiwei; Chen, Zhongping
2017-02-01
Shear wave measurement enables quantitative assessment of tissue viscoelasticity. In previous studies, a transverse shear wave was measured using optical coherence elastography (OCE), which gives poor resolution along the force direction because the shear wave propagates perpendicular to the applied force. In this study, for the first time to our knowledge, we introduce an OCE method to detect a longitudinally polarized shear wave that propagates along the force direction. The direction of vibration induced by a piezo transducer (PZT) is parallel to the direction of wave propagation, which is perpendicular to the OCT beam. A Doppler variance method is used to visualize the transverse displacement. Both homogeneous phantoms and a side-by-side two-layer phantom were measured. The elastic moduli from mechanical tests closely matched to the values measured by the OCE system. Furthermore, we developed 3D computational models using finite element analysis to confirm the shear wave propagation in the longitudinal direction. The simulation shows that a longitudinally polarized shear wave is present as a plane wave in the near field of planar source due to diffraction effects. This imaging technique provides a novel method for the assessment of elastic properties along the force direction, which can be especially useful to image a layered tissue.
Advanced Gravitational Wave Detectors
NASA Astrophysics Data System (ADS)
Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.
2012-02-01
Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.
NASA Astrophysics Data System (ADS)
Moore, R. C.; Inan, U. S.; Bell, T. F.
2004-12-01
Naturally-forming, global-scale currents, such as the polar electrojet current and the mid-latitude dynamo, have been used as current sources to generate electromagnetic waves in the Extremely Low Frequency (ELF) and Very Low Frequency (VLF) bands since the 1970's. While many short-duration experiments have been performed, no continuous multi-week campaign data sets have been published providing reliable statistics for ELF/VLF wave generation. In this paper, we summarize the experimental data resulting from multiple ELF/VLF wave generation campaigns conducted at the High-frequency Active Auroral Research Project (HAARP) HF transmitter in Gakona, Alaska. For one 14-day period in March, 2002, and one 24-day period in November, 2002, the HAARP HF transmitter broadcast ELF/VLF wave generation sequences for 10 hours per day, between 0400 and 1400 UT. Five different modulation frequencies broadcast separately using two HF carrier frequencies are examined at receivers located 36, 44, 147, and 155 km from the HAARP facility. Additionally, a continuous 24-hour transmission period is analyzed to compare day-time wave generation to night-time wave generation. Lastly, a power-ramping scheme was employed to investigate possible thresholding effects at the wave-generating altitude. Wave generation statistics are presented along with source-region property calculations performed using a simple model.
Investigation of HIV-1 infected and uninfected cells using the optical trapping technique
NASA Astrophysics Data System (ADS)
Ombinda-Lemboumba, S.; Malabi, R.; Lugongolo, M. Y.; Thobakgale, S. L.; Manoto, S.; Mthunzi-Kufa, P.
2017-02-01
Optical trapping has emerged as an essential tool for manipulating single biological material and performing sophisticated spectroscopy analysis on individual cell. The optical trapping technique has been used to grab and immobilize cells from a tightly focused laser beam emitted through a high numerical aperture objective lens. Coupling optical trapping with other technologies is possible and allows stable sample trapping, while also facilitating molecular, chemical and spectroscopic analysis. For this reason, we are exploring laser trapping combined with laser spectroscopy as a potential non-invasive method of interrogating individual cells with a high degree of specificity in terms of information generated. Thus, for the delivery of as much pathological information as possible, we use a home-build optical trapping and spectroscopy system for real time probing human immunodeficiency virus (HIV-1) infected and uninfected single cells. Briefly, our experimental rig comprises an infrared continuous wave laser at 1064 nm with power output of 1.5 W, a 100X high numerical aperture oil-immersion microscope objective used to capture and immobilise individual cell samples as well as an excitation source. Spectroscopy spectral patterns obtained by the 1064 nm laser beam excitation provide information on HIV-1 infected and uninfected cells. We present these preliminary findings which may be valuable for the development of an HIV-1 point of care detection system.
Detecting continuous gravitational waves with superfluid helium
NASA Astrophysics Data System (ADS)
Singh, Swati; de Lorenzo, Laura; Pikovski, Igor; Schwab, Keith
2017-04-01
We study the sensitivity to continuous-wave strain fields of a kg-scale optomechanical system formed by the acoustic motion of superfluid helium-4 parametrically coupled to a superconducting microwave cavity. This narrowband detection scheme can operate at very high Q-factors, while the resonant frequency is tunable through pressurization of the helium in the 0.1-1.5 kHz range. The detector can therefore be tuned to a variety of astrophysical sources and can remain sensitive to a particular source over a long period of time. For reasonable experimental parameters, we find that strain fields on the order of h 10-23 /√{ Hz} are detectable. We show that the proposed system can significantly improve the limits on gravitational wave strain from nearby pulsars within a few months of integration time.
Multi-point laser ignition device
McIntyre, Dustin L.; Woodruff, Steven D.
2017-01-17
A multi-point laser device comprising a plurality of optical pumping sources. Each optical pumping source is configured to create pumping excitation energy along a corresponding optical path directed through a high-reflectivity mirror and into substantially different locations within the laser media thereby producing atomic optical emissions at substantially different locations within the laser media and directed along a corresponding optical path of the optical pumping source. An output coupler and one or more output lenses are configured to produce a plurality of lasing events at substantially different times, locations or a combination thereof from the multiple atomic optical emissions produced at substantially different locations within the laser media. The laser media is a single continuous media, preferably grown on a single substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadhira, Vebi, E-mail: vebi@tf.itb.ac.id; Kurniadi, Deddy, E-mail: vebi@tf.itb.ac.id; Juliastuti, E., E-mail: vebi@tf.itb.ac.id
The importance of monitoring the quality of vegetables and fruits is prosperity by giving a competitive advantage for producer and providing a more healthy food for consumer. Diffuse Optical Tomography (DOT) is offering the possibility to detect the internal defects of the agricultural produce quality. Fluorescence diffuse optical tomography (FDOT) is the development of DOT, offering the possibilities to improve spatial resolution and to contrast image. The purpose of this research is to compare FDOT and DOT in forward analysis with continuous wave approach. The scattering and absorbing parameters of potatoes are used to represent the real condition. The objectmore » was illuminated by the NIR source from some positions on the boundary of object. A set of NIR detector are placed on the peripheral position of the object to measure the intensity of propagated or emitted light. In the simulation, we varied a condition of object then we analyzed the sensitivity of forward problem. The result of this study shows that FDOT has a better sensitivity than DOT and a better potential to monitor internal defects of agricultural produce because of the contrast value between optical and fluorescence properties of agricultural produce normal tissue and defects.« less
Yin, Shupeng; Yan, Ping; Gong, Mali
2008-10-27
An end-pumped ytterbium-doped all-fiber laser with 300 W output in continuous regime was reported, which was based on master oscillator multi-stage power amplifiers configuration. Monolithic fiber laser system consisted of an oscillator stage and two amplifier stages. Total optical-optical efficiency of monolithic fiber laser was approximately 65%, corresponding to 462 W of pump power coupled into laser system. We proposed a new method to connect power amplifier stage, which was crucial for the application of end-pumped combiner in high power MOPAs all-fiber laser.
Flat-topped beam transmittance in anisotropic non-Kolmogorov turbulent marine atmosphere
NASA Astrophysics Data System (ADS)
Ata, Yalçın; Baykal, Yahya
2017-10-01
Turbulence affects optical propagation, and, as a result, the intensity is attenuated along the path of propagation. The attenuation becomes significant when the turbulence becomes stronger. Transmittance is a measure indicating how much power is collected at the receiver after the optical wave propagates in the turbulent medium. The on-axis transmittance is formulated when a flat-topped optical beam propagates in a marine atmosphere experiencing anisotropic non-Kolmogorov turbulence. Variations in the transmittance are evaluated versus the beam source size, beam number, link distance, power law exponent, anisotropy factor, and structure constant. It is found that larger beam source sizes and beam numbers yield higher transmittance values; however, as the link distance, power law exponent, anisotropy factor, or structure constant increase, transmittance values are lowered. Our results will help in the performance evaluations of optical wireless communication and optical imaging systems operating in a marine atmosphere.
Biochemical measurement of bilirubin with an evanescent wave optical sensor
NASA Astrophysics Data System (ADS)
Poscio, Patrick; Depeursinge, Christian D.; Emery, Y.; Parriaux, Olivier M.; Voirin, Guy
1991-09-01
Optical sensing techniques can be considered as powerful information sources on the biochemistry of tissue, blood, and physiological fluids. Various sensing modalities can be considered: spectroscopic determination of the fluorescence or optical absorption of the biological medium itself, or more generally, of a reagent in contact with the biological medium. The principle and realization of the optical sensor developed are based on the use of polished fibers: the cladding of a monomode fiber is removed on a longitudinal section. The device can then be inserted into an hypodermic needle for in-vivo measurements. Using this minute probe, local measurements of the tissue biochemistry or metabolic processes can be obtained. The sensing mechanism is based on the propagation of the evanescent wave in the tissues or reagent: the proximity of the fiber core allows the penetration of the model field tail into the sensed medium, with a uniquely defined field distribution. Single or multi-wavelength analysis of the light collected into the fiber yields the biochemical information. Here an example of this sensing technology is discussed. In-vitro measurement of bilirubin in gastric juice demonstrates that the evanescent wave optical sensor provides a sensitivity which matches the physiological concentrations. A device is proposed for in-vivo monitoring of bilirubin concentration in the gastro-oesophageal tract.
Murasawa, Kengo; Sato, Koki; Hidaka, Takehiko
2011-05-01
A new method for measuring optical-beat frequencies in the terahertz (THz) region using microwave higher harmonics is presented. A microwave signal was applied to the antenna gap of a photoconductive (PC) device emitting a continuous electromagnetic wave at about 1 THz by the photomixing technique. The microwave higher harmonics with THz frequencies are generated in the PC device owing to the nonlinearity of the biased photoconductance, which is briefly described in this article. Thirteen nearly periodic peaks in the photocurrent were observed when the microwave was swept from 16 to 20 GHz at a power of -48 dBm. The nearly periodic peaks are generated by the homodyne detection of the optical beat with the microwave higher harmonics when the frequency of the harmonics coincides with the optical-beat frequency. Each peak frequency and its peak width were determined by fitting a Gaussian function, and the order of microwave harmonics was determined using a coarse (i.e., lower resolution) measurement of the optical-beat frequency. By applying the Kalman algorithm to the peak frequencies of the higher harmonics and their standard deviations, the optical-beat frequency near 1 THz was estimated to be 1029.81 GHz with the standard deviation of 0.82 GHz. The proposed method is applicable to a conventional THz-wave generator with a photomixer.
A theoretical prediction of the acoustic pressure generated by turbulence-flame front interactions
NASA Technical Reports Server (NTRS)
Huff, R. G.
1984-01-01
The equations of momentum annd continuity are combined and linearized yielding the one dimensional nonhomogeneous acoustic wave equation. Three terms in the non-homogeneous equation act as acoustic sources and are taken to be forcing functions acting on the homogeneous wave equation. The three source terms are: fluctuating entropy, turbulence gradients, and turbulence-flame interactions. Each source term is discussed. The turbulence-flame interaction source is used as the basis for computing the source acoustic pressure from the Fourier transformed wave equation. Pressure fluctuations created in turbopump gas generators and turbines may act as a forcing function for turbine and propellant tube vibrations in Earth to orbit space propulsion systems and could reduce their life expectancy. A preliminary assessment of the acoustic pressure fluctuations in such systems is presented.
A theoretical prediction of the acoustic pressure generated by turbulence-flame front interactions
NASA Technical Reports Server (NTRS)
Huff, R. G.
1984-01-01
The equations of momentum and continuity are combined and linearized yielding the one dimensional nonhomogeneous acoustic wave equation. Three terms in the non-homogeneous equation act as acoustic sources and are taken to be forcing functions acting on the homogeneous wave equation. The three source terms are: fluctuating entropy, turbulence gradients, and turbulence-flame interactions. Each source term is discussed. The turbulence-flame interaction source is used as the basis for computing the source acoustic pressure from the Fourier transformed wave equation. Pressure fluctuations created in turbopump gas generators and turbines may act as a forcing function for turbine and propellant tube vibrations in earth to orbit space propulsion systems and could reduce their life expectancy. A preliminary assessment of the acoustic pressure fluctuations in such systems is presented.
Lamaignère, Laurent; Gaudfrin, Kévin; Donval, Thierry; Natoli, Jeanyves; Sajer, Jean-Michel; Penninckx, Denis; Courchinoux, Roger; Diaz, Romain
2018-04-30
Forward pump pulses with nanosecond duration are able to generate an acoustic wave via electrostriction through a few centimeters of bulk silica. Part of the incident energy is then scattered back on this sound wave, creating a backward Stokes pulse. This phenomenon known as stimulated Brillouin scattering (SBS) might induce first energy-loss, variable change of the temporal waveform depending on the location in the spatial profile making accurate metrology impossible, and moreover it might also initiate front surface damage making the optics unusable. Experiments performed on thick fused silica optics at 355 nm with single longitudinal mode pulses allowed us to detect, observe and quantify these backward pulses. Experimental results are first compared to theoretical calculations in order to strengthen our confidence in metrology. On this basis a phase-modulator has been implemented on the continuous-wave seeders of the lasers leading to pulses with a wide spectrum that suppress SBS and do not exhibit temporal overshoots that also reduce Kerr effects. The developed set-ups are used to check the reduction of the backward stimulated Brillouin scattering and they allow measuring with accuracy the rear surface damage of thick fused silica optics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Q.; Zong, H. S.; Huang, Y. F., E-mail: zonghs@nju.edu.cn, E-mail: hyf@nju.edu.cn
2016-06-01
The X-ray afterglow of GRB 130831A shows an “internal plateau” with a decay slope of ∼0.8, followed by a steep drop at around 10{sup 5} s with a slope of ∼6. After the drop, the X-ray afterglow continues with a much shallower decay. The optical afterglow exhibits two segments of plateaus separated by a luminous optical flare, followed by a normal decay with a slope basically consistent with that of the late-time X-ray afterglow. The decay of the internal X-ray plateau is much steeper than what we expect in the simplest magnetar model. We propose a scenario in which themore » magnetar undergoes gravitational-wave-driven r-mode instability, and the spin-down is dominated by gravitational wave losses up to the end of the steep plateau, so that such a relatively steep plateau can be interpreted as the internal emission of the magnetar wind and the sharp drop can be produced when the magnetar collapses into a black hole. This scenario also predicts an initial X-ray plateau lasting for hundreds of seconds with an approximately constant flux which is compatible with observation. Assuming that the magnetar wind has a negligible contribution in the optical band, we interpret the optical afterglow as the forward shock emission by invoking the energy injection from a continuously refreshed shock following the prompt emission phase. It is shown that our model can basically describe the temporal evolution of the multi-band afterglow of GRB 130831A.« less
NASA Astrophysics Data System (ADS)
Zhang, Q.; Huang, Y. F.; Zong, H. S.
2016-06-01
The X-ray afterglow of GRB 130831A shows an “internal plateau” with a decay slope of ˜0.8, followed by a steep drop at around 105 s with a slope of ˜6. After the drop, the X-ray afterglow continues with a much shallower decay. The optical afterglow exhibits two segments of plateaus separated by a luminous optical flare, followed by a normal decay with a slope basically consistent with that of the late-time X-ray afterglow. The decay of the internal X-ray plateau is much steeper than what we expect in the simplest magnetar model. We propose a scenario in which the magnetar undergoes gravitational-wave-driven r-mode instability, and the spin-down is dominated by gravitational wave losses up to the end of the steep plateau, so that such a relatively steep plateau can be interpreted as the internal emission of the magnetar wind and the sharp drop can be produced when the magnetar collapses into a black hole. This scenario also predicts an initial X-ray plateau lasting for hundreds of seconds with an approximately constant flux which is compatible with observation. Assuming that the magnetar wind has a negligible contribution in the optical band, we interpret the optical afterglow as the forward shock emission by invoking the energy injection from a continuously refreshed shock following the prompt emission phase. It is shown that our model can basically describe the temporal evolution of the multi-band afterglow of GRB 130831A.
Non-fluorescent nanoscopic monitoring of a single trapped nanoparticle via nonlinear point sources.
Yoon, Seung Ju; Lee, Jungmin; Han, Sangyoon; Kim, Chang-Kyu; Ahn, Chi Won; Kim, Myung-Ki; Lee, Yong-Hee
2018-06-07
Detection of single nanoparticles or molecules has often relied on fluorescent schemes. However, fluorescence detection approaches limit the range of investigable nanoparticles or molecules. Here, we propose and demonstrate a non-fluorescent nanoscopic trapping and monitoring platform that can trap a single sub-5-nm particle and monitor it with a pair of floating nonlinear point sources. The resonant photon funnelling into an extremely small volume of ~5 × 5 × 7 nm 3 through the three-dimensionally tapered 5-nm-gap plasmonic nanoantenna enables the trapping of a 4-nm CdSe/ZnS quantum dot with low intensity of a 1560-nm continuous-wave laser, and the pumping of 1560-nm femtosecond laser pulses creates strong background-free second-harmonic point illumination sources at the two vertices of the nanoantenna. Under the stable trapping conditions, intermittent but intense nonlinear optical spikes are observed on top of the second-harmonic signal plateau, which is identified as the 3.0-Hz Kramers hopping of the quantum dot trapped in the 5-nm gap.
Takushima, Y; Shin, S Y; Chung, Y C
2007-10-29
We propose and investigate a ribbon waveguide for difference-frequency generation of terahertz (THz) wave from infrared light sources. The proposed ribbon waveguide is composed of a nonlinear optic crystal and has a thickness less than the wavelength of the THz wave to support the surface-wave mode in the THz region. By utilizing the waveguide dispersion of the surface-wave mode, the phase matching condition between infrared pump, idler and THz waves can be realized in the collinear configuration. Owing to the weak mode confinement of the THz wave, the absorption coefficient can also be reduced. We design the ribbon waveguide which uses LiNbO(3) crystal and discuss the phase-matching condition for DFG of THz wave. Highly efficient THz-wave generation is confirmed by numerical simulations.
Phonon Routing in Integrated Optomechanical Cavity-waveguide Systems
2015-08-20
optomechanical crystal cavities connected by a dispersion-engineered phonon waveguide. Pulsed and continuous- wave measurements are first used to char- acterize...device layer of a silicon-on-insulator wafer (see App. A), and consists of several parts: an op- tomechanical cavity with co- localized optical and acous... localized cavity mode and the nearly- resonant phonon waveguide modes. The optical coupling waveg- uide is fabricated in the near-field of the nanobeam
Compact and efficient CW 473nm blue laser with LBO intracavity frequency doubling
NASA Astrophysics Data System (ADS)
Qi, Yan; Wang, Yu; Wang, Yanwei; Zhang, Jing; Yan, Boxia
2016-10-01
With diode end pumped Nd:YAG directly and LBO intracavity frequency doubling, a compact, high efficient continuous wave blue laser at 473nm is realized. When the incident pump power reach 6.2W, 630mW maximum output power of blue laser at 473nm is achieved with 15mm long LBO, the optical-to-optical conversion efficiency is as high as 10.2%.
Efficient diode-pumped Tm:KYW 1.9-μm microchip laser with 1 W cw output power.
Gaponenko, Maxim; Kuleshov, Nikolay; Südmeyer, Thomas
2014-05-19
We report on a diode-pumped Tm:KYW microchip laser generating 1 W continuous-wave output power. The laser operates at a wavelength of 1.94 μm in the fundamental TEM(00) mode with 71% slope efficiency relative to the absorbed pump radiation and 59% slope efficiency relative to the incident pump radiation. The optical-to-optical laser efficiency is 43%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Dam Thuy Trang; Tong, Quang Cong; Ledoux-Rak, Isabelle
In this work, local thermal effect induced by a continuous-wave laser has been investigated and exploited to optimize the low one-photon absorption (LOPA) direct laser writing (DLW) technique for fabrication of polymer-based microstructures. It was demonstrated that the temperature of excited SU8 photoresist at the focusing area increases to above 100 °C due to high excitation intensity and becomes stable at that temperature thanks to the use of a continuous-wave laser at 532 nm-wavelength. This optically induced thermal effect immediately completes the crosslinking process at the photopolymerized region, allowing obtain desired structures without using the conventional post-exposure bake (PEB) step, which ismore » usually realized after the exposure. Theoretical calculation of the temperature distribution induced by local optical excitation using finite element method confirmed the experimental results. LOPA-based DLW technique combined with optically induced thermal effect (local PEB) shows great advantages over the traditional PEB, such as simple, short fabrication time, high resolution. In particular, it allowed the overcoming of the accumulation effect inherently existed in optical lithography by one-photon absorption process, resulting in small and uniform structures with very short lattice constant.« less
NASA Astrophysics Data System (ADS)
Perkins, William C.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.
2014-03-01
Optical nerve stimulation (ONS) has been commonly performed in the laboratory using high-power, pulsed, infrared (IR) lasers including Holmium:YAG, diode, and Thulium fiber lasers. However, the relatively high cost of these lasers in comparison with conventional electrical nerve stimulation (ENS) equipment may represent a significant barrier to widespread adoption of ONS. Optical stimulation of the prostate cavernous nerves (CN's) has recently been reported using lower cost, continuous-wave (CW), all-fiber-based diode lasers. This preliminary study describes further miniaturization and cost reduction of the ONS system in the form of a compact, lightweight, cordless, and inexpensive IR laser. A 140-mW, 1560-nm diode laser was integrated with a green aiming beam and delivery optics into a compact ONS system. Surface and subsurface ONS was performed in a total of 5 rats, in vivo, with measurement of an intracavernous pressure (ICP) response during CW laser irradiation for 30 s with a spot diameter of 0.7 mm. Short-term, CW ONS of the prostate CN's is feasible using a compact, inexpensive, batterypowered IR laser diode system. This ONS system may represent an alternative to ENS for laboratory studies, and with further development, a handheld option for ONS in the clinic to identify and preserve the CN's during prostate cancer surgery.
THz-wave parametric sources and imaging applications
NASA Astrophysics Data System (ADS)
Kawase, Kodo
2004-12-01
We have studied the generation of terahertz (THz) waves by optical parametric processes based on laser light scattering from the polariton mode of nonlinear crystals. Using parametric oscillation of MgO-doped LiNbO3 crystal pumped by a nano-second Q-switched Nd:YAG laser, we have realized a widely tunable coherent THz-wave sources with a simple configuration. We have also developed a novel basic technology for THz imaging, which allows detection and identification of chemicals by introducing the component spatial pattern analysis. The spatial distributions of the chemicals were obtained from terahertz multispectral trasillumination images, using absorption spectra previously measured with a widely tunable THz-wave parametric oscillator. Further we have applied this technique to the detection and identification of illicit drugs concealed in envelopes. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.
Implementation and characterization of a stable optical frequency distribution system.
Bernhardt, Birgitta; Hänsch, Theodor W; Holzwarth, Ronald
2009-09-14
An optical frequency distribution system has been developed that continuously delivers a stable optical frequency of 268 THz (corresponding to a wavelength of 1118 nm) to different experiments in our institute. For that purpose, a continuous wave (cw) fiber laser has been stabilized onto a frequency comb and distributed across the building by the use of a fiber network. While the light propagates through the fiber, acoustic and thermal effects counteract against the stability and accuracy of the system. However, by employing proper stabilization methods a stability of 2 x 10(-13) tau(-1/2) is achieved, limited by the available radio frequency (RF) reference. Furthermore, the issue of counter-dependant results of the Allan deviation was examined during the data evaluation.
Scalable digital hardware for a trapped ion quantum computer
NASA Astrophysics Data System (ADS)
Mount, Emily; Gaultney, Daniel; Vrijsen, Geert; Adams, Michael; Baek, So-Young; Hudek, Kai; Isabella, Louis; Crain, Stephen; van Rynbach, Andre; Maunz, Peter; Kim, Jungsang
2016-12-01
Many of the challenges of scaling quantum computer hardware lie at the interface between the qubits and the classical control signals used to manipulate them. Modular ion trap quantum computer architectures address scalability by constructing individual quantum processors interconnected via a network of quantum communication channels. Successful operation of such quantum hardware requires a fully programmable classical control system capable of frequency stabilizing the continuous wave lasers necessary for loading, cooling, initialization, and detection of the ion qubits, stabilizing the optical frequency combs used to drive logic gate operations on the ion qubits, providing a large number of analog voltage sources to drive the trap electrodes, and a scheme for maintaining phase coherence among all the controllers that manipulate the qubits. In this work, we describe scalable solutions to these hardware development challenges.
Gonoskov, I A; Tsatrafyllis, N; Kominis, I K; Tzallas, P
2016-09-07
We analytically describe the strong-field light-electron interaction using a quantized coherent laser state with arbitrary photon number. We obtain a light-electron wave function which is a closed-form solution of the time-dependent Schrödinger equation (TDSE). This wave function provides information about the quantum optical features of the interaction not accessible by semi-classical theories. With this approach we can reveal the quantum optical properties of high harmonic generation (HHG) process in gases by measuring the photon statistics of the transmitted infrared (IR) laser radiation. This work can lead to novel experiments in high-resolution spectroscopy in extreme-ultraviolet (XUV) and attosecond science without the need to measure the XUV light, while it can pave the way for the development of intense non-classical light sources.
NASA Astrophysics Data System (ADS)
Antony, Albin; Pramodini, S.; Poornesh, P.; Kityk, I. V.; Fedorchuk, A. O.; Sanjeev, Ganesh
2016-12-01
We present the studies on third-order nonlinear optical properties of Al doped ZnO thin films irradiated with electron beam at different dose rate. Al doped ZnO thin films were deposited on a glass substrate by spray pyrolysis deposition technique. The thin films were irradiated using the 8 MeV electron beam from microtron ranging from 1 kG y to 5 kG y. Nonlinear optical studies were carried out by employing the single beam Z-scan technique to determine the sign and magnitude of absorptive and refractive nonlinearities of the irradiated thin films. Continuous wave He-Ne laser operating at 633 nm was used as source of excitation. The open aperture Z-scan measurements indicated the sample displays reverse saturable absorption (RSA) process. The negative sign of the nonlinear refractive index n2 was noted from the closed aperture Z-scan measurements indicates, the films exhibit self-defocusing property due to thermal nonlinearity. The third-order nonlinear optical susceptibility χ(3) varies from 8.17 × 10-5 esu to 1.39 × 10-3 esu with increase in electron beam irradiation. The present study reveals that the irradiation of electron beam leads to significant changes in the third-order optical nonlinearity. Al doped ZnO displays good optical power handling capability with optical clamping of about ∼5 mW. The irradiation study endorses that the Al doped ZnO under investigation is a promising candidate photonic device applications such as all-optical power limiting.
NASA Astrophysics Data System (ADS)
Wang, Lei-Ming; Zhang, Lingxiao; Seideman, Tamar; Petek, Hrvoje
2012-10-01
We study by numerical simulations the excitation and propagation dynamics of coupled surface plasmon polariton (SPP) wave packets (WPs) in optically thin Ag films and a bulk Ag/vacuum interface under the illumination of a subwavelength slit by 400 nm continuous wave (cw) and femtosecond pulsed light. The generated surface fields include contributions from both SPPs and quasicylindrical waves, which dominate in different regimes. We explore aspects of the coupled SPP modes in Ag thin films, including symmetry, propagation, attenuation, and the variation of coupling with incident angle and film thickness. Simulations of the electromagnetic transients initiated with femtosecond pulses reveal new features of coupled SPP WP generation and propagation in thin Ag films. Our results show that, under pulsed excitation, the SPP modes in an Ag thin film break up into two distinct bound surface wave packets characterized by marked differences in symmetries, group velocities, attenuation lengths, and dispersion properties. The nanometer spatial and femtosecond temporal scale excitation and propagation dynamics of the coupled SPP WPs are revealed in detail by movies recording the evolution of their transient field distributions.
Nonlinear waveguide optics and photonic crystal fibers.
Knight, J C; Skryabin, D V
2007-11-12
Optical fibers and waveguides provide unique and distinct environments for nonlinear optics, because of the combination of high intensities, long interaction lengths, and control of the propagation constants. They are also becoming of technological importance. The topic has a long history but continues to generate rapid development, most recently through the invention of the new forms of optical fiber collectively known as photonic crystal fibers. Some of the discoveries and ideas from the new fibers look set to have lasting influence in the broader field of guided-wave nonlinear optics. In this paper we introduce some of these ideas.22 W coherent GaAlAs amplifier array with 400 emitters
NASA Technical Reports Server (NTRS)
Krebs, D.; Herrick, R.; No, K.; Harting, W.; Struemph, F.
1991-01-01
Greater than 22 W of optical power has been demonstrated from a multiple-emitter, traveling-wave semiconductor amplifier, with approximately 87 percent of the output at the frequency of the injection source. The device integrates, in AlGaAs graded-index separate-confinement heterostructure single quantum well (GRINSCH-SQW) epitaxy, 400 ridge waveguide amplifiers with a coherent optical signal distribution circuit on a 12 x 6 mm chip.
Laser-induced damage threshold of camera sensors and micro-opto-electro-mechanical systems
NASA Astrophysics Data System (ADS)
Schwarz, Bastian; Ritt, Gunnar; Körber, Michael; Eberle, Bernd
2016-10-01
The continuous development of laser systems towards more compact and efficient devices constitutes an increasing threat to electro-optical imaging sensors such as complementary metal-oxide-semiconductors (CMOS) and charge-coupled devices (CCD). These types of electronic sensors are used in day-to-day life but also in military or civil security applications. In camera systems dedicated to specific tasks, also micro-opto-electro-mechanical systems (MOEMS) like a digital micromirror device (DMD) are part of the optical setup. In such systems, the DMD can be located at an intermediate focal plane of the optics and it is also susceptible to laser damage. The goal of our work is to enhance the knowledge of damaging effects on such devices exposed to laser light. The experimental setup for the investigation of laser-induced damage is described in detail. As laser sources both pulsed lasers and continuous-wave (CW) lasers are used. The laser-induced damage threshold (LIDT) is determined by the single-shot method by increasing the pulse energy from pulse to pulse or in the case of CW-lasers, by increasing the laser power. Furthermore, we investigate the morphology of laser-induced damage patterns and the dependence of the number of destructed device elements on the laser pulse energy or laser power. In addition to the destruction of single pixels, we observe aftereffects like persisting dead columns or rows of pixels in the sensor image.
Recent Results With Coupled Opto-Electronic Oscillators
NASA Astrophysics Data System (ADS)
Yao, X. S.; Maleki, L.; Wu, C.; Davis, L.; Forouhar, S.
1998-07-01
We present experimental results of coupled opto-electronic oscillators (COEOs) constructed with a semiconductor optical-amplifier-based ring laser, a semiconductor Fabry-Perot laser, and a semiconductor colliding-pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 ps and RF signals as high in frequency as 18 GHz with a spectral purity comparable to an HP 8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.
Recent results with the coupled opto-electronic oscillator
NASA Astrophysics Data System (ADS)
Yao, X. S.; Maleki, Lute; Wu, Chi; Davis, Lawrence J.; Forouhar, Siamak
1998-11-01
We present experimental results of coupled opto-electronic oscillators (COEO) constructed with a semiconductor optical amplifier based ring laser, a semiconductor Fabry-Perot laser, and a semiconductor colliding pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 picoseconds and RF signals as high in frequency as 18 GHz with a spectral purity comparable with a HP8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.
Highly-reliable laser diodes and modules for spaceborne applications
NASA Astrophysics Data System (ADS)
Deichsel, E.
2017-11-01
Laser applications become more and more interesting in contemporary missions such as earth observations or optical communication in space. One of these applications is light detection and ranging (LIDAR), which comprises huge scientific potential in future missions. The Nd:YAG solid-state laser of such a LIDAR system is optically pumped using 808nm emitting pump sources based on semiconductor laser-diodes in quasi-continuous wave (qcw) operation. Therefore reliable and efficient laser diodes with increased output powers are an important requirement for a spaceborne LIDAR-system. In the past, many tests were performed regarding the performance and life-time of such laser-diodes. There were also studies for spaceborne applications, but a test with long operation times at high powers and statistical relevance is pending. Other applications, such as science packages (e.g. Raman-spectroscopy) on planetary rovers require also reliable high-power light sources. Typically fiber-coupled laser diode modules are used for such applications. Besides high reliability and life-time, designs compatible to the harsh environmental conditions must be taken in account. Mechanical loads, such as shock or strong vibration are expected due to take-off or landing procedures. Many temperature cycles with high change rates and differences must be taken in account due to sun-shadow effects in planetary orbits. Cosmic radiation has strong impact on optical components and must also be taken in account. Last, a hermetic sealing must be considered, since vacuum can have disadvantageous effects on optoelectronics components.
Zero-phonon-line emission of single molecules for applications in quantum information processing
NASA Astrophysics Data System (ADS)
Kiraz, Alper; Ehrl, M.; Mustecaplioglu, O. E.; Hellerer, T.; Brauchle, C.; Zumbusch, A.
2005-07-01
A single photon source which generates transform limited single photons is highly desirable for applications in quantum optics. Transform limited emission guarantees the indistinguishability of the emitted single photons. This, in turn brings groundbreaking applications in linear optics quantum information processing within an experimental reach. Recently, self-assembled InAs quantum dots and trapped atoms have successfully been demonstrated as such sources for highly indistinguishable single photons. Here, we demonstrate that nearly transform limited zero-phonon-line (ZPL) emission from single molecules can be obtained by using vibronic excitation. Furthermore we report the results of coincidence detection experiments at the output of a Michelson-type interferometer. These experiments reveal Hong-Ou-Mandel correlations as a proof of the indistinguishability of the single photons emitted consecutively from a single molecule. Therefore, single molecules constitute an attractive alternative to single InAs quantum dots and trapped atoms for applications in linear optics quantum information processing. Experiments were performed with a home-built confocal microscope keeping the sample in a superfluid liquid Helium bath at 1.4K. We investigated terrylenediimide (TDI) molecules highly diluted in hexadecane (Shpol'skii matrix). A continuous wave single mode dye laser was used for excitation of vibronic transitions of individual molecules. From the integral fluorescence, the ZPL of single molecules was selected with a spectrally narrow interference filter. The ZPL emission was then sent to a scanning Fabry-Perot interferometer for linewidth measurements or a Michelson-type interferometer for coincidence detection.
First all-sky search for continuous gravitational waves from unknown sources in binary systems
NASA Astrophysics Data System (ADS)
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jaranowski, P.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karlen, J.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N.; Kim, N. G.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Leonardi, M.; Leong, J. R.; Le Roux, A.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Luijten, E.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Milde, S.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moesta, P.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palashov, O.; Palomba, C.; Pan, H.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poteomkin, A.; Powell, J.; Prasad, J.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Reid, S.; Reitze, D. H.; Rhoades, E.; Ricci, F.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Scheuer, J.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Stebbins, J.; Steinlechner, J.; Steinlechner, S.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Stops, D.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S. S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Wang, M.; Wang, X.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Williams, K.; Williams, L.; Williams, R.; Williams, T.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yang, Z.; Yoshida, S.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhao, C.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2014-09-01
We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO science run and the second and third Virgo science runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ˜2,254 h and a frequency- and period-dependent range of frequency modulation depths from 0.277 to 100 mHz. This corresponds to a range of projected semimajor axes of the orbit from ˜0.6×10-3 ls to ˜6,500 ls assuming the orbit of the binary is circular. While no plausible candidate gravitational wave events survive the pipeline, upper limits are set on the analyzed data. The most sensitive 95% confidence upper limit obtained on gravitational wave strain is 2.3×10-24 at 217 Hz, assuming the source waves are circularly polarized. Although this search has been optimized for circular binary orbits, the upper limits obtained remain valid for orbital eccentricities as large as 0.9. In addition, upper limits are placed on continuous gravitational wave emission from the low-mass x-ray binary Scorpius X-1 between 20 Hz and 57.25 Hz.
Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eberle, Tobias; Centre for Quantum Engineering and Space-Time Research - QUEST, Leibniz Universitaet Hannover, Welfengarten 1, D-30167 Hannover; Haendchen, Vitus
Einstein-Podolsky-Rosen (EPR) entanglement is a criterion that is more demanding than just certifying entanglement. We theoretically and experimentally analyze the low-resource generation of bipartite continuous-variable entanglement, as realized by mixing a squeezed mode with a vacuum mode at a balanced beam splitter, i.e., the generation of so-called vacuum-class entanglement. We find that in order to observe EPR entanglement the total optical loss must be smaller than 33.3 %. However, arbitrarily strong EPR entanglement is generally possible with this scheme. We realize continuous-wave squeezed light at 1550 nm with up to 9.9 dB of nonclassical noise reduction, which is the highestmore » value at a telecom wavelength so far. Using two phase-controlled balanced homodyne detectors we observe an EPR covariance product of 0.502{+-}0.006<1, where 1 is the critical value. We discuss the feasibility of strong Gaussian entanglement and its application for quantum key distribution in a short-distance fiber network.« less
Advanced Wavefront Sensing and Control Testbed (AWCT)
NASA Technical Reports Server (NTRS)
Shi, Fang; Basinger, Scott A.; Diaz, Rosemary T.; Gappinger, Robert O.; Tang, Hong; Lam, Raymond K.; Sidick, Erkin; Hein, Randall C.; Rud, Mayer; Troy, Mitchell
2010-01-01
The Advanced Wavefront Sensing and Control Testbed (AWCT) is built as a versatile facility for developing and demonstrating, in hardware, the future technologies of wave front sensing and control algorithms for active optical systems. The testbed includes a source projector for a broadband point-source and a suite of extended scene targets, a dispersed fringe sensor, a Shack-Hartmann camera, and an imaging camera capable of phase retrieval wavefront sensing. The testbed also provides two easily accessible conjugated pupil planes which can accommodate the active optical devices such as fast steering mirror, deformable mirror, and segmented mirrors. In this paper, we describe the testbed optical design, testbed configurations and capabilities, as well as the initial results from the testbed hardware integrations and tests.
Detecting continuous gravitational waves with superfluid 4He
NASA Astrophysics Data System (ADS)
Singh, S.; De Lorenzo, L. A.; Pikovski, I.; Schwab, K. C.
2017-07-01
Direct detection of gravitational waves is opening a new window onto our universe. Here, we study the sensitivity to continuous-wave strain fields of a kg-scale optomechanical system formed by the acoustic motion of superfluid helium-4 parametrically coupled to a superconducting microwave cavity. This narrowband detection scheme can operate at very high Q-factors, while the resonant frequency is tunable through pressurization of the helium in the 0.1-1.5 kHz range. The detector can therefore be tuned to a variety of astrophysical sources and can remain sensitive to a particular source over a long period of time. For thermal noise limited sensitivity, we find that strain fields on the order of h˜ {10}-23/\\sqrt{{Hz}} are detectable. Measuring such strains is possible by implementing state of the art microwave transducer technology. We show that the proposed system can compete with interferometric detectors and potentially surpass the gravitational strain limits set by them for certain pulsar sources within a few months of integration time.
Continuous-wave stimulated Raman scattering
NASA Astrophysics Data System (ADS)
Bryant, C. H.; Golombok, M.
1991-04-01
The first observation of continuous-wave stimulated Raman scattering (SRS) is reported. Both forward and enhanced backward SRS were observed in liquids, and the large spectral frequency shift between pump and probe makes signal detection easy. No separate collection optics are necessary for the backscattered SRS, whose signal-to-noise ratio is much improved compared with that measured by forward or side scatter. This is attributed to the existence of a phase-conjugate beam. Higher orders of Stokes scattering are also observed in return. Contrary to theoretical expectation, both forward-scattered and backscattered signals have identical gains owing to saturation effects in a number of the high-gain liquids studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paeng, Dongwoo; Grigoropoulos, Costas P., E-mail: cgrigoro@berkeley.edu; Lee, Daeho
2014-08-18
In-situ optical probing has been performed to analyze and compare the characteristic coalescence time scales of silver ion-doped polyvinylalcohol nanocomposite (Ag-PVA NC) and polyvinylpyrrolidone-capped silver nanoparticle (Ag-PVP NP) films subjected to continuous wave laser irradiation. The Ag-PVA NC yielded conductive metallic patterns by photothermal reduction of PVA, formation of nanoparticles from silver ions and their subsequent coalescence. On the other hand, Ag-PVP NP thin films produced conductive patterns through only coalescence of nanoparticles. Upon laser irradiation, Ag-PVA NC and Ag-PVP NP films exhibited different coalescence characteristics.
NASA Astrophysics Data System (ADS)
Blanc, Elisabeth; Rickel, Dwight
1989-06-01
Different wave fronts affected by significant nonlinearities have been observed in the ionosphere by a pulsed HF sounding experiment at a distance of 38 km from the source point of a 4800-kg ammonium nitrate and fuel oil (ANFO) explosion on the ground. These wave fronts are revealed by partial reflections of the radio sounding waves. A small-scale irregular structure has been generated by a first wave front at the level of a sporadic E layer which characterized the ionosphere at the time of the experiment. The time scale of these fluctuations is about 1 to 2 s; its lifetime is about 2 min. Similar irregularities were also observed at the level of a second wave front in the F region. This structure appears also as diffusion on a continuous wave sounding at horizontal distances of the order of 200 km from the source. In contrast, a third front unaffected by irregularities may originate from the lowest layers of the ionosphere or from a supersonic wave front propagating at the base of the thermosphere. The origin of these structures is discussed.
Grating-assisted demodulation of interferometric optical sensors.
Yu, Bing; Wang, Anbo
2003-12-01
Accurate and dynamic control of the operating point of an interferometric optical sensor to produce the highest sensitivity is crucial in the demodulation of interferometric optical sensors to compensate for manufacturing errors and environmental perturbations. A grating-assisted operating-point tuning system has been designed that uses a diffraction grating and feedback control, functions as a tunable-bandpass optical filter, and can be used as an effective demodulation subsystem in sensor systems based on optical interferometers that use broadband light sources. This demodulation method has no signal-detection bandwidth limit, a high tuning speed, a large tunable range, increased interference fringe contrast, and the potential for absolute optical-path-difference measurement. The achieved 40-nm tuning range, which is limited by the available source spectrum width, 400-nm/s tuning speed, and a step resolution of 0.4 nm, is sufficient for most practical measurements. A significant improvement in signal-to-noise ratio in a fiber Fabry-Perot acoustic-wave sensor system proved that the expected fringe contrast and sensitivity increase.
NASA Astrophysics Data System (ADS)
Prakash, Roopa; Choudhury, Vishal; Arun, S.; Supradeepa, V. R.
2018-02-01
Continuous-wave(CW) supercontinuum sources find applications in various domains such as imaging, spectroscopy, test and measurement. They are generated by pumping an optical fiber with a CW laser in the anomalous-dispersion region close to its zero-dispersion wavelength. Modulation instability(MI) sidebands are created, and further broadened and equalized by additional nonlinear processes generating the supercontinuum. This necessitates high optical powers and at lower powers, only MI sidebands can be seen without the formation of the supercontinuum. Obtaining a supercontinuum at low, easily manageable optical powers is attractive for many applications, but current techniques cannot achieve this. In this work, we propose a new mechanism for low power supercontinuum generation utilizing the modified MI gain spectrum for a line-broadened, decorrelated pump. A novel two-stage generation mechanism is demonstrated, where the first stage constituting standard telecom fiber slightly broadens the input pump linewidth. However, this process in the presence of dispersion, acts to de-correlate the different spectral components of the pump signal. When this is sent through highly nonlinear fiber near its zero-dispersion wavelength, the shape of the MI gain spectrum is modified, and this process naturally results in the generation of a broadband, equalized supercontinuum source at much lower powers than possible using conventional single stage spectral broadening. Here, we demonstrate a 0.5W supercontinuum source pumped using a 4W Erbium-Ytterbium co-doped fiber laser with a bandwidth spanning from 1300nm to 2000nm. We also demonstrate an interesting behaviour of this technique of relative insensitivity to the pump wavelength vis-a-vis zero-dispersion wavelength of the fiber.
Li, Wei; Wang, Wen Ting; Sun, Wen Hui; Wang, Li Xian; Zhu, Ning Hua
2014-03-01
We propose a novel photonic approach for generating a background-free millimeter-wave (MMW) ultra-wideband (UWB) signal based on a conventional dual-drive Mach-Zehnder modulator (DMZM). One arm of the DMZM is driven by a local oscillator (LO) signal. The LO power is optimized to realize optical carrier suppressed modulation. The other arm is fed by a rectangular signal. The MMW UWB pulses are generated by truncating the continuous wave LO signal into a pulsed one in a photodetector (PD). The generated MMW UWB signal is background-free by eliminating the baseband frequency components because the optical power launched to the PD keeps constant all the time. The proposed method is theoretically analyzed and experimentally verified. The generated MMW UWB signal centered at a frequency of 26 GHz meets the Federal Communications Commission spectral mask very well.
NASA Astrophysics Data System (ADS)
Schleich, Wolfgang P.
2001-04-01
Quantum Optics in Phase Space provides a concise introduction to the rapidly moving field of quantum optics from the point of view of phase space. Modern in style and didactically skillful, Quantum Optics in Phase Space prepares students for their own research by presenting detailed derivations, many illustrations and a large set of workable problems at the end of each chapter. Often, the theoretical treatments are accompanied by the corresponding experiments. An exhaustive list of references provides a guide to the literature. Quantum Optics in Phase Space also serves advanced researchers as a comprehensive reference book. Starting with an extensive review of the experiments that define quantum optics and a brief summary of the foundations of quantum mechanics the author Wolfgang P. Schleich illustrates the properties of quantum states with the help of the Wigner phase space distribution function. His description of waves ala WKB connects semi-classical phase space with the Berry phase. These semi-classical techniques provide deeper insight into the timely topics of wave packet dynamics, fractional revivals and the Talbot effect. Whereas the first half of the book deals with mechanical oscillators such as ions in a trap or atoms in a standing wave the second half addresses problems where the quantization of the radiation field is of importance. Such topics extensively discussed include optical interferometry, the atom-field interaction, quantum state preparation and measurement, entanglement, decoherence, the one-atom maser and atom optics in quantized light fields. Quantum Optics in Phase Space presents the subject of quantum optics as transparently as possible. Giving wide-ranging references, it enables students to study and solve problems with modern scientific literature. The result is a remarkably concise yet comprehensive and accessible text- and reference book - an inspiring source of information and insight for students, teachers and researchers alike.