In-situ continuous water analyzing module
Thompson, Cyril V.; Wise, Marcus B.
1998-01-01
An in-situ continuous liquid analyzing system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectometer and the volatile components are continuously analyzed by the mass spectrometer.
In-situ continuous water monitoring system
Thompson, Cyril V.; Wise, Marcus B.
1998-01-01
An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer.
In-situ continuous water monitoring system
Thompson, C.V.; Wise, M.B.
1998-03-31
An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer. 2 figs.
Atomizing, continuous, water monitoring module
Thompson, C.V.; Wise, M.B.
1997-07-08
A system for continuously analyzing volatile constituents of a liquid is described. The system contains a pump for continuously pumping the liquid to be tested at a predetermined flow rate into an extracting container through a liquid directing tube having an orifice at one end and positioned to direct the liquid into the extracting container at a flow rate sufficient to atomize the liquid within the extracting container. A continuous supply of helium carrier gas at a predetermined flow rate is directed through a tube into the extracting container and co-mingled with the atomized liquid to extract the volatile constituents contained within the atomized liquid. The helium containing the extracted volatile constituents flows out of the extracting container into a mass spectrometer for an analysis of the volatile constituents of the liquid. 3 figs.
Atomizing, continuous, water monitoring module
Thompson, Cyril V.; Wise, Marcus B.
1997-01-01
A system for continuously analyzing volatile constituents of a liquid is described. The system contains a pump for continuously pumping the liquid to be tested at a predetermined flow rate into an extracting container through a liquid directing tube having an orifice at one end and positioned to direct the liquid into the extracting container at a flow rate sufficient to atomize the liquid within the extracting container. A continuous supply of helium carrier gas at a predetermined flow rate is directed through a tube into the extracting container and co-mingled with the atomized liquid to extract the volatile constituents contained within the atomized liquid. The helium containing the extracted volatile constituents flows out of the extracting container into a mass spectrometer for an analysis of the volatile constituents of the liquid.
Meyer, N K; Ristovski, Z D
2007-11-01
The volatile and hygroscopic properties of diesel nanoparticles were simultaneously determined under a range of engine loads using the volatilization and humidification tandem differential mobility analyzer (VH-TDMA). Additionally, the VH-TDMA was used to measure changes in the hygroscopic behavior of the heterogeneously nucleated diesel nanoparticles as one or more semivolatile species were removed via thermal evaporation or decomposition. Particles produced at high loads exhibited high, dual-step volatility, while those particles produced at low loads were less volatile and exhibited continuous volatilization curves. The hygroscopic growth factor of the particles was shown to be load dependent with high-load particles exhibiting growth factors similar to that of ammonium sulfate. At 85% relative humidity, particles produced at moderate loads exhibited growth factors of approximately 1.1 while low-load particles were shown to be hydrophobic. Growth factors and volatilization temperatures measured for high-load particles clearly indicate that ternary nucleation is involved in particle formation.
Gong, Wei-Wei; Zhang, Yi-Sheng; He, Ling-Yan; Luan, Sheng-Ji
2011-02-01
In order to obtain ammonia volatilization flux and volatilization loss rate in the vegetable field and investigate their relationship with environmental factors, an on-line monitoring system was used to measure the ammonia volatilization in the vegetable (Brassica rapa L. and lettuce) field after urea application during January to September, 2009. The system included a wind tunnel system, a gas collector and an online analyzer system with ion chromatography. The time resolution of measurement was 15 min. The recovery of the system was (92.6 +/- 3.4)%; the accumulated ammonia volatilization within 15 d continuous sampling after fertilization was regarded as the total loss. The accumulated ammonia volatilization of 12 d continuous sampling after fertilization accounted for (85.4 +/- 5.2)% of the total volatilization. The ammonia volatilization loss of broadcasting basal dressing and top dressing for Brassica rapa L. were 23.6% and 21.3%, respectively. The ammonia volatilization loss of holing basal dressing and top dressing for lettuce were 17.6% and 24.0%, respectively. The ammonia volatilization in the vegetable field mostly occurred in the first 2-3 weeks after fertilization. The ammonia volatilization flux had significant positive correlation with the nitrogen application rate, while the ammonia volatilization loss rate had negative correlation with the nitrogen application rate. The ammonia volatilization flux was positively correlated with the soil temperature (r = 0.041, p < 0.05) and the air temperature (r = 0.049, p < 0.01), while not significantly associated with the air humidity and the soil moisture. Temperature was found to be a main factor influencing the ammonia volatilization in the vegetable field.
NASA Astrophysics Data System (ADS)
Balankin, Alexander S.; Morales Matamoros, Oswaldo; Gálvez M., Ernesto; Pérez A., Alfonso
2004-03-01
The behavior of crude oil price volatility is analyzed within a conceptual framework of kinetic roughening of growing interfaces. We find that the persistent long-horizon volatilities satisfy the Family-Viscek dynamic scaling ansatz, whereas the mean-reverting in time short horizon volatilities obey the generalized scaling law with continuously varying scaling exponents. Furthermore we find that the crossover from antipersistent to persistent behavior is accompanied by a change in the type of volatility distribution. These phenomena are attributed to the complex avalanche dynamics of crude oil markets and so a similar behavior may be observed in a wide variety of physical systems governed by avalanche dynamics.
Effect of gamma irradiation on curcuminoids and volatile oils of fresh turmeric ( Curcuma longa)
NASA Astrophysics Data System (ADS)
Dhanya, R.; Mishra, B. B.; Khaleel, K. M.
2011-11-01
In our earlier study a radiation dose of 5 kGy was reported to be suitable for microbial decontamination and shelf life extension of fresh turmeric ( Curcuma longa), while maintaining its quality attributes. In continuation of that work, the effect of gamma radiation on curcuminoids and volatile oil constituents in fresh turmeric was studied. Fresh peeled turmeric rhizomes were gamma irradiated at doses of 1, 3 and 5 kGy. Curcuminoid content and volatile oils were analyzed by reverse phase HPLC and GC-MS, respectively. The curcuminoid content was slightly increased by gamma irradiation. No statistically significant changes were observed due to irradiation in majority of the volatile oil constituents.
Analysis of carbon emission regulations in supply chains with volatile demand.
DOT National Transportation Integrated Search
2014-07-01
This study analyzes an inventory control problem of a company in stochastic demand environment under carbon emissions : regulations. In particular, a continuous review inventory model with multiple suppliers is investigated under carbon taxing and ca...
Ontañon, I; Sanz, J; Escudero, A; de Marcos, S; Ferreira, V; Galbán, J
2015-04-03
A homemade flow cell attached to a commercial Gas Chromatograph equipped with a Flame Ionization Detector (FID) has been designed for the continuous monitoring of volatile compounds released during heating edible oils. Analytical parameters such as mass of sample, temperature and flow rates have been optimized and the obtained results have been compared with the corresponding thermographs from standard TG systems. Results show that under optimum conditions, the profiles of volatiles released upon heating are comparable to the profiles of TG curves, suggesting that the FID based system could be an alternative to TGA. Additionally, volatiles have been retained in a Lichrolut EN(®) resin, eluted and analyzed by Gas Chromatography-Mass Spectrometry. In this case, forty five compounds have been identified (acids, alcohols, alkanes, aldehydes, ketones and furans) and compared with the FID signals, working both in air or nitrogen atmosphere. It has been concluded that the oxidative thermal degradation is prevented in the presence of a nitrogen atmosphere. Copyright © 2015 Elsevier B.V. All rights reserved.
Park, Byeoung-Soo; Lee, Kwang-Geun; Shibamoto, Takayuki; Lee, Sung-Eun; Takeoka, Gary R
2003-01-01
Volatiles were isolated from the dried inner bark of Tabebuia impetiginosa using steam distillation under reduced pressure followed by continuous liquid-liquid extraction. The extract was analyzed by gas chromatography and gas chromatography-mass spectrometry. The major volatile constituents of T. impetiginosa were 4-methoxybenzaldehyde (52.84 microg/g), 4-methoxyphenol (38.91 microg/g), 5-allyl-1,2,3-trimethoxybenzene (elemicin; 34.15 microg/g), 1-methoxy-4-(1E)-1-propenylbenzene (trans-anethole; 33.75 microg/g), and 4-methoxybenzyl alcohol (30.29 microg/g). The antioxidant activity of the volatiles was evaluated using two different assays. The extract exhibited a potent inhibitory effect on the formation of conjugated diene hydroperoxides (from methyl linoleate) at a concentration of 1000 microg/mL. The extract also inhibited the oxidation of hexanal for 40 days at a level of 5 microg/mL. The antioxidative activity of T. impetiginosa volatiles was comparable with that of the well-known antioxidants, alpha-tocopherol, and butylated hydroxytoluene.
Continous Monitoring of Melt Composition
NASA Technical Reports Server (NTRS)
Frazer, R. E.; Andrews, T. W.
1984-01-01
Compositions of glasses and alloys analyzed and corrected in real time. Spectral analysis and temperature measurement performed simultaneously on molten material in container, such as open-hearth furnace, crucible or tank of continuous furnace. Speed of analysis makes it possible to quickly measure concentration of volatile elements depleted by prolonged heating.
NASA Astrophysics Data System (ADS)
Li, Qiangqiang; Ma, Yunfeng; Du, Boying; Wang, Qi; Hu, Qiongqiong; Bian, Yushan
2018-02-01
In this study, continuous kitchen waste fermentation and anaerobic digestion experiments were conducted to analyze the gas production potential, and to study the correlation between gas production rate and volatile fatty acid (VFAs) and its component concentration. During the experiment, the total solid(TS) concentration of the reaction system was increased by adding the kitchen waste, analysis of kitchen waste dry fermentation process to start, run, imbalance and imbalance after recovery and the parameters in the process of realizing the change trend and influencing factors of dry fermentation process, pH and ammonia concentration.
Lin, L; Wei, M; Xiao, S; Xu, X; Hu, Z; Qiu, J; Cai, Y; Lu, A; Yuan, L
2000-03-01
The authors analyzed the quality of Ligmum Santali Albi formed by the external stimulation of hormone and windburn by GC-MS-DS. The results showed that the content of volatile oil is 2.34% in the heart wood formed in 10 years tree age of Santalum album (SA) after 2 years stimulation continuously with a definite concentration of hormone, which is near to the 25 years tree age of SA in the same place. The GC-MS analysis showed that the content of santalol and other chemical components in volatile oil are similar to the 25 years tree age of SA. It is indicated that a definite concentration of hormone stimulated the SA may shorten the formation of the heart wood. The heart wood can be also formed by the broken branches after 2 years windburn, but its content of volatile oil is only 1/2 of the heart wood formed by hormone stimulation.
Huffman, R.L.
2013-01-01
Previous investigations indicate that concentrations of chlorinated volatile organic compounds are substantial in groundwater beneath the 9-acre former landfill at Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington. The U.S. Geological Survey has continued to monitor groundwater geochemistry to ensure that conditions remain favorable for contaminant biodegradation as specified in the Record of Decision for the site. This report presents groundwater geochemical and selected chlorinated volatile organic compound data collected at Operable Unit 1 by the U.S. Geological Survey during June and October 2012, in support of long-term monitoring for natural attenuation. Groundwater samples were collected from 13 wells and 9 piezometers, as well as from 10 shallow groundwater passive-diffusion sampling sites in the nearby marsh. Samples from all wells and piezometers were analyzed for oxidation-reduction (redox) sensitive constituents and dissolved gases. Samples from all piezometers also were analyzed for chlorinated volatile organic compounds, as were all samples from the passive-diffusion sampling sites. In 2012, concentrations of redox-sensitive constituents measured at all wells and piezometers were consistent with those measured in previous years, with dissolved oxygen concentrations all at 0.4 milligram per liter or less; little to no detectable nitrate; abundant dissolved manganese, iron, and methane; and commonly detected sulfide. In the upper aquifer of the northern plantation in 2012, chlorinated volatile organic compound (CVOC) concentrations at all piezometers were similar to those measured in previous years, and concentrations of the reductive dechlorination byproducts ethane and ethene were slightly higher or the same as concentrations measured in 2011. In the upper aquifer of the southern plantation, CVOC concentrations measured in piezometers during 2012 continued to be extremely variable as in previous years, and often very high, and reductive dechlorination byproducts were detected in two of the four wells and in all piezometers. Beneath the marsh adjacent to the southern plantation, chloroethene concentrations measured in 2012 continued to vary spatially and temporarily, and also were very high. Additionally, CVOC concentrations measured in samplers deployed in access tubes were about two to four times less than those measured in the two samplers buried nearby, beneath the marsh stream. Total CVOC concentration, at what has been historically the most contaminated passive-diffusion sampler site (S-4), continued an increasing trend. For the intermediate aquifer in 2012, concentrations of reductive dechlorination byproducts ethane and ethene were consistent with those measured in previous years.
Automatic calibration and control system for a combined oxygen and combustibles analyzer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woolbert, G.D.; Jewett, S.Y.; Robertson, J.W. Jr.
1989-08-01
This patent describes an automatic, periodically calibrating system for continuous output of calibrated signals from a combined oxygen and combustibles analyzer. It comprises: a combined oxygen and combustibles analyzer for sensing a level of oxygen and a level of combustibles in a volatile atmosphere and for producing a first sample signal indicative of the oxygen level and a second sample signal indicative of the combustibles level; means for introducing zero and span calibration test gases into the analyzer; means for periodically calibrating the analyzer. This including: a data control unit; a timer unit; a mechanical unit, means for calculating zeromore » and span values for oxygen and combustibles, means for comparing the calculated zero and span values for oxygen and combustibles to the preset alarm limits for oxygen and combustibles, means for activating an operator alarm, means for calculating oxygen and combustibles drift adjustments, a memory unit; and means for applying the oxygen and combustibles drift adjustments concurrently to the first and second sample signals, according to predetermined mathematical relationship, to obtain calibrated output signals indicative of the oxygen and combustibles level in the volatile atmosphere.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bean, R. M.; Mann, D. C.; Riley, R. G.
1980-06-01
The products of low-level chlorination of natural waters from ten locations across the continental United States have been studied, with emphasis on volatile and lipophilic organohalogen components. A specially designed apparatus permitted continuous sampling and chlorination of water in a manner analogous to some types of cooling water treatments. Volatile components were analyzed using headspace, purge-and-trap, and resin adsorption methods. The less-volatile components were collected by passing large volumes of the chlorinated water over XAD-2 columns. Total organic halogen collected on XAD resins was compared with the halogen contribution of haloform compounds. The XAD samples were further separated into fractionsmore » according to molecular weight and polarity using liquid chrOmatography. These studies indicate that haloforms are the most abundant lipophilic halogenated products formed from low-level chlorination of natural waters, but that other halogenated lipophilic material is also formed.« less
Photochemical Aging of Organic Aerosols: A Laboratory Study
NASA Astrophysics Data System (ADS)
Papanastasiou, Dimitrios K.; Kostenidou, Evangelia; Gkatzelis, Georgios I.; Psichoudaki, Magdalini; Louvaris, Evangelos; Pandis, Spyros N.
2014-05-01
Organic aerosols (OA) are either emitted directly (primary OA) or formed (secondary OA) in the atmosphere and consist of an extremely complex mixture of thousands of organic compounds. Although the scientific community has put significant effort, in the past few decades, to understand organic aerosol (OA) formation, evolution and fate in the atmosphere, traditional models often fail to reproduce the ambient OA levels. Secondary organic aerosol (SOA) formed, in traditional laboratory chamber experiments, from the gas phase oxidation of known precursors, such as α-pinene, is semi-volatile and with an O:C ratio of around 0.4. In contrast, OA found in the atmosphere is significantly less volatile, while the O:C ratio often ranges from 0.5 to 1. In conclusion, there is a significant gap of knowledge in our understanding of OA formation and photochemical transformation in the atmosphere. There is increased evidence that homogeneous gas phase aging by OH radicals might be able to explain, at least in part, the significantly higher OA mass loadings observed and also the oxidation state and volatility of OA in the atmosphere. In this study, laboratory chamber experiments were performed to study the role of the continued oxidation of first generation volatile and semi-volatile species by OH radicals in the evolution of the SOA characteristics (mass concentration, volatility, and oxidation state). Ambient air mixtures or freshly formed SOA from α-pinene ozonolysis were used as the source of organic aerosols and semi-volatile species. The initial mixture of organic aerosols and gas phase species (volatile and semi-volatile) was then exposed to atmospheric concentrations of OH radicals to study the aging of aerosols. Experiments were performed with various OH radical sources (H2O2 or HONO) and under various NOx conditions. A suite of instruments was employed to characterize both the gas and the aerosol phase. A Scanning Mobility Particle Sizer (SMPS) and a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) were used to measure the organic aerosol mass production and oxidation degree (O:C ratio) following OH aging. A thermodenuder system was used to measure the volatility distribution change as organic aerosol aged upon continuous oxidation. Organic gas phase species were characterized with a Proton Transfer Reaction - Mass Spectrometer (PTR-MS) while NOx and O3 were measured with the use of corresponding analyzers. Results from this study show that organic mass production occurs upon exposure to OH radicals indicating that continuous OH aging of semi-volatile is probably responsible for at least some of the gap between observed and modeled OA levels in the atmosphere. Additionally, this chemical aging process leads to a decrease in volatility and an increase in O:C ratio while the level of change in both properties depends on OH exposure. The atmospheric implications of this study are discussed.
Variability of Biomass Burning Aerosols Layers and Near Ground
NASA Astrophysics Data System (ADS)
Vasilescu, Jeni; Belegante, Livio; Marmureanu, Luminita; Toanca, Flori
2016-06-01
The aim of this study is to characterize aerosols from both chemical and optical point of view and to explore the conditions to sense the same particles in elevated layers and at the ground. Three days of continuous measurements using a multi-wavelength depolarization lidar(RALI) and a C-ToF-AMS aerosol mass spectrometer are analyzed. The presence of smoke particles was assessed in low level layers from RALI measurements. Chemical composition of submicronic volatile/semi-volatile aerosols at ground level was monitored by the CTOF AMS Several episodes of biomass burning aerosols have been identified by both techniques due to the presence of specific markers (f60, linear particle depolarization ratio, Ängström exponent).
NASA Technical Reports Server (NTRS)
Nickodem, K.; Righter, K.; Danielson, L.; Pando, K.; Lee, C.
2012-01-01
There are currently several hypotheses on the origin of volatile siderophile elements in the Earth. One hypothesis is that they were added during Earth s accretion and core formation and mobilized into the metallic core [1], others claim multiple stage origin [2], while some hypothesize that volatiles were added after the core already formed [3]. Several volatile siderophile elements are depleted in Earth s mantle relative to the chondrites, something which continues to puzzle many scientists. This depletion is likely due to a combination of volatility and core formation. The Earth s core is composed of Fe and some lighter constituents, although the abundances of these lighter elements are unknown [4]. Si is one of these potential light elements [5] although few studies have analyzed the effect of Si on metal-silicate partitioning, in particular the volatile elements. As, In, Ge, and Sb are trace volatile siderophile elements which are depleted in the mantle but have yet to be extensively studied. The metal-silicate partition coefficients of these elements will be measured to determine the effect of Si. Partition coefficients depend on temperature, pressure, oxygen fugacity, and metal and silicate composition and can constrain the concentrations of volatile, siderophile elements found in the mantle. Reported here are the results from 13 experiments examining the partitioning of As, In, Ge, and Sb between metallic and silicate liquid. These experiments will examine the effect of temperature, and metal-composition (i.e., Si content) on these elements in or-der to gain a greater understanding of the core-mantle separation which occurred during the Earth s early stages. The data can then be applied to the origin of volatile elements in the Earth.
Analysis of volatile organic compounds. [trace amounts of organic volatiles in gas samples
NASA Technical Reports Server (NTRS)
Zlatkis, A. (Inventor)
1977-01-01
An apparatus and method are described for reproducibly analyzing trace amounts of a large number of organic volatiles existing in a gas sample. Direct injection of the trapped volatiles into a cryogenic percolum provides a sharply defined plug. Applications of the method include: (1) analyzing the headspace gas of body fluids and comparing a profile of the organic volatiles with standard profiles for the detection and monitoring of disease; (2) analyzing the headspace gas of foods and beverages and comparing the profile with standard profiles to monitor and control flavor and aroma; and (3) analyses for determining the organic pollutants in air or water samples.
Fitzpatrick, F.A.; Colman, J.A.
1993-01-01
This report contains data from the survey of manmade nonagricultural volatile and semivolatile organic chemicals in surface water in the upper Illinois River basin from May 1988 through March l990. In addition to the data, sampling methods and quality-assurance procedures are described. The survey was part of the upper Illinois River basin pilot project of the National Water-Quality Assessment program conducted by the U.S. Geological Survey. The organic chemicals analyzed from the water samples were those expected to be associated primarily with effluent from point sources in urban areas. A low-flow synoptic investigation of 52 volatile and 54 semivolatile organic chemicals was conducted at 31 sites in July 1988. Additional samples were collected monthly at two sites to continue to test for the presence of 43 volatile organic chemicals from December 1988 through March l990, and of all semivolatile organic chemicals at two sites from August through September 1988.
Huffman, Raegan L.; Frans, L.M.
2012-01-01
Previous investigations indicate that concentrations of chlorinated volatile organic compounds are substantial in groundwater beneath the 9-acre former landfill at Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington. Phytoremediation combined with ongoing natural attenuation processes was the preferred remedy selected by the U.S. Navy, as specified in the Record of Decision for the site. The U.S. Navy planted two hybrid poplar plantations on the landfill in spring 1999 to remove and to control the migration of chlorinated volatile organic compounds in shallow groundwater. The U.S. Geological Survey has continued to monitor groundwater geochemistry to ensure that conditions remain favorable for contaminant biodegradation as specified in the Record of Decision. This report presents groundwater geochemical and selected volatile organic compound data collected at Operable Unit 1 by the U.S. Geological Survey during June 20-22, 2011, in support of long-term monitoring for natural attenuation. In 2011, groundwater samples were collected from 13 wells and 9 piezometers. Samples from all wells and piezometers were analyzed for redox sensitive constituents and dissolved gases, and samples from 5 of 13 wells and all piezometers also were analyzed for chlorinated volatile organic compounds. Concentrations of redox sensitive constituents measured in 2011 were consistent with previous years, with dissolved oxygen concentrations all at 0.4 milligram per liter or less; little to no detectable nitrate; abundant dissolved manganese, iron, and methane; and commonly detected sulfide. The reductive declorination byproducts - methane, ethane, and ethene - were either not detected in samples collected from the upgradient wells in the landfill and the upper aquifer beneath the northern phytoremediation plantation or were detected at concentrations less than those measured in 2010. Chlorinated volatile organic compound concentrations in 2011 at most piezometers were similar to or slightly less than chlorinated volatile organic compound concentrations measured in previous years. For the upper aquifer beneath the southern phytoremediation plantation, chlorinated volatile organic compound concentrations in 2011 in groundwater from the piezometers were extremely high and continued to vary considerably over space and between years. At piezometer P1-9, the total chlorinated volatile organic compound concentrations increased from 9,500 micrograms per liter in 2010 to more than 44,000 micrograms per liter in 2011. Total chlorinated volatile organic compound concentrations decreased at piezometers P1-6, P1-7, and P1-10 compared to the concentrations measured in 2010. One or both of the reductive dechlorination byproducts ethane and ethene were detected at all piezometers and three of the four wells in the southern plantation. For the intermediate aquifer, concentrations of redox sensitive constituents and chlorinated volatile organic compounds in 2011 were consistent with concentrations measured in previous years, with the exception of notable decreases in sulfate and chloride concentrations at well MW1-28. Concentrations of the reductive dechlorination byproducts ethane and ethene decreased at wells MW1-25 and MW1-28 compared to previously measured concentrations.
Analyzing volatile compounds in dairy products
USDA-ARS?s Scientific Manuscript database
Volatile compounds give the first indication of the flavor in a dairy product. Volatiles are isolated from the sample matrix and then analyzed by chromatography, sensory methods, or an electronic nose. Isolation may be performed by solvent extraction or headspace analysis, and gas chromatography i...
[Studies on GC fingerprint of volatile oil of Houttuynia cordata].
Yang, Bin; Wang, Ruo-Jing; Wang, Qian-Peng; Lu, Dong-Mei; Li, Hua; Xiao, Yong-Qing; Wang, Yong-Yan
2006-12-01
To establish a GC fingerprint of the volatile oil of Houttuynia cordata. The volatile oil was extracted from H. cordata by water stream distillation method, and analyzed by GC coupled with FID. 12 bathes of samples collected from different regions were analyzed; the GC fingerprint of the volatile oil of H. cordata was subsequently established. The established GC fingerprint can be used for the identification of H. cordata.
[Analysis of chemical constituents of volatile components from Jia Ga Song Tang by GC-MS].
Tan, Qing-long; Xiong, Tian-qin; Liao, Jia-yi; Yang, Tao; Zhao, Yu-min; Lin, Xi; Zhang, Cui-xian
2014-10-01
To analyze the chemical components of volatile components from Jia Ga Song Tang. The volatile oils were extracted by water steam distillation. The chemical components of essential oil were analyzed by GC-MS and quantitatively determined by a normalization method. 103 components were separated and 87 components were identified in the volatile oil of Zingiberis Rhizoma. 58 components were separated and 38 components were identified in the volatile oil of Myristicae Semen. 49 components were separated and 38 components were identified in the volatile oil of Amomi Rotundus Fructus. 89 components were separated and 63 components were identified in the volatile oil of Jia Ga Song Tang. Eucalyptol, β-phellandrene and other terpenes were the main compounds in the volatile oil of Jia Ga Song Tang. Changes in the kinds and content of volatile components can provide evidences for scientific and rational compatibility for Jia Ga Song Tang.
40 CFR 59.505 - How do I demonstrate compliance with the reactivity limits?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND... Volatile Organic Compounds (VOC) in Consumer Products and Reactive Organic Compounds in Aerosol Coating...
A microfluidic device for open loop stripping of volatile organic compounds.
Cvetković, Benjamin Z; Dittrich, Petra S
2013-03-01
The detection of volatile organic compounds is of great importance for assessing the quality of water. In this contribution, we describe a miniaturized stripping device that allows fast online detection of organic solvents in water. The core component is a glass microfluidic chip that facilitates the creation of an annular-flowing stream of water and nitrogen gas. Volatile compounds are transferred efficiently from the water into the gas phase along the microfluidic pathway at room temperature within less than 5 s. Before exiting the microchip, the liquid phase is separated from the enriched gas phase by incorporating side capillaries through which the hydrophilic water phase is withdrawn. The gas phase is conveniently collected at the outlet reservoir by tubing. Finally, a semiconductor gas sensor analyzes the concentration of (volatile) organic compounds in the nitrogen gas. The operation and use of the stripping device is demonstrated for the organic solvents THF, 1-propanol, toluene, ethylbenzene, benzaldehyde, and methanol. The mobile, inexpensive, and continuously operating system with liquid flow rates in the low range of microliters per minute can be connected to other detectors or implemented in chemical production line for process control.
[Analyze on volatile compounds of Antrodia camphorata using HS-SPME-GC-MS].
He, Zhe; Lu, Zhen-Ming; Xu, Hong-Yu; Shi, Jing-Song; Xu, Zheng-Hong
2011-11-01
To analyze the volatile compounds of Antrodia camphorata in solid-state and submerged cultures. A headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry(GC-MS) were used to evaluate the profile of the volatile compounds. 49 volatile compounds were identified in A. camphorata mycelia in submerged culture, while 43 volatile compounds were identified in mycelia in solid-state culture. 1-octen-3-ol, 3-octanone, 1-octen-3-ylacetate, acetic acid octyl ester and ethanol were the main volatile compounds in A. camphorata mycelia in submerged culture, while 1-octen-3-ol, 3-octanone, 3-methyl-butyraldenhyde, gamma-podecalactone and methyl 2-furozte were the most potent key volatile compounds in mycelia in solid-state culture. The volatile compounds in the mycelia of A. camphorata in solid-state and submerged cultures are similar but their relative contents are different.
Volatile Analyzer for Lunar Polar Missions
NASA Technical Reports Server (NTRS)
Gibons, Everett K.; Pillinger, Colin T.; McKay, David S.; Waugh, Lester J.
2011-01-01
One of the major questions remaining for the future exploration of the Moon by humans concerns the presence of volatiles on our nearest neighbor in space. Observational studies, and investigations involving returned lunar samples and using robotic spacecraft infer the existence of volatile compounds particularly water [1]. It seems very likely that a volatile component will be concentrated at the poles in circumstances where low-temperatures exist to provide cryogenic traps. However, the full inventory of species, their concentration and their origin and sources are unknown. Of particular importance is whether abundances are sufficient to act as a resource of consumables for future lunar expeditions especially if a long-term base involving humans is to be established. To address some of these issues requires a lander designed specifically for operation at a high-lunar latitude. A vital part of the payload needs to be a volatile analyzer such as the Gas Analysis Package specifically designed for identification quantification of volatile substances and collecting information which will allow the origin of these volatiles to be identified [1]. The equipment included, particularly the gas analyzer, must be capable of operation in the extreme environmental conditions to be encountered. No accurate information yet exists regarding volatile concentration even for sites closer to the lunar equator (because of contamination). In this respect it will be important to understand (and thus limit) contamination of the lunar surface by extraneous material contributed from a variety of sources. The only data for the concentrations of volatiles at the poles comes from orbiting spacecraft and whilst the levels at high latitudes may be greater than at the equator, the volatile analyzer package under consideration will be designed to operate at the highest specifications possible and in a way that does not compromise the data.
NASA Technical Reports Server (NTRS)
Bodek, Itamar; Ehntholt, Daniel J.; Stolki, Thomas J.; Valentine, James R.; Trabanino, Rudy; Webb, Johanna V.; Sauer, Richard L.
1991-01-01
A breadboard concept of a volatile organics concentrator (VOC) is manufactured and tested for optimized water-quality analysis in a space environment. The VOC system is attached to a gas chromatograph/mass spectrometer to analyze the volatile chemicals relevant to the operation of Space Station Freedom. The preliminary tests include: (1) comparisons with analyses based on direct on-column injections of standards; (2) analyses of iodinated volatile organics; (3) comparisons of nitrogen vs helium as the chromatography carrier gas; and (4) measurements of collection efficiency. The VOC can analyze EPA method-624 analytes at comparable detection using flame-ionization detection and can analyze volatile iodinated compounds. The breadboard has good reproducibility and can use nitrogen as a carrier gas; good results are noted for the collection and concentration levels and for water removal.
Giacomuzzi, Valentino; Cappellin, Luca; Khomenko, Iuliia; Biasioli, Franco; Schütz, Stefan; Tasin, Marco; Knight, Alan L; Angeli, Sergio
2016-12-01
This study investigated the volatile emission from apple (Malus x domestica Borkh., cv. Golden Delicious) foliage that was either intact, mechanically-damaged, or exposed to larval feeding by Pandemis heparana (Denis and Schiffermüller) (Lepidoptera: Tortricidae). Volatiles were collected by closed-loop-stripping-analysis and characterized by gas chromatography-mass spectrometry in three time periods: after 1 h and again 24 and 48 h later. Volatiles for all treatments also were monitored continuously over a 72-h period by the use of proton transfer reaction - time of flight-mass spectrometry (PTR-ToF-MS). In addition, the volatile samples were analyzed by gas chromatography-electroantennographic detection (GC-EAD) using male and female antennae of P. heparana. Twelve compounds were detected from intact foliage compared with 23 from mechanically-damaged, and 30 from P. heparana-infested foliage. Interestingly, six compounds were released only by P. heparana-infested foliage. The emission dynamics of many compounds measured by PTR-ToF-MS showed striking differences according to the timing of herbivory and the circadian cycle. For example, the emission of green leaf volatiles began shortly after the start of herbivory, and increased over time independently from the light-dark cycle. Conversely, the emission of terpenes and aromatic compounds showed a several-hour delay in response to herbivory, and followed a diurnal rhythm. Methanol was the only identified volatile showing a nocturnal rhythm. Consistent GC-EAD responses were found for sixteen compounds, including five aromatic ones. A field trial in Sweden demonstrated that benzyl alcohol, 2-phenylethanol, phenylacetonitrile, and indole lures placed in traps were not attractive to Pandemis spp. adults, but 2-phenylethanol and phenylacetonitrile when used in combination with acetic acid were attractive to both sexes.
Jackels, Susan C; Marshall, Eric E; Omaiye, Angelica G; Gianan, Robert L; Lee, Fabrice T; Jackels, Charles F
2014-10-22
Potato taste defect (PTD) is a flavor defect in East African coffee associated with Antestiopsis orbitalis feeding and 3-isopropyl-2-methoxypyrazine (IPMP) in the coffee. To elucidate the manifestation of PTD, surface and interior volatile compounds of PTD and non-PTD green coffees were sampled by headspace solid phase microextraction and analyzed by gas chromatography mass spectrometry. Principal component analysis of the chromatographic data revealed a profile of surface volatiles distinguishing PTD from non-PTD coffees dominated by tridecane, dodecane, and tetradecane. While not detected in surface volatiles, IPMP was found in interior volatiles of PTD coffee. Desiccated antestia bugs were analyzed by GCMS, revealing that the three most prevalent volatiles were tridecane, dodecane, and tetradecane, as was found in the surface profile PTD coffee. Coffee having visible insect damage exhibited both a PTD surface volatile profile and IPMP in interior volatiles, supporting the hypothesis linking antestia bug feeding activity with PTD profile compounds on the surface and IPMP in the interior of the beans.
Bound Volatile Precursors in Genotypes in the Pedigree of 'Marion' Blackberry (Rubus Sp.)
USDA-ARS?s Scientific Manuscript database
Glycosidically bound volatiles and precursors in genotypes representing the pedigree for 'Marion' blackberry were investigated over two growing seasons. The volatile precursors were isolated using a C18 solid-phase extraction column. After enzymatic hydrolysis, the released volatiles were analyzed u...
Killiny, Nabil; Valim, Maria Filomena; Jones, Shelley E; Omar, Ahmad A; Hijaz, Faraj; Gmitter, Fred G; Grosser, Jude W
2017-07-01
Huanglongbing (HLB) is currently considered the most destructive disease of citrus. Since its spread to the Americas, HLB has killed millions of trees and caused a sharp decline in production in many citrus growing regions. With the continuous spread of HLB disease in Florida and worldwide, there is an urgent need for the development of commercial citrus cultivars with a strong tolerance to HLB. Interestingly, field observations showed that some of the recently released mandarin hybrids such as 'Sugar Belle' were tolerant to HLB. In this study, we investigated the volatile and non-volatile metabolites of greenhouse-grown 'Sugar Belle' mandarin and four of its ancestors in order to understand why 'Sugar Belle' mandarin is relatively tolerant to HLB. Leaf volatiles were directly extracted with hexane and analyzed using gas chromatography-mass spectrometry (GC-MS). Leaf polar metabolites were extracted with a mixture of methanol:water (1:1, v/v), derivatized to their trimethylsilyl ethers, and analyzed using GC-MS. Forty-seven volatile compounds and forty-two polar metabolites were detected in 'Sugar Belle' mandarin leaves and its ancestors. 'Sugar Belle' was high in several volatiles such as α-thujene, para-cymene, γ-terpinene, thymol, β-elemene, and (E)-β-caryophyllene. Some of these volatiles, especially thymol, β-elemene, and (E)-β-caryophyllene are known for their anti-microbial activity. In addition, 'Sugar Belle' mandarin was the highest in synephrine, benzoic acid, ferulic acid, caffeic acid, chiro-inositol, fructose, glucose, threonic acid, saccharic acid, and galactaric acid, and the second in threonine, malic acid, and myo-inositol compared to the ancestors. Phenolic compounds such as benzoic, ferulic, and caffeic acids may act as antibacterial agents, whereas others like sugar alcohols may protect 'Sugar Belle' mandarin from stress during pathogen attack. The tolerance of 'Sugar Belle' and other newly released mandarin hybrids should be further evaluated using greenhouse controlled studies. If tolerance of these hybrids is confirmed, they could be used to replace the traditionally susceptible cultivars. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Forney, Charles F; Fan, Lihua; Bezanson, Gregory S; Ells, Timothy C; LeBlanc, Denyse I; Fillmore, Sherry
2018-04-01
Rapid methods to detect bacterial pathogens on food and strategies to control them are needed to mitigate consumer risk. This study assessed volatile emissions from whole cantaloupe melons (Cucumis melo) as an indicator of Listeria contamination and in response to steam vapor decontamination. Cantaloupe were inoculated with Listeria innocua, a nonpathogenic surrogate for L. monocytogenes, then exposed to 85 °C steam for 240 s (4 min) followed by rapid chilling and storage for 0, 7, 10, or 14 days at 4, 7, or 10 °C. Volatile emissions from whole melons were collected on Carbopack B/Carboxen 1000 headspace collection tubes and analyzed by gas chromatography-mass spectroscopy following thermal desorption. Introduction of L. innocua to cantaloupe rind resulted in a reduction of aromatic compound emission. However, this response was not unique to Listeria contamination in that steam vapor treatment also reduced emission of these compounds. As well, steam vapor treatment diminished the number of viable Listeria and indigenous microflora while causing physiological injury to melon rind. Heat treatment had no significant effects on flesh firmness, color, titratable acidity, or soluble solids, but the production of typical aroma volatiles during postharvest ripening was inhibited. No unique volatile compounds were detected in Listeria contaminated melons. While changes in volatile emissions were associated with Listeria inoculation, they could not be differentiated from heat treatment effects. Results indicate that volatile emissions cannot be used as a diagnostic tool to identify Listeria contamination in whole cantaloupe melons. The detection of pathogen contamination on fresh produce is a continuing challenge. Using a nondestructive screening method, the presence of surrogate Listeria innocua on fresh whole cantaloupes was shown to alter the emissions of aromatic volatiles from whole cantaloupes. However, these altered emissions were not found to be unique to Listeria spp. and therefore cannot be used as a definitive indicator of Listeria contamination. © 2018 Institute of Food Technologists®.
Kakuta, Shoji; Yamashita, Toshiyuki; Nishiumi, Shin; Yoshida, Masaru; Fukusaki, Eiichiro; Bamba, Takeshi
2015-01-01
A dynamic headspace extraction method (DHS) with high-pressure injection is described. This dynamic extraction method has superior sensitivity to solid phase micro extraction, SPME and is capable of extracting the entire gas phase by purging the headspace of a vial. Optimization of the DHS parameters resulted in a highly sensitive volatile profiling system with the ability to detect various volatile components including alcohols at nanogram levels. The average LOD for a standard volatile mixture was 0.50 ng mL−1, and the average LOD for alcohols was 0.66 ng mL−1. This method was used for the analysis of volatile components from biological samples and compared with acute and chronic inflammation models. The method permitted the identification of volatiles with the same profile pattern as in vitro oxidized lipid-derived volatiles. In addition, the concentration of alcohols and aldehydes from the acute inflammation model samples were significantly higher than that for the chronic inflammation model samples. The different profiles between these samples could also be identified by this method. Finally, it was possible to analyze alcohols and low-molecular-weight volatiles that are difficult to analyze by SPME in high sensitivity and to show volatile profiling based on multi-volatile simultaneous analysis. PMID:26819905
Kakuta, Shoji; Yamashita, Toshiyuki; Nishiumi, Shin; Yoshida, Masaru; Fukusaki, Eiichiro; Bamba, Takeshi
2015-01-01
A dynamic headspace extraction method (DHS) with high-pressure injection is described. This dynamic extraction method has superior sensitivity to solid phase micro extraction, SPME and is capable of extracting the entire gas phase by purging the headspace of a vial. Optimization of the DHS parameters resulted in a highly sensitive volatile profiling system with the ability to detect various volatile components including alcohols at nanogram levels. The average LOD for a standard volatile mixture was 0.50 ng mL(-1), and the average LOD for alcohols was 0.66 ng mL(-1). This method was used for the analysis of volatile components from biological samples and compared with acute and chronic inflammation models. The method permitted the identification of volatiles with the same profile pattern as in vitro oxidized lipid-derived volatiles. In addition, the concentration of alcohols and aldehydes from the acute inflammation model samples were significantly higher than that for the chronic inflammation model samples. The different profiles between these samples could also be identified by this method. Finally, it was possible to analyze alcohols and low-molecular-weight volatiles that are difficult to analyze by SPME in high sensitivity and to show volatile profiling based on multi-volatile simultaneous analysis.
Bench, Thomas R.; McCann, Larry D.
1989-01-01
A method for the in situ decontamination of underground water containing -volatile contaminants comprising continuously contacting in situ underground water containing non-volatile contaminants with a liquid-absorbent material possessing high capillary activity, allowing the non-volatile contaminants to deposit in the material while the water moves upwardly through the material by capillary action, allowing substantially decontaminated water to be volatilized by impinging solar radiation, and then allowing the volatilized water to escape from the material into the atmosphere. An apparatus for the in situ decontamination of underground water containing non-volatile contaminants comprising at least one water-impermeable elongated conduit having an upper portion and first and second open ends and containing a homogeneous liquid-absorbent material possessing high capillary activity, means for supporting said conduit, and means for accelerating the escape of the volatilized decontamined water from the material, said means being detachably connected to the second end of the elongated conduit; wherein when underground water contaminated with non-volatile contaminants is continuously contacted in situ with the material contained in the first end of the conduit and the second end of the conduit is placed in contact with atmospheric air, non-volatile contaminants deposit in said material as the water moves upwardly through the material by capillary action, is then volatilized by impinging solar energy and escapes to the atmosphere.
40 CFR Table 1 to Subpart E of... - Product-Weighted Reactivity Limits by Coating Category
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings... primers ABP 1.55 Automotive Bumper and Trim Products ABT 1.75 Aviation or Marine Primers AMP 2.00 Aviation...
40 CFR 59.505 - How do I demonstrate compliance with the reactivity limits?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.505 How..., 2B, or 2C. WFi = weight fraction of component i in the product, (2) Calculate the PWR of each product...
40 CFR 59.505 - How do I demonstrate compliance with the reactivity limits?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.505 How..., 2B, or 2C. WFi = weight fraction of component i in the product, (2) Calculate the PWR of each product...
40 CFR 59.505 - How do I demonstrate compliance with the reactivity limits?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.505 How..., 2B, or 2C. WFi = weight fraction of component i in the product, (2) Calculate the PWR of each product...
VUV-Photoionization CES-Detector of Volatile Bio-Marker Molecules
NASA Astrophysics Data System (ADS)
Mustafaev, Alexander; Luneva, Nataliya; Panasyuk, George; Timofeev, Nikolay; Tsyganov, Alexander
2014-10-01
Energy spectra of characteristic electrons released via photoionization by vacuum ultraviolet (VUV) radiation of admixture molecules in the atmospheric air, not using traditional evacuated energy analyzers, can be determined by Collisional Electron Spectroscopy (CES) method. Some details of CES-photoionization sensor were described in. Our further developments are devoted to application of CES-detectors for a mobile continuous bio-chemical diagnostics. It is known that ``on breathing'' it is possible to find out volatile bio-marker molecules of a lot of diseases (lung cancer, tuberculosis, COPD, asthma, diabetes, kidney disease, mammary cancer, Crohn's disease, ulcerative colitis, etc). But today's weighty and expensive laboratory equipment (like GC MS) provides observation of these bio-markers only during patients' visits to a doctor. In this way we study pocket-size CES-sensor with micro-plasma krypton resonance radiation source (10.6 eV photons) for the photoionization detection of metabolic ammonia, ethanol, acetone and pentane molecules directly in atmospheric air.
29 CFR 1915.1002 - Coal tar pitch volatiles; interpretation of term.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 7 2014-07-01 2014-07-01 false Coal tar pitch volatiles; interpretation of term. 1915.1002 Section 1915.1002 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Toxic and Hazardous Substances § 1915.1002 Coal tar pitch volatiles; interpretation of term. Note: The...
29 CFR 1915.1002 - Coal tar pitch volatiles; interpretation of term.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 7 2011-07-01 2011-07-01 false Coal tar pitch volatiles; interpretation of term. 1915.1002 Section 1915.1002 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Toxic and Hazardous Substances § 1915.1002 Coal tar pitch volatiles; interpretation of term. Note: The...
29 CFR 1926.1102 - Coal tar pitch volatiles; interpretation of term.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 8 2014-07-01 2014-07-01 false Coal tar pitch volatiles; interpretation of term. 1926.1102 Section 1926.1102 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Hazardous Substances § 1926.1102 Coal tar pitch volatiles; interpretation of term. Note: The requirements...
29 CFR 1926.1102 - Coal tar pitch volatiles; interpretation of term.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 8 2011-07-01 2011-07-01 false Coal tar pitch volatiles; interpretation of term. 1926.1102 Section 1926.1102 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Hazardous Substances § 1926.1102 Coal tar pitch volatiles; interpretation of term. Note: The requirements...
29 CFR 1926.1102 - Coal tar pitch volatiles; interpretation of term.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 8 2012-07-01 2012-07-01 false Coal tar pitch volatiles; interpretation of term. 1926.1102 Section 1926.1102 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Hazardous Substances § 1926.1102 Coal tar pitch volatiles; interpretation of term. Note: The requirements...
29 CFR 1926.1102 - Coal tar pitch volatiles; interpretation of term.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 8 2010-07-01 2010-07-01 false Coal tar pitch volatiles; interpretation of term. 1926.1102 Section 1926.1102 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Hazardous Substances § 1926.1102 Coal tar pitch volatiles; interpretation of term. Note: The requirements...
29 CFR 1915.1002 - Coal tar pitch volatiles; interpretation of term.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 7 2013-07-01 2013-07-01 false Coal tar pitch volatiles; interpretation of term. 1915.1002 Section 1915.1002 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Toxic and Hazardous Substances § 1915.1002 Coal tar pitch volatiles; interpretation of term. Note: The...
29 CFR 1915.1002 - Coal tar pitch volatiles; interpretation of term.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 7 2012-07-01 2012-07-01 false Coal tar pitch volatiles; interpretation of term. 1915.1002 Section 1915.1002 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Toxic and Hazardous Substances § 1915.1002 Coal tar pitch volatiles; interpretation of term. Note: The...
29 CFR 1915.1002 - Coal tar pitch volatiles; interpretation of term.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 7 2010-07-01 2010-07-01 false Coal tar pitch volatiles; interpretation of term. 1915.1002 Section 1915.1002 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... Toxic and Hazardous Substances § 1915.1002 Coal tar pitch volatiles; interpretation of term. Note: The...
Diel rhythms in the volatile emission of apple and grape foliage
USDA-ARS?s Scientific Manuscript database
This study investigated the emission of volatile organic compounds (VOCs) from intact apple (Malus x domestica Borkh., cv. Golden Delicious) and grape (Vitis vinifera L., cv. Pinot Noir) foliage. Volatiles were monitored continuously for 48 hours by proton transfer reaction - time of flight - mass s...
40 CFR 180.1080 - Plant volatiles and pheromone; exemptions from the requirement of a tolerance.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Plant volatiles and pheromone... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1080 Plant volatiles and pheromone; exemptions from the...
40 CFR 180.1080 - Plant volatiles and pheromone; exemptions from the requirement of a tolerance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Plant volatiles and pheromone... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1080 Plant volatiles and pheromone; exemptions from the...
40 CFR 180.1080 - Plant volatiles and pheromone; exemptions from the requirement of a tolerance.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Plant volatiles and pheromone... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1080 Plant volatiles and pheromone; exemptions from the...
40 CFR 180.1080 - Plant volatiles and pheromone; exemptions from the requirement of a tolerance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Plant volatiles and pheromone... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1080 Plant volatiles and pheromone; exemptions from the...
BIOCONCENTRATION FACTORS FOR VOLATILE ORGANIC COMPOUNDS IN VEGETATION
Samples of air and leaves were taken at the University of Nevada-Las Vegas campus and analyzed for volatile organic compounds using vacuum distillation coupled with gas chromatography/mass spectrometry. The data were used to estimate the bioconcentration of volatile organic compo...
Comparison between response dynamics in transition economies and developed economies
NASA Astrophysics Data System (ADS)
Tenenbaum, Joel; Horvatić, Davor; Bajić, Slavica Cosović; Pehlivanović, Bećo; Podobnik, Boris; Stanley, H. Eugene
2010-10-01
In developed economies, the sign of the price increment influences the volatility in an asymmetric fashion—negative increments tend to result in larger volatility (increments with larger magnitudes), while positive increments result in smaller volatility. We explore whether this asymmetry extends from developed economies to European transition economies and, if so, how such asymmetry changes over time as these transition economies develop and mature. We analyze eleven European transition economies and compare the results with those obtained by analyzing U.S. market indices. Specifically, we calculate parameters that quantify both the volatility asymmetry and the strength of its dependence on prior increments. We find that, like their developed economy counterparts, almost all transition economy indices exhibit a significant volatility asymmetry, and the parameter γ characterizing asymmetry fluctuates more over time for transition economies. We also investigate how the association between volatility and volatility asymmetry varies by type of market. We test the hypothesis of a negative correlation between volatility and volatility asymmetry. We find that, for developed economies, γ experiences local minima during (i) “Black Monday” on October 19, 1987, (ii) the dot-com bubble crash in 2002, and (iii) the 2007-2009 global crisis while for transition economies, γ experiences local maxima during times of economic crisis.
Volatile sulphur compounds in UHT milk.
Al-Attabi, Z; D'Arcy, B R; Deeth, H C
2009-01-01
Several volatile sulphur compounds have been detected in raw and processed milk. These are hydrogen sulphide, methanethiol, carbonyl sulphide, dimethyl sulphide, carbon disulphide, dimethyl disulphide, dimethyl trisulphide, dimethyl sulphoxide, and dimethyl sulphone. Many of these increase in milk during heat processing and are associated with the cooked flavor of heat-treated milks, particularly UHT and sterilized milk. Several researchers have attempted to explain the origin of these volatiles in both raw and processed milk, and how to reduce the associated cooked flavor that has a negative impact on consumer acceptability of processed milk. These compounds are difficult to detect and analyze due to their high volatility, sensitivity to oxidation and heat, and in some cases, their very low concentrations. However, methods of detection and quantification have improved in recent years. Pre-concentration methods such as solid phase microextraction (SPME) together with gas chromatography equipped with sulphur-selective detectors now enable low concentrations of these compounds to be analyzed. In this review, methods of extraction and analyzes of these volatile sulphur compounds are compared, and their occurrence in milk is reviewed.
Measurements of volatile compound contents in resins using a moisture analyzer.
Hashimoto, Masanori; Nagano, Futami; Endo, Kazuhiko; Ohno, Hiroki
2010-02-01
The contents of volatile adhesive compounds, such as water, solvents, and residual unpolymerized monomers, affect the integrity and durability of adhesive bonding. However, there is no method available that can be used to rapidly assess the residual solvent or water contents of adhesive resins. This study examined the effectiveness of a digital moisture analyzer to measure the volatile compound contents of resins. Five self-etching adhesives and seven experimental light-cured resins prepared with different contents (0, 10, and 20% by weight) of water or solvents (acetone and ethanol) were examined in this study. The resins were prepared using different methods (with and without air blast or light-curing) to simulate the clinical conditions of adhesive application. Resin weight changes (% of weight loss) were determined as the residual volatile compound contents, using the moisture analyzer. After the measurements, the resin films were examined using a scanning electron microscope. The weight changes of the resins were found to depend on the amount of water or solvents evaporating from the resin. Water and solvents were evaporated by air blast or light-curing, but some of the water and solvents remained in the cured resin. The moisture analyzer is easy to operate and is a useful instrument for using to measure the residual volatile compound contents of adhesive resin.
The relationship between continuous measurements of volatile organic compounds sources and particle number was evaluated at a Photochemical Assessment Monitoring Station Network (PAMS) site located near the U.S.-Mexico Border in central El Paso, TX. Sources of volatile organic...
Composition of the water-soluble fraction of different cheeses.
Taborda, Gonzalo; Molina, Elena; Martínez-Castro, Isabel; Ramos, Mercedes; Amigo, Lourdes
2003-01-01
Volatile and nonvolatile compounds present in the water-soluble fraction (WSF) and water-soluble fraction with molecular weight lower than 1000 Da (WSF < 1000 Da) of six Spanish cheeses, Cabrales, Idiazábal, Mahón, Manchego, Roncal, and a goat's milk cheese, were analyzed. Different nitrogen fractions (determined by Kjeldahl method), caseins (by capillary electrophoresis), peptides and amino acids (by HPLC), and volatile components (by dynamic headspace coupled to GC-MS) as well as mineral content in the cheese fractions were analyzed and compared. The different nitrogen and volatile compounds identified in the WSF were characteristic of each cheese variety. Cabrales cheese displayed the highest content of free amino acids and the highest quantity and variety of volatile compounds. The WSF < 1000 Da fraction was less representative, especially for volatile compounds, as some of the components were lost in the ultrafiltration. Alcohols were better recovered than ketones and esters.
Characterization of volatile aroma compounds from red and black rice bran.
Sukhonthara, Sukhontha; Theerakulkait, Chockchai; Miyazawa, Mitsuo
2009-01-01
The volatile oils from red and black rice bran were obtained by hydrodistillation using diethyl ester and the components of that oil were analyzed by capillary GC-MS. The volatile components of essential oil from red and black rice bran were analyzed by GC and GC-MS. One hundred twenty-nine (129) of volatile compounds were identified in red and black rice bran. Myristic acid, nonanal, (E)-beta-ocimene and 6, 10, 14-trimethyl-2-pentadecanone were main compounds in red rice bran, whereas myristic acid, nonanal, caproic acid, pentadecanal and pelargonic acid were main compounds in black rice bran. Guaiacol, presented at 0.81 mg/100 g in black rice bran, is responsible for the characteristic component in black rice.
Analysis of Realized Volatility in Two Trading Sessionsof the Japanese Stock Market
NASA Astrophysics Data System (ADS)
Takaishi, T.; Chen, T. T.; Zheng, Z.
We analyze realized volatilities constructedusing high-frequency stock data on the Tokyo Stock Exchange. In order to avoid non-trading hours issue in volatility calculations we define two realized volatilities calculated separately in the two trading sessions of the Tokyo Stock Exchange, i.e. morning and afternoon sessions. After calculating the realized volatilities at various sampling frequencies we evaluate the bias from the microstructure noise as a function of sampling frequency. Taking account of the bias to realized volatility we examine returns standardized by realized volatilities and confirm that price returns on the Tokyo Stock Exchange are described approximately by Gaussian time series with time-varying volatility, i.e. consistent with a mixture of distributions hypothesis.
Fine particulate matter (PM) in urban atmospheres contains substantial amounts of semi-volatile material (e.g. ammonium nitrate and semi-volatile organic compounds), some of which is lost when PM is sampled with a filter. This study addresses the hypothesis that the concentratio...
The Salt Lake City EPA Environmental Monitoring for Public Access and Community Tracking (EMPACT) project, initiated in October 1999, is designed to evaluate the usefulness of a newly developed real-time continuous monitor (RAMS) for total (non-volatile plus semi-volatile) PM<...
Oliver-Pozo, Celia; Aparicio-Ruiz, Ramón; Romero, Inmaculada; García-González, Diego L
2015-12-09
The need to explain virgin olive oil (VOO) aroma descriptors by means of volatiles has raised interest in applying analytical techniques for trapping and quantitating volatiles. Static headspace sampling with solid phase microextraction (SPME) as trapping material is one of the most applied solutions for analyzing volatiles. The use of an internal standard and the determination of the response factors of the main volatiles seem to guarantee the correct determination of volatile concentrations in VOOs by SPME-GC/FID. This paper, however, shows that the competition phenomena between volatiles in their adsorption to the SPME fiber, inherent in static headspace sampling, may affect the quantitation. These phenomena are more noticeable in the particular case of highly odorant matrices, such as rancid and vinegary VOOs with high intensity of defect. The competition phenomena can modify the measurement sensitivity, which can be observed in volatile quantitation as well as in the recording of internal standard areas in different matrices. This paper analyzes the bias of the peak areas and concentrations of those volatiles that are markers for each sensory defect of VOOs (rancid, vinegary, musty, and fusty) when the intensity and complexity of aroma are increased. Of the 17 volatile markers studied in this work, 10 presented some anomalies in the quantitation in highly odorant matrices due the competition phenomena. However, quantitation was not affected in the concentration ranges at which each volatile marker is typically found in the defective oils they were characteristic of, validating their use as markers.
Performance of the future MOMA GC-ITMS instrument
NASA Astrophysics Data System (ADS)
Grand, Noel; Buch, Arnaud; Veronica, Pinnick; Szopa, Cyril; Danell, Ryan; Van Amerom, Friso H. W.; Glavin, Daniel P.; Freissinet, Caroline; Arevalo, Ricardo; Stalport, Fabien; Getty, Stephanie; Coll, Patrice; Steinninger, Harald; Brinckerhoff, William; Mahaffy, Paul; Goesmann, Fred; Raulin, F.; Goetz, Walter; MOMA Team
2016-10-01
The Mars Organic Molecule Analyzer (MOMA) experiment aboard the future ExoMars mission will be the continuation of the SAM expirement aboard the Curiosity rover, with the search for the organic composition of the Mars surface. With ExoMars the sample will be extracted as deep as 2 meters below the martian surface to minimize effects of radiation and oxidation on organic materials. To analyze the wide range of organic composition (volatile and non-volatiles compounds) of the Martian soil MOMA is composed with an UV laser desorption / ionization (LDI) and a pyrolysis gas chromatography ion trap mass spectrometry (pyr-GC-ITMS). In order to analyze refractory organic compounds and chirality samples which undergo GC-ITMS analysis may be submitted to a derivatization process, consisting of the reaction of the sample components with specific reactants (MTBSTFA [1], DMF-DMA [2] or TMAH [3]).To optimize and test the performance of the GC-ITMS instrument we have performed several coupling tests campaigns between the GC, providing by the French team (LISA, LATMOS, CentraleSupelec), and the MS, providing by the US team (NASA, GSFC). Last campaign has been done with the ETU models which is similar to the flight model and which include the oven and the taping station providing by the German team (MPS).The results obtained demonstrate the current status of the end-to-end performance of the gas chromatography-mass spectrometry mode of operation.
Volatility of aerosols in the western European environment. Interim report No. 1 thru 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jennings, S.G.
1987-10-01
The volatility apparatus to be used in the proposed work is being currently assembled at the Atmospheric Sciences Laboratory, White Sands Missile Range, New Mexico. When the volatility apparatus is constructed and tested it will be shipped to University College Galway. It is then planned to carry out field-volatility measurements of the ambient aerosol, primarily for the unmodified maritime air mass and secondly for the partially modified European continental air mass. Continuous measurements for periods up to some weeks spanning all four seasons are planned. In preparation for these measurements, a digital readout facility was acquired for the IM 146more » velocity and direction transmitter to be used for recording wind speed and direction. The measurement system was electronically processed to facilitate continuous recording on a microcomputer.« less
Production of volatile metabolites by grape-associated microorganisms.
Verginer, Markus; Leitner, Erich; Berg, Gabriele
2010-07-28
Plant-associated microorganisms fulfill important functions for their hosts. Whereas promotion of plant growth and health is well-studied, little is known about the impact of microorganisms on plant or fruit flavor. To analyze the production of volatiles of grape-associated microorganisms, samples of grapes of the red cultivar 'Blaufraenkisch' were taken during harvest time from four different vineyards in Burgenland (Austria). The production of volatiles was analyzed for the total culturable microbial communities (bacteria, yeasts, fungi) found on and in the grapes as well as for single isolates. The microbial communities produced clearly distinct aroma profiles for each vineyard and phylogenetic group. Furthermore, half of the grape-associated microorganisms produced a broad spectrum of volatile organic compounds. Exemplary, the spectrum was analyzed more in detail for three single isolates of Paenibacillus sp., Sporobolomyces roseus , and Aureobasidium pullulans . Well-known and typical flavor components of red wine were detected as being produced by microbes, for example, 2-methylbutanoic acid, 3-methyl-1-butanol, and ethyl octanoate.
[Chemical components of Vetiveria zizanioides volatiles].
Huang, Jinghua; Li, Huashou; Yang, Jun; Chen, Yufen; Liu, Yinghu; Li, Ning; Nie, Chengrong
2004-01-01
The chemical components of the volatiles from Vetiveria zizanioides were analyzed by SPME and GC-MS. In the roots, the main component was valencene (30.36%), while in the shoots and leaves, they were 9-octadecenamide (33.50%), 2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene (27.46%), and 1,2-benzendicarboxylic acid, diisooctyl ester(18.29%). The results showed that there were many terpenoids in the volatils. In shoot volatiles, there existed 3 monoterpenes, 2 sequiterpenes and 1 triterpene. Most of the volatiles in roots were sesquiterpenes.
Semi-continuous mass closure of the major components of fine particulate matter in Riverside, CA
NASA Astrophysics Data System (ADS)
Grover, Brett D.; Eatough, Norman L.; Woolwine, Woods R.; Cannon, Justin P.; Eatough, Delbert J.; Long, Russell W.
The application of newly developed semi-continuous aerosol monitors allows for the measurement of all the major species of PM 2.5 on a 1-h time basis. Temporal resolution of both non-volatile and semi-volatile species is possible. A suite of instruments to measure the major chemical species of PM 2.5 allows for semi-continuous mass closure. A newly developed dual-oven Sunset carbon monitor is used to measure non-volatile organic carbon, semi-volatile organic carbon and elemental carbon. Inorganic species, including sulfate and nitrate, can be measured with an ion chromatograph based sampler. Comparison of the sum of the major chemical species in an urban aerosol with mass measured by an FDMS resulted in excellent agreement. Linear regression analysis resulted in a zero-intercept slope of 0.98±0.01 with an R2=0.86. One-hour temporal resolution of the major species of PM 2.5 may reduce the uncertainty in receptor based source apportionment modeling, will allow for better forecasting of PM 2.5 episodes, and may lead to increased understanding of related health effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajric, Sendin
2017-03-16
Los Alamos National Laboratory (LANL) has recently procured a quartz crystal microbalance (QCM). Current popular uses are biological sensors, surface chemistry, and vapor detection. LANL has projects related to analyzing curing kinetics, measuring gas sorption on polymers, and analyzing the loss of volatile compounds in polymer materials. The QCM has yet to be employed; however, this review will cover the use of the QCM in these applications and its potential.
NASA Astrophysics Data System (ADS)
Messina, Valeria; Biolatto, Andrea; Sancho, Ana; Descalzo, Adriana; Grigioni, Gabriela; de Reca, Noemí Walsöe
2011-09-01
The aim of the performed work was to evaluate with an electronic nose changes in odor profile of Arauco and Arbequina varieties of extra-virgin olive oil during deep-frying. Changes in odor were analyzed using an electronic nose composed of 16 sensors. Volatile compounds were analyzed by SPME-GC-FID. Principal Component Analysis was applied for electronic results. Arauco variety showed the highest response for sensors. Statistical analysis for volatile compounds indicated a significant (P<0.001) interaction between variety and time of frying processes. Arauco variety showed the highest production of volatile compounds at 60 min of deep frying. The two varieties presented distinct patterns of volatile products, being clearly identified with the electronic nose.
Statistical physics approaches to financial fluctuations
NASA Astrophysics Data System (ADS)
Wang, Fengzhong
2009-12-01
Complex systems attract many researchers from various scientific fields. Financial markets are one of these widely studied complex systems. Statistical physics, which was originally developed to study large systems, provides novel ideas and powerful methods to analyze financial markets. The study of financial fluctuations characterizes market behavior, and helps to better understand the underlying market mechanism. Our study focuses on volatility, a fundamental quantity to characterize financial fluctuations. We examine equity data of the entire U.S. stock market during 2001 and 2002. To analyze the volatility time series, we develop a new approach, called return interval analysis, which examines the time intervals between two successive volatilities exceeding a given value threshold. We find that the return interval distribution displays scaling over a wide range of thresholds. This scaling is valid for a range of time windows, from one minute up to one day. Moreover, our results are similar for commodities, interest rates, currencies, and for stocks of different countries. Further analysis shows some systematic deviations from a scaling law, which we can attribute to nonlinear correlations in the volatility time series. We also find a memory effect in return intervals for different time scales, which is related to the long-term correlations in the volatility. To further characterize the mechanism of price movement, we simulate the volatility time series using two different models, fractionally integrated generalized autoregressive conditional heteroscedasticity (FIGARCH) and fractional Brownian motion (fBm), and test these models with the return interval analysis. We find that both models can mimic time memory but only fBm shows scaling in the return interval distribution. In addition, we examine the volatility of daily opening to closing and of closing to opening. We find that each volatility distribution has a power law tail. Using the detrended fluctuation analysis (DFA) method, we show long-term auto-correlations in these volatility time series. We also analyze return, the actual price changes of stocks, and find that the returns over the two sessions are often anti-correlated.
Core-Mantle Partitioning of Volatile Elements and the Origin of Volatile Elements in Earth and Moon
NASA Technical Reports Server (NTRS)
Righter, Kevin; Pando, K.; Danielson, L.; Nickodem, K.
2014-01-01
Depletions of volatile siderophile elements (VSE; Ga, Ge, In, As, Sb, Sn, Bi, Zn, Cu, Cd) in mantles of Earth and Moon, constrain the origin of volatile elements in these bodies, and the overall depletion of volatile elements in Moon relative to Earth. A satisfactory explanation has remained elusive [1,2]. We examine the depletions of VSE in Earth and Moon and quantify the amount of depletion due to core formation and volatility of potential building blocks. We calculate the composition of the Earth's PUM during continuous accretion scenarios with constant and variable fO2. Results suggest that the VSE can be explained by a rather simple scenario of continuous accretion leading to a high PT metal-silicate equilibrium scenario that establishes the siderophile element content of Earth's PUM near the end of accretion [3]. Core formation models for the Moon explain most VSE, but calculated contents of In, Sn, and Zn (all with Tc < 750 K) are all still too high after core formation, and must therefore require an additional process to explain the depletions in the lunar mantle. We discuss possible processes including magmatic degassing, evaporation, condensation, and vapor-liquid fractionation in the lunar disk.
Midander, Klara; Elihn, Karine; Wallén, Anna; Belova, Lyuba; Karlsson, Anna-Karin Borg; Wallinder, Inger Odnevall
2012-06-15
Continuous daily measurements of airborne particles were conducted during specific periods at an underground platform within the subway system of the city center of Stockholm, Sweden. Main emphasis was placed on number concentration, particle size distribution, soot content (analyzed as elemental and black carbon) and surface area concentration. Conventional measurements of mass concentrations were conducted in parallel as well as analysis of particle morphology, bulk- and surface composition. In addition, the presence of volatile and semi volatile organic compounds within freshly collected particle fractions of PM(10) and PM(2.5) were investigated and grouped according to functional groups. Similar periodic measurements were conducted at street level for comparison. The investigation clearly demonstrates a large dominance in number concentration of airborne nano-sized particles compared to coarse particles in the subway. Out of a mean particle number concentration of 12000 particles/cm(3) (7500 to 20000 particles/cm(3)), only 190 particles/cm(3) were larger than 250 nm. Soot particles from diesel exhaust, and metal-containing particles, primarily iron, were observed in the subway aerosol. Unique measurements on freshly collected subway particle size fractions of PM(10) and PM(2.5) identified several volatile and semi-volatile organic compounds, the presence of carcinogenic aromatic compounds and traces of flame retardants. This interdisciplinary and multi-analytical investigation aims to provide an improved understanding of reported adverse health effects induced by subway aerosols. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Soeryana, Endang; Halim, Nurfadhlina Bt Abdul; Sukono, Rusyaman, Endang; Supian, Sudradjat
2017-03-01
Investments in stocks investors are also faced with the issue of risk, due to daily price of stock also fluctuate. For minimize the level of risk, investors usually forming an investment portfolio. Establishment of a portfolio consisting of several stocks are intended to get the optimal composition of the investment portfolio. This paper discussed about optimizing investment portfolio of Mean-Variance to stocks by using mean and volatility is not constant based on the Negative Exponential Utility Function. Non constant mean analyzed using models Autoregressive Moving Average (ARMA), while non constant volatility models are analyzed using the Generalized Autoregressive Conditional heteroscedastic (GARCH). Optimization process is performed by using the Lagrangian multiplier technique. As a numerical illustration, the method is used to analyze some stocks in Indonesia. The expected result is to get the proportion of investment in each stock analyzed
Melt Heterogeneity and Degassing at MT Etna from Melt Inclusions
NASA Astrophysics Data System (ADS)
Salem, L. C.; Edmonds, M.; Maclennan, J.; Corsaro, R. A.
2014-12-01
The melts feeding Mt Etna, Italy, are rich in volatiles and drive long-lasting powerful eruptions of basaltic magma in both effusive and explosive styles of activity. The volatile systematics of the volcanic system are well understood through melt inclusion and volcanic gas studies. Etna's melts are generated from a complex mantle setting, with subduction-related chemical modifications as well as OIB-type features, and then the melts must travel through thick carbonate-rich crust. The continual influx of mantle-derived volatile-rich magma controls the major compositional and eruptive features of Mount Etna and magma mixing has been recognized as an important process driving large eruptions [Kamenetsky, 2007]. Our study focusses on the 1669 eruption, the largest in historical times. Olivine-hosted melt inclusions were analyzed for volatile, trace and major elements using electron microprobe and ion probe (SIMS). We use volatile systematics and geochemical data to deconvolve mantle-derived heterogeneity from melt mixing and crystal fractionation. Our data are well described by a mixing trend between two distinct melts: a CO2-rich (CO2~1000ppm), incompatible trace element depleted melt (La/Yb~16), and a CO2-poor, enriched melt. The mixing also generates a strong correlation between Sr and CO2 in the melt inclusions dataset, reflecting the presence of a strong Sr anomaly in one of the end-member melts. We investigate the origin of this Sr anomaly by considering plagioclase dissolution and crustal assimilation. We also investigate degassing processes in the crust and plumbing system of the volcano. We compare our results with similar studies of OIB and arc-related basalts elsewhere and assess the implications for linking eruption size and style with the nature of the mantle-derived melts. Kamenetsky et al. (2007) Geology 35, 255-258.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-16
... delist? B. How does IBM generate the waste? C. How did IBM sample and analyze the petitioned waste? D..., thickened/conditioned, and pressed to generate the F006 waste stream. C. How did IBM sample and analyze the... the volatiles and semi-volatiles samples were non- detect. E. How did EPA evaluate the risk of...
Remedial Investigation/Feasibility Study/Interim Response Actions
1988-03-25
organosulfur compounds (CC/FP), organophosphorus compounds (CC/FPD), hydrocarbons (CC/FID), volatile aromatic compounds (GC/ PID ), volatile halogenated...ICP metals, mercury and arsenic (AA). Water samples are being analyzed for volatile halogenated organics (GC/CON), volatile aromatic organics (GC/ PID ...Feb Mar Apr May Jun Jul Aug SepSI - I I I I I • .. I I I ----+----- 685 27-90 so ONSITE DISPOSAL FACILITY .i * 686 27-01 Prep FLUE Plan Fz=m8u> 6e7
Zhang, Delong; Wang, Xiaodong; Lu, Ruili; Li, Kangle; Hu, Fenglin
2011-12-01
To determine the volatile components of mycelia of Isaria cateinannulata cultured under different culture conditions, and to analyze the relationships between the culture conditions and volatile metabolites. Mycelia were cultured in solid plates with SDAY medium and liquid shake flasks with SDY medium. The culture conditions were at 25 degrees C and 8 days. Volatile components in the mycelia of I. cateinannulata were extracted with simultaneous distillation extraction and analyzed by gas chromatography-mass spectrometry. Alkenes, alkanes, heterocyclic and polycyclic aromatic hydrocarbons (PAH) were existed abundantly both in the mycelia of liquid and solid cultures, but the kinds and relative concentrations of the volatile components in mycelia of liquid and solid cultures were very different. Forty-one compounds were identified from the mycelia of solid culture and 32 compounds were identified from the mycelia of liquid culture. Esters, quinones and oximes were only found in solid cultured mycelia whereas carboxylic acids were only discovered in the mycelia of liquid culture. At the same time, mycelia of liquid culture contained much more phenols. The most abundant compounds in mycelia of liquid and solid cultures were hydrocarbons. The volatile extracts of solid cultured mycelia contained 57.6% alkenes and 9.19% alkanes. The volatile extracts of liquid cultured mycelia contained 7.85% alkenes and 22.4% alkanes. Liquid or solid culture conditions influenced the volatile components of mycelia of I. cateinannulata.
USDA-ARS?s Scientific Manuscript database
Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography–mass spectrometry (GC-MS) is commonly used in analyzing insect volatiles. In order to improve the detection of volatiles in insects, a freeze-thaw method was applied to insect samples before the HS-SPME-GC-MS analysis. ...
Liu, Cui-Ting; Zhang, Min; Yan, Ping; Liu, Hai-Chan; Liu, Xing-Yun; Zhan, Ruo-Ting
2016-01-01
Zhengtian pills (ZTPs) are traditional Chinese medicine (TCM) which have been commonly used to treat headaches. Volatile components of ZTPs extracted by ethyl acetate with an ultrasonic method were analyzed by gas chromatography mass spectrometry (GC-MS). Twenty-two components were identified, accounting for 78.884% of the total components of volatile oil. The three main volatile components including protocatechuic acid, ferulic acid, and ligustilide were simultaneously determined using ultra-high performance liquid chromatography coupled with diode array detection (UHPLC-DAD). Baseline separation was achieved on an XB-C18 column with linear gradient elution of methanol-0.2% acetic acid aqueous solution. The UHPLC-DAD method provided good linearity (R (2) ≥ 0.9992), precision (RSD < 3%), accuracy (100.68-102.69%), and robustness. The UHPLC-DAD/GC-MS method was successfully utilized to analyze volatile components, protocatechuic acid, ferulic acid, and ligustilide, in 13 batches of ZTPs, which is suitable for discrimination and quality assessment of ZTPs.
Ollivier, Patrick R L; Bahrou, Andrew S; Church, Thomas M; Hanson, Thomas E
2011-07-01
We previously described a marine, tellurite-resistant strain of the yeast Rhodotorula mucilaginosa that both precipitates intracellular Te0 and volatilizes methylated Te compounds when grown in the presence of the oxyanion tellurite. The uses of microbes as a "green" route for the production of Te0-containing nanostructures and for the remediation of Te-oxyanion wastes have great potential, and so a more thorough understanding of this process is required. Here, Te precipitation and volatilization catalyzed by R. mucilaginosa were examined in continuously aerated and sealed (low oxygen concentration) batch cultures. Continuous aeration was found to strongly promote Te volatilization while inhibiting Te0 precipitation. This differs from the results in sealed batch cultures, for which tellurite reduction to Te0 was found to be very efficient. We show also that volatile Te species may be degraded rapidly in medium and converted to the particulate form by biological activity. Further experiments revealed that Te0 precipitates produced by R. mucilaginosa can be further transformed to volatile and dissolved Te species. However, it was not clearly determined whether Te0 is a required intermediate for Te volatilization. Based on these results, we conclude that low oxygen concentrations will be the most efficient for production of Te0 nanoparticles while limiting the production of toxic volatile Te species, although the production of these compounds may never be completely eliminated.
Volatility-resolved Measurements of the Chemical Composition of Arctic Aerosol Particles
NASA Astrophysics Data System (ADS)
Ehn, M.; Kroll, J.; Coffman, D.; Quinn, P.; Bates, T.; Williams, E.; Kulmala, M.; Worsnop, D.
2008-12-01
Here we describe measurements of the chemical composition of submicron particles in the Arctic marine boundary layer, taken on board the R/V Knorr during the IPY-ICEALOT mission (March-April 2008). Measurements were made with an Aerodyne high-resolution aerosol mass spectrometer (HR-AMS) for the measurement of the non-refractory fraction of the aerosol, in particular allowing for the determination of the oxygen/carbon (O/C) ratio of the particulate organics and the unambiguous identification of trace inorganic species. Sampling alternated between ambient air and air sent through a thermodenuder (TD), continually scanned between 50 and 250C in order to remove aerosol components by volatility. The mass spectra of particulate matter in the Arctic (including Arctic haze) were dominated by sulfur-containing peaks and the CO2+ ion (at m/z 44), indicating the main non-refractory components of the aerosol are acidic sulfate and highly oxygenated organics. Thermodenuder measurements allow for the clear speciation of sulfate compounds by volatility, as well as the comparison of the degree of atmospheric aging of the organics to measurements taken elsewhere (including at terrestrial sites). AMS measurements will be compared to results from a hygroscopicity tandem differential mobility analyzer (HTDMA), also downstream of the thermodenuder, as well as from semicontinuous (PILS) and offline (filter) measurements of particle composition.
Health-hazard evaluation report HETA 82-309-1630, Inland Steel, East Chicago, Indiana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almaguer, D.; Orris, P.
1985-10-01
Environmental and breathing-zone samples were analyzed for polynuclear aromatic hydrocarbons (PAHs) and coal-tar-pitch volatiles at the Inland Steel Company, East Chicago, Indiana in November, 1982 and September, 1984. The evaluation was requested because of concern about employee exposures during maintenance of the coke battery precipitator at the number 2 facility. Four former employees were interviewed. The cyclohexane soluble fraction of coal-tar-pitch volatiles ranged from 0.232 to 0.668 mg/m/sup 3/. The OSHA standard is 0.15mg/m/sup 3/. Naphthalene concentrations up to 0.107mg/m/sup 3/ were detected. The OSHA standard for naphthalene is 50mg/m/sup 3/. Other PAHs detected included phenanthrene, fluorene and acenaphthene. Themore » employees reported experiencing local skin, eye, ear, nose, and throat irritation while working on the coke battery precipitator in the past. Personal protective measures such as wearing safety boots, barrier creams on exposed skin surfaces, and showering and changing clothes before leaving the facility were implemented. The authors conclude that a potential health hazard from PAHs and coal-tar-pitch volatiles is being adequately addressed by the facility. Recommendations include continuing the present personal protective measures and providing emergency rescue training.« less
[Study on volatile components from flowers of Gymnema sylvestre].
Qiu, Qin; Zhen, Han-Shen; Huang, Pei-Qian
2013-04-01
To analyze the volatile components from flowers of Gymnema sylvestre. Volatile components of flowers of Gymnema sylvestre were extracted by water vapor distilling, and the components were separated and identified by GC-MS. 55 components were separated and 33 components were identified, accounting for 88.73% of all quantity. The principal volatile components are Phytol, Pentacosane, 10-Heneicosene (c, t), 3-Eicosene, (E) -and 2-Methyl-Z-2-docosane. The research can pro-vide scientific basis for chemical component research of flowers of Gymnema sylvestre.
Effective density and mixing state of aerosol particles in a near-traffic urban environment.
Rissler, Jenny; Nordin, Erik Z; Eriksson, Axel C; Nilsson, Patrik T; Frosch, Mia; Sporre, Moa K; Wierzbicka, Aneta; Svenningsson, Birgitta; Löndahl, Jakob; Messing, Maria E; Sjogren, Staffan; Hemmingsen, Jette G; Loft, Steffen; Pagels, Joakim H; Swietlicki, Erik
2014-06-03
In urban environments, airborne particles are continuously emitted, followed by atmospheric aging. Also, particles emitted elsewhere, transported by winds, contribute to the urban aerosol. We studied the effective density (mass-mobility relationship) and mixing state with respect to the density of particles in central Copenhagen, in wintertime. The results are related to particle origin, morphology, and aging. Using a differential mobility analyzer-aerosol particle mass analyzer (DMA-APM), we determined that particles in the diameter range of 50-400 nm were of two groups: porous soot aggregates and more dense particles. Both groups were present at each size in varying proportions. Two types of temporal variability in the relative number fraction of the two groups were found: soot correlated with intense traffic in a diel pattern and dense particles increased during episodes with long-range transport from polluted continental areas. The effective density of each group was relatively stable over time, especially of the soot aggregates, which had effective densities similar to those observed in laboratory studies of fresh diesel exhaust emissions. When heated to 300 °C, the soot aggregate volatile mass fraction was ∼10%. For the dense particles, the volatile mass fraction varied from ∼80% to nearly 100%.
RESOLVE: Regolith and Environment Science and Oxygen and Lunar Volatile Extraction
NASA Technical Reports Server (NTRS)
Quinn, Jacqueline; Baird, Scott; Colaprete, Anthony; Larson, William; Sanders, Gerald; Picard, Martin
2011-01-01
Regolith & Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) is an internationally developed payload that is intended to prospect for resources on other planetary bodies. RESOLVE is a miniature drilling and chemistry plant packaged onto a medium-sized rover to collect and analyze soil for volatile components such as water or hydrogen that could be used in human exploration efforts.
USDA-ARS?s Scientific Manuscript database
‘Fuji’apple [Malus sylvestris var. domestica (Borkh.) Mansf.] volatile compound dynamics were characterized during cold storage in air or at low pO2 controlled atmosphere (CA) with up to 5 kPa CO2. Volatile compounds in storage chambers were adsorbed onto solid sorbent traps and analyzed by GC-MS....
COMPACT, CONTINUOUS MONITORING FOR VOLATILE ORGANIC COMPOUNDS - PHASE I
Improved methods for onsite measurement of multiple volatile organic compounds are needed for process control, monitoring, and remediation. This Phase I SBIR project sets forth an optical measurement method that meets these needs. The proposed approach provides an instantaneous m...
49 CFR 195.424 - Pipe movement.
Code of Federal Regulations, 2012 CFR
2012-10-01
... operating pressure. (b) No operator may move any pipeline containing highly volatile liquids where materials... pressure of the commodity. (c) No operator may move any pipeline containing highly volatile liquids where... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY...
49 CFR 195.424 - Pipe movement.
Code of Federal Regulations, 2011 CFR
2011-10-01
... operating pressure. (b) No operator may move any pipeline containing highly volatile liquids where materials... pressure of the commodity. (c) No operator may move any pipeline containing highly volatile liquids where... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY...
49 CFR 195.424 - Pipe movement.
Code of Federal Regulations, 2013 CFR
2013-10-01
... operating pressure. (b) No operator may move any pipeline containing highly volatile liquids where materials... pressure of the commodity. (c) No operator may move any pipeline containing highly volatile liquids where... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY...
49 CFR 195.424 - Pipe movement.
Code of Federal Regulations, 2014 CFR
2014-10-01
... operating pressure. (b) No operator may move any pipeline containing highly volatile liquids where materials... pressure of the commodity. (c) No operator may move any pipeline containing highly volatile liquids where... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY...
40 CFR 59.512 - Addresses of EPA regional offices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.512 Addresses of EPA..., Air Pesticides and Toxics, Management Division, Atlanta Federal Center, 61 Forsyth Street, SW...
40 CFR 59.512 - Addresses of EPA regional offices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.512 Addresses of EPA..., Air Pesticides and Toxics, Management Division, Atlanta Federal Center, 61 Forsyth Street, SW...
40 CFR 59.512 - Addresses of EPA regional offices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.512 Addresses of EPA..., Air Pesticides and Toxics, Management Division, Atlanta Federal Center, 61 Forsyth Street, SW...
40 CFR 59.512 - Addresses of EPA regional offices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.512 Addresses of EPA..., Air Pesticides and Toxics, Management Division, Atlanta Federal Center, 61 Forsyth Street, SW...
40 CFR 59.412 - Incorporations by reference.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Architectural Coatings § 59.412 Incorporations by... 19428-2959. (1) ASTM Method C 1315-95, Standard Specification for Liquid Membrane-Forming Compounds...
40 CFR 59.412 - Incorporations by reference.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Architectural Coatings § 59.412 Incorporations by... 19428-2959. (1) ASTM Method C 1315-95, Standard Specification for Liquid Membrane-Forming Compounds...
Maskrey, Joshua R; Insley, Allison L; Hynds, Erin S; Panko, Julie M
2016-07-01
A 3-month air monitoring study was conducted in Washington County, Pennsylvania, at the request of local community members regarding the potential risks resulting from air emissions of pollutants related to hydraulic fracturing operations. Continuous air monitoring for total volatile organic compounds was performed at two sampling sites, including a school and a residence, located within 900 m of a hydraulic fracturing well pad that had been drilled prior to the study. Intermittent 24-hour air samples for 62 individual volatile organic compounds were also collected. The ambient air at both sites was monitored during four distinct periods of unconventional natural gas extraction activity: an inactive period prior to fracturing operations, during fracturing operations, during flaring operations, and during another inactive period after operations. The results of the continuous monitoring during fracturing and flaring sampling periods for total volatile organic compounds were similar to the results obtained during inactive periods. Total volatile organic compound 24-hour average concentrations ranged between 0.16 and 80 ppb during all sampling periods. Several individual volatile compounds were detected in the 24-hour samples, but they were consistent with background atmospheric levels measured previously at nearby sampling sites and in other areas in Washington County. Furthermore, a basic yet conservative screening level evaluation demonstrated that the detected volatile organic compounds were well below health-protective levels. The primary finding of this study was that the operation of a hydraulic fracturing well pad in Washington County did not substantially affect local air concentrations of total and individual volatile organic compounds.
Does implied volatility of currency futures option imply volatility of exchange rates?
NASA Astrophysics Data System (ADS)
Wang, Alan T.
2007-02-01
By investigating currency futures options, this paper provides an alternative economic implication for the result reported by Stein [Overreactions in the options market, Journal of Finance 44 (1989) 1011-1023] that long-maturity options tend to overreact to changes in the implied volatility of short-maturity options. When a GARCH process is assumed for exchange rates, a continuous-time relationship is developed. We provide evidence that implied volatilities may not be the simple average of future expected volatilities. By comparing the term-structure relationship of implied volatilities with the process of the underlying exchange rates, we find that long-maturity options are more consistent with the exchange rates process. In sum, short-maturity options overreact to the dynamics of underlying assets rather than long-maturity options overreacting to short-maturity options.
Zou, Ju-Ying; Chen, Sheng-Huang; Li, Qin-Wen; Chen, Han-Jun; Liu, Bei-Bei; Du, Fan
2012-04-01
To analyze the chemical constituents of volatile oil from the rhizomes and leaves of Pileostegia viburnoides var. glabrescens by GC-MS. The volatile oil was extracted from the rhizomes and leaves of Pileostegia viburnoides var. glabrescens by steam distillation. The constituents of volatile oil were identified by GC-MS technology. 37 compounds were identified from the oil of rhizomes. 36 compounds were identified from the oil of leaves. The rhizomes and leaves volatile oil had 18 compounds in common. This study is the first one to report the volatile components of Pileostegia viburnoides var. glabrescens. It can provide a scientific basis for rational use of the rhizomes and leaves of Pileostegia viburnoides var. glabrescens.
[Analysis of the chemical constituents of volatile oils of Metasequoia glyptostroboides leave].
Shong, E; Lui, R
1997-10-01
The chemical constituents of volatile oils of Metasequoia glyptostroboides leave were analyzed by GC-MS-DS. 27 constituents were identified, alpha-pinene (70.65%) and caryophyllene (10.38%) of them are main components.
Wu, Ke; Zhu, Kai; Huang, Zhi-yi; Wang, Jin-chang; Yang, Qin-min; Liang, Pei
2012-08-01
By using the Rosemount gas analyzer and the test platform of fixed bed built by carbon furnace, the harmful gaseous compositions and the release rules of asphalt and mortar under high temperature rate were analyzed quantitatively based on infrared spectral analysis technology. The results indicated that the combustion process of the asphalt and mortar can be approximately divided into two stages stage of primary volatile combustion, and stage of secondary volatile release combined with fixed carbon combustion in isothermal condition with high heating rate. The major gaseous products are CO2, CO, NO, NO2 and SO2. the volatile content is one of the key factors affecting the release rules of gaseous combustion products in asphalt, and reducing the volatile content in asphalt materials can effectively reduce the generation of gaseous combustion products, especially CO.
USDA-ARS?s Scientific Manuscript database
Prosciutto crudo were irradiated at 0, 3 and 6kGy by gamma ray (GR) and electron beam (EB), respectively. The odor scores and volatile compounds were examined after 7 days storage at 4'. Volatile compounds from samples without and with irradiation at 6kGy were analyzed by GC-MS. Fifty-nine compounds...
[Study on chemical diversity of volatile oils in Houttuynia cordata and their genetic basis].
Wu, Lingshang; Si, Jinping; Zhou, Hui; Zhu, Yan; Lan, Yunlong
2009-01-01
To reveal chemical diversify of volatile oils in Houttuynia cordata from major producing areas in China and their genetic basis, lay a foundation for breeding a quality H. cordata variety. The volatile oils in H. cordata from 22 provenances were determined by GC. And the relationship among the peak areas of volatile oils, biological characteristics and RAPD makers were analyzed. There were common and special volatile oils in H. cordata from different provenances. The peak areas of common volatile oils in samples were significantly different. The clustering figure based on the peak areas or the relative peak areas of common volatile oils was almost agreed with the one based on RAPD makers analysis. And the differences in chromatograms could be distinguished according to the biological characteristics. The diversity of volatile oils exists in H. cordata from different provenances which relate with biological characteristics and has genetic basis. H. cordata can be divided into 2 types according to volatile oils, biological characteristics or RAPD marker.
Volatile changes in Hawaiian noni fruit, Morinda citrifolia L., during ripening and fermentation.
Wall, Marisa M; Miller, Samuel; Siderhurst, Matthew S
2018-07-01
Noni fruit (Morinda citrifolia L., Rubiaceae) has been used in traditional medicine throughout the tropics and subtropics and is now attracting interest in western medicine. Fermented noni juice is of particular interest for its promising antitumor activity. The present study collected and analyzed volatiles released at nine time intervals by noni fruit during ripening and fermentation using headspace autosampling coupled to gas chromatography-mass spectrometry. Twenty-three noni volatiles were identified and relatively quantified. In addition to volatiles previously identified in noni, four novel volatile 3-methyl-2/3-butenyl esters were identified via the synthesis of reference compounds. Principle component analysis (PCA) and canonical discriminant analysis (CDA) were used to facilitate multidimensional pattern recognition. PCA showed that ripening noni fruit cluster into three groups, pre-ripe, fully ripe (translucent) and fermented, based on released volatiles. CDA could 83.8% correctly classify noni samples when all ripeness stages were analyzed and 100% when samples were classified into the three PCA groupings. The results of the present study confirm the identities of 3-methyl-2/3-butenyl esters, both novel and previously identified, through the synthesis of reference compounds. These esters constitute a large percentage of the volatiles released by fully ripe and fermented noni and likely produced from the decomposition of noniosides, a group of unique glucosides present in the fruit. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Real-time science operations to support a lunar polar volatiles rover mission
NASA Astrophysics Data System (ADS)
Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Mattes, Greg; Ennico, Kimberly; Fritzler, Erin; Marinova, Margarita M.; McMurray, Robert; Morse, Stephanie; Roush, Ted L.; Stoker, Carol R.
2015-05-01
Future human exploration of the Moon will likely rely on in situ resource utilization (ISRU) to enable long duration lunar missions. Prior to utilizing ISRU on the Moon, the natural resources (in this case lunar volatiles) must be identified and characterized, and ISRU demonstrated on the lunar surface. To enable future uses of ISRU, NASA and the CSA are developing a lunar rover payload that can (1) locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important both for ISRU purposes and for understanding the scientific nature of these intriguing lunar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the ∼ 2-14 days of expected sunlight at relatively low cost. Due to the limited operational time available, both science and rover operations decisions must be made in real time, requiring immediate situational awareness, data analysis, and decision support tools. Given these constraints, such a mission requires a new concept of operations. In this paper we outline the results and lessons learned from an analog field campaign in July 2012 which tested operations for a lunar polar rover concept. A rover was operated in the analog environment of Hawaii by an off-site Flight Control Center, a rover navigation center in Canada, a Science Backroom at NASA Ames Research Center in California, and support teams at NASA Johnson Space Center in Texas and NASA Kennedy Space Center in Florida. We find that this type of mission requires highly efficient, real time, remotely operated rover operations to enable low cost, scientifically relevant exploration of the distribution and nature of lunar polar volatiles. The field demonstration illustrated the need for science operations personnel in constant communications with the flight mission operators and the Science Backroom to provide immediate and continual science support and validation throughout the mission. Specific data analysis tools are also required to enable immediate data monitoring, visualization, and decision making. The field campaign demonstrated that this novel methodology of real-time science operations is possible and applicable to providing important new insights regarding lunar polar volatiles for both science and exploration.
Real-Time Science Operations to Support a Lunar Polar Volatiles Rover Mission
NASA Technical Reports Server (NTRS)
Heldmann, Jennifer L.; Colaprete, Anthony; Elphic, Richard C.; Mattes, Greg; Ennico, Kimberly; Fritzler, Erin; Marinova, Margarita M.; McMurray, Robert; Morse, Stephanie; Roush, Ted L.;
2014-01-01
Future human exploration of the Moon will likely rely on in situ resource utilization (ISRU) to enable long duration lunar missions. Prior to utilizing ISRU on the Moon, the natural resources (in this case lunar volatiles) must be identified and characterized, and ISRU demonstrated on the lunar surface. To enable future uses of ISRU, NASA and the CSA are developing a lunar rover payload that can (1) locate near subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. Such investigations are important both for ISRU purposes and for understanding the scientific nature of these intriguing lunar volatile deposits. Temperature models and orbital data suggest near surface volatile concentrations may exist at briefly lit lunar polar locations outside persistently shadowed regions. A lunar rover could be remotely operated at some of these locations for the approx. 2-14 days of expected sunlight at relatively low cost. Due to the limited operational time available, both science and rover operations decisions must be made in real time, requiring immediate situational awareness, data analysis, and decision support tools. Given these constraints, such a mission requires a new concept of operations. In this paper we outline the results and lessons learned from an analog field campaign in July 2012 which tested operations for a lunar polar rover concept. A rover was operated in the analog environment of Hawaii by an off-site Flight Control Center, a rover navigation center in Canada, a Science Backroom at NASA Ames Research Center in California, and support teams at NASA Johnson Space Center in Texas and NASA Kennedy Space Center in Florida. We find that this type of mission requires highly efficient, real time, remotely operated rover operations to enable low cost, scientifically relevant exploration of the distribution and nature of lunar polar volatiles. The field demonstration illustrated the need for science operations personnel in constant communications with the flight mission operators and the Science Backroom to provide immediate and continual science support and validation throughout the mission. Specific data analysis tools are also required to enable immediate data monitoring, visualization, and decision making. The field campaign demonstrated that this novel methodology of real-time science operations is possible and applicable to providing important new insights regarding lunar polar volatiles for both science and exploration.
Stock price dynamics and option valuations under volatility feedback effect
NASA Astrophysics Data System (ADS)
Kanniainen, Juho; Piché, Robert
2013-02-01
According to the volatility feedback effect, an unexpected increase in squared volatility leads to an immediate decline in the price-dividend ratio. In this paper, we consider the properties of stock price dynamics and option valuations under the volatility feedback effect by modeling the joint dynamics of stock price, dividends, and volatility in continuous time. Most importantly, our model predicts the negative effect of an increase in squared return volatility on the value of deep-in-the-money call options and, furthermore, attempts to explain the volatility puzzle. We theoretically demonstrate a mechanism by which the market price of diffusion return risk, or an equity risk-premium, affects option prices and empirically illustrate how to identify that mechanism using forward-looking information on option contracts. Our theoretical and empirical results support the relevance of the volatility feedback effect. Overall, the results indicate that the prevailing practice of ignoring the time-varying dividend yield in option pricing can lead to oversimplification of the stock market dynamics.
Ollivier, Patrick R. L.; Bahrou, Andrew S.; Church, Thomas M.; Hanson, Thomas E.
2011-01-01
We previously described a marine, tellurite-resistant strain of the yeast Rhodotorula mucilaginosa that both precipitates intracellular Te(0) and volatilizes methylated Te compounds when grown in the presence of the oxyanion tellurite. The uses of microbes as a “green” route for the production of Te(0)-containing nanostructures and for the remediation of Te-oxyanion wastes have great potential, and so a more thorough understanding of this process is required. Here, Te precipitation and volatilization catalyzed by R. mucilaginosa were examined in continuously aerated and sealed (low oxygen concentration) batch cultures. Continuous aeration was found to strongly promote Te volatilization while inhibiting Te(0) precipitation. This differs from the results in sealed batch cultures, for which tellurite reduction to Te(0) was found to be very efficient. We show also that volatile Te species may be degraded rapidly in medium and converted to the particulate form by biological activity. Further experiments revealed that Te(0) precipitates produced by R. mucilaginosa can be further transformed to volatile and dissolved Te species. However, it was not clearly determined whether Te(0) is a required intermediate for Te volatilization. Based on these results, we conclude that low oxygen concentrations will be the most efficient for production of Te(0) nanoparticles while limiting the production of toxic volatile Te species, although the production of these compounds may never be completely eliminated. PMID:21602387
Deodorization of Garlic Breath by Foods, and the Role of Polyphenol Oxidase and Phenolic Compounds.
Mirondo, Rita; Barringer, Sheryl
2016-10-01
Garlic causes a strong garlic breath that may persist for almost a day. Therefore, it is important to study deodorization techniques for garlic breath. The volatiles responsible for garlic breath include diallyl disulfide, allyl mercaptan, allyl methyl disulfide, and allyl methyl sulfide. After eating garlic, water (control), raw, juiced or heated apple, raw or heated lettuce, raw or juiced mint leaves, or green tea were consumed immediately. The levels of the garlic volatiles on the breath were analyzed from 1 to 60 min by selected ion flow tube mass spectrometry (SIFT-MS). Garlic was also blended with water (control), polyphenol oxidase (PPO), rosemarinic acid, quercetin or catechin, and the volatiles in the headspace analyzed from 3 to 40 min by SIFT-MS. Raw apple, raw lettuce, and mint leaves significantly decreased all of the garlic breath volatiles in vivo. The proposed mechanism is enzymatic deodorization where volatiles react with phenolic compounds. Apple juice and mint juice also had a deodorizing effect on most of the garlic volatiles but were generally not as effective as the raw food, probably because the juice had enzymatic activity but the phenolic compounds had already polymerized. Both heated apple and heated lettuce produced a significant reduction of diallyl disulfide and allyl mercaptan. The presence of phenolic compounds that react with the volatile compounds even in the absence of enzymes is the most likely mechanism. Green tea had no deodorizing effect on the garlic volatile compounds. Rosmarinic acid, catechin, quercetin, and PPO significantly decreased all garlic breath volatiles in vitro. Rosmarinic acid was the most effective at deodorization. © 2016 Institute of Food Technologists®.
Network of listed companies based on common shareholders and the prediction of market volatility
NASA Astrophysics Data System (ADS)
Li, Jie; Ren, Da; Feng, Xu; Zhang, Yongjie
2016-11-01
In this paper, we build a network of listed companies in the Chinese stock market based on common shareholding data from 2003 to 2013. We analyze the evolution of topological characteristics of the network (e.g., average degree, diameter, average path length and clustering coefficient) with respect to the time sequence. Additionally, we consider the economic implications of topological characteristic changes on market volatility and use them to make future predictions. Our study finds that the network diameter significantly predicts volatility. After adding control variables used in traditional financial studies (volume, turnover and previous volatility), network topology still significantly influences volatility and improves the predictive ability of the model.
Resource Prospector: An Update on the Lunar Volatiles Prospecting and ISRU Demonstration Mission
NASA Technical Reports Server (NTRS)
Colaprete, A.; Elphic, R.; Andrews, D.; Trimble, J.; Bluethmann, B.; Quinn, J.; Chavers, G.
2016-01-01
Over the last two decades a wealth of new observations of the moon have demonstrated a lunar water system dramatically more complex and rich than was deduced following the Apollo era. Lunar water, and other volatiles, have the potential to be a valuable or enabling resource for future exploration. The NASA Human Exploration and Operations Mission Directorate (HEOMD) have selected a lunar volatiles prospecting mission for a concept study and potential flight in CY2021. The mission includes a rover-borne payload that (1) can locate surface and near-subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials.
Resource Prospector: An Update on the Lunar Volatiles Prospecting and ISRU Demonstration Mission
NASA Technical Reports Server (NTRS)
Colaprete, A.; Elphic, R.; Andrews, D.; Trimble, J.; Bluethmann, B.; Quinn, J.; Chavers, G.
2017-01-01
Over the last two decades a wealth of new observations of the moon have demonstrated a lunar water system dramatically more complex and rich than was deduced following the Apollo era. Lunar water, and other volatiles, have the potential to be a valuable or enabling resource for future exploration. The NASA Human Exploration and Operations Mission Directorate (HEOMD) have selected a lunar volatiles prospecting mission for a concept study and potential flight in CY2021. The mission includes a rover-borne payload that (1) can locate surface and near-subsurface volatiles, (2) excavate and analyze samples of the volatile- bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials.
40 CFR 59.510 - What records am I required to maintain?
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.510 What records... providing the written certification to the Administrator in accordance with § 59.511(g), the certifying...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Biochemical pesticide plant floral... (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1127 Biochemical pesticide plant floral volatile attractant compounds...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Biochemical pesticide plant floral... (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1127 Biochemical pesticide plant floral volatile attractant compounds...
40 CFR 60.622 - Standards for volatile organic compounds.
Code of Federal Regulations, 2010 CFR
2010-07-01
... compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected petroleum solvent dry cleaning dryer that is installed at a petroleum dry cleaning plant after December 14, 1982...
40 CFR 60.622 - Standards for volatile organic compounds.
Code of Federal Regulations, 2011 CFR
2011-07-01
... compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected petroleum solvent dry cleaning dryer that is installed at a petroleum dry cleaning plant after December 14, 1982...
40 CFR 60.622 - Standards for volatile organic compounds.
Code of Federal Regulations, 2012 CFR
2012-07-01
... compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected petroleum solvent dry cleaning dryer that is installed at a petroleum dry cleaning plant after December 14, 1982...
ANALYSIS OF VOLATILES AND SEMIVOLATILES BY DIRECT AQUEOUS INJECTION
Direct aqueous injection analysis (DAI) with gas chromatographic separation and ion trap mass spectral detection was used to analyze aqueous samples for g/L levels of 54 volatile and semivolatile compounds, and problematic non-purgeables and non-extractables. The method reduces ...
Rossi, Serena; Sileoni, Valeria; Perretti, Giuseppe; Marconi, Ombretta
2014-03-30
The objective of this study was a multivariate characterization of the volatile profile of beers. Such a characterization is timely considering the increasing worldwide consumption of beer, the continuous growth of microbreweries and the importance of volatile compounds to beer flavour. A method employing solid-phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS) was optimized and then applied to a sample set of 36 industrial and craft beers of various styles and fermentation types. The volatile profiles of different beer styles is described, with particular attention paid to the volatile compounds characteristic of a spontaneously fermented lambic raspberry framboise beer. Furthermore, it was also possible to identify which specific volatile compounds are principally responsible for the differences in the volatile profiles of top- and bottom-fermented beers. Moreover, a volatile fingerprint of the craft top-fermented Italian beers was defined, as they show a very similar volatile profile. Finally, the volatile compounds that are characteristic of the bock-style beers are described. The SPME-GC-MS analytical method optimized in this study is suitable for characterizing the volatile fingerprint of different beers, especially on the basis of the kind of fermentation (top, bottom or spontaneous), the method of production and the style of the beer. © 2013 Society of Chemical Industry.
The U.S. EPA's current regulatory approach for combustion and incineration sources emphasizes the use of real-time continuous emission monitors (CEMs) for particulate, Metals, and volatile, semivolatile, and of nonvolatile organic compounds to monitor source emissions. Currently...
Quantitative organic vapor-particle sampler
Gundel, Lara; Daisey, Joan M.; Stevens, Robert K.
1998-01-01
A quantitative organic vapor-particle sampler for sampling semi-volatile organic gases and particulate components. A semi-volatile organic reversible gas sorbent macroreticular resin agglomerates of randomly packed microspheres with the continuous porous structure of particles ranging in size between 0.05-10 .mu.m for use in an integrated diffusion vapor-particle sampler.
CHARACTERIZATION OF EMISSIONS OF VOLATILE ORGANIC COMPOUNDS FROM INTERIOR ALKYD PAINT
Alkyd paint continues to be used indoors for application to wood trim, cabinet surfaces, and some kitchen and bathroom walls. Paint may represent a significant source of volatile organic compounds (VOCs) indoors depending on the frequency of use and amount of surface paint. The U...
Ziadi, M; Wathelet, J P; Marlier, M; Hamdi, M; Thonart, P
2008-08-01
The volatile compounds that characterize Leben during fermentation with 2 Lactococcus lactis strains (SLT6 and SLT10) in flasks, in a 100-L fermentor, and during storage at 4 degrees C, were investigated and compared to those from commercial Leben. Volatile compounds from Leben were concentrated by a Carboxen-PDMS fiber and analyzed by GC-MS. These compounds include acids, alcohols, aldehydes, ketones, sulfur compounds, and hydrocarbons. Commercial Leben presented a poor volatile profile compared to the laboratory-made Leben. The mixed culture of 2 Lactococcus lactis strains resulted in higher volatile compound formation than the single strain culture. The GC volatile profiles of Leben produced in flask and in the 100-L fermentor were similar. Changes in volatile compounds were observed during storage at 4 degrees C. The effect of culture conditions on production of volatiles by SLT6 strain was studied. Aeration (0.1 mL/min) and agitation enhanced the production of diacetyl, acetoin, 3-methylbutanal, and 3-methylbutanol. Fermentation at pH 5 had no effect on volatile production.
Liu, Jianmin; Wang, Baoyu; Tai, Chao; Wu, Li; Zhao, Han; Guan, Jiadong; Chen, Linyong
2016-01-01
Bioconversion of coal to methane has gained increased attention in recent decades because of its economic and environmental advantages. However, the mechanism of this process is difficult to study in depth, partly because of difficulties associated with the analysis of intermediates generated in coal bioconversion. In this investigation, we report on an effective method to analyze volatile intermediates generated in the bioconversion of coal under strict anaerobic conditions. We conduct in-situ extraction of intermediates using headspace solid-phase micro-extraction followed by detection by gas chromatography-mass spectrometry. Bioconversion simulation equipment was modified and combined with a solid-phase micro-extraction device. In-situ extraction could be achieved by using the combined units, to avoid a breakdown in anaerobic conditions and to maintain the experiment continuity. More than 30 intermediates were identified qualitatively in the conversion process, and the variation in trends of some typical intermediates has been discussed. Volatile organic acids (C2-C7) were chosen for a quantitative study of the intermediates because of their importance during coal bioconversion to methane. Fiber coating, extraction time, and solution acidity were optimized in the solid-phase micro-extraction procedure. The pressure was enhanced during the bioconversion process to investigate the influence of headspace pressure on analyte extraction. The detection limits of the method ranged from 0.0006 to 0.02 mmol/L for the volatile organic acids and the relative standard deviations were between 4.6% and 11.5%. The volatile organic acids (C2-C7) generated in the bioconversion process were 0.01-1.15 mmol/L with a recovery range from 80% to 105%. The developed method is useful for further in-depth research on the bioconversion of coal to methane.
Liu, Jianmin; Wang, Baoyu; Tai, Chao; Wu, Li; Zhao, Han; Guan, Jiadong; Chen, Linyong
2016-01-01
Bioconversion of coal to methane has gained increased attention in recent decades because of its economic and environmental advantages. However, the mechanism of this process is difficult to study in depth, partly because of difficulties associated with the analysis of intermediates generated in coal bioconversion. In this investigation, we report on an effective method to analyze volatile intermediates generated in the bioconversion of coal under strict anaerobic conditions. We conduct in-situ extraction of intermediates using headspace solid-phase micro-extraction followed by detection by gas chromatography-mass spectrometry. Bioconversion simulation equipment was modified and combined with a solid-phase micro-extraction device. In-situ extraction could be achieved by using the combined units, to avoid a breakdown in anaerobic conditions and to maintain the experiment continuity. More than 30 intermediates were identified qualitatively in the conversion process, and the variation in trends of some typical intermediates has been discussed. Volatile organic acids (C2–C7) were chosen for a quantitative study of the intermediates because of their importance during coal bioconversion to methane. Fiber coating, extraction time, and solution acidity were optimized in the solid-phase micro-extraction procedure. The pressure was enhanced during the bioconversion process to investigate the influence of headspace pressure on analyte extraction. The detection limits of the method ranged from 0.0006 to 0.02 mmol/L for the volatile organic acids and the relative standard deviations were between 4.6% and 11.5%. The volatile organic acids (C2–C7) generated in the bioconversion process were 0.01–1.15 mmol/L with a recovery range from 80% to 105%. The developed method is useful for further in-depth research on the bioconversion of coal to methane. PMID:27695055
Ono, Toshirou; Yonejima, Yasunori; Ikeda, Atsushi; Kashima, Yusei; Nakaya, Satoshi; Miyazawa, Mitsuo
2014-01-01
Volatile oils obtained from both the liquid medium after incubation (MAI) and liquid medium before incubation (MBI) in the cultivation process of Lactobacillus acidophilus were isolated by hydrodistillation (HD) and analyzed to investigate the utility of the liquid waste. The composition of the volatile oils was analyzed by capillary gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). In total, 46 and 19 compounds were detected in the volatile oils from MAI (MAI oil) and MBI (MBI oil), respectively. The principle components of MAI oil were fatty acids, including pentanoic acid (12.75%), heptanoic acid (14.05%), and nonanoic acid (14.04%). The important aroma-active compounds in the oils were detected by GC-MS/Olfactometry (GC-O), and their intensity of aroma were measured by aroma extraction dilution analysis (AEDA). Pyrazines were determined as key aroma components; in particular, 2-ethyl-5-methylpyrazine was the most primary aroma-active compound in MAI oil. In addition, as the characteristic aroma-active compounds, 3-(methylthio)-propanal, trimethylpyrazine, and pentanoic acid were also detected in MAI oil. These results imply that the waste medium after incubation of L. acidophilus may be utilized as a source of volatile oils.
Ren, Jiwei; Yuan, Xufeng; Li, Jie; Ma, Xuguang; Zhao, Ye; Zhu, Wanbing; Wang, Xiaofen; Cui, Zongjun
2014-03-01
The two-phase anaerobic co-digestion of cassava dregs (CD) with pig manure (PM) was evaluated using four sequencing batch reactors (SBRs) and a continuously stirred tank reactor (CSTR). The effect of seven different PM to CD volatile solid ratios (10:0, 8:2, 6:4, 5:5, 4:6, 2:8 and 0:10) on the acidification phase was investigated. Results indicated the concentrations of soluble chemical oxygen demand, NH4-N and volatile fatty acids increased substantially at seven ratios. Co-acidification of PM and CD performed well. Methanogenic fermentation of the acidification products at seven ratios was steady in CSTR. The highest methane yield and VS removal of 0.352m(3)/kg VSadded and 68.5% were achieved at PM:CD (4:6). The microbial population in CSTR was analyzed using molecular methods. Findings revealed that bacteria such as Firmicutes and Bacteroidetes, archaea such as Methanobacteriales and Methanomicrobiales were advantageous populations. Co-digestion of PM and CD supported higher quantity and diversity of methanogens. Copyright © 2014 Elsevier Ltd. All rights reserved.
Microbial volatile organic compounds in moldy interiors: a long-term climate chamber study.
Schuchardt, Sven; Strube, Andrea
2013-06-01
The present study simulated large-scale indoor mold damage in order to test the efficiency of air sampling for the detection of microbial volatile organic compounds (MVOCs). To do this, a wallpaper damaged by condensation was stored in a climate chamber (representing a hypothetical test room of 40 m(3) volume) and was inoculated with 14 typical indoor fungal strains. The chamber ventilation conditions were adjusted to common values found in moldy homes, and the mold growth was allowed to continue to higher than average values. The MVOC content of the chamber air was analyzed daily for a period of 105 days using coupled gas chromatography/mass spectrometry (GC-MS). This procedure guarantees MVOC profiling without external factors such as outdoor air, building materials, furniture, and occupants. However, only nine MVOCs could be detected during the sampling period, which indicates that the very low concentrated MVOCs are hardly accessible, even under these favorable conditions. Furthermore, most of the MVOCs that were detected cannot be considered as reliable indicators of mold growth in indoor environments. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Volatile compounds of dry beans (Phaseolus vulgaris L.).
Oomah, B Dave; Liang, Lisa S Y; Balasubramanian, Parthiba
2007-12-01
Volatile compounds of uncooked dry bean (Phaseolus vulgaris L.) cultivars representing three market classes (black, dark red kidney and pinto) grown in 2005 were isolated with headspace solid phase microextraction (HS-SPME), and analyzed with gas chromatography mass spectrometry (GC-MS). A total of 62 volatiles consisting of aromatic hydrocarbons, aldehydes, alkanes, alcohols and ketones represented on average 62, 38, 21, 12, and 9 x 10(6) total area counts, respectively. Bean cultivars differed in abundance and profile of volatiles. The combination of 18 compounds comprising a common profile explained 79% of the variance among cultivars based on principal component analysis (PCA). The SPME technique proved to be a rapid and effective method for routine evaluation of dry bean volatile profile.
Zhao, Hong-bing; Wang, Zhi-hui; He, Fang; Meng, Han; Peng, Jian-hua; Shi, Ji-lian
2015-04-01
To analyze the volatile components in different processed products of Zingiber officinale rhizome, and to make clear the effect of different heating degree on them. The volatile components were extracted from four kinds of processed products by applying steam distillation, and then were analyzed by GC-MS. There were totally 43 components of volatile oil identified from four kinds of processed products of Zingiber officinale rhizome. Fresh product, dried product, and charcoal product of Zingiber officinale rhizome each had 27 components of volatile oil, while sand fried product contained 24 components. Fresh Zingiber officinale rhizome contained 22. 59% of zingiberene, 20. 87% of a-citral and 11. 01% of β-phellandrene, respectively. After processing in different heating degree, the volatile components changed greatly in both of their quantity and quality, For instance, dried Zingiber officinale rhizome contained 40. 48% of α-citral and 8-phellandrene content was slightly lower at 10. 38%. 32.73% of 3,7,11-trimethyl-l, 6, 10-dodecatriene,16. 38% of murolan-3, 9 (11)-diene-10-peroxy and 3. 36% of cubebene newly emerged in the sand fried Zingiber officinale rhizome, and eudesm-4 (14) and β-bisabolol, etc. However, β-phellandrene content was only 1. 95%. The zingiberene and β-sesquiphellandrene were the highest in charcoal product, besides, new components such as α-cedrene, decanal and γ-elemene appeared. Volatile components in different processed products of Zingiber officinale rhizome were different in both of their kinds and contents. This method is suitable for the analysis of volatile components in Zingiber officinale rhizome, and this study can provide the experimental evidence for quality evaluation and clinical application for ginger processed products.
2012-04-01
for automated SPME headspace sampling and in-line with a Thermo DSQII single quadrupole mass spectrometer. Collection of organic volatiles from the...urine was accomplished using a 2cm CAR/DVB/PDMS solid phase micro extraction fiber ( SPME ), Supelco supplier, inserted by the Triplus autosampler into...automated direct injection. Volatiles gathered by the SPME fiber were analyzed through desorption of the fiber by heating to elevated temperature and
Resource Prospector: Evaluating the ISRU Potential of the Lunar Poles
NASA Technical Reports Server (NTRS)
Colaprete, A.; Elphic, R.; Andrews, D.; Trimble, J.; Bluethmann, B.; Quinn, J.; Chavers, G.
2017-01-01
Resource Prospector (RP) is a lunar volatiles prospecting mission being developed for potential flight in CY2021-2022. The mission includes a rover-borne payload that (1) can locate surface and near-subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. The primary mission goal for RP is to evaluate the In-Situ Resource Utilization (ISRU) potential of the lunar poles.
Thompson-Witrick, Katherine A; Rouseff, Russell L; Cadawallader, Keith R; Duncan, Susan E; Eigel, William N; Tanko, James M; O'Keefe, Sean F
2015-03-01
Lambic is a beer style that undergoes spontaneous fermentation and is traditionally produced in the Payottenland region of Belgium, a valley on the Senne River west of Brussels. This region appears to have the perfect combination of airborne microorganisms required for lambic's spontaneous fermentation. Gueuze lambic is a substyle of lambic that is made by mixing young (approximately 1 year) and old (approximately 2 to 3 years) lambics with subsequent bottle conditioning. We compared 2 extraction techniques, solid-phase microextraction (SPME) and continuous liquid-liquid extraction/solvent-assisted flavor evaporation (CCLE/SAFE), for the isolation of volatile compounds in commercially produced gueuze lambic beer. Fifty-four volatile compounds were identified and could be divided into acids (14), alcohols (12), aldehydes (3), esters (20), phenols (3), and miscellaneous (2). SPME extracted a total of 40 volatile compounds, whereas CLLE/SAFE extracted 36 volatile compounds. CLLE/SAFE extracted a greater number of acids than SPME, whereas SPME was able to isolate a greater number of esters. Neither extraction technique proved to be clearly superior and both extraction methods can be utilized for the isolation of volatile compounds found in gueuze lambic beer. © 2015 Institute of Food Technologists®
Volatility and Growth in Populations of Rural Associations
ERIC Educational Resources Information Center
Wollebaek, Dag
2010-01-01
This article uses unique community-level data aggregated from censuses of associations to analyze growth and volatility in rural populations of grassroots associations. A qualitative comparative analysis (QCA) shows that the two main paths to growth were (1) centralization in polycephalous (multicentered) municipalities and (2) population growth…
The objective of this procedure is to collect representative samples of volatile organic compound (VOC) contaminants present in indoor and outdoor environments using multisorbent samplers, and to subsequently analyze the concentration of VOCs, as selected by EPA.
IDENTIFICATION OF POLAR VOLATILE ORGANIC COMPOUNDS IN CONSUMER PRODUCTS AND COMMON MICROENVIRONMENTS
Polar volatile organic compounds were identified in the headspace of 31 fragrance products such as perfumes, colognes and soaps. About 150 different chemicals were identified in a semiquantitative fashion, using two methods to analyze the headspace: direct injection into a gas ch...
Headspace Volatiles of Scutellaria Baicalensis Georgi Flowers
USDA-ARS?s Scientific Manuscript database
Volatile constituents of Baikal skullcap (Scutellaria baicalensis Georgi) flowers were isolated by solid-phase microextraction (SPME) and analyzed by GC and GC/MS. A total of 64 constituents was identified (constituting 57.1 – 89.9% of the total area), 13 of which were tentatively identified. beta...
Tomographic location of potential melt-bearing phenocrysts in lunar glass spherules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebel, D.S.; Fogel, R.A.; Rivers, M.L.
2005-02-04
Apollo 17 orange glass spherules contain olivine phenocrysts with melt inclusions from depth. Tomography (<2micron/pxl) of >200 spherules located 1 phenocryst. We will try to find melt inclusions and obtain original magma volatiles and compositions. In 1971, Apollo 17 astronauts collected a 10 cm soil sample (74220) comprised almost entirely of orange glass spherules. Below this, a double drive-tube core sampled a 68 cm thick horizon comprised of orange glass and black beads (crystallized equivalents of orange glass). Primitive lunar glass spherules (e.g.-A17 orange glasses) are thought to represent ejecta from lunar mare fire fountains. The fire-fountains were apparently drivenmore » by a combination of C-O gas exsolution from orange glass melt and the oxidation of graphite. Upon eruption, magmas lost their volatiles (e.g., S, CO, CO{sub 2}) to space. Evidence for volatile escape remains as volatile-rich coatings on the exteriors of many spherules. Moreover, it showed that Type I and II Fe-Ni-rich metal particles found within orange glass olivine phenocrysts, or free-floating in the glass itself, are powerful evidence for the volatile driving force for lunar fire fountains. More direct evidence for the volatile mechanism has yet to be uncovered. Issues remaining include: the exact composition of magmatic volatiles; the hypothesized existence of graphite in the magma; the oxygen fugacity of the magma and of the lunar interior. In 1996 reported a single {approx}450 micron, equant olivine phenocryst, containing four glassy melt inclusions (or inclusion cores), the largest {approx}30micron in size, in a thin section of the 74001/2 drill core. The melt is assumed to sample the parent magma of the lunar basalts at depth, evidenced by the S content of the inclusion (600 ppm) which is 400 ppm greater than that of the orange glass host. Such melts potentially contain a full complement of the volatile components of the parent magma, which can be analyzed by infrared spectroscopy. Although the A17 orange glass magma is thought to derive from {approx} 400 km depth, the calculations imply a 4 km depth of graphite oxidation (and melt saturation in C-O volatiles) during ascent. We have imaged several hundred similar orange glass spherules, from sample 74220,764, using synchrotron x-ray computer-aided microtomography (XRCMT). Our goals: (1) locate similar phenocrysts containing melt inclusions; (2) analyze phenocrysts to understand the evolution of the magma; (3) analyze melt and fluid inclusions using EPMA and FTIR to obtain direct evidence of magmatic volatiles and pristine bulk compositions.« less
40 CFR 60.542a - Alternate standard for volatile organic compounds.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for the Rubber Tire Manufacturing Industry § 60.542a Alternate standard for volatile organic compounds. (a) On and after the date on which the initial performance test, required by § 60.8, is completed, but no...
Naznin, Hushna Ara; Kimura, Minako; Miyazawa, Mitsuo; Hyakumachi, Mitsuro
2013-01-01
We extracted volatile organic compounds (VOCs) emitted by a plant growth-promoting fungus (PGPF) Phoma sp. GS8-3 by gas chromatography and identified them by mass spectrometry. All of the identified compounds belonged to C4-C8 hydrocarbons. Volatiles varied in number and quantity by the culture period of the fungus (in days). 2-Methyl-propanol and 3-methyl-butanol formed the main components of the volatile blends for all the culture periods of fungus. Growth-promoting effects of the identified synthetic compounds were analyzed individually and in blends using tobacco plants. We found that the mixture of volatiles extracted from 3-day-old culture showed significant growth promotion in tobacco in vitro. The volatile blend showed better growth promotion at lower than higher concentrations. Our results confirm the potential role of volatile organic compounds in the mechanism of growth enhancement by GS8-3. PMID:23080408
Volatile compounds in samples of cork and also produced by selected fungi.
Barreto, M C; Vilas Boas, L; Carneiro, L C; San Romão, M V
2011-06-22
The production of volatile compounds by microbial communities of cork samples taken during the cork manufacturing process was investigated. The majority of volatiles were found in samples collected at two stages: resting after the first boiling and nontreated cork disks. Volatile profiles produced by microbiota in both stages are similar. The releasable volatile compounds and 2,4,6-trichloroanisole (TCA) produced in cork-based culture medium by five isolated fungal species in pure and mixed cultures were also analyzed by gas chromatography coupled with mass spectrometry (GC-MS).The results showed that 1-octen-3-ol and esters of fatty acids (medium chain length C8-C20) were the main volatile compounds produced by either pure fungal species or their mixture. Apparently, Penicillium glabrum is the main contributor to the overall volatile composition observed in the mixed culture. The production of releasable TCA on cork cannot be attributed to any of the assayed fungal isolates.
Kim, Youngmok; Lee, Kwang-Geun; Kim, Mina K
2016-10-01
Current study was designed to find out how tea harvesting time affects the volatile and non-volatile compounds profiles of green tea. In addition, correlation of instrumental volatile and non-volatile compounds analyses to consumer perception were analyzed. Overall, earlier harvested green tea had stronger antioxidant capacity (~61.0%) due to the polyphenolic compounds from catechin (23,164 mg/L), in comparison to later harvested green teas (11,961 mg/L). However, high catechin content in green tea influenced negatively the consumer likings of green tea, due to high bitterness (27.6%) and astringency (13.4%). Volatile compounds drive consumer liking of green tea products were also identified, that included linalool, 2,3-methyl butanal, 2-heptanone, (E,E)-3,5-Octadien-2-one. Finding from current study are useful for green tea industry as it provide the difference in physiochemical properties of green tea harvested at different intervals.
Characterization by volatile compounds of microbial deep spoilage in Iberian dry-cured ham.
Martín, Alberto; Benito, María J; Aranda, Emilio; Ruiz-Moyano, Santiago; Córdoba, Juan J; Córdoba, María G
2010-08-01
In the present study, volatile compounds of spoiled dry-cured Iberian ham with deep spoilage or "bone taint" were analyzed and correlated with level of spoilage and the microorganisms detected. Volatile compounds extracted by a solid phase micro-extraction technique were assayed by gas chromatography/mass spectrometry. The spoiled hams were evaluated sensorially, and the correlations among volatile compounds, spoilage level, and microbial counts were studied. The spoiled hams had higher concentrations of hydrocarbons, alcohols, acids, esters, pyrazines, sulfur compounds, and other minor volatile compounds than unspoiled hams. The sensorial analysis showed that the spoilage level of hams correlated with several volatile compounds, most of them associated with Gram-positive catalase positive cocci and Enterobacteriaceae counts. Cyclic compounds such as cyclohexanone, some ethers, and pyrazines should be considered as indicators to monitor incipient microbial deep spoilage in the elaboration of this meat product.
Mastelić, J; Jerković, I; Blazević, I; Radonić, A; Krstulović, L
2008-08-15
Proposed method of hydrodistillation-adsorption (HDA) on activated carbon and hydrodistillation (HD) with solvent trap were compared for the isolation of water-soluble, non-soluble and high volatile compounds, such as acids, monoterpenes, isothiocyanates and others from carob (Certonia siliqua L.), rosemary (Rosmarinus officinalis L.) and rocket (Eruca sativa L.). Isolated volatiles were analyzed by GC and GC/MS. The main advantages of HDA method over ubiquitous HD method were higher yields of volatile compounds and their simultaneous separation in three fractions that enabled more detail analyses. This method is particularly suitable for the isolation and analysis of the plant volatiles with high amounts of water-soluble compounds. In distinction from previously published adsorption of remaining volatile compounds from distillation water on activated carbon, this method offers simultaneous hydrodistillation and adsorption in the same apparatus.
Shao, Li; Bao, Mei-Hua; Ouyang, Dong-Sheng; Wang, Chong-Zhi; Yuan, Chun-Su; Zhou, Hong-Hao; Huang, Wei-Hua
2014-11-27
Volatile oil from the root bark of Oplopanax horridus is regarded to be responsible for the clinical uses of the title plant as a respiratory stimulant and expectorant. Therefore, a supercritical fluid extraction method was first employed to extract the volatile oil from the roots bark of O. horridus, which was subsequently analyzed by GC/MS. Forty-eight volatile compounds were identified by GC/MS analysis, including (S,E)-nerolidol (52.5%), τ-cadinol (21.6%) and S-falcarinol (3.6%). Accordingly, the volatile oil (100 g) was subjected to chromatographic separation and purification. As a result, the three compounds, (E)-nerolidol (2 g), τ-cadinol (62 mg) and S-falcarinol (21 mg), were isolated and purified from the volatile oil, the structures of which were unambiguously elucidated by detailed spectroscopic analysis including 1D- and 2D-NMR techniques.
Yener, Sine; Navarini, Luciano; Lonzarich, Valentina; Cappellin, Luca; Märk, Tilmann D; Bonn, Günther K; Biasioli, Franco
2016-09-01
This study applies proton transfer reaction time-of-flight mass spectrometry for the rapid analysis of volatile compounds released from single coffee beans. The headspace volatile profiles of single coffee beans (Coffeea arabica) from different geographical origins (Brazil, Guatemala and Ethiopia) were analyzed via offline profiling at different stages of roasting. The effect of coffee geographical origin was reflected on volatile compound formation that was supported by one-way ANOVA. Clear origin signatures were observed in the formation of different coffee odorants. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Multifractal analysis of implied volatility in index options
NASA Astrophysics Data System (ADS)
Oh, GabJin
2014-06-01
In this paper, we analyze the statistical and the non-linear properties of the log-variations in implied volatility for the CAC40, DAX and S& P500 daily index options. The price of an index option is generally represented by its implied volatility surface, including its smile and skew properties. We utilize a Lévy process model as the underlying asset to deepen our understanding of the intrinsic property of the implied volatility in the index options and estimate the implied volatility surface. We find that the options pricing models with the exponential Lévy model can reproduce the smile or sneer features of the implied volatility that are observed in real options markets. We study the variation in the implied volatility for at-the-money index call and put options, and we find that the distribution function follows a power-law distribution with an exponent of 3.5 ≤ γ ≤ 4.5. Especially, the variation in the implied volatility exhibits multifractal spectral characteristics, and the global financial crisis has influenced the complexity of the option markets.
Changes in dark chocolate volatiles during storage.
Nightingale, Lia M; Cadwallader, Keith R; Engeseth, Nicki J
2012-05-09
Chocolate storage is critical to the quality of the final product. Inadequate storage, especially with temperature fluctuations, may lead to a change in crystal structure, which may eventually cause fat bloom. Bloom is the main cause of quality loss in the chocolate industry. The impact of various storage conditions on the flavor quality of dark chocolate was determined. Dark chocolate was stored in different conditions leading to either fat or sugar bloom and analyzed at 0, 4, and 8 weeks of storage. Changes in chocolate flavor were determined by volatile analysis and descriptive sensory evaluation. Results were analyzed by analysis of variance (ANOVA), cluster analysis, principal component analysis (PCA), and linear partial least-squares regression analysis (PLS). Volatile concentration and loss were significantly affected by storage conditions. Chocolates stored at high temperature were the most visually and texturally compromised, but volatile concentrations were affected the least, whereas samples stored at ambient, frozen, and high relative humidity conditions had significant volatile loss during storage. It was determined that high-temperature storage caused a change in crystal state due to the polymorphic shift to form VI, leading to an increase in sample hardness. Decreased solid fat content (SFC) during high-temperature storage increased instrumentally determined volatile retention, although no difference was detected in chocolate flavor during sensory analysis, possibly due to instrumental and sensory sampling techniques. When all instrumental and sensory data had been taken into account, the storage condition that had the least impact on texture, surface roughness, grain size, lipid polymorphism, fat bloom formation, volatile concentrations, and sensory attributes was storage at constant temperature and 75% relative humidity.
This document is designed to offer the data reviewer guidance in determining the validity of analytical data from the analysis of Volatile Organic Compounds in air samples taken in canisters and analyzed by method TO-15.
USDA-ARS?s Scientific Manuscript database
Jiaogulan [Gynostemma pentaphyllum (Thunb.) Makino] is a Chinese medical plant from southern Asia that has rapidly gained popularity and interest for its health-promotive and therapeutic properties. The volatile composition of jiaogulan tea was analyzed by using headspace-solid phase microextraction...
Behavioural responses of wheat stem sawflies to wheat volatiles
D. Piesik; D. K. Weaver; J. B. Runyon; M. Buteler; G. E. Peck; W. L. Morrill
2008-01-01
1) Adult wheat stem sawflies Cephus cinctus, pests of cultivated cereals that also infests wild grasses, migrate into wheat fields where they oviposit in elongating, succulent stems. 2) Volatiles released by wheat plants at susceptible stages were analyzed to determine potential semiochemical compounds. Seven major compounds were identified and...
Method T)-15 describes procedures for for preparation and analysis of air samples containing volatile organic compounds collected in specially-prepared canisters, using gas chromatography-mass spectrometry.
An adaptation of Office of Solid Waste and Emergency Response' Test Methods for Evaluating Solid Waste Physical/Chemical Methods (SW-846) method 8261 to analyze milk for an expanded list of volatile organic compounds is presented. The milk matriz exhibits a strong affinity for o...
The objective of this procedure is to collect a representative sample of air containing volatile organic compound (VOC) contaminants present in an indoor environment using an evacuated canister, and to subsequently analyze the concentration of VOCs, as selected by EPA.
Volatile constituents of commercial imported and domestic black-ripe table olives (Olea europaea)
USDA-ARS?s Scientific Manuscript database
Volatile constituents of commercial black-ripe table olives (Olea europaea) from the United States, Spain, Egypt and Morocco were analyzed by gas chromatography and gas chromatography-mass spectrometry (GC-MS). Dynamic headspace sampling was used to isolate a variety of aldehydes, alcohols, esters, ...
Chemical Composition Analysis of Extracts from Ficus Hirta Using Supercritical Fluid
NASA Astrophysics Data System (ADS)
Deng, S. B.; Chen, J. P.; Chen, Y. Z.; Yu, C. Q.; Yang, Y.; Wu, S. H.; Chen, C. Z.
2018-05-01
Ficus hirta was extracted by supercritical carbon dioxide. The volatile chemical components of extracts were analyzed using gas chromatography-mass spectrometry (GC-MS). The percentage of products extracted by Supercritical Fluid Extraction(SFE) was 2.5%. Nineteen volatile compounds were identified. The main volatile components were Elemicin, Psoralen, Palmitic acid, Bergapten, α-Linolenic acid, Medicarpin, Retinoic Acid, Maackiain, and Squalene. The method is simple and quick, and can be used for the preliminary analysis of chemical constituents of supercritical extracts of Ficus hirta.
Zhang, Xin Hua; da Silva, Jaime A Teixeira; Jia, Yong Xia; Zhao, Jie Tang; Ma, Guo Hua
2012-01-01
The chemical composition of volatile compounds from pericarp oils of Indian sandalwood, Santalum album L., isolated by hydrodistillation and solvent extraction, were analyzed by GC and GC-MS. The pericarps yielded 2.6 and 5.0% volatile oil by hydrodistillation and n-hexane extraction, and they were colorless and yellow in color, respectively. A total of 66 volatile components were detected. The most prominent compounds were palmitic and oleic acids, representing about 40-70% of the total oil. Many fragrant constituents and biologically active components, such as alpha- and beta-santalol, cedrol, esters, aldehydes, phytosterols, and squalene were present in the pericarp oils. This is the first report of the volatile composition of the pericarps of any Santalum species.
2014-01-01
Volatile components in cape gooseberry fruit at ripe stage were collected using headspace-solid phase microextraction, and analyzed by gas chromatography-mass spectrometry. Three solid phase microextraction fiber coatings (DVB/CAR/PDMS, CAR/PDMS, and PDMS/DVB) were tested for evaluation of volatile compounds. DVB/CAR/PDMS fiber showed a strong extraction capacity for volatile compounds and produced the best result in case of total peak areas. A total of 133 volatile compounds were identified in fruit pulp; among them 1-hexanol (6.86%), eucalyptol (6.66%), ethyl butanoate (6.47%), ethyl octanoate (4.01%), ethyl decanoate (3.39%), 4-terpineol (3.27%), and 2-methyl-1-butanol (3.10%) were the major components in the sample extracts. PMID:24741358
Yilmaztekin, Murat
2014-01-01
Volatile components in cape gooseberry fruit at ripe stage were collected using headspace-solid phase microextraction, and analyzed by gas chromatography-mass spectrometry. Three solid phase microextraction fiber coatings (DVB/CAR/PDMS, CAR/PDMS, and PDMS/DVB) were tested for evaluation of volatile compounds. DVB/CAR/PDMS fiber showed a strong extraction capacity for volatile compounds and produced the best result in case of total peak areas. A total of 133 volatile compounds were identified in fruit pulp; among them 1-hexanol (6.86%), eucalyptol (6.66%), ethyl butanoate (6.47%), ethyl octanoate (4.01%), ethyl decanoate (3.39%), 4-terpineol (3.27%), and 2-methyl-1-butanol (3.10%) were the major components in the sample extracts.
The Role of Volatiles in Volcanism at Loki and other Hotspots on Io
NASA Astrophysics Data System (ADS)
Howell, Robert R.; Allen, D. R.; Landis, C. E.; Lopes, R. M. C.
2012-10-01
To determine the role of volatiles in volcanic processes on Io we are analyzing Voyager, Galileo, and New Horizons images to obtain colors and high resolution maps near hotspots, in particular Loki. We are also producing numerical transport models for volatiles such as sulfur. As a part of this effort we have also developed Python-based software tools for updating the Voyager and Galileo NAIF pointing kernels, and for analyzing the observations themselves. At Loki, despite their relatively low abundance, volatiles clearly play a significant role. Color photometry of the small bright spots colloquially known as "sulfur bergs", which we suspect are fumarole deposits, show their reflectance is consistent with sulfur but not sulfur dioxide. Mapping of their location shows they avoid the patera margins, and may show other spatial patterns. Preliminary transport models suggest their sizes are consistent with that expected for sulfur fumarole deposits over cooled lava crust. We are currently comparing the high resolution Voyager images with the best available Galileo and New Horizons images to measure changes in the volatile locations over time, and also measure changing locations of nearby silicate flows. We are also beginning stress modeling to understand the structural features seen in island patera such as Loki and are also beginning an analysis of other hotspots such as Tupan.
Liu, Jingke; Zhao, Wei; Li, Shaohui; Zhang, Aixia; Zhang, Yuzong; Liu, Songyan
2018-02-20
The volatile compounds in proso millet wine were extracted by headspace solid-phase microextraction (85 μm polyacrylate (PA), 100 μm polydimethylsiloxane (PDMS), 75 μm Carboxen (CAR)/PDMS, and 50/30 μm divinylbenzene (DVB)/CAR/PDMS fibers), and analyzed using gas chromatography-mass spectrometry; the odor characteristics and intensities were analyzed by the odor activity value (OAV). Different sample preparation factors were used to optimize this method: sample amount, extraction time, extraction temperature, and content of NaCl. A total of 64 volatile compounds were identified from the wine sample, including 14 esters, seven alcohols, five aldehydes, five ketones, 12 benzene derivatives, 12 hydrocarbons, two terpenes, three phenols, two acids, and two heterocycles. Ethyl benzeneacetate, phenylethyl alcohol, and benzaldehyde were the main volatile compounds found in the samples. According to their OAVs, 14 volatile compounds were determined to be odor-active compounds (OAV > 1), and benzaldehyde, benzeneacetaldehyde, 1-methyl-naphthalene, 2-methyl-naphthalene, and biphenyl were the prominent odor-active compounds (OAV > 50), having a high OAV. Principal component analysis (PCA) showed the difference of distribution of the 64 volatile compounds and 14 odor-active compounds with four solid-phase microextraction (SPME) fibers.
Estimation of the Continuous and Discontinuous Leverage Effects
Aït-Sahalia, Yacine; Fan, Jianqing; Laeven, Roger J. A.; Wang, Christina Dan; Yang, Xiye
2017-01-01
This paper examines the leverage effect, or the generally negative covariation between asset returns and their changes in volatility, under a general setup that allows the log-price and volatility processes to be Itô semimartingales. We decompose the leverage effect into continuous and discontinuous parts and develop statistical methods to estimate them. We establish the asymptotic properties of these estimators. We also extend our methods and results (for the continuous leverage) to the situation where there is market microstructure noise in the observed returns. We show in Monte Carlo simulations that our estimators have good finite sample performance. When applying our methods to real data, our empirical results provide convincing evidence of the presence of the two leverage effects, especially the discontinuous one. PMID:29606780
Estimation of the Continuous and Discontinuous Leverage Effects.
Aït-Sahalia, Yacine; Fan, Jianqing; Laeven, Roger J A; Wang, Christina Dan; Yang, Xiye
2017-01-01
This paper examines the leverage effect, or the generally negative covariation between asset returns and their changes in volatility, under a general setup that allows the log-price and volatility processes to be Itô semimartingales. We decompose the leverage effect into continuous and discontinuous parts and develop statistical methods to estimate them. We establish the asymptotic properties of these estimators. We also extend our methods and results (for the continuous leverage) to the situation where there is market microstructure noise in the observed returns. We show in Monte Carlo simulations that our estimators have good finite sample performance. When applying our methods to real data, our empirical results provide convincing evidence of the presence of the two leverage effects, especially the discontinuous one.
Physical phenomena in containerless glass processing
NASA Technical Reports Server (NTRS)
Subramanian, R. S.; Cole, R.; Annamalai, P.; Jayaraj, K.; Kondos, P.; Mcneil, T. J.; Shankar, N.
1982-01-01
Experiments were conducted on bubble migration in rotating liquid bodies contained in a sphere. Experiments were initiated on the migration of a drop in a slightly less dense continuous phase contained in a rotating sphere. A refined apparatus for the study of thermocapillar flow in a glass melt was built, and data were acquired on surface velocities in the melt. Similar data also were obtained from an ambient temperature fluid model. The data were analyzed and correlated with the aid of theory. Data were obtained on flow velocities in a pendant drop heated from above. The motion in this system was driven principally by thermocapillarity. An apparatus was designed for the study of volatilization from a glass melt.
Volatile organic compound measurements in the California/Mexico border region during SCOS97
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zielinska, B.; Sagebiel, J.; Uberna, E.
1999-07-01
Measurements of volatile organic compounds (VOC) were carried out in the California/Mexico border region during the Southern California Ozone study in the Summer of 1997 (SCOS97). Integrated 3-hr samples were collected in Rosarito (south of Tijuana, Mexico) and in Mexicali during Intensive Operational Periods (IOP), twice per IOP day. VOC were collected using stainless-steel 6 L canisters; carbonyl compounds were collected using 2,4-dinitrophenylhydrazine (DNPH) impregnated C{sub 18} SepPak cartridges. The canister samples were analyzed for speciated volatile hydrocarbons (C{sub 2}-C{sub 12}), CO, CO{sub 2}, CH{sub 4}, MTBE, and halogenated hydrocarbons. DNPH-impregnated cartridges were analyzed for fourteen C{sub 1}-C{sub 7} carbonylmore » compounds. The results of these measurements will be discussed.« less
USDA-ARS?s Scientific Manuscript database
Herbivore induced plant volatiles (HIPVs) serve as specific cues to higher trophic levels. Novel, exotic herbivores entering foodwebs with a common co-existence history may disrupt the native infochemical network due to changes in HIPV profiles. Here we analyzed HIPV blends of native Brassica rapa p...
Emission models developed using small chamber data were combined with an Indoor Air Quality (IAQ) model to analyze the impact of volatile organic compound (VOC) emissions from latex paint on indoor environments. Test house experiments were conducted to verify the IAQ model's pred...
Huffman, Raegan L.
2015-01-01
Previous investigations indicate that concentrations of chlorinated volatile organic compounds (CVOCs) are substantial in groundwater beneath the 9-acre former landfill at Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington. The U.S. Geological Survey has continued to monitor groundwater geochemistry to ensure that conditions remain favorable for contaminant biodegradation at the site. This report presents groundwater geochemical and selected CVOC data collected at Operable Unit 1 by the U.S. Geological Survey during June 23–25 and September 4, 2014, in support of long-term monitoring for natural attenuation. Groundwater samples were collected from 13 wells and 9 piezometers, as well as from 10 shallow groundwater passive-diffusion sampling sites in the nearby marsh. Samples from all wells and piezometers were analyzed for oxidation-reduction (redox) sensitive constituents and dissolved gases. Samples from all piezometers and four wells also were analyzed for CVOCs, as were all samples from the passive-diffusion sampling sites. In 2014, concentrations of redox-sensitive constituents measured at all wells and piezometers were consistent with those measured in previous years, with dissolved oxygen concentrations all less than 1 milligram per liter; little to no detectable nitrate; abundant dissolved manganese, iron, and methane; and commonly detected sulfide. In the upper aquifer of the northern plantation in 2014, CVOC concentrations at all piezometers were similar to those measured in previous years, and concentrations of the reductive dechlorination byproducts ethane and ethene were slightly lower or the same as concentrations measured in 2013. In the upper aquifer of the southern plantation, CVOC concentrations measured in piezometers during 2014 continued to be variable as in previous years, often high, and reductive dechlorination byproducts were detected in one of the three wells and in all but two piezometers. Beneath the marsh adjacent to the southern plantation, chloroethene concentrations measured in 2014 continued to vary spatially and temporally, and were high. Trends for total CVOC concentration continued to increase at the historically most contaminated passive‑diffusion sampler sites (S-4, S-4B, and S-5). For the intermediate aquifer in 2014, concentrations of reductive dechlorination byproducts ethane and ethene and CVOCs were consistent with those measured in previous years.
Cai, Yongqing; Hu, Xiaogang; Huang, Mingchun; Sun, Fengjun; Yang, Bo; He, Juying; Wang, Xianfeng; Xia, Peiyuan; Chen, Jianhong
2012-06-25
Rubus parvifolius L. (Rp) is a medicinal herb that possesses antibacterial activity. In this study, we extracted the volatile oil from the leaves of Rp to assess its antibacterial activity and analyze its chemical composition. A uniform distribution design was used to optimize the extraction procedure, which yielded 0.36% (w/w) of light yellowish oil from the water extract of Rp leaves. We found that the extracted oil effectively inhibited the growth of a wide range of Gram positive and negative bacteria, including Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumanii, Bacillus cloacae, and Klebsiella pneumoniae. We further analyzed the components contained in the hydro-distillated Rp volatile oil by gas chromatography-mass spectroscopy. Twenty nine compounds were identified, including 4-hydroxy-3-methoxystyrene (66%), 3,7,11,15-tetramethyl-2-hexadecen-1-ol (10%) and 4-tert-butylbenzoic acid (2%). Our results suggest that one or multiple constituents contained in Rp volatile oil may account for its antibacterial activity.
Ono, Toshirou; Usami, Atsushi; Nakaya, Satoshi; Shinpuku, Hideto; Yonejima, Yasunori; Ikeda, Atsushi; Miyazawa, Mitsuo
2015-01-01
Volatile oils obtained from both the liquid medium after incubation (MAI) and liquid medium before incubation (MBI) during the cultivation process of Lactobacillus brevis were isolated by hydrodistillation (HD) and analyzed to determine the utility of the liquid waste. The composition of the volatile oils was analyzed by capillary gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). In total, 55 and 36 compounds were detected in the volatile oils from MAI (MAI oil) and MBI (MBI oil), respectively. The principle components of MAI oil were N-containing compounds, including 2,3-dimethylpyrazine (16, 37.1 %), methylpyrazine (4, 17.1 %). The important aroma-active compounds in the oils were detected by GC-Olfactometry (GC-O), and their intensity of aroma were measured by aroma extract dilution analysis (AEDA). Expressly, pyrazine compounds were determined as key aroma components; in particular, 2,5-dimethylpyrazine and 2,3-dimethylpyrazine were the most primary aroma-active compound in MAI oil. These results imply that the waste medium after incubation of L. brevis may be utilized as a source of volatile oils.
Isotope ratio mass spectrometry in nutrition research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luke, A.H.
Many of the biochemical pathways and processes that form the foundation of modern nutrition research was elucidated using stable isotopes as physiological tracers. Since the discovery of stable isotopes, improvements and innovations in mass spectrometry and chromatography have led to greatly expanded applications. This research project was designed to evaluate gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) as a tool for isotopic tracer studies and to delineate the operational parameters for the analysis of {sup 13}C-labeled cholesterol, leucine and {alpha}-ketoisocaproate. The same isotope ratio mass spectrometer was then used as the base instrument for the ratio mass spectrometer was then usedmore » as the base instrument for the development of two additional inlet systems: a continuous-flow inlet for the analyses of {sup 13}C and {sup 18}O as CO{sub 2} and a filament inlet for on-line combustion and isotopic analysis of non-volatile organic compounds. Each of these three inlets was evaluated and their utility in nutrition research illustrated. GC/C/IRMS was used to analyze cholesterol, leucine and {alpha}-ketoisocaproate with good accuracy, precision and little isotopic memory. For all three compounds the detection limits achieved well surpassed currently used technologies. For compounds that can be well separated by GC, GC/C/IRMS is a valuable analytical tool. The continuous-flow inlet provided good accuracy and precision for measurements of {sup 13}CO{sub 2} from breath tests and {sup 18}O as CO{sub 2} from total energy expenditure tests. Most importantly, the continuous-flow inlet increased sample throughput by at least a factor of three over conventional analytical techniques. The filament inlet provided accurate and precise {sup 13}C ratio measurements of both natural abundance and enriched standards of non-volatile organic compounds of physiological interest.« less
Volatile Compound-Mediated Interactions between Barley and Pathogenic Fungi in the Soil
Fiers, Marie; Lognay, Georges; Fauconnier, Marie-Laure; Jijakli, M. Haïssam
2013-01-01
Plants are able to interact with their environment by emitting volatile organic compounds. We investigated the volatile interactions that take place below ground between barley roots and two pathogenic fungi, Cochliobolus sativus and Fusarium culmorum. The volatile molecules emitted by each fungus, by non-infected barley roots and by barley roots infected with one of the fungi or the two of them were extracted by head-space solid phase micro extraction and analyzed by gas chromatography mass spectrometry. The effect of fungal volatiles on barley growth and the effect of barley root volatiles on fungal growth were assessed by cultivating both organisms in a shared atmosphere without any physical contact. The results show that volatile organic compounds, especially terpenes, are newly emitted during the interaction between fungi and barley roots. The volatile molecules released by non-infected barley roots did not significantly affect fungal growth, whereas the volatile molecules released by pathogenic fungi decreased the length of barley roots by 19 to 21.5% and the surface of aerial parts by 15%. The spectrum of the volatiles released by infected barley roots had no significant effect on F. culmorum growth, but decreased C. sativus growth by 13 to 17%. This paper identifies the volatile organic compounds emitted by two pathogenic fungi and shows that pathogenic fungi can modify volatile emission by infected plants. Our results open promising perspectives concerning the biological control of edaphic diseases. PMID:23818966
NASA Technical Reports Server (NTRS)
Vander Kaaden, Kathleen E.; Draper, David S.; McCubbin, Francis M.; Neal, Clive R.; Taylor, G. Jeffrey
2017-01-01
Highly volatile elements [condensation temperatures below about 700 K] and water are highly informative about lunar bulk composition (hence origin), differentiation and magmatic evolution, and the role of impacts in delivering volatiles to the Moon. Fractionation of volatile elements compared to moderately volatile and refractory elements are informative about high-temperature conditions that operated in the proto-lunar disk. Existing data show clearly that the Moon is depleted in volatile elements compared to the bulk silicate Earth. For example, K/Th is 400-700 in the Moon compared to 2800-3000 in Earth. A complicating factor is that the abundances of the highly volatile elements in major lunar lithologies vary by approximately two orders of magnitude. Perhaps most interesting, H2O is not correlated with the concentration of volatile elements, indicating a decoupling of highly volatile elements from the even more volatile H2O. We contend that this decoupling could be a significant tracer of processes operating during lunar formation, differentiation, and bombardment, and the combination of analyzing both volatile elements and water is likely to provide significant insight into lunar geochemical history. This variation and lack of correlation raises the question: what were the relative contributions of crystallization in the magma ocean, subsequent mantle overturn, production of secondary magmas, and addition of volatiles by large impacts in producing this apparently large range in volatile abundances? This current study will produce new partitioning data relevant to the role and distribution of the volatile and non-volatile, yet geochemically significant elements (Co, Ni, Zn, Se, Rb, Sr, Mo, Ag, Cd, In, Sb, Ce, Yb, Tl, Pb, Bi) during the thermal and magmatic evolution of the Moon.
Advanced Characterization of Semivolatile Organic Compounds Emitted from Biomass Burning
NASA Astrophysics Data System (ADS)
Hatch, L. E.; Liu, Y.; Rivas-Ubach, A.; Shaw, J. B.; Lipton, M. S.; Barsanti, K. C.
2016-12-01
Biomass burning (BB) emits large amounts of non-methane organic gases (NMOGs) and primary (directly emitted) particulate matter (PM). NMOGs also react in plume to form secondary PM (i.e., SOA) and ozone. BB-PM has been difficult to represent accurately in models used for chemistry and climate predictions, including for air quality and fire management purposes. Much recent research supports that many previously unconsidered SOA precursors exist, including oxidation of semivolatile compounds (SVOCs). Although many recent studies have characterized relatively volatile BB-derived NMOGs and relatively non-volatile particle-phase organic species, comparatively few studies have performed detailed characterization of SVOCs emitted from BB. Here we present efforts to expand the volatility and compositional ranges of compounds measured in BB smoke. In this work, samples of SVOCs in gas and particle phases were collected from 18 fires representing a range of fuel types during the 2016 FIREX fire laboratory campaign; samples were analyzed by two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-TOFMS) and Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS). Hundreds of compounds were detectable in both gas and particle phases by GCxGC-TOFMS whereas thousands of peaks were present in the FTICR mass spectra. Data from both approaches highlight that chemical fingerprints of smoke are fuel/burn-dependent. These efforts support our continued research in building the understanding and model representation of BB emissions and BB-derived SOA.
Advanced Characterization of Semivolatile Organic Compounds Emitted from Biomass Burning
NASA Astrophysics Data System (ADS)
Hatch, L. E.; Liu, Y.; Rivas-Ubach, A.; Shaw, J. B.; Lipton, M. S.; Barsanti, K. C.
2017-12-01
Biomass burning (BB) emits large amounts of non-methane organic gases (NMOGs) and primary (directly emitted) particulate matter (PM). NMOGs also react in plume to form secondary PM (i.e., SOA) and ozone. BB-PM has been difficult to represent accurately in models used for chemistry and climate predictions, including for air quality and fire management purposes. Much recent research supports that many previously unconsidered SOA precursors exist, including oxidation of semivolatile compounds (SVOCs). Although many recent studies have characterized relatively volatile BB-derived NMOGs and relatively non-volatile particle-phase organic species, comparatively few studies have performed detailed characterization of SVOCs emitted from BB. Here we present efforts to expand the volatility and compositional ranges of compounds measured in BB smoke. In this work, samples of SVOCs in gas and particle phases were collected from 18 fires representing a range of fuel types during the 2016 FIREX fire laboratory campaign; samples were analyzed by two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-TOFMS) and Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS). Hundreds of compounds were detectable in both gas and particle phases by GCxGC-TOFMS whereas thousands of peaks were present in the FTICR mass spectra. Data from both approaches highlight that chemical fingerprints of smoke are fuel/burn-dependent. These efforts support our continued research in building the understanding and model representation of BB emissions and BB-derived SOA.
Senus, Michael P.; Tenbus, Frederick J.
2000-01-01
This report presents lithologic and ground-water-quality data collected during April and May 2000 in the remote areas of the tidal wetland of West Branch Canal Creek, Aberdeen Proving Ground, Maryland. Contamination of the Canal Creek aquifer with volatile organic compounds has been documented in previous investigations of the area. This study was conducted to investigate areas that were previously inaccessible because of deep mud and shallow water, and to support ongoing investigations of the fate and transport of volatile organic compounds in the Canal Creek aquifer. A unique vibracore drill rig mounted on a hovercraft was used for drilling and ground-water sampling. Continuous cores of the wetland sediment and of the Canal Creek aquifer were collected at five sites. Attempts to sample ground water were made by use of a continuous profiler at 12 sites, without well installation, at a total of 81 depths within the aquifer. Of those 81 attempts, only 34 sampling depths produced enough water to collect samples. Ground-water samples from two sites had the highest concentrations of volatile organic compounds?with total volatile organic compound concentrations in the upper part of the aquifer ranging from about 15,000 to 50,000 micrograms per liter. Ground-water samples from five sites had much lower total volatile organic compound concentrations (95 to 2,100 micrograms per liter), whereas two sites were essentially not contaminated, with total volatile organic compound concentrations less than or equal to 5 micrograms per liter.
Huang, Mei-Chuan; Lin, Jim Juimin
2007-10-01
The concentrations and characteristics of volatile organic hazardous air pollutants (HAPs) in the urban city of Kaohsiung from motor vehicles and dense pollutant sources has become a national concern. To continuously monitor volatile organic HAPs, sampling sites were selected near the four air-quality monitoring stations established by Ethe nvironmental Protection Administration of Taiwan ROC, namely Nan-tz, Tso-ying, San-min and Hsiao-kang, from north to south. An on-site automated online monitor of volatile organic compounds (VOCs) was used for continuous monitoring. This study performed two consecutive days of 24-h monitoring of five volatile organic HAPs form August to October 2005 at the four monitoring sites, which cover the northern, central, and southern areas of Kaohsiung city. The average monitored concentration was 2.78-4.84 ppb for benzene, 5.90-9.66 ppb for toluene, 3.62-5.90 ppb for ethylbenzene, 3.73-5.34 ppb for m,p-xylene, 3.38-4.22 ppb for o-xylene, and 4.48-7.00 ppb for styrene. The average monitored concentrations of the major volatile organic HAPs tended to follow the pattern San-min > Nan-tz > Hsiao-kang > Tso-ying. Among all the species monitored in this study, toluene had the highest ambient concentration, followed by styrene, m,p-xylene, ethylbenzene, o-xylene, and benzene. The results showed that the concentration at night was higher than that in the day for toluene at Nan-tz, San-min, Hsiao-kang, and for benzene at Nan-tz and Hsiao-kang.
Phelan, Daniel J.; Senus, Michael P.; Olsen, Lisa D.
2001-01-01
This report presents lithologic and groundwater- quality data collected during April and May 2000 in the remote areas of the tidal wetland of West Branch Canal Creek, Aberdeen Proving Ground, Maryland. Contamination of the Canal Creek aquifer with volatile organic compounds has been documented in previous investigations of the area. This study was conducted to investigate areas that were previously inaccessible because of deep mud and shallow water, and to support ongoing investigations of the fate and transport of volatile organic compounds in the Canal Creek aquifer. A unique vibracore drill rig mounted on a hovercraft was used for drilling and groundwater sampling. Continuous cores of the wetland sediment and of the Canal Creek aquifer were collected at five sites. Attempts to sample ground water were made by use of a continuous profiler at 12 sites, without well installation, at a total of 81 depths within the aquifer. Of those 81 attempts, only 34 sampling depths produced enough water to collect samples. Ground-water samples from two sites had the highest concentrations of volatile organic compounds?with total volatile organic compound concentrations in the upper part of the aquifer ranging from about 15,000 to 50,000 micrograms per liter. Ground-water samples from five sites had much lower total volatile organic compound concentrations (95 to 2,100 micrograms per liter), whereas two sites were essentially not contaminated, with total volatile organic compound concentrations less than or equal to 5 micrograms per liter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION... complies with evaporative emission standards? (a) For purposes of certification, your emission family is...
NASA Astrophysics Data System (ADS)
Horanyi, Mihaly; Szalay, Jamey
2017-10-01
The lunar regolith has been formed, and remains continually reworked, by the intermitten impacts of comets, asteroids, meteoroids, and the continual bombardment by interplanetary dust particles (IDP). Thick atmospheres protect Venus, Earth, and Mars, ablating the incoming IDPs into “shooting stars” that rarely reach the surface. However, the surfaces of airless bodies near 1 AU are directly exposed to the high-speed (>> 1 km/s) IDP impacts. The Moon is expected to be bombarded by 5x103 kg/day of IDPs arriving with a characteristic speed of ~ 20 km/s. The IDP sources impacting the Moon at high latitudes remain largely uncharacterized due to the lack of optical and radar observations in the polar regions on Earth. These high latitude sources have very large impact speeds in the range of 30 < v < 50 km/ hence they are expected to have a significant effect on the lunar surface, including the removal and burial of volatile deposits in the lunar polar regions.Water is thought to be continually delivered to the Moon through geological timescales by water-bearing comets and asteroids, and produced continuously in situ by the impacts of solar wind protons of oxygen rich minerals exposed on the surface. IDPs are an unlikely source of water due to their long UV exposure in the inner solar system, but their high-speed impacts can mobilize secondary ejecta dust particles, atoms and molecules, some with high-enough speed to escape the Moon. Other surface processes that can lead to mobilization, transport and loss of water molecules and other volatiles include solar heating, photochemical processes, and solar wind sputtering. Since none of these are at work in permanently shadowed regions (PSR), dust impacts remain the dominant process to dictate the evolution of volatiles in PSRs. The competing effects of dust impacts are: a) ejecta production leading to loss out of a PSR; b) gardening and overturning the regolith; and c) the possible accumulation of impact ejecta, leading to the burial of the volatiles. This talk will summarize the expected effects of dust impacts on volatile accumulation in the lunar PSRs based on theoretical models, recent laboratory results, and observations by the LADEE spacecraft.
Ríos-Delgado, Silvany Mayoly; Rodríguez-Ramírez, Américo David; Cruz-López, Leopoldo; Escobar-Pérez, Luis Alonso; Aburto-Juárez, Ma de Lourdes; Torres-Estrada, José Luis
2008-01-01
To determine effects of volatile compounds in homes on the behavioral response of Anopheles albimanus. The study was conducted in January 2006, in the village of Nueva Independencia village, Suchiate, Chiapas. Volatile compounds were collected inside homes and the extracts were tested on unfed females in a Y-olfactometer. Extracts were analyzed in a gas chromatography-mass spectrometry system (GC-MS). Twenty eight extracts were obtained, twelve presented attraction and two repellency responses. GC-MS analyses of the extracts indicated variation in the volatile compound present in the extracts, but could not associated specific compounds with any particular effect. Within homes, volatiles presented attraction and repellency responses to An. albimanus. A definate pattern concerning the presence of a characteristic chemical compound and the observed response was not found.
NASA Astrophysics Data System (ADS)
Schmutzer, G.; Avram, V.; Feher, I.; David, L.; Moldovan, Z.
2012-02-01
The volatile composition of alcoholic beverage was studied by headspace solid-phase microextraction (HSSPME) method and gas chromatography - mass spectrometry (GC-MS). Some volatile compounds, such as alcohols, esters, terpenes and other are mainly responsible for the flavor of fortified wines and their amounts specify the quality of the alcoholic beverages. From this perspective it is interesting to develop a rapid, selective and sensitive analytical method suitable for simultaneous quantification of the main molecules being responsible for the organoleptic characteristic of alcoholic beverages. Vermouth fortified drink was analyzed in order to characterize the volatile profile. Using the HS-SPME/GC-MS a number of twenty-six volatile compounds from a commercial market alcoholic beverage were identified. The most abundant compounds were m-thymol, o-thymol and eugenol, alongside of the ethyl ester compounds.
Lin, Chitsan; Liou, Naiwei; Sun, Endy
2008-06-01
An open-path Fourier transform infrared spectroscopy (OP-FTIR) system was set up for 3-day continuous line-averaged volatile organic compound (VOC) monitoring in a paint manufacturing plant. Seven VOCs (toluene, m-xylene, p-xylene, styrene, methanol, acetone, and 2-butanone) were identified in the ambient environment. Daytime-only batch operation mode was well explained by the time-series concentration plots. Major sources of methanol, m-xylene, acetone, and 2-butanone were identified in the southeast direction where paint solvent manufacturing processes are located. However, an attempt to uncover sources of styrene was not successful because the method detection limit (MDL) of the OP-FTIR system was not sensitive enough to produce conclusive data. In the second scenario, the OP-FTIR system was set up in an industrial complex to distinguish the origins of several VOCs. Eight major VOCs were identified in the ambient environment. The pollutant detected wind-rose percentage plots that clearly showed that ethylene, propylene, 2-butanone, and toluene mainly originated from the tank storage area, whereas the source of n-butane was mainly from the butadiene manufacturing processes of the refinery plant, and ammonia was identified as an accompanying reduction product in the gasoline desulfuration process. Advantages of OP-FTIR include its ability to simultaneously and continuously analyze many compounds, and its long path length monitoring has also shown advantages in obtaining more comprehensive data than the traditional multiple, single-point monitoring methods.
Vroblesky, Don A.
2008-01-01
Analysis of the volatile organic compound content of tree cores is an inexpensive, rapid, simple approach to examining the distribution of subsurface volatile organic compound contaminants. The method has been shown to detect several volatile petroleum hydrocarbons and chlorinated aliphatic compounds associated with vapor intrusion and ground-water contamination. Tree cores, which are approximately 3 inches long, are obtained by using an increment borer. The cores are placed in vials and sealed. After a period of equilibration, the cores can be analyzed by headspace analysis gas chromatography. Because the roots are exposed to volatile organic compound contamination in the unsaturated zone or shallow ground water, the volatile organic compound concentrations in the tree cores are an indication of the presence of subsurface volatile organic compound contamination. Thus, tree coring can be used to detect and map subsurface volatile organic compound contamination. For comparison of tree-core data at a particular site, it is important to maintain consistent methods for all aspects of tree-core collection, handling, and analysis. Factors affecting the volatile organic compound concentrations in tree cores include the type of volatile organic compound, the tree species, the rooting depth, ground-water chemistry, the depth to the contaminated horizon, concentration differences around the trunk related to variations in the distribution of subsurface volatile organic compounds, concentration differences with depth of coring related to volatilization loss through the bark and possibly other unknown factors, dilution by rain, seasonal influences, sorption, vapor-exchange rates, and within-tree volatile organic compound degradation.
Volatile compounds of Aspergillus strains with different abilities to produce ochratoxin A.
Jeleń, Henryk H; Grabarkiewicz-Szczesna, Jadwiga
2005-03-09
Volatile compounds emitted by Aspergillus strains having different abilities to produce ochratoxin A were investigated. Thirteen strains of Aspergillus ochraceus, three belonging to the A. ochraceus group, and eight other species of Aspergillus were examined for their abilities to produce volatile compounds and ochratoxin A on a wheat grain medium. The profiles of volatile compounds, analyzed using SPME, in all A. ochraceus strains, regardless of their toxeginicity, were similar and comprised mainly of 1-octen-3-ol, 3-octanone, 3-octanol, 3-methyl-1-butanol, 1-octene, and limonene. The prevailing compound was always 1-octen-3-ol. Mellein, which forms part of the ochratoxin A molecule, was found in both toxigenic and nontoxigenic strains. Volatile compounds produced by other Aspergillus strains were similar to those of A. ochraceus. Incubation temperatures (20, 24, and 27 degrees C) and water content in the medium (20, 30, and 40%) influenced both volatile compounds formation and ochratoxin A biosynthesis efficiency, although conditions providing the maximum amount of volatiles were different from those providing the maximum amount of ochratoxin A. The pattern of volatiles produced by toxigenic A. ochraceus strains does not facilitate their differentiation from nontoxigenic strains.
Swapna Sonale, R; Ramalakshmi, K; Udaya Sankar, K
2018-04-01
Extraction process employing Supercritical fluid carbon dioxide (SCF) yields bioactive compounds near natural forms without any artifact formation. Neem seed was subjected to SCF at different temperatures and pressure conditions. These extracts were partitioned to separate volatile fraction and were analyzed by Gas Chromatography-Mass spectroscopy along with the volatiles extracted by the hydro-distillation method. Experimental results show that there is a significant effect of pressure and temperature on isolation of a number of volatile compounds as well as retention of biologically active compounds. Twenty-five volatile compounds were isolated in the Hydro-distillate compare to the SCF extract of 100 bar, 40 °C which showed forty volatile compounds corresponds to 76.38 and 92.39% of total volatiles respectively. The majority of bioactive compounds such as Terpinen-4-ol, 1,2,4-Trithiolane, 3,5-diethyl, allyl isopropyl sulphide, Cycloisolongifolene, á-Bisabolene, (-)-α-Panasinsen, Isocaryophyllene, trans-Sesquisabinene hydrate, 1-Naphthalenol, were identified in the extract when isolated at 100 bar and 40 °C.
Liu, Shuang Ping; Mao, Jian; Liu, Yun Ya; Meng, Xiang Yong; Ji, Zhong Wei; Zhou, Zhi Lei; Ai-lati, Aisikaer
2015-12-01
Shaoxing rice wine is one of the most typical representatives of Chinese rice wine. It is brewed under non-sterile condition with various microorganism growing at the same time and forms a special flavor. The aims of this study was to monitor the bacterial succession by MiSeq pyrosequencing and the volatile compound dynamics by HS-SPME/GC–MS during brewing process. Moreover, the volatile compounds and bacterial community were analyzed by partial least squares regression to evaluate the effect of bacteria on volatile compounds formation. The results showed that there were ten dominating genera during Shaoxing rice wine fermentation process. Ten genera, Bacillus, Leuconostoc, Lactococcus, Weissella, Thermoactinomyces, Pseudomonas, Saccharopolyspora, Staphylococcus, Enterobacter and Lactobacillus, were identified as the main bacteria. The Bacillus and Lactobacillus dominated the Chinese rice wine ecosystems. In addition, a total of 64 volatile compounds were identified, mainly esters, alcohols, carbonyl compound and phenols. Pseudomonas were involved in synthesis of a wide variety of volatile compounds. Thermoactinomyces, Bacillus and Lactococcus also played critical roles in the formation of volatile compounds.
Ewe's diet (pasture vs grain-based feed) affects volatile profile of cooked meat from light lamb.
Almela, Elisabeth; Jordán, María José; Martínez, Cristina; Sotomayor, José Antonio; Bedia, Mario; Bañón, Sancho
2010-09-08
The effects of ewe's diet during gestation and lactation on the volatile compounds profile in cooked meat from light lamb were compared. Two lamb groups from ewes that had been fed pasture (PA) or grain-based concentrate (FE) were tested. Cooked loin mixed with saliva was analyzed by solid phase microextraction, gas chromatography, and mass spectrometry. The fiber coating used was divinylbenzene-carboxen-polydimethylsiloxane. The volatiles detected and quantified were aldehydes, alcohols, ketones, phenols, indole, and sulfur compounds. The ewe's diet strongly affected the volatile compounds profile of the cooked meat. The total volatiles concentration was higher in PA (409 mg kg(-1)) than in FE (201 mg kg(-1)). The major volatiles in PA were phenol, 4-methylphenol, and hexanoic acid, while the major volatile in FE was 3-hydroxy-2-butanone. No branched C8-C9 fatty acids responsible for mutton flavor were detected in either group. The findings suggest that nutritional strategies can be use during gestation and lactation to modify the aroma of light lamb meat in the light of consumer preferences.
A second-generation relaxed eddy accumulation system was built and tested with the capability to measure vertical biogenic volatile organic compound (VOC) fluxes at levels as low as 10 µg C m−2 hr−1. The system features a continuous, integrated gas-phase ozo...
PROCESS FOR CONTINUOUSLY SEPARATING IRRADIATION PRODUCTS OF THORIUM
Hatch, L.P.; Miles, F.T.; Sheehan, T.V.; Wiswall, R.H.; Heus, R.J.
1959-07-01
A method is presented for separating uranium-233 and protactinium from thorium-232 containing compositions which comprises irradiating finely divided particles of said thorium with a neutron flux to form uranium-233 and protactinium, heating the neutron-irradiated composition in a fluorine and hydrogen atmosphere to form volatile fluorides of uranium and protactinium and thereafter separating said volatile fluorides from the thorium.
Dan, Tong; Jin, Rulin; Ren, Weiyi; Li, Ting; Chen, Haiyan; Sun, Tiansong
2018-04-11
The lactic acid bacterium Streptococcus thermophilus is a major starter culture for the production of dairy products. In this study, the physiochemical characteristics of milk fermented by the MGA45-4 isolate of S. thermophilus were analyzed. Our data indicate that milk fermented using S. thermophilus MGA45-4 maintained a high viable cell count (8.86 log10 colony-forming units/mL), and a relatively high pH (4.4), viscosity (834.33 mPa·s), and water holding capacity (40.85%) during 14 days of storage. By analyzing the volatile compound profile using solid-phase microextraction and gas chromatography/mass spectrometry, we identified 73 volatile compounds in the fermented milk product, including five carboxylic acids, 21 aldehydes, 13 ketones, 16 alcohols, five esters, and 13 aromatic carbohydrates. According to the odor activity values, 11 of these volatile compounds were found to play a key role in producing the characteristic flavor of fermented milk, particularly octanal, nonanal, hexanal, 2,3-butanedione, and 1-octen-3-ol, which had the highest odor activity values among all compounds analyzed. These findings thus provide more insights in the chemical/molecular characteristics of milk fermented using S. thermophilus , which may provide a basis for improving dairy product flavor/odor during the process of fermentation and storage.
End-To-END Performance of the Future MOMA Instrument Aboard the ExoMars Mission
NASA Astrophysics Data System (ADS)
Pinnick, V. T.; Buch, A.; Szopa, C.; Grand, N.; Danell, R.; Grubisic, A.; van Amerom, F. H. W.; Glavin, D. P.; Freissinet, C.; Coll, P. J.; Stalport, F.; Humeau, O.; Arevalo, R. D., Jr.; Brinckerhoff, W. B.; Steininger, H.; Goesmann, F.; Raulin, F.; Mahaffy, P. R.
2015-12-01
Following the SAM experiment aboard the Curiosity rover, the Mars Organic Molecule Analyzer (MOMA) experiment aboard the 2018 ExoMars mission will be the continuation of the search for organic matter on the Mars surface. One advancement with the ExoMars mission is that the sample will be extracted as deep as 2 meters below the Martian surface to minimize effects of radiation and oxidation on organic materials. To analyze the wide range of organic composition (volatile and non-volatile compounds) of the Martian soil, MOMA is equipped with a dual ion source ion trap mass spectrometer utilizing UV laser desorption / ionization (LDI) and pyrolysis gas chromatography (pyr-GC). In order to analyze refractory organic compounds and chiral molecules during GC-ITMS analysis, samples may be submitted to a derivatization process, consisting of the reaction of the sample components with specific reactants (MTBSTFA [1], DMF-DMA [2] or TMAH [3]). Previous experimental reports have focused on coupling campaigns between the breadboard versions of the GC, provided by the French team (LISA, LATMOS, CentraleSupelec), and the MS, provided by the US team (NASA-GSFC). This work focuses on the performance verification and optimization of the GC-ITMS experiment using the Engineering Test Unit (ETU) models which are representative of the form, fit and function of the flight instrument including a flight-like pyrolysis oven and tapping station providing by the German team (MPS). The results obtained demonstrate the current status of the end-to-end performance of the gas chromatography-mass spectrometry mode of operation. References: [1] Buch, A. et al. (2009) J Chrom. A, 43, 143-151. [2] Freissinet et al. (2011) J Chrom A, 1306, 59-71. [3] Geffroy-Rodier, C. et al. (2009) JAAP, 85, 454-459.
Chow, Yee Peng; Muhammad, Junaina; Amin Noordin, Bany Ariffin; Cheng, Fan Fah
2018-02-01
This data article provides macroeconomic data that can be used to generate macroeconomic volatility. The data cover a sample of seven selected countries in the Asia Pacific region for the period 2004-2014, including both developing and developed countries. This dataset was generated to enhance our understanding of the sources of macroeconomic volatility affecting the countries in this region. Although the Asia Pacific region continues to remain as the most dynamic part of the world's economy, it is not spared from various sources of macroeconomic volatility through the decades. The reported data cover 15 types of macroeconomic data series, representing three broad categories of indicators that can be used to proxy macroeconomic volatility. They are indicators that account for macroeconomic volatility (i.e. volatility as a macroeconomic outcome), domestic sources of macroeconomic volatility and external sources of macroeconomic volatility. In particular, the selected countries are Malaysia, Thailand, Indonesia and Philippines, which are regarded as developing countries, while Singapore, Japan and Australia are developed countries. Despite the differences in level of economic development, these countries were affected by similar sources of macroeconomic volatility such as the Asian Financial Crisis and the Global Financial Crisis. These countries were also affected by other similar external turbulence arising from factors such as the global economic slowdown, geopolitical risks in the Middle East and volatile commodity prices. Nonetheless, there were also sources of macroeconomic volatility which were peculiar to certain countries only. These were generally domestic sources of volatility such as political instability (for Thailand, Indonesia and Philippines), natural disasters and anomalous weather conditions (for Thailand, Indonesia, Philippines, Japan and Australia) and over-dependence on the electronic sector (for Singapore).
Herbivore-induced blueberry volatiles and intra-plant signaling.
Rodriguez-Saona, Cesar R
2011-12-18
Herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack. These HIPVs are mainly regulated by the defensive plant hormone jasmonic acid (JA) and its volatile derivative methyl jasmonate (MeJA). Over the past 3 decades researchers have documented that HIPVs can repel or attract herbivores, attract the natural enemies of herbivores, and in some cases they can induce or prime plant defenses prior to herbivore attack. In a recent paper, I reported that feeding by gypsy moth caterpillars, exogenous MeJA application, and mechanical damage induce the emissions of volatiles from blueberry plants, albeit differently. In addition, blueberry branches respond to HIPVs emitted from neighboring branches of the same plant by increasing the levels of JA and resistance to herbivores (i.e., direct plant defenses), and by priming volatile emissions (i.e., indirect plant defenses). Similar findings have been reported recently for sagebrush, poplar, and lima beans. Here, I describe a push-pull method for collecting blueberry volatiles induced by herbivore (gypsy moth) feeding, exogenous MeJA application, and mechanical damage. The volatile collection unit consists of a 4 L volatile collection chamber, a 2-piece guillotine, an air delivery system that purifies incoming air, and a vacuum system connected to a trap filled with Super-Q adsorbent to collect volatiles. Volatiles collected in Super-Q traps are eluted with dichloromethane and then separated and quantified using Gas Chromatography (GC). This volatile collection method was used in my study to investigate the volatile response of undamaged branches to exposure to volatiles from herbivore-damaged branches within blueberry plants. These methods are described here. Briefly, undamaged blueberry branches are exposed to HIPVs from neighboring branches within the same plant. Using the same techniques described above, volatiles emitted from branches after exposure to HIPVs are collected and analyzed.
NASA Astrophysics Data System (ADS)
Norling, B.; Rowe, M. C.; Chambefort, I.; Tepley, F. J.; Morrow, S.
2016-05-01
The present-day hydrothermal system beneath the Kawerau Geothermal Field, in the Taupo Volcanic Zone, New Zealand, is likely heated from the Pūtauaki (Mt. Edgecumbe) magma system. The aim of this work, as an analog for present day processes, is to identify whether or not earlier erupted Pūtauaki magmas show evidence for volatile exsolution. This may have led to the transfer of volatile components from the magmatic to hydrothermal systems. To accomplish this, minerals and melt inclusions from volcanic products were analyzed for abundances of volatile and ore-forming elements (S, Cl, Li, Cu, Sn, Mo, W, Sb, As, and Tl). The variations in abundance of these elements were used to assess magma evolution and volatile exsolution or fluxing in the magma system. Melt inclusions suggest the evolution of Pūtauaki andesite-dacite magmas is predominantly driven by crystallization processes resulting in rhyodacite-rhyolite glass compositions (although textural and geochemical evidence still indicate a role for magma mixing). Measured mineral-melt partition coefficients for trace metals of interest indicates that, with the exception of Tl in biotite, analyzed metals are all incompatible in Pūtauaki crystallization products. Excluding Li and Cu, other volatile and ore metals recorded in melt inclusions behave incompatibly, with concentrations increasing during evolution from rhyodacitic to rhyolitic melt compositions. Li and Cu appear to have increased mobility likely resulting from diffusive exchange post-crystallization, and may be related to late volatile fluxing. Although S and Cl concentrations decrease with melt evolution, no mineralogical evidence exists to indicate the exsolution and mobility of ore-forming metals from the magma at the time of crystallization. This observation cannot rule out the potential for post-crystallization volatile exsolution and ore-forming metal mobilization, which may only be recorded as diffusive re-equilibration of more rapidly diffusing elements (e.g., Li and Cu).
Beskin, Kelly V; Holcomb, Chelsea D; Cammack, Jonathan A; Crippen, Tawni L; Knap, Anthony H; Sweet, Stephen T; Tomberlin, Jeffery K
2018-04-01
Volatile emissions from decomposing animal waste are known environmental pollutants. The black soldier fly, Hermetia illucens (L.), is being evaluated for industrialization as a means to recycle wastes and produce protein for use as food and feed. We examined the ability of black soldier fly larvae to reduce odorous compounds associated with animal wastes. Black soldier fly larvae were reared under laboratory conditions on poultry, swine, and dairy manure at feed rates of 18.0 and 27.0 g every other day until 40% reached the prepupal stage. Volatile emissions were collected and analyzed from freshly thawed as well as the digested waste when 90% of the black soldier fly larvae reached the prepupal stage. Volatiles were also collected simultaneously from manure not inoculated with black soldier fly larvae (non-digested) and held under similar conditions. Manure samples were analyzed for relative amounts of nine select odorous volatile organic compounds: phenol, 4-methylphenol, indole, 3-methylindole, propanoic acid, 2-methylpropanoic acid, butanoic acid, 3-methylbutanoic acid and pentanoic acid. Black soldier fly larvae reduced emissions of all volatile organic compounds by 87% or greater. Complete reductions were observed for 2-methly propanoic acid in digested poultry manure, phenol, 4-methylphenol, indole and all five fatty acids in digested swine manure, and 4-methylphenol, indole, 3-methylindole and all five acids in digested dairy manure. This study is the first to identify volatile emissions from manure digested by black soldier fly larvae and compare to those found in non-digested manure. These data demonstrate additional benefits of using black soldier fly larvae as a cost-effective and environmentally friendly means of livestock manure management in comparison to current methods. Black soldier fly larvae are capable of altering the overall profile of volatile organic compounds and reducing levels of targeted odorous compounds in livestock manure. Copyright © 2018 Elsevier Ltd. All rights reserved.
A study about the existence of the leverage effect in stochastic volatility models
NASA Astrophysics Data System (ADS)
Florescu, Ionuţ; Pãsãricã, Cristian Gabriel
2009-02-01
The empirical relationship between the return of an asset and the volatility of the asset has been well documented in the financial literature. Named the leverage effect or sometimes risk-premium effect, it is observed in real data that, when the return of the asset decreases, the volatility increases and vice versa. Consequently, it is important to demonstrate that any formulated model for the asset price is capable of generating this effect observed in practice. Furthermore, we need to understand the conditions on the parameters present in the model that guarantee the apparition of the leverage effect. In this paper we analyze two general specifications of stochastic volatility models and their capability of generating the perceived leverage effect. We derive conditions for the apparition of leverage effect in both of these stochastic volatility models. We exemplify using stochastic volatility models used in practice and we explicitly state the conditions for the existence of the leverage effect in these examples.
Purriños, Laura; Bermúdez, Roberto; Franco, Daniel; Carballo, Javier; Lorenzo, José M
2011-01-01
Volatile compounds were determined throughout the manufacture of dry-cured "lacón," a traditional dry-salted, and ripened meat product made in the north-west of Spain from the foreleg of the pig following a similar process to that of dry-cured ham. Volatiles were extracted by a purge-and-trap method and analyzed by gas chromatographic/mass spectrometry. One hundred and two volatile compounds were identified. In raw material, only 34 volatile compounds were found and at very low levels. The number of volatile compounds increased during processing. The substances identified belonged to several chemical classes: aldehydes (23), alcohols (9), ketones (15), hydrocarbons (37), esters (4), acids (3), furans (4), sulphur compounds (1), chloride compounds (1), and other compounds (4). Results indicated that the most abundant chemical family in flavor at the end of the manufacturing process was aldehydes, followed by hydrocarbons and ketones. Lipids were the most important precursor of flavor compounds of dry-cured "lacón."
Welty, W M; Marshall, R T; Grün, I U; Ellersieck, M R
2001-01-01
Selected volatile compounds of chocolate ice creams containing 0.6, 4.0, 6.0, or 9.0% milk fat or containing 2.5% milk fat, cocoa butter, or one of three fat replacers (Simplesse, Dairy Lo, or Oatrim) were analyzed by gas chromatography and gas chromatography-mass spectrometry using headspace solid-phase microextraction. The headspace concentration of most of the selected volatile compounds increased with decreasing milk fat concentration. Fat replacers generally increased the concentration of volatiles found in the headspace compared with milk fat or cocoa butter. Few differences in flavor volatiles were found between the ice cream containing milk fat and the ice cream containing cocoa butter. Among the selected volatiles, the concentration of 2,5-dimethyl-3(2-methyl propyl) pyrazine was the most highly correlated (negatively) with the concentration of milk fat, and it best discriminated among ice creams containing milk fat, cocoa butter, or one of the fat replacers.
Volatilities, Traded Volumes, and Price Increments in Derivative Securities
NASA Astrophysics Data System (ADS)
Kim, Kyungsik; Lim, Gyuchang; Kim, Soo Yong; Scalas, Enrico
2007-03-01
We apply the detrended fluctuation analysis (DFA) to the statistics of the Korean treasury bond (KTB) futures from which the logarithmic increments, volatilities, and traded volumes are estimated over a specific time lag. For our case, the logarithmic increment of futures prices has no long-memory property, while the volatility and the traded volume exhibit the existence of long-memory property. To analyze and calculate whether the volatility clustering is due to the inherent higher-order correlation not detected by applying directly the DFA to logarithmic increments of the KTB futures, it is of importance to shuffle the original tick data of futures prices and to generate the geometric Brownian random walk with the same mean and standard deviation. It is really shown from comparing the three tick data that the higher-order correlation inherent in logarithmic increments makes the volatility clustering. Particularly, the result of the DFA on volatilities and traded volumes may be supported the hypothesis of price changes.
Volatilities, traded volumes, and the hypothesis of price increments in derivative securities
NASA Astrophysics Data System (ADS)
Lim, Gyuchang; Kim, SooYong; Scalas, Enrico; Kim, Kyungsik
2007-08-01
A detrended fluctuation analysis (DFA) is applied to the statistics of Korean treasury bond (KTB) futures from which the logarithmic increments, volatilities, and traded volumes are estimated over a specific time lag. In this study, the logarithmic increment of futures prices has no long-memory property, while the volatility and the traded volume exhibit the existence of the long-memory property. To analyze and calculate whether the volatility clustering is due to a inherent higher-order correlation not detected by with the direct application of the DFA to logarithmic increments of KTB futures, it is of importance to shuffle the original tick data of future prices and to generate a geometric Brownian random walk with the same mean and standard deviation. It was found from a comparison of the three tick data that the higher-order correlation inherent in logarithmic increments leads to volatility clustering. Particularly, the result of the DFA on volatilities and traded volumes can be supported by the hypothesis of price changes.
Jeon, Dong Bok; Hong, Young Shin; Lee, Ga Hyun; Park, Yu Min; Lee, Cheong Mi; Nho, Eun Yeong; Choi, Ji Yeon; Jamila, Nargis; Khan, Naeem; Kim, Kyong Su
2017-03-15
Tea contains characteristic volatile organic compounds, polyphenols, caffeine and catechins, and is therefore among the most widely consumed beverages all over the world. In this study, fresh Jukro tea leaves collected from Damyang-gun (Jeollanam-do) at 40, 60 and 90day growth stages, were semi-fermented. The volatile organic compounds (VOCs) were extracted by simultaneous distillation-solvent extraction (SDE) and analyzed by gas chromatography/mass spectrometry (GC/MS). Catechins, caffeine and theanine were analyzed by high performance liquid chromatography (HPLC). A total of 159 VOCs were identified in the analyzed Jukro tea leaves. Comparatively, the increase in the concentrations of VOCs was high in 60day leaves. The content of catechins increased along the three growth stages, whereas caffeine, compared to 90day leaves, was higher for 40 and 60day leaves. Based on the results, the 60day leaves were found to be the most suitable and useful for making semi-fermented Jukro tea. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamakita, Yoshihiro; Tanaka, Hideyasu; Maruyama, Ryo; Yamakado, Hideo; Misaizu, Fuminori; Ohno, Koichi
2000-08-01
A highly sensitive electron energy analyzer which utilizes a "magnetic bottle" combined with a retarding electrostatic field has been developed for Penning ionization electron spectroscopy. A beam of metastable rare-gas atoms is crossed with a continuous supersonic sample beam in the source region of the analyzer. The emitted electrons are collected by an inhomogeneous magnetic field (the magnetic bottle effect) with a high efficiency of nearly 4π solid angle, which is more than 103 times higher than that of a conventional hemispherical analyzer. The kinetic energy of electrons is analyzed by scanning the retarding field in a flight tube of the analyzer in the presence of a weak magnetic field. The velocity of the metastable atoms can also be resolved by a time-of-flight method in the present instrument. Examples of Penning ionization electron energy spectra as a function of collision energy are presented for Ar and N2 with metastable He*(2 3S) atoms. This instrument has opened the possibility for extensive studies of Penning ionization electron spectroscopy for low-density species, such as clusters, ions, electronically excited species, unstable or transient species, and large molecules with low volatility.
Diel rhythms in the volatile emission of apple and grape foliage.
Giacomuzzi, Valentino; Cappellin, Luca; Nones, Stefano; Khomenko, Iuliia; Biasioli, Franco; Knight, Alan L; Angeli, Sergio
2017-06-01
This study investigated the diel emission of volatile organic compounds (VOCs) from intact apple (Malus x domestica Borkh., cv. Golden Delicious) and grape (Vitis vinifera L., cv. Pinot Noir) foliage. Volatiles were monitored continuously for 48 h by proton transfer reaction - time of flight - mass spectrometry (PTR-ToF-MS). In addition, volatiles were collected by closed-loop-stripping-analysis (CLSA) and characterized by gas chromatography-mass spectrometry (GC-MS) after 1 h and again 24 and 48 h later. Fourteen and ten volatiles were characterized by GC-MS in apple and grape, respectively. The majority of these were terpenes, followed by green leaf volatiles, and aromatic compounds. The PTR-ToF-MS identified 10 additional compounds and established their diel emission rhythms. The most abundant volatiles displaying a diel rhythm included methanol and dimethyl sulfide in both plants, acetone in grape, and mono-, homo- and sesquiterpenes in apple. The majority of volatiles were released from both plants during the photophase; whereas methanol, CO 2 , methyl-butenol and benzeneacetaldehyde were released at significantly higher levels during the scotophase. Acetaldehyde, ethanol, and some green leaf volatiles showed distinct emission bursts in both plants following the daily light switch-off. These new results obtained with a combined analytical approach broaden our understanding of the rhythms of constitutive volatile release from two important horticultural crops. In particular, diel emission of sulfur and nitrogen-containing volatiles are reported here for the first time in these two crops. Copyright © 2017. Published by Elsevier Ltd.
Monitoring industrial wastewater by online GC-MS with direct aqueous injection.
Wortberg, M; Ziemer, W; Kugel, M; Müller, H; Neu, H-J
2006-03-01
An online GC-MS-system for automated monitoring of crude wastewater at a complex chemical production site is presented. The modular system is, in principal, based on commercial equipment, but utilizes a special, two-stage injector, which consists of a splitless vaporization chamber on top of a PTV injector filled with Tenax. This set-up enables direct injection of wastewater. Almost 140 volatile and semi-volatile compounds are calibrated down to 1 mg L(-1), which is sufficient for analysis of the influent of the wastewater-treatment plant. Two instruments analyze alternately, every 20 min, and the instrument cycle time is 40 min. The quantitative results are transferred to a database which is connected to a process-control system. Depending on the nature and concentration of a compound, an alarm can be generated and the wastewater stream can be diverted into an "off spec tank" if necessary. The GC-MS-system operates quasi-continuously with a system availability >98%. Data quality is automatically controlled in each run and by daily analysis of a quality-control sample. The development of a novel stacked PTV-PTV injector design to expand the range of analytes to selected basic compounds is described.
Emission characteristics of volatile organic compounds from semiconductor manufacturing.
Chein, HungMin; Chen, Tzu Ming
2003-08-01
A huge amount of volatile organic compounds (VOCs) is produced and emitted with waste gases from semiconductor manufacturing processes, such as cleaning, etching, and developing. VOC emissions from semiconductor factories located at Science-Based Industrial Park, Hsin-chu, Taiwan, were measured and characterized in this study. A total of nine typical semiconductor fabricators (fabs) were monitored over a 12-month period (October 2000-September 2001). A flame ionization analyzer was employed to measure the VOC emission rate continuously in a real-time fashion. The amount of chemical use was adopted from the data that were reported to the Environmental Protection Bureau in Hsin-chu County as per the regulation of the Taiwan Environmental Protection Administration. The VOC emission factor, defined as the emission rate (kg/month) divided by the amount of chemical use (L/month), was determined to be 0.038 +/- 0.016 kg/L. A linear regression equation is proposed to fit the data with the correlation coefficient (R2)=0.863. The emission profiles of VOCs, which were drawn using the gas chromatograph/mass spectrometer analysis method, show that isopropyl alcohol is the dominant compound in most of the fabs.
Aroma composition of shalgam: a traditional Turkish lactic acid fermented beverage.
Tanguler, Hasan; Selli, Serkan; Sen, Kemal; Cabaroglu, Turgut; Erten, Huseyin
2017-06-01
Shalgam, a traditional red, cloudy and sour soft beverage, is produced by lactic acid fermentation of black carrot, sourdough, salt, bulgur flour, turnip and adequate water. The present study was designed to characterize the volatile compounds of shalgam obtained from different methods. The aroma compounds of shalgams produced by traditional and direct methods, and addition of Lactic acid bateria (LAB) cultures were examined. Volatile components of shalgam samples were extracted by liquid-liquid extraction technique with pentane/dichloromethane and analyzed by gas chromatography-mass spectrometry (GC-MS). Sixty aroma compounds were identified in shalgam samples including 20 terpenes, 9 esters, 9 alcohols, 5 volatile acids, 6 volatile phenols, 5 lactones, 3 naphthalenes, 2 carbonyl compounds and 1 C13-norisoprenoids. It was found that the aroma profiles of shalgams were quite similar. However, the total volatile content of the shalgam samples increased with addition of Lb. plantarum .
Ulrich, Detlef; Bruchmüller, Tobias; Krüger, Hans; Marthe, Frank
2011-10-12
Sixteen different genotypes of parsley, including two cultivars, six populations, and eight inbred lines, were investigated regarding their sensory characteristics in relation to the volatile patterns and resistance to Septoria petroselini . The sensory quality was determined by a combination of profile analysis and preference test, whereas the volatile patterns were analyzed by headspace-SPME-GC of leaf homogenates with subsequent nontargeted data processing to prevent a possible overlooking of volatile compounds. The more resistant genotypes are characterized by several negative sensory characteristics such as bitter, grassy, herbaceous, pungent, chemical, and harsh. In contrast, the contents of some volatile compounds correlate highly and significantly either with resistance (e.g., hexanal and α-copaene) or with susceptibility (e.g., p-menthenol). Some of these compounds with very strong correlation to resistance are still unidentified and are presumed to act as resistance markers.
Iijima, Yoko; Iwasaki, Yumi; Otagiri, Yuji; Tsugawa, Hiroshi; Sato, Tsuneo; Otomo, Hiroe; Sekine, Yukio; Obata, Akio
2016-12-01
Various commercial tomato juices with different flavors are available at markets worldwide. To clarify the marker compounds related to the flavor characteristics of tomato juice, we analyzed 15 pure commercial tomato juices by a combination of volatile profiling and sensory evaluation. The correlations among volatiles and the relationship between volatiles and sensory descriptors were elucidated by multivariate analyses. Consequently, the tomato juices made from fresh market tomatoes (including the popular Japanese tomato variety "Momotaro") were clearly separated from other juices made from processing tomatoes, by both the volatile composition and sensory profiles. cis-3-Hexenol, hexanal, and apocarotenoids negatively contributed to the juices from fresh market tomatoes, whereas Strecker aldehydes and furfural showed positive contributions to the juices. Accordingly, the sensory characteristics of juices from fresh market tomatoes were related to cooked and fruity flavors but not to green or fresh notes.
NASA Astrophysics Data System (ADS)
Galipo, Randolph C.; Canhoto, Alfredo J.; Walla, Michael D.; Morgan, Stephen L.
1999-02-01
A senior-level undergraduate laboratory experiment that demonstrates the use of solid-phase microextraction (SPME) and capillary gas chromatography-mass spectrometry (GC-MS) was developed for the identification of volatile compounds in consumer products. SPME minimizes sample preparation and concentrates volatile analytes in a solvent-free manner. Volatile flavor and fragrance compounds were extracted by SPME from the headspace of vials containing shampoos, chewing gums, and perfumes and analyzed by GC-MS. Headspace SPME was shown to be more sensitive than conventional headspace analysis of similar samples performed with an airtight syringe. Analysis times were less than 30 min, allowing multiple analyses to be performed in a typical laboratory class period.
Rock samples analysis with the pyrolysis system of the Mars Organic Molecule Analyzer (MOMA)
NASA Astrophysics Data System (ADS)
Steininger, H.; Goetz, W.; Goesmann, F.
2012-12-01
The Mars Organic Molecule Analyzer (MOMA) is a combined pyrolysis gas chromatograph mass spectrometer (GC-MS) and laser desorption mass spectrometer (LD-MS). It will be the key instrument of the ESA/Roscosmos ExoMars 2018 mission to search for extinct and extant life. Additionally the instrument will be able to detect the organic background which has possibly been delivered to Mars by meteorites. Several samples containing a wide range of organic molecules have been tested with a flight analog injection system. The results of the tests were compared to results obtained by a commercial pyrolysis system, the Pyrola pyrolysis unit. The first experimental setup (Pyrola unit) consists of a small quartz tube with an electrically heated platinum filament. A constant helium flow transports the volatilized compounds through an injection needle directly into the injector of the GC. The whole system is heated to 175°C. The second experimental setup (flight analog injection system) consists of a 6 mm diameter platinum oven connected to a microvalve plate to route the gas from the oven to the GC. The microvalves can be switched electrically. The volatiles are subsequently trapped in a cold trap consisting of a Tenax filed tube. Heating this tube releases the volatiles and injects them through an injection needle into the GC. A Varian 4000 GC-MS with RTX-5 column was used to separate and analyze the volatiles generated from both experimental setups. During the experiments several natural rock samples with a broad content of organic material have been analyzed. The sample material was crushed and ground. To obtain comparable results the same amount of sample was used in both setups. Lower temperatures were used in the flight analog injection system due to restrictions of the reusable oven. Lower temperatures normally lead to only a slight decrease in the very heavy and non-volatile compounds but do not change the overall appearance of the chromatogram. Significant differences in the amount and composition of organic compounds have been found in the GC traces. In the flight like configuration an increase of the light volatile compounds was observed especially for benzene and toluene. We want to acknowledge the support by DLR (FKZ 50QX1001).
Volatile organic compounds as breath biomarkers for active and passive smoking.
Gordon, Sydney M; Wallace, Lance A; Brinkman, Marielle C; Callahan, Patrick J; Kenny, Donald V
2002-07-01
We used real-time breath measurement technology to investigate the suitability of some volatile organic compounds (VOCs) as breath biomarkers for active and passive smoking and to measure actual exposures and resulting breath concentrations for persons exposed to tobacco smoke. Experiments were conducted with five smoker/nonsmoker pairs. The target VOCs included benzene, 1,3-butadiene, and the cigarette smoke biomarker 2,5-dimethylfuran. This study includes what we believe to be the first measurements of 1,3-butadiene in smokers' and nonsmokers' breath. The 1,3-butadiene and 2,5-dimethylfuran peak levels in the smokers' breath were similar (360 and 376 microg/m(3), respectively); the average benzene peak level was 522 microg/m(3). We found higher peak values of the target chemicals and shorter residence times in the body than previously reported, probably because of the improved time resolution made possible by the continuous breath measurement method. The real-time breath analyzer also showed the presence of the chemicals after exposure in the breath of the nonsmokers, but at greatly reduced levels. Single breath samples collected in evacuated canisters and analyzed independently with gas chromatography/mass spectrometry confirmed the presence of the target compounds in the postexposure breath of the nonsmokers but indicated that there was some contamination of the breath analyzer measurements. This was likely caused by desorption of organics from condensed tar in the analyzer tubing and on the quartz fiber filter used to remove particles. We used the decay data from the smokers to estimate residence times for the target chemicals. A two-compartment exponential model generally gave a better fit to the experimental decay data from the smokers than a single-compartment model. Residence times for benzene, 1,3-butadiene, and 2,5-dimethylfuran ranged from 0.5 (1,3-butadiene) to 0.9 min (benzene) for tau1 and were essentially constant (14 min) for tau2. These findings will be useful in models of environmental tobacco smoke exposure and risk.
Adaptive Sniping for Volatile and Stable Continuous Double Auction Markets
NASA Astrophysics Data System (ADS)
Toft, I. E.; Bagnall, A. J.
This paper introduces a new adaptive sniping agent for the Continuous Double Auction. We begin by analysing the performance of the well known Kaplan sniper in two extremes of market conditions. We generate volatile and stable market conditions using the well known Zero Intelligence-Constrained agent and a new zero-intelligence agent Small Increment (SI). ZI-C agents submit random but profitable bids/offers and cause high volatility in prices and individual trader performance. Our new zero-intelligence agent, SI, makes small random adjustments to the outstanding bid/offer and hence is more cautious than ZI-C. We present results for SI in self-play and then analyse Kaplan in volatile and stable markets. We demonstrate that the non-adaptive Kaplan sniper can be configured to suit either market conditions, but no single configuration is performs well across both market types. We believe that in a dynamic auction environment where current or future market conditions cannot be predicted a viable sniping strategy should adapt its behaviour to suit prevailing market conditions. To this end, we propose the Adaptive Sniper (AS) agent for the CDA. AS traders classify sniping opportunities using a statistical model of market activity and adjust their classification thresholds using a Widrow-Hoff adapted search. Our AS agent requires little configuration, and outperforms the original Kaplan sniper in volatile and stable markets, and in a mixed trader type scenario that includes adaptive strategies from the literature.
40 CFR 63.8055 - How do I comply with a weight percent HAP limit in coating products?
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants... (appendix A to 40 CFR part 60). You may use Method 24 to determine the mass fraction of volatile matter and...
Alphus D. Wilson
2015-01-01
Recent advancements in the use of electronic-nose (e-nose) devices to analyze human breath profiles for the presence of specific volatile metabolites, known as biomarkers or chemical bio-indicators of specific human diseases, metabolic disorders and the overall health status of individuals, are providing the potential for new noninvasive tools and techniques useful to...
Mandibular gland chemistry of four Caribbean species of Camponotus (Hymenoptera:Formicidae)
Juan A. Torres; Roy R. Snelling; Murray S. Blum; Rusell C. Flournoy; Tappey H. Jones
2001-01-01
The volatile components of whole-body extracts of males, females and workers were analyzed in four species of Neotropical ants in the formicine genus, Camponotus. The species, C. kaura, C. sexguttatus, C. ramulorum and C. planatus, represent three different subgenera. Volatile mandibular gland components were found only in male extracts in three of the species. In C....
USDA-ARS?s Scientific Manuscript database
Volatile compounds in Tapinoma melanocephalum workers were analyzed using gas chromatography–mass spectrometry (GC-MS). In addition to 6-methyl-5-hepten-2-one and iridodials that are common in ants of the genus of Tapinoma, (Z)-9-nonadecence was identified the first time in mandibular glands. Elec...
Financial factor influence on scaling and memory of trading volume in stock market
NASA Astrophysics Data System (ADS)
Li, Wei; Wang, Fengzhong; Havlin, Shlomo; Stanley, H. Eugene
2011-10-01
We study the daily trading volume volatility of 17 197 stocks in the US stock markets during the period 1989-2008 and analyze the time return intervals τ between volume volatilities above a given threshold q. For different thresholds q, the probability density function Pq(τ) scales with mean interval <τ> as Pq(τ)=<τ>-1f(τ/<τ>), and the tails of the scaling function can be well approximated by a power law f(x)˜x-γ. We also study the relation between the form of the distribution function Pq(τ) and several financial factors: stock lifetime, market capitalization, volume, and trading value. We find a systematic tendency of Pq(τ) associated with these factors, suggesting a multiscaling feature in the volume return intervals. We analyze the conditional probability Pq(τ|τ0) for τ following a certain interval τ0, and find that Pq(τ|τ0) depends on τ0 such that immediately following a short (long) return interval a second short (long) return interval tends to occur. We also find indications that there is a long-term correlation in the daily volume volatility. We compare our results to those found earlier for price volatility.
Volatile selenium flux from the great Salt Lake, Utah
Diaz, X.; Johnson, W.P.; Oliver, W.A.; Naftz, D.L.
2009-01-01
The removal mechanisms that govern Se concentrations in the Great Salt Lake are unknown despite this terminal lake being an avian habitat of hemispheric importance. However, the volatilization flux of Se from the Great Salt Lake has not been previously measured due to challenges of analysis in this hypersaline environment This paper presents results from recent field studies examining the spatial distribution of dissolved volatile Se (areally and with depth) in the south arm (main body) of the Great Salt Lake. The analyses involved collection of dissolved volatile Se in a cryofocusing trap system via sparging with helium. The cryotrapped volatile Se was digested with nitric acid and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Results show concentrations of dissolved volatile Se that increase with depth in the shallow brine, suggesting that phytoplankton in the open waters and bioherms in shallow sites (<4 m in depth) may be responsible for volatile Se production. Volatile Se flux to the atmosphere was determined using mass transport models corrected to simulate the highly saline environment of the south arm of the Great Salt Lake. The estimated annual flux of volatile Se was 1455 kg/year within a range from 560 to 3780 kg Se/year for the 95% confidence interval and from 970 to 2180 kg Se/year within the 68% confidence interval. ?? 2009 American Chemical Society.
Effect of the type of oil on the evolution of volatile compounds of taralli during storage.
Giarnetti, Mariagrazia; Caponio, Francesco; Paradiso, Vito M; Summo, Carmine; Gomes, Tommaso
2012-03-01
Baking process leads to a huge quantity of newly formed volatile compounds, which play a major role in developing the flavor of the final product. The aim of this work was to investigate on the evolution of the volatile profile of taralli as a function of both the kind of oil used in the dough and the storage time. The volatile compounds from the taralli were extracted by headspace solid-phase microextraction and analyzed by gas-chromatography/mass spectrometry (GC/MS). Forty-four volatile compounds were identified in taralli, most of which produced by thermically induced reactions occurring during baking process, such as volatiles deriving from Maillard reaction and/or sugar degradation and lipid oxidation. The results obtained demonstrated the essential role played by the type of oil on the formation and on the release of volatile compounds. The volatile compounds significantly increased during storage and their individual levels were in most cases significantly lower in taralli made with extra virgin olive oil than in those made with refined oils. Finally, the taralli made with extra virgin olive oil, compared with those prepared with other vegetable oils, showed to be more resistant to oxidation, probably due to the presence of natural antioxidants. © 2012 Institute of Food Technologists®
Raining a magma ocean: Thermodynamics of rocky planets after a giant impact
NASA Astrophysics Data System (ADS)
Stewart, S. T.; Lock, S. J.; Caracas, R.
2017-12-01
Rocky planets in exoplanetary systems have equilibrium temperatures up to a few 1000 K. The thermal evolution after a giant impact is sensitive to the equilibrium temperature. Post-impact rocky bodies are thermally stratified, with cooler, lower-entropy silicate overlain by vaporized, higher-entropy silicate. The radii of impact-vaporized rocky planets are much larger than the radii of equivalent condensed bodies. Furthermore, after some high-energy, high-angular momentum collisions, the post-impact body exceeds the corotation limit for a rocky planet and forms a synestia. Initially, volatiles and silicates are miscible at the high temperatures of the outer layer. If the equilibrium temperature with the star is lower than the silicate condensation temperature ( 2000 K), silicate droplets form at the photosphere and fall while volatile components remain in the vapor. Radiation and turbulent convection cool the vapor outer layer to the silicate vapor curve. A distinct magma ocean forms as the thermal profile crosses the silicate vapor curve and the critical curves for the volatiles. Near the temperatures and pressures of the critical curves, volatiles and silicates are partially soluble in each other. As the system continues cooling, the volatile vapor and silicate liquid separate toward the end member compositions, which are determined by the equilibrium temperature and the total vapor pressure of volatiles. If the equilibrium temperature with the star is near or above the condensation temperature for silicates, there would be limited condensation at the photosphere. Initially, the cooler lower mantle would slowly, diffusively equilibrate with the hotter upper mantle. In some cases, the thermal profile may cross the silicate vapor curve in the middle of the silicate layer, producing a silicate rain layer within the body. With continued evolution toward an adiabatic thermal profile, the body would separate into a silicate liquid layer underlying a silicate-volatile vapor layer. As the hottest rocky planets become tidally locked to their star, cooling progresses asymmetrically. The timing and degree of differentiation of rocky planets into silicate mantles and volatile atmospheres depends on the thermal evolution of vaporized rocky planets and may vary widely with equilibrium temperature.
Identification of market trends with string and D2-brane maps
NASA Astrophysics Data System (ADS)
Bartoš, Erik; Pinčák, Richard
2017-08-01
The multidimensional string objects are introduced as a new alternative for an application of string models for time series forecasting in trading on financial markets. The objects are represented by open string with 2-endpoints and D2-brane, which are continuous enhancement of 1-endpoint open string model. We show how new object properties can change the statistics of the predictors, which makes them the candidates for modeling a wide range of time series systems. String angular momentum is proposed as another tool to analyze the stability of currency rates except the historical volatility. To show the reliability of our approach with application of string models for time series forecasting we present the results of real demo simulations for four currency exchange pairs.
Queen-specific volatile in a higher termite Nasutitermes takasagoensis (Isoptera: Termitidae).
Himuro, Chihiro; Yokoi, Tomoyuki; Matsuura, Kenji
2011-07-01
In social insect colonies, queen-produced pheromones have important functions in social regulation. These substances influence the behavior and physiology of colony members. A queen-produced volatile that inhibits differentiation of new neotenic reproductives was recently identified in the lower termite Reticulitermes speratus. However, there are no known queen-specific volatiles of this type in any other termite species. Here, we report volatile compounds emitted by live queens of the higher termite Nasutitermes takasagoensis. We used headspace gas chromatography mass spectroscopy (HS GC-MS) to analyze volatiles emitted by live primary queens, workers, soldiers, alates, and eggs collected in a Japanese subtropical forest. Among 14 detected compounds, 7 were soldier-specific, 1 was alate-specific, 1 was egg-specific, and 1 was queen-specific. The queen-specific volatile was phenylethanol, which is different than the compound identified in R. speratus. The identification of this queen-specific volatile is the first step in determining its functions in higher termite social regulation. Comparisons of queen pheromone substances regulating caste differentiation among various termite taxa will contribute to a better understanding of the evolution of social systems in termites. Copyright © 2011 Elsevier Ltd. All rights reserved.
The role of volatiles and lithology in the impact cratering process
NASA Technical Reports Server (NTRS)
Kieffer, S. W.; Simonds, C. H.
1980-01-01
A survey of published descriptions of 32 of the largest, least eroded terrestrial impact structures shows that the amount of melt at craters in crystalline rocks is approximately two orders of magnitude greater than that at craters in sedimentary rocks. A model is proposed for the impact process, and it is examined whether the difference in melt abundance is due to differences in the amount of melt generated in various target materials or due to differences in the fate of the melt during late stages of the impact. The model accounts semiquantitatively for the effects of porosity and water and volatile content on the cratering process. Important features of the model are noted. Even if the recondensation of released volatiles is very efficient, the cumulative effect of repeated impacts on accreting planets would be to continually transfer volatiles toward the outer surface. By this process, volatiles might be enriched toward the outer layer of a growing planet.
Weber, Elke U; Siebenmorgen, Niklas; Weber, Martin
2005-06-01
An experiment examined how the type and presentation format of information about investment options affected investors' expectations about asset risk, returns, and volatility and how these expectations related to asset choice. Respondents were provided with the names of 16 domestic and foreign investment options, with 10-year historical return information for these options, or with both. Historical returns were presented either as a bar graph of returns per year or as a continuous density distribution. Provision of asset names allowed for the investigation of the mechanisms underlying the home bias in investment choice and other asset familiarity effects. Respondents provided their expectations of future returns, volatility, and expected risk, and indicated the options they would choose to invest in. Expected returns closely resembled historical expected values. Risk and volatility perceptions both varied significantly as a function of the type and format of information, but in different ways. Expected returns and perceived risk, not predicted volatility, predicted portfolio decisions.
Shutes, Brittany; Frazier, W Joshua; Tobias, Joseph D
2017-07-01
In severe cases of status asthmaticus, when conventional therapies fail, volatile anesthetic agents remain a therapeutic option. When delivered outside of the operating room setting, specialized delivery techniques are needed to ensure the safe and effective use of volatile anesthetic agents. We present a 16-year-old adolescent with status asthmaticus who required the therapeutic administration of the volatile anesthetic agent, sevoflurane, in the pediatric intensive care unit (PICU). Although initially effective in reducing bronchospasm, progressive hypercarbia developed due to defective functioning of the carbon dioxide absorber of the anesthesia machine. This failure occurred as the soda lime compartment filled with water accumulated from circuit humidification and continuous albuterol therapy. The role of volatile anesthetic agents in the treatment of status asthmaticus in the PICU is discussed, options for delivery outside of the operating room presented, and potential problems with delivery reviewed.
NASA Astrophysics Data System (ADS)
Keller, Tobias; Katz, Richard F.
2015-04-01
Laboratory experiments indicate that even small concentrations volatiles (H2O or CO2) in the upper mantle significantly affect the silicate melting behavior [HK96,DH06]. The presence of volatiles stabilizes volatile-rich melt at high pressure, thus vastly increasing the volume of the upper mantle expected to be partially molten [H10,DH10]. These small-degree melts have important consequences for chemical differentiation and could affect the dynamics of mantle flow. We have developed theory and numerical implementation to simulate thermo-chemically coupled magma/mantle dynamics in terms of a two-phase (rock+melt), three component (dunite+MORB+volatilized MORB) physical model. The fluid dynamics is based on McKenzie's equations [McK84], while the thermo-chemical formulation of the system is represented by a novel disequilibrium multi-component melting model based on thermo-dynamic theory [RBS11]. This physical model is implemented as a parallel, two-dimensional, finite-volume code that leverages tools from the PETSc toolkit. Application of this simulation code to a mid-ocean ridge system suggests that the methodology captures the leading-order features of both hydrated and carbonated mantle melting, including deep, low-degree, volatile-rich melt formation. Melt segregation leads to continuous dynamic thermo-chemical dis-equilibration, while phenomenological reaction rates are applied to continually move the system towards re-equilibration. The simulations will be used first to characterize volatile extraction from the MOR system assuming a chemically homogeneous mantle. Subsequently, simulations will be extended to investigate the consequences of heterogeneity in lithology [KW12] and volatile content. These studies will advance our understanding of the role of volatiles in the dynamic and chemical evolution of the upper mantle. Moreover, they will help to gauge the significance of the coupling between the deep carbon cycle and the ocean/atmosphere system. REFERENCES HK96 Hirth & Kohlstedt (1996), Earth Planet Sci Lett DH06 Dasgupta & Hirschmann (2006), doi:10.1038/nature04612. H10 Hirschmann (2010), doi:10.1016/j.pepi.2009.12.003. DH10 Dasgupta & Hirschmann (2010), doi:10.1016/j.epsl.2010.06.039. McK84 McKenzie (1984), J Pet KW12 Katz & Weatherley (2012), doi: 10.1016/j.epsl.2012.04.042. RBS11 Rudge, Bercovici & Spiegelman (2011), doi: 10.1111/j.1365-246X.2010.04870.x
The Salt Lake City EPA Environmental
Monitoring for Public Access and Community Tracking (EMPACT) project,
initiated in October 1999, is designed to evaluate the usefulness of a
newly developed real-time continuous monitor (RAMS) for total
(non-volatil...
Wolters, André; Kromer, Thomas; Linnemann, Volker; Schäffer, Andreas; Vereecken, Harry
2003-04-01
Volatilization from soil and plant surfaces after application is an important source of pesticide residues to the atmosphere. The laboratory photovolatility chamber allows the simultaneous measurement of volatilization and photodegradation of 14C-labeled pesticides under controlled climatic conditions. Both continuous air sampling, which quantifies volatile organic compounds and 14CO2 separately, and the detection of surface-located residues allow for a mass balance of radioactivity. The setup of the photovolatility chamber was optimized, and additional sensors were installed to characterize the influence of soil moisture, soil temperature, and evaporation on volatilization. The modified flow profile in the glass dome of the chamber arising from the use of a high-performance metal bellows pump was measured. Diminished air velocity near the soil surface and a wind velocity of 0.2 m/s in 3 cm height allowed the requirements of the German guideline on assessing pesticide volatilization for registration purposes to be fulfilled. Determination of soil moisture profiles of the upper soil layer illustrated that defined water content in the soil up to a depth of 4 cm could be achieved by water saturation of air. Cumulative volatilization of [phenyl-UL-14C]parathion-methyl ranged from 2.4% under dry conditions to 32.9% under moist conditions and revealed the clear dependence of volatilization on the water content in the top layer.
Jiang, Bao; Zhang, Zhenwen
2010-12-10
In order to elucidate the aroma components of wine produced in the Loess Plateau region of China, volatile compounds of young wines from Cabernet Sauvignon, Cabernet Gernischet and Chardonnay varieties grown in the new ecological region were investigated for the first time in this research. Among the volatile compounds analyzed by HS-SPME with GC-MS, a total of 45, 44 and 42 volatile compounds were identified and quantified in Cabernet Sauvignon, Cabernet Gernischet and Chardonnay wines, respectively. In the volatiles detected, alcohols formed the most abundant group in the aroma compounds of the three wines, followed by esters and fatty acids. According to their odor active values (OAVs), 18 volatile compounds were always present in the three wines at concentrations higher than their threshold values, but ethyl octanoate, ethyl hexanoate, and isoamyl acetate were found to jointly contribute to 92.9%, 93.3%, and 98.7%, of the global aroma of Cabernet Sauvignon, Cabernet Gernischet and Chardonnay wines, respectively. These odorants are associated with "fruity'' and ''ripe fruit'' odor descriptors.
Statistical regularities in the return intervals of volatility
NASA Astrophysics Data System (ADS)
Wang, F.; Weber, P.; Yamasaki, K.; Havlin, S.; Stanley, H. E.
2007-01-01
We discuss recent results concerning statistical regularities in the return intervals of volatility in financial markets. In particular, we show how the analysis of volatility return intervals, defined as the time between two volatilities larger than a given threshold, can help to get a better understanding of the behavior of financial time series. We find scaling in the distribution of return intervals for thresholds ranging over a factor of 25, from 0.6 to 15 standard deviations, and also for various time windows from one minute up to 390 min (an entire trading day). Moreover, these results are universal for different stocks, commodities, interest rates as well as currencies. We also analyze the memory in the return intervals which relates to the memory in the volatility and find two scaling regimes, ℓ<ℓ* with α1=0.64±0.02 and ℓ> ℓ* with α2=0.92±0.04; these exponent values are similar to results of Liu et al. for the volatility. As an application, we use the scaling and memory properties of the return intervals to suggest a possibly useful method for estimating risk.
Resource Prospector: A Lunar Volatiles Prospecting and ISRU Demonstration Mission
NASA Technical Reports Server (NTRS)
Colaprete, Anthony
2015-01-01
A variety of recent observations have indicated several possible reservoirs of water and other volatiles. These volatiles, and in particular water, have the potential to be a valuable or enabling resource for future exploration. NASA's Human Exploration and Operations Mission Directorate (HEOMD) Advanced Exploration Systems (AES) is supporting the development of Resource Prospector (RP) to explore the distribution and concentration of lunar volatiles prospecting and to demonstrate In-Situ Resource Utilization (ISRU). The mission includes a NASA developed rover and payload, and a lander will most likely be a contributed element by an international partner or the Lunar Cargo Transportation and Landing by Soft Touchdown (CATALYST) initiative. The RP payload is designed to: (1) locate near-subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form. extractability and usefulness of the materials. RP is being designed with thought given to its extensibility to resource prospecting and ISRU on other airless bodies and Mars. This presentation will describe the Resource Prospector mission, the payload and measurements, and concept of operations
Herbivore-induced Blueberry Volatiles and Intra-plant Signaling
Rodriguez-Saona, Cesar R.
2011-01-01
Herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack1,2. These HIPVs are mainly regulated by the defensive plant hormone jasmonic acid (JA) and its volatile derivative methyl jasmonate (MeJA)3,4,5. Over the past 3 decades researchers have documented that HIPVs can repel or attract herbivores, attract the natural enemies of herbivores, and in some cases they can induce or prime plant defenses prior to herbivore attack. In a recent paper6, I reported that feeding by gypsy moth caterpillars, exogenous MeJA application, and mechanical damage induce the emissions of volatiles from blueberry plants, albeit differently. In addition, blueberry branches respond to HIPVs emitted from neighboring branches of the same plant by increasing the levels of JA and resistance to herbivores (i.e., direct plant defenses), and by priming volatile emissions (i.e., indirect plant defenses). Similar findings have been reported recently for sagebrush7, poplar8, and lima beans9.. Here, I describe a push-pull method for collecting blueberry volatiles induced by herbivore (gypsy moth) feeding, exogenous MeJA application, and mechanical damage. The volatile collection unit consists of a 4 L volatile collection chamber, a 2-piece guillotine, an air delivery system that purifies incoming air, and a vacuum system connected to a trap filled with Super-Q adsorbent to collect volatiles5,6,10. Volatiles collected in Super-Q traps are eluted with dichloromethane and then separated and quantified using Gas Chromatography (GC). This volatile collection method was used n my study6 to investigate the volatile response of undamaged branches to exposure to volatiles from herbivore-damaged branches within blueberry plants. These methods are described here. Briefly, undamaged blueberry branches are exposed to HIPVs from neighboring branches within the same plant. Using the same techniques described above, volatiles emitted from branches after exposure to HIPVs are collected and analyzed. PMID:22214939
Effect of sequential surface irrigations on field-scale emissions of 1,3-dichloropropene.
Yates, S R; Knuteson, J; Ernst, F F; Zheng, W; Wang, Q
2008-12-01
A field experiment was conducted to measure subsurface movement and volatilization of 1,3-dichloropropene (1,3-D) after shank injection to an agricultural soil. The goal of this study was to evaluate the effect of sprinkler irrigation on the emissions of 1,3-D to the atmosphere and is based on recent research that has shown that saturating the soil pore space reduces gas-phase diffusion and leads to reduced volatilization rates. Aerodynamic, integrated horizontal flux, and theoretical profile shape methods were used to estimate fumigant volatilization rates and total emission losses. These methods provide estimates of the volatilization rate based on measurements of wind speed, temperature, and 1,3-D concentration in the atmosphere. The volatilization rate was measured continuously for 16 days, and the daily peak volatilization rates for the three methods ranged from 18 to 60 microg m(-2) s(-1). The total 13-D mass entering the atmosphere was approximately 44-68 kg ha(-1), or 10-15% of the applied active ingredient This represents approximately 30-50% reduction in the total emission losses compared to conventional fumigant applications in field and field-plot studies. Significant reduction in volatilization of 1,3-D was observed when five surface irrigations were applied to the field, one immediately after fumigation followed by daily irrigations.
Chen, Shuang; Sha, Sha; Qian, Michael; Xu, Yan
2017-12-01
This study investigated the aroma contribution of volatile sulfur compounds (VSCs) in Moutai liquors. The VSCs were analyzed using headspace solid-phase microextraction-gas chromatography-pulsed flame photometric detection (HS-SPME-GC-PFPD). The influences of SPME fibers, ethanol content in the sample, pre-incubation time, and extraction temperature and time on the extraction of VSCs were optimized. The VSCs were optimally extracted using a divinylbenzene/carboxen/polydimethylsiloxane fiber, by incubating 10 mL diluted Chinese liquor (5% vol.) with 3 g NaCl at 30 °C for 15 min, followed by a subsequent extraction for 40 min at 30 °C. The optimized method was further validated. A total of 13 VSCs were identified and quantified in Moutai liquors. The aroma contribution of these VSCs were evaluated by their odor activity values (OAVs), with the result that 7 of 13 VSCs had OAVs > 1. In particular, 2-furfurylthiol, methanethiol, dimethyl trisulfide, ethanethiol, and methional had relatively high OAVs and could be the key aroma contributors to Moutai liquors. In this study, a method for analyzing volatile sulfur compounds in Chinese liquors has been developed. This method will allow an in-depth study the aroma contribution of volatile sulfur compounds in Chinese liquors. Seven volatile sulfur compounds were identified as potential key aroma contributors for Moutai liquors, which can help to the quality control of Moutai liquors. © 2017 Institute of Food Technologists®.
Villberg, K; Veijanen, A
2001-03-01
A thermal desorption equipment introducing volatile organic compounds (VOCs) into the gas chromatographic/ mass spectrometric system (GC/MS) with simultaneous sniffing (SNIFF) is a suitable method for identifying the volatile organic off-odor compounds formed during the extrusion coating process of low-density polyethylene. Fumes emitted during the extrusion coating process of three different plastic materials were collected at two different temperatures (285 and 315 degrees C) from an outgoing pipe and near an extruder. The VOCs of fumes were analyzed by drawing a known volume of air through the adsorbent tube filled with a solid adsorbent (Tenax GR). The air samples were analyzed by using a special thermal desorption device and GC/MS determination. The simultaneous sniffing was carried out to detect off-odors and to assist in the identification of those compounds that contribute to tainting and smelling. The amounts of off-odor carbonyl compounds and the total content of the volatile organic compounds were determined. The most odorous compounds were identified as carboxylic acids while the majority of the volatile compounds were hydrocarbons. The detection and quantification of carboxylic acids were based on the characteristic ions of their mass spectra. The higher the extrusion temperature the more odors were detected. An important observation was that the total concentration of volatiles was dependent not only on the extrusion temperature but also on the plastic material.
NASA Astrophysics Data System (ADS)
Fan, Yan; Yin, Li'ang; Xue, Yong; Li, Zhaojie; Hou, Hu; Xue, Changhu
2017-04-01
Shrimp paste is a type of condiments with high nutritional value. However, the flavors of shrimp paste, particularly the non-uniformity flavors, have limited its application in food processing. In order to identify the characteristic flavor compounds in Chinese traditional shrimp pastes, five kinds of typical commercial products were evaluated in this study. The differences in the volatile composition of the five products were investigated. Solid phase micro-extraction method was employed to extract the volatile compounds. GC-MS and electronic nose were applied to identify the compounds, and the data were analyzed using principal component analysis (PCA). A total of 62 volatile compounds were identified, including 8 alcohols, 7 aldehydes, 3 ketones, 7 ethers, 7 acids, 3 esters, 6 hydrocarbons, 12 pyrazines, 2 phenols, and 7 other compounds. The typical volatile compounds contributing to the flavor of shrimp paste were found as follows: dimethyl disulfide, dimethyl tetrasulfide, dimethyl trisulfide, 2, 3, 5-trimethyl-6-ethyl pyrazine, ethyl-2, 5-dimethyl-pyrazine, phenol and indole. Propanoic acid, butanoic acid, furans, and 2-hydroxy-3-pentanone caused unpleasant odors, such as pungent and rancid odors. Principal component analysis showed that the content of volatile compounds varied depending on the processing conditions and shrimp species. These results indicated that the combinations of multiple analysis and identification methods could make up the limitations of a single method, enhance the accuracy of identification, and provide useful information for sensory research and product development.
Marcillo, Andrea; Jakimovska, Viktorija; Widdig, Anja; Birkemeyer, Claudia
2017-09-08
Volatile organic compounds (VOCs) are commonly collected from gaseous samples by adsorption to materials such as the porous polymer Tenax TA. Adsorbed compounds are subsequently released from these materials by thermal desorption (TD) and separated then by gas chromatography (GC) with flame ionization (FID) or mass spectrometry (MS) detection. Tenax TA is known to be particularly suitable for non-polar to semipolar volatiles, however, many volatiles from environmental and biological samples possess a rather polar character. Therefore, we tested if the polymer XAD-2, which so far is widely used to adsorb organic compounds from aqueous and organic solvents, could provide a broader coverage for (semi)polar VOCs during gas-phase sampling. Mixtures of volatile compounds covering a wide range of volatility (bp. 20-256°C) and different chemical classes were introduced by liquid spiking into sorbent tubes with one of the two porous polymers, Tenax TA or XAD-2, and analyzed by TD/GC-MS. At first, an internal standard mixture composed of 17 authentic standards was used to optimize desorption temperature with respect to sorbent degradation and loading time for calibration. Secondly, we tested the detectability of a complex standard mixture composed of 57 volatiles, most of them common constituents of the body odor of mammals. Moreover, the performance of XAD-2 compared with Tenax TA was assessed as limit of quantitation and linearity for the internal standard mixture and 33 compounds from the complex standard mixture. Volatiles were analyzed in a range between 0.01-∼250ng/tube depending on the compound and material. Lower limits of quantitation were between 0.01 and 3 ng±<25% RSD (R 2 >0.9). Interestingly, we found different kinetics for compound adsorption with XAD-2, and a partially better sensitivity in comparison with Tenax TA. For these analytes, XAD-2 might be recommended as an alternative of Tenax TA for TD/GC-MS analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Wei, Guo; Tian, Peng; Zhang, Fengxia; Qin, Hao; Miao, Han; Chen, Qingwen; Hu, Zhongyi; Wang, Meijiao; Chen, Mingsheng
2016-01-01
Plant volatile organic compounds, which are generated in a tissue-specific manner, play important ecological roles in the interactions between plants and their environments, including the well-known functions of attracting pollinators and protecting plants from herbivores/fungi attacks. However, to date, there have not been reports of holistic volatile profiling of the various tissues of a single plant species, even for the model plant species. In this study, we qualitatively and quantitatively analyzed 85 volatile chemicals, including 36 volatile terpenes, in 23 different tissues of cucumber (Cucumis sativus) plants using solid-phase microextraction combined with gas chromatography-mass spectrometry. Most volatile chemicals were found to occur in a highly tissue-specific manner. The consensus transcriptomes for each of the 23 cucumber tissues were generated with RNA sequencing data and used in volatile organic compound-gene correlation analysis to screen for candidate genes likely to be involved in cucumber volatile biosynthetic pathways. In vitro biochemical characterization of the candidate enzymes demonstrated that TERPENE SYNTHASE11 (TPS11)/TPS14, TPS01, and TPS15 were responsible for volatile terpenoid production in the roots, flowers, and fruit tissues of cucumber plants, respectively. A functional heteromeric geranyl(geranyl) pyrophosphate synthase, composed of an inactive small subunit (type I) and an active large subunit, was demonstrated to play a key role in monoterpene production in cucumber. In addition to establishing a standard workflow for the elucidation of plant volatile biosynthetic pathways, the knowledge generated from this study lays a solid foundation for future investigations of both the physiological functions of cucumber volatiles and aspects of cucumber flavor improvement. PMID:27457123
Amodio, M; Dambruoso, P R; de Gennaro, Gianluigi; de Gennaro, L; Loiotile, A Demarinis; Marzocca, A; Stasi, F; Trizio, L; Tutino, M
2014-12-01
In order to assess indoor air quality (IAQ), two 1-week monitoring campaigns of volatile organic compounds (VOC) were performed in different areas of a multistorey shopping mall. High-spatial-resolution monitoring was conducted at 32 indoor sites located in two storehouses and in different departments of a supermarket. At the same time, VOC concentrations were monitored in the mall and parking lot area as well as outdoors. VOC were sampled at 48-h periods using diffusive samplers suitable for thermal desorption. The samples were then analyzed with gas chromatography-mass spectrometry (GC-MS). The data analysis and chromatic maps indicated that the two storehouses had the highest VOC concentrations consisting principally of terpenes. These higher TVOC concentrations could be a result of the low efficiency of the air exchange and intake systems, as well as the large quantity of articles stored in these small spaces. Instead, inside the supermarket, the food department was the most critical area for VOC concentrations. To identify potential emission sources in this department, a continuous VOC analyzer was used. The findings indicated that the highest total VOC concentrations were present during cleaning activities and that these activities were carried out frequently in the food department. The study highlights the importance of conducting both high-spatial-resolution monitoring and high-temporal-resolution monitoring. The former was able to identify critical issues in environments with a complex emission scenario while the latter was useful in interpreting the dynamics of each emission source.
NASA Technical Reports Server (NTRS)
Bower, Hannah; Cryderman, Kate; Captain, Janine
2016-01-01
The Resource Prospector (RP) mission with the Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) payload will prospect for water within the lunar regolith and provide a proof of concept for In-Situ Resource Utilization (ISRU) techniques, which could be used on future lunar and Martian missions. One system within the RESOLVE payload is the Lunar Advanced Volatiles Analysis (LAVA) subsystem, which consists of a Fluid Sub System (FSS) that transports volatiles to the Gas Chromatograph-Mass Spectrometer (GC-MS) instrument. In order for the FSS to transport precise and accurate amounts of volatiles to the GC-MS instrumentation, high performance valves are used within the system. The focus of this investigation is to evaluate the redesigned Lee valve. Further work is needed to continue to evaluate the Lee valve. Initial data shows that the valve could meet our requirements however further work is required to raise the TRL to an acceptable level to be included in the flight design of the system. At this time the risk is too high to change our baseline design to include these non-latching Lee solenoid valves.
Feng, Hui; Skinkis, Patricia A; Qian, Michael C
2017-01-01
The impacts of fruit zone leaf removal on volatile and anthocyanin compositions of Pinot noir wine were investigated over two growing seasons. Wine volatiles were analyzed by multiple techniques, including headspace solid phase microextraction-GC-MS (HS-SPME-GC-MS), headspace-GC-FID (HS-GC-FID) and stir bar sorptive extraction-GC-MS (SBSE-GC-MS). Fruit zone leaf removal affected the concentration of many grape-derived volatile compounds such as terpene alcohols and C13-norisoprenoids in wine, although the degree of impact depended on the vintage year and severity of leaf removal. Fruit zone leaf removal resulted in greater concentrations of linalool, α-terpineol and β-damascenone but had no impact on other terpene alcohols or β-ionone. Fruit zone leaf removal had no consistent impact on C6 alcohols, volatile phenols, lactones, fermentation-derived alcohols, acids, or most esters. Fruit zone leaf removal increased anthocyanins in final wine. Copyright © 2016 Elsevier Ltd. All rights reserved.
Volatility Behaviors of Financial Time Series by Percolation System on Sierpinski Carpet Lattice
NASA Astrophysics Data System (ADS)
Pei, Anqi; Wang, Jun
2015-01-01
The financial time series is simulated and investigated by the percolation system on the Sierpinski carpet lattice, where percolation is usually employed to describe the behavior of connected clusters in a random graph, and the Sierpinski carpet lattice is a graph which corresponds the fractal — Sierpinski carpet. To study the fluctuation behavior of returns for the financial model and the Shanghai Composite Index, we establish a daily volatility measure — multifractal volatility (MFV) measure to obtain MFV series, which have long-range cross-correlations with squared daily return series. The autoregressive fractionally integrated moving average (ARFIMA) model is used to analyze the MFV series, which performs better when compared to other volatility series. By a comparative study of the multifractality and volatility analysis of the data, the simulation data of the proposed model exhibits very similar behaviors to those of the real stock index, which indicates somewhat rationality of the model to the market application.
Comprehensive comparative analysis of volatile compounds in citrus fruits of different species.
Zhang, Haipeng; Xie, Yunxia; Liu, Cuihua; Chen, Shilin; Hu, Shuangshuang; Xie, Zongzhou; Deng, Xiuxin; Xu, Juan
2017-09-01
The volatile profiles of fruit peels and juice sacs from 108 citrus accessions representing seven species were analyzed. Using GC-MS 162 and 107 compounds were determined in the peels and juice sacs, respectively. In the peels, monoterpene alcohols were accumulated in loose-skin mandarins; clementine tangerines and papedas were rich in sesquiterpene alcohols, sesquiterpenes, monoterpene alcohols and monoterpene aldehydes. β-pinene and sabinene were specifically accumulated in 4 of 5 lemon germplasms. Furthermore, concentrations of 34 distinctive compounds were selected to best represent the volatile profiles of seven species for HCA analysis, and the clustering results were in agreement with classic citrus taxonomy. Comparison of profiles from different growing seasons and production areas indicated that environmental factors play important roles in volatile metabolism. In addition, a few citrus germplasms that accumulated certain compounds were determined as promising breeding materials. Notably, volatile biosynthesis via MVA pathway in C. ichangensis 'Huaihua' was enhanced. Copyright © 2017. Published by Elsevier Ltd.
Arsenijević, Jelena; Marković, Jelena; Soštarić, Ivan; Ražić, Slavica
2013-10-01
The volatile fraction of the leaves of Thymus pannonicus All. (Lamiaceae) was analyzed by headspace extraction followed by GC-FID and GC-MS analysis. The different headspace profiles were recognized, with citral and with monoterpene hydrocarbons as dominant compounds. In addition, the determination of Cr, Co, Ni, Mo, Cu, Zn, Mn, Fe, Mg, Ca, K and Na was conducted by spectroscopic techniques (FAAS, GFAAS and ICP-OES). In order to evaluate the relationship between volatile organic compounds and metals, a chemometrics approach was applied. The data obtained by analysis of the headspace and elemental content were subjected to correlation analysis, factor analysis, principal component analysis and cluster analysis. A number of significant correlations of metals with plant volatiles were found. Correlation of Zn with citral, Mn with oxygenated monoterpenes and Mg with β-bourbonene, could be explained by involvement of metals in the biosynthesis of volatile organic compounds. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Pérez, Rosa Ana; Rojo, Maria Dolores; González, Gema; De Lorenzo, Cristina
2008-01-01
A method using solid-phase microextraction (SPME) and gas chromatography/mass spectrometry was developed and applied to the determination of volatile compounds generated in meat, at different times, from ground beef stored under refrigeration. Selection of the extractive fiber, extraction time, and headspace (HS) or direct extraction was optimized for the determination of volatile compounds from ground meat. Various fibers were investigated, and carboxen/polydimethylsiloxane was selected for these analyses. The HS analysis of the solid sample by HS-SPME produced a higher volatile signal than did direct-SPME. The meat samples were stored under refrigeration and analyzed after 0, 3, and 6 days of storage. These analyses at different times showed important changes in the volatile profile of the evaluated samples. The ketones 3-hydroxy-2-butanone and 2,3-butanedione, and the alcohol 3-methyl-1-butanol were the most representative compounds generated during the meat storage. In general, compounds associated with a butter off-flavor were detected during the storage of raw ground beef.
Budnik, Lygia T; Fahrenholtz, Svea; Kloth, Stefan; Baur, Xaver
2010-04-01
Protection against infestation of a container cargo by alien species is achieved by mandatory fumigation with pesticides. Most of the effective fumigants are methyl and ethyl halide gases that are highly toxic and are a risk to both human health and the environment. There is a worldwide need for a reliable and robust analytical screening procedure for these volatile chemicals in a multitude of health and environmental scenarios. We have established a highly sensitive broad spectrum mass spectrometry method combined with thermal desorption gas chromatography to detect, identify and quantify volatile pesticide residues. Using this method, 1201 random ambient air samples taken from freight containers arriving at the biggest European ports of Hamburg and Rotterdam were analyzed over a period of two and a half years. This analytical procedure is a valuable strategy to measure air pollution from these hazardous chemicals, to help in the identification of pesticides in the new mixtures/formulations that are being adopted globally and to analyze expired breath samples after suspected intoxication in biomonitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zielinska, B.; Harshfield, G.; Fujita, E.
1997-12-31
Volatile organic compounds (VOC) were measured in California`s South Coast Air Basin (SoCAB) during the summers of 1995 and 1996 in order to determine the air quality impacts of the introduction in 1996 of California`s Phase 2 reformulated gasoline (RFG). Over 250 canister and 2,4-dinitrophenylhydrazine (DNPH)-impregnated cartridge samples were collected during each sampling campaign at four sampling sites--two source-dominated sites, a downwind receptor site, and a background site. Canister samples were analyzed for methane, speciated volatile hydrocarbons (C{sub 2}-C{sub 12}), carbon monoxide (CO), carbon dioxide (CO{sub 2}), and methyl tert-butyl ether (MTBE). DNPH were analyzed for C{sub 1}-C{sub 7} carbonylmore » compounds. This paper examines the changes in concentrations of C{sub 2}-C{sub 12} hydrocarbons in the SoCAB resulting from the introduction of Phase 2 RFG with particular emphasis on hydrocarbon species that are most affected by the reformulation.« less
Banchio, Erika; Zygadlo, Julio; Valladares, Graciela R
2005-04-01
Plant tissues may show chemical changes following damage. This possibility was analyzed for Minthostachys mollis, a Lamiaceae native to Central Argentina with medicinal and aromatic uses in the region. Effects of mechanical damage on its two dominant monoterpenes, pulegone and menthone, were analyzed by perforating M. mollis leaves and then assessing essential oil composition at 24, 48, and 120 hr; emission of volatiles was also measured 24 and 48 hr after wounding. Mechanical damage resulted in an increase of pulegone and menthone concentration in M. mollis essential oil during the first 24 hr. These changes did not occur in the adjacent undamaged leaves, suggesting a lack of systemic response. Postwounding changes in the volatiles released from M. mollis damaged leaves were also detected, most noticeably showing an increase in the emission of pulegone. Inducible chemical changes in aromatic plants might be common and widespread, affecting the specific compounds on which commercial exploitation is based.
E-Nose and GC-MS Reveal a Difference in the Volatile Profiles of White- and Red-Fleshed Peach Fruit
Xin, Rui; Liu, Xiaohong; Wei, Chunyan; Yang, Chong; Liu, Hongru; Cao, Xiangmei; Wu, Di; Chen, Kunsong
2018-01-01
First purchases of fruit are mainly dependent on aspects of appearance such as color. However, repeat buys of fruit are determined by internal quality traits such as flavor-related volatiles. Differences in volatile profiles in white- and red-fleshed peach fruit are not well understood. In the present study, peach cultivars with white- and red-fleshed fruit were subjected to sensory analysis using electronic nose (e-nose) to evaluate overview volatile profiles. Approximately 97.3% of the total variation in peach color-volatiles was explained by the first principle component 1 (PC1) and PC2. After analyzing sensory differences between peach fruit samples, 50 volatile compounds were characterized based on GC-MS. Multivariate analysis such as partial least squares discriminant analysis (PLS-DA) was applied to identify volatile compounds that contribute to difference in white- and red-fleshed peach fruit cultivars. A total of 18 volatiles that could separate peach fruit cultivars with different colors in flesh during ripening were identified based on variable importance in projection (VIP) score. Fruity note latone γ-hexalactone had higher contents in red-fleshed cultivars, while grassy note C6 compounds such as hexanal, 2-hexenal, (E)-2-hexenal, 1-hexanol, and (Z)-2-hexen-1-ol showed great accumulation in white-fleshed peach fruit. PMID:29498705
Volatile constituents of Trifolium pratense and T. repens from N.E. Italian alpine pastures.
Tava, Aldo; Ramella, Daniele; Grecchi, Maris; Aceto, Paolo; Paoletti, Renato; Piano, Efisio
2009-06-01
The composition of the volatile fraction of two important forage legumes from Italian sub-alpine N.E. pastureland, namely Trifolium pratense L. subsp. pratense (red clover) and T. repens subsp. repens (white clover) were investigated. The volatile oil was obtained from the fresh aerial parts by steam distillation and analyzed by GC/FID and GC/MS. The oil yield was 0.018 and 0.021% (weight/fresh weight basis) for T. pratense and T. repens, respectively. Several classes of compounds were found in both the oils, including alcohols, aldehydes, ketones, terpenes, esters, hydrocarbons, phenolics and acids. Qualitative and quantitative differences were found.
Lunar sample analysis. [X-ray photoemission and Auger spectroscopy of lunar glass
NASA Technical Reports Server (NTRS)
Housley, R. M.; Grant, R. W.; Cirlin, E. H.
1979-01-01
The surface composition of two samples from the highly shocked, glass-coated lunar basalt (12054) and from four glass-coated fragments from the 1-2 mm (14161) fines were examined by X-ray photoemission spectroscopy to determine whether the agglutination process itself is responsible for the difference between their surface and bulk compositions. Auger electron spectroscopy of glass balls from the 15425 and 74001 fines were analyzed to understand the nature, extent, and behavior of volatile phases associated with lunar volcanism. Initial results indicate that (1) volatiles, in the outer few atomic layers sampled, vary considerably from ball to ball; (2) variability over the surface of individual balls is smaller; (3) the dominant volatiles on the balls are S and Zn; and (4) other volatiles commonly observed are P, Cl, and K.
Composition and antioxidant activities of leaf and root volatile oils of Morinda lucida.
Okoh, Sunday O; Asekun, Olayinka T; Familoni, Oluwole B; Afolayan, Anthony J
2011-10-01
Morinda lucida (L.) Benth. (Rubiacae) is used in traditional medicine in many West African countries for the treatment of various human diseases. The leaves and roots of this plant were subjected to hydro-distillation to obtain volatile oils which were analyzed by high resolution GC/MS. Fifty compounds were identified in the leaf volatile oil and the major compounds were alpha-terpinene (17.8%) and beta-bisabolene (16.3%). In the root oil, 18 compounds were identified, the major constituents being 3-fluoro-p-anidine (51.8%) and hexadecanoic acid (12.0%). Antioxidant activities of the oils were examined using the DPPH, ABTS, reducing power and lipid peroxidation assays. All assays were concentration dependent with varying antioxidant potentials. The antioxidant activity of the root volatile oil of M. lucida was similar to that of the standard drugs used.
Huffman, Raegan L.
2014-01-01
Previous investigations indicate that concentrations of chlorinated volatile organic compounds (CVOCs) are substantial in groundwater beneath the 9-acre former landfill at Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington. The U.S. Geological Survey has continued to monitor groundwater geochemistry to ensure that conditions remain favorable for contaminant biodegradation as specified in the Record of Decision for the site. This report presents groundwater geochemical and selected CVOC data collected at Operable Unit 1 by the U.S. Geological Survey during July 9–18, 2013, in support of longterm monitoring for natural attenuation. Groundwater samples were collected from 13 wells and 9 piezometers, as well as from 10 shallow groundwater passive-diffusion sampling sites in the nearby marsh. Samples from all wells and piezometers were analyzed for oxidation-reduction (redox) sensitive constituents and dissolved gases. Samples from all piezometers and four wells also were analyzed for CVOCs, as were all samples from the passive-diffusion sampling sites. In 2013, concentrations of redox-sensitive constituents measured at all wells and piezometers were consistent with those measured in previous years, with dissolved oxygen concentrations at all except an upgradient well 0.2 milligrams per liter or less; little to no detectable nitrate; abundant dissolved manganese, iron, and methane; and commonly detected sulfide. In the upper aquifer of the northern plantation in 2013, CVOC concentrations at all piezometers were similar to those measured in previous years, and concentrations of the reductive dechlorination byproducts ethane and ethene were slightly lower or the same as concentrations measured in 2012. In the upper aquifer of the southern plantation, CVOC concentrations measured in piezometers during 2013 continued to be variable as in previous years, and often very high, and reductive dechlorination byproducts were detected in two of the three wells and in all but one piezometer. Beneath the marsh adjacent to the southern plantation, chloroethene concentrations measured in 2013 continued to vary spatially and temporaly, and also were very high. Total CVOC concentrations, at what have been historically the most contaminated passive-diffusion sampler sites (S-4, S-4B, S-5, and S-5B) remained elevated. For the intermediate aquifer in 2013, concentrations of reductive dechlorination byproducts ethane and ethene and CVOCs were consistent with those measured in previous years.
HS-GC/MS volatile profile of different varieties of garlic and their behavior under heating.
Molina-Calle, María; Priego-Capote, Feliciano; de Castro, María D Luque
2016-05-01
Garlic is one of the most used seasonings in the world whose beneficial health effects, mainly ascribed to organosulfur compounds, are shared with the rest of the Allium family. The fact that many of these compounds are volatile makes the evaluation of the volatile profile of garlic interesting. For this purpose, three garlic varieties-White, Purple, and Chinese-cultivated in the South of Spain were analyzed by a method based on a headspace (HS) device coupled to a gas chromatograph and mass detector (HS-GC/MS). The main temperatures in the HS were optimized to achieve the highest concentration of volatiles. A total number of 45 volatiles were tentatively identified (among them 17 were identified for the first time in garlic); then, all were classified, also for the first time, and their relative concentration in three garlic varieties was used to evaluate differences among them and to study their profiles according to the heating time. Chinese garlic was found to be the richest variety in sulfur volatiles, while the three varieties presented a similar trend under preset heating times allowing differentiation between varieties and heating time using principal component analysis. Graphical Abstract HS-GC/MS analysis of the volatile profile of garlic.
Thermal NF3 fluorination/oxidation of cobalt, yttrium, zirconium, and selected lanthanide oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheele, Randall D.; McNamara, Bruce K.; Casella, Andrew M.
2013-02-01
This paper presents results of our continuing investigation on the use of nitrogen trifluoride as a fluorination or fluorination/oxidation agent for separating valuable constituents from used nuclear fuels by exploiting the different volatilities of the constituent fission product and actinide fluorides. This article focuses on fission products that do not have volatile fluorides or oxyfluorides at expected operations temperatures. Our thermodynamic calculations show that nitrogen trifluoride has the potential to completely fluorinate fission product oxides to their fluorides. Simultaneous thermogravimetric and differential thermal analyses show that the oxides of cobalt, zirconium, and the lanthanides are fluorinated but do not formmore » volatile fluorides when treated with nitrogen trifluoride at temperatures up to 550°C. Our studies of gadolinium-doped commercial nuclear fuel indicate that nitrogen trifluoride can extract uranium from the non-volatile gadolinium.« less
Lin, Jie; Dai, Yi; Guo, Ya-nan; Xu, Hai-rong; Wang, Xiao-chang
2012-01-01
This study aimed to analyze the volatile chemical profile of Longjing tea, and further develop a prediction model for aroma quality of Longjing tea based on potent odorants. A total of 21 Longjing samples were analyzed by headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). Pearson’s linear correlation analysis and partial least square (PLS) regression were applied to investigate the relationship between sensory aroma scores and the volatile compounds. Results showed that 60 volatile compounds could be commonly detected in this famous green tea. Terpenes and esters were two major groups characterized, representing 33.89% and 15.53% of the total peak area respectively. Ten compounds were determined to contribute significantly to the perceived aroma quality of Longjing tea, especially linalool (0.701), nonanal (0.738), (Z)-3-hexenyl hexanoate (−0.785), and β-ionone (−0.763). On the basis of these 10 compounds, a model (correlation coefficient of 89.4% and cross-validated correlation coefficient of 80.4%) was constructed to predict the aroma quality of Longjing tea. Summarily, this study has provided a novel option for quality prediction of green tea based on HS-SPME/GC-MS technique. PMID:23225852
Ellis, Christine K.; Stahl, Randal S.; Nol, Pauline; Waters, W. Ray; Palmer, Mitchell V.; Rhyan, Jack C.; VerCauteren, Kurt C.; McCollum, Matthew; Salman, M. D.
2014-01-01
Bovine tuberculosis, caused by Mycobacterium bovis, is a zoonotic disease of international public health importance. Ante-mortem surveillance is essential for control; however, current surveillance tests are hampered by limitations affecting ease of use or quality of results. There is an emerging interest in human and veterinary medicine in diagnosing disease via identification of volatile organic compounds produced by pathogens and host-pathogen interactions. The objective of this pilot study was to explore application of existing human breath collection and analysis methodologies to cattle as a means to identify M. bovis infection through detection of unique volatile organic compounds or changes in the volatile organic compound profiles present in breath. Breath samples from 23 male Holstein calves (7 non-infected and 16 M. bovis-infected) were collected onto commercially available sorbent cartridges using a mask system at 90 days post-inoculation with M. bovis. Samples were analyzed using gas chromatography-mass spectrometry, and chromatographic data were analyzed using standard analytical chemical and metabolomic analyses, principle components analysis, and a linear discriminant algorithm. The findings provide proof of concept that breath-derived volatile organic compound analysis can be used to differentiate between healthy and M. bovis-infected cattle. PMID:24586655
Scaling and memory in volatility return intervals in financial markets
NASA Astrophysics Data System (ADS)
Yamasaki, Kazuko; Muchnik, Lev; Havlin, Shlomo; Bunde, Armin; Stanley, H. Eugene
2005-06-01
For both stock and currency markets, we study the return intervals τ between the daily volatilities of the price changes that are above a certain threshold q. We find that the distribution function Pq(τ) scales with the mean return interval [Formula] as [Formula]. The scaling function f(x) is similar in form for all seven stocks and for all seven currency databases analyzed, and f(x) is consistent with a power-law form, f(x) ˜ x-γ with γ ≈ 2. We also quantify how the conditional distribution Pq(τ|τ0) depends on the previous return interval τ0 and find that small (or large) return intervals are more likely to be followed by small (or large) return intervals. This “clustering” of the volatility return intervals is a previously unrecognized phenomenon that we relate to the long-term correlations known to be present in the volatility. Author contributions: S.H. and H.E.S. designed research; K.Y., L.M., S.H., and H.E.S. performed research; A.B. contributed new reagents/analytic tools; A.B. analyzed data; and S.H. wrote the paper.Abbreviations: pdf, probability density function; S&P 500, Standard and Poor's 500 Index; USD, U.S. dollar; JPY, Japanese yen; SEK, Swedish krona.
NASA Technical Reports Server (NTRS)
Pizzarello, S.; Feng, X.; Epstein, S.; Cronin, J. R.
1994-01-01
The combined volatile bases (ammonia, aliphatic amines, and possibly other bases), ammonia, amino acids, and polar hydrocarbons were prepared from the Murchison meteorite for isotopic analyses. The volatile bases were obtained by cryogenic transfer after acid-hydrolysis of a hot-water extract and analyzed by combined gas chromatography-mass spectrometry of pentafluoropropionyl derivatives. The aliphatic amines present in this preparation comprise a mixture that includes both primary and secondary isomers through C5 at a total concentration of > or = 100 nmoles g-1. As commonly observed for meteoritic organic compounds, almost all isomers through C5 are present, and the concentrations within homologous series decrease with increasing chain length. Ammonia was chromatographically separated from the other volatile bases and found at a concentration of 1.1-1.3 micromoles g-1 meteorite. The ammonia analyzed includes contributions from ammonium salts and the hydrolysis of extractable organic compounds, e.g., carboxamides. Stable isotope analyses showed the volatile bases to be substantially enriched in the heavier isotopes, relative to comparable terrestrial compounds delta D < or = +1221%; delta 13C = +22%; delta 15N = +93%). Ammonia, per se, was found to have a somewhat lower delta 15N value (+69%) than the total volatile bases; consequently, a higher delta 15N (>93%) can be inferred for the other bases, which include the amines. Solvent-extractable polar hydrocarbons obtained separately were found to be enriched in 15N (delta 15N = +104%). Total amino acids, prepared from a hydrolyzed hot-water extract by cation exchange chromatography, gave a delta 15N of +94%, a value in good agreement with that obtained previously. Nitrogen isotopic data are also given for amino acid fractions separated chromatographically. The delta 15N values of the Murchison soluble organic compounds analyzed to date fall within a rather narrow range (delta 15N = +94 +/- 8%), an observation consistent with their formation, or formation of their precursors, by interstellar chemistry.
Volatility of source apportioned wintertime organic aerosol in the city of Athens
NASA Astrophysics Data System (ADS)
Louvaris, Evangelos E.; Florou, Kalliopi; Karnezi, Eleni; Papanastasiou, Dimitrios K.; Gkatzelis, Georgios I.; Pandis, Spyros N.
2017-06-01
The volatility distribution of ambient organic aerosol (OA) and its components was measured during the winter of 2013 in the city of Athens combining a thermodenuder (TD) and a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). Positive Matrix Factorization (PMF) analysis of both the ambient and the thermodenuder AMS-spectra resulted in a four-factor solution for the OA, namely: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), cooking OA (COA), and oxygenated OA (OOA). The thermograms of the four factors were analyzed and the corresponding volatility distributions were estimated using the volatility basis set (VBS). All four factors included compounds with a wide range of effective volatilities from 10 to less than 10-4 μg m-3 at 298 K. Almost 40% of the HOA consisted of low-volatility organic compounds (LVOCs) with the semi-volatile compounds (SVOCs) representing roughly 30%, while the remaining 30% consisted of extremely low volatility organic compounds (ELVOCs). BBOA was more volatile than the HOA factor on average, with 10% ELVOCs, 40% LVOCs, and 50% SVOCs. 10% of the COA consisted of ELVOCs, another 65% LVOCs, and 50% SVOCs. Finally, the OOA was the least volatile factor and included 40% ELVOCs, 25% LVOCs, and 35% SVOCs. Combining the volatility distributions and the O:C ratios of the various factors, we placed our results in the 2D-VBS analysis framework of Donahue et al. (2012). HOA and BBOA are in the expected region but also include an ELVOC component. COA is in similar range as HOA, but on average is half an order of magnitude more volatile. The OOA in these wintertime conditions had a moderate O:C ratio and included both semi-volatile and extremely low volatility components. The above results are sensitive to the assumed values of the effective vaporization enthalpy and the accommodation coefficient. A reduction of the accommodation coefficient by an order of magnitude or the reduction of the vaporization enthalpy by 20 kJ mol-1 results in the increase of the average volatility by half an order of magnitude.
Aboudi, Kaoutar; Álvarez-Gallego, Carlos José; Romero-García, Luis Isidoro
2015-10-01
Anaerobic co-digestion of dried pellet of exhausted sugar beet cossettes (ESBC-DP) with pig manure (PM) was investigated in a semi-continuous stirred tank reactor (SSTR) under mesophilic conditions. Seven hydraulic retention times (HRT) from 20 to 5 days were tested with the aim to evaluate the methane productivities and volatile solids (VS) removal. The corresponding organic loading rates (OLR) ranged from 4.2 to 12.8 gVS/L(reactor) d. The findings revealed that highest system efficiency was achieved at an OLR of 11.2 gVS/L(reactor) d (6 days-HRT) with a methane production rate (MPR) and volatile solids (VS) reduction of 2.91 LCH4/L(reactor) d and 57.5%, respectively. The HRT of 5 days was found critical for the studied process, which leads to volatile fatty acids (VFA) accumulation and sharp drop in pH. However, the increase of HRT permits the recovery of system. Copyright © 2015 Elsevier Ltd. All rights reserved.
Beussink, Amy M.; Burnich, Michael R.
2009-01-01
Lake Houston, a reservoir impounded in 1954 by the City of Houston, Texas, is a primary source of drinking water for Houston and surrounding areas. The U.S. Geological Survey, in cooperation with the City of Houston, developed a continuous water-quality monitoring network to track daily changes in water quality in the southwestern quadrant of Lake Houston beginning in 2006. Continuous water-quality data (the physiochemical properties water temperature, specific conductance, pH, dissolved oxygen concentration, and turbidity) were collected from Lake Houston to characterize the in-lake processes that affect water quality. Continuous data were collected hourly from mobile, multi-depth monitoring stations developed and constructed by the U.S. Geological Survey. Multi-depth monitoring stations were installed at five sites in three general locations in the southwestern quadrant of the lake. Discrete water-quality data (samples) were collected routinely (once or twice each month) at all sites to characterize the chemical and biological (phytoplankton and bacteria) response to changes in the continuous water-quality properties. Physiochemical properties (the five continuously monitored plus transparency) were measured in the field when samples were collected. In addition to the routine samples, discrete water-quality samples were collected synoptically (one or two times during the study period) at all sites to determine the presence and levels of selected constituents not analyzed in routine samples. Routine samples were measured or analyzed for acid neutralizing capacity; selected major ions and trace elements (calcium, silica, and manganese); nutrients (filtered and total ammonia nitrogen, filtered nitrate plus nitrite nitrogen, total nitrate nitrogen, filtered and total nitrite nitrogen, filtered and total orthophosphate phosphorus, total phosphorus, total nitrogen, total organic carbon); fecal indicator bacteria (total coliform and Escherichia coli); sediment (suspended-sediment concentration and loss-on-ignition); actinomycetes bacteria; taste-and-odor-causing compounds (2-methylisoborneol and geosmin); cyanobacterial toxins (total microcystins); and phytoplankton abundance, biovolume, and community composition (taxonomic identification to genus). Synoptic samples were analyzed for major ions, trace elements, wastewater indicators, pesticides, volatile organic compounds, and carbon. The analytical data are presented in tables by type (continuous, discrete routine, discrete synoptic) and listed by station number. Continuously monitored properties (except pH) also are displayed graphically.
Jung, Heeyong; Lee, Seung-Joo; Lim, Jeong Ho; Kim, Bum Keun; Park, Kee Jai
2014-01-01
The chemical and sensory profiles of 12 commercial samples of makgeolli, a Korean rice wine, were determined using descriptive sensory, chemical, and volatile components analyses. The sample wines were analysed for their titratable acidity, ethanol content, pH, Hunter colour value and total reducing sugars. The chemical compositions of the makgeolli samples were found to be significantly different. The volatile compounds were extracted with solid-phase microextraction and analysed by gas chromatography time-of-flight mass spectrometry. In all, 45 major volatile compounds, consisting of 33 esters, 8 alcohols, 1 aldehyde, 1 acid, 1 phenol and 1 terpene, were identified; each makgeolli sample included 28-35 volatile compounds. Based on principal component analysis of the sensory data, samples RW1, RW2, RW5, RW8 and RW12 were associated with roasted cereal, mouldy, bubbles, sweet and sour attributes; the other samples were associated with sensory attributes of yellowness, yeast, full body, turbidity, continuation, swallow, alcohol, fruit aroma and whiteness. Copyright © 2014. Published by Elsevier Ltd.
Li, Yan; Yan, Xi-Luan; Fan, Jie-Ping; Zhu, Jian-Hang; Zhou, Wen-Bin
2011-06-01
The objective of this work was to examine the feasibility of biogas production from the anaerobic co-digestion of herbal-extraction residues with swine manure. Batch and semi-continuous experiments were carried out under mesophilic anaerobic conditions. Batch experiments revealed that the highest specific biogas yield was 294 mL CH(4) g(-1) volatile solids added, obtained at 50% of herbal-extraction residues and 3.50 g volatile solids g(-1) mixed liquor suspended solids. Specific methane yield from swine manure alone was 207 mL CH(4) g(-1) volatile solid added d(-1) at 3.50 g volatile solids g(-1) mixed liquor suspended solids. Furthermore, specific methane yields were 162, 180 and 220 mL CH(4) g (-1) volatile solids added d(-1) for the reactors co-digesting mixtures with 10%, 25% and 50% herbal-extraction residues, respectively. These results suggested that biogas production could be enhanced efficiently by the anaerobic co-digestion of herbal-extraction residues with swine manure. Copyright © 2011 Elsevier Ltd. All rights reserved.
Choe, Dong-Hwan; Park, Hoeun; Vo, Claudia; Knyshov, Alexander
2016-01-01
Extracts of the exuviae (cast skins) of nymphal bed bugs (Cimex lectularius) were analyzed for volatile compounds that might contribute to arrestment of adult bed bugs. Four volatile aldehydes, (E)-2-hexenal, 4-oxo-(E)-2-hexenal, (E)-2-octenal, and 4-oxo-(E)-2-octenal were consistently detected in the headspace of freshly shed exuviae regardless of the developmental stages from which the exuviae were obtained. Quantification of the aldehydes in the solvent extracts of homogenized fresh, 45- or 99-d aged 5th instar exuviae indicated that the aldehydes are present in the exuviae and dissipate over time, through evaporation or degradation. Microscopic observation of the fifth instar exuviae indicated that the dorsal abdominal glands on the exuviae maintained their pocket-like structures with gland reservoirs, within which the aldehydes might be retained. Two-choice olfactometer studies with the volatiles from exuviae or a synthetic blend mimicking the volatiles indicated that adult bed bugs tend to settle close to sources of the aldehydes. Our results imply that the presence and accumulation of bed bug exuviae and the aldehydes volatilizing from the exuviae might mediate bed bugs' interaction with their microhabitats.
Choe, Dong-Hwan; Park, Hoeun; Vo, Claudia; Knyshov, Alexander
2016-01-01
Extracts of the exuviae (cast skins) of nymphal bed bugs (Cimex lectularius) were analyzed for volatile compounds that might contribute to arrestment of adult bed bugs. Four volatile aldehydes, (E)-2-hexenal, 4-oxo-(E)-2-hexenal, (E)-2-octenal, and 4-oxo-(E)-2-octenal were consistently detected in the headspace of freshly shed exuviae regardless of the developmental stages from which the exuviae were obtained. Quantification of the aldehydes in the solvent extracts of homogenized fresh, 45- or 99-d aged 5th instar exuviae indicated that the aldehydes are present in the exuviae and dissipate over time, through evaporation or degradation. Microscopic observation of the fifth instar exuviae indicated that the dorsal abdominal glands on the exuviae maintained their pocket-like structures with gland reservoirs, within which the aldehydes might be retained. Two-choice olfactometer studies with the volatiles from exuviae or a synthetic blend mimicking the volatiles indicated that adult bed bugs tend to settle close to sources of the aldehydes. Our results imply that the presence and accumulation of bed bug exuviae and the aldehydes volatilizing from the exuviae might mediate bed bugs’ interaction with their microhabitats. PMID:27434044
NASA Astrophysics Data System (ADS)
Petersen, Alexander M.; Wang, Fengzhong; Havlin, Shlomo; Stanley, H. Eugene
2010-09-01
We study the cascading dynamics immediately before and immediately after 219 market shocks. We define the time of a market shock Tc to be the time for which the market volatility V(Tc) has a peak that exceeds a predetermined threshold. The cascade of high volatility “aftershocks” triggered by the “main shock” is quantitatively similar to earthquakes and solar flares, which have been described by three empirical laws—the Omori law, the productivity law, and the Bath law. We analyze the most traded 531 stocks in U.S. markets during the 2 yr period of 2001-2002 at the 1 min time resolution. We find quantitative relations between the main shock magnitude M≡log10V(Tc) and the parameters quantifying the decay of volatility aftershocks as well as the volatility preshocks. We also find that stocks with larger trading activity react more strongly and more quickly to market shocks than stocks with smaller trading activity. Our findings characterize the typical volatility response conditional on M , both at the market and the individual stock scale. We argue that there is potential utility in these three statistical quantitative relations with applications in option pricing and volatility trading.
Monitoring volatilization products using Residual Gas Analyzers during MeV ion beam irradiations
NASA Astrophysics Data System (ADS)
Wetteland, C. J.; Kriewaldt, K.; Taylor, L. A.; McSween, H. Y.; Sickafus, K. E.
2018-03-01
The use of Residual Gas Analyzers (RGAs) during irradiation experiments can provide valuable information when incorporated into experimental end-stations. The instruments can track the volatilization products of beam-sensitive materials, which may ultimately aid researchers in selecting appropriate flux values for conducting experiments. Furthermore, the type of gaseous species released during an irradiation can be monitored directly, which may lead to new insights into the radiolysis and/or heating mechanisms responsible for gas evolution. A survey of several classes of materials exposed to extremes in particle flux is presented to show how RGA instrumentation can be incorporated to qualitatively assess ion-solid interactions in a variety of fields.
Deng, Jie; Yu, Hong-Jun; Li, Yun-Yun; Zhang, Xiao-Meng; Liu, Peng; Li, Qiang; Jiang, Wei-Jie
2016-01-01
Nitrogen (N) is an important macronutrient for plant growth and development, but the regulatory mechanism of volatile compounds in response to N deficiency is not well understood, especially in cucumber, which consumes excessive N during growth. In this study, the major volatile compounds from cucumber leaves subjected to N deficiency were analyzed by GC-MS. A total of 24 volatile components were identified including 15 aldehydes, two ketones, two alkenes, and five other volatile compounds in 9930 leaves. Principal component analysis using volatile compounds from cucumber leaves provided good separation between N-sufficient and N-deficient treatments. The main volatiles in cucumber leaves were found to be C6 and C9 aldehydes, especially (E)-2-hexanal and (E,Z)-2,6-nonadienal. (E)-2-hexanal belonged to the C6 aldehyde and was the most abundant compound, whereas (E,Z)-2,6-nonadienal was the chief component of C9 aldehydes. During N-deficient treatment, short-chain volatile content was significantly improved at 5 day, other volatiles displayed significant reduction or no significantly changes in all sampling points. Improvement of short-chain volatiles was confirmed in the six other inbred lines at 5 day after N-deficient treatments. The expression analysis of 12 cucumber LOX genes and two HPL genes revealed that CsLOX19, CsLOX20, and CsLOX22 had common up-regulated expression patterns in response to N-deficient stress in most inbred lines; meanwhile, most sample points of CsHPL1 also had significant up-regulated expression patterns. This research focused on the relationship between volatiles in cucumber and different nitrogen environments to provide valuable insight into the effect of cultivation and management of the quality of cucumber and contributes to further research on volatile metabolism in cucumber. PMID:27827841
Comparative Analysis of Flower Volatiles from Nine Citrus at Three Blooming Stages
Azam, Muhammad; Song, Min; Fan, Fangjuan; Zhang, Bo; Xu, Yaying; Xu, Changjie; Chen, Kunsong
2013-01-01
Volatiles from flowers at three blooming stages of nine citrus cultivars were analyzed by headspace-solid phase microextraction (HS-SPME)-GC-MS. Up to 110 volatiles were detected, with 42 tentatively identified from citrus flowers for the first time. Highest amounts of volatiles were present in fully opened flowers of most citrus, except for pomelos. All cultivars were characterized by a high percentage of either oxygenated monoterpenes or monoterpene hydrocarbons, and the presence of a high percentage of nitrogen containing compounds was also observed. Flower volatiles varied qualitatively and quantitatively among citrus types during blooming. Limonene was the most abundant flower volatile only in citrons; α-citral and β-citral ranked 2nd and 3rd only for Bergamot, and unopened flowers of Ponkan had a higher amount of linalool and β-pinene while much lower amount of γ-terpinene and p-cymene than Satsuma. Taking the average of all cultivars, linalool and limonene were the top two volatiles for all blooming stages; β-pinene ranked 3rd in unopened flowers, while indole ranked 3rd for half opened and fully opened flower volatiles. As flowers bloomed, methyl anthranilate increased while 2-hexenal and p-cymene decreased. In some cases, a volatile could be high in both unopened and fully opened flowers but low in half opened ones. Through multivariate analysis, the nine citrus cultivars were clustered into three groups, consistent with the three true citrus types. Furthermore, an influence of blooming stages on clustering was observed, especially with hybrids Satsuma and Huyou. Altogether, it was suggested that flower volatiles can be suitable markers for revealing the genetic relationships between citrus cultivars but the same blooming stage needs to be strictly controlled. PMID:24232454
Evaluation of volatilization as a natural attenuation pathway for MTBE
Lahvis, Matthew A.; Baehr, Arthur L.; Baker, Ronald J.
2004-01-01
Volatilization and diffusion through the unsaturated zone can be an important pathway for natural attenuation remediation of methyl tert-butyl ether (MTBE) at gasoline spill sites. The significance of this pathway depends primarily on the distribution of immiscible product within the unsaturated zone and the relative magnitude of aqueous-phase advection (ground water recharge) to gaseous-phase diffusion. At a gasoline spill site in Laurel Bay, South Carolina, rates of MTBE volatilization from ground water downgradient from the source are estimated by analyzing the distribution of MTBE in the unsaturated zone above a solute plume. Volatilization rates of MTBE from ground water determined by transport modeling ranged from 0.0020 to 0.0042 g m-2/year, depending on the assumed rate of ground water recharge. Although diffusive conditions at the Laurel Bay site are favorable for volatilization, mass loss of MTBE is insignificant over the length (230 m) of the solute plume. Based on this analysis, significant volatilization of MTBE from ground water downgradient from source areas at other sites is not likely. In contrast, model results indicate that volatilization coupled with diffusion to the atmosphere could be a significant mass loss pathway for MTBE in source areas where residual product resides above the capillary zone. Although not documented, mass loss of MTBE at the Laurel Bay site due to volatilization and diffusion to the atmosphere are predicted to be two to three times greater than mass loading of MTBE to ground water due to dissolution and recharge. This result would imply that volatilization in the source zone may be the critical natural attenuation pathway for MTBE at gasoline spill sites, especially when considering capillary zone limitations on volatilization of MTBE from ground water and the relative recalcitrance of MTBE to biodegradation.
Comparative analysis of flower volatiles from nine citrus at three blooming stages.
Azam, Muhammad; Song, Min; Fan, Fangjuan; Zhang, Bo; Xu, Yaying; Xu, Changjie; Chen, Kunsong
2013-11-13
Volatiles from flowers at three blooming stages of nine citrus cultivars were analyzed by headspace-solid phase microextraction (HS-SPME)-GC-MS. Up to 110 volatiles were detected, with 42 tentatively identified from citrus flowers for the first time. Highest amounts of volatiles were present in fully opened flowers of most citrus, except for pomelos. All cultivars were characterized by a high percentage of either oxygenated monoterpenes or monoterpene hydrocarbons, and the presence of a high percentage of nitrogen containing compounds was also observed. Flower volatiles varied qualitatively and quantitatively among citrus types during blooming. Limonene was the most abundant flower volatile only in citrons; α-citral and β-citral ranked 2nd and 3rd only for Bergamot, and unopened flowers of Ponkan had a higher amount of linalool and β-pinene while much lower amount of γ-terpinene and p-cymene than Satsuma. Taking the average of all cultivars, linalool and limonene were the top two volatiles for all blooming stages; β-pinene ranked 3rd in unopened flowers, while indole ranked 3rd for half opened and fully opened flower volatiles. As flowers bloomed, methyl anthranilate increased while 2-hexenal and p-cymene decreased. In some cases, a volatile could be high in both unopened and fully opened flowers but low in half opened ones. Through multivariate analysis, the nine citrus cultivars were clustered into three groups, consistent with the three true citrus types. Furthermore, an influence of blooming stages on clustering was observed, especially with hybrids Satsuma and Huyou. Altogether, it was suggested that flower volatiles can be suitable markers for revealing the genetic relationships between citrus cultivars but the same blooming stage needs to be strictly controlled.
Kappers, Iris F; Verstappen, Francel W A; Luckerhoff, Ludo L P; Bouwmeester, Harro J; Dicke, Marcel
2010-05-01
Cucumber plants (Cucumis sativus L.) respond to spider-mite (Tetranychus urticae) damage with the release of specific volatiles that are exploited by predatory mites, the natural enemies of the spider mites, to locate their prey. The production of volatiles also can be induced by exposing plants to the plant hormone jasmonic acid. We analyzed volatile emissions from 15 cucumber accessions upon herbivory by spider mites and upon exposure to jasmonic acid using gas chromatography-mass spectrometry. Upon induction, cucumber plants emitted over 24 different compounds, and the blend of induced volatiles consisted predominantly of terpenoids. The total amount of volatiles was higher in plants treated with jasmonic acid than in those infested with spider mites, with (E)-4,8-dimethyl-1,3,7-nonatriene, (E,E)-alpha-farnesene, and (E)-beta-ocimene as the most abundant compounds in all accessions in both treatments. Significant variation among the accessions was found for the 24 major volatile compounds. The accessions differed strongly in total amount of volatiles emitted, and displayed very different odor profiles. Principal component analysis performed on the relative quantities of particular compounds within the blend revealed clusters of highly correlated volatiles, which is suggestive of common metabolic pathways. A number of cucumber accessions also were tested for their attractiveness to Phytoseiulus persimilis, a specialist predator of spider mites. Differences in the attraction of predatory mites by the various accessions correlated to differences in the individual chemical profiles of these accessions. The presence of genetic variation in induced plant volatile emission in cucumber shows that it is possible to breed for cucumber varieties that are more attractive to predatory mites and other biological control agents.
Verstappen, Francel W. A.; Luckerhoff, Ludo L. P.; Bouwmeester, Harro J.; Dicke, Marcel
2010-01-01
Cucumber plants (Cucumis sativus L.) respond to spider–mite (Tetranychus urticae) damage with the release of specific volatiles that are exploited by predatory mites, the natural enemies of the spider mites, to locate their prey. The production of volatiles also can be induced by exposing plants to the plant hormone jasmonic acid. We analyzed volatile emissions from 15 cucumber accessions upon herbivory by spider mites and upon exposure to jasmonic acid using gas chromatography—mass spectrometry. Upon induction, cucumber plants emitted over 24 different compounds, and the blend of induced volatiles consisted predominantly of terpenoids. The total amount of volatiles was higher in plants treated with jasmonic acid than in those infested with spider mites, with (E)-4,8-dimethyl-1,3,7-nonatriene, (E,E)-α-farnesene, and (E)-β-ocimene as the most abundant compounds in all accessions in both treatments. Significant variation among the accessions was found for the 24 major volatile compounds. The accessions differed strongly in total amount of volatiles emitted, and displayed very different odor profiles. Principal component analysis performed on the relative quantities of particular compounds within the blend revealed clusters of highly correlated volatiles, which is suggestive of common metabolic pathways. A number of cucumber accessions also were tested for their attractiveness to Phytoseiulus persimilis, a specialist predator of spider mites. Differences in the attraction of predatory mites by the various accessions correlated to differences in the individual chemical profiles of these accessions. The presence of genetic variation in induced plant volatile emission in cucumber shows that it is possible to breed for cucumber varieties that are more attractive to predatory mites and other biological control agents. PMID:20383796
Hordijk, Cornelis A.; Posthumus, Maarten A.; Dicke, Marcel
2008-01-01
It is well established that plants infested with a single herbivore species can attract specific natural enemies through the emission of herbivore-induced volatiles. However, it is less clear what happens when plants are simultaneously attacked by more than one species. We analyzed volatile emissions of lima bean and cucumber plants upon multi-species herbivory by spider mites (Tetranychus urticae) and caterpillars (Spodoptera exigua) in comparison to single-species herbivory. Upon herbivory by single or multiple species, lima bean and cucumber plants emitted volatile blends that comprised mostly the same compounds. To detect additive, synergistic, or antagonistic effects, we compared the multi-species herbivory volatile blend with the sum of the volatile blends induced by each of the herbivore species feeding alone. In lima bean, the majority of compounds were more strongly induced by multi-species herbivory than expected based on the sum of volatile emissions by each of the herbivores separately, potentially caused by synergistic effects. In contrast, in cucumber, two compounds were suppressed by multi-species herbivory, suggesting the potential for antagonistic effects. We also studied the behavioral responses of the predatory mite Phytoseiulus persimilis, a specialized natural enemy of spider mites. Olfactometer experiments showed that P. persimilis preferred volatiles induced by multi-species herbivory to volatiles induced by S. exigua alone or by prey mites alone. We conclude that both lima bean and cucumber plants effectively attract predatory mites upon multi-species herbivory, but the underlying mechanisms appear different between these species. PMID:18185960
40 CFR 59.607 - Submission of information.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS... to this subpart F, including information not required during certification. You are required to...
Budnik, Lygia Therese; Austel, Nadine; Gadau, Sabrina; Kloth, Stefan; Schubert, Jens; Jungnickel, Harald; Luch, Andreas
2017-01-01
Ambient monitoring analyses may identify potential new public health hazards such as residual levels of fumigants and industrial chemicals off gassing from products and goods shipped globally. We analyzed container air with gas chromatography coupled to mass spectrometry (TD-2D-GC-MS/FPD) and assessed whether the concentration of the volatiles benzene and 1,2-dichloroethane exceeded recommended exposure limits (REL). Products were taken from transport containers and analyzed for outgassing of volatiles. Furthermore, experimental outgassing was performed on packaging materials and textiles, to simulate the hazards tainting from globally shipped goods. The mean amounts of benzene in analyzed container air were 698-fold higher, and those of ethylene dichloride were 4.5-fold higher than the corresponding REL. More than 90% of all containers struck with toluene residues higher than its REL. For 1,2-dichloroethane 53% of containers, transporting shoes exceeded the REL. In standardized experimental fumigation of various products, outgassing of 1,2-dichloroethane under controlled laboratory conditions took up to several months. Globally produced transported products tainted with toxic industrial chemicals may contribute to the mixture of volatiles in indoor air as they are likely to emit for a long period. These results need to be taken into account for further evaluation of safety standards applying to workers and consumers.
Pérez, Ana G; de la Rosa, Raúl; Pascual, Mar; Sánchez-Ortiz, Araceli; Romero-Segura, Carmen; León, Lorenzo; Sanz, Carlos
2016-01-08
Volatile compounds are responsible for most of the sensory qualities of virgin olive oil and they are synthesized when enzymes and substrates come together as olive fruit is crushed during the industrial process to obtain the oil. Here we have studied the variability among the major volatile compounds in virgin olive oil prepared from the progeny of a cross of Picual and Arbequina olive cultivars (Olea europaea L.). The volatile compounds were isolated by SPME, and analyzed by HRGC-MS and HRGC-FID. Most of the volatile compounds found in the progeny's oil are produced by the enzymes in the so-called lipoxygenase pathway, and they may be clustered into different groups according to their chain length and polyunsaturated fatty acid origin (linoleic and linolenic acids). In addition, a group of compounds derived from amino acid metabolism and two terpenes also contributed significantly to the volatile fraction, some of which had significant odor values in most of the genotypes evaluated. The volatile compound content of the progeny was very varied, widely transgressing the progenitor levels, suggesting that in breeding programs it might be more effective to consider a larger number of individuals within the same cross than using different crosses with fewer individuals. Multivariate analysis allowed genotypes with particularly interesting volatile compositions to be identified and their flavor quality deduced. Copyright © 2015 Elsevier B.V. All rights reserved.
Nigro Neto, Caetano; De Simone, Francesco; Cassarà, Luigi; Dos Santos Silva, Carlos Gustavo; Maranhão Cardoso, Thiago Augusto Almeida; Carcò, Francesco; Zangrillo, Alberto; Landoni, Giovanni
2016-01-01
Background: Recently, evidence of cardio-protection and reduction in mortality due to the use of volatile agents during cardiac surgery led to an increase in their use during cardiopulmonary bypass (CPB). These findings seem to be enhanced when the volatile agents are used during all the surgical procedure, including the CPB period. Aims: Since the administration of volatile agents through CPB can be beneficial to the patients, we decided to review the use of volatile agents vaporized in the CPB circuit and to summarize some tricks and tips of this technique using our 10-year experience of Brazilian and Italian centers with a large volume of cardiac surgeries. Study Setting: Hospital. Methods: A literature review. Results: During the use of the volatile agents in CPB, it is very important to analyze all gases that come in and go out of the membrane oxygenators. The proper monitoring of inhaled and exhaled fraction of the gas allows not only monitoring of anesthesia level, but also the detection of possible leakage in the circuit. Any volatile agent in the membrane oxygenator is supposed to pollute the operating theater. This is the major reason why proper scavenging systems are always necessary when this technique is used. Conclusion: While waiting for industry upgrades, we recommend that volatile agents should be used during CPB only by skilled perfusionists and physicians with the aim to reduce postoperative morbidity and mortality. PMID:27052063
Chen, Hong-Ping; Pan, Huan-Huan; Zhang, Xin; Liu, Fei; Chen, Mei-Jun; Luo, Guan-Hua; Liu, You-Ping
2016-07-01
To investigate the dynamic change rules of volatile components from Atractylodis Macrocephalae Rhizoma with different stir-baking degrees (from slight stir-baking, stir-baking to yellow, stir-baking to brown, to stir-baking to scorch). In the present experiment, the Atractylodis Macrocephalae Rhizoma samples with different stir-baking degrees were collected at different processing time points. The contents of volatile oil in various samples were determined by steam distillation method, and the volatile compounds were extracted by using static headspace sampling method. Gas chromatography-mass spectrography (GC-MS) and automated mass spectral deconrolution and identification system (AMDIS) were combined with Kováts retention index to analyze the chemical constituents of the volatile compounds. The results showed that with the deepening of the stir-baking degree, the content of volatile oil was decreased step by step in 4 phases, and both the compositions and contents of volatile components from Atractylodis Macrocephalae Rhizoma showed significant changes. The results showed that the dynamic change rules of volatile components from Atractylodis Macrocephalae Rhizoma in the process of stir-baking were closely related to the processing degree; in addition, Atractylodis Macrocephalae Rhizoma and honey bran had adsorption on each other. These results can provide a scientific basis for elucidating the stir-baking (with bran) mechanism of Atractylodis Macrocephalae Rhizoma. Copyright© by the Chinese Pharmaceutical Association.
NASA Technical Reports Server (NTRS)
Bodek, Itamar; Ehntholt, Daniel J.; Stolki, Thomas J.; Trabanino, Rudy; Hinsdale, Lloyd; Webb, Johanna; Sauer, Richard L.
1992-01-01
The Volatile Organics Concentrator (VOC) system, designed to attach to a gas chromatograph/mass spectrometer (GC/MS) for the analyses of volatile organic compounds in water on Space Station Freedom, is described. Organic volatiles are collected and concentrated in the VOC by means of two primary solid sorbent tubes and desorbed into the GC/MS system. The paper describes the results of testing the VOC breadboard using a GC/MS system. Evaluations performed on 39 organic compounds recovered from water samples were compared with data for these compounds using direct injection/GC/MS and purge and trap/GC/MS procedures. The results demonstrate that the VOC/GC/MS system's detection limits for the 39 compounds analyzed are comparable to those of the EPA Method 524.2, and for many compounds reaching a factor of 5 lower.
Stability Study of Algerian Nigella sativa Seeds Stored under Different Conditions
Ahamad Bustamam, Muhammad Safwan; Hadithon, Kamarul Arifin; Rukayadi, Yaya; Lajis, Nordin
2017-01-01
In a study to determine the stability of the main volatile constituents of Nigella sativa seeds stored under several conditions, eight storage conditions were established, based on the ecological abiotic effects of air, heat, and light. Six replicates each were prepared and analyzed with Headspace-Gas Chromatography-Mass Spectrometry (HS-GC-MS) for three time points at the initial (1st day (0)), 14th (1), and 28th (2) day of storage. A targeted multivariate analysis of Principal Component Analysis revealed that the stability of the main volatile constituents of the whole seeds was better than that of the ground seeds. Exposed seeds, whole or ground, were observed to experience higher decrement of the volatile composition. These ecofactors of air, heat, and light are suggested to be directly responsible for the loss of volatiles in N. sativa seeds, particularly of the ground seeds. PMID:28255502
Wang, Qi-shuai; Li, Xiao-kun; Yang, Yun; Xiao, Gong-sheng; Feng, Wei-sheng
2010-08-01
To study the dynamic change law of volatile oil, saikosaponin a, d and alcohol-extract from Bupleurum chinense at Songxian region in Henan province, and to explore the optimal harvest period of Bupleurum chinense. With the contents of saikosaponin a and d, absorbance of volatile oil and percentage of alcohol-extract as indexes, HPLC-ELSD and ultraviolet spectrophotometry were successively used to analyze them. There are obvious differences among the contents of volatile oil, saikosaponin a, d and alcohol-extract in various collecting periods sample, the absorption of volatile oil in distillation was the highest in October, the content of saikosaponin a was the highest in September, the saikosaponin d in December and the percentage of alcohol-extract in October. The optimal harvest period of Bupleurum chinense at Songxian region in Henan is identified, which can provide scientific basis for crude drug production and processing.
Fingerprinting Breast Cancer vs. Normal Mammary Cells by Mass Spectrometric Analysis of Volatiles
NASA Astrophysics Data System (ADS)
He, Jingjing; Sinues, Pablo Martinez-Lozano; Hollmén, Maija; Li, Xue; Detmar, Michael; Zenobi, Renato
2014-06-01
There is increasing interest in the development of noninvasive diagnostic methods for early cancer detection, to improve the survival rate and quality of life of cancer patients. Identification of volatile metabolic compounds may provide an approach for noninvasive early diagnosis of malignant diseases. Here we analyzed the volatile metabolic signature of human breast cancer cell lines versus normal human mammary cells. Volatile compounds in the headspace of conditioned culture medium were directly fingerprinted by secondary electrospray ionization-mass spectrometry. The mass spectra were subsequently treated statistically to identify discriminating features between normal vs. cancerous cell types. We were able to classify different samples by using feature selection followed by principal component analysis (PCA). Additionally, high-resolution mass spectrometry allowed us to propose their chemical structures for some of the most discriminating molecules. We conclude that cancerous cells can release a characteristic odor whose constituents may be used as disease markers.
Effect of supercritical carbon dioxide decaffeination on volatile components of green teas.
Lee, S; Park, M K; Kim, K H; Kim, Y-S
2007-09-01
Volatile components in regular and decaffeinated green teas were isolated by simultaneous steam distillation and solvent extraction (SDE), and then analyzed by GC-MS. A total of 41 compounds, including 8 alcohols, 15 terpene-type compounds, 10 carbonyls, 4 N-containing compounds, and 4 miscellaneous compounds, were found in regular and decaffeinated green teas. Among them, linalool and phenylacetaldehyde were quantitatively dominant in both regular and decaffeinated green teas. By a decaffeination process using supercritical carbon dioxide, most volatile components decreased. The more caffeine was removed, the more volatile components were reduced in green teas. In particular, relatively nonpolar components such as terpene-type compounds gradually decreased according to the decaffeination process. Aroma-active compounds in regular and decaffeinated green teas were also determined and compared by aroma extract dilution analysis (AEDA). Most greenish and floral flavor compounds such as hexanal, (E)-2-hexenal, and some unknown compounds disappeared or decreased after the decaffeination process.
Kraujalytė, Vilma; Leitner, Erich; Venskutonis, Petras Rimantas
2013-05-22
The profiles of volatile constituents of berry fruit of two Aronia melanocarpa genotypes were evaluated by headspace-solid-phase microextraction (HS-SPME), simultaneous distillation and extraction (SDE), and gas chromatography-olfactometry (GC-O). In total, 74 volatile compounds were identified in chokeberry juice, 3-penten-2-one, 3,9-epoxy-p-menth-1-ene, and benzaldehyde being the most abundant constituents; however, their percentage concentrations were remarkably different in the HS-SPME and SDE profiles. Twenty two aroma-active compounds were detected and characterized by the trained panelists in HS-SPME using GC-O detection frequency analysis. Olfactometry revealed that ethyl-2-methyl butanoate, ethyl-3-methyl butanoate, ethyl decanoate ("fruity" aroma notes), nonanal ("green" notes), unidentified compound possessing "moldy" odor, and some other volatiles may be very important constituents in formation of chokeberry aroma of both analyzed plant cultivars.
Comparative Study on Volatile Compounds of Alpinia japonica and Elettaria cardamomum.
Asakawa, Yoshinori; Ludwiczuk, Agnieszka; Sakurai, Kazutoshi; Tomiyama, Kenichi; Kawakami, Yukihiro; Yaguchi, Yoshihiro
2017-08-01
The volatile compounds obtained from the ether extracts, headspace gases and steam distillates of Alpinia japonica and Elettaria cardamomum were analyzed by GC/MS. Both species were rich sources of naturally rare fenchane-type monoterpenoids, fenchene, fenchone, fenchyl alcohol and its acetate, together with 1,8-cineole. The distributions of volatile sesquiterpenoids were very poor in both species. Chiralities of fenchone in A. japonica and E. cardamomum were 99% of (1S,4R)-(+)-form. Camphor in A. japonica is composed of a mixture of (1R,4R)-(+)-form (94.3%) and (1S,4S)-(-)-form (5.7%). On the other hand, E. cardamomum produced only (1R,4R)-(+)-camphor (99%).
Performance of an electrochemical carbon monoxide monitor in the presence of anesthetic gases.
Dunning, M; Woehlck, H J
1997-11-01
The passage of volatile anesthetic agents through accidentally dried CO2 absorbents in anesthesia circuits can result in the chemical breakdown of anesthetics with production of greater than 10000 ppm carbon monoxide (CO). This study was designed to evaluate a portable CO monitor in the presence of volatile anesthetic agents. Two portable CO monitors employing electrochemical sensors were tested to determine the effects of anesthetic agents, gas sample flow rates, and high CO concentrations on their electrochemical sensor. The portable CO monitors were exposed to gas mixtures of 0 to 500 ppm CO in either 70% nitrous oxide, 1 MAC concentrations of contemporary volatile anesthetics, or reacted isoflurane or desflurane (containing CO and CHF3) in oxygen. The CO measurements from the electrochemical sensors were compared to simultaneously obtained samples measured by gas chromatography (GC). Data were analyzed by linear regression. Overall correlation between the portable CO monitors and the GC resulted in an r2 value >0.98 for all anesthetic agents. Sequestered samples produced an exponential decay of measured CO with time, whereas stable measurements were maintained during continuous flow across the sensor. Increasing flow rates resulted in higher CO readings. Exposing the CO sensor to 3000 and 19000 ppm CO resulted in maximum reported concentrations of approximately 1250 ppm, with a prolonged recovery. Decrease in measured concentration of the sequestered samples suggests destruction of the sample by the sensor, whereas a diffusion limitation is suggested by the dependency of measured value upon flow. Any value over 500 ppm must be assumed to represent dangerous concentrations of CO because of the non-linear response of these monitors at very high CO concentrations. These portable electrochemical CO monitors are adequate to measure CO concentrations up to 500 ppm in the presence of typical clinical concentrations of anesthetics.
Zhang, Jihong; Zeng, Li; Chen, Shaoyang; Sun, Helong; Ma, Shuang
2018-05-01
Salinity stress can impede development and plant growth adversely. However, there is very little molecular information on NaCl resistance and volatile emissions in Lycopersicum esculentum. In order to investigate the effects of salt stress on the release of volatile compounds, we quantified and compared transcriptome changes by RNA-Seq analysis and volatile constituents with gas chromatography/mass spectrometry (GC/MS) coupled with solid-phase microextraction (SPME) after exposure to continuous salt stress. Chemical analysis by GC-MS analysis revealed that NaCl stress had changed species and quantity of volatile compounds released. In this research, 21,578 unigenes that represented 44,714 assembled unique transcripts were separated from tomato leaves exposed to NaCl stress based on de novo transcriptome assembly. The total number of differentially expressed genes was 7210 after exposure to NaCl, including 6200 down-regulated and 1208 up-regulated genes. Among these differentially expressed genes (DEGs), there were eighteen differentially expressed genes associated with volatile biosynthesis. Of the unigenes, 3454 were mapped to 131 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, mainly those are involved in RNA transport, plant-pathogen interactions, and plant hormone signal transduction. qRT-PCR analysis showed that NaCl exposure affected the expression profiles of the biosynthesis genes for eight volatile compounds (IPI, GPS, and TPS, etc.), which corresponded well with the RNA-Seq analysis and GC-MS results. Our results suggest that NaCl stress affects the emission of volatile substances from L. esculentum leaves by regulating the expression of genes that are involved in volatile organic compounds' biosynthesis. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.
1978-07-25
In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source over an overflow weir to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue and separating out the fines.
Pyrolysis with staged recovery
Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.; Winter, Bruce L.
1979-03-20
In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source fed over an overflow weir to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue.
Exercise changes volatiles in exhaled breath assessed by an electronic nose.
Bikov, A; Lazar, Zs; Schandl, K; Antus, B M; Losonczy, G; Horvath, Ildiko
2011-09-01
Exercise-caused metabolic changes can be followed by monitoring exhaled volatiles; however it has not been previously reported if a spectrum of exhaled gases is modified after physical challenge. We have hypothesized that changes in volatile molecules assessed by an electronic nose may be the reason for the alkalization of the exhaled breath condensate (EBC) fluid following physical exercise.Ten healthy young subjects performed a 6-minute running test. Exhaled breath samples pre-exercise and post-exercise (0 min, 15 min, 30 min and 60 min) were collected for volatile pattern ("smellprint") determination and pH measurements (at 5.33 kPa CO2), respectively. Exhaled breath smellprints were analyzed using principal component analysis and were related to EBC pH.Smellprints (p=0.04) and EBC pH (p=0.01) were altered during exercise challenge. Compared to pre-exercise values, smellprints and pH differed at 15 min, 30 min and 60 min following exercise (p<0.05), while no difference was found at 0 min post-exercise. In addition, a significant correlation was found between volatile pattern of exhaled breath and EBC pH (p=0.01, r=-0.34).Physical exercise changes the pattern of exhaled volatiles together with an increase in pH of breath. Changes in volatiles may be responsible for increase in EBC pH.
The effect of wind and currents on gas exchange in an estuarine system
NASA Technical Reports Server (NTRS)
Broecker, W. S.; Ledwell, J. R.; Bopp, R.
1987-01-01
The objectives were to develop a non-volatile tracer to use in gas exchange experiments in laterally unconfined systems and to study applications of deliberate tracers in limnology and oceanography. Progress was made on both fronts but work on the development of the non-volatile tracer proved to be more difficult and labor intensive that anticipated so no field experiments using non-volatile tracers was performed as yet. In the search for a suitable non-volatile tracer for an ocean scale gas exchange experiment a tracer was discovered which does not have the required sensitivity for a large scale experiment, but is very easy to analyze and will be well suited for smaller experiments such as gas exchange determinations on rivers and streams. Sulfur hexafluoride, SF6, was used successfully as a volatile tracer along with tritium as a non-volatile tracer to study gas exchange rates from a primary stream. This is the first gas exchange experiment in which gas exchange rates were determined on a head water stream where significant groundwater input occurs along the reach. In conjunction with SF6, Radon-222 measurements were performed on the groundwater and in the stream. The feasibility of using a combination of SF6 and radon is being studied to determine groundwater inputs and gas exchange of rates in streams with significant groundwater input without using a non-volatile tracer.
Del Blanco, Alba; Caro, Irma; Quinto, Emiliano J; Mateo, Javier
2017-04-01
Meat spoilage greatly depends on meat composition and storage conditions. Microbial and biochemical changes in minced pork (100-g portions) wrapped with a polyvinyl chloride film during a 4-day refrigerated storage were studied. As glucose is the first substrate used by spoilage bacteria and when it is depleted bacteria could generate undesirable volatiles, the effect of the addition of glucose to minced meat was also studied. Three treatments were used: control (C), without added glucose, and low and high glucose concentration (L and H), 150mg and 750mg of glucose in 100g of meat, respectively. Spoilage bacteria, pH, redox potential, colour, basic volatile nitrogen, glucose, organic acids, and volatiles were analyzed in both recently prepared and stored pork samples. Storage resulted in increased levels of lactic acid bacteria and glucose-derived short chain alkyl volatiles, and a decrease in redox potential and volatile aldehyde levels. The addition of glucose to meat did not affect the biochemical characteristics of stored minced pork. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Muhamad Fahmi, M. H.; Ahmad Bukhary, A. K.; Norma, H.; Idris, A. B.
2016-11-01
The main attractant compound for Eleidobius kamerunicus to male spikelet Elaeis guineensis (oil palm) were determined by analyzing volatile organic compound extracted from E. guineenses inflorescences planted on different soil types namely peat soil, clay soil and sandy soil. Anthesizing male oil palm inflorescences were randomly choosen from palm aged between 4-5 years old age. Extraction of the volatiles from the oil palm inflorescences were performed by Accelerated Solvent Extraction method (ASE). The extracted volatile compound were determined by using gas chromatography-mass spectrometry. Out of ten identified compound, estragole was found to be a major compound in sandy soil (37.49%), clay soil (30.71%) and peat soil (27.79%). Other compound such as 9,12-octadecadieonic acid and n-hexadecanoic acid were found as major compound in peat soil (27.18%) and (7.45%); sandy soil (14.15 %) and (9.31%); and clay soil (30.23%) and (4.99%). This study shows that estragole was the predominant volatile compound detected in oil palm inflorescences with highly concentrated in palm planted in sandy soil type.
Correlation between the pattern volatiles and the overall aroma of wild edible mushrooms.
de Pinho, P Guedes; Ribeiro, Bárbara; Gonçalves, Rui F; Baptista, Paula; Valentão, Patrícia; Seabra, Rosa M; Andrade, Paula B
2008-03-12
Volatile and semivolatile components of 11 wild edible mushrooms, Suillus bellini, Suillus luteus, Suillus granulatus, Tricholomopsis rutilans, Hygrophorus agathosmus, Amanita rubescens, Russula cyanoxantha, Boletus edulis, Tricholoma equestre, Fistulina hepatica, and Cantharellus cibarius, were determined by headspace solid-phase microextraction (HS-SPME) and by liquid extraction combined with gas chromatography-mass spectrometry (GC-MS). Fifty volatiles and nonvolatiles components were formally identified and 13 others were tentatively identified. Using sensorial analysis, the descriptors "mushroomlike", "farm-feed", "floral", "honeylike", "hay-herb", and "nutty" were obtained. A correlation between sensory descriptors and volatiles was observed by applying multivariate analysis (principal component analysis and agglomerative hierarchic cluster analysis) to the sensorial and chemical data. The studied edible mushrooms can be divided in three groups. One of them is rich in C8 derivatives, such as 3-octanol, 1-octen-3-ol, trans-2-octen-1-ol, 3-octanone, and 1-octen-3-one; another one is rich in terpenic volatile compounds; and the last one is rich in methional. The presence and contents of these compounds give a considerable contribution to the sensory characteristics of the analyzed species.
Methylation of 2-Naphthol Using Dimethyl Carbonate under Continuous-Flow Gas-Phase Conditions
ERIC Educational Resources Information Center
Tundo, Pietro; Rosamilia, Anthony E.; Arico, Fabio
2010-01-01
This experiment investigates the methylation of 2-naphthol with dimethyl carbonate. The volatility of the substrates, products, and co-products allows the reaction to be performed using a continuous-flow gas-phase setup at ambient pressure. The reaction uses catalytic quantities of base, achieves high conversion, produces little waste, and…
Code of Federal Regulations, 2013 CFR
2013-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION... bond to cover any potential compliance or enforcement actions under the Clean Air Act if you cannot... of Treasury Circular 570, “Companies Holding Certificates of Authority as Acceptable Sureties on...
Small Town Renewal: Overview and Case Studies.
ERIC Educational Resources Information Center
Kenyon, Peter, Ed.; Black, Alan, Ed.
Many small, inland, and remote Australian rural communities continue to lose population and businesses, a trend that has intensified over the last 2 decades. Mean age continues to rise, while the 15-24 age group contracts dramatically. Such declining demographics are caused by the stress and uncertainty of volatile world commodity markets, as well…
40 CFR Appendix A to Subpart II of... - VOC Data Sheet 1
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Shipbuilding and Ship Repair (Surface Coating) Pt. 63, Subpt. II, App. A...: (Dc)s __ g/L [] ASTM D1475-90 *[] Other 3 B. Total Volatiles: (mv)s __ Mass Percent [] ASTM D2369-93...
NASA Astrophysics Data System (ADS)
Baudic, Alexia; Gros, Valérie; Bonsang, Bernard; Baisnee, Dominique; Vogel, Félix; Yver Kwok, Camille; Ars, Sébastien; Finlayson, Andrew; Innocenti, Fabrizio; Robinson, Rod
2015-04-01
Since the 1970's, the natural gas consumption saw a rapid growth in large urban centers, thus becoming an important energy resource to meet continuous needs of factories and inhabitants. Nevertheless, it can be a substantial source of methane (CH4) and pollutants in urban areas. For instance, we have determined that about 20% of Volatile Organic Compounds (VOCs) in downtown Paris are originating from this emission source (Baudic, Gros et al., in preparation). Within the framework of the "Fugitive Methane Emissions" (FuME) project (Climate-KIC, EIT); 2-weeks gas measurements were conducted at a gas compressor station in Northern Europe. Continuous ambient air measurements of methane and VOCs concentrations were performed using a cavity ring-down spectrometer (model G2201, Picarro Inc., Santa Clara, USA) and two portable GC-FID (Chromatotec, Saint-Antoine, France), respectively. On-site near-field samplings were also carried out at the source of two pipelines using stainless steel flasks (later analyzed with a laboratory GC-FID). The objective of this study aims to use VOCs as additional tracers in order to better characterize the fugitive methane emissions in a complex environment, which can be affected by several urban sources (road-traffic, others industries, etc.). Moreover, these measurements have allowed determining the chemical composition of this specific source. Our results revealed that the variability of methane and some VOCs was (rather) well correlated, especially for alkanes (ethane, propane, etc.). An analysis of selected events with strong concentrations enhancement was performed using ambient air measurements; thus allowing the preliminary identification of different emission sources. In addition, some flasks were also sampled in Paris to determine the local natural gas composition. A comparison between both was then performed. Preliminary results from these experiments will be presented here.
Lin, Chitsan; Liou, Naiwei; Chang, Pao-Erh; Yang, Jen-Chin; Sun, Endy
2007-04-01
Although most coke oven research is focused on the emission of polycyclic aromatic hydrocarbons, well-known carcinogens, little has been done on the emission of volatile organic compounds, some of which are also thought to be hazardous to workers and the environment. To profile coke oven gas (COG) emissions, we set up an open-path Fourier transform infrared (OP-FTIR) system on top of a battery of coke ovens at a steel mill located in Southern Taiwan and monitored average emissions in a coke processing area for 16.5 hr. Nine COGs were identified, including ammonia, CO, methane, ethane, ethylene, acetylene, propylene, cyclohexane, and O-xylene. Time series plots indicated that the type of pollutants differed over time, suggesting that different emission sources (e.g., coke pushing, quench tower, etc.) were involved at different times over the study period. This observation was confirmed by the low cross-correlation coefficients of the COGs. It was also found that, with the help of meteorological analysis, the data collected by the OP-FTIR system could be analyzed effectively to characterize differences in the location of sources. Although the traditional single-point samplings of emissions involves sampling various sources in a coke processing area at several different times and is a credible profiling of emissions, our findings strongly suggest that they are not nearly as efficient or as cost-effective as the continuous line average method used in this study. This method would make it easier and cheaper for engineers and health risk assessors to identify and to control fugitive volatile organic compound emissions and to improve environmental health.
$1.8 Million and counting: how volatile agent education has decreased our spending $1000 per day.
Miller, Scott A; Aschenbrenner, Carol A; Traunero, Justin R; Bauman, Loren A; Lobell, Samuel S; Kelly, Jeffrey S; Reynolds, John E
2016-12-01
Volatile anesthetic agents comprise a substantial portion of every hospital's pharmacy budget. Challenged with an initiative to lower anesthetic drug expenditures, we developed an education-based intervention focused on reducing volatile anesthetic costs while preserving access to all available volatile anesthetics. When postintervention evaluation demonstrated a dramatic year-over-year reduction in volatile agent acquisition costs, we undertook a retrospective analysis of volatile anesthetic purchasing data using time series analysis to determine the impact of our educational initiative. We obtained detailed volatile anesthetic purchasing data from the Central Supply of Wake Forest Baptist Health from 2007 to 2014 and integrated these data with the time course of our educational intervention. Aggregate volatile anesthetic purchasing data were analyzed for 7 consecutive fiscal years. The educational initiative emphasized tissue partition coefficients of volatile anesthetics in adipose tissue and muscle and their impact on case management. We used an interrupted time series analysis of monthly cost per unit data using autoregressive integrated moving average modeling, with the monthly cost per unit being the amount spent per bottle of anesthetic agent per month. The cost per unit decreased significantly after the intervention (t=-6.73, P<.001). The autoregressive integrated moving average model predicted that the average cost per unit decreased $48 after the intervention, with 95% confidence interval of $34 to $62. As evident from the data, the purchasing of desflurane and sevoflurane decreased, whereas that of isoflurane increased. An educational initiative focused solely on the selection of volatile anesthetic agent per case significantly reduced volatile anesthetic expense at a tertiary medical center. This approach appears promising for application in other hospitals in the rapidly evolving, value-added health care environment. We were able to accomplish this with instruction on tissue partition coefficients and each agent's individual cost per MAC-hour delivered. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Roman, D.; Plank, T. A.; Hauri, E. H.; Rasmussen, D. J.; Power, J. A.; Lyons, J. J.; Haney, M. M.; Werner, C. A.; Kern, C.; Lopez, T. M.; Izbekov, P. E.; Stelling, P. L.
2016-12-01
We present initial results from an integrated geochemical-geophysical study of the Unimak-Cleveland corridor of the Aleutian volcanic arc, which encompasses six volcanoes spanning 450 km of the arc that have erupted in the past 25 years with a wide range of magmatic water contents. This relatively small corridor also exhibits a range of deep and upper-crustal seismicity, apparent magma storage depths, and depths to the subducting tectonic plate. The ultimate goal of this study is to link two normally disconnected big-picture problems: 1) the deep origin of magmas and volatiles, and 2) the formation and eruption of crustal magma reservoirs, which we will do by establishing the depth(s) of crustal magma reservoirs and pre-eruptive volatile contents throughout the corridor. Our preliminary work focuses on the geographic end members Shishaldin Volcano, which last erupted in 2014-2015, and Cleveland Volcano, which last erupted in April-May of this year (2016). Both systems are persistently degassing, open-vent volcanoes whose frequent eruptions are typically characterized by minimal precursory seismicity, making eruption forecasting challenging. At Cleveland, we analyze data from a 12-station broadband seismic network deployed from August 2015-July 2016, which is complemented by two permanent seismo-acoustic stations operated by the Alaska Volcano Observatory (AVO). We also analyze tephras from recent eruptions (including 2016) and conducted ground- and helicopter-based gas emission surveys. At Shishaldin, we analyze data from the permanent AVO network, which is comprised of mainly short-period, single-component seismic stations. We also present preliminary analyses of samples of recent eruptive deposits and gas emission data. Through integration of these various datasets we present preliminary interpretations related to the origin, storage, ascent and eruption of volatile-bearing magmas at Cleveland and Shishaldin volcanoes.
HS-SPME GC/MS characterization of volatiles in raw and dry-roasted almonds (Prunus dulcis).
Xiao, Lu; Lee, Jihyun; Zhang, Gong; Ebeler, Susan E; Wickramasinghe, Niramani; Seiber, James; Mitchell, Alyson E
2014-05-15
A robust HS-SPME and GC/MS method was developed for analyzing the composition of volatiles in raw and dry-roasted almonds. Almonds were analyzed directly as ground almonds extracted at room temperature. In total, 58 volatiles were identified in raw and roasted almonds. Straight chain aldehydes and alcohols demonstrated significant but minimal increases, while the levels of branch-chain aldehydes, alcohols, heterocyclic and sulfur containing compounds increased significantly (500-fold) in response to roasting (p<0.05). Benzaldehyde decreased from 2934.6±272.5 ng/g (raw almonds) to 315.8±70.0 ng/g (averaged across the roasting treatments evaluated i.e. 28, 33 and 38 min at 138 °C) after roasting. Pyrazines were detected in only the roasted almonds, with the exception of 2,5-dimethylpyrazine, which was also found in raw almonds. The concentration of most alcohols increased in the roasted samples with the exception of 2-methyl-1-propanol, 3-methyl-1-butanol and 2-phenylethyl alcohol, which decreased 68%, 80%, and 86%, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Costa, Rosaria; Tedone, Laura; De Grazia, Selenia; Dugo, Paola; Mondello, Luigi
2013-04-03
Multiple headspace-solid phase microextraction (MHS-SPME) followed by gas chromatography/mass spectrometry (GC-MS) and flame ionization detection (GC-FID) was applied to the identification and quantification of volatiles released by the mushroom Agaricus bisporus, also known as champignon. MHS-SPME allows to perform quantitative analysis of volatiles from solid matrices, free of matrix interferences. Samples analyzed were fresh mushrooms (chopped and homogenized) and mushroom-containing food dressings. 1-Octen-3-ol, 3-octanol, 3-octanone, 1-octen-3-one and benzaldehyde were common constituents of the samples analyzed. Method performance has been tested through the evaluation of limit of detection (LoD, range 0.033-0.078 ng), limit of quantification (LoQ, range 0.111-0.259 ng) and analyte recovery (92.3-108.5%). The results obtained showed quantitative differences among the samples, which can be attributed to critical factors, such as the degree of cell damage upon sample preparation, that are here discussed. Considerations on the mushrooms biochemistry and on the basic principles of MHS analysis are also presented. Copyright © 2013 Elsevier B.V. All rights reserved.
Yao, Youli; Danna, Cristian H; Ausubel, Frederick M; Kovalchuk, Igor
2012-07-01
Interplant communication of stress via volatile signals is a well-known phenomenon. It has been shown that plants undergoing stress caused by pathogenic bacteria or insects generate volatile signals that elicit defense response in neighboring naïve plants. Similarly, we have recently shown that naïve plants sharing the same gaseous environment with UVC-exposed plants exhibit similar changes in genome instability as UVC-exposed plants. We found that methyl salicylate (MeSA) and methyl jasmonate (MeJA) serve as volatile signals communicating genome instability (as measured by an increase in the homologous recombination frequency). UVC-exposed plants produce high levels of MeSA and MeJA, a response that is missing in an npr1 mutant. Concomitantly, npr1 mutants are impaired in communicating the signal leading to genome instability, presumably because this mutant does not develop new necrotic lesion after UVC irradiation as observed in wt plants. To analyze the potential biological significance of such plant-plant communication, we have now determined whether bystander plants that receive volatile signals from UVC-irradiated plants, become more resistant to UVC irradiation or infection with oilseed rape mosaic virus (ORMV). Specifically, we analyzed the number of UVC-elicited necrotic lesions, the level of anthocyanin pigments, and the mRNA levels corresponding to ORMV coat protein and the NPR1-regulated pathogenesis-related protein PR1 in the irradiated or virus-infected bystander plants that have been previously exposed to volatiles produced by UVC-irradiated plants. These experiments showed that the bystander plants responded similarly to control plants following UVC irradiation. Interestingly, however, the bystander plants appeared to be more susceptible to ORMV infection, even though PR1 mRNA levels in systemic tissue were significantly higher than in the control plants, which indicates that bystander plants could be primed to strongly respond to bacterial infection.
Olson, Joelle F; Vers, Leonard M Ver; Moon, Roger D; Kells, Stephen A
2017-01-01
After feeding, bed bugs aggregate in cracks and crevices near a host. Aggregation and arrestment are mediated by tactile and chemical stimuli associated with the bugs' feces and exuviae. Volatiles derived from fecally stained filter papers were analyzed by solid-phase microextraction (SPME) and evaluated using a multichoice behavioral assay to determine their impact on bed bug aggregation. In addition, crude fecal extracts were collected in methanol, analyzed by gas chromatography coupled with electroantennogram detection (GC-EAD) and mass spectrometry (GC-MS) and evaluated in open-air multichoice behavioral assays. The SPME method was used to detect (E)-2-hexenal and (E)-2-octenal in heated bed bug feces. The presence of these two volatile components did not affect aggregation. Analysis of the crude fecal extracts revealed several semi-volatile nitrogenous compounds, a carboxylic acid and a sulfur-based compound. Adult antennae responded to compounds eluted from three regions of the crude extract using GC-EAD. A combination of two compounds, dimethyl trisulfide and methyldiethanolamine, resulted in aggregation responses equivalent to the original crude extract. Bed bug aggregation is mediated by semi-volatile compounds derived from fecal extracts, and two compounds are sufficient to elicit aggregation. The two compounds identified here could be used to enhance the effectiveness of insecticidal applications or improve monitoring techniques. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Nagle, Doug D.
2013-01-01
Samples from sites SWR11–3, SWR11–4, and SWR11–5 were analyzed for 83 volatile and semivolatile organic compounds. Eight polycyclic aromatic hydrocarbon compounds, benzo[a]pyrene, benzo[b]fluoranthene, benzo[ghi]perylene, benzo[k]fluoranthene, chrysene, indeno[1,2,3-cd]pyrene, phenanthrene, and pyrene, were detected at all three sites. Of the 86 volatile and semivolatile organic compounds that were analyzed in stormwater samples from heating and cooling sites, 15 (18 percent) were detected at site SWR11–3, 12 (14 percent) were detected at site SWR11–4, and 17 (20 percent) were detected at site SWR11–5.
Volatile Organic Analyzer (VOA) in 2006: Repair, Revalidation, and Restart of Elektron Even
NASA Technical Reports Server (NTRS)
Limero, Thomas
2007-01-01
The Volatile Organic Analyzer (VOA) had been providing valuable data on trace contaminants in the atmosphere of the International Space Station (ISS) from January 2002 through May 2003. Component temperature errors, detected by the VOA s software, shut down the unit in May 2003, but in early 2005 on orbit diagnostics verified fuse failures had disabled both VOA channels. An in-flight maintenance (IFM) session in December 2005 returned the VOA to an operational mode by January 2006. This paper will present the on-orbit data from 2006 that were used to revalidate the VOA, and provide an overview of the VOA s contributions during the Elecktron contingency event that occurred on ISS in September 2006.
Cappozzo, Jack C; Koutchma, Tatiana; Barnes, Gail
2015-08-01
As a result of growing interest to nonthermal processing of milk, the purpose of this study was to characterize the chemical changes in raw milk composition after exposure to a new nonthermal turbulent flow UV process, conventional thermal pasteurization process (high-temperature, short-time; HTST), and their combinations, and compare those changes with commercially UHT-treated milk. Raw milk was exposed to UV light in turbulent flow at a flow rate of 4,000L/h and applied doses of 1,045 and 2,090 J/L, HTST pasteurization, and HTST in combination with UV (before or after the UV). Unprocessed raw milk, HTST-treated milk, and UHT-treated milk were the control to the milk processed with the continuous turbulent flow UV treatment. The chemical characterization included component analysis and fatty acid composition (with emphasis on conjugated linoleic acid) and analysis for vitamin D and A and volatile components. Lipid oxidation, which is an indicator to oxidative rancidity, was evaluated by free fatty acid analysis, and the volatile components (extracted organic fraction) by gas chromatography-mass spectrometry to obtain mass spectral profile. These analyses were done over a 14-d period (initially after treatment and at 7 and 14 d) because of the extended shelf-life requirement for milk. The effect of UV light on proteins (i.e., casein or lactalbumin) was evaluated qualitatively by sodium dodecyl sulfate-PAGE. The milk or liquid soluble fraction was analyzed by sodium dodecyl sulfate-PAGE for changes in the protein profile. From this study, it appears that continuous turbulent flow UV processing, whether used as a single process or in combination with HTST did not cause any statistically significant chemical changes when compared with raw milk with regard to the proximate analysis (total fat, protein, moisture, or ash), the fatty acid profile, lipid oxidation with respect to volatile analysis, or protein profile. A 56% loss of vitamin D and a 95% loss of vitamin A content was noted after 7 d from the continuous turbulent flow UV processing, but this loss was equally comparable to that found with traditional thermal processing, such as HTST and UHT. Chemical characterization of milk showed that turbulent flow UV light technology can be considered as alternative nonthermal treatment of pasteurized milk and raw milk to extend shelf life. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Scaling and volatility of breakouts and breakdowns in stock price dynamics.
Liu, Lu; Wei, Jianrong; Huang, Jiping
2013-01-01
Because the movement of stock prices is not only ubiquitous in financial markets but also crucial for investors, extensive studies have been done to understand the law behind it. In particular, since the financial crisis in 2008, researchers have a more interest in investigating large market volatilities in order to grasp changing market trends. In this work, we analyze the breakouts and breakdowns of both the Standard & Poor's 500 Index in the US stock market and the Shanghai Composite Index in the Chinese stock market. The breakout usually represents an ongoing upward trend in technical analysis while the breakdown represents an ongoing downward trend. Based on the renormalization method, we introduce two parameters to quantize breakouts and breakdowns, respectively. We discover scaling behavior, characterized by power-law distributions for both the breakouts and breakdowns in the two financial markets with different power-law exponents, which reflect different market volatilities. In detail, the market volatility for breakdowns is usually larger than that for breakouts. Moreover, as an emerging market, the Chinese stock market has larger market volatilities for both the breakouts and breakdowns than the US stock market (a mature market). Further, the short-term volatilities show similar features for both the US stock market and the Chinese stock market. However, the medium-term volatilities in the US stock market are almost symmetrical for the breakouts and breakdowns, whereas those in the Chinese stock market appear to be asymmetrical for the breakouts and breakdowns. The methodology presented here provides a way to understand scaling and hence volatilities of breakouts and breakdowns in stock price dynamics. Our findings not only reveal the features of market volatilities but also make a comparison between mature and emerging financial markets.
Scaling and Volatility of Breakouts and Breakdowns in Stock Price Dynamics
Liu, Lu; Wei, Jianrong; Huang, Jiping
2013-01-01
Background Because the movement of stock prices is not only ubiquitous in financial markets but also crucial for investors, extensive studies have been done to understand the law behind it. In particular, since the financial crisis in 2008, researchers have a more interest in investigating large market volatilities in order to grasp changing market trends. Methodology/Principal Findings In this work, we analyze the breakouts and breakdowns of both the Standard & Poor’s 500 Index in the US stock market and the Shanghai Composite Index in the Chinese stock market. The breakout usually represents an ongoing upward trend in technical analysis while the breakdown represents an ongoing downward trend. Based on the renormalization method, we introduce two parameters to quantize breakouts and breakdowns, respectively. We discover scaling behavior, characterized by power-law distributions for both the breakouts and breakdowns in the two financial markets with different power-law exponents, which reflect different market volatilities. In detail, the market volatility for breakdowns is usually larger than that for breakouts. Moreover, as an emerging market, the Chinese stock market has larger market volatilities for both the breakouts and breakdowns than the US stock market (a mature market). Further, the short-term volatilities show similar features for both the US stock market and the Chinese stock market. However, the medium-term volatilities in the US stock market are almost symmetrical for the breakouts and breakdowns, whereas those in the Chinese stock market appear to be asymmetrical for the breakouts and breakdowns. Conclusions/Signicance The methodology presented here provides a way to understand scaling and hence volatilities of breakouts and breakdowns in stock price dynamics. Our findings not only reveal the features of market volatilities but also make a comparison between mature and emerging financial markets. PMID:24376577
[Volatile organic compounds of the tap water in the Watarase, Tone and Edo River system].
Ohmichi, Kimihide; Ohmichi, Masayoshi; Machida, Kazuhiko
2004-01-01
The chlorination of river water in purification plants is known to produce carcinogens such as trihalomethanes (THMs). We studied the river system of the Watarase, Tone, and Edo Rivers in regard to the formation of THMs. This river system starts from the base of the Ashio copper mine and ends at Tokyo Bay. Along the rivers, there are 14 local municipalities in Gunma, Saitama, Ibaragi and Chiba Prefectures, as well as Tokyo. This area is the center of the Kanto plain and includes the main sources of water pollution from human activities. We also analyzed various chemicals in river water and tap water to clarify the status of the water environment, and we outline the problems of the water environment in the research area (Fig. 1). Water samples were taken from 18 river sites and 42 water faucets at public facilities in 14 local municipalities. We analyzed samples for volatile organic compounds such as THMs, by gas chromatography mass spectrometry (GC-MS), and evaluations of chemical oxygen demand (COD) were made with reference to Japanese drinking water quality standards. Concentrations of THMs in the downstream tap water samples were higher than those in the samples from the upperstream. This tendency was similar to the COD of the river water samples, but no correlation between the concentration of THMs in tap water and the COD in tap water sources was found. In tap water of local government C, trichloroethylene was detected. The current findings suggest that the present water filtration plant procedures are not sufficient to remove some hazardous chemicals from the source water. Moreover, it was confirmed that the water filtration produced THMs. Also, trichloroethylene was detected from the water environment in the research area, suggesting that pollution of the water environment continues.
NASA Astrophysics Data System (ADS)
Wilkerson, Daryl F.
Highly Reactive Volatile Organic Compounds (HRVOCs), in particular, the toxic ozone precursors, ethylene, propylene, butenes (1-butene, cis-2-butene, trans-2-butene) and 1, 3 butadiene found in the Houston area are the most critical in the formation of ozone. Exposure to such chemical can cause adverse health effect on the local population of the area, ranging from respiratory distress, asthma, COPD to Cancer. Urban ambient air samples were collected and analyzed from eight monitoring stations (Sites), encompassing the Houston Ship Channel (HSC), in Harris County, Texas. The data was interpreted and analyzed for changes in the concentration of air pollutants, data was collected daily (24 hours) over a time period from September 2013 to August 2014. One 40-minute sample was collected each hour and analyzed by automated gas chromatograph (Auto-GCs) on-site. A total of 70 compounds are measured hourly at each site, in this research the following chemicals were analysis for their average, seasonal and monthly concentrations: ethane, ethylene, propane, propylene, isobutane, n-butane, 1-butene, c-2-butene, t-2-butene and 1,3-butadiene. In this study, seasonal conditions in the area produced ranges from low to high concentrations of these compounds at certain locations. Two Stations had extremely high yearly average concentrations of butane and its isomers (c-2-butene, t-2-butene) and three stations, 1-butene and isobutene concentrations exceeded normal safety limits along with 1,3-butadiene. One station, in particular, close to the HSC had the highest yearly average propylene concentration. Local meteorology also promotes risk issues to the local health of persons within the area/community of interest. This research concluded that the analyzed results of ambient air samples in the urban areas surrounding the Houston Ship Channel (HSC) in Harris County, Texas posed a dual threat. The production of ozone in the daylight hours and depletion of ozone at night, as well as the continuous presence of these precursors in the atmosphere, are both harmful to mankind and toxic to the environment.
Galassi, F G; Fronza, G; Toloza, A C; Picollo, M I; González-Audino, P
2018-05-04
The head louse Pediculus humanus capitis (De Geer) (Phthiraptera: Pediculidae) is a cosmopolitan human ectoparasite causing pediculosis, one of the most common arthropod parasitic conditions of humans. The mechanisms and/or chemicals involved in host environment recognition by head lice are still unknown. In this study, we evaluated the response of head lice to volatiles that emanate from the human scalp. In addition, we identified the volatile components of the odor and evaluated the attractive or repellent activity of their pure main components. The volatiles were collected by means of Solid Phase microextraction and the extract obtained was chemically analyzed by gas chromatograph-mass spectrometer. Twenty-four volatile were identified in the human scalp odor, with the main compounds being the following: nonanal, sulcatone, geranylacetone, and palmitic acid. Head lice were highly attracted by the blend human scalp volatiles, as well as by the individual major components. A significant finding of our study was to demonstrate that nonanal activity depends on the mass of the compound as it is repellent at high concentrations and an attractant at low concentrations. The results of this study indicate that head lice may use chemical signals in addition to other mechanisms to remain on the host.
NASA Astrophysics Data System (ADS)
Song, Hyun-Pa; Shim, Sung-Lye; Lee, Sun-Im; Kim, Dong-Ho; Kwon, Joong-Ho; Kim, Kyong-Su
2012-08-01
The volatile organic compounds of non-irradiated and electron-beam irradiated 'Fuji' apples (Malus domestica Borkh.) at 0, 0.5, and 1 kGy were isolated through simultaneous distillation extractions and analyzed using gas chromatograph-mass spectrometry. A total of 53 volatile organic compounds were characterized in 0 and 1 kGy irradiated samples, whereas two more compounds related to ketone and terpenoid group were identified in 0.5 kGy irradiated samples. The contents of volatile compounds were 24.33, 36.49, and 35.28 mg/kg in 0, 0.5, and 1 kGy irradiated samples, respectively. The major compounds identified were butanol, hexanal, [E]-2-hexenal, and hexanol in all samples. The relative content of alcohol increased after 30 days of storage in all samples, whereas that of aldehyde decreased. Although the contents of some volatile compounds were changed by electron-beam irradiation, the total yield and major flavor compounds of irradiated 'Fuji' apples were similar to, or even greater than, those of the control. Therefore, the application of e-beam irradiation if required for microbial decontamination of 'Fuji' apples is an acceptable method as it does not bring about any major quantitative changes of volatile organic compounds.
Isolation and characterization of allelopathic volatiles from mugwort (Artemisia vulgaris).
Barney, Jacob N; Hay, Anthony G; Weston, Leslie A
2005-02-01
Several volatile allelochemicals were identified and characterized from fresh leaf tissue of three distinct populations of the invasive perennial weed, mugwort (Artemisia vulgaris). A unique bioassay was used to demonstrate the release of volatile allelochemicals from leaf tissues. Leaf volatiles were trapped and analyzed via gas chromatography coupled with mass spectrometry. Some of the components identified were terpenes, including camphor, eucalyptol, alpha-pinene, and beta-pinene. Those commercially available were tested individually to determine their phytotoxicity. Concentrations of detectable volatiles differed in both absolute and relative proportions among the mugwort populations. The three mugwort populations consisted of a taller, highly branched population (ITH-1); a shorter, lesser-branched population (ITH-2) (both grown from rhizome fragments from managed landscapes); and a population grown from seed with lobed leaves (VT). Considerable interspecific variation existed in leaf morphology and leaf surface chemistry. Bioassays revealed that none of the individual monoterpenes could account for the observed phytotoxicity imparted by total leaf volatiles, suggesting a synergistic effect or activity of a component not tested. Despite inability to detect a single dominant phytotoxic compound, decreases in total terpene concentration with increase in leaf age correlated with decreases in phytotoxicity. The presence of bioactive terpenoids in leaf surface chemistry of younger mugwort tissue suggests a potential role for terpenoids in mugwort establishment and proliferation in introduced habitats.
NASA Astrophysics Data System (ADS)
Pratama, Rusky I.; Rostini, I.; Rochima, E.
2018-02-01
Fish species and processing methods could affect the volatile flavour composition and amino acid profile of fishery commodity. The objectives of this study were to identify volatile components and amino acid profile of two considered predominant fish species in Indonesia which are freshwater Patin catfish (Pangasius hypophthalmus) and marine water fish, Spanish mackerel (Scomberomorus commerson). The methods used in this study were to detect volatile compounds using Gas Chromatography/Mass Spectrometry (GC/MS) on fresh and steamed of both species samples (100°C for 30 minutes) and amino acid profile were also analyzed using High Performance Liquid Chromatography (HPLC). The volatile components analysis successfully detects as much as 29 and 59 volatiles compounds in fresh and steamed Patin catfish respectively, while 37 and 102 compounds were detected in fresh and steamed Spanish mackerel samples. Most of detected components derives from hydrocarbons, aldehydes, alcohols and ketone groups which could affected by their chemical composition and resulted from various thermal involved reaction. The amino acids profile identification results showed that glutamic acid was found higher compared to other amino acids standards in both samples. Glutamic acid is non-essential amino acid which is important in umami taste substances.
The Ecological Role of Volatile and Soluble Secondary Metabolites Produced by Soil Bacteria.
Tyc, Olaf; Song, Chunxu; Dickschat, Jeroen S; Vos, Michiel; Garbeva, Paolina
2017-04-01
The rich diversity of secondary metabolites produced by soil bacteria has been appreciated for over a century, and advances in chemical analysis and genome sequencing continue to greatly advance our understanding of this biochemical complexity. However, we are just at the beginning of understanding the physicochemical properties of bacterial metabolites, the factors that govern their production and ecological roles. Interspecific interactions and competitor sensing are among the main biotic factors affecting the production of bacterial secondary metabolites. Many soil bacteria produce both volatile and soluble compounds. In contrast to soluble compounds, volatile organic compounds can diffuse easily through air- and gas-filled pores in the soil and likely play an important role in long-distance microbial interactions. In this review we provide an overview of the most important soluble and volatile classes of secondary metabolites produced by soil bacteria, their ecological roles, and their possible synergistic effects. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gao, Lihua; Liu, Ting; An, Xinjing; Zhang, Jinlan; Ma, Xiaoran; Cui, Jinmei
2017-01-01
Soy sauce contains a variety of volatiles that are highly valuable to its quality with regard to sensory characteristics. This paper describes the analysis of volatile compounds influencing the flavor quality of Chinese-type soy sauces. Gas chromatography-mass spectrometry (GC-MS) combined with headspace-solid phase microextraction and electronic nose (E-nose) were applied for identifying the volatile flavor compounds as well as determining their volatile profiles of 12 soy sauces manufactured by different fermentation process. Forty one key volatile components of these 12 soy sauce products, a pure soy sauce and an acid-hydrolyzed vegetable protein sample, were compared in semi-quantitative form, and their volatile flavor profiles were analyzed by E-nose. The substantially similar results between hierarchical cluster analysis based on GC-MS data and E-nose analysis suggested that both techniques may be useful in evaluating the flavor quality of soy sauces and differentiating soy sauce products. The study also showed that there were less volatile flavor compounds in soy sauces produced through low-salt solid-state fermentation process, a traditional manufacturing technology and a widely adopted technology in Chinese soy sauce industries. In addition, the investigation suggested that the flavor quality of soy sauce varied widely in Chinese domestic market, and that the present Chinese national standards of soy sauce should be further perfected by the addition of flavor grades of soy sauce in the physical and chemical index. Meanwhile, this research provided valuable information to manufacturers and government regulators, which have practical significance to improve quality of soy sauces.
Allaire, S E; Yates, S R; Ernst, F F; Gan, J
2002-01-01
There is an important need to develop instrumentation that allows better understanding of atmospheric emission of toxic volatile compounds associated with soil management. For this purpose, chemical movement and distribution in the soil profile should be simultaneously monitored with its volatilization. A two-dimensional rectangular soil column was constructed and a dynamic sequential volatilization flux chamber was attached to the top of the column. The flux chamber was connected through a manifold valve to a gas chromatograph (GC) for real-time concentration measurement. Gas distribution in the soil profile was sampled with gas-tight syringes at selected times and analyzed with a GC. A pressure transducer was connected to a scanivalve to automatically measure the pressure distribution in the gas phase of the soil profile. The system application was demonstrated by packing the column with a sandy loam in a symmetrical bed-furrow system. A 5-h furrow irrigation was started 24 h after the injection of a soil fumigant, propargyl bromide (3-bromo-1-propyne; 3BP). The experience showed the importance of measuring lateral volatilization variability, pressure distribution in the gas phase, chemical distribution between the different phases (liquid, gas, and sorbed), and the effect of irrigation on the volatilization. Gas movement, volatilization, water infiltration, and distribution of degradation product (Br-) were symmetric around the bed within 10%. The system saves labor cost and time. This versatile system can be modified and used to compare management practices, estimate concentration-time indexes for pest control, study chemical movement, degradation, and emissions, and test mathematical models.
Zebelo, Simon A; Matsui, Kenji; Ozawa, Rika; Maffei, Massimo E
2012-11-01
Tomato plants respond to herbivory by emitting volatile organic compounds (VOCs), which are released into the surrounding atmosphere. We analyzed the tomato herbivore-induced VOCs and tested the ability of tomato receiver plants to detect tomato donor volatiles by analyzing early responses, including plasma membrane potential (V(m)) variations and cytosolic calcium ([Ca²⁺](cyt)) fluxes. Receiver tomato plants responded within seconds to herbivore-induced VOCs with a strong V(m) depolarization, which was only partly recovered by fluxing receiver plants with clean air. Among emitted volatiles, we identified by GC-MS some green leaf volatiles (GLVs) such as (E)-2-hexenal, (Z)-3-hexenal, (Z)-3-hexenyl acetate, the monoterpene α-pinene, and the sesquiterpene β-caryophyllene. GLVs were found to exert the stronger V(m) depolarization, when compared to α-pinene and β-caryophyllene. Furthermore, V(m) depolarization was found to increase with increasing GLVs concentration. GLVs were also found to induce a strong [Ca²⁺](cyt) increase, particularly when (Z)-3-hexenyl acetate was tested both in solution and with a gas. On the other hand, α-pinene and β-caryophyllene, which also induced a significant V(m) depolarization with respect to controls, did not exert any significant effect on [Ca²⁺](cyt) homeostasis. Our results show for the first time that plant perception of volatile cues (especially GLVs) from the surrounding environment is mediated by early events, occurring within seconds and involving the alteration of the plasma membrane potential and the [Ca²⁺](cyt) flux. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Comparison between volatility return intervals of the S&P 500 index and two common models
NASA Astrophysics Data System (ADS)
Vodenska-Chitkushev, I.; Wang, F. Z.; Weber, P.; Yamasaki, K.; Havlin, S.; Stanley, H. E.
2008-01-01
We analyze the S&P 500 index data for the 13-year period, from January 1, 1984 to December 31, 1996, with one data point every 10 min. For this database, we study the distribution and clustering of volatility return intervals, which are defined as the time intervals between successive volatilities above a certain threshold q. We find that the long memory in the volatility leads to a clustering of above-median as well as below-median return intervals. In addition, it turns out that the short return intervals form larger clusters compared to the long return intervals. When comparing the empirical results to the ARMA-FIGARCH and fBm models for volatility, we find that the fBm model predicts scaling better than the ARMA-FIGARCH model, which is consistent with the argument that both ARMA-FIGARCH and fBm capture the long-term dependence in return intervals to a certain extent, but only fBm accounts for the scaling. We perform the Student's t-test to compare the empirical data with the shuffled records, ARMA-FIGARCH and fBm. We analyze separately the clusters of above-median return intervals and the clusters of below-median return intervals for different thresholds q. We find that the empirical data are statistically different from the shuffled data for all thresholds q. Our results also suggest that the ARMA-FIGARCH model is statistically different from the S&P 500 for intermediate q for both above-median and below-median clusters, while fBm is statistically different from S&P 500 for small and large q for above-median clusters and for small q for below-median clusters. Neither model can fully explain the entire regime of q studied.
Detra, D.E.; Cooley, Elmo F.
1988-01-01
A modification of the one-sixth order semi-quantitative emission spectrographic method for the analysis of 30 elements in geologic materials (Grimes and Marranzino 1968) improves the limits of determination of some volatile to moderately volatile elements. The modification uses a compound-pendulum-mounted filter to regulate the amount of emitted light passing into the spectrograph. One hundred percent transmission of emitted light is allowed during the initial 20 seconds of the burn, then continually reduced to 40 percent over the next 32 seconds using the pendulum-mounted filter, and followed by an additional 68 seconds of burn time. The reduction of light transmission during the latter part of the burn decreases spectral background and the line emission of less volatile elements commonly responsible for problem-causing interferences. The sensitivity of the method for some geochemically important trace elements commonly determined in mineral exploration (Ag, As, Au, Be, Bi, Cd, Cr, Cu, Pb, Sb, Sn, and Zn) is improved up to five-fold under ideal conditions without compromising precision or accuracy
Impact of information cost and switching of trading strategies in an artificial stock market
NASA Astrophysics Data System (ADS)
Liu, Yi-Fang; Zhang, Wei; Xu, Chao; Vitting Andersen, Jørgen; Xu, Hai-Chuan
2014-08-01
This paper studies the switching of trading strategies and its effect on the market volatility in a continuous double auction market. We describe the behavior when some uninformed agents, who we call switchers, decide whether or not to pay for information before they trade. By paying for the information they behave as informed traders. First we verify that our model is able to reproduce some of the stylized facts in real financial markets. Next we consider the relationship between switching and the market volatility under different structures of investors. We find that there exists a positive relationship between the market volatility and the percentage of switchers. We therefore conclude that the switchers are a destabilizing factor in the market. However, for a given fixed percentage of switchers, the proportion of switchers that decide to buy information at a given moment of time is negatively related to the current market volatility. In other words, if more agents pay for information to know the fundamental value at some time, the market volatility will be lower. This is because the market price is closer to the fundamental value due to information diffusion between switchers.
Fast characterization of cheeses by dynamic headspace-mass spectrometry.
Pérès, Christophe; Denoyer, Christian; Tournayre, Pascal; Berdagué, Jean-Louis
2002-03-15
This study describes a rapid method to characterize cheeses by analysis of their volatile fraction using dynamic headspace-mass spectrometry. Major factors governing the extraction and concentration of the volatile components were first studied. These components were extracted from the headspace of the cheeses in a stream of helium and concentrated on a Tenax TA trap. They were then desorbed by heating and injected directly into the source of a mass spectrometer via a short deactivated silica transfer line. The mass spectra of the mixture of volatile components were considered as fingerprints of the analyzed substances. Forward stepwise factorial discriminant analysis afforded a limited number of characteristic mass fragments that allowed a good classification of the batches of cheeses studied.
The study of electrical conduction mechanisms. [dielectric response of lunar fines
NASA Technical Reports Server (NTRS)
Morrison, H. F.
1974-01-01
The dielectric response of lunar fines 74241,2 is presented in the audio-frequency range and under lunarlike conditions. Results suggest that volatiles are released during storage and transport of the lunar sample. Apparently, subsequent absorption of volatiles on the sample surface alter its dielectric response. The assumed volatile influence disappear after evacuation. A comparison of the dielectric properties of lunar and terrestrial materials as a function of density, temperature, and frequency indicates that if the lunar simulator analyzed were completely devoid of atmospheric moisture it would present dielectric losses smaller than those of the lunar sample. It is concluded that density prevails over temperature as the controlling factor of dielectric permittivity in the lunar regolith and that dielectric losses vary slowly with depth.
Liu, Wei; Yao, Kainan; Huang, Danian; Lin, Xudong; Wang, Liang; Lv, Yaowen
2016-06-13
The Greenwood frequency (GF) is influential in performance improvement for the coherent free space optical communications (CFSOC) system with a closed-loop adaptive optics (AO) unit. We analyze the impact of tilt and high-order aberrations on the mixing efficiency (ME) and bit-error-rate (BER) under different GF. The root-mean-square value (RMS) of the ME related to the RMS of the tilt aberrations, and the GF is derived to estimate the volatility of the ME. Furthermore, a numerical simulation is applied to verify the theoretical analysis, and an experimental correction system is designed with a double-stage fast-steering-mirror and a 97-element continuous surface deformable mirror. The conclusions of this paper provide a reference for designing the AO system for the CFSOC system.
Estimates of the organic aerosol volatility in a boreal forest using two independent methods
NASA Astrophysics Data System (ADS)
Hong, Juan; Äijälä, Mikko; Häme, Silja A. K.; Hao, Liqing; Duplissy, Jonathan; Heikkinen, Liine M.; Nie, Wei; Mikkilä, Jyri; Kulmala, Markku; Prisle, Nønne L.; Virtanen, Annele; Ehn, Mikael; Paasonen, Pauli; Worsnop, Douglas R.; Riipinen, Ilona; Petäjä, Tuukka; Kerminen, Veli-Matti
2017-03-01
The volatility distribution of secondary organic aerosols that formed and had undergone aging - i.e., the particle mass fractions of semi-volatile, low-volatility and extremely low volatility organic compounds in the particle phase - was characterized in a boreal forest environment of Hyytiälä, southern Finland. This was done by interpreting field measurements using a volatility tandem differential mobility analyzer (VTDMA) with a kinetic evaporation model. The field measurements were performed during April and May 2014. On average, 40 % of the organics in particles were semi-volatile, 34 % were low-volatility organics and 26 % were extremely low volatility organics. The model was, however, very sensitive to the vaporization enthalpies assumed for the organics (ΔHVAP). The best agreement between the observed and modeled temperature dependence of the evaporation was obtained when effective vaporization enthalpy values of 80 kJ mol-1 were assumed. There are several potential reasons for the low effective enthalpy value, including molecular decomposition or dissociation that might occur in the particle phase upon heating, mixture effects and compound-dependent uncertainties in the mass accommodation coefficient. In addition to the VTDMA-based analysis, semi-volatile and low-volatility organic mass fractions were independently determined by applying positive matrix factorization (PMF) to high-resolution aerosol mass spectrometer (HR-AMS) data. The factor separation was based on the oxygenation levels of organics, specifically the relative abundance of mass ions at m/z 43 (f43) and m/z 44 (f44). The mass fractions of these two organic groups were compared against the VTDMA-based results. In general, the best agreement between the VTDMA results and the PMF-derived mass fractions of organics was obtained when ΔHVAP = 80 kJ mol-1 was set for all organic groups in the model, with a linear correlation coefficient of around 0.4. However, this still indicates that only about 16 % (R2) of the variation can be explained by the linear regression between the results from these two methods. The prospect of determining of extremely low volatility organic aerosols (ELVOAs) from AMS data using the PMF analysis should be assessed in future studies.
Mount St. Helens eruptive behavior during the past 1500 yr.
Hoblitt, R.P.; Crandell, D.R.; Mullineaux, D.R.
1980-01-01
During the past 1500 yr Mount St. Helens, Washington, has repeatedly erupted dacite domes, tephra, and pyroclastic flows as well as andesite lava flows and tephra. Two periods of activity prior to 1980, each many decades long, were both initiated by eruptions of volatile-rich dacite which were followed by andesite, then by dacite. A third eruptive period was characterized by the eruption of volatile-poor dacite that formed a dome and minor pyroclastic flows. The prolonged duration of some previous eruptive periods suggests that the current activity could continue for many years. The volatile-rich dacite that has been erupted to date probably will be followed by gas-poor magma, but it cannot yet be predicted whether a more mafic magma will be extruded during the current eruptive period.-Authors
Correlating wine quality indicators to chemical and sensory measurements.
Hopfer, Helene; Nelson, Jenny; Ebeler, Susan E; Heymann, Hildegarde
2015-05-12
Twenty-seven commercial Californian Cabernet Sauvignon wines of different quality categories were analyzed with sensory and chemical methods. Correlations between five quality proxies-points awarded during a wine competition, wine expert scores, retail price, vintage, and wine region-were correlated to sensory attributes, volatile compounds, and elemental composition. Wine quality is a multi-faceted construct, incorporating many different layers. Depending on the quality proxy studied, significant correlations between quality and attributes, volatiles and elements were found, some of them previously reported in the literature.
I. J. Simpson; S. K. Akagi; B. Barletta; N. J. Blake; Y. Choi; G. S. Diskin; A. Fried; H. E. Fuelberg; S. Meinardi; F. S. Rowland; S. A. Vay; A. J. Weinheimer; P. O. Wennberg; P. Wiebring; A. Wisthaler; M. Yang; R. J. Yokelson; D. R. Blake
2011-01-01
Boreal regions comprise about 17% of the global land area, and they both affect and are influenced by climate change. To better understand boreal forest fire emissions and plume evolution, 947 whole air samples were collected aboard the NASA DC-8 research aircraft in summer 2008 as part of the ARCTAS-B field mission, and analyzed for 79 non-methane volatile organic...
NASA Technical Reports Server (NTRS)
Coleman, R. A.; Cofer, W. R., III; Edahl, R. A., Jr.
1985-01-01
An analytical technique for the determination of trace (sub-ppbv) quantities of volatile organic compounds in air was developed. A liquid nitrogen-cooled trap operated at reduced pressures in series with a Dupont Nafion-based drying tube and a gas chromatograph was utilized. The technique is capable of analyzing a variety of organic compounds, from simple alkanes to alcohols, while offering a high level of precision, peak sharpness, and sensitivity.
Davis, Linda C.; Bartholomay, Roy C.; Fisher, Jason C.; Maimer, Neil V.
2015-01-01
Volatile organic compound concentration trends were analyzed for nine aquifer wells. Trend test results indicated an increasing trend for carbon tetrachloride for the Radioactive Waste Management Complex Production Well for the period 1987–2012; however, trend analyses of data collected since 2005 show no statistically significant trend indicating that engineering practices designed to reduce movement of volatile organic compounds to the aquifer may be having a positive effect on the aquifer.
40 CFR 63.4541 - How do I demonstrate initial compliance with the emission limitations?
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR... volatile matter and use that value as a substitute for mass fraction of organic HAP. For reactive adhesives... not have to count it. For reactive adhesives in which some of the HAP react to form solids and are not...
Ex Ante or Ex Post? Risk, Hedging and Prudence in the Restructured Power Business
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makholm, Jeff D.; Meehan, Eugene T.; Sullivan, Julia E.
Inconsistent regulatory decisions continue to frustrate the establishment of a new ex ante regulatory equilibrium that will serve to prevent unfair and inefficient ex post prudence disallowances. Extreme volatility in gas and power markets will continue to tax the uneasy regulatory status quo until a new equilibrium can be established. (author)
USDA-ARS?s Scientific Manuscript database
A 4-unit, dual-flow continuous culture fermentor system was used to assess nutrient digestibility, volatile fatty acids (VFA) production, bacterial protein synthesis and CH4 output of warm-season summer annual grasses. Treatments were randomly assigned to fermentors in a 4 × 4 Latin square design us...
Slow Release of Plant Volatiles Using Sol-Gel Dispensers.
Bian, L; Sun, X L; Cai, X M; Chen, Z M
2014-12-01
The black citrus aphid, also known as the tea aphid, (Toxoptera aurantii Boyer) attacks economically important crops, including tea (Camellia sinensis (L.) O. Kuntze). In the current study, silica sol-gel formulations were screened to find one that could carry and release C. sinensis plant volatiles to lure black citrus aphids in a greenhouse. The common plant volatile trans-2-hexen-1-al was used as a model molecule to screen for suitable sol-gel formulations. A zNose (Electronic Sensor Technology, Newbury Park, CA) transportable gas chromatograph was used to continuously monitor the volatile emissions. A sol-gel formulation containing tetramethyl orthosilicate and methyltrimethoxysilane in an 8:2 (vol:vol) ratio was selected to develop a slow-release dispenser. The half-life of trans-2-hexen-1-al in the sol-gel dispenser increased slightly with the volume of this compound in the dispenser. Ten different volatiles were tested in the sol-gel dispenser. Alcohols of 6-10 carbons had the longest half-lives (3.01-3.77 d), while esters of 6-12 carbons had the shortest (1.53-2.28 d). Release of these volatiles from the dispensers could not be detected by the zNose after 16 d (cis-3-hexenyl acetate) to 26 d (3,7-dimethylocta-1,6-dien-3-ol). In greenhouse experiments, trans-2-hexen-1-al and cis-3-hexen-1-ol released from the sol-gel dispensers attracted aphids for ≍17 d, and release of these volatiles could not be detected by the zNose after ≍24 d. The sol-gel dispensers performed adequately for the slow release of plant volatiles to trap aphids in the greenhouse. © 2014 Entomological Society of America.
Sarkar, Nupur; Karmakar, Amarnath; Barik, Anandamay
2016-10-01
Epilachna vigintioctopunctata Fabr. (Coleoptera: Coccinellidae) and Aulacophora foveicollis Lucas (Coleoptera: Chrysomelidae) are important pests of Solena amplexicaulis (Lam.) Gandhi (Cucurbitaceae), commonly known as creeping cucumber. The profiles of volatile organic compounds from undamaged plants, plants after 48 hr continuous feeding of adult females of either E. vigintioctopunctata or A. foveicollis, by adults of both species, and after mechanical damaging were identified and quantified by GC-MS and GC-FID analyses. Thirty two compounds were detected in volatiles of all treatments. In all plants, methyl jasmonate was the major compound. In Y-shaped glass tube olfactometer bioassays under laboratory conditions, both insect species showed a significant preference for complete volatile blends from insect damaged plants, compared to those of undamaged plants. Neither E. vigintioctopunctata nor A. foveicollis showed any preference for volatiles released by heterospecifically damaged plants vs. conspecifically damaged plants or plants attacked by both species. Epilachna vigintioctopunctata and A. foveicollis showed attraction to three different synthetic compounds, linalool oxide, nonanal, and E-2-nonenal in proportions present in volatiles of insect damaged plants. Both species were attracted by a synthetic blend of 1.64 μg linalool oxide + 3.86 μg nonanal + 2.23 μg E-2-nonenal, dissolved in 20 μl methylene chloride. This combination might be used as trapping tools in pest management strategies.
Volatile Concentrations and H-Isotope Composition of Unequilibrated Eucrites
NASA Technical Reports Server (NTRS)
Sarafian, Adam R.; Nielsen, Sune G.; Marschall, Horst R.; Gaetani, Glenn A.; Hauri, Erik H.; Righter, Kevin; Berger, Eve L.
2017-01-01
Eucrites are among the oldest and best studied asteroidal basalts (1). They represent magmatism that occurred on their parent asteroid, likely 4-Vesta, starting at 4563 Ma and continuing for approx. 30 Myr. Two hypotheses are debated for the genesis of eucrites, a magma ocean model (2), and a mantle partial melting model. In general, volatiles (H, C, F, Cl) have been ignored for eucrites and 4-Vesta, but solubility of wt% levels of H2O are possible at Vestan interior PT conditions. Targeted measurements on samples could aid our understanding considerably. Recent studies have found evidence of volatile elements in eucrites, but quantifying the abundance of volatiles remains problematic (6). Volatile elements have a disproportionately large effect on melt properties and phase stability, relative to their low abundance. The source of volatile elements can be elucidated by examining the hydrogen isotope ratio (D/H), as different H reservoirs have drastically different H isotope compositions. Recent studies of apatite in eucrites have shown that the D/H of 4-Vesta matches that of Earth and carbonaceous chondrites, however, the D/H of apatites may not represent the D/H of a primitive 4-Vesta melt due to the possibility of degassing prior to the crystallization of apatite. Therefore, the D/H of early crystallizing phases must be measured to determine if the D/H of 4-Vesta is equal to that of the Earth and carbonaceous chondrites.
Budnik, Lygia Therese; Austel, Nadine; Gadau, Sabrina; Kloth, Stefan; Schubert, Jens; Jungnickel, Harald; Luch, Andreas
2017-01-01
Ambient monitoring analyses may identify potential new public health hazards such as residual levels of fumigants and industrial chemicals off gassing from products and goods shipped globally. We analyzed container air with gas chromatography coupled to mass spectrometry (TD-2D-GC-MS/FPD) and assessed whether the concentration of the volatiles benzene and 1,2-dichloroethane exceeded recommended exposure limits (REL). Products were taken from transport containers and analyzed for outgassing of volatiles. Furthermore, experimental outgassing was performed on packaging materials and textiles, to simulate the hazards tainting from globally shipped goods. The mean amounts of benzene in analyzed container air were 698-fold higher, and those of ethylene dichloride were 4.5-fold higher than the corresponding REL. More than 90% of all containers struck with toluene residues higher than its REL. For 1,2-dichloroethane 53% of containers, transporting shoes exceeded the REL. In standardized experimental fumigation of various products, outgassing of 1,2-dichloroethane under controlled laboratory conditions took up to several months. Globally produced transported products tainted with toxic industrial chemicals may contribute to the mixture of volatiles in indoor air as they are likely to emit for a long period. These results need to be taken into account for further evaluation of safety standards applying to workers and consumers. PMID:28520742
The fate of moderately volatile elements during planetary formation in the inner Solar System
NASA Astrophysics Data System (ADS)
Pringle, E. A.; Moynier, F.
2017-12-01
Moderately volatile element abundances are variable among inner Solar System bodies, with differing degrees of depletion compared to chondrites. These variations are a consequence of the processes of planetary formation. The conditions and the specific mechanisms of planetary accretion and differentiation can be investigated by analyzing the stable isotope compositions of terrestrial and extraterrestrial samples. The moderately volatile lithophile elements are particularly useful to distinguish between the effects of accretion and those of core formation. Recent work has shown isotope variations in inner Solar System bodies for the moderately volatile elements Zn and K. The purely lithophile nature of Rb (in contrast to Zn) and the higher volatility of Rb compared to K make Rb an ideal element with which to further study moderately volatile element depletion. We have developed a new method for the high-precision measurement of Rb isotope ratios by MC-ICP-MS. Terrestrial rocks define a narrow range in Rb isotope composition, indicating that Rb isotope fractionation during igneous differentiation is limited (<30 ppm/amu). Larger Rb isotope variations are observed in extraterrestrial materials. Carbonaceous chondrites display a trend toward lighter Rb isotope composition coupled with decreasing Rb/Sr, opposite to the effect expected if their volatile element variations were caused by evaporative loss of Rb. This relationship indicates that the volatile element abundance variations in carbonaceous chondrites are not due to evaporation or condensation, but rather are due to the mixing of chemically and isotopically distinct primordial reservoirs. In contrast, there is a clear signature of Rb loss during evaporation in volatile-depleted achondrites and lunar rocks. Significant heavy isotope enrichments (up to several per mil for 87Rb/85Rb) are found for volatile-depleted planetesimals, including eucrites. In addition, lunar rocks also display heavy Rb isotope enrichments compared to the BSE. The most likely cause of these variations is Rb isotope fractionation due to evaporation during accretion.
Possible role of plant volatiles in tolerance against huanglongbing in citrus
Hijaz, Faraj; Nehela, Yasser; Killiny, Nabil
2016-01-01
abstract Volatile organic compounds (VOC) play an important role in protecting plants from insect and pathogen attack. In this study, we investigated the leaf volatile profiles of 14 citrus varieties. The VOC in citrus leaves were extracted with n-hexane and analyzed using gas chromatography-mass spectrometry (GC-MS). Overall, 4six volatile compounds were identified in the n-hexane extract from citrus leaves. Most of the detected compounds belonged to 3 main groups (monoterpenes, sesquiterpenes, and aliphatic aldehydes). Principle component analysis was used to examine the relative distribution of the studied varieties to each other. Interestingly, volatile profiles of varieties that are tolerant to Candidatus Liberibacter asiaticus (CLas) were different from those of the susceptible ones. Tolerant and moderately-tolerant cultivars contained relatively higher amounts of volatiles than susceptible varieties. In addition, tolerant varieties were also higher in specific compounds which are known for their antimicrobial activities. These compounds include Aldehydes (undecanal, neral, geranial, and citronellal) and some monoterpenes such as linalool, d-limonene, myrcene, α- and β- phellandrene. In addition, some sesquiterpene compounds including t-caryophellene, γ-elemene, β-elemene, germacrene D, and geranyl acetate were higher in tolerant and moderately tolerant cultivars. Severinia buxifolia which is known for its tolerance to CLas and many other pathogens contained higher levels of santalenes and coumarins. Our results indicated that citrus leaf volatiles might play a role in citrus tolerance to CLas. The results of this study may help in understanding of the mechanism of citrus tolerance against CLas. PMID:26829496
Possible role of plant volatiles in tolerance against huanglongbing in citrus.
Hijaz, Faraj; Nehela, Yasser; Killiny, Nabil
2016-01-01
Volatile organic compounds (VOC) play an important role in protecting plants from insect and pathogen attack. In this study, we investigated the leaf volatile profiles of 14 citrus varieties. The VOC in citrus leaves were extracted with n-hexane and analyzed using gas chromatography-mass spectrometry (GC-MS). Overall, 4six volatile compounds were identified in the n-hexane extract from citrus leaves. Most of the detected compounds belonged to 3 main groups (monoterpenes, sesquiterpenes, and aliphatic aldehydes). Principle component analysis was used to examine the relative distribution of the studied varieties to each other. Interestingly, volatile profiles of varieties that are tolerant to Candidatus Liberibacter asiaticus (CLas) were different from those of the susceptible ones. Tolerant and moderately-tolerant cultivars contained relatively higher amounts of volatiles than susceptible varieties. In addition, tolerant varieties were also higher in specific compounds which are known for their antimicrobial activities. These compounds include Aldehydes (undecanal, neral, geranial, and citronellal) and some monoterpenes such as linalool, d-limonene, myrcene, α- and β- phellandrene. In addition, some sesquiterpene compounds including t-caryophellene, γ-elemene, β-elemene, germacrene D, and geranyl acetate were higher in tolerant and moderately tolerant cultivars. Severinia buxifolia which is known for its tolerance to CLas and many other pathogens contained higher levels of santalenes and coumarins. Our results indicated that citrus leaf volatiles might play a role in citrus tolerance to CLas. The results of this study may help in understanding of the mechanism of citrus tolerance against CLas.
Makhoul, Salim; Romano, Andrea; Cappellin, Luca; Spano, Giuseppe; Capozzi, Vittorio; Benozzi, Elisabetta; Märk, Tilmann D; Aprea, Eugenio; Gasperi, Flavia; El-Nakat, Hanna; Guzzo, Jean; Biasioli, Franco
2014-09-01
The aromatic impact of bakery yeast starters is currently receiving considerable attention. The flavor characteristics of the dough and the finished products are usually evaluated by gas chromatography and sensory analysis. The limit of both techniques resides in their low-throughput character. In the present work, proton-transfer-reaction mass spectrometry (PTR-MS), coupled to a time-of-flight mass analyzer, was employed, for the first time, to measure the volatile fractions of dough and bread, and to monitor Saccharomyces cerevisiae volatile production in a fermented food matrix. Leavening was performed on small-scale (1 g) dough samples inoculated with different commercial yeast strains. The leavened doughs were then baked, and volatile profiles were determined during leavening and after baking. The experimental setup included a multifunctional autosampler, which permitted the follow-up of the leavening process on a small scale with a typical throughput of 500 distinct data points in 16 h. The system allowed to pinpoint differences between starter yeast strains in terms of volatile emission kinetics, with repercussions on the final product (i.e. the corresponding micro-loaves). This work demonstrates the applicability of PTR-MS for the study of volatile organic compound production during bread-making, for the automated and online real-time monitoring of the leavening process, and for the characterization and selection of bakery yeast starters in view of their production of volatile compounds. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Weber, Philipp; Wang, Fengzhong; Vodenska-Chitkushev, Irena; Havlin, Shlomo; Stanley, H. Eugene
2007-07-01
We analyze the memory in volatility by studying volatility return intervals, defined as the time between two consecutive fluctuations larger than a given threshold, in time periods following stock market crashes. Such an aftercrash period is characterized by the Omori law, which describes the decay in the rate of aftershocks of a given size with time t by a power law with exponent close to 1. A shock followed by such a power law decay in the rate is here called Omori process. We find self-similar features in the volatility. Specifically, within the aftercrash period there are smaller shocks that themselves constitute Omori processes on smaller scales, similar to the Omori process after the large crash. We call these smaller shocks subcrashes, which are followed by their own aftershocks. We also show that the Omori law holds not only after significant market crashes as shown by Lillo and Mantegna [Phys. Rev. E 68, 016119 (2003)], but also after “intermediate shocks.” By appropriate detrending we remove the influence of the crashes and subcrashes from the data, and find that this procedure significantly reduces the memory in the records. Moreover, when studying long-term correlated fractional Brownian motion and autoregressive fractionally integrated moving average artificial models for volatilities, we find Omori-type behavior after high volatilities. Thus, our results support the hypothesis that the memory in the volatility is related to the Omori processes present on different time scales.
Li, Hailiang; Cui, Xiaoli; Tong, Yan; Gong, Muxin
2012-04-01
To compare inclusion effects and process conditions of two preparation methods-colloid mill and saturated solution-for beta-CD inclusion compound of four traditional Chinese medicine volatile oils and study the relationship between each process condition and volatile oil physical properties and the regularity of selective inclusion of volatile oil components. Volatile oils from Nardostachyos Radix et Rhizoma, Amomi Fructus, Zingiberis Rhizoma and Angelicaesinensis Radix were prepared using two methods in the orthogonal test. These inclusion compounds by optimized processes were assessed and compared by such methods as TLC, IR and scanning electron microscope. Inclusion oils were extracted by steam distillation, and the components found before and after inclusion were analyzed by GC-MS. Analysis showed that new inclusion compounds, but inclusion compounds prepared by the two processes had differences to some extent. The colloid mill method showed a better inclusion effect than the saturated solution method, indicating that their process conditions had relations with volatile oil physical properties. There were differences in the inclusion selectivity of components between each other. The colloid mill method for inclusion preparation is more suitable for industrial requirements. To prepare volatile oil inclusion compounds with heavy gravity and high refractive index, the colloid mill method needs longer time and more water, while the saturated solution method requires higher temperature and more beta-cyclodextrin. The inclusion complex prepared with the colloid mill method contains extended molecular weight chemical composition, but the kinds of components are reduced.
Production of chemicals and fuels from biomass
Qiao, Ming; Woods, Elizabeth; Myren, Paul; Cortright, Randy; Kania, John
2018-01-23
Methods, reactor systems, and catalysts are provided for converting in a continuous process biomass to fuels and chemicals, including methods of converting the water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.
Pyrolysis of carbonaceous materials with solvent quench recovery
Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.; Knell, Everett W.; Mirza, Zia I.; Winter, Bruce L.
1978-04-18
In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue. Apparatus useful for practicing this process are disclosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehman, Nasir, E-mail: nasirzainy1@hotmail.com; Shashiashvili, Malkhaz
The classical Garman-Kohlhagen model for the currency exchange assumes that the domestic and foreign currency risk-free interest rates are constant and the exchange rate follows a log-normal diffusion process.In this paper we consider the general case, when exchange rate evolves according to arbitrary one-dimensional diffusion process with local volatility that is the function of time and the current exchange rate and where the domestic and foreign currency risk-free interest rates may be arbitrary continuous functions of time. First non-trivial problem we encounter in time-dependent case is the continuity in time argument of the value function of the American put optionmore » and the regularity properties of the optimal exercise boundary. We establish these properties based on systematic use of the monotonicity in volatility for the value functions of the American as well as European options with convex payoffs together with the Dynamic Programming Principle and we obtain certain type of comparison result for the value functions and corresponding exercise boundaries for the American puts with different strikes, maturities and volatilities.Starting from the latter fact that the optimal exercise boundary curve is left continuous with right-hand limits we give a mathematically rigorous and transparent derivation of the significant early exercise premium representation for the value function of the American foreign exchange put option as the sum of the European put option value function and the early exercise premium.The proof essentially relies on the particular property of the stochastic integral with respect to arbitrary continuous semimartingale over the predictable subsets of its zeros. We derive from the latter the nonlinear integral equation for the optimal exercise boundary which can be studied by numerical methods.« less
Portfolio management under sudden changes in volatility and heterogeneous investment horizons
NASA Astrophysics Data System (ADS)
Fernandez, Viviana; Lucey, Brian M.
2007-03-01
We analyze the implications for portfolio management of accounting for conditional heteroskedasticity and sudden changes in volatility, based on a sample of weekly data of the Dow Jones Country Titans, the CBT-municipal bond, spot and futures prices of commodities for the period 1992-2005. To that end, we first proceed to utilize the ICSS algorithm to detect long-term volatility shifts, and incorporate that information into PGARCH models fitted to the returns series. At the next stage, we simulate returns series and compute a wavelet-based value at risk, which takes into consideration the investor's time horizon. We repeat the same procedure for artificial data generated from semi-parametric estimates of the distribution functions of returns, which account for fat tails. Our estimation results show that neglecting GARCH effects and volatility shifts may lead to an overestimation of financial risk at different time horizons. In addition, we conclude that investors benefit from holding commodities as their low or even negative correlation with stock and bond indices contribute to portfolio diversification.
Miao, Qing; Kong, Weijun; Zhao, Xiangsheng; Yang, Shihai; Yang, Meihua
2015-01-01
Analytical methods for quantitative analysis and chemical fingerprinting of volatile oils from Alpinia oxyphylla were established. The volatile oils were prepared by hydrodistillation, and the yields were between 0.82% and 1.33%. The developed gas chromatography-flame ionization detection (GC-FID) method showed good specificity, linearity, reproducibility, stability and recovery, and could be used satisfactorily for quantitative analysis. The results showed that the volatile oils contained 2.31-77.30 μL/mL p-cymene and 12.38-99.34 mg/mL nootkatone. A GC-FID fingerprinting method was established, and the profiles were analyzed using chemometrics. GC-MS was used to identify the principal compounds in the GC-FID profiles. The profiles of almost all the samples were consistent and stable. The harvesting time and source were major factors that affected the profile, while the volatile oil yield and the nootkatone content had minor secondary effects. Copyright © 2014 Elsevier B.V. All rights reserved.
In vitro metabolism of radiolabeled carbohydrates by protective cecal anaerobic bacteria.
Hume, M E; Beier, R C; Hinton, A; Scanlan, C M; Corrier, D E; Peterson, D V; DeLoach, J R
1993-12-01
Cecal anaerobic bacteria from adult broilers were cultured in media containing .25% glucose or .25% lactose. Media also contained either [14C]-labeled lactose, glucose, galactose, or lactic acid as metabolic tracers. Cultures were analyzed at 4, 8, and 12 h for pH, radiolabeled and unlabeled volatile fatty acids, and lactic acid. The pH values of cultures containing .25% lactose were significantly (P < .05) higher than the pH values of cultures containing .25% glucose. Lactose cultures reached their lowest pH more slowly than glucose cultures. Concentrations of unlabeled volatile fatty acids increased and lactic acid decreased during incubation of the cultures. Radiolabeled sugars and lactic acid were more readily metabolized to volatile fatty acids in media containing lactose than in media containing glucose. The preferred metabolism of [14C]substrates, independent of media carbohydrate, was in the following order: lactic acid > galactose, lactose > glucose. The volatile fatty acids in which radiolabel was most concentrated were acetic acid, propionic acid, or butyric acid.
Steingass, Christof Björn; Carle, Reinhold; Schmarr, Hans-Georg
2015-03-01
Qualitative ripening-dependent changes of pineapple volatiles were studied via headspace solid-phase microextraction and analyzed by comprehensive two-dimensional gas chromatography quadrupole mass spectrometry (HS-SPME-GC×GC-qMS). Early green-ripe stage, post-harvest ripened, and green-ripe fruits at the end of their commercial shelf-life were compared to air-freighted pineapples harvested at full maturity. In total, more than 290 volatiles could be identified by mass spectrometry and their linear retention indices. The majority of compounds comprise esters (methyl and ethyl esters of saturated and unsaturated fatty acids, acetates), terpenes, alcohols, aldehydes, 2-ketones, free fatty acids, and miscellaneous γ- and δ-lactones. The structured separation space obtained by GC×GC allowed revealing various homologous series of compound classes as well as clustering of sesquiterpenes. Post-harvest ripening increased the diversity of the volatile profile compared to both early green-ripe maturity stages and on-plant ripened fruits.
Mohamed, Hajaratul Najwa; Man, Yaakob Che; Mustafa, Shuhaimi; Manap, Yazid Abdul
2012-05-03
Budu is a famous Malaysian fish sauce, usually used as seasoning and condiment in cooking. Budu is produced by mixing fish and salt at certain ratio followed by fermentation for six months in closed tanks. In this study, four commercial brands of Budu were analyzed for their chemical properties (pH, salt content and volatile compounds). The pH of Budu samples ranged from 4.50-4.92, while the salt (NaCl) content ranged between 11.80% and 22.50% (w/v). For tentative identification of volatile flavor compounds in Budu, two GC columns have been used, DB-WAX and HP-5MS. A total of 44 volatile compounds have been detected and 16 were common for both columns. 3-Methyl-1-butanol, 2-methylbutanal, 3-methylbutanal, dimethyl disulfide, 3-(methylthio)-propanal, 3-methylbutanoic acid and benzaldehye have been identified as the aroma-active compounds in Budu due to their lower threshold values.
Karabagias, Ioannis K; Louppis, Artemis P; Karabournioti, Sofia; Kontakos, Stavros; Papastephanou, Chara; Kontominas, Michael G
2017-02-15
The objective of the present study was: i) to characterize Mediterranean citrus honeys based on conventional physicochemical parameter values, volatile compounds, and mineral content ii) to investigate the potential of above parameters to differentiate citrus honeys according to geographical origin using chemometrics. Thus, 37 citrus honey samples were collected during harvesting periods 2013 and 2014 from Greece, Egypt, Morocco, and Spain. Conventional physicochemical and CIELAB colour parameters were determined using official methods of analysis and the Commission Internationale de l' Eclairage recommendations, respectively. Minerals were determined using ICP-OES and volatiles using SPME-GC/MS. Results showed that honey samples analyzed, met the standard quality criteria set by the EU and were successfully classified according to geographical origin. Correct classification rates were 97.3% using 8 physicochemical parameter values, 86.5% using 15 volatile compound data and 83.8% using 13 minerals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Soil sampling kit and a method of sampling therewith
Thompson, Cyril V.
1991-01-01
A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allow an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds.
Soil sampling kit and a method of sampling therewith
Thompson, C.V.
1991-02-05
A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allows an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds. 11 figures.
Costa, Rosaria; De Grazia, Selenia; Grasso, Elisa; Trozzi, Alessandra
2015-01-01
Mushrooms are sources of food, medicines, and agricultural means. Not much is reported in the literature about wild species of the Mediterranean flora, although many of them are traditionally collected for human consumption. The knowledge of their chemical constituents could represent a valid tool for both taxonomic and physiological characterizations. In this work, a headspace-solid-phase microextraction (HS-SPME) method coupled with GC-MS and GC-FID was developed to evaluate the volatile profiles of ten wild mushroom species collected in South Italy. In addition, in order to evaluate the potential of this analytical methodology for true quantitation of volatiles, samples of the cultivated species Agaricus bisporus were analyzed. The choice of this mushroom was dictated by its ease of availability in the food market, due to the consistent amounts required for SPME method development. For calibration of the main volatile compounds, the standard addition method was chosen. Finally, the assessed volatile composition of A. bisporus was monitored in order to evaluate compositional changes occurring during storage, which represents a relevant issue for such a wide consumption edible product. PMID:25945282
Direct screening and confirmation of priority volatile organic pollutants in drinking water.
Caro, J; Serrano, A; Gallego, M
2007-01-05
A screening tool was proposed for the rapid detection of eight priority volatile organic pollutants according to European standards in drinking water. The method is based on the direct coupling of a headspace sampler with a mass spectrometer, using a chromatographic column heated to 175 degrees C as an interface. The water sample was subjected to the headspace extraction process and the volatile fraction was introduced directly into the mass spectrometer, without prior chromatographic separation, achieving low detection limits (0.6-1.2 ng/ml) for all compounds. The mass spectrum resulting from the simultaneous ionization and fragmentation of the mixture of molecules constitutes the volatile profile of each sample. An appropriate chemometric treatment of these signals permitted them to be classified, on the basis of their volatile composition, as contaminated or uncontaminated with respect to the legally established concentration levels for these compounds in drinking water, and providing no false negatives. A conventional confirmation method was carried out to analyze positive water samples by using the same instrumental setup as in the screening method, but using an appropriate temperature program in the chromatographic column to separate, identify and quantify each analyte.
Resource Prospector: Evaluating the ISRU Potential of the Lunar Poles
NASA Astrophysics Data System (ADS)
Colaprete, A.; Elphic, R. C.; Andrews, D.; Bluethmann, W.; Quinn, J.; Chavers, D. G.
2017-12-01
Resource Prospector (RP) is a lunar volatiles prospecting mission being developed for potential flight in CY2021-2022. The mission includes a rover-borne payload that (1) can locate surface and near-subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith, and (3) demonstrate the form, extractability and usefulness of the materials. The primary mission goal for RP is to evaluate the In-Situ Resource Utilization (ISRU) potential of the lunar poles. While it is now understood that lunar water and other volatiles have a much greater extent of distribution, possible forms, and concentrations than previously believed, to fully understand how viable these volatiles are as a resource to support human exploration of the solar system, the distribution and form needs to be understood at a "human" scale. That is, the "ore body" must be better understood at the scales it would be worked before it can be evaluated as a potential architectural element within any evolvable lunar or Mars campaign. This talk will provide an overview of the RP mission with an emphasis on mission goals and measurements, and will provide an update as to its current status.
Pattamayutanon, Praetinee; Angeli, Sergio; Thakeow, Prodpran; Abraham, John; Disayathanoowat, Terd; Chantawannakul, Panuwan
2017-01-01
The volatile organic compounds (VOCs) of four monofloral and one multifloral of Thai honeys produced by Apis cerana, Apis dorsata and Apis mellifera were analyzed by headspace solid-phase microextraction (HS-SPME) followed by gas chromatography and mass spectrometry (GC-MS). The floral sources were longan, sunflower, coffee, wild flowers (wild) and lychee. Honey originating from longan had more VOCs than all other floral sources. Sunflower honey had the least numbers of VOCs. cis-Linalool oxide, trans-linalool oxide, ho-trienol, and furan-2,5-dicarbaldehyde were present in all the honeys studied, independent of their floral origin. Interestingly, 2-phenylacetaldehyde was detected in all honey sample except longan honey produced by A. cerana. Thirty-two VOCs were identified as possible floral markers. After validating differences in honey volatiles from different floral sources and honeybee species, the results suggest that differences in quality and quantity of honey volatiles are influenced by both floral source and honeybee species. The group of honey volatiles detected from A. cerana was completely different from those of A. mellifera and A. dorsata. VOCs could therefore be applied as chemical markers of honeys and may reflect preferences of shared floral sources amongst different honeybee species.
Parra, Leonardo; Mutis, Ana; Ceballos, Ricardo; Lizama, Marcelo; Pardo, Fernando; Perich, Fernando; Quiroz, Andrés
2009-06-01
The objective of this study was to evaluate the role of host volatiles in the relationship between a blueberry plant Vaccinium corymbosum L. and the raspberry weevil Aegorhinus superciliosus (Guérin) (Coleoptera: Curculionidae), the principal pest of blueberry in the south of Chile. Volatiles from the aerial part of different phenological stages of the host were collected on Porapak Q and analyzed by coupled gas chromatography-mass spectrometry (GC-MS). Several chemical groups were identified including green leaf volatiles, aromatic compounds, and terpenes. The olfactometric responses of A. superciliosus toward different odor sources were studied in a four-arm olfactometer. Blueberry shoots at the phenological stages of fruit set, and blue-pink fruit color elicited the greatest behavioral responses from weevils. Five compounds (2-nonanone, eucalyptol, R- and S-limonene, and 4-ethyl benzaldehyde) elicited an attractant behavioral response from A. superciliosus. The results suggest the host location behavior of A. superciliosus could be mediated by volatiles derived from V. corymbosum. This work has identified a number of compounds with which it is possible to develop a lure for the principal pest of blueberry in southern Chile.
Chen, Shuxia; Zhang, Ranran; Hao, Lining; Chen, Weifeng; Cheng, Siqiong
2015-01-01
Changes in volatile content, as well as associated gene expression and enzyme activity in developing cucumber fruits were investigated in two Cucumis sativus L. lines (No. 26 and No. 14) that differ significantly in fruit flavor. Total volatile, six-carbon (C6) aldehyde, linolenic and linoleic acid content were higher during the early stages, whereas the nine-carbon (C9) aldehyde content was higher during the latter stages in both lines. Expression of C. sativus hydroperoxide lyase (CsHPL) mirrored 13-hydroperoxide lyase (13-HPL) enzyme activity in variety No. 26, whereas CsHPL expression was correlated with 9-hydroperoxide lyase (9-HPL) enzyme activity in cultivar No. 14. 13-HPL activity decreased significantly, while LOX (lipoxygenase) and 9-HPL activity increased along with fruit ripening in both lines, which accounted for the higher C6 and C9 aldehyde content at 0-6 day post anthesis (dpa) and 9-12 dpa, respectively. Volatile compounds from fruits at five developmental stages were analyzed by principal component analysis (PCA), and heatmaps of volatile content, gene expression and enzyme activity were constructed. PMID:25799542
Aerodynamic measurements of methyl bromide volatilization from tarped and nontarped fields
Majewski, M.S.; McChesney, M.M.; Woodrow, J.E.; Prueger, J.H.; Seiber, J.N.
1995-01-01
Methyl bromide (MeBr) is used extensively in agriculture as a soil fumigant and there is growing concern over the role it may play in the depletion of stratospheric ozone. Methyl bromide is applied using various techniques and very little is known about how much of the applied fumigant volatilizes into the atmosphere after the application. This held study was designed to estimate the post-application methyl bromide volatilization loss rates from two different application practices. The fields were approximately 6 km apart in Monterey County, California, and were treated in conformity with local practices as of 1992. The MeBr was injected at a depth of 25 to 30 cm. One field was covered simultaneously with a high-barrier plastic film tarp during the application, and the other was left uncovered, but the furrows made by the injection shanks were bedded over. Volatilization fluxes were estimated using an aerodynamic-gradient technique immediately following the completion of the application process and continued for 9 d for the tarped held and 6 d for the nontarped field. The cumulative volatilization losses from the tarped field were 22% of the nominal application within the first 5 d of the experiment and about 32% of the nominal application within 9 d including the one day after the tarp was removed on Day 8 after application. In contrast, the nontarped field lost 89% of the nominal application by volatilization in 5 d. The volatilization rate from the tarped field was shown to he significantly lower than the nontarped field at a 95% confidence level.
NASA Astrophysics Data System (ADS)
Ye, Q.; Robinson, E. S.; Mahfouz, N.; Sullivan, R. C.; Donahue, N. M.
2016-12-01
Secondary organic aerosols (SOA) dominate the mass of fine particles in the atmosphere. Their formation involves both oxidation of volatile organics from various sources that produce products with uncertain volatilities, and diffusion of these products into the condensed phase. Therefore, constraining volatility distribution and diffusion timescales of the constituents in SOA are important in predicting size, concentration and composition of SOA, as well as how these properties of SOA evolve in the atmosphere. In this work, we demonstrate how carefully designed laboratory isothermal dilution experiments in smog chambers can shed light into the volatility distribution and any diffusion barriers of common types of SOA over time scales relevant to atmospheric transport and diurnal cycling. We choose SOA made from mono-terpenes (alpha-pinene and limonene) and toluene to represent biogenic and anthropogenic SOA. We look into how moisture content can alter any evaporation behaviors of SOA by varying relative humidity during SOA generation and during dilution process. This provides insight into whether diffusion in the condensed phase is rate limiting in reaching gas/particle equilibrium of semi-volatile organic compounds. Our preliminary results show that SOA from alpha-pinene evaporates continuously over several hours of experiments, and there is no substantial discernible differences over wide ranges of the chamber humidity. SOA from toluene oxidation shows slower evaporation. We fit these experimental data using absorptive partitioning theory and a particle dynamic model to obtain volatility distributions and to predict particle size evolution. This in the end will help us to improve representation of SOA in large scale chemical transport models.
Al-Mariri, Ayman; Saour, George; Hamou, Razan
2012-06-01
Brucellaabortus is a gram-negative facultative intracellular bacterium that can cause a highly contagious disease in sheep, goats, cattle and one-humped camels. It is responsible for one of the most important zoonosis in human. The aim of this study was to evaluate the role of Mentha piperita, Origanum majorana, Citrus lemon, Cinnamomum verum and Myristica fragrans essential volatile oil extracts on human macrophages infected by B. abortus 544. Essential volatile oil extracts from M. piperita, O. majorana, C. lemon, C. verum and M. fragrans were extracted. Human macrophages were cultured at a density of 2×10(5) cells per well in sterile 96-well microtiter plates, and infected with B. abortus 544 at a ratio of 1:100 bacteria/cell. Then essential volatile oil extracts were added at a concentration of 1%. At specified times; cells were washed, lysed with 0.1% Triton, and plated on 2YT agar to determine the number of intracellular bacteria. Cinnamomum verum volatile oil at a concentration of 1% had the highest antibacterial activity against B. abortus 544 inside human macrophages. Its inhibitory effect observed from 24 h and continued till 144 h after the infection. Moreover, C. verum (0.1%) in combination with 1% concentration of M. piperita, O. majorana, C. lemon or M. fragrans volatile oil extracts produced a synergistic inhibitory effect against B. abortus 544. The results indicate that, among the five selected oil extracts, C. verum volatile oil applied either separately or in combination with other oil extracts had the most effective antimicrobial activity against Brucella.
Al-Mariri, Ayman; Saour, George; Hamou, Razan
2012-01-01
Background: Brucella abortus is a gram-negative facultative intracellular bacterium that can cause a highly contagious disease in sheep, goats, cattle and one-humped camels. It is responsible for one of the most important zoonosis in human. The aim of this study was to evaluate the role of Mentha piperita, Origanum majorana, Citrus lemon, Cinnamomum verum and Myristica fragrans essential volatile oil extracts on human macrophages infected by B. abortus 544. Methods: Essential volatile oil extracts from M. piperita, O. majorana, C. lemon, C. verum and M. fragrans were extracted. Human macrophages were cultured at a density of 2×105 cells per well in sterile 96-well microtiter plates, and infected with B. abortus 544 at a ratio of 1:100 bacteria/cell. Then essential volatile oil extracts were added at a concentration of 1%. At specified times; cells were washed, lysed with 0.1% Triton, and plated on 2YT agar to determine the number of intracellular bacteria. Results: Cinnamomum verum volatile oil at a concentration of 1% had the highest antibacterial activity against B. abortus 544 inside human macrophages. Its inhibitory effect observed from 24 h and continued till 144 h after the infection. Moreover, C. verum (0.1%) in combination with 1% concentration of M. piperita, O. majorana, C. lemon or M. fragrans volatile oil extracts produced a synergistic inhibitory effect against B. abortus 544. Conclusion: The results indicate that, among the five selected oil extracts, C. verum volatile oil applied either separately or in combination with other oil extracts had the most effective antimicrobial activity against Brucella. PMID:23115441
Jiang, Bo; Huang, Yu Dong
2007-01-01
A NIR method was developed for the on-line monitoring of alkali-free cloth/phenolic resin prepreg during its manufacturing process. First, the sizing content of the alkali-free cloth was analyzed, and then the resin, soluble resin and volatiles content of the prepreg was analyzed simultaneously using the FT-NIR spectrometer. Partial least square (PLS) regression was used to develop the calibration models, which for the sizing content was preprocessed by 1stDER +MSC, for the volatile content by 1stDER +VN, for the soluble resin content by 1stDER +MSC and for the resin content by the VN spectral data preprocessing method. RMSEP of the prediction model for the sizing content was 0.732 %, for the resin content it was 0.605, for the soluble resin content it was 0.101 and for volatiles content it was 0.127. The results of the paired t-test revealed that there was no significant difference between the NIR method and the standard method. The NIR spectroscopy method could be used to predict the resin, soluble resin and the volatiles content of the prepreg simultaneously, as well as sizing content of alkali-free cloth. The processing parameters of the prepreg during manufacture could be adjusted quickly with the help of the NIR analysis results. The results indicated that the NIR spectroscopy method was sufficiently accurate and effective for the on-line monitoring of alkali-free cloth/phenolic resin prepreg.
NASA Astrophysics Data System (ADS)
Chakrabartty, Shantanu; Feng, Tao; Aono, Kenji
2013-04-01
A key challenge in structural health monitoring (SHM) sensors embedded inside civil structures is that elec- tronics need to operate continuously such that mechanical events of interest can be detected and appropriately analyzed. Continuous operation however requires a continuous source of energy which cannot be guaranteed using conventional energy scavenging techniques. The paper describes a hybrid energy scavenging SHM sensor which experiences zero down-time in monitoring mechanical events of interest. At the core of the proposed sensor is an analog floating-gate storage technology that can be precisely programmed at nano-watt and pico- watt power levels. This facilitates self-powered, non-volatile data logging of the mechanical events of interest by scavenging energy directly from the mechanical events itself. Remote retrieval of the stored data is achieved using a commercial off-the-shelf Gen-2 radio-frequency identification (RFID) reader which periodically reads an electronic product code (EPC) that encapsulates the sensor data. The Gen-2 interface also facilitates in simultaneous remote access to multiple sensors and also facilitates in determining the range and orientation of the sensor. The architecture of the sensor is based on a token-ring topology which enables sensor channels to be dynamically added or deleted through software control.
Wardle, A R; Borden, J H; Pierce, H D; Gries, R
2003-04-01
Volatile compounds released by disturbed and calm female and male Lygus lineolaris were collected and analyzed. Six major compounds were present in samples from disturbed bugs and from calm females: (E)-2-hexenal, 1-hexanol, (E)-2-hexenol, hexyl butyrate, (E)-2-hexenyl butyrate, and (E)-2,4-oxohexenal. (E)-2-hexenal was lacking in volatiles collected from calm males. Hexyl butyrate accounted for approximately 68% and 66% of volatiles released by agitated and calm females, and 87% and 88% of volatiles released by agitated and calm males, respectively. Blends released by disturbed insects differed quantitatively from blends released by calm insects, with amounts of compounds increasing 75-350 times in samples from disturbed insects. In static air bioassays, both females and males were repelled by natural volatiles collected from females and by five-component [(E)-2,4-oxohexenal excluded] and six-component synthetic blends at doses of 1 and 10 bug-hours, indicating that these volatiles may serve an alarm or epideictic function, as well as a possible role as defensive allomones. Adults also avoided hexyl butyrate, (E)-2-hexenyl butyrate, (E)-2-hexenol, and (E)-2,4-oxohexenal, but not 1-hexanol and (E)-2-hexenal when compounds were assayed individually in static air bioassays at doses equal to 1 bug-hour. When tested over 1 day in two-choice cage trials, adults did not prefer untreated bean plants over bean plants surrounded by vials releasing up to 8.1 mg/hr (= 234 bug-hours) of the five-component synthetic blend. Therefore, the volatiles produced by disturbed adults would not be useful as a repellent for L. lineolaris.
Hao, Hai-Ting; Zhao, Xia; Shang, Qian-Han; Wang, Yun; Guo, Zhi-Hong; Zhang, Yu-Bao; Xie, Zhong-Kui; Wang, Ruo-Yu
2016-01-01
Some plant growth-promoting rhizobacteria (PGPR) regulated plant growth and elicited plant basal immunity by volatiles. The response mechanism to the Bacillus amyloliquefaciens volatiles in plant has not been well studied. We conducted global gene expression profiling in Arabidopsis after treatment with Bacillus amyloliquefaciens FZB42 volatiles by Illumina Digital Gene Expression (DGE) profiling of different growth stages (seedling and mature) and tissues (leaves and roots). Compared with the control, 1,507 and 820 differentially expressed genes (DEGs) were identified in leaves and roots at the seedling stage, respectively, while 1,512 and 367 DEGs were identified in leaves and roots at the mature stage. Seventeen genes with different regulatory patterns were validated using quantitative RT-PCR. Numerous DEGs were enriched for plant hormones, cell wall modifications, and protection against stress situations, which suggests that volatiles have effects on plant growth and immunity. Moreover, analyzes of transcriptome difference in tissues and growth stage using DGE profiling showed that the plant response might be tissue-specific and/or growth stage-specific. Thus, genes encoding flavonoid biosynthesis were downregulated in leaves and upregulated in roots, thereby indicating tissue-specific responses to volatiles. Genes related to photosynthesis were downregulated at the seedling stage and upregulated at the mature stage, respectively, thereby suggesting growth period-specific responses. In addition, the emission of bacterial volatiles significantly induced killing of cells of other organism pathway with up-regulated genes in leaves and the other three pathways (defense response to nematode, cell morphogenesis involved in differentiation and trichoblast differentiation) with up-regulated genes were significantly enriched in roots. Interestingly, some important alterations in the expression of growth-related genes, metabolic pathways, defense response to biotic stress and hormone-related genes were firstly founded response to FZB42 volatiles. PMID:27513952
USDA-ARS?s Scientific Manuscript database
A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of supplementing 7-d sprouted barley (SB) or barley grain (BG) with an herbage-based or haylage-based diet on nutrient digestibility, volatile fatty acid (VFA) profiles, bacterial protein synthesis, and methane outp...
In situ extraction and analysis of volatile elements and molecules from carbonaceous chondrites
NASA Technical Reports Server (NTRS)
Hartmetz, C. P.; Gibson, E. K., Jr.; Blanford, G. E.
1991-01-01
A laser microprobe mass spectrometer was used to measure volatiles released, on a scale of 30-50 microns, from freshly broken, sawed, and weathered surfaces in fragments of the Allende, Murchison, Coolidge, Felix, and Orgueil carbonaceous chondrites. Samples were heated to about 120 C under a vacuum of 200 ntorr and illuminated with the focused beam of a Q-switched Nd:glass laser of variable energy output (0.1-1.0 J); the gases released were analyzed using a computer-controlled mass-selective detector. The results are presented in tables and graphs and discussed in detail, with particular attention to aqueous alteration; weathering; thermal metamorphism; the distribution of sulfur-bearing phases; and differences in the amounts of volatiles in matrix, inclusions, and chondrules.
Portable Medical Diagnosis Instrument
NASA Technical Reports Server (NTRS)
Coleman, Matthew A. (Inventor); Straume, Tore (Inventor); Loftus, David J. (Inventor); Li, Jing (Inventor); Singh, Anup K. (Inventor); Davis, Cristina E. (Inventor)
2017-01-01
A system that integrates several technologies into a single, portable medical diagnostic apparatus for analyzing a sample body fluid (liquid and/or gas): (1) a mechanism to capture airborne microdroplets and to separate the body fluid into a first fluid component (primarily gas) and a second fluid component (primarily liquid); (2) a volatilizer to convert a portion of the second fluid component into a third fluid component that is primarily a gas; (3) a functionalized nanostructure (NS) array configured to receive, identify, and estimate concentration of at least one constituent in the first and/or third fluid components; (4) a miniaturized differential mobility spectrometer (DMS) module; and (5) a biomarker sensor, to detect volatile and non-volatile molecules in a sample fluid, which may contain one or more components of blood, breath, perspiration, saliva, and urine.
Chrysolina herbacea Modulates Terpenoid Biosynthesis of Mentha aquatica L.
Atsbaha Zebelo, Simon; Bertea, Cinzia M.; Bossi, Simone; Occhipinti, Andrea; Gnavi, Giorgio; Maffei, Massimo E.
2011-01-01
Interactions between herbivorous insects and plants storing terpenoids are poorly understood. This study describes the ability of Chrysolina herbacea to use volatiles emitted by undamaged Mentha aquatica plants as attractants and the plant's response to herbivory, which involves the production of deterrent molecules. Emitted plant volatiles were analyzed by GC-MS. The insect's response to plant volatiles was tested by Y-tube olfactometer bioassays. Total RNA was extracted from control plants, mechanically damaged leaves, and leaves damaged by herbivores. The terpenoid quantitative gene expressions (qPCR) were then assayed. Upon herbivory, M. aquatica synthesizes and emits (+)-menthofuran, which acts as a deterrent to C. herbacea. Herbivory was found to up-regulate the expression of genes involved in terpenoid biosynthesis. The increased emission of (+)-menthofuran was correlated with the upregulation of (+)-menthofuran synthase. PMID:21408066
2013-01-01
Background Ever since the recent completion of the peach genome, the focus of genetic research in this area has turned to the identification of genes related to important traits, such as fruit aroma volatiles. Of the over 100 volatile compounds described in peach, lactones most likely have the strongest effect on fruit aroma, while esters, terpenoids, and aldehydes have minor, yet significant effects. The identification of key genes underlying the production of aroma compounds is of interest for any fruit-quality improvement strategy. Results Volatile (52 compounds) and gene expression (4348 genes) levels were profiled in peach fruit from a maturity time-course series belonging to two peach genotypes that showed considerable differences in maturation characteristics and postharvest ripening. This data set was analyzed by complementary correlation-based approaches to discover the genes related to the main aroma-contributing compounds: lactones, esters, and phenolic volatiles, among others. As a case study, one of the candidate genes was cloned and expressed in yeast to show specificity as an ω-6 Oleate desaturase, which may be involved in the production of a precursor of lactones/esters. Conclusions Our approach revealed a set of genes (an alcohol acyl transferase, fatty acid desaturases, transcription factors, protein kinases, cytochromes, etc.) that are highly associated with peach fruit volatiles, and which could prove useful in breeding or for biotechnological purposes. PMID:23701715
Dye-Braumuller, Kyndall C; Haynes, Kenneth F; Brown, Grayson C
2017-12-01
The pyrethroid prallethrin, an AI in DUET™ (Clarke Mosquito Control, St. Charles, IL), is widely marketed ultra-low volume (ULV) mosquito adulticide. Volatilized prallethrin is intended to stimulate mosquito flight, increasing its adulticide effectiveness. However, field tests using volatilized prallethrin have not produced significant differences in mosquito trap catches, leading to questions regarding prallethrin's behavioral impact efficacy. Thus, we conducted laboratory tests of prallethrin's effect on flight behavior of adult female Asian tiger mosquitoes, Aedes albopictus. Mosquitoes were divided into 3 groups: untreated control, exposed to volatilized prallethrin, and exposed to a liquid spray calibrated to simulate a ULV application at label rates. After exposure, mosquito behavior in an airstream of 0.5 m/sec was recorded and analyzed using motion-tracking software. No significant differences in flight behavior were found between the control and treated mosquitoes exposed to volatilized prallethrin. The ULV-sprayed mosquitoes exhibited a significant increase in the number of flight events, the turning frequency, overall movement speed, and flight speed compared to the control-a significant difference in locomotor stimulation response that would increase exposure to a ULV spray cloud. However, our results showed that volatilization alone was insufficient to increase ULV efficacy in the field and suggested that incorporating a more volatile flight stimulant into ULV adulticides would provide a measurable improvement in mosquito control.
Zhu, Chao-Zhi; Zhao, Jing-Li; Tian, Wei; Liu, Yan-Xia; Li, Miao-Yun; Zhao, Gai-Ming
2018-01-01
To evaluate the role of Maillard reactions in the generation of flavor compounds in Jinhua ham, the reactions of glucose and ethanal with histidine and lysine, respectively, were studied by simulating the ripening conditions of Jinhua ham. The volatile products produced were analyzed using solid phase microextraction-gas chromatography/mass spectrometry. The results showed that 8 volatile compounds were generated by the reaction of glucose and histidine and 10 volatile compounds were generated by the reaction of glucose and lysine. Reactions of ethanal with lysine and with histidine both generated 31 volatile compounds that contributed to the flavor of Jinhua ham. This indicates that histidine and lysine related to Maillard reactions possibly play important roles in the generation of the unique flavor compounds in Jinhua ham. This research demonstrates that free amino acids participate in the generation of volatile compounds from Jinhua ham via the Maillard reaction and provides a basic mechanism to explain flavor formation in Jinhua ham. Jinhua ham is a well-known traditional Chinese dry-cured meat product. However, the formation of the compounds comprising its special flavor is not well understood. Our results indicate that Maillard reactions occur in Jinhua ham under ripening conditions. This work illustrates the contribution of Maillard reactions to the flavor of Jinhua ham. © 2017 Institute of Food Technologists®.
Cao, Gang; Cai, Hao; Cong, Xiaodong; Liu, Xiao; Ma, Xiaoqing; Lou, Yajing; Qin, Kunming; Cai, Baochang
2012-08-21
The sulfur-fumigation process can induce changes in the contents of volatile compounds and the chemical transformation of herbal medicines. Although literature has reported many methods for analyzing volatile target compounds from herbal medicine, all of them are largely limited to target compounds and sun-dried samples. This study provides a comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC×GC-TOF/MS) method based on a chemical profiling approach to identify non-target and target volatile compounds from sun-dried and sulfur-fumigated herbal medicine. Using Chrysanthemum morifolium as a model herbal medicine, the combined power of this approach is illustrated by the identification of 209 and 111 volatile compounds with match quality >80% from sun-dried and sulfur-fumigated Chrysanthemum morifolium, respectively. The study has also shown that sulfur-fumigated samples showed a significant loss of the main active compounds and a more destructive fingerprint profile compared to the sun-dried ones. 50 volatile compounds were lost in the sulfur-fumigated Chrysanthemum morifolium sample. The approach and methodology reported in this paper would be useful for identifying complicated target and non-target components from various complex mixtures such as herbal medicine and its preparations, biological and environmental samples. Furthermore, it can be applied for the intrinsic quality control of herbal medicine and its preparations.
[GC-MS analysis of essential oil from Curcuma aromatica rhizome of different growth periods].
Feng, Jie; Xu, Ming-ming; Huang, Xiu-lan; Liu, Hua-gang; Lai, Mao-xiang; Wei, Meng-han
2013-12-01
To analyze the essential oil from the rhizome of Curcuma aromatica of different growth periods, and to provide the scientific reference for reasonable cultivation and quality control of this plant. The essential oil was extracted by hydrodistillation and analyzed with GC-MS. The relative contents were determined with area normalization method. The main volatile constituents in the rhizome of Curcuma aromatica were basically the same. Among these volatile constituents, curdione was the major. The relative content of curdione was 16.35% in the rhizome of wild plant in Hengxian county, and 15.81% in the rhizome of one-year-old plant in Mingyang farm, Nanning city. The relative content of eucalyptol in the 2-year-old cultivated rhizome in Hengxian county was 15.40%, and 14.59% in the rhizome of wild plant in Hengxian county. beta-Elemene, beta-caryophyllene,eugenol and germacrone were also the main constituents in the rhizome essential oil. Volatile constituents in the rhizome of Curcuma aromatica are similar to each other,but the relative content of each component is different. This result can provide the scientific foundation for the cultivation of Curcuma aromatica.
Tang, Hongmao; Beg, Khaliq R.; Al-Otaiba, Yousef
2006-01-01
Kuwait experiences desert climatic weather. Due to the extreme hot and dry conditions in this country, some analytical phenomena have been discovered. Therefore, a systematic study of sampling and analyzing volatile organic compounds in air by using GC-MS with a cryogenic trap is reported in this paper. This study included comparisons of using different sample containers such as Tedlar bags and SUMMA canisters, and different cryogenic freezing-out air volumes in the trap. Calibration curves for different compounds and improvement of replicated analysis results were also reported here. The study found that using different sample containers produced different results. Analysis of ambient air samples collected in Tedlar bags obtained several volatile organic compounds with large concentrations compared to using SUMMA canisters. Therefore, to choose a sample container properly is a key element for successfully completing a project. Because GC-MS with a cryogenic trap often generates replicated results with poor agreement, an internal standard added to gas standards and air samples by using a gas syringe was tested. The study results proved that it helped to improve the replicated results. PMID:16699723
Tang, Hongmao; Beg, Khaliq R; Al-Otaiba, Yousef
2006-05-12
Kuwait experiences desert climatic weather. Due to the extreme hot and dry conditions in this country, some analytical phenomena have been discovered. Therefore, a systematic study of sampling and analyzing volatile organic compounds in air by using GC-MS with a cryogenic trap is reported in this paper. This study included comparisons of using different sample containers such as Tedlar bags and SUMMA canisters, and different cryogenic freezing-out air volumes in the trap. Calibration curves for different compounds and improvement of replicated analysis results were also reported here. The study found that using different sample containers produced different results. Analysis of ambient air samples collected in Tedlar bags obtained several volatile organic compounds with large concentrations compared to using SUMMA canisters. Therefore, to choose a sample container properly is a key element for successfully completing a project. Because GC-MS with a cryogenic trap often generates replicated results with poor agreement, an internal standard added to gas standards and air samples by using a gas syringe was tested. The study results proved that it helped to improve the replicated results.
Collection and analysis of NASA clean room air samples
NASA Technical Reports Server (NTRS)
Sheldon, L. S.; Keever, J.
1985-01-01
The environment of the HALOE assembly clean room at NASA Langley Research Center is analyzed to determine the background levels of airborne organic compounds. Sampling is accomplished by pumping the clean room air through absorbing cartridges. For volatile organics, cartridges are thermally desorbed and then analyzed by gas chromatography and mass spectrometry, compounds are identified by searching the EPA/NIH data base using an interactive operator INCOS computer search algorithm. For semivolatile organics, cartridges are solvent entracted and concentrated extracts are analyzed by gas chromatography-electron capture detection, compound identification is made by matching gas chromatogram retention times with known standards. The detection limits for the semivolatile organics are; 0.89 ng cu m for dioctylphlhalate (DOP) and 1.6 ng cu m for polychlorinated biphenyls (PCB). The detection limit for volatile organics ranges from 1 to 50 parts per trillion. Only trace quantities of organics are detected, the DOP levels do not exceed 2.5 ng cu m and the PCB levels do not exceed 454 ng cu m.
Comparison of non-volatile umami components in chicken soup and chicken enzymatic hydrolysate.
Kong, Yan; Yang, Xiao; Ding, Qi; Zhang, Yu-Yu; Sun, Bao-Guo; Chen, Hai-Tao; Sun, Ying
2017-12-01
Umami taste is an important part to the taste of chicken. To isolate and identify non-volatile umami compounds, fractions from chicken soup and hydrolysate were prepared and analyzed. Amino acids were analyzed by amino acid analyzer. Organic acids and nucleotides were determined by ultra-performance liquid chromatography. Separation procedures utilizing ultrafiltration, Sephadex G-15 and reversed-phase high-performance liquid chromatography were used to isolate umami taste peptides. Combined with sensory evaluation and LC-Q-TOF-MS, the amino acid sequences of 12 oligopeptides were determined. The amount of taste compounds was higher in chicken enzymatic hydrolysate than that of chicken soup. Eight oligopeptides from chicken enzymatic hydrolysate were identified, including Ala-Asp, Ala-Met, His-Ser, Val-Glu, Ala-Glu, Asp-Ala-Gly, Glu-Asp and Ala-Glu-Ala. Four oligopeptides from chicken soup were identified, including Val-Thr, Ala-His, Ala-Phe and Thr-Glu. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sectoral networks and macroeconomic tail risks in an emerging economy.
Romero, Pedro P; López, Ricardo; Jiménez, Carlos
2018-01-01
This paper aims to explain the macroeconomic volatility due to microeconomic shocks to one or several sectors, recognizing the non-symmetrical relation in the interaction among the Ecuadorian economic sectors. To grasp the economic structure of this emerging economy, a statistical analysis of network data is applied to the respective input-output matrix of Ecuador from 1975 until 2012. We find periods wherein the production of domestic inputs is concentrated in a few suppliers; for example, in 2010, the concentration significantly affects sectors and their downstream providers, thus influencing aggregate volatility. Compared to the US productive structure, this emerging economy presents fewer sectors and degree distributions with less extreme fat-tail behavior. In this simpler economy, we continue to find a link between microeconomic shocks and aggregate volatility. Two new theoretical propositions are introduced to formalize our results.
Sectoral networks and macroeconomic tail risks in an emerging economy
López, Ricardo; Jiménez, Carlos
2018-01-01
This paper aims to explain the macroeconomic volatility due to microeconomic shocks to one or several sectors, recognizing the non-symmetrical relation in the interaction among the Ecuadorian economic sectors. To grasp the economic structure of this emerging economy, a statistical analysis of network data is applied to the respective input-output matrix of Ecuador from 1975 until 2012. We find periods wherein the production of domestic inputs is concentrated in a few suppliers; for example, in 2010, the concentration significantly affects sectors and their downstream providers, thus influencing aggregate volatility. Compared to the US productive structure, this emerging economy presents fewer sectors and degree distributions with less extreme fat-tail behavior. In this simpler economy, we continue to find a link between microeconomic shocks and aggregate volatility. Two new theoretical propositions are introduced to formalize our results. PMID:29293567
NASA Astrophysics Data System (ADS)
Robarge, W. P.
2015-12-01
Ammonia loss from fertilizers can impact formation of atmospheric aerosols, as well as contribute to nitrogen (N) deposition in terrestrial and aquatic ecosystems. Urea is the predominant form of N fertilizer used worldwide due to its high N content (46.6% N) and low cost. Once in contact with soil or vegetation, urea is hydrolyzed to ammonium via naturally occurring urease enzymes. Losses of N from surface applied urea as ammonia can exceed 30%. To address this issue, various physical and chemical mechanisms have been incorporated into granular urea. The most common approach is incorporation of urease inhibitors such as N-(n-butyl) thiophosphoric triamide (NBPT). We have been investigating ammonia volatilization from urea granules (+/- urease inhibitors) in various field and laboratory controlled experiments for the past several years. Laboratory experiments are conducted with a customized growth chamber system designed to continuously measure ammonia volatilization. Field measurements are conducted using a passive sampler technology with an acid-coated trap in PVC cylinders, or annular denuder technology using flow-through PVC chambers. Daily exchanges of acid-coated denuder tubes enhance the sensitivity of ammonia volatilization measurements for the urease-inhibitor treated product. Loss of N from commercial urea granules has ranged from 6 - ~ 35%, depending on ambient temperature. This loss typically occurs within the first 5-10 days under field conditions. Some urease-inhibitors can minimize loss of N via volatilization (< 5%) for up to 20+ days in the absence of a rainfall event. Visual observations have confirmed that on bare soil, treated or untreated urea granules quickly "dissolve" and move into the soil. The accompanying urease-inhibitor formulation moves with the urea continuing to provide protection against reaction with naturally occurring urease enzymes. Use of urease-inhibitors does not guarantee increased crop yields or NUE, but the consistency of inhibitors incorporating NBPT suggest that these formulations represent a reasonable available control technology for use in agriculture to reduce ammonia emissions.
Measuring herbicide volatilization from bare soil.
Yates, S R
2006-05-15
A field experiment was conducted to measure surface dissipation and volatilization of the herbicide triallate after application to bare soil using micrometeorological, chamber, and soil-loss methods. The volatilization rate was measured continuously for 6.5 days and the range in the daily peak values for the integrated horizontal flux method was from 32.4 (day 5) to 235.2 g ha(-1) d(-1) (day 1), for the theoretical profile shape method was from 31.5 to 213.0 g ha(-1) d(-1), and for the flux chamber was from 15.7 to 47.8 g ha(-1) d(-1). Soil samples were taken within 30 min after application and the measured mass of triallate was 8.75 kg ha(-1). The measured triallate mass in the soil at the end of the experiment was approximately 6 kg ha(-1). The triallate dissipation rate, obtained by soil sampling, was approximately 334 g ha(-1) d(-1) (98 g d(-1)) and the average rate of volatilization was 361 g ha(-1) d(-1). Soil sampling at the end of the experiment showed that approximately 31% (0.803 kg/2.56 kg) of the triallate mass was lost from the soil. Significant volatilization of triallate is possible when applied directly to the soil surface without incorporation.
Jayaratne, E R; Meyer, N K; Ristovski, Z D; Morawska, L
2012-01-03
Volatile properties of particle emissions from four compressed natural gas (CNG) and four diesel buses were investigated under steady-state and transient driving modes on a chassis dynamometer. The exhaust was diluted utilizing a full-flow continuous volume sampling system and passed through a thermodenuder at controlled temperature. Particle number concentration and size distribution were measured with a condensation particle counter and a scanning mobility particle sizer, respectively. We show that while almost all the particles emitted by the CNG buses were in the nanoparticle size range, at least 85% and 98% were removed at 100 and 250 °C, respectively. Closer analysis of the volatility of particles emitted during transient cycles showed that volatilization began at around 40 °C, with the majority occurring by 80 °C. Particles produced during hard acceleration from rest exhibited lower volatility than those produced during other times of the cycle. On the basis of our results and the observation of ash deposits on the walls of the tailpipes, we suggest that these nonvolatile particles were composed mostly of ash from lubricating oil. Heating the diesel bus emissions to 100 °C removed ultrafine particle numbers by 69-82% when a nucleation mode was present and just 18% when it was not.
Emission of floral volatiles from Mahonia japonica (Berberidaceae).
Picone, Joanne M; MacTavish, Hazel S; Clery, Robin A
2002-07-01
Flowering Mahonia japonica plants were subjected to controlled environments and the floral volatiles emitted from whole racemes (laterals) were trapped by Porapak Q adsorbent and analysed by GC-FID. An experiment with photoperiods of 6 and 9 h at constant temperature (10+/-1 degrees C) demonstrated that photoperiod was the stimulus for enhanced emission of most volatiles. Small quantitative differences in emitted fragrance composition were observed between light and dark periods and between plants acclimatised to different photoperiods. Maximum rates of emission occurred in the middle of the light period; aromatic compounds (benzaldehyde, benzyl alcohol and indole) displayed a more rapid increase and subsequent decline compared with monoterpenes (cis- and trans-ocimene and linalool). When the photoperiod was extended from 6 to 9 h, maximum rates of emission continued throughout the additional 3 h. Total emission (microg/h) of volatiles was 2-fold greater in the day-time (DT) (39.7 microg/h) compared with the night-time (NT) (19.8 microgg/h) under a 6 h photoperiod and was not significantly different from total emission under a 9 h photoperiod.
Determination of the solubility of inorganic salts by headspace gas chromatography.
Chai, X S; Zhu, J Y
2003-05-09
This work reports a novel method for determination of salt solubility using headspace gas chromatography. A very small amount of volatile compound (such as methanol) is added in the studied solution. Due to the molecular interaction in the solution, the vapor-liquid equilibrium (VLE) partitioning coefficient of the volatile species will change with different salt contents in the solution. Therefore, the concentration of volatile species in the vapor phase is proportional to the salt concentration in the liquid phase, which can be easily determined by headspace gas chromatography. Until the salt concentration in the solution is saturated, the concentration of volatile compound in the vapor phase will continue to increase further and a breakpoint will appear on the VLE curve. The solubility of the salts can be determined by the identification of the breakpoint. It was found that the measured solubility of sodium carbonate and sodium sulfate in aqueous solutions is slightly higher (about 6-7%) than those reported in the literature method. The present method can be easily applied to industrial solution systems.
Miniature Low-Mass Drill Actuated by Flextensional Piezo Stack
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph
2010-01-01
Recent experiments with a flextensional piezoelectric actuator have led to the development of a sampler with a bit that is designed to produce and capture a full set of sample forms including volatiles, powdered cuttings, and core fragments. The flextensional piezoelectric actuator is a part of a series of devices used to amplify the generated strain from piezoelectric actuators. Other examples include stacks, bimorphs, benders, and cantilevers. These devices combine geometric and resonance amplifications to produce large stroke at high power density. The operation of this sampler/drill was demonstrated using a 3x2x1-cm actuator weighing 12 g using power of about 10-W and a preload of about 10 N. A limestone block was drilled to a depth of about 1 cm in five minutes to produce powdered cuttings. It is generally hard to collect volatiles from random surface profiles found in rocks and sediment, powdered cuttings, and core fragments. Toward the end of collecting volatiles, the actuator and the bit are covered with bellows-shaped shrouds to prevent fines and other debris from reaching the analyzer. A tube with a miniature bellows (to provide flexibility) is connected to the bit and directs the flow of the volatiles to the analyzer. Another modality was conceived where the hose is connected to the bellows wall directly to allow the capture of volatiles generated both inside and outside the bit. A wide variety of commercial bellows used in the vacuum and microwave industries can be used to design the volatiles capture mechanism. The piezoelectric drilling mechanism can potentially be operated in a broad temperature range from about-200 to less than 450 C. The actuators used here are similar to the actuators that are currently baselined to fly as part of the inlet funnel shaking mechanism design of MSL (Mars Science Laboratory). The space qualification of these parts gives this drill a higher potential for inclusion in a future mission, especially when considering its characteristics of low mass, small size, low power, and low axial loads for sampling.
Cioanca, Oana; Hancianu, Monica; Mihasan, Marius; Hritcu, Lucian
2015-05-01
Juniper volatile oil is extracted from Juniperus communis L., of the Cupressaceae family, also known as common juniper. Also, in aromatherapy the juniper volatile oil is used against anxiety, nervous tension and stress-related conditions. In the present study, we identified the effects of the juniper volatile oil on amyloid beta (1-42)-induced oxidative stress in the rat hippocampus. Rats received a single intracerebroventricular injection of amyloid beta (1-42) (400 pmol/rat) and then were exposed to juniper volatile oil (200 μl, either 1 or 3 %) for controlled 60 min period, daily, for 21 continuous days. Also, the antioxidant activity in the hippocampus was assessed using superoxide dismutase, glutathione peroxidase and catalase specific activities, the total content of the reduced glutathione, protein carbonyl and malondialdehyde levels. Additionally, the acetylcholinesterase activity in the hippocampus was assessed. The amyloid beta (1-42)-treated rats exhibited the following: increase of the acetylcholinesterase, superoxide dismutase and catalase specific activities, decrease of glutathione peroxidase specific activity and the total content of the reduced glutathione along with an elevation of malondialdehyde and protein carbonyl levels. Inhalation of the juniper volatile oil significantly decreases the acetylcholinesterase activity and exhibited antioxidant potential. These findings suggest that the juniper volatile oil may be a potential candidate for the development of therapeutic agents to manage oxidative stress associated with Alzheimer's disease through decreasing the activity of acetylcholinesterase and anti-oxidative mechanism.
NASA Technical Reports Server (NTRS)
Protopapa, S.; Grundy, W. M.; Reuter, D. C.; Hamilton, D. P.; Dalle Ore, C. M.; Cook, J. C.; Cruikshank, D. P.; Schmitt, B.; Philippe, S.; Quirico, E.;
2016-01-01
On July 14th 2015, NASA's New Horizons mission gave us an unprecedented detailed view of the Pluto system. The complex compositional diversity of Pluto's encounter hemisphere was revealed by the Ralph/LEISA infrared spectrometer on board of New Horizons. We present compositional maps of Pluto defining the spatial distribution of the abundance and textural properties of the volatiles methane and nitrogen ices and non-volatiles water ice and tholin. These results are obtained by applying a pixel-by-pixel Hapke radiative transfer model to the LEISA scans. Our analysis focuses mainly on the large scale latitudinal variations of methane and nitrogen ices and aims at setting observational constraints to volatile transport models. Specifically, we find three latitudinal bands: the first, enriched in methane, extends from the pole to 55degN, the second dominated by nitrogen, continues south to 35 degN, and the third, com- posed again mainly of methane, reaches 20 degN. We demonstrate that the distribution of volatiles across these surface units can be explained by differences in insolation over the past few decades. The latitudinal pattern is broken by Sputnik Planitia, a large reservoir of volatiles, with nitrogen playing the most important role. The physical properties of methane and nitrogen in this region are suggestive of the presence of a cold trap or possible volatile stratification. Furthermore our modeling results point to a possible sublimation transport of nitrogen from the northwest edge of Sputnik Planitia toward the south.
NASA Astrophysics Data System (ADS)
Protopapa, S.; Grundy, W. M.; Reuter, D. C.; Hamilton, D. P.; Dalle Ore, C. M.; Cook, J. C.; Cruikshank, D. P.; Schmitt, B.; Philippe, S.; Quirico, E.; Binzel, R. P.; Earle, A. M.; Ennico, K.; Howett, C. J. A.; Lunsford, A. W.; Olkin, C. B.; Parker, A.; Singer, K. N.; Stern, A.; Verbiscer, A. J.; Weaver, H. A.; Young, L. A.; New Horizons Science Team
2017-05-01
On July 14th 2015, NASA's New Horizons mission gave us an unprecedented detailed view of the Pluto system. The complex compositional diversity of Pluto's encounter hemisphere was revealed by the Ralph/LEISA infrared spectrometer on board of New Horizons. We present compositional maps of Pluto defining the spatial distribution of the abundance and textural properties of the volatiles methane and nitrogen ices and non-volatiles water ice and tholin. These results are obtained by applying a pixel-by-pixel Hapke radiative transfer model to the LEISA scans. Our analysis focuses mainly on the large scale latitudinal variations of methane and nitrogen ices and aims at setting observational constraints to volatile transport models. Specifically, we find three latitudinal bands: the first, enriched in methane, extends from the pole to 55°N, the second dominated by nitrogen, continues south to 35°N, and the third, composed again mainly of methane, reaches 20°N. We demonstrate that the distribution of volatiles across these surface units can be explained by differences in insolation over the past few decades. The latitudinal pattern is broken by Sputnik Planitia, a large reservoir of volatiles, with nitrogen playing the most important role. The physical properties of methane and nitrogen in this region are suggestive of the presence of a cold trap or possible volatile stratification. Furthermore our modeling results point to a possible sublimation transport of nitrogen from the northwest edge of Sputnik Planitia toward the south.
On the Departure from Isothermality of Pluto's Volatile Ice due to Local Insolation and Topography
NASA Astrophysics Data System (ADS)
Trafton, Laurence M.; Stansberry, John A.
2015-11-01
Pluto’s atmosphere is known to be supported by the vapor pressure of ices that are volatile at low temperature, primarily N2 and secondarily CH4 and CO. The atmospheric bulk is regulated by the globally average temperature of the ice, which is determined by a radiative balance between the diurnally average insolation absorbed globally by the volatile ice and the global volatile ice thermal radiation. This bulk is sufficient that Pluto’s atmosphere is close to hydrostatic equilibrium, though this may not remain so as Pluto continues to move towards aphelion. With the weight of the atmosphere currently distributed evenly around the body, the ice temperature is expected to be globally isothermal in absence of topographic variations, due to the transport of latent heat from regions of high insolation to low insolation through sublimation and condensation. Images returned from the New Horizons spacecraft show topographical features, including mountain ranges that extend above 3.5 km, with albedo variations that suggest a topographical dimension or dependence of the volatile ice deposits. In general, the conditions often applied to a volatile atmosphere of hydrostatic equilibrium and vapor-solid phase equilibrium are approximations that may not always both be appropriate. This is particularly the case in the presence of topography when the atmospheric lapse rate differs from the wet adiabat. We present our results of an investigation of the effect of variable insolation and topography on Pluto’s local ice temperature assuming an atmosphere close to hydrostatic equilibrium.
Ferrari, Matthew J.
2001-01-01
Water samples were collected from August through November 2000 from 30 randomly selected public drinking-water supply wells screened in the unconfined aquifer in Delaware, and analyzed to assess the occurrence and distribution of selected pesticide compounds, volatile organic compounds, major inorganic ions, and nutrients. Water from a subset of 10 wells was sampled and analyzed for radium and radon. The average age of ground water entering the well screens in all the wells was determined to be generally less than 20 years. Low concentrations of pesticide compounds and volatile organic compounds were detected throughout the State of Delaware, with several compounds often detected in each water sample. Pesticide and metabolite (pesticide degradation products) concentrations were generally less than 1 microgram per liter, and were detected in sam-ples from 27 of 30 wells. Of the 45 pesticides and 13 metabolites analyzed, 19 compounds (13 pesticides and 6 metabolites) were detected in at least 1 of the 30 samples. Desethylatrazine, alachlor ethane sulfonic acid, metolachlor ethane sulfonic acid, metolachlor, and atrazine were the most frequently detected pesticide compounds, and were present in at least half the samples. None of the pesticide detections was above the U.S. Environmental Protection Agency's Primary Maximum Contaminant Levels or Health Advisories. Volatile organic compounds also were present at low concentrations (generally less than 1 microgram per liter) in samples from all 30 wells. Of the 85 volatile organic com-pounds analyzed, 34 compounds were detected in at least 1 of the 30 samples. Chloroform, tetrachloroethene, and methyl tert-butyl ether were the most frequently detected volatile organic compounds, and were found in at least half the samples. None of the volatile organic compound detections was above U.S. Environmental Protection Agency's Primary Maximum Contaminant Levels or Health Advisories. A few samples contained compounds with concentrations above the U.S. Environmental Protection Agency's Primary Maximum Contaminant Levels or Secondary Maximum Contaminant Levels for inorganic compounds and radionuclides. One sample out of 30 contained a concentration of nitrite plus nitrate above the U.S. Environmental Protection Agency's Primary Maximum Contaminant Level of 10 milligrams per liter as nitrogen. Iron and manganese concentrations above the U.S. Environmental Protection Agency's Secondary Maximum Contaminant Levels were found in 7 of 30 ground-water samples, most of them from Sussex County. In the 10 wells sampled for radionuclides, only one sample had detectable levels of radium-224 and -226, and another sample contained detectable levels of radium-228; both of these samples also had detectable gross-alpha and gross-beta activities. None of these activities were above the U.S. Environ-mental Protection Agency's Primary Maximum Contaminant Levels or Secondary Maximum Contaminant Levels. Radon was detected in all 10 samples, but was above the current U.S. Environmental Protection Agency's proposed Primary Maximum Contaminant Level of 300 picocuries per liter in only one sample.
NASA Astrophysics Data System (ADS)
Saha, Provat K.; Khlystov, Andrey; Grieshop, Andrew P.
2018-02-01
We present spatial measurements of particle volatility and mixing state at a site near a North Carolina interstate highway (I-40) applying several heating (thermodenuder; TD) experimental approaches. Measurements were conducted in summer 2015 and winter 2016 in a roadside trailer (10 m from road edge) and during downwind transects at different distances from the highway under favorable wind conditions using a mobile platform. Results show that the relative abundance of semi-volatile species (SVOCs) in ultrafine particles decreases with downwind distance, which is consistent with the dilution and mixing of traffic-sourced particles with background air and evaporation of semi-volatile species during downwind transport. An evaporation kinetics model was used to derive particle volatility distributions by fitting TD data. While the TD-derived distribution apportions about 20-30 % of particle mass as semi-volatile (SVOCs; effective saturation concentration, C∗ ≥ 1µm-3) at 10 m from the road edge, approximately 10 % of particle mass is attributed to SVOCs at 220 m, showing that the particle-phase semi-volatile fraction decreases with downwind distance. The relative abundance of semi-volatile material in the particle phase increased during winter. Downwind spatial gradients of the less volatile particle fraction (that remaining after heating at 180 °C) were strongly correlated with black carbon (BC). BC size distribution and mixing state measured using a single-particle soot photometer (SP2) at the roadside trailer showed that a large fraction (70-80 %) of BC particles were externally mixed. Heating experiments with a volatility tandem differential mobility analyzer (V-TDMA) also showed that the nonvolatile fraction in roadside aerosols is mostly externally mixed. V-TDMA measurements at different distances downwind from the highway indicate that the mixing state of roadside aerosols does not change significantly (e.g., BC mostly remains externally mixed) within a few hundred meters from the highway. Our analysis indicates that a superposition of volatility distributions measured in laboratory vehicle tests and of background
aerosol can be used to represent the observed partitioning of near-road particles. The results from this study show that exposures and impacts of BC and semi-volatile organics-containing particles in a roadside microenvironment may differ across seasons and under changing ambient conditions.
Luria, Isaac; Lampotang, Samsun; Schwab, Wilhelm; Cooper, Lou Ann; Lizdas, David; Gravenstein, Nikolaus
2013-11-01
The Low Flow Wizard (LFW) provides real-time guidance for user optimization of fresh gas flow (FGF) settings during general inhaled anesthesia. The LFW can continuously inform users whether it determines their FGF to be too little, efficient, or too much, and its color-coded recommendations respond in real time to changes in FGF performed by users. Our study objective was to determine whether the LFW feature, as implemented in the Dräger Apollo workstation, alters FGF selection and thereby volatile anesthetic consumption without affecting patient care. To reduce potentially confounding variables, we used a human patient simulator that consumes and exhales volatile anesthetics. Standard monitoring was provided for the patient initially with invasive arterial blood pressure added after anesthetic induction. In this within-group study, each of 17 participants acted as his or her own control. Each participant was asked to anesthetize an identical simulated patient twice using a Dräger Apollo workstation, first with the LFW feature disabled and subsequently enabled. The volatile anesthetic was isoflurane. Both simulation runs were set up to have similar time durations for the different phases of anesthesia: induction, incision, and maintenance. Emergence was not simulated. The isoflurane vaporizer was weighed before and after each simulation run on a digital scale to verify total computed volatile liquid anesthetic consumption. In addition, the product of FGF (reported by the Apollo) times the isoflurane volumetric concentration (sampled by a multigas analyzer at the equivalent of the FGF hose for the Apollo) was integrated over time to obtain isoflurane consumption rate (on-the-fly anesthetic consumption rate measurement). The maintenance isoflurane consumption rate and FGF were significantly lower with the LFW display enabled than without (P = 0.005). The mean reduction in FGF was 53.6% (95% confidence interval, 39.2%-67.9%). There was no significant difference in alveolar isoflurane concentration (P = 0.13 for differences <0.1%). The isoflurane consumption measurement closely matched the consumption measured via the digital scale. Our data in a simulated anesthetic suggest that enabling the display of FGF efficiency data by the LFW results in a median percent reduction in volatile liquid anesthetic consumption rate of 53.2%. Since the lower limit of the 95% confidence interval for the median is 39.4%, this finding is likely to translate into cost savings and less waste anesthetic gas generated in the clinical setting and released into the atmosphere.
The smell of environmental change: Using floral scent to explain shifts in pollinator attraction1
Burkle, Laura A.; Runyon, Justin B.
2017-01-01
As diverse environmental changes continue to influence the structure and function of plant–pollinator interactions across spatial and temporal scales, we will need to enlist numerous approaches to understand these changes. Quantitative examination of floral volatile organic compounds (VOCs) is one approach that is gaining popularity, and recent work suggests that floral VOCs hold substantial promise for better understanding and predicting the effects of environmental change on plant–pollinator interactions. Until recently, few ecologists were employing chemical approaches to investigate mechanisms by which components of environmental change may disrupt these essential mutualisms. In an attempt to make these approaches more accessible, we summarize the main field, laboratory, and statistical methods involved in capturing, quantifying, and analyzing floral VOCs in the context of changing environments. We also highlight some outstanding questions that we consider to be highly relevant to making progress in this field. PMID:28690928
Does the addition of proteases affect the biogas yield from organic material in anaerobic digestion?
Müller, Liane; Kretzschmar, Jörg; Pröter, Jürgen; Liebetrau, Jan; Nelles, Michael; Scholwin, Frank
2016-03-01
The aim of this study was to investigate the biochemical disintegration effect of hydrolytic enzymes in lab scale experiments. Influences of enzyme addition on the biogas yield as well as effects on the process stability were examined. The addition of proteases occurred with low and high dosages in batch and semi-continuous biogas tests. The feed mixture consisted of maize silage, chicken dung and cow manure. Only very high concentrated enzymes caused an increase in biogas production in batch experiments. In semi-continuous biogas tests no positive long-term effects (100 days) were observed. Higher enzyme-dosage led to a reduced biogas-yield (13% and 36% lower than the reference). Phenylacetate and -propionate increased (up to 372 mgl(-1)) before the other volatile fatty acids did. Volatile organic acids rose up to 6.8 gl(-1). The anaerobic digestion process was inhibited. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Bi, Zhengzheng; Shen, Dehua
2017-02-01
This paper investigates the impact of investor structure on the price-volume relationship by simulating a continuous double auction market. Connected with the underlying mechanisms of the price-volume relationship, i.e., the Mixture of Distribution Hypothesis (MDH) and the Sequential Information Arrival Hypothesis (SIAH), the simulation results show that: (1) there exists a strong lead-lag relationship between the return volatility and trading volume when the number of informed investors is close to the number of uninformed investors in the market; (2) as more and more informed investors entering the market, the lead-lag relationship becomes weaker and weaker, while the contemporaneous relationship between the return volatility and trading volume becomes more prominent; (3) when the informed investors are in absolute majority, the market can achieve the new equilibrium immediately. Therefore, we can conclude that the investor structure is a key factor in affecting the price-volume relationship.
Mata, Gerardo; Valdez, Karina; Mendoza, Remedios; Trigos, Ángel
2014-01-01
The chemical composition of the aroma of fresh fruiting bodies of the cultivated mushroom Lentinus boryanus is described here and compared with medicinal shiitake mushroom L. edodes. Volatile compounds were analyzed through headspace sampling coupled with gas chromatography-mass spectrometry. The mushrooms under study were grown on different substrates based on barley straw, sugarcane bagasse, oak wood sawdust, and beech leaf litter. It was determined that L. boryanus as well as L. edodes contain an abundant amount of a volatile compound identified as 3-octanone with a sweet fruity aroma. On the other hand, only L. boryanus produced 3-octanol a characteristic aroma of cod liver oil. In total, 10 aromatic compounds were identified, some of which were obtained exclusively in one species or substrate.
Prototype of an Interface for Hyphenating Distillation with Gas Chromatography and Mass Spectrometry
Tang, Ya-Ru; Yang, Hui-Hsien; Urban, Pawel L.
2017-01-01
Chemical analysis of complex matrices—containing hundreds of compounds—is challenging. Two-dimensional separation techniques provide an efficient way to reduce complexity of mixtures analyzed by mass spectrometry (MS). For example, gasoline is a mixture of numerous compounds, which can be fractionated by distillation techniques. However, coupling conventional distillation with other separations as well as MS is not straightforward. We have established an automatic system for online coupling of simple microscale distillation with gas chromatography (GC) and electron ionization MS. The developed system incorporates an interface between the distillation condenser and the injector of a fused silica capillary GC column. Development of this multidimensional separation (distillation-GC-MS) was preceded by a series of preliminary off-line experiments. In the developed technique, the components with different boiling points are fractionated and instantly analyzed by GC-MS. The obtained data sets illustrate dynamics of the distillation process. An important advantage of the distillation-GC-MS technique is that raw samples can directly be analyzed without removal of the non-volatile matrix residues that could contaminate the GC injection port and the column. Distilling the samples immediately before the injection to the GC column may reduce possible matrix effects—especially in the early phase of separation, when molecules with different volatilities co-migrate. It can also reduce losses of highly volatile components (during fraction collection and transfer). The two separation steps are partly orthogonal, what can slightly increase selectivity of the entire analysis. PMID:28337400
Gas chromatographic analysis of volatiles in fluid and gas inclusions
Andrawes, F.; Holzer, G.; Roedder, E.; Gibson, E.K.; Oro, John
1984-01-01
Most geological samples and some synthetic materials contain fluid inclusions. These inclusions preserve for us tiny samples of the liquid and/or the gas phase that was present during formation, although in some cases they may have undergone significant changes from the original material. Studies of the current composition of the inclusions provide data on both the original composition and the change since trapping.These inclusions are seldom larger than 1 millimeter in diameter. The composition varies from a single major compound (e.g., water) in a single phase to a very complex mixture in one or more phases. The concentration of some of the compounds present may be at trace levels.We present here some analyses of inclusions in a variety of geological samples, including diamonds. We used a sample crusher and a gas chromatography—mass spectrometry (GC—MS) system to analyze for organic and inorganic volatiles present as major to trace constituents in inclusions. The crusher is a hardened stainless-steel piston cylinder apparatus with tungsten carbide crusing surfaces, and is operated in a pure helium atmosphere at a controlled temperature.Samples ranging from 1 mg to 1 g were crushed and the released volatiles were analyzed using multi-chromatographic columns and detectors, including the sensitive helium ionization detector. Identification of the GC peaks was carried out by GC—MS. This combination of procedures has been shown to provide geochemically useful information on the process involved in the history of the samples analyzed.
Gas chromatographic analysis of volatiles in fluid and gas inclusions.
Andrawes, F; Holzer, G; Roedder, E; Gibson, E K; Oro, J
1984-01-01
Most geological samples and some synthetic materials contain fluid inclusions. These inclusions preserve for us tiny samples of the liquid and/or the gas phase that was present during formation, although in some cases they may have undergone significant changes from the original material. Studies of the current composition of the inclusions provide data on both the original composition and the change since trapping. These conclusions are seldom larger than 1 millimeter in diameter. The composition varies from a single major compound (e.g., water) in a single phase to a very complex mixture in one or more phases. The concentration of some of the compounds present may be at trace levels. We present here some analyses of inclusion on a variety of geological samples, including diamonds. We used a sample crusher and a gas chromatography-mass spectrometry (GC-MS) system to analyze for organic and inorganic volatiles present as major to trace constituents in inclusions. The crusher is a hardened stainless-steel piston cylinder apparatus with tungsten carbide crushing surfaces, and is operated in a pure helium atmosphere at a controlled temperature. Samples ranging from 1 mg to 1 g were crushed and the released volatiles were analyzed using multi-chromatographic columns and detectors, including the sensitive helium ionization detector. Identification of the GC peaks was carried out by GC-MS. This combination of procedures has been shown to provide geochemically useful information on the processes involved in the history of the samples analyzed.
Parra-Garcés, María Isabel; Caroprese-Araque, José Fernando; Arrieta-Prieto, Dagoberto; Stashenko, Elena
2010-12-01
There is an increased interest to know and scientifically validate traditional knowledge of medicinal plants. Lippia alba belongs to Verbenaceae family and has been of interest, not only because of its worldwide extensive distribution, but also for its variable use as antiviral, bactericide, citostatic, analgesic and sedative. To study this, the morphology and ontogeny of Lippia alba inflorescences and the chemical composition of its volatile secondary metabolites were analyzed during three different stages of development. Plants were collected at the experimental crop field in CENIVAM, Bucaramanga, Colombia. The inflorescence's morphology and ontogeny, and the chemical composition of volatile secondary metabolites were analyzed using a stereoscopic microscope and chromatographic and spectroscopic techniques. Fresh material corresponding to each stage was fixed in F.A.A (formol, acetic acid and alcohol), included in paraffin and cutted in transversal and longitudinal sections. Sections were stained with safranine-fastgreen, photographed and decribed. The chemical composition of volatile secondary metabolites at each ontogenic stage, was extracted by solid phase micro-extraction in the headspace mode and analyzed by gas chromatography coupled to mass spectrometry. Stage I showed a meristematic mass of cells in vegetative apex and bracts, with an outline of floral whorls. In Stage III. the stamens were adnate, epipetals and didynamous, bicarpelar and syncarpic gynoecium, with superior ovary and decurrent stigma. The main secondary metabolites detected were the bicyclosesquiphellandrene followed by carvone, limonene and trans-beta-farnesene, that constituted the 78% of the total relative amounts of compounds. Other metabolites such as beta-copaene, gamma-amorphene and cis-beta-guaiene, were reported for the first time in this study. When compared to other studies, morphological differences reported in this study are possibly related to adaptation to environmental conditions or pollinators, which let us suggest that there is no specific ontogenic pattern. Similarly, the qualitative and quantitative variations in the detected compounds could be explained because one or more of them are used as precursors of others.
Voltage control of magnetic single domains in Ni discs on ferroelectric BaTiO3
NASA Astrophysics Data System (ADS)
Ghidini, M.; Zhu, B.; Mansell, R.; Pellicelli, R.; Lesaine, A.; Moya, X.; Crossley, S.; Nair, B.; Maccherozzi, F.; Barnes, C. H. W.; Cowburn, R. P.; Dhesi, S. S.; Mathur, N. D.
2018-06-01
For 1 µm-diameter Ni discs on a BaTiO3 substrate, the local magnetization direction is determined by ferroelectric domain orientation as a consequence of growth strain, such that single-domain discs lie on single ferroelectric domains. On applying a voltage across the substrate, ferroelectric domain switching yields non-volatile magnetization rotations of 90°, while piezoelectric effects that are small and continuous yield non-volatile magnetization reversals that are non-deterministic. This demonstration of magnetization reversal without ferroelectric domain switching implies reduced fatigue, and therefore represents a step towards applications.
Production of chemicals and fuels from biomass
Woods, Elizabeth; Qiao, Ming; Myren, Paul; Cortright, Randy D.; Kania, John
2015-12-15
Described are methods, reactor systems, and catalysts for converting biomass to fuels and chemicals in a batch and/or continuous process. The process generally involves the conversion of water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.
Hydrologic and water-quality data from Mountain Island Lake, North Carolina, 1994-97
Sarver, K.M.; Steiner, B.C.
1998-01-01
Continuous-record water-level gages were established at three sites on Mountain Island Lake and one site downstream from Mountain Island Dam. The water level of Mountain Island Lake is controlled by Duke Power Company releases at Cowans Ford Dam (upstream) and Mountain Island Dam (downstream). Water levels on Mountain Island Lake measured just downstream from Cowans Ford Dam fluctuated 11.15 feet during the study. Water levels just upstream from the Mountain Island Lake forebay fluctuated 6.72 feet during the study. About 3 miles downstream from Mountain Island Dam, water levels fluctuated 5.31 feet. Sampling locations included 14 sites in Mountain Island Lake, plus one downstream river site. At three sites, automated instruments recorded water temperature, dissolved-oxygen concentration, and specific conductance at 15-minute intervals throughout the study. Water temperatures recorded continuously during the study ranged from 4.2 to 35.2 degrees Celsius, and dissolved-oxygen concentrations ranged from 2.1 to 11.8 milligrams per liter. Dissolved-oxygen concentrations generally were inversely related to water temperature, with lowest dissolved-oxygen concentrations typically recorded in the summer. Specific conductance values recorded continuously during the study ranged from 33 to 89 microsiemens per centimeter; however, mean monthly values were fairly consistent throughout the study at all sites (50 to 61 microsiemens per centimeter). In addition, vertical profiles of water temperature, dissolved-oxygen concentration, specific conductance, and pH were measured at all sampling locations during 24 site visits. Water-quality constituent concentrations were determined for seven reservoir sites and the downstream river site during 17 sampling trips. Water-quality samples were routinely analyzed for biochemical oxygen demand, fecal coliform bacteria, hardness, alkalinity, total and volatile suspended solids, nutrients, total organic carbon, chlorophyll, iron, calcium, and magnesium; the samples were analyzed less frequently for trace metals, volatile organic compounds, semivolatile organic compounds, and pesticides. Maximum dissolved nitrite plus nitrate concentrations determined during the study were 0.348 milligram per liter in the mainstem sites and 2.77 milligrams per liter in the coves. Maximum total phosphorus concentrations were 0.143 milligram per liter in the mainstem sites and 0.600 milligram per liter in the coves. Fecal coliform and chlorophyll a concentrations were less than or equal to 160 colonies per 100 milliliters and 13 micrograms per liter, respectively, in all samples. Trace metals detected in at least one sample included arsenic, chromium, copper, lead, nickel, zinc, and antimony. Concentrations of all trace metals (except zinc) were 5.0 micrograms per liter or less; the maximum zinc concentration was 80 micrograms per liter. One set of bottom material samples was collected from Gar Creek and McDowell Creek for chemical analysis and analyzed for nutrients, trace metals, organochlorine pesticides, and semivolatile organic compounds. The only organochlorine pesticide identified in either sample was p,p'-DDE at an estimated concentration of 0.8 microgram per kilogram. Twenty semivolatile organic compounds, mainly polyaromatic hydrocarbons and plasticizers, were identified.
Azzollini, Antonio; Boggia, Lorenzo; Boccard, Julien; Sgorbini, Barbara; Lecoultre, Nicole; Allard, Pierre-Marie; Rubiolo, Patrizia; Rudaz, Serge; Gindro, Katia; Bicchi, Carlo; Wolfender, Jean-Luc
2018-01-01
Fungal co-cultivation has emerged as a promising way for activating cryptic biosynthetic pathways and discovering novel antimicrobial metabolites. For the success of such studies, a key element remains the development of standardized co-cultivation methods compatible with high-throughput analytical procedures. To efficiently highlight induction processes, it is crucial to acquire a holistic view of intermicrobial communication at the molecular level. To tackle this issue, a strategy was developed based on the miniaturization of fungal cultures that allows for a concomitant survey of induction phenomena in volatile and non-volatile metabolomes. Fungi were directly grown in vials, and each sample was profiled by head space solid phase microextraction gas chromatography mass spectrometry (HS-SPME-GC-MS), while the corresponding solid culture medium was analyzed by liquid chromatography high resolution mass spectrometry (LC-HRMS) after solvent extraction. This strategy was implemented for the screening of volatile and non-volatile metabolite inductions in an ecologically relevant fungal co-culture of Eutypa lata (Pers.) Tul. & C. Tul. (Diatrypaceae) and Botryosphaeria obtusa (Schwein.) Shoemaker (Botryosphaeriaceae), two wood-decaying fungi interacting in the context of esca disease of grapevine. For a comprehensive evaluation of the results, a multivariate data analysis combining Analysis of Variance and Partial Least Squares approaches, namely AMOPLS, was used to explore the complex LC-HRMS and GC-MS datasets and highlight dynamically induced compounds. A time-series study was carried out over 9 days, showing characteristic metabolite induction patterns in both volatile and non-volatile dimensions. Relevant links between the dynamics of expression of specific metabolite production were observed. In addition, the antifungal activity of 2-nonanone, a metabolite incrementally produced over time in the volatile fraction, was assessed against Eutypa lata and Botryosphaeria obtusa in an adapted bioassay set for volatile compounds. This compound has shown antifungal activity on both fungi and was found to be co-expressed with a known antifungal compound, O-methylmellein, induced in solid media. This strategy could help elucidate microbial inter- and intra-species cross-talk at various levels. Moreover, it supports the study of concerted defense/communication mechanisms for efficiently identifying original antimicrobials. PMID:29459851
Analysis of aroma compounds of pitaya fruit wine
NASA Astrophysics Data System (ADS)
Gong, Xiao; Ma, Lina; Li, Liuji; Yuan, Yuan; Peng, Shaodan; Lin, Mao
2017-12-01
In order to analyze the volatile components in red pitaya fruit wine, the study using headspace solid phase microextractionand gas chromatography-mass spectrometry technology of pitaya fruit juice and wine aroma composition analysis comparison. Results showed that 55 volatile components were detected in red pitaya fruit wine, including 12 kinds of alcohol (18.16%), 18 kinds of esters (66.17%), 7 kinds of acids (5.94%), 11 kinds of alkanes (4.32%), one kind of aldehyde (0.09%), 2 kinds of olefins (0.09%) and 3 kinds of other volatile substances (0.23%). Relative contents among them bigger have 11 species, such as decanoic acid, ethyl ester (22.92%), respectively, diisoamylene (20.75%), octanoic acid, ethyl ester (17.73%), etc. The red pitaya fruit wine contained a lot of aroma components, which offer the products special aroma like brandy, rose and fruit.
Simulated real-time lunar volatiles prospecting with a rover-borne neutron spectrometer
NASA Astrophysics Data System (ADS)
Elphic, Richard C.; Heldmann, Jennifer L.; Marinova, Margarita M.; Colaprete, Anthony; Fritzler, Erin L.; McMurray, Robert E.; Morse, Stephanie; Roush, Ted L.; Stoker, Carol R.; Deans, Matthew C.; Smith, Trey F.
2015-05-01
In situ resource utilization (ISRU) may one day enable long duration lunar missions. But the efficacy of such an approach greatly depends on (1) physical and chemical makeup of the resource, and (2) the logistical cost of exploiting the resource. Establishing these key strategic factors requires prospecting: the capability of locating and characterizing potential resources. There is already considerable evidence from orbital and impact missions that the lunar poles harbor plausibly rich reservoirs of volatiles. The next step is to land on the Moon and assess the nature, “ore-grade”, and extractability of water ice and other materials. In support of this next step, a mission simulation was carried out on the island of Hawai'i in July of 2012. A robotic rover, provided by the Canadian Space Agency, carried several NASA ISRU-supporting instruments in a field test to address how such a mission might be carried out. This exercise was meant to test the ability to (a) locate and characterize volatiles, (b) acquire subsurface samples in a volatile-rich location, and (c) analyze the form and composition of the volatiles to determine their utility. This paper describes the successful demonstration of neutron spectroscopy as a prospecting and decision support system to locate and evaluate potential ISRU targets in the field exercise.
Cna'ani, Alon; Spitzer-Rimon, Ben; Ravid, Jasmin; Farhi, Moran; Masci, Tania; Aravena-Calvo, Javiera; Ovadis, Marianna; Vainstein, Alexander
2015-11-01
The mechanism underlying the emission of phenylpropanoid volatiles is poorly understood. Here, we reveal the involvement of PH4, a petunia MYB-R2R3 transcription factor previously studied for its role in vacuolar acidification, in floral volatile emission. We used the virus-induced gene silencing (VIGS) approach to knock down PH4 expression in petunia, measured volatile emission and internal pool sizes by GC-MS, and analyzed transcript abundances of scent-related phenylpropanoid genes in flowers. Silencing of PH4 resulted in a marked decrease in floral phenylpropanoid volatile emission, with a concurrent increase in internal pool levels. Expression of scent-related phenylpropanoid genes was not affected. To identify putative scent-related targets of PH4, we silenced PH5, a tonoplast-localized H(+) -ATPase that maintains vacuolar pH homeostasis. Suppression of PH5 did not yield the reduced-emission phenotype, suggesting that PH4 does not operate in the context of floral scent through regulation of vacuolar pH. We conclude that PH4 is a key floral regulator that integrates volatile production and emission processes and interconnects two essential floral traits - color and scent. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Steingass, Christof Björn; Jutzi, Manfred; Müller, Jenny; Carle, Reinhold; Schmarr, Hans-Georg
2015-03-01
Ripening-dependent changes of pineapple volatiles were studied in a nontargeted profiling analysis. Volatiles were isolated via headspace solid phase microextraction and analyzed by comprehensive 2D gas chromatography and mass spectrometry (HS-SPME-GC×GC-qMS). Profile patterns presented in the contour plots were evaluated applying image processing techniques and subsequent multivariate statistical data analysis. Statistical methods comprised unsupervised hierarchical cluster analysis (HCA) and principal component analysis (PCA) to classify the samples. Supervised partial least squares discriminant analysis (PLS-DA) and partial least squares (PLS) regression were applied to discriminate different ripening stages and describe the development of volatiles during postharvest storage, respectively. Hereby, substantial chemical markers allowing for class separation were revealed. The workflow permitted the rapid distinction between premature green-ripe pineapples and postharvest-ripened sea-freighted fruits. Volatile profiles of fully ripe air-freighted pineapples were similar to those of green-ripe fruits postharvest ripened for 6 days after simulated sea freight export, after PCA with only two principal components. However, PCA considering also the third principal component allowed differentiation between air-freighted fruits and the four progressing postharvest maturity stages of sea-freighted pineapples.
Resource Prospector: Mission Goals, Relevance and Site Selection
NASA Technical Reports Server (NTRS)
Colaprete, A.; Elphic, R. C.; Andrews, D.; Sanders, G.; McGovern, A.; Vaughan, R.; Heldmann, J.; Trimble, J.
2015-01-01
Over the last two decades a wealth of new observations of the moon have demonstrated a lunar water system dramatically more complex and rich than was deduced following the Apollo era. Observation from the Lunar Prospector Neutron Spectrometer (LPNS) revealed enhancements of hydrogen near the lunar poles. This observation has since been confirmed by the Lunar Reconnaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) instrument. The Lunar Crater Observation and Sensing Satellite (LCROSS) mission targeted a permanently shadowed, enhanced hydrogen location within the crater Cabeus. The LCROSS impact showed that at least some of the hydrogen enhancement is in the form of water ice and molecular hydrogen (H2). Other volatiles were also observed in the LCROSS impact cloud, including CO2, CO, an H2S. These volatiles, and in particular water, have the potential to be a valuable or enabling resource for future exploration. In large part due to these new findings, the NASA Human Exploration and Operations Mission Directorate (HEOMD) have selected a lunar volatiles prospecting mission for a concept study and potential flight in CY2020. The mission includes a rover-borne payload that (1) can locate surface and near-subsurface volatiles, (2) excavate and analyze samples of the volatile-bearing regolith (up to 1 meter), and (3) demonstrate the form, extractability and usefulness of the materials.
Distribution of volatile organic compounds over a semiconductor Industrial Park in Taiwan.
Chiu, Kong-Hwa; Wu, Ben-Zen; Chang, Chih-Chung; Sree, Usha; Lo, Jiunn-Guang
2005-02-15
This study examined volatile organic compounds (VOC) concentration in ambient air collected during the years 2000--2003 at several different locations of Hsinchu Science-based Industrial Park (HSIP) in Taiwan. A canister automated GC-MS system analyzed the volatile organics in ambient air grasp samples according to T0-15 method. Oxygenated volatiles were the most abundant VOC detected in HSIP followed by aromatics that are commonly used as solvents in the semiconductor industries. The major components measured in the ambient air are 2-propanol (29-135 ppbv), acetone (12-164 ppbv), benzene (0.7-1.7 ppbv), and toluene (13-20 ppbv). At some of the sampling locations, odorous compounds such as carbon disulfide and dimethyl sulfide levels exceed threshold values. The estimated toluene/benzene ratio is very high at most of the sites. However, the total amount of VOC is reduced over the years from 2000 to 2003 due to strict implementation on use and discharge of solvents in industries. There exists no definite seasonal pattern for sporadic occurrence of high levels of some of the volatile organics. Stagnant weather conditions with low wind speeds aid accumulation of toxic species at ground level. The results entail that hi-tech semiconductor industries are still a potential source for harmful organic substances to surrounding microenvironment.
Infrared Spectral Observations While Drilling into a Frozen Lunar Simulant
NASA Technical Reports Server (NTRS)
Roush, Ted L.; Colaprete, Anthony; Thompson, Sarah; Cook, Amanda; Kleinhenz, Julie
2014-01-01
Past and continuing observations indicate an enrichment of volatile materials in lunar polar regions. While these volatiles may be located near the surface, access to them will likely require subsurface sampling, during which it is desirable to monitor the volatile content. In a simulation of such activities, a multilayer lunar simulant was prepared with differing water content, and placed inside a thermal vacuum chamber at Glenn Research Center (GRC). The soil profile was cooled using liquid nitrogen. In addition to the soil, a drill and infrared (IR) spectrometer (1600-3400 nm) were also located in the GRC chamber. We report the spectral observations obtained during a sequence where the drill was repeatedly inserted and extracted, to different depths, at the same location. We observe an overall increase in the spectral signature of water ice over the duration of the test. Additionally, we observe variations in the water ice spectral signature as the drill encounters different layers.
NASA Astrophysics Data System (ADS)
Park, Jun-Yong; Ryu, Jae Wook; Sohn, Il
2014-08-01
The in situ crystallization behavior of highly volatile commercial mold fluxes for medium carbon steels was investigated using the confocal laser scanning microscope (CLSM) equipped with an optimized isolated observation system. The highly volatile compounds of the mold flux were suppressed during heating allowing direct observation in the CLSM. Cooling rates of 25, 50, 100, 400, and 800 K/min were incorporated and continuous cooling transformation (CCT) diagrams of 4 different commercial mold fluxes for medium carbon steels were developed. Identification of the crystalline phase was conducted with XRD and SEM-EDS analysis. A cuspidine crystalline was observed in all samples at various cooling rates. With higher basicity, CaF2, and NaF, the crystallization of the fluxes was enhanced according to the CCT diagram. As the slag structure becomes depolymerized, the diffusion rate of the cathodic ions seems to increase.
NASA Astrophysics Data System (ADS)
Stanier, C. O.; Janechek, N. J.; Bryngelson, N.; Marek, R. F.; Lersch, T.; Bunker, K.; Casuccio, G.; Brune, W. H.; Hornbuckle, K. C.
2017-12-01
Cyclic volatile methyl siloxanes are anthropogenic chemicals present in personal care products such as antiperspirants and lotions. These are volatile chemicals that are readily released into the atmosphere by product use. Due to their emission and relatively slow kinetics of their major transformation pathway, reaction with hydroxyl radicals (OH), these compounds are present in high concentrations in indoor environments and widespread in outdoor environments. Cyclic siloxane reaction with OH can lead to secondary organic aerosols, and due to the widespread prevalence of the parent compounds, may be an important source of ambient aerosols. Atmospheric aerosols have important influences to the climate by affecting the radiative balance and by serving as cloud condensation nuclei (CCN) which influence clouds. While the parent compounds have been well-studied, the oxidation products have received much less attention, with almost no ambient measurements or experimental physical property data. We report physical properties of aerosols generated by reacting the cyclic siloxane D5 with OH using a Potential Aerosol Mass (PAM) photochemical chamber. The particles were characterized by SMPS, imaging and elemental analysis using both Transmission Electron Microscopy and Scanning Transmission Electron Microscopy equipped with Energy Dispersive X-ray Spectroscopy systems (TEM-EDS and STEM-EDS), volatility measurements using Volatility Tandem Differential Mobility Analyzer (V-TDMA), and hygroscopicity measurements to determine CCN potential using a Droplet Measurement Technologies Cloud Condensation Nuclei Counter (DMT-CCN). Aerosol yield sensitivity to D5 and OH concentrations, residence time, and seed aerosols were analyzed. TEM-EDS and STEM-EDS analysis show spherical particle morphology with elemental composition consistent with aerosols derived from cyclic siloxane sources. Measured aerosol yields were 20-50% with typical aerosol concentrations 300,000 particles cm-3, up to 200 μg m-3, and diameters of 30-90 nm. Particles experienced little diameter change after heating up to 200°C suggesting low volatility, while particle activation was shifted to higher supersaturations compared to ammonium sulfate suggesting moderate hygroscopicity in line with other secondary organics.
Global Distribution and Sources of Volatile and Nonvolatile Aerosol In the Remote Troposphere
NASA Technical Reports Server (NTRS)
Singh, Hanwant B.; Avery, M.; Viezee, W.; Che, Y.; Tabazadeh, A.; Hamill, P.; Pueschel, R.; Hannan, J. R.; Anderson, B.; Fuelberg, H. E.;
2001-01-01
Airborne measurements of aerosol (Condensation Nuclei, CN) and selected trace gases made in the areas of the North Atlantic Ocean during SONEX (October/November 1997), and the south tropical Pacific Ocean during PEM-Tropics A (September/October 1996) and PEM-Tropics B (March/April 1999) have been analyzed. Emphasis is on the interpretations of variations in the number densities of the fine (>17 nm) and ultrafine (>8 nm) CN in the upper troposphere (8-12 km). These data suggest that large number densities of highly volatile CN (10(exp 4)-10(exp 5)/cu cm) are present in the clean upper troposphere with highest values over the tropical1subtropical region. Through marine convection and long-distance horizontal transport, volatile CN originating from the tropical/subtropical regions can frequently impact the abundance of aerosol in the middle and upper troposphere at mid to high latitudes. Nonvolatile aerosol particles behave in a manner similar to tracers of combustion (CO) and photochemical pollution (PAN), implying a source from continental pollution of industrial or biomass burning origin. In the upper troposphere, we find that volatile and nonvolatile partials number densities are inversely correlated. An aerosol microphysical model is used to suggest that coagulation of fine volatile particles with fewer larger nonvolatile particles provides one possible mechanism for this relationship. It appears that nonvolatile particles, of principally anthropogenic origin,provide a highly efficient removal process for the fine volatile aerosol.
Nunes, Inês S; Faria, Jorge M S; Figueiredo, A Cristina; Pedro, Luis G; Trindade, Helena; Barroso, José G
2009-03-01
The biotransformation capacity of Levisticum officinale W.D.J. Koch hairy root cultures was studied by evaluating the effect of the addition of 25 mg/L menthol or geraniol on morphology, growth, and volatiles production. L. officinale hairy root cultures were maintained for 7 weeks in SH medium, in darkness at 24 degrees C and 80 r.p.m., and the substrates were added 15 days after inoculation. Growth was evaluated by measuring fresh and dry weight and by using the dissimilation method. Volatiles composition was analyzed by GC and GC-MS. Hairy roots morphology and growth were not influenced by substrate addition. No new volatiles were detected after menthol addition and, as was also the case with the control cultures, volatiles of these hairy roots were dominated by (Z)-falcarinol (1-45%), N-octanal (3-8%), palmitic acid (3-10%), and (Z)-ligustilide (2-9%). The addition of geraniol induced the production of six new volatiles: nerol/citronellol/neral (traces-15%), alpha-terpineol (0.2-3%), linalool (0.1-1.2%), and geranyl acetate (traces-2%). The relative amounts of the substrates and some of their biotransformation products decreased during the course of the experiment. Following the addition of beta-glycosidase to the remaining distillation water, analysis of the extracted volatiles showed that lovage hairy roots were able to convert both substrates and their biotransformation products into glycosidic forms. GC:gas chromatography GC-MS:gas chromatography-mass spectrometry SH:Schenk and Hildebrandt (1972) culture medium.
Optimal directional volatile transport in retronasal olfaction
Ni, Rui; Michalski, Mark H.; Brown, Elliott; Doan, Ngoc; Zinter, Joseph; Ouellette, Nicholas T.; Shepherd, Gordon M.
2015-01-01
The ability of humans to distinguish the delicate differences in food flavors depends mostly on retronasal smell, in which food volatiles entrained into the airway at the back of the oral cavity are transported by exhaled air through the nasal cavity to stimulate the olfactory receptor neurons. Little is known whether food volatiles are preferentially carried by retronasal flow toward the nasal cavity rather than by orthonasal flow into the lung. To study the differences between retronasal and orthonasal flow, we obtained computed tomography (CT) images of the orthonasal airway from a healthy human subject, printed an experimental model using a 3D printer, and analyzed the flow field inside the airway. The results show that, during inhalation, the anatomical structure of the oropharynx creates an air curtain outside a virtual cavity connecting the oropharynx and the back of the mouth, which prevents food volatiles from being transported into the main stream toward the lung. In contrast, during exhalation, the flow preferentially sweeps through this virtual cavity and effectively enhances the entrainment of food volatiles into the main retronasal flow. This asymmetrical transport efficiency is also found to have a nonmonotonic Reynolds number dependence: The asymmetry peaks at a range of an intermediate Reynolds number close to 800, because the air curtain effect during inhalation becomes strongest in this range. This study provides the first experimental evidence, to our knowledge, for adaptations of the geometry of the human oropharynx for efficient transport of food volatiles toward the olfactory receptors in the nasal cavity. PMID:26553982
Riolo, Paola; Minuz, Roxana L; Anfora, Gianfranco; Stacconi, Marco V Rossi; Carlin, Silvia; Isidoro, Nunzio; Romani, Roberto
2012-08-01
The Palearctic planthopper Hyalesthes obsoletus is the natural vector of the grapevine yellow disease Bois noir. Grapevine is an occasional host plant of this polyphagous planthopper. To deepen our knowledge of the role of plant volatile organic compounds for H. obsoletus host plant searching, we carried out behavioral, morphological, and electrophysiological studies. We tested the attraction of H. obsoletus to nettle, field bindweed, hedge bindweed, chaste tree, and grapevine by using a Y-shaped olfactometer. The results showed a significant attraction of male H. obsoletus to chaste tree, and of the females to nettle. Male H. obsoletus were repelled by odor from hedge bindweed. Ultrastructural studies of the antennae showed at least two types of olfactory sensilla at the antennal pedicel: plaque organs and trichoid sensilla. Volatile organic compounds from nettle and chaste tree were collected, and the extracts were analyzed by coupling gas-chromatography to both mass-spectrometry and electroantennography. The volatile organic compounds that elicited electrophysiological responses in male and female antennae were identified. These findings are discussed with respect to behavior of H. obsoletus males and females in the field.
Wang, Guochao; Wang, Jun
2017-01-01
We make an approach on investigating the fluctuation behaviors of financial volatility duration dynamics. A new concept of volatility two-component range intensity (VTRI) is developed, which constitutes the maximal variation range of volatility intensity and shortest passage time of duration, and can quantify the investment risk in financial markets. In an attempt to study and describe the nonlinear complex properties of VTRI, a random agent-based financial price model is developed by the finite-range interacting biased voter system. The autocorrelation behaviors and the power-law scaling behaviors of return time series and VTRI series are investigated. Then, the complexity of VTRI series of the real markets and the proposed model is analyzed by Fuzzy entropy (FuzzyEn) and Lempel-Ziv complexity. In this process, we apply the cross-Fuzzy entropy (C-FuzzyEn) to study the asynchrony of pairs of VTRI series. The empirical results reveal that the proposed model has the similar complex behaviors with the actual markets and indicate that the proposed stock VTRI series analysis and the financial model are meaningful and feasible to some extent.
NASA Astrophysics Data System (ADS)
Wang, Guochao; Wang, Jun
2017-01-01
We make an approach on investigating the fluctuation behaviors of financial volatility duration dynamics. A new concept of volatility two-component range intensity (VTRI) is developed, which constitutes the maximal variation range of volatility intensity and shortest passage time of duration, and can quantify the investment risk in financial markets. In an attempt to study and describe the nonlinear complex properties of VTRI, a random agent-based financial price model is developed by the finite-range interacting biased voter system. The autocorrelation behaviors and the power-law scaling behaviors of return time series and VTRI series are investigated. Then, the complexity of VTRI series of the real markets and the proposed model is analyzed by Fuzzy entropy (FuzzyEn) and Lempel-Ziv complexity. In this process, we apply the cross-Fuzzy entropy (C-FuzzyEn) to study the asynchrony of pairs of VTRI series. The empirical results reveal that the proposed model has the similar complex behaviors with the actual markets and indicate that the proposed stock VTRI series analysis and the financial model are meaningful and feasible to some extent.
NASA Astrophysics Data System (ADS)
Huang, De-Yin; Zhou, Shun-Gui; Hong, Wei; Feng, Wei-Feng; Tao, Liang
2013-06-01
With the aim to investigate the main pollution characteristics of exhaust gases emitted from plastic waste recycling granulation plants, mainly volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and phthalate esters (PAEs) were analyzed in Xingtan Town, the largest distribution center of plastic waste recycling in China. Both inside and outside the plants, the total concentrations of volatile monocyclic aromatic hydrocarbons (MAHs), PAHs and PAEs ranged from 2000 to 3000 μg m-3, 450 to 1200 ng m-3, and 200 to 1200 ng m-3, respectively. Their concentration levels inside the plants were higher than those outside the plants, and PAHs and PAEs were mainly distributed in the gas-phase. Notably, highly toxic benzo[a]pyrene (BaP) could be detected inside the plants, and harmful PAEs could be detected not only inside but also outside the plants, although PAEs are non-volatile. The exhaust gas composition and concentration were related to the plastic feedstock and granulation temperature.
Yang, Kai-Min; Cheng, Ming-Ching; Chen, Chih-Wei; Tseng, Chin-Yin; Lin, Li-Yun; Chiang, Po-Yuan
2017-02-01
Algae oil and fish oil are n-3 PUFA mainstream commercial products. The various sources for the stability of n-3 PUFA oxidation are influenced by the fatty acid composition, extraction and refined processing. In this study, the oil stability index (OSI) occurs within 2.3 to 7.6 hours with three different n-3 PUFA rich oil. To set the OSI in the Rancimat test as the oil stability limit and observed various degrees of oxidation (0, 25, 50, 75, 100 and 125%). The volatile oxidation compounds were analyzed via headspace-solid phase microextraction (HS-SPME) and GC/MS. We detected 51 volatile compound variations during the oxidation, which were composed of aldehydes, hydrocarbons, cyclic compounds, alcohols, benzene compounds, ketones, furans, ester and pyrrolidine. The off-flavor characteristics can be strongly influenced by the synergy effects of volatile oxidation compounds. Chemometric analysis (PCA and AHC) was applied to identify the sensitive oxidation marker compounds, which included a (E,E)-2,4-heptadienal appropriate marker, via lipid oxidation in the n-3 PUFA rich oil.
Escape problem under stochastic volatility: The Heston model
NASA Astrophysics Data System (ADS)
Masoliver, Jaume; Perelló, Josep
2008-11-01
We solve the escape problem for the Heston random diffusion model from a finite interval of span L . We obtain exact expressions for the survival probability (which amounts to solving the complete escape problem) as well as for the mean exit time. We also average the volatility in order to work out the problem for the return alone regardless of volatility. We consider these results in terms of the dimensionless normal level of volatility—a ratio of the three parameters that appear in the Heston model—and analyze their form in several asymptotic limits. Thus, for instance, we show that the mean exit time grows quadratically with large spans while for small spans the growth is systematically slower, depending on the value of the normal level. We compare our results with those of the Wiener process and show that the assumption of stochastic volatility, in an apparently paradoxical way, increases survival and prolongs the escape time. We finally observe that the model is able to describe the main exit-time statistics of the Dow-Jones daily index.
Sivankalyani, Velu; Maoz, Itay; Feygenberg, Oleg; Maurer, Dalia; Alkan, Noam
2017-01-25
Mango-fruit storage period and shelf life are prolonged by cold storage. However, chilling temperature induces physiological and molecular changes, compromising fruit quality. In our previous transcriptomic study of mango fruit, cold storage at suboptimal temperature (5 °C) activated the α-linolenic acid metabolic pathway. To evaluate changes in fruit quality during chilling, we analyzed mango "Keitt" fruit peel volatiles. GC-MS analysis revealed significant modulations in fruit volatiles during storage at suboptimal temperature. Fewer changes were seen in response to the time of storage. The mango volatiles related to aroma, such as δ-3-carene, (Z)-β-ocimene, and terpinolene, were downregulated during the storage at suboptimal temperature. In contrast, C 6 and C 9 aldehydes and alcohols-α-linolenic acid derivatives 1-hexanal, (Z)-3-hexenal, (Z)-3-hexenol, (E)-2-hexenal, and nonanal-were elevated during suboptimal-temperature storage, before chilling-injury symptoms appeared. Detection of those molecules before chilling symptoms could lead to a new agro-technology to avoid chilling injuries and maintain fruit quality during cold storage at the lowest possible temperature.
Characterization of volatiles and identification of odor-active compounds of rocket leaves.
Raffo, Antonio; Masci, Maurizio; Moneta, Elisabetta; Nicoli, Stefano; Sánchez Del Pulgar, José; Paoletti, Flavio
2018-02-01
The volatile profile of crushed rocket leaves (Eruca sativa and Diplotaxis tenuifolia) was investigated by applying Headspace Solid-Phase MicroExtraction (HS-SPME), combined with GC-MS, to an aqueous extract obtained by homogenization of rocket leaves, and stabilized by addition of CaCl 2 . A detailed picture of volatile products of the lipoxygenase pathway (mainly C6-aldehydes) and of glucosinolate hydrolysis (mainly isothiocyanates), and their dynamics of formation after tissue disruption was given. Odor-active compounds of leaves were characterized by GC-Olfactometry (GC-O) and Aroma Extract Dilution Analysis (AEDA): volatile isolates obtained by HS-SPME from an aqueous extract and by Stir-Bar Sorptive Extraction (SBSE) from an ethanolic extract were analyzed. The most potent odor-active compounds fully or tentatively identified were (Z)- and (E)-3-hexenal, (Z)-1,5-octadien-3-one, responsible for green olfactory notes, along with 4-mercaptobutyl and 4-(methylthio)butyl isothiocyanate, associated with typical rocket and radish aroma. Relatively high odor potency was observed for 1-octen-3-one, (E)-2-octenal and 1-penten-3-one. Copyright © 2017 Elsevier Ltd. All rights reserved.
Volatile Flavor Compounds Produced by Molds of Aspergillus, Penicillium, and Fungi imperfecti.
Kaminski, E; Stawicki, S; Wasowicz, E
1974-06-01
Strains of molds Aspergillus niger, A. ochraceus, A. oryzae, A. parasiticus, Penicillium chrysogenum, P. citrinum, P. funiculosum, P. raistrickii, P. viridicatum, Alternaria, Cephalosporium, and Fusarium sp. were grown on sterile coarse wheat meal at 26 to 28 C for 120 h. The volatiles from mature cultures were distilled at low temperature under reduced pressure. The distillates from traps -40 and -78 C were extracted with methylene chloride and subsequently concentrated. All the concentrates thus obtained were analyzed by gas-liquid chromatography, mass spectrometry, chemical reactions of functional groups, and olfactory evaluation. Six components detected in the culture distillates were identified positively: 3-methylbutanol, 3-octanone, 3-octanol, 1-octen-3-ol, 1-octanol, and 2-octen-1-ol. They represented 67 to 97% of all the volatiles occurring in the concentrated distillate. The following 14 components were identified tentatively: octane, isobutyl alcohol, butyl alcohol, butyl acetate, amyl acetate, octyl acetate, pyridine, hexanol, nonanone, dimethylpyrazine, tetramethylpyrazine, benzaldehyde, propylbenzene, and phenethyl alcohol. Among the volatiles produced by molds, 1-octen-3-ol yielding a characteristic fungal odor was found predominant.
Volatile Flavor Compounds Produced by Molds of Aspergillus, Penicillium, and Fungi imperfecti
Kaminski, E.; Stawicki, S.; Wasowicz, E.
1974-01-01
Strains of molds Aspergillus niger, A. ochraceus, A. oryzae, A. parasiticus, Penicillium chrysogenum, P. citrinum, P. funiculosum, P. raistrickii, P. viridicatum, Alternaria, Cephalosporium, and Fusarium sp. were grown on sterile coarse wheat meal at 26 to 28 C for 120 h. The volatiles from mature cultures were distilled at low temperature under reduced pressure. The distillates from traps -40 and -78 C were extracted with methylene chloride and subsequently concentrated. All the concentrates thus obtained were analyzed by gas-liquid chromatography, mass spectrometry, chemical reactions of functional groups, and olfactory evaluation. Six components detected in the culture distillates were identified positively: 3-methylbutanol, 3-octanone, 3-octanol, 1-octen-3-ol, 1-octanol, and 2-octen-1-ol. They represented 67 to 97% of all the volatiles occurring in the concentrated distillate. The following 14 components were identified tentatively: octane, isobutyl alcohol, butyl alcohol, butyl acetate, amyl acetate, octyl acetate, pyridine, hexanol, nonanone, dimethylpyrazine, tetramethylpyrazine, benzaldehyde, propylbenzene, and phenethyl alcohol. Among the volatiles produced by molds, 1-octen-3-ol yielding a characteristic fungal odor was found predominant. PMID:16349989
Major Odorants Released as Urinary Volatiles by Urinary Incontinent Patients
Pandey, Sudhir Kumar; Kim, Ki-Hyun; Choi, Si On; Sa, In Young; Oh, Soo Yeon
2013-01-01
In this study, volatile urinary components were collected using three different types of samples from patients suffering from urinary incontinence (UI): (1) urine (A); (2) urine + non-used pad (B); and (3) urine + used pad (C). In addition, urine + non-used pad (D) samples from non-patients were also collected as a reference. The collection of urinary volatiles was conducted with the aid of a glass impinger-based mini-chamber method. Each of the four sample types (A through D) was placed in a glass impinger and incubated for 4 hours at 37 °C. Ultra pure air was then passed through the chamber, and volatile urine gas components were collected into Tedlar bags at the other end. These bag samples were then analyzed for a wide range of VOCs and major offensive odorants (e.g., reduced sulfur compounds (RSCs), carbonyls, trimethylamine (TMA), ammonia, etc.). Among the various odorants, sulfur compounds (methanethiol and hydrogen sulfide) and aldehydes (acetaldehyde, butylaldehyde, and isovaleraldehyde) were detected above odor threshold and predicted to contribute most effectively to odor intensity of urine incontinence. PMID:23823973
Odor and VOC Emissions from Pan Frying of Mackerel at Three Stages: Raw, Well-Done, and Charred
Ahn, Jeong-Hyeon; Szulejko, Jan E.; Kim, Ki-Hyun; Kim, Yong-Hyun; Kim, Bo-Won
2014-01-01
Many classes of odorants and volatile organic compounds that are deleterious to our wellbeing can be emitted from diverse cooking activities. Once emitted, they can persist in our living space for varying durations. In this study, various volatile organic compounds released prior to and during the pan frying of fish (mackerel) were analyzed at three different cooking stages (stage 1 = raw (R), stage 2 = well-done (W), and stage 3 = overcooked/charred (O)). Generally, most volatile organic compounds recorded their highest concentration levels at stage 3 (O), e.g., 465 (trimethylamine) and 106 ppb (acetic acid). In contrast, at stage 2 (W), the lowest volatile organic compounds emissions were observed. The overall results of this study confirm that trimethylamine is identified as the strongest odorous compound, especially prior to cooking (stage 1 (R)) and during overcooking leading to charring (stage 3 (O)). As there is a paucity of research effort to measure odor intensities from pan frying of mackerel, this study will provide valuable information regarding the management of indoor air quality. PMID:25405596
Petroleum 1996: Issues and Trends
1997-01-01
Examines historical trends and focuses on major petroleum issues and the events they represent. It analyzes different dimensions of the petroleum industry and related markets in terms of how they relate to the volatility in petroleum markets.
Kafle, Gopi Krishna; Bhattarai, Sujala; Kim, Sang Hun; Chen, Lide
2014-01-01
The aim of this study was to investigate the potential for anaerobic co-digestion of Chinese cabbage waste silage (CCWS) with swine manure (SM). Batch and continuous experiments were carried out under mesophilic anaerobic conditions (36-38°C). The batch test evaluated the effect of CCWS co-digestion with SM (SM: CCWS=100:0; 25:75; 33:67; 0:100, % volatile solids (VS) basis). The continuous test evaluated the performance of a single stage completely stirred tank reactor with SM alone and with a mixture of SM and CCWS. Batch test results showed no significant difference in biogas yield up to 25-33% of CCWS; however, biogas yield was significantly decreased when CCWS contents in feed increased to 67% and 100%. When testing continuous digestion, the biogas yield at organic loading rate (OLR) of 2.0 g VSL⁻¹ d⁻¹ increased by 17% with a mixture of SM and CCWS (SM:CCWS=75:25) (423 mL g⁻¹ VS) than with SM alone (361 mL g⁻¹ VS). The continuous anaerobic digestion process (biogas production, pH, total volatile fatty acids (TVFA) and TVFA/total alkalinity ratios) was stable when co-digesting SM and CCWS (75:25) at OLR of 2.0 g VSL⁻¹ d⁻¹ and hydraulic retention time of 20 days under mesophilic conditions.
The effects of evaporating essential oils on indoor air quality
NASA Astrophysics Data System (ADS)
Su, Huey-Jen; Chao, Chung-Jen; Chang, Ho-Yuan; Wu, Pei-Chih
Essential oils, predominantly comprised of a group of aromatic chemicals, have attracted increasing attention as they are introduced into indoor environments through various forms of consumer products via different venues. Our study aimed to characterize the profiles and concentrations of emitted volatile organic compounds (VOCs) when evaporating essential oils indoors. Three popular essential oils in the market, lavender, eucalyptus, and tea tree, based on a nation-wide questionnaire survey, were tested. Specific aromatic compounds of interest were sampled during evaporating the essential oils, and analyzed by GC-MS. Indoor carbon monoxide (CO), carbon dioxide (CO 2), total volatile organic compounds (TVOCs), and particulate matters (PM 10) were measured by real-time, continuous monitors, and duplicate samples for airborne fungi and bacteria were collected in different periods of the evaporation. Indoor CO (average concentration 1.48 vs. 0.47 ppm at test vs. background), CO 2 (543.21 vs. 435.47 ppm), and TVOCs (0.74 vs. 0.48 ppm) levels have increased significantly after evaporating essential oils, but not the PM 10 (2.45 vs. 2.42 ppm). The anti-microbial activity on airborne microbes, an effect claimed by the use of many essential oils, could only be found at the first 30-60 min after the evaporation began as the highest levels of volatile components in these essential oils appeared to emit into the air, especially in the case of tea tree oil. High emissions of linalool (0.092-0.787 mg m -3), eucalyptol (0.007-0.856 mg m -3), D-limonene (0.004-0.153 mg m -3), ρ-cymene (0.019-0.141 mg m -3), and terpinene-4-ol-1 (0.029-0.978 mg m -3), all from the family of terpenes, were observed, and warranted for further examination for their health implications, especially for their potential contribution to the increasing indoor levels of secondary pollutants such as formaldehyde and secondary organic aerosols (SOAs) in the presence of ozone.
Park, Kihong; Kim, Jae-Seok; Park, Seung Ho
2009-09-01
The tandem differential mobility analyzer (TDMA) technique was applied to determine the hygroscopicity and volatility of atmospheric ultrafine particles in three sites of urban Gwangju, industrial Yeosu, and coastal Taean in South Korea. A database for the hygroscopicity and volatility of the known compositions and sizes of the laboratory-generated particles wasfirst constructed for comparison with the measured properties of atmospheric ultrafine particles. Distinct differences in hygroscopicity and volatility of atmospheric ultrafine particles werefound between a "photochemical event" and a "combustion event" as well as among different sites. At the Gwangju site, ultrafine particles in the "photochemical event" were determined to be more hygroscopic (growth factor (GF) = 1.05-1.33) than those in the "combustion event" (GF = 1.02-1.12), but their hygroscopicity was not as high as pure ammonium sulfate or sulfuric acid particles in the laboratory-generated database, suggesting they were internally mixed with less soluble species. Ultrafine particles in the "photochemical event" at the Yeosu site, having a variety of SO2, CO, and VOC emission sources, were more hygroscopic (GF = 1.34-1.60) and had a higher amount of volatile species (47-75%)than those observed at the Gwangju site. Ultrafine particle concentration at the Taean site increased during daylight hours with low tide, having a higher GF (1.34-1.80) than the Gwangju site and a lower amount of volatile species (17-34%) than the Yeosu site. Occasionally ultrafine particles were externally mixed according to their hygroscopicity and volatility, and TEM/EDS data showed that each type of particle had a distinct morphology and elemental composition.
Volatile metal species in coal combustion flue gas.
Pavageau, Marie-Pierre; Pécheyran, Christophe; Krupp, Eva M; Morin, Anne; Donard, Olivier F X
2002-04-01
Metals are released in effluents of most of combustion processes and are under intensive regulations. To improve our knowledge of combustion process and their resulting emission of metal to the atmosphere, we have developed an approach allowing usto distinguish between gaseous and particulate state of the elements emitted. This study was conducted on the emission of volatile metallic species emitted from a coal combustion plant where low/medium volatile coal (high-grade ash) was burnt. The occurrence of volatile metal species emission was investigated by cryofocusing sampling procedure and detection using low-temperature packed-column gas chromatography coupled with inductively coupled plasma-mass spectrometry as multielement detector (LT-GC/ICP-MS). Samples were collected in the stack through the routine heated sampling line of the plant downstream from the electrostatic precipitator. The gaseous samples were trapped with a cryogenic device and analyzed by LT-GC/ICP-MS. During the combustion process, seven volatile metal species were detected: three for Se, one for Sn, two for Hg, and one for Cu. Thermodynamic calculations and experimental metal species spiking experiments suggest that the following volatile metal species are present in the flue gas during the combustion process: COSe, CSSe, CSe2, SeCl2, Hg0, HgCl2, CuO-CuSO4 or CuSO4 x H2O, and SnO2 or SnCl2. The quantification of volatile species was compared to results traditionally obtained by standardized impinger-based sampling and analysis techniques recommended for flue gas combustion characterization. Results showed that concentrations obtained with the standard impinger approach are at least 10 times higher than obtained with cryogenic sampling, suggesting the trapping microaerosols in the traditional methods. Total metal concentrations in particles are also reported and discussed.
Polatoğlu, Kaan; Arsal, Seniha; Demirci, Betül; Can Başer, Kemal Hüsnü
2016-01-01
Lathyrus species including L. ochrus and L. sativus are known for their food, feed and horticultural uses. Despite their widespread uses and cultivation, there is limited information on their chemistry. Previously, only the essential oil composition of L. rotundifolius, L. vernus and volatiles of L. odoratus have been reported. In the present research, volatiles of seven Lathyrus L. species, namely, L. aphaca, L. ochrus, L. cicera, L. sativus, L. gorgonei, L. saxatilis and L. blepharicarpos var. cyprius were analyzed by SPME GC-MS for the first time. Plant materials were collected from five different locations in Cyprus (February-March 2012). The main components of L. aphaca volatiles from four locations were yomogi alcohol 26.1-16.5%, camphor 21.6-10.1%, tetradecane 14.3-0%; L. cicera from five locations were yomogi alcohol 20.3-3.0%, camphor 18.7-2.0%; L. gorgonei from two locations were yomogi alcohol 24.5-13.1%, camphor 17.1-9.0% and L. sativus was yomogi alcohol 11.4%, camphor 9.0%. Yomogi alcohol was not present as the major compound in L. ochrus (2-methyl butanoic acid 7.2%), L. saxatilis (hexanal 7.7%) and L. blepharicarpos var. cyprius ((Z)-3-hexenal 8.6%) volatiles. The volatiles of the Lathyrus species were also compared with each other quantitative and qualitatively using AHC analysis to find out differences among the species. The irregular monoterpene yomogi alcohol is reported from the Lathyrus and the Leguminosae family for the first time. The existence of yomogi alcohol in Lathyrus volatiles points out that the irregular monoterpenes are not restricted solely to Asteraceae family.
Zhang, Chun-Yun; Zhang, Qiong; Zhong, Cai-Hong; Guo, Ming-Quan
2016-04-01
A new method for desiccated headspace (DHS) sampling of aqueous sample to GC-MS for the analysis of volatile compounds responsible for kiwifruit aroma in different kiwifruit cultivars has been developed based on the complete hydrate formation between the sample solvent (water) with anhydrous salt (calcium chloride) at an elevated temperature (above the boiling point of the aqueous sample) in a non-contact format, which overcame the water-effect challenge to directly introduce aqueous sample into GC-MS analysis. By means of DHS, the volatile compounds in three different kiwifruit cultivars were analyzed and compared under the optimized operating conditions, mainly time and temperature for headspace equilibration, column temperature program for GC-MS measurement. As a result, 20 peaks of volatile compounds responsible for kiwifruit aroma were detected and remarkable differences were found in the relative contents of three major volatile compounds among the three different kiwifruit cultivars, i.e., acetaldehyde, ethanol and furfural. The DHS sampling technique used in the present method can make the GC-MS analysis of volatile compounds in the aqueous sample within complex matrix possible without contaminating the GC-MS instrument. In terms of the analysis of volatile compounds in kiwifruit, the present method enabled a direct measurement on the filtrate of the aqueous kiwifruit pulp, without intermediate trap phase for the extraction of analytes, which will be more reliable and simpler as compared with any other headspace method in use. Thus, DHS coupled with GC-MS will be a new valuable tool available for the kiwifruit related research and organoleptic quality control. Copyright © 2016 Elsevier B.V. All rights reserved.
Devolatilization of coal particles in a flat flame -- Experimental and modeling study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Therssen, E.; Gourichon, L.; Delfosse, L.
1995-10-01
Pulverized coals have been tested under the conditions of industrial flames, with high heating rate and high temperatures. The chars were collected after different pyrolysis times. For eight coals, the devolatilized fraction of coal has been measured, as well as those of carbon, hydrogen and nitrogen. During pyrolysis, the evolution of the texture of the grains has been studied by measurement of their microporous surface area, which undergoes a large increase, depending on coal rank. The composition of the volatiles, as deduced from the ultimate and proximate analysis of chars, showed high volatile bituminous coals to essentially produce tars withmore » an aromatic structure. Low and medium volatile bituminous coals produced light hydrocarbons on devolatilization and the char`s surface area continued increasing slowly during the whole of devolatilization, according to the slow increase of the fraction of hydrogen devolatilized. The char`s reactivity with oxygen was followed by measurements of Active Surface Area (ASA). It was shown that the ASA continuously decreases during devolatilization. Five models of devolatilization in the literature were tested and compared to the experimental results, assuming first-order reactions with respect to the remaining volatile matter. Badzioch`s model correctly fitted the experimental results and values of the rate constant obtained by computer trial and error adjustment were higher for lower ranks of the four bituminous coals. Anthony`s model also fits the measurements, provided an adjustment of the preexponential factor of activation energy for which it is shown that an infinite number of such pairs is suitable. If the model is run isothermally at the flame`s peak temperature, it also correctly fits the experimental results.« less
Kulongoski, Justin T.; Hilton, David R.; Barry, Peter H.; Esser, Bradley K.; Hillegonds, Darren; Belitz, Kenneth
2013-01-01
To investigate the source of volatiles and their relationship to the San Andreas Fault System (SAFS), 18 groundwater samples were collected from wells near the Big Bend section of the SAFS in southern California and analyzed for helium and carbon abundance and isotopes. Concentrations of 4He, corrected for air-bubble entrainment, vary from 4.15 to 62.7 (× 10− 8) cm3 STP g− 1 H2O. 3He/4He ratios vary from 0.09 to 3.52 RA (where RA = air 3He/4He), consistent with up to 44% mantle helium in samples. A subset of 10 samples was analyzed for the major volatile phase (CO2) — the hypothesized carrier phase of the helium in the mantle–crust system: CO2/3He ratios vary from 0.614 to 142 (× 1011), and δ13C (CO2) values vary from − 21.5 to − 11.9‰ (vs. PDB). 3He/4He ratios and CO2 concentrations are highest in the wells located in the Mil Potrero and Cuddy valleys adjacent to the SAFS. The elevated 3He/4He ratios are interpreted to be a consequence of a mantle volatile flux though the SAFS diluted by radiogenic He produced in the crust. Samples with the highest 3He/4He ratios also had the lowest CO2/3He ratios. The combined helium isotope, He–CO2 elemental relationships, and δ13C (CO2) values of the groundwater volatiles reveal a mixture of mantle and deep crustal (metamorphic) fluid origins. The flux of fluids into the seismogenic zone at high hydrostatic pressure may cause fault rupture, and transfer volatiles into the shallow crust. We calculate an upward fluid flow rate of 147 mm a− 1 along the SAFS, up to 37 times higher than previous estimates (Kennedy et al., 1997). However, using newly identified characteristics of the SAFS, we calculate a total flux of 3He along the SAFS of 7.4 × 103 cm3 STP a− 1 (0.33 mol 3He a− 1), and a CO2 flux of 1.5 × 1013 cm3STP a− 1 (6.6 × 108 mol a− 1), ~ 1% of previous estimates. Lower fluxes along the Big Bend section of the SAFS suggest that the flux of mantle volatiles alone is insufficient to cause the super hydrostatic pressure in the seismogenic zone; however, results identify crustal (metamorphic) fluids as a major component of the CO2 volatile budget, which may represent the additional flux necessary for fault weakening pressure in the SAFS.
40 CFR 60.432 - Standard for volatile organic compounds.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... period. The water used includes only that water contained in the waterborne raw inks and related coatings and the water added for dilution with waterborne ink systems. ...
40 CFR 60.432 - Standard for volatile organic compounds.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... period. The water used includes only that water contained in the waterborne raw inks and related coatings and the water added for dilution with waterborne ink systems. ...
Guo, Jing; Yue, Tianli; Yuan, Yahong
2012-10-01
Apple juice is a complex mixture of volatile and nonvolatile components. To develop discrimination models on the basis of the volatile composition for an efficient classification of apple juices according to apple variety and geographical origin, chromatography volatile profiles of 50 apple juice samples belonging to 6 varieties and from 5 counties of Shaanxi (China) were obtained by headspace solid-phase microextraction coupled with gas chromatography. The volatile profiles were processed as continuous and nonspecific signals through multivariate analysis techniques. Different preprocessing methods were applied to raw chromatographic data. The blind chemometric analysis of the preprocessed chromatographic profiles was carried out. Stepwise linear discriminant analysis (SLDA) revealed satisfactory discriminations of apple juices according to variety and geographical origin, provided respectively 100% and 89.8% success rate in terms of prediction ability. Finally, the discriminant volatile compounds selected by SLDA were identified by gas chromatography-mass spectrometry. The proposed strategy was able to verify the variety and geographical origin of apple juices involving only a reduced number of discriminate retention times selected by the stepwise procedure. This result encourages the similar procedures to be considered in quality control of apple juices. This work presented a method for an efficient discrimination of apple juices according to apple variety and geographical origin using HS-SPME-GC-MS together with chemometric tools. Discrimination models developed could help to achieve greater control over the quality of the juice and to detect possible adulteration of the product. © 2012 Institute of Food Technologists®
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harper, Kyle; Truong, Thanh-Tam; Magwood, Leroy
In the process of decontaminating and decommissioning (D&D) older nuclear facilities, special precautions must be taken with removable or airborne contamination. One possible strategy utilizes foams and fixatives to affix these loose contaminants. Many foams and fixatives are already commercially available, either generically or sold specifically for D&D. However, due to a lack of revelant testing in a radioactive environment, additional verification is needed to confirm that these products not only affix contamination to their surfaces, but also will function in a D&D environment. Several significant safety factors, including flammability and worker safety, can be analyzed through the process ofmore » headspace analysis, a technique that analyzes the off gas formed before or during the curing process of the foam/fixative, usually using gas chromatography-mass spectrometry (GC-MS). This process focuses on the volatile components of a chemical, which move freely between the solid/liquid form within the sample and the gaseous form in the area above the sample (the headspace). Between possibly hot conditions in a D&D situation and heat created in a foaming reaction, the volatility of many chemicals can change, and thus different gasses can be released at different times throughout the reaction. This project focused on analysis of volatile chemicals involved in the process of using foams and fixatives to identify any potential hazardous or flammable compounds.« less
Detection of halitosis in breath: Between the past, present, and future.
Nakhleh, M K; Quatredeniers, M; Haick, H
2017-06-16
To develop a new generation of diagnostics for halitosis, replacing the subjective organoleptic assessment, a series of exhaled breath analyzers has been developed and assessed. All three devices rely on the assessment of exhaled volatile sulfuric compounds (VSCs), which are mainly generated in and emitted from the oral cavity, contributing to the malodor. Portable, on-site and easy to use, these devices have potential for non-invasive diagnosis of halitosis. However, global assessment of exhaled VSCs alone has two main drawbacks: (i) the absence of VSCs does not rule out halitosis; (ii) non-sulfuric volatile compounds that could be biomarkers of systemic diseases, found in up to 15% of halitosis cases, are neglected. In this article, we review and discuss progress to date in the field of oral/exhaled volatile compounds as potential non-invasive diagnostics for halitosis. We will briefly describe the generation of these compounds both from local (oral) and distal (extra-oral) sources. In addition, we debate the different analytical approaches in use and discuss the potential value of bio-inspired artificially intelligent olfaction in diagnosing and classifying oral and systemic diseases by analyzing exhaled breath. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.
Empirical method to measure stochasticity and multifractality in nonlinear time series
NASA Astrophysics Data System (ADS)
Lin, Chih-Hao; Chang, Chia-Seng; Li, Sai-Ping
2013-12-01
An empirical algorithm is used here to study the stochastic and multifractal nature of nonlinear time series. A parameter can be defined to quantitatively measure the deviation of the time series from a Wiener process so that the stochasticity of different time series can be compared. The local volatility of the time series under study can be constructed using this algorithm, and the multifractal structure of the time series can be analyzed by using this local volatility. As an example, we employ this method to analyze financial time series from different stock markets. The result shows that while developed markets evolve very much like an Ito process, the emergent markets are far from efficient. Differences about the multifractal structures and leverage effects between developed and emergent markets are discussed. The algorithm used here can be applied in a similar fashion to study time series of other complex systems.
Choi, Il; Lee, Hyunjoo; Shin, Joungdu; Kim, Hyunook
2012-01-01
Sewer odors have been a concern to citizens of the Metropolitan Seoul region, which has installed combined sewer systems (CSSs) in 86% of its area. Although a variety of odorants are released from sewers, volatile sulfur compounds (VSCs) have been recognized as major ones. A number of technologies have been proposed to monitor or control odors from sewers. One of the most popular strategies adopted for the control of sewage odor is by applying a commercial odor-reducing agent into the sewer. In this study, the effectiveness of five different commercial odor-reducing agents (i.e., an odor masking agent, an alkaline solution, two microbial agents, and a chemical oxidant) was evaluated by continuously monitoring VSCs released from the sewer with an on-line total reduced sulfur (TRS) analyzer before and after each agent was sprayed into CSSs at five different locations of the city. In short, when the effectiveness of odor treatment was tested in the sewer system using five commercial odor reducing treatments, only the chemical oxidant was good enough to reduce the odor in terms of TRS levels measured before and after the application (p < 0.01). PMID:23223148
Biemann, K; Oro, J; Toulmin, P; Orgel, L E; Nier, A O; Anderson, D M; Simmonds, P G; Flory, D; Diaz, A V; Rushneck, D R; Biller, J A
1976-10-01
Two surface samples collected from the Chryse Planitia region of Mars were heated to temperatures up to 500 degrees C, and the volatiles that they evolved were analyzed with a gas chromatograph-mass spectrometer. Only water and carbon dioxide were detected. This implies that organic compounds have not accumulated to the extent that individual components could be detected at levels of a few parts in 10(9) by weight in our samples. Proposed mechanisms for the accumulation and destruction of organic compounds are discussed in the light of this limit.
NASA Technical Reports Server (NTRS)
Biemann, K.; Oro, J.; Toulmin, P., III; Orgel, L. E.; Nier, A. O.; Anderson, D. M.; Flory, D.; Diaz, A. V.; Rushneck, D. R.; Simmonds, P. G.
1976-01-01
Two surface samples collected from the Chryse Planitia region of Mars were heated to temperatures up to 500 C, and the volatiles that they evolved were analyzed with a gas chromatograph-mass spectrometer. Only water and carbon dioxide were detected. This implies that organic compounds have not accumulated to the extent that individual components could be detected at levels of a few parts per billion by weight in the samples. Proposed mechanisms for the accumulation and destruction of organic compounds are discussed in the light of this limit.
Biemann, K.; Oro, John; Toulmin, P.; Orgel, Leslie E.; Nier, A.O.; Anderson, D.M.; Simmonds, P.G.; Flory, D.; Diaz, A.V.; Rushneck, D.R.; Biller, J.A.
1976-01-01
Two surface samples collected from the Chryse Planitia region of Mars were heated to temperatures up to 500??C, and the volatiles that they evolved were analyzed with a gas chromatograph-mass spectrometer. Only water and carbon dioxide were detected. This implies that organic compounds have not accumulated to the extent that individual components could be detected at levels of a few parts in 109 by weight in our samples. Proposed mechanisms for the accumulation and destruction of organic compounds are discussed in the light of this limit.
"Juice Monsters": Sub-Ohm Vaping and Toxic Volatile Aldehyde Emissions.
Talih, Soha; Salman, Rola; Karaoghlanian, Nareg; El-Hellani, Ahmad; Saliba, Najat; Eissenberg, Thomas; Shihadeh, Alan
2017-10-16
An emerging category of electronic cigarettes (ECIGs) is sub-Ohm devices (SODs) that operate at ten or more times the power of conventional ECIGs. Because carcinogenic volatile aldehyde (VA) emissions increase sharply with power, SODs may expose users to greater VAs. In this study, we compared VA emissions from several SODs and found that across device, VAs and power were uncorrelated unless power was normalized by coil surface area. VA emissions and liquid consumed were correlated highly. Analyzed in light of EU regulations limiting ECIG liquid nicotine concentration, these findings suggest potential regulatory levers and pitfalls for protecting public health.
Zhao, Jianglin; Shan, Tijiang; Huang, Yongfu; Liu, Xili; Gao, Xiwu; Wang, Mingan; Jiang, Weibo; Zhou, Ligang
2009-11-01
Volatile oils were obtained by hydro-distillation from Gliomastix murorum and Pichia guilliermondii, two endophytic fungi isolated from the traditional Chinese medicinal herb Paris polyphylla var. yunnanensis. The oils were analyzed for their chemical composition by gas chromatography-mass spectrometry (GC-MS). Palmitic acid (15.5%), (E)-9-octadecenoic acid (11.6%), 6-pentyl-5,6-dihydropyran-2-one (9.7%), and (7Z,10Z)-7,10- hexadecadienoic acid (8.3%) were the major compounds of the 40 identified components in G. murorum volatile oil. 1,1,3a,7-Tetramethyl-1a,2,3,3a,4,5,6,7b-octahydro-1H-cyclopropa[a]- naphthalene (25.9%), palmitic acid (15.5%), 1-methyl-2,4-di- (prop-1-en-2-yl)-1- vinylcyclohexane (7.9%), (E)-9-octadecenoic acid (7.3%), and (9E,12E)-ethyl-9,12-octadecadienoate (5.2%) were the major compounds of the 27 identified components in P. guilliermondii volatile oil. The in vitro antimicrobial activity of the volatile oils was also investigated to evaluate their efficacy against six bacteria and one phytopathogenic fungus. The minimum inhibitory concentration (MIC) values of the volatile oils against the test bacteria ranged from 0.20 mg/mL to 1.50 mg/mL. One of the most sensitive bacteria was Xanthomonas vesicatoria with an MIC of 0.20 mg/mL and 0.40 mg/mL for G. murorum and P. guilliermondii, respectively. The mean inhibitory concentration (IC50) of the volatile oils against spore germination of Magnaporthe oryzae was 0.84 mg/mL for G. murorum and 1.56 mg/mL for P. guilliermondii. These results indicated that the volatile oils from the endophytic fungi have strong antimicrobial activity and could be a potential source of antimicrobial ingredients.
Silva, Diego B; Bueno, Vanda H P; Van Loon, Joop J A; Peñaflor, Maria Fernanda G V; Bento, José Maurício S; Van Lenteren, Joop C
2018-01-01
Plants emit volatile compounds in response to insect herbivory, which may play multiple roles as defensive compounds and mediators of interactions with other plants, microorganisms and animals. Herbivore-induced plant volatiles (HIPVs) may act as indirect plant defenses by attracting natural enemies of the attacking herbivore. We report here the first evidence of the attraction of three Neotropical mirid predators (Macrolophus basicornis, Engytatus varians and Campyloneuropsis infumatus) toward plants emitting volatiles induced upon feeding by two tomato pests, the leaf miner Tuta absoluta and the phloem feeder Bemisia tabaci, in olfactometer bioassays. Subsequently, we compared the composition of volatile blends emitted by insect-infested tomato plants by collecting headspace samples and analyzing them with GC-FID and GC-MS. Egg deposition by T. absoluta did not make tomato plants more attractive to the mirid predators than uninfested tomato plants. Macrolophus basicornis is attracted to tomato plants infested with either T. absoluta larvae or by a mixture of B. tabaci eggs, nymphs and adults. Engytatus varians and C. infumatus responded to volatile blends released by tomato plants infested with T. absoluta larvae over uninfested plants. Also, multiple herbivory by T. absoluta and B. tabaci did not increase the attraction of the mirids compared to infestation with T. absoluta alone. Terpenoids represented the most important class of compounds in the volatile blends and there were significant differences between the volatile blends emitted by tomato plants in response to attack by T. absoluta, B. tabaci, or by both insects. We, therefore, conclude that all three mirids use tomato plant volatiles to find T. absoluta larvae. Multiple herbivory did neither increase, nor decrease attraction of C. infumatus, E. varians and M. basicornis. By breeding for higher rates of emission of selected terpenes, increased attractiveness of tomato plants to natural enemies may improve the effectiveness of biological control.
Su, Yushan; Hung, Hayley
2010-11-01
Measurements of semi-volatile organic chemicals (SVOCs) were compared among 21 laboratories from 7 countries through the analysis of standards, a blind sample, an air extract, and an atmospheric dust sample. Measurement accuracy strongly depended on analytes, laboratories, and types of standards and samples. Intra-laboratory precision was generally good with relative standard deviations (RSDs) of triplicate injections <10% and with median differences of duplicate samples between 2.1 and 22%. Inter-laboratory variability, measured by RSDs of all measurements, was in the range of 2.8-58% in analyzing standards, and 6.9-190% in analyzing blind sample and air extract. Inter-laboratory precision was poorer when samples were subject to cleanup processes, or when SVOCs were quantified at low concentrations. In general, inter-laboratory differences up to a factor of 2 can be expected to analyze atmospheric SVOCs. When comparing air measurements from different laboratories, caution should be exercised if the data variability is less than the inter-laboratory differences. 2010. Published by Elsevier Ltd. All rights reserved.
Study of 5 Volatile Organic Compounds in Exhaled Breath in Chronic Obstructive Pulmonary Disease.
Jareño-Esteban, José Javier; Muñoz-Lucas, M Ángeles; Gómez-Martín, Óscar; Utrilla-Trigo, Sergio; Gutiérrez-Ortega, Carlos; Aguilar-Ros, Antonio; Collado-Yurrita, Luis; Callol-Sánchez, Luis Miguel
2017-05-01
A major risk factor for chronic obstructive pulmonary disease (COPD) is tobacco smoke, which generates oxidative stress in airways, resulting in the production of volatile organic compounds (VOC). The purpose of this study was to identify VOCs in exhaled breath and to determine their possible use as disease biomarkers. Exhaled breath from 100 healthy volunteers, divided into 3groups (never smokers, former smokers and active smokers) and exhaled breath from 57 COPD patients were analyzed. Samples were collected using BioVOC ® devices and transferred to universal desorption tubes. Compounds were analyzed by thermal desorption, gas chromatography and mass spectrometry. VOCs analyzed were linear aldehydesand carboxylic acids. The COPD group and healthy controls (never smokers and former smokers) showed statistically significant differences in hexanal concentrations, and never smokers and the COPD group showed statistically significant differences in nonanal concentrations. Hexanal discriminates between COPD patients and healthy non-smoking controls. Nonanal discriminates between smokers and former smokers (with and without COPD) and never smokers. Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
Ciarelli, Giancarlo; El Haddad, Imad; Bruns, Emily; Aksoyoglu, Sebnem; Möhler, Ottmar; Baltensperger, Urs; Prévôt, André S. H.
2017-06-01
In this study, novel wood combustion aging experiments performed at different temperatures (263 and 288 K) in a ˜ 7 m3 smog chamber were modelled using a hybrid volatility basis set (VBS) box model, representing the emission partitioning and their oxidation against OH. We combine aerosol-chemistry box-model simulations with unprecedented measurements of non-traditional volatile organic compounds (NTVOCs) from a high-resolution proton transfer reaction mass spectrometer (PTR-MS) and with organic aerosol measurements from an aerosol mass spectrometer (AMS). Due to this, we are able to observationally constrain the amounts of different NTVOC aerosol precursors (in the model) relative to low volatility and semi-volatile primary organic material (OMsv), which is partitioned based on current published volatility distribution data. By comparing the NTVOC / OMsv ratios at different temperatures, we determine the enthalpies of vaporization of primary biomass-burning organic aerosols. Further, the developed model allows for evaluating the evolution of oxidation products of the semi-volatile and volatile precursors with aging. More than 30 000 box-model simulations were performed to retrieve the combination of parameters that best fit the observed organic aerosol mass and O : C ratios. The parameters investigated include the NTVOC reaction rates and yields as well as enthalpies of vaporization and the O : C of secondary organic aerosol surrogates. Our results suggest an average ratio of NTVOCs to the sum of non-volatile and semi-volatile organic compounds of ˜ 4.75. The mass yields of these compounds determined for a wide range of atmospherically relevant temperatures and organic aerosol (OA) concentrations were predicted to vary between 8 and 30 % after 5 h of continuous aging. Based on the reaction scheme used, reaction rates of the NTVOC mixture range from 3.0 × 10-11 to 4. 0 × 10-11 cm3 molec-1 s-1. The average enthalpy of vaporization of secondary organic aerosol (SOA) surrogates was determined to be between 55 000 and 35 000 J mol-1, which implies a yield increase of 0.03-0.06 % K-1 with decreasing temperature. The improved VBS scheme is suitable for implementation into chemical transport models to predict the burden and oxidation state of primary and secondary biomass-burning aerosols.
Juhari, Nurul Hanisah; Petersen, Mikael Agerlin
2018-02-11
Milled Roselle ( Hibiscus sabdariffa L.) seeds of the UMKL cultivar were analyzed for proximate composition, water and oil absorption capacity, and the influence of storage conditions on storage stability. The storage stability was determined under four types of conditions: light/oxygen (air) (LO), light/nitrogen (LN), darkness/oxygen (air) (DO), and darkness/nitrogen (DN) while monitoring for seven consecutive months. During the storage period, the formation of volatiles was determined using dynamic headspace sampling and Gas Chromatography-Mass Spectrometry (GC-MS) analysis. In total, 85 volatiles were identified, mainly aldehydes, alcohols, ketones, furans, and acids indicating lipid oxidation. It is recommended that milled Roselle seeds should be flushed with nitrogen and stored in darkness. Under these conditions, the seeds can be stored for at least three months without changes in volatile profile. This is important to ensure the good quality of milled Roselle seeds for further commercialization.
The impact of wind power on electricity prices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brancucci Martinez-Anido, Carlo; Brinkman, Greg; Hodge, Bri-Mathias
This paper investigates the impact of wind power on electricity prices using a production cost model of the Independent System Operator - New England power system. Different scenarios in terms of wind penetration, wind forecasts, and wind curtailment are modeled in order to analyze the impact of wind power on electricity prices for different wind penetration levels and for different levels of wind power visibility and controllability. The analysis concludes that electricity price volatility increases even as electricity prices decrease with increasing wind penetration levels. The impact of wind power on price volatility is larger in the shorter term (5-minmore » compared to hour-to-hour). The results presented show that over-forecasting wind power increases electricity prices while under-forecasting wind power reduces them. The modeling results also show that controlling wind power by allowing curtailment increases electricity prices, and for higher wind penetrations it also reduces their volatility.« less
Kataoka, Hiroyuki; Saito, Keita; Kato, Hisato; Masuda, Kazufumi
2013-06-01
Early disease diagnosis is crucial for human healthcare and successful therapy. Since any changes in homeostatic balance can alter human emanations, the components of breath exhalations and skin emissions may be diagnostic biomarkers for various diseases and metabolic disorders. Since hundreds of endogenous and exogenous volatile organic compounds (VOCs) are released from the human body, analysis of these VOCs may be a noninvasive, painless, and easy diagnostic tool. Sampling and preconcentration by sorbent tubes/traps and solid-phase microextraction, in combination with GC or GC-MS, are usually used to analyze VOCs. In addition, GC-MS-olfactometry is useful for simultaneous analysis of odorants and odor quality. Direct MS techniques are also useful for the online real-time detection of VOCs. This review focuses on recent developments in sampling and analysis of volatile biomarkers in human odors and/or emanations, and discusses future use of VOC analysis.
Impact glasses from the ultrafine fraction of lunar soils
NASA Technical Reports Server (NTRS)
Norris, J. A.; Keller, L. P.; Mckay, D. S.
1993-01-01
The chemical compositions of microscopic glasses produced during meteoroid impacts on the lunar surface provide information regarding the various fractionation processes which accompany these events. To learn more about these fractionation processes, we studied the compositions of submicrometer glass spheres from two Apollo 17 sampling sites using electron microscopy. The majority of the analyzed glasses show evidence for varying degrees of impact induced chemical fractionation. Among these are HASP glasses (High-Al, Si-Poor) which are believed to represent the refractory residuum left after the loss of volatile elements (e.g. Si, Fe, N) from the precursor material. In addition to HASP-type glasses, we also observed a group of VRAP glasses (volatile-rich, Al-poor) that represent condensates of vaporized volatile constituents and are complementary to the HASP compositions. High-Ti glasses were also found during the course of the study, and are documented here for the first time.
Key Aroma Compounds in Smoked Cooked Loin.
Kosowska, Monika; Majcher, Małgorzata A; Jeleń, Henryk H; Fortuna, Teresa
2018-04-11
Smoked cooked loin is one of the most popular meat products in Poland. In this study, key volatile compounds in this traditional Polish meat product were determined using gas chromatography-olfactometry and aroma extract dilution analysis (AEDA). In total, 27 odor-active volatile compounds were identified, with flavor dilution (FD) factors ranging from 4 to 1024, with the highest FD factors noted for 2-methoxyphenol, 2-methoxy-4-(prop-2-enyl)phenol, and 2-methoxy-4-( E)-(prop-1-en-1-yl)phenol. Results of the quantitative analyses based on determinations with stable isotope dilution assays (SIDAs) and standard addition (SA), followed by calculations of the odor activity value (OAV), enabled identifying 24 of the volatile compounds responsible for flavor development in the analyzed smoked cooked loin. The highest OAVs were obtained for 2-methoxyphenol, 2-methyl-3-furanthiol, 1-octen-3-one, and 2-methyl-3-(methyldithio)furan.
Carbon and sulfur distributions and abundances in lunar fines
NASA Technical Reports Server (NTRS)
Gibson, E. K., Jr.; Moore, G. W.
1973-01-01
Total sulfur abundances have been determined for 20 Apollo 14, 15, and 16 soil samples and one Apollo 14 breccia. Sulfur concentrations range from 474 to 844 microg S/g. Volatilization experiments on selected samples have been carried out using step-wise heating. Sample residues have been analyzed for their total carbon and sulfur abundances to establish the material balance in lunar fines for these two elements. Volatilization experiments have established that between 31 to 54 microg C/g remains in soils which have been heated at 1100 C for 24 hours under vacuum. The residual carbon is believed to be indigenous lunar carbon whereas all forms of carbon lost from samples below 1100 C is extralunar carbon. Total carbon and sulfur abundances taken from the literature have been used to show the depletion of volatile elements with increasing grade for the Apollo 14 breccias.
Barton, H.N.
1986-01-01
Trace levels of chalcophile elements that form volatile sulfide minerals are determined in stream sediments and in the nonmagnetic fraction of a heavy-mineral concentrate of stream sediments by a carrier distillation emission spectrographic method. Photographically recorded spectra of samples are visually compared with those of synthetic standards for the two sample types. Rock and soil samples may also be analyzed by comparison with the stream-sediment standards. A gallium oxide spectrochemical carrier/buffer enhances the early emission of the volatile elements. Detection limits in parts per million attained are: Sb 5, As 20, Bi 0.1, Cd 1, Cu 1, Pb 2, Ag 0.1, Zn 2, and Sn 0.1. A comparison with other methods of analysis, total-burn emission and atomic absorption spectroscopy, shows good correlation for standard reference for materials and samples from a variety of geologic terranes. ?? 1986.
A Computer Model for Analyzing Volatile Removal Assembly
NASA Technical Reports Server (NTRS)
Guo, Boyun
2010-01-01
A computer model simulates reactional gas/liquid two-phase flow processes in porous media. A typical process is the oxygen/wastewater flow in the Volatile Removal Assembly (VRA) in the Closed Environment Life Support System (CELSS) installed in the International Space Station (ISS). The volatile organics in the wastewater are combusted by oxygen gas to form clean water and carbon dioxide, which is solved in the water phase. The model predicts the oxygen gas concentration profile in the reactor, which is an indicator of reactor performance. In this innovation, a mathematical model is included in the computer model for calculating the mass transfer from the gas phase to the liquid phase. The amount of mass transfer depends on several factors, including gas-phase concentration, distribution, and reaction rate. For a given reactor dimension, these factors depend on pressure and temperature in the reactor and composition and flow rate of the influent.
The mean time-limited crash rate of stock price
NASA Astrophysics Data System (ADS)
Li, Yun-Xian; Li, Jiang-Cheng; Yang, Ai-Jun; Tang, Nian-Sheng
2017-05-01
In this article we investigate the occurrence of stock market crash in an economy cycle. Bayesian approach, Heston model and statistical-physical method are considered. Specifically, Heston model and an effective potential are employed to address the dynamic changes of stock price. Bayesian approach has been utilized to estimate the Heston model's unknown parameters. Statistical physical method is used to investigate the occurrence of stock market crash by calculating the mean time-limited crash rate. The real financial data from the Shanghai Composite Index is analyzed with the proposed methods. The mean time-limited crash rate of stock price is used to describe the occurrence of stock market crash in an economy cycle. The monotonous and nonmonotonous behaviors are observed in the behavior of the mean time-limited crash rate versus volatility of stock for various cross correlation coefficient between volatility and price. Also a minimum occurrence of stock market crash matching an optimal volatility is discovered.
Grabowska-Polanowska, Beata; Miarka, Przemysław; Skowron, Monika; Sułowicz, Joanna; Wojtyna, Katarzyna; Moskal, Karolina; Śliwka, Ireneusz
2017-10-01
The studies on volatile organic compounds emitted from skin are an interest for chemists, biologists and physicians due to their role in development of different scientific areas, including medical diagnostics, forensic medicine and the perfume design. This paper presents a proposal of two sampling methods applied to skin odor collection: the first one uses a bag of cellulose film, the second one, using cellulose sachets filled with active carbon. Volatile organic compounds were adsorbed on carbon sorbent, removed via thermal desorption and analyzed using gas chromatograph with mass spectrometer. The first sampling method allowed identification of more compounds (52) comparing to the second one (30). Quantitative analyses for acetone, butanal, pentanal and hexanal were done. The skin odor sampling method using a bag of cellulose film, allowed the identification of many more compounds when compared with the method using a sachet filled with active carbon.
Effects of light and copper ions on volatile aldehydes of milk and milk fractions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeno, W.; Bassette, R.; Crang, R.E.
1988-09-01
Raw, laboratory-pasteurized and plant-pasteurized homogenized milks were exposed to copper ions (5 ppm), to sunlight or fluorescent light and the effects determined on the composition of volatile aldehydes. The greatest change due to copper treatment was an increase in n-hexanal; acetaldehyde showed the least response in each of the sources of milk. The responses were similar from all three sources of milk with laboratory-pasteurized milk samples showing the greatest responses for each aldehyde analyzed. Similar milk samples exposed to sunlight also showed an increase in volatile aldehydes from all milk sources but with the greatest response being acetaldehyde and n-pentanalmore » components. The milk fraction most susceptible to changes in the presence of light was neutralized whey, whereas resuspended cream was most susceptible to copper exposure. Overall, dialyzed whey appeared to be influenced more than other milk fractions by both light and copper ions.« less
Methodology to estimate particulate matter emissions from certified commercial aircraft engines.
Wayson, Roger L; Fleming, Gregg G; Lovinelli, Ralph
2009-01-01
Today, about one-fourth of U.S. commercial service airports, including 41 of the busiest 50, are either in nonattainment or maintenance areas per the National Ambient Air Quality Standards. U.S. aviation activity is forecasted to triple by 2025, while at the same time, the U.S. Environmental Protection Agency (EPA) is evaluating stricter particulate matter (PM) standards on the basis of documented human health and welfare impacts. Stricter federal standards are expected to impede capacity and limit aviation growth if regulatory mandated emission reductions occur as for other non-aviation sources (i.e., automobiles, power plants, etc.). In addition, strong interest exists as to the role aviation emissions play in air quality and climate change issues. These reasons underpin the need to quantify and understand PM emissions from certified commercial aircraft engines, which has led to the need for a methodology to predict these emissions. Standardized sampling techniques to measure volatile and nonvolatile PM emissions from aircraft engines do not exist. As such, a first-order approximation (FOA) was derived to fill this need based on available information. FOA1.0 only allowed prediction of nonvolatile PM. FOA2.0 was a change to include volatile PM emissions on the basis of the ratio of nonvolatile to volatile emissions. Recent collaborative efforts by industry (manufacturers and airlines), research establishments, and regulators have begun to provide further insight into the estimation of the PM emissions. The resultant PM measurement datasets are being analyzed to refine sampling techniques and progress towards standardized PM measurements. These preliminary measurement datasets also support the continued refinement of the FOA methodology. FOA3.0 disaggregated the prediction techniques to allow for independent prediction of nonvolatile and volatile emissions on a more theoretical basis. The Committee for Aviation Environmental Protection of the International Civil Aviation Organization endorsed the use of FOA3.0 in February 2007. Further commitment was made to improve the FOA as new data become available, until such time the methodology is rendered obsolete by a fully validated database of PM emission indices for today's certified commercial fleet. This paper discusses related assumptions and derived equations for the FOA3.0 methodology used worldwide to estimate PM emissions from certified commercial aircraft engines within the vicinity of airports.
Evolution of Functional Groups during Pyrolysis Oil Upgrading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stankovikj, Filip; Tran, Chi-Cong; Kaliaguine, Serge
In this paper, we examine the evolution of functional groups (carbonyl, carboxyl, phenol, and hydroxyl) during stabilization at 100–200 °C of two typical wood derived pyrolysis oils from BTG and Amaron in a batch reactor over Ru/C catalyst for 4h. An aqueous and an oily phase were obtained. The content of functional groups in both phases were analyzed by GC/MS, 31P-NMR, 1H-NMR, elemental analysis, KF titration, carbonyl groups by Faix, Folin – Ciocalteu method and UV-Fluorescence. The consumption of hydrogen was between 0.007 and 0.016 g/g oil, and 0.001-0.020 g of CH4/g of oil, 0.005-0.016 g of CO2/g oil andmore » 0.03-0.10 g H2O/g oil were formed. The content of carbonyl, hydroxyl, and carboxyl groups in the volatile GC-MS detectable fraction decreased (80, 65, and ~70% respectively), while their behavior in the total oil and hence in the non-volatile fraction was more complex. The carbonyl groups initially decreased having minimum at ~125-150°C and then increased, while the hydroxyl groups had reversed trend. This might be explained by initial hydrogenation of the carbonyl groups to form hydroxyls, followed by continued dehydration reactions at higher temperatures that may increase their content. The 31P-NMR was on the limit of its sensitivity for the carboxylic groups to precisely detect changes in the non-volatile fraction, however the more precise titration method showed that the concentration of carboxylic groups in the non-volatile fraction remains constant with increased stabilization temperature. The UV-Fluorescence results show that repolymerization increases with temperature. ATR-FTIR method coupled with deconvolution of the region between 1490 and 1850 cm-1 showed to be a good tool for following the changes in carbonyl groups and phenols of the stabilized pyrolysis oils. The deconvolution of the IR bands around 1050 and 1260 cm-1 correlated very well with the changes in the 31P-NMR silent O groups (likely ethers). Most of the H2O formation could be explained from the significant reduction of these silent O groups (from 12% in the fresh oils, to 6 to 2% in the stabilized oils) most probably belonging to ethers.« less
Sources of volatiles in basalts from the Galapagos Archipelago: deep and shallow evidence
NASA Astrophysics Data System (ADS)
Peterson, M. E.; Saal, A. E.; Hauri, E. H.; Werner, R.; Hauff, S. F.; Kurz, M. D.; Geist, D.; Harpp, K. S.
2010-12-01
The study of volatiles (H2O, CO2, F, S, and Cl) is important because volatiles assert a strong influence on mantle melting and magma crystallization, as well as on the viscosity and rheology of the mantle. Despite this importance, there have been a minimal number of volatile studies done on magmas from the four main mantle sources that define the end member compositions of the Galapagos lavas. For this reason, we here present new volatile concentrations of 89 submarine glass chips from dredges collected across the archipelago during the SONNE SO158, PLUM02, AHA-NEMO, and DRIFT04 cruises. All samples, with the exception of six, were collected at depths greater than 1000m. Major elements (E-probe), and volatile and trace elements (SIMS), are analyzed on the same glass chip, using 4 chips per sample, to better represent natural and analytical variation. Trace element contents reveal three main compositional groups: an enriched group typical of OIB, a group with intermediate compositions, and a group with a depleted trace element composition similar to MORB. The absolute ranges of volatile contents for all three compositional groups are .098-1.15wt% for H2O, 10.7-193.7 ppm for CO2, 61.4-806.5 ppm for F, 715.8-1599.2 ppm for S and 3.8-493.3 for Cl. The effect of degassing, sulfide saturation and assimilation of hydrothermally altered material must be understood before using the volatile content of submarine glasses to establish the primary volatile concentration of basalts and their mantle sources. CO2 has a low solubility in basaltic melts causing it to extensively degas. Based on the CO2/Nb ratio, we estimate the extent of degassing for the Galapagos lavas to range from approximately undegassed to 90% degassed. We demonstrate that 98% of the samples are sulfur undersaturated. Therefore, sulfur will behave as a moderately incompatible element during magmatic processes. Finally, we evaluate the effect of assimilation of hydrothermally altered material on the volatile content of the lavas. This process is evident when volatile/refractory element ratios are compared to the trace elements indicative of interaction between melt and the oceanic lithosphere such as a positive Sr anomaly (Sr*) in a primitive mantle normalized diagram. This is indicative of the interaction of basaltic melts with plagioclase cumulates. For the Galapagos depleted submarine glasses, we find a positive correlation between Sr* and all volatile/refractory element ratios suggesting significant volatile input from melt-lithosphere interaction. These samples, due to their low trace element concentrations, readily show the alteration signature, thus making the establishment of their primitive volatile content difficult. As a result, we will present the primary volatile concentrations for the trace element intermediate and enriched groups after careful consideration for degassing, sulfide saturation, and assimilation of hydrothermally altered material.
NASA Technical Reports Server (NTRS)
Limero, Thomas F.; James, John T.
1994-01-01
A Volatile Organic Analyzer (VOA) is being developed as an essential component of the Space Station's Environmental Health System (EHS) air quality monitoring strategy to provide warning to the crew and ground personnel if volatile organic compounds exceed established exposure limits. The short duration of most Shuttle flights and the relative simplicity of the contaminant removal mechanism have lessened the concern about crew exposure to air contaminants on the Shuttle. However, the longer missions associated with the Space Station, the complex air revitalization system and the proposed number of experiments have led to a desire for real-time monitoring of the contaminants in the Space Station atmosphere. Achieving the performance requirements established for the VOA within the Space Station resource (e.g., power, weight) allocations led to a novel approach that joined a gas chromatograph (GC) to an ion mobility spectrometer (IMS). The authors of this paper will discuss the rational for selecting the GC/IMS technology as opposed to the more established gas chromatography/mass spectrometry (GC/MS) for the foundation of the VOA. The data presented from preliminary evaluations will demonstrate the versatile capability of the GC/IMS to analyze the major contaminants expected in the Space Station atmosphere. The favorable GC/IMS characteristics illustrated in this paper included excellent sensitivity, dual-mode operation for selective detection, and mobility drift times to distinguish co-eluting GC peaks. Preliminary studies have shown that the GC/IMS technology can meet surpass the performance requirements of the Space Station VOA.
Analytical pricing formulas for hybrid variance swaps with regime-switching
NASA Astrophysics Data System (ADS)
Roslan, Teh Raihana Nazirah; Cao, Jiling; Zhang, Wenjun
2017-11-01
The problem of pricing discretely-sampled variance swaps under stochastic volatility, stochastic interest rate and regime-switching is being considered in this paper. An extension of the Heston stochastic volatility model structure is done by adding the Cox-Ingersoll-Ross (CIR) stochastic interest rate model. In addition, the parameters of the model are permitted to have transitions following a Markov chain process which is continuous and discoverable. This hybrid model can be used to illustrate certain macroeconomic conditions, for example the changing phases of business stages. The outcome of our regime-switching hybrid model is presented in terms of analytical pricing formulas for variance swaps.
Improving continuous monitoring OF VOC’s emissions from alternative fertilizers
USDA-ARS?s Scientific Manuscript database
Application of alternative fertilizers, such as biosolids, to agricultural fields is an environmentally-beneficial practice. Concerns regarding nuisance odors caused by specific volatile organic compounds (VOC) have lead to public opposition and may ultimately lead to lack of acceptance of biosolids...
NASA Astrophysics Data System (ADS)
Wang, Yuying; Zhang, Fang; Li, Zhanqing
2017-04-01
A series of strict emission control measures were implemented in Beijing and the surrounding seven provinces to ensure good air quality during the 2015 China Victory Day parade, rendering a unique opportunity to investigate anthropogenic impact of aerosol properties. Submicron aerosol hygroscopicity and volatility were measured during and after the control period using a hygroscopic and volatile tandem differential mobility analyzer (H/V-TDMA) system. Three periods, namely, the control clean period (Clean1), the non-control clean period (Clean2), and the non-control pollution period (Pollution), were selected to study the effect of the emission control measures on aerosol hygroscopicity and volatility. Aerosol particles became more hydrophobic and volatile due to the emission control measures. The hygroscopicity parameter (κ) of 40-200 nm particles decreased by 32.0%-8.5% during the Clean1 period relative to the Clean2 period, while the volatile shrink factor (SF) of 40-300 nm particles decreased by 7.5%-10.5%. The emission controls also changed the diurnal variation patterns of both the probability density function of κ (κ-PDF) and the probability density function of SF (SF-PDF). During Clean1 the κ-PDF showed one nearly-hydrophobic (NH) mode for particles in the nucleation mode, which was likely due to the dramatic reduction in industrial emissions of inorganic trace gases. Compared to the Pollution period, particles observed during the Clean1 and Clean2 periods exhibited a more significant non-volatile (NV) mode throughout the day, suggesting a more externally-mixed state particularly for the 150 nm particles. Aerosol hygroscopicities increased as particle sizes increased, with the greatest increases seen during the Pollution period. Accordingly, the aerosol volatility became weaker (i.e., SF increased) during the Clean1 and Clean2 periods, but no apparent trend was observed during the Pollution period. Based on a correlation analysis of the number fractions of NH and NV particles, we found that a higher number fraction of hydrophobic and volatile particles during the emission control period.
2010-01-01
Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine); we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1) Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2) VeA coordinates the biosynthesis of secondary metabolites with catabolism of branched chain amino acids, alcohol biosynthesis, and β-oxidation of fatty acids. 3) Intracellular chemical development in A. parasiticus is linked to morphological development. 4) Understanding carbon flow through secondary metabolic pathways and catabolism of branched chain amino acids is essential for controlling and customizing production of natural products. PMID:20735852
Code of Federal Regulations, 2011 CFR
2011-07-01
... volatilize and recover perchloroethylene from contaminated perchloroethylene. Temperature sensor means a thermometer or thermocouple used to measure temperature. Transfer machine system means a multiple-machine dry... December 9, 1991. PCE gas analyzer means a flame ionization detector, photoionization detector, or infrared...
Code of Federal Regulations, 2014 CFR
2014-07-01
... volatilize and recover perchloroethylene from contaminated perchloroethylene. Temperature sensor means a thermometer or thermocouple used to measure temperature. Transfer machine system means a multiple-machine dry... December 9, 1991. PCE gas analyzer means a flame ionization detector, photoionization detector, or infrared...
Code of Federal Regulations, 2010 CFR
2010-07-01
... volatilize and recover perchloroethylene from contaminated perchloroethylene. Temperature sensor means a thermometer or thermocouple used to measure temperature. Transfer machine system means a multiple-machine dry... December 9, 1991. PCE gas analyzer means a flame ionization detector, photoionization detector, or infrared...
Code of Federal Regulations, 2013 CFR
2013-07-01
... volatilize and recover perchloroethylene from contaminated perchloroethylene. Temperature sensor means a thermometer or thermocouple used to measure temperature. Transfer machine system means a multiple-machine dry... December 9, 1991. PCE gas analyzer means a flame ionization detector, photoionization detector, or infrared...
Code of Federal Regulations, 2012 CFR
2012-07-01
... volatilize and recover perchloroethylene from contaminated perchloroethylene. Temperature sensor means a thermometer or thermocouple used to measure temperature. Transfer machine system means a multiple-machine dry... December 9, 1991. PCE gas analyzer means a flame ionization detector, photoionization detector, or infrared...
Results of the First Mars Organic Molecule Analyzer (MOMA) GC-MS Coupling
NASA Astrophysics Data System (ADS)
Buch, Arnaud; Pinnick, Veronica; Szopa, Cyril; Danell, Ryan; Grand, Noel; Van Amerom, Friso; Glavin, Daniel; Freissinet, Caroline; Humeau, Olivier; Coll, Patrice; Arevalo, Ricardo; Stalport, Fabien; Brinckerhoff, William; Steininger, Harald; Goesmann, Fred; Mahaffy, Paul; Raulin, Francois
2014-11-01
The Mars Organic Molecule Analyzer (MOMA) aboard the ExoMars rover will be a key analytical tool in providing chemical (molecular) information from the solid samples collected by the rover, with a particular focus on the char-acterization of the organic content. The core of the MOMA instrument is a gas chromatograph coupled with a mass spectrometer (GC-MS) which provides the unique capability to characterize a broad range of compounds, including both of volatile and non-volatile species. Samples will be crushed and deposited into sample cups seated in a rotating carousel. Soil samples will be analyzed either by UV laser desorption / ionization (LDI) or pyrolysis gas chromatography ion trap mass spectrometry (pyr-GC-ITMS).The French GC brassboard was coupled to the US ion trap mass spectrometer brassboard in a flight-like con-figuration for several coupling campains. The MOMA GC setup is based on the SAM heritage design with a He reservoir and 4 separate analytical modules including traps, columns and Thermal Conductivity Detectors. Solid samples are sealed and heated in this setup using a manual tapping station, designed and built at MPS in Germany, for GC-MS analysis. The gaseous species eluting from the GC are then ionized by an electron impact ionization source in the MS chamber and analyzed by the linear ion trap mass spectrometer. Volatile and non-volatile compounds were injected in the MOMA instrumental suite. Both of these compounds classes were detected by the TCD and by the MS. MS signal (total ion current) and single mass spectra by comparison with the NIST library, gave us an unambiguous confirmation of these identifications. The mass spectra arise from an average of 10 mass spectra averaged around a given time point in the total ion chromatogram.Based on commercial instrument, the MOMA requirement for sensitivity in the GC-MS mode for organic molecules is 1 pmol. In this test, sensitivity was determined for the GC TCD and MS response to a dilution series containing isopropanol, hexane and benzene deposited onto silica beads in the MOMA oven. Generally, the MS was found to be 5 to10 times more sensitive than the GC TCD for hexane and benzene respectively.
Aerosol volatility in a boreal forest environment
NASA Astrophysics Data System (ADS)
Häkkinen, S. A. K.; ńijälä, M.; Lehtipalo, K.; Junninen, H.; Virkkula, A.; Worsnop, D. R.; Kulmala, M.; Petäjä, T.; Riipinen, I.
2012-04-01
Climate and health effects of atmospheric aerosols are determined by their properties such as their chemical composition. Aerosol chemical composition can be studied indirectly by measuring volatility of aerosol particles. The volatility of submicron aerosol particles (20-500 nm) was studied in a boreal forest site at SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations II) station (Vesala et al., 1998) in Hyytiälä, Finland, during 01/2008-05/2010. The instrument used for the measurements was VDMPS (Volatility Differential Mobility Particle Sizer), which consists of two separate instruments: DMPS (Differential Mobility Particle Sizer, Aalto et al., 2001) and TD (Thermodenuder, Wehner et al., 2002). Aerosol evaporation was examined by heating the aerosol and comparing the total aerosol mass before and after heating. In the VDMPS system ambient aerosol sample was heated up to temperatures ranging from 80 °C to 280 °C. The higher the heating temperature was the more aerosol material was evaporated. There was a non-volatile residual present in aerosol particles when heated up to 280 °C. This residual explained (20±8)% of the total aerosol mass. Aerosol non-volatile mass fraction was highest during winter and smallest during summer months. The role of black carbon in the observed non-volatile residual was determined. Black carbon explained 40 to 90% of the non-volatile mass. Especially during colder seasons noticeable amount of non-volatile material, something else than black carbon, was observed. According to Kalberer et al. (2004) some atmospheric organic species can form polymers that have high evaporation temperatures. Also low-volatile organic salts may contribute to the non-volatile aerosol (Smith et al., 2010). Aerosol mass composition measured directly with AMS (Aerosol Mass Spectrometer, Jayne et al., 2000) was analyzed in order to examine the properties of the non-volatile material (other than black carbon). The AMS measurements were performed during spring and autumn 2008. Results from the aerosol mass spectrometry indicate that the non-volatile residual consists of nitrate and organic compounds, especially during autumn. These compounds may be low-volatile organic nitrates or salts. During winter and spring the non-volatile core (black carbon removed) correlated markedly with carbon monoxide, which is a tracer of anthropogenic emissions. Due to this, the non-volatile residual may also contain other pollutants in addition to black carbon. Thus, it seems that the amount of different compounds in submicron aerosol particles varies with season and as a result the chemical composition of the non-volatile residual changes within a year. This work was supported by University of Helsinki three-year research grant No 490082 and Maj and Tor Nessling Foundation grant No 2010143. Aalto et al., (2001). Physical characterization of aerosol particles during nucleation events. Tellus B, 53, 344-358. Jayne, et al., (2000). Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci. Technol., 33(1-2), 49-70. Kalberer et al., (2004). Identification of Polymers as Major Components of Atmospheric Organic Aerosols. Science, 303, 1659-1662. Smith et al., (2010). Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. P. Natl. Acad. Sci., 107(15). Vesala et al., (1998). Long-term field measurements of atmosphere-surface interactions in boreal forest combining forest ecology, micrometeorology, aerosol physics and atmospheric chemistry. Trends Heat, Mass Mom. Trans., 4, 17-35. Wehner et al., (2002). Design and calibration of a thermodenuder with an improved heating unit to measure the size-dependent volatile fraction of aerosol particles. J. Aerosol Sci., 33, 1087-1093.
Marongiu, Bruno; Piras, Alessandra; Porcedda, Silvia
2006-05-10
Isolation of volatile concentrate from the dried leaves of Artemisia arborescens and of Helichrysum splendidum has been obtained by supercritical extraction with carbon dioxide. To obtain a pure volatile extract devoid of cuticular waxes, the extraction products were fractionated in two separators operating in series. A good extraction process was obtained operating at 90 bar and 50 degrees C in the extraction vessel, at 90 bar and at -5 degrees C in the first separator and at a pressure between 20 and 15 bar and temperatures in the range 10-20 degrees C in the second one. The composition of the volatile concentrate has been analyzed by GC/MS. The volatile concentrate of A. arborescens was found to contain: trans-thujone (13.96%), camphor (6.15%) and chamazulene (5.95%). The main constituents in the extract of H. splendidum were: germacrene D-4-ol (17.08%), germacrene D (9.04%), bicyclogermacrene (8.79%) and delta-cadinene (8.43%). A comparison with the oils obtained by hydrodistillation is also given. The differences observed between the composition of the SFE volatile concentrates and of the hydrodistilled (HD) oils were relevant. Indeed, the HD oils had a blue color whereas the volatile concentrates were pale yellow. The HD oil of H. splendidum had a blue color due to the presence of guaiazulene (0.42% vs 0%), whereas the coloration of HD oil of A. arborecens was due to the high concentration of chamazulene (26.64% vs 3.37%).