Agglutinates as recorders of regolith evolution - Application to the Apollo 17 drill core
NASA Technical Reports Server (NTRS)
Laul, J. C.; Smith, M. R.; Papike, J. J.; Simon, S. B.
1984-01-01
Chemical data are reported for agglutinates from 26 depth intervals of the Apollo 17 deep drill core, and the compositions of the agglutinates are compared with those of the soils in which they occur. The agglutinate sequence suggests a scenario in which several closely-spaced depositional events were involved in the formation of the drill core, rather than a continuous accumulation process.
Agglutinates as recorders of regolith evolution - Application to the Apollo 17 drill core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laul, J.C.; Smith, M.R.
1984-11-15
Chemical data are reported for agglutinates from 26 depth intervals of the Apollo 17 deep drill core, and the compositions of the agglutinates are compared with those of the soils in which they occur. The agglutinate sequence suggests a scenario in which several closely-spaced depositional events were involved in the formation of the drill core, rather than a continuous accumulation process.
Parkes, R John; Sellek, Gerard; Webster, Gordon; Martin, Derek; Anders, Erik; Weightman, Andrew J; Sass, Henrik
2009-01-01
Deep subseafloor sediments may contain depressurization-sensitive, anaerobic, piezophilic prokaryotes. To test this we developed the DeepIsoBUG system, which when coupled with the HYACINTH pressure-retaining drilling and core storage system and the PRESS core cutting and processing system, enables deep sediments to be handled without depressurization (up to 25 MPa) and anaerobic prokaryotic enrichments and isolation to be conducted up to 100 MPa. Here, we describe the system and its first use with subsurface gas hydrate sediments from the Indian Continental Shelf, Cascadia Margin and Gulf of Mexico. Generally, highest cell concentrations in enrichments occurred close to in situ pressures (14 MPa) in a variety of media, although growth continued up to at least 80 MPa. Predominant sequences in enrichments were Carnobacterium, Clostridium, Marinilactibacillus and Pseudomonas, plus Acetobacterium and Bacteroidetes in Indian samples, largely independent of media and pressures. Related 16S rRNA gene sequences for all of these Bacteria have been detected in deep, subsurface environments, although isolated strains were piezotolerant, being able to grow at atmospheric pressure. Only the Clostridium and Acetobacterium were obligate anaerobes. No Archaea were enriched. It may be that these sediment samples were not deep enough (total depth 1126–1527 m) to obtain obligate piezophiles. PMID:19694787
Neogene and Quaternary geology of a stratigraphic test hole on Horn Island, Mississippi Sound
Gohn, Gregory S.; Brewster-Wingard, G. Lynn; Cronin, Thomas M.; Edwards, Lucy E.; Gibson, Thomas G.; Rubin, Meyer; Willard, Debra A.
1996-01-01
During April and May, 1991, the U.S. Geological Survey (USGS) drilled a 510-ft-deep, continuously cored, stratigraphic test hole on Horn Island, Mississippi Sound, as part of a field study of the Neogene and Quaternary geology of the Mississippi coastal area. The USGS drilled two new holes at the Horn Island site. The first hole was continuously cored to a depth of 510 ft; coring stopped at this depth due to mechanical problems. To facilitate geophysical logging, an unsampled second hole was drilled to a depth of 519 ft at the same location.
Fine structure of the late Eocene Ir anomaly in marine sediments
NASA Technical Reports Server (NTRS)
Asaro, F.
1991-01-01
The Late Eocene Ir abundance profile in deep sea cores from Ocean Drilling Program Leg 113 Hole 689B on the Maude Rise off of Antarctica was studied with 410 samples continuously in 10 cm increments and measured with the Iridium Coincidence (ICS). The ICS was subsequently modified to measure 13 other elements simultaneously with the Ir. The abundance profiles of these elements were then determined in the Late Eocene Massignano section in central Italy with 250 samples (encompassing roughly 2 million years of accumulation) which were collected about every 5 cm in about 2 cm increments. These studies augmented a previous one (which included many elements) of deep sea cores from Deep Sea Drilling Project Site 592 on the Lord Howe Rise in the Tasman Sea between Australia and New Zealand. In the latter study, 50 samples (encompassing roughly 0.7 million years of accumulation) were collected continuously in 10 cm increments. The results from these studies are discussed.
Preparing America for Deep Space Exploration Episode 16: Exploration On The Move
2018-02-22
Preparing America for Deep Space Exploration Episode 16: Exploration On The Move NASA is pressing full steam ahead toward sending humans farther than ever before. Take a look at the work being done by teams across the nation for NASA’s Deep Space Exploration System, including the Space Launch System, Orion, and Exploration Ground Systems programs, as they continue to propel human spaceflight into the next generation. Highlights from the fourth quarter of 2017 included Orion parachute drop tests at the Yuma Proving Ground in Arizona; the EM-1 Crew Module move from Cleanroom to Workstation at Kennedy Space Center; Crew Training, Launch Pad Evacuation Scenario, and Crew Module Vibration and Legibility Testing at NASA’s Johnson Space Center; RS-25 Rocket Engine Testing at Stennis Space Center; Core Stage Engine Section arrival, Core Stage Pathfinder; LH2 Qualification Tank; Core Stage Intertank Umbilical lift at Mobile Launcher; Crew Access Arm move to Mobile Launcher; Water Flow Test at Launch Complex 39-B.
NASA Astrophysics Data System (ADS)
Hempel, S.; Garcia, R.; Weber, R. C.; Schmerr, N. C.; Panning, M. P.; Lognonne, P. H.; Banerdt, W. B.
2016-12-01
Complementary to investigating ray theoretically predictable parameters to explore the deep interior of Mars (see AGU contribution by R. Weber et al.), this paper presents the waveform approach to illuminate the lowermost mantle and core-mantle boundary of Mars. In preparation to the NASA discovery mission InSight, scheduled for launch in May, 2018, we produce synthetic waveforms considering realistic combinations of sources and a single receiver, as well as noise models. Due to a lack of constraints on the scattering properties of the Martian crust and mantle, we assume Earth-like scattering as a minimum and Moon-like scattering as a maximum possibility. Various seismic attenuation models are also investigated. InSight is set up to deliver event data as well as a continuous data flow. Where ray theoretical approaches will investigate the event data, the continuous data flow may contain signals reflected multiple times off the same reflector, e.g. the underside of the lithosphere, or the core-mantle boundary. It may also contain signals of individual events not detected or interfering wavefields radiated off multiple undetected events creating 'seismic noise'. We will use AxiSEM to simulate a continuous data flow for these cases for various 1D and 2D Mars models, and explore the possibilities of seismic interferometry to use seismic information hidden in the coda to investigate the deep interior of Mars.
Rapid ice drilling with continual air transport of cuttings and cores: General concept
NASA Astrophysics Data System (ADS)
Wang, Rusheng; An, Liu; Cao, Pinlu; Chen, Baoyi; Sysoev, Mikhail; Fan, Dayou; Talalay, Pavel G.
2017-12-01
This article describes the investigation of the feasibility of rapid drilling in ice sheets and glaciers to depths of up to 600 m, with cuttings and cores continually transported by air reverse circulation. The method employs dual wall drill rods. The inner tubes provide a continuous pathway for the chips and cores from the drill bit face to the surface. To modify air reverse circulation drilling technology according to the conditions of a specific glacier, original cutter drill bits and air processing devices (air-cooled aftercoolers, air receivers, coalescing filters, desiccant dryers) should be used. The airflow velocity for conveying a 60-mm diameter and 200-mm long ice core should not be lower than 22.5 m/s, and the minimal airflow rate for continual chip and cores transport is 6.8 m3/min at 2.3-2.6 MPa. Drilling of a 600-m deep hole can be accomplished within 1.5 days in the case of 24 h drilling operations. However, to avoid sticking while drilling through ice, the drilling depth should to be limited to 540 m at a temperature of -20 °C and to 418 m at a temperature of -10 °C.
NASA Astrophysics Data System (ADS)
Francke, Alexander; Wagner, Bernd; Krastel, Sebastian; Lindhorst, Katja; Mantke, Nicole; Klinghardt, Dorothea
2014-05-01
Lake Ohrid, located at the border of Macedonia and Albania is about 30 km long, 15 km wide and up to 290 m deep. Formed within a tectonic graben, Lake Ohrid is considered to be the oldest lake in Europe. The ICDP SCOPSCO (Scientific Collaboration of Past Speciation Conditions in Lake Ohrid) deep drilling campaign at Lake Ohrid in spring 2013 aimed (a) to obtain more precise information about the age and origin of the lake, (b) to unravel the seismotectonic history of the lake area including effects of major earthquakes and associated mass wasting events, (c) to obtain a continuous record containing information on volcanic activities and climate changes in the central northern Mediterranean region, and (d) to better understand the impact of major geological/environmental events on general evolutionary patterns and shaping an extraordinary degree of endemic biodiversity as a matter of global significance. Drilling was carried out by DOSECC (Salt Lake City, USA) using the DLDS (Deep Lake Drilling System) with a hydraulic piston corer for surface sediments and rotation drilling for harder, deeper sediments. Overall, about 2,100 m of sediment were recovered from 4 drill sites. At the "DEEP" site in the center of the lake, seismic data indicated a maximum sediment fill of ca. 700 m, of which the uppermost 568 m sediment were recovered. Initial data from core catcher samples and on-site susceptibility measurements indicate that the sediment sequence covers more than 1.2 million years and provides a continuous archive of environmental and climatological variability in the area. Currently, core opening, core description, XRF and MSCL -scanning, core correlation, and sub-sampling of the sediment cores from the "DEEP" site is conducted at the University of Cologne. High-resolution geochemical data obtained from XRF-scanning imply that the sediments from the "DEEP" site are highly sensitive to climate and environmental variations in the Balkan area over the last few glacial-interglacial cycles. Interglacial periods are characterized by high Ca counts, likely associated with a high content of calcite in the sediments. Previous studies have shown that the calcite contents in sediments from Lake Ohrid are predominantly triggered by precipitation of endogenic calcite resulting from enhanced photosynthesis and higher temperatures. Moreover, high Ca counts mostly correspond to low K counts indicating reduced clastic input and a denser vegetation cover in the catchment. In contrast, high K and low Ca counts characterize glacial periods, indicating reduced precipitation of endognic calcite and enhanced deposition of clastic material. The variations in Ca and K counts mainly represent climatic variations on a glacial-interglacial timescale. Inorganic geochemistry data shall also be used to improve the age control of the "DEEP" site sequence. First findings of macroscopic tephra horizons allow a preliminary age control on the sediment succession, and peaks in K, Sr, Zr, and magnetic susceptibility might indicate the occurrence of cryptotephralayers in the sediment sequence.
Reconstructing Deep Ocean Circulation in the North Atlantic from Bermuda Rise, and Beyond
NASA Astrophysics Data System (ADS)
McManus, J. F.
2016-12-01
The large-scale subsurface circulation of the ocean is an important component of the Earth's climate system, and contributes to the global and regional transport of heat and mass. Assessing how this system has changed in the past is thus a priority for understanding natural climate variability. A long-coring campaign on Bermuda Rise has provided additional abundant high-quality sediments from this site of rapid accumulation in the deep western basin, situated beneath the subtropical gyre of the North Atlantic Ocean. These sediments allow the high-resolution reconstruction of deepwater chemistry and export from this key location throughout the last 150,000 years, covering the entire last glacial cycle in a continuous section of 35 meters in core KNR191-CDH19. The suite of proxy indicators analyzed includes uranium-series disequilibria, neodymium isotopes, and benthic stable isotopes. Combined with multiple previous studies of nearby cores on Bermuda Rise, the published and new proxy data from CDH19 confirm the variability of the deep circulation in the Atlantic Ocean in association with past climate changes. The multiple indicators, along with complementary data from other locations, display coherent evidence for contrasts between deep circulation during glacial and interglacial intervals, with persistent strong, deep ventilation only within the peak interglacial of marine isotope stage 5e (MIS 5e) and the Holocene. In contrast, repeated, dramatic variability in deep ocean circulation accompanied the millennial climate changes of the last glaciation and deglaciation. The largest magnitude circulation shifts occurred at the transitions into stadials associated with the Hudson strait iceberg discharges and between them and the ensuing northern interstadial warmings, significantly exceeding that of the overall glacial-interglacial difference, highlighting the potential oceanographic and climatic importance of short-term perturbations to the deep ocean circulation.
Break-up of the Atlantic deep western boundary current into eddies at 8 degrees S.
Dengler, M; Schott, F A; Eden, C; Brandt, P; Fischer, J; Zantopp, R J
2004-12-23
The existence in the ocean of deep western boundary currents, which connect the high-latitude regions where deep water is formed with upwelling regions as part of the global ocean circulation, was postulated more than 40 years ago. These ocean currents have been found adjacent to the continental slopes of all ocean basins, and have core depths between 1,500 and 4,000 m. In the Atlantic Ocean, the deep western boundary current is estimated to carry (10-40) x 10(6) m3 s(-1) of water, transporting North Atlantic Deep Water--from the overflow regions between Greenland and Scotland and from the Labrador Sea--into the South Atlantic and the Antarctic circumpolar current. Here we present direct velocity and water mass observations obtained in the period 2000 to 2003, as well as results from a numerical ocean circulation model, showing that the Atlantic deep western boundary current breaks up at 8 degrees S. Southward of this latitude, the transport of North Atlantic Deep Water into the South Atlantic Ocean is accomplished by migrating eddies, rather than by a continuous flow. Our model simulation indicates that the deep western boundary current breaks up into eddies at the present intensity of meridional overturning circulation. For weaker overturning, continuation as a stable, laminar boundary flow seems possible.
Deep drilling in the Chesapeake Bay impact structure - An overview
Gohn, G.S.; Koeberl, C.; Miller, K.G.; Reimold, W.U.
2009-01-01
The late Eocene Chesapeake Bay impact structure lies buried at moderate depths below Chesapeake Bay and surrounding landmasses in southeastern Virginia, USA. Numerous characteristics made this impact structure an inviting target for scientific drilling, including the location of the impact on the Eocene continental shelf, its threelayer target structure, its large size (??85 km diameter), its status as the source of the North American tektite strewn field, its temporal association with other late Eocene terrestrial impacts, its documented effects on the regional groundwater system, and its previously unstudied effects on the deep microbial biosphere. The Chesapeake Bay Impact Structure Deep Drilling Project was designed to drill a deep, continuously cored test hole into the central part of the structure. A project workshop, funding proposals, and the acceptance of those proposals occurred during 2003-2005. Initial drilling funds were provided by the International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS). Supplementary funds were provided by the National Aeronautics and Space Administration (NASA) Science Mission Directorate, ICDP, and USGS. Field operations were conducted at Eyreville Farm, Northampton County, Virginia, by Drilling, Observation, and Sampling of the Earth's Continental Crust (DOSECC) and the project staff during September-December 2005, resulting in two continuously cored, deep holes. The USGS and Rutgers University cored a shallow hole to 140 m in April-May 2006 to complete the recovered section from land surface to 1766 m depth. The recovered section consists of 1322 m of crater materials and 444 m of overlying postimpact Eocene to Pleistocene sediments. The crater section consists of, from base to top: basement-derived blocks of crystalline rocks (215 m); a section of suevite, impact melt rock, lithic impact breccia, and cataclasites (154 m); a thin interval of quartz sand and lithic blocks (26 m); a granite megablock (275 m); and sediment blocks and boulders, polymict, sediment-clast-dominated sedimentary breccias, and a thin upper section of stratified sediments (652 m). The cored postimpact sediments provide insight into the effects of a large continental-margin impact on subsequent coastal-plain sedimentation. This volume contains the first results of multidisciplinary studies of the Eyreville cores and related topics. The volume is divided into these sections: geologic column; borehole geophysical studies; regional geophysical studies; crystalline rocks, impactites, and impact models; sedimentary breccias; postimpact sediments; hydrologic and geothermal studies; and microbiologic studies. ?? 2009 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Shinmoto, Y.; Wada, K.; Miyazaki, E.; Sanada, Y.; Sawada, I.; Yamao, M.
2010-12-01
The Nankai-Trough Seismogenic Zone Experiment (NanTroSEIZE) has carried out several drilling expeditions in the Kumano Basin off the Kii-Peninsula of Japan with the deep-sea scientific drilling vessel Chikyu. Core sampling runs were carried out during the expeditions using an advanced multiple wireline coring system which can continuously core into sections of undersea formations. The core recovery rate with the Rotary Core Barrel (RCB) system was rather low as compared with other methods such as the Hydraulic Piston Coring System (HPCS) and Extended Shoe Coring System (ESCS). Drilling conditions such as hole collapse and sea conditions such as high ship-heave motions need to be analyzed along with differences in lithology, formation hardness, water depth and coring depth in order to develop coring tools, such as the core barrel or core bit, that will yield the highest core recovery and quality. The core bit is especially important in good recovery of high quality cores, however, the PDC cutters were severely damaged during the NanTroSEIZE Stages 1 & 2 expeditions due to severe drilling conditions. In the Stage 1 (riserless coring) the average core recovery was rather low at 38 % with the RCB and many difficulties such as borehole collapse, stick-slip and stuck pipe occurred, causing the damage of several of the PDC cutters. In Stage 2, a new design for the core bit was deployed and core recovery was improved at 67 % for the riserless system and 85 % with the riser. However, due to harsh drilling conditions, the PDC core bit and all of the PDC cutters were completely worn down. Another original core bit was also deployed, however, core recovery performance was low even for plate boundary core samples. This study aims to identify the influence of the RCB system specifically on the recovery rates at each of the holes drilled in the NanTroSEIZE coring expeditions. The drilling parameters such as weight-on-bit, torque, rotary speed and flow rate, etc., were analyzed and conditions such as formation, tools, and sea conditions which directly affect core recovery have been categorized. Also discussed will be the further development of such coring equipment as the core bit and core barrel for the NanTroSEIZE Stage 3 expeditions, which aim to reach a depth of 7000 m-below the sea floor into harder formations under extreme drilling conditions.
Modelling the core magnetic field of the earth
NASA Technical Reports Server (NTRS)
Harrison, C. G. A.; Carle, H. M.
1982-01-01
It is suggested that radial off-center dipoles located within the core of the earth be used instead of spherical harmonics of the magnetic potential in modeling the core magnetic field. The off-center dipoles, in addition to more realistically modeling the physical current systems within the core, are if located deep within the core more effective at removing long wavelength signals of either potential or field. Their disadvantage is that their positions and strengths are more difficult to compute, and such effects as upward and downward continuation are more difficult to manipulate. It is nevertheless agreed with Cox (1975) and Alldredge and Hurwitz (1964) that physical realism in models is more important than mathematical convenience. A radial dipole model is presented which agrees with observations of secular variation and excursions.
NASA Astrophysics Data System (ADS)
Jourdan, Fred; Sharp, Warren D.; Renne, Paul R.
2012-05-01
The Hawaii Scientific Drilling Project recovered core from a 3.5 km deep hole from the flank of Mauna Kea volcano, providing a long, essentially continuous record of the volcano's physical and petrologic development that has been used to infer the chemical and physical characteristics of the Hawaiian mantle plume. Determining a precise accumulation rate via 40Ar/39Ar dating of the shield-stage tholeiites, which constitute 95-98% of the volcano's volume is challenging. We applied40Ar/39Ar dating using laser- and furnace-heating in two laboratories (Berkeley and Curtin) to samples of two lava flows from deep in the core (˜3.3 km). All determinations yield concordant isochron ages, ranging from 612 ± 159 to 871 ± 302 ka (2σ; with P ≥ 0.90). The combined data yield an age of 681 ± 120 ka (P = 0.77) for pillow lavas near the bottom of the core. This new age, when regressed with 40Ar/39Ar isochron ages previously obtained for tholeiites higher in the core, defines a constant accumulation rate of 8.4 ± 2.6 m/ka that can be used to interpolate the ages of the tholeiites in the HSDP core with a mean uncertainty of about ±83 ka. For example at ˜3300 mbsl, the age of 664 ± 83 ka estimated from the regression diverges at the 95% confidence level from the age of 550 ka obtained from the numerical model of DePaolo and Stolper (1996). The new data have implications for the timescale of the growth of Hawaiian volcanoes, the paleomagnetic record in the core, and the dynamics of the Hawaiian mantle plume.
Ancient deep-sea sponge grounds on the Flemish Cap and Grand Bank, northwest Atlantic.
Murillo, F J; Kenchington, E; Lawson, J M; Li, G; Piper, D J W
Recent studies on deep-sea sponges have focused on mapping contemporary distributions while little work has been done to map historical distributions; historical distributions can provide valuable information on the time frame over which species have co-evolved and may provide insight into the reasons for their persistence or decline. Members of the sponge family Geodiidae are dominant members of deep-sea sponge assemblages in the northwestern Atlantic. They possess unique spicules called sterrasters, which undergo little transport in sediment and can therefore indicate the Geodiidae sponge historical presence when found in sediment cores. This study focuses on the slopes of Flemish Cap and Grand Bank, important fishing grounds off the coast of Newfoundland, Canada, in international waters. Sediment cores collected in 2009 and 2010 were visually inspected for sponge spicules. Cores containing spicules were sub-sampled and examined under a light microscope for the presence of sterrasters. These cores were also dated using X-radiographs and grouped into five time categories based on known sediment horizons, ranging from 17,000 years BP to the present. Chronological groupings identified Geodiidae sponges in four persistent sponge grounds. The oldest sterrasters were concentrated in the eastern region of the Flemish Cap and on the southeastern slope of the Grand Bank. Opportunistic sampling of a long core in the southeastern region of the Flemish Cap showed the continuous presence of sponge spicules to more than 130 ka BP. Our results indicate that the geodiids underwent a significant range expansion following deglaciation, and support a contemporary distribution that is not shaped by recent fishing activity.
The deep Earth may not be cooling down
NASA Astrophysics Data System (ADS)
Andrault, Denis; Monteux, Julien; Le Bars, Michael; Samuel, Henri
2016-06-01
The Earth is a thermal engine generating the fundamental processes of geomagnetic field, plate tectonics and volcanism. Large amounts of heat are permanently lost at the surface yielding the classic view of the deep Earth continuously cooling down. Contrary to this conventional depiction, we propose that the temperature profile in the deep Earth has remained almost constant for the last ∼4.3 billion years. The core-mantle boundary (CMB) has reached a temperature of ∼4400 K in probably less than 1 million years after the Moon-forming impact, regardless the initial core temperature. This temperature corresponds to an abrupt increase in mantle viscosity atop the CMB, when ∼60% of partial crystallization was achieved, accompanied with a major decrease in heat flow at the CMB. Then, the deep Earth underwent a very slow cooling until it reached ∼4100 K today. This temperature at, or just below, the mantle solidus is suggested by seismological evidence of ultra-low velocity zones in the D;-layer. Such a steady thermal state of the CMB temperature excludes thermal buoyancy from being the predominant mechanism to power the geodynamo over geological time. An alternative mechanism to sustain the geodynamo is mechanical forcing by tidal distortion and planetary precession. Motions in the outer core are generated by the conversion of gravitational and rotational energies of the Earth-Moon-Sun system. Mechanical forcing remains efficient to drive the geodynamo even for a sub-adiabatic temperature gradient in the outer core. Our thermal model of the deep Earth is compatible with an average CMB heat flow of 3.0 to 4.7 TW. Furthermore, the regime of core instabilities and/or secular changes in the astronomical forces could have supplied the lowermost mantle with a heat source of variable intensity through geological time. Episodic release of large amounts of heat could have remelted the lowermost mantle, thereby inducing the dramatic volcanic events that occurred during the Earth's history. In this scenario, because the Moon is a necessary ingredient to sustain the magnetic field, the habitability on Earth appears to require the existence of a large satellite.
NASA Astrophysics Data System (ADS)
Francke, A.; Wagner, B.; Sulpizio, R.; Zanchetta, G.; Leicher, N.; Gromig, R.; Krastel, S.; Lindhorst, K.; Wilke, T.
2014-12-01
Ancient lakes, with sediment records spanning >1 million years, are very rare. The UNESCO World Heritage site of Lake Ohrid on the Balkans is thought to be the oldest lake in Europe. With 212 endemic species described to date, it is also a hotspot of evolution. In order to unravel the geological and evolutionary history of the lake, an international group of scientists, conducted a deep drilling campaign in spring 2013 under the umbrella of the ICDP SCOPSCO project (Scientific Collaboration on Past Speciation Conditions in Lake Ohrid). Overall, about 2,100 m of sediments were recovered from four drill sites. At the main drill site (DEEP-site) in central parts of the lake where seismic data indicated a maximum sediment fill of ca. 700 m, a total of more than 1,500 m of sediments were recovered until a penetration depth of 569 m. Currently, core opening, core description, XRF and MSCL scanning, sub-sampling (16 cm resolution), and inorganic and organic geochemical as well as sedimentological analyses of the sediment cores from the DEEP site are in progress at the University of Cologne. Previous studies at Lake Ohrid have shown that interglacial periods are characterized by high TIC and TOC contents, likely associated with high contents of calcite and organic matter in the sediments. In contrast, during glacial periods negligible TIC and low TOC contents correspond to high K counts indicating enhanced supply of clastic material. Similar patterns can be observed in the biogeochemical analyses of the subsamples and in the XRF data of the DEEP site record. Following these variations on a glacial-interglacial time scale, TIC and TOC data obtained from the subsamples and from core catcher samples indicate that the DEEP site sequence provides a 1.2 million year old continuous record of environmental and climatological variability in the Balkan Region. The age control can be further improved by first findings of macroscopic tephra horizons. Peaks in K, Sr, Zr, and magnetic susceptibility might indicate the occurrence of additional cryptotephra layers in the sediment sequence.
The design and performance of IceCube DeepCore
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Degner, T.; Demirörs, L.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kroll, G.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.
2012-05-01
The IceCube neutrino observatory in operation at the South Pole, Antarctica, comprises three distinct components: a large buried array for ultrahigh energy neutrino detection, a surface air shower array, and a new buried component called DeepCore. DeepCore was designed to lower the IceCube neutrino energy threshold by over an order of magnitude, to energies as low as about 10 GeV. DeepCore is situated primarily 2100 m below the surface of the icecap at the South Pole, at the bottom center of the existing IceCube array, and began taking physics data in May 2010. Its location takes advantage of the exceptionally clear ice at those depths and allows it to use the surrounding IceCube detector as a highly efficient active veto against the principal background of downward-going muons produced in cosmic-ray air showers. DeepCore has a module density roughly five times higher than that of the standard IceCube array, and uses photomultiplier tubes with a new photocathode featuring a quantum efficiency about 35% higher than standard IceCube PMTs. Taken together, these features of DeepCore will increase IceCube's sensitivity to neutrinos from WIMP dark matter annihilations, atmospheric neutrino oscillations, galactic supernova neutrinos, and point sources of neutrinos in the northern and southern skies. In this paper we describe the design and initial performance of DeepCore.
The Design and Performance of IceCube DeepCore
NASA Technical Reports Server (NTRS)
Stamatikos, M.
2012-01-01
The IceCube neutrino observatory in operation at the South Pole, Antarctica, comprises three distinct components: a large buried array for ultrahigh energy neutrino detection, a surface air shower array, and a new buried component called DeepCore. DeepCore was designed to lower the IceCube neutrino energy threshold by over an order of magnitude, to energies as low as about 10 GeV. DeepCore is situated primarily 2100 m below the surface of the icecap at the South Pole, at the bottom center of the existing IceCube array, and began taking pbysics data in May 2010. Its location takes advantage of the exceptionally clear ice at those depths and allows it to use the surrounding IceCube detector as a highly efficient active veto against the principal background of downward-going muons produced in cosmic-ray air showers. DeepCore has a module density roughly five times higher than that of the standard IceCube array, and uses photomultiplier tubes with a new photocathode featuring a quantum efficiency about 35% higher than standard IceCube PMTs. Taken together, these features of DeepCore will increase IceCube's sensitivity to neutrinos from WIMP dark matter annihilations, atmospheric neutrino oscillations, galactic supernova neutrinos, and point sources of neutrinos in the northern and southern skies. In this paper we describe the design and initial performance of DeepCore.
Preparing America for Deep Space Exploration Episode 11: Committed to Exploration
2015-12-09
Engineers around the country are making progress developing NASA’s Space Launch System, Orion spacecraft and the ground systems at Kennedy Space Center in Florida needed to send astronauts on missions to deep space destinations. Between July and September, progress continued as pieces of Orion’s crew module and the SLS core stage tanks were welded together at NASA’s Michoud Assembly Facility in New Orleans, modifications were made to the mobile launcher at Kennedy, astronauts tested techniques for exiting Orion after a mission, and an RS-25 engine was tested at Stennis Space Center in Mississippi.
Modeling of water isotopes in polar regions and application to ice core studies
NASA Astrophysics Data System (ADS)
Jouzel, J.
2012-04-01
Willi Dansgaard spear-headed the use of the stable isotopes of water in climatology and palaeoclimatology especially as applied to deep ice cores for which measurements of the oxygen and hydrogen isotope ratios remain the key tools for reconstructing continuous palaeotemperature records. In the line of his pioneering work on "Stable isotopes in precipitation" published in Tellus in 1964, I will review how isotopic models, either Rayleigh type or based on the implementation of water isotopes in General Circulation Models, have developed and been used for applications in polar ice core studies. This will include a discussion of the conventional approach for interpreting water isotopes in ice cores and of additional information provided by measurements of the deuterium excess and more recently of the 17O-excess.
Geophysical Properties of Hard Rock for Investigation of Stress Fields in Deep Mines
NASA Astrophysics Data System (ADS)
Tibbo, M.; Young, R. P.; Schmitt, D. R.; Milkereit, B.
2014-12-01
A complication in geophysical monitoring of deep mines is the high-stress dependency of the physical properties of hard rocks. In-mine observations show anisotropic variability of the in situ P- and S-wave velocities and resistivity of the hard rocks that are likely related to stress field changes. As part of a comprehensive study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, data from in situ monitoring of the seismicity, conductivity, stress, and stress dependent physical properties has been obtain. In-laboratory experiments are also being performed on borehole cores from the Sudbury mines. These experiments will measure the Norite borehole core's properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. Hydraulic fracturing has been successfully implemented in industries such as oil and gas and enhanced geothermal systems, and is currently being investigated as a potential method for preconditioning in mining. However, further research is required to quantify how hydraulic fractures propagate through hard, unfractured rock as well as naturally fractured rock typically found in mines. These in laboratory experiments will contribute to a hydraulic fracturing project evaluating the feasibility and effectiveness of hydraulic fracturing as a method of de-stressing hard rock mines. A tri-axial deformation cell equipped with 18 Acoustic Emission (AE) sensors will be used to bring the borehole cores to a tri-axial state of stress. The cores will then be injected with fluid until the the hydraulic fracture has propagated to the edge of the core, while AE waveforms will be digitized continuously at 10 MHz and 12-bit resolution for the duration of each experiment. These laboratory hydraulic fracture experiments will contribute to understanding how parameters including stress ratio, fluid injection rate, and viscosity, affect the fracturing process.
Biomechanical consequences of running with deep core muscle weakness.
Raabe, Margaret E; Chaudhari, Ajit M W
2018-01-23
The deep core muscles are often neglected or improperly trained in athletes. Improper function of this musculature may lead to abnormal spinal loading, muscle strain, or injury to spinal structures, all of which have been associated with increased low back pain (LBP) risk. The purpose of this study was to identify potential strategies used to compensate for weakness of the deep core musculature during running and to identify accompanying changes in compressive and shear spinal loads. Kinematically-driven simulations of overground running were created for eight healthy young adults in OpenSim at increasing levels of deep core muscle weakness. The deep core muscles (multifidus, quadratus lumborum, psoas, and deep fascicles of the erector spinae) were weakened individually and together. The superficial longissimus thoracis was a significant compensator for 4 out of 5 weakness conditions (p < 0.05). The deep erector spinae required the largest compensations when weakened individually (up to a 45 ± 10% increase in compensating muscle force production, p = 0.004), revealing it may contribute most to controlling running kinematics. With complete deep core muscle weakness, peak anterior shear loading increased on all lumbar vertebrae (up to 19%, p = 0.001). Additionally, compressive spinal loading increased on the upper lumbar vertebrae (up to 15%, p = 0.007) and decreased on the lower lumbar vertebrae (up to 8%, p = 0.008). Muscular compensations may increase risk of muscular fatigue or injury and increased spinal loading over numerous gait cycles may result in damage to spinal structures. Therefore, insufficient strength of the deep core musculature may increase a runner's risk of developing LBP. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Perry, Jay L.; Abney, Morgan B.; Knox, James C.; Parrish, Keith J.; Roman, Monserrate C.; Jan, Darrell L.
2012-01-01
Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.
deepTools2: a next generation web server for deep-sequencing data analysis.
Ramírez, Fidel; Ryan, Devon P; Grüning, Björn; Bhardwaj, Vivek; Kilpert, Fabian; Richter, Andreas S; Heyne, Steffen; Dündar, Friederike; Manke, Thomas
2016-07-08
We present an update to our Galaxy-based web server for processing and visualizing deeply sequenced data. Its core tool set, deepTools, allows users to perform complete bioinformatic workflows ranging from quality controls and normalizations of aligned reads to integrative analyses, including clustering and visualization approaches. Since we first described our deepTools Galaxy server in 2014, we have implemented new solutions for many requests from the community and our users. Here, we introduce significant enhancements and new tools to further improve data visualization and interpretation. deepTools continue to be open to all users and freely available as a web service at deeptools.ie-freiburg.mpg.de The new deepTools2 suite can be easily deployed within any Galaxy framework via the toolshed repository, and we also provide source code for command line usage under Linux and Mac OS X. A public and documented API for access to deepTools functionality is also available. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
deepTools: a flexible platform for exploring deep-sequencing data.
Ramírez, Fidel; Dündar, Friederike; Diehl, Sarah; Grüning, Björn A; Manke, Thomas
2014-07-01
We present a Galaxy based web server for processing and visualizing deeply sequenced data. The web server's core functionality consists of a suite of newly developed tools, called deepTools, that enable users with little bioinformatic background to explore the results of their sequencing experiments in a standardized setting. Users can upload pre-processed files with continuous data in standard formats and generate heatmaps and summary plots in a straight-forward, yet highly customizable manner. In addition, we offer several tools for the analysis of files containing aligned reads and enable efficient and reproducible generation of normalized coverage files. As a modular and open-source platform, deepTools can easily be expanded and customized to future demands and developments. The deepTools webserver is freely available at http://deeptools.ie-freiburg.mpg.de and is accompanied by extensive documentation and tutorials aimed at conveying the principles of deep-sequencing data analysis. The web server can be used without registration. deepTools can be installed locally either stand-alone or as part of Galaxy. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Occupational heat strain in a hot underground metal mine.
Lutz, Eric A; Reed, Rustin J; Turner, Dylan; Littau, Sally R
2014-04-01
In a hot underground metal mine, this study evaluated the relationship between job task, physical body type, work shift, and heat strain. Thirty-one miners were evaluated during 98 shifts while performing deep shaft-sinking tasks. Continuous core body temperature, heart rate, pre- and postshift urine specific gravity (USG), and body mass index were measured. Cutting and welding tasks were associated with significantly (P < 0.05) increased core body temperature, maximum heart rate, and increased postshift urine specific gravity. Miners in the obese level II and III body mass index categories, as well as those working night shift, had lower core body temperatures (P < 0.05). This study confirms that job task, body type, and shift are risk factors for heat strain.
Modelingofwaterisotopesinpolarregionsandapplicationtoicecorestudies
NASA Astrophysics Data System (ADS)
Jouzel, J.
2012-04-01
Willi Dansgaard spear-headed the use of the stable isotopes of water in climatology and palaeoclimatology especially as applied to deep ice cores for which measurements of the oxygen and hydrogen isotope ratios remain the key tools for reconstructing continuous palaeotemperature records. In the line of his pioneering work on "Stable isotopes in precipitation" published in Tellus in 1964, I will review how isotopic models, either Rayleigh type or based on the implementation of water isotopes in General Circulation Models, have developed and been used for applications in polar ice core studies. This will include a discussion of the conventional approach for interpreting water isotopes in ice cores and of additional information provided by measurements of the deuterium excess and more recently of the 17O-excess.
Chemical stratigraphy of the Apollo 17 deep drill cores 70009-70007
NASA Technical Reports Server (NTRS)
Ehmann, W. D.; Ali, M. Z.
1977-01-01
A description is presented of an analysis of a total of 26 samples from three core segments (70009, 70008, 70007) of the Apollo 17 deep drill string. The deep drill string was taken about 700 m east of the Camelot Crater in the Taurus-Littrow region of the moon. Three core segments have been chemically characterized from the mainly coarse-grained upper portion of the deep drill string. The chemical data suggest that the entire 70007-70009 portion of the deep drill string examined was not deposited as a single unit, but was formed by several events sampling slightly different source materials which may have occurred over a relatively short period of time. According to the data from drill stem 70007, there were at least two phases of deposition. Core segment 70009 is probably derived from somewhat different source material than 70008. It seems to be a very well mixed material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, I.; Badro, J.; Siebert, J.
We present gallium concentration (normalized to CI chondrites) in the mantle is at the same level as that of lithophile elements with similar volatility, implying that there must be little to no gallium in Earth's core. Metal-silicate partitioning experiments, however, have shown that gallium is a moderately siderophile element and should be therefore depleted in the mantle by core formation. Moreover, gallium concentrations in the mantle (4 ppm) are too high to be only brought by the late veneer; and neither pressure, nor temperature, nor silicate composition has a large enough effect on gallium partitioning to make it lithophile. Wemore » therefore systematically investigated the effect of core composition (light element content) on the partitioning of gallium by carrying out metal–silicate partitioning experiments in a piston–cylinder press at 2 GPa between 1673 K and 2073 K. Four light elements (Si, O, S, C) were considered, and their effect was found to be sufficiently strong to make gallium lithophile. The partitioning of gallium was then modeled and parameterized as a function of pressure, temperature, redox and core composition. A continuous core formation model was used to track the evolution of gallium partitioning during core formation, for various magma ocean depths, geotherms, core light element contents, and magma ocean composition (redox) during accretion. The only model for which the final gallium concentration in the silicate Earth matched the observed value is the one involving a light-element rich core equilibrating in a FeO-rich deep magma ocean (>1300 km) with a final pressure of at least 50 GPa. More specifically, the incorporation of S and C in the core provided successful models only for concentrations that lie far beyond their allowable cosmochemical or geophysical limits, whereas realistic O and Si amounts (less than 5 wt.%) in the core provided successful models for magma oceans deeper that 1300 km. In conclusion, these results offer a strong argument for an O- and Si-rich core, formed in a deep terrestrial magma ocean, along with oxidizing conditions.« less
NASA Astrophysics Data System (ADS)
Wu, Fuli; Fang, Xiaomin; Meng, Qingquan; Zhao, Yan; Tang, Fenjun; Zhang, Tao; Zhang, Weilin; Zan, Jinbo
2017-11-01
The East Asian monsoon is generally regarded to have initiated at the transition from the Late Oligocene to the Early Miocene. However, little is known about this process because of a lack of continuous strata across the boundary between the Late Oligocene and the Early Miocene in Asia. Based on previous drilling (core HZ-1) in the Miocene sediments in the southern Linxia Basin in NW China, we drilled a new 620 m core (HZ-2) into the Late Oligocene strata and obtained 206 m of continuous new core. The detailed paleomagnetism of the new core reveals eleven pairs of normal and reversed polarity zones that can be readily correlated with chrons 6Bn-9n of the geomagnetic polarity time scale (GPTS), define an age interval of 21.6-26.5 Ma and indicate continuity from the Late Oligocene to Early Miocene. The core is characterized by the remarkable occurrence of brownish-red paleosols of luvic cambisols (brown to luvic drab soils) above reddish-brown floodplain siltstones and mudstones, which suggest that the East Asian monsoon likely began by 26.5 Ma. In contrast to the siltstone and mudstone of the Late Oligocene strata, the Miocene strata begin with a thick fine sandstone bed, which marks sudden increases in erosion and loading that most likely reflect a response to tectonic uplift. The hematite content and redness index records of the core further demonstrate that the monsoonal climate in the Late Oligocene to Early Miocene in this area was mainly controlled by global temperature trends and events.
Hydrologic Data for Deep Creek Lake and Selected Tributaries, Garrett County, Maryland, 2007-08
Banks, William S.L.; Davies, William J.; Gellis, Allen C.; LaMotte, Andrew E.; McPherson, Wendy S.; Soeder, Daniel J.
2010-01-01
Introduction Recent and ongoing efforts to develop the land in the area around Deep Creek Lake, Garrett County, Maryland, are expected to change the volume of sediment moving toward and into the lake, as well as impact the water quality of the lake and its many tributaries. With increased development, there is an associated increased demand for groundwater and surface-water withdrawals, as well as boat access. Proposed dredging of the lake bottom to improve boat access has raised concerns about the adverse environmental effects such activities would have on the lake. The Maryland Department of Natural Resources (MDDNR) and the U.S. Geological Survey (USGS) entered into a cooperative study during 2007 and 2008 to address these issues. This study was designed to address several objectives to support MDDNR?s management strategy for Deep Creek Lake. The objectives of this study were to: Determine the current physical shape of the lake through bathymetric surveys; Initiate flow and sediment monitoring of selected tributaries to characterize the stream discharge and sediment load of lake inflows; Determine sedimentation rates using isotope analysis of sediment cores; Characterize the degree of hydraulic connection between the lake and adjacent aquifer systems; and Develop an estimate of water use around Deep Creek Lake. Summary of Activities Data were collected in Deep Creek Lake and in selected tributaries from September 2007 through September 2008. The methods of investigation are presented here and all data have been archived according to USGS policy for future use. The material presented in this report is intended to provide resource managers and policy makers with a broad understanding of the bathymetry, surface water, sedimentation rates, groundwater, and water use in the study area. The report is structured so that the reader can access each topic separately using any hypertext markup (HTML) language reader. In order to establish a base-line water-depth map of Deep Creek Lake, a bathymetric survey of the lake bottom was conducted in 2007. The data collected were used to generate a bathymetric map depicting depth to the lake bottom from a full pool elevation of 2,462 feet (National Geodetic Vertical Datum of 1929). Data were collected along about 90 linear miles across the lake using a fathometer and a differentially corrected global positioning system. As part of a long-term monitoring plan for all surface-water inputs to the lake, streamflow data were collected continuously at two stations constructed on Poland Run and Cherry Creek. The sites were selected to represent areas of the watershed under active development and areas that are relatively stable with respect to development. Twelve months of discharge data are provided for both streams. In addition, five water-quality parameters were collected continuously at the Poland Run station including pH, specific conductance, temperature, dissolved oxygen, and turbidity. Water samples collected at Poland Run were analyzed for sediment concentration, and the results of this analysis were used to estimate the annual sediment load into Deep Creek Lake from Poland Run. To determine sedimentation rates, cores of lake-bottom sediments were collected at 23 locations. Five of the cores were analyzed using a radiometric-dating method, allowing average rates of sedimentation to be estimated for the time periods 1925 to 2008, 1925 to 1963, and 1963 to 2008. Particle-size data from seven cores collected at locations throughout the study area were analyzed to provide information on the amount of fine material in lake-bed sediments. Groundwater levels were monitored continuously in four wells and weekly in nine additional wells during October, November, and December of 2008. Water levels were compared to recorded lake levels and precipitation during the same period to determine the effect of lake-level drawdown and recovery on the adjacent aquifer systems. Water use in the Deep Creek Lake wa
Stratigraphy and depositional history of the Apollo 17 drill core
NASA Technical Reports Server (NTRS)
Taylor, G. J.; Warner, R. D.; Keil, K.
1979-01-01
Lithologic abundances obtained from modal analyses of a continuous string of polished thin sections indicate that the Apollo 17 deep drill core can be divided into three main zones: An upper zone (0-19 cm depth) characterized by high abundances of agglutinates (30%) and a high ratio of mare to non-mare lithic fragments (less than 0.8); a coarse-grained layer (24-56 cm) rich in fragments of high-Ti mare basalts and mineral fragments derived from them, and poor in agglutinates (6%); and a lower zone (56-285 cm) characterized by variable but generally high agglutinate abundances (25%) and a low ratio of mare to nonmare lithic fragments (0.6). Using observations of the geology of the landing site, the principles of cratering dynamics, and the vast amount of data collected on the core, the following depositional history for the section of regolith sampled by the Apollo 17 drill core: was devised.
Neogene sedimentation and erosion in the Amirante Passage, western Indian Ocean
NASA Astrophysics Data System (ADS)
Johnson, D. A.; Ledbetter, M. T.; Damuth, J. E.
1983-02-01
Twenty piston cores from the northern Mascarene Basin and Amirante Passage reflect the effects of the Deep Western Boundary Current (DWBC) upon the lithologic and stratigraphic record of the late Cenozoic. The cores span a depth interval of 3350 to 5200 m, representing the transition zone between modern North Atlantic Deep Water (NADW)-Circumpolar Water (CPW) and the underlying Antarctic Bottom Water (AABW). During the late Cretaceous and for much of the Paleogene, pelagic sedimentation occurred in the absence of significant bottom current activity. The formation of the global psychrosphere near the Eocene-Oligocene boundary initiated the DWBC, part of which could enter the Madagascar Basin via deep fractures in the Southwest Indian Ridge. The DWBC was well developed before the early Miocene, transporting course detrital sands northward into the passage from turbidite deposits along the continental margin of Madagascar. The DWBC was confined to depths below ˜ 4 km until the middle Miocene, when the flow strengthened and shoaled to depths <3300 m. Strong DWBC flow continued intermittently until the latest Pleistocene, producing extensive erosional surfaces. Today the flow of the DWBC is relatively weak, with strong only below ˜ 3850 m in the western channels. Pleistocene and late Tertiary erosion at intermediate depths (3 to 4 km) in the Indian Ocean contrasts with depositional continuity at the same depths farther 'upstream' in NADW. Fluctuations in the intensity of circumpolar flow rather than in the rate of production of NADW may have been the major controlling factor in the late Tertiary erosional history of the Amirante Passage.
Baldus, Sandra; Kluth, Karsten; Strasser, Helmut
2012-01-01
So far, it was unclear to what extent working in deep cold-storage depots has an influence on female order-pickers body core temperature and skin surface temperature considering different age groups. Physiological effects of order-picking in a chill room (+3°C) and cold store (-24°C) were examined on 30 female subjects (Ss), classified in two age groups (20- to 35- year-olds and 40- to 65-year-olds). The body core temperature was taken every 15 min at the tympanum and the skin surface temperature was recorded continuously at seven different positions. Working in the chill room induced a decrease of the body core temperature up to 0.5K in comparison to the value at the outset for both age groups which could be compensated by all Ss during the breaks. Working in the cold store caused a decline up to 1.1K for the younger Ss and 1.3K for the older Ss. A complete warming-up during the breaks was often not possible. Regarding the skin surface temperature, working in the chill room can be considered as unproblematic, whereas significantly lower temperatures at nose, fingers and toes, associated with substantial negative subjective sensations, were recorded while working in the cold store.
Rogers, K.L.; Larson, E.E.; Smith, G.; Katzman, D.; Smith, G.R.; Cerling, T.; Wang, Y.; Baker, R.G.; Lohmann, K.C.; Repenning, C.A.; Patterson, P.; Mackie, G.
1992-01-01
Sediments of the Alamosa Formation spanning the upper part of the Gauss and most of the Matuyama Chrons were recovered by coring in the high (2300 m) San Luis Valley of south-central Colorado. The study site is located at the northern end of the Rio Grande rift. Lithologic changes in the core sediments provide evidence of events leading to integration of the San Luis drainage basin into the Rio Grande. The section, which includes the Huckleberry Ridge Ash (2.02 Ma) and spans the entire Matuyama Chron, contains pollen, and invertebrate and vertebrate fossils. Stable isotope analyses of inorganic and biogenic carbonate taken over most of the core indicate substantially warmer temperatures than occur today in the San Luis Valley. At the end of the Olduvai Subchron, summer precipitation decreased, summer pan evaporation increased, and temperatures increased slightly compared to the earlier climate represented in the core. By the end of the Jaramillo Subchron, however, cold/wet and warm/dry cycles become evident and continue into the cold/wet regime associated with the deep-sea oxygen-isotope Stage 22 glaciation previously determined from outcrops at the same locality. Correspondence between the Hansen Bluff climatic record and the deep-sea oxygen-isotope record (oxygen-isotope stages from about 110-18) is apparent, indicating that climate at Hansen Bluff was responding to global climatic changes. ?? 1992.
New Era of Scientific Ocean Drilling
NASA Astrophysics Data System (ADS)
Eguchi, N.; Toczko, S.; Sanada, Y.; Igarashi, C.; Kubo, Y.; Maeda, L.; Sawada, I.; Takase, K.; Kyo, N.
2014-12-01
The D/V Chikyu, committed to scientific ocean drilling since 2007, has completed thirteen IODP expeditions, and Chikyu's enhanced drilling technology gives us the means to reach deep targets, enhanced well logging, deep water riserless drilling, and state of the art laboratory. Chikyu recovered core samples from 2466 meters below sea floor (mbsf) in IODP Exp. 337, and drilled to 3058.5 mbsf in IODP Exp. 348, but these are still not the limit of Chikyu's capability. As deep as these depths are, they are just halfway to the 5200 mbsf plate boundary target for the NanTroSEIZE deep riser borehole. There are several active IODP proposals in the pipeline. Each has scientific targets requiring several thousand meters of penetration below the sea floor. Riser technology is the only way to collect samples and data from that depth. Well logging has been enhanced with the adoption of riser drilling, especially for logging-while-drilling (LWD). LWD has several advantages over wireline logging, and provides more opportunities for continuous measurements even in unstable boreholes. Because of the larger diameter of riser pipes and enhanced borehole stability, Chikyu can use several state-of-the-art downhole tools, e.g. fracture tester, fluid sampling tool, wider borehole imaging, and the latest sonic tools. These new technologies and tools can potentially expand the envelope of scientific ocean drilling. Chikyu gives us access to ultra-deep water riserless drilling. IODP Exp. 343/343T investigating the March 2011 Tohoku Oki Earthquake, explored the toe of the landward slope of the Japan Trench. This expedition reached the plate boundary fault target at more than 800 mbsf in water depths over 6900 m for logging-while-drilling, coring, and observatory installation. This deep-water drilling capability also expands the scientific ocean drilling envelope and provides access to previously unreachable targets. On top of these operational capabilities, Chikyu's onboard laboratory is equipped with state-of-the-art instruments to analyze all science samples. X-ray CT creates non-destructive 3D images of core samples providing high resolution structural detail. The microbiology laboratory offers clean and contamination-free work environments required for microbiological samples.
Beyond core count: a look at new mainstream computing platforms for HEP workloads
NASA Astrophysics Data System (ADS)
Szostek, P.; Nowak, A.; Bitzes, G.; Valsan, L.; Jarp, S.; Dotti, A.
2014-06-01
As Moore's Law continues to deliver more and more transistors, the mainstream processor industry is preparing to expand its investments in areas other than simple core count. These new interests include deep integration of on-chip components, advanced vector units, memory, cache and interconnect technologies. We examine these moving trends with parallelized and vectorized High Energy Physics workloads in mind. In particular, we report on practical experience resulting from experiments with scalable HEP benchmarks on the Intel "Ivy Bridge-EP" and "Haswell" processor families. In addition, we examine the benefits of the new "Haswell" microarchitecture and its impact on multiple facets of HEP software. Finally, we report on the power efficiency of new systems.
Bartos, I; Beloborodov, A M; Hurley, K; Márka, S
2013-06-14
Jet reheating via nuclear collisions has recently been proposed as the main mechanism for gamma-ray burst (GRB) emission. In addition to producing the observed gamma rays, collisional heating must generate 10-100 GeV neutrinos, implying a close relation between the neutrino and gamma-ray luminosities. We exploit this theoretical relation to make predictions for possible GRB detections by IceCube + DeepCore. To estimate the expected neutrino signal, we use the largest sample of bursts observed by the Burst and Transient Source Experiment in 1991-2000. GRB neutrinos could have been detected if IceCube + DeepCore operated at that time. Detection of 10-100 GeV neutrinos would have significant implications, shedding light on the composition of GRB jets and their Lorentz factors. This could be an important target in designing future upgrades of the IceCube + DeepCore observatory.
NASA Astrophysics Data System (ADS)
Rosenheim, B. E.; Firesinger, D.; Roberts, M. L.; Burton, J. R.; Khan, N.; Moyer, R. P.
2016-12-01
Radiocarbon (14C) sediment core chronologies benefit from a high density of dates, even when precision of individual dates is sacrificed. This is demonstrated by a combined approach of rapid 14C analysis of CO2 gas generated from carbonates and organic material coupled with Bayesian statistical modeling. Analysis of 14C is facilitated by the gas ion source on the Continuous Flow Accelerator Mass Spectrometry (CFAMS) system at the Woods Hole Oceanographic Institution's National Ocean Sciences Accelerator Mass Spectrometry facility. This instrument is capable of producing a 14C determination of +/- 100 14C y precision every 4-5 minutes, with limited sample handling (dissolution of carbonates and/or combustion of organic carbon in evacuated containers). Rapid analysis allows over-preparation of samples to include replicates at each depth and/or comparison of different sample types at particular depths in a sediment or peat core. Analysis priority is given to depths that have the least chronologic precision as determined by Bayesian modeling of the chronology of calibrated ages. Use of such a statistical approach to determine the order in which samples are run ensures that the chronology constantly improves so long as material is available for the analysis of chronologic weak points. Ultimately, accuracy of the chronology is determined by the material that is actually being dated, and our combined approach allows testing of different constituents of the organic carbon pool and the carbonate minerals within a core. We will present preliminary results from a deep-sea sediment core abundant in deep-sea foraminifera as well as coastal wetland peat cores to demonstrate statistical improvements in sediment- and peat-core chronologies obtained by increasing the quantity and decreasing the quality of individual dates.
Composition of the core from gallium metal–silicate partitioning experiments
Blanchard, I.; Badro, J.; Siebert, J.; ...
2015-07-24
We present gallium concentration (normalized to CI chondrites) in the mantle is at the same level as that of lithophile elements with similar volatility, implying that there must be little to no gallium in Earth's core. Metal-silicate partitioning experiments, however, have shown that gallium is a moderately siderophile element and should be therefore depleted in the mantle by core formation. Moreover, gallium concentrations in the mantle (4 ppm) are too high to be only brought by the late veneer; and neither pressure, nor temperature, nor silicate composition has a large enough effect on gallium partitioning to make it lithophile. Wemore » therefore systematically investigated the effect of core composition (light element content) on the partitioning of gallium by carrying out metal–silicate partitioning experiments in a piston–cylinder press at 2 GPa between 1673 K and 2073 K. Four light elements (Si, O, S, C) were considered, and their effect was found to be sufficiently strong to make gallium lithophile. The partitioning of gallium was then modeled and parameterized as a function of pressure, temperature, redox and core composition. A continuous core formation model was used to track the evolution of gallium partitioning during core formation, for various magma ocean depths, geotherms, core light element contents, and magma ocean composition (redox) during accretion. The only model for which the final gallium concentration in the silicate Earth matched the observed value is the one involving a light-element rich core equilibrating in a FeO-rich deep magma ocean (>1300 km) with a final pressure of at least 50 GPa. More specifically, the incorporation of S and C in the core provided successful models only for concentrations that lie far beyond their allowable cosmochemical or geophysical limits, whereas realistic O and Si amounts (less than 5 wt.%) in the core provided successful models for magma oceans deeper that 1300 km. In conclusion, these results offer a strong argument for an O- and Si-rich core, formed in a deep terrestrial magma ocean, along with oxidizing conditions.« less
NASA Astrophysics Data System (ADS)
Wei, R.; Abouchami, W.; Zahn, R.; Masque, P.
2016-01-01
We report down-core sedimentary Nd isotope (εNd) records from two South Atlantic sediment cores, MD02-2594 and GeoB3603-2, located on the western South African continental margin. The core sites are positioned downstream of the present-day flow path of North Atlantic Deep Water (NADW) and close to the Southern Ocean, which makes them suitable for reconstructing past variability in NADW circulation over the last glacial cycle. The Fe-Mn leachates εNd records show a coherent decreasing trend from glacial radiogenic values towards less radiogenic values during the Holocene. This trend is confirmed by εNd in fish debris and mixed planktonic foraminifera, albeit with an offset during the Holocene to lower values relative to the leachates, matching the present-day composition of NADW in the Cape Basin. We interpret the εNd changes as reflecting the glacial shoaling of Southern Ocean waters to shallower depths combined with the admixing of southward flowing Northern Component Water (NCW). A compilation of Atlantic εNd records reveals increasing radiogenic isotope signatures towards the south and with increasing depth. This signal is most prominent during the Last Glacial Maximum (LGM) and of similar amplitude across the Atlantic basin, suggesting continuous deep water production in the North Atlantic and export to the South Atlantic and the Southern Ocean. The amplitude of the εNd change from the LGM to Holocene is largest in the southernmost cores, implying a greater sensitivity to the deglacial strengthening of NADW at these sites. This signal impacted most prominently the South Atlantic deep and bottom water layers that were particularly deprived of NCW during the LGM. The εNd variations correlate with changes in 231Pa/230Th ratios and benthic δ13C across the deglacial transition. Together with the contrasting 231Pa/230Th: εNd pattern of the North and South Atlantic, this indicates a progressive reorganization of the AMOC to full strength during the Holocene.
[Innovations in continuing/permanent education methods for the intensive care nurses].
Vázquez Guillamet, B; Guillamet Lloveras, A; Martínez Estalella, G; Pérez Ramírez, F
2014-01-01
Intensive care nursing is carried out in a dynamic environment characterized by the continuous incorporation of new technologies, approaches to care and a request for safety, participation and transparency by the public. Continuing/permanent intensive care nursing training in the acquisition of new competencies is key in this setting. In order to achieve this goal, simulation and problem based learning should be incorporated as essential methodologies to teach these skills. At the same time research should be done on which attitudes, competences, and knowledge are necessary to increase their intellectual knowledge. The core characteristics of ICU and its nursing should allow a deep change in their approach to continuing/permanent nursing education. Copyright © 2013 Elsevier España, S.L. y SEEIUC. All rights reserved.
NASA Astrophysics Data System (ADS)
Tono, Yoko; Yomogida, Kiyoshi
1997-10-01
Seismograms of the June 9, 1994, Bolivian deep earthquake recorded at epicentral distances from 100° to 122° show a train of signals with predominant frequencies between 1 and 2 Hz after the arrivals of short-period diffracted P-waves (P diff). We investigate the origin of these signals following P diff by analyzing a total of 20 records from the IRIS broad-band network and the short-period network of New Zealand. The arrivals of late signals continue for over 100 s, that is two times longer than the estimated source duration of this event. Subsequent aftershocks, which cause the following signals, are not expected from the long-period records. These results indicate that the long continuation of short-period signals is not due to the source complexities. The signals following P diff have small incident angles, and their spectra show peaks at about the same frequencies. These characteristics of the following signals exclude the possibility that their origin is shallow structure such as the heterogeneities beneath the stations or upper mantle. P diff propagates a long distance within the heterogeneous region near the core-mantle boundary. We conclude that the short-period signals following the main P diff are scattered waves caused by small-scale heterogeneities near the core-mantle boundary.
The thermal evolution of Mercury's Fe-Si core
NASA Astrophysics Data System (ADS)
Knibbe, Jurriën Sebastiaan; van Westrenen, Wim
2018-01-01
We have studied the thermal and magnetic field evolution of planet Mercury with a core of Fe-Si alloy to assess whether an Fe-Si core matches its present-day partially molten state, Mercury's magnetic field strength, and the observed ancient crustal magnetization. The main advantages of an Fe-Si core, opposed to a previously assumed Fe-S core, are that a Si-bearing core is consistent with the highly reduced nature of Mercury and that no compositional convection is generated upon core solidification, in agreement with magnetic field indications of a stable layer at the top of Mercury's core. This study also present the first implementation of a conductive temperature profile in the core where heat fluxes are sub-adiabatic in a global thermal evolution model. We show that heat migrates from the deep core to the outer part of the core as soon as heat fluxes at the outer core become sub-adiabatic. As a result, the deep core cools throughout Mercury's evolution independent of the temperature evolution at the core-mantle boundary, causing an early start of inner core solidification and magnetic field generation. The conductive layer at the outer core suppresses the rate of core growth after temperature differences between the deep and shallow core are relaxed, such that a magnetic field can be generated until the present. Also, the outer core and mantle operate at higher temperatures than previously thought, which prolongs mantle melting and mantle convection. The results indicate that S is not a necessary ingredient of Mercury's core, bringing bulk compositional models of Mercury more in line with reduced meteorite analogues.
NASA Astrophysics Data System (ADS)
Gupta, H. K.; Tiwari, V. M.; Satyanarayana, H.; Roy, S.; Arora, K.; Patro, P. K.; Shashidhar, D.; Mallika, K.; Akkiraju, V.; Misra, S.; Goswami, D.; Podugu, N.; Mishra, S.
2017-12-01
Koyna, near the west coast of India is the most prominent site of artificial water reservoir triggered seismicity (RTS). Soon after the impoundment of the Koyna Dam in 1962, RTS was observed. It has continued till now. It includes the largest RTS earthquake M 6.3 on December 10, 1967; 22 M≥5.0, and thousands of smaller earthquakes. The entire earthquake activity is limited to an area of about 30 km x 20 km, with most focal depths being within 6 km. There is no other earthquake source within 50 km of the Koyna Dam. An ICDP Workshop held in March 2011 found Koyna to be the most suitable site to investigate reservoir- triggered seismicity (RTS) through deep drilling. Studies carried out in the preparatory phase since 2011 include airborne magnetic and gravity-gradient surveys, MT surveys, drilling of 9 boreholes going to depths of 1500 m and logging, heat flow measurements, seismological investigations including the deployment of six borehole seismometers, and LiDAR. The Second ICDP Workshop held during 16- 18 May 2014, reviewed the progress made and detailed planning of putting the borehole observatory was discussed. The site of a 3 km deep pilot borehole was debated and among the 5 possible location. Based on the seismic activity and logistics the location of the first Pilot Borehole has been finalized and the drilling started on the 21st December 2016. The 3000 m deep borehole was completed on 11th June 2017. The basement was touched at 1247 m depth and there were no sediments below basalt. Several zones with immense fluid losses were encountered. Geophysical Logging has been completed. Cores were recovered from 1269, 1892 and 2091 depths. The cores are 9 m long and with 4 inches diameter. The core recovery is almost 100%. In-situ stress measurements have been conducted at depths of 1600 m onwards.
Systematics of Alkali Metals in Pore Fluids from Serpentinite Mud Volcanoes: IODP Expedition 366
NASA Astrophysics Data System (ADS)
Wheat, C. G.; Ryan, J.; Menzies, C. D.; Price, R. E.; Sissmann, O.
2017-12-01
IODP Expedition 366 focused, in part, on the study of geochemical cycling, matrix alteration, material and fluid transport, and deep biosphere processes within the subduction channel in the Mariana forearc. This was accomplished through integrated sampling of summit and flank regions of three active serpentinite mud volcanoes (Yinazao (Blue Moon), Asùt Tesoro (Big Blue), and Fantangisña (Celestial) Seamounts). These edifices present a transect of depths to the Pacific Plate, allowing one to characterize thermal, pressure and compositional effects on processes that are associated with the formation of serpentinite mud volcanoes and continued activity below and within them. Previous coring on ODP Legs 125 and 195 at two other serpentinite mud volcanoes (Conical and South Chamorro Seamounts) and piston, gravity, and push cores from several other Mariana serpentinite mud volcanoes add to this transect of sites where deep-sourced material is discharged at the seafloor. Pore waters (149 samples) were squeezed from serpentinite materials to determine the composition of deep-sourced fluid and to assess the character, extent, and effect of diagenetic reactions and mixing with seawater on the flanks of the seamounts as the serpentinite matrix weathers. In addition two Water Sampler Temperature Tool (WSTP) fluid samples were collected within two of the cased boreholes, each with at least 30 m of screened casing that allows formations fluids to discharge into the borehole. Shipboard results for Na and K record marked seamount-to-seamount differences in upwelling summit fluids, and complex systematics in fluids obtained from flank sites. Here we report new shore-based Rb and Cs measurements, two elements that have been used to constrain the temperature of the deep-sourced fluid. Data are consistent with earlier coring and drilling expeditions, resulting in systematic changes with depth (and by inference temperature) to the subduction channel.
Social responsibility: conceptualization and embodiment in a school of nursing.
Kelley, Maureen A; Connor, Ann; Kun, Karen E; Salmon, Marla E
2008-01-01
This paper describes how a school of nursing has conceptualized and embodied social responsibility in its core values, curricular design, admission standards, clinical practice, and service learning opportunities. The school's engagement in the process of practicing social responsibility and clarifying its meaning and application has made apparent the natural linkage between social responsibility and professionalism and the deep and complex relationship between social responsibility and nursing itself. It has also revealed how a commitment to social responsibility impacts and determines for whom nurses care. Claiming social responsibility as a core value and working to refine its meaning and place has increased the school's commitment to it, concomitantly impacting education, practice, and recruitment and evaluation of faculty and students. The school views the conceptualization of social responsibility as a deepening and unfolding evolution, rather than as a formulaic understanding, and expects that its ongoing work of claiming social responsibility as a core value will continue to be enriching.
Field testing of stiffened deep cement mixing piles under lateral cyclic loading
NASA Astrophysics Data System (ADS)
Raongjant, Werasak; Jing, Meng
2013-06-01
Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity.
A minimal cost function method for optimizing the age-Depth relation of deep-sea sediment cores
NASA Astrophysics Data System (ADS)
Brüggemann, Wolfgang
1992-08-01
The question of an optimal age-depth relation for deep-sea sediment cores has been raised frequently. The data from such cores (e.g., δ18O values) are used to test the astronomical theory of ice ages as established by Milankovitch in 1938. In this work, we use a minimal cost function approach to find simultaneously an optimal age-depth relation and a linear model that optimally links solar insolation or other model input with global ice volume. Thus a general tool for the calibration of deep-sea cores to arbitrary tuning targets is presented. In this inverse modeling type approach, an objective function is minimized that penalizes: (1) the deviation of the data from the theoretical linear model (whose transfer function can be computed analytically for a given age-depth relation) and (2) the violation of a set of plausible assumptions about the model, the data and the obtained correction of a first guess age-depth function. These assumptions have been suggested before but are now quantified and incorporated explicitly into the objective function as penalty terms. We formulate an optimization problem that is solved numerically by conjugate gradient type methods. Using this direct approach, we obtain high coherences in the Milankovitch frequency bands (over 90%). Not only the data time series but also the the derived correction to a first guess linear age-depth function (and therefore the sedimentation rate) itself contains significant energy in a broad frequency band around 100 kyr. The use of a sedimentation rate which varies continuously on ice age time scales results in a shift of energy from 100 kyr in the original data spectrum to 41, 23, and 19 kyr in the spectrum of the corrected data. However, a large proportion of the data variance remains unexplained, particularly in the 100 kyr frequency band, where there is no significant input by orbital forcing. The presented method is applied to a real sediment core and to the SPECMAP stack, and results are compared with those obtained in earlier investigations.
Yasuhara, Moriaki; Cronin, T. M.; Martinez, Arbizu P.
2008-01-01
We report the distribution of ostracods from ???5000 m depth from the Southeast and Equatorial Atlantic Ocean recovered from the uppermost 10 cm of minimally disturbed sediments taken by multiple-corer during the R/V Meteor DIVA2 expedition M63.2. Five cores yielded the following major deep-sea genera: Krithe, Henryhowella, Poseidonamicus, Legitimocythere, Pseudobosquetina, and Pennyella. All genera are widely distributed in abyssal depths in the world's oceans and common in Cenozoic deep-sea sediments. The total number of ostracod specimens is higher and ostracod shell preservation is better near the sediment-water interface, especially at the 0-1 cm core depths. Core slices from ???5 to 10 cm were barren or yielded a few poorly preserved specimens. The DIVA2 cores show that deep-sea ostracod species inhabit corrosive bottom water near the carbonate compensation depth (CCD) even though their calcareous valves are rarely preserved as fossils in sediment cores due to postmortem dissolution. Their occurrence at great water depths may partially explain the well-known global distributions of major deep-sea taxa in the world's oceans, although further expeditions using minimal-disturbance sampling devices are needed to fill geographic gaps. ?? 2008 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rizzi, Malgorzata; Hemmingsen Schovsbo, Niels; Korte, Christoph; Bryld Wessel Fyhn, Michael
2017-04-01
To improve the understanding and interpretation of the depositional environment of a late Oligocene lacustrine organic rich oil-prone source rock succession, 2464 hand held (HH)-XRF measurements were made systematically on the 500 m long, continuous core from the fully cored Enreca-3 well. This core, drilled on the remote Bach Long Vi Island, northern Gulf of Tonkin, offshore Vietnam, represents a deep lake succession alternating between lacustrine pelagic dominated sediments interrupted by hyperpycnal turbidites, high density turbidites and debris flows [1, 2]. From a combined HH-XRF-XRD data set, multivariate data analysis and regression models are used to type the rock and to predict the XRD mineral composition based on HH-XRF composition. The rock types and the modelled mineral composition highlight the geochemical variations of the sediment and allows for direct comparison with sedimentological processes and facies changes. The modeling also depicts the cyclic alteration of rock types that are present on many different scales ranging from centimeters to hundreds of meters [1, 2]. The sedimentological and geochemical variations observed throughout the cored section reflects fluctuating paleoclimate, tectonism and hinterland condition controlling the depositional setting, which may provide a deeper understanding of the deposition of this and similar Paleogene syn-rift succession in the South China Sea region. It allows furthermore the development of a more generalized depositional model relevant for other deep-lacustrine syn-rift basins. [1] Petersen et al. (2014) Journal of Petroleum Geology, 37: 373-389. [2] Hovikoski et al. (2016) Journal of Sedimentary Research, 86(8): 982-1007.
A preliminary examination of differential decomposition patterns in mass graves.
Troutman, Lauren; Moffatt, Colin; Simmons, Tal
2014-05-01
Five pairs of mass graves, each containing carcasses of 21 rabbits, were used to examine differential decomposition at four locations within the burial: surface, deep, mid-outer, and core. Every 100 accumulated degree days (ADD), a pair of graves was exhumed, and total body score (TBS) and internal carcass temperature of each rabbit were recorded. Decomposition did not differ for core- and deep-positioned carcasses (p = 0.13); differences were significant (p < 0.001) for all other location comparisons. Decomposition occurred fastest in shallow carcasses, followed by mid-outer carcasses; deep and core carcasses decomposed slowest and at rates not significantly different from one another. Adipocere formation was minimal and confined to deep carcasses. Carcass location within the mass grave significantly influenced internal carcass temperature (p < 0.001); a mean internal temperature difference of ca. 1°C existed between deep and shallow carcasses (30 cm apart). Effects of mass compactness and oxygenation require further investigation. © 2013 American Academy of Forensic Sciences.
Overview of Intelligent Power Controller Development for the Deep Space Gateway
NASA Technical Reports Server (NTRS)
Csank, Jeffrey
2017-01-01
Intelligent, or autonomous, control of a spacecraft is an enabling technology that must be developed for deep space human exploration. NASAs current long term human space platform, the International Space Station, which is in Low Earth Orbit, is in almost continuous communication with ground based mission control. This allows near real-time control of all the vehicle core systems, including power, to be controlled by the ground. As focus shifts from Low Earth Orbit, communication time-lag and communication bandwidth limitations beyond geosynchronous orbit does not permit this type of operation. This presentation contains ongoing work at NASA to develop an architecture for autonomous power control and the vehicle manager which monitors, coordinates, and delegates to all the on-board subsystems to enable autonomous control of the complete spacecraft.
A search for sterile neutrinos with IceCube DeepCore
NASA Astrophysics Data System (ADS)
Terliuk, Andrii; IceCube Collaboration
2017-09-01
The DeepCore detector is a densely instrumented part of the IceCube Neutrino Observatory that lowers the neutrino detection threshold down to approximately 10 GeV resulting in the ability to measure atmospheric neutrino oscillations. The standard three neutrino mixing scenario can be tested by searching for an additional light sterile neutrino state, which does not interact via the standard weak interaction, but mixes with the three active neutrino states. This leads to an impact on the atmospheric neutrino oscillations below 100 GeV. We present improved limits to the sterile mixing element |U τ4|2 using three years of the DeepCore data taken during 2011-2013.
NASA Astrophysics Data System (ADS)
Pérez-Asensio, José N.; Cacho, Isabel; Frigola, Jaime; Pena, Leopoldo D.; Sierro, Francisco J.; Asioli, Alessandra; Kuhlmann, Jannis; Huhn, Katrin
2017-04-01
Paleoenvironmental and paleoceanographic changes in the western Mediterranean are reconstructed for the last 24 ka using a combination of benthic foraminiferal assemblages and geochemical proxies measured on benthic foraminiferal shells (Mg/Ca-deep water temperatures and stable isotopes). The studied materials are sediment cores HER-GC-UB06 and MD95-2043recovered at 946 m and 1841 m, respectively, from the Alboran Sea. At present, both core sites are bathed by the Western Mediterranean Deep Water (WMDW), although UB06 core is close to the boundary with the overlying Levantine Intermediate Water (LIW). Therefore, past variability of both water masses can potentially be recorded by the benthic foraminiferal proxies from the studied sites. Benthic foraminiferal assemblages and geochemical data show fluctuations in bottom-water ventilation, organic matter accumulation and deep-water temperatures related to WMDW and LIW circulation. During the glacial interval, an alternation of events showing better ventilation (higher abundance of Cibicides pachyderma) with lower temperatures and events of warmer deep water temperatures with poorer ventilation (Nonionella iridea assemblage, lower abundance of C. pachyderma) are observed. This variability might reflect stronger WMDW formation during the Last Glacial Maximum (LGM) and Heinrich Stadial 1. During the Bølling-Allerød and Younger Dryas (YD) periods, cold temperatures and the lowest oxygenation rates are recorded coinciding with the highest abundance of deep infaunal taxa on both UB06 and MD95-2043 cores. This interval was coetaneous to the deposition of an Organic Rich Layer in the Alboran Sea. However, a re-ventilation trend started at the end of the YD in the shallower site (UB06 core) whereas low-oxygen conditions prevailed until the end of the early Holocene in the deep site (MD95-2043 core). During the early Holocene a significant deep water temperature increase occurred at the shallower site suggesting the replacement of WMDW by warmer water mass, likely LIW. In the middle Holocene, highly variable bottom-water oxygenation and temperatures are observed showing warmer deep waters with less oxygen content (higher deep and intermediate infaunal abundances). The late Holocene (last 4 ka) was characterized by slightly cooler deep water temperatures and enhanced oxygen levels supporting that WMDW became dominant at the shallower site. These observations reveal that Mediterranean thermohaline system has been highly variable during the studied period supporting its high sensitivity to changing climate conditions. These results open a new insight into the Mediterranean sensitivity to Holocene climate variability.
NASA Astrophysics Data System (ADS)
Ullgren, J. E.; van Aken, H. M.; Ridderinkhof, H.; de Ruijter, W. P. M.
2012-11-01
Temperature, salinity and velocity data are presented, along with the estimated volume transport, from seven full-length deep sea moorings placed across the narrowest part of the Mozambique Channel, southwest Indian Ocean, during the period November 2003 to December 2009. The dominant water mass in the upper layer is Sub-Tropical Surface Water (STSW) which overlies South Indian Central Water (SICW), and is normally capped by fresher Tropical Surface Water (TSW). Upper ocean salinity increased through 2005 as a result of saline STSW taking up a relatively larger part of the upper layer, at the expense of TSW. Upper waters are on average warmer and lighter in the central Channel than on the sides. Throughout the upper 1.5 km of the water column there is large hydrographic variability, short-term as well as interannual, and in particular at frequencies (four to seven cycles per year) associated with the southward passage of anticyclonic Mozambique Channel eddies. The eddies have a strong T-S signal, in the upper and central waters as well as on the intermediate level, as the eddies usually carry saline Red Sea Water (RSW) in their core. While the interannual frequency band displays an east-west gradient with higher temperature variance on the western side, the eddy frequency band shows highest variance in the centre of the Channel, where the eddy band contains about 40% of the total isopycnal hydrographic variability. Throughout the >6 years of measurements, the frequency and characteristics of eddies vary between periods, both in terms of strength and vertical structure of eddy T-S signals. These changes contribute to the interannual variability of water mass properties: an increase in central water salinity to a maximum in late 2007 coincided with a period of unusually frequent eddies with strong salinity signals. The warmest and most saline deep water is found within the northward flowing Mozambique Undercurrent, on the western side of the Channel. The Undercurrent has two cores: an intermediate one mainly containing diluted Antarctic Intermediate Water (AAIW), and a deep one consisting of North Atlantic Deep Water (NADW). In the intermediate core, T-S properties are strongly correlated with current velocity, probably because of the strong salinity gradient at the interface between Red Sea Water (RSW) and AAIW. In the deep core, velocity and hydrographic time series do not correlate on a daily basis, but they do at longer time scales.
Powars, David S.; Catchings, Rufus D.; Goldman, Mark R.; Gohn, Gregory S.; Horton, J. Wright; Edwards, Lucy E.; Rymer, Michael J.; Gandhok, Gini
2009-01-01
The U.S. Geological Survey (USGS) acquired two 1.4-km-long, high-resolution (~5 m vertical resolution) seismic-reflection lines in 2006 that cross near the International Continental Scientific Drilling Program (ICDP)-USGS Eyreville deep drilling site located above the late Eocene Chesapeake Bay impact structure in Virginia, USA. Five-meter spacing of seismic sources and geophones produced high-resolution images of the subsurface adjacent to the 1766-m-depth Eyreville core holes. Analysis of these lines, in the context of the core hole stratigraphy, shows that moderate-amplitude, discontinuous, dipping reflections below ~527 m correlate with a variety of Chesapeake Bay impact structure sediment and rock breccias recovered in the cores. High-amplitude, continuous, subhorizontal reflections above ~527 m depth correlate with the uppermost part of the Chesapeake Bay impact structure crater-fill sediments and postimpact Eocene to Pleistocene sediments. Reflections with ~20-30 m of relief in the uppermost part of the crater-fill and lowermost part of the postimpact section suggest differential compaction of the crater-fill materials during early postimpact time. The top of the crater-fill section also shows ~20 m of relief that appears to represent an original synimpact surface. Truncation surfaces, locally dipping reflections, and depth variations in reflection amplitudes generally correlate with the lithostrati-graphic and sequence-stratigraphic units and contacts in the core. Seismic images show apparent postimpact paleochannels that include the first possible Miocene paleochannels in the Mid-Atlantic Coastal Plain. Broad downwarping in the postim-pact section unrelated to structures in the crater fill indicates postimpact sediment compaction.
Tephrostratigraphy the DEEP site record, Lake Ohrid
NASA Astrophysics Data System (ADS)
Leicher, N.; Zanchetta, G.; Sulpizio, R.; Giaccio, B.; Wagner, B.; Francke, A.
2016-12-01
In the central Mediterranean region, tephrostratigraphy has been proofed to be a suitable and powerful tool for dating and correlating marine and terrestrial records. However, for the period older 200 ka, tephrostratigraphy is incomplete and restricted to some Italian continental basins (e.g. Sulmona, Acerno, Mercure), and continuous records downwind of the Italian volcanoes are rare. Lake Ohrid (Macedonia/Albania) in the eastern Mediterranean region fits this requisite and is assumed to be the oldest continuously existing lake of Europe. A continous record (DEEP) was recovered within the scope of the ICDP deep-drilling campaign SCOPSCO (Scientific Collaboration on Past Speciation Conditions in Lake Ohrid). In the uppermost 450 meters of the record, covering more than 1.2 Myrs of Italian volcanism, 54 tephra layers were identified during core-opening and description. A first tephrostratigraphic record was established for the uppermost 248 m ( 637 ka). Major element analyses (EDS/WDS) were carried out on juvenile glass fragments and 15 out of 35 tephra layers have been identified and correlated with known and dated eruptions of Italian volcanoes. Existing 40Ar/39Ar ages were re-calculated by using the same flux standard and used as first order tie points to develop a robust chronology for the DEEP site succession. Between 248 and 450 m of the DEEP site record, another 19 tephra horizons were identified and are subject of ongoing work. These deposits, once correlated with known and dated tephra, will hopefully enable dating this part of the succession, likely supported by major paleomagnetic events, such as the Brunhes-Matuyama boundary, or the Cobb-Mountain or the Jaramillo excursions. This makes the Lake Ohrid record a unique continuous, distal record of Italian volcanic activity, which is candidate to become the template for the central Mediterranean tephrostratigraphy, especially for the hitherto poorly known and explored lower Middle Pleistocene period.
Wasson, A P; Rebetzke, G J; Kirkegaard, J A; Christopher, J; Richards, R A; Watt, M
2014-11-01
We aim to incorporate deep root traits into future wheat varieties to increase access to stored soil water during grain development, which is twice as valuable for yield as water captured at younger stages. Most root phenotyping efforts have been indirect studies in the laboratory, at young plant stages, or using indirect shoot measures. Here, soil coring to 2 m depth was used across three field environments to directly phenotype deep root traits on grain development (depth, descent rate, density, length, and distribution). Shoot phenotypes at coring included canopy temperature depression, chlorophyll reflectance, and green leaf scoring, with developmental stage, biomass, and yield. Current varieties, and genotypes with breeding histories and plant architectures expected to promote deep roots, were used to maximize identification of variation due to genetics. Variation was observed for deep root traits (e.g. 111.4-178.5cm (60%) for depth; 0.09-0.22cm/°C day (144%) for descent rate) using soil coring in the field environments. There was significant variation for root traits between sites, and variation in the relative performance of genotypes between sites. However, genotypes were identified that performed consistently well or poorly at both sites. Furthermore, high-performing genotypes were statistically superior in root traits than low-performing genotypes or commercial varieties. There was a weak but significant negative correlation between green leaf score (-0.5), CTD (0.45), and rooting depth and a positive correlation for chlorophyll reflectance (0.32). Shoot phenotypes did not predict other root traits. This study suggests that field coring can directly identify variation in deep root traits to speed up selection of genotypes for breeding programmes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Depositional history of the Apollo 16 deep drill core
NASA Technical Reports Server (NTRS)
Gose, W. A.; Morris, R. V.
1977-01-01
Ferromagnetic resonance and magnetic hysteresis loop measurements were performed on 212 samples from the Apollo 16 deep drill core. The total iron content is generally uniform with a mean value of 5.7 plus or minus 0.9 wt%. The soils range in maturity from immature to mature. Two major contacts were observed. The contact at 13 cm depth represents a fossil surface whereas the contact at 190 cm depth has no time-stratigraphic significance. The data suggest that the core section below 13 cm depth was deposited in a single impact event and subjected to meteoritic gardening for about 450 m.y. However, our data do not preclude deposition by a series of closely spaced events. About 50 m.y. ago, the top 13 cm were added. Comparison with the Apollo 16 double drive tube 60009/60010 does not yield any evidence for a stratigraphic correlation with the deep drill core.
Antarctic Glaciation during the Tertiary Recorded in Sub-Antarctic Deep-Sea Cores.
Margolis, S V; Kennett, J P
1970-12-04
Study of 18 Cenozoic South Pacific deep-sea cores indicates an association of glacially derived ice-rafted sands and relatively low planktonic foraminiferal diversity with cooling of the Southern Ocean during the Lower Eocene, upper Middle Eocene, and Oligocene. Increased species diversity and reduction or absence of ice-rafted sands in Lower and Middle Miocene cores indicate a warming trend that ended in the Upper Miocene. Antarctic continental glaciation appears to have prevailed throughout much of the Cenozoic.
A Millennial-Scale Sea Surface Temperature Record From the North Atlantic Based on Diatoms
NASA Astrophysics Data System (ADS)
Miettinen, A.; Koc, N.
2008-12-01
Sea surfaces temperatures (SSTs) are generated from a 1000-year-long sediment core from the eastern flank of Reykjanes Ridge in the subpolar North Atlantic with a time resolution of 2-10 years. 54.3 cm long box core (Rapid 21-12B) and 370 cm long gravity core (RAPID 21-3K) were recovered from deep-sea sediments (2630 m water depth) during the RRS Charles Darwin cruise 159 in 2004. The box core is dated using the 210Pb method and it is continuously subsampled and investigated at 0.5 cm intervals for the last 230 years with a two years average time resolution. The gravity core is dated 14C AMS method and it is investigated continuously at 1.0 cm intervals with a ten years average resolution for the interval representing 230-1000 cal. years BP. August SSTs are reconstructed using marine planktonic diatom species with the Weighted Averages - Partial Least Squares (WA-PLS) method. Results achieved from the box core indicate August SST warming of c. 1 °C from 1773 AD to the present. The interval 1773-1830 represents the cold period at the investigated site. It is followed by warm period between 1830 and 1885. After this the temperature frequency is more stable with short cool events around 1890 and 1930. The last 60 years represent the warm period with a slow warming trend, especially during the past 25 years. However, results do not indicate distinct SST warming since 1870s. The most high-frequency SST variability with amplitude of c. 1 °C appears after 1970 indicating several very warm years, but also coldest years since 1820s.
Body Temperature Measurements for Metabolic Phenotyping in Mice.
Meyer, Carola W; Ootsuka, Youichirou; Romanovsky, Andrej A
2017-01-01
Key Points Rectal probing is subject to procedural bias. This method is suitable for first-line phenotyping, provided probe depth and measurement duration are standardized. It is also useful for detecting individuals with out-of-range body temperatures (during hypothermia, torpor).The colonic temperature attained by inserting the probe >2 cm deep is a measure of deep (core) body temperature.IR imaging of the skin is useful for detecting heat leaks and autonomous thermoregulatory alterations, but it does not measure body temperature.Temperature of the hairy or shaved skin covering the inter-scapular brown adipose tissue can be used as a measure of BAT thermogenesis. However, obtaining such measurements of sufficient quality is very difficult, and interpreting them can be tricky. Temperature differences between the inter-scapular and lumbar areas can be a better measure of the thermogenic activity of inter-scapular brown adipose tissue.Implanted probes for precise determination of BAT temperature (changes) should be fixed close to the Sulzer's vein. For measurement of BAT thermogenesis, core body temperature and BAT temperature should be recorded simultaneously.Tail temperature is suitable to compare the presence or absence of vasoconstriction or vasodilation.Continuous, longitudinal monitoring of core body temperature is preferred over single probing, as the readings are taken in a non-invasive, physiological context.Combining core body temperature measurements with metabolic rate measurements yields insights into the interplay between heat production and heat loss (thermal conductance), potentially revealing novel thermoregulatory phenotypes. Endothermic organisms rely on tightly balanced energy budgets to maintain a regulated body temperature and body mass. Metabolic phenotyping of mice, therefore, often includes the recording of body temperature. Thermometry in mice is conducted at various sites, using various devices and measurement practices, ranging from single-time probing to continuous temperature imaging. Whilst there is broad agreement that body temperature data is of value, procedural considerations of body temperature measurements in the context of metabolic phenotyping are missing. Here, we provide an overview of the various methods currently available for gathering body temperature data from mice. We explore the scope and limitations of thermometry in mice, with the hope of assisting researchers in the selection of appropriate approaches, and conditions, for comprehensive mouse phenotypic analyses.
NASA Astrophysics Data System (ADS)
Verschuren, Dirk; Van Daele, Maarten; Wolff, Christian; Waldmann, Nicolas; Meyer, Inka; Ombori, Titus; Peterse, Francien; O'Grady, Ryan; Schnurrenberger, Doug; Olago, Daniel
2017-04-01
Sediments on the bottom of Lake Challa, a 92-meter deep crater lake on the border of Kenya and Tanzania near Mt. Kilimanjaro, contain a uniquely long and continuous record of past climate and environmental change. The near-equatorial location and exceptional quality of this natural archive provide great opportunities to study tropical climate variability at both short (inter-annual to decadal) and long (glacial-interglacial) time scales; and the influence of this climate variability on the region's freshwater resources, the functioning of terrestrial ecosystems, and the history of the East African landscape in which modern humans (our species, Homo sapiens) evolved and have lived ever since. Supported in part by the International Continental Scientific Drilling Programme (ICDP), the DeepCHALLA project has now recovered the sediment record of Lake Challa down to 214.8 meter below the lake floor, with almost certain 100% cover of the uppermost 121.3 meter (ca.150,000 year BP to present) and estimated 85% cover over the lower part of the sequence, down to the lowermost distinct reflector in the available seismic stratigraphy. This reflector represents a 2 meter thick layer of volcanic sand and silt deposited ca.250,000 years ago, and overlies still older silty lacustrine clays deposited during early lake development. Down-hole logging produced continuous profiles of in-situ sediment composition that confer an absolute depth scale to both the recovered cores and their three-dimensional representation in seismic stratigraphy. As readily observed through the transparent core liners, Lake Challa sediments are finely laminated throughout most of the recovered sequence. Combined with the great time span, the exquisite temporal resolution of these sediments promises to greatly increase our understanding of tropical climate and ecosystem dynamics, and create a long-awaited equatorial counterpart to the high-latitude climate records extracted from the ice sheets of Greenland and Antarctica.
Software for project-based learning of robot motion planning
NASA Astrophysics Data System (ADS)
Moll, Mark; Bordeaux, Janice; Kavraki, Lydia E.
2013-12-01
Motion planning is a core problem in robotics concerned with finding feasible paths for a given robot. Motion planning algorithms perform a search in the high-dimensional continuous space of robot configurations and exemplify many of the core algorithmic concepts of search algorithms and associated data structures. Motion planning algorithms can be explained in a simplified two-dimensional setting, but this masks many of the subtleties and complexities of the underlying problem. We have developed software for project-based learning of motion planning that enables deep learning. The projects that we have developed allow advanced undergraduate students and graduate students to reflect on the performance of existing textbook algorithms and their own variations on such algorithms. Formative assessment has been conducted at three institutions. The core of the software used for this teaching module is also used within the Robot Operating System, a widely adopted platform by the robotics research community. This allows for transfer of knowledge and skills to robotics research projects involving a large variety robot hardware platforms.
Lunar regolith dynamics based on analysis of the cosmogenic radionuclides Na-22, Al-26, and Mn-53
NASA Technical Reports Server (NTRS)
Fruchter, J. S.; Rancitelli, L. A.; Laul, J. C.; Perkins, R. W.
1977-01-01
Depth profiles of Na-22 and Al-26 in the upper portions of five lunar cores are analyzed. From the analyses, it is concluded that the natural gardening processes on the lunar surface result in mixing of the regolith to a depth of 2-3 cm over a time period which is short compared with the half-life of Al-26 (0.73 m.y.). It is also concluded that the rotary drill processes which were used to obtain the deep drill samples generally resulted in loss and/or mixing of the upper portions of the cores. In contrast, the near-surface regions of the drive tube cores appear to have a well-preserved stratigraphy. Analysis of Mn-53 in samples of six lunar rocks helps substantiate the accuracy of age date estimates by other means, and provides definite information that the total lunar surface exposure of two of these rocks has occurred during a single surface event which continued to their collection.
Kluber, Lauren A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Phillips, Jana R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, Paul J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Schadt, Christopher W. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
2016-01-01
This data set provides the peat water content and peat temperature at time of sampling for peat cores collected before and during the SPRUCE Deep Peat Heating (DPH) study. Cores were collected during three sampling events: 03 June 2014, 09 September 2014, and 16 June 2015. Two cores were extracted from hollow locations in each of the 10 experimental plots (4, 6, 8, 10, 11, 13, 16, 17, 19, and 20). Cores were partitioned into samples at 11 depth increments: 0-10, 10-20, 20-30, 30-40, 40-50, 50-75, 75-100, 100-125, 125-150, 150-175, and 175-200 cm below surface of the hollow.
NASA Astrophysics Data System (ADS)
Kukowski, Nina; Totsche, Kai Uwe; Abratis, Michael; Habisreuther, Annett; Ward, Timothy; Influins Drilling-Team
2014-05-01
To shed light on the coupled dynamics of near surface and deep fluids in a sedimentary basin on various scales, ranging from the pore scale to the extent of an entire basin, is of paramount importance to understand the functioning of sedimentary basins fluid systems and therefore e.g. drinking water supply. It is also the fundamental goal of INFLUINS (INtegrated FLuid dynamics IN Sedimentary basins), a research initiative of several groups from Friedrich-Schiller University of Jena and their partners. This research association is focusing on the nearby Thuringian basin, a well confined, small intra-continental sedimentary basin in Germany, as a natural geo laboratory. In a multidisciplinary approach, embracing different fields of geophysics like seismic reflection profiling or airborne geomagnetics, structural geology, sedimentology, hydrogeology, hydrochemistry and hydrology, remote sensing, microbiology and mineralogy, among others, and including both, field-based, laboratory-based and computer-based research, an integral INFLUINS topic is the potential interaction of aquifers within the basin and at its rims. The Thuringian basin, which is composed of sedimentary rocks from the latest Paleozoic and mainly Triassic, is particularly suited to undertake such research as it is of relative small size, about 50 to 100 km, easily accessible, and quite well known from previous studies, and therefore also a perfect candidate for deep drilling. After the acquisition of 76 km seismic reflection data in spring 2011, to get as much relevant data as possible from a deep drilling at the cross point between two seismic profiles with a limited financial budget, an optimated core sampling and measuring strategy including partial coring, borehole geophysics and pump tests as well as a drill hole design, which enables for later continuation of drilling down to the basement, had been developed. Drilling Triassic rocks from Keuper to lower Buntsandstein was successfully realised down to a final depth of 1179 m from late June to mid-September 2013. Here, we give an introduction into the layout of INFLUINS deep drilling together with a summary of preliminary results, e.g. on the nature of the boundaries between Muschelkalk and Buntsandstein, and between upper and middle Buntsandstein, a complete core recovery of upper Buntsandstein saliniferous formations as well as unexpectedly low porosity and permeability of potential aquifers.
NASA Astrophysics Data System (ADS)
Phipps, Jennifer E.; Bec, Julien; Vela, Deborah; Buja, L. Maximilian; Southard, Jeffrey A.; Margulies, Kenneth B.; Marcu, Laura
2017-02-01
FL-IVUS combines intravascular ultrasound with fluorescence lifetime imaging to obtain morphologic and biochemical details from the arterial wall. Ultrasound measurements alone provide morphologic information (plaque burden, remodeling index and presence of calcium). Fluorescence lifetime can determine the presence of a thick fibrous cap, macrophage infiltration, and lipid cores beneath thin fibrous caps. These details are important to assess plaque vulnerability. In this study, we focused on the ability of FL-IVUS to differentiate between early and advanced lipid cores-advanced cores are vulnerable to rupture. We imaged N=12 ex vivo human coronary arteries and performed hematoxylin and eosin, Movat's pentachrome and CD68 immunohistochemistry at 500 micron intervals throughout the length of the vessels. We found only N=1 thin-capped fibroatheroma (TCFA) with an advanced necrotic core and N=7 cases of foam cell infiltration, early lipid cores or deep necrotic cores. IVUS was able to observe the increased plaque burden and calcification of the advanced and deep necrotic cores, but could not identify early lipid cores, foam cell infiltration or discriminate between deep necrotic cores and TCFA. The addition of FLIm to IVUS allowed the TCFA to be discriminated from early lipid accumulation, particularly at 542+/-50 nm (355 nm pulsed excitation): 7.6 +/- 0.5 ns compared to 6.6 +/- 0.4 ns, respectively (P<0.001 by ANOVA analysis). These differences need to be validated in a larger cohort, but exist due to specific lipid content in the necrotic core as well as increased extracellular matrix in early lesions.
Delving into the Deep Biosphere
NASA Astrophysics Data System (ADS)
Grim, S. L.; Sogin, M. L.; Boetius, A.; Briggs, B. R.; Brazelton, W. J.; D'Hondt, S. L.; Edwards, K. J.; Fisk, M. R.; Gaidos, E.; Gralnick, J.; Hinrichs, K.; Lazar, C.; Lavalleur, H.; Lever, M. A.; Marteinsson, V.; Moser, D. P.; Orcutt, B.; Pedersen, K.; Popa, R.; Ramette, A.; Schrenk, M. O.; Sylvan, J. B.; Smith, A. R.; Teske, A.; Walsh, E. A.; Colwell, F. S.
2013-12-01
The Census of Deep Life organized an international survey of microbial community diversity in terrestrial and marine deep subsurface environments. Habitats included subsurface continental fractured rock aquifers, volcanic and metamorphic subseafloor sedimentary units from the open ocean, subsurface oxic and anoxic sediments and underlying basaltic oceanic crust, and their overlying water columns. Our survey employed high-throughput pyrosequencing of the hypervariable V4-V6 16S rRNA gene of bacteria and archaea. We detected 1292 bacterial genera representing 40 phyla, and 99 archaeal genera from 30 phyla. Of these, a core group of thirteen bacterial genera occurred in every environment. A genus of the South African Goldmine Group (Euryarchaeota) was always present whenever archaea were detected. Members of the rare biosphere in one system often represented highly abundant taxa in other environments. Dispersal could account for this observation but mechanisms of transport remain elusive. Ralstonia (Betaproteobacteria) represented highly abundant taxa in marine communities and terrestrial rock, but generally low abundance organisms in groundwater. Some of these taxa could represent sample contamination, and their extensive distribution in several systems requires further assessment. An unknown Sphingobacteriales (Bacteroidetes) genus, Stenotrophomonas (Gammaproteobacteria), Acidovorax and Aquabacterium (both Betaproteobacteria), a Chlorobiales genus, and a TM7 genus were in the core group as well but more prevalent in terrestrial environments. Similarly, Bacillus (Firmicutes), a new cyanobacterial genus, Bradyrhizobium and Sphingomonas (both Alphaproteobacteria), a novel Acidobacteriaceae genus, and Variovorax (Betaproteobacteria) frequently occurred in marine systems but represented low abundance taxa in other environments. Communities tended to cluster by biome and material, and many genera were unique to systems. For example, certain Rhizobiales (Alphaproteobacteria) only occurred in groundwater, and select Firmicutes and actinobacterial taxa were specific to rock environments. We continue to investigate the ecological and physiological context of these organisms. By combining deep sequencing of microbial communities and geochemical and physical evaluations of their environments, we bring to light the diversity and scope of the deep biosphere and insight into the factors that determine the nature of these communities.
Vertical distribution of living ostracods in deep-sea sediments, North Atlantic Ocean
NASA Astrophysics Data System (ADS)
Jöst, Anna B.; Yasuhara, Moriaki; Okahashi, Hisayo; Ostmann, Alexandra; Arbizu, Pedro Martínez; Brix, Saskia
2017-04-01
The depth distribution of living specimens of deep-sea benthic ostracods (small crustaceans with calcareous shells that are preserved as microfossils) in sediments is poorly understood, despite the importance of this aspect of basic ostracod biology for paleoecologic and paleoceanographic interpretations. Here, we investigated living benthic ostracod specimens from deep-sea multiple core samples, to reveal their depths distributions within sediment cores. The results showed shallow distribution and low population density of living deep-sea benthic ostracods (which are mostly composed of Podocopa). The living specimens are concentrated in the top 1 cm of the sediment, hence deep-sea benthic ostracods are either epifauna or shallow infauna. This observation is consistent with the information from shallow-water species. We also confirmed shallow infaunal (0.5-2 cm) and very shallow infaunal (0-1 cm) habitats of the deep-sea ostracod genera Krithe and Argilloecia, respectively.
Ancient Biomolecules from Deep Ice Cores Reveal a Forested Southern Greenland
Willerslev, Eske; Cappellini, Enrico; Boomsma, Wouter; Nielsen, Rasmus; Hebsgaard, Martin B.; Brand, Tina B.; Hofreiter, Michael; Bunce, Michael; Poinar, Hendrik N.; Dahl-Jensen, Dorthe; Johnsen, Sigfus; Steffensen, Jørgen Peder; Bennike, Ole; Schwenninger, Jean-Luc; Nathan, Roger; Armitage, Simon; de Hoog, Cees-Jan; Alfimov, Vasily; Christl, Marcus; Beer, Juerg; Muscheler, Raimund; Barker, Joel; Sharp, Martin; Penkman, Kirsty E.H.; Haile, James; Taberlet, Pierre; Gilbert, M. Thomas P.; Casoli, Antonella; Campani, Elisa; Collins, Matthew J.
2009-01-01
One of the major difficulties in paleontology is the acquisition of fossil data from the 10% of Earth’s terrestrial surface that is covered by thick glaciers and ice sheets. Here we reveal that DNA and amino acids from buried organisms can be recovered from the basal sections of deep ice cores and allow reconstructions of past flora and fauna. We show that high altitude southern Greenland, currently lying below more than two kilometers of ice, was once inhabited by a diverse array of conifer trees and insects that may date back more than 450 thousand years. The results provide the first direct evidence in support of a forested southern Greenland and suggest that many deep ice cores may contain genetic records of paleoenvironments in their basal sections. PMID:17615355
Powars, D.S.; Catchings, R.D.; Goldman, M.R.; Gohn, G.S.; Horton, J. Wright; Edwards, L.E.; Rymer, M.J.; Gandhok, G.
2009-01-01
The U.S. Geological Survey (USGS) acquired two 1.4-km-long, high-resolution (??5 m vertical resolution) seismic-reflection lines in 2006 that cross near the International Continental Scientifi c Drilling Program (ICDP)-USGS Eyreville deep drilling site located above the late Eocene Chesapeake Bay impact structure in Virginia, USA. Five-meter spacing of seismic sources and geophones produced high-resolution images of the subsurface adjacent to the 1766-m-depth Eyreville core holes. Analysis of these lines, in the context of the core hole stratigraphy, shows that moderateamplitude, discontinuous, dipping reflections below ??527 m correlate with a variety of Chesapeake Bay impact structure sediment and rock breccias recovered in the cores. High-amplitude, continuous, subhorizontal reflections above ??527 m depth correlate with the uppermost part of the Chesapeake Bay impact structure crater-fi ll sediments and postimpact Eocene to Pleistocene sediments. Refl ections with ??20-30 m of relief in the uppermost part of the crater-fi ll and lowermost part of the postimpact section suggest differential compaction of the crater-fi ll materials during early postimpact time. The top of the crater-fi ll section also shows ??20 m of relief that appears to represent an original synimpact surface. Truncation surfaces, locally dipping reflections, and depth variations in reflection amplitudes generally correlate with the lithostratigraphic and sequence-stratigraphic units and contacts in the core. Seismic images show apparent postimpact paleochannels that include the fi rst possible Miocene paleochannels in the Mid-Atlantic Coastal Plain. Broad downwarping in the postimpact section unrelated to structures in the crater fi ll indicates postimpact sediment compaction. ?? 2009 The Geological Society of America.
OPTICAL COLORS OF INTRACLUSTER LIGHT IN THE VIRGO CLUSTER CORE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudick, Craig S.; Mihos, J. Christopher; Harding, Paul
2010-09-01
We continue our deep optical imaging survey of the Virgo cluster using the CWRU Burrell Schmidt telescope by presenting B-band surface photometry of the core of the Virgo cluster in order to study the cluster's intracluster light (ICL). We find ICL features down to {mu}{sub B} {approx}29 mag arcsec{sup -2}, confirming the results of Mihos et al., who saw a vast web of low surface brightness streams, arcs, plumes, and diffuse light in the Virgo cluster core using V-band imaging. By combining these two data sets, we are able to measure the optical colors of many of the cluster's lowmore » surface brightness features. While much of our imaging area is contaminated by galactic cirrus, the cluster core near the cD galaxy, M87, is unobscured. We trace the color profile of M87 out to over 2000'', and find a blueing trend with radius, continuing out to the largest radii. Moreover, we have measured the colors of several ICL features which extend beyond M87's outermost reaches and find that they have similar colors to the M87's halo itself, B - V {approx}0.8. The common colors of these features suggest that the extended outer envelopes of cD galaxies, such as M87, may be formed from similar streams, created by tidal interactions within the cluster, that have since dissolved into a smooth background in the cluster potential.« less
A Long Pleistocene Paleoclimate Record from Stoneman Lake, Arizona
NASA Astrophysics Data System (ADS)
Fawcett, P. J.; Anderson, R. S.; Brown, E. T.; Werne, J. P.; Jimenez-Moreno, G.; Toney, J. L.; Garcia, D.; Garrett, H. L.; Dunbar, N. W.
2015-12-01
Long continuous lake sediment cores provide enormous potential for interpreting climate change. In the American Southwest, long records are revolutionizing our understanding of megadroughts, which have occurred in the past and will most certainly occur in the future with rapidly changing climate. One site with the potential to study ancient megadroughts is Stoneman Lake, central Arizona, whose basin is a circular depression formed by a collapse in late Tertiary volcanics. The lake is spring fed, most recently alternating between a marsh and a lake, with water levels having fluctuated by > 3 meters over the last 25 years. Its small closed drainage basin (ca. 2.5 km2) with one small inflowing stream is key to the sensitivity of the record. Two parallel lacustrine sediment cores (70 m and 30 m deep) were recovered in October of 2014. Our preliminary chronology includes 8 AMS dates in the upper 7 m and two distinct tephras at 30.8 m depth and 36.3 m depth. Radiocarbon dates show a 2.7-m-thick Holocene section, and then a low Pleistocene SAR with an age of 11,000 cal yr B.P. at ~2.8 m to an age of 46,500 cal yr B.P. at 4.2 m depth. We estimate that the 70-m deep hole will provide a climate record back to ~1.3 million years ago. Of particular interest are the interglacials that serve as good analogs for future climate including MIS 11 and MIS 19. Initial core description includes MS, bulk density and high-resolution images. Holocene sediments are characterized by massive, dark organic rich silty clays with no distinct lamination. Sediments from the Last Glacial Maximum are well-laminated, light brown silty clays with few organics present. The distinctive laminations probably represent a very deep lake and therefore a wet cold climate, also verified by pollen data. There are several repeated intervals of laminated sediments deeper in the core that may represent older glacial maxima. Future work will include detailed pollen, plant macrofossil and charcoal analysis, scanning XRF, TOC and carbon isotopic analyses as well as compound specific carbon and hydrogen work.
Howard, K.A.
2003-01-01
The deep crustal rocks exposed in the Ruby-East Humboldt metamorphic core complex, northeastern Nevada, provide a guide for reconstructing Eocene crustal structure ~50 km to the west near the Carlin trend of gold deposits. The deep crustal rocks, in the footwall of a west-dipping normal-sense shear system, may have underlain the Pinon and Adobe Ranges about 50 km to the west before Tertiary extension, close to or under part of the Carlin trend. Eocene lakes formed on the hanging wall of the fault system during an early phase of extension and may have been linked to a fluid reservoir for hydrothermal circulation. The magnitude and timing of Paleogene extension remain indistinct, but dikes and tilt axes in the upper crust indicate that spreading was east-west to northwest-southeast, perpendicular to a Paleozoic and Mesozoic orogen that the spreading overprinted. High geothermal gradients associated with Eocene or older crustal thinning may have contributed to hydrothermal circulation in the upper crust. Late Eocene eruptions, upper crustal dike intrusion, and gold mineralization approximately coincided temporally with deep intrusion of Eocene sills of granite and quartz diorite and shallower intrusion of the Harrison Pass pluton into the core-complex rocks. Stacked Mesozoic nappes of metamorphosed Paleozoic and Precambrian rocks in the core complex lay at least 13 to 20 km deep in Eocene time, on the basis of geobarometry studies. In the northern part of the complex, the presently exposed rocks had been even deeper in the late Mesozoic, to >30 km depths, before losing part of their cover by Eocene time. Nappes in the core plunge northward beneath the originally thicker Mesozoic tectonic cover in the north part of the core complex. Mesozoic nappes and tectonic wedging likely occupied the thickened midlevel crustal section between the deep crustal core-complex intrusions and nappes and the overlying upper crust. These structures, as well as the subsequent large-displacement Cenozoic extensional faulting and flow in the deep crust, would be expected to blur the expression of any regional structural roots that could correlate with mineral belts. Structural mismatch of the mineralized upper crust and the tectonically complex middle crust suggests that the Carlin trend relates not to subjacent deeply penetrating rooted structures but to favorable upper crustal host rocks aligned within a relatively coherent regional block of upper crust.
The remarkable chemical uniformity of Apollo 16 layered deep drill core section 60002
NASA Technical Reports Server (NTRS)
Nava, D. F.; Philpotts, J. A.; Lindstrom, M. M.; Schuhmann, P. J.; Lindstrom, D. J.
1976-01-01
Atomic absorption and colorimetric spectrophotometers were used to determine major- and minor-element abundances in 12 samples from layered section 60002 of the Apollo 16 deep drill core. It is suggested that gardening of a relatively thick local unit produced the layering in this section in such a manner that the proportions of materials of different compositions remained virtually unchanged.
Detection of Organic Matter in Greenland Ice Cores by Deep-UV Fluorescence
NASA Astrophysics Data System (ADS)
Willis, M.; Malaska, M.; Wanger, G.; Bhartia, R.; Eshelman, E.; Abbey, W.; Priscu, J. C.
2017-12-01
The Greenland Ice Sheet is an Earthly analog for icy ocean worlds in the outer Solar System. Future missions to such worlds including Europa, Enceladus, and Titan may potentially include spectroscopic instrumentation to examine the surface/subsurface. The primary goal of our research is to test deep UV/Raman systems for in the situ detection and localization of organics in ice. As part of this effort we used a deep-UV fluorescence instrument able to detect naturally fluorescent biological materials such as aromatic molecules found in proteins and whole cells. We correlated these data with more traditional downstream analyses of organic material in natural ices. Supraglacial ice cores (2-4 m) were collected from several sites on the southwest outlet of the Greenland Ice Sheet using a 14-cm fluid-free mechanical coring system. Repeat spectral mapping data were initially collected longitudinally on uncut core sections. Cores were then cut into 2 cm thick sections along the longitudinal axis, slowly melted and analyzed for total organic carbon (TOC), total dissolved nitrogen (TDN), and bacterial density. These data reveal a spatial correlation between organic matter concentration, cell density, and the deep UV fluorescence maps. Our results provide a profile of the organics embedded within the ice from the top surface into the glacial subsurface, and the TOC:TDN data from the clean interior of the cores are indicative of a biological origin. This work provides a background dataset for future work to characterize organic carbon in the Greenland Ice Sheet and validation of novel instrumentation for in situ data collection on icy bodies.
Browning, J.V.; Miller, K.G.; McLaughlin, P.P.; Edwards, L.E.; Kulpecz, A.A.; Powars, D.S.; Wade, B.S.; Feigenson, M.D.; Wright, J.D.
2009-01-01
The Eyreville core holes provide the first continuously cored record of postimpact sequences from within the deepest part of the central Chesapeake Bay impact crater. We analyzed the upper Eocene to Pliocene postimpact sediments from the Eyreville A and C core holes for lithology (semiquantitative measurements of grain size and composition), sequence stratigraphy, and chronostratigraphy. Age is based primarily on Sr isotope stratigraphy supplemented by biostratigraphy (dinocysts, nannofossils, and planktonic foraminifers); age resolution is approximately ??0.5 Ma for early Miocene sequences and approximately ??1.0 Ma for younger and older sequences. Eocene-lower Miocene sequences are subtle, upper middle to lower upper Miocene sequences are more clearly distinguished, and upper Miocene- Pliocene sequences display a distinct facies pattern within sequences. We recognize two upper Eocene, two Oligocene, nine Miocene, three Pliocene, and one Pleistocene sequence and correlate them with those in New Jersey and Delaware. The upper Eocene through Pleistocene strata at Eyreville record changes from: (1) rapidly deposited, extremely fi ne-grained Eocene strata that probably represent two sequences deposited in a deep (>200 m) basin; to (2) highly dissected Oligocene (two very thin sequences) to lower Miocene (three thin sequences) with a long hiatus; to (3) a thick, rapidly deposited (43-73 m/Ma), very fi ne-grained, biosiliceous middle Miocene (16.5-14 Ma) section divided into three sequences (V5-V3) deposited in middle neritic paleoenvironments; to (4) a 4.5-Ma-long hiatus (12.8-8.3 Ma); to (5) sandy, shelly upper Miocene to Pliocene strata (8.3-2.0 Ma) divided into six sequences deposited in shelf and shoreface environments; and, last, to (6) a sandy middle Pleistocene paralic sequence (~400 ka). The Eyreville cores thus record the fi lling of a deep impact-generated basin where the timing of sequence boundaries is heavily infl uenced by eustasy. ?? 2009 The Geological Society of America.
Wireless sensors for measuring sub-surface processes in firn
NASA Astrophysics Data System (ADS)
Bagshaw, Elizabeth; Karlsson, Nanna; Lishman, Ben; Bun Lok, Lai; Burrow, Stephen; Wadham, Jemma; Clare, Lindsay; Nicholls, Keith; Corr, Hugh; Brennan, Paul; Eisen, Olaf; Dahl-Jensson, Dorthe
2017-04-01
Subsurface processes exert controls on meltwater storage and densification within firn, which are, by their nature, challenging to measure. We present the results of proof-of-concept tests of wireless ETracer sensors with the East Greenland Ice Core Project (EGRIP) at the Northeast Greenland Ice Stream. ETracers equipped with temperature, pressure and electrical conductivity sensors were deployed in firn boreholes at the centre and the shear margins of the ice stream. Data were returned from a 60m deep test borehole, and continuously for 4 weeks from two 14m deep boreholes, to autonomous receivers at the surface. Two receivers were tested: a station using software radio and PC, and the BAS/UCL ApRES radar system. The sensors were used to track high resolution changes in temperature with depth, changes in densification rates in response to accumulation events and snow redistribution, and the presence of liquid water within the firn.
Mäkinen, Marja-Tellervo; Pesonen, Anne; Jousela, Irma; Päivärinta, Janne; Poikajärvi, Satu; Albäck, Anders; Salminen, Ulla-Stina; Pesonen, Eero
2016-08-01
The aim of this study was to compare deep body temperature obtained using a novel noninvasive continuous zero-heat-flux temperature measurement system with core temperatures obtained using conventional methods. A prospective, observational study. Operating room of a university hospital. The study comprised 15 patients undergoing vascular surgery of the lower extremities and 15 patients undergoing cardiac surgery with cardiopulmonary bypass. Zero-heat-flux thermometry on the forehead and standard core temperature measurements. Body temperature was measured using a new thermometry system (SpotOn; 3M, St. Paul, MN) on the forehead and with conventional methods in the esophagus during vascular surgery (n = 15), and in the nasopharynx and pulmonary artery during cardiac surgery (n = 15). The agreement between SpotOn and the conventional methods was assessed using the Bland-Altman random-effects approach for repeated measures. The mean difference between SpotOn and the esophageal temperature during vascular surgery was+0.08°C (95% limit of agreement -0.25 to+0.40°C). During cardiac surgery, during off CPB, the mean difference between SpotOn and the pulmonary arterial temperature was -0.05°C (95% limits of agreement -0.56 to+0.47°C). Throughout cardiac surgery (on and off CPB), the mean difference between SpotOn and the nasopharyngeal temperature was -0.12°C (95% limits of agreement -0.94 to+0.71°C). Poor agreement between the SpotOn and nasopharyngeal temperatures was detected in hypothermia below approximately 32°C. According to this preliminary study, the deep body temperature measured using the zero-heat-flux system was in good agreement with standard core temperatures during lower extremity vascular and cardiac surgery. However, agreement was questionable during hypothermia below 32°C. Copyright © 2016 Elsevier Inc. All rights reserved.
Imaging the Moon's Core with Seismology
NASA Technical Reports Server (NTRS)
Weber, Renee C.; Lin, Pei-Ying Patty; Garnero, Ed J.; Williams, Quetin C.; Lognonne, Philippe
2011-01-01
Constraining the structure of the lunar core is necessary to improve our understanding of the present-day thermal structure of the interior and the history of a lunar dynamo, as well as the origin and thermal and compositional evolution of the Moon. We analyze Apollo deep moonquake seismograms using terrestrial array processing methods to search for the presence of reflected and converted energy from the lunar core. Although moonquake fault parameters are not constrained, we first explore a suite of theoretical focal spheres to verify that fault planes exist that can produce favorable core reflection amplitudes relative to direct up-going energy at the Apollo stations. Beginning with stacks of event seismograms from the known distribution of deep moonquake clusters, we apply a polarization filter to account for the effects of seismic scattering that (a) partitions energy away from expected components of ground motion, and (b) obscures all but the main P- and S-wave arrivals. The filtered traces are then shifted to the predicted arrival time of a core phase (e.g. PcP) and stacked to enhance subtle arrivals associated with the Moon s core. This combination of filtering and array processing is well suited for detecting deep lunar seismic reflections, since we do not expect scattered wave energy from near surface (or deeper) structure recorded at varying epicentral distances and stations from varying moonquakes at varying depths to stack coherently. Our results indicate the presence of a solid inner and fluid outer core, overlain by a partial-melt-containing boundary layer (Table 1). These layers are consistently observed among stacks from four classes of reflections: P-to-P, S-to-P, P-to-S, and S-to-S, and are consistent with current indirect geophysical estimates of core and deep mantle properties, including mass, moment of inertia, lunar laser ranging, and electromagnetic induction. Future refinements are expected following the successful launch of the GRAIL lunar orbiter and SELENE 2 lunar lander missions.
NASA Astrophysics Data System (ADS)
Yu, Jimin; Anderson, Robert F.; Jin, Zhangdong; Rae, James W. B.; Opdyke, Bradley N.; Eggins, Stephen M.
2013-09-01
We present new deep water carbonate ion concentration ([CO32-]) records, reconstructed using Cibicidoides wuellerstorfi B/Ca, for one core from Caribbean Basin (water depth = 3623 m, sill depth = 1.8 km) and three cores located at 2.3-4.3 km water depth from the equatorial Pacific Ocean during the Last Glacial-interglacial cycle. The pattern of deep water [CO32-] in the Caribbean Basin roughly mirrors that of atmospheric CO2, reflecting a dominant influence from preformed [CO32-] in the North Atlantic Ocean. Compared to the amplitude of ˜65 μmol/kg in the deep Caribbean Basin, deep water [CO32-] in the equatorial Pacific Ocean has varied by no more than ˜15 μmol/kg due to effective buffering of CaCO3 on deep-sea pH in the Pacific Ocean. Our results suggest little change in the global mean deep ocean [CO32-] between the Last Glacial Maximum (LGM) and the Late Holocene. The three records from the Pacific Ocean show long-term increases in [CO32-] by ˜7 μmol/kg from Marine Isotope Stage (MIS) 5c to mid MIS 3, consistent with the response of the deep ocean carbonate system to a decline in neritic carbonate production associated with ˜60 m drop in sea-level (the “coral-reef” hypothesis). Superimposed upon the long-term trend, deep water [CO32-] in the Pacific Ocean displays transient changes, which decouple with δ13C in the same cores, at the start and end of MIS 4. These changes in [CO32-] and δ13C are consistent with what would be expected from vertical nutrient fractionation and carbonate compensation. The observed ˜4 μmol/kg [CO32-] decline in the two Pacific cores at >3.4 km water depth from MIS 3 to the LGM indicate further strengthening of deep ocean stratification, which contributed to the final step of atmospheric CO2 drawdown during the last glaciation. The striking similarity between deep water [CO32-] and 230Th-normalized CaCO3 flux at two adjacent sites from the central equatorial Pacific Ocean provides convincing evidence that deep-sea carbonate dissolution dominantly controlled CaCO3 preservation at these sites in the past. Our results offer new and quantitative constraints from deep ocean carbonate chemistry to understand roles of various mechanisms in atmospheric CO2 changes over the Last Glacial-interglacial cycle.
Boyle, Edward A.
1997-01-01
Studies of carbon isotopes and cadmium in bottom-dwelling foraminifera from ocean sediment cores have advanced our knowledge of ocean chemical distributions during the late Pleistocene. Last Glacial Maximum data are consistent with a persistent high-ΣCO2 state for eastern Pacific deep water. Both tracers indicate that the mid-depth North and tropical Atlantic Ocean almost always has lower ΣCO2 levels than those in the Pacific. Upper waters of the Last Glacial Maximum Atlantic are more ΣCO2-depleted and deep waters are ΣCO2-enriched compared with the waters of the present. In the northern Indian Ocean, δ13C and Cd data are consistent with upper water ΣCO2 depletion relative to the present. There is no evident proximate source of this ΣCO2-depleted water, so I suggest that ΣCO2-depleted North Atlantic intermediate/deep water turns northward around the southern tip of Africa and moves toward the equator as a western boundary current. At long periods (>15,000 years), Milankovitch cycle variability is evident in paleochemical time series. But rapid millennial-scale variability can be seen in cores from high accumulation rate series. Atlantic deep water chemical properties are seen to change in as little as a few hundred years or less. An extraordinary new 52.7-m-long core from the Bermuda Rise contains a faithful record of climate variability with century-scale resolution. Sediment composition can be linked in detail with the isotope stage 3 interstadials recorded in Greenland ice cores. This new record shows at least 12 major climate fluctuations within marine isotope stage 5 (about 70,000–130,000 years before the present). PMID:11607737
Liu, Yanyan; Meng, Xianfu; Wang, Han; Tang, Zhongmin; Zuo, Changjing; He, Mingyuan; Bu, Wenbo
2018-01-17
Two-photon (TP) absorption nanomaterials are highly desirable for deep-tissue clinical diagnostics and orthotopic disease treatment. Here, a well-designed core/shell nanostructure was successfully synthesized with a ZnTPyP self-assembly nanocrystal (ZSN) inner core coated by a homogeneous TiO 2 layer outside (ZSN-TO). The ZSN is a good photosemiconductor, showing both one-photon (OP) and TP absorption properties for red fluorescence emission and electron-hole pair generation; TiO 2 with good biocompatibility acts as the electron acceptor, which can transfer photoelectron from ZSN to TiO 2 for highly effective electron-hole separation, favoring the production of long-life superoxide anion (O 2 •- ) by electrons and oxygen and strong oxidizing hydroxyl radical (•OH) by holes and surrounding H 2 O. Once pretreated with ZSN-TO, the simultaneous OP-405 nm or TP-800 nm laser stimulation and fluorescent imaging of reactive oxygen species (ROS) showed dynamical and continuous generation of ROS in HeLa cells, with cytotoxicity significantly increasing via the type-1-like photodynamic therapy process. The results demonstrated that the combination of organic ZSN with inorganic TiO 2 has great applications as an excellent photosensitizer for deep-tissue fluorescent imaging and noninvasive disease treatment via TP photodynamic therapy.
High-resolution probing of inner core structure with seismic interferometry
NASA Astrophysics Data System (ADS)
Huang, Hsin-Hua; Lin, Fan-Chi; Tsai, Victor C.; Koper, Keith D.
2015-12-01
Increasing complexity of Earth's inner core has been revealed in recent decades as the global distribution of seismic stations has improved. The uneven distribution of earthquakes, however, still causes a biased geographical sampling of the inner core. Recent developments in seismic interferometry, which allow for the retrieval of core-sensitive body waves propagating between two receivers, can significantly improve ray path coverage of the inner core. In this study, we apply such earthquake coda interferometry to 1846 USArray stations deployed across the U.S. from 2004 through 2013. Clear inner core phases PKIKP2 and PKIIKP2 are observed across the entire array. Spatial analysis of the differential travel time residuals between the two phases reveals significant short-wavelength variation and implies the existence of strong structural variability in the deep Earth. A linear N-S trending anomaly across the middle of the U.S. may reflect an asymmetric quasi-hemispherical structure deep within the inner core with boundaries of 99°W and 88°E.
NASA Astrophysics Data System (ADS)
Ranasinghage, P. N.; Ortiz, J. D.; Moore, A.; Siriwardana, C.
2009-12-01
Core collapsing is a common problem in studies of lagoonal sediment cores. Coring liquefied sediments below the water table can lead to collapse of material from upper core drives in to the hole. This can be prevented by casing the hole. But casing is not always possible due to practical issues such as coring device type, resources, or time constraints. In such cases identifying the collapsed material in each drive is necessary to ensure accurate results. Direct visual identification of collapsed portion is not always possible and may not be precise. This study successfully recognized collapsed material using a suite of physical properties measurements including: visible (VIS) reflectance spectroscopy, magnetic susceptibility and grain size spectra. This enables us to use the verified stratigraphically continuous records for paleo-environmental studies. Sediment cores were collected from three coastal lagoons and a swale along south eastern and eastern Sri Lanka. Cores were collected using a customized AMS soil coring device with a 1-m long sample barrel. The metal barrel of this instrument collects a 2.5 cm diameter sample in 1-m long plastic tubes. Coring was conducted to refusal, with a maximum depth of 5 m. Casing was not applied to the holes due to small core diameter and time constrains. Drill holes were placed at locations situated both below and above the water level of the lagoons. A total of 100 m of sediment core were obtained from these locations. After opening the cores, suspected collapsed material was initially identified by visual observation using a high power binocular microscope. Particle size, magnetic susceptibility, X-ray fluorescence (XRF) and Diffuse Spectral Reflectance (DSR) was then measured on all cores at 1-2 cm resolution to precisely define the repeated sediment intervals. Down core variation plots of magnetic susceptibility, CIE L* (lightness), a*(red/green difference), b* (blue and yellow difference) clearly record abrupt changes at core drive boundaries at the presence of collapsed material. The correlation of grain-size spectra from the bottom and top of consecutive drives was used to precisely determine the thickness of the collapsed material between drives. Our analysis of 48 m of core material thus far indicates that ~4.4m or ~9% of the record represents collapsed material which can be excluded from further study. The remaining continuous record was analyzed for paleoenvironmental studies. Down core variation of grain size, geochemical ratios, principle components of DSR and geochemical data, and magnetic susceptibility from all locations indicate a gradual filling of these deep lagoons and a transition from reducing to oxic conditions. According to an age model constructed for a nearby lagoon the onset of regression began ~6,000 years BP. Several instantaneous sedimentation events were recorded in all lagoons. Further studies will be carried out to determine whether these represent tsunami, storm surge, or flood deposits.
NASA Technical Reports Server (NTRS)
Harvey, Jill (Editor)
1989-01-01
A self contained, mobile drilling and coring system was designed to operate on the Lunar surface and be controlled remotely from earth. The system uses SKITTER (Spatial Kinematic Inertial Translatory Tripod Extremity Robot) as its foundation and produces Lunar core samples two meters long and fifty millimeters in diameter. The drill bit used for this is composed of 30 per carat diamonds in a sintered tungsten carbide matrix. To drill up to 50 m depths, the bit assembly will be attached to a drill string made from 2 m rods which will be carried in racks on SKITTER. Rotary power for drilling will be supplied by a Curvo-Synchronous motor. SKITTER is to support this system through a hexagonal shaped structure which will contain the drill motor and the power supply. A micro-coring drill will be used to remove a preliminary sample 5 mm in diameter and 20 mm long from the side of the core. This whole system is to be controlled from earth. This is carried out by a continuously monitoring PLC onboard the drill rig. A touch screen control console allows the operator on earth to monitor the progress of the operation and intervene if necessary.
Investigating La Réunion Hot Spot From Crust to Core
NASA Astrophysics Data System (ADS)
Barruol, Guilhem; Sigloch, Karin
2013-06-01
Whether volcanic intraplate hot spots are underlain by deep mantle plumes continues to be debated 40 years after the hypothesis was proposed by Morgan [1972]. Arrivals of buoyant plume heads may have been among the most disruptive agents in Earth's history, initiating continental breakup, altering global climate, and triggering mass extinctions. Further, with the temporary shutdown of European air traffic in 2010 caused by the eruption of Eyjafjallajökull, a geologically routine eruption in the tail end of the presumed Iceland plume, the world witnessed an intrusion of hot spot activity into modern-day life.
Preliminary Results on Lunar Interior Properties from the GRAIL Mission
NASA Technical Reports Server (NTRS)
Williams, James G.; Konopliv, Alexander S.; Asmar, Sami W.; Lemoine, H. Jay; Melosh, H. Jay; Neumann, Gregory A.; Phillips, Roger J.; Smith, David E.; Solomon, Sean C.; Watkins, Michael M.;
2013-01-01
The Gravity Recovery and Interior Laboratory (GRAIL) mission has provided lunar gravity with unprecedented accuracy and resolution. GRAIL has produced a high-resolution map of the lunar gravity field while also determining tidal response. We present the latest gravity field solution and its preliminary implications for the Moon's interior structure, exploring properties such as the mean density, moment of inertia of the solid Moon, and tidal potential Love number k2. Lunar structure includes a thin crust, a deep mantle, a fluid core, and a suspected solid inner core. An accurate Love number mainly improves knowledge of the fluid core and deep mantle. In the future GRAIL will search for evidence of tidal dissipation and a solid inner core.
Lithology of the long sediment record recovered by the ICDP Dead Sea Deep Drilling Project (DSDDP)
NASA Astrophysics Data System (ADS)
Neugebauer, Ina; Brauer, Achim; Schwab, Markus J.; Waldmann, Nicolas D.; Enzel, Yehouda; Kitagawa, Hiroyuki; Torfstein, Adi; Frank, Ute; Dulski, Peter; Agnon, Amotz; Ariztegui, Daniel; Ben-Avraham, Zvi; Goldstein, Steven L.; Stein, Mordechai
2014-10-01
The sedimentary sections that were deposited from the Holocene Dead Sea and its Pleistocene precursors are excellent archives of the climatic, environmental and seismic history of the Levant region. Yet, most of the previous work has been carried out on sequences of lacustrine sediments exposed at the margins of the present-day Dead Sea, which were deposited only when the lake surface level rose above these terraces (e.g. during the Last Glacial period) and typically are discontinuous due to major lake level variations in the past. Continuous sedimentation can only be expected in the deepest part of the basin and, therefore, a deep drilling has been accomplished in the northern basin of the Dead Sea during winter of 2010-2011 within the Dead Sea Deep Drilling Project (DSDDP) in the framework of the ICDP program. Approximately 720 m of sediment cores have been retrieved from two deep and several short boreholes. The longest profile (5017-1), revealed at a water depth of ˜300 m, reaches 455 m below the lake floor (blf, i.e. to ˜1175 m below global mean sea level) and comprises approximately the last 220-240 ka. The record covers the upper part of the Amora (penultimate glacial), the Last Interglacial Samra, the Last Glacial Lisan and the Holocene Ze'elim Formations and, therewith, two entire glacial-interglacial cycles. Thereby, for the first time, consecutive sediments deposited during the MIS 6/5, 5/4 and 2/1 transitions were recovered from the Dead Sea basin, which are not represented in sediments outcropping on the present-day lake shores. In this paper, we present essential lithological data including continuous magnetic susceptibility and geochemical scanning data and the basic stratigraphy including first chronological data of the long profile (5017-1) from the deep basin. The results presented here (a) focus on the correlation of the deep basin deposits with main on-shore stratigraphic units, thus providing a unique comprehensive stratigraphic framework for regional paleoenvironmental reconstruction, and (b) highlight the outstanding potential of the Dead Sea deep sedimentary archive to record hydrological changes during interglacial, glacial and transitional intervals.
NASA Astrophysics Data System (ADS)
Stenni, B.; Buiron, D.; Masson-Delmotte, V.; Bonazza, M.; Braida, M.; Chappellaz, J.; Frezzotti, M.; Falourd, S.; Minster, B.; Selmo, E.
2010-12-01
Paleotemperature reconstructions from Antarctic ice cores rely mainly on δD and δ18O records and the main key factors controlling the observed distribution of δD and δ18O in Antarctic surface snow are mainly related to the condensation temperature of the precipitation and the origin of moisture. The deuterium excess, d = δD - 8*δ18O, contains information about climate conditions prevailing in the source regions of precipitation and can be used as an integrated tracer of past hydrological cycle changes. In the framework of the TALos Dome Ice CorE (TALDICE) project, a deep ice core (1620 m) has been drilled at Talos Dome, a peripheral dome of East Antarctica facing the Ross Sea, about 550 km north of Taylor Dome and 1100 km East from the EPICA Dome C drilling site. The TALDICE coring site (159°11'E 72°49'S; 2315 m; T -41°C; www.taldice.org) is located near the dome summit and is characterised by an annual snow accumulation rate of 80 mm water equivalent. Backtrajectory analyses suggest that Talos Dome is mainly influenced by air masses arriving both from the Pacific (Ross Sea) and Indian Ocean sectors. A preliminary dating based on an ice flow model and an inverse method suggests for the upper 1580 m an age of about 300,000 years BP. The full TALDICE δ18O record obtained from the bag samples as well as δD and deuterium excess data are presented here. The δ18O and δD measurements were carried out in Italy and France on a continuous basis of 1 m. These new records will be compared to the ones obtained from the EDC ice core as well as with other East Antarctic ice core records. In particular, we will focus on the whole isotopic profiles, in good agreement with other inland deep ice cores, and on the last deglaciation, showing climatic changes at Talos Dome in phase with the Antarctic plateau and suggesting that the bipolar see saw with Greenland temperature is also valid for this new coastal site facing the Ross Sea sector.
Xu, Yongxiang; Wei, Yanyu; Zou, Jibin; Li, Jianjun; Qi, Wenjuan; Li, Yong
2014-01-01
Deep-sea permanent magnet motor equipped with fluid compensated pressure-tolerant system is compressed by the high pressure fluid both outside and inside. The induced stress distribution in stator core is significantly different from that in land type motor. Its effect on the magnetic properties of stator core is important for deep-sea motor designers but seldom reported. In this paper, the stress distribution in stator core, regarding the seawater compressive stress, is calculated by 2D finite element method (FEM). The effect of compressive stress on magnetic properties of electrical steel sheet, that is, permeability, BH curves, and BW curves, is also measured. Then, based on the measured magnetic properties and calculated stress distribution, the stator iron loss is estimated by stress-electromagnetics-coupling FEM. At last the estimation is verified by experiment. Both the calculated and measured results show that stator iron loss increases obviously with the seawater compressive stress.
Neutrino oscillation studies with IceCube-DeepCore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aartsen, M. G.; Abraham, K.; Ackermann, M.
IceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle andmore » performance, the method used to make these calculations, as well as the results, is detailed. Finally, the future prospects of IceCube-DeepCore and the next generation of neutrino experiments at the South Pole (IceCube-Gen2, specifically the PINGU sub-detector) are briefly discussed.« less
Neutrino oscillation studies with IceCube-DeepCore
Aartsen, M. G.; Abraham, K.; Ackermann, M.; ...
2016-03-30
IceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle andmore » performance, the method used to make these calculations, as well as the results, is detailed. Finally, the future prospects of IceCube-DeepCore and the next generation of neutrino experiments at the South Pole (IceCube-Gen2, specifically the PINGU sub-detector) are briefly discussed.« less
Core strength training for patients with chronic low back pain.
Chang, Wen-Dien; Lin, Hung-Yu; Lai, Ping-Tung
2015-03-01
[Purpose] Through core strength training, patients with chronic low back pain can strengthen their deep trunk muscles. However, independent training remains challenging, despite the existence of numerous core strength training strategies. Currently, no standardized system has been established analyzing and comparing the results of core strength training and typical resistance training. Therefore, we conducted a systematic review of the results of previous studies to explore the effectiveness of various core strength training strategies for patients with chronic low back pain. [Methods] We searched for relevant studies using electronic databases. Subsequently, we evaluated their quality by analyzing the reported data. [Results] We compared four methods of evaluating core strength training: trunk balance, stabilization, segmental stabilization, and motor control exercises. According to the results of various scales and evaluation instruments, core strength training is more effective than typical resistance training for alleviating chronic low back pain. [Conclusion] All of the core strength training strategies examined in this study assist in the alleviation of chronic low back pain; however, we recommend focusing on training the deep trunk muscles to alleviate chronic low back pain.
NASA Astrophysics Data System (ADS)
Michel, Elisabeth; Waelbroeck, Claire; Govin, Aline; Skinner, Luke; Vàzquez Riveiros, Natalia; Dewilde, Fabien; Isguder, Gulay; Rebaubier, Hélène
2013-04-01
Surface and deep-water records of Termination I and II in two twin South Atlantic deep-sea cores (44°09' S, 14°14' W, 3770 m depth) and one South Indian core (46°29' S, 88°01' E, 3420 m depth) are presented. Sea surface temperature has been reconstructed based on planktonic foraminifera census counts in all cases, as well as Mg/Ca of G. bulloides and N. pachyderma s. over the last deglaciation. The uncertainty on reconstructed SST using different statistical methods and different faunal databases is assessed. Over the last deglaciation, combined 14C dating and correlation of the SST record with the air temperature signal recorded in Antarctic ice cores allowed us to correct for variable surface reservoir ages in the South Atlantic core (Skinner et al., 2010). Preliminary dating of the South Indian core over the last termination has been done by correlation of its magnetic signal with those of a neighboring 14C dated core (Smart et al., 2010). We have refined the later age scale using the Atlantic core age scale as reference. Benthic isotopic signals in the South Atlantic and South Indian cores over the last deglaciation exhibit the same amplitude and timing. Our results thus indicate that bottom waters at the South Indian site remained isolated from better ventilated deep waters of northern origin until ~15 ka (Waelbroeck et al., 2011). Over Termination II, the two cores have been dated by correlation of their SST records with the air temperature signal recorded in EDC versus the EDC3 age scale (Govin et al., 2009; 2012). A careful examination of the various sources of uncertainty on the derived dating has been performed. Benthic and planktonic isotopic signals reveal analogies but also differences with respect to the last termination. SST was significantly warmer during the Last Interglacial than during the Holocene in both sites. South Atlantic deep waters were also significantly better ventilated during the Last Interglacial than during the Holocene, whereas bottom water ventilation was similar during these two interglacials at the South Indian site.
Repulsive force support system feasibility study
NASA Technical Reports Server (NTRS)
Boom, R. W.; Abdelsalam, M. K.; Eyssa, Y. M.; Mcintosh, G. E.
1987-01-01
A new concept in magnetic levitation and control is introduced for levitation above a plane. A set of five vertical solenoid magnets mounted flush below the plane supports and controls the model in five degrees of freedom. The compact system of levitation coils is contained in a space 2.4 m (96 in) diameter by 1 m (40 in) deep with the top of the levitation system 0.9 m (36 in) below the center line of the suspended model. The levitated model has a permanent magnet core held in position by the five parallel superconductive solenoids symmetrically located in a circle. The control and positioning system continuously corrects for model position in five dimensions using computer current pulses superimposed on the levitation coil base currents. The conceptual designs include: superconductive and Nd-Fe-B permanent magnet model cores and levitation solenoids of either superconductive, cryoresistive, or room temperature windings.
Alpers, Charles N.; Hunerlach, Michael P.; Marvin-DePasquale, Mark C.; Antweiler, Ronald C.; Lasorsa, Brenda K.; De Wild, John F.; Snyder, Noah P.
2006-01-01
Deep coring penetrated the full thickness of material deposited after 1940 at six locations in the reservoir; the cores reached a maximum depth of 32.8 meters below the reservoir floor. At the three deep coring sites closest to Englebright Dam, concentrations of HgT (dry basis) were consistently in the range of 100 to 500 ng/g (nanogram per gram), in sediment dominantly of silt size (median grain size of 0.004 to 0.063 mm [millimeter]). At the deep coring sites located farther upstream, the upper parts of the profile had lower concentrations of HgT, generally ranging from 2 to 100 ng/g, in sediment dominantly of sand size (median grain size from 0.063 to 2 mm). The lower part of the vertical profiles at three upstream coring sites had higher concentrations of HgT than the upper and middle parts of these profiles, and had finer median grain size. The highest median concentration of MeHg (1.1 ng/g) was in the top 2 cm (centimeter) of the shallow box cores. This vertical interval also had the highest value of the ratio of MeHg to HgT, 0.41 percent. Median concentrations of MeHg and median values of MeHg/HgT decreased systematically with depth from 0-4 to 4-8 to 8-12 cm in the shallow cores. However, similar systematic decreases were not observed at the meter scale in the deep cores of the MEM (MEthylMercury) series. The overall median of the ratio MeHg/HgT in the deep cores was 0.25 percent, not much less than the overall median value for the shallow cores (0.33 percent). Mercury-203 radiotracer divalent inorganic mercury (203Hg(II)) was used to determine microbial mercury-methylation potential rates for 11 samples collected from three reservoir locations and various depths in the sediment profile. For the five shallow mercury-methylation subsamples, ancillary geochemical parameters were assayed, including microbial sulfate reduction rates, sulfur speciation (sediment acid volatile sulfide, total reduced sulfur, and pore-water sulfate), iron speciation (sediment acid extractable iron(II), amorphous iron(III), crystalline iron(III) and pore-water iron(II)), pore-water chloride and dissolved organic carbon, and pH, oxidation-reduction potential (Eh) and whole-sediment organic content. The highest potential rates of microbial mercury methylation were measured in shallow (0 to 8 cm depth) sediments (5 to 30 nanograms of mercury per gram dry sediment per day), whereas potential rates for subsamples collected from depths greater than 500 cm were consistently below the detection limit of the radiotracer method (< 0.02 nanogram of mercury per gram dry sediment per day). Chemical analyses of trace and major elements in bed sediment are presented for 202 samples from deep cores from five locations in Englebright Lake. The mean values and standard deviations for selected trace elements were as follows (in micrograms per gram): antimony, 2.4 ? 1.6; arsenic, 69 ? 48; chromium, 134 ? 23; lead, 33 ? 25; and nickel, 87 ? 24. Concentrated samples of heavy-mineral grains, prepared using nine large-volume composite samples from
NASA Astrophysics Data System (ADS)
Takahashi, Y.; Hata, T.; Nishida, H.
2017-12-01
In normal coring of deep marine sediments, the sampled cores are exposed to the pressure of the atmosphere, which results in dissociation of gas-hydrates and might change microbial diversity. In this study, we analyzed microbial composition in methane hydrate-bearing sediment core sampled and preserved by Hybrid-PCS (Pressure Coring System). We sliced core into three layers; (i) outside layer, which were most affected by drilling fluids, (ii) middle layer, and (iii) inner layer, which were expected to be most preserved as the original state. From each layer, we directly extracted DNA, and amplified V3-V4 region of 16S rRNA gene. We determined at least 5000 of nucleotide sequences of the partial 16S rDNA from each layer by Miseq (Illumina). In the all layers, facultative anaerobes, which can grow with or without oxygen because they can metabolize energy aerobically or anaerobically, were detected as majority. However, the genera which are often detected anaerobic environment is abundant in the inner layer compared to the outside layer, indicating that condition of drilling and preservation affect the microbial composition in the deep marine sediment core. This study was conducted as a part of the activity of the Research Consortium for Methane Hydrate Resources in Japan [MH21 consortium], and supported by JOGMEC (Japan Oil, Gas and Metals National Corporation). The sample was provided by AIST (National Institute of Advanced Industrial Science and Technology).
Hawaii scientific drilling protect: Summary of preliminary results
DePaolo, D.; Stolper, E.; Thomas, D.; Albarede, F.; Chadwick, O.; Clague, D.; Feigenson, M.; Frey, F.; Garcia, M.; Hofmann, A.; Ingram, B.L.; Kennedy, B.M.; Kirschvink, J.; Kurz, M.; Laj, Carlo; Lockwood, J.; Ludwig, K.; McEvilly, T.; Moberly, R.; Moore, G.; Moore, J.; Morin, R.; Paillet, F.; Renne, P.; Rhodes, M.; Tatsumoto, M.; Taylor, H.; Walker, G.; Wilkins, R.
1996-01-01
Petrological, geochemical, geomagnetic, and volcanological characterization of the recovered core from a 1056-m-deep well into the flank of the Mauna Kea volcano in Hilo, Hawaii, and downhole logging and fluid sampling have provided a unique view of the evolution and internal structure of a major oceanic volcano unavailable from surface exposures. Core recovery was ~90%, yielding a time series of fresh, subaerial lavas extending back to ~400 ka. Results of this 1993 project provide a basis for a more ambitious project to core drill a well 4.5 km deep in a nearby location with the goal of recovering an extended, high-density stratigraphic sequence of lavas.
Reinterpretation of the Burmester core, Bonneville basin, Utah
Oviatt, Charles G.; Thompson, R.S.; Kaufman, D.S.; Bright, Jordon; Forester, R.M.
1999-01-01
Initial interpretation of the sediments from the Burmester core (Eardley et al. (1973). Geological Society of America Bulletin 84, 211-216) indicated that 17 deep-lake cycles, separated by shallow-lake and soil-forming intervals, occurred in the Bonneville basin during the Brunhes Chron (the last 780 x 103 yr). Our re-examination of the core, along with new sedimentological, geochronological, and paleontological data, indicate that only four deep-lake cycles occurred during this period, apparently correlative with marine oxygen-isotope stages 2, 6, 12, and 16. This interpretation suggests that large lakes formed in the Bonneville basin only during the most extensive of the Northern Hemisphere glaciations.
A 20 GeVs transparent neutrino astronomy from the North Pole?
NASA Astrophysics Data System (ADS)
Fargion, D.; D'Armiento, D.
2011-03-01
Muon neutrino astronomy is drown within a polluted atmospheric neutrino noise: indeed recent ICECUBE neutrino records at (TeVs) couldn't find any muon neutrino point source [R. Abbasi et al. (IceCube Collaboration), arXiv:1010.3980v1] being blurred by such a noisy sky. However at 24 GeV energy atmospheric muon neutrinos, while rising vertically along the terrestrial diameter, should disappear (or be severely depleted) while converting into tau flavor: any rarest vertical E≃12 GeV muon track at South Pole Deep Core volume, pointing back to North Pole, might be tracing mostly a noise-free astrophysical signal. The corresponding Deep Core 6 - 7 - 8 - 9 channels trigger maybe point in those directions and inside that energy range without much background. Analogous ν suppression do not occur so efficiently elsewhere (as SuperKamiokande) because of a much smaller volume, an un-ability to test the muon birth place, its length, its expected energy. Also the smearing of the terrestrial rotation makes Deep Core ideal: along the South-North Pole the solid angle is almost steady, the flavor ν↦ν conversion persist while the Earth is spinning around the stable poles-axis. Therefore Deep Core detector at South Pole, may scan at E≃18-27 GeV energy windows, into a narrow vertical cone Δθ≃30° for a novel ν, ν astronomy almost noise-free, pointing back toward the North Pole. Unfortunately muon (at E≃12 GeV) trace their arrival direction mostly spread around an unique string in a zenith-cone solid angle. To achieve also an azimuth angular resolution a two string detection at once is needed. Therefore the doubling of the Deep Core string number, (two new arrays of six string each, achieving an average detection distance of 36.5 m), is desirable, leading to a larger Deep Core detection mass (more than double) and a sharper zenith and azimuth angular resolution by two-string vertical axis detection. Such an improvement may show a noise free (at least factor ten) muon neutrino astronomy. This enhancement may also be a crucial probe of a peculiar anisotropy foreseen for atmospheric anti-muon, in CPT violated physics versus conserved one, following a hint by recent Minos results.
NASA Astrophysics Data System (ADS)
Fucugauchi, J. U.; Perez-Cruz, L. L.; Velasco-Villarreal, M.
2013-12-01
Drilling projects of impact structures provide data on the structure and stratigraphy of target, impact and post-impact lithologies, providing insight on the impact dynamics and cratering. Studies have successfully included magnetic well logging and analyses in core and cuttings, directed to characterize the subsurface stratigraphy and structure at depth. There are 170-180 impact craters documented in the terrestrial record, which is a small proportion compared to expectations derived from what is observed on the Moon, Mars and other bodies of the solar system. Knowledge of the internal 3-D deep structure of craters, critical for understanding impacts and crater formation, can best be studied by geophysics and drilling. On Earth, few craters have yet been investigated by drilling. Craters have been drilled as part of industry surveys and/or academic projects, including notably Chicxulub, Sudbury, Ries, Vredefort, Manson and many other craters. As part of the Continental ICDP program, drilling projects have been conducted on the Chicxulub, Bosumtwi, Chesapeake, Ries and El gygytgyn craters. Inclusion of continuous core recovery expanded the range of paleomagnetic and rock magnetic applications, with direct core laboratory measurements, which are part of the tools available in the ocean and continental drilling programs. Drilling studies are here briefly reviewed, with emphasis on the Chicxulub crater formed by an asteroid impact 66 Ma ago at the Cretaceous/Paleogene boundary. Chicxulub crater has no surface expression, covered by a kilometer of Cenozoic sediments, thus making drilling an essential tool. As part of our studies we have drilled eleven wells with continuous core recovery. Magnetic susceptibility logging, magnetostratigraphic, rock magnetic and fabric studies have been carried out and results used for lateral correlation, dating, formation evaluation, azimuthal core orientation and physical property contrasts. Contributions of magnetic studies on impact age, cratering, target-impactite stratigraphy, ejecta, impact dynamics, hydrothermal alterations and post-impact processes are presented. The challenges and perspectives of drilling studies of impact craters are discussed.
Using DSDP/ODP/IODP core photographs and digital images in the classroom
NASA Astrophysics Data System (ADS)
Pereira, Hélder; Berenguer, Jean-Luc
2017-04-01
Since the late 1960's, several scientific ocean drilling programmes have been uncovering the history of the Earth hidden beneath the seafloor. The adventure began in 1968 with the Deep Sea Drilling Project (DSDP) and its special drill ship, the Glomar Challenger. The next stage was the Ocean Drilling Program (ODP) launched in 1985 with a new drill ship, the JOIDES Resolution. The exploration of the ocean seafloor continued, between 2003 and 2013, through the Integrated Ocean Drilling Program (IODP). During that time, in addition to the JOIDES Resolution, operated by the US, the scientists had at their service the Chikyu, operated by Japan, and Mission-Specific-Platforms, funded and implemented by the European Consortium for Ocean Research Drilling. Currently, scientific ocean drilling continues through the collaboration of scientists from 25 nations within the International Ocean Discovery Program (IODP). Over the last 50 years, the scientific ocean drilling expeditions conducted by these programmes have drilled and cored more than 3500 holes. The numerous sediment and rock samples recovered from the ocean floor have provided important insight on the active biological, chemical, and geological processes that have shaped the Earth over millions of years. During an expedition, once the 9.5-meter long cores arrive from the seafloor, the technicians label and cut them into 1.5-meter sections. Next, the shipboard scientists perform several analysis using non-destructive methods. Afterward, the technicians split the cores into two halves, the "working half", which scientists sample and use aboard the drilling platform, and the "archive half", which is kept in untouched condition after being visually described and photographed with a digital imaging system. The shipboard photographer also takes several close-up pictures of the archive-half core sections. This work presents some examples of how teachers can use DSDP/ODP/IODP core photographs and digital images, available through the Janus and LIMS online databases, to develop inquiry-based learning activities for secondary level students.
NASA Astrophysics Data System (ADS)
Bridgeman, J.; Tornqvist, T. E.; Allison, M. A.; Jafari, N.
2016-12-01
Land-surface subsidence is a major contributor to recent Mississippi Delta land loss. Despite significant research efforts, the primary mechanisms and rates of delta subsidence remain the subject of debate. This has led to a broad range of subsidence rate estimates across the delta, making differentiating between subsidence mechanisms as well as coastal restoration efforts more challenging. New data from a continuous 39 m long, 12 cm diameter core taken during the installation of a subsidence monitoring superstation near the Mississippi River, SW of New Orleans, provides insight into the grain size, bulk density, geochronology, and geotechnical parameters of the entire Holocene succession. The core consists of three major sections. The top 11 m contain a modern marsh peat, followed by a silty clay loam with interspersed humic clays (14C age 1250 BP), a peat bed (14C age 2200-2950 BP), and silt loams. The middle section from 11 to 35 m is dominated by clay and silty clay, with a relative bulk density of 1.5 g/cc, which gradually becomes denser with depth and the bottom section (35 to 39 m) is marked by a high energy, shell-rich sand facies and a basal peat (14C age 9850 BP), which terminates at the core base in a densely packed, blue-gray silty clay loam, characteristic of the Pleistocene. The radiocarbon ages of marsh peat beds, combined with sea-level markers derived from basal peat elsewhere in the delta, enable the reconstruction of the local subsidence history at this site. Notably, the data shows a significant amount of vertical displacement from the dated organics in the top section of the core; 3.5 m in the humic clays and up to 5 m in the peat bed. The subsidence rates measured by the superstation apparatus, and the geotechnical measurements of core sediments, will aid in determining the dominant subsidence mechanisms (shallow vs. deep) in the region.
NASA Astrophysics Data System (ADS)
Gupta, Harsh; Purnachandra Rao, N.; Roy, Sukanta; Arora, Kusumita; Tiwari, V. M.; Patro, Prasanta K.; Satyanarayana, H. V. S.; Shashidhar, D.; Mallika, K.; Akkiraju, Vyasulu V.; Goswami, Deepjyoti; Vyas, Digant; Ravi, G.; Srinivas, K. N. S. S. S.; Srihari, M.; Mishra, S.; Dubey, C. P.; Raju, D. Ch. V.; Borah, Ujjal; Chinna Reddy, K.; Babu, Narendra; Rohilla, Sunil; Dhar, Upasana; Sen, Mrinal; Bhaskar Rao, Y. J.; Bansal, B. K.; Nayak, Shailesh
2015-09-01
Artificial water reservoir-triggered earthquakes have continued at Koyna in the Deccan Traps province, India, since the impoundment of the Shivaji Sagar reservoir in 1962. Existing models, to comprehend the genesis of triggered earthquakes, suffer from lack of observations in the near field. To investigate further, scientific deep drilling and setting up a fault zone observatory at depth of 5-7 km is planned in the Koyna area. Prior to undertaking deep drilling, an exploratory phase of investigations has been launched to constrain subsurface geology, structure and heat flow regime in the area that provide critical inputs for the design of the deep borehole observatory. Two core boreholes drilled to depths of 1,522 and 1,196 m have penetrated the Deccan Traps and sampled the granitic basement in the region for the first time. Studies on cores provide new and direct information regarding the thickness of the Deccan Traps, the absence of infra-Trappean sediments and the nature of the underlying basement rocks. Temperatures estimated at a depth of 6 km in the area, made on the basis of heat flow and thermal properties data sets, do not exceed 150 °C. Low-elevation airborne gravity gradient and magnetic data sets covering 5,012 line km, together with high-quality magnetotelluric data at 100 stations, provide both regional information about the thickness of the Deccan Traps and the occurrence of localized density heterogeneities and anomalous conductive zones in the vicinity of the hypocentral zone. Acquisition of airborne LiDAR data to obtain a high-resolution topographic model of the region has been completed over an area of 1,064 km2 centred on the Koyna seismic zone. Seismometers have been deployed in the granitic basement inside two boreholes and are planned in another set of six boreholes to obtain accurate hypocentral locations and constrain the disposition of fault zones.
NASA Astrophysics Data System (ADS)
Hu, R.
2015-12-01
Neodymium isotopes of ferromanganese oxide coatings precipitated on planktonic foraminifera have been intensively used as a proxy for water mass reconstruction in the deep Atlantic and Indian Ocean, but their suitability is not well constrained in the Pacific and may be affected by enhanced inputs and scavenging relative to advection. In this study, Nd isotopes and Rare Earth Element (REE) concentrations of planktonic foraminifera from ~60 sites widely distributed throughout the Pacific are presented. We found that the REE pattern associated with planktonic foraminifera in our study and Fe-Mn oxides/coatings in the global ocean have a common heavy REE depleted pattern when normalized to their ambient seawater due to preferential removal of light REEs onto particles relative to heavy REEs during scavenging. The core-top ɛNd results agree with the proximal seawater compositions, indicating that planktonic foraminiferal coatings can give a reliable record of past changes in bottom water Nd isotopes in the Pacific. A good correlation between foraminifera Nd isotopes and seawater phosphate suggests that Nd with a predominantly radiogenic isotopic composition was probably added gradually along continental boundaries so that the Nd isotopic composition change paralleled the accumulation of nutrients in the deep Pacific. By confirming Nd isotopes as a reliable water mass tracer in the Pacific Ocean, this proxy is then applied to reconstruct how the water mass circulation changes during the Last Glacial Maximum (LGM). Most of the cores in deep North Pacific show essentially invariant Nd isotopic compositions during the LGM compared with core-top values, suggesting that Nd isotope of Pacific end-member did not change during glacial times. However, the LGM Southwest Pacific cores have more radiogenic ɛNd than core-tops corroborating the previous findings of reduced inflow of North Atlantic Deep Water. The Eastern Equatorial Pacific cores above ~2 km showed consistently lower LGM ɛNd values, which might suggest a reduced influence of more radiogenic North Pacific Deep Water return flow. Taken together, our results indicate a slower Pacific overturning circulation during the glacial times, and the inflow and return flow of the Pacific meridional overturning were closely linked in the glacial-interglacial cycles.
NASA Astrophysics Data System (ADS)
Morono, Y.; Hauer, V. B.; Inagaki, F.; Kubo, Y.; Maeda, L.; Scientists, E.
2017-12-01
Expedition 370 of the International Ocean Discovery Program (IODP) aimed to explore the limits of life in the deep subseafloor biosphere at a location where elevated heat flow lets temperature increase with sediment depth beyond the known maximum of microbial life ( 120°C) at 1.2 km below the seafloor. Such conditions are met in the protothrust zone of the Nankai Trough off Cape Muroto, Japan, where Site C0023 was established in the vicinity of ODP Sites 808 and 1174 at a water depth of 4776 m using the drilling vessel DV Chikyu. Hole C0023A was cored down to a total depth of 1180 meters below seafloor, offshore sampling and research was combined with simultaneous shore-based investigations at the Kochi Core Center (KCC), and long-term temperature observations were started (Heuer et al., 2017). The primary scientific objectives of Expedition 370 are (a) to detect and investigate the presence or absence of life and biological processes at the biotic-abiotic transition of the deep subseafloor with unprecedented analytical sensitivity and precision; (b) to comprehensively study the factors that control biomass, activity, and diversity of microbial communities; and (c) to elucidate if continuous or episodic flow of fluids containing thermogenic and/or geogenic nutrients and energy substrates support subseafloor microbial communities in the Nankai Trough accretionary complex (Hinrichs et al., 2016). This contribution will highlight the scientific approach of our field-work and preliminary expedition results by shipboard and shorebased activities. Hinrichs K-U, Inagaki F, Heuer VB, Kinoshita M, Morono Y, Kubo Y (2016) Expedition 370 Scientific Prospectus: T-Limit of the Deep Biosphere off Muroto (T-Limit). International Ocean Discovery Program. http://dx.doi.org/10.14379/iodp.sp.370.2016 Heuer VB, Inagaki F, Morono Y, Kubo Y, Maeda L, the Expedition 370 Scientists (2017) Expedition 370 Preliminary Report: Temperature Limit of the Deep Biosphere off Muroto. International Ocean Discovery Program. http://dx.doi.org/10.14379/iodp.pr.370.2017
Extreme drying event in the Dead Sea basin during MIS5 from the ICDP Dead Sea Deep Drill Core
NASA Astrophysics Data System (ADS)
Goldstein, S. L.; Stein, M.; Ben-Avraham, Z.; Agnon, A.; Ariztegui, D.; Brauer, A.; Haug, G. H.; Ito, E.; Kitagawa, H.; Torfstein, A.; Yasuda, Y.; The Icdp-Dsddp Scientific Party
2011-12-01
The ICDP funded Dead Sea Deep Drilling Project (DSDDP) recovered the longest and most complete paleo-environmental record in the Middle East, drilling holes of ~450 and ~350 meters in length in deep (~300 m below the lake level) and shallow sites (~3 mbll) respectively. The Dead Sea expands during the glacials and contracts during interglacials, and the sediments comprise a geological archive of the evolving environmental conditions (e.g. rains, floods, dust-storms, droughts). Dead Sea sediments include inorganic aragonite, allowing for dating by U-series (e.g. Haase-Schramm et al. GCA 2004). The deep site cores were opened and described in June 2011. The cores are composed mainly of alternating intervals of marl (aragonite, gypsum and detritus) during glacials, and salts and marls during interglacials. From this stratigraphy we estimate that the deep site core spans ~200 kyr (to the boundary of MIS 6 and 7). A dramatic discovery is a ~40 cm thick interval of partly rounded pebbles at ~235 m below the lake floor. This is the only clean pebbly unit in the entire core. It appears to be a beach layer, near the deepest part of the Dead Sea, lying above ~35 meters of mainly salt. If it is a beach layer, it implies an almost complete dry-down of the paleo-Dead Sea. The pebble layer lies within the last interglacial interval. Our initial attempt to more precisely estimate the age of the possible dry down shows an intriguing correlation between the salt-mud stratigraphy of the Dead Sea core and the oxygen isotope record of Soreq Cave, whereby excursions to light oxygen in the speleothems correspond to periods of salt deposition. Through this comparison, we estimate that the possible dry down occurred during MIS 5e. The occurrence of ~35 meters of mainly salt along with the pebble layer demonstrates a severe dry interval during MIS 5. This observation has implications for the Middle East today, where the Dead Sea level is dropping as all the countries in the area use the runoff. GCM models indicate a more arid future in the region. The core shows that the runoff nearly stopped during a past warm period without human intervention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alan Black; Arnis Judzis
2004-10-01
The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rockmore » cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alan Black; Arnis Judzis
2004-10-01
The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rockmore » cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. (1) TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.« less
Preliminary Report on Cruise NBP01-01, East Antarctic Margin
NASA Astrophysics Data System (ADS)
Leventer, A.; Brachfeld, S.; Domack, E.; Dunbar, R.; Manley, P.; McClennen, C.; Kryc, K.; Beaman, R.; Moy, A.; Pike, J.; Shevenell, A.; Taylor, F.
2001-12-01
Cruise NBP01-01 of the RVIB NB Palmer was a marine geologic and geophysical investigation of the East Antarctic Margin, from Wilkes Land to Edward VIII Gulf, between approximately 150 E to 50 E. The primary objective of the cruise was to develop a record of climate and oceanographic change during the Quaternary, using sediment cores collected via a combination of short and long coring (25 meter jumbo piston cores [JPCs]). Specific goals of this project include development of (1) a century to millennial-scale record of Holocene paleoenvironments and (2) a record of previous stadial and interstadial events on the shelf. Fieldwork on NBP01-01 is a continuation of previous work along the Antarctic Peninsula and in the Ross Sea that has helped us develop an understanding of both the glacial-interglacial history of Antarctica as well as the details of climate variability within the present interglacial. However, both the Antarctic Peninsula and the Ross Sea are influenced primarily by the West Antarctic Ice Sheet, while limited information has been acquired based on data from the East Antarctic Margin. Given large-scale differences between these systems, Cruise NBP0101 gave us the chance to combine our previous knowledge with new data to develop an integrated perspective on climate history in Antarctica through the Quaternary. Core sites were selected based on a combination of sub-bottom profiling via the Bathy2000 and seafloor mapping using the MultiBeam, in addition to information based on previous work. Two depositional environments were targeted - deep basins and troughs of the shelf, and the Prydz Channel and Amery Depression. Deeps investigated include the Mertz Trough, Mertz-Ninnis Trough, and the Dumont d'Urville Trough along the Wilkes Land Margin, the Svenner Channel in Prydz Bay, Nielsen Basin and Iceberg Alley along the Mac.Robertson Shelf, and Edward VIII Gulf, off Enderby Land. A total of 13 JPCs were recovered from these sites, with cores often paired to obtain both the highest resolution record possible and a lower resolution record reaching back to glacial conditions. The four cores opened so far demonstrate complete Holocene records and reach back to glacial sediments. In the Prydz Channel and Amery Depression, three JPCs were collected. Initial data suggest these cores penetrate sequences of up to 5 alternating siliceous mud and glacial units.
ERIC Educational Resources Information Center
Lagoze, Carl; Neylon, Eamonn; Mooney, Stephen; Warnick, Walter L.; Scott, R. L.; Spence, Karen J.; Johnson, Lorrie A.; Allen, Valerie S.; Lederman, Abe
2001-01-01
Includes four articles that discuss Dublin Core metadata, digital rights management and electronic books, including interoperability; and directed query engines, a type of search engine designed to access resources on the deep Web that is being used at the Department of Energy. (LRW)
Glacial magnetite dissolution in abyssal NW Pacific sediments - evidence for carbon trapping?
NASA Astrophysics Data System (ADS)
Korff, Lucia; von Dobeneck, Tilo; Frederichs, Thomas; Kasten, Sabine; Kuhn, Gerhard; Gersonde, Rainer; Diekmann, Bernhard
2016-04-01
The abyssal North Pacific Ocean's large volume, depth, and terminal position on the deep oceanic conveyor make it a candidate site for deep carbon trapping as postulated by climate theory to explain the massive glacial drawdown of atmospheric CO2. As the major basins of the North Pacific have depths of 5500-6500m, far below the modern and glacial Calcite Compensation Depths (CCD), these abyssal sediments are carbonate-free and therefore not suitable for carbonate-based paleoceanographic proxy reconstructions. Instead, paleo-, rock and environmental magnetic methods are generally well applicable to hololytic abyssal muds and clays. In 2009, the international paleoceanographic research cruise SO 202 INOPEX ('Innovative North Pacific Experiment') of the German RV SONNE collected two ocean-spanning EW sediment core transects of the North Pacific and Bering Sea recovering a total of 50 piston and gravity cores from 45 sites. Out of seven here considered abyssal Northwest Pacific piston cores collected at water depths of 5100 to 5700m with mostly coherent shipboard susceptibility logs, the 20.23m long SO202-39-3, retrieved from 5102 m water depth east of northern Shatsky Rise (38°00.70'N, 164°26.78'E), was rated as the stratigraphically most promising record of the entire core transect and selected for detailed paleo- and environmental magnetic, geochemical and sedimentological investigations. This core was dated by correlating its RPI and Ba/Ti records to well-dated reference records and obviously provides a continuous sequence of the past 940 kyrs. The most striking orck magnetic features are coherent magnetite-depleted zones corresponding to glacial periods. In the interglacial sections, detrital, volcanic and even submicron bacterial magnetite fractions are excellently preserved. These alternating magnetite preservation states seem to reflect dramatic oxygenation changes in the deep North Pacific Ocean and hint at large-scale benthic glacial carbon trapping followed by subsequent interglacial carbon burn-down and CO2 release. Abyssal Northwest Pacific sediments may have served as glacial carbon reservoir in particular since the onset of systematic 100 kyr ice age cycles at the end of the Mid-Pleistocene transition (MPT). Stagnant glacial Antarctic Bottom Water, which expanded primarily into abyssal South Atlantic basins during the MPT interim phase, thereafter seemed to flow preferentially into the deeper and larger abyssal Indo-Pacific basins, where it may have enabled more efficient carbon-trapping. More intensive scavenging of the Northwest Pacific surface ocean by enhanced glacial Asian dust flux is suggested by parallel TOC and quartz contents, enhancing glacial carbon accumulation despite potentially lower export production. The magnetic records also identify numerous partly consistent tephra layers, which can be matched between most records of the core transect.
NASA Astrophysics Data System (ADS)
Bereiter, Bernhard; Maechler, Lars; Schmitt, Jochen; Walther, Remo; Tuzson, Béla; Scheidegger, Philipp; Emmenegger, Lukas; Fischer, Hubertus
2017-04-01
Ice cores are unique archives of ancient air providing the only direct record of past greenhouse gases - key in reconstructing the roles of greenhouse gases in past climate changes. The European Partnership in Ice Core Sciences (EuroPICS) plans to drill an ice core extending over 1.5 Ma, nearly doubling the time span of the existing greenhouse record and covering the time period of the Mid Pleistocene Transition. The ice covering the time interval from 1-1.5 Ma is expected to be close to the bedrock and, due to glacial flow, extremely thinned. A 10,000 yr glacial/interglacial transition can be compressed in 1 m of ice. The targeted 100 yr resolution therefore constrains the sample size to 15-30 g containing only 1-2ml STP air. Within the deepSlice project we aim to unlock such atmospheric archives in extremely thinned ice by developing a novel coupled semi-continuous sublimation extraction/laser spectroscopy system. Vacuum sublimation, with an infrared source, has been chosen as extraction method as it allows 100% gas extraction of all gas species from ice without changing the isotopic composition of CO2. In order to reduce ice waste and accelerate sample throughput, we are building a sublimation extraction system that is able to continuously sublimate an ice-core section and subsequently collect discrete full air samples. For the gas analytics, we develop a custom-made mid-infrared laser spectrometer allowing simultaneous measurement of the CO2, CH4 and N2O concentrations as well as the isotopic composition of CO2 on air samples of only 1-2 ml STP. The two systems will be coupled via cryo-trapping of the sample air in dip tubes, followed by expansion of the sample air into the laser spectrometer. Due to the nondestructive laser technique, the air sample can be recollected and reused for further analytics.
Deep Chandra Observations of Abell 586: A Remarkably Relaxed Non-Cool-Core Cluster
NASA Astrophysics Data System (ADS)
Richstein, Hannah; Su, Yuanyuan
2018-01-01
The dichotomy between cool-core and non-cool-core clusters has been a lasting perplexity in extragalactic astronomy. Nascent cores in non-cool-core clusters may have been disrupted by major mergers, yet the dichotomy cannot be reproduced in cosmology simulations. We present deep Chandra observations of the massive galaxy cluster Abell 586, which resides at z=0.17, thus allowing its gas properties to be measured out to its virial radius. Abell 586 appears remarkably relaxed with a nearly spherical X-ray surface brightness distribution and without any offset between its X-ray and optical centroids. We measure that its temperature profile does not decrease towards the cluster center and its central entropy stays above 100 keV cm2. A non-cool-core emerges in Abell 586 in the absence of any disruptions on the large scale. Our study demonstrates that non-cool-core clusters can be formed without major mergers. The origins of some non-cool-core clusters may be related to conduction, AGN feedback, or preheating.The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.
The Fuzziness of Giant Planets’ Cores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helled, Ravit; Stevenson, David
2017-05-01
Giant planets are thought to have cores in their deep interiors, and the division into a heavy-element core and hydrogen–helium envelope is applied in both formation and structure models. We show that the primordial internal structure depends on the planetary growth rate, in particular, the ratio of heavy elements accretion to gas accretion. For a wide range of likely conditions, this ratio is in one-to-one correspondence with the resulting post-accretion profile of heavy elements within the planet. This flux ratio depends sensitively on the assumed solid-surface density in the surrounding nebula. We suggest that giant planets’ cores might not bemore » distinct from the envelope and includes some hydrogen and helium, and the deep interior can have a gradual heavy-element structure. Accordingly, Jupiter’s core may not be well defined. Accurate measurements of Jupiter’s gravitational field by Juno could put constraints on Jupiter’s core mass. However, as we suggest here, the definition of Jupiter’s core is complex, and the core’s physical properties (mass, density) depend on the actual definition of the core and on the planet’s growth history.« less
Opportunities and Challenges of Linking Scientific Core Samples to the Geoscience Data Ecosystem
NASA Astrophysics Data System (ADS)
Noren, A. J.
2016-12-01
Core samples generated in scientific drilling and coring are critical for the advancement of the Earth Sciences. The scientific themes enabled by analysis of these samples are diverse, and include plate tectonics, ocean circulation, Earth-life system interactions (paleoclimate, paleobiology, paleoanthropology), Critical Zone processes, geothermal systems, deep biosphere, and many others, and substantial resources are invested in their collection and analysis. Linking core samples to researchers, datasets, publications, and funding agencies through registration of globally unique identifiers such as International Geo Sample Numbers (IGSNs) offers great potential for advancing several frontiers. These include maximizing sample discoverability, access, reuse, and return on investment; a means for credit to researchers; and documentation of project outputs to funding agencies. Thousands of kilometers of core samples and billions of derivative subsamples have been generated through thousands of investigators' projects, yet the vast majority of these samples are curated at only a small number of facilities. These numbers, combined with the substantial similarity in sample types, make core samples a compelling target for IGSN implementation. However, differences between core sample communities and other geoscience disciplines continue to create barriers to implementation. Core samples involve parent-child relationships spanning 8 or more generations, an exponential increase in sample numbers between levels in the hierarchy, concepts related to depth/position in the sample, requirements for associating data derived from core scanning and lithologic description with data derived from subsample analysis, and publications based on tens of thousands of co-registered scan data points and thousands of analyses of subsamples. These characteristics require specialized resources for accurate and consistent assignment of IGSNs, and a community of practice to establish norms, workflows, and infrastructure to support implementation.
Meteoroid mayhem in Ole Virginny: Source of the North American tektite strewn field
Poag, C. Wylie; Powars, David S.; Poppe, Lawrence J.; Mixon, Robert B.
1994-01-01
New seismic reflection data from Chesapeake Bay reveal a buried, 85-km-wide, 1.5-2.0-km-deep, peak-ring impact crater, carved through upper Eocene to Lower Cretaceous sedimentary strata and into underlying pre-Mesozoic crystalline basement rocks. A polymictic, late Eocene impact breccia, composed mainly of locally derived sedimentary debris (determined from four continuous cores), surrounds and partly fills the crater. Structural and sedimentary characteristics of the Chesapeake Bay crater closely resemble those of the Miocene Ries peakring crater in southern Germany. We speculate that the Chesapeake Bay crater is the source of the North American tektite strewn field.
Meteoroid mayhem in Ole Virginny: source of the North American tektite strewn field
Poag, C.W.; Powars, D.S.; Poppe, L.J.; Mixon, R.B.
1994-01-01
New seismic reflection data from Chesapeake Bay reveal a buried, 85-km-wide, 1.5-2.0-km-deep, peak-ring impact crater, carved through upper Eocene to Lower Cretaceous sedimentary strata and into underlying pre-Mesozoic crystalline basement rocks. A polymictic, late Eocene impact breccia, composed mainly of locally derived sedimentary debris (determined from four continuous cores), surrounds and partly fills the crater. Structural and sedimentary characteristics of the Chesapeake Bay crater closely resemble those of the Miocene Ries peak-ring crater in southern Germany. It is speculated that the Chesapeake Bay crater is the source of the North American tektite strewn field. -Authors
Tobacco control and trade policy: proactive strategies for integrating policy norms.
Drope, Jeffrey; Lencucha, Raphael
2013-01-01
Palpable tension continues at the intersection of tobacco control and trade policy. Through consideration of four major tobacco control-related trade disputes, we suggest how to empower public health proponents in the face of entrenched economic policymaking norms. We argue that a more effective pro-tobacco control message should: (a) seek to be broadly consistent with core principles of the world trading system, (b) boldly assert countries' international commitments to the Framework Convention on Tobacco Control, (c) marshal deep scientific evidence, and (d) come from a broad range of actors, including from low- and middle-income countries as well as from other trade policy community members.
Facchin, Federica; Saita, Emanuela; Barbara, Giussy; Dridi, Dhouha; Vercellini, Paolo
2018-03-01
This study aimed to develop a grounded theory of how endometriosis affects psychological health. Open interviews were conducted with 74 patients. The Hospital Anxiety and Depression Scale was administered to all women, who were divided into distressed versus non-distressed. At the core of our grounded theory was the notion of disruption due to the common features of living with endometriosis. Experiencing disruption (vs restoring continuity) involved higher distress and was associated with a long pathway to diagnosis, bad doctor-patient relationships, poor physical health, lack of support, negative sense of female identity, and identification of life with endometriosis.
Carbon chemistry of the Apollo 15 and 16 deep drill cores
NASA Technical Reports Server (NTRS)
Wszolek, P. C.; Burlingame, A. L.
1973-01-01
The carbon chemistry of the Apollo 15 and 16 deep drill cores is a function of the surface exposure plus the chemical and mineralogical composition of the individual samples. The depth profiles of carbide and methane yields in the Apollo 15 core show a general decline with depth and correlate with the solar wind noble gas content, percentage agglutinates, track densities, and metallic iron. All horizons examined were exposed for a considerable time on the lunar surface. The Apollo 16 core samples show that chemical and mineralogical composition plays an important role in determining the nature of carbide-like material present in the fines. The higher aluminum and calcium contents and lower iron contents of highlands material result in carbide-like material yielding less CD4 and more C2D2 (deuteroacetylene) upon DF acid dissolution.
Characterization and depositional and evolutionary history of the Apollo 17 deep drill core
NASA Technical Reports Server (NTRS)
Morris, R. V.; Lauer, H. V., Jr.; Gose, W. A.
1979-01-01
With a depth resolution of about 0.5 cm, the stratigraphy of the approximately 3 m Apollo 17 deep drill core by measurement of the total FeO concentration is characterized along with the FMR surface exposure (maturity) index Is/FeO, the metallic iron concentration Fe-vsm, and the FMR linewidth delta-H. For stratigraphic characterization, the first two parameters are the most important. Most of the core is characterized by a FeO concentration of approximately 15.5 wt. %; there is a more mafic zone in the upper approximately 75 cm where the maximum FeO concentration is approximately 18.5 wt. %, and a more felsic zone between approximately 225 and 260 cm where the minimum FeO concentration is approximately 14.0%. As indicated by Is/FeO, most of the soil in the core is submature to mature; the only immature zone is located between approximately 20 and 60 cm and is one of the most distinctive features in the core. A two stage model for the depositional and evolutionary history of the Apollo 17 deep drill core is proposed: (1) deposition by one event approximately 110 m.y. ago or deposition by a sequence of closely spaced events initating a maximum of approximately 200 m.y. ago and terminating approximately 110 m.y. ago, (2) in situ reworking (gardening) to a depth of approximately 26 cm in the period between approximately 110 m.y. ago and the present day.
Onset and Multiple Fluctuations of Holocene Glaciation in the Sierra Nevada, California
NASA Astrophysics Data System (ADS)
Bowerman, N. D.; Clark, D. H.
2004-12-01
Multiple sediment cores from two paternoster tarns (First and Second lakes) in North Fork Big Pine Creek, Sierra Nevada, preserve the most detailed and complete record of Holocene glaciation yet recovered in the range; they indicate that the glacier was absent during the early Holocene, reformed in the late Holocene, and experienced several expansions and contractions, culminating with the Matthes maximum during the last ˜200 years. The lakes are fed by outwash from the Palisade Glacier, the largest ( ˜1.3 km2) and presumably longest-lived glacier in the Sierra Nevada, and capture essentially all of the rock flour produced by the glacier. Distinct late-Holocene (Matthes) and late-Pleistocene (Recess Peak) moraines lie between the modern glacier and the lakes. Thus, the lakes have received continuous sedimentation since the retreat of the Tioga glacier ( ˜15,000 yr B.P.), and therefore capture rock flour related to all subsequent advances. First and Second lakes occupy relatively deep bedrock basins at 3036 m and 3066 m asl., respectively. Third Lake, a shallow (<3 m deep), moraine-dammed lake that lies directly above Second Lake, is the only lake between the Palisade Glacier and the lower lakes. As such, it captures the coarsest (sand/gravel bedload) outwash, but abundant suspended sediment (silt/clay) continues to the lower lakes. We cored the lakes using both Reasoner and Livingston corers, to sediment depths of up to ˜5 m. The deepest cores bottomed in coarse, inorganic sand and silt that we interpret as outwash or slopewash related to Tioga deglaciation. Magnetic susceptibility (MS) analyses of the sediment cores indicate that both lakes record multiple late-Holocene peaks in MS, with the most recent peak being the largest. They also retain outwash near the base related to the more extensive Recess Peak advance. MS peaks in Sierran lakes typically indicate greater abundances of clastic (vs. organic) sediment. The peaks in our cores thus imply 4-5 periods of increased flux of rock flour (outwash) from the upstream Palisade Glacier, most likely related to formation and expansions of the glacier in the late Holocene. The maximum peak at the top of the cores confirms the moraine record, which indicates that the maximum Holocene advance of Sierran glaciers occurred during the late Little Ice Age (last ˜200 yr) At least one tephra layer, possibly related to the Mono/Inyo dome complexes, occurs in the middle depths of the First Lake cores. Other narrow peaks in MS may also be associated with tephra deposits. Ongoing detailed analyses of the sediments, including AMS radiocarbon dating, visual and x-ray imaging, particle size analysis, organic content, tephrochronology, diatom assemblages, and palynology will constrain the timing and character of the environmental fluctuations related to the rock-flour flux. We will present results of these analyses at the meeting.
NASA Astrophysics Data System (ADS)
Matsuzaki, Kenji M.; Itaki, Takuya; Tada, Ryuji; Kurokawa, Shunsuke
2017-04-01
The Japan Sea is a back-arc basin opened under a continental rifting during the Early to Middle Miocene (ca. 25-13 Ma). This area is characterized by active tectonism, which drastically modified the Japan Sea paleogeography such as the sill depth of its key straits. In modern condition, the Japan Sea is connected to adjacent marginal seas and the Pacific Ocean by four straits shallower than 130 m. These straits are the Tsushima Strait connecting to the East China Sea, the Tsugaru Strait connecting to the Pacific, and the Soya and Mamiya Straits connecting to the Sea of Okhotsk. Therefore, the intermediate and deep water of the Japan Sea is isolated, leading the formation of a unique and regional deep sea water, known as the Japan Sea Proper Water. However, past studies show that during the late Miocene and Pliocene, only the Tsugaru Strait connecting to the North Pacific was opened. This strait was deeper during Plio-Miocene and have likely enable inflow of deep to intermediate water of the North Pacific in the Japan Sea. Radiolarians are one of the planktic micro-organisms group bearing siliceous skeletons. Their species comprise shallow to deep water dwellers, sensitive to changes in sea water physical/ecological properties forced by climate changes. Their fossils are known for be well preserved in the deep-sea sediments of the North Pacific. Therefore, in this study we propose to monitor changes in intermediate to deep water hydrography of the Japan Sea since the late Miocene, using radiolarian as an environmental proxy. In 2013 the IODP Expedition 346 retrieved sediment cores at different sites in the Japan Sea. In this study, we have analyzed 139 core sediments samples collected at Site U1425. This site is situated in the middle of the Yamato Bank. We selected this site because the past 10 Myr could be recovered continuously without hiatuses. Changes in radiolarian assemblages reveal that the oceanographic setting of the Japan Sea changed drastically at ca. 2.7 Ma. For older interval (2.7- 10 Ma), deep water species of the North Pacific could be identified at site U1425, inferring influences of deep water from the North Pacific and consequently a deeper sill depths of the connecting strait. Radiolarian assemblages also show that the intermediate water of the Japan sea is characterized by taxa living in equatorial to mid latitude area of the Northwest Pacific during the time interval between 2.7-10 Ma. While between 4 and 5 Ma, taxa related to the Sea of Okhotsk show very high abundances, inferring also inflow of intermediate water from the Sea of Okhotsk in the Japan Sea.
Water isotopic ratios from a continuously melted ice core sample
NASA Astrophysics Data System (ADS)
Gkinis, V.; Popp, T. J.; Blunier, T.; Bigler, M.; Schüpbach, S.; Johnsen, S. J.
2011-06-01
A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We build an interface between an Infra Red Cavity Ring Down Spectrometer (IR-CRDS) and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100 % efficiency in a home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on humidity levels. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1 ‰ and 0.5 ‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field ice core studies. We present data acquired in the framework of the NEEM deep ice core drilling project in Greenland, during the 2010 field season.
Water isotopic ratios from a continuously melted ice core sample
NASA Astrophysics Data System (ADS)
Gkinis, V.; Popp, T. J.; Blunier, T.; Bigler, M.; Schüpbach, S.; Kettner, E.; Johnsen, S. J.
2011-11-01
A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We built an interface between a Wavelength Scanned Cavity Ring Down Spectrometer (WS-CRDS) purchased from Picarro Inc. and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100% efficiency in a~home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW-SLAP scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on the water concentration in the optical cavity. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1‰ and 0.5‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the temporal resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field ice core studies. We present data acquired in the field during the 2010 season as part of the NEEM deep ice core drilling project in North Greenland.
Bothner, Michael H.; Gill, P.W.; Boothman, W.S.; Taylor, B.B.; Karl, Herman A.
1998-01-01
Heavy metal and organic contaminants have been determined in undisturbed sediment cores from the US Environmental Protection Agency reference site for dredged material on the continental slope off San Francisco. As expected, the concentrations are significantly lower than toxic effects guidelines, but concentrations of PCBs, PAHs, Hg, Pb, and Clostridium perfringens (a bacterium spore found in sewage) were nearly two or more times greater in the surface sediments than in intervals deeper in the cores. These observations indicate the usefulness of measuring concentration gradients in sediments at the San Francisco deep ocean disposal site (SF-DODS) where a thin (0.5 cm thick) layer of dredged material has been observed beyond the boundary. This thin layer has not been chemically characterized by the common practice of homogenizing over the top 10 cm. An estimated 300 million cubic yards of dredged material from San Francisco Bay are expected to be discharged at the SF-DODS site during the next 50 years. Detailed depth analysis of sediment cores would add significant new information about the fate and effects of dredged material in the deep sea.
Forschner, Stephanie R; Sheffer, Roberta; Rowley, David C; Smith, David C
2009-03-01
The current understanding of microbes inhabiting deeply buried marine sediments is based largely on samples collected from continental shelves in tropical and temperate latitudes. The geographical range of marine subsurface coring was expanded during the Integrated Ocean Drilling Program Arctic Coring Expedition (IODP ACEX). This expedition to the ice-covered central Arctic Ocean successfully cored the entire 428 m sediment stack on the Lomonosov Ridge during August and September 2004. The recovered cores vary from siliciclastic sediment low in organic carbon (< 0.2%) to organic rich ( approximately 3%) black sediments that rapidly accumulated in the early middle Eocene. Three geochemical environments were characterized based on chemical analyses of porewater: an upper ammonium oxidation zone, a carbonate dissolution zone and a deep (> 200 m below sea floor) sulfate reduction zone. The diversity of microbes within each zone was assessed using 16S rRNA phylogenetic markers. Bacterial 16S rRNA genes were successfully amplified from each of the biogeochemical zones, while archaea was only amplified from the deep sulfate reduction zone. The microbial communities at each zone are phylogenetically different and are most closely related to those from other deep subsurface environments.
NASA Astrophysics Data System (ADS)
Zhou, Y.; Oppo, D.; Gebbie, G.; Thornalley, D. J.
2016-02-01
The Suess Effect is the decrease of δ 13C in the atmosphere due to the burning of fossil fuels. The recent decrease in δ 13C in the deep sea due to uptake of carbon has been measured in samples taken on hydrographic surveys, although these surveys only provide snapshots of deep sea δ 13C. The long-term decrease in δ 13C has been estimated using modern hydrographic properties, but there are no direct measurements. Here we present records of δ 13C from benthic and planktonic foraminifera, collected south of Iceland in the North Atlantic Ocean. The cores have high accumulation rates and, based on radiocarbon, modern core tops. We find a monotonic decreasing trend since 1850 that is significant in two out of the three benthic records we have generated. A tracer simulation, with Transit Time Distribution and Equilibrium Time Distribution generated from previous tracer modeling studies, predicts a trend that is similar to our observations at the core sites. The presence of the Suess Effect in some of the cores is consistent with previous estimates on the uptake of anthropogenic CO{}2 in the newly formed North Atlantic Deep Water.
Deep Internal Structure of Mars and the Geophysical Package of Netlander
NASA Technical Reports Server (NTRS)
Lognonne, P.; Giardini, D.; Banerdt, B.; Dehant, V.; Barriot, J. P.; Musmann, G.; Menvielle, M.
2000-01-01
Our present understanding of the interior structure of Mars is mostly based on the interpretation of gravity and rotation data, the chemistry of the SNC (shergottites, nakhlites, chassignites) meteoroids, and a comparison with the much better-known interior structure of the Earth. However geophysical information from previous missions have been insufficient to determine the deep internal structure of the planet. Therefore the state and size of the core and the depth and type of mantle discontinuities are unknown. Most previous seismic experiments have indeed failed, either due to a launch failure (as for the Optimism seismometer onboard the small surface stations of Mars 96) or after failure on Mars (as for the Viking 1 seismometer). The remaining Viking 2 seismometer did not produce a convincing marsquake detection, basically due to too strong wind sensitivity and too low resolution in the teleseismic frequency band. After almost a decade of continuous activity and proposals, the first network mission to Mars, NetLander (NL), is expected to be launched between 2005 and 2007. One of the main scientific objectives of this four-lander network mission will be the determination of the internal structure of the planet using a geophysical package. This package will have a seismometer, a magnetometer, and a geodetic experiment, allowing a complementary approach that will yield many new constraints on the mineralogy and temperature of the mantle and core of the planet.
Wei, Yanyu; Zou, Jibin; Li, Jianjun; Qi, Wenjuan; Li, Yong
2014-01-01
Deep-sea permanent magnet motor equipped with fluid compensated pressure-tolerant system is compressed by the high pressure fluid both outside and inside. The induced stress distribution in stator core is significantly different from that in land type motor. Its effect on the magnetic properties of stator core is important for deep-sea motor designers but seldom reported. In this paper, the stress distribution in stator core, regarding the seawater compressive stress, is calculated by 2D finite element method (FEM). The effect of compressive stress on magnetic properties of electrical steel sheet, that is, permeability, BH curves, and BW curves, is also measured. Then, based on the measured magnetic properties and calculated stress distribution, the stator iron loss is estimated by stress-electromagnetics-coupling FEM. At last the estimation is verified by experiment. Both the calculated and measured results show that stator iron loss increases obviously with the seawater compressive stress. PMID:25177717
Anarchist, Neoliberal, & Democratic Decision-Making: Deepening the Joy in Learning and Teaching
ERIC Educational Resources Information Center
Briscoe, Felecia M.
2012-01-01
Using a critical postmodern framework, this article analyzes the relationship of the decision-making processes of anarchism and neoliberalism to that of deep democracy. Anarchist processes are found to share common core principals with deep democracy; but neoliberal processes are found to be antithetical to deep democracy. To increase the joy in…
a Steady Thermal State for the Earth's Interior
NASA Astrophysics Data System (ADS)
Andrault, D.; Monteux, J.; Le Bars, M.; Samuel, H.
2015-12-01
Large amounts of heat are permanently lost at the surface yielding the classic view of the Earth continuously cooling down. Contrary to this conventional depiction, we propose that the temperature profile in the deep Earth has remained almost constant for the last ~3 billion years (Ga) or more. The core-mantle boundary (CMB) temperature reached the mantle solidus of 4100 (+/-300) K after complete crystallization of the magma ocean not more than 1 Ga after the Moon-forming impact. The CMB remains at a similar temperature today; seismological evidences of ultra-low velocity zones suggest partial melting in the D"-layer and, therefore, a current temperature at, or just below, the mantle solidus. Such a steady thermal state of the CMB temperature excludes thermal buoyancy and compositional convection from being the predominant mechanisms to power the geodynamo over geological time. An alternative mechanism to produce motion in the outer core is mechanical forcing by tidal distortion and planetary precession. The conversion of gravitational and rotational energies of the Earth-Moon-Sun system to core motions could have supplied the lowermost mantle with a variable intensity heat source through geological time, due to the regime of core instabilities and/or changes in the astronomical forces. This variable heat source could explain the dramatic volcanic events that occurred in the Earth's history.
Recent and past dust concentrations and fluxes from a developing array of Antarctic ice cores
NASA Astrophysics Data System (ADS)
McConnell, J. R.; Anschütz, H.; Baggenstos, D.; Das, S. B.; Isaksson, E. D.; Lawrence, R.; Layman, L.; Maselli, O.; Severinghaus, J. P.; Sigl, M.; Petit, J. R.; Grente, B.
2012-12-01
Continental dust is an important component of climate forcing, both because of its interaction with incoming solar and outgoing long wave radiation and because of its impact on albedo when deposited on bright surfaces such as fresh snow. Continental dust may also play an important role in ocean fertilization and carbon sequestration. Because the lifetime of dust aerosol in the atmosphere is only on the order of days to weeks, spatial and temporal variability in concentrations and fluxes is high and understanding of recent and long term changes is limited. Here we present and discuss detailed continuous, high depth resolution measurements of a range of dust proxies in a developing array of Antarctic ice cores. Included are traditional proxies such as non-sea-salt (nss) calcium and insoluble particle number and size distribution as well as less traditional proxies such as aluminum, vanadium, manganese, rare earth elements, and nss uranium which together provide important insights into how dust sources and transport may have changed in the past. The array includes a number of new shallow ice core records from East and West Antarctica spanning recent centuries to millennia, as well as Last Glacial Maximum to early Holocene records from the deep WAIS Divide and Taylor Glacier Horizontal ice cores.
NASA Astrophysics Data System (ADS)
Yoneda, J.; Oshima, M.; Kida, M.; Kato, A.; Konno, Y.; Jin, Y.; Waite, W. F.; Jang, J.; Kumar, P.; Tenma, N.
2017-12-01
Pressure coring and analysis technology allows for gas hydrate to be recovered from the deep seabed, transferred to the laboratory and characterized while continuously maintaining gas hydrate stability. For this study, dozens of hydrate-bearing pressure core sediment subsections recovered from the Krishna-Godavari Basin during India's National Gas Hydrate Program Expedition NGHP-02 were tested with Pressure Core Non-destructive Analysis Tools (PNATs) through a collaboration between Japan and India. PNATs, originally developed by AIST as a part of the Japanese National hydrate research program (MH21, funded by METI) conducted permeability, compression and consolidation tests under various effective stress conditions, including the in situ stress state estimated from downhole bulk density measurements. At the in situ effective stress, gas hydrate-bearing sediments had an effective permeability range of 0.01-10mD even at pore-space hydrate saturations above 60%. Permeability increased by 10 to 100 times after hydrate dissociation at the same effective stress, but these post-dissociation gains were erased when effective stress was increased from in situ values ( 1 MPa) to 10MPa in a simulation of the depressurization method for methane extraction from hydrate. Vertical-to-horizontal permeability anisotropy was also investigated. First-ever multi-stage loading tests and strain-rate alternation compression tests were successfully conducted for evaluating sediment strengthening dependence on the rate and magnitude of effective confining stress changes. In addition, oedometer tests were performed up to 40MPa of consolidation stress to simulate the depressurization method in ultra-deep sea environments. Consolidation curves measured with and without gas hydrate were investigated over a wide range of effective confining stresses. Compression curves for gas hydrate-bearing sediments were convex downward due to high hydrate saturations. Consolidation tests show that, regardless of the consolidation history with hydrate in place, the consolidation behavior after dissociation will first return to, then follow, the original normal consolidation curve for the hydrate-free host sediment.
Body and brain temperature coupling: the critical role of cerebral blood flow
Ackerman, Joseph J. H.; Yablonskiy, Dmitriy A.
2010-01-01
Direct measurements of deep-brain and body-core temperature were performed on rats to determine the influence of cerebral blood flow (CBF) on brain temperature regulation under static and dynamic conditions. Static changes of CBF were achieved using different anesthetics (chloral hydrate, CH; α-chloralose, αCS; and isoflurane, IF) with αCS causing larger decreases in CBF than CH and IF; dynamic changes were achieved by inducing transient hypercapnia (5% CO2 in 40% O2 and 55% N2). Initial deep-brain/body-core temperature differentials were anesthetic-type dependent with the largest differential observed with rats under αCS anesthesia (ca. 2°C). Hypercapnia induction raised rat brain temperature under all three anesthesia regimes, but by different anesthetic-dependent amounts correlated with the initial differentials—αCS anesthesia resulted in the largest brain temperature increase (0.32 ± 0.08°C), while CH and IF anesthesia lead to smaller increases (0.12 ± 0.03 and 0.16 ± 0.05°C, respectively). The characteristic temperature transition time for the hypercapnia-induced temperature increase was 2–3 min under CH and IF anesthesia and ~4 min under αCS anesthesia. We conclude that both, the deep-brain/body-core temperature differential and the characteristic temperature transition time correlate with CBF: a lower CBF promotes higher deep-brain/body-core temperature differentials and, upon hypercapnia challenge, longer characteristic transition times to increased temperatures. PMID:19277681
NASA Astrophysics Data System (ADS)
Qiu, Yao-Wen; Zhang, Gan; Liu, Guo-Qing; Guo, Ling-Li; Li, Xiang-Dong; Wai, Onyx
2009-06-01
The levels of 15 polycyclic aromatic hydrocarbons (PAHs) were determined in seawater, suspended particulate matter (SPM), surface sediment and core sediment samples of Deep Bay, South China. The average concentrations Σ 15PAHs were 69.4 ± 24.7 ng l -1 in seawater, 429.1 ± 231.8 ng g -1 in SPM, and 353.8 ± 128.1 ng g -1 dry weight in surface sediment, respectively. Higher PAH concentrations were observed in SPM than in surface sediment. Temporal trend of PAH concentrations in core sediment generally increased from 1948 to 2004, with higher concentrations in top than in sub-surface, implying a stronger recent input of PAHs owing to the rapid economic development in Shenzhen. Compared with historical data, the PAH levels in surface sediment has increased, and this was further confirmed by the increasing trend of PAHs in the core sediment. Phenanthrene, fluoranthene and pyrene dominated in the PAH composition pattern profiles in the Bay. Compositional pattern analysis suggested that PAHs in the Deep Bay were derived from both pyrogenic and petrogenic sources, and diesel oil leakage, river runoff and air deposition may serve as important pathways for PAHs input to the Bay. Significant positive correlations between partition coefficient in surface sediment to that in water ( KOC) of PAH and their octanol/water partition coefficients ( KOW) were observed, suggesting that KOC of PAHs in sediment/water of Deep Bay may be predicted by the corresponding KOW.
Body and brain temperature coupling: the critical role of cerebral blood flow.
Zhu, Mingming; Ackerman, Joseph J H; Yablonskiy, Dmitriy A
2009-08-01
Direct measurements of deep-brain and body-core temperature were performed on rats to determine the influence of cerebral blood flow (CBF) on brain temperature regulation under static and dynamic conditions. Static changes of CBF were achieved using different anesthetics (chloral hydrate, CH; alpha-chloralose, alphaCS; and isoflurane, IF) with alphaCS causing larger decreases in CBF than CH and IF; dynamic changes were achieved by inducing transient hypercapnia (5% CO(2) in 40% O(2) and 55% N(2)). Initial deep-brain/body-core temperature differentials were anesthetic-type dependent with the largest differential observed with rats under alphaCS anesthesia (ca. 2 degrees C). Hypercapnia induction raised rat brain temperature under all three anesthesia regimes, but by different anesthetic-dependent amounts correlated with the initial differentials--alphaCS anesthesia resulted in the largest brain temperature increase (0.32 +/- 0.08 degrees C), while CH and IF anesthesia lead to smaller increases (0.12 +/- 0.03 and 0.16 +/- 0.05 degrees C, respectively). The characteristic temperature transition time for the hypercapnia-induced temperature increase was 2-3 min under CH and IF anesthesia and approximately 4 min under alphaCS anesthesia. We conclude that both, the deep-brain/body-core temperature differential and the characteristic temperature transition time correlate with CBF: a lower CBF promotes higher deep-brain/body-core temperature differentials and, upon hypercapnia challenge, longer characteristic transition times to increased temperatures.
TRMM precipitation analysis of extreme storms in South America: Bias and climatological contribution
NASA Astrophysics Data System (ADS)
Rasmussen, K. L.; Houze, R.; Zuluaga, M. D.; Choi, S. L.; Chaplin, M.
2013-12-01
The TRMM (Tropical Rainfall Measuring Mission) satellite was designed both to measure spatial and temporal variation of tropical rainfall around the globe and to understand the factors controlling the precipitation. TRMM observations have led to the realization that storms just east of the Andes in southeastern South America are among the most intense deep convection in the world. For a complete perspective of the impact of intense precipitation systems on the hydrologic cycle in South America, it is necessary to assess the contribution from various forms of extreme storms to the climatological rainfall. However, recent studies have suggested that the TRMM Precipitation Radar (PR) algorithm significantly underestimates surface rainfall in deep convection over land. Prior to investigating the climatological behavior, this research first investigates the range of the rain bias in storms containing four different types of extreme radar echoes: deep convective cores, deep and wide convective cores, wide convective cores, and broad stratiform regions over South America. The TRMM PR algorithm exhibits bias in all four extreme echo types considered here when the algorithm rates are compared to a range of conventional Z-R relations. Storms with deep convective cores, defined as high reflectivity echo volumes that extend above 10 km in altitude, show the greatest underestimation, and the bias is unrelated to their echo top height. The bias in wide convective cores, defined as high reflectivity echo volumes that extend horizontally over 1,000 km2, relates to the echo top, indicating that storms with significant mixed phase and ice hydrometeors are similarly affected by assumptions in the TRMM PR algorithm. The subtropical region tends to have more intense precipitating systems than the tropics, but the relationship between the TRMM PR rain bias and storm type is the same regardless of the climatological regime. The most extreme storms are typically not collocated with regions of high climatological precipitation. A quantitative approach that accounts for the previously described bias using TRMM PR data is employed to investigate the role of the most extreme precipitating systems on the hydrological cycle in South America. These data are first used to investigate the relative contribution of precipitation from the TRMM-identified echo cores to each separate storm in which the convective cores are embedded. The second part of the study assesses how much of the climatological rainfall in South America is accounted for by storms containing deep convective, wide convective, and broad stratiform echo components. Systems containing these echoes produce very different hydrologic responses. From a hydrologic and climatological viewpoint, this empirical knowledge is critical, as the type of runoff and flooding that may occur depends on the specific character of the convective storm and has broad implications for the hydrological cycle in this region.
Deep Coherent Vortices and Their Sea Surface Expressions
NASA Astrophysics Data System (ADS)
Ienna, Federico; Bashmachnikov, Igor; Dias, Joaquim; Peliz, Alvaro
2017-04-01
Mediterranean Water eddies, known as Meddies, are an important dynamic process occurring at depths of 1000-meters in the Northeast Atlantic Ocean. Meddies occur as a direct result of the Mediterranean Outflow exiting through the Gibraltar Strait, and represent a prevalent mechanism that can be found extensively throughout the ocean. Moreover, Meddy cores are known to produce measurable expressions at the sea surface in the form of rotating coherent vortices, not only affecting the sea surface from beneath, but also allowing for the possibility to remotely study these deep phenomena through data gathered at the sea surface. While many past studies have focused on the properties of Meddy cores, only a handful of studies focus on the physical characteristics and behavior of the surface expressions produced. Are Meddy surface expressions different from other like vortices that dominate the physical ocean surface? What are the relationships between deep and surface mechanisms, and do any feedbacks exist? To shed light on these questions, we investigate the relationship between Meddies and their sea-surface expressions through observations using in-situ float and drifter profiles and satellite altimetry. A total of 782 Meddy cores were examined in the Northeast Atlantic using temperature and salinity data obtained by CTD and Argo during the Mecanismos de transporte e de dispersão da Água Mediterrânica no Atlântico Nordeste (MEDTRANS) project, and their corresponding sea-level expressions were geo-temporally matched in satellite altimetry data. We report several statistical properties of the sea-surface expressions of Meddies, including their mean diameter and vertical magnitude, and compare the properties of their surface features to the underlying Meddy cores. We investigate how the deep core affects the surface, and whether surface expressions may in return yield information about the underlying cores. Additionally, we examine the variability of the surface expressions, including seasonal and geographical variability.
Kobayashi, Tohru; Koide, Osamu; Mori, Kozue; Shimamura, Shigeru; Matsuura, Takae; Miura, Takeshi; Takaki, Yoshihiro; Morono, Yuki; Nunoura, Takuro; Imachi, Hiroyuki; Inagaki, Fumio; Takai, Ken; Horikoshi, Koki
2008-07-01
"A meta-enzyme approach" is proposed as an ecological enzymatic method to explore the potential functions of microbial communities in extreme environments such as the deep marine subsurface. We evaluated a variety of extra-cellular enzyme activities of sediment slurries and isolates from a deep subseafloor sediment core. Using the new deep-sea drilling vessel "Chikyu", we obtained 365 m of core sediments that contained approximately 2% organic matter and considerable amounts of methane from offshore the Shimokita Peninsula in Japan at a water depth of 1,180 m. In the extra-sediment fraction of the slurry samples, phosphatase, esterase, and catalase activities were detected consistently throughout the core sediments down to the deepest slurry sample from 342.5 m below seafloor (mbsf). Detectable enzyme activities predicted the existence of a sizable population of viable aerobic microorganisms even in deep subseafloor habitats. The subsequent quantitative cultivation using solid media represented remarkably high numbers of aerobic, heterotrophic microbial populations (e.g., maximally 4.4x10(7) cells cm(-3) at 342.5 mbsf). Analysis of 16S rRNA gene sequences revealed that the predominant cultivated microbial components were affiliated with the genera Bacillus, Shewanella, Pseudoalteromonas, Halomonas, Pseudomonas, Paracoccus, Rhodococcus, Microbacterium, and Flexibacteracea. Many of the predominant and scarce isolates produced a variety of extra-cellular enzymes such as proteases, amylases, lipases, chitinases, phosphatases, and deoxyribonucleases. Our results indicate that microbes in the deep subseafloor environment off Shimokita are metabolically active and that the cultivable populations may have a great potential in biotechnology.
Intelligent (Autonomous) Power Controller Development for Human Deep Space Exploration
NASA Technical Reports Server (NTRS)
Soeder, James; Raitano, Paul; McNelis, Anne
2016-01-01
As NASAs Evolvable Mars Campaign and other exploration initiatives continue to mature they have identified the need for more autonomous operations of the power system. For current human space operations such as the International Space Station, the paradigm is to perform the planning, operation and fault diagnosis from the ground. However, the dual problems of communication lag as well as limited communication bandwidth beyond GEO synchronous orbit, underscore the need to change the operation methodology for human operation in deep space. To address this need, for the past several years the Glenn Research Center has had an effort to develop an autonomous power controller for human deep space vehicles. This presentation discusses the present roadmap for deep space exploration along with a description of conceptual power system architecture for exploration modules. It then contrasts the present ground centric control and management architecture with limited autonomy on-board the spacecraft with an advanced autonomous power control system that features ground based monitoring with a spacecraft mission manager with autonomous control of all core systems, including power. It then presents a functional breakdown of the autonomous power control system and examines its operation in both normal and fault modes. Finally, it discusses progress made in the development of a real-time power system model and how it is being used to evaluate the performance of the controller and well as using it for verification of the overall operation.
Raman gas self-organizing into deep nano-trap lattice
Alharbi, M.; Husakou, A.; Chafer, M.; Debord, B.; Gérôme, F.; Benabid, F.
2016-01-01
Trapping or cooling molecules has rallied a long-standing effort for its impact in exploring new frontiers in physics and in finding new phase of matter for quantum technologies. Here we demonstrate a system for light-trapping molecules and stimulated Raman scattering based on optically self-nanostructured molecular hydrogen in hollow-core photonic crystal fibre. A lattice is formed by a periodic and ultra-deep potential caused by a spatially modulated Raman saturation, where Raman-active molecules are strongly localized in a one-dimensional array of nanometre-wide sections. Only these trapped molecules participate in stimulated Raman scattering, generating high-power forward and backward Stokes continuous-wave laser radiation in the Lamb–Dicke regime with sub-Doppler emission spectrum. The spectrum exhibits a central line with a sub-recoil linewidth as low as ∼14 kHz, more than five orders of magnitude narrower than conventional-Raman pressure-broadened linewidth, and sidebands comprising Mollow triplet, motional sidebands and four-wave mixing. PMID:27677451
The Stormy Life of Galaxy Clusters
NASA Astrophysics Data System (ADS)
Rudnick, Lawrence
2018-01-01
Galaxy clusters, the largest gravitationally bound structures, hold the full history of their baryonic evolution, serve as important cosmological tools and allow us to probe unique physical regimes in their diffuse plasmas. With characteristic dynamical timescales of 107-109 years, these diffuse thermal and relativistic media continue to evolve, as dark matter drives major mergers and more gentle continuing accretion. The history of this assembly is encoded in the plasmas, and a wide range of observational and theoretical investigations are aimed at decoding their signatures. X-ray temperature and density variations, low Mach number shocks, and "cold front" discontinuities all illuminate clusters' continued evolution. Radio structures and spectra are passive indicators of merger shocks, while radio galaxy distortions reveal the complex motions in the intracluster medium. Deep in cluster cores, AGNs associated with brightest cluster galaxies provide ongoing energy, and perhaps even stabilize the intracluster medium. In this talk, we will recount this evolving picture of the stormy ICM, and suggest areas of likely advance in the coming years.
Han, Changhee; Burn-Nunes, Laurie J; Lee, Khanghyun; Chang, Chaewon; Kang, Jung-Ho; Han, Yeongcheol; Hur, Soon Do; Hong, Sungmin
2015-08-01
An improved decontamination method and ultraclean analytical procedures have been developed to minimize Pb contamination of processed glacial ice cores and to achieve reliable determination of Pb isotopes in North Greenland Eemian Ice Drilling (NEEM) deep ice core sections with concentrations at the sub-picogram per gram level. A PL-7 (Fuso Chemical) silica-gel activator has replaced the previously used colloidal silica activator produced by Merck and has been shown to provide sufficiently enhanced ion beam intensity for Pb isotope analysis for a few tens of picograms of Pb. Considering the quantities of Pb contained in the NEEM Greenland ice core and a sample weight of 10 g used for the analysis, the blank contribution from the sample treatment was observed to be negligible. The decontamination and analysis of the artificial ice cores and selected NEEM Greenland ice core sections confirmed the cleanliness and effectiveness of the overall analytical process. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Morris, R. V.; Gose, W. A.
1976-01-01
Ferromagnetic resonance and static magnetic measurements were made on 131 samples from core 60009/60010 and on 40 samples from section 60003 of the Apollo 16 deep drill core. These studies provided depth profiles for composition, in terms of the concentration of FeO, and relative surface exposure age (or maturity), in terms of the values of the specific FMR intensity normalized to the FeO content. For core 60009/60010, the concentration of FeO ranged from about 1.6 wt.% to 5.8 wt.% with a mean value of 4.6 wt.% and the maturity ranged from immature to mature with most of the soils being submature. A systematic decrease in maturity from the lunar surface to a depth of about 12.5 cm was observed in core section 60010. For core section 60003, the concentration of FeO ranged from about 5.2 wt.% to 7.5 wt.% with a mean value of 6.4 wt.% and the maturity ranged from submature to mature with most of the soils being mature.
NASA Astrophysics Data System (ADS)
McGlannan, A. J.; Bart, P. J.; Chow, J.
2016-12-01
A large-area (2500 km2) multibeam survey of the Whales Deep paleo-ice-stream trough, eastern Ross Sea, Antarctica was acquired during NBP1502B. This sector of the continental shelf is important as it was covered by grounded and floating ice, which drained the central part of an expanded West Antarctic Ice Sheet (WAIS) during the last glacial cycle. The seafloor geomorphology shows a well-defined cluster of four back stepping grounding zone wedges (GZWs) that were deposited in a partly overlapping fashion on the middle continental shelf during WAIS retreat. These observations permit two end-member possibilities for how the WAIS grounding line and calving front vacated the trough. In the first scenario, each GZW represents successive landward shifts of the grounding line and calving front. In the second scenario, each GZW represents a large-scale retreat and re-advance of grounded and floating ice. To determine which of these two end-member scenarios most accurately describes WAIS retreat from this sector of Ross Sea, we evaluated a grid of kasten and piston cores. The core stations were selected on the basis of backstepping GZWs along the trough axis. Our core data analyses included an integration of visual core descriptions, x-ray images, grain size, water content, total organic carbon, shear strengths, and diatom assemblage data. Core data reveal a single transgressive succession from proximal diamict overlain by sub-ice-shelf and/or open-marine sediments. These data strongly support the first scenario, suggesting that an ice shelf remained continuously intact during the time that the grounding line successively moved from the shelf edge to the middle shelf by small-scale landward translations until the end of the fourth grounding event. Sedimentologic and diatom-assemblage data from the inner shelf show that only the last middle shelf grounding event ended with a long-distance retreat of grounded and then floating ice to south of the modern calving front.
NASA Astrophysics Data System (ADS)
Ito, T.; Funato, A.; Tamagawa, T.; Tezuka, K.; Yabe, Y.; Abe, S.; Ishida, A.; Ogasawara, H.
2017-12-01
When rock is cored at depth by drilling, anisotropic expansion occurs with the relief of anisotropic rock stresses, resulting in a sinusoidal variation of core diameter with a period of 180 deg. in the core roll angle. The circumferential variation of core diameter is given theoretically as a function of rock stresses. These new findings can lead various ideas to estimate the rock stress from circumferential variation of core diameter measured after the core retrieving. In the simplest case when a single core sample is only available, the difference between the maximum and minimum components of rock stress in a plane perpendicular to the drilled hole can be estimated from the maximum and minimum core diameters (see the detail in, Funato and Ito, IJRMMS, 2017). The advantages of this method include, (i) much easier measurement operation than those in other in-situ or in-lab estimation methods, and (ii) applicability in high stress environment where stress measurements need pressure for packers or pumping system for the hydro-fracturing methods higher than their tolerance levels. We have successfully tested the method at deep seismogenic zones in South African gold mines, and we are going to apply it to boreholes collared at 3 km depth and intersecting a M5.5 rupture plane several hundred meters below the mine workings in the ICDP project of "Drilling into Seismogenic zones of M2.0 - M5.5 earthquakes in deep South African gold mines" (DSeis) (e.g., http://www.icdp-online.org/projects/world/africa/orkney-s-africa/details/). If several core samples with different orientation are available, all of three principal components of 3D rock stress can be estimated. To realize this, we should have several boreholes drilled in different directions in a rock mass where the stress field is considered to be uniform. It is commonly carried out to dill boreholes in different directions from a mine gallery. Even in a deep borehole drilled vertically from the ground surface, the downhole tool of rotary sidewall coring allows us to take core samples with different orientations at depths of interest from the sidewall of the vertically-drilled borehole. The theoretical relationship between the core expansion and rock stress has been verified through the examination of core samples prepared in laboratory experiments and retrieved field cores.
On the use of δ18Oatm for ice core dating
NASA Astrophysics Data System (ADS)
Extier, Thomas; Landais, Amaelle; Bréant, Camille; Prié, Frédéric; Bazin, Lucie; Dreyfus, Gabrielle; Roche, Didier M.; Leuenberger, Markus
2018-04-01
Deep ice core chronologies have been improved over the past years through the addition of new age constraints. However, dating methods are still associated with large uncertainties for ice cores from the East Antarctic plateau where layer counting is not possible. Indeed, an uncertainty up to 6 ka is associated with AICC2012 chronology of EPICA Dome C (EDC) ice core, which mostly arises from uncertainty on the delay between changes recorded in δ18Oatm and in June 21st insolation variations at 65°N used for ice core orbital dating. Consequently, we need to enhance the knowledge of this delay to improve ice core chronologies. We present new high-resolution EDC δ18Oatm record (153-374 ka) and δO2/N2 measurements (163-332 ka) performed on well-stored ice to provide continuous records of δ18Oatm and δO2/N2 between 100 and 800 ka. The comparison of δ18Oatm with the δ18Ocalcite from East Asian speleothems shows that both signals present similar orbital and millennial variabilities, which may represent shifts in the InterTropical Convergence Zone position, themselves associated with Heinrich events. We thus propose to use the δ18Ocalcite as target for δ18Oatm orbital dating. Such a tuning method improves the ice core chronology of the last glacial inception compared to AICC2012 by reconciling NGRIP and mid-latitude climatic records. It is especially marked during Dansgaard-Oeschger 25 where the proposed chronology is 2.2 ka older than AICC2012. This δ18Oatm - δ18Ocalcite alignment method applied between 100 and 640 ka improves the EDC ice core chronology, especially over MIS 11, and leads to lower ice age uncertainties compared to AICC2012.
Matsumoto, Masaru; Sugama, Junko; Okuwa, Mayumi; Dai, Misako; Matsuo, Junko; Sanada, Hiromi
2013-01-01
The purpose of this study was to elucidate the body core temperature rhythms of bedridden elderly patients with disorders of consciousness (DOC) in a Japanese hospital using a simple, non-invasive, deep-body thermometer. We measured body core temperature on the surface of abdomen in 10 bedridden elderly patients with DOC continuously over 72 h. A non-heated core body temperature thermometer was used. The cycle of the body core temperature rhythm was initially derived by using the least squares method. Then, based on that rhythm, the mean, amplitude, and times of day of the highest and lowest body temperatures during the optimum cycle were determined using the cosinor method. We found a 24-h cycle in seven of the 10 patients. One patient had a 6-h, one a 12-h, and one a 63-h cycle. The mean value of the cosine curve in the respective optimum cycles was 36.48 ± 0.34 °C, and the amplitude was 0.22 ± 0.09 °C. Of the seven subjects with 24-h cycles, the highest body temperature occurred between 12:58 and 14:44 h in four. In addition to 24-h cycles of core temperature rhythm, short cycles of 12 and 6-h and a long cycle of 63-h were seen. In order to understand the temperature rhythms of bedridden elderly patients with DOC, it is necessary to monitor their core body temperatures, ideally using a simple, non-invasive device. In the future, it will be important to investigate the relationship of the core temperature rhythm to nursing care and living environment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Regolith irradiation stratigraphy at the Apollo 16 and 17 landing sites
NASA Technical Reports Server (NTRS)
Crozaz, G.
1978-01-01
Additional fossil track measurements in the Apollo 17 deep drill stem, as well as detailed track studies in section 3 of the Apollo 16 deep drill core are reported. Although the upper part of the Apollo 17 core seems to have accreted rapidly, no evidence for a rapid accretion of the lower part, as postulated by some authors, is found. Despite the apparent inhomogeneity of section 60003, its track record is unexpectedly homogeneous; all levels are heavily irradiated and emplacement of big slabs of material is not favored.
von der Weid, Irene; Korenblum, Elisa; Jurelevicius, Diogo; Rosado, Alexandre Soares; Dino, Rodolfo; Sebastian, Gina Vasquez; Seldin, Lucy
2008-01-01
The deep subseafloor rock in oil reservoirs represents a unique environment in which a high oilcontamination and very low biomass can be observed. Sampling this environment has been a challenge owing to the techniques used for drilling and coring. In this study, the facilities developed by the Brazilian oil company PETROBRAS for accessing deep subsurface oil reservoirs were used to obtain rock samples at 2,822-2,828 m below the ocean floor surface from a virgin field located in the Atlantic Ocean, Rio de Janeiro. To address the bacterial diversity of these rock samples, PCR amplicons were obtained using the DNA from four core sections and universal primers for 16S rRNA and for APS reductase (aps) genes. Clone libraries were generated from these PCR fragments and 87 clones were sequenced. The phylogenetic analyses of the 16S rDNA clone libraries showed a wide distribution of types in the domain bacteria in the four core samples, and the majority of the clones were identified as belonging to Betaproteobacteria. The sulfate-reducing bacteria community could only be amplified by PCR in one sample, and all clones were identified as belonging to Gammaproteobacteria. For the first time, the bacterial community was assessed in such deep subsurface environment.
Physical properties of the WAIS Divide ice core
Fitzpatrick, Joan J.; Voigt, Donald E.; Fegyveresi, John M.; Stevens, Nathan T.; Spencer, Matthew K.; Cole-Dai, Jihong; Alley, Richard B.; Jardine, Gabriella E.; Cravens, Eric; Wilen, Lawrence A.; Fudge, T. J.; McConnell, Joseph R.
2014-01-01
The WAIS (West Antarctic Ice Sheet) Divide deep ice core was recently completed to a total depth of 3405 m, ending ∼50 m above the bed. Investigation of the visual stratigraphy and grain characteristics indicates that the ice column at the drilling location is undisturbed by any large-scale overturning or discontinuity. The climate record developed from this core is therefore likely to be continuous and robust. Measured grain-growth rates, recrystallization characteristics, and grain-size response at climate transitions fit within current understanding. Significant impurity control on grain size is indicated from correlation analysis between impurity loading and grain size. Bubble-number densities and bubble sizes and shapes are presented through the full extent of the bubbly ice. Where bubble elongation is observed, the direction of elongation is preferentially parallel to the trace of the basal (0001) plane. Preferred crystallographic orientation of grains is present in the shallowest samples measured, and increases with depth, progressing to a vertical-girdle pattern that tightens to a vertical single-maximum fabric. This single-maximum fabric switches into multiple maxima as the grain size increases rapidly in the deepest, warmest ice. A strong dependence of the fabric on the impurity-mediated grain size is apparent in the deepest samples.
Preliminary organic analyses of the DSDP /JOIDES/ cores - Legs V-IX.
NASA Technical Reports Server (NTRS)
Simoneit, B. R.; Burlingame, A. L.
1972-01-01
Descriptions of the methods used and results obtained in analyses of deep sea drilling cores. The analyses were performed in two phases (differing in degree of particularization) depending on the amount of core sample available. The results are presented in relation to the ages and to the fossil fauna and flora of the sediments.
The ICDP Dead Sea deep drill cores: records of climate change and tectonics in the Levant
NASA Astrophysics Data System (ADS)
Goldstein, S. L.; Stein, M.; Ben-Avraham, Z.; Agnon, A.; Ariztegui, D.; Brauer, A.; Haug, G. H.; Ito, E.; Kitagawa, H.; Torfstein, A.
2012-12-01
The Dead Sea drainage basin sits at the boundary of the Mediterranean and the Saharan climate zones, and the basin is formed by the Dead Sea transform fault. The ICDP-funded Dead Sea Deep Drilling Project recovered the longest and most complete paleo-environmental and paleo-seismic record in the Middle East, drilling holes of ~450 and ~350 meters in deep (~300 m below the lake level) and shallow sites (~3 m), respectively, and. The sediments record the evolving environmental conditions (e.g. droughts, rains, floods, dust-storms), as well as tectonics (earthquake layers). The core can be dated using 14C on organic materials, U-Th on inorganic aragonite, stable isotopes, and layer counting. They were opened, described, and XRF-scanned during June to November 2011, the first sampling party took place in July 2012, and study is now underway. Some important conclusions can already be drawn. The stratigraphy reflects the climate conditions. During wet climate intervals the lithology is typically varve-like laminated aragonite and detritus (aad), reflecting summer and winter seasons, respectively, and sequences of mud. Gypsum layers reflect more arid climate, and salt (halite) indicates extreme aridity. The Dead Sea expands during glacials, and the portion of the core that corresponds to the last glacial Lisan Formation above the shoreline is easily recognized in the core based on the common lithological sequence, and this allows us to infer a broad scale age model. Interglacials show all the lithologic facies (aad, mud, gypsum, salt), reflecting extreme climate variability, while glacials contain the aad, mud, and gypsum but lack salt layers. Thus we estimate that the deep site hole extends into MIS 7 (to ~200,000 years). Thin (up to several cm thick) seismic layers occur throughout the core, but thick (up to several meters) landslide deposits only occur during glacial intervals. The most dramatic discovery is evidence of an extreme dry interval during MIS 5 at the deep site. There is a ~40 cm thick interval of partly rounded pebbles in the core at ~235 m below the lake floor. It is the only clean pebbly unit in the core, and resembles a beach deposit. Below the layer there is ~45 meters of mainly salt. These observations indicate a severe dry interval during MIS 5. This observation has implications for the Middle East today, where the Dead Sea level is dropping at rates >1m/year, as all the countries in the area are using all the runoff. GCM models indicate a more arid future in the region. The core shows that the runoff nearly stopped during the last interglacial without human intervention. Dating is underway to constrain the timing of the extreme drydown.
NASA Astrophysics Data System (ADS)
Faïn, Xavier; Chappellaz, Jérôme; Rhodes, Rachael; Stowasser, Christopher; Blunier, Thomas; McConnell, Joseph; Brook, Edward; Desbois, Thibault; Romanini, Daniele
2014-05-01
Carbon monoxide (CO) is the principal sink for hydroxyl radicals (OH) in the troposphere. Consequently, changes in atmospheric CO levels can considerably perturb the oxidizing capacity of the atmosphere, affecting mixing ratios of a host of chemical species oxidized by OH, including methane. In addition, CO variations (and changes in its stable isotopic composition) are expected to be good tracers of changes in biomass burning emissions. Investigating past mixing ratios of carbon monoxide is thus a promising approach towards reducing uncertainty related to the past oxidative capacity of the atmosphere and biogeochemical cycling of methane. Recent developments in optical spectrometry (Optical Feedback Cavity Enhanced Absorption Spectrometry, OFCEAS), combined with continuous flow analysis (CFA) systems, allow efficient, precise measurements of CO concentrations in ice cores. Coupling our OFCEAS spectrometer with the CFA melter operated at DRI (Reno, USA) provided the first continuous CO measurements along the NEEM (Greenland) core covering the last 1800 yr at an unprecedented resolution. Although the most recent section of this record (i.e., since 1700 AD) agreed with existing discrete CO measurements from the Eurocore ice core and the deep NEEM firn, it was difficult to interpret in terms of atmospheric CO variation due to high frequency, high amplitudes spikes related to in-situ production (Faïn et al., Climate of the Past Discussion). During a recent 8-week analytical campaign, three different ice archives from Greenland were melted on the DRI CFA and analyzed continuously for CO with the OFCEAS spectrometer: (i) the D4 core (spanning the last 170 yr), (ii) the NEEM core (extending the existing record from 200 AD to 800 BC), and (iii) the Tunu core (spanning the last 1800 yr). Although in-situ production of CO is observed at all sites, these new records reveal different CO patterns and trends. This multisite approach allows us to better characterize the processes involved in CO in-situ production by evaluating the influence of site-specific factors such as surface accumulation rate (10, 22 and 41 cm ice yr-1 for Tunu, NEEM, and D4 respectively), surface temperature, or aerosols loading (with e.g., median black carbon concentration ranging from 0.9 to 2.3 ng g-1 among the investigated sites). However, a quantitative understanding of the past evolution of atmospheric CO above Greenland remains challenging due to the existence of these artifacts.
Characterising Atlantic deep waters during the extreme warmth of the early Eocene 'greenhouse'.
NASA Astrophysics Data System (ADS)
Cameron, A.; Sexton, P. F.; Anand, P.; Huck, C. E.; Fehr, M.; Dickson, A.; Scher, H. D.; van de Flierdt, T.; Westerhold, T.; Roehl, U.
2014-12-01
The meridional overturning circulation (MOC) is a planetary-scale oceanic flow that is of direct importance to the climate system because it transports heat, salt and nutrients to high latitudes and regulates the exchange of CO2 with the atmosphere. The Atlantic Ocean plays a strong role in the modern day MOC however, it is unclear what role it may have played during extreme climate conditions such as those found in the early Eocene 'greenhouse'. In order to resolve the Atlantic's role in the MOC during the early/middle Eocene, we present a multi-proxy approach to investigate changes in ocean circulation, water mass geometry, sediment supply to the deep oceans and the physical strength of deep waters from four different IODP drill sites. Neodymium isotopes (ɛNd), REE profiles and cerium anomalies measured in fossilised fish teeth help to characterise geochemical changes to water masses throughout the Atlantic whilst bulk sediment ɛNd and XRF-core scan data documents changes in sediment supply to the region. Sortable silt data provides a physical constraint on the strength of deep-water movements during the extreme climatic conditions of the early Eocene. We utilise expanded and continuous sequences from two sites in the North west Atlantic spanning the early to middle Eocene recently recovered on IODP Exp. 342 (1403, 1409) that are located on the Newfoundland Ridge, directly in the flow path of today's Deep Western Boundary Current. We also present data from equatorial Demerara Rise (IODP site 1258) and from further north at the mouth of the Labrador Sea (ODP Site 647).
NASA Astrophysics Data System (ADS)
Hu, Rong; Piotrowski, Alexander M.; Bostock, Helen C.; Crowhurst, Simon; Rennie, Victoria
2016-08-01
The deep Pacific Ocean holds the largest oceanic reservoir of carbon which may interchange with the atmosphere on climatologically important timescales. The circulation of the deep Pacific during the Last Glacial Maximum (LGM), however, is not well understood. Neodymium (Nd) isotopes of ferromanganese oxide coatings precipitated on planktonic foraminifera are a valuable proxy for deep ocean water mass reconstruction in paleoceanography. In this study, we present Nd isotope compositions (εNd) of planktonic foraminifera for the Holocene and the LGM obtained from 55 new sites widely distributed in the Pacific Ocean. The Holocene planktonic foraminiferal εNd results agree with the proximal seawater data, indicating that they provide a reliable record of modern bottom water Nd isotopes in the deep Pacific. There is a good correlation between foraminiferal εNd and seawater phosphate concentrations (R2 = 0.80), but poorer correlation with silicate (R2 = 0.37). Our interpretation is that the radiogenic Nd isotope is added to the deep open Pacific through particle release from the upper ocean during deep water mass advection and aging. The data thus also imply the Nd isotopes in the Pacific are not likely to be controlled by silicate cycling. In the North Pacific, the glacial Nd isotopic compositions are similar to the Holocene values, indicating that the Nd isotope composition of North Pacific Deep Water (NPDW) remained constant (-3.5 to -4). During the LGM, the southwest Pacific cores throughout the water column show higher εNd corroborating previous studies which suggested a reduced inflow of North Atlantic Deep Water to the Pacific. However, the western equatorial Pacific deep water does not record a corresponding radiogenic excursion, implying reduced radiogenic boundary inputs during the LGM probably due to a shorter duration of seawater-particle interaction in a stronger glacial deep boundary current. A significant negative glacial εNd excursion is evident in mid-depth (1-2 km) cores of the eastern equatorial Pacific (EEP) which may suggest a stronger influence of NPDW return flow to the core sites and decreased local input in the EEP. Taken together, our Nd records do not support a dynamically slower glacial Pacific overturning circulation, and imply that the increased carbon inventory of Pacific deep water might be due to poor high latitude air-sea exchange and increased biological pump efficiency in glacial times.
Tectonic Evolution of the Southern tip of the Parece Vela Basin
NASA Astrophysics Data System (ADS)
Okino, K.; Ohara, Y.; Fujiwara, T.; Lee, S.; Nakamura, Y.; Wu, S.
2005-12-01
The southern tip of the Parece Vela Basin was mapped using state-of-the-art instruments for the first time. The basin is known as an extinct backarc basin behind the Mariana arc-trench system and has developed from ~26 to 12 Ma. The backarc spreading consists of two stages: early east-west spreading and later NE-SW spreading accompanied by several oceanic core complexes. The remnant spreading center, the Parece Vela Rift, seems to connect the Yap Trench at its southern end (~12°N) and is not traceable in the southern tip of the basin (9~11°N) west of the Yap Trench. The evolution of the area seems to be linked to the collision of the Caroline Ridge to the Yap Trench, however no systematic mapping had been done before and the tectonics of the area remained enigmatic. New mapping/seismic reflection/dredging results reveal the complex structure of the area, which cannot be seen in northern part of the basin. Relatively continuous N-S fabrics are found in the northern part of the studied area and these fabrics develops within a V-shaped triangle zone. The short NW-SE abyssal hills offset by the NE-SW fracture zones are recognized in the very narrow area just east of the V-shaped area of N-S fabrics. These fabrics indicate the southward propagation of the N-S trending ridge and following NE-SW opening as same as seen in the northern part of the basin, although the eastern wing of the basin was lost. The western part of the area is completely different from the other part of the basin. The most prominent morphology is en echelon, curved deeps near the Kyushu-Palau Ridge. Two deeps are crescent-shaped and curve towards northward. The northern deep is ~6100 m and the abyssal hills seem approximately perpendicular to the deep. The southwestern extension of the northern deep is a narrow curved rift trending 030° and the rift develops within a topographic high. The southern deep is characterized with voluminous dome, which consists of branched topographic highs. The morphological pattern with curved deeps is very much like those of the Pito Deep in the Easter Microplate and of the Endeavor Deep in the Juan Fernandez Microplate. It is likely that the rotational deformation associated with continuous rift propagation and with some finite broad transform zone is related to the origin of the deeps. The area may be the remnant old lithosphere created before the Parece Vela Basin formation and indicate the robust magmatism in the past.
CT Scans of Cores Metadata, Barrow, Alaska 2015
Katie McKnight; Tim Kneafsey; Craig Ulrich
2015-03-11
Individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, throughout 2013 and 2014. Cores were drilled along different transects to sample polygonal features (i.e. the trough, center and rim of high, transitional and low center polygons). Most cores were drilled around 1 meter in depth and a few deep cores were drilled around 3 meters in depth. Three-dimensional images of the frozen cores were constructed using a medical X-ray computed tomography (CT) scanner. TIFF files can be uploaded to ImageJ (an open-source imaging software) to examine soil structure and densities within each core.
Orion and SLS showcased at Michoud on This Week @NASA – January 29, 2016
2016-01-29
A Jan. 26 event at NASA’s Michoud Assembly Facility in New Orleans, marked recently completed work by technicians there to weld together the pressure vessel for the next Orion deep space crew module. The event also was an opportunity for NASA officials to thank employees and to show the progress on Orion and the core stage of the agency’s Space Launch System (SLS) rocket. The Orion pressure vessel will be shipped to Kennedy Space Center in Florida next month, where engineers will continue to prepare it for the first flight of the SLS rocket. Also, Space station One-year crew update, New color movie of Ceres and NASA Day of Remembrance!
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael A. Pope
2011-10-01
The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physicsmore » design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francesco Venneri; Chang-Keun Jo; Jae-Man Noh
2010-09-01
The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physicsmore » design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.« less
Search for sterile neutrino mixing using three years of IceCube DeepCore data
NASA Astrophysics Data System (ADS)
Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Bron, S.; Burgman, A.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Vehring, M.; Voge, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Waza, A.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration
2017-06-01
We present a search for a light sterile neutrino using three years of atmospheric neutrino data from the DeepCore detector in the energy range of approximately 10-60 GeV. DeepCore is the low-energy subarray of the IceCube Neutrino Observatory. The standard three-neutrino paradigm can be probed by adding an additional light (Δ m412˜1 eV2 ) sterile neutrino. Sterile neutrinos do not interact through the standard weak interaction and, therefore, cannot be directly detected. However, their mixing with the three active neutrino states leaves an imprint on the standard atmospheric neutrino oscillations for energies below 100 GeV. A search for such mixing via muon neutrino disappearance is presented here. The data are found to be consistent with the standard three-neutrino hypothesis. Therefore, we derive limits on the mixing matrix elements at the level of |Uμ 4|2<0.11 and |Uτ 4|2<0.15 (90% C.L.) for the sterile neutrino mass splitting Δ m412=1.0 eV2 .
Gronstal, A.L.; Voytek, M.A.; Kirshtein, J.D.; Von der, Heyde; Lowit, M.D.; Cockell, C.S.
2009-01-01
Knowledge of the deep subsurface biosphere is limited due to difficulties in recovering materials. Deep drilling projects provide access to the subsurface; however, contamination introduced during drilling poses a major obstacle in obtaining clean samples. To monitor contamination during the 2005 International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) deep drilling of the Chesapeake Bay impact structure, four methods were utilized. Fluorescent microspheres were used to mimic the ability of contaminant cells to enter samples through fractures in the core material during retrieval. Drilling mud was infused with a chemical tracer (Halon 1211) in order to monitor penetration of mud into cores. Pore water from samples was examined using excitation-emission matrix (EEM) fl uorescence spectroscopy to characterize dissolved organic carbon (DOC) present at various depths. DOC signatures at depth were compared to signatures from drilling mud in order to identify potential contamination. Finally, microbial contaminants present in drilling mud were identified through 16S ribosomal deoxyribonucleic acid (rDNA) clone libraries and compared to species cultured from core samples. Together, these methods allowed us to categorize the recovered core samples according to the likelihood of contamination. Twenty-two of the 47 subcores that were retrieved were free of contamination by all the methods used and were subsequently used for microbiological culture and culture-independent analysis. Our approach provides a comprehensive assessment of both particulate and dissolved contaminants that could be applied to any environment with low biomass. ?? 2009 The Geological Society of America.
Partitioning of Oxygen During Core Formation on Earth and Mars
NASA Astrophysics Data System (ADS)
Rubie, D. C.; Gessmann, C. K.; Frost, D. J.
2003-12-01
Core formation on Earth and Mars involved the physical separation of Fe-Ni metal alloy from silicate, most likely in deep magma oceans. Although core-formation models explain many aspects of mantle geochemistry, they do not account for large differences between the compositions of the mantles of Earth ( ˜8 wt% FeO) and Mars ( ˜18 wt% FeO) or the much smaller mass fraction of the Martian core. Here we explain these differences using new experimental results on the solubility of oxygen in liquid Fe-Ni alloy, which we have determined at 5-23 GPa, 2100-2700 K and variable oxygen fugacities using a multianvil apparatus. Oxygen solubility increases with increasing temperature and oxygen fugacity and decreases with increasing pressure. Thus, along a high temperature adiabat (e.g. after formation of a deep magma ocean on Earth), oxygen solubility is high at depths up to about 2000 km but decreases strongly at greater depths where the effect of high pressure dominates. For modeling oxygen partitioning during core formation, we assume that Earth and Mars both accreted from oxidized chondritic material with a silicate fraction initially containing around 18 wt% FeO. In a terrestrial magma ocean, 1200-2000 km deep, high temperatures resulted in the extraction of FeO from the silicate magma ocean, due to the high solubility of oxygen in the segregating metal, leaving the mantle with its present FeO content of ˜8 wt%. Lower temperatures of a Martian magma ocean resulted in little or no extraction of FeO from the mantle, which thus remained unchanged at about 18 wt%. The mass fractions of segregated metal are consistent with the mass fraction of the Martian core being small relative to that of the Earth. FeO extracted from the Earth's magma ocean by segregating core-forming liquid may have contributed to chemical heterogeneities in the lowermost mantle, a FeO-rich D'' layer and the light element budget of the core.
NASA Astrophysics Data System (ADS)
Huffman, L. T.
2017-12-01
Changing ice has urgent implications for people around the world. The Ice Drilling Program Office (IDPO) provides scientific leadership and oversight of ice coring and drilling activities funded by the US National Science Foundation and also has goals to enhance education and communication of current research information. In a time when misinformation is rampant and climate change science is suspect, it is essential that students receive accurate scientific information and engage in learning activities that model complex ideas through engaging and age appropriate ways, while also learning to validate and recognize reliable sources. The IDPO Education and Outreach (EO) office works to create resources, activities and professional development that bridge the gap between ice core science research and educators and their students. Ice core science is on the cutting edge of new discoveries about climate change and understanding better the past to predict the future. Hands-on inquiry activities based on ice core data allow teachers to lead their students to new discoveries about climate secrets hidden deep in the ice. Capitalizing on the inherent interest in the extremes of the Polar Regions, IDPO materials engage students in activities aligned with NGSS standards. Ice drilling technologies make an ideal platform for intertwining engineering concepts and practices with science research to meet the SEP (Science and Engineering Practices) in the NGSS. This session will highlight how the IDPO EO office has built a community of ice core scientists willing to take part in education and outreach projects and events and share some of the resources available to K-12 educators. We will highlight some of the successes and lessons learned as we continually evolve our work toward more effective science education and communication highlighting ice core and climate change science.
Stelzer, R.S.; Bartsch, L.A.; Richardson, W.B.; Strauss, E.A.
2011-01-01
1.Although it is well known that sediments can be hot spots for nitrogen transformation in streams, many previous studies have confined measurements of denitrification and nitrate retention to shallow sediments (<5cm deep). We determined the extent of nitrate processing in deeper sediments of a sand plains stream (Emmons Creek) by measuring denitrification in core sections to a depth of 25cm and by assessing vertical nitrate profiles, with peepers and piezometers, to a depth of 70cm. 2.Denitrification rates of sediment slurries based on acetylene block were higher in shallower core sections. However, core sections deeper than 5cm accounted for 68% of the mean depth-integrated denitrification rate. 3.Vertical hydraulic gradient and vertical profiles of pore water chloride concentration suggested that deep ground water upwelled through shallow sediments before discharging to the stream channel. The results of a two-source mixing model based on chloride concentrations suggested that the hyporheic zone was very shallow (<5cm) in Emmons Creek. 4.Vertical profiles showed that nitrate concentration in shallow ground water was about 10-60% of the nitrate concentration of deep ground water. The mean nitrate concentrations of deep and shallow ground water were 2.17 and 0.73mgNO3-NL-1, respectively. 5.Deep ground water tended to be oxic (6.9mgO2L-1) but approached anoxia (0.8mgO2L-1) after passing through shallow, organic carbon-rich sediments, which suggests that the decline in the nitrate concentrations of upwelling ground water was because of denitrification. 6.Collectively, our results suggest that there is substantial nitrate removal occurring in deep sediments, below the hyporheic zone, in Emmons Creek. Our findings suggest that not accounting for nitrate removal in deep sediments could lead to underestimates of nitrogen processing in streams and catchments. ?? 2011 Blackwell Publishing Ltd.
Major Oil Plays In Utah And Vicinity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas Chidsey
2007-12-31
Utah oil fields have produced over 1.33 billion barrels (211 million m{sup 3}) of oil and hold 256 million barrels (40.7 million m{sup 3}) of proved reserves. The 13.7 million barrels (2.2 million m3) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. However, in late 2005 oil production increased, due, in part, to the discovery of Covenant field in the central Utah Navajo Sandstone thrust belt ('Hingeline') play, and to increased development drilling in the central Uinta Basin, reversing the decline that began in the mid-1980s.more » The Utah Geological Survey believes providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming can continue this new upward production trend. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios include descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary recovery techniques for each play. The most prolific oil reservoir in the Utah/Wyoming thrust belt province is the eolian, Jurassic Nugget Sandstone, having produced over 288 million barrels (46 million m{sup 3}) of oil and 5.1 trillion cubic feet (145 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the depositionally heterogeneous Nugget is also extensively fractured. Hydrocarbons in Nugget reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and gypsiferous beds in the Jurassic Twin Creek Limestone, or a low-permeability zone at the top of the Nugget. The Nugget Sandstone thrust belt play is divided into three subplays: (1) Absaroka thrust - Mesozoic-cored shallow structures, (2) Absaroka thrust - Mesozoic-cored deep structures, and (3) Absaroka thrust - Paleozoic-cored shallow structures. Both of the Mesozoic-cored structures subplays represent a linear, hanging wall, ramp anticline parallel to the leading edge of the Absaroka thrust. Fields in the shallow Mesozoic subplay produce crude oil and associated gas; fields in the deep subplay produce retrograde condensate. The Paleozoic-cored structures subplay is located immediately west of the Mesozoic-cored structures subplays. It represents a very continuous and linear, hanging wall, ramp anticline where the Nugget is truncated against a thrust splay. Fields in this subplay produce nonassociated gas and condensate. Traps in these subplays consist of long, narrow, doubly plunging anticlines. Prospective drilling targets are delineated using high-quality, two-dimensional and three-dimensional seismic data, forward modeling/visualization tools, and other state-of-the-art techniques. Future Nugget Sandstone exploration could focus on more structurally complex and subtle, thrust-related traps. Nugget structures may be present beneath the leading edge of the Hogsback thrust and North Flank fault of the Uinta uplift. The Jurassic Twin Creek Limestone play in the Utah/Wyoming thrust belt province has produced over 15 million barrels (2.4 million m{sup 3}) of oil and 93 billion cubic feet (2.6 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the low-porosity Twin Creek is extensively fractured. Hydrocarbons in Twin Creek reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and clastic beds, and non-fractured units within the Twin Creek. The Twin Creek Limestone thrust belt play is divided into two subplays: (1) Absaroka thrust-Mesozoic-cored structures and (2) Absaroka thrust - Paleozoic-cored structures. The Mesozoic-cored structures subplay represents a linear, hanging wall, ramp anticline parallel to the leading edge of the Absaroka thrust. Fields in this subplay produce crude oil and associated gas. The Paleozoic-cored structures subplay is located immediately west of the Mesozoic-cored structures subplay. It represents a very continuous and linear, hanging wall, ramp anticline where the Twin Creek is truncated against a thrust splay. Fields in this subplay produce nonassociated gas and condensate. Traps in both subplays consist of long, narrow, doubly plunging anticlines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnis Judzis; Alan Black; Homer Robertson
2006-03-01
The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energymore » and loads. The significance of the ultra-high rotary speed drilling system is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 October 2004 through 30 September 2005. Additionally, research activity from 1 October 2005 through 28 February 2006 is included in this report: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek designed and planned Phase I bench scale experiments. Some difficulties continue in obtaining ultra-high speed motors. Improvements have been made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs have been provided to vendors for production. A more consistent product is required to minimize the differences in bit performance. A test matrix for the final core bit testing program has been completed. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. (4) Significant testing has been performed on nine different rocks. (5) Bit balling has been observed on some rock and seems to be more pronounces at higher rotational speeds. (6) Preliminary analysis of data has been completed and indicates that decreased specific energy is required as the rotational speed increases (Task 4). This data analysis has been used to direct the efforts of the final testing for Phase I (Task 5). (7) Technology transfer (Task 6) has begun with technical presentations to the industry (see Judzis).« less
NASA Astrophysics Data System (ADS)
Salvador, R.; Miranda, P. C.; Roth, Y.; Zangen, A.
2009-05-01
Efficient stimulation of deeply located brain regions with transcranial magnetic stimulation (TMS) poses many challenges, arising from the fact that the induced field decays rapidly and becomes less focal with depth. We propose a new method to improve the efficiency of TMS of deep brain regions that combines high permeability cores, to increase focality and field intensity, with a coil specifically designed to induce a field that decays slowly with increasing depth. The performance of the proposed design was investigated using the finite element method to determine the total electric field induced by this coil/core arrangement on a realistically shaped homogeneous head model. The calculations show that the inclusion of the cores increases the field's magnitude by as much as 25% while also decreasing the field's decay with depth along specific directions. The focality, as measured by the area where the field's norm is greater than 1/\\sqrt 2 of its maximum value, is also improved by as much as 15% with some core arrangements. The coil's inductance is not significantly increased by the cores. These results show that the presence of the cores might make this specially designed coil even more suited for the effective stimulation of deep brain regions.
Bukry, David
1979-01-01
Leg 49 of the Deep Sea Drilling Project recovered 192 cores at eight drilling sites, 407 through 414 (Figure 1). Light-microscope techniques were used to study the cocoliths, silicoflagellates, and sponge spicules of 120 samples from these cores. The cocolith zonation of the samples follows Bukry (1975a), and is summarized in Figure 2. Silicoflagellate zonation, summarized in Figure 3, is explained in the text. Siliceous sponge spicules are common in many samples and are briefly discussed and illustrated. One new silicoflagellate, Distephanus sulcatus, from the Plicene of Site 407, is described.
Late MIS3 to modern central Arctic Paleoceanography based on Ostracode Faunal Assemblages
NASA Astrophysics Data System (ADS)
Gemery, L.; Cronin, T. M.; Jakobsson, M.; Poirier, R. K.; Pearce, C.; Barrientos, N.
2016-12-01
Continuous, highly abundant and well preserved fossil ostracodes were studied in one to two centimeter intervals from AMS-dated cores collected on the Lomonosov Ridge that indicate varying oceanographic conditions during the last 40 ka. Ostracode assemblages from cores taken during the SWERUS 2014 Expedition, Leg 2, reflect paleoenvironmental changes during glacial, deglacial, and interglacial transitions including changes in sea-ice cover and inflow of Atlantic-derived water into the Eurasian Basin. Notably, SWERUS 2014 obtained ridge, slope and shelf cores in relatively poorly studied regions of the Arctic. The composition of benthic ostracode assemblages from a multicore and complimentary gravity core (32 MUC4; 85.14, 151.59, in 837mwd and 32 GC2, section 1, 85.15, 151.66 in 826mwd), were analyzed and compared to prior results from various central Arctic expeditions to the Mendeleev, Northwind and Lomonosov Ridges. Key taxa used as indicators of specific water masses include: Acetabulastoma arcticum and Pseudocythere caudata (perennial sea ice), Polycope spp. (productivity and sea ice), Krithe hunti (partially sea-ice free conditions, deep water formation), and Rabilimis mirabilis (Atlantic water influx). Results indicate seasonally sea-ice free conditions during MIS 3 and less LGM ice cover than in more central regions of the Arctic. Intermittent periods of perennial sea ice began to develop during the late Holocene.
Further Constraints and Uncertainties on the Deep Seismic Structure of the Moon
NASA Technical Reports Server (NTRS)
Lin, Pei-Ying Patty; Weber, Renee C.; Garnero, Ed J.; Schmerr, Nicholas C.
2011-01-01
The Apollo Passive Seismic Experiment (APSE) consisted of four 3-component seismometers deployed between 1969 and 1972, that continuously recorded lunar ground motion until late 1977. The APSE data provide a unique opportunity for investigating the interior of a planet other than Earth, generating the most direct constraints on the elastic structure, and hence the thermal and compositional evolution of the Moon. Owing to the lack of far side moonquakes, past seismic models of the lunar interior were unable to constrain the lowermost 500 km of the interior. Recently, array methodologies aimed at detecting deep lunar seismic reflections found evidence for a lunar core, providing an elastic model of the deepest lunar interior consistent with geodetic parameters. Here we study the uncertainties in these models associated with the double array stacking of deep moonquakes for imaging deep reflectors in the Moon. We investigate the dependency of the array stacking results on a suite of parameters, including amplitude normalization assumptions, polarization filters, assumed velocity structure, and seismic phases that interfere with our desired target phases. These efforts are facilitated by the generation of synthetic seismograms at high frequencies (approx. 1Hz), allowing us to directly study the trade-offs between different parameters. We also investigate expected amplitudes of deep reflections relative to direct P and S arrivals, including predictions from arbitrarily oriented focal mechanisms in our synthetics. Results from separate versus combined station stacking help to establish the robustness of stacks. Synthetics for every path geometry of data were processed identically to that done with data. Different experiments were aimed at examining various processing assumptions, such as adding random noise to synthetics and mixing 3 components to some degree. The principal stacked energy peaks put forth in recent work persist, but their amplitude (which maps into reflector impedance contrast) and timing (which maps into reflector depth) depend on factors that are not well constrained -- most notably, the velocity structure of the overlying lunar interior. Thus, while evidence for the lunar core remains strong, the depths of imaged reflectors have associated uncertainties that will require new seismic data and observations to constrain. These results strongly advocate further investigations on the Moon to better resolve the interior (e.g., Selene missions), for the Moon apparently has a rich history of construction and evolution that is inextricably tied to that of Earth.
Dead Sea deep cores: A window into past climate and seismicity
NASA Astrophysics Data System (ADS)
Stein, Mordechai; Ben-Avraham, Zvi; Goldstein, Steven L.
2011-12-01
The area surrounding the Dead Sea was the locus of humankind's migration out of Africa and thus has been the home of peoples since the Stone Age. For this reason, understanding the climate and tectonic history of the region provides valuable insight into archaeology and studies of human history and helps to gain a better picture of future climate and tectonic scenarios. The deposits at the bottom of the Dead Sea are a geological archive of the environmental conditions (e.g., rains, floods, dust storms, droughts) during ice ages and warm ages, as well as of seismic activity in this key region. An International Continental Scientific Drilling Program (ICDP) deep drilling project was performed in the Dead Sea between November 2010 and March 2011. The project was funded by the ICDP and agencies in Israel, Germany, Japan, Norway, Switzerland, and the United States. Drilling was conducted using the new Large Lake Drilling Facility (Figure 1), a barge with a drilling rig run by DOSECC, Inc. (Drilling, Observation and Sampling of the Earth's Continental Crust), a nonprofit corporation dedicated to advancing scientific drilling worldwide. The main purpose of the project was to recover a long, continuous core to provide a high resolution record of the paleoclimate, paleoenvironment, paleoseismicity, and paleomagnetism of the Dead Sea Basin. With this, scientists are beginning to piece together a record of the climate and seismic history of the Middle East during the past several hundred thousand years in millennial to decadal to annual time resolution.
NASA Astrophysics Data System (ADS)
Carlino, Stefano; Piochi, Monica; Tramelli, Anna; Mormone, Angela; Montanaro, Cristian; Scheu, Bettina; Klaus, Mayer
2018-05-01
We report combined measurements of petrophysical and geophysical parameters for a 501-m deep borehole located on the eastern side of the active Campi Flegrei caldera (Southern Italy), namely (i) in situ permeability by pumping tests, (ii) laboratory-determined permeability of the drill core, and (iii) thermal gradients by distributed fiber optic and thermocouple sensors. The borehole was drilled during the Campi Flegrei Deep Drilling Project (in the framework of the International Continental Scientific Drilling Program) and gives information on the least explored caldera sector down to pre-caldera deposits. The results allow comparative assessment of permeability obtained from both borehole (at depth between 422 a 501 m) and laboratory tests (on a core sampled at the same depth) for permeability values of 10-13 m2 (borehole test) and 10-15 m2 (laboratory test) confirm the scale-dependency of permeability at this site. Additional geochemical and petrophysical determinations (porosity, density, chemistry, mineralogy and texture), together with gas flow measurements, corroborate the hypothesis that discrepancies in the permeability values are likely related to in-situ fracturing. The continuous distributed temperature profile points to a thermal gradient of about 200 °C km-1. Our findings (i) indicate that scale-dependency of permeability has to be carefully considered in modelling of the hydrothermal system at Campi Flegrei, and (ii) improve the understanding of caldera dynamics for monitoring and mitigation of this very high volcanic risk area.
Deep Chandra observations of the stripped galaxy group falling into Abell 2142
NASA Astrophysics Data System (ADS)
Eckert, D.; Gaspari, M.; Owers, M. S.; Roediger, E.; Molendi, S.; Gastaldello, F.; Paltani, S.; Ettori, S.; Venturi, T.; Rossetti, M.; Rudnick, L.
2017-09-01
In the local Universe, the growth of massive galaxy clusters mainly operates through the continuous accretion of group-scale systems. The infalling group in Abell 2142 is the poster child of such an accreting group, and as such, it is an ideal target to study the astrophysical processes induced by structure formation. We present the results of a deep (200 ks) observation of this structure with Chandra that highlights the complexity of this system in exquisite detail. In the core of the group, the spatial resolution of Chandra reveals a leading edge and complex AGN-induced activity. The morphology of the stripped gas tail appears straight in the innermost 250 kpc, suggesting that magnetic draping efficiently shields the gas from its surroundings. However, beyond 300 kpc from the core, the tail flares and the morphology becomes strongly irregular, which could be explained by a breaking of the drape, for example, caused by turbulent motions. The power spectrum of surface-brightness fluctuations is relatively flat (P2D ∝ k-2.3), which indicates that thermal conduction is strongly inhibited even beyond the region where magnetic draping is effective. The amplitude of density fluctuations in the tail is consistent with a mild level of turbulence with a Mach number M3D 0.1 - 0.25. Overall, our results show that the processes leading to the thermalization and mixing of the infalling gas are slow and relatively inefficient.
Lunar Love Numbers and the Deep Lunar Interior
NASA Technical Reports Server (NTRS)
Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.; Dickey, J. O.
2002-01-01
Observationally determined values of the Love number k2 are larger than existing models of the lunar interior predict. The region between the deep moonquakes and core may be a low velocity zone from a partial melt. Additional information is contained in the original extended abstract.
Dwyer, Gary S.; Cronin, Thomas M.; Baker, Paul A.; Rodriguez-Lazaro, Julio
2000-01-01
We reconstructed three time series of last glacial-to-present deep-sea temperature from deep and intermediate water sediment cores from the western North Atlantic using Mg/Ca ratios of benthic ostracode shells. Although the Mg/Ca data show considerable variability (“scatter”) that is common to single-shell chemical analyses, comparisons between cores, between core top shells and modern bottom water temperatures (BWT), and comparison to other paleo-BWT proxies, among other factors, suggest that multiple-shell average Mg/Ca ratios provide reliable estimates of BWT history at these sites. The BWT records show not only glacial-to-interglacial variations but also indicate BWT changes during the deglacial and within the Holocene interglacial stage. At the deeper sites (4500- and 3400-m water depth), BWT decreased during the last glacial maximum (LGM), the late Holocene, and possibly during the Younger Dryas. Maximum deep-sea warming occurred during the latest deglacial and early Holocene, when BWT exceeded modern values by as much as 2.5°C. This warming was apparently most intense around 3000 m, the depth of the modern-day core of North Atlantic deep water (NADW). The BWT variations at the deeper water sites are consistent with changes in thermohaline circulation: warmer BWT signifies enhanced NADW influence relative to Antarctic bottom water (AABW). Thus maximum NADW production and associated heat flux likely occurred during the early Holocene and decreased abruptly around 6500 years B.P., a finding that is largely consistent with paleonutrient studies in the deep North Atlantic. BWT changes in intermediate waters (1000-m water depth) of the subtropical gyre roughly parallel the deep BWT variations including dramatic mid-Holocene cooling of around 4°C. Joint consideration of the Mg/Ca-based BWT estimates and benthic oxygen isotopes suggests that the cooling was accompanied by a decrease in salinity at this site. Subsequently, intermediate waters warmed to modern values that match those of the early Holocene maximum of ∼7°C. Intermediate water BWT changes must also be driven by changes in ocean circulation. These results thus provide independent evidence that supports the hypothesis that deep-ocean circulation is closely linked to climate change over a range of timescales regardless of the mean climate state. More generally, the results further demonstrate the potential of benthic Mg/Ca ratios as a tool for reconstructing past ocean and climate conditions.
NASA Astrophysics Data System (ADS)
Correia, A.; Vieira, G.; Ramos, M.
2012-06-01
During the month of January of 2008 a borehole (Permamodel-Gulbenkian 1 — PG1) 26 m deep was drilled on the top of Mount Reina Sofia (275 m a.s.l.) near the Spanish Antarctic Station of Livingston Island, South Shetland Islands. Cores from 1.5 m to about 26 m deep were collected for measuring several physical properties. The objective of the present work is to report the values of the thermal conductivity and the thermal diffusivity that were measured in the cores from the borehole and the heat production that was estimated for the geological formations intercepted by it. Seven cores were selected to measure the thermal conductivity and the thermal diffusivity. The measured values for the thermal conductivity vary from 2.6 W/mK to 3.3 W/mK while the measured values for the thermal diffusivity vary from 1.1 × 10- 6 m2/s to 1.6 × 10- 6 m2/s. Both thermal conductivity and thermal diffusivity, on average, show a slight increase with depth. Average heat production was also estimated for two portions of the borehole: one from 2 to 12 m and the other from 12 to 25 m. A gamma-ray spectrometer was used to estimate the concentrations of uranium, thorium, and potassium of the cores, from which the heat production per unit volume was calculated. The estimated heat production for the first half of the borehole is 2.218 μW/m3 while for the second half it is 2.173 μW/m3; these heat production values are compatible with acidic rock types. Porosity and density were also estimated for the same cores.
Extreme Dead Sea drying event during the last interglacial from the ICDP Dead Sea Deep Drill Core
NASA Astrophysics Data System (ADS)
Goldstein, S.; Stein, M.; Ben-Avraham, Z.; Agnon, A.; Ariztegui, D.; Brauer, A.; Haug, G.; Ito, E.; Kitagawa, H.; Torfstein, A.; Yasuda, Y.
2012-04-01
The ICDP funded Dead Sea Deep Drilling Project (DSDDP) recovered the longest and most complete paleo-environmental record in the Middle East, drilling holes in a deep and a shallow site extending to ~450 meters. The Dead Sea expands during the glacials and contracts during interglacials, and the sediments are an archive of the evolving climatic conditions. During glacials the sediments comprise intervals of marl (aragonite, gypsum and detritus) and during interglacials they are salts and marls. We estimate that the deep site core spans ~200 kyr (to early MIS 7). A dramatic discovery is a ~40 cm interval of rounded pebbles at ~235 m below the lake floor, the only clean pebbly unit in the entire core. It appears to be a beach layer, near the deepest part of the Dead Sea, lying above ~35 meters of mainly salt. If it is a beach layer, it implies an almost complete dry-down of the paleo-Dead Sea. The pebble layer lies within the last interglacial interval. Our initial attempt to estimate the age of the possible dry down shows an intriguing correlation between the salt-mud stratigraphy of the Dead Sea core and the oxygen isotope record of Soreq Cave, whereby excursions to light oxygen in the speleothems correspond to periods of salt deposition. Through this comparison, we estimate that the dry down occurred during MIS 5e. The occurrence of ~35 meters of mainly salt along with the pebble layer demonstrates a severe dry interval during MIS 5. This observation has implications for the Middle East today, where the Dead Sea level is dropping as all the countries in the area use the runoff. GCM models indicate a more arid future in the region. The core shows that the runoff nearly stopped during a past warm period without human intervention.
A deep view on the Virgo cluster core
NASA Astrophysics Data System (ADS)
Lieder, S.; Lisker, T.; Hilker, M.; Misgeld, I.; Durrell, P.
2012-02-01
Studies of dwarf spheroidal (dSph) galaxies with statistically significant sample sizes are still rare beyond the Local Group, since these low surface brightness objects can only be identified with deep imaging data. In galaxy clusters, where they constitute the dominant population in terms of number, they represent the faint end slope of the galaxy luminosity function and provide important insight on the interplay between galaxy mass and environment. In this study we investigate the optical photometric properties of early-type galaxies (dwarf ellipticals (dEs) and dSphs) in the Virgo cluster core region, by analysing their location on the colour magnitude relation (CMR) and the structural scaling relations down to faint magnitudes, and by constructing the luminosity function to compare it with theoretical expectations. Our work is based on deep CFHT V- and I-band data covering several square degrees of the Virgo cluster core that were obtained in 1999 using the CFH12K instrument. We visually select potential cluster members based on morphology and angular size, excluding spiral galaxies. A photometric analysis has been carried out for 295 galaxies, using surface brightness profile shape and colour as further criteria to identify probable background contaminants. 216 galaxies are considered to be certain or probable Virgo cluster members. Our study reveals 77 galaxies not catalogued in the VCC (with 13 of them already found in previous studies) that are very likely Virgo cluster members because they follow the Virgo CMR and exhibit low Sérsic indices. Those galaxies reach MV = -8.7 mag. The CMR shows a clear change in slope from dEs to dSphs, while the scatter of the CMR in the dSph regime does not increase significantly. Our sample might, however, be somewhat biased towards redder colours. The scaling relations given by the dEs appear to be continued by the dSphs indicating a similar origin. The observed change in the CMR slope may mark the point at which gas loss prevented significant metal enrichment. The almost constant scatter around the CMR possibly indicates a short formation period, resulting in similar stellar populations. The luminosity function shows a Schechter function's faint end slope of α = -1.50 ± 0.17, implying a lack of galaxies related to the expected number of low-mass dark matter haloes from theoretical models. Our findings could be explained by suppressed star formation in low-mass dark matter halos or by tidal disruption of dwarfs in the dense core region of the cluster. Tables 3 and 4 are available in electronic form at http://www.aanda.org
Greenland deep boreholes inform on sliding and deformation of the basal ice
NASA Astrophysics Data System (ADS)
Dahl-Jensen, D.
2017-12-01
Repeated measurements of the deformation of the deep boreholes on the Greenland ice sheet informs on the basal sliding, near basal deformation and in general on the horizontal velocity through the ice. Results of the logging of the boreholes at Dye3, GRIP, NGRIP, NEEM and Camp Century through the last 40 years by the Danish Ice and Climate group will be presented and discussed. The results on the flow will be compared with the information on ice properties, impurity load and bedrock entrained material from the deep ice cores and the radio echo sounding images near the drill sites.The results show that the basal movement often happens in an impurity rich zone above the bedrock while pure basal sliding is limited even in the presence of basal water and significant basal melt.Most of the deep ice core sites are located close to ice divides where the surface velocity is limited so significant basal sliding is not expected. Exceptions are the surface velocities at Camp Century and Dye 3, both being 13 m/yr.Finally, the ongoing deep drilling at EGRIP will shortly be presented where we are drilling in the center of the North East Greenland Ice Stream (NEGIS).
Using Macrofossils to Reconstruct Paleoenvironmental History of Cedar Swamp, High Point NJ
NASA Astrophysics Data System (ADS)
Buhler, K. M.; Peteet, D. M.
2016-12-01
Macrofossils from deep sediment cores taken from bog environments can reveal much about the paleoclimate of a certain site. A research study conducted by Niering in 1953 focused on the pollen records from Cedar Bog that, although are able to indicate which species were present regionally, are not able to establish the specific local vegetation of the site. By identifying and counting macrofossils from the core, we can determine the species growing in Cedar Bog in High Point State Park, NJ and utilize that data to reconstruct a paleoclimatic history at the highest elevation in New Jersey. We took a 6.5m core from Cedar Bog and, from that, used 4cm³ samples taken throughout the entire depth to wash through a 250um sieve and sift through at 60x magnification, identifying the macrofossils using an extensive Lamont Doherty Earth Observatory reference collection. Additionally, we tested for the percentage of organic matter through the core using loss on ignition. We found 5 zones throughout the core depth that indicate altering habitats. Beginning with low organic matter, less than 5%, the deepest part of the core has little vegetation but high rock content. The next zone introduced Chamaecyparis thyoides in the region and a period of changing organic matter. Following this comes a domination of aquatic plants and byrozoan statoblast and, afterwards, a shift towards sedges. The top of the core shows present day vegetation types from Cedar Bog, such as sphagnum moss and Tsuga canadensis, and 96% organic matter content. The lack of vegetation and high rock content, around 6.5m deep, signal erosion that took place after deglaciation. The vegetation types in zone 2 indicate deep lake/open landscape conditions. High aquatic vegetation and bryozoan statoblasts suggest a shallow lake. The site filled in to become a fen wetland as evidenced by the abundance of Scirpus and Cladium. The final zone signifies a bog habitat represented by the domination of sphagnum and Chamaedaphne. These shifts signal an altering landscape of Cedar Bog, evolving after deglaciation from a deep lake to a shallow lake, followed by a fen wetland and eventually into a modern bog habitat. Certain vegetation and organism data indicate climatic shifts at Cedar Bog that can uncover the paleoclimate for a site located at the highest elevation in New Jersey.
Aartsen, M. G.; Abraham, K.; Ackermann, M.; ...
2016-09-28
We present the first IceCube search for a signal of dark matter annihilations in the Milky Way using all-flavour neutrino-induced particle cascades. The analysis focuses on the DeepCore sub-detector of IceCube, and uses the surrounding IceCube strings as a veto region in order to select starting events in the DeepCore volume. We use 329 live-days of data from IceCube operating in its 86-string configuration during 2011–2012. No neutrino excess is found, the final result being compatible with the background-only hypothesis. From this null result, we derive upper limits on the velocity-averaged self-annihilation cross-section, < σ A v > , formore » dark matter candidate masses ranging from 30 GeV up to 10 TeV, assuming both a cuspy and a flat-cored dark matter halo profile. For dark matter masses between 200 GeV and 10 TeV, the results improve on all previous IceCube results on < σ A v > , reaching a level of 10 - 23 cm 3 s - 1 , depending on the annihilation channel assumed, for a cusped NFW profile. The analysis demonstrates that all-flavour searches are competitive with muon channel searches despite the intrinsically worse angular resolution of cascades compared to muon tracks in IceCube.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aartsen, M. G.; Abraham, K.; Ackermann, M.
We present the first IceCube search for a signal of dark matter annihilations in the Milky Way using all-flavour neutrino-induced particle cascades. The analysis focuses on the DeepCore sub-detector of IceCube, and uses the surrounding IceCube strings as a veto region in order to select starting events in the DeepCore volume. We use 329 live-days of data from IceCube operating in its 86-string configuration during 2011–2012. No neutrino excess is found, the final result being compatible with the background-only hypothesis. From this null result, we derive upper limits on the velocity-averaged self-annihilation cross-section, < σ A v > , formore » dark matter candidate masses ranging from 30 GeV up to 10 TeV, assuming both a cuspy and a flat-cored dark matter halo profile. For dark matter masses between 200 GeV and 10 TeV, the results improve on all previous IceCube results on < σ A v > , reaching a level of 10 - 23 cm 3 s - 1 , depending on the annihilation channel assumed, for a cusped NFW profile. The analysis demonstrates that all-flavour searches are competitive with muon channel searches despite the intrinsically worse angular resolution of cascades compared to muon tracks in IceCube.« less
Chemistry and petrology of size fractions of Apollo 17 deep drill core 70009-70006
NASA Technical Reports Server (NTRS)
Laul, J. C.; Vaniman, D. T.; Papike, J. J.; Simon, S.
1978-01-01
Instrumental neutron activation analysis was used to examine 34 major, minor and trace elements in 48 bulk soils and size fractions (90-1000 microns, 20-90 microns and less than 20 microns) of the Apollo 17 deep drill core sections 70009-70006 (upper 130 cm). Modal data were also obtained for the less than 20 micron size fraction. Preliminary results indicate that (1) the chemistry of the greater than 90 micron and 20-90 micron coarse fractions is identical but quite different from the less than 20 micron fine fraction; (2) the upper 50 cm of the drill core is highly enriched in mare material; (3) the dominant source of highland material is KREEPy instead of anorthositic; and (4) indigenous volatiles such as Zn are quite high in all size fractions.
Widespread Miocene deep-sea hiatuses: coincidence with periods of global cooling.
Barron, J.A.; Keller, G.
1982-01-01
High-resolution biostratigraphic analyses of Miocene deep-sea cores reveal eight intervals of widespread hiatuses in the world ocean. In complete sections these hiatuses correspond to intervals of cool faunal and floral assemblages, rapid enrichment of delta 18O, and sea-level regressions. These factors suggest that Miocene deep-sea hiatuses result from an increased intensity of circulation and corrosiveness of bottom currents during periods of increased polar refrigeration.-Authors
Hemodynamic monitoring in different cortical layers with a single fiber optical system
NASA Astrophysics Data System (ADS)
Yu, Linhui; Noor, M. Sohail; Kiss, Zelma H. T.; Murari, Kartikeya
2018-02-01
Functional monitoring of highly-localized deep brain structures is of great interest. However, due to light scattering, optical methods have limited depth penetration or can only measure from a large volume. In this research, we demonstrate continuous measurement of hemodynamics in different cortical layers in response to thalamic deep brain stimulation (DBS) using a single fiber optical system. A 200-μm-core-diameter multimode fiber is used to deliver and collect light from tissue. The fiber probe can be stereotaxically implanted into the brain region of interest at any depth to measure the di use reflectance spectra from a tissue volume of 0.02-0.03 mm3 near the fiber tip. Oxygenation is then extracted from the reflectance spectra using an algorithm based on Monte Carlo simulations. Measurements were performed on the surface (cortical layer I) and at 1.5 mm depth (cortical layer VI) of the motor cortex in anesthetized rats with thalamic DBS. Preliminary results revealed the oxygenation changes in response to DBS. Moreover, the baseline as well as the stimulus-evoked change in oxygenation were different at the two depths of cortex.
Spencer, J.E.
1999-01-01
In the common type of industrial continuous casting, partially molten metal is extruded from a vessel through a shaped orifice called a mold in which the metal assumes the cross-sectional form of the mold as it cools and solidifies. Continuous casting can be sustained as long as molten metal is supplied and thermal conditions are maintained. I propose that a similar process produced parallel sets of grooves in three geologic settings, as follows: (1) corrugated metamorphic core complexes where mylonized mid-crustal rocks were exhumed by movement along low-angle normal faults known as detachment faults; (2) corrugated submarine surfaces where ultramafic and mafic rocks were exhumed by normal faulting within oceanic spreading centers; and (3) striated magma extrusions exemplified by the famous grooved outcrops at the Inca fortress of Sacsayhuaman in Peru. In each case, rocks inferred to have overlain the corrugated surface during corrugation genesis molded and shaped a plastic to partially molten rock mass as it was extruded from a moderate- to high-temperature reservoir.
Raus, Kasper; Chambaere, Kenneth; Sterckx, Sigrid
2016-06-29
Continuous deep sedation at the end of life is a practice that has been the topic of considerable ethical debate, for example surrounding its perceived similarity or dissimilarity with physician-assisted dying. The practice is generally considered to be legal as a form of symptom control, although this is mostly only assumed. France has passed an amendment to the Public Health Act that would grant certain terminally ill patients an explicit right to continuous deep sedation until they pass away. Such a framework would be unique in the world. In this paper we will highlight and reflect on four relevant aspects and shortcomings of the proposed bill. First, that the bill suggests that continuous deeps sedation should be considered as a sui generis practice. Second, that it requires that sedation should always be accompanied by the withholding of all artificial nutrition and hydration. In the most recently amended version of the legal proposal it is stated that life sustaining treatments are withheld unless the patient objects. Third, that the French bill would not require that the suffering for which continuous deep sedation is initiated is unbearable. Fourth, the question as to whether the proposal should be considered as a way to avoid having to decriminalise euthanasia and/or PAS or, on the contrary, as a veiled way to decriminalise these practices. The French proposal to amend the Public Health Act to include a right to continuous deep sedation for some patients is a unique opportunity to clarify the legality of continuous deep sedation as an end-of-life practice. Moreover, it would recognize that the practice of continuous deep sedation raises ethical and legal issues that are different from those raised by symptom control on the one hand and assisted dying on the other hand. Nevertheless, there are still various issues of significant ethical concern in the French legislative proposal.
A wet, heterogeneous lunar interior: Lower mantle and core dynamo evolution
NASA Astrophysics Data System (ADS)
Evans, A. J.; Zuber, M. T.; Weiss, B. P.; Tikoo, S. M.
2014-05-01
While recent analyses of lunar samples indicate the Moon had a core dynamo from at least 4.2-3.56 Ga, mantle convection models of the Moon yield inadequate heat flux at the core-mantle boundary to sustain thermal core convection for such a long time. Past investigations of lunar dynamos have focused on a generally homogeneous, relatively dry Moon, while an initial compositionally stratified mantle is the expected consequence of a postaccretionary lunar magma ocean. Furthermore, recent re-examination of Apollo samples and geophysical data suggests that the Moon contains at least some regions with high water content. Using a finite element model, we investigate the possible consequences of a heterogeneously wet, compositionally stratified interior for the evolution of the Moon. We find that a postoverturn model of mantle cumulates could result in a core heat flux sufficiently high to sustain a dynamo through 2.5 Ga and a maximum surface, dipolar magnetic field strength of less than 1 μT for a 350-km core and near ˜2 μT for a 450-km core. We find that if water was transported or retained preferentially in the deep interior, it would have played a significant role in transporting heat out of the deep interior and reducing the lower mantle temperature. Thus, water, if enriched in the lower mantle, could have influenced core dynamo timing by over 1.0 Gyr and enhanced the vigor of a lunar core dynamo. Our results demonstrate the plausibility of a convective lunar core dynamo even beyond the period currently indicated by the Apollo samples.
Sadaf, S M; Zhao, S; Wu, Y; Ra, Y-H; Liu, X; Vanka, S; Mi, Z
2017-02-08
To date, semiconductor light emitting diodes (LEDs) operating in the deep ultraviolet (UV) spectral range exhibit very low efficiency due to the presence of large densities of defects and extremely inefficient p-type conduction of conventional AlGaN quantum well heterostructures. We have demonstrated that such critical issues can be potentially addressed by using nearly defect-free AlGaN tunnel junction core-shell nanowire heterostructures. The core-shell nanowire arrays exhibit high photoluminescence efficiency (∼80%) in the UV-C band at room temperature. With the incorporation of an epitaxial Al tunnel junction, the p-(Al)GaN contact-free nanowire deep UV LEDs showed nearly one order of magnitude reduction in the device resistance, compared to the conventional nanowire p-i-n device. The unpackaged Al tunnel junction deep UV LEDs exhibit an output power >8 mW and a peak external quantum efficiency ∼0.4%, which are nearly one to two orders of magnitude higher than previously reported AlGaN nanowire devices. Detailed studies further suggest that the maximum achievable efficiency is limited by electron overflow and poor light extraction efficiency due to the TM polarized emission.
Lower-mantle plume beneath the Yellowstone hotspot revealed by core waves
NASA Astrophysics Data System (ADS)
Nelson, Peter L.; Grand, Stephen P.
2018-04-01
The Yellowstone hotspot, located in North America, is an intraplate source of magmatism the cause of which is hotly debated. Some argue that a deep mantle plume sourced at the base of the mantle supplies the heat beneath Yellowstone, whereas others claim shallower subduction or lithospheric-related processes can explain the anomalous magmatism. Here we present a shear wave tomography model for the deep mantle beneath the western United States that was made using the travel times of core waves recorded by the dense USArray seismic network. The model reveals a single narrow, cylindrically shaped slow anomaly, approximately 350 km in diameter that we interpret as a whole-mantle plume. The anomaly is tilted to the northeast and extends from the core-mantle boundary to the surficial position of the Yellowstone hotspot. The structure gradually decreases in strength from the deepest mantle towards the surface and if it is purely a thermal anomaly this implies an initial excess temperature of 650 to 850 °C. Our results strongly support a deep origin for the Yellowstone hotspot, and also provide evidence for the existence of thin thermal mantle plumes that are currently beyond the resolution of global tomography models.
Parallel Distributed Processing Theory in the Age of Deep Networks.
Bowers, Jeffrey S
2017-12-01
Parallel distributed processing (PDP) models in psychology are the precursors of deep networks used in computer science. However, only PDP models are associated with two core psychological claims, namely that all knowledge is coded in a distributed format and cognition is mediated by non-symbolic computations. These claims have long been debated in cognitive science, and recent work with deep networks speaks to this debate. Specifically, single-unit recordings show that deep networks learn units that respond selectively to meaningful categories, and researchers are finding that deep networks need to be supplemented with symbolic systems to perform some tasks. Given the close links between PDP and deep networks, it is surprising that research with deep networks is challenging PDP theory. Copyright © 2017. Published by Elsevier Ltd.
Democratizing Access to Core Mathematics across Grades 9-12
ERIC Educational Resources Information Center
Hegedus, Stephen; Dalton, Sara; Brookstein, Arden; Tapper, John; Heller, Eric
2011-01-01
The authors' proposed work builds upon 12+ years of research collectively known as the "SimCalc Projects." SimCalc Connected MathWorlds (SCM) combines two innovative technological ingredients to address core mathematical ideas in deep and sustainable ways for mathematics learners. Software that addresses content issues through dynamic…
Impacts of Residential Demolition and the Sustainable Reuse of Vacant Lots (Cleveland, Ohio)
The summarized research takes a comprehensive look at the nature of urban soils by measuring how fast water moves into the soil, taking deep soil cores, and using soil taxonomy and the cores to understand how water moves through various depths. The research expands our knowledge ...
Probing the deep critical zone beneath the Luquillo Experimental Forest, Puerto Rico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buss, Heather; Brantley, S. L.; Scatena, Fred
2013-01-01
Recent work has suggested that weathering processes occurring in the subsurface produce the majority of silicate weathering products discharged to the world s oceans, thereby exerting a primary control on global temperature via the well-known positive feedback between silicate weathering and CO2. In addition, chemical and physical weathering processes deep within the critical zone create aquifers and control groundwater chemistry, watershed geometry and regolith formation rates. Despite this, most weathering studies are restricted to the shallow critical zone (e.g., soils, outcrops). Here we investigate the chemical weathering, fracturing and geomorphology of the deep critical zone in the Bisley watershed inmore » the Luquillo Critical Zone Observatory, Puerto Rico, from two boreholes drilled to 37.2 and 27.0 m depth, from which continuous core samples were taken. Corestones exposed aboveground were also sampled. Weathered rinds developed on exposed corestones and along fracture surfaces on subsurface rocks slough off of exposed corestones once rinds attain a thickness up to ~1 cm, preventing the corestones from rounding due to diffusion limitation. Such corestones at the land surface are assumed to be what remains after exhumation of similar, fractured bedrock pieces that were observed in the drilled cores between thick layers of regolith. Some of these subsurface corestones are massive and others are highly fractured, whereas aboveground corestones are generally massive with little to no apparent fracturing. Subsurface corestones are larger and less fractured in the borehole drilled on a road where it crosses a ridge compared to the borehole drilled where the road crosses the stream channel. Both borehole profiles indicate that the weathering zone extends to well below the stream channel in this upland catchment; hence weathering depth is not controlled by the stream level within the catchment and not all of the water in the watershed is discharged to the stream.« less
Probing the deep critical zone beneath the Luquillo Experimental Forest, Puerto Rico
Buss, Heather L.; Brantley, Susan L.; Scatena, Fred; Bazilevskaya, Katya; Blum, Alex E.; Schulz, Marjorie S.; Jiménez, Rafael; White, Arthur F.; Rother, G.; Cole, D.
2013-01-01
Recent work has suggested that weathering processes occurring in the subsurface produce the majority of silicate weathering products discharged to the world's oceans, thereby exerting a primary control on global temperature via the well-known positive feedback between silicate weathering and CO2. In addition, chemical and physical weathering processes deep within the critical zone create aquifers and control groundwater chemistry, watershed geometry and regolith formation rates. Despite this, most weathering studies are restricted to the shallow critical zone (e.g. soils, outcrops). Here we investigate the chemical weathering, fracturing and geomorphology of the deep critical zone in the Bisley watershed in the Luquillo Critical Zone Observatory, Puerto Rico, from two boreholes drilled to 37.2 and 27.0 m depth, from which continuous core samples were taken. Corestones exposed aboveground were also sampled. Weathered rinds developed on exposed corestones and along fracture surfaces on subsurface rocks slough off of exposed corestones once rinds attain a thickness up to ~1 cm, preventing the corestones from rounding due to diffusion limitation. Such corestones at the land surface are assumed to be what remains after exhumation of similar, fractured bedrock pieces that were observed in the drilled cores between thick layers of regolith. Some of these subsurface corestones are massive and others are highly fractured, whereas aboveground corestones are generally massive with little to no apparent fracturing. Subsurface corestones are larger and less fractured in the borehole drilled on a road where it crosses a ridge compared with the borehole drilled where the road crosses the stream channel. Both borehole profiles indicate that the weathering zone extends to well below the stream channel in this upland catchment; hence weathering depth is not controlled by the stream level within the catchment and not all of the water in the watershed is discharged to the stream
ERIC Educational Resources Information Center
Davies, T. A.
1976-01-01
Described are the background, operation, and findings of the work of the deep sea drilling vessel Glomar Challenger, which has taken 8,638 core samples from 573 holes at 392 sites on the floor of the Earth's oceans. (SL)
NASA Astrophysics Data System (ADS)
Chappell, John; Omura, Akio; Esat, Tezer; McCulloch, Malcolm; Pandolfi, John; Ota, Yoko; Pillans, Brad
1996-06-01
A major discrepancy between the Late Quaternary sea level changes derived from raised coral reef terraces at the Huon Peninsula in Papua New Guinea and from oxygen isotopes in deep sea cores is resolved. The two methods agree closely from 120 ka to 80 ka and from 20 ka to 0 ka (ka = 1000 yr before present), but between 70 and 30 ka the isotopic sea levels are 20-40 m lower than the Huon Peninsula sea levels derived in earlier studies. New, high precision U-series age measurements and revised stratigraphic data for Huon Peninsula terraces aged between 30 and 70 ka now give similar sea levels to those based on deep sea oxygen isotope data planktonic and benthic δ 18O data. Using the sea level and deep sea isotopic data, oxygen isotope ratios are calculated for the northern continental ice sheets through the last glacial cycle and are consistent with results from Greenland ice cores. The record of ice volume changes through the last glacial cycle now appears to be reasonably complete.
Inagaki, F; Takai, K; Komatsu, T; Kanamatsu, T; Fujioka, K; Horikoshi, K
2001-12-01
A record of the history of the Earth is hidden in the Earth's crust, like the annual rings of an old tree. From very limited records retrieved from deep underground, one can infer the geographical, geological, and biological events that occurred throughout Earth's history. Here we report the discovery of vertically shifted community structures of Archaea in a typical oceanic subseafloor core sample (1410 cm long) recovered from the West Philippine Basin at a depth of 5719 m. Beneath a surface community of ubiquitous deep-sea archaea (marine crenarchaeotic group I; MGI), an unusual archaeal community consisting of extremophilic archaea, such as extreme halophiles and hyperthermophiles, was present. These organisms could not be cultivated, and may be microbial relicts more than 2 million years old. Our discovery of archaeal rDNA in this core sample, probably associated with the past terrestrial volcanic and submarine hydrothermal activities surrounding the West Philippine Basin, serves as potential geomicrobiological evidence reflecting novel records of geologic thermal events in the Pleistocene period concealed in the deep-sea subseafloor.
Borodulin-Nadzieja, L; Janocha, A; Pietraszkiewicz, T; Salomon, E; Stańda, M
2001-01-01
This paper is part of a wider comparative study of the heart rate, blood pressure, external and core temperature in operators of self-propelled mining machines with and without air-conditioning cabins. Two groups, each of ten operators, characterised by the similar age and duration of employment, stayed for 20 min a specially prepared resting chamber with much more advantageous microclimatic conditions. The results of our examinations (Holter heart rate and continuous blood pressure recordings, external and core temperature measurements) revealed that during the work (particularly during the increased work-load) all parameters recorded were significantly lower in air-conditioning cabins as compared with the group working without air-condition. In both groups, a complete restitution of the heart rate and blood pressure was observed after a 20-min stay in the resting chamber. During the work, a statistically significant increase in the external temperature was found in both groups of operators, whereas the increase in the core temperature was observed only in operators working without air-condition. After a 20-min stay in the resting chamber, a complete return to the normal temperature was noted only in operators working in air-conditioned cabins.
Reduced oxygenation at intermediate depths of the southwest Pacific during the last glacial maximum
NASA Astrophysics Data System (ADS)
Durand, Axel; Chase, Zanna; Noble, Taryn L.; Bostock, Helen; Jaccard, Samuel L.; Townsend, Ashley T.; Bindoff, Nathaniel L.; Neil, Helen; Jacobsen, Geraldine
2018-06-01
To investigate changes in oxygenation at intermediate depths in the southwest Pacific between the Last Glacial Maximum (LGM) and the Holocene, redox sensitive elements uranium and rhenium were measured in 12 sediment cores located on the Campbell and Challenger plateaux offshore from New Zealand. The core sites are currently bathed by Subantarctic Mode Water (SAMW), Antarctic Intermediate Water (AAIW) and Upper Circumpolar Deep Water (UCDW). The sedimentary distributions of authigenic uranium and rhenium reveal reduced oxygen content at intermediate depths (800-1500 m) during the LGM compared to the Holocene. In contrast, data from deeper waters (≥1500 m) indicate higher oxygen content during the LGM compared to the Holocene. These data, together with variations in benthic foraminiferal δ13C, are consistent with a shallower AAIW-UCDW boundary over the Campbell Plateau during the LGM. Whilst AAIW continued to bathe the intermediate depths (≤1500 m) of the Challenger Plateau during the LGM, the data suggest that the AAIW at these core sites contained less oxygen compared to the Holocene. These results are at odds with the general notion that AAIW was better oxygenated and expanded deeper during the LGM due to stronger westerlies and colder temperatures. These findings may be explained by an important change in AAIW formation and circulation.
Cretaceous paleoceanography of the western North Atlantic Ocean
Arthur, Michael A.; Dean, Walter E.
1986-01-01
In this paper we summarize available information on the Cretaceous lithostratigraphy and paleoceanography of the western North Atlantic. The data and some of our interpretations draw in large part on papers published in the Deep Sea Drilling Project (DSDP) volumes. We have attempted to cite relevant references when possible, but space limitations make it difficult to give proper credit to all sources; we apologize for any omissions.Organic carbon (Corg) and carbonate (CaCO3) analyses were tabulated for each site from papers in the DSDP Initial Report volumes and other published works (e.g., Summerhayes,1981). Corg, CaCO3, and non-CaCO3 mass accumulation rates (MARS) were calculated using core by core averages of component percentages for the more continuously cored sites; core averages for wet bulk density and porosity (from DSDP data files); biostratigraphies of de Graciansky and others (1982), Roth and Bowdler (1981), and Cool (1982); and the time scales of the Decade of North American Geology (Palmer, 1983; Kent and Gradstein, this volume) or Harland and others (1982; see Plate 1).Backtracked paleodepths for western North Atlantic DSDP Sites from Tucholke and Vogt (1979) with the revised stratigraphy of de Graciansky and others (1982) were used in plotting Corg and CaCO3 in Figures 2, 3, 4 and 5 (see also Thierstein, 1979).Backtracking curves of seafloor paleodepth versus age (Sclater and others, 1977; Tucholke and Vogt, 1979) for selected western North Atlantic DSDP sites. Average CaCO3 concentrations per core are shown by code number
Analysis and seismic tests of composite shear walls with CFST columns and steel plate deep beams
NASA Astrophysics Data System (ADS)
Dong, Hongying; Cao, Wanlin; Wu, Haipeng; Zhang, Jianwei; Xu, Fangfang
2013-12-01
A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements — the CFST columns and SP deep beams — to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.
Differentiated planetesimal impacts into a terrestrial magma ocean: Fate of the iron core
NASA Astrophysics Data System (ADS)
Kendall, Jordan D.; Melosh, H. J.
2016-08-01
The abundance of moderately siderophile elements (;iron-loving;; e.g. Co, Ni) in the Earth's mantle is 10 to 100 times larger than predicted by chemical equilibrium between silicate melt and iron at low pressure, but it does match expectation for equilibrium at high pressure and temperature. Recent studies of differentiated planetesimal impacts assume that planetesimal cores survive the impact intact as concentrated masses that passively settle from a zero initial velocity and undergo turbulent entrainment in a global magma ocean; under these conditions, cores greater than 10 km in diameter do not fully mix without a sufficiently deep magma ocean. We have performed hydrocode simulations that revise this assumption and yield a clearer picture of the impact process for differentiated planetesimals possessing iron cores with radius = 100 km that impact into magma oceans. The impact process strips away the silicate mantle of the planetesimal and then stretches the iron core, dispersing the liquid iron into a much larger volume of the underlying liquid silicate mantle. Lagrangian tracer particles track the initially intact iron core as the impact stretches and disperses the core. The final displacement distance of initially closest tracer pairs gives a metric of core stretching. The statistics of stretching imply mixing that separates the iron core into sheets, ligaments, and smaller fragments, on a scale of 10 km or less. The impact dispersed core fragments undergo further mixing through turbulent entrainment as the molten iron fragments rain through the magma ocean and settle deeper into the planet. Our results thus support the idea that iron in the cores of even large differentiated planetesimals can chemically equilibrate deep in a terrestrial magma ocean.
Constraining the Material that Formed the Moon: The Origin of Lunar V, CR, and MN Depletions
NASA Technical Reports Server (NTRS)
Chabot, N. L.; Agee, C. B.
2002-01-01
The mantles of the Earth and Moon are similarly depleted in V, Cr, and Mn relative to chondritic values. Core formation deep within the Earth was suggested by as the origin of the depletions. Following Earth's core formation, the Moon was proposed to have inherited its mantle from the depleted mantle of the Earth by a giant impact event. This theory implied the Moon was primarily composed of material from the Earth's mantle. Recent systematic metal-silicate experiments of V, Cr, and Mn evaluated the behavior of these elements during different core formation scenarios. The study found that the V, Cr, and Mn depletions in the Earth could indeed be explained by core formation. The conditions of core formation necessary to deplete V, Cr, and Mn in the Earth's mantle were consistent with the deep magma ocean proposed to account for the Earth's mantle abundances of Ni and Co. Using the parameterizations of for the metal-silicate partition coefficients (D) of V, Cr, and Mn, we investigate here the conditions needed to match the depletions in the silicate Moon and determine if such conditions could have been present on the giant impactor.
NASA Astrophysics Data System (ADS)
Dong, Xuhui; Sayer, Carl D.; Bennion, Helen; Maberly, Stephen C.; Yang, Handong; Battarbee, Richard W.
2016-12-01
Palaeolimnological studies should ideally be based upon continuous, undisturbed sediment sequences with reliable chronologies. However for some lake cores, these conditions are not met and palaeolimnologists are often faced with dating puzzles caused by sediment disturbances in the past. This study chooses Esthwaite Water from England to illustrate how to identify sedimentation discontinuities in lake cores and how chronologies can be established for imperfect cores by correlation of key sediment signatures in parallel core records and with long-term monitoring data (1945-2003). Replicated short cores (ESTH1, ESTH7, and ESTH8) were collected and subjected to loss-on-ignition, radiometric dating (210Pb, 137Cs, and 14C), particle size, trace metal, and fossil diatom analysis. Both a slumping and a hiatus event were detected in ESTH7 based on comparisons made between the cores and the long-term diatom data. Ordination analysis suggested that the slumped material in ESTH7 originated from sediment deposited around 1805-1880 AD. Further, it was inferred that the hiatus resulted in a loss of sediment deposited from 1870 to 1970 AD. Given the existence of three superior 14C dates in ESTH7, ESTH1 and ESTH7 were temporally correlated by multiple palaeolimnological proxies for age-depth model development. High variability in sedimentation rates was evident, but good agreement across the various palaeolimnological proxies indicated coherence in sediment processes within the coring area. Differences in sedimentation rates most likely resulted from the natural morphology of the lake basin. Our study suggests that caution is required in selecting suitable coring sites for palaeolimnological studies of small, relatively deep lakes and that proximity to steep slopes should be avoided wherever possible. Nevertheless, in some cases, comparisons between a range of contemporary and palaeolimnological records can be employed to diagnose sediment disturbances and establish a chronology.
Superhot Drilling in Iceland, the Experience of the Iceland Deep Drilling Project.
NASA Astrophysics Data System (ADS)
Elders, W. A.; Friðleifsson, G. Ó.; Zierenberg, R. A.; Fowler, A. P.
2017-12-01
The Iceland Deep Drilling Project aims to improve geothermal economics by producing supercritical fluids (www.iddp.is). Supercritical wells could yield an order of magnitude more usable energy than that from conventional geothermal wells because of higher enthalpy and enhanced flow properties. In 2009, the IDDP-1 well failed to reach supercritical conditions in the Krafla caldera in NE Iceland, after encountering rhyolite magma at only 2.1 km depth. The completed geothermal well became the world's hottest and produced superheated steam with a wellhead temperature of 452°C and flow sufficient to generate 35 MWe. The IDDP next moved SW to the Reykjanes Peninsula, the landward extension of the Mid-Atlantic Ridge, where it is possible to study an analog of the roots of a black smoker. Reykjanes is unique among Icelandic geothermal systems in being recharged by seawater, which has a critical point of 406°C at 298 bars. Drilling began by deepening an existing 2.5 km deep production well to 3 km depth, and then angling it towards the main upflow zone of the system, for a total slant depth of 4,659 m. Total circulation losses were encountered below 3 km that could not be cured by lost circulation materials or by multiple cement jobs. Accordingly, drilling continued to total depth without return of drill cuttings. We attempted 13 core runs below 3 km depth, only half of which recovered core. The cores are basalts and dolerites with alteration ranging from lower greenschist facies to lower amphibolite facies, suggesting formation temperatures >450°C. After the end of drilling in January 2017, following only six days of heating, supercritical conditions (426°C at 340 bars) were measured in the well at a depth of 4.5 km. The well has not yet been allowed to equilibrate to full in situ temperature. A perforated liner was inserted to 4,570 m, depth to facilitate temperature cycling to enhance permeability at depth through thermal cracking. In 2018 this will be followed by a flow test and eventual production of the well. The project is co-funded by the DEEPEGS project (EU H2020), HS Orka (the field operator), Statoil, the IDDP consortium, and the ICDP. Planning is underway to drill IDDP-3 at Hellisheidi.
NASA Astrophysics Data System (ADS)
Qiu, Yao-Wen; Zhang, Gan; Guo, Ling-Li; Cheng, Hai-Rong; Wang, Wen-Xiong; Li, Xiang-Dong; Wai, Onyx W. H.
2009-11-01
To characterize the current status and historical trends in organochlorine pesticides (OCPs) contamination in Deep Bay, an important water body between Hong Kong and mainland China with a Ramsar mangrove wetland (Maipo), samples from seawater, suspended particulate matter (SPM), surface sediment, sediment core and fish were collected to determine the OCPs concentrations. Sediment core dating was accomplished using the 210Pb method. The average concentrations of DDTs, HCHs and chlordanes in water were 1.96, 0.71, 0.81 ng l -1, while in SPM were 36.5, 2.5, 35.7 ng g -1 dry weight, in surface sediment were 20.2, 0.50, 2.4 ng g -1 dry weight, and in fish were 125.4, 0.43, 13.1 ng g -1 wet weight, respectively. DDTs concentrations in various matrices of Deep Bay were intermediate compared with those in other areas. Temporal trends of the targeted OCPs levels in sediment core generally increased from 1948 to 2004, with the highest levels in top or sub-surface sediment. Both DDT composition and historical trends indicated an ongoing fresh DDT input. A positive relationship between the bioconcentration factor (BCF) of target chemicals and the corresponding octanol-water partition coefficient ( Kow), and between the biota-sediment accumulation factors (BSAF) and the Kow were observed in the Bay. The risk assessment indicated that there were potential ecological and human health risks for the target OCPs in Deep Bay.
NASA Astrophysics Data System (ADS)
Terasaki, Hidenori; Ohtani, Eiji; Sakai, Takeshi; Kamada, Seiji; Asanuma, Hidetoshi; Shibazaki, Yuki; Hirao, Naohisa; Sata, Nagayoshi; Ohishi, Yasuo; Sakamaki, Tatsuya; Suzuki, Akio; Funakoshi, Ken-ichi
2012-03-01
The hydrous mineral, δ-AlOOH, is stable up to at least the core-mantle boundary, and therefore has been proposed as a water carrier to the Earth's deep mantle. If δ-AlOOH is transported down to the core-mantle boundary by a subducting slab or the mantle convection, then the reaction between the iron alloy core and δ-AlOOH is important in the deep water/hydrogen cycle in the Earth. Here we conducted an in situ X-ray diffraction study to determine the behavior of hydrogen between Fe-Ni alloys and δ-AlOOH up to near the core-mantle boundary conditions. The obtained diffraction spectra show that fcc/dhcp Fe-Ni hydride is stable over a wide pressure range of 19-121 GPa at high temperatures. Although the temperature of formation of Fe-Ni hydride tends to increase up to 1950 K with increasing pressure to 121 GPa, this reaction temperature is well below the mantle geotherm. δ-AlOOH was confirmed to coexist stably with perovskite, suggesting that δ-AlOOH can be a major hydrous phase in the lower mantle. Therefore, when δ-AlOOH contacts with the core at the core-mantle boundary, the hydrogen is likely to dissolve into the Earth's core. Based on the present results, the amount of hydrogen to explain the core density deficit is estimated to be 1.0-2.0 wt.%.
NASA Astrophysics Data System (ADS)
Shane, P. A. R.; Linnell, T.; Lindsay, J. M.; Smith, I. E.; Augustinus, P. M.; Cronin, S. J.
2014-12-01
Rangitoto is a small basaltic shield volcano representing the most recent and most voluminous episode of volcanism in the Auckland Volcanic Field, New Zealand. Auckland City is built on the field, and hence, Rangitoto's importance in hazard-risk modelling. The symmetrical edifice, ~6 km wide and 260 m high, has volume of 1.78 km3. It comprises summit scoria cones and a lava field. However, the lack of deep erosion dissection has prevented the development of an eruptive stratigraphy. Previous studies suggested construction in a relatively short interval at 550-500 yrs BP. However, microscopic tephra have been interpreted as evidence of intermittent activity from 1498 +/- 140 to 504 +/- 6 yrs BP, a longevity of 1000 years. A 150-m-deep hole was drilled through the edifice in February 2014 to obtain a continuous core record. The result is an unparalleled stratigraphy of the evolution of a small shield volcano. The upper 128 m of core comprises at least 27 lava flows with thicknesses in the range 0.3-15 m, representing the main shield-building phase. Underlying marine sediments are interbedded with 8 m of pyroclastic lapilli, and a thin lava flow, representing the explosive phreatomagmatic birth of the volcano. Preliminary geochemical analyses reveal suite of relatively uniform transitional basalts (MgO = 8.1 to 9.7 wt %). However, 4 compositional groups are distinguished that were erupted in sequential order. High-MgO magmas were erupted first, followed by a two more heterogeneous groups displaying differentiation trends with time. Finally, distinct low-MgO basalts were erupted. Each magma type appears to represent a new magma batch. The core places the magma types in a time series, which can be correlated to the surface lava field. Hence, allowing a geometrical reconstruction of the shield growth. Additional petrologic investigations are providing insight to magmatic ascent processes, while radiocarbon and paleomagnetic secular variation studies will reveal the duration of activity.
Snoke, A.W.; Howard, K.A.; McGrew, A.J.; Burton, B.R.; Barnes, C.G.; Peters, M.T.; Wright, J.E.
1997-01-01
The purpose of this geological excursion is to provide an overview of the multiphase developmental history of the Ruby Mountains and East Humboldt Range, northeastern Nevada. Although these mountain ranges are commonly cited as a classic example of a Cordilleran metamorphic core complex developed through large-magnitude, mid-Tertiary crustal extension, a preceding polyphase Mesozoic contractional history is also well preserved in the ranges. An early phase of this history involved Late Jurassic two-mica granitic magmatism, high-temperature but relatively low-pressure metamorphism, and polyphase deformation in the central Ruby Mountains. In the northern Ruby Mountains and East Humboldt Range, a Late Cretaceous history of crustal shortening, metamorphism, and magmatism is manifested by fold-nappes (involving Archean basement rocks in the northern East Humboldt Range), widespread migmatization, injection of monzogranitic and leucogranitic magmas, all coupled with sillimanite-grade metamorphism. Following Late Cretaceous contraction, a protracted extensional deformation partially overprinted these areas during the Cenozoic. This extensional history may have begun as early as the Late Cretaceous or as late as the mid-Eocene. Late Eocene and Oligocene magmatism occurred at various levels in the crust yielding mafic to felsic orthogneisses in the deep crust, a composite granitic pluton in the upper crust, and volcanic rocks at the surface. Movement along a west-rooted, extensional shear zone in the Oligocene and early Miocene led to core-complex exhumation. The shear zone produced mylonitic rocks about 1 km thick at deep crustal levels, and an overprint of brittle detachment faulting at shallower levels as unroofing proceeded. Megabreccias and other synextensional sedimentary deposits are locally preserved in a tilted, upper Eocene through Miocene stratigraphic sequence. Neogene magmatism included the emplacement of basalt dikes and eruption of rhyolitic rocks. Subsequent Basin and Range normal faulting, as young as Holocene, records continued tectonic extension.
Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano.
Baker, P A; Rigsby, C A; Seltzer, G O; Fritz, S C; Lowenstein, T K; Bacher, N P; Veliz, C
2001-02-08
Tropical South America is one of the three main centres of the global, zonal overturning circulation of the equatorial atmosphere (generally termed the 'Walker' circulation). Although this area plays a key role in global climate cycles, little is known about South American climate history. Here we describe sediment cores and down-hole logging results of deep drilling in the Salar de Uyuni, on the Bolivian Altiplano, located in the tropical Andes. We demonstrate that during the past 50,000 years the Altiplano underwent important changes in effective moisture at both orbital (20,000-year) and millennial timescales. Long-duration wet periods, such as the Last Glacial Maximum--marked in the drill core by continuous deposition of lacustrine sediments--appear to have occurred in phase with summer insolation maxima produced by the Earth's precessional cycle. Short-duration, millennial events correlate well with North Atlantic cold events, including Heinrich events 1 and 2, as well as the Younger Dryas episode. At both millennial and orbital timescales, cold sea surface temperatures in the high-latitude North Atlantic were coeval with wet conditions in tropical South America, suggesting a common forcing.
Deep Subseafloor Fungi as an Untapped Reservoir of Amphipathic Antimicrobial Compounds.
Navarri, Marion; Jégou, Camille; Meslet-Cladière, Laurence; Brillet, Benjamin; Barbier, Georges; Burgaud, Gaëtan; Fleury, Yannick
2016-03-10
The evolving global threat of antimicrobial resistance requires a deep renewal of the antibiotic arsenal including the isolation and characterization of new drugs. Underexplored marine ecosystems may represent an untapped reservoir of novel bioactive molecules. Deep-sea fungi isolated from a record-depth sediment core of almost 2000 m below the seafloor were investigated for antimicrobial activities. This antimicrobial screening, using 16 microbial targets, revealed 33% of filamentous fungi synthesizing bioactive compounds with activities against pathogenic bacteria and fungi. Interestingly, occurrence of antimicrobial producing isolates was well correlated with the complexity of the habitat (in term of microbial richness), as higher antimicrobial activities were obtained at specific layers of the sediment core. It clearly highlights complex deep-sea habitats as chemical battlefields where synthesis of numerous bioactive compounds appears critical for microbial competition. The six most promising deep subseafloor fungal isolates were selected for the production and extraction of bioactive compounds. Depending on the fungal isolates, antimicrobial compounds were only biosynthesized in semi-liquid or solid-state conditions as no antimicrobial activities were ever detected using liquid fermentation. An exception was made for one fungal isolate, and the extraction procedure designed to extract amphipathic compounds was successful and highlighted the amphiphilic profile of the bioactive metabolites.
Nitrate removal in deep sediments of a nitrogen-rich river network: A test of a conceptual model
Stelzer, Robert S.; Bartsch, Lynn
2012-01-01
Many estimates of nitrogen removal in streams and watersheds do not include or account for nitrate removal in deep sediments, particularly in gaining streams. We developed and tested a conceptual model for nitrate removal in deep sediments in a nitrogen-rich river network. The model predicts that oxic, nitrate-rich groundwater will become depleted in nitrate as groundwater upwelling through sediments encounters a zone that contains buried particulate organic carbon, which promotes redox conditions favorable for nitrate removal. We tested the model at eight sites in upwelling reaches of lotic ecosystems in the Waupaca River Watershed that varied by three orders of magnitude in groundwater nitrate concentration. We measured denitrification potential in sediment core sections to 30 cm and developed vertical nitrate profiles to a depth of about 1 m with peepers and piezometer nests. Denitrification potential was higher, on average, in shallower core sections. However, core sections deeper than 5 cm accounted for 70%, on average, of the depth-integrated denitrification potential. Denitrification potential increased linearly with groundwater nitrate concentration up to 2 mg NO3-N/L but the relationship broke down at higher concentrations (> 5 mg NO3-N/L), a pattern that suggests nitrate saturation. At most sites groundwater nitrate declined from high concentrations at depth to much lower concentrations prior to discharge into the surface water. The profiles suggested that nitrate removal occurred at sediment depths between 20 and 40 cm. Dissolved oxygen concentrations were much higher in deep sediments than in pore water at 5 cm sediment depth at most locations. The substantial denitrification potential in deep sediments coupled with the declines in nitrate and dissolved oxygen concentrations in upwelling groundwater suggest that our conceptual model for nitrate removal in deep sediments is applicable to this river network. Our results suggest that nitrate removal rates can be high in deep sediments of upwelling stream reaches, which may have implications for efforts to understand and quantify nitrogen transport and removal at larger scales.
Using Firn Air for Facility Cooling at the WAIS Divide Site
2014-09-17
reduce logistics costs at remote field camps where it is critical to maintain proper temperatures to preserve sensitive deep ice cores. We assessed the...feasibility of using firn air for cooling at the West Antarc- tic Ice Sheet (WAIS) Divide ice core drilling site as a means to adequately and...efficiently refrigerate ice cores during storage and processing. We used estimates of mean annual temperature, temperature variations, and firn
NASA Astrophysics Data System (ADS)
Jones, T. R.; Roberts, W. H. G.; Steig, E. J.; Cuffey, K. M.; Markle, B. R.; White, J. W. C.
2017-12-01
The behavior of the Indo-Pacific climate system across the last deglaciation is widely debated. Resolving these debates requires long term and continuous climate proxy records. Here, we use an ultra-high resolution and continuous water isotope record from an ice core in the Pacific sector of West Antarctica. In conjunction with the HadCM3 coupled ocean-atmosphere GCM, we demonstrate that the climate of both West Antarctica and the Indo-Pacific were substantially altered during the last deglaciation by the same forcing mechanism. Critically, these changes are not dependent on ENSO strength, but rather the location of deep tropical convection, which shifts at 16 ka in response to climate perturbations induced by the Laurentide Ice Sheet. The changed rainfall patterns in the tropics explain the deglacial shift from expanded-grasslands to rainforest-dominated ecosystems in Indonesia. High-frequency climate variability in the Southern Hemisphere is also changed, through a tropical Pacific teleconnection link dependent on the propogration of Rossby Waves.
NASA Astrophysics Data System (ADS)
Bergado, D. T.; Long, P. V.; Chaiyaput, S.; Balasubramaniam, A. S.
2018-04-01
Soft ground improvement techniques have become most practical and popular methods to increase soil strength, soil stiffness and reduce soil compressibility including the soft Bangkok clay. This paper focuses on comparative performances of prefabricated vertical drain (PVD) using surcharge, vacuum and heat preloading as well as the cement-admixed clay of Deep Cement Mixing (DCM) and Stiffened DCM (SDCM) methods. The Vacuum-PVD can increase the horizontal coefficient of consolidation, Ch, resulting in faster rate of settlement at the same magnitudes of settlement compared to Conventional PVD. Several field methods of applying vacuum preloading are also compared. Moreover, the Thermal PVD and Thermal Vacuum PVD can increase further the coefficient of horizontal consolidation, Ch, with the associated reduction of kh/ks values by reducing the drainage retardation effects in the smear zone around the PVD which resulted in faster rates of consolidation and higher magnitudes of settlements. Furthermore, the equivalent smear effect due to non-uniform consolidation is also discussed in addition to the smear due to the mechanical installation of PVDs. In addition, a new kind of reinforced deep mixing method, namely Stiffened Deep Cement Mixing (SDCM) pile is introduced to improve the flexural resistance, improve the field quality control, and prevent unexpected failures of the Deep Cement Mixing (DCM) pile. The SDCM pile consists of DCM pile reinforced with the insertion of precast reinforced concrete (RC) core. The full scale test embankment on soft clay improved by SDCM and DCM piles was also analysed. Numerical simulations using the 3D PLAXIS Foundation finite element software have been done to understand the behavior of SDCM and DCM piles. The simulation results indicated that the surface settlements decreased with increasing lengths of the RC cores, and, at lesser extent, increasing sectional areas of the RC cores in the SDCM piles. In addition, the lateral movements decreased by increasing the lengths (longer than 4 m) and, the sectional areas of the RC cores in the SDCM piles. The results of the numerical simulations closely agreed with the observed data and successfully verified the parameters affecting the performances and behavior of both SDCM and DCM piles.
Learning Gains for Core Concepts in a Serious Game on Scientific Reasoning
ERIC Educational Resources Information Center
Forsyth, Carol; Pavlik, Philip, Jr.; Graesser, Arthur C.; Cai, Zhiqiang; Germany, Mae-lynn; Millis, Keith; Dolan, Robert P.; Butler, Heather; Halpern, Diane
2012-01-01
"OperationARIES!" is an Intelligent Tutoring System that teaches scientific inquiry skills in a game-like atmosphere. Students complete three different training modules, each with natural language conversations, in order to acquire deep-level knowledge of 21 core concepts of research methodology (e.g., correlation does not mean…
Vertical cross contamination of trichloroethylene in a borehole in fractured sandstone
Sterling, S.N.; Parker, B.L.; Cherry, J.A.; Williams, J.H.; Lane, J.W.; Haeni, F.P.
2005-01-01
Boreholes drilled through contaminated zones in fractured rock create the potential for vertical movement of contaminated ground water between fractures. The usual assumption is that purging eliminates cross contamination; however, the results of a field study conducted in a trichloroethylene (TCE) plume in fractured sandstone with a mean matrix porosity of 13% demonstrates that matrix-diffusion effects can be strong and persistent. A deep borehole was drilled to 110 m below ground surface (mbgs) near a shallow bedrock well containing high TCE concentrations. The borehole was cored continuously to collect closely spaced samples of rock for analysis of TCE concentrations. Geophysical logging and flowmetering were conducted in the open borehole, and a removable multilevel monitoring system was installed to provide hydraulic-head and ground water samples from discrete fracture zones. The borehole was later reamed to complete a well screened from 89 to 100 mbgs; persistent TCE concentrations at this depth ranged from 2100 to 33,000 ??g/L. Rock-core analyses, combined with the other types of borehole information, show that nearly all of this deep contamination was due to the lingering effects of the downward flow of dissolved TCE from shallower depths during the few days of open-hole conditions that existed prior to installation of the multilevel system. This study demonstrates that transfer of contaminant mass to the matrix by diffusion can cause severe cross contamination effects in sedimentary rocks, but these effects generally are not identified from information normally obtained in fractured-rock investigations, resulting in potential misinterpretation of site conditions. Copyright ?? 2005 National Ground Water Association.
Radioactivities in returned lunar materials
NASA Technical Reports Server (NTRS)
1972-01-01
The Ar37, Ar39, and H3 were measured at four depths (from 0 to 19.5 cm) of the deep core from Apollo 16 and in four other Apollo 16 samples. The Ar37 increased steadily from 40 dpm/kg at the top of the core to 68 dpm/kg at 19-cm depth. The comparison of the Ar37 in the core with that in rock 15555 shows that the solar flare at the time of the Apollo 16 mission was approximately an order of magnitude less intense than solar flares of 24 January 1971 and 2 November 1969, which occurred before the Apollo 14 and 12 missions. The Ar39 activities in the top 19 cm of the deep core varied little with depth. Because the Apollo 16 samples have a much higher Ca content and much lower Fe and Ti contents than do the documented rocks from previous missions, the Ar39 in the Fe, Ca, and K can be determined from Ar39 measurements on lunar material if a Ti cross section is assumed.
NASA Astrophysics Data System (ADS)
Cornard, Pauline; Pickering, Kevin
2017-04-01
In recent years, many researchers have focussed on supercritical- and subcritical-flow deposits using flume-tank experiments (e.g., Cartigny el al., 2011; Postma et al., 2014; Postma and Cartigny, 2014), or from direct observations on presently active deep-water systems (e.g., Hughes et al., 2012). Using outcrop and core examples from a base-of-slope environment in the Middle Eocene Ainsa Basin, Spanish Pyrenees, and with published experimental work, a range of deposits are interpreted as upper-flow regime sedimentary structures. This contribution focusses on the interpretation of several supercritical bedforms (antidunes and chutes-and-pools) observed on the field and upper-flow regime sedimentary structures recognized in cores. The spatial distribution of supercritical-flow deposits obtained from an analysis of field outcrops and core sedimentary logs are evaluated in relation to the depositional environment (channel axis, off-axis, margin and interfan). The frequency distributions of the bed thicknesses are also analysed in relation to supercritical versus subcritical bed-thickness distributions.
Robust Deep Semantics for Language Understanding
focus on five areas: deep learning, textual inferential relations, relation and event extraction by distant supervision , semantic parsing and...ontology expansion, and coreference resolution. As time went by, the program focus converged towards emphasizing technologies for knowledge base...natural logic methods for text understanding, improved mention coreference algorithms, and the further development of multilingual tools in CoreNLP.
ERIC Educational Resources Information Center
LaRusso, Maria; Kim, Ha Yeon; Selman, Robert; Uccelli, Paola; Dawson, Theo; Jones, Stephanie; Donovan, Suzanne; Snow, Catherine
2016-01-01
"Deep reading comprehension" refers to the process required to succeed at tasks defined by the Common Core State Literacy Standards, as well as to achieve proficiency on the more challenging reading tasks in the Program for International Student Assessment (PISA) framework. The purpose of this study was to test the hypothesis that three…
NASA Astrophysics Data System (ADS)
Rodriguez-Lazaro, J.; Pascual, A.; Cacho, I.; Varela, Z.; Pena, L. D.
2017-12-01
Paleoclimatic evolution of the last 140 ka (Marine Isotopic Stages MIS 1 to MIS 5) in the South Bay of Biscay has been studied by considering microfossil changes in sediment samples of deep core PP10-17. This core was retrieved at 2882 m water depth (mwd) in the Landas Plateau and is formed by 1792 cm of clay-silt continuously deposited sediment. For this study, a total of 114 samples have been examined, yielding approximately 60 thousands of specimens of foraminifers (181 benthic species, BF) and ostracods (70 spp.). Reconstruction of the benthic response is based on the main foraminifer and ostracod species by considering their oxic/anoxic character as well as other ecological features of the assemblages. Detailed quantification of microfossils (planktonic and benthic foraminifers, ostracods) together with grain size analyses and magnetic susceptibility of the sediments allow us to characterize many of the climatic events registered in this core. Based on a robust chronostratigraphy by correlation with reference core MD95-2002 and Greenland ice core records (GICC05modelext), we are able to characterize a detailed response of benthic environments to cooling/warming, oxygen-content and productivity cycles in the region. MIS 5 has been characterized by oscillations of the planktonic/benthic foraminifer ratio (Oceanity index, OI; 60-90%); this index was higher (90-100%) and stable through the MIS 4-MIS 3 intervals. We found BF species indicators of different climatic-related events. Thus, MIS 5a, c, e interstadials are evidenced by Bulimina gibba and B. aculeata while the stadials MIS 5b, d are shown by the occurrence of Melonis pompilioides. Heinrich events, with massive iceberg discharges into the N Atlantic Ocean, are indicated by presence of Globobulimina affinis, particularly during the MIS 4 to MIS 2 interval. The beginning of MIS 4 is indicated by the appearance of new species of BF and an increase of Cassidulina laevigata. Krithe spp. and C. laevigata are good indicators of the LGM (Last Glacial Maximum, 19-23 ka) when the OI decreased. Other cooling periods (e.g. Younger Dryas, YD, around 12-13 ka) are shown as well by an increase of M. pompilioides, similar to that of the MIS 5d stadial. The Holocene (11.5 ka to present) is marked by an increase in the oceanity index, disappearance of cold-water indicators and the occurrence of Uvigerina peregrina. A shallow infaunal microhabitat of benthics foraminifers (Cibicides, Cassidulina, Uvigerina) and ostracods (Krithe, Argilloecia) has been linked to favorable bottom conditions, with oxic to slightly suboxic conditions (high diversity and equitability of assemblages) reflecting an active Atlantic Meridional Overturning Circulation (AMOC) during many D/O interstadials. The opposite conditions were established for deep infaunal BF (Bulimina, Globobulimina) where the strong dysoxic bottom conditions are indicative of poor ventilation produced by a reduction or shutdown of the AMOC during Heinrich stadials.
Sources And Implications Of Hydrocarbon Gases From The Deep Beaufort Sea, Alaska
NASA Astrophysics Data System (ADS)
Lorenson, T. D.; Hart, P. E.; Pohlman, J.; Edwards, B. D.
2011-12-01
Sediment cores up to 5.7m long were recovered from a large seafloor mound, informally named the Canning Seafloor Mound (CSM), located 2,530 mbsl on the Alaskan Beaufort Sea slope north of Camden Bay, Alaska. The cores contained methane saturated sediment, gas hydrate, and cold seep fauna. The CSM overlies the crest of a buried anticline. The dome-like shape of the CSM indicates that it originated by the expansion and expulsion of deep-seated fluids migrating upwards along the plane of a sharply crested underlying anticline rather than structural uplift. The CSM is one of many mounds on the seaward margin of crustal compression that has resulted in a diapiric fold belt seaward of the fold and thrust belt of the Eastern Brooks Range. Rapid sedimentation rates coupled with and growth faulting and later compression has lead to overpressured sediments beneath the mounds. The cores were stored at 4°C for four months prior to sampling, yet the gas voids retained 10 to 26% methane by volume. High methane concentrations in the core effectively acted as a preservative by keeping the sediments under near-anaerobic conditions. The isotopic composition of the methane ranged from -59.2% to -50.4% with increasing depth while carbon dioxide ranged from -20.9 to -8.8% with depth. The molecular and isotopic composition of the gases indicates the predominant gas source is a mixed source of primary microbial methane, degraded thermogenic gas, and possibly secondary microbial methane. Oxidation of some methane likely occurred during core storage. Trace quantities of thermogenic gases, n-butane, n-pentane, and C6+ gases in the sediment are evidence for at least a partial thermogenic origin. Pore water composition (discussed in detail in a companion abstract by Pohlman et al.) reveals that pore water can be up to 80% fresher than seawater, which is more than can be supplied by gas hydrate dissociation and clay dewatering combined. The gas composition and pore water anomalies support the interpretation of a deep fluid source that likely is related to current oil and gas generation within the ~10 km deep basin with potential fluid connectivity to the continent.
Trends in Continuous Deep Sedation until Death between 2007 and 2013: A Repeated Nationwide Survey
Cohen, Joachim; Rietjens, Judith
2016-01-01
Background Continuous deep sedation until death is a highly debated medical practice, particularly regarding its potential to hasten death and its proper use in end-of-life care. A thorough analysis of important trends in this practice is needed to identify potentially problematic developments. This study aims to examine trends in the prevalence and practice characteristics of continuous deep sedation until death in Flanders, Belgium between 2007 and 2013, and to study variation on physicians’ degree of palliative training. Methods Population-based death certificate study in 2007 and 2013 in Flanders, Belgium. Reporting physicians received questionnaires about medical practices preceding the patient’s death. Patient characteristics, clinical characteristics (drugs used, duration, artificial nutrition/hydration, intention and consent), and palliative care training of attending physician were recorded. We posed the following question regarding continuous deep sedation: ‘Was the patient continuously and deeply sedated or kept in a coma until death by the use of one or more drugs’. Results After the initial rise of continuous deep sedation to 14.5% in 2007 (95%CI 13.1%-15.9%), its use decreased to 12.0% in 2013 (95%CI 10.9%-13.2%). Compared with 2007, in 2013 opioids were less often used as sole drug and the decision to use continuous deep sedation was more often preceded by patient request. Compared to non-experts, palliative care experts more often used benzodiazepines and less often opioids, withheld artificial nutrition/hydration more often and performed sedation more often after a request from or with the consent of the patient or family. Conclusion Worldwide, this study is the first to show a decrease in the prevalence of continuous deep sedation. Despite positive changes in performance and decision-making towards more compliance with due care requirements, there is still room for improvement in the use of recommended drugs and in the involvement of patients and relatives in the decision-making process. PMID:27337064
NASA Technical Reports Server (NTRS)
Tredoux, Marian; Hart, Rodger J.; Lindsay, Nicholas M.; De Wit, Maarten J.; Armstrong, Richard A.
1989-01-01
This paper reports the results of new field observations and the geochemical analyses for the area of the Bon Accord (BA) (the Kaapvaal craton, South Africa) Ni-Fe deposit, with particular consideration given to the trace element, platinum-group element, and isotopic (Pb, Nd, and Os) compositions. On the basis of these data, an interpretation of BA is suggested, according to which the BA deposit is a siderophile-rich heterogeneity remaining in the deep mantle after a process of incomplete core formation. The implications of such a model for the study of core-mantle segregation and the geochemistry of the lowermost mantle are discussed.
Contamination Tracer Testing With Seabed Rock Drills: IODP Expedition 357
NASA Astrophysics Data System (ADS)
Orcutt, B.; Bergenthal, M.; Freudenthal, T.; Smith, D. J.; Lilley, M. D.; Schneiders, L.; Fruh-Green, G. L.
2016-12-01
IODP Expedition 357 utilized seabed rock drills for the first time in the history of the ocean drilling program, with the aim of collecting intact core of shallow mantle sequences from the Atlantis Massif to examine serpentinization processes and the deep biosphere. This new drilling approach required the development of a new system for delivering synthetic tracers during drilling to assess for possible sample contamination. Here, we describe this new tracer delivery system, assess the performance of the system during the expedition, provide an overview of the quality of the core samples collected for deep biosphere investigations based on tracer concentrations, and make recommendations for future applications of the system.
Contamination tracer testing with seabed drills: IODP Expedition 357
NASA Astrophysics Data System (ADS)
Orcutt, Beth N.; Bergenthal, Markus; Freudenthal, Tim; Smith, David; Lilley, Marvin D.; Schnieders, Luzie; Green, Sophie; Früh-Green, Gretchen L.
2017-11-01
IODP Expedition 357 utilized seabed drills for the first time in the history of the ocean drilling program, with the aim of collecting intact sequences of shallow mantle core from the Atlantis Massif to examine serpentinization processes and the deep biosphere. This novel drilling approach required the development of a new remote seafloor system for delivering synthetic tracers during drilling to assess for possible sample contamination. Here, we describe this new tracer delivery system, assess the performance of the system during the expedition, provide an overview of the quality of the core samples collected for deep biosphere investigations based on tracer concentrations, and make recommendations for future applications of the system.
Recent Developments and Adaptations in Diamond Wireline Core Drilling Technology
NASA Astrophysics Data System (ADS)
Thomas, D. M.; Nielson, D. L.; Howell, B. B.; Pardey, M.
2001-05-01
Scientific drilling using diamond wireline technology is presently undergoing a significant expansion and extension of activities that has allowed us to recover geologic samples that have heretofore been technically or financially unattainable. Under the direction and management of DOSECC, a high-capacity hybrid core drilling system was designed and fabricated for the Hawaii Scientific Drilling Project (HSDP) in 1998. This system, the DOSECC Hybrid Coring System (DHCS), has the capacity to recover H-sized core from depths of more than 6 km. In 1999, the DHCS completed the first phase of the HSDP to a depth of 3100 m at a substantially lower cost per foot than any previous scientific borehole to comparable depths and, in the process, established a new depth record for recovery of H-sized wireline core. This system has been offered for use in the Unzen Scientific Drilling Project, the Chicxulub (impact crater) Scientific Drilling Project, and the Geysers Deep Geothermal Reservoir Project. More recently, DOSECC has developed a smaller barge-mounted wireline core drilling system, the GLAD800, that is capable of recovering P-sized sediment core to depths of up to 800 m. The GLAD800 has been successfully deployed on Great Salt Lake and Bear Lake in Utah and is presently being mobilized to Lake Titicaca in South America for an extensive core recovery effort there. The coring capabilities of the GLAD800 system will be available to the global lakes drilling community for acquisition of sediment cores from many of the world's deep lakes for use in calibrating and refining global climate models. Presently under development by DOSECC is a heave-compensation system that will allow us to expand the capabilities of the moderate depth coring system to allow us to collect sediment and bottom core from the shallow marine environment. The design and capabilities of these coring systems will be presented along with a discussion of their potential applications for addressing a range of earth sciences questions.
Stonestrom, David A.; Prudic, David E.; Laczniak, Randell J.; Akstin, Katherine C.; Boyd, Robert A.; Henkelman, Katherine K.
2003-01-01
The presence and approximate rates of deep percolation beneath areas of native vegetation, irrigated fields, and the Amargosa-River channel in the Amargosa Desert of southern Nevada were evaluated using the chloride mass-balance method and inferred downward velocities of chloride and nitrate peaks. Estimates of deep-percolation rates in the Amargosa Desert are needed for the analysis of regional ground-water flow and transport. An understanding of regional flow patterns is important because ground water originating on the Nevada Test Site may pass through the area before discharging from springs at lower elevations in the Amargosa Desert and in Death Valley. Nine boreholes 10 to 16 meters deep were cored nearly continuously using a hollow-stem auger designed for gravelly sediments. Two boreholes were drilled in each of three irrigated fields in the Amargosa-Farms area, two in the Amargosa-River channel, and one in an undisturbed area of native vegetation. Data from previously cored boreholes beneath undisturbed, native vegetation were compared with the new data to further assess deep percolation under current climatic conditions and provide information on spatial variability.The profiles beneath native vegetation were characterized by large amounts of accumulated chloride just below the root zone with almost no further accumulation at greater depths. This pattern is typical of profiles beneath interfluvial areas in arid alluvial basins of the southwestern United States, where salts have been accumulating since the end of the Pleistocene. The profiles beneath irrigated fields and the Amargosa-River channel contained more than twice the volume of water compared to profiles beneath native vegetation, consistent with active deep percolation beneath these sites. Chloride profiles beneath two older fields (cultivated since the 1960’s) as well as the upstream Amargosa-River site were indicative of long-term, quasi-steady deep percolation. Chloride profiles beneath the newest field (cultivated since 1993), the downstream Amargosa-River site, and the edge of an older field were indicative of recently active deep percolation moving previously accumulated salts from the upper profile to greater depths.Results clearly indicate that deep percolation and ground-water recharge occur not only beneath areas of irrigation but also beneath ephemeral stream channels, despite the arid climate and infrequency of runoff. Rates of deep percolation beneath irrigated fields ranged from 0.1 to 0.5 m/yr. Estimated rates of deep percolation beneath the Amargosa-River channel ranged from 0.02 to 0.15 m/yr. Only a few decades are needed for excess irrigation water to move through the unsaturated zone and recharge ground water. Assuming vertical, one-dimensional flow, the estimated time for irrigation-return flow to reach the water table beneath the irrigated fields ranged from about 10 to 70 years. In contrast, infiltration from present-day runoff takes centuries to move through the unsaturated zone and reach the water table. The estimated time for water to reach the water table beneath the channel ranged from 140 to 1000 years. These values represent minimum times, as they do not take lateral flow into account. The estimated fraction of irrigation water becoming deep percolation averaged 8 to 16 percent. Similar fractions of infiltration from ephemeral flow events were estimated to become deep percolation beneath the normally dry Amargosa-River channel. In areas where flood-induced channel migration occurs at sub-centennial frequencies, residence times in the unsaturated zone beneath the Amargosa channel could be longer. Estimates of deep percolation presented herein provide a basis for evaluating the importance of recharge from irrigation and channel infiltration in models of ground-water flow from the Nevada Test Site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deymonaz, John; Hulen, Jeffrey B.; Nash, Gregory D.
2008-01-22
The Emigrant Slimhole Drilling Project (ESDP) was a highly successful, phased resource evaluation program designed to evaluate the commercial geothermal potential of the eastern margin of the northern Fish Lake Valley pull-apart basin in west-central Nevada. The program involved three phases: (1) Resource evaluation; (2) Drilling and resource characterization; and (3) Resource testing and assessment. Efforts included detailed geologic mapping; 3-D modeling; compilation of a GIS database; and production of a conceptual geologic model followed by the successful drilling of the 2,938 foot deep 17-31 slimhole (core hole), which encountered commercial geothermal temperatures (327⁰ F) and exhibits an increasing, conductive,more » temperature gradient to total depth; completion of a short injection test; and compilation of a detailed geologic core log and revised geologic cross-sections. Results of the project greatly increased the understanding of the geologic model controlling the Emigrant geothermal resource. Information gained from the 17-31 core hole revealed the existence of commercial temperatures beneath the area in the Silver Peak Core Complex which is composed of formations that exhibit excellent reservoir characteristics. Knowledge gained from the ESDP may lead to the development of a new commercial geothermal field in Nevada. Completion of the 17-31 core hole also demonstrated the cost-effectiveness of deep core drilling as an exploration tool and the unequaled value of core in understanding the geology, mineralogy, evolutional history and structural aspects of a geothermal resource.« less
NASA Astrophysics Data System (ADS)
Fujii, Yosuke; Tsujino, Hiroyuki; Toyoda, Takahiro; Nakano, Hideyuki
2017-08-01
This paper examines the difference in the Atlantic Meridional Overturning Circulation (AMOC) mean state between free and assimilative simulations of a common ocean model using a common interannual atmospheric forcing. In the assimilative simulation, the reproduction of cold cores in the Nordic Seas, which is absent in the free simulation, enhances the overflow to the North Atlantic and improves AMOC with enhanced transport of the deeper part of the southward return flow. This improvement also induces an enhanced supply of North Atlantic Deep Water (NADW) and causes better representation of the Atlantic deep layer despite the fact that correction by the data assimilation is applied only to temperature and salinity above a depth of 1750 m. It also affects Circumpolar Deep Water in the Southern Ocean. Although the earliest influence of the improvement propagated by coastal waves reaches the Southern Ocean in 10-15 years, substantial influence associated with the arrival of the renewed NADW propagates across the Atlantic Basin in several decades. Although the result demonstrates that data assimilation is able to improve the deep ocean state even if there is no data there, it also indicates that long-term integration is required to reproduce variability in the deep ocean originating from variations in the upper ocean. This study thus provides insights on the reliability of AMOC and the ocean state in the Atlantic deep layer reproduced by data assimilation systems.
NASA Astrophysics Data System (ADS)
Kitagawa, H.; Nakamura, T.; Neugebauer, I.; Schwab, M. J.; Brauer, A.; Goldstein, S. L.; Stein, M.
2014-12-01
To reconstruct environmental, climatic and tectonic histories of the Levant, a deep drilling has been accomplished in the northern basin of the Dead Sea during the fall winter of 2010-2011 by the Dead Sea Deep Drilling Project (DSDDP) in the framework of the ICDP program. The sediment cores from site 5017-1 (water depth of ~300 m) recorded the paleoenvironmental and paleohydrological changes in the Dead Sea and the Levant during the last two glacial-interglacial cycles (Neugebauer et al., QSR in press). To provide precise timing of sedimentological - limnological events in the lake and its watershed, and more critically the relative timing of these events, radiocarbon dating of >70 well-preserved terrestrial plants and some carbonate deposits from the upper 150 m long section of the sediment core were performed. Based on the high-resolution radiocarbon dating, a statistical age-depth model was constructed with assumptions on the deposition condition and the radiocarbon age offset of carbonate samples. We discuss the practicality and the limitation of the age-depth model toward interpreting the high-resolution records of environmental, climatic and tectonic events recorded in the long sediment cores from site 5017-1.
NASA Astrophysics Data System (ADS)
Friðleifsson, Guðmundur Ó.; Elders, Wilfred A.; Zierenberg, Robert A.; Stefánsson, Ari; Fowler, Andrew P. G.; Weisenberger, Tobias B.; Harðarson, Björn S.; Mesfin, Kiflom G.
2017-11-01
The Iceland Deep Drilling Project research well RN-15/IDDP-2 at Reykjanes, Iceland, reached its target of supercritical conditions at a depth of 4.5 km in January 2017. After only 6 days of heating, the measured bottom hole temperature was 426 °C, and the fluid pressure was 34 MPa. The southern tip of the Reykjanes peninsula is the landward extension of the Mid-Atlantic Ridge in Iceland. Reykjanes is unique among Icelandic geothermal systems in that it is recharged by seawater, which has a critical point of 406 °C at 29.8 MPa. The geologic setting and fluid characteristics at Reykjanes provide a geochemical analog that allows us to investigate the roots of a mid-ocean ridge submarine black smoker hydrothermal system. Drilling began with deepening an existing 2.5 km deep vertical production well (RN-15) to 3 km depth, followed by inclined drilling directed towards the main upflow zone of the system, for a total slant depth of 4659 m ( ˜ 4.5 km vertical depth). Total circulation losses of drilling fluid were encountered below 2.5 km, which could not be cured using lost circulation blocking materials or multiple cement jobs. Accordingly, drilling continued to the total depth without return of drill cuttings. Thirteen spot coring attempts were made below 3 km depth. Rocks in the cores are basalts and dolerites with alteration ranging from upper greenschist facies to amphibolite facies, suggesting that formation temperatures at depth exceed 450 °C. High-permeability circulation-fluid loss zones (feed points or feed zones) were detected at multiple depth levels below 3 km depth to bottom. The largest circulation losses (most permeable zones) occurred between the bottom of the casing and 3.4 km depth. Permeable zones encountered below 3.4 km accepted less than 5 % of the injected water. Currently, the project is attempting soft stimulation to increase deep permeability. While it is too early to speculate on the energy potential of this well and its economics, the IDDP-2 is a milestone in the development of geothermal resources and the study of hydrothermal systems. It is the first well that successfully encountered supercritical hydrothermal conditions, with potential high-power output, and in which on-going hydrothermal metamorphism at amphibolite facies conditions can be observed. The next step will be to carry out flow testing and fluid sampling to determine the chemical and thermodynamic properties of the formation fluids.
Conceptual hydrogeologic framework of the shallow aquifer system at Virginia Beach, Virginia
Smith, Barry S.; Harlow, George E.
2002-01-01
The hydrogeologic framework of the shallow aquifer system at Virginia Beach was revised to provide a better understanding of the distribution of fresh ground water, its potential use, and its susceptibility to contamination. The revised conceptual framework is based primarily on analyses of continuous cores and downhole geophysical logs collected at 7 sites to depths of approximately 200 ft.The shallow aquifer system at Virginia Beach is composed of the Columbia aquifer, the Yorktown confining unit, and the Yorktown-East-over aquifer. The shallow aquifer system is separated from deeper units by the continuous St. Marys confining unit.The Columbia aquifer is defined as the predominantly sandy surficial deposits above the Yorktown confining unit. The Yorktown confining unit is composed of a series of very fine sandy to silty clay units of various colors at or near the top of the Yorktown Formation. The Yorktown confining unit varies in thickness and in composition, but on a regional scale is a leaky confining unit. The Yorktown-Eastover aquifer is defined as the predominantly sandy deposits of the Yorktown Formation and the upper part of the Eastover Formation above the confining clays of the St. Marys Formation. The limited areal extent of highly permeable deposits containing freshwater in the Yorktown-Eastover aquifer precludes the installation of highly productive freshwater wells over most of the city. Some deposits of biofragmental sand or shell hashes in the Yorktown-Eastover aquifer can support high-capacity wells.A water sample was collected from each of 10 wells installed at 5 of the 7 core sites to determine the basic chemistry of the aquifer system. One shallow well and one deep well was installed at each site. Concentrations of chloride were higher in the water from the deeper well at each site. Concentrations of dissolved iron in all of the water samples were higher than the U.S. Environmental Protection Agency Secondary Drinking Water Regulations. Concentrations of manganese and chloride were higher than the Secondary Drinking Water Regulations in samples from some wells.In the humid climate of Virginia Beach, the periodic recharge of freshwater through the sand units of the shallow aquifer system occurs often enough to create a dynamic equilibrium whereby freshwater flows continually down and away from the center of the ridges to mix with and sweep brackish water and saltwater back toward the tidal rivers, bays, salt marshes, and the Atlantic Ocean.The aquifers and confining units of the shallow aquifer system at Virginia Beach are heterogeneous, discontinuous, and without exact marker beds, which makes correlations in the study area difficult. Investigations using well cuttings, spot cores, or split-spoon samples with geophysical logs are not as definitive as continuous cores for determining or correlating hydrogeologic units. Future investigations of the shallow aquifer system would benefit by collecting continuous cores.
Large scale magmatic event, magnetic anomalies and ore exploration in northern Norway
NASA Astrophysics Data System (ADS)
Pastore, Z.; Church, N. S.; ter Maat, G. W.; Michels, A.; McEnroe, S. A.; Fichler, C.; Larsen, R. B.
2016-12-01
More than 17000 km3of igneous melts intruded into the deep crust at ca. 560-580 Ma and formed the Seiland Igneous Province (SIP), the largest complex of mafic and ultramafic intrusions in northern Fennoscandia. The original emplacement of the SIP is matter of current discussion. The SIP is now located within the Kalak Nappe Complex (KNC), a part of the Middle Allochthon of the North Norwegian Caledonides. The province is believed to represent a cross section of the deep plumbing system of a large igneous province and it is known for its layered intrusions sharing geological features with large ore-forming exploration provinces. In this study we investigate one of the four major ultramafic complexes of the province, the Reinfjord Complex. This was emplaced during three magmatic events in a time span of 4 Ma, and consists in a cylindrically zoned complex with a slightly younger dunite core (Central Series) surrounded by wehrlite and lherzolite dominated series (Upper and Lower Layered Series). Sulphides are present throughout the complex, and an electromagnetic survey identified a Ni-Cu-and a PGE reef deposit within the dunite, 100 meters below the surface. This discovery increased the ore potential of the complex and subsequently 4 deep drill cores were made. High-resolution magnetic helicopter survey was later followed up with ground magnetic and gravity surveys. Extensive sampling of surface rocks and drill cores were made to measure the rock-magnetic and physical properties of the samples and to explore the subsurface structure of the complex. Here, we developed a magnetic model for the Reinfjord complex integrating petrophysical data from both oriented surface samples and from the deep drill cores, with the new ground magnetic, and helicopter data (SkyTEM survey). A 3D model of the geometry of the ultramafic intrusion is presented and a refinement of the geological interpretation of the Reinfjord ultramafic intrusion.
Validating a Conceptual Framework for the Core Concept of "Cell-Cell Communication"
ERIC Educational Resources Information Center
Michael, Joel; Martinkova, Patricia; McFarland, Jenny; Wright, Ann; Cliff, William; Modell, Harold; Wenderoth, Mary Pat
2017-01-01
We have created and validated a conceptual framework for the core physiology concept of "cell-cell communication." The conceptual framework is composed of 51 items arranged in a hierarchy that is, in some instances, four levels deep. We have validated it with input from faculty who teach at a wide variety of institutional types. All…
English Learners, Writing, and the Common Core
ERIC Educational Resources Information Center
Olson, Carol Booth; Scarcella, Robin; Matuchniak, Tina
2015-01-01
Adopted by 46 states, the Common Core State Standards (CCSS) present a vision of what it means to be literate in the twenty-first century and call for all students, including English learners, to develop critical reading skills necessary for a deep understanding of complex texts, and critical writing skills to write about those texts. This article…
Teaching Students to Dig Deeper: The Common Core in Action
ERIC Educational Resources Information Center
Johnson, Ben
2013-01-01
This important new book identifies the skills and qualities students need, based on the Common Core State Standards, to be "really" ready for college and careers. Go beyond content knowledge...the deep thinking and learning skills detailed in this book will equip students for success! Prepare your students for their futures by helping them become:…
Simoneit, B R; Grimalt, J O; Hayes, J M; Hartman, H
1987-01-01
Hydrocarbons and bulk organic matter of two sediment cores (No. 84 and 126, CHAIN 61 cruise) located within the Atlantis II Deep have been analyzed. Although the brines overlying the coring areas were reported to be sterile, microbial inputs and minor terrestrial sources the major sedimentary organic material. This input is derived from the upper water column above the brines. Both steroid and triterpenoid hydrocarbons show that extensive acid-catalyzed reactions are occurring in the sediments. In comparison with other hydrothermal (Guaymas Basin) or intrusive systems (Cape Verde Rise), the Atlantis II Deep exhibits a lower degree of thermal maturation. This is easily deduced from the elemental composition of the kerogens and the absence of polynuclear aromatic hydrocarbons of a pyrolytic origin in the bitumen. The lack of carbon number preference among the n-alkanes suggests, especially in the case of the long chain homologs, that the organic matter of Atlantis II Deep sediments has undergone some degree of catagenesis. However, the yields of hydrocarbons are much lower than those observed in other hydrothermal areas. The effect of lower temperature and poor source-rock characteristics appear to be responsible for the differences.
Outokumpu Deep Drill Hole: Window to the Precambrian bedrock
NASA Astrophysics Data System (ADS)
Heinonen, Suvi; Kietäväinen, Riikka; Ahonen, Lasse; Kukkonen, Ilmo
2017-04-01
Outokumpu Deep Drill Hole is located in eastern Finland, at latitude 62°43'4'' N and longitude 29°3'43'' E. This 2516 m long and fully cored deep hole has been utilized as a geolaboratory open for researchers worldwide since it was drilled in 2004-2005. The 220 mm diameter drill hole is open without a casing (excluding the uppermost 40 m) and thus provides a direct access to in situ conditions to 2.5 km depth. There is a wide range of wire-line logs carried out by the drilling contractor and later by ICDP (International Continental Scientific Drilling Program) in several logging sessions for geothermal, hydrogeological and deep biosphere studies. Lithology, metamorphism, fluid inclusions, density, magnetic properties, seismic velocities and thermal properties of the drill core have been studied by several international groups. The hole has kept open since the end of drilling enabling future studies to be conducted in it. The drill hole is situated in the southwestern part of the Outokumpu historical mining district famous for its Cu-Co-Zn sulfide deposits. These sulfide deposits are hosted by 1.96 Ga old ophiolitic rock types, known as the Outokumpu assemblage, also penetrated by the deep drill hole at 1314-1515 m depth. Laboratory and in situ petrophysical measurements have provided valuable information about physical properties of the typical rocks of the area that can be utilized in the mineral exploration efforts. The drill site of Outokumpu was chosen based on strong reflectivity observed in the high resolution seismic profiles acquired earlier in the area. Outokumpu Deep Drill Hole revealed that these reflections originate from the acoustic impedance variations caused by the ore hosting Outokumpu assemblage. In 2006, surface seismic reflection and vertical seismic profiling (VSP) data were measured in the drill site, and these data show that not only is Outokumpu assemblage rocks reflective but also water bearing fracture at 965 m depth is observed as a strong reflector. This fracture, as well as other fractures penetrated by the drill hole, contains saline water and gases, mainly methane, nitrogen, hydrogen and helium. Salinity of water in the deeper part (>1000 m) of the drill hole has continuously increased since the drilling. Gas-rich water slowly seeps upward and bubble out at the water table. In total, five different water types have been discerned along the drill hole by geochemical and isotopic methods and residence times up to 58 Ma indicated by the accumulation of noble gases. Microbiological studies in the Outokumpu Deep Drill Hole show that not only do different fracture zones act as places for shift in groundwater chemistry but also in the microbial communities. After a decade of research, Outokumpu drill hole site is geologically well known and thus provides a good environment to test new tools developed for exploration, microbiological or hydrogeological purposes, for example. Geological Survey of Finland is open for new research collaboration projects related to the drill site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraft, R. P.; Roediger, E.; Machacek, M.
We present results from a deep (200 ks) Chandra observation of the early-type galaxy NGC 4552 (M89), which is falling into the Virgo cluster. Previous shallower X-ray observations of this galaxy showed a remnant gas core, a tail to the South of the galaxy, and twin “horns” attached to the northern edge of the gas core. In our deeper data, we detect a diffuse, low surface brightness extension to the previously known tail, and measure the temperature structure within the tail. We combine the deep Chandra data with archival XMM-Newton observations to put a strong upper limit on the diffusemore » emission of the tail out to a large distance (10× the radius of the remnant core) from the galaxy center. In our two previous papers, we presented the results of hydrodynamical simulations of ram pressure stripping specifically for M89 falling into the Virgo cluster and investigated the effect of intracluster medium (ICM) viscosity. In this paper, we compare our deep data with our specifically tailored simulations and conclude that the observed morphology of the stripped tail in NGC 4552 is most similar to the inviscid models. We conclude that, to the extent the transport processes can be simply modeled as a hydrodynamic viscosity, the ICM viscosity is negligible. More generally, any micro-scale description of the transport processes in the high- β plasma of the cluster ICM must be consistent with the efficient mixing observed in the stripped tail on macroscopic scales.« less
NASA Astrophysics Data System (ADS)
Kraft, R. P.; Roediger, E.; Machacek, M.; Forman, W. R.; Nulsen, P. E. J.; Jones, C.; Churazov, E.; Randall, S.; Su, Y.; Sheardown, A.
2017-10-01
We present results from a deep (200 ks) Chandra observation of the early-type galaxy NGC 4552 (M89), which is falling into the Virgo cluster. Previous shallower X-ray observations of this galaxy showed a remnant gas core, a tail to the South of the galaxy, and twin “horns” attached to the northern edge of the gas core. In our deeper data, we detect a diffuse, low surface brightness extension to the previously known tail, and measure the temperature structure within the tail. We combine the deep Chandra data with archival XMM-Newton observations to put a strong upper limit on the diffuse emission of the tail out to a large distance (10× the radius of the remnant core) from the galaxy center. In our two previous papers, we presented the results of hydrodynamical simulations of ram pressure stripping specifically for M89 falling into the Virgo cluster and investigated the effect of intracluster medium (ICM) viscosity. In this paper, we compare our deep data with our specifically tailored simulations and conclude that the observed morphology of the stripped tail in NGC 4552 is most similar to the inviscid models. We conclude that, to the extent the transport processes can be simply modeled as a hydrodynamic viscosity, the ICM viscosity is negligible. More generally, any micro-scale description of the transport processes in the high-β plasma of the cluster ICM must be consistent with the efficient mixing observed in the stripped tail on macroscopic scales.
NASA Astrophysics Data System (ADS)
Scheidt, Stephanie; Hambach, Ulrich; Rolf, Christian
2014-05-01
Deep drillings in the Heidelberg Basins provide access to one of the thickest and most complete successions of Quaternary and Upper Pliocene continental sediments in Central-Europe [1]. In absence of any comprehensive chronostratigraphic model, these sediments are so far classified by lithological and hydrogeological criteria. Therefore the age of this sequence is still controversially discussed ([1], [2]). In spite of the fact that fluvial sediments are a fundamental challenge for the application of magnetic polarity stratigraphy we performed a thorough study on four drilling cores (from Heidelberg, Ludwigshafen and nearby Viernheim). Here, we present the results from the analyses of these cores, which yield to a consistent chronostratigraphic framework. The components of natural remanent magnetisation (NRM) were separated by alternating field and thermal demagnetisation techniques and the characteristic remanent magnetisations (ChRM) were isolated by principle component analysis [3]. Due to the coring technique solely inclination data of the ChRM is used for the determination of the magnetic polarity stratigraphy. Rock magnetic proxies were applied to identify the carriers of the remanent magnetisation. The investigations prove the NRM as a stable, largely primary magnetisation acquired shortly after deposition (PDRM). The Matuyama-Gauss boundary is clearly defined by a polarity change in each core, as suggested in previous work [4]. These findings are in good agreement with the biostratigraphic definition of the base of the Quaternary ([5], [6], [7]). The Brunhes-Matuyama boundary could be identified in core Heidelberg UniNord 1 and 2 only. Consequently, the position of the Jaramillo and Olduvai subchron can be inferred from the lithostratigraphy and the development of fluvial facies architecture in the Rhine system. The continuation of the magnetic polarity stratigraphy into the Gilbert chron (Upper Pliocene) allows alternative correlation schemes for the cores Viernheim and Heidelberg. All things considered, the application of magnetic polarity stratigraphy on Pliocene and Pleistocene fluvial sediments from the Heidelberg Basin provides a consistent and independent chronology and opens the perspective for global correlations where other approaches hardly come to results. [1] GABRIEL, G., ELLWANGER, D., HOSELMANN, C. & WEIDENFELLER, M. 2008. Preface: The HeidelbergBasin Drilling Project. E & G (Quaternary Science Journal), 57, 253-260. [2] ELLWANGER, D. & WIELAND-SCHUSTER, U. 2012. Fotodokumentation und Schichtenverzeichnis der Forschungsbohrungen Heidelberg UniNord I und II. LGRB-Informationen, 26, 25-86. [3] KIRSCHVINK, J. L. 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal, Royal Astronomical Society, 62, 699-718. [4] ROLF, C., HAMBACH, U. & WEIDENFELLER, M. 2008. Rock and palaeomagnetic evidence for the Plio-/Pleistocene palaeoclimatic change recorded in Upper Rhine Graben sediments (Core Ludwigshafen-Parkinsel), Neth. J. Geosci., 87 (1), 41-50. [5] KNIPPING, M. 2008. Early and Middle Pleistocene pollen assemblages of deep core drillings in the northern Upper Rhine Graben, Germany, Neth. J. Geosci., 87(1), 51-65. [6] HEUMANN, G., pers. Comm. [7] HAHNE, J., pers. Comm.
Pockmarks off Big Sur, California
Paull, C.; Ussler, W.; Maher, N.; Greene, H. Gary; Rehder, G.; Lorenson, T.; Lee, H.
2002-01-01
A pockmark field was discovered during EM-300 multi-beam bathymetric surveys on the lower continental slope off the Big Sur coast of California. The field contains ??? 1500 pockmarks which are between 130 and 260 m in diameter, and typically are 8-12 m deep located within a 560 km2 area. To investigate the origin of these features, piston cores were collected from both the interior and the flanks of the pockmarks, and remotely operated vehicle observation (ROV) video and sampling transects were conducted which passed through 19 of the pockmarks. The water column within and above the pockmarks was sampled for methane concentration. Piston cores and ROV collected push cores show that the pockmark field is composed of monotonous fine silts and clays and the cores within the pockmarks are indistinguishable from those outside the pockmarks. No evidence for either sediment winnowing or diagenetic alteration suggestive of fluid venting was obtained. 14C measurements of the organic carbon in the sediments indicate continuous sedimentation throughout the time resolution of the radiocarbon technique ( ??? 45000 yr BP), with a sedimentation rate of ??? 10 cm per 1000 yr both within and between the pockmarks. Concentrations of methane, dissolved inorganic carbon, sulfate, chloride, and ammonium in pore water extracted from within the cores are generally similar in composition to seawater and show little change with depth, suggesting low biogeochemical activity. These pore water chemical gradients indicate that neither significant accumulations of gas are likely to exist in the shallow subsurface ( ??? 100 m) nor is active fluid advection occurring within the sampled sediments. Taken together the data indicate that these pockmarks are more than 45000 yr old, are presently inactive, and contain no indications of earlier fluid or gas venting events. ?? 2002 Elsevier Science B.V. All rights reserved.
Wireline Deep Drill for the Exploration of Icy Bodies
NASA Technical Reports Server (NTRS)
Paulsen, G.; Zacny, K.; Mellerowicz, B.; Craft, J.; Bar-Cohen, Y.; Beegle, L.; Sherrit, S.; Badescu, M.; Corsetti, F.; Ibarra, Y.
2013-01-01
One of the most pressing current questions in space science is whether life has ever arisen anywhere else in the universe. Water is a critical prerequisite for all life-as-we-know-it, thus the possible exploration targets for extraterrestrial life are bodies that have or had copious liquid: Mars, Europa, and Enceladus. Due to the oxidizing nature of Mars' surface, as well as subsurface liquid water reservoirs present on Europa and Enceladus, the search for evidence of existing life must likely focus on subsurface locations, at depths sufficient to support liquid water or retain biologic signatures. To address these questions, an Auto-Gopher sampler has been developed that is a wireline type drill. This drill is suspended on a tether and its motors and mechanisms are built into a tube that ends with a coring bit. The tether provides the mechanical connection to a rover/lander on a surface as well as power and data communication. Upon penetrating to a target depth, the drill is retracted from the borehole, the core is deposited into a sample transfer system, and the drill is lowered back into the hole. Wireline operation sidesteps one of the major drawbacks of traditional continuous drill string systems by obviating the need for multiple drill sections, which add significantly to the mass and the complexity of the system (i.e. penetration rate was 40 cm per hour). Drilling to 2 meter depth and recovering of cores every 10 cm took a total time of 15 hours (a single step of drilling 10 cm and retrieving the core was 45 minutes). Total energy to reach the 2 m depth was 500 Whr. The Weight on Bit was limited to less than 70 Newton. The core recovery was 100%.
NASA Astrophysics Data System (ADS)
Treude, T.; Kallmeyer, J.; Beulig, F.; Glombitza, C.; Schubert, F.; Krause, S.; Heuer, V.; Inagaki, F.; Morono, Y.
2017-12-01
The aim of the IODP Expedition 370 is to explore the temperature limit of the deep biosphere in a sub-seafloor environment located in the Nankai Trough, where in-situ sediment temperature increases from 2°C at the seafloor to about 120°C at the 1.2 km deep sediment/basement interface. Our study focuses on the exploration of potential microbial methanogenesis, anaerobic oxidation of methane (AOM), and sulfate reduction in sediments from different depths (from ca. 200 to 1170 mbsf) exposed to several temperature settings in the laboratory (40, 60, 75/80 and 95°C). The drill site, which features a décollement between ca. 758-796 mbsf, includes a sulfate-poor methanogenic zone from approx. 400 to 600 mbsf, followed by a deep methane-sulfate transition zone between approx. 600 to 800 m, which transitions into a deep sulfate-rich zone. Potential microbial activity of hydrogenotrophic methanogenesis, AOM, and sulfate reduction was determined in incubations of sediment slurries produced from whole-round cores with H2-added artificial seawater medium using radioisotope techniques (14C-bicarbonate, 14C-methane, and 35S-sulfate, respectively). Preliminary results revealed two peaks of methanogenesis activity with rates in the order of 0.2 to 0.5 pmol g-1dw d-1. One peak was located within the methane-rich zone passing into the methane-sulfate transition zone (60 to 80°C incubations), while the second peak occurred close to the basement (below 1000 mbsf, 95°C incubation). Sulfate reduction activity was generally highest above 400 mbsf ( 1000 pmol cm-3 d-1, 40°C incubation). Below 400 mbsf, rates declined to levels between 0.1 and 10 pmol cm-3 d-1 (60-95 °C incubations) without a clear trend and continued until close to the bottom of the core. The results point to potentially thermophilic and hypothermophilic microorganisms that exist under very low energy conditions. Samples from AOM incubations are currently being processed and preliminary results will be presented at the meeting as well as the results for sulfate reduction incubations with methane and acetate amendments.
Head-on collision of the second mode internal solitary waves
NASA Astrophysics Data System (ADS)
Terletska, Kateryna; Maderich, Vladimir; Jung, Kyung Tae
2017-04-01
Second mode internal waves are widespread in offshore areas, and they frequently follow the first mode internal waves on the oceanic shelf. Large amplitude internal solitary waves (ISW) of second mode containing trapped cores associated with closed streamlines can also transport plankton and nutrients. An interaction of ISWs with trapped cores takes place in a specific manner. It motivated us to carry out a computational study of head-on collision of ISWs of second mode propagating in a laboratory-scale numerical tank using the nonhydrostatic 3D numerical model based on the Navier-Stokes equations for a continuously stratified fluid. Three main classes of ISW of second mode propagating in the pycnocline layer of thickness h between homogeneous deep layers can be identified: (i) the weakly nonlinear waves; (ii) the stable strongly nonlinear waves with trapped cores; and (iii) the shear unstable strongly nonlinear waves (Maderich et al., 2015). Four interaction regimes for symmetric collision were separated from simulation results using this classification: (A) an almost elastic interaction of the weakly nonlinear waves; (B) a non-elastic interaction of waves with trapped cores when ISW amplitudes were close to critical non-dimensional amplitude a/h; (C) an almost elastic interaction of stable strongly nonlinear waves with trapped cores; (D) non-elastic interaction of the unstable strongly nonlinear waves. The unexpected result of simulation was that relative loss of energy due to the collision was maximal for regime B. New regime appeared when ISW of different amplitudes belonged to class (ii) collide. In result of interaction the exchange of mass between ISW occurred: the trapped core of smaller wave was entrained by core of larger ISW without mixing forming a new ISW of larger amplitude whereas in smaller ISW core of smaller wave totally substituted by fluid from larger wave. Overall, the wave characteristics induced by head-on collision agree well with the results of several available laboratory experiments. References [1] V. Maderich, K. T. Jung, K. Terletska, I. Brovchenko, T. Talipova, "Incomplete similarity of internal solitary waves with trapped core," Fluid Dynamics Research 47, 035511 (2015).
1981-09-09
oxygen. The last paper of Session 1 was given by Dr. P. Bennett (Duke Univ. Medical Center, NC), and described the Duke "Atlantis" series of deep ...Medicine, Scotland) led off with a presentation on thermal comfort and deep -core temperatures in Antarctic scientific divers. During air diving under ice...than 300 msw (for humans) and deeper than 800 msw (for animals, including several recent dives using baboons to as deep as 1,030 msw) call for a new
NASA Astrophysics Data System (ADS)
Mikhail, S.; Jones, A. P.; Hunt, S. A.; Guillermier, C.; Dobson, D. P.; Tomlinson, E.; Dan, H.; Milledge, H.; Franchi, I.; Wood, I.; Beard, A.; Verchovsky, S.
2010-12-01
The largest accessible reservoir for terrestrial carbon is the mantle; however the core may yield even more. Carbon is commonly proposed as the light element (or one of) to make up the observed density deficit in the earth’s metallic core (NAKAJIMA et al., 2009). The potential isotopic effects of carbon incorporation into the core have not yet been investigated. In-situ ion probe (nanoSIMS) mapping and imaging of carbon isotope variations across rare sub-mm-scale Fe-rich carbide inclusions in mantle diamond (from Jagersfontein, South Africa) show the carbide to be significantly depleted in 13C relative to their diamond host. Distinctive textures suggest metallic liquid precipitates similar in geometry to (giant) nitrogen platelets, controlled by the octahedral symmetry of diamond, which we interpret as syngenic formation. The difference in δ13C values between the two natural phases for diamond-Fe carbide, gives an isotopic fractionation factor (ΔC) which agrees well with HPHT multi-anvil experiments (5-9 GPa and >1400°C). Our measured ΔC between Fe-carbide and diamond may only have local significance, but the measured isotopic values represent characterization of the highest PT carbide known (i.e. > minimum depth of the diamond stability field ≈ 150 km). The direction and magnitude of ΔC agrees with observations of the ΔC between cohenite-graphite in iron meteorites (DEINES and WICKMAN, 1975) and both agree with HPHT experiments, thus suggesting that carbon in the deep Earth, and particularly in the core, may be similarly fractionated (i.e. depleted in the 13C). Since metallic liquid drained from the silicate mantle to form the core during the early Earth, we can use our values as a proxy to constrain evolution of deep carbon reservoirs such as the core and bulk silicate Earth. For example, we can test the suggestion of Grady et al (2004) that the upper mantle value of δ13C ≈ -5 ‰ may not be representative of the bulk Earth, since solar system meteorites (from Mars, Vesta and the Moon) suggest a preferred value of δ13C ≈ -20 +/- 4 ‰. If we adopt this particular model, not only could we explain fractionation between a bulk silicate Earth δ13C value of -5 ‰ from an initial δ13C value of -20 ‰, but we can constrain the relative proportion of carbon in the core/mantle by using simple isotopic mass balance. Such fractionation of carbon isotopes between HPT carbides (and/or metallic iron) within the lower mantle and core would be expected immediately from the time of core formation. Therefore, isotopically light carbon reservoirs may have been present deep in the Earth throughout its history, offering an alternative explanation for light carbon (eg in diamonds) which was not formed by, and/or predated subduction of oceanic crust and organic carbon. Deines, P. and Wickman, F. E., 1975. GCA; Grady, M. M. et al. 2004. Int Journal of Astrobiology; Nakajima, Y. et al. K.-i., 2009. Physics of the Earth and Planetary Interiors.
Glombitza, Clemens; Stockhecke, Mona; Schubert, Carsten J.; Vetter, Alexandra; Kallmeyer, Jens
2013-01-01
As part of the International Continental Drilling Program deep lake drilling project PaleoVan, we investigated sulfate reduction (SR) in deep sediment cores of the saline, alkaline (salinity 21.4‰, alkalinity 155 m mEq-1, pH 9.81) Lake Van, Turkey. The cores were retrieved in the Northern Basin (NB) and at Ahlat Ridge (AR) and reached a maximum depth of 220 m. Additionally, 65–75 cm long gravity cores were taken at both sites. SR rates (SRR) were low (≤22 nmol cm-3 day-1) compared to lakes with higher salinity and alkalinity, indicating that salinity and alkalinity are not limiting SR in Lake Van. Both sites differ significantly in rates and depth distribution of SR. In NB, SRR are up to 10 times higher than at AR. SR could be detected down to 19 mblf (meters below lake floor) at NB and down to 13 mblf at AR. Although SRR were lower at AR than at NB, organic matter (OM) concentrations were higher. In contrast, dissolved OM in the pore water at AR contained more macromolecular OM and less low molecular weight OM. We thus suggest, that OM content alone cannot be used to infer microbial activity at Lake Van but that quality of OM has an important impact as well. These differences suggest that biogeochemical processes in lacustrine sediments are reacting very sensitively to small variations in geological, physical, or chemical parameters over relatively short distances. PMID:23908647
NASA Astrophysics Data System (ADS)
Faria, S. H.; Kipfstuhl, S.; Garbe, C. S.; Bendel, V.; Weikusat, C.; Weikusat, I.
2010-12-01
The great value of polar deep ice cores stems mainly from two essential features of polar ice: its crystalline structure and its impurities. They determine the physical properties of the ice matrix and provide proxies for the investigation of past climates. Experience shows that these two essential features of polar ice manifest themselves in a multiscale diversity of dynamic structures, including dislocations, grain boundaries, solid particles, air bubbles, clathrate hydrates and cloudy bands, among others. The fact that these structures are dynamic implies that they evolve with time through intricate interactions between the crystalline structure, impurities, and the ice flow. Records of these interactions have been carefully investigated in samples of the EPICA deep ice core drilled in Dronning Maud Land, Antarctica (75°S, 0°E, 2882 m elevation, 2774.15 m core length). Here we show how the distributions of sizes and shapes of air bubbles correlate with impurities and the crystalline structure, how the interaction between moving grain boundaries and micro-inclusions changes with ice depth and temperature, as well as the possible causes for the abrupt change in ice rheology observed in the MIS6-MIS5e transition. We also discuss how these observations may affect the flow of the ice sheet and the interpretation of paleoclimate records. Micrograph of an EDML sample from 555m depth. One can identify air bubbles (dark, round objects), microinclusions (tiny defocused spots), and a grain boundary pinned by a bubble. The width of the image is 700 micrometers.
Core rotational dynamics and geological events
Greff-Lefftz; Legros
1999-11-26
A study of Earth's fluid core oscillations induced by lunar-solar tidal forces, together with tidal secular deceleration of Earth's axial rotation, shows that the rotational eigenfrequency of the fluid core and some solar tidal waves were in resonance around 3.0 x 10(9), 1.8 x 10(9), and 3 x 10(8) years ago. The associated viscomagnetic frictional power at the core boundaries may be converted into heat and would destabilize the D" thermal layer, leading to the generation of deep-mantle plumes, and would also increase the temperature at the fluid core boundaries, perturbing the core dynamo process. Such phenomena could account for large-scale episodes of continental crust formation, the generation of flood basalts, and abrupt changes in geomagnetic reversal frequency.
Radiometric Thermometry for Wearable Deep Tissue Monitoring
NASA Astrophysics Data System (ADS)
Momenroodaki, Parisa
Microwave thermometry is an attractive non-invasive method for measuring internal body temperature. This approach has the potential of enabling a wearable device that can continuously monitor core body temperature. There are a number of health-related applications in both diagnostics and therapy, which can benefit from the knowledge of core body temperature. However,there are a limited number of device solutions, which are usually not wearable or cannot continuously monitor internal body temperature non-invasively. In this thesis, a possible path toward implementing such a thermometer is presented. The device operates in the "quiet" frequency band of 1.4 GHz which is chosen as a compromise between sensing depth and radio frequency interference (RFI). A major challenge in microwave thermometry is detecting small temperature variations of deep tissue layers from surface (skin) measurements. The type and thickness of tissue materials significantly affect the design of the probe, which has the function of receiving black-body radiation from tissues beneath it and coupling the power to a sensitive radiometric receiver. High dielectric constant contrast between skin, fat (/bone), and muscle layers suggests structures with dominant tangential component of the electric field, such as a patch or slot. Adding a layer of low-loss,low-dielectric constant superstrate can further reduce the contribution of superficial tissue layers in the received thermal noise. Several probe types are designed using a full-wave electromagnetic simulator, with a goal of maximizing the power reception from deep tissue layers. The designs are validated with a second software tool and various measurements. A stable, narrow-band, and highly sensitive radiometer is developed, enabling the device to operate in a non-shielded RF environment.To use the microwave thermometer in a RF congested environment, not only narrow-band probe and radiometers are used but an additional probe is introduced for observing the environmental interference. By applying an adaptive filter, the effect of RFI is mitigated in long-term measurements. Several solid and liquid tissue phantoms, required for accurate modeling of the probe and human body interaction, are also developed. The concept of human body microwave thermometry is validated through several measurements on the single-layer and multiple-layer tissue phantoms as well as on the surface of the human body, specifically on the cheek where the internal temperature can easily be changed and independently measured with a thermocouple. Measurement results prove the capability of the device in tracking the temperature of buried tissue layer phantoms to within 0.2K, as well as monitoring internal human body temperature.
Europa's differentiated internal structure: inferences from two Galileo encounters.
Anderson, J D; Lau, E L; Sjogren, W L; Schubert, G; Moore, W B
1997-05-23
Doppler data generated with the Galileo spacecraft's radio carrier wave during two Europa encounters on 19 December 1996 (E4) and 20 February 1997 (E6) were used to measure Europa's external gravitational field. The measurements indicate that Europa has a predominantly water ice-liquid outer shell about 100 to 200 kilometers thick and a deep interior with a density in excess of about 4000 kilograms per cubic meter. The deep interior could be a mixture of metal and rock or it could consist of a metal core with a radius about 40 percent of Europa's radius surrounded by a rock mantle with a density of 3000 to 3500 kilograms per cubic meter. The metallic core is favored if Europa has a magnetic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu,Y.; Li, M.; Bansil, R.
2007-01-01
We examined the kinetics of the transformation from the lamellar (LAM) to the hexagonally packed cylinder (HEX) phase for the triblock copolymer, polystyrene-b-poly (ethylene-co-butylene)-b-polystyrene (SEBS) in dibutyl phthalate (DBP), a selective solvent for polystyrene (PS), using time-resolved small-angle X-ray scattering (SAXS). We observe the HEX phase with the EB block in the cores at a lower temperature than that observed for the LAM phase due to the solvent selectivity of DBP for the PS block. Analysis of the SAXS data for a deep temperature quench well below the LAM-HEX transition shows that the transformation occurs in a one-step process. Wemore » calculate the scattering using a geometric model of rippled layers with adjacent layers totally out of phase during the transformation. The agreement of the calculations with the data further supports the continuous transformation mechanism from the LAM to HEX for a deep quench. In contrast, for a shallow quench close to the order-order transition, we find agreement with a two-step nucleation and growth mechanism.« less
The history of South American tropical precipitation for the past 25,000 years.
Baker, P A; Seltzer, G O; Fritz, S C; Dunbar, R B; Grove, M J; Tapia, P M; Cross, S L; Rowe, H D; Broda, J P
2001-01-26
Long sediment cores recovered from the deep portions of Lake Titicaca are used to reconstruct the precipitation history of tropical South America for the past 25,000 years. Lake Titicaca was a deep, fresh, and continuously overflowing lake during the last glacial stage, from before 25,000 to 15,000 calibrated years before the present (cal yr B.P.), signifying that during the last glacial maximum (LGM), the Altiplano of Bolivia and Peru and much of the Amazon basin were wetter than today. The LGM in this part of the Andes is dated at 21,000 cal yr B.P., approximately coincident with the global LGM. Maximum aridity and lowest lake level occurred in the early and middle Holocene (8000 to 5500 cal yr B.P.) during a time of low summer insolation. Today, rising levels of Lake Titicaca and wet conditions in Amazonia are correlated with anomalously cold sea-surface temperatures in the northern equatorial Atlantic. Likewise, during the deglacial and Holocene periods, there were several millennial-scale wet phases on the Altiplano and in Amazonia that coincided with anomalously cold periods in the equatorial and high-latitude North Atlantic, such as the Younger Dryas.
Mass Distribution in Galaxy Cluster Cores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, M. T.; McNamara, B. R.; Pulido, F.
Many processes within galaxy clusters, such as those believed to govern the onset of thermally unstable cooling and active galactic nucleus feedback, are dependent upon local dynamical timescales. However, accurate mapping of the mass distribution within individual clusters is challenging, particularly toward cluster centers where the total mass budget has substantial radially dependent contributions from the stellar ( M {sub *}), gas ( M {sub gas}), and dark matter ( M {sub DM}) components. In this paper we use a small sample of galaxy clusters with deep Chandra observations and good ancillary tracers of their gravitating mass at both largemore » and small radii to develop a method for determining mass profiles that span a wide radial range and extend down into the central galaxy. We also consider potential observational pitfalls in understanding cooling in hot cluster atmospheres, and find tentative evidence for a relationship between the radial extent of cooling X-ray gas and nebular H α emission in cool-core clusters. At large radii the entropy profiles of our clusters agree with the baseline power law of K ∝ r {sup 1.1} expected from gravity alone. At smaller radii our entropy profiles become shallower but continue with a power law of the form K ∝ r {sup 0.67} down to our resolution limit. Among this small sample of cool-core clusters we therefore find no support for the existence of a central flat “entropy floor.”.« less
Kimura, Hiroyuki; Ishibashi, Jun-Ichiro; Masuda, Harue; Kato, Kenji; Hanada, Satoshi
2007-04-01
International drilling projects for the study of microbial communities in the deep-subsurface hot biosphere have been expanded. Core samples obtained by deep drilling are commonly contaminated with mesophilic microorganisms in the drilling fluid, making it difficult to examine the microbial community by 16S rRNA gene clone library analysis. To eliminate mesophilic organism contamination, we previously developed a new method (selective phylogenetic analysis [SePA]) based on the strong correlation between the guanine-plus-cytosine (G+C) contents of the 16S rRNA genes and the optimal growth temperatures of prokaryotes, and we verified the method's effectiveness (H. Kimura, M. Sugihara, K. Kato, and S. Hanada, Appl. Environ. Microbiol. 72:21-27, 2006). In the present study we ascertained SePA's ability to eliminate contamination by archaeal rRNA genes, using deep-sea hydrothermal fluid (117 degrees C) and surface seawater (29.9 degrees C) as substitutes for deep-subsurface geothermal samples and drilling fluid, respectively. Archaeal 16S rRNA gene fragments, PCR amplified from the surface seawater, were denatured at 82 degrees C and completely digested with exonuclease I (Exo I), while gene fragments from the deep-sea hydrothermal fluid remained intact after denaturation at 84 degrees C because of their high G+C contents. An examination using mixtures of DNAs from the two environmental samples showed that denaturation at 84 degrees C and digestion with Exo I completely eliminated archaeal 16S rRNA genes from the surface seawater. Our method was quite useful for culture-independent community analysis of hyperthermophilic archaea in core samples recovered from deep-subsurface geothermal environments.
NASA Technical Reports Server (NTRS)
Badescu, Mircea
2014-01-01
Subsurface penetration by coring, drilling or abrading is of great importance for a large number of space and earth applications. An Ultrasonic/Sonic Drill/Corer (USDC) has been in development at JPL's Nondestructive Evaluation and Advanced Actuators (NDEAA) lab as an adaptable tool for many of these applications. The USDC uses a novel drive mechanism to transform the high frequency ultrasonic or sonic vibrations of the tip of a horn into a lower frequency sonic hammering of a drill bit through an intermediate free-flying mass. The USDC device idea has been implemented at various scales from handheld drills to large diameter coring devices. A series of computer programs that model the function and performance of the USDC device were developed and were later integrated into an automated modeling package. The USDC has also evolved from a purely hammering drill to a rotary hammer drill as the design requirements increased form small diameter shallow drilling to large diameter deep coring. A synthesis of the Auto-Gopher development is presented in this paper.
Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...
2014-08-04
Electrical current transport through leakage paths in AlGaN-based deep ultraviolet (DUV) lightemitting diodes (LEDs) and their effect on LED performance are investigated. Open-core threading dislocations, or nanopipes, are found to conduct current through nominally insulating Al0.7Ga0.3N layers and limit the performance of DUV-LEDs. A defect-sensitive phosphoric acid etch reveals these opencore threading dislocations in the form of large, micron-scale hexagonal etch pits visible with optical microscopy, while closed-core screw-, edge-, and mixed-type threading dislocations are represented by smaller and more numerous nanometer-scale pits visible by atomic-force microscopy. The electrical and optical performances of DUV-LEDs fabricated on similar Si-doped Al0.7Ga0.3N templatesmore » are found to have a strong correlation to the density of these nanopipes, despite their small fraction (<0.1% in this study) of the total density of threading dislocations.« less
Wood, W.W.; Stokes, S.; Rich, J.
2002-01-01
Springs in the 40 to 50 large lake basins (>15 km2) on the southern portion of the Southern High Plains (SHP) were active during periods of aridity in the Holocene when there may have been human habitation of the area. Eolian erosion of the lake floors and lunette accretion occurred as groundwater levels declined in response to decreased groundwater recharge. The declining lake floor associated with eolian erosion allowed groundwater evaporative discharge to continue, thus maintaining a groundwater gradient toward the lake. This hydrologic condition was favorable for a relatively continuous spring discharge to the lake, independent of the elevation of the lake floor. To evaluate the postulated dynamic equilibrium critical to this conclusion, 17 optically stimulated ages were determined from a 17.7-m deep core of a lunette adjacent to Double Lakes, Texas (33??13???15???N, 101??54???08???W). The core yielded sediment accumulation dates of 11,500 ?? 1100, 6500 ?? 700, and 4900 ?? 500 yr B.P., corresponding broadly with periods of aridity known from other evidence. Based on analysis of this lunette, it is concluded that springs in Double Lakes basin probably existed throughout the Holocene with discharges similar to those observed historically. We assumed that similar dynamic equilibrium existed in the other large lake basins in the SHP and that these springs could have provided a continuous source of water for indigenous peoples during periods of prolonged aridity. The dynamic equilibrium that is proposed in this study is applicable not only to other arid and semiarid geographic areas with wind-erodible material but also over different geologic times. ?? 2002 University of Washington.
ERIC Educational Resources Information Center
Sagendorf, Kenneth; Noyd, Robert K.; Morris, D. Brent
2009-01-01
An institution-wide focus on deep learning has made significant changes in the biology and physics core course curriculum at the U.S. Air Force Academy. The biology course director has reworked course objectives to reflect the learning-focused approach to teaching, while the physics curriculum has adopted new learning outcomes and ways to…
Geomagnetic reversal in brunhes normal polarity epoch.
Smith, J D; Foster, J H
1969-02-07
The magnetic stratigraphly of seven cores of deep-sea sediment established the existence of a short interval of reversed polarity in the upper part of the Brunches epoch of normal polarity. The reversed zone in the cores correlates well with paleontological boundaries and is named the Blake event. Its boundaries are estimated to be 108,000 and 114,000 years ago +/- 10 percent.
Enhanced near-infrared photoacoustic imaging of silica-coated rare-earth doped nanoparticles.
Sheng, Yang; Liao, Lun-De; Bandla, Aishwarya; Liu, Yu-Hang; Yuan, Jun; Thakor, Nitish; Tan, Mei Chee
2017-01-01
Near-infrared photoacoustic (PA) imaging is an emerging diagnostic technology that utilizes the tissue transparent window to achieve improved contrast and spatial resolution for deep tissue imaging. In this study, we investigated the enhancement effect of the SiO 2 shell on the PA property of our core/shell rare-earth nanoparticles (REs) consisting of an active rare-earth doped core of NaYF 4 :Yb,Er (REDNPs) and an undoped NaYF 4 shell. We observed that the PA signal amplitude increased with SiO 2 shell thickness. Although the SiO 2 shell caused an observed decrease in the integrated fluorescence intensity due to the dilution effect, fluorescence quenching of the rare earth emitting ions within the REDNPs cores was successfully prevented by the undoped NaYF 4 shell. Therefore, our multilayer structure consisting of an active core with successive functional layers was demonstrated to be an effective design for dual-modal fluorescence and PA imaging probes with improved PA property. The result from this work addresses a critical need for the development of dual-modal contrast agent that advances deep tissue imaging with high resolution and signal-to-noise ratio. Copyright © 2016 Elsevier B.V. All rights reserved.
Composition and maturity of the 60013/14 core
NASA Technical Reports Server (NTRS)
Korotev, Randy L.; Morris, Richard V.; Lauer, Howard V., Jr.
1993-01-01
The 60013/14 double drive tube (62 cm deep) is one of three regolith cores taken 35-40 m apart in a triangular array on the Cayley plains at station 10' (LM/ALSEP), Apollo 16. This trio, which includes double drive tube 60009/10 (59 cm deep) and deep drill core 60001-7 (220 cm), is the only such array of cores returned from the Moon. The top 45 cm of 60013/14 is mature, as is surface reference soil 60601 taken nearby. Maturity generally decreases with depth, with soil below 45 cm being submature. The zone of lowest maturity (34 is less than or equal to I(sub s)/FeO is less than 50) extends from 46 to 58 cm depth, and corresponds to the distinct region of light-colored soil observed during core processing. In the other two cores, most of the compositional variation results from mixing between fine-grained, mature soil with 10-11 micro-g/g Sc and coarse-grained ferroan anorthosite consisting of greater than 99% plagioclase with less than 0.5 micro-g/g Sc. This is most evident in 60009/10 which contains a high abundance of plagioclase at about 54 cm depth (minimum Sc: 3-4 micro-g/g); a similar zone occurs in 60001-7 at 17-22 cm (MPU-C), although it is not as rich in plagioclase (minimum Sc: 6-7 micro-g/g). Compositional variations are less in 60013/14 than in the other two cores (range: 7.9-10.0 micro-g/g Sc), but are generally consistent with the 'plagioclase dilution' effect seen in 60009/10, i.e., most 60013/14 samples plot along the mixing line of 60009/10. However, a plagioclase component is not the cause of the lower maturity and lighter color of the unit at 46-58 cm depth in 60013/14. Many of the samples in this zone have distinctly lower Sm/Sc ratios than typical LM-area soils and plot off the mixing trend defined by 60009/10. This requires a component with moderately high Sc, but low-Sm/Sc, such as feldspathic fragmental breccia (FFB) or granulitic breccia. A component of Descartes regolith, such as occurs at North Ray Crater (NRC) and which is rich in FFB, could account for the composition of these soils (i.e., a 3:1 mixture of 60601 and NRC soil). It seems unlikely that NRC ejecta would occur half a meter deep at the LM station, thus this low-Sm/Sc component may result from an older, local crater that penetrated the Cayley surface layer and excavated underlying Descartes material, as did North Ray Crater. There is no evidence for such a unit or component in the other two cores. Soil below the light-colored unit (58-62) cm has 'typical' Sm/Sc ratios, but the lowest absolute Sc concentrations, i.e., it is compositionally equivalent to a mixture of surface soil and plagioclase such as that in ferroan anorthosite. This is the only soil that might be related to the plagioclase-rich units in the other two cores. Except for the mature soil at the top of each core and, perhaps, the plagioclase-rich layers, there is little compositional evidence for any common unit among the three cores. Soil corresponding to the mare-glass-bearing unit (MPU-B) and regolith-breccia-bearing unit (MPU-A) of 60001-7 do not occur in 60013/14 or 60009/10.
NASA Astrophysics Data System (ADS)
Losso, C.; Arizzi Novelli, A.; Picone, M.; Marchetto, D.; Pessa, G.; Molinaroli, E.; Ghetti, P. F.; Volpi Ghirardini, A.
2004-11-01
Toxic hazard in sites with varying types and levels of contamination in the Lagoon of Venice was estimated by means of toxicity bioassays based on the early life-stages of the autochthonous sea urchin Paracentrotus lividus. Elutriate was chosen as the test matrix, due to its ability to highlight potential toxic effects towards sensitive biological components of the water column caused by sediment resuspension phenomena affecting the Lagoon. Surficial sediments (core-top 5 cm deep), directly influenced by resuspension/redeposition processes, and core sediments (core 20 cm deep), recording time-mediated contamination, were sampled in some sites located in the lagoonal area most greatly influenced by anthropogenic activities. Particle size, organic matter and water content were also analysed. In two sites, the results of physical parameters showed that the core-top sediments were coarser than the 20-cm core sediments. Sperm cell toxicity test results showed the negligible acute toxicity of elutriates from all investigated sites. The embryo toxicity test demonstrated a short-term chronic toxicity gradient for elutriates from the 20-cm core sediments, in general agreement both with the expected contamination gradient and with results of the Microtox® solid-phase test. Elutriates of the core-top 5-cm sediments revealed a totally inverted gradient, in comparison with that for the 20-cm core sediments, and the presence of a "hot spot" of contamination in the site chosen as a possible reference. Investigations on ammonia and sulphides as possible confounding factors excluded their contribution to this "hot spot". Integrated physico-chemical and toxicity results on sediments at various depths demonstrated the presence of disturbed sediments in the central basin of the Lagoon of Venice.
Deep Chandra study of the truncated cool core of the Ophiuchus cluster
NASA Astrophysics Data System (ADS)
Werner, N.; Zhuravleva, I.; Canning, R. E. A.; Allen, S. W.; King, A. L.; Sanders, J. S.; Simionescu, A.; Taylor, G. B.; Morris, R. G.; Fabian, A. C.
2016-08-01
We present the results of a deep Chandra observation of the Ophiuchus cluster, the second brightest galaxy cluster in the X-ray sky. The cluster hosts a truncated cool core, with a temperature increasing from kT ˜ 1 keV in the core to kT ˜ 9 keV at r ˜ 30 kpc. Beyond r ˜ 30 kpc, the intracluster medium (ICM) appears remarkably isothermal. The core is dynamically disturbed with multiple sloshing-induced cold fronts, with indications for both Rayleigh-Taylor and Kelvin-Helmholtz instabilities. The residual image reveals a likely subcluster south of the core at the projected distance of r ˜ 280 kpc. The cluster also harbours a likely radio phoenix, a source revived by adiabatic compression by gas motions in the ICM. Even though the Ophiuchus cluster is strongly dynamically active, the amplitude of density fluctuations outside of the cooling core is low, indicating velocities smaller than ˜100 km s-1. The density fluctuations might be damped by thermal conduction in the hot and remarkably isothermal ICM, resulting in our underestimate of gas velocities. We find a surprising, sharp surface brightness discontinuity, that is curved away from the core, at r ˜ 120 kpc to the south-east of the cluster centre. We conclude that this feature is most likely due to gas dynamics associated with a merger. The cooling core lacks any observable X-ray cavities and the active galactic nucleus (AGN) only displays weak, point-like radio emission, lacking lobes or jets. The lack of strong AGN activity may be due to the bulk of the cooling taking place offset from the central supermassive black hole.
The WIYN Open Cluster Study: A 15-Year Report
NASA Astrophysics Data System (ADS)
Mathieu, Robert D.; WOCS Collaboration
2013-06-01
The WIYN 3.5m telescope combines large aperture, wide field of view and superb image quality. The WIYN consortium includes investigators in numerous areas of open cluster research. The combination spawned the WIYN Open Cluster Study (WOCS) over a decade ago, with the goals of producing 1) comprehensive photometric, astrometric and spectroscopic data for new fundamental open clusters and 2) addressing key astrophysical problems with these data. The set of core WOCS open clusters spans age and metallicity. Low reddening, solar proximity and richness were also desirable features in selecting core open clusters. More than 50 WIYN Open Cluster Study papers have been published in refereed journals. Highlights include: deep and wide-field photometry of NGC 188, NGC 2168 (M35), and NGC 6819 (WOCS I, II, XI and LII); deep and wide-field proper-motion studies of the old open clusters NGC 188, NGC 2682 (M67) and NGC 6791 (WOCS XVII, XXXIII and XLVI); comprehensive radial-velocity surveys of NGC 188, NGC 2168 and NGC 6819 (WOCS XXXII, XXIV, and XXXVIII); metallicity and lithium abundances in NGC 2168 (WOCS V); comprehensive definition of the hard-binary populations of NGC 188 and NGC 2168 (WOCS XXII and XLVIII); rotation period distributions in NGC 1039 (M34) and NGC 2168 (WOCS XXXV, XLIII, and XLV); study of chromospheric activity in NGC 2682 (WOCS XVIII); photometric variability surveys in NGC 188 and NGC 2682 (IX and XV); new Bayesian techniques for determination of cluster parameters (WOCS XXIII); a new infrared age-diagnostic for open clusters (WOCS XL); theoretical studies of stellar rotation (WOCS XIII and XIV); sophisticated N-body simulations of NGC 188 (WOCS LI); and the discovery of a high binary frequency and white dwarf companions among NGC 188 blue stragglers. While the WIYN 3.5m telescope remains at its heart, today the WIYN Open Cluster Study collaboration extends beyond both the WIYN observatory and consortium, and continues as a vital and productive exploration into these fundamental stellar systems. Publication list can be found at http://www.astro.ufl.edu ata/wocs/pubs.html. The WIYN Open Cluster Study has been continuously supported by grants from the National Science Foundation.
Allan Hills Pleistocene Ice Project (PIP)
NASA Astrophysics Data System (ADS)
Kurbatov, A.; Brook, E.; Campbell, S. W.; Conway, H.; Dunbar, N. W.; Higgins, J. A.; Iverson, N. A.; Kehrl, L. M.; McIntosh, W. C.; Spaulding, N. E.; Yan, Y.; Mayewski, P. A.
2016-12-01
A major international effort to identify at least 1.5 Ma old ice for paleoclimate reconstructions has successfully resulted in the selection of several potential drill sites in East Antarctica. At this point it is indisputable that the Antarctic ice sheet captures a continuous envinronmental record of the Earth that spans the Mid Pleistocene Transition (MPT). In addition to traditional ice coring approaches, the oldest ice can also be recovered in Antarctic Blue Ice Areas (BIA). We have already successfully demonstrated that the Allan Hills (AH) BIA captures a regional climate signal and robust record of 1Ma atmosphere that can be studied with a relatively uncomplicated logistical imprint and essentially unlimited sampling volume. The attractiveness of unlimited sampling of known age ice is the basis for the "ice park" concept proposed earlier by our research team. The idea is that, once the age of ice exposed along the flow line at the surface of BIA is mapped, it could be sampled for numerous research projects as needed. Here we propose an intermediate ( 1,150 m deep) ice core drill site, located only 240 km away from McMurdo base that will help to develop a, continuous, high quality regional paleoclimate record that is at least 1Ma old. We will introduce and discuss the glaciological settings, paleoclimate signals and possible limitations and advantages of the 1 Ma AH BIA regional paleoclimate record. The research was funded by NSF Division of Polar Programs.
NASA Astrophysics Data System (ADS)
Stern, J.; Lisiecki, L. E.
2011-12-01
Isotopic and compositional studies of marine sediment cores provide a wealth of insight into past and present climate processes, but accurately dating these records remains problematic. Age models developed by correlation of marine isotope stages in benthic foraminiferal δ18O are limited by the degree to which similarity in the timing and character of the records can be assumed. Skinner and Shackleton (2005) demonstrated that the marine isotope stage (MIS) 2/1 boundary in benthic foraminiferal δ18O occurred ~4,000 yr later at a deep equatorial Pacific site compared to a deep North Atlantic site due to diachronous changes in deep water temperature and local hydrography during the deglaciation. To further investigate the extent of potential differences at both orbital and millennial timescales, we compare stacks of benthic foraminiferal δ18O for the intermediate Atlantic, deep Atlantic, intermediate Indo-Pacific, and deep Indo-Pacific. The four stacks were generated by averaging together 40, 153, 30, and 75 individual records, respectively. Unique age models for each of the four stacks from 0-45 ka are based on a total of >1,200 radiocarbon dates from planktonic foraminfera in a subset of the cores used for the stacks. We discuss the relative timing of major events during Termination I in the four stacks, including a prominent reversal ~13-15 ka in the intermediate Atlantic. We also compare the expression of millennial-scale climate change associated with Heinrich Event 4 in the four stacks.
NASA Astrophysics Data System (ADS)
Umling, N. E.; Thunell, R.
2016-12-01
Rapid decreases in glacial deep water reservoir ages have been observed in the Eastern Equatorial Pacific (EEP; this study), North Pacific (Rae et al., 2014), Southwest Pacific (Sikes et al., 2016), and North Atlantic (Skinner et al., 2013). It has been hypothesized that release of a deep ocean 14C-depleted, respired-carbon reservoir to the surface ocean and atmosphere is the most likely mechanism for the observed increases in atmospheric CO2 concentrations recorded in ice cores during the last glacial-interglacial transition (Broecker and Barker, 2007). This study examines whether oxygenation, organic carbon flux, and carbonate chemistry in the EEP deep-waters reflect an increase in respired carbon associated with recorded 14C-depletions using isotopic and trace element records from three Panama Basin cores (2,650-3,200 m water-depth). An increase in glacial deep-water respired carbon storage would result in a shift of DIC speciation towards lower carbonate ion concentrations along with deoxygenation of bottom waters. Specifically, we use the boron to calcium (B/Ca) and uranium to calcium (U/Ca) ratios of the benthic foraminifera Cibicidoides wuellerstorfi to reconstruct deep-water carbonate ion concentration (Yu and Elderfield, 2007; Raizsch et al., 2011). Additionally, bottom water oxygenation is estimated from the difference in δ13C of benthic foraminifera living in pore waters at the anoxic boundary and of those living in bottom water (Δ δ13C; Hoogakker et al., 2015, 2016), while carbon flux was assessed from the U/Ca and Cd/Ca of foraminiferal authigenic coatings.
NASA Astrophysics Data System (ADS)
Cohen, A.; Campisano, C.; Arrowsmith, R.; Asrat, A.; Behrensmeyer, A. K.; Deino, A.; Feibel, C.; Hill, A.; Johnson, R.; Kingston, J.; Lamb, H.; Lowenstein, T.; Noren, A.; Olago, D.; Owen, R. B.; Potts, R.; Reed, K.; Renaut, R.; Schäbitz, F.; Tiercelin, J.-J.; Trauth, M. H.; Wynn, J.; Ivory, S.; Brady, K.; O'Grady, R.; Rodysill, J.; Githiri, J.; Russell, J.; Foerster, V.; Dommain, R.; Rucina, S.; Deocampo, D.; Russell, J.; Billingsley, A.; Beck, C.; Dorenbeck, G.; Dullo, L.; Feary, D.; Garello, D.; Gromig, R.; Johnson, T.; Junginger, A.; Karanja, M.; Kimburi, E.; Mbuthia, A.; McCartney, T.; McNulty, E.; Muiruri, V.; Nambiro, E.; Negash, E. W.; Njagi, D.; Wilson, J. N.; Rabideaux, N.; Raub, T.; Sier, M. J.; Smith, P.; Urban, J.; Warren, M.; Yadeta, M.; Yost, C.; Zinaye, B.
2016-02-01
The role that climate and environmental history may have played in influencing human evolution has been the focus of considerable interest and controversy among paleoanthropologists for decades. Prior attempts to understand the environmental history side of this equation have centered around the study of outcrop sediments and fossils adjacent to where fossil hominins (ancestors or close relatives of modern humans) are found, or from the study of deep sea drill cores. However, outcrop sediments are often highly weathered and thus are unsuitable for some types of paleoclimatic records, and deep sea core records come from long distances away from the actual fossil and stone tool remains. The Hominin Sites and Paleolakes Drilling Project (HSPDP) was developed to address these issues. The project has focused its efforts on the eastern African Rift Valley, where much of the evidence for early hominins has been recovered. We have collected about 2 km of sediment drill core from six basins in Kenya and Ethiopia, in lake deposits immediately adjacent to important fossil hominin and archaeological sites. Collectively these cores cover in time many of the key transitions and critical intervals in human evolutionary history over the last 4 Ma, such as the earliest stone tools, the origin of our own genus Homo, and the earliest anatomically modern Homo sapiens. Here we document the initial field, physical property, and core description results of the 2012-2014 HSPDP coring campaign.
NASA Astrophysics Data System (ADS)
Rosat, S.; Lambert, S. B.; Gattano, C.; Calvo, M.
2017-01-01
Geophysical parameters of the deep Earth's interior can be evaluated through the resonance effects associated with the core and inner-core wobbles on the forced nutations of the Earth's figure axis, as observed by very long baseline interferometry (VLBI), or on the diurnal tidal waves, retrieved from the time-varying surface gravity recorded by superconducting gravimeters (SGs). In this paper, we inverse for the rotational mode parameters from both techniques to retrieve geophysical parameters of the deep Earth. We analyse surface gravity data from 15 SG stations and VLBI delays accumulated over the last 35 yr. We show existing correlations between several basic Earth parameters and then decide to inverse for the rotational modes parameters. We employ a Bayesian inversion based on the Metropolis-Hastings algorithm with a Markov-chain Monte Carlo method. We obtain estimates of the free core nutation resonant period and quality factor that are consistent for both techniques. We also attempt an inversion for the free inner-core nutation (FICN) resonant period from gravity data. The most probable solution gives a period close to the annual prograde term (or S1 tide). However the 95 per cent confidence interval extends the possible values between roughly 28 and 725 d for gravity, and from 362 to 414 d from nutation data, depending on the prior bounds. The precisions of the estimated long-period nutation and respective small diurnal tidal constituents are hence not accurate enough for a correct determination of the FICN complex frequency.
NASA Astrophysics Data System (ADS)
Ahm, Anne-Sofie C.; Bjerrum, Christian J.; Hammarlund, Emma U.
2017-02-01
The Late Ordovician stratigraphic record integrates glacio-eustatic processes, water-column redox conditions and carbon cycle dynamics. This complex stratigraphic record, however, is dominated by deposits from epeiric seas that are susceptible to local physical and chemical processes decoupled from the open ocean. This study contributes a unique deep water basinal perspective to the Late Ordovician (Hirnantian) glacial record and the perturbations in seawater chemistry that may have contributed to the Hirnantian mass extinction event. We analyze recently drilled cores and outcrop samples from the upper Vinini Formation in central Nevada and report combined trace- and major element geochemistry, Fe speciation (FePy /FeHR and FeHR /FeT), and stable isotope chemostratigraphy (δ13COrg and δ34SPy). Measurements of paired samples from outcrop and core reveal that reactive Fe is preserved mainly as pyrite in core samples, while outcrop samples have been significantly altered as pyrite has been oxidized and remobilized by modern weathering processes. Fe speciation in the more pristine core samples indicates persistent deep water anoxia, at least locally through the Late Ordovician, in contrast to the prevailing interpretation of increased Hirnantian water column oxygenation in shallower environments. Deep water redox conditions were likely decoupled from shallower environments by a basinal shift in organic matter export driven by decreasing rates of organic matter degradation and decreasing shelf areas. The variable magnitude in the record of the Hirnantian carbon isotope excursion may be explained by this increased storage of isotopically light carbon in the deep ocean which, in combination with increased glacio-eustatic restriction, would strengthen lateral- and vertical gradients in seawater chemistry. We adopt multivariate statistical methods to deconstruct the spatial and temporal re-organization of seawater chemistry during the Hirnantian glaciation and attempt to isolate the latent magnitude and global perturbation in the carbon cycle. We speculate, using a two component mixing model and residual estimates from principal component analysis, that the secular open ocean Hirnantian C isotope excursion possibly amounts to only ∼ +1.5‰. Such an increase could be mechanistically driven by the combination of sea-level fall, persistent deep water anoxia, and cooler glacial temperatures that increased the organic carbon burial efficiency in the deeper basins.
Seismic stratigraphy of the Heuksan mud belt in the southeastern Yellow Sea, Korea
NASA Astrophysics Data System (ADS)
Lee, Gwang-Soo; Yoo, Dong Geun; Bae, Sung Ho; Min, Gun-Hong; Kim, Seong-Pil; Choi, Hunsoo
2015-12-01
To establish the seismic stratigraphy of the Heuksan mud belt (HMB) and reconstruct its depositional history, approximately 1,600 km of high-resolution seismic data were newly obtained using chirp acoustic sub-bottom profiler, sparker, and air-gun seismic systems. Based on seismic stratigraphic analysis, the HMB can be divided into three major seismic units (I, II, and III, from top to bottom) and four subunits (II-a, II-b, III-a, and III-b) overlying transgressive sands, pre-last glacial maximum (LGM) deposits, and the acoustic basement. Each unit and subunit show different seismic facies and geometry, being clearly separated from each other by bounding surfaces formed since the LGM. The spatial distribution, thicknesses and volumes of the seismic units were determined and plotted to document the sequential formation of the HMB. The correlation between deep drill core data (HMB-101, HMB-102, HMB-103, YSDP-101, and YSDP-102) and the seismic data suggests that subunits III-b and III-a were formed by the continuous accumulation of fine-grained sediment with partial sandy sediment in an estuarine/deltaic environment during the early to middle transgressive stage, accompanied by landward migration of the shoreline. Subunits II-b and II-a were probably formed by re-deposition of large volumes of sediment eroded from unit III during the middle transgressive to early highstand stage. Unit I is interpreted as the most recent mud deposit representing the highstand systems tract when sea-level rise terminated. The careful definition of seismic units and their interpretation proposed in this study, on the basis of the large and partly new seismic dataset covering the entire HMB together with deep drill core data, have been instrumental in reconstructing the depositional environment and formation mechanisms of the HMB.
NASA Astrophysics Data System (ADS)
Bernhardt, Anne; Hebbeln, Dierk; Regenberg, Marcus; Lückge, Andreas; Strecker, Manfred. R.
2016-04-01
Understanding the links between terrigenous sediment supply and marine transport and depositional processes along tectonically active margins is essential to decipher turbidite successions as potential archives of climatic and seismic forcings and to comprehend timing and quantity of marine clastic deposition. Sequence stratigraphic models predict coarse-grained terrigenous sediment delivery to deep-marine sites mainly during sea-level fall and lowstand. Marine clastic deposition during periods of transgression and highstand has been attributed to the continued geomorphic connectivity between terrestrial sediment sources and marine sinks (e.g., rivers connected to submarine canyons) often facilitated by narrow shelves, high sediment supply causing delta migration to the shelf edge, and/or abrupt increases in sediment supply due to climatic variability or catastrophic events. To decipher the controls on Holocene highstand turbidite deposition, we analyzed twelve sediment cores of spatially disparate, coeval Holocene turbidite systems along the Chile margin (29-40°S) with changing climatic and geomorphic characteristics but uniform changes of sea level. Intraslope basins in north-central Chile (29-33°S) offshore a narrow to absent shelf record a shut-off of turbidite activity during the Holocene. In contrast, core sites in south-central Chile (36-40°S) offshore a wide continental shelf have repeatedly experienced turbidite deposition during sea-level highstand conditions, even though most of the depocenters are not connected via canyons to sediment sources. The interplay of stable high sediment supply related to strong onshore precipitation in combination with a wide shelf, over which undercurrents move sediment towards the shelf edge, appears to control Holocene turbidite sedimentation and sediment export to the deep sea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haase, C.S.; Walls, E.C.; Farmer, C.D.
1985-06-01
To resolve long-standing problems with the stratigraphy of the Conasauga Group and the Rome Formation on the Copper Creek fault block near Oak Ridge National Laboratory (ORNL), an 828.5-m-deep test borehole was drilled. Continuous rock core was recovered from the 17.7- to 828.5-m-deep interval; temperature, caliper, neutron, gamma-ray, and acoustic (velocity and televiewer) logs were obtained. The Conasauga Group at the study site is 572.4 m thick and comprises six formations that are - in descending stratigraphic order - Maynardville Limestone (98.8 m), Nolichucky Shale (167.9 m), Maryville Limestone (141.1 m), Rogersville Shale (39.6 m), Rutledge Limestone (30.8 m), andmore » Pumpkin Valley Shale (94.2 m). The formations are lithologically complex, ranging from clastics that consist of shales, mudstones, and siltstones to carbonates that consist of micrites, wackestones, packstones, and conglomerates. The Rome Formation is 188.1 m thick and consists of variably bedded mudstones, siltstones, and sandstones. The Rome Formation thickness represents 88.1 m of relatively undeformed section and 100.0 m of highly deformed, jumbled, and partially repeated section. The bottom of the Rome Formation is marked by a tectonic disconformity that occurs within a 46-m-thick, intensely deformed interval caused by motion along the Copper Creek fault. Results from this study establish the stratigraphy and the lithology of the Conasauga Group and the Rome Formation near ORNL and, for the first time, allow for the unambiguous correlation of cores and geophysical logs from boreholes elsewhere in the ORNL vicinity. 45 refs., 26 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Ómar Friðleifsson, Guðmundur; Elders, Wilfred A.; Zierenberg, Robert; Steafánsson, Ari; Sigurðsson, Ómar; Gíslason, Þór; Weisenberger, Tobias B.; Harðarson, Björn S.; Mesfin, Kiflom G.
2017-04-01
The Iceland Deep Drilling Project (IDDP) is exploring the technical and economic feasibility of producing supercritical geothermal resources. The IDDP-2 well is located in the Reykjanes saline geothermal system in SW Iceland, on the landward extension of the Mid-Atlantic Ridge, where we are probing the analog of the root zone of a black smoker. In 2009, Phase 1 of the IDDP was unsuccessful in reaching supercritical conditions in the Krafla volcanic caldera in NE Iceland, when the IDDP-1 drill hole unexpectedly encountered 900°C rhyolite magma at only 2.1 km depth. The completed well produced superheated steam with a well head temperature of 453°C with an enthalpy and flow rate sufficient to generate 35 MWe. Drilling the IDDP-2 began by deepening an existing 2.5 km deep production well (RN-15) to 3 km depth, casing it to 2941m depth and drilling it to 4626m. Total circulation losses which were encountered below 3 km depth, could not be cured by LCM and multiple cement jobs. Accordingly, drilling continued "blind" to total depth, without return of drill cuttings. We attempted 12 core runs below 3 km depth, half of which recovered some core. The cores are basalts and dolerites with alteration ranging from upper greenschist facies to amphibolite facies, suggesting formation temperatures >450°C. After a final report from the on-site science team, expected mid-year 2017, detailed petrological, petrophysical, and geochemical analyses of cores will be undertaken by the IDDP science team and collaborators and published in a special issue of a main-stream scientific journal. The drilling of the IDDP-2 was funded by the field operator HS Orka, and by Statoil, and the IDDP industry consortium. The coring was funded by ICDP and the science program of the IDDP. Deepening the RN-15 began 11th August 2016, and was completed to 4626m, 17th December 2016. A perforated liner was inserted to 4,571m and the well subsequently logged for temperature, pressure and injectivity, after 6 days partial heating-up. The injectivity index proved to be 1.7 (kg/s)/bar. Supercritical conditions were measured at the bottom, 427°C at 340 bar pressure. The T-log showed the main permeable zones to be at around 3360m, 4200m, 4370m and 4550m depth. Estimates suggest that 30% of 40 L/s injected into the well are received by the three deepest feed zones. This can possibly be enhanced by massive soft stimulation, which is a part of the DEEPEGS plan to be executed later this year. The DEEPEGS project is a demonstration project, supported by the European Commission, Horizon 2020. The goal is to demonstrate the feasibility of enhanced geothermal systems (EGS) for delivering energy from renewable resources in Europe. It is a four-year project coordinated by HS Orka, Iceland, in cooperation with partners from Iceland, France, Germany, Italy, and Norway. The project will demonstrate advanced technologies in three types of geothermal reservoirs, (i) in high enthalpy resource beneath existing hydrothermal field at Reykjanes with temperature up to 550°C, and (ii) in two very deep hydrothermal reservoirs in France with temperatures up to 220°C.
NASA Astrophysics Data System (ADS)
Ojakangas, Richard W.; Dickas, Albert B.
2002-03-01
The Midcontinent Rift System (MRS) of central North America is a 1.1-Ga, 2500-km long structural feature that has been interpreted as a triple-junction rift developed over a mantle plume. As much as 20 km of subaerial lava flows, mainly flood basalts, are overlain by as much as 10 km of sedimentary rocks that are mostly continental fluvial red beds. This rock sequence, known as the Keweenawan Supergroup, has been penetrated by a few deep boreholes in the search for petroleum. In this paper, two deep boreholes in the Upper Peninsula of Michigan are described in detail for the first time. Both the Amoco Production #1-29R test, herein referred to as the St. Amour well, and the nearby Hickey Creek well drilled by Cleveland Cliffs Mining Services, were 100% cored. The former is 7238 ft (2410 m) deep and the latter is 5345 ft (1780 m) deep. The entirety of the stratigraphic succession of the Hickey Creek core correlates very well with the upper portion of the St. Amour core, as determined by core description and point-counting of 43 thin sections selected out of 100 studied thin sections. Two Lower Paleozoic units and two Keweenawan red bed units—the Jacobsville Sandstone and the underlying Freda Sandstone—are described. The Jacobsville is largely a feldspatholithic sandstone and the Freda is largely a lithofeldspathic sandstone. Below the Freda, the remaining footage of the St. Amour core consists of a thick quartzose sandstone unit that overlies a heterogenous unit of intercalated red bed units of conglomerate, sandstone, siltstone, and shale; black shale; individual basalt flows; and a basal ignimbritic rhyolite. This lower portion of the St. Amour core presents an enigma, as it correlates very poorly with other key boreholes located to the west and southwest. While a black shale sequence is similar to the petroleum-bearing Nonesuch Formation farther west, there is no conglomerate unit to correlate with the Copper Harbor Conglomerate. Other key boreholes are distributed over a 1300-km distance along the better known southwest arm of the triple-junction MRS, and can be correlated rather well with the units that are exposed in the Lake Superior region. However, a definitive explanation of the anomalous, deeper St. Amour stratigraphy is elusive and any explanation is tenuous. A possible explanation for this anomalous stratigraphy may be the geographic proximity of the St. Amour borehole to the Keweenawan Hot Spot (mantle plume), the suggested thermal force behind the development of the MRS. Similarly, a drastic change in structural architecture may be explained by this geographic relationship. Thus, within the locale of this rifting center, complexities of expansion tectonics may well be responsible for igneous and sedimentary sequences that differ considerably from those found farther west along the rift arm.
NASA Astrophysics Data System (ADS)
Landais, Amaelle; Casado, Mathieu; Prié, Frédéric; Magand, Olivier; Arnaud, Laurent; Ekaykin, Alexey; Petit, Jean-Robert; Picard, Ghislain; Fily, Michel; Minster, Bénédicte; Touzeau, Alexandra; Goursaud, Sentia; Masson-Delmotte, Valérie; Jouzel, Jean; Orsi, Anaïs
2017-07-01
Polar ice cores are unique climate archives. Indeed, most of them have a continuous stratigraphy and present high temporal resolution of many climate variables in a single archive. While water isotopic records (δD or δ18O) in ice cores are often taken as references for past atmospheric temperature variations, their relationship to temperature is associated with a large uncertainty. Several reasons are invoked to explain the limitation of such an approach; in particular, post-deposition effects are important in East Antarctica because of the low accumulation rates. The strong influence of post-deposition processes highlights the need for surface polar research programs in addition to deep drilling programs. We present here new results on water isotopes from several recent surface programs, mostly over East Antarctica. Together with previously published data, the new data presented in this study have several implications for the climatic reconstructions based on ice core isotopic data: (1) The spatial relationship between surface mean temperature and mean snow isotopic composition over the first meters in depth can be explained quite straightforwardly using simple isotopic models tuned to d-excess vs. δ18O evolution in transects on the East Antarctic sector. The observed spatial slopes are significantly higher (∼ 0.7-0.8‰·°C-1 for δ18O vs. temperature) than seasonal slopes inferred from precipitation data at Vostok and Dome C (0.35 to 0.46‰·°C-1). We explain these differences by changes in condensation versus surface temperature between summer and winter in the central East Antarctic plateau, where the inversion layer vanishes in summer. (2) Post-deposition effects linked to exchanges between the snow surface and the atmospheric water vapor lead to an evolution of δ18O in the surface snow, even in the absence of any precipitation event. This evolution preserves the positive correlation between the δ18O of snow and surface temperature, but is associated with a much slower δ18O-vs-temperature slope than the slope observed in the seasonal precipitation. (3) Post-deposition effects clearly limit the archiving of high-resolution (seasonal) climatic variability in the polar snow, but we suggest that sites with an accumulation rate of the order of 40 kg.m-2.yr-1 may record a seasonal cycle at shallow depths.
NASA Astrophysics Data System (ADS)
Brambati, A.; Bonaccorsi, R.; Quaia, T.; Busetti, M.
2003-12-01
Ice-proximal glacial marine sediments from the Antarctic continental margin retain ice rafting events as proxy record for change in the volume and extension of the Antarctic ice sheet throughout glacial-interglacial cycles. However, the sedimentary sequences from the Ross Sea continental margin remain relatively poorly understood and most research has been focused mainly on continental shelf sequences during the last past decades. We present a data set (i.e., X-ray lithology, Multi Sensor Core Logger physical data, and preservation of biogenic carbonates), obtained from six deep-sea cores (1991-1999 Italian Antarctic Research Programme, PNRA - Summer cruises). Specifically, the cores were collected from a) the central Eastern sector (i.e., Core ANTA95-89C, depth: 2056 m, length: 401 cm and Core ANTA99-c22, depth: 2650 m, length: 851 cm); b) the central Western sector (i.e., Core ANTA99-c23; water depth: 2158 m, length: 548 cm; and ANTA99-c24, water depth: 2750 m, length: 811 cm); and c) the North Western sector (i.e., Core ANTA91-08C, and ANTA91-02C) of the Ross Sea Continental slope. Well-preserved calcareous foraminifers (N. pachyderma, sx) in coarse-grained IRD materials sparsely occur and/or are concentrated in discrete layers (i.e., up to 22 cm-thick) of at least three cores (i.e., Cores ANTA91-08, ANTA91-02, and ANTA95-89C, e.g., at 217-238 cm-depth). Some carbonate layers were deposited during a period of time bracketing Stage3/Stage2. In Core 89C foraminifers are associated to multiple ice rafting episodes and likely occurred with oceanographic changes in the properties of slope water masses. The search of well-preserved, in situ-deposited, polar carbonates is demanded for a reliable C-14 AMS dating of late Pleistocene events in the Ross Sea.
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart; Zacny, Kris; Paulsen, Gale L; Beegle, Luther; Bao, Xiaoqi
2012-01-01
The ability to penetrate subsurfaces and perform sample acquisition at depths of meters is critical for future NASA in-situ exploration missions to bodies in the solar system, including Mars and Europa. A corer/sampler was developed with the goal of acquiring pristine samples by reaching depths on Mars beyond the oxidized and sterilized zone. To developed rotary-hammering coring drill, called Auto-Gopher, employs a piezoelectric actuated percussive mechanism for breaking formations and an electric motor rotates the bit to remove the powdered cuttings. This sampler is a wireline mechanism that is incorporated with an inchworm mechanism allowing thru cyclic coring and core removal to reach great depths. The penetration rate is being optimized by simultaneously activating the percussive and rotary motions of the Auto-Gopher. The percussive mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) mechanism that is driven by piezoelectric stack and that was demonstrated to require low axial preload. The Auto-Gopher has been produced taking into account the a lessons learned from the development of the Ultrasonic/Sonic Gopher that was designed as a percussive ice drill and was demonstrated in Antarctica in 2005 to reach about 2 meters deep. A field demonstration of the Auto-Gopher is currently being planned with objective of reaching as deep as 3 to 5 meters in tufa subsurface.
Deep-Earth Equilibration between Molten Iron and Solid Silicates
NASA Astrophysics Data System (ADS)
Brennan, M.; Zurkowski, C. C.; Chidester, B.; Campbell, A.
2017-12-01
Elemental partitioning between iron-rich metals and silicate minerals influences the properties of Earth's deep interior, and is ultimately responsible for the nature of the core-mantle boundary. These interactions between molten iron and solid silicates were influential during planetary accretion, and persist today between the mantle and liquid outer core. Here we report the results of diamond anvil cell experiments at lower mantle conditions (40 GPa, >2500 K) aimed at examining systems containing a mixture of metals (iron or Fe-16Si alloy) and silicates (peridotite). The experiments were conducted at pressure-temperature conditions above the metallic liquidus but below the silicate solidus, and the recovered samples were analyzed by FIB/SEM with EDS to record the compositions of the coexisting phases. Each sample formed a three-phase equilibrium between bridgmanite, Fe-rich metallic melt, and an oxide. In one experiment, using pure Fe, the quenched metal contained 6 weight percent O, and the coexisting oxide was ferropericlase. The second experiment, using Fe-Si alloy, was highly reducing; its metal contained 10 wt% Si, and the coexisting mineral was stishovite. The distinct mineralogies of the two experiments derived from their different starting metals. These results imply that metallic composition is an important factor in determining the products of mixed phase iron-silicate reactions. The properties of deep-Earth interfaces such as the core-mantle boundary could be strongly affected by their metallic components.
NASA Astrophysics Data System (ADS)
Abratis, Michael; Methe, Pascal; Aehnelt, Michaela; Kunkel, Cindy; Beyer, Daniel; Kukowski, Nina; Totsche, Kai Uwe
2014-05-01
Deep drilling of the central Thuringian Syncline was carried out in order to gather substantial knowledge of subsurface fluid dynamics and fluid rock interaction within a sedimentary basin. The final depth of the borehole was successfully reached at 1179 m, just a few meters above the Buntsandstein - Zechstein boundary. One of the aspects of the scientific drilling was obtaining sample material from different stratigraphic units for insights in genesis, rock properties and fluid-rock interactions. Parts of the section were cored whereas cuttings provide record of the remaining units. Coring was conducted in aquifers and their surrounding aquitards, i.e. parts of the Upper Muschelkalk (Trochitenkalk), the Middle Muschelkalk, the Upper Buntsandstein (Pelitrot and Salinarrot) and the Middle Buntsandstein. In advance and in cooperation with the GFZ Potsdam team "Scientific Drilling" core handling was discussed and a workflow was developed to ensure efficient and appropriate processing of the valuable core material and related data. Core curation including cleaning, fitting, marking, measuring, cutting, boxing, photographing and unrolled scanning using a DMT core scanner was carried out on the drilling site in Erfurt. Due care was exercised on samples for microbiological analyses. These delicate samples were immediately cut when leaving the core tube and stored within a cooling box at -78°C. Special software for data input was used developed by smartcube GmbH. Advantages of this drilling information system (DIS) are the compatibility with formats of international drilling projects from the IODP and ICDP drilling programs and thus options for exchanges with the international data bases. In a following step, the drill cores were brought to the national core repository of the BGR in Berlin Spandau where the cores were logged for their physical rock properties using a GeoTek multi sensor core logger (MSCL). After splitting the cores into a working and archive half, the cores were scanned for compositional variations using an XRF core scanner at the BGR lab and scan images of the slabbed surfaces were performed. The average core recovery rate was very high at nearly 100%. Altogether, we gained 533 m of excellent core material including sandstones, siltstones and claystones, carbonates, sulfates and chlorides. This provides valuable insight into the stratigraphic column of the Thuringian Syncline.
NASA Astrophysics Data System (ADS)
Gazel, E.; Madrigal, P.; Flores, K. E.; Bizimis, M.; Jicha, B. R.
2016-12-01
Global tomography and numerical models suggest that mantle plume occurrences are closely linked to the margins of the large low shear velocity provinces (LLSVPs). In these locations the ascent of material from the core-mantle boundary connects the deep Earth with surface processes through mantle plume activity, forming large igneous provinces (LIPs) and some of the modern hotspot volcanoes. Petrological and geodynamic evidence suggest a link between the formation of oceanic plateaus and the interactions of mantle plumes and mid-ocean ridges (MOR). Therefore, it is possible to trace the potential interactions between MORs and deep mantle plume upwellings by referencing the tectonic and magmatic evolution of the Pacific Plate in time to the current location of the LLSVP, considering the long-lived ( 500 Ma) existence of these thermochemical anomalies. We identified episodic upwellings of the Pacific LLSVP during the Mesozoic separated by 10 to 20 Ma, by reconstructing the kinematic evolution of the Pacific Plate in the last 170 Ma. The fact that the bulk emplacement of LIPs ( 120-80 Ma) in the Pacific coincides with the timing of the Cretaceous Normal Superchron, that can be related to fluctuations of mantle-core heat fluxes further supports the hypothesis of deep mantle origin for LIPs. The potential cyclicity of LIP emplacement could be tied to core heat fluctuations interacting with the lower mantle, the rheology contrast of material crossing the transition zone (either upwelling hot material or downgoing dense slabs as mantle avalanches), the rate of entrainment of recycled materials, or a combination of the processes mentioned. Recognizing patterns and possible cycles is crucial to the link between deep processes and life as these pulses impacted the marine biota resulting in episodes of anoxia and mass extinctions shortly after their eruption.
Deep HST Imaging In 47 Tuc And NGC 6397: Helium-core White Dwarfs In The Core Of NGC 6397
NASA Astrophysics Data System (ADS)
Goldsbury, Ryan; Woodley, K.; Anderson, J.; Dotter, A.; Fahlman, G.; Hansen, B.; Hurley, J.; Kalirai, J.; King, I.; Rich, R. M.; Richer, H.; Shara, M.; Stetson, P.; Zurek, D.
2011-01-01
We present a detailed analysis of a population of helium-core white dwarfs in the core of the Galactic globular cluster NGC 6397. We analyze the radial distribution of these objects compared to the distributions of various other populations of known mass within the this cluster. From this comparison we are able to determine the average mass of the helium-core white dwarfs and their possible binary companions. We find that their distribution is inconsistent with the expected mass range of low-mass white dwarfs, but may be explained by the presence of massive companions to these objects. We also analyze the spectral energy distributions of the He-core white dwarfs to place constraints on the nature of their unresolved partners.
Mangi, Stephen C; Kenny, Andrew; Readdy, Lisa; Posen, Paulette; Ribeiro-Santos, Ana; Neat, Francis C; Burns, Finlay
2016-08-15
Economic impact assessment methodology was applied to UK fisheries data to better understand the implications of European Commission proposal for regulations to fishing for deep-sea stocks in the North-East Atlantic (EC COM 371 Final 2012) under the Common Fisheries Policy (CFP). The aim was to inform the on-going debate to develop the EC proposal, and to assist the UK fishing industry and Government in evaluating the most effective options to manage deep sea fish stocks. Results indicate that enforcing the EC proposal as originally drafted results in a number of implications for the UK fleet. Because of the proposed changes to the list of species defined as being deep sea species, and a new definition of what constitutes a vessel targeting deep sea species, a total of 695 active UK fishing vessels would need a permit to fish for deep sea species. However, due to existing and capped capacity limits many vessels would potentially not be able to obtain such a permit. The economic impact of these changes from the status quo reveals that in the short term, landings would decrease by 6540 tonnes, reducing gross value added by £3.3 million. Alternative options were also assessed that provide mitigation measures to offset the impacts of the proposed regulations whilst at the same time providing more effective protection of deep sea Vulnerable Marine Ecosystems (VMEs). The options include setting a 400m depth rule that identifies a depth beyond which vessels would potentially be classified as fishing for deep sea species and designating 'core areas' for deep sea fishing at depths>400m to minimise the risk of further impacts of bottom fishing gear on deep sea habitats. Applying a 400m depth limit and 'core fishing' area approach deeper than 400m, the impact of the EC proposal would essentially be reduced to zero, that is, on average no vessels (using the status quo capacity baseline) would be impacted by the proposal. Copyright © 2016 Elsevier B.V. All rights reserved.
Papavasiliou, Evangelia Evie; Chambaere, Kenneth; Deliens, Luc; Brearley, Sarah; Payne, Sheila; Rietjens, Judith; Vander Stichele, Robert; Van den Block, Lieve
2014-06-01
Research on continuous deep sedation until death has focused on estimating prevalence and describing clinical practice across care settings. However, evidence on sedation practices by physician specialty is scarce. To compare and contrast physician-reported practices on continuous deep sedation until death between general practitioners and medical specialists. A secondary analysis drawing upon data from a large-scale, population-based, retrospective survey among physicians in Flanders, Belgium in 2007. Symptom prevalence and characteristics of sedation (drugs used, artificial nutrition and hydration administered, intentions, and decision-making) were measured. Response rate was 58.4%. The frequency of continuous deep sedation until death among all deaths was 11.3% for general practitioners and 18.4% for medical specialists. General practitioners reported significantly higher rates of severity and mean intensity of pain, delirium, dyspnea, and nausea in the last 24 h of life for sedated patients and a higher number of severe symptoms than medical specialists. No differences were found between groups in the drugs used, except in propofol, reported only by medical specialists (in 15.8% of all cases). Artificial nutrition and hydration was withheld or withdrawn in 97.2% of general practitioner and 36.2% of medical specialist cases. Explicit life-shortening intentions were reported by both groups (for 3%-4% of all cases). Continuous deep sedation until death was initiated without consent or request of either the patient or the family in 27.9% (medical specialists) and 4.7% (general practitioners) of the cases reported. Considerable variation, often largely deviating from professional guidelines, was observed in physician-reported performance and decision-making, highlighting the importance of providing clearer guidance on the specific needs of the context in which continuous deep sedation until death is to be performed. © The Author(s) 2014.
Miteva, Vanya; Burlingame, Caroline; Sowers, Todd; Brenchley, Jean
2014-08-01
Demonstrating that the detected microbial diversity in nonaseptically drilled deep ice cores is truly indigenous is challenging because of potential contamination with exogenous microbial cells. The NEEM Greenland ice core project provided a first-time opportunity to determine the origin and extent of contamination throughout drilling. We performed multiple parallel cultivation and culture-independent analyses of five decontaminated ice core samples from different depths (100-2051 m), the drilling fluid and its components Estisol and Coasol, and the drilling chips collected during drilling. We created a collection of diverse bacterial and fungal isolates (84 from the drilling fluid and its components, 45 from decontaminated ice, and 66 from drilling chips). Their categorization as contaminants or intrinsic glacial ice microorganisms was based on several criteria, including phylogenetic analyses, genomic fingerprinting, phenotypic characteristics, and presence in drilling fluid, chips, and/or ice. Firmicutes and fungi comprised the dominant group of contaminants among isolates and cloned rRNA genes. Conversely, most Proteobacteria and Actinobacteria originating from the ice were identified as intrinsic. This study provides a database of potential contaminants useful for future studies of NEEM cores and can contribute toward developing standardized protocols for contamination detection and ensuring the authenticity of the microbial diversity in deep glacial ice. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Morris, R. V.; Gose, W. A.; Lauer, H. V., Jr.
1978-01-01
Surface exposure (maturity) indices and concentrations of FeO and metallic iron were determined at 0.5-cm intervals of the Apollo 17 core section, which sampled a pyroclastic deposit on the rim of Shorty Crater. The determinations showed that all of the soil in the core is extremely immature. An exposure history of the core is proposed: accumulation (about 3.6 billion years ago), shallow burial (during the first 20 million years), deep burial (till about 10-15 million years ago), followed by excavation (10-15 million years ago), and in situ reworking (till the present).
NASA Astrophysics Data System (ADS)
Featherstone, N. A.; Aurnou, J. M.; Yadav, R. K.; Heimpel, M. H.; Soderlund, K. M.; Matsui, H.; Stanley, S.; Brown, B. P.; Glatzmaier, G.; Olson, P.; Buffett, B. A.; Hwang, L.; Kellogg, L. H.
2017-12-01
In the past three years, CIG's Dynamo Working Group has successfully ported the Rayleigh Code to the Argonne Leadership Computer Facility's Mira BG/Q device. In this poster, we present some our first results, showing simulations of 1) convection in the solar convection zone; 2) dynamo action in Earth's core and 3) convection in the jovian deep atmosphere. These simulations have made efficient use of 131 thousand cores, 131 thousand cores and 232 thousand cores, respectively, on Mira. In addition to our novel results, the joys and logistical challenges of carrying out such large runs will also be discussed.
Nonmigratory, 12-kHz, deep scattering layers of Sargasso Sea origin in warm-core rings
NASA Astrophysics Data System (ADS)
Conte, Maureen H.; Bishop, James B.; Backus, Richard H.
1986-11-01
Nonmigratory, 12-kHz, deep sound-scattering layers (NMDSLs) were entrained within Sargasso Sea-Gulf Stream waters during the formation of warm-core rings 82B and 82H. At night ring water was easily distinguished from Slope Water by the presence of these well-developed features between 200 and 550 m. The distribution of NMDSLs in 82H as a function of temperature and salinity matched Sargasso Sea distributions, indicating that Sargasso Sea water was present in the center of 82H at the time of its formation. However, the distribution of NMDSLs in the center of 82B a few weeks after its formation was more consistent with the distribution found in Gulf Stream-Sargasso Sea edge water. NMDSLs were a persistent feature of the lower thermostad and upper thermocline of 82B. Their distribution in the upper thermocline approximately paralleled the decrease in thickness of the thermostad and became shallower with increasing distance from ring center. The NMDSLs disappeared at the ring edge when the bottom of the thermostad became shallower than about 100 m. Their distribution within 30 km of ring center changed very little between April and June, whereas those found in the thermocline at greater distances from ring center showed greater dispersion with respect to temperature. Following several Gulf Stream interactions in July, the NMDSLs were significantly shallower, and lay in colder water. The continued presence of the deep NMDSLs in the thermocline, even though the latter was nearly 100 m shallower, indicates that the remaining thermocline had not been significantly exchanged with Gulf Stream or Slope Water during the interactions. The changes in the temperature of the water in which the NMDSLs were found in August suggest that core waters (30 km from ring center in June) were resorbed by the Gulf Stream and that only waters of 30 km radius remained to reform the ring. We found no evidence that the animals composing the NMDSLs adjusted their vertical distributions in response to changes in environmental properties; rather, the temporal changes we observed are best explained by the physical processes affecting ring structure. No qualitative decrease in NMDSL intensity was observed in 82B between April and August, suggesting that the sound scatterers can tolerate significant changes in depth, temperature and salinity. The gonostomatid fish Cyclothone braueri and the physonect siphonophores are possibly sources of the NMDSLs.
NASA Astrophysics Data System (ADS)
Farmer, J. R.; Hoenisch, B.; Haynes, L.; Kroon, D.; Bell, D. B.; Jung, S.; Seguí, M. J.; Raymo, M. E.; Goldstein, S. L.; Pena, L. D.
2016-12-01
Pleistocene glaciations underwent a profound transition from lower amplitude 40 kyr cycles to high amplitude 100 kyr cycles between 1.2 and 0.8 Ma, an interval termed the Mid-Pleistocene Transition (MPT). While the underlying causes of the MPT are uncertain, previous studies show quasi-contemporaneous reductions in North Atlantic Deep Water (NADW) export1 and glacial atmospheric pCO22 around 0.9 Ma. Although this suggests a possible role for enhanced deep-ocean carbon storage in amplifying climate change across the MPT, few direct records of deep ocean carbonate chemistry exist for this interval to test this hypothesis. Here we present South Atlantic benthic foraminiferal B/Ca and Cd/Ca records from International Ocean Discovery Program Sites 1088, 1264 and 1267 (2.1 to 4.3 km water depth) as part of a larger study of Atlantic-wide changes in deep ocean chemistry and circulation spanning the MPT. Results show an abrupt 15-20% decrease in benthic B/Ca and 40-50% increase in Cd/Ca at 4.3 km depth (Site 1267) between 1.0 and 0.9 Ma. Site 1088, which at 2.1 km depth is sensitive to input of southern-sourced Upper Circumpolar Deep Water, shows a prolonged 25% decrease in B/Ca and 50% increase in Cd/Ca from 1.0 to 0.6 Ma. In contrast, at Site 1264 ( 2.5 km depth within the core of modern NADW) B/Ca and Cd/Ca changes across the MPT are more modest (-5% and +10%, respectively). These observations reflect on the accumulation of regenerated carbon and nutrients in the deep South Atlantic, and varying contributions of northern- and southern-sourced watermasses to each core site. Implications for deep-ocean carbon storage and forcing of the MPT will be discussed. 1Pena, L. and Goldstein, S. (2014), Science 345, 318 2Hönisch, B. et al. (2009), Science 324, 1551
The VMC Survey. XI. Radial Stellar Population Gradients in the Galactic Globular Cluster 47 Tucanae
NASA Astrophysics Data System (ADS)
Li, Chengyuan; de Grijs, Richard; Deng, Licai; Rubele, Stefano; Wang, Chuchu; Bekki, Kenji; Cioni, Maria-Rosa L.; Clementini, Gisella; Emerson, Jim; For, Bi-Qing; Girardi, Leo; Groenewegen, Martin A. T.; Guandalini, Roald; Gullieuszik, Marco; Marconi, Marcella; Piatti, Andrés E.; Ripepi, Vincenzo; van Loon, Jacco Th.
2014-07-01
We present a deep near-infrared color-magnitude diagram of the Galactic globular cluster 47 Tucanae, obtained with the Visible and Infrared Survey Telescope for Astronomy (VISTA) as part of the VISTA near-infrared Y, J, K s survey of the Magellanic System (VMC). The cluster stars comprising both the subgiant and red giant branches exhibit apparent, continuous variations in color-magnitude space as a function of radius. Subgiant branch stars at larger radii are systematically brighter than their counterparts closer to the cluster core; similarly, red-giant-branch stars in the cluster's periphery are bluer than their more centrally located cousins. The observations can very well be described by adopting an age spread of ~0.5 Gyr as well as radial gradients in both the cluster's helium abundance (Y) and metallicity (Z), which change gradually from (Y = 0.28, Z = 0.005) in the cluster core to (Y = 0.25, Z = 0.003) in its periphery. We conclude that the cluster's inner regions host a significant fraction of second-generation stars, which decreases with increasing radius; the stellar population in the 47 Tuc periphery is well approximated by a simple stellar population.
Radial Stellar Population Gradients in the Galactic Globular Cluster 47 Tucanae
NASA Astrophysics Data System (ADS)
de Grijs, Richard; Li, Chengyuan; Deng, Licai
2015-01-01
We present a deep near-infrared color-magnitude diagram of the Galactic globular cluster 47 Tucanae, obtained with the Visible and Infrared Survey Telescope for Astronomy (VISTA) as part of the VISTA near-infrared Y, J, Ks survey of the Magellanic System (VMC). The cluster stars comprising both the subgiant and red-giant branches exhibit apparent, continuous variations in color-magnitude space as a function of radius. Subgiant-branch stars at larger radii are systematically brighter than their counterparts closer to the cluster core; similarly, red-giant-branch stars in the cluster's periphery are bluer than their more centrally located cousins. The observations can very well be described by adopting an age spread of ~0.5 Gyr as well as radial gradients in both the cluster's helium abundance (Y) and metallicity (Z), which change gradually from Y = 0.28, Z = 0.005 in the cluster core to Y = 0.25, Z = 0.003 in its periphery. We conclude that the cluster's inner regions host a significant fraction of second-generation stars, which decreases with increasing radius; the stellar population in the 47 Tuc periphery is well approximated by a simple stellar population.
Impact damage to dinocysts from the Late Eocene Chesapeake Bay event
Edwards, L.E.; Powars, D.S.
2003-01-01
The Chesapeake Bay impact structure, formed by a comet or meteorite that struck the Virginia continental shelf about 35.5 million years ago, is the focus of an extensive coring project by the U.S. Geological Survey and its cooperators. Organic-walled dinocysts recovered from impact-generated deposits in a deep core inside the 85-90 km-wide crater include welded organic clumps and fused, partially melted and bubbled dinocysts unlike any previously observed. Other observed damage to dinocysts consists of breakage, pitting, and folding in various combinations. The entire marine Cretaceous, Paleocene, and Eocene section that was once present at the site has been excavated and redeposited under extreme conditions that include shock, heat, collapse, tsunamis, and airfall. The preserved dinocysts reflect these conditions and, as products of a known impact, may serve as guides for recognizing impact-related deposits elsewhere. Features that are not unique to impacts, such as breakage and folding, may offer new insights into crater-history studies in general, and to the history of the Chesapeake Bay impact structure in particular. Impact-damaged dinocysts also are found sporadically in post-impact deposits and add to the story of continuing erosion and faulting of crater material.
The VMC survey. XI. Radial stellar population gradients in the galactic globular cluster 47 Tucanae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chengyuan; De Grijs, Richard; Deng, Licai
2014-07-20
We present a deep near-infrared color-magnitude diagram of the Galactic globular cluster 47 Tucanae, obtained with the Visible and Infrared Survey Telescope for Astronomy (VISTA) as part of the VISTA near-infrared Y, J, K{sub s} survey of the Magellanic System (VMC). The cluster stars comprising both the subgiant and red giant branches exhibit apparent, continuous variations in color-magnitude space as a function of radius. Subgiant branch stars at larger radii are systematically brighter than their counterparts closer to the cluster core; similarly, red-giant-branch stars in the cluster's periphery are bluer than their more centrally located cousins. The observations can verymore » well be described by adopting an age spread of ∼0.5 Gyr as well as radial gradients in both the cluster's helium abundance (Y) and metallicity (Z), which change gradually from (Y = 0.28, Z = 0.005) in the cluster core to (Y = 0.25, Z = 0.003) in its periphery. We conclude that the cluster's inner regions host a significant fraction of second-generation stars, which decreases with increasing radius; the stellar population in the 47 Tuc periphery is well approximated by a simple stellar population.« less
Spitale, Robert C.; Torelli, Andrew T.; Krucinska, Jolanta; Bandarian, Vahe; Wedekind, Joseph E.
2009-01-01
Riboswitches are RNA elements that control gene expression through metabolite binding. The preQ1 riboswitch exhibits the smallest known ligand-binding domain and is of interest for its economical organization and high affinity interactions with guanine-derived metabolites required to confer tRNA wobbling. Here we present the crystal structure of a preQ1 aptamer domain in complex with its precursor metabolite preQ0. The structure is highly compact with a core that features a stem capped by a well organized decaloop. The metabolite is recognized within a deep pocket via Watson-Crick pairing with C15. Additional hydrogen bonds are made to invariant bases U6 and A29. The ligand-bound state confers continuous helical stacking throughout the core fold, thus providing a platform to promote Watson-Crick base pairing between C9 of the decaloop and the first base of the ribosome-binding site, G33. The structure offers insight into the mode of ribosome-binding site sequestration by a minimal RNA fold stabilized by metabolite binding and has implications for understanding the molecular basis by which bacterial genes are regulated. PMID:19261617
Rethinking turbidite paleoseismology along the Cascadia subduction zone
Atwater, Brian F.; Carson, Bobb; Griggs, Gary B.; Johnson, H. Paul; Salmi, Marie
2014-01-01
A stratigraphic synthesis of dozens of deep-sea cores, most of them overlooked in recent decades, provides new insights into deep-sea turbidites as guides to earthquake and tsunami hazards along the Cascadia subduction zone, which extends 1100 km along the Pacific coast of North America. The synthesis shows greater variability in Holocene stratigraphy and facies off the Washington coast than was recognized a quarter century ago in a confluence test for seismic triggering of sediment gravity flows. That test compared counts of Holocene turbidites upstream and downstream of a deep-sea channel junction. Similarity in the turbidite counts among seven core sites provided evidence that turbidity currents from different submarine canyons usually reached the junction around the same time, as expected of widespread seismic triggering. The fuller synthesis, however, shows distinct differences between tributaries, and these differences suggest sediment routing for which the confluence test was not designed. The synthesis also bears on recent estimates of Cascadia earthquake magnitudes and recurrence intervals. The magnitude estimates hinge on stratigraphic correlations that discount variability in turbidite facies. The recurrence estimates require turbidites to represent megathrust earthquakes more dependably than they do along a flow path where turbidite frequency appears limited less by seismic shaking than by sediment supply. These concerns underscore the complexity of extracting earthquake history from deep-sea turbidites at Cascadia.
Characterization Efforts in a Deep Borehole Field Test
NASA Astrophysics Data System (ADS)
Kuhlman, K. L.; Sassani, D.; Freeze, G. A.; Hardin, E. L.; Brady, P. V.
2016-12-01
The US Department of Energy Office of Nuclear Energy is embarking on a Deep Borehole Field Test to investigate the feasibility of constructing and characterizing two boreholes in crystalline basement rock to a depth of 5 km (16,400 ft). The concept of deep borehole disposal for radioactive waste has some advantages, including incremental construction and loading and the enhanced natural barriers provided by deep continental crystalline basement. Site characterization activities will include geomechanical (i.e., hydrofracture stress measurements), geological (i.e., core and mud logging), hydrological (i.e., packer-based pulse and pumping tests), and chemical (i.e., fluids sampled in situ from packer intervals and extracted from cores) tests. Borehole-based characterization will be used to determine the variability of system state (i.e., stress, pressure, temperature, and chemistry) with depth and interpretation of material and system parameters relevant to numerical site simulation. We explore the effects fluid density and geothermal temperature gradients (i.e., thermohaline convection) have on characterization goals in light of expected downhole conditions, including a disturbed rock zone surrounding the borehole. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Covault, J.A.; Romans, B.W.; Fildani, A.; McGann, M.; Graham, S.A.
2010-01-01
Terrestrial source areas are linked to deep-sea basins by sediment-routing systems, which only recently have been studied with a holistic approach focused on terrestrial and submarine components and their interactions. Here we compare an extensive piston-core and radiocarbon-age data set from offshore southern California to contemporaneous Holocene climate proxies in order to test the hypothesis that climatic signals are rapidly propagated from source to sink in a spatially restricted sediment-routing system that includes the Santa Ana River drainage basin and the Newport deep-sea depositional system. Sediment cores demonstrate that variability in rates of Holocene deep-sea turbidite deposition is related to complex ocean-atmosphere interactions, including enhanced magnitude and frequency of the North American monsoon and El Ni??o-Southern Oscillation cycles, which increased precipitation and fluvial discharge in southern California. This relationship is evident because, unlike many sediment-routing systems, the Newport submarine canyon-and-channel system was consistently linked tothe Santa Ana River,which maintained sediment delivery even during Holocene marine transgression and highstand. Results of this study demonstrate the efficiency of sediment transport and delivery through a spatially restricted, consistently linked routing system and the potential utility of deep-sea turbidite depositional trends as paleoclimate proxies in such settings. ?? 2010 by The University of Chicago.
Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond-Lamberty, Ben; Smith, A. Peyton; Bailey, Vanessa L.
Rapid climatic changes, rising air temperatures, and increased fires are expected to drive permafrost degradation and alter soil carbon (C) cycling in many high-latitude ecosystems. How these soils will respond to changes in their temperature, moisture, and overlying vegetation is uncertain but critical to understand given the large soil C stocks in these regions. We used a laboratory experiment to examine how temperature and moisture control CO 2 and CH 4 emissions from mineral soils sampled from the bottom of the annual active layer, i.e., directly above permafrost, in an Alaskan boreal forest. Gas emissions from 30 cores, subjected tomore » two temperatures and either field moisture conditions or experimental drought, were tracked over a 100-day incubation; we also measured a variety of physical and chemical characteristics of the cores. Gravimetric water content was 0.31 ± 0.12 (unitless) at the beginning of the incubation; cores at field moisture were unchanged at the end, but drought cores had declined to 0.06 ± 0.04. Daily CO 2 fluxes were positively correlated with incubation chamber temperature, core water content, and percent soil nitrogen. They also had a temperature sensitivity ( Q 10) of 1.3 and 1.9 for the field moisture and drought treatments, respectively. Daily CH 4 emissions were most strongly correlated with percent nitrogen, but neither temperature nor water content was a significant first-order predictor of CH 4 fluxes. The cumulative production of C from CO 2 was over 6 orders of magnitude higher than that from CH 4; cumulative CO 2 was correlated with incubation temperature and moisture treatment, with drought cores producing 52–73 % lower C. Cumulative CH 4 production was unaffected by any treatment. These results suggest that deep active-layer soils may be sensitive to changes in soil moisture under aerobic conditions, a critical factor as discontinuous permafrost thaws in interior Alaska. Furthermore, deep but unfrozen high-latitude soils have been shown to be strongly affected by long-term experimental warming, and these results provide insight into their future dynamics and feedback potential with future climate change.« less
Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils
Bond-Lamberty, Ben; Smith, A. Peyton; Bailey, Vanessa L.
2016-12-21
Rapid climatic changes, rising air temperatures, and increased fires are expected to drive permafrost degradation and alter soil carbon (C) cycling in many high-latitude ecosystems. How these soils will respond to changes in their temperature, moisture, and overlying vegetation is uncertain but critical to understand given the large soil C stocks in these regions. We used a laboratory experiment to examine how temperature and moisture control CO 2 and CH 4 emissions from mineral soils sampled from the bottom of the annual active layer, i.e., directly above permafrost, in an Alaskan boreal forest. Gas emissions from 30 cores, subjected tomore » two temperatures and either field moisture conditions or experimental drought, were tracked over a 100-day incubation; we also measured a variety of physical and chemical characteristics of the cores. Gravimetric water content was 0.31 ± 0.12 (unitless) at the beginning of the incubation; cores at field moisture were unchanged at the end, but drought cores had declined to 0.06 ± 0.04. Daily CO 2 fluxes were positively correlated with incubation chamber temperature, core water content, and percent soil nitrogen. They also had a temperature sensitivity ( Q 10) of 1.3 and 1.9 for the field moisture and drought treatments, respectively. Daily CH 4 emissions were most strongly correlated with percent nitrogen, but neither temperature nor water content was a significant first-order predictor of CH 4 fluxes. The cumulative production of C from CO 2 was over 6 orders of magnitude higher than that from CH 4; cumulative CO 2 was correlated with incubation temperature and moisture treatment, with drought cores producing 52–73 % lower C. Cumulative CH 4 production was unaffected by any treatment. These results suggest that deep active-layer soils may be sensitive to changes in soil moisture under aerobic conditions, a critical factor as discontinuous permafrost thaws in interior Alaska. Furthermore, deep but unfrozen high-latitude soils have been shown to be strongly affected by long-term experimental warming, and these results provide insight into their future dynamics and feedback potential with future climate change.« less
Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils
NASA Astrophysics Data System (ADS)
Bond-Lamberty, Ben; Smith, A. Peyton; Bailey, Vanessa
2016-12-01
Rapid climatic changes, rising air temperatures, and increased fires are expected to drive permafrost degradation and alter soil carbon (C) cycling in many high-latitude ecosystems. How these soils will respond to changes in their temperature, moisture, and overlying vegetation is uncertain but critical to understand given the large soil C stocks in these regions. We used a laboratory experiment to examine how temperature and moisture control CO2 and CH4 emissions from mineral soils sampled from the bottom of the annual active layer, i.e., directly above permafrost, in an Alaskan boreal forest. Gas emissions from 30 cores, subjected to two temperatures and either field moisture conditions or experimental drought, were tracked over a 100-day incubation; we also measured a variety of physical and chemical characteristics of the cores. Gravimetric water content was 0.31 ± 0.12 (unitless) at the beginning of the incubation; cores at field moisture were unchanged at the end, but drought cores had declined to 0.06 ± 0.04. Daily CO2 fluxes were positively correlated with incubation chamber temperature, core water content, and percent soil nitrogen. They also had a temperature sensitivity (Q10) of 1.3 and 1.9 for the field moisture and drought treatments, respectively. Daily CH4 emissions were most strongly correlated with percent nitrogen, but neither temperature nor water content was a significant first-order predictor of CH4 fluxes. The cumulative production of C from CO2 was over 6 orders of magnitude higher than that from CH4; cumulative CO2 was correlated with incubation temperature and moisture treatment, with drought cores producing 52-73 % lower C. Cumulative CH4 production was unaffected by any treatment. These results suggest that deep active-layer soils may be sensitive to changes in soil moisture under aerobic conditions, a critical factor as discontinuous permafrost thaws in interior Alaska. Deep but unfrozen high-latitude soils have been shown to be strongly affected by long-term experimental warming, and these results provide insight into their future dynamics and feedback potential with future climate change.
Petrology and geochemistry of lithic fragments separated from the Apollo 15 deep-drill core
NASA Technical Reports Server (NTRS)
Lindstrom, M. M.; Nielsen, R. L.; Drake, M. J.
1977-01-01
Petrological and geochemical analysis of lithic fragments separated from the Apollo 15 deep-drill core showed these fragments to fall into the essentially the same range of rock types as observed in surface soil samples and large rock samples. Three particles are singled out as being of special interest. One sample is a mare basalt containing extremely evolved phases. The particle may represent small-scale imperfect crystal/liquid separation in a lava flow. A green glass particle is not the ultramafic emerald green glass described from the Apollo 15 site, but rather an ANT-like light green color, and has a quite different chemical composition from the ultramafic variety. One mare basalt displays a positive Eu anomaly and is enriched in plagioclase relative to olivine plus pyroxene.
Animation: What makes up the Space Launch System’s massive core stage
2017-04-24
NASA’s new rocket, the Space Launch System, will be the most powerful rocket ever built for deep-space missions. The 212-foot core stage is the largest rocket stage ever built and will fuel four RS-25 engines that will help launch SLS. This animation depicts the parts that make up the core stage and how these parts will be joined to form the entire stage. The five major parts include: the engine section, the hydrogen tank, the intertank, the liquid oxygen tank and the forward skirt.
Understanding variability of the Southern Ocean overturning circulation in CORE-II models
NASA Astrophysics Data System (ADS)
Downes, S. M.; Spence, P.; Hogg, A. M.
2018-03-01
The current generation of climate models exhibit a large spread in the steady-state and projected Southern Ocean upper and lower overturning circulation, with mechanisms for deep ocean variability remaining less well understood. Here, common Southern Ocean metrics in twelve models from the Coordinated Ocean-ice Reference Experiment Phase II (CORE-II) are assessed over a 60 year period. Specifically, stratification, surface buoyancy fluxes, and eddies are linked to the magnitude of the strengthening trend in the upper overturning circulation, and a decreasing trend in the lower overturning circulation across the CORE-II models. The models evolve similarly in the upper 1 km and the deep ocean, with an almost equivalent poleward intensification trend in the Southern Hemisphere westerly winds. However, the models differ substantially in their eddy parameterisation and surface buoyancy fluxes. In general, models with a larger heat-driven water mass transformation where deep waters upwell at the surface ( ∼ 55°S) transport warmer waters into intermediate depths, thus weakening the stratification in the upper 2 km. Models with a weak eddy induced overturning and a warm bias in the intermediate waters are more likely to exhibit larger increases in the upper overturning circulation, and more significant weakening of the lower overturning circulation. We find the opposite holds for a cool model bias in intermediate depths, combined with a more complex 3D eddy parameterisation that acts to reduce isopycnal slope. In summary, the Southern Ocean overturning circulation decadal trends in the coarse resolution CORE-II models are governed by biases in surface buoyancy fluxes and the ocean density field, and the configuration of the eddy parameterisation.
Carbon from Crust to Core: A history of deep carbon science
NASA Astrophysics Data System (ADS)
Mitton, Simon
2017-04-01
As an academic historian of science, I am writing a history of the discovery of the interior workings of our dynamic planet. I am preparing a book, titled Carbon from Crust to Core: A Chronicle of Deep Carbon Science, in which I will present the first history of deep carbon science. I will identify and document key discoveries, the impact of new knowledge, and the roles of deep carbon scientists and their institutions from the 1400s to the present. This innovative book will set down the engaging human story of many remarkable scientists from whom we have learned about Earth's interior, and particularly the fascinating story of carbon in Earth. I will describe a great journey of discovery that has led to a better understanding of the physical, chemical, and biological behaviour of carbon in the vast majority of Earth's interior. My poster has a list of remarkable Deep Carbon Explorers, from Georgius Agricola (1494-1555) to Claude ZoBell (1904-1989). Come along to my poster and add to my compilation: choose pioneers from history, or nominate your colleagues, or even add a selfie! As a biographer, I am keen to add researchers who may have been overlooked in the standard histories of geology and geophysics. And I am always on the lookout for standout stories and personal recollections. I am equipped to do oral history interviews. What's your story? Cambridge University Press will publish the book in 2019.
Hayama, Kazuhiro; Kuroda, Takami; Nakamura, Ko; Yamada, Shoichi
2016-04-15
We propose to employ the circular polarization of gravitational waves emitted by core-collapse supernovae as an unequivocal indication of rapid rotation deep in their cores just prior to collapse. It has been demonstrated by three dimensional simulations that nonaxisymmetric accretion flows may develop spontaneously via hydrodynamical instabilities in the postbounce cores. It is not surprising, then, that the gravitational waves emitted by such fluid motions are circularly polarized. We show, in this Letter, that a network of the second generation detectors of gravitational waves worldwide may be able to detect such polarizations up to the opposite side of the Galaxy as long as the rotation period of the core is shorter than a few seconds prior to collapse.
NASA Astrophysics Data System (ADS)
Freitag, Johannes; Schaller, Christoph; Kipfstuhl, Sepp; Hörhold, Maria; Schaidt, Maximilian; Sander, Merle; Moser, Dorothea
2017-04-01
Interpreting polar ice as climate archive requires profound knowledge about the formation of climate-proxies within the upper snow column. In order to investigate different impact factors on signal formation we performed a multiproxy- approach for 2m deep snow profiles by continuously measuring the 3D-microstructure using core-scale X-CT and the isotopic composition and impurity load in discrete samples of 1.1cm spatial resolution. The study includes profiles from a low-accumulation site on the East Antarctic plateau (Kohnen Station, DML), a typical medium-accumulation site on the North-East-Greenland ice sheet (EGRIP drilling camp) and a high-accumulation site on the Renland ice cap (East-coast of Greenland, RECAP drilling camp). Major observations are the tooth-shaped imprint of structural anisotropy and sulfate concentrations at the low accumulation site, the clear isotopic inter-annual variations that are in line with distinct impurity peaks at the high-accumulation site and the unexpected missing footprint of ice crusts and refrozen melt layers within the impurity- and isotope records for all sites.
Deep particle bed dryout model based on flooding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuan, P.
1987-01-01
Examination of the damaged Three Mile island Unit 2 (TMI-2) reactor indicates that a deep (approx. 1-m) bed of relatively large (approx. 1-mm) particles was formed in the core. Cooling of such beds is crucial to the arrest of core damage progression. The Lipinski model, based on flows in the bed, has been used to predict the coolability, but uncertainties exist in the turbulent permeability. Models based on flooding at the top of the bed either have a dimensional viscosity term, or no viscosity dependence, thus limiting their applicability. This paper presents a dimensionless correlation based on flooding data thatmore » involves a liquid Reynolds number. The derived dryout model from this correlation is compared with data for deep beds of large particles at atmospheric pressure, and with other models over a wide pressure range. It is concluded that the present model can give quite accurate predictions for the dryout heat flux of particle beds formed during a light water reactor accident and it is easy to use and agrees with the Lipinski n = 5 model, which requires iterative calculations.« less
NASA Astrophysics Data System (ADS)
Brant Dodson, J.; Taylor, Patrick C.; Branson, Mark
2018-05-01
Recently launched cloud observing satellites provide information about the vertical structure of deep convection and its microphysical characteristics. In this study, CloudSat reflectivity data is stratified by cloud type, and the contoured frequency by altitude diagrams reveal a double-arc structure in deep convective cores (DCCs) above 8 km. This suggests two distinct hydrometeor modes (snow versus hail/graupel) controlling variability in reflectivity profiles. The day-night contrast in the double arcs is about four times larger than the wet-dry season contrast. Using QuickBeam, the vertical reflectivity structure of DCCs is analyzed in two versions of the Superparameterized Community Atmospheric Model (SP-CAM) with single-moment (no graupel) and double-moment (with graupel) microphysics. Double-moment microphysics shows better agreement with observed reflectivity profiles; however, neither model variant captures the double-arc structure. Ultimately, the results show that simulating realistic DCC vertical structure and its variability requires accurate representation of ice microphysics, in particular the hail/graupel modes, though this alone is insufficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnis Judzis; Homer Robertson; Alan Black
2006-06-22
The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energymore » and loads. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm-usually well below 5,000 rpm. This document details the progress at the end of Phase 1 on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 March 2006 and concluding 30 June 2006. (Note: Results from 1 September 2005 through 28 February 2006 were included in the previous report (see Judzis, Black, and Robertson)). Summarizing the accomplished during Phase 1: {lg_bullet} TerraTek reviewed applicable literature and documentation and convened a project kickoff meeting with Industry Advisors in attendance (see Black and Judzis). {lg_bullet} TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Some difficulties continued in obtaining ultra-high speed motors. Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed. {lg_bullet} TerraTek concluded Task 3 ''Small-scale cutting performance tests.'' {sm_bullet} Significant testing was performed on nine different rocks. {sm_bullet} Five rocks were used for the final testing. The final tests were based on statistical design of experiments. {sm_bullet} Two full-faced bits, a small diameter and a large diameter, were run in Berea sandstone. {lg_bullet} Analysis of data was completed and indicates that there is decreased specific energy as the rotational speed increases (Task 4). Data analysis from early trials was used to direct the efforts of the final testing for Phase I (Task 5). {lg_bullet} Technology transfer (Task 6) was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black).« less
Deep Learning in Medical Image Analysis.
Shen, Dinggang; Wu, Guorong; Suk, Heung-Il
2017-06-21
This review covers computer-assisted analysis of images in the field of medical imaging. Recent advances in machine learning, especially with regard to deep learning, are helping to identify, classify, and quantify patterns in medical images. At the core of these advances is the ability to exploit hierarchical feature representations learned solely from data, instead of features designed by hand according to domain-specific knowledge. Deep learning is rapidly becoming the state of the art, leading to enhanced performance in various medical applications. We introduce the fundamentals of deep learning methods and review their successes in image registration, detection of anatomical and cellular structures, tissue segmentation, computer-aided disease diagnosis and prognosis, and so on. We conclude by discussing research issues and suggesting future directions for further improvement.
Temperature monitoring during cardiopulmonary bypass--do we undercool or overheat the brain?
Kaukuntla, Hemanth; Harrington, Deborah; Bilkoo, Inderaj; Clutton-Brock, Tom; Jones, Timothy; Bonser, Robert S
2004-09-01
Brain cooling is an essential component of aortic surgery requiring circulatory arrest and inadequate cooling may lead to brain injury. Similarly, brain hyperthermia during the rewarming phase of cardiopulmonary bypass may also lead to neurological injury. Conventional temperature monitoring sites may not reflect the core brain temperature (Tdegrees). We compared jugular bulb venous temperatures (JB) during deep hypothermic circulatory arrest and normothermic bypass with Nasopharyngeal (NP), Arterial inflow (AI), Oesophageal (O), Venous return (VR), Bladder (B) and Orbital skin (OS) temperatures. 18 patients undergoing deep hypothermia (DH) and 8 patients undergoing normothermic bypass (mean bladder Tdegrees-36.29 degreesC) were studied. For DH, cooling was continued to 15 degreesC NP (mean cooling time-66 min). At pre-determined arterial inflow Tdegrees, NP, JB and O Tdegree's were measured. A 6-channel recorder continuously recorded all Tdegree's using calibrated thermocouples. During the cooling phase of DH, NP lagged behind AI and JB Tdegree's. All these equilibrated at 15 degreesC. During rewarming, JB and NP lagged behind AI and JB was higher than NP at any time point. During normothermic bypass, although NP was reflective of the AI and JB Tdegrees trends, it underestimated peak JB Tdegrees (P=0.001). Towards the end of bypass, peak JB was greater than the arterial inflow Tdegrees (P=0.023). If brain venous outflow Tdegrees (JB) accurately reflects brain Tdegrees, NP Tdegrees is a safe surrogate indicator of cooling. During rewarming, all peripheral sites underestimate brain temperature and caution is required to avoid hyperthermic arterial inflow, which may inadvertently, result in brain hyperthermia.
Ice Cores Dating With a New Inverse Method Taking Account of the Flow Modeling Errors
NASA Astrophysics Data System (ADS)
Lemieux-Dudon, B.; Parrenin, F.; Blayo, E.
2007-12-01
Deep ice cores extracted from Antarctica or Greenland recorded a wide range of past climatic events. In order to contribute to the Quaternary climate system understanding, the calculation of an accurate depth-age relationship is a crucial point. Up to now ice chronologies for deep ice cores estimated with inverse approaches are based on quite simplified ice-flow models that fail to reproduce flow irregularities and consequently to respect all available set of age markers. We describe in this paper, a new inverse method that takes into account the model uncertainty in order to circumvent the restrictions linked to the use of simplified flow models. This method uses first guesses on two flow physical entities, the ice thinning function and the accumulation rate and then identifies correction functions on both flow entities. We highlight two major benefits brought by this new method: first of all the ability to respect large set of observations and as a consequence, the feasibility to estimate a synchronized common ice chronology for several cores at the same time. This inverse approach relies on a bayesian framework. To respect the positive constraint on the searched correction functions, we assume lognormal probability distribution on one hand for the background errors, but also for one particular set of the observation errors. We test this new inversion method on three cores simultaneously (the two EPICA cores : DC and DML and the Vostok core) and we assimilate more than 150 observations (e.g.: age markers, stratigraphic links,...). We analyze the sensitivity of the solution with respect to the background information, especially the prior error covariance matrix. The confidence intervals based on the posterior covariance matrix calculation, are estimated on the correction functions and for the first time on the overall output chronologies.
Early Earth differentiation [rapid communication
NASA Astrophysics Data System (ADS)
Walter, Michael J.; Trønnes, Reidar G.
2004-09-01
The birth and infancy of Earth was a time of profound differentiation involving massive internal reorganization into core, mantle and proto-crust, all within a few hundred million years of solar system formation ( t0). Physical and isotopic evidence indicate that the formation of iron-rich cores generally occurred very early in planetesimals, the building blocks of proto-Earth, within about 3 million years of t0. The final stages of terrestrial planetary accretion involved violent and tremendously energetic giant impacts among core-segregated Mercury- to Mars-sized objects and planetary embryos. As a consequence of impact heating, the early Earth was at times partially or wholly molten, increasing the likelihood for high-pressure and high-temperature equilibration among core- and mantle-forming materials. The Earth's silicate mantle harmoniously possesses abundance levels of the siderophile elements Ni and Co that can be reconciled by equilibration between iron alloy and silicate at conditions comparable to those expected for a deep magma ocean. Solidification of a deep magma ocean possibly involved crystal-melt segregation at high pressures, but subsequent convective stirring of the mantle could have largely erased nascent layering. However, primitive upper mantle rocks apparently have some nonchondritic major and trace element refractory lithophile element ratios that can be plausibly linked to early mantle differentiation of ultra-high-pressure mantle phases. The geochemical effects of crystal fractionation in a deep magma ocean are partly constrained by high-pressure experimentation. Comparison between compositional models for the primitive convecting mantle and bulk silicate Earth generally allows, and possibly favors, 10-15% total fractionation of a deep mantle assemblage comprised predominantly of Mg-perovskite and with minor but geochemically important amounts of Ca-perovskite and ferropericlase. Long-term isolation of such a crystal pile is generally consistent with isotopic constraints for time-integrated Sm/Nd and Lu/Hf ratios in the modern upper mantle and might account for the characteristics of some mantle isotope reservoirs. Although much remains to be learned about the earliest formative period in the Earth's development, a convergence of theoretical, physical, isotopic and geochemical arguments is beginning to yield a self-consistent portrait of the infant Earth.
NASA Technical Reports Server (NTRS)
Wang, zhuo; Montgomery M. T.; Dunkerton, T. J.
2010-01-01
This is the second of a two-part study examining the simulated formation of Atlantic Hurricane Felix (2007) in a cloud-representing framework. Here several open issues are addressed concerning the formation of the storm's warm core, the evolution and respective contribution of stratiform versus convective precipitation within the parent wave's pouch, and the sensitivity of the development pathway reported in Part I to different model physics options and initial conditions. All but one of the experiments include ice microphysics as represented by one of several parameterizations, and the partition of convective versus stratiform precipitation is accomplished using a standard numerical technique based on the high-resolution control experiment. The transition to a warm-core tropical cyclone from an initially cold-core, lower tropospheric wave disturbance is analyzed first. As part of this transformation process, it is shown that deep moist convection is sustained near the pouch center. Both convective and stratiform precipitation rates increase with time. While stratiform precipitation occupies a larger area even at the tropical storm stage, deep moist convection makes a comparable contribution to the total rain rate at the pregenesis stage, and a larger contribution than stratiform processes at the storm stage. The convergence profile averaged near the pouch center is found to become dominantly convective with increasing deep moist convective activity there. Low-level convergence forced by interior diabatic heating plays a key role in forming and intensifying the near-surface closed circulation, while the midlevel convergence associated with stratiform precipitation helps to increase the midlevel circulation and thereby contributes to the formation and upward extension of a tropospheric-deep cyclonic vortex. Sensitivity tests with different model physics options and initial conditions demonstrate a similar pregenesis evolution. These tests suggest that the genesis location of a tropical storm is largely controlled by the parent wave's critical layer, whereas the genesis time and intensity of the protovortex depend on the details of the mesoscale organization, which is less predictable. Some implications of the findings are discussed.
NASA Astrophysics Data System (ADS)
Jin, J. H.; Kim, M. J.; Kim, J. H.; Um, I. K.; Bahk, J. J.; Kwon, Y. K.; Lee, K. E.; Khim, B. K.
2009-04-01
The East Sea (the Sea of Japan) is a marginal deep basin, almost enclosed by the landmass of Korea and Japan. It is connected with the North Pacific Ocean only by four small shallow straits, Korea and Tsushima Strait (140 m deep), Tsugaru Strait (130 m deep), Soya Strait (55 m deep) and Tartar Strait (12 m deep). For the glacial periods such as the last glaciation, the sea has experienced a large magnitude of sea level fall reinforcing isolation of the sea from the open ocean. The sea level falls can be recognized by presence of dark sediment layers whereas values of oxygen isotope on foraminfera tests are not well accordant with those recorded in open oceans. A 20 m-long sediment core was raised from a deep borehole located on the southern slope of the East Sea where sedimentation rates exceed 0.3 mm/yr for the last deglaciation period. The core was analyzed at a dense interval (ca. 5 cm) to reveal vertical variation of opal content, del values of oxygen and carbon, TOC and CaCO3 content and C/N ratio. Among them, the opal content somewhat mimics the trend of del value of oxygen isotopes in open oceans: low during the last glacial period, increase during the deglaciation and high in Holocene. A sharp negative depression also occurs during the Younger Dryas event. Hence the opal content could be a good proxy record for the environmental change during late Pleistocene to Holocene. A large-scale negative depression of the opal content is also shown during Holocene. The depression is not well matched with the trend of oxygen isotope records in open oceans, suggestive of a particular event in this local area.
Eutectic melting temperature of the lowermost Earth's mantle
NASA Astrophysics Data System (ADS)
Andrault, D.; Lo Nigro, G.; Bolfan-Casanova, N.; Bouhifd, M.; Garbarino, G.; Mezouar, M.
2009-12-01
Partial melting of the Earth's deep mantle probably occurred at different stages of its formation as a consequence of meteoritic impacts and seismology suggests that it even continues today at the core-mantle boundary. Melts are important because they dominate the chemical evolution of the different Earth's reservoirs and more generally the dynamics of the whole planet. Unfortunately, the most critical parameter, that is the temperature profile inside the deep Earth, remains poorly constrained accross the planet history. Experimental investigations of the melting properties of materials representative of the deep Earth at relevant P-T conditions can provide anchor points to refine past and present temperature profiles and consequently determine the degree of melting at the different geological periods. Previous works report melting relations in the uppermost lower mantle region, using the multi-anvil press [1,2]. On the other hand, the pyrolite solidus was determined up to 65 GPa using optical observations in the laser-heated diamond anvil cell (LH-DAC) [3]. Finally, the melting temperature of (Mg,Fe)2SiO4 olivine is documented at core-mantle boundary (CMB) conditions by shock wave experiments [4]. Solely based on these reports, experimental data remain too sparse to draw a definite melting curve for the lower mantle in the relevant 25-135 GPa pressure range. We reinvestigated melting properties of lower mantle materials by means of in-situ angle dispersive X-ray diffraction measurements in the LH-DAC at the ESRF [5]. Experiments were performed in an extended P-T range for two starting materials: forsterite and a glass with chondrite composition. In both cases, the aim was to determine the onset of melting, and thus the eutectic melting temperatures as a function of pressure. Melting was evidenced from drastic changes of diffraction peak shape on the image plate, major changes in diffraction intensities in the integrated pattern, disappearance of diffraction rings, and changes in the relation between sample-temperature and laser-power. In this work, we show that temperatures higher than 4000 K are necessary for melting mean mantle at the 135 GPa pressure found at the core mantle boundary (CMB). Such temperature is much higher than that from estimated actual geotherms. Therefore, melting at the CMB can only occur if (i) pyrolitic mantle resides for a very long time in contact with the outer core, (ii) the mantle composition is severely affected by additional elements depressing the solidus such as water or (iii) the temperature gradient in the D" region is amazingly steep. Other implications for the temperature state and the lower mantle properties will be presented. References (1) Ito et al., Phys. Earth Planet. Int., 143-144, 397-406, 2004 (2) Ohtani et al., Phys. Earth Planet. Int., 100, 97-114, 1997 (3) Zerr et al., Science, 281, 243-246, 1998 (4) Holland and Ahrens, Science, 275, 1623-1625, 1997 (5) Schultz et al., High Press. Res., 25, 1, 71-83, 2005.
Key Challenges for Life Science Payloads on the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Anthony, J. H.; Niederwieser, T.; Zea, L.; Stodieck, L.
2018-02-01
Compared to ISS, Deep Space Gateway life science payloads will be challenged by deep space radiation and non-continuous habitation. The impacts of these two differences on payload requirements, design, and operations are discussed.
Microbial Life in the Deep Subsurface: Deep, Hot and Radioactive
NASA Technical Reports Server (NTRS)
DeStefano, Andrea L.; Ford, Jill C.; Winsor, Seana K.; Allen, Carlton C.; Miller, Judith; McNamara, Karen M.; Gibson, Everett K., Jr.
2000-01-01
Recent studies, motivated in part by the search for extraterrestrial life, continue to expand the recognized limits of Earth's biosphere. This work explored evidence for life a high-temperature, radioactive environment in the deep subsurface.
Foundations of Nuclear Geophysics
NASA Astrophysics Data System (ADS)
Herndon, J. M.; Hollenbach, D. F.
2002-05-01
Herndon suggested that the inner core of the Earth consists, not of partially crystallized iron metal, but of nickel silicide. He has shown by fundamental mass ratios that i) the Earth as a whole, especially the inner 82%, has a state of oxidation like primitive enstatite chondrites, and ii) the lower mantle and core are similar in composition to the Abee enstatite chondrite. By analogy with Abee data, CaS and MgS precipitates from the core are expected to collect at the core-mantle boundary and, significantly, a major fraction of the actinides are expected to precipitate from the core and to collect at the center of the Earth. Herndon demonstrated the feasibility of a nuclear fission reactor at the center of the Earth as the energy source for the geomagnetic field and described a natural mechanism that would lead to variations in energy production and thus variations in the geomagnetic field. Hollenbach and Herndon produced numerical simulations of the operation of the geo-reactor over the lifetime of the Earth using the state-of-the-art, validated, industry standard SCALE code package developed at Oak Ridge National Laboratory. The results clearly demonstrate that such a geo-reactor would i) function as a fast-neutron breeder reactor; ii) under appropriate conditions, operate over the entire period of geologic time; iii) function in such a manner as to yield variable and/or intermittent output; iv) generate energy at levels in the range generally accepted by the geophysics community; and, v) produce He-3 and He-4 in ratios that are in the range observed from deep-mantle sources. Deep-source He-3, the authors submit, is evidence of in-core sustained nuclear fission, rather than the out-gassing of primordial He-3; which in turn is evidence of large amounts of uranium residing in the Earth's core; which in turn is evidence that the core has a state of oxidation like the corresponding matter in primitive enstatite chondrites. The factors affecting He-3/He-4 ratios, their causes and implications, will be discussed in the presentation. Also, the current state of investigations into additional deep-Earth nuclear fission signatures will be presented. References: J. M. Herndon, Proc. R. Roc. London, Ser. A, 368 (1979) 495; J. Geomagn. Geoelectr. 45 (1993) 423; Proc. R. Soc. London, Ser. A, 445 (1994) 453; Proc. Nat. Acad. Sci. (USA) 93 (1996) 646. Hollenbach, D. F. and J. M. Herndon, Proc. Nat. Acad. Sci. (USA) 98 (2001) 11085.
NASA Astrophysics Data System (ADS)
Jouzel, Jean
2003-06-01
Studies of past climate have, over the last 15 years, provided a wealth of information directly relevant to its evolution in the future. These results include, in particular, the discovery of a link between greenhouse gases and climate in the past and the characterization of rapid climate changes. They are, for example, based on the analysis of deep ice cores such as the one drilled at the Vostok site, which allows us to describe the evolution of the Antarctic climate and of the atmospheric composition over more than 400 thousands years (kyr). This period is also now better and better documented from the analysis of oceanic and continental records. Through examples based on recent studies, in which French teams are deeply involved, we will illustrate the most important results obtained from the analysis of polar ice cores, deep-sea cores and continental archives. To cite this article: J. Jouzel, C. R. Geoscience 335 (2003).
Xylem development in prunus flower buds and the relationship to deep supercooling.
Ashworth, E N
1984-04-01
Xylem development in eight Prunus species was examined and the relationship to deep supercooling assessed. Dormant buds of six species, P. armeniaca, P. avium, P. cerasus, P. persica, P. salicina, and P. sargentii deep supercooled. Xylem vessel elements were not observed within the dormant floral primordia of these species. Instead, discrete bundles containing procambial cells were observed. Vascular differentiation resumed and xylem continuity was established during the time that the capacity to deep supercool was lost. In P. serotina and P. virginiana, two species which do not supercool, xylem vessels ran the length of the inflorescence and presumably provided a conduit for the spread of ice into the bud. The results support the hypothesis that the lack of xylem continuity is an important feature of buds which deep supercool.
Wireline-rotary air coring of the Bandelier Tuff, Los Alamos, New Mexico
Teasdale, W.E.; Pemberton, R.R.
1984-01-01
This paper describes experiments using wireline-rotary air-coring techniques conducted in the Bandelier Tuff using a modified standard wireline core-barrel system. The modified equipment was used to collect uncontaminated cores of unconsolidated ash and indurated tuff at Los Alamos, New Mexico. Core recovery obtained from the 210-foot deep test hole was about 92 percent. A standard HQ-size, triple-tube wireline core barrel (designed for the passage of liquid drilling fluids) was modified for air coring as follows: (1) Air passages were milled in the latch body part of the head assembly; (2) the inside dimension of the outer core barrel tube was machined and honed to provide greater clearance between the inner and outer barrels; (3) oversized reaming devices were added to the outer core barrel and the coring bit to allow more clearance for air and cuttings return; (4) the eight discharge ports in the coring bit were enlarged. To control airborne-dust pollution, a dust-and-cuttings discharge subassembly, designed and built by project personnel, was used. (USGS)
Discussion of examination of a cored hydraulic fracture in a deep gas well
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nolte, K.G.
Warpinski et al. document information found from a core through a formation after a hydraulic fracture treatment. As they indicate, the core provides the first detailed evaluation of an actual propped hydraulic fracture away from the well and at a significant depth, and this evaluation leads to findings that deviate substantially from the assumptions incorporated into current fracturing models. In this discussion, a defense of current fracture design assumptions is developed. The affirmation of current assumptions, for general industry applications, is based on an assessment of the global impact of the local complexity found in the core. The assessment leadsmore » to recommendations for the evolution of fracture design practice.« less
The Final Phase of Drilling of the Hawaii Scientific Drilling Project
NASA Astrophysics Data System (ADS)
Stolper, E.; Depaolo, D.; Thomas, D.; Garcia, M.; Haskins, E.; Baker, M.
2008-12-01
The principal goal of the Hawaii Scientific Drilling Project (HSDP) was to core continuously deep into the flank of a Hawaiian volcano and to investigate the petrology, geochemisty, geochronology, magnetics, etc. of the recovered samples. Drilling in Hilo, on the island of Hawaii proceeded in three phases. A 1.06 km pilot hole was core-drilled in 1993; a second hole was core-drilled to 3,098 meters below sea level (mbsl) in 1999, then deepened in 2004-2007 to 3,509 mbsl. Although the final phase of drilling was at times technically challenging, core recovery was close to 100%. All rocks from the final phase of drilling were emplaced below sea level and are from the Mauna Kea volcano. On-site core logging identified 45 separate units (the 1999 phase of drilling yielded 345 units). Five lithologies were identified: pillows (~60%); pillow breccias (~10%); massive lavas (~12%); hyaloclastites (~17%); intrusives (~1%; these are mostly multiple thin (down to cm scale) fingers of magma with identical lithologies occurring over narrow depth intervals). The rocks are primarily tholeiitic, ranging from aphyric to highly olivine-phyric lavas (up to ~25% olivine phenocrysts), with considerable fresh glass and olivine; clays and zeolites are present throughout the core. Forty whole-rock samples were collected as a reference suite and sent to multiple investigators for study. Additionally, glass was collected at roughly 3 m intervals for electron microprobe analysis. Although continuous and consistent with the shallower rocks from the previous phase of coring, there are several noteworthy features of the deepest core: (1) Glasses from shallower portions of the core exhibited bimodal silica contents, a low SiO2 group (~48-50 wt.%) and a high SiO2 group (~50.5- 52 wt.%). Glasses from the last phase of drilling are essentially all in the high-silica group and are somewhat more evolved than the high-silica glasses from the shallower portion of the core (5.1-7.6 vs. 5.1-10.4 wt.% MgO). (2) The expected sequence of lithologies with depth in the core is subaerial lava flows, hyaloclastites (formed by debris flows carrying glass and lithic fragments from the shoreline down the submarine flanks of the volcano), and finally pillow lavas. This sequence was generally observed in the earlier phases of drilling, and it appeared that the deepest rocks from the 1999 phase of drilling were essentially all formed from pillow lavas (i.e., there were no more hyaloclastites). However, thick hyaloclastites reflecting long distance transport from the ancient shoreline reappear in the bottom ~100 m of the drill hole. Although it may be coincidence, pillow breccias occur in the shallower parts of the core from the final phase of drilling, but not in the deeper parts in which the hyaloclastites reappear. (3) Intrusive rocks make up a lower fraction (~1%) of samples from the final phase of coring than in the deeper parts of the section from the 1999 phase of drilling (3.8%). It had been suggested that intrusives might become more common the deeper the drilling, but this is not the case at depths down to 3.5 km. (4) There are three units classified as "massive" including one relatively thick (~40 m), featureless (no internal boundaries, no evidence of mixing or internal differentiation), moderately olivine-phyric basalt.
Laboratory ultrasonic pulse velocity logging for determination of elastic properties from rock core
NASA Astrophysics Data System (ADS)
Blacklock, Natalie Erin
During the development of deep underground excavations spalling and rockbursting have been recognized as significant mechanisms of violent brittle failure. In order to predict whether violent brittle failure will occur, it is important to identify the location of stiffness transitions that are associated with geologic structure. One approach to identify the effect of geologic structures is to apply borehole geophysical tools ahead of the tunnel advance. Stiffness transitions can be identified using mechanical property analysis surveys that combine acoustic velocity and density data to calculate acoustic estimates of elastic moduli. However, logistical concerns arise since the approach must be conducted at the advancing tunnel face. As a result, borehole mechanical property analyses are rarely used. Within this context, laboratory ultrasonic pulse velocity testing has been proposed as a potential alternative to borehole mechanical property analysis since moving the analysis to the laboratory would remove logistical constraints and improve safety for the evaluators. In addition to the traditional method of conducting velocity testing along the core axis, two new methodologies for point-focused testing were developed across the core diameter, and indirectly along intact lengths of drill core. The indirect test procedure was implemented in a continuous ultrasonic velocity test program along 573m of drill core to identify key geologic structures that generated transitions in ultrasonic elastic moduli. The test program was successful at identifying the location of geologic contacts, igneous intrusions, faults and shear structures. Ultrasonic values of Young's modulus and bulk modulus were determined at locations of significant velocity transitions to examine the potential for energy storage and energy release. Comparison of results from different ultrasonic velocity test configurations determined that the indirect test configuration provided underestimates for values of Young's modulus. This indicated that the test procedure will require modifications to improve coupling of the transducers to the core surface. In order to assess whether laboratory testing can be an alternative to borehole surveys, laboratory velocity testing must be directly assessed with results from acoustic borehole logging. There is also potential for the laboratory velocity program to be used to assess small scale stiffness changes, differences in mineral composition and the degree of fracturing of drill core.
NASA Astrophysics Data System (ADS)
Hsiung, K. H.; Kanamatsu, T.; Ikehara, K.; Usami, K.; Saito, S.; Murayama, M.
2017-12-01
The southwest Ryukyu Trench near Taiwan is an ideal place for source-to-sink studies based on the distinctive sediment transport route between the terrestrial sediment source in Taiwan and the marine sink in the Ryukyu Trench. Using the bathymetric and seismic reflection data, we develop a sediment transport routes for understanding the ultimate sink of the southwest Ryukyu Trench floor. The southwest Ryukyu Trench floor can be regarded as the most distal depositional basin and isolated from the Ryukyu forearc basins. In addition, part of sediment from the proximal sources of the Ryukyu Islands and Yaeyama accretionary prism could be transported to the trench floor. We collected the piston core, PC04, from the southwest Ryukyu Trench floor of 6,147 m water depth in 3.23 m core length from cruise KR15-18, 2015. The coring site locates behind the natural levee of an obvious channel in the Ryukyu trench floor. The PC04 is composed of gray silty clay interbedded with numerous silt layers. Most of the silt layers are less than 2 cm in thickness. Based upon the core observation, X-ray fluorescence core scanning analysis and 14C age determinations, thirty-seven individual and thin beds were determined as turbidites. The results of X-ray fluorescence core scanning analysis provide continuous and high-resolution (1.0 mm of each point) assessment of relative change in the elemental ratios. Ca/Fe is a proxy for the terrigenous component of the sediment, indicating the High Ca and low Fe of each turbidite layers. Zr/Rb ratios of the marine sediments commonly used in the reflection of the original grain size variation. A large part of deep-sea turbidite beds are characterized by high Ca/Fe and Zr/Rb ratio values. These turbidite beds can be linked spatially over a distance of ˜200 km via submarine canyons within the Taiwan orogen. However, it is difficult to be linked temporally to certain events.
NASA Astrophysics Data System (ADS)
Ferraro, Serena; Sulli, Attilio; Di Stefano, Enrico; Giaramita, Luigi; Incarbona, Alessandro; Graham Mortyn, P.; Sprovieri, Mario; Sprovieri, Rodolfo; Tonielli, Renato; Vallefuoco, Mattia; Zizzo, Elisabetta; Tranchida, Giorgio
2018-06-01
The Malta Graben is a deep tectonic depression in the Sicily Channel, bounded by NW-SE normal faults and filled by thick Pliocene-Quaternary deposits. A previous analysis of a giant piston core (LC09) from the Malta Graben had revealed a wide range of sedimentary features (carbonate turbidites, bioturbated mud and scours), although the chronostratigraphic constraint of the stacking pattern has remained elusive. After establishing a reliable chronological framework based on seven radiocarbon dates for a shorter core from the Malta Graben (ANSIC03-735), a down-core analysis of planktonic foraminifer and coccolith abundance, stable isotopes and sediment grain size was carried out. Since the last glacial maximum, palaeoenvironmental conditions (surface fertility and deep chlorophyll maximum during the last glacial and the Younger Dryas; warm and oligotrophic water masses, with a deep nutricline and intense winter mixing during the Holocene) as well as selected calcareous plankton taxa trends and peaks seem to be similar to those reported for other central and western Mediterranean sites, possibly in spite of a unique response of these areas to late Quaternary climatic fluctuations. Four distinct layers, each tens of centimetres thick, are barren of foraminifers but not of coccoliths. Morphobathymetric data as well as new high-resolution and high-penetration seismic profiles show that prolonged contouritic activity has persisted on the western side of the Malta Graben. It is thus likely that layers barren of foraminifers are due to the overflow of fine-grained (clayey) material beyond drift channel dikes.
NASA Astrophysics Data System (ADS)
Ferraro, Serena; Sulli, Attilio; Di Stefano, Enrico; Giaramita, Luigi; Incarbona, Alessandro; Graham Mortyn, P.; Sprovieri, Mario; Sprovieri, Rodolfo; Tonielli, Renato; Vallefuoco, Mattia; Zizzo, Elisabetta; Tranchida, Giorgio
2018-03-01
The Malta Graben is a deep tectonic depression in the Sicily Channel, bounded by NW-SE normal faults and filled by thick Pliocene-Quaternary deposits. A previous analysis of a giant piston core (LC09) from the Malta Graben had revealed a wide range of sedimentary features (carbonate turbidites, bioturbated mud and scours), although the chronostratigraphic constraint of the stacking pattern has remained elusive. After establishing a reliable chronological framework based on seven radiocarbon dates for a shorter core from the Malta Graben (ANSIC03-735), a down-core analysis of planktonic foraminifer and coccolith abundance, stable isotopes and sediment grain size was carried out. Since the last glacial maximum, palaeoenvironmental conditions (surface fertility and deep chlorophyll maximum during the last glacial and the Younger Dryas; warm and oligotrophic water masses, with a deep nutricline and intense winter mixing during the Holocene) as well as selected calcareous plankton taxa trends and peaks seem to be similar to those reported for other central and western Mediterranean sites, possibly in spite of a unique response of these areas to late Quaternary climatic fluctuations. Four distinct layers, each tens of centimetres thick, are barren of foraminifers but not of coccoliths. Morphobathymetric data as well as new high-resolution and high-penetration seismic profiles show that prolonged contouritic activity has persisted on the western side of the Malta Graben. It is thus likely that layers barren of foraminifers are due to the overflow of fine-grained (clayey) material beyond drift channel dikes.
Global pulses of organic carbon burial in deep-sea sediments during glacial maxima
Cartapanis, Olivier; Bianchi, Daniele; Jaccard, Samuel L.; Galbraith, Eric D.
2016-01-01
The burial of organic carbon in marine sediments removes carbon dioxide from the ocean–atmosphere pool, provides energy to the deep biosphere, and on geological timescales drives the oxygenation of the atmosphere. Here we quantify natural variations in the burial of organic carbon in deep-sea sediments over the last glacial cycle. Using a new data compilation of hundreds of sediment cores, we show that the accumulation rate of organic carbon in the deep sea was consistently higher (50%) during glacial maxima than during interglacials. The spatial pattern and temporal progression of the changes suggest that enhanced nutrient supply to parts of the surface ocean contributed to the glacial burial pulses, with likely additional contributions from more efficient transfer of organic matter to the deep sea and better preservation of organic matter due to reduced oxygen exposure. These results demonstrate a pronounced climate sensitivity for this global carbon cycle sink. PMID:26923945
Paleoceanographic Changes during the Past 95000 Years from the Indian Sector of the Southern Ocean
NASA Astrophysics Data System (ADS)
Manoj, M. C.; Meloth, T.; Mohan, R.
2012-12-01
High-resolution planktic/benthic foraminiferal stable isotope and mean sortable silt records in a sediment core (SK200/22a) from the sub-Antarctic regime of the Indian sector of Southern Ocean depict the variations in surface and deep water hydrography during the past 95,000 years. The δ18O records of shallow- and deep-dwelling planktonic foraminiferal species (Neogloboquadrina pachyderma, Globigerina bulloides and Globorotalia inflata), primarily reflects the changes in upper water column characteristics. The δ18O records revealed the presence of the Antarctic Cold Reversal and the timing of the variability in major surface warming events appears in phase with the Antarctic temperature variations at the millennial time scale. Comparison between the proxies of sea surface conditions like planktonic δ18O and productivity proxies like carbonate and biogenic opal content in the core indicate that millennial scale sea surface warming fluctuated with productivity. The marine isotopic stage (MIS) 1 and MIS2 are characterized by near constant variations in mean sortable silt values, negating any significant changes in the deep water flow during these periods. The MIS 3 - MIS 5 periods were characterized by a general increase in mean sortable silt value, suggesting a strengthening of bottom-current activity that triggered winnowing at these periods. This is supported by the low δ13C records of epibenthic Cibicidoides wuellerstorfi during the glacials and some parts of MIS3 and MIS 5, confirming older nutrient-rich and poorly ventilated southern sourced deep waters at these periods. The termination I is marked by decrease in flow speed and an increase in the C. wuellerstorfi δ13C values. Comparison of mean sortable silt and C. wuellerstorfi δ13C record with the Antarctic ice core records reveal that pulses of reduced bottom water flow of Circumpolar Deep Water/North Atlantic Deep Water are synchronous with the Antarctic warming events. The decreased flow speed during the Antarctic warm events may be due to the lower production rate of southern-sourced water or reduced density, leading to reduced geostrophic flow. During the cold phases of the Antarctic climate, enhanced southern westerly wind transport caused increased sea-ice export leading to increase in density of southern-sourced water.
NASA Astrophysics Data System (ADS)
Stern, J.; Lisiecki, L. E.
2013-12-01
The assumption of globally synchronous benthic foraminiferal δ18O changes is central to the development of global stacks (averages) and many other types of paleoclimate studies. However, a few well-dated individual benthic δ18O records have suggested the possibility of regional differences in the timing of Termination I (e.g., Skinner and Shackleton, 2005; Waelbroeck et al., 2011). These previous studies often used single core locations to describe vast areas of the ocean, so it has remained unclear whether the observed diachroneities are truly regional in scale or merely local. Here, we bridge the gap between global benthic δ18O stacks and individual records by presenting eight regional benthic δ18O stacks from 252 cores with age models based on a total of 776 planktonic foraminiferal radiocarbon dates from 61 of those cores. The earliest termination onset (beginning of deglacial benthic δ18O decrease) occurs in the intermediate South Atlantic stack at 18.5 kyr BP, shortly after the initial deglacial melting of Northern Hemisphere ice sheets. The latest termination onset occurs in the deep Indian stack at 14.5 kyr BP, coeval with the Bølling-Allerød warming. We find synchronous termination onsets at 17.5 kyr BP in the intermediate North Atlantic, deep North Atlantic, and deep South Atlantic, contrary to Waelbroeck et al. (2011). The deglacial benthic δ18O decrease in the deep Pacific lagged that of the deep Atlantic by an average of 1000 yr, with a maximum lag of ~1700 yr during the middle of the termination. The intermediate Pacific termination onset at 16.5 kyr BP happens 1000 yr after the deep Pacific termination onset at 17.5 kyr BP. The stacks extend beyond Termination I to ~40 kyr BP, allowing us to clarify and update certain aspects of millennial-scale benthic δ18O chronostratigraphy surrounding Heinrich events 2-3 and the transition into the Last Glacial Maximum. Our radiocarbon-dated regional benthic δ18O stacks demonstrate some of the limitations of benthic δ18O correlations while providing valuable regional-scale age models and constraints on water mass property and ocean circulation changes over the last ~40 kyr.
IODP Exp 362T: Additional Coring and Remediation in Hole U1473A - Continuing the Journey to the Moho
NASA Astrophysics Data System (ADS)
Blum, P.; Dick, H. J.; MacLeod, C. J.; Expedition 360 Scientists, I.
2016-12-01
IODP Hole U1473A, located at 32°42.362'S, 057°16.688'E in the central part of the Atlantis Bank, SW Indian Ridge, at 710.2 m water depth, was drilled to a depth of 789.7 m below seafloor during Exp. 360 (11/30/15 - 1/30/16) and recovered 469.2 m of gabbroic rocks. Following successful wireline logging, a mechanical bit release retainer sleeve (MBR-RS) appeared to have been lost in the hole, raising question about the feasibility of deepening the hole in the future.. We are here reporting the successful remediation operation carried out 12 - 21 Jul, which left the hole ready for deepening on a future expedition. Hole U1473A is serendipitously located on the scheduled Transit 362T from Cape Town to Colombo (4 Jul - 6 Aug) and had 14 days of redundant time and a nearly full technical contingent on board. This led to a request and approval to use the time to "fish" for the MBR-RS, cement the hole to stabilize fault zones, and recover up to 20 m of core to establish the feasibility for future deep drilling. An initial attempt at taking a temperature log in the hole was terminated at 277 m due an obstruction. Subsequent reaming successfully reached the bottom of the hole and removed all cuttings. To our surprise, deployment of the fishing tool recovered an 18-cm dia., 36-cm long rock core but no MBR-RS. The latter must have fallen to the seafloor unnoticed at the end of Exp. 360. Given the immaculate hole conditions, we went on to recover four additional cores with excellent recovery (86%), deepening the hole to 809.4 m. The new cores from 789.7 to 809.5 m consist mostly of medium to coarse-grained subophitic olivine gabbro with a weak magmatic fabric and irregular contacts between medium and coarse-grained size domains. From 795 - 797 m, a zone of Fe-Ti oxide gabbro results in high magnetic susceptibility (MS) and significant natural gamma radiation (NGR) with sheared contacts and an associated porphyroclastic interval. The interval below 797 m is more isotropic with low MS and no NGR. At 803 m a 40-cm thick Fe-Ti oxide-rich mylonitic band is underlain by a porphyroclastic interval indicating that zones of crystal plastic deformation continue to the bottom of the hole. Two of the fault zones located with Exp. 360 data above 580 m were cemented, leaving a plug from 584-443 m and the hole ready and in good condition to continue the journey to the Moho.
Drilling a deep geologic test well at Hilton Head Island, South Carolina
Schultz, Arthur P.; Seefelt, Ellen L.
2011-01-01
The U.S. Geological Survey, in cooperation with the South Carolina Department of Health and Environmental Control (SCDHEC), is drilling a deep geologic test well at Hilton Head Island, S.C. The test well is scheduled to run between mid-March and early May 2011. When completed, the well will be about 1,000 feet deep. The purpose of this test well is to gain knowledge about the regional-scale Floridan aquifer, an important source of groundwater in the Hilton Head area. Also, cores obtained during drilling will enable geologists to study the last 60 million years of Earth history in this area.
Software Graphics Processing Unit (sGPU) for Deep Space Applications
NASA Technical Reports Server (NTRS)
McCabe, Mary; Salazar, George; Steele, Glen
2015-01-01
A graphics processing capability will be required for deep space missions and must include a range of applications, from safety-critical vehicle health status to telemedicine for crew health. However, preliminary radiation testing of commercial graphics processing cards suggest they cannot operate in the deep space radiation environment. Investigation into an Software Graphics Processing Unit (sGPU)comprised of commercial-equivalent radiation hardened/tolerant single board computers, field programmable gate arrays, and safety-critical display software shows promising results. Preliminary performance of approximately 30 frames per second (FPS) has been achieved. Use of multi-core processors may provide a significant increase in performance.
Development of a core sheath process for production of oxide fibers
NASA Technical Reports Server (NTRS)
Freske, S.
1972-01-01
Improvements were sought in an oxide fiber of a core sheath configuration intended for structural applications at 2000 F (1093 C). Discontinuities in the core were eliminated by using core materials other than pure alumina, and continuous core sheath fibers were produced. In the case of some core materials, the continuous sections were sufficiently long for applications in short fiber composites. Creep at 2000 F (1093 C) was found to be due, in most cases, to breaks in the core, allowing the glass sheath to creep. Evidence was obtained indicating that a closer match between the thermal expansion coefficient of the sheath and the core would greatly improve the strength.
NASA Astrophysics Data System (ADS)
Schnyder, Johann; Stetten, Elsa; Baudin, François; Pruski, Audrey M.; Martinez, Philippe
2017-08-01
The Congo deep-sea fan is directly connected to the Congo River by a unique submarine canyon. The Congo River delivers up to 2×1012gPOC/yr, a part of which is funnelled by the submarine canyon and feeds the deep-sea environments. The more distal part of the Congo deep-sea fan, the terminal lobe area, has a surface of 2500 km2 and is situated up to 800 km offshore at depths of 4750-5000 m. It is a remarkable place to study the fate and distribution of the organic matter transferred from the continent to the deep ocean via turbidity currents. Forty-two samples were analyzed from the terminal lobes, including sites from the active channel, one of its levees and an abandoned distal channel. Samples were collected using multitube cores and push-cores using a Victor 6000 ROV, which surveyed the dense chemosynthetic habitats that locally characterize the terminal lobes. Palynofacies reveal a remarkably well-preserved, dominantly terrestrial particulate organic matter assemblage, that has been transferred from the continent into the deep-sea by turbidity currents. Delicate plant structures, cuticle fragments and plant cellular material is often preserved, highlighting the efficiency of turbidity currents to transfer terrestrial organic matter to the sea-floor, where it is preserved. Moreover, the palynofacies data reveal a general sorting by density or buoyancy of the organic particles, as the turbulent currents escaped the active channel, feeding the levees and the more distal, abandoned channel area. Finally, in addition to aforementioned hydrodynamic factors controlling the organic matter accumulation, a secondary influence of chemosynthetic habitats on organic matter preservation is also apparent. Palynofacies is therefore a useful tool to record the distribution of organic matter in recent and ancient deep-sea fan environments, an important topic for both academic and petroleum studies.
ICDP drilling in the Scandinavian Caledonides: the SDDP-COSC project
NASA Astrophysics Data System (ADS)
Lorenz, Henning; Juhlin, Christopher; Gee, David; Pascal, Christophe; Tsang, Chin-Fu; Pedersen, Karsten; Rosberg, Jan-Erik
2013-04-01
The Swedish Deep Drilling Program (SDDP) Collisional Orogeny in the Scandinavian Caledonides (COSC) project is a multidisciplinary investigation of the Scandian mountain belt. Cenozoic uplift of the Scandes has exposed a lower- to middle-crustal level section through this Himalaya-type orogen, providing unique opportunities to better understand not only the Caledonides, but also on-going orogeny and the earthquake-prone environments of modern mountains belts. COSC will also contribute to our knowledge of mountain belt hydrology, provide the first information about deep thermal gradients for paleoclimate modeling and potential geothermal energy resources, contribute new information about the deep biosphere, and improve our understanding of the Cenozoic uplift history of the Scandes. The drilling program targets the far-traveled (> 400 km) allochthons of the Scandinavian Caledonides and their emplacement across the Baltoscandian foreland basin onto the platform of continent Baltica. Two 2.5 km deep holes are planned. COSC-1, to be drilled in the summer of 2013, will target the high-grade metamorphic complex of the Seve Nappes (SNC) and its contact to underlying allochthons. COSC-2 will start in the lower thrust sheets, pass through the basal décollement and investigate the character of the deformation in the underlying basement. An international science team, including expertise on Himalaya-Tibet and other young orogens, is running the science program. New high-resolution reflection seismic data provide excellent images of the upper crust. Alternative interpretations of the reflectors' origin, particularly those in the basement, will be tested. The site of COSC-1 is based on a 3D geological model, constructed from surface geology, recent and vintage regional reflection seismic profiles, regional and local gravity data, and high-resolution aeromagnetics, acquired recently by the Geological Survey of Sweden. The drilling will be carried out utilising the new Swedish scientific drilling infrastructure, located at Lund University, an Atlas Copco CT20 diamond core-drilling rig, with versatile drilling equipment (see EGU2012-7379), providing the ideal platform for core-drilling to 2.5 km depths. Existing drilling, sampling and testing techniques (e.g. triple-tube core drilling for best core quality) will need to be adapted to highly variable lithologies and new techniques will be developed, as necessary. COSC-1 drilling operations and the directly related on-site investigations are financed by ICDP and the Swedish Research Council. All drill cores will be transferred to the core repository of the Geological Survey of Sweden, and a sampling party will be announced later this year. Researchers who want to participate in COSC and contribute their expertise are encouraged to inform us of their interests.
North Atlantic Deep Water Production during the Last Glacial Maximum
Howe, Jacob N. W.; Piotrowski, Alexander M.; Noble, Taryn L.; Mulitza, Stefan; Chiessi, Cristiano M.; Bayon, Germain
2016-01-01
Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric CO2. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial–interglacial changes in water mass distributions. These results demonstrate the sustained production of North Atlantic Deep Water under glacial conditions, indicating that southern-sourced waters were not as spatially extensive during the Last Glacial Maximum as previously believed. We demonstrate that the depleted glacial δ13C values in the deep Atlantic Ocean cannot be explained solely by water mass source changes. A greater amount of respired carbon, therefore, must have been stored in the abyssal Atlantic during the Last Glacial Maximum. We infer that this was achieved by a sluggish deep overturning cell, comprised of well-mixed northern- and southern-sourced waters. PMID:27256826
NASA Astrophysics Data System (ADS)
Müller-Michaelis, Antje; Uenzelmann-Neben, Gabriele
2015-12-01
The method of seismic oceanography was applied to identify fine structure and pathways of the Western Boundary Undercurrent (WBUC) at Eirik Drift, 200 km south of Greenland. Three high-velocity cores of the WBUC were distinguished: a deep core in depths >2600 m which carries Denmark Strait Overflow Water, an upper core in depths between ~1900 and 3000 m transporting Iceland-Scotland Overflow Water, and a split-off of this upper core, which crosses the main crest of Eirik Drift at depths between ~1900 and 2400 m. For the upper WBUC core a detailed analysis of the structure was conducted. The WBUC core has as a domed structure, which changes in style, width and height above seafloor along the lines of the changing topography. We proved not only the influence of the topography on pathway and structure of the WBUC core but also that this information cannot be gained by measuring the overflow waters with discrete CTD stations.
Hamel, Gary; Välikangas, Liisa
2003-09-01
In less turbulent times, executives had the luxury of assuming that business models were more or less immortal. Companies always had to work to get better, but they seldom had to get different--not at their core, not in their essence. Today, getting different is the imperative. It's the challenge facing Coca-Cola as it struggles to raise its "share of throat" in noncarbonated beverages. It's the task that bedevils McDonald's as it tries to restart its growth in a burger-weary world. It's the hurdle for Sun Microsystems as it searches for ways to protect its high-margin server business from the Linux onslaught. Continued success no longer hinges on momentum. Rather, it rides on resilience-on the ability to dynamically reinvent business models and strategies as circumstances change. Strategic resilience is not about responding to a onetime crisis or rebounding from a setback. It's about continually anticipating and adjusting to deep, secular trends that can permanently impair the earning power of a core business. It's about having the capacity to change even before the case for change becomes obvious. To thrive in turbulent times, companies must become as efficient at renewal as they are at producing today's products and services. To achieve strategic resilience, companies will have to overcome the cognitive challenge of eliminating denial, nostalgia, and arrogance; the strategic challenge of learning how to create a wealth of small tactical experiments; the political challenge of reallocating financial and human resources to where they can earn the best returns; and the ideological challenge of learning that strategic renewal is as important as optimization.
Considerations for the measurement of core, skin and mean body temperatures.
Taylor, Nigel A S; Tipton, Michael J; Kenny, Glen P
2014-12-01
Despite previous reviews and commentaries, significant misconceptions remain concerning deep-body (core) and skin temperature measurement in humans. Therefore, the authors have assembled the pertinent Laws of Thermodynamics and other first principles that govern physical and physiological heat exchanges. The resulting review is aimed at providing theoretical and empirical justifications for collecting and interpreting these data. The primary emphasis is upon deep-body temperatures, with discussions of intramuscular, subcutaneous, transcutaneous and skin temperatures included. These are all turnover indices resulting from variations in local metabolism, tissue conduction and blood flow. Consequently, inter-site differences and similarities may have no mechanistic relationship unless those sites have similar metabolic rates, are in close proximity and are perfused by the same blood vessels. Therefore, it is proposed that a gold standard deep-body temperature does not exist. Instead, the validity of each measurement must be evaluated relative to one's research objectives, whilst satisfying equilibration and positioning requirements. When using thermometric computations of heat storage, the establishment of steady-state conditions is essential, but for clinically relevant states, targeted temperature monitoring becomes paramount. However, when investigating temperature regulation, the response characteristics of each temperature measurement must match the forcing function applied during experimentation. Thus, during dynamic phases, deep-body temperatures must be measured from sites that track temperature changes in the central blood volume. Copyright © 2014 Elsevier Ltd. All rights reserved.
Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing
Zhang, Fan; Li, Guojun; Li, Wei; Hu, Wei; Hu, Yuxin
2016-01-01
With the development of synthetic aperture radar (SAR) technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC) methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO). However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX) method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate. PMID:27070606
Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing.
Zhang, Fan; Li, Guojun; Li, Wei; Hu, Wei; Hu, Yuxin
2016-04-07
With the development of synthetic aperture radar (SAR) technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC) methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO). However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX) method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate.
NASA Astrophysics Data System (ADS)
Qin, Bingbin; Li, Tiegang; Xiong, Zhifang; Algeo, Thomas J.; Chang, Fengming
2017-04-01
We present new "size-normalized weight" (SNW)-Δ[CO32-] core-top calibrations for three planktonic foraminiferal species and assess their reliability as a paleo-alkalinity proxy. SNWs of Globigerina sacculifer and Neogloboquadrina dutertrei can be used to reconstruct past deep Pacific [CO32-], whereas SNWs of Pulleniatina obliquiloculata are controlled by additional environmental factors. Based on this methodological advance, we reconstruct SNW-based deepwater [CO32-] for core WP7 from the western tropical Pacific since 250 ka. Secular variation in the SNW proxy documents little change in deep Pacific [CO32-] between the Last Glacial Maximum and the Holocene. Further back in time, deepwater [CO32-] shows long-term increases from marine isotope stage (MIS) 5e to MIS 3 and from early MIS 7 to late MIS 6, consistent with the "coral reef hypothesis" that the deep Pacific Ocean carbonate system responded to declining shelf carbonate production during these two intervals. During deglaciations, we have evidence of [CO32-] peaks coincident with Terminations 2 and 3, which suggests that a breakdown of oceanic vertical stratification drove a net transfer of CO2 from the ocean to the atmosphere, causing spikes in carbonate preservation (i.e., the "deglacial ventilation hypothesis"). During MIS 4, a transient decline in SNW-based [CO32-], along with other reported [CO32-] and/or dissolution records, implies that increased deep-ocean carbon storage resulted in a global carbonate dissolution event. These findings provide new insights into the role of the deep Pacific in the global carbon cycle during the late Quaternary.
The timing of deglacial circulation changes in the Atlantic
NASA Astrophysics Data System (ADS)
Waelbroeck, C.; Skinner, L.; Gersonde, R.; Mackensen, A.; Michel, E.; Labeyrie, L. D.; Duplessy, J.
2009-12-01
We present new benthic isotopic data from core MD07-3076 retrieved in the Atlantic sector of the Southern Ocean (44°09’S, 14°13’W, 3770 m water depth), and place them in the context of well-dated published Atlantic benthic foraminifera isotopic records covering the last 30 ky. Dating of core MD07-3076 was achieved by a combination of 14C AMS measurements on planktonic foraminifera and correlation of sea surface temperature signals derived from both planktonic foraminifera Mg/Ca and census counts, with Antarctic ice isotopic records (Skinner et al., submitted). Comparison of benthic isotopic records from various depths in the North and South Atlantic reveals that circulation changes over the last deglaciation did not take place simultaneously in the 1000-2000 m and in the 3000-4500 m depth ranges. Circulation changes first occurred at lower depth, causing large and relatively rapid changes in benthic δ18O and δ13C at the beginning of Heinrich Stadial 1 (HS1) and the Younger Dryas. Below 3000 m depth, North Atlantic deep water hydrology changed only gradually until a large increase in deep water ventilation took place, resulting from the resumption of North Atlantic Deep Water formation at the end of HS1. In contrast, our deep South Atlantic record indicates that Circumpolar Deep Water around 3800 m depth remained quasi-isolated from northern water masses until the end of HS1. Furthermore, our record shows that core MD07-3076 site was then flushed with better ventilated waters for a few hundred years from ~14.5 to 14 calendar ky BP, before benthic δ18O and δ13C values resumed their progression towards Holocene levels. In conclusion, this set of well-dated Atlantic records demonstrates that benthic δ18O records followed different time evolutions across the last deglaciation, depending on the site latitude and water depth, so that benthic δ18O can not be used as a global correlation tool with a precision better than 3 ky.
NASA Astrophysics Data System (ADS)
Arce, J. L.; Layer, P. W.; Morales-Casique, E.; Benowitz, J.
2014-12-01
The San Lorenzo Tezonco deep well stratigraphy records intense episodic volcanic activity in the Mexico Basin and surroundings during the past 20 Ma. The 2008-m deep lithological column is dominated by volcanic material, either as lava flows or pyroclastic deposits (97%), and only the upper most 70 m are composed of lacustrine deposits (3%). Based on geochronology and geochemistry, the lower part of the drill core is represented by rocks correlating to the Tepoztlán Formation (876-2008 m deep) that vary in composition from basaltic-andesite to rhyolite, and ages ranging from 13 to 21.2 Ma. On the surface this formation outcrops near the towns of Malinalco and Tepoztlán, ~43 km south of the deep well. Between depths of 581 and 875 m, volcanic rocks were recovered and are interpreted as lavas from the Sierra de las Cruces that vary in composition from andesite to dacite and range in age from 0.9 Ma to 5 Ma. Additionally, we documented rocks belonging to the Xochitepec Formation, outcropping around Xochimilco, in the Mexico City, with ages ranging from 1.2 and 1.7 Ma, in contrast with the Oligocene age proposed in previous works for these rocks. These new ages plus the chemical composition data, allow us to correlate the Xochitepec rocks with Sierra de las Cruces. Upward in the drill core (510-580 m) there are andesitic rocks that correlate with the 0.25 Ma Cerro de la Estrella volcanic center. The last volcanic package found in the well is correlated to the Santa Catarina basaltic andesites (70-120 m) that are younger than 0.25 Ma, and probably Holocene. Lacustrine deposits crown the stratigraphic column of the drill core with ages probably younger than 34 ka. The San Lorenzo Tezonco well is in a graben-like structure that was filled with more than 1900 m of volcanic products, suggesting that volcanism were intense in the Miocene to the Recent, and the south drainage of the Mexico Basin was closed probably in the early Pleistocene.
Extracting Databases from Dark Data with DeepDive.
Zhang, Ce; Shin, Jaeho; Ré, Christopher; Cafarella, Michael; Niu, Feng
2016-01-01
DeepDive is a system for extracting relational databases from dark data : the mass of text, tables, and images that are widely collected and stored but which cannot be exploited by standard relational tools. If the information in dark data - scientific papers, Web classified ads, customer service notes, and so on - were instead in a relational database, it would give analysts a massive and valuable new set of "big data." DeepDive is distinctive when compared to previous information extraction systems in its ability to obtain very high precision and recall at reasonable engineering cost; in a number of applications, we have used DeepDive to create databases with accuracy that meets that of human annotators. To date we have successfully deployed DeepDive to create data-centric applications for insurance, materials science, genomics, paleontologists, law enforcement, and others. The data unlocked by DeepDive represents a massive opportunity for industry, government, and scientific researchers. DeepDive is enabled by an unusual design that combines large-scale probabilistic inference with a novel developer interaction cycle. This design is enabled by several core innovations around probabilistic training and inference.
Species-energy relationship in the deep sea: A test using the Quaternary fossil record
Hunt, G.; Cronin, T. M.; Roy, K.
2005-01-01
Little is known about the processes regulating species richness in deep-sea communities. Here we take advantage of natural experiments involving climate change to test whether predictions of the species-energy hypothesis hold in the deep sea. In addition, we test for the relationship between temperature and species richness predicted by a recent model based on biochemical kinetics of metabolism. Using the deep-sea fossil record of benthic foraminifera and statistical meta-analyses of temperature-richness and productivity-richness relationships in 10 deep-sea cores, we show that temperature but not productivity is a significant predictor of species richness over the past c. 130 000 years. Our results not only show that the temperature-richness relationship in the deep-sea is remarkably similar to that found in terrestrial and shallow marine habitats, but also that species richness tracks temperature change over geological time, at least on scales of c. 100 000 years. Thus, predicting biotic response to global climate change in the deep sea would require better understanding of how temperature regulates the occurrences and geographical ranges of species. ??2005 Blackwell Publishing Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Tobin, Harold; Hirose, Takehiro; Demian, Saffer
2014-05-01
IODP Site C0002 at the Nankai Trough is now the deepest hole ever drilled in scientific ocean drilling, at 3058 meters below sea floor so far, and the first hole anywhere to access the deep interior of an active convergent margin. Site C0002 is part of the NanTroSEIZE transect off the Kii-Kumano region of Japan, imaged with 3D seismic reflection and drilled on a series of Chikyu expeditions to shed light on the processes around the up-dip edge of seismogenic locking and slip. At Site C0002, riser drilling has passed through the approximately 900 m thick Kumano forearc basin and pierced the underlying Miocene age accretionary wedge. Limited coring, extensive LWD logging, and continuous observations on drill cuttings reveal the materials and processes in the deep interior of the inner wedge. Predominantly fine-grained mudstones with common turbiditic sands were encountered, complexly deformed and exhibiting well-developed scaly clay fabrics, variable bedding dip with very steep dips prevailing, and veins that become more abundant with depth. The biostratigraphic age of the sediments in the lowermost part of the hole is thought to be ~ 9 - 11 Ma, with an assumed age of accretion of 3-5 Ma. Physical properties suggest that the inner wedge from 1600 - 3000 mbsf has quite homogeneous properties. Evidence from borehole logging, drilling parameters, and samples for the state of stress and pore pressure in this never-before accessed tectonic environment will be presented.
NASA Astrophysics Data System (ADS)
Palzer, Markus; Knierzinger, Wolfgang; Wagreich, Michael; Meszar, Maria E.; Gier, Susanne; Soliman, Ali; -Elena Kallanxhi, Mǎdǎlina
2016-04-01
The eastern Austrian Molasse Basin is situated between the Bohemian Massif, the Waschberg-Zone and the Alps. There, sands of the Lower Miocene (Upper Ottnangian) Traisen Formation represent a clastic interval at the top of pelitic Schlier successions, which is correlated with the global sea level drop Bur3 (Burdigalian). North of the Danube River, the continuation of the Traisen-Formation is overlain by the Karpatian Laa-Formation. Drill cores from OMV-wells predominantly from the continuation of the Traisen Formation in deep parts in the NE of the basin show hundreds of meters of pelites with intersections of sands. Contrary to the exposed, mainly brackish TF, a turbiditic and predominantly fully marine deep-water environment is inferred from the cores. Profiles of carbonate content, XRD, XRF, whole rock chemistry, clay minerals, calcareous nannoplankton and dinoflagellate cysts of 7 wells were investigated representing a NE-SW transect through the LAMB. Based on these data, a new stratigraphy for the Burdigalian distal parts of the LAMB can be defined and correlated with the proximal units. The Traisen Formation and its equivalents are characterized at their base by an increased clastic input in the south and by increasing mica content in the northern parts. The complete interval is characterized by the decreased carbonate content. The XRD data show strongly reduced calcite contents which goe hand in hand with the absence of nannoplankton. Whether the signal is related to a crisis in primary production or to carbonate dissolution remains unclear. The absence of dinoflagellate cysts and the chemical data (reduced B/Al* ratios indicate reduced salinity) are considered as an argument for an environmental crisis. However, the absence of resedimented Cretaceous to Paleocene nannofossils, which usually occur together with the autochthonous NN4-nannofossils, indicates carbonate dissolution. These results enable us to define a basinal interval as equivalent to the proximal Traisen Formation which may serve as a key section for the stratigraphy of the deep basinal part. Sediments of this section were influenced by a low salinity crisis that was caused by the closure of the connection to the Upper Austrian Molasse Basin. This led to a partly or completely isolated basin in Lower Austria with a probably strongly reduced water circulation and strong freshwater influence. The closure is probably connected to the Miocene lateral extrusion of the Alps, the fast uplift of the Northern Calcareous Alps and accelerated sediment input from the south. This isolation may be terminated by the deepening of the Vienna Basin during Karpatian/Badenian times.
A seismologically consistent compositional model of Earth's core.
Badro, James; Côté, Alexander S; Brodholt, John P
2014-05-27
Earth's core is less dense than iron, and therefore it must contain "light elements," such as S, Si, O, or C. We use ab initio molecular dynamics to calculate the density and bulk sound velocity in liquid metal alloys at the pressure and temperature conditions of Earth's outer core. We compare the velocity and density for any composition in the (Fe-Ni, C, O, Si, S) system to radial seismological models and find a range of compositional models that fit the seismological data. We find no oxygen-free composition that fits the seismological data, and therefore our results indicate that oxygen is always required in the outer core. An oxygen-rich core is a strong indication of high-pressure and high-temperature conditions of core differentiation in a deep magma ocean with an FeO concentration (oxygen fugacity) higher than that of the present-day mantle.
A seismologically consistent compositional model of Earth’s core
Badro, James; Côté, Alexander S.; Brodholt, John P.
2014-01-01
Earth’s core is less dense than iron, and therefore it must contain “light elements,” such as S, Si, O, or C. We use ab initio molecular dynamics to calculate the density and bulk sound velocity in liquid metal alloys at the pressure and temperature conditions of Earth's outer core. We compare the velocity and density for any composition in the (Fe–Ni, C, O, Si, S) system to radial seismological models and find a range of compositional models that fit the seismological data. We find no oxygen-free composition that fits the seismological data, and therefore our results indicate that oxygen is always required in the outer core. An oxygen-rich core is a strong indication of high-pressure and high-temperature conditions of core differentiation in a deep magma ocean with an FeO concentration (oxygen fugacity) higher than that of the present-day mantle. PMID:24821817
Frankenstein, Ziv; Sperling, Joseph; Sperling, Ruth; Eisenstein, Miriam
2012-01-01
Summary The spliceosome is a mega-Dalton ribonucleoprotein (RNP) assembly that processes primary RNA transcripts, producing functional mRNA. The electron microscopy structures of the native spliceosome and of several spliceosomal subcomplexes are available but the spatial arrangement of the latter within the native spliceosome is not known. We designed a new computational procedure to efficiently fit thousands of conformers into the spliceosome envelope. Despite the low resolution limitations, we obtained only one model that complies with the available biochemical data. Our model localizes the five small nuclear RNPs (snRNPs) mostly within the large subunit of the native spliceosome, requiring only minor conformation changes. The remaining free volume presumably accommodates additional spliceosomal components. The constituents of the active core of the spliceosome are juxtaposed, forming a continuous surface deep within the large spliceosomal cavity, which provides a sheltered environment for the splicing reaction. PMID:22578543
NASA Technical Reports Server (NTRS)
Voorhies, Coerte V.
1998-01-01
The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aid core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile, akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core; (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core relative to the mantle is calculated to be at most 1.5 deg./yr.
NASA Technical Reports Server (NTRS)
Voorhies, C. V.
1999-01-01
The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aide core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core, (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core is calculated to be at most 1.5 degrees per year.
Worst error performance of continuous Kalman filters. [for deep space navigation and maneuvers
NASA Technical Reports Server (NTRS)
Nishimura, T.
1975-01-01
The worst error performance of estimation filters is investigated for continuous systems in this paper. The pathological performance study, without assuming any dynamical model such as Markov processes for perturbations, except for its bounded amplitude, will give practical and dependable criteria in establishing the navigation and maneuver strategy in deep space missions.
A simple and inexpensive technique for assessing microbial contamination during drilling operations
NASA Astrophysics Data System (ADS)
Friese, André; Vuillemin, Aurèle; Kallmeyer, Jens; Wagner, Dirk
2016-04-01
Exploration of the Deep Biosphere relies on drilling, which inevitably causes infiltration of drilling fluids, containing allochthonous microbes from the surface, into the core. Therefore it is absolutely necessary to trace contamination of the sediment core in order to identify uncontaminated samples for microbiological investigations. Several techniques have been used in the past, including fluorescent dyes, perfluorocarbon tracers and fluorescent microspheres. Fluorescent dyes are inexpensive and easy to analyze on-site but are sensitive to light, pH and water chemistry. Furthermore, significant sorption to clays can decrease the fluorescence signal. Perfluorocarbon tracers are chemically inert hydrophobic compounds that can be detected with high sensitivity via gas chromatography, which might be a problem for on-site analysis. Samples have to be taken immediately after core retrieval as otherwise the volatile tracer will have diffused out of the core. Microsphere tracers are small (0.2 - 0.5 μm diameter) fluorescent plastic particles that are mixed into the drilling fluid. For analysis, these particles can be extracted from the sediment sample, transferred onto a filter and quantified via fluorescence microscopy. However, they are very expensive and therefore unsuitable for deep drilling operations that need large amounts of drilling fluids. Here, we present an inexpensive contamination control approach using fluorescent pigments initially used for coloring plastics. The price of this tracer is nearly three orders of magnitude lower than conventional microsphere tracers. Its suitability for large drilling campaigns was tested at the ICDP Deep Drilling at Lake Towuti, Sulawesi, Indonesia. The tracer was diluted 1:1000 in lake water, which was used as the drilling fluid. Additionally, a plastic bag filled with 20 mL of undiluted tracer was attached to the core catcher to increase the amount of particles in the liner fluid right at the core. After core retrieval, the core was cut and the liner fluid collected. From each whole round core (WRC) that was taken for microbiological and biogeochemical analyses, small samples of 1 cc were retrieved with sterile cutoff syringes from the rim, the center and an intermediate position. After dilution and homogenization in 9 mL MilliQ water, 10 μL of the sediment slurry was transferred onto a filter membrane and particles counted via fluorescence microscopy. Additionally, particles in the liner fluid were also quantified. This allows the quantification of the amount of drilling fluid that has entered the sediment sample during drilling. The minimum detectable volume of drilling fluid was in the order of single nanoliters per cc of sediment, which is in the range of established techniques. The presented method requires only a minimum of equipment and allows rapid determination of contamination in the sediment core and an easy to handle on-site analysis at low costs. The sensitivity is in the same range as perfluorocarbon and microsphere tracer applications. Thus, it offers an inexpensive but powerful technique for contamination assessment for future drilling campaigns.
Characterising and modelling regolith stratigraphy using multiple geophysical techniques
NASA Astrophysics Data System (ADS)
Thomas, M.; Cremasco, D.; Fotheringham, T.; Hatch, M. A.; Triantifillis, J.; Wilford, J.
2013-12-01
Regolith is the weathered, typically mineral-rich layer from fresh bedrock to land surface. It encompasses soil (A, E and B horizons) that has undergone pedogenesis. Below is the weathered C horizon that retains at least some of the original rocky fabric and structure. At the base of this is the lower regolith boundary of continuous hard bedrock (the R horizon). Regolith may be absent, e.g. at rocky outcrops, or may be many 10's of metres deep. Comparatively little is known about regolith, and critical questions remain regarding composition and characteristics - especially deeper where the challenge of collecting reliable data increases with depth. In Australia research is underway to characterise and map regolith using consistent methods at scales ranging from local (e.g. hillslope) to continental scales. These efforts are driven by many research needs, including Critical Zone modelling and simulation. Pilot research in South Australia using digitally-based environmental correlation techniques modelled the depth to bedrock to 9 m for an upland area of 128 000 ha. One finding was the inability to reliably model local scale depth variations over horizontal distances of 2 - 3 m and vertical distances of 1 - 2 m. The need to better characterise variations in regolith to strengthen models at these fine scales was discussed. Addressing this need, we describe high intensity, ground-based multi-sensor geophysical profiling of three hillslope transects in different regolith-landscape settings to characterise fine resolution (i.e. < 1 m) regolith stratigraphy. The geophysics included: ground penetrating radar collected at a number of frequencies; multiple frequency, multiple coil electromagnetic induction; and high resolution resistivity. These were accompanied by georeferenced, closely spaced deep cores to 9 m - or to core refusal. The intact cores were sub-sampled to standard depths and analysed for regolith properties to compile core datasets consisting of: water content; texture; electrical conductivity; and weathered state. After preprocessing (filtering, geo-registration, depth correction, etc.) each geophysical profile was evaluated by matching the core data. Applying traditional geophysical techniques, the best profiles were inverted using the core data creating two-dimensional (2-D) stratigraphic regolith models for each transect, and evaluated using independent validation. Next, in a test of an alternative method borrowed from digital soil mapping, the best preprocessed geophysical profiles were co-registered and stratigraphic models for each property created using multivariate environmental correlation. After independent validation, the qualities of the latest models were compared to the traditionally derived 2-D inverted models. Finally, the best overall stratigraphic models were used in conjunction with local environmental data (e.g. geology, geochemistry, terrain, soils) to create conceptual regolith hillslope models for each transect highlighting important features and processes, e.g. morphology, hydropedology and weathering characteristics. Results are presented with recommendations regarding the use of geophysics in modelling regolith stratigraphy at fine scales.
Quaternary paleoceanography of the deep Arctic Ocean based on quantitative analysis of Ostracoda
Cronin, T. M.; Holtz, T.R.; Whatley, R.C.
1994-01-01
Ostracodes were studied from deep Arctic Ocean cores obtained during the Arctic 91 expedition of the Polarstern to the Nansen, Amundsen and Makarov Basins, the Lomonosov Ridge, Morris Jesup Rise and Yermak Plateau, in order to investigate their distribution in Arctic Ocean deep water (AODW) and apply these data to paleoceanographic reconstruction of bottom water masses during the Quaternary. Analyses of coretop assemblages from Arctic 91 boxcores indicate the following: ostracodes are common at all depths between 1000 and 4500 m, and species distribution is strongly influenced by water mass characteristics and bathymetry; quantitative analyses comparing Eurasian and Canada Basin assemblages indicate that distinct assemblages inhabit regions east and west of the Lomonosov Ridge, a barrier especially important to species living in lower AODW; deep Eurasian Basin assemblages are more similar to those living in Greenland Sea deep water (GSDW) than those in Canada Basin deep water; two upper AODW assemblages were recognized throughout the Arctic Ocean, one living between 1000 and 1500 m, and the other, having high species diversity, at 1500-3000 m. Downcore quantitative analyses of species' abundances and the squared chord distance coefficient of similarity reveals a distinct series of abundance peaks in key indicator taxa interpreted to signify the following late Quaternary deep water history of the Eurasian Basin. During the Last Glacial Maximum (LGM), a GSDW/AODW assemblage, characteristic of cold, well oxygenated deep water > 3000 m today, inhabited the Lomonosov Ridge to depths as shallow as 1000 m, perhaps indicating the influence of GSDW at mid-depths in the central Arctic Ocean. During Termination 1, a period of high organic productivity associated with a strong inflowing warm North Atlantic layer occurred. During the mid-Holocene, several key faunal events indicate a period of warming and/or enhanced flow between the Canada and Eurasian Basins. A long-term record of ostracode assemblages from kastenlot core PS2200-5 (1073 m water depth) from the Morris Jesup Rise indicates a quasi-cyclic pattern of water mass changes during the last 300 kyr. Interglacial ostracode assemblages corresponding to oxygen isotope stages 1, 5, and 7 indicate rapid changes in dissolved oxygen and productivity during glacial-interglacial transitions. ?? 1994.
Natural gas geochemistry of sediments drilled on the 2005 Gulf of Mexico JIP cruise
Lorenson, T.D.; Claypool, G.E.; Dougherty, J.A.
2008-01-01
In April and May 2005, cores were acquired and sub-sampled for gases in lease blocks Atwater Valley 13 and 14 and Keathley Canyon 151 during deep subseafloor drilling conducted as part of the JIP study of gas hydrates in the northern Gulf of Mexico. Sample types included sediment headspace gas, free gas derived from sediment gas exsolution, and gas exsolution from controlled degassing of pressurized cores. The gases measured both onboard and in shore-based labs were nitrogen, oxygen, hydrogen sulfide, carbon dioxide, and the hydrocarbons methane through hexane. The presence of seafloor mounds, seismic anomalies, a shallow sulfate-methane interface, and similar gas compositions and isotopic compositions near the seafloor and at depth suggest an upward flux of methane at both sites. Sediment gases at the Atwater Valley sites, where seafloor mounds and adjacent sediments were cored, strongly suggest a microbial source of methane, with very little thermogenic gas input. Sediment gas from all cores contained from about 96 to 99.9% methane, with the balance composed primarily of carbon dioxide. Methane to ethane ratios were greater than 1000, and often over 10,000. Gases from cores at Keathley Canyon were similar to those at Atwater Valley, however, deeper cores from Keathley Canyon contained more ethane, propane, and butane suggesting mixing with minor concentrations thermogenic gas. The isotopic composition of methane, ethane, and carbon dioxide were measured, and ??13C values range from -84.3 to -71.5???, -65.2 to -46.8???, and -23.5 to -3.0???, respectively, all consistent with microbial gas sources, early diagenesis of organic matter and perhaps biodegradation of petroleum. The presence of deep microbial gas at these sites here and elsewhere highlights a potentially significant, predominantly microbial gas source in the northern Gulf of Mexico.
Petrology of deep drill hole, Kilauea Volcano
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grose, L.T.; Keller, G.V.
1976-12-01
The first deep drill hole (1262 m TD) at the summit of an active volcano (1102 m elev) was drilled in 1973 at Kilauea volcano, Hawaii with support from NSF and USGS. The hole is located within southern margin of Kilauea caldera in northern part of a 15 km/sup 2/ triangular block bounded by east rift zone, Koae fault zone, and southwest rift zone-a summit area relatively free of faults, rifts, and extrusions. Nearest eruptions are from fissures 1.2 km away which are active in 1974 and which do not trend toward the drill hole. Core recovery totals 47 mmore » from 29 core runs at rather evenly spaced intervals to total depth. Megascopic, thin-section, and X-ray examination reveals: (1) Recovered core is essentially vesicular, intergranular, nonporphyritic to porphyritic olivine basalt with minor olivine diabase, picrite diabase, and basalt, (2) Hyaloclastite and pillow basalt are absent, (3) Below water table (614 m elev) with increasing depth, vesicularity decreases, and density, crystallinity, competence, vesicle fill, and alteration irregularly increase, (4) Alteration first occurs at water table where calcite and silica partially fill vesticles and olivine is partially serpentinized, (5) At about 570 m elev massive serpentinization of olivine and deposition of montmorillonite-nontronite occur; at about 210 m elev truscottite and tobermorite occur in vesicles; at about 35 m elev mordenite occurs in vesicles, (6) Bottom-hole cores have complete filling of vesicles with silica, minor silica replacement, and complete alteration of olivine, and (7) Plagioclase is unaltered. Chemical analyses of bottom-hole cores are similar to those of modern summit lavas. Alteration and low porosity in bottom-hole cores plus abrupt temperature increase suggest the drill hole penetrated a self-sealed ''cap rock'' to a hydrothermal convection cell and possibly a magma body.« less
Iron-carbonate interaction at Earth's core-mantle boundary
NASA Astrophysics Data System (ADS)
Dorfman, S. M.; Badro, J.; Nabiei, F.; Prakapenka, V.; Gillet, P.
2015-12-01
Carbon storage and flux in the deep Earth are moderated by oxygen fugacity and interactions with iron-bearing phases. The amount of carbon stored in Earth's mantle versus the core depends on carbon-iron chemistry at the core-mantle boundary. Oxidized carbonates subducted from Earth's surface to the lowermost mantle may encounter reduced Fe0 metal from disproportionation of Fe2+ in lower mantle silicates or mixing with the core. To understand the fate of carbonates in the lowermost mantle, we have performed experiments on sandwiches of single-crystal (Ca0.6Mg0.4)CO3 dolomite and Fe foil in the laser-heated diamond anvil cell at lower mantle conditions of 49-110 GPa and 1800-2500 K. Syntheses were conducted with in situ synchrotron X-ray diffraction to identify phase assemblages. After quench to ambient conditions, samples were sectioned with a focused Ga+ ion beam for composition analysis with transmission electron microscopy. At the centers of the heated spots, iron melted and reacted completely with the carbonate to form magnesiowüstite, iron carbide, diamond, magnesium-rich carbonate and calcium carbonate. In samples heated at 49 and 64 GPa, the two carbonates exhibit a eutectoid texture. In the sample heated at 110 GPa, the carbonates form rounded ~150-nm-diameter grains with a higher modal proportion of interspersed diamonds. The presence of reduced iron in the deep lower mantle and core-mantle boundary region will promote the formation of diamonds in carbonate-bearing subducted slabs. The complete reaction of metallic iron to oxides and carbides in the presence of mantle carbonate supports the formation of these phases at the Earth's core-mantle boundary and in ultra-low velocity zones.
Buyukturan, B; Guclu-Gunduz, A; Buyukturan, O; Dadali, Y; Bilgin, S; Kurt, E E
2017-11-01
This study aims at evaluating and comparing the effects of cervical stability training to combined cervical and core stability training in patients with neck pain and cervical disc herniation. Fifty patients with neck pain and cervical disc herniation were included in the study, randomly divided into two groups as cervical stability and cervical-core stability. Training was applied three times a week in three phases, and lasted for a total duration of 8 weeks. Pain, activation and static endurance of deep cervical flexor muscles, static endurance of neck muscles, cross-sectional diameter of M. Longus Colli, static endurance of trunk muscles, disability and kinesiophobia were assessed. Pain, activation and static endurance of deep cervical flexors, static endurance of neck muscles, cross-sectional diameter of M. Longus Colli, static endurance of trunk muscles, disability and kinesiophobia improved in both groups following the training sessions (p < 0.05). Comparison of the effectiveness of these two training methods revealed that the cervical stability group produced a greater increase in the right transverse diameter of M. Longus Colli (p < 0.05). However, static endurance of trunk muscles and kinesiophobia displayed better improvement in the cervical-core stability group (p < 0.05). Cervical stability training provided benefit to patients with cervical disc herniation. The addition of core stability training did not provide any additional significant benefit. Further research is required to investigate the efficacy of combining other techniques with cervical stability training in patients with cervical disc herniation. Both cervical stability training and its combination with core stability training were significantly and similarly effective on neck pain and neck muscle endurance in patients with cervical disc herniation. © 2017 European Pain Federation - EFIC®.
NASA Astrophysics Data System (ADS)
Lane, A. L.; Behar, A.; Bhartia, R.; Conrad, P. G.; Hug, W. F.
2007-12-01
The quest to study and understand extremophiles has led to many quite different research paths in the past 30 years. One of the more difficult directions has been the study of biochemical material in deep glacial ice and in subglacial lakes. Lake Vostok in Eastern Antarctica has been perhaps the most discussed subglacial lake because of its large size (~14,000 sq km), deep location under >3700 m of overlying ice, and thick sediment bed (~200m). Once the physical conditions of the Lake were assessed, questions immediately arose about the potential existence of biological material - either extinct or possibly extant under conditions of extremely limited energy and nutrients [1-2]. To investigate the biology of Vostok, via in-situ methods, is a major issue that awaits proven techniques that will not contaminate the Lake beyond what may have occurred to date. Lake Ellsworth, in West Antarctica, also discovered by ice penetrating radar, is of significantly smaller size, but is also >3500 m below the overlying ice. It represents a wonderful opportunity to design, engineer and build in-situ delivery systems that consider bio-cleanliness approaches to enable examination of its water, sediment bed and the "roof" area accretion ice for biochemicals [3]. Our laboratory has been developing deep UV fluorescence and UV Raman instrumentation to locate and classify organic material at a variety of extremophile locations. The confluence of the measurement techniques and the engineering for high external pressure instrument shells has enabled us to design and begin prototype fabrication of a biochemical sensing probe that can be inserted into a hot-water drilled ice borehole, functioning as a local area mapper in water environments as deep as 6000 m. Real-time command and control is conducted from a surface science station. We have been using the deep Vostok ice cores at the U.S. National Ice Core Lab to validate our science and data analysis approaches with an "inverted" system that has recently generated spatially resolved spectral images of material inside the Vostok cores without extraction or disturbance to the material in the ice. We will describe the instrumentation we will have available for the British Antarctica Survey Lake Ellsworth Exploration field campaign, provide a possible operational scenario and show examples of the kinds of possible measurement results that might be obtained, based upon our Lake Vostok core studies. [1] Siegert, M.J., Tranter, M., Ellis-Evans, C.J., Priscu, J.C. & Lyons, W.B. (2003) The hydrochemistry of Lake Vostok and the potential for life in Antarctic subglacial lakes. Hydrological Processes, 17, 795-814. [2] Priscu, J.C. and B.C. Christner (2004). Earth's icy biosphere, pp. 130-145, In "Microbial Diversity and Bioprospecting", A. Bull (editor). Chap 13. ASM Press, Washington, D.C. [3] Siegert M.J., Hindmarsh, R., Corr H., Smith, A., Woodward, J., King, E., Payne, A.J., and Joughin, I.(2004) Subglacial Lake Ellsworth: a candidate for in situ exploration in West Antarctica. Geophysical Research Letters, 31 (23), L23403, 10.1029/2004GL021477.
The Brunhes/Matuyama polarity transition recorded as Be-10 flux changes in deep-sea sediments
NASA Astrophysics Data System (ADS)
Suganuma, Y.; Yokoyama, Y.; Yamazaki, T.
2008-12-01
Fluxes of meteoric cosmogenic radionuclide, Be-10, is thought to be varied due to changes of incoming comic-ray flux modulated by geomagnetic field intensity variation. Enhanced production rate of the nuclides during a geomagnetic polarity transition period is expected as a result of the low dipole field strength. We therefore measured Be-10 concentrations in deep-sea sediments including the Brunhes/Matuyama geomagnetic polarity transition to reconstruct the detailed structures of the geomagnetic field behavior. A piston core, MD982187 was taken from the West Caroline Basin, the western equatorial Pacific Ocean, during the IMAGES IV campaign. The water depth of the site of MD982187 core is about 4600 m, which is close to the carbonate compensation depth (CCD) in this area at present (Berger et al., 1976). Measurement of Be-10 was conducted using the accelerator mass spectrometry (AMS) of the University of Tokyo, Japan. The result shows significant increase of Be-10 concentration during the polarity transition, indicating that the geomagnetic field intensity was low during this interval. In detail, well-defined double highs of Be-10 concentration are recognized. These highs are thought to correspond to the B/M polarity boundary and the "precursor" event, 15 kyr before the M/B boundary (e.g., Hartl and Tauxe, 1996; Singer et al., 2005), respectively. This feature is very similar to the relative paleointensity record of MR982187 core by Yamazaki and Oda (2005) and other published relative paleointensity records of the Brunhes/Matuyama geomagnetic polarity transition, indicating that Be-10 concentration of the deep-sea sedimentary sequence well records the variation of the geomagnetic field intensity. However, ca. 18 cm of clear depth offset between the Be-10 concentration and the relative paleointensity record was observed from the same sedimentary sequence of MR982187 core. This indicates that the relative paleointensity record of MR982187 core is offset by ca. 18 cm below the actual level of the polarity transition, which is thought to be the paleomagnetic lock-in depth effect.
Terrestrial magma ocean and core segregation in the earth
NASA Technical Reports Server (NTRS)
Ohtani, Eiji; Yurimoto, Naoyoshi
1992-01-01
According to the recent theories of formation of the earth, the outer layer of the proto-earth was molten and the terrestrial magma ocean was formed when its radius exceeded 3000 km. Core formation should have started in this magma ocean stage, since segregation of metallic iron occurs effectively by melting of the proto-earth. Therefore, interactions between magma, mantle minerals, and metallic iron in the magma ocean stage controlled the geochemistry of the mantle and core. We have studied the partitioning behaviors of elements into the silicate melt, high pressure minerals, and metallic iron under the deep upper mantle and lower mantle conditions. We employed the multi-anvil apparatus for preparing the equilibrating samples in the ranges from 16 to 27 GPa and 1700-2400 C. Both the electron probe microanalyzer (EPMA) and the Secondary Ion Mass spectrometer (SIMS) were used for analyzing the run products. We obtained the partition coefficients of various trace elements between majorite, Mg-perovskite, and liquid, and magnesiowustite, Mg-perovskite, and metallic iron. The examples of the partition coefficients of some key elements are summarized in figures, together with the previous data. We may be able to assess the origin of the mantle abundances of the elements such as transition metals by using the partitioning data obtained above. The mantle abundances of some transition metals expected by the core-mantle equilibrium under the lower mantle conditions cannot explain the observed abundance of some elements such as Mn and Ge in the mantle. Estimations of the densities of the ultrabasic magma Mg-perovskite at high pressure suggest existence of a density crossover in the deep lower mantle; flotation of Mg-perovskite occurs in the deep magma ocean under the lower mantle conditions. The observed depletion of some transition metals such as V, Cr, Mn, Fe, Co, and Ni in the mantle may be explained by the two stage process, the core-mantle equilibrium under the lower mantle conditions in the first stage, and subsequent downwards separation of the ultrabasic liquid (and magnesiowustite) and flotation of Mg-perovskite in the lower mantle.
Testing for Controlled Rapid Pressurization
Steven Knudsen
2014-09-03
Borehole W1 is a NQ core hole drilled at our test site in Socorro. The rock is rhyolite. Borehole W1 which was used to test gas-gas explosive mixtures is 55 feet deep with casing (pinkish in the drawing) set to 35 feet. The model is a representation of the borehole and the holes we cored around the central borehole after the test. The brown colored core holes showed dye when we filled W1 with water and slightly pressurized it. This indicates there was some path between W1 and the colored core hole. The core holes are shown to their TD in the drawing. The green plane is a fracture plane which we believe is the result of the explosions of the gas mixture in W1. Data resource is a 2D .pdf Solid Works Drawing of borehole w-1
Subwavelength core/shell cylindrical nanostructures for novel plasmonic and metamaterial devices
NASA Astrophysics Data System (ADS)
Kim, Kyoung-Ho; No, You-Shin
2017-12-01
In this review, we introduce novel plasmonic and metamaterial devices based on one-dimensional subwavelength nanostructures with cylindrical symmetry. Individual single devices with semiconductor/metal core/shell or dielectric/metal core/multi-shell structures experience strong light-matter interaction and yield unique optical properties with a variety of functions, e.g., invisibility cloaking, super-scattering/super-absorption, enhanced luminescence and nonlinear optical activities, and deep subwavelength-scale optical waveguiding. We describe the rational design of core/shell cylindrical nanostructures and the proper choice of appropriate constituent materials, which allow the efficient manipulation of electromagnetic waves and help to overcome the limitations of conventional homogeneous nanostructures. The recent developments of bottom-up synthesis combined with the top-down fabrication technologies for the practical applications and the experimental realizations of 1D subwavelength core/shell nanostructure devices are briefly discussed.
Public-Sector Information Security: A Call to Action for Public-Sector CIOs
2002-10-01
scenarios. However, in a larger sense, it is a story for all public-sector CIOs, a story both prophetic and sobering. Deep in this story, however, there...information technology (IT), our way of life, and the values that lay deep in the core of our American culture. These values include rights to...defines roles and accountabilities. The Scope of the Problem Today there are 109.5 million Internet hosts on the World Wide Web . Five years ago there
Spitzer Sees Water Loud and Clear
2007-08-29
This plot of infrared data, called a spectrum, shows the strong signature of water vapor deep within the core of an embryonic star system, called NGC 1333-IRAS 4B. The data were captured by NASA Spitzer Space Telescope.
ERIC Educational Resources Information Center
Sharp, Len
1998-01-01
Describes how teaching a lesson on the discovery of a crater in the Yucatan Peninsula and the rock strata deep in the ocean can help students explain the demise of dinosaurs. Discusses the impact theory and the core model. (DDR)
Iridium Anomaly Approximately Synchronous with Terminal Eocene Extinctions
NASA Astrophysics Data System (ADS)
Alvarez, Walter; Asaro, Frank; Michel, Helen V.; Alvarez, Luis W.
1982-05-01
An iridium anomaly has been found in coincidence with the known microtektite level in cores from Deep Sea Drilling Project site 149 in the Caribbean Sea. The iridium was probably not in the microtektites but deposited simultaneously with them; this could occur if the iridium was deposited from a dust cloud resulting from a bolide impact, as suggested for the anomaly associated with the Cretaceous-Tertiary boundary. Other workers have deduced that the microtektites are part of the North American strewn tektite field, which is dated at about 34 million years before present, and that the microtektite horizon in deep-sea cores is synchronous with the extinction of five radiolarian species. Mass extinctions also occur in terrestrial mammals within 4 million years of this time. The iridium anomaly and the tektites and microtektites are supportive of a major bolide impact about 34 million years ago.
Shock compression of stishovite and melting of silica at planetary interior conditions
NASA Astrophysics Data System (ADS)
Millot, M.; Dubrovinskaia, N.; Černok, A.; Blaha, S.; Dubrovinsky, L.; Braun, D. G.; Celliers, P. M.; Collins, G. W.; Eggert, J. H.; Jeanloz, R.
2015-01-01
Deep inside planets, extreme density, pressure, and temperature strongly modify the properties of the constituent materials. In particular, how much heat solids can sustain before melting under pressure is key to determining a planet’s internal structure and evolution. We report laser-driven shock experiments on fused silica, α-quartz, and stishovite yielding equation-of-state and electronic conductivity data at unprecedented conditions and showing that the melting temperature of SiO2 rises to 8300 K at a pressure of 500 gigapascals, comparable to the core-mantle boundary conditions for a 5-Earth mass super-Earth. We show that mantle silicates and core metal have comparable melting temperatures above 500 to 700 gigapascals, which could favor long-lived magma oceans for large terrestrial planets with implications for planetary magnetic-field generation in silicate magma layers deep inside such planets.
Subsurface Sample Acquisition and Transfer Systems (SSATS)
NASA Astrophysics Data System (ADS)
Rafeek, S.; Gorevan, S. P.; Kong, K. Y.
2001-01-01
In the exploration of planets and small bodies, scientists will need the services of a deep drilling and material handling system to not only obtain the samples necessary for analyses but also to precisely transfer and deposit those samples in in-situ instruments on board a landed craft or rover. The technology for such a deep sampling system as the SSATS is currently been developed by Honeybee Robotics through a PIDDP effort. The SSATS has its foundation in a one-meter prototype (SATM) drill that was developed under the New Millenium Program for ST4/Champollion. Additionally the SSATS includes relevant coring technology form a coring drill (Athena Mini-Corer) developed for the Mars Sample Return Mission. These highly developed technologies along with the current PIDDP effort, is combined to produce a sampling system that can acquire and transfer samples from various depths. Additional information is contained in the original extended abstract.
Millot, M; Dubrovinskaia, N; Černok, A; Blaha, S; Dubrovinsky, L; Braun, D G; Celliers, P M; Collins, G W; Eggert, J H; Jeanloz, R
2015-01-23
Deep inside planets, extreme density, pressure, and temperature strongly modify the properties of the constituent materials. In particular, how much heat solids can sustain before melting under pressure is key to determining a planet's internal structure and evolution. We report laser-driven shock experiments on fused silica, α-quartz, and stishovite yielding equation-of-state and electronic conductivity data at unprecedented conditions and showing that the melting temperature of SiO2 rises to 8300 K at a pressure of 500 gigapascals, comparable to the core-mantle boundary conditions for a 5-Earth mass super-Earth. We show that mantle silicates and core metal have comparable melting temperatures above 500 to 700 gigapascals, which could favor long-lived magma oceans for large terrestrial planets with implications for planetary magnetic-field generation in silicate magma layers deep inside such planets. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Kraft, R.; Su, Y.; Gendron Marsolais, M.; Roediger, E.; Nulsen, P.; Hlavacek-Larrondo, J.; Forman, W.; Jones, C.; Randall, S.; Machacek, M.
2017-10-01
We present results from deep Chandra and XMM-Newton observations of the AGN outbursts in the nearby early-type galaxies NGC 4472 and NGC 1399. Both pairs of radio bubbles are surrounded by rims of enhanced X-ray emission. Spectral analysis shows that the temperatures of these rims are less than that of the surrounding medium, suggesting that they are gas uplifted from the group center by the buoyant rise of the radio bubbles and not shocks due to the supersonic inflation of the lobes. The energy required to uplift these shells can be a significant fraction of the total outburst energy, and thus may play an important role in the thermodynamic evolution of the galaxy core. Buoyant uplift could also be a very efficient means of transporting metals from the galaxy core to the halo.
Interstitial water studies on small core samples, Deep Sea Drilling Project: Leg 10
Manheim, Frank T.; Sayles, Fred L.; Waterman, Lee S.
1973-01-01
Leg 10 interstitial water analyses provide new indications of the distribution of rock salt beneath the floor of the Gulf of Mexico, both confirming areas previously indicated to be underlain by salt bodies and extending evidence of salt distribution to seismically featureless areas in the Sigsbee Knolls trend and Isthmian Embayment. The criterion for presence of salt at depth is a consistent increase in interstitial salinity and chlorinity with depth. Site 86, on the northern margin of the Yucatan Platform, provided no evidence of salt at depth. Thus, our data tend to rule out the suggestion of Antoine and Bryant (1969) that the Sigsbee Knolls salt was squeezed out from beneath the Yucatan Scarp. Cores from Sites 90 and 91, in the central Sigsbee Deep, were not obtained from a great enough depth to yield definite evidence for the presence of buried salt.
Amino acid epimerization implies rapid sedimentation rates in Arctic Ocean cores
Sejrup, H.P.; Miller, G.H.; Brigham-Grette, J.; Lovlie, R.; Hopkins, D.
1984-01-01
The palaeooceanography of the Arctic Ocean is less well known than any other ocean basin, due to difficulties in obtaining cores and in providing a secure chronological framework for those cores that have been raised. Most recent investigators have suggested that low sedimentation rates (0.05-0.1 cm kyr-1) have characterized the deep basins over the past 5 Myr (refs 1,2) despite the glacial-marine character of the sediment and proximity to major centres of shelf glaciation. These calculations have been primarily based on the down-core pattern in the inclination of magnetic minerals, supported by uranium-series, 14C and micropalaeontological evidence. Here we analyse amino acid diagnesis in foraminifera from two gravity cores raised from the floor of the Arctic Ocean, our results suggest that these cores span <200 kyr., conflicting with the earlier estimate of 3 Myr based on palaeomagnetic data. The chronology of other Arctic Ocean cores and previous palaeoenvironmental interpretations need re-evaluation. ?? 1984 Nature Publishing Group.
NASA Astrophysics Data System (ADS)
Neugebauer, Ina; Brauer, Achim; Schwab, Markus; Dulski, Peter; Frank, Ute; Hadzhiivanova, Elitsa; Kitagawa, Hiroyuki; Litt, Thomas; Schiebel, Vera; Taha, Nimer; Waldmann, Nicolas
2015-04-01
Laminated lake sediments from the Dead Sea basin provide high-resolution records of climatic variability in the eastern Mediterranean region, which is considered being especially sensitive to changing climatic conditions. In the study presented here, we aim to reconstruct palaeoclimatic changes and their relation to the frequency of flood/erosion and dust deposition events as archived in the Dead Sea basin for the time interval from ca 3700 to 1700 years BP. A ca 4 m thick, mostly annually laminated (varved) sediment section from the western margin of the Dead Sea (shallow-water DSEn - Ein Gedi profile) was analysed and correlated to the new ICDP Dead Sea Deep Drilling Project core 5017-1 from the deep basin. To detect even single event layers, we applied a multi-proxy approach of high-resolution microscopic thin section analyses, µXRF element scanning and magnetic susceptibility measurements, supported by grain size and palynological analyses. Based on radiocarbon and varve dating two pronounced dry periods were detected at ~3500-3300 yrs BP and ~2900-2400 yrs BP that are characterized by a sand deposit during the older dry period and enhanced frequency of coarse detrital layers during the younger dry period in the shallow-water DSEn core, both interpreted as increased erosion processes. In the 5017-1 deep-basin core these dry periods are depicted by halite deposits. The timing of the younger dry period broadly coincides with the Homeric Minimum of solar activity at ca 2800 yrs BP. Our results suggest that during this period the Dead Sea region experienced a change in synoptic weather patterns leading to an increased occurrence of flash-flood events, overprinting the overall dry climatic conditions. Following this dry spell, a 250-yrs period of increased dust deposition is observed, coinciding with more regular aragonite precipitation during less arid climatic conditions.
Deciphering Equatorial Pacific Deep Sea Sediment Transport Regimes by Core-Log-Seismic Integration
NASA Astrophysics Data System (ADS)
Ortiz, E.; Tominaga, M.; Marcantonio, F.
2017-12-01
Investigating deep-sea sediment transportation and deposition regimes is a key to accurately understand implications from geological information recorded by pelagic sediments, e.g. climate signals. However, except for physical oceanographic particle trap experiments, geochemical analyses of in situsediments, and theoretical modeling of the relation between the bottom currents and sediment particle flux, it has remained a challenging task to document the movement of deep sea sediments, that takes place over time. We utilized high-resolution, multichannel reflection seismic data from the eastern equatorial Pacific region with drilling and logging results from two Integrated Ocean Drilling Program (IODP) sites, the Pacific Equatorial Age Transect (PEAT) 7 (Site U1337) and 8 (Site U1338), to characterize sediment transportation regimes on 18-24 Ma oceanic crust. Site U1337, constructed by a series of distinct abyssal hills and abyssal basins; Site U1338, located 570 km SE from Site U1337 site and constructed by a series of ridges, seamounts, and abyssal hills. These sites are of particular interest due to their proximity to the equatorial productivity zone, areas with high sedimentation rates and preservation of carbonate-bearing sediment that provide invaluable insights on equatorial Pacific ecosystems and carbon cycle. We integrate downhole geophysical logging data as well as geochemistry and physical properties measurements on recovered cores from IODP Sites U1337 and U1338 to comprehensively examine the mobility of deep-sea sediments and sediment diagenesis over times in a quasi-3D manner. We also examine 1100 km of high resolution underway seismic surveys from site survey lines in between PEAT 7 and 8 in order to investigate changes in sediment transportation between both sites. Integrating detailed seismic interpretations, high resolution core data, and 230Th flux measurements we aim to create a detailed chronological sedimentation and sediment diagenesis history of this area.
Bobryshev, Yuri V; Killingsworth, Murray C; Lord, Reginald S A
2008-08-01
The mechanisms of ectopic bone formation in arteries are poorly understood. Osteoblasts might originate either from stem cells that penetrate atherosclerotic plaques from the blood stream or from pluripotent mesenchymal cells that have remained in the arterial wall from embryonic stages of the development. We have examined the frequency of the expression and spatial distribution of osteoblast-specific factor-2/core binding factor-1 (Osf2/Cbfa1) in carotid and coronary arteries. Cbfa1-expressing cells were rarely observed but were found in all tissue specimens in the deep portions of atherosclerotic plaques under the necrotic cores. The deep portions of atherosclerotic plaques under the necrotic cores were characterized by the lack of capillaries of neovascularization. In contrast, plaque shoulders, which were enriched by plexuses of neovascularization, lacked Cbfa1-expressing cells. No bone formation was found in any of the 21 carotid plaques examined and ectopic bone was observed in only two of 12 coronary plaques. We speculate that the sparse invasion of sprouts of neovascularization into areas underlying the necrotic cores, where Cbfa1-expressing cells reside, might explain the rarity of events of ectopic bone formation in the arterial wall. This study has also revealed that Cbfa1-expressing cells contain alpha-smooth muscle actin and myofilaments, indicating their relationship with arterial smooth muscle cells.
Xylem Development in Prunus Flower Buds and the Relationship to Deep Supercooling
Ashworth, Edward N.
1984-01-01
Xylem development in eight Prunus species was examined and the relationship to deep supercooling assessed. Dormant buds of six species, P. armeniaca, P. avium, P. cerasus, P. persica, P. salicina, and P. sargentii deep supercooled. Xylem vessel elements were not observed within the dormant floral primordia of these species. Instead, discrete bundles containing procambial cells were observed. Vascular differentiation resumed and xylem continuity was established during the time that the capacity to deep supercool was lost. In P. serotina and P. virginiana, two species which do not supercool, xylem vessels ran the length of the inflorescence and presumably provided a conduit for the spread of ice into the bud. The results support the hypothesis that the lack of xylem continuity is an important feature of buds which deep supercool. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:16663523
Chakraborty, Shamik; Lall, Rohan; Fanous, Andrew A; Boockvar, John; Langer, David J
2017-01-01
The surgical management of deep brain tumors is often challenging due to the limitations of stereotactic needle biopsies and the morbidity associated with transcortical approaches. We present a novel microscopic navigational technique utilizing the Viewsite Brain Access System (VBAS) (Vycor Medical, Boca Raton, FL, USA) for resection of a deep parietal periventricular high-grade glioma as well as another glioma and a cavernoma with no related morbidity. The approach utilized a navigational tracker mounted on a microscope, which was set to the desired trajectory and depth. It allowed gentle continuous insertion of the VBAS directly to a deep lesion under continuous microscopic visualization, increasing safety by obviating the need to look up from the microscope and thus avoiding loss of trajectory. This technique has broad value for the resection of a variety of deep brain lesions. PMID:28331774
White, Tim; Chakraborty, Shamik; Lall, Rohan; Fanous, Andrew A; Boockvar, John; Langer, David J
2017-02-04
The surgical management of deep brain tumors is often challenging due to the limitations of stereotactic needle biopsies and the morbidity associated with transcortical approaches. We present a novel microscopic navigational technique utilizing the Viewsite Brain Access System (VBAS) (Vycor Medical, Boca Raton, FL, USA) for resection of a deep parietal periventricular high-grade glioma as well as another glioma and a cavernoma with no related morbidity. The approach utilized a navigational tracker mounted on a microscope, which was set to the desired trajectory and depth. It allowed gentle continuous insertion of the VBAS directly to a deep lesion under continuous microscopic visualization, increasing safety by obviating the need to look up from the microscope and thus avoiding loss of trajectory. This technique has broad value for the resection of a variety of deep brain lesions.
Nonlinear Light Dynamics in Multi-Core Structures
2017-02-27
be generated in continuous- discrete optical media such as multi-core optical fiber or waveguide arrays; localisation dynamics in a continuous... discrete nonlinear system. Detailed theoretical analysis is presented of the existence and stability of the discrete -continuous light bullets using a very...and pulse compression using wave collapse (self-focusing) energy localisation dynamics in a continuous- discrete nonlinear system, as implemented in a
NASA Astrophysics Data System (ADS)
Kerr, Joanna; Rickaby, Rosalind; Yu, Jimin; Elderfield, Henry; Sadekov, Aleksey Yu.
2017-08-01
Glacial-interglacial deep Indo-Pacific carbonate ion concentration ([CO32-]) changes were mainly driven by two mechanisms that operated on different timescales: 1) a long-term increase during glaciation caused by a carbonate deposition reduction on shelves (i.e., the coral reef hypothesis), and 2) transient carbonate compensation responses to deep ocean carbon storage changes. To investigate these mechanisms, we have used benthic foraminiferal B/Ca to reconstruct deep-water [CO32-] in cores from the deep Indian and Equatorial Pacific Oceans during the past five glacial cycles. Based on our reconstructions, we suggest that the shelf-to-basin shift of carbonate deposition raised deep-water [CO32-], on average, by 7.3 ± 0.5 (SE) μmol/kg during glaciations. Oceanic carbon reorganisations during major climatic transitions caused deep-water [CO32-] deviations away from the long-term trend, and carbonate compensation processes subsequently acted to restore the ocean carbonate system to new steady state conditions. Deep-water [CO32-] showed similar patterns to sediment carbonate content (%CaCO3) records on glacial-interglacial timescales, suggesting that past seafloor %CaCO3 variations were dominated by deep-water carbonate preservation changes at our studied sites.
NASA Astrophysics Data System (ADS)
Sun, Youhong; Gao, Ke; Yu, Ping; Liu, Baochang; Guo, Wei; Ma, Yinlong; Yang, Yang
2014-05-01
SK-2 Well is located in DaQing city,where is site of the largest oil field in China,Heilongjiang province, north-east of China.The objective of SK-2 well is to obtain full cores of cretaceous formation in Song Liao basin,and to build the time tunnel of Cretaceous greenhouse climate change,and to clarify the causes,processes and results of the formations of DaQing oil field. This will ensure to achieve our ultimate goals,to test the CRUST-1 drilling rig and improve China's deep scientific drilling technology,to form the scientific drilling technology,method and system with independent intellectual property rights,and to provide technical knowledge and information for China's ten kilometers super-deep scientific drilling technical resources.SK-2 Well is at 6400 meter depth, where the drilling inclination is 90 degree and the continuous coring length is 3535 meter that from 2865 to 6400 meter,the recovery rate of the core is greater or equal to 95 percent with 100 millimeters core diameter and 3.9 degree per 100 meter geothermal gradient.The CRUST-1 rig is designated with special drilling equipment for continental scientific drilling combined to the oil drilling equipment ability with advanced geological drilling technology which is highly automatic and intelligent. CRUST-1 drilling ability is 10000 meter with the maximum hook load 700 tons, the total power is 4610 Kilowatt.CRUST-1 will be integrated with a complete set of automation equipment,including big torque hydraulic top drive,high accuracy automatic drilling rod feeding system, suspended automatic drill string discharge device,hydraulic intelligent iron roughneck,and hydraulic automatic catwalk to fully meet the drilling process requirements of SK-2.Designed with advanced drilling technique for 260 degree in the bottom of SK-2 well and hard rock,including the drilling tools of high temperature hydraulic hammer,high temperature resistance and high strength aluminum drill pipe,high temperature preparation of mud treatment and high temperature resistant cementing materials, and bionic bits,that is coupling bionic PDC tooth bit and diamond-impregnated bit for hard rock.All parts of CRUST-1 were successfully assembled along with the derrick and base lift and transported about 3456 kilometers from manufacture,GuangHan city in southwest China's Sichuan province,to the well site of SK-2 in end of 2013.SK-2 will be finished during next 4 years.
NASA Technical Reports Server (NTRS)
Wissler, Steven S.; Maldague, Pierre; Rocca, Jennifer; Seybold, Calina
2006-01-01
The Deep Impact mission was ambitious and challenging. JPL's well proven, easily adaptable multi-mission sequence planning tools combined with integrated spacecraft subsystem models enabled a small operations team to develop, validate, and execute extremely complex sequence-based activities within very short development times. This paper focuses on the core planning tool used in the mission, APGEN. It shows how the multi-mission design and adaptability of APGEN made it possible to model spacecraft subsystems as well as ground assets throughout the lifecycle of the Deep Impact project, starting with models of initial, high-level mission objectives, and culminating in detailed predictions of spacecraft behavior during mission-critical activities.
Deep-sea lebensspuren: remarks on some echiuran traces in the Porcupine Seabight, northeast Atlantic
NASA Astrophysics Data System (ADS)
de Vaugelas, Jean
1989-06-01
During an exploration of the Porcupine Seabight aboard the French submersible Cyana, large rosettes attributed to echiurans were observed on the muddy bottom, sometimes associated with clumped mounds showing tension gashes. The intrusion of cores into the gashed mounds resulted in the creation of a fountain-like current of water flowing out of the center hole of the rosette, illustrating a direct connection. These two types of traces, which are classified under distinct generic names in recent classifications of deep-sea lebensspuren, are presumed to be produced by the echiuroid worm, being the two ends of an L-shaped burrow. A sketch of deep-sea echiurans' mode of life is proposed.
NASA Astrophysics Data System (ADS)
Rama, O.; Lopez-Otalvaro, G.; Martrat, B.; Flores, J.; Sierro, F. J.; Grimalt, J. O.
2009-12-01
There is growing evidence that the majority of the Amazon rainforest survived the climatic threshold of the last ice age. This information is crucial given that this region could be currently near its critical resiliency tipping point; thus, minor climate warming, widespread reductions in precipitation and lengthening of the dry season may be sufficient to gradually contribute to the forest dieback and biodiversity loss [Cowling et al., 2004; Lenton et al., 2008; Maslin, 2004]. To contribute to this knowledge, palaeoclimatic oscillations have been identified in this study by using fossil organic compounds synthesized by marine and terrestrial flora and later accumulated on sediment strata (MD03-2616, 7N, 53W, -1233 meters below sea-level) from the Guianas region, closely linked to the Amazon Basin. Different indicators have been considered to continuously reconstruct the climate over the past 420,000 years at centennial scale: average annual sea surface temperatures (SST, Uk’37), productivity of the coccolithophora flora (alken-2-ones), continental vegetation variability (long chain n-alkanes) and changes in oxygenation of the deep-sea floor (ratio between n-alkan-1-ols and n-alkanes). At present, the Guianas region is largely influenced by migration of the intertropical convergence zone (ITCZ), related temperature and wind patterns, together with changes in hydrological conditions, atmospheric and oceanic fronts. Annual SST is 27.7C; two rain seasons and two dry seasons occur. At the core location, surface waters present complex seasonal configuration, while oxygen-enriched and low-salinity Antarctic Intermediate waters (AAIW) flow northward from -700 to -1500 meters depth; the Upper North Atlantic Deep waters circulate southward at greater depths [World Meteo. Org.; Masson & Delecluse, 2001; Arz et al., 2001]. This study reveals that completely different hydrological conditions and much colder climate occurred in the past, e.g. a harsh drop in SST of up to 24C was recorded over Marine Isotope Stage (MIS) 8. Additionally, warmer periods occurred during the early Holocene (SST=28.1C) or the last interglacial (MIS 5e, 29C). Temperatures similar to present were observed during MIS 11c (28C). Autochthonous marine productivity traced dependence between vertical stratification of the surface water, trade wind strength and precession motion between northern hemisphere spring and perihelion, consistent with previous results [Lopez-Otalvaro et al., 2009]. Recurring surface and deep water destabilizations have been identified. Fluvial continental contributions, reached maximal values during cold events, when the Amazon River plume extended to the core location. Ventilation variability at the core site was modulated by the eccentricity of the Earth’s orbit. Rapid oxygenation changes were more pronounced during deglaciations and interglacials, but tending to decrease, gradually or abruptly, while glacials progressed.
Depth profiles of Mn-53 in lunar rocks and soils
NASA Technical Reports Server (NTRS)
Imamura, M.; Nishiizumi, K.; Honda, M.; Finkel, R. C.; Arnold, J. R.; Kohl, C. P.
1974-01-01
Results of measurements of cosmic-ray-produced Mn-53 taken down the length of the Apollo 16 deep drill core are presented. They indicate that the lunar regolith has been unmixed, on a meter scale, for the past 5 million years at the location of this core. The data are in agreement with earlier Mn-53 measurements on the Apollo 15 drill core. Mn-53 activity profiles in 14310, 12002, and 14321 are compared to each other; all three rocks have probably been on the lunar surface long enough to saturate their solar cosmic-ray-produced Mn-53 (half-life = 3.7 m.y.) activity.
NASA Technical Reports Server (NTRS)
Lada, Charles J.
2005-01-01
This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process. During the second year of this grant, progress toward these goals is discussed.
NASA Technical Reports Server (NTRS)
Lada, Charles J.
2004-01-01
This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to determine the detailed initial conditions for star formation from quantitative measurements of the internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process.
NASA Astrophysics Data System (ADS)
Lodders, Katharina
2006-08-01
A new formation scenario for TiC and Fe-Ni metal inclusions in presolar graphite grains of supernova origin is described. The mineralogy and chemistry require condensation of Fe-Ni titanides from Fe-, Ni-, and Ti-rich gaseous ejecta, subsequent carburization to make TiC and metal, and encapsulation into graphite. Titanides only condense if Si is depleted relative to heavier elements, which requires α-rich freeze-out and a deep mass cut for the supernova ejecta. This Si-poor core material must remain unmixed with other supernova zones until the titanides condense. This can be accomplished by transport of core ejecta in bipolar jets through the major expanding supernova zone ejecta. If the jets stall in regions dominated by C-rich ejecta such as the C-He zone, where graphite condenses, thermochemically favored in situ carburization of the titanides-either before or during encapsulation into condensing graphite-leads to a TiC-and-metal composite. This scenario agrees with theoretical models and observations of asymmetric core collapse in supernovae that are associated with bipolar jets loaded with iron-peak elements.
Data file: the 1976 Atlantic Margin Coring (AMCOR) Project of the U.S. Geological Survey
Poppe, Lawrence J.; Poppe, Lawrence J.
1981-01-01
In 1976, the U.S. Geological Survey conducted the Atlantic Margin Coring Project (AMCOR) to obtain information on stratigraphy, hydrology and water chemistry, mineral resources other than petroleum hydrocarbons, and geotechnical engineering properties at sites widely distributed along the Continental Shelf and Slope of the Eastern United States (Hathaway and others, 1976, 1979). This program's primary purpose was to investigate a broad variety of sediment properties, many of which had not been previously studied in this region. Previous studies of sediments recovered by core drilling in this region were usually limited to one or two aspects of the sediment properties (Hathaway and others, 1979, table 2). The AMCOR program was limited by two factors: water depth and penetration depth. Because the ship selected for the program, the Glomar Conception, lacked dynamic positioning capability, its anchoring capacity determined the maximum water depth in which drilling could take place. Although it was equipped to anchor in water 450 m deep and did so successfully at one site, we attmepted no drilling in water depths greater than 300 m. Strong Gulf Stream currents at the one attempted deep (443 m) site frustrated attempts to "spud in" to begin the hole.
Origins of ultralow velocity zones through slab-derived metallic melt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiachao; Li, Jie; Hrubiak, Rostislav
2016-05-03
Understanding the ultralow velocity zones (ULVZs) places constraints on the chemical composition and thermal structure of deep Earth and provides critical information on the dynamics of large-scale mantle convection, but their origin has remained enigmatic for decades. Recent studies suggest that metallic iron and carbon are produced in subducted slabs when they sink beyond a depth of 250 km. Here we show that the eutectic melting curve of the iron-carbon system crosses the current geotherm near Earth’s core-mantle boundary, suggesting that dense metallic melt may form in the lowermost mantle. If concentrated into isolated patches, such melt could produce themore » seismically observed density and velocity features of ULVZs. Depending on the wetting behavior of the metallic melt, the resultant ULVZs may be short-lived domains that are replenished or regenerated through subduction, or long-lasting regions containing both metallic and silicate melts. Slab-derived metallic melt may produce another type of ULVZ that escapes core sequestration by reacting with the mantle to form iron-rich post-bridgmanite or ferropericlase. The hypotheses connect peculiar features near Earth’s core-mantle boundary to subduction of the oceanic lithosphere through the deep carbon cycle.« less
Entrainment vs. Dilution in Tropical Deep Convection
NASA Astrophysics Data System (ADS)
Hannah, W.
2017-12-01
The distinction between entrainment and dilution is investigated with cloud resolving simulations of deep convection in a tropical environment. A method for estimating the rate of dilution by entrainment and detrainment is calculated for a series of bubble simulations with a range of initial radii. Entrainment generally corresponds to dilution of convection, but the two quantities are not well correlated. Core dilution by entrainment is significantly reduced by the presence of a shell of moist air around the core. Entrainment contributes significantly to the total net dilution, but detrainment and the various source/sink terms play large roles depending on the variable in question. Detrainment has a concentrating effect on average that balances out the dilution by entrainment. The experiments are also used to examine whether entrainment or dilution scale with cloud radius. The results support a weak negative relationship for dilution, but not for entrainment. The sensitivity to resolution is briefly discussed. A toy Lagrangian thermal model is used to demonstrate the importance of the cloud shell as a thermodynamic buffer to reduce the dilution of the core by entrainment. The results suggest that explicit cloud heterogeneity may be a useful consideration for future convective parameterization development.
NASA Astrophysics Data System (ADS)
Johnson, K. E.; Marsaglia, K. M.
2015-12-01
The Izu-Bonin-Mariana (IBM) Arc System, south of Japan, hosts a multitude of active and extinct (remnant) arc volcanic sediment sources. Core extracted adjacent to the proto-IBM arc (Kyushu-Palau Ridge; KPR) in the Amami-Sankaku Basin on International Ocean Discovery Program (IODP) Expedition 351 contains evidence of the variety of sediment sources that have existed in the area as a result of changing tectonic regimes through arc development, backarc basin formation and remnant arc abandonment. Approximately 1000 meters of Eocene to Oligocene volcaniclastic sedimentary rocks were analyzed via shipboard core photos, core descriptions, and thin sections with the intention of understanding the depositional history at this site. These materials contain a crucial record of arc development complementary to the Neogene history preserved in the active reararc (Expedition 350) and compressed whole-arc record in the current forearc (Expedition 352). A database of stratigraphic columns was created to display grain size trends, facies changes, and bedding characteristics. Individual beds (depositional events) were classified using existing and slightly modified classification schemes for muddy, sandy and gravel-rich gravity flow deposits, as well as muddy debris flows and tuffs. Utilizing the deep marine facies classes presented by Pickering et al. (1986), up section changes are apparent. Through time, as the arc developed, facies and bedding types and their proportions change dramatically and relatively abruptly. Following arc initiation facies are primarily mud-rich with intercalated tuffaceous sand. In younger intervals, sand to gravel gravity-flow deposits dominate, becoming more mud-rich. Muddy gravity flow deposits, however, dominate farther upsection. The overall coarsening-upward pattern (Unit III) is consistent with building of the arc edifice. Farther upsection (Unit II) an abrupt fining-upward trend represents the onset of isolation of the KPR as backarc spreading in the Shikoku Basin was initiated. This information will be combined with volcanic provenance and geochemical information from other studies, ultimately creating a deep-marine facies model for intraoceanic arc systems.
NASA Astrophysics Data System (ADS)
Westerhold, Thomas; Röhl, Ursula; Wilkens, Roy H.; Gingerich, Philip D.; Clyde, William C.; Wing, Scott L.; Bowen, Gabriel J.; Kraus, Mary J.
2018-03-01
A consistent chronostratigraphic framework is required to understand the effect of major paleoclimate perturbations on both marine and terrestrial ecosystems. Transient global warming events in the early Eocene, at 56-54 Ma, show the impact of large-scale carbon input into the ocean-atmosphere system. Here we provide the first timescale synchronization of continental and marine deposits spanning the Paleocene-Eocene Thermal Maximum (PETM) and the interval just prior to the Eocene Thermal Maximum 2 (ETM-2). Cyclic variations in geochemical data come from continental drill cores of the Bighorn Basin Coring Project (BBCP, Wyoming, USA) and from marine deep-sea drilling deposits retrieved by the Ocean Drilling Program (ODP). Both are dominated by eccentricity-modulated precession cycles used to construct a common cyclostratigraphic framework. Integration of age models results in a revised astrochronology for the PETM in deep-sea records that is now generally consistent with independent 3He age models. The duration of the PETM is estimated at ˜ 200 kyr for the carbon isotope excursion and ˜ 120 kyr for the associated pelagic clay layer. A common terrestrial and marine age model shows a concurrent major change in marine and terrestrial biota ˜ 200 kyr before ETM-2. In the Bighorn Basin, the change is referred to as Biohorizon B and represents a period of significant mammalian turnover and immigration, separating the upper Haplomylus-Ectocion Range Zone from the Bunophorus Interval Zone and approximating the Wa-4-Wa-5 land mammal zone boundary. In sediments from ODP Site 1262 (Walvis Ridge), major changes in the biota at this time are documented by the radiation of a second generation
of apical spine-bearing sphenolith species (e.g., S. radians and S. editus), the emergence of T. orthostylus, and the marked decline of D. multiradiatus.
NASA Astrophysics Data System (ADS)
Francke, Alexander; Wagner, Bernd; Leicher, Niklas; Raphael, Gromig; Leng, Melanie; Lacey, Jack; Vogel, Hendrik; Baumgarten, Henrike; Thomas, Wonik; Zanchetta, Giovanni; Roberto, Sulpizio; Krastel, Sebastian; Lindhorst, Katja
2015-04-01
The UNESCO World Heritage site of Lake Ohrid in the Balkans is thought to be the oldest, continuously existing lake in Europe. In order to unravel the geological and evolutionary history of the lake, a deep drilling campaign was conducted in spring 2013 under the umbrella of the ICDP SCOPSCO project. At the coring site "DEEP" in central parts of the lake, more than 1,500 m of sediments were recovered down to a penetration depth of 569 m blf. This sediment sequence is assumed to be more than 1.2 Ma old and likely covers the entire lacustrine deposits of the Lake Ohrid Basin. Currently, an age model for the upper 260m of the DEEP- site sequence is available. This age model is based on chronological tie points (tephrochronology), and wiggle matching of down hole logging data and (bio-)geochemistry data (XRF, TIC, TOC) from the core sequence to the global benthic stack LR04 and local insolation patterns. The data suggests that the upper 260 m of the DEEP-site sequence corresponds to the time period between the Mid Pleistocene Transition (MPT) and present days. During this period, the sedimentological properties of the sediments show a strong dependency on environmental variability in the area. Interglacial deposits appear massive or marbled, contain up to 80 % of CaCO3 (high TIC), high amounts of organic matter (high TOC) and biogenic silica (high BSi), and low contents of clastic material. Glacial deposits are predominantly marbled and calcite is generally absent. Similarly, the amounts of organic matter and biogenic silica are low, and glacial sediments predominately consist of clastic matter. Distinct layers of siderite and uniformly distributed Fe- or Mn- oxides occur in the glacial deposits, vivianite concretions occur in both the glacial and interglacial periods. High CaCO3 contents in deposits formed during warm (interglacial) periods are also known from studies on short pilot cores from Lake Ohrid and are triggered by increased productivity in the lake, such as also indicated by enhanced contents of organic matter and biogenic silica. Thereby, CaCO3 precipitation is caused by photosynthesis induced calcite precipitation during algae blooms in spring and early summer. Negligible contents of TIC in deposits formed during glacial periods can be explained by an overall low productivity (low TOC and BSi) and, in addition, by dilution of CaCO3. Dilution of CaCO3 might be a result of more acid bottom water conditions, triggered by improved mixing conditions (less thermal stratification), oxidation of OM and CO2 release from the surface sediments. Oxygenated surface sediments and degradation of organic matter are indicated by the marbled structure of the glacial sediments implying intensive bioturbation, and by TOC/TN ratios around 4, respectively. The high amount of clastic material in deposits from cold (glacial) periods can be a result of mutual dilution with calcite, organic matter and biogenic silica, but might also indicate more intensive erosion in the catchment due to a less dense vegetation cover.
Publications - GMC 398 | Alaska Division of Geological & Geophysical
DGGS GMC 398 Publication Details Title: Porosity and permeability, core sample photos from five Cook from five Cook Inlet basin wells: Deep Creek #1-RD, Foreland Channel State #1-A, Redoubt Unit #5A
A 16 kyr seawater neodymium isotope record from the central Bay of Bengal
NASA Astrophysics Data System (ADS)
Naik, S.; Basak, C.; Pothuri, D.; Goldstein, S. L.
2016-12-01
Present-day thermohaline circulation (THC) can be described as a loop where deep waters sink in the North Atlantic and Circum-Antarctic, transporting salt, nutrients, and other chemical species through the global ocean, eventually returning via surface flow to the North Atlantic. The Indian Ocean is an important component of the THC, receiving deep waters via Circumpolar Deep Water and hosting the shallow return flow of the global THC. Here we use Nd isotope ratios as a water mass proxy to trace past THC changes in the central Bay of Bengal (BoB). The downcore Nd isotope record has been generated using planktonic foraminifera from core SK157/20 (12°09'N; 88°42'E, 3171m), spanning the last 16ka. The record begins with ƐNd -8 and shows decreasing values to ƐNd -9 through the deglacial until 8ka. At that time there is a prominent shift to ƐNd -10.3, where it remains for the rest of the Holocene. Comparison with equatorial Indian Ocean core SK129-CR02 (Piotrowski et al., 2009) and distal BoB core ODP 758 (Gourlan et al., 2010; Wilson et al., 2015) shows that ƐNd values of these cores are similar until 8 ka, after which SK157/20 diverges. We interpret the deglacial to early Holocene ( 16-8 ka) part of the SK157/20 ƐNd record to represent the influence of changing THC in the BoB. Singh et al. (2012) suggest that Ganga-Brahmaputra (GB) water is one of the dominant sources of dissolved Nd to the surface and deep waters of BoB, with ƐNd -16. Following the early Holocene, the ƐNd shift in SK157/20 to lower values suggests that GB influences overprinted the THC signal at the site. This timing of the ƐNd change agrees with a high-resolution salinity record from the BoB (Kudrass et al 2001), which shows lowest salinities associated with intense monsoon conditions during the mid-Holocene. Monsoon intensification enhances river discharge and its particle load (Ramaswamy and Nair, 1994), which can release Nd to the water column (Singh et al., 2012).
NASA Astrophysics Data System (ADS)
Mansor, Md Yazid; Snedden, J. W.; Sarg, J. F.; Smith, B. S.; Kolich, T.; Carter, M.
1999-04-01
Limited well control, great distances from age-equivalent producing fields, and a largely unknown stratigraphy necessitated use of sequence stratigraphic methods to assess exploration risk associated with reservoir, source and seal distribution in the Mobil-operated Deep-water Blocks of Sarawak, Malaysia. These methods allowed predictions to be made and reservoir risks to be halved in each of the locations drilled in 1995. Predictions regarding reservoir and stratigraphy proved correct, as the Mulu-1 and Bako-1 wells penetrated numerous high-quality, thick sandstone reservoirs in the Middle to Lower Miocene section. Shallow marine sandstones dominate the vertical succession in both wells, with characteristic aggradational, upward-coarsening log motifs. Cores display classic wave-generated stratification and hummocky cross-bedding. Evidence, such as marginal-marine to neritic microfauna in cuttings of both wells, supports these interpretations. Lack of hydrocarbon charge in the two wells may be due to their position relative to coaly hydrocarbon source beds. These prospects have high trap and seal integrity, being well defined on seismics as high relief horst blocks covered by a very thick shale-prone section. The Mulu-1 well, for example, is located at least 20-30 km down stratigraphic dip from mapped coeval lower coastal-plain deposits. Amplitude anomalies on the flank of the Mulu horst are probably derived from transported organics buried in deep Plio-Pleistocene kitchens in the northwest portion of the Mobil blocks. Remaining potential of mapped prospects is high and efforts continue at characterizing the petroleum system of the Deep-water Blocks. Seismic attribute and interval velocity analyses provide new clues to the location of probable coaly source rocks, especially when viewed in their regional and sequence stratigraphic context. Future work is planned and will serve to reduce risk to acceptable levels and support further drilling in this prospective hydrocarbon province.
NASA Astrophysics Data System (ADS)
Lee, C. T.
2016-12-01
Most of Earth's continents today are above sea level, but the presence of thick packages of ancient sediments on top of the stable cores of continents indicates that continents must have been submerged at least once in their past. Elevations of continents are controlled by the interplay between crustal thickness, mantle root thickness and the temperature of the ambient convecting mantle. The history of a continent begins with mountain building through magmatic or tectonic crustal thickening, during which exhumation of deep-seated igneous and metamorphic rocks are highest. Mountain building is followed by a long interval of subsidence as a result of continued, but decreasing erosion and thermal relaxation, the latter in the form of a growing thermal boundary layer. Subsidence is manifest first as a boring interval in which no sedimentary record is preserved, followed by continent-scale submergence wherein sediments are deposited directly on deep-seated igneous/metamorphic basement, generating a major disconformity. The terminal resting elevation of a mature continent, however, is defined by the temperature of the ambient convecting mantle: below sea level when the mantle is hot and above sea level when the mantle is cold. Using thermobarometric constraints on secular cooling of Earth's mantle, our results suggest that Earth, for most of its history, must have been a water world, with regions of land confined to narrow orogenic belts and oceans characterized by deep basins and shallow continental seas, the latter serving as repositories of sediments and key redox-sensitive biological nutrients, such as phosphorous. Cooling of the Earth led to the gradual and irreversible rise of the continents, culminating in rapid emergence, through fits and starts and possible instabilities in climate, between 500-1000 Ma. Such emergence fundamentally altered marine biogeochemical cycling, continental weathering and the global hydrologic cycle, defining the backdrop for the Cambrian explosion, the largest biological diversification event in Earth's history.
Drilling a crater at the Equator-insides from ICDP DeepCHALLA
NASA Astrophysics Data System (ADS)
Meyer, Inka; Van Daele, Maarten; Tanghe, Niels; Eloy, Jonas; Verschuren, Dirk; De Batist, Marc
2017-04-01
Long and continuous sediment records from equatorial Africa are rare, resulting in a so far fragmentary understanding of the effects of a warming atmosphere on the tropical hydrological cycle at the regional scale. Serve and recurrent droughts is the principle weather-related hazard throughout sub-Saharan Africa, and the quality of long-term weather prediction a principle bottleneck hampering drought mitigation and adaptation. The impact of 21st-century anthropogenic climate change on the African rainfall is highly uncertain, implying unforeseeable effects on freshwater resources. During the "CHALLACEA" project (2005-2008) detailed investigations of Lake Challa, a relatively small and deep crater lake on the border between Kenya and Tanzania, revealed the lake is a key site for reconstructing the climate and environmental history of equatorial East Africa. Various biological, bio-geochemical and sedimentological investigations of the 22 long CHALLACEA-core helped to understand the systematics of Lake Challa under present-day conditions as well as to reconstruct environmental changes over the past 25,000 years. Due to the good quality of the Lake Challa sediment and the high scientific outcome of the record, a new International Continental Scientific Drilling Programme (ICDP) project "DeepCHALLA" was established to drill a longer sediment record, going further back in time. During the drilling campaign in November 2016 a 215 m long sediment sequence was obtained which will provide unique information about environmental changes in low-latitudes over a complete glacial - interglacial cycle. Therefore, the record opens new opportunities to study East African environmental changes and paleo-hydrological conditions much further back in time, encompassing the entire known existence of modern humans (Homo sapiens) in East Africa. Here we present a compilation of the environmental reconstructions based on the CHALLACEA sediment sequence and will give an outline of future work on the DeepCHALLA record.
FeO2 and FeOOH under deep lower-mantle conditions and Earth's oxygen-hydrogen cycles.
Hu, Qingyang; Kim, Duck Young; Yang, Wenge; Yang, Liuxiang; Meng, Yue; Zhang, Li; Mao, Ho-Kwang
2016-06-09
The distribution, accumulation and circulation of oxygen and hydrogen in Earth's interior dictate the geochemical evolution of the hydrosphere, atmosphere and biosphere. The oxygen-rich atmosphere and iron-rich core represent two end-members of the oxygen-iron (O-Fe) system, overlapping with the entire pressure-temperature-composition range of the planet. The extreme pressure and temperature conditions of the deep interior alter the oxidation states, spin states and phase stabilities of iron oxides, creating new stoichiometries, such as Fe4O5 (ref. 5) and Fe5O6 (ref. 6). Such interactions between O and Fe dictate Earth's formation, the separation of the core and mantle, and the evolution of the atmosphere. Iron, in its multiple oxidation states, controls the oxygen fugacity and oxygen budget, with hydrogen having a key role in the reaction of Fe and O (causing iron to rust in humid air). Here we use first-principles calculations and experiments to identify a highly stable, pyrite-structured iron oxide (FeO2) at 76 gigapascals and 1,800 kelvin that holds an excessive amount of oxygen. We show that the mineral goethite, FeOOH, which exists ubiquitously as 'rust' and is concentrated in bog iron ore, decomposes under the deep lower-mantle conditions to form FeO2 and release H2. The reaction could cause accumulation of the heavy FeO2-bearing patches in the deep lower mantle, upward migration of hydrogen, and separation of the oxygen and hydrogen cycles. This process provides an alternative interpretation for the origin of seismic and geochemical anomalies in the deep lower mantle, as well as a sporadic O2 source for the Great Oxidation Event over two billion years ago that created the present oxygen-rich atmosphere.
2018-01-01
Objective This study observed the effects of cooking method and final core temperature on cooking loss, lipid oxidation, aroma volatiles, nucleotide-related compounds and aroma volatiles of Hanwoo brisket (deep pectoralis). Methods Deep pectoralis muscles (8.65% of crude fat) were obtained from three Hanwoo steer carcasses with 1+ quality grade. Samples were either oven-roasted at 180°C (dry heat) or cooked in boiling water (moist heat) to final core temperature of 70°C (medium) or 77°C (well-done). Results Boiling method reduced more fat but retained more moisture than did the oven roasting method (p<0.001), thus no significant differences were found on cooking loss. However, samples lost more weight as final core temperature increased (p<0.01). Further, total saturated fatty acid increased (p = 0.02) while total monounsaturated fatty acid decreased (p = 0.03) as final core temperature increased. Regardless the method used for cooking, malondialdehyde (p<0.01) and free iron contents (p<0.001) were observed higher in samples cooked to 77°C. Oven roasting retained more inosinic acid, inosine and hypoxanthine in samples than did the boiling method (p<0.001), of which the concentration decreased as final core temperature increased except for hypoxanthine. Samples cooked to 77°C using oven roasting method released more intense aroma than did the others and the aroma pattern was discriminated based on the intensity. Most of aldehydes and pyrazines were more abundant in oven-roasted samples than in boiled samples. Among identified volatiles, hexanal had the highest area unit in both boiled and oven-roasted samples, of which the abundance increased as the final core temperature increased. Conclusion The boiling method extracted inosinic acid and rendered fat from beef brisket, whereas oven roasting intensified aroma derived from aldehydes and pyrazines and prevented the extreme loss of inosinic acid. PMID:28728407
Advanced Pressure Coring System for Deep Earth Sampling (APRECOS)
NASA Astrophysics Data System (ADS)
Anders, E.; Rothfuss, M.; Müller, W. H.
2009-04-01
Nowadays the recovery of cores from boreholes is a standard operation. However, during that process the mechanical, physical, and chemical properties as well as living conditions for microorganisms are significantly altered. In-situ sampling is one approach to overcome the severe scientific limitations of conventional, depressurized core investigations by recovering, processing, and conducting experiments in the laboratory, while maintaining unchanged environmental parameters. The most successful equipment today is the suite of tools developed within the EU funded projects HYACE (Hydrate Autoclave Coring Equipment) and HYACINTH (Deployment of HYACE tools In New Tests on Hydrates) between 1997 and 2005. Within several DFG (German Research Foundation) projects the Technical University Berlin currently works on concepts to increase the present working pressure of 250 bar as well as to reduce logistical and financial expenses by merging redundant and analogous procedures and scaling down the considerable size of key components. It is also proposed to extend the range of applications for the wireline rotary pressure corer and the sub-sampling and transfer system to all types of soil conditions (soft to highly-consolidated). New modifications enable the tools to be used in other pressure related fields of research, such as unconventional gas exploration (coal-bed methane, tight gas, gas hydrate), CO2 sequestration, and microbiology of the deep biosphere. Expedient enhancement of an overall solution for pressure core retrieval, process and investigation will open the way for a complete on-site, all-purpose, in-situ equipment. The advanced assembly would allow for executing the whole operation sequences of coring, non-destructive measurement, sub-sampling and transfer into storage, measurement and transportation chambers, all in sterile, anaerobic conditions, and without depressurisation in quick succession. Extensive post-cruise handling and interim storage would be dispensable. The complete core processing and preparation of in-situ sample sections for worldwide shipping could be conducted within hours after retrieval.
NASA Astrophysics Data System (ADS)
Goodge, J. W.; Severinghaus, J. P.
2014-12-01
The Rapid Access Ice Drill (RAID) will penetrate the Antarctic ice sheets in order to core through deep ice, the glacial bed, and into bedrock below. This new technology will provide a critical first look at the interface between major ice caps and their subglacial geology. Currently in construction, RAID is a mobile drilling system capable of making several long boreholes in a single field season in Antarctica. RAID is interdisciplinary and will allow access to polar paleoclimate records in ice >1 Ma, direct observation at the base of the ice sheets, and recovery of rock cores from the ice-covered East Antarctic craton. RAID uses a diamond rock-coring system as in mineral exploration. Threaded drill-pipe with hardened metal bits will cut through ice using reverse circulation of Estisol for pressure-compensation, maintenance of temperature, and removal of ice cuttings. Near the bottom of the ice sheet, a wireline bottom-hole assembly will enable diamond coring of ice, the glacial bed, and bedrock below. Once complete, boreholes will be kept open with fluid, capped, and made available for future down-hole measurement of thermal gradient, heat flow, ice chronology, and ice deformation. RAID will also sample for extremophile microorganisms. RAID is designed to penetrate up to 3,300 meters of ice and take sample cores in less than 200 hours. This rapid performance will allow completion of a borehole in about 10 days before moving to the next drilling site. RAID is unique because it can provide fast borehole access through thick ice; take short ice cores for paleoclimate study; sample the glacial bed to determine ice-flow conditions; take cores of subglacial bedrock for age dating and crustal history; and create boreholes for use as an observatory in the ice sheets. Together, the rapid drilling capability and mobility of the drilling system, along with ice-penetrating imaging methods, will provide a unique 3D picture of the interior Antarctic ice sheets.
Steady state toroidal magnetic field at earth's core-mantle boundary
NASA Technical Reports Server (NTRS)
Levy, Eugene H.; Pearce, Steven J.
1991-01-01
Measurements of the dc electrical potential near the top of earth's mantle have been extrapolated into the deep mantle in order to estimate the strength of the toroidal magnetic field component at the core-mantle interface. Recent measurements have been interpreted as indicating that at the core-mantle interface, the magnetic toroidal and poloidal field components are approximately equal in magnitude. A motivation for such measurements is to obtain an estimate of the strength of the toroidal magnetic field in the core, a quantity important to our understanding of the geomagnetic field's dynamo generation. Through the use of several simple and idealized calculation, this paper discusses the theoretical relationship between the amplitude of the toroidal magnetic field at the core-mantle boundary and the actual amplitude within the core. Even with a very low inferred value of the toroidal field amplitude at the core-mantle boundary, (a few gauss), the toroidal field amplitude within the core could be consistent with a magnetohydrodynamic dynamo dominated by nonuniform rotation and having a strong toroidal magnetic field.
Pore-fluid chemistry along the main axis of an active lobe at the Congo deep-sea fan
NASA Astrophysics Data System (ADS)
Croguennec, C.; Ruffine, L.; Guyader, V.; Le Bruchec, J.; Ruesch, B.; Caprais, J.; Cathalot, C.; de Prunelé, A.; Germain, Y.; Bollinger, C.; Dennielou, B.; Olu, K.; Rabouille, C.
2013-12-01
The distal lobes of the Congo deep-sea fan constitute a unique in situ laboratory to study early diagenesis of marine sediments. They are located at water depth of about 5000 m and result from the deposition of sediment transported by turbidity currents along the channel-levee systems and submarine canyon connected to the Congo River. Thus, a huge amount of organic matter, transported from the river to the lobes, undergoes decomposition processes involving different oxidants present within the sedimentary column. This drastically changes the chemistry of the pore fluids, allowing the occurence of a succession of biogeochemical processes. The present study is part of an ongoing project which aims at better understanding the role and the fate of organic matter transported to the lobe systems, as well as its implication in the distribution of the living communities encountered there. Thus, pore fluids have been sampled from 8 Calypso cores in order to determine the concentration of dissolved elements. Five sites have been investigated: four of them are located along the main axis of a currently active lobe, the last one being located on a lobe disconnected from the chenals. The analyses of methane, major (Cl, SO4, Mg, Ca, K, Na) and minor (Sr, Ba, B, Li, Mn) elements have been carried out along with total alkalinity determination. The resulting profiles show a highly heterogeneous pore-fluid chemistry. Sulphate concentration near the seawater/sediment interface varies from 3 to 29 mM, indicating intense sulphate reduction. Surprisingly the lowest values are found at the site which is disconnected from the active lobe. The manganese cycle is well defined for all cores. The core recovered at the more distal lobe exhibits very peculiar pore-fluid profiles which are likely related to a geological event, most likely sediment slide and remobilization. References: Babonneau, N., Savoye, B., Cremer, M. & Klein, B., 2002. Morphology and architecture of the present canyon and channel system of the Zaire deep-sea fan, Mar. Pet. Geol., 19, 445-467. Savoye, B., Babonneau, N., Dennielou, B. & Bez, M., 2009. Geological overview of the Angola-Congo margin, the Congo deep-sea fan and its submarine valleys, Deep-Sea Res. Part II-Top. Stud. Oceanogr., 56, 2169-2182. Vangriesheim, A., Khripounoff, A. & Crassous, P., 2009. Turbidity events observed in situ along the Congo submarine channel, Deep-Sea Res. Part II-Top. Stud. Oceanogr., 56, 2208-2222. Zabel, M. & Schulz, H.D., 2001. Importance of submarine landslides for non-steady state conditions in pore water systems - lower Zaire (Congo) deep-sea fan, Mar. Geol., 176, 87-99.
Stable microwave radiometry system for long term monitoring of deep tissue temperature
NASA Astrophysics Data System (ADS)
Stauffer, Paul R.; Rodriques, Dario B.; Salahi, Sara; Topsakal, Erdem; Oliveira, Tiago R.; Prakash, Aniruddh; D'Isidoro, Fabio; Reudink, Douglas; Snow, Brent W.; Maccarini, Paolo F.
2013-02-01
Background: There are numerous clinical applications for non-invasive monitoring of deep tissue temperature. We present the design and experimental performance of a miniature radiometric thermometry system for measuring volume average temperature of tissue regions located up to 5cm deep in the body. Methods: We constructed a miniature sensor consisting of EMI-shielded log spiral microstrip antenna with high gain onaxis and integrated high-sensitivity 1.35GHz total power radiometer with 500 MHz bandwidth. We tested performance of the radiometry system in both simulated and experimental multilayer phantom models of several intended clinical measurement sites: i) brown adipose tissue (BAT) depots within 2cm of the skin surface, ii) 3-5cm deep kidney, and iii) human brain underlying intact scalp and skull. The physical models included layers of circulating tissue-mimicking liquids controlled at different temperatures to characterize our ability to quantify small changes in target temperature at depth under normothermic surface tissues. Results: We report SAR patterns that characterize the sense region of a 2.6cm diameter receive antenna, and radiometric power measurements as a function of deep tissue temperature that quantify radiometer sensitivity. The data demonstrate: i) our ability to accurately track temperature rise in realistic tissue targets such as urine refluxed from prewarmed bladder into kidney, and 10°C drop in brain temperature underlying normothermic scalp and skull, and ii) long term accuracy and stability of +0.4°C over 4.5 hours as needed for monitoring core body temperature over extended surgery or monitoring effects of brown fat metabolism over an extended sleep/wake cycle. Conclusions: A non-invasive sensor consisting of 2.6cm diameter receive antenna and integral 1.35GHz total power radiometer has demonstrated sufficient sensitivity to track clinically significant changes in temperature of deep tissue targets underlying normothermic surface tissues for clinical applications like the detection of vesicoureteral reflux, and long term monitoring of brown fat metabolism or brain core temperature during extended surgery.
Stable Microwave Radiometry System for Long Term Monitoring of Deep Tissue Temperature.
Stauffer, Paul R; Rodriques, Dario B; Salahi, Sara; Topsakal, Erdem; Oliveira, Tiago R; Prakash, Aniruddh; D'Isidoro, Fabio; Reudink, Douglas; Snow, Brent W; Maccarini, Paolo F
2013-02-26
There are numerous clinical applications for non-invasive monitoring of deep tissue temperature. We present the design and experimental performance of a miniature radiometric thermometry system for measuring volume average temperature of tissue regions located up to 5cm deep in the body. We constructed a miniature sensor consisting of EMI-shielded log spiral microstrip antenna with high gain on-axis and integrated high-sensitivity 1.35GHz total power radiometer with 500 MHz bandwidth. We tested performance of the radiometry system in both simulated and experimental multilayer phantom models of several intended clinical measurement sites: i) brown adipose tissue (BAT) depots within 2cm of the skin surface, ii) 3-5cm deep kidney, and iii) human brain underlying intact scalp and skull. The physical models included layers of circulating tissue-mimicking liquids controlled at different temperatures to characterize our ability to quantify small changes in target temperature at depth under normothermic surface tissues. We report SAR patterns that characterize the sense region of a 2.6cm diameter receive antenna, and radiometric power measurements as a function of deep tissue temperature that quantify radiometer sensitivity. The data demonstrate: i) our ability to accurately track temperature rise in realistic tissue targets such as urine refluxed from prewarmed bladder into kidney, and 10°C drop in brain temperature underlying normothermic scalp and skull, and ii) long term accuracy and stability of ∓0.4°C over 4.5 hours as needed for monitoring core body temperature over extended surgery or monitoring effects of brown fat metabolism over an extended sleep/wake cycle. A non-invasive sensor consisting of 2.6cm diameter receive antenna and integral 1.35GHz total power radiometer has demonstrated sufficient sensitivity to track clinically significant changes in temperature of deep tissue targets underlying normothermic surface tissues for clinical applications like the detection of vesicoureteral reflux, and long term monitoring of brown fat metabolism or brain core temperature during extended surgery.
Effects of Enhanced Thaw Depth on the Composition of Arctic Soil Organic Matter Leachate
NASA Astrophysics Data System (ADS)
Hutchings, J.; Zhang, X.; Bianchi, T. S.; Schuur, E.; Arellano, A. R.; Liu, Y.
2016-12-01
Pan-Arctic permafrost is increasingly susceptible to thaw due to the disproportionally high rate of temperature change in high latitudes. These soils contain a globally significant quantity of organic carbon that, when thawed, interacts with the modern carbon cycle. Current research has focused on atmospheric carbon fluxes and transport by rivers and streams to continental shelves, but has overlooked the lateral flux of carbon within watershed soils, which is the primary link between terrestrial and riverine ecosystems. Understanding the effects of water movement through permafrost soils on dissolved organic carbon is critical to better modelling of lateral carbon fluxes and interpreting the resulting observed riverine carbon fluxes with applications to investigations of the past, present, and future of the pan-Arctic. We conducted a laboratory leaching experiment using active layer soils from the Eight Mile Lake region of interior Alaska. Cores were sampled into surface and deep sections. Surface sections were subjected to a three-stage leaching process using artificial rain, with cores stored frozen overnight between stages (which crudely simulated freeze-thaw mechanisms). Surface leachates were sampled for analysis and the remainder percolated through deep soils using the same three-staged approach. Measurements of surface and deep leachates were selected to characterize transport-related changes to dissolved organic matter and included dissolved organic carbon, fluorescent dissolved organic matter via excitation emission matrices, and molecular composition via Fourier transform ion cyclotron resonance mass spectrometry. Primary findings from the experiment include a net retention of 2.4 to 27% of dissolved organic carbon from surface leachates in deep soils, a net release of fluorescent dissolved organic matter from deep soils that was 43 to 106% greater than surface leachates, increased hydrophobicity during stage three of leaching, and the preferential leaching of lignin- and tannin-like formulas from deep soils, consistent with fluorescence measurements.
Extracting Databases from Dark Data with DeepDive
Zhang, Ce; Shin, Jaeho; Ré, Christopher; Cafarella, Michael; Niu, Feng
2016-01-01
DeepDive is a system for extracting relational databases from dark data: the mass of text, tables, and images that are widely collected and stored but which cannot be exploited by standard relational tools. If the information in dark data — scientific papers, Web classified ads, customer service notes, and so on — were instead in a relational database, it would give analysts a massive and valuable new set of “big data.” DeepDive is distinctive when compared to previous information extraction systems in its ability to obtain very high precision and recall at reasonable engineering cost; in a number of applications, we have used DeepDive to create databases with accuracy that meets that of human annotators. To date we have successfully deployed DeepDive to create data-centric applications for insurance, materials science, genomics, paleontologists, law enforcement, and others. The data unlocked by DeepDive represents a massive opportunity for industry, government, and scientific researchers. DeepDive is enabled by an unusual design that combines large-scale probabilistic inference with a novel developer interaction cycle. This design is enabled by several core innovations around probabilistic training and inference. PMID:28316365
Core excitations across the neutron shell gap in 207Tl
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, E.; Podolyák, Zs.; Grawe, H.
2015-05-05
The single closed-neutron-shell, one proton–hole nucleus 207Tl was populated in deep-inelastic collisions of a 208Pb beam with a 208Pb target. The yrast and near-yrast level scheme has been established up to high excitation energy, comprising an octupole phonon state and a large number of core excited states. Based on shell-model calculations, all observed single core excitations were established to arise from the breaking of the N=126 neutron core. While the shell-model calculations correctly predict the ordering of these states, their energies are compressed at high spins. It is concluded that this compression is an intrinsic feature of shell-model calculations usingmore » two-body matrix elements developed for the description of two-body states, and that multiple core excitations need to be considered in order to accurately calculate the energy spacings of the predominantly three-quasiparticle states.« less
Wu, Xiang; Zhang, Yuanwei; Takle, Kendra; ...
2016-01-06
A near-infrared (NIR) dye-sensitized upconversion nanoparticles (UCNPs) can broaden the absorption range and boost upconversion efficiency of UCNPs. We achieved significantly enhanced upconversion luminescence in dye-sensitized core/active shell UCNPs via the doping of ytterbium ions (Yb 3+ ) in the UCNP shell, which bridged the energy transfer from the dye to the UCNP core. As a result, we synergized the two most practical upconversion booster effectors (dye-sensitizing and core/shell enhancement) to amplify upconversion efficiency. We also demonstrated two biomedical applications using these UCNPs. By using dye-sensitized core/active shell UCNP embedded poly(methyl methacrylate) polymer implantable systems, we successfully shifted the optogeneticmore » neuron excitation window to a biocompatible and deep tissue penetrable 800 nm wavelength. Furthermore, UCNPs were water-solubilized with Pluronic F127 with high upconversion efficiency and can be imaged in a mouse model.« less
NASA Astrophysics Data System (ADS)
Williams, T.; Hillenbrand, C. D.; Piotrowski, A. M.; Smith, J.; Hodell, D. A.; Frederichs, T.; Allen, C. S.
2014-12-01
Changes in stable carbon isotopes (δ13C) recorded in benthic foraminiferal calcite reflect that of the dissolved inorganic carbon (DIC) of ambient seawater, and thus are used to reconstruct past changes in water mass mixing. Records of benthic foraminiferal δ13C from the Atlantic Ocean have revealed the development of a sharp vertical δ13C gradient between 2300-2500m water depth during successive glacial periods throughout the Late Quaternary, with extremely negative δ13C values recorded below this depth. It had been hypothesised that this gradient resulted from an increased stratification of water masses within the glacial Atlantic Ocean, and that these extreme δ13C values originated in the Southern Ocean. However the mechanisms behind the formation of this gradient and extreme δ13C depletion have remained unclear. This is in part due to the poor preservation of calcareous microfossils in the corrosive waters below 2500-3000m found in the Southern Ocean, which hampers our understanding of this key region. Here we present a unique new δ13C deep water record measured on benthic foraminifera (Cibicidoides spp.) from a sediment core recovered from 2100m water depth in the Amundsen Sea, south-eastern Pacific sector of the Southern Ocean. The site is bathed in Lower Circumpolar Deep Water (LCDW) today, and combined palaeomagnetic and oxygen isotope stratigraphy show that the sediments continuously span at least the last 890 ka. A comparison of this new δ13C data with other LCDW records from ODP Sites 1089/1090 in the South Atlantic and ODP Site 1123 in the Southwest Pacific demonstrate a clear spatial gradient in circum-Antarctic LCDW during glacial periods. The pool of extremely depleted glacial deep marine δ13C is restricted to the Atlantic Sector of the Southern Ocean, with increasingly positive δ13C values found in the Southwest Pacific and the south-eastern Pacific sector of the Southern Ocean. This implies that the δ13C depletion in the deep glacial Atlantic was sourced in the Atlantic sector of the Southern Ocean, and remained limited to this sector. This finding indicates either increased supply of relatively more positive δ13C deep waters or increased vertical mixing in the Indian and Pacific sectors of the glacial Southern Ocean.
GANSEKI: JAMSTEC Deep Seafloor Rock Sample Database Emerging to the New Phase
NASA Astrophysics Data System (ADS)
Tomiyama, T.; Ichiyama, Y.; Horikawa, H.; Sato, Y.; Soma, S.; Hanafusa, Y.
2013-12-01
Japan Agency for Marine-Earth Science and Technology (JAMSTEC) collects a lot of substantial samples as well as various geophysical data using its research vessels and submersibles. These samples and data, which are obtained by spending large amounts of human and physical resources, are precious wealth of the world scientific community. For the better use of these samples and data, it is important that they are utilized not only for initial purpose of each cruse but also for other general scientific and educational purposes of second-hand users. Based on the JAMSTEC data and sample handling policies [1], JAMSTEC has systematically stored samples and data obtained during research cruises, and provided them to domestic/foreign activities on research, education, and public relation. Being highly valued for second-hand usability, deep seafloor rock samples are one of the most important types of samples obtained by JAMSTEC, as oceanic biological samples and sediment core samples are. Rock samples can be utilized for natural history sciences and other various purposes; some of these purposes are connected to socially important issues such as earthquake mechanisms and mineral resource developments. Researchers and educators can access to JAMSTEC rock samples and associated data through 'GANSEKI [2]', the JAMSTEC Deep Seafloor Rock Sample Database. GANSEKI was established on the Internet in 2006 and its contents and functions have been continuously enriched and upgraded since then. GANSEKI currently provides 19 thousands of sample metadata, 9 thousands of collection inventory data and 18 thousands of geochemical data. Most of these samples are recovered from the North-western Pacific Ocean, although samples from other area are also included. The major update of GANSEKI held in May 2013 involved a replacement of database core system and a redesign of user interface. In the new GANSEKI, users can select samples easily and precisely using multi-index search, numerical constraints on geochemical data and thumbnail browsing of sample and thin-section photos. 'MyList' function allows users to organize, compare and download the data of selected samples. To develop a close network among online databases, the new GANSEKI allows multiple URL entries for individual samples. Now the curatorial staffs are working for maintaining references to other JAMSTEC databases such as 'DARWIN [3]' and 'J-EDI [4]'.
Carvajal, Cristian; Paull, Charles K.; Caress, David W.; Fildani, Andrea; Lundsten, Eve M.; Anderson, Krystle; Maier, Katherine L.; McGann, Mary; Gwiazda, Roberto; Herguera, Juan Carlos
2017-01-01
Ultra-high-resolution (1 m * 1 m * 0.25 m) bathymetry was acquired with an autonomous underwater vehicle (AUV) over a sector of the Navy Fan offshore Baja California. The survey specifically targeted an area where the former interpretation of the fan showed a channel–lobe transition; however, the lobe and the transition were not recognized. Instead, the newly acquired bathymetry shows that the previously identified channel continues basinward changing its overall morphology and stratigraphic architecture, becoming gradually but significantly wider (650–1000 m) and of lower relief (3–4 m). Cores from the channel thalweg recovered mud-poor (< 5%) well-sorted sands, interpreted as deposited by fully turbulent flows. The cores also show several mud-rich (9–18%) poorly sorted sands, probably indicating deposition from more cohesive flows.The high-resolution bathymetry shows large sectors of the seafloor sculpted by elaborate bedforms and scours. The overbank area north of the channel exhibits the most numerous and prominent scours, interpreted to have been largely generated by flow stripping at a bend in the channel. Along high-gradient sectors (more than approximately 1¯) of this area, the scours are largest and deepest. Some of these scours show an erosional headwall and a distal upflow-dipping depositional bulge, forming repetitive bedforms interpreted as erosional cyclic steps associated with locked-in-place trains of hydraulic jumps. The scours seem to coalesce to form an incipient channel, which would likely drive the avulsion of the main channel. Further basinward, average gradients decrease (< 0.6¯ ) and scours become smaller and less deep suggesting a gradient control on erosion. The southern channel margin and adjacent overbank area exhibit a trend of scours that are elongated transverse to flow, that successively repeat themselves basinwards, and that at times merge with sediment waves. Probably these scours are genetically linked to sediment waves, and they may have been formed by cyclic-step-like processes as well. The acquired bathymetry represents a breakthrough in the imaging of the proximal sectors of deep-sea fans, which provides the basis for an accurate morphometric characterization and the understanding of sedimentary processes and morphodynamics associated with the delivery of sediment into the deep sea.
kISMET: Stress and fracture characterization in a deep mine
NASA Astrophysics Data System (ADS)
Oldenburg, C. M.; Dobson, P. F.; Daley, T. M.; Birkholzer, J. T.; Cook, P. J.; Ajo Franklin, J. B.; Rutqvist, J.; Siler, D.; Kneafsey, T. J.; Nakagawa, S.; Wu, Y.; Guglielmi, Y.; Ulrich, C.; Marchesini, P.; Wang, H. F.; Haimson, B. C.; Sone, H.; Vigilante, P.; Roggenthen, W.; Doe, T.; Lee, M.; Mattson, E.; Huang, H.; Johnson, T. C.; Morris, J.; White, J. A.; Johnson, P. A.; Coblentz, D. D.; Heise, J.
2016-12-01
We are developing a community facility called kISMET (permeability (k) and Induced Seismicity Management for Energy Technologies) at the Sanford Underground Research Facility (SURF) in Lead, SD. The purpose of kISMET is to investigate stress and the effects of rock fabric on hydraulic fracturing. Although findings from kISMET may have broad applications that inform stress and fracturing in anisotropic rock, results will be most applicable to improving control of hydraulic fracturing for enhanced geothermal systems (EGS) in crystalline rock. At the kISMET site on the 4850 ft (1480 m depth) level of SURF, we have drilled and cored an array of nearly vertical boreholes in Precambrian phyllite. The array consists of four 50-m deep monitoring boreholes surrounding one 100-m deep borehole forming a 6 m-wide five-spot pattern at a depth of 1530 m. Previous investigations of the stress field at SURF suggest that the principal stress s1 is nearly vertical. By aligning the kISMET boreholes approximately with σ1, fractures created in the center borehole should in theory be perpendicular to σ3, the least principal horizontal stress. But the phyllite at kISMET has a strong fabric (foliation) that could influence fracturing. Stress measurements and stimulation using hydraulic fracturing will be carried out in the center borehole using a straddle packer and high-pressure pump. We will use an impression packer and image logs after stress testing and stimulation to determine fracture orientation and extent at the center borehole. In order to study the control of stress, rock fabric, and stimulation approach on size, aperture, and orientation of hydraulic fractures, we will carefully monitor the stress measurements and stimulation. For example, we will use continuous active source seismic (CASSM) in two of the monitoring boreholes to measure changes in seismic-wave velocity as water fills the fracture. Second, near real-time electrical resistance tomography (ERT) will be used in the other two boreholes to monitor the changes in resistivity during stress measurement and stimulation. Finally, accelerometers placed nearby on the 4850 level will monitor induced microseismicity. Results of pre-test fracturing simulations, laboratory tests on core, stress testing, and stimulation and associated monitoring will be presented.
Properties of the Lunar Interior: Preliminary Results from the GRAIL Mission
NASA Technical Reports Server (NTRS)
Williams, James G.; Konopliv, Alexander S.; Asmar, Sami W.; Lemoine, Frank G.; Melosh, H. Jay; Neumann, Gregory A.; Phillips, Roger J.; Smith, David E.; Solomon, Sean C.; Watkins, Michael M.;
2013-01-01
The Gravity Recovery and Interior Laboratory (GRAIL) mission [1] has provided lunar gravity with unprecedented accuracy and resolution. GRAIL has produced a high-resolution map of the lunar gravity field [2,3] while also determining tidal response. We present the latest gravity field solution and its preliminary implications for the Moon's interior structure, exploring properties such as the mean density, moment of inertia of the solid Moon, and tidal potential Love number k(sub 2). Lunar structure includes a thin crust, a thick mantle layer, a fluid outer core, and a suspected solid inner core. An accurate Love number mainly improves knowledge of the fluid core and deep mantle. In the future, we will search for evidence of tidal dissipation and a solid inner core using GRAIL data.
NASA Astrophysics Data System (ADS)
Perez-Flores, P.; Veloso, E. E.; Cembrano, J. M.; Sánchez, P.; Iriarte, S.; Lohmar, S.
2013-12-01
Reorientation of mesoscopic faults, veins and fractures recovered from drilling is critical to construct reliable structural models that can account for their architecture and deformation regime. However, oriented cores are expensive and time consuming to drill. Some techniques achieve reorientation by introducing tools into the borehole. Problems arise when boreholes are unstable or collapse. One alternative technique allowing reorientation is to obtain reliable paleomagnetic vectors to reorient each core piece after drilling. Here, we present stable and reliable remnant magnetic vectors calculated from the Tol-1 core to analyze the geometry of the fracture network and its relationship to regional tectonic. Tol-1 core is a vertical, 1073 m deep geothermal well, drilled at the Tolhuaca Geothermal Field in the Southern Volcanic Zone of the Andes by MRP Geothermal Chile Ltda (formerly GGE Chile SpA) in 2009. The core consists of basaltic/andesitic volcanic rocks with subordinate pyroclastic/volcaniclastic units, with probable Pleistocene age. Fault planes with slickenlines and mineral fiber kinematic indicators are common in the upper 700 m of the core. Calcite, quartz and calcite-quartz veins are recognized along of entire core, whereas epidote-quartz and calcite-epidote veins occur in the last 350 m, minor chlorite, anhydrite and clay-minerals are present. Orientations of structural features in the core were measured with a goniometer using the core's axis and a false north for each piece; hence, orientation data has a false strike but a real dip. To achieve total reorientation of the pieces, we collected 200 standard-size paleomagnetic specimens, ensuring that at least four of them were recovered from continuous pieces. Thermal (up to 700°C) and alternating field demagnetization (up to 90mT on steps of 2mT) methods were used to isolate a stable remnant magnetization (RM) vector, and each technique yielded similar results. RM vectors were recovered between 0 to 25mT, and between 0 to 625°C. The declination of RM vectors was used to bring pieces to a common anchor orientation calculated through the Geocentric Axial Dipole Model (GAD). The paleomagnetic technique proved to be reliable to reorient the Tol-1 core. Structural analyses along the core show N50-60E-striking preferential vein orientation. In addition, N40-50E- and N60-70W-striking preferential fault orientations were identified. Kinematic analysis of fault-slip data shows a N60E-striking bulk fault plane solution with normal strain regime. The veins and faults orientation show strain axes compatible with published regional stress field (σmax N238E).
Initial results from the ICDP SCOPSCO drilling project, Lake Ohrid (Macedonia, Albania)
NASA Astrophysics Data System (ADS)
Francke, A.; Wagner, B.; Krastel, S.; Lindhorst, K.; Wilke, T.; Zanchetta, G.; Sulpizio, R.; Grazhdani, A.; Reicherter, K. R.
2013-12-01
Lake Ohrid (Macedonia, Albania) is about 30 km long and 15 km wide and up to 290 m deep. Formed within a tectonic graben, Lake Ohrid is considered to be the oldest lake in Europe, providing a high-resolution, continuous archive of environmental change and tectonic and tephrostratigraphic history in the Eastern Mediterranean Region. The deep drilling campaign at Lake Ohrid in spring 2013 within the scope of the ICDP project SCOPSCO (Scientific Collaboration of Past Speciation Conditions in Lake Ohrid) aimed (a) to obtain more precise information about the age and origin of the lake, (b) to unravel the seismotectonic history of the lake area including effects of major earthquakes and associated mass wasting events, (c) to obtain a continuous record containing information on volcanic activities and climate changes in the central northern Mediterranean region, and (d) to better understand the impact of major geological/environmental events on general evolutionary patterns and shaping an extraordinary degree of endemic biodiversity as a matter of global significance. Drilling was carried out by DOSECC (Salt Lake City, USA) using the DLDS (Deep Lake Drilling System) with a hydraulic piston corer for surface sediments and rotation drilling for harder, deeper sediments. Overall, about 2,100 m of sediment were recovered from 4 drill sites. At the 'DEEP' site in the center of the lake, seismic data implied a maximum sediment fill of ca. 700 m, of which the uppermost 568 m sediment were recovered. Coarse-grained gravel and pebbles underlying clay and shallow water facies sediments hampered deeper penetration. 6 boreholes at the 'DEEP' site resulted in a total of 1526 m of sediment cores and a composite field recovery of 544 m (95%). Initial geochemical and magnetic susceptibility data imply that the sediments from 'DEEP' site are highly sensitive to climate and environmental variations in the Balkan area probably over the last 1.5 Mio years. Long-term climate oscillations on a glacial/interglacial timescale and also short-term events such as Dansgaard-Oescher cycles during the last glacial period can be inferred from the initial data. Although a high amount of greigite complicates the paleomagnetic dating of the recovered sediments, a robust age model can likely be inferred from numerous tephras and cryptotephras, which are indicated by spikes in the magnetic susceptibility data. Three additional sites at lateral parts of Lake Ohrid were drilled to un-ravel lake level fluctuations, catchment dynamics, biodiversity and evolution processes ('Cerava', deepest drilled depth: 90 m), active tectonics and spring dynamics ('Gradiste', deepest drilled depth: 123 m), and the early development of the Ohrid Basin ('Pestani', deepest drilled depth: 194 m). The composite field recovery is >90% at each site. The initial results obtained from the field campaign indicate that Lake Ohrid provides an extraordinary record of environmental change in the northern Mediterranean and will become a key site for a better understanding of speciation triggers.
Demopoulos, Amanda W.J.; Ross, Steve W.; Kellogg, Christina A.; Morrison, Cheryl L.; Nizinski, Martha S.; Prouty, Nancy G.; Bourque, Jill R.; Galkiewicz, Julie P.; Gray, Michael A.; Springmann, Marcus J.; Coykendall, D. Katharine; Miller, Andrew; Rhode, Mike; Quattrini, Andrea; Ames, Cheryl L.; Brooke, Sandra D.; McClain Counts, Jennifer; Roark, E. Brendan; Buster, Noreen A.; Phillips, Ryan M.; Frometa, Janessy
2017-12-11
The deep sea is a rich environment composed of diverse habitat types. While deep-sea coral habitats have been discovered within each ocean basin, knowledge about the ecology of these habitats and associated inhabitants continues to grow. This report presents information and results from the Lophelia II project that examined deep-sea coral habitats in the Gulf of Mexico. The Lophelia II project focused on Lophelia pertusa habitats along the continental slope, at depths ranging from 300 to 1,000 meters. The chapters are authored by several scientists from the U.S. Geological Survey, National Oceanic and Atmospheric Administration, University of North Carolina Wilmington, and Florida State University who examined the community ecology (from microbes to fishes), deep-sea coral age, growth, and reproduction, and population connectivity of deep-sea corals and inhabitants. Data from these studies are presented in the chapters and appendixes of the report as well as in journal publications. This study was conducted by the Ecosystems Mission Area of the U.S. Geological Survey to meet information needs identified by the Bureau of Ocean Energy Management.
NASA Astrophysics Data System (ADS)
Van Daele, Maarten; Moernaut, Jasper; De Batist, Marc; Verschuren, Dirk
2013-04-01
Lake Challa (Mt. Kilimanjaro, Kenya/Tanzania) is located in a key site for reconstructing the climate and landscape history of equatorial East Africa and hence, climatic influences on the living environment of early modern humans, Homo sapiens. Seismic-reflection data from this crater lake reveal a ~210-m thick sedimentary infill containing distinct seismic-stratigraphic signatures of late-Quaternary lake-level fluctuations. Extrapolation of a well-constrained age model on the cored upper part of the sequence shows that the signatures of these lake-level fluctuations represent a detailed record of climatic moisture-balance variation in equatorial East Africa, continuous over at least the last 140 kyr and encompassing in total ~250 kyr. The most severe aridity occurred during peak Penultimate glaciation immediately before 130 kyr BP (coeval with Heinrich event 11) and during a Last Interglacial 'megadrought' period between ~115 and ~98 kyr BP; in comparison, Last Glacial Maximum (LGM) aridity was modest. The LGM was preceded by ~75,000 years of relatively stable and moist climate conditions interrupted by eleven short-lived dry spells, five of which match the timing of Heinrich events 2 to 6. Also in the lower part of the sedimentary infill the seismic stratigraphy provides evidence for short-lived dry spells, but artefacts and changes in basin geometry complicate their detailed interpretation and dating, respectively. The ICDP deep-drilling project DeepCHALLA aims to core the entire sedimentary sequence, which will allow reconstructing regional climate and ecological dynamics for the past ~250 kyr, i.e., the entire documented existence of anatomically modern humans in East Africa. Knowledge of climate history in this equatorial region, where the northeasterly and southeasterly monsoons strongly interact, is crucial for documenting the severity and geographical distribution of prolonged drought episodes across tropical Africa, and thus for understanding the early dispersal of modern humans from Africa into Eurasia between ~100,000 and ~50,000 years ago.
Deglacial hydrography and IRD inputs: A comparison of Terminations I and II in the N.E. Atlantic
NASA Astrophysics Data System (ADS)
Hibbert, Fiona; Chapman, Mark; Austin, William; Rohling, Eelco
2015-04-01
We present a high resolution marine record (MD04-2822) from the N.E. Atlantic. This record captures the demise of the penultimate glaciation (Termination II) in high resolution. The record of co-registered proxies offers the opportunity to investigate the evolution of the last two deglacial events in the North Atlantic. The deglacial evolution of Termination II is much less well documented than the last deglaciation (Termination I). A striking feature of Termination II in the MD04-2822 record, are several large (~1 ‰) oscillations in benthic δ18O, reflecting oscillations in sea level (e.g. Grant et al., 2012, Thomas et al., 2009) and/or deep sea temperatures (cf. Skinner and Shackleton, 2006). Also notable is the markedly different pattern of surface and deep water evolution for the two deglaciations. Termination I is characterised by a short offset between benthic δ18O decrease and δ13C increase (and northwards migration of the polar front) whereas during Termination II, benthic δ13C 'improvement' (and inferred resumption in overturning) occurs only during the Marine Isotope Stage (MIS) 5e plateau, giving the marine record it's characteristic 'drawn-out' appearance. The most conspicuous feature of the penultimate deglacial in most marine cores is Heinrich event 11 (H11), an extensive episode of ice rafted debris (IRD) discharge that spread across the North Atlantic to the margin of what is now the subtropical gyre (Chapman et al., 2000). H11 generally manifests in marine records as one large and long (~ 2.5 ka) event throughout the Termination. In MD04-2822 however, there are multiple IRD events within the Termination. The continued influence of the disintegrating N. hemisphere ice sheets is also evident within the benthic δ13C and surface conditions (the polar front migrates north of the core site early within MIS 5e following a brief SST reversal).
Cembrani, Fabio
2016-01-01
The Author examines the recent opinion delivered by the Italian National Committee for Bioethics on deep palliative sedation. In particular, it examines its strengths and ample shade that show its ideology, once again, in contrast with the right of every human being to die with dignity.
A quarter-million years of paleoenvironmental change at Bear Lake, Utah and Idaho
Kaufman, D.S.; Bright, Jordon; Dean, W.E.; Rosenbaum, J.G.; Moser, K.; Anderson, R. Scott; Colman, Steven M.; Heil, C.W.; Jiménez-Moreno, Gonzalo; Reheis, M.C.; Simmons, K.R.
2009-01-01
A continuous, 120-m-long core (BL00-1) from Bear Lake, Utah and Idaho, contains evidence of hydrologic and environmental change over the last two glacial-interglacial cycles. The core was taken at 41.95??N, 111.31??W, near the depocenter of the 60-m-deep, spring-fed, alkaline lake, where carbonate-bearing sediment has accumulated continuously. Chronological control is poor but indicates an average sedimentation rate of 0.54 mm yr-1. Analyses have been completed at multi-centennial to millennial scales, including (in order of decreasing temporal resolution) sediment magnetic properties, oxygen and carbon isotopes on bulk-sediment carbonate, organic- and inorganiccarbon contents, palynology; mineralogy (X-ray diffraction), strontium isotopes on bulk carbonate, ostracode taxonomy, oxygen and carbon isotopes on ostracodes, and diatom assemblages. Massive silty clay and marl constitute most of the core, with variable carbonate content (average = 31 ?? 19%) and oxygen-isotopic values (??18O ranging from -18??? to -5??? in bulk carbonate). These variations, as well as fluctuations of biological indicators, reflect changes in the water and sediment discharged from the glaciated headwaters of the dominant tributary, Bear River, and the processes that influenced sediment delivery to the core site, including lake-level changes. Although its influence has varied, Bear River has remained a tributary to Bear Lake during most of the last quarter-million years. The lake disconnected from the river and, except for a few brief excursions, retracted into a topographically closed basin during global interglaciations (during parts of marine isotope stages 7, 5, and 1). These intervals contain up to 80% endogenic aragonite with high ??18O values (average = -5.8 ?? 1.7???), indicative of strongly evaporitic conditions. Interglacial intervals also are dominated by small, benthic/tychoplanktic fragilarioid species indicative of reduced habitat availability associated with low lake levels, and they contain increased high-desert shrub and Juniperus pollen and decreased forest and forest-woodland pollen. The 87Sr 86Sr values (>0.7100) also increase, and the ratio of quartz to dolomite decreases, as expected in the absence of Bear River in flow. The changing paleoenvironments inferred from BL00-1 generally are consistent with other regional and global records of glacialinterglacial fluctuations; the diversity of paleoenvironmental conditions inferred from BL00-1 also reflects the influence of catchment-scale processes. Copyright ?? 2009 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Ferretti, P.; Elderfield, H.; Greaves, M.; McCave, N.
2007-12-01
It has been recently suggested "a substantial portion of the marine 100-ky cycle that has been object of so much attention over the past quarter of a century is, in reality, a deep-water temperature signal and not an ice volume signal" (Shackleton, 2000). There are currently few records available of deep-water temperature variations during the Pleistocene and most of our understanding is inferred from the oxygen isotopic composition (δ18O) of benthic foraminifera from deep-sea sediments. However, variations in benthic δ18O reflect some combination of local to regional changes in water mass properties (largely deep- water temperature) as well as global changes in seawater δ18O (δ18Osw) resulting from the growth and decay of continental ice. Recent studies suggest that benthic foraminiferal Mg/Ca may be useful in reconstructing deep-water temperature changes, but the application of this method to benthic species has been hampered by a number of unresolved issues, such as uncertainties related to the calibration for benthic Mg at the coldest temperatures. Here we present deep-sea Mg/Ca and δ18O records for the past eight glacial cycles in benthic foraminiferal ( Uvigerina spp.) calcite from a marine sediment core recovered in the mid Southern latitudes. Ocean Drilling Program Site 1123 was retrieved from Chatham Rise, east of New Zealand in the Southwest Pacific Ocean (3290 m water depth). This site lies under the Deep Western Boundary Current (DWBC) that flows into the Pacific Ocean, and is responsible for most of the deep water in that ocean; DWBC strength is directly related to processes occurring around Antarctica. Temperatures derived via pore fluid modeling of the last glacial maximum are available from Site 1123 and represent an important tool to constrain deep-water temperatures estimates using Mg/Ca. In selected time slices, we measured B/Ca ratios in Uvigerina in order to gain information on the deep-water carbonate saturation state and have data of Mg/Ca and B/Ca on planktonic species, which also provides evidence on carbonate saturation state. These results permit preliminary discussion of the magnitude of the deep-water temperature changes during glacial/interglacial transitions and the interglacials themselves. In particular, our deep-water temperature estimates confirm that interglacial stages before 430 ka were characterized by less pronounced warmth - at least in the deeper southern Pacific - than those of the past four climatic cycles, a pattern previously observed in the deuterium record from EPICA Dome C. We examine the relative contributions of deep-water temperature and ice volume to the benthic δ18O signal. The phase relationship between the two signals is tentatively assessed for the middle/late Pleistocene, when different patterns of climate variability have been inferred from marine and ice cores records.
How to study deep roots—and why it matters
Maeght, Jean-Luc; Rewald, Boris; Pierret, Alain
2013-01-01
The drivers underlying the development of deep root systems, whether genetic or environmental, are poorly understood but evidence has accumulated that deep rooting could be a more widespread and important trait among plants than commonly anticipated from their share of root biomass. Even though a distinct classification of “deep roots” is missing to date, deep roots provide important functions for individual plants such as nutrient and water uptake but can also shape plant communities by hydraulic lift (HL). Subterranean fauna and microbial communities are highly influenced by resources provided in the deep rhizosphere and deep roots can influence soil pedogenesis and carbon storage.Despite recent technological advances, the study of deep roots and their rhizosphere remains inherently time-consuming, technically demanding and costly, which explains why deep roots have yet to be given the attention they deserve. While state-of-the-art technologies are promising for laboratory studies involving relatively small soil volumes, they remain of limited use for the in situ observation of deep roots. Thus, basic techniques such as destructive sampling or observations at transparent interfaces with the soil (e.g., root windows) which have been known and used for decades to observe roots near the soil surface, must be adapted to the specific requirements of deep root observation. In this review, we successively address major physical, biogeochemical and ecological functions of deep roots to emphasize the significance of deep roots and to illustrate the yet limited knowledge. In the second part we describe the main methodological options to observe and measure deep roots, providing researchers interested in the field of deep root/rhizosphere studies with a comprehensive overview. Addressed methodologies are: excavations, trenches and soil coring approaches, minirhizotrons (MR), access shafts, caves and mines, and indirect approaches such as tracer-based techniques. PMID:23964281
Ceres: Evolution and Present State
NASA Astrophysics Data System (ADS)
Castillo-Rogez, J.; McCord, T.
2007-08-01
Introduction:We consider Ceres as a prototype for planetary evolution [1]. From thermal modeling by McCord and Sotin [2, 3, 4], Ceres was inferred to have differentiated into a rocky core of hydrated silicates, and an icy outer shell. Thomas et al. [5] confirmed such a model from direct observation of Ceres's shape from Hubble Space Telescope observations, and pervious occultation measurements. McCord and Sotin [4] also suggest that Ceres could have preserved a deep ocean, especially if ammonia or some other ice melting point depressant, such as salts, was incorporated during accretion. We continue to develop thermal modeling of Ceres, using increasingly sophisticated models and new observational information in order to match the observed shape. . In particular, we investigate the evolution of the core. Approach: Our models require the following initial input: initial planetesimal temperature (after [6]); composition; time of formation with respect to Calcium-Aluminum Inclusions (CAIs); and an internal heat profile after initial accretion. Modeling begins with a porous Ceres (after [7, 8]). The rock phase has the composition of an ordinary chondrite (after [9]). Short-lived radiogenic isotopes, including 26Al and 60Fe, have initial concentrations as measured by [10, 11]. Conductive thermal evolution is computed for one-dimensional models following the approach of [4] and [12]. The silicate core evolves through hydration, then dehydration and melting stages. Currently, hydrothermal cooling is not included in our algorithm. Model Results: Conditions were present for full differentiation of Ceres if accretion time t0-CAIs was less than 7 My and/or if ammonia was accreted. For times of formation t0-CAIs shorter than 2 My, the boiling point of water was reached within a few My after accretion, and may have led to major water loss.Under these conditions, hydrothermal activity was inevitable, and might still be taking place inside Ceres. Whether a deep ocean is still present within Ceres or not depends on the initial conditions, especially the presence of ammonia. The core follows very different evolutionary paths, given the range of input values. Core evolution is most strongly affected by the time of accretion, with respect to inclusion of CAIs. With the inclusion of short-lived radioisotopes, pressure and temperature conditions in the core can lead to dehydration of the silicate phase [13], and layering of the core. An outer layer consisting of hydrated silicates, and a deep core consisting of dry silicate is the result, due to the equation of state of hydrated silicates. Explosive volcanism is expected to occur [14]. Conditions can even lead to partial differentiation of a metallic core.It is these model runs, resulting in the differentiation of Ceres's core into an outer hydrated layer, dehydrated inner layer and a tiny metallic center, that also produce the observed shape. Acknowledgement: This work was supported in part by the NASA Dawn Discovery Program under contract to the Space Science Institute by the UCLA and funded by JPL/NASA. Part of this work was performed at the Jet Propulsion Laboratory - California Institute of Technology under contract to NASA. References: [1] McCord T. B. et al. 2006. Eos 87(10). [2] McCord, T. B., Sotin, C. 2003. American Astronomical Society, DPS meeting #35, #34.17; Bull. Amer. Astron. Soc. 35, 979. [3] McCord, T., Sotin, C. 2004. 35th COSPAR Scientific Assembly. Held 18 - 25 July 2004, in Paris, France., 1148. [4] McCord, T.B., C. Sotin 2005. J. Geophys. Res., 110, E05009, doi: 10.1029/2004JE002244. 1-14. [5] Thomas, P. C., et al. 2005. Nature 437, doi: 10.1038/nature03938, 224-226. [6] Mousis O. and Alibert Y. (2005) MNRAS, 358, 188-192. [7] Leliwa-Kopystynski, J., Kossacki, K. J. 1995. Planet. Space Sci. 43, 851-861. [8] Leliwa-Kopystynski, J., Kossacki, K. J. 2000. Planet. Space Sci. 48, 727-745. [9] Wasson, J. T., Kalleymen, G. W. 1988. Phil. Trans. Roy. Soc. London A 325, 535. [10] Wasserburg, G. J., Papanastassiou, D. A. 1982. in Essays in Nuclear Astrophysics, ed. C.A. Barnes, D.D. Clayton, & D.N. Schramm (New York: Cambridge Univ. Press), 77. [11] Tachibana, S., et al. 2006. Astroph. J., 639, L87-L90, doi: 10.1086/503201. [12] Castillo et al. Submitted to Icarus. [13] Ellis D. E., Wyllie P. J. 1979. Am. Miner. 64, 41-48. [14] Wilson L. et al. (1999) MPS, 34, 541-557.
Ohtori, S; Takahashi, K; Chiba, T; Takahashi, Y; Yamagata, M; Sameda, H; Moriya, H
2000-10-01
Acute noxious stimulation delivered to lumbar muscles and skin of rats was used to study Fos expression patterns in the brain and spinal cord. The present study was conducted to determine the differences in Fos expression in the brain and spinal cord as evoked by stimuli delivered to lumbar muscles and skin in rats. Patients with low back pain sometimes show psychological symptoms, such as quiescence, loss of interest, decreased activities, appetite loss, and restlessness. The pathway of deep somatic pain to the brain has been reported to be different from that of cutaneous pain. However, Fos expression has not been studied in the central nervous systems after stimulation of low back muscles. Rats were injected with 100 L of 5% formalin into the multifidus muscle (deep pain group; n = 10) and into the back skin of the L5 dermatome (cutaneous pain group; n = 10). Two hours after injection, the distribution of Fos-immunoreactive neurons was studied in the brain and spinal cord. Fos-immunoreactive neurons were observed in laminae I-V in the spinal cord in the cutaneous pain group, but they were not seen in lamina II in the deep pain group. In the brain, Fos-immunoreactive neurons were significantly more numerous in the deep pain group than in the cutaneous pain group in the piriform cortex, the accumbens nucleus core, the basolateral nucleus of amygdala, the paraventricular hypothalamic nucleus, the ventral tegmental area, and the ventrolateral periaqueductal gray. The finding that Fos-immunoreactive neurons were absent from lamina II of the spinal cord in the deep pain group is similar to that of the projection pattern of the visceral pain pathway. Fos expression in the ventrolateral periaqueductal gray in the deep pain group may represent a reaction of quiescence and a loss of interest, activities, or appetite. Furthermore, the detection of large numbers of Fos-immunoreactive neurons in the core of accumbens nucleus, basolateral nucleus of amygdala, paraventricular hypothalamic nucleus, and ventral tegmental area in the deep pain group may suggest a dominant reaction of dopaminergic neurons to stress, and a different information processing pathway than from that of cutaneous pain.
NASA Astrophysics Data System (ADS)
Van Baak, Christiaan; Vasiliev, Iuliana; Palcu, Dan; Dekkers, Mark; Krijgsman, Wout
2016-05-01
Throughout the Late Neogene, the Black Sea experienced large paleoenvironmental changes, switching between (anoxic) marine conditions when connected to the Mediterranean Sea and (oxic) freshwater conditions at times of isolation. We create a magnetostratigraphic time frame for three sites drilled during Deep Sea Drilling Project (DSDP) Leg 42B to the Black Sea (drilled in 1975). At the time, magnetostratigraphic dating was impossible because of the presence of the little understood iron sulfide mineral greigite (in sediments a precursor to pyrite) as magnetic carrier. Our rock-magnetic results indicate that only anoxic conditions result in poor magnetic signal, likely as a result of pyrite formation in the water column rather than in the sediment. The magnetostratigraphic results indicate that Hole 379A, drilled in the basin center, has a continuous sedimentary record dating back to 1.3 Ma. Hole 380/380A is subdivided into three consistent intervals, 0-700 mbsf, 700-860 mbsf and 860-1075 mbsf. The top unit covers the Pleistocene but the magnetostratigraphy is likely compromised by the presence of mass transport deposits. The middle unit spans between 4.3 and 6.1 Ma and records continuous deposition at ~10 cm/kyr. The lower unit lacks the independent age constraints to correlate the obtained magnetostratigraphy. Hole 381 is drilled on the Bosporus slope and as a result, hiatuses are common. A correlation to the nearby Hole 380/380A is proposed, but indicates deposits cannot straightforwardly be traced across the slope. Our improved age model does not support the original interpretation based on these cores of a desiccation of the Black Sea during the Messinian salinity crisis.
NASA Astrophysics Data System (ADS)
Simon, H.; Buske, S.; Hedin, P.; Juhlin, C.; Krauß, F.; Giese, R.
2017-12-01
The Scandinavian Caledonides represent a well preserved deeply eroded Palaeozoic orogen, formed by the collision of the two palaeocontinents Baltica and Laurentia. Today, after four hundred million years of erosion along with uplift and extension during the opening of the North Atlantic Ocean, the geological structure in central western Sweden consists of allochthons, underlying autochthonous units, and the shallow west-dipping décollement that separates the two and is associated with Cambrian black shales. The project Collisional Orogeny in the Scandinavian Caledonides (COSC) aims to investigate these structures and their physical conditions with two approximately 2.5 km deep fully cored scientific boreholes in central Sweden. The first borehole COSC-1 was successfully drilled in 2014 and obtained a continuous cored section through the highly deformed Seve Nappe. After drilling was completed several surface and borehole based seismic experiments were conducted. The data from a multi-azimuthal walkaway VSP in combination with long offset surface lines was used to image the structures in the vicinity of the borehole. Clear differences in vertical and horizontal P-wave velocities made it necessary to also account for anisotropy. The resulting VTI velocity model provides the basis for subsequent application of seismic imaging approaches. An anisotropic eikonal solver was used to calculate the traveltimes needed for Kirchhoff-based pre-stack depth migration methods. The resulting images were compared to the corresponding migration results based on an isotropic velocity model. Both images are dominated by strong and clear reflections, however, they appear more continuous and better focused in the anisotropic result. Most of the dominant reflections originate below the bottom of the borehole and therefore they are probably situated within the Precambrian basement. They might represent dolerite intrusions or deformation zones of Caledonian or pre-Caledonian age.
Deep Learning in Medical Image Analysis
Shen, Dinggang; Wu, Guorong; Suk, Heung-Il
2016-01-01
The computer-assisted analysis for better interpreting images have been longstanding issues in the medical imaging field. On the image-understanding front, recent advances in machine learning, especially, in the way of deep learning, have made a big leap to help identify, classify, and quantify patterns in medical images. Specifically, exploiting hierarchical feature representations learned solely from data, instead of handcrafted features mostly designed based on domain-specific knowledge, lies at the core of the advances. In that way, deep learning is rapidly proving to be the state-of-the-art foundation, achieving enhanced performances in various medical applications. In this article, we introduce the fundamentals of deep learning methods; review their successes to image registration, anatomical/cell structures detection, tissue segmentation, computer-aided disease diagnosis or prognosis, and so on. We conclude by raising research issues and suggesting future directions for further improvements. PMID:28301734
Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry.
Fang, Jiasong; Zhang, Li; Bazylinski, Dennis A
2010-09-01
The deep-sea piezosphere accounts for approximately 75% of the total ocean volume and hosts active and diverse biological communities. Evidence obtained thus far suggests that the microbial biomass present in the piezosphere is significant. Continued international interest in exploring the deep ocean provides impetus to increase our understanding of the deep-sea piezosphere and of the influence of piezophilic microbial communities on the global ocean environment and on biogeochemical cycling occurring in the deep sea. Here, we review the diversity, metabolic characteristics, geomicrobiology and biogeochemistry of the deep-sea piezophiles. Copyright 2010 Elsevier Ltd. All rights reserved.
Advances in Hadal Research in China
NASA Astrophysics Data System (ADS)
Tian, J.; Zhang, X. H.; Xin, Y.; Xu, H.; Chen, D.; Zhang, C.
2017-12-01
Trenches (depths > 6000 m) are the least explored oceanic provinces, which may offer unique insight into microbial biogeography, diversity, and adaptations in the hadal environment that is characterized by extremely high pressure and low temperature. We have carried out three cruises since 2015 in order to systematically study the dynamics of the hadal ecosystems in the Mariana Trench, utilizing expertise from physical oceanography, sedimentology, organic geochemistry, and microbial genomics. A cross-trench mooring array composed of 5 independent mooring systems was deployed along 143 ºE in the `Challenger Deep', which was kept fully operational for nearly one year at depths from 4000 m to 10000 m. The one-year continuous ADCP and current data revealed unusual temporal changes in hydrodynamics in the trench system. With the assistance of a custom-designed deep water collection system, we successfully obtained seawater up to 1200 liters at depths of 2000 m, 4000 m, 6000 m, 8000 m and 10000 m below sea surface. Filtration of >1000 liters of hadal water provided valuable information on the genomics of pico/nano-plankton, archaea and bacteria, and viruses, and their potential roles in nutrient and element cycling in the hadal ecosystem. Four sediment traps were deployed at the Challenge Deep at depth of 2000 m, 4000 m, 6000 m and 8000 m, which provided downward POC fluxes at the monthly resolution. Lastly, sediment cores (0- 450 cm) were collected from the hadal seafloor at water depths down to 10853 m. Preliminary results show rates of organic matter degradation and accumulation are enhanced in the trench axis, suggesting an influence of lateral transport from trench slope and rim. Overall, our studies demonstrated a dynamic trench system with strong interactions among physical, chemical, sedimentary and biological processes in the trench.
NASA Technical Reports Server (NTRS)
Simoneit, Bernd R. T.; Grimalt, Joan O.; Hayes, J. M.; Hartman, Hyman
1987-01-01
Hydrocarbons and bulk organic matter of two sediment cores within the Atlantis II Deep are analyzed, and microbial inputs and minor terrestrial sources are found to represent the major sedimentary organic material. Results show that extensive acid-catalyzed reactions are occurring in the sediments, and the Atlantis II Deep is found to exhibit a lower degree of thermal maturation than other hydrothermal or intrusive systems. The lack of carbon number preference noted among the n-alkanes suggests that the organic matter of these sediments has undergone some degree of catagenesis, though yields of hydrocarbons are much lower than those found in other hydrothermal areas, probably due to the effect of lower temperature and poor source-rock characteristics.
On a thermonuclear origin for the 1980-81 deep light minimum of the symbiotic nova PU Vul
NASA Technical Reports Server (NTRS)
Sion, Edward M.
1993-01-01
The puzzling 1980-81 deep light minimum of the symbiotic nova PU Vul is discussed in terms of a sequence of quasi-static evolutionary models of a hot, 0.5 solar mass white dwarf accreting H-rich matter at a rate 1 x 10 exp -8 solar mass/yr. On the basis of the morphological behavior of the models, it is suggested that the deep light minimum of PU Vul could have been the result of two successive, closely spaced, hydrogen shell flashes on an accreting white dwarf whose core thermal structure and accreted H-rich envelope was not in a long-term thermal 'cycle-averaged' steady state with the rate of accretion.
Energy consumption analysis of the Venus Deep Space Station (DSS-13)
NASA Technical Reports Server (NTRS)
Hayes, N. V.
1983-01-01
This report continues the energy consumption analysis and verification study of the tracking stations of the Goldstone Deep Space Communications Complex, and presents an audit of the Venus Deep Space Station (DSS 13). Due to the non-continuous radioastronomy research and development operations at the station, estimations of energy usage were employed in the energy consumption simulation of both the 9-meter and 26-meter antenna buildings. A 17.9% decrease in station energy consumption was experienced over the 1979-1981 years under study. A comparison of the ECP computer simulations and the station's main watt-hour meter readings showed good agreement.
Space Launch System—New Exterior Markings (2017 Animation)
2017-06-13
Animation depicting NASA’s Space Launch System, the world's most powerful rocket for a new era of human exploration in deep space. Black-and-white checkerboard targets on the exterior of the SLS heavy-lift rocket will enable photogrammetrists to measure critical distances during spaceflight, including booster separation from the core stage. With its unprecedented capabilities, SLS will launch astronauts in the agency’s Orion spacecraft on missions to explore multiple, deep-space destinations, including Mars. For more information on SLS, visit https://www.nasa.gov/exploration/systems/sls
NASA Astrophysics Data System (ADS)
Osterberg, E. C.; Thompson, J. T.; Wong, G. J.; Hawley, R. L.; Kelly, M. A.; Lutz, E.; Howley, J.; Ferris, D. G.
2013-12-01
A significant rise in summer temperatures over the past several decades has led to widespread retreat of the Greenland Ice Sheet (GIS) margin and surrounding sea ice. Recent observations from geodetic stations and GRACE show that ice mass loss progressed from South Greenland up to Northwest Greenland by 2005 (Khan et al., 2010). Observations from meteorological stations at the U.S. Thule Air Force Base, remote sensing platforms, and climate reanalyses indicate a 3.5C mean annual warming in the Thule region and a 44% decrease in summer (JJAS) sea-ice concentrations in Baffin Bay from 1980-2010. Mean annual precipitation near Thule increased by 12% over this interval, with the majority of the increase occurring in fall (SON). To improve projections of future ice loss and sea-level rise in a warming climate, we are currently developing multi-proxy records (lake sediment cores, ice cores, glacial geologic data, glaciological models) of Holocene climate variability and cryospheric response in NW Greenland, with a focus on past warm periods. As part of our efforts to develop a millennial-length ice core paleoclimate record from the Thule region, we collected and analyzed snow pit samples and short firn cores (up to 20 m) from the coastal region of the GIS (2Barrel site; 76.9317 N, 63.1467 W) and the summit of North Ice Cap (76.938 N, 67.671 W) in 2011 and 2012, respectively. The 2Barrel ice core was sampled using a continuous ice core melting system at Dartmouth, and subsequently analyzed for major anion and trace element concentrations and stable water isotope ratios. Here we show that the 2Barrel ice core spanning 1990-2010 records a 25% increase in mean annual snow accumulation, and is positively correlated (r = 0.52, p<0.01) with ERA-Interim precipitation. The 2Barrel annual sea-salt Na concentration is strongly correlated (r = 0.5-0.8, p<0.05) with summer and fall sea-ice concentrations in northern Baffin Bay near Thule (Figure 1). We hypothesize that the positive correlation represents a significant Na contribution from frost flowers growing on fall frazil ice. Ongoing analyses will evaluate the relationship between MSA concentrations and sea ice extent. Our results show that a deep ice core collected from this dynamic and climate-sensitive region of NW Greenland would produce a valuable record of late Holocene climate and sea ice extent.
NASA Astrophysics Data System (ADS)
Juhlin, C.; Almqvist, B. S. G.; Buske, S.; Giese, R.; Hedin, P.; Lorenz, H.
2017-12-01
Mountain belts (orogens) have influenced, and do influence, geological processes and climatic conditions considerably, perhaps more than any other natural phenomenon. The Alpine-Himalayan mountain belt is the prime example of a collisional orogen today. However, research in an active orogen is mostly constrained to observe and interpret the expression of processes at the surface, while the driving processes act at depth, often at mid-crustal levels (20 km) and deeper. About 440 million years ago, an orogen comparable in dimension and tectonic setting to today's Alpine-Himalayan orogen was developing in what is western Scandinavia today. Since then, erosion has removed much of the overburden and exposed the deep interior of the orogen, facilitating direct observation of rocks that are deep in the crust in modern orogens. In the COSC project we study how large rock volumes (allochthons) were transported during the collision of two continents and the associated deformation. The emplacement of high-grade metamorphic allochthons during orogeny has been the focus of COSC-1 research, centered on a 2.5 km deep fully cored borehole drilled in the summer of 2014 through the lower part of the high-grade Seve Nappe Complex near the town of Åre in western Sweden. The planned COSC-2 borehole (also fully cored to 2.5 km) will complement the COSC-1 borehole and allow a 5 km deep tectonostratigraphic column of the Caledonides to be constructed. The rock volume in the proximity of the COSC-2 borehole will be imaged with a combination of very-high and high-resolution geophysical experiments, such as a combination of high frequency seismics; zero offset and walk-away vertical seismic profiling (VSP); and a sparse 3D coverage around the drill site combined with 2D seismic profiles of several kilometers length in different directions. Downhole geophysical logging will provide additional information on the in-situ rock physical properties. Data from surface surveys will be calibrated against and integrated with the borehole data and the geological interpretation of the drill core. The COSC-1 and COSC-2 boreholes will provide a field laboratory for investigating mountain building processes, how plates and rock units deform, what structures and units are formed and their physical properties.
Variations in the Holocene North Atlantic Bottom Current Strength in the Charlie Gibbs Fracture Zone
NASA Astrophysics Data System (ADS)
Kissel, C.; Van Toer, A.; Cortijo, E.; Turon, J.
2011-12-01
The changes in the strength of the North Atlantic bottom current during the Holocene period is presented via the study of cores located at the western termination of the northern deep channel of the Charlie-Gibbs fracture zone. This natural roughly E-W corridor is bathed by the Iceland-Scotland overflow water (ISOW) when it passes westward out of the Iceland Basin into the western North Atlantic basin. At present, it is also described as the place where southern sourced silicate-rich Lower Deep Water (LDW) derived from the Antarctic Bottom Waters (AABW) are passing westward, mixing with the ISOW. We conducted a deep-water multiproxy analysis on two nearby cores, coupling magnetic properties, anisotropy, sortable silt and benthic foraminifera isotopes. The first core had been taken by the R. V. Charcot in 1977 and the second one is a CASQ core taken during the IMAGES-AMOCINT MD168- cruise in the framework of the 06-EuroMARC-FP-008 Project on board the R.V. Marion Dufresne (French Polar Institute, IPEV) in 2008. The radiocarbon ages indicate an average sedimentation rate of about 50 cm/kyr through middle and late Holocene allowing a data resolution ranging from 40 to 100 years depending on the proxy. In each core, we observe long-term and short-term changes in the strength of the bottom currents. On the long term, a decrease in the amount of magnetic particles (normalized by the carbonate content) is first from 10 kyr to 8.6 kyr and then between 6 and 2 kyrs before reaching a steady state. Following Kissel et al. (2009), this indicates a decrease in the ISOW strength. The mean sortable silt shows exactly the same pattern indicating that not only the intensity of the ISOW but the whole deep water mass bathing the sites has decreased. On the short term, a first very prominent event centered at about 8.4 kyr (cal. ages) is marked by a pronounced minima in magnetic content and the smaller mean sortable silt sizes. This is typical for an abrupt reduction in deep flow speed. Although not exactly at the same age, we note that the pattern in the same as the one observed by Ellison et al. (2006) further north along the Gardar drift with a gradual decrease in the mean sortable silt size followed by a two steps rather fast increase. At the same time, the benthic delta13C values which could be obtained from the few Cib. wuellerstorfi present in the sediment reach significantly negative values (-0.5%) providing evidence of a significant change to a major downwelling limb of the Atlantic meridional overturning circulation. This event is in phase with the meltwater outbursts from the final drainage of the proglacial lakes associated with the decaying Laurentide Ice Sheet margin. In addition, all through the Holocene, a series of short-term events of lower bottom flow speed always illustrated by minima in magnetic concentration and mean size of the sortable silt are observed with a periodicity of 900 years between 6 and 2 kyr.
NASA Astrophysics Data System (ADS)
Wang, Xingchen Tony; Sigman, Daniel M.; Prokopenko, Maria G.; Adkins, Jess F.; Robinson, Laura F.; Hines, Sophia K.; Chai, Junyi; Studer, Anja S.; Martínez-García, Alfredo; Chen, Tianyu; Haug, Gerald H.
2017-03-01
The Southern Ocean regulates the ocean’s biological sequestration of CO2 and is widely suspected to underpin much of the ice age decline in atmospheric CO2 concentration, but the specific changes in the region are debated. Although more complete drawdown of surface nutrients by phytoplankton during the ice ages is supported by some sediment core-based measurements, the use of different proxies in different regions has precluded a unified view of Southern Ocean biogeochemical change. Here, we report measurements of the 15N/14N of fossil-bound organic matter in the stony deep-sea coral Desmophyllum dianthus, a tool for reconstructing surface ocean nutrient conditions. The central robust observation is of higher 15N/14N across the Southern Ocean during the Last Glacial Maximum (LGM), 18-25 thousand years ago. These data suggest a reduced summer surface nitrate concentration in both the Antarctic and Subantarctic Zones during the LGM, with little surface nitrate transport between them. After the ice age, the increase in Antarctic surface nitrate occurred through the deglaciation and continued in the Holocene. The rise in Subantarctic surface nitrate appears to have had both early deglacial and late deglacial/Holocene components, preliminarily attributed to the end of Subantarctic iron fertilization and increasing nitrate input from the surface Antarctic Zone, respectively.
Sigman, Daniel M.; Prokopenko, Maria G.; Adkins, Jess F.; Robinson, Laura F.; Hines, Sophia K.; Chai, Junyi; Studer, Anja S.; Martínez-García, Alfredo; Chen, Tianyu; Haug, Gerald H.
2017-01-01
The Southern Ocean regulates the ocean’s biological sequestration of CO2 and is widely suspected to underpin much of the ice age decline in atmospheric CO2 concentration, but the specific changes in the region are debated. Although more complete drawdown of surface nutrients by phytoplankton during the ice ages is supported by some sediment core-based measurements, the use of different proxies in different regions has precluded a unified view of Southern Ocean biogeochemical change. Here, we report measurements of the 15N/14N of fossil-bound organic matter in the stony deep-sea coral Desmophyllum dianthus, a tool for reconstructing surface ocean nutrient conditions. The central robust observation is of higher 15N/14N across the Southern Ocean during the Last Glacial Maximum (LGM), 18–25 thousand years ago. These data suggest a reduced summer surface nitrate concentration in both the Antarctic and Subantarctic Zones during the LGM, with little surface nitrate transport between them. After the ice age, the increase in Antarctic surface nitrate occurred through the deglaciation and continued in the Holocene. The rise in Subantarctic surface nitrate appears to have had both early deglacial and late deglacial/Holocene components, preliminarily attributed to the end of Subantarctic iron fertilization and increasing nitrate input from the surface Antarctic Zone, respectively. PMID:28298529
Egenhoff, Sven; Fishman, Neil; Ahlberg, Per; Maletz, Jorg; Jackson, Allison; Kolte, Ketki; Lowers, Heather; Mackie, James; Newby, Warren; Petrowsky, Matthew
2015-01-01
The Cambrian Alum Shale Formation in the Andrarum-3 core from Scania, southern Sweden, consists of black siliciclastic mudstone with minor carbonate intercalations. Four facies comprise three siliciclastic mudstones and one fine-grained carbonate. The facies reflect deposition along a transect from deep ramp to basin on a Cambrian shelf. The three mudstone facies contain abundant clay clasts and laterally variable siltstone laminae. Bed-load transport processes seem to have dominated deposition on this deep shelf. These sedimentary rocks record mainly event deposition, and only relatively few, thin laminae probably resulted from suspension settling. The Alum Shale Formation deep shelf did not show a bioturbation gradient, but fecal strings are common and Planolites burrows are rare in all mudstone facies. Evidence for biotic colonization indicates that this mudstone environment was not persistently anoxic, but rather was most likely intermittently dysoxic. The Alum Shale Formation in the Andrarum-3 core shows an overall decrease of grain size, preserved energy indicators, and carbonate content upsection interpreted to reflect a deepening upward. The succession can also be divided into four small-scale fining-upward cycles that represent deepening, and four overlying coarsening-upward cycles that represent upward shallowing.
Borrel, Guillaume; Colombet, Jonathan; Robin, Agnès; Lehours, Anne-Catherine; Prangishvili, David; Sime-Ngando, Télesphore
2012-11-01
Morphological diversity, abundance and community structure of viruses were examined in the deep and anoxic sediments of the volcanic Lake Pavin (France). The sediment core, encompassing 130 years of sedimentation, was subsampled every centimeter. High viral abundances were recorded and correlated to prokaryotic densities. Abundances of viruses and prokaryotes decreased with the depth, contrasting the pattern of virus-to-prokaryote ratio. According to fingerprint analyses, the community structure of viruses, bacteria and archaea gradually changed, and communities of the surface (0-10 cm) could be discriminated from those of the intermediate (11-27 cm) and deep (28-40 cm) sediment layers. Viral morphotypes similar to virions of ubiquitous dsDNA viruses of bacteria were observed. Exceptional morphotypes, previously never reported in freshwater systems, were also detected. Some of these resembled dsDNA viruses of hyperthermophilic and hyperhalophilic archaea. Moreover, unusual types of spherical and cubic virus-like particles (VLPs) were observed. Infected prokaryotic cells were detected in the whole sediment core, and their vertical distribution correlated with both viral and prokaryotic abundances. Pleomorphic ellipsoid VLPs were visible in filamentous cells tentatively identified as representatives of the archaeal genus Methanosaeta, a major group of methane producers on earth.
Magmatic history of mt. Vesuvius on the basis of new geochemical and isotopic data
NASA Astrophysics Data System (ADS)
Arienzo, I.; Civetta, L.; D'Antonio, M.; di Renzo, V.; di Vito, M. A.; Giordano, F.; Orsi, G.
2003-04-01
Mt. Vesuvius is an active volcano famous for the AD 79 eruption that destroyed Pompeii, Herculaneum and Stabiae. Because of the intense urbanization around and on the volcano itself, volcanic risk is very high. Therefore, the knowledge of the structure and behaviour of the magmatic system is fundamental for both interpretation of any change in the dynamics of the volcano and eruption forecasting. We have produced new geochemical and isotopic data on rocks from a 240-m deep core drilled along the southern slope of the volcano. The investigated portion of the core includes lava flows aged between 39 and 20 ka. The obtained results, together with those already available for the younger than 20 ka activity, have allowed us to reconstruct the complex history of the magmatic system. Mt. Vesuvius magmas, originated in a mantle source variably contaminated by slab derived components, stagnate in a deep complex reservoir, located between 10 and 20 km of depth, where they differentiate and contaminate with continental crust. From the deep reservoir magmas discontinuously rise up to shallow reservoirs, where they differentiate, mingle and mix, feeding the volcanic activity. The shallow reservoirs are located at depth of about 3-5 km before Plinian eruptions, and of less than 1 km before strombolian activity.
Borrel, Guillaume; Colombet, Jonathan; Robin, Agnès; Lehours, Anne-Catherine; Prangishvili, David; Sime-Ngando, Télesphore
2012-01-01
Morphological diversity, abundance and community structure of viruses were examined in the deep and anoxic sediments of the volcanic Lake Pavin (France). The sediment core, encompassing 130 years of sedimentation, was subsampled every centimeter. High viral abundances were recorded and correlated to prokaryotic densities. Abundances of viruses and prokaryotes decreased with the depth, contrasting the pattern of virus-to-prokaryote ratio. According to fingerprint analyses, the community structure of viruses, bacteria and archaea gradually changed, and communities of the surface (0–10 cm) could be discriminated from those of the intermediate (11–27 cm) and deep (28–40 cm) sediment layers. Viral morphotypes similar to virions of ubiquitous dsDNA viruses of bacteria were observed. Exceptional morphotypes, previously never reported in freshwater systems, were also detected. Some of these resembled dsDNA viruses of hyperthermophilic and hyperhalophilic archaea. Moreover, unusual types of spherical and cubic virus-like particles (VLPs) were observed. Infected prokaryotic cells were detected in the whole sediment core, and their vertical distribution correlated with both viral and prokaryotic abundances. Pleomorphic ellipsoid VLPs were visible in filamentous cells tentatively identified as representatives of the archaeal genus Methanosaeta, a major group of methane producers on earth. PMID:22648129
Veelo, Denise P; Gisbertz, Suzanne S; Hannivoort, Rebekka A; van Dieren, Susan; Geerts, Bart F; van Berge Henegouwen, Mark I; Hollmann, Markus W
2015-08-05
Deep muscle relaxation has been shown to facilitate operating conditions during laparoscopic surgery. Minimally invasive esophageal surgery is a high-risk procedure in which the use of deep neuromuscular block (NMB) may improve conditions in the thoracic phase as well. Neuromuscular antagonists can be given on demand or by continuous infusion (deep NMB). However, the positioning of the patient often hampers train-of-four (TOF) monitoring. A continuous infusion thus may result in a deep NMB at the end of surgery. The use of neostigmine not only is insufficient for reversing deep NMB but also may be contraindicated for this procedure because of its cholinergic effects. Sugammadex is an effective alternative but is rather expensive. This study aims to evaluate the use of deep versus on-demand NMB on operating, anaesthesiologic conditions, and costs in patients undergoing a two- or three-phase thoracolaparoscopic esophageal resection. We will conduct a single-center randomized controlled double-blinded intervention study. Sixty-six patients undergoing a thoracolaparoscopic esophageal resection will be included. Patients will receive either continuous infusion of rocuronium 0.6 mg/kg per hour (group 1) or continuous infusion of NaCl 0.9 % 0.06 ml/kg per hour (group 2). In both groups, on-demand boluses of rocuronium can be given (open-label design). The primary aim of this study is to compare the surgical rating scale (SRS) during the abdominal phase. Main secondary aims are to evaluate SRS during the thoracic phase, to evaluate anesthesiologic conditions, and to compare costs (in euros) associated with use of rocuronium, sugammadex, and duration of surgery. This study is the first to evaluate the benefits of deep neuromuscular relaxation on surgical and anaesthesiologic conditions during thoracolaparoscopic esophageal surgery. This surgical procedure is unique because it consists of both an abdominal phase and a thoracic phase taking place in different order depending on the subtype of surgery (a two- or three-stage transthoracic esophagectomy). In addition, possible benefits associated with deep NMB, such as decrease in operating time, will be weighed against costs. European Clinical Trials Database (EudraCT) number: 2014-002147-18 (obtained 19 May 2014) ClinicalTrials.gov: NCT02320734 (obtained 18 Dec. 2014).
Jephcoat, Andrew P; Bouhifd, M Ali; Porcelli, Don
2008-11-28
The present state of the Earth evolved from energetic events that were determined early in the history of the Solar System. A key process in reconciling this state and the observable mantle composition with models of the original formation relies on understanding the planetary processing that has taken place over the past 4.5Ga. Planetary size plays a key role and ultimately determines the pressure and temperature conditions at which the materials of the early solar nebular segregated. We summarize recent developments with the laser-heated diamond anvil cell that have made possible extension of the conventional pressure limit for partitioning experiments as well as the study of volatile trace elements. In particular, we discuss liquid-liquid, metal-silicate (M-Sil) partitioning results for several elements in a synthetic chondritic mixture, spanning a wide range of atomic number-helium to iodine. We examine the role of the core as a possible host of both siderophile and trace elements and the implications that early segregation processes at deep magma ocean conditions have for current mantle signatures, both compositional and isotopic. The results provide some of the first experimental evidence that the core is the obvious replacement for the long-sought, deep mantle reservoir. If so, they also indicate the need to understand the detailed nature and scale of core-mantle exchange processes, from atomic to macroscopic, throughout the age of the Earth to the present day.
Ganymede G1 & G2 Encounters - Interior of Ganymede
1997-12-16
NASA's Voyager images are used to create a global view of Ganymede. The cut-out reveals the interior structure of this icy moon. This structure consists of four layers based on measurements of Ganymede's gravity field and theoretical analyses using Ganymede's known mass, size and density. Ganymede's surface is rich in water ice and Voyager and Galileo images show features which are evidence of geological and tectonic disruption of the surface in the past. As with the Earth, these geological features reflect forces and processes deep within Ganymede's interior. Based on geochemical and geophysical models, scientists expected Ganymede's interior to either consist of: a) an undifferentiated mixture of rock and ice or b) a differentiated structure with a large lunar sized "core" of rock and possibly iron overlain by a deep layer of warm soft ice capped by a thin cold rigid ice crust. Galileo's measurement of Ganymede's gravity field during its first and second encounters with the huge moon have basically confirmed the differentiated model and allowed scientists to estimate the size of these layers more accurately. In addition the data strongly suggest that a dense metallic core exists at the center of the rock core. This metallic core suggests a greater degree of heating at sometime in Ganymede's past than had been proposed before and may be the source of Ganymede's magnetic field discovered by Galileo's space physics experiments. http://photojournal.jpl.nasa.gov/catalog/PIA00519
A Method for Continuous (239)Pu Determinations in Arctic and Antarctic Ice Cores.
Arienzo, M M; McConnell, J R; Chellman, N; Criscitiello, A S; Curran, M; Fritzsche, D; Kipfstuhl, S; Mulvaney, R; Nolan, M; Opel, T; Sigl, M; Steffensen, J P
2016-07-05
Atmospheric nuclear weapons testing (NWT) resulted in the injection of plutonium (Pu) into the atmosphere and subsequent global deposition. We present a new method for continuous semiquantitative measurement of (239)Pu in ice cores, which was used to develop annual records of fallout from NWT in ten ice cores from Greenland and Antarctica. The (239)Pu was measured directly using an inductively coupled plasma-sector field mass spectrometer, thereby reducing analysis time and increasing depth-resolution with respect to previous methods. To validate this method, we compared our one year averaged results to published (239)Pu records and other records of NWT. The (239)Pu profiles from the Arctic ice cores reflected global trends in NWT and were in agreement with discrete Pu profiles from lower latitude ice cores. The (239)Pu measurements in the Antarctic ice cores tracked low latitude NWT, consistent with previously published discrete records from Antarctica. Advantages of the continuous (239)Pu measurement method are (1) reduced sample preparation and analysis time; (2) no requirement for additional ice samples for NWT fallout determinations; (3) measurements are exactly coregistered with all other chemical, elemental, isotopic, and gas measurements from the continuous analytical system; and (4) the long half-life means the (239)Pu record is stable through time.
A Simple and Inexpensive Technique for Assessing Microbial Contamination during Drilling Operations
NASA Astrophysics Data System (ADS)
Friese, A.; Kallmeyer, J.; Wagner, D.; Kitte, J. A.
2016-12-01
Exploration of the Deep Biosphere relies on drilling, which inevitably causes infiltration of drilling fluids, containing non-indigenous microbes from the surface, into the core. Therefore it is absolutely necessary to trace contamination of the sediment core in order to identify uncontaminated samples for microbiological investigations in drill core samples. To do this, usually a tracer is mixed into the drilling fluid. In past drilling operations a variety of tracers have been used including dyes, salts, dissolved gasses, and microspheres. The latter are microbe-sized fluorescent particles that can be detected with very high sensitivity. Each tracer has its specific strengths and weaknesses, for microspheres the main problem was the high price, which limited the use to spot checks or drilling operations that require only small amounts of drilling fluid. Here, we present a modified microsphere tracer approach, using an aqueous fluorescent pigment dispersion that has a similar concentration of fluorescent particles as previously used microsphere tracers. However, compared to previous microsphere tracers, the cost of the new tracer is four orders of magnitude lower, allowing for a much more liberal use even in large-scale operations. Its suitability for large drilling campaigns was successfully tested at the ICDP Deep Drilling at Lake Towuti, Sulawesi, Indonesia and at the ICDP Deep Drilling at Lake Chalco, Mexico. Contamination can be detected by fluorescence microscopy or by flow cytometry at a sensitivity that is in the range of established techniques. Quantification of the tracer thus only requires a minimum of equipment and by using a small portable cytometer, high-resolution data can be obtained directly on-site within minutes and with minimal effort. Therefore this approach offers an inexpensive but powerful alternative technique for contamination assessment for future drilling campaigns.
NASA Astrophysics Data System (ADS)
Fan, L. F.; Lien, K. L.; Hsieh, I. C.; Lin, S.
2017-12-01
Methane seep in deep sea environment could lead to build up of chemosynthesis communities, and a number of geological and biological anomalies as compare to the surrounding area. In order to examine the linkage between seep anomalies and those at the vicinity background area, and to detail mapping those spatial variations, we used a deep towed camera system (TowCam) to survey seafloor on the Tainan Ridge, Northeastern South China Sea (SCS). The underwater sea floor pictures could provide better spatial variations to demonstrate impact of methane seep on the sea floor. Water column variations of salinity, temperature, dissolved oxygen were applied to delineate fine scale variations at the study area. In addition, sediment cores were collected for chemical analyses to confirm the existence of local spatial variations. Our results show large spatial variations existed as a result of differences in methane flux. In fact, methane is the driving force for the observed biogeochemical variations in the water column, on the sea floor, and in the sediment. Of the area we have surveyed, there are approximately 7% of total towcam survey data showing abnormal water properties. Corresponding to the water column anomalies, underwater sea floor pictures taken from those places showed that chemosynthetic clams and muscles could be identified, together with authigenic carbonate buildups, and bacterial mats. Moreover, sediment cores with chemical anomalies also matched those in the water column and on the sea floor. These anomalies, however, represent only a small portion of the area surveyed and could not be identified with typical (random) coring method. Methane seep, therefore, require tedious and multiple types of surveys to better understand the scale and magnitude of seep and biogeochemical anomalies those were driven by gas migrations.
NASA Collaborative Design Processes
NASA Technical Reports Server (NTRS)
Jones, Davey
2017-01-01
This is Block 1, the first evolution of the world's most powerful and versatile rocket, the Space Launch System, built to return humans to the area around the moon. Eventually, larger and even more powerful and capable configurations will take astronauts and cargo to Mars. On the sides of the rocket are the twin solid rocket boosters that provide more than 75 percent during liftoff and burn for about two minutes, after which they are jettisoned, lightening the load for the rest of the space flight. Four RS-25 main engines provide thrust for the first stage of the rocket. These are the world's most reliable rocket engines. The core stage is the main body of the rocket and houses the fuel for the RS-25 engines, liquid hydrogen and liquid oxygen, and the avionics, or "brain" of the rocket. The core stage is all new and being manufactured at NASA's "rocket factory," Michoud Assembly Facility near New Orleans. The Launch Vehicle Stage Adapter, or LVSA, connects the core stage to the Interim Cryogenic Propulsion Stage. The Interim Cryogenic Propulsion Stage, or ICPS, uses one RL-10 rocket engine and will propel the Orion spacecraft on its deep-space journey after first-stage separation. Finally, the Orion human-rated spacecraft sits atop the massive Saturn V-sized launch vehicle. Managed out of Johnson Space Center in Houston, Orion is the first spacecraft in history capable of taking humans to multiple destinations within deep space. 2) Each element of the SLS utilizes collaborative design processes to achieve the incredible goal of sending human into deep space. Early phases are focused on feasibility and requirements development. Later phases are focused on detailed design, testing, and operations. There are 4 basic phases typically found in each phase of development.
Radiostratigraphy and age structure of the Greenland Ice Sheet
MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Paden, John D; Prasad Gogineni, S; Young, S Keith; Rybarski, Susan C; Mabrey, Alexandria N; Wagman, Benjamin M; Morlighem, Mathieu
2015-01-01
Several decades of ice-penetrating radar surveys of the Greenland and Antarctic ice sheets have observed numerous widespread internal reflections. Analysis of this radiostratigraphy has produced valuable insights into ice sheet dynamics and motivates additional mapping of these reflections. Here we present a comprehensive deep radiostratigraphy of the Greenland Ice Sheet from airborne deep ice-penetrating radar data collected over Greenland by The University of Kansas between 1993 and 2013. To map this radiostratigraphy efficiently, we developed new techniques for predicting reflection slope from the phase recorded by coherent radars. When integrated along track, these slope fields predict the radiostratigraphy and simplify semiautomatic reflection tracing. Core-intersecting reflections were dated using synchronized depth-age relationships for six deep ice cores. Additional reflections were dated by matching reflections between transects and by extending reflection-inferred depth-age relationships using the local effective vertical strain rate. The oldest reflections, dating to the Eemian period, are found mostly in the northern part of the ice sheet. Within the onset regions of several fast-flowing outlet glaciers and ice streams, reflections typically do not conform to the bed topography. Disrupted radiostratigraphy is also observed in a region north of the Northeast Greenland Ice Stream that is not presently flowing rapidly. Dated reflections are used to generate a gridded age volume for most of the ice sheet and also to determine the depths of key climate transitions that were not observed directly. This radiostratigraphy provides a new constraint on the dynamics and history of the Greenland Ice Sheet. Key Points Phase information predicts reflection slope and simplifies reflection tracing Reflections can be dated away from ice cores using a simple ice flow model Radiostratigraphy is often disrupted near the onset of fast ice flow PMID:26213664
Astronomical calibration of the first Toba super-eruption from deep-sea sediments
NASA Astrophysics Data System (ADS)
Lee, M.; Chen, C.; Wei, K.; Iizuka, Y.
2003-04-01
Correlations between tephra layers interbedded within deep-sea cores and radiometrically dated volcanic eruptions provide an independent means of verifying dating techniques developed for sediment cores. Alternatively, the chronostratigraphic framework developed from marine sediments can be used to calibrate ages of land-base eruptions, if geochemical correlations can be established. In this study, we examined three deep-sea cores along an east-west transection across the South China Sea, with a distance of ~1800 to 2500 km away from the Toba caldera. The occurrence of the Oldest Toba Tuff was recognized on the basis of its geochemical characteristics, such as a high-silicate, high-potassium content and a distinct strontium isotope composition. The correlative tephra layer occurs slightly above the Australasian microtektite layer and below the Brunhes/Matuyama boundary, which in constitute three time-parallel markers for correlation and dating of Quaternary stratigraphic records. Against the astronomically tuned oxygen isotope chronostratigraphy, the rhyolitic ignimbrite erupted during the transition from marine isotope stage 20 (glacial) to stage 19 (interglacial) with an estimated age of 788 ka. The refined age is in good agreement with the radiometric age of 800+20 ka for Layer D of ODP Site 758 (Hall and Farrell, 1995), but significantly younger than the commonly referred age of 840+30 ka (Diehl et al., 1987). The mid-Pleistocene eruption expelled at least 800-1000 km3 dense-rock-equivalent of rhyolitic magma taking into account the widespread ashfall deposits in the Indian Ocean and the South China Sea basins. In spite of its exceptional magnitude, the timing of the first Toba super-eruption disputes a possible causal linkage between a major volcanic eruption and a long-term global climatic deterioration.
The pyrite-type high-pressure form of FeOOH
NASA Astrophysics Data System (ADS)
Nishi, Masayuki; Kuwayama, Yasuhiro; Tsuchiya, Jun; Tsuchiya, Taku
2017-07-01
Water transported into Earth’s interior by subduction strongly influences dynamics such as volcanism and plate tectonics. Several recent studies have reported hydrous minerals to be stable at pressure and temperature conditions representative of Earth’s deep interior, implying that surface water may be transported as far as the core-mantle boundary. However, the hydrous mineral goethite, α-FeOOH, was recently reported to decompose under the conditions of the middle region of the lower mantle to form FeO2 and release H2, suggesting the upward migration of hydrogen and large fluctuations in the oxygen distribution within the Earth system. Here we report the stability of FeOOH phases at the pressure and temperature conditions of the deep lower mantle, based on first-principles calculations and in situ X-ray diffraction experiments. In contrast to previous work suggesting the dehydrogenation of FeOOH into FeO2 in the middle of the lower mantle, we report the formation of a new FeOOH phase with the pyrite-type framework of FeO6 octahedra, which is much denser than the surrounding mantle and is stable at the conditions of the base of the mantle. Pyrite-type FeOOH may stabilize as a solid solution with other hydrous minerals in deeply subducted slabs, and could form in subducted banded iron formations. Deep-seated pyrite-type FeOOH eventually dissociates into Fe2O3 and releases H2O when subducted slabs are heated at the base of the mantle. This process may cause the incorporation of hydrogen into the outer core by the formation of iron hydride, FeHx, in the reducing environment of the core-mantle boundary.
Linking Sediment Microbial Communities to Carbon Cycling in High-Latitude Lakes
NASA Astrophysics Data System (ADS)
Emerson, J. B.; Varner, R. K.; Johnson, J. E.; Owusu-Dommey, A.; Binder, M.; Woodcroft, B. J.; Wik, M.; Freitas, N. L.; Boyd, J. A.; Crill, P. M.; Saleska, S. R.; Tyson, G. W.; Rich, V. I.
2015-12-01
It is well recognized that thawing permafrost peatlands are likely to provide a positive feedback to climate change via CH4 and CO2 emissions. High-latitude lakes in these landscapes have also been identified as sources of CH4 and CO2 loss to the atmosphere. To investigate microbial contributions to carbon loss from high-latitude lakes, we characterized sediment geochemistry and microbiota via cores collected from deep and shallow regions of two lakes (Inre Harrsjön and Mellersta Harrsjön) in Arctic Sweden in July, 2012. These lakes are within the Stordalen Mire long-term ecological area, a focal site for investigating the impacts of climate change-related permafrost thaw, and the lakes in this area are responsible for ~55% of the CH4 loss from this hydrologically interconnected system. Across 40 samples from 4 to 40 cm deep within four sediment cores, Illumina 16S rRNA gene sequencing revealed that the sedimentary microbiota was dominated by candidate phyla OP9 and OP8 (Atribacteria and Aminicenantes, respectively, including putative fermenters and anaerobic respirers), predicted methanotrophic Gammaproteobacteria, and predicted methanogenic archaea from the Thermoplasmata Group E2 clade. We observed some overlap in community structure with nearby peatlands, which tend to be dominated by methanogens and Acidobacteria. Sediment microbial communities differed significantly between lakes, by overlying lake depth (shallow vs. deep), and by depth within a core, with each trend corresponding to parallel differences in biogeochemical measurements. Overall, our results support the potential for significant microbial controls on carbon cycling in high-latitude lakes associated with thawing permafrost, and ongoing metagenomic analyses of focal samples will yield further insight into the functional potential of these microbial communities and their dominant members.
NASA Astrophysics Data System (ADS)
Mochales, T.; Porreca, M.; Smedile, A.; Buratti, N.; Macri', P.; Di Chiara, A.; Sagnotti, L.; Speranza, F.; Amoroso, S.; Nicolosi, I.; D'ajello Caracciolo, F.; Carluccio, R.; Di Giulio, G.; Vassallo, M.; Villani, F.; Civico, R.
2013-12-01
The Mw=6.1 L'Aquila earthquake struck the central Apennines (Italy), on April 6th, 2009. INSAR data showed that the maximum subsidence of ca. 15 cm was located in the continental Aterno Basin, partly controlled by the Paganica extensional fault, yielding the L'Aquila earthquake. Preliminary geological and geophysical surveys have been performed in the depocenter of the Aterno Basin to figure out the underground configuration and determine the best location for a deep hole. The drilling was performed in May-June 2013, recovering 151 m of continental Holocene and Pleistocene sediments. The upper sandy-silty sequence (41 m), interbedded with gravels, is interpreted as fluvial-alluvial origin. The lower clayey-silty sequence, interpreted as lacustrine sediments, continues downward until the bottom (disrupted by 30 m of gravels). The continuous sediment record of the hole is being processed along three stages: i) Description consists of the elaboration of stratigraphical logs, color description and photographic record of the core. The second stage consists of sampling for the different analyses. ii) Continuous samples (U-Channel) were collected from the undisturbed centre of the core for paleomagnetic measurements. Additional samples were collected in the clayey-silty fraction (10 to 25 cm spacing) for calcimetry, geochemical, palynological and ostracoda fauna analysis. Finally, individual levels rich in organic matter and charcoal were sampled for radiometric datings. Iii) The measurements include magnetic susceptibility, paleomagnetic and rock magnetic properties, content of calcium carbonate and 16/18 oxygen ratio, crumble and classification of fossils for pollens and ostracods analyses. Paleomagnetic analyses will hopefully allow us to obtain experimental constraints for dating the Holocene-Pleistocene sediments of the Aterno Basin. The presence of Carbon-14 in organic materials can yield absolute dating. Palynology, oxygen ratio and calcium carbonate content will provide information about the environmental and climatic variations and paleotemperature of the water during sedimentation. The study of ostracods will provide information about the paleonvironment (e.g. water depth variations). Geotechnical tests and diffractometric analysis will document the mechanical properties and mineralogical composition of the lacustrine deposits. All the results, along with sedimentological studies, will be integrated to evaluate the occurrence of eventual ciclicities and the degree of inter-relation between the measured parameters. The final aim is to evaluate a possible correlation between the sedimentary events and activation of local extensional structures in the geological past, observe their recurrence (if any) in recent geological times and propose a reconstruction of the Pleistocene evolution of the Aterno Basin.
Rescuing Paleomagnetic Data from Deep-Sea Cores Through the IEDA-CCNY Data Internship Program
NASA Astrophysics Data System (ADS)
Ismail, A.; Randel, C.; Palumbo, R. V.; Carter, M.; Cai, Y.; Kent, D. V.; Lehnert, K.; Block, K. A.
2016-12-01
Paleomagnetic data provides essential information for evaluating the chronostratigraphy of sedimentary cores. Lamont research vessels Vema and Robert Conrad collected over 10,000 deep-sea sediment cores around the world from 1953 to 1989. 10% of these cores have been sampled for paleomagnetic analyses at Lamont. Over the years, only 10% of these paleomagnetic records have been published. Moreover, data listings were only rarely made available in older publications because electronic appendices were not available and cyberinfrastructure was not in place for publishing and preserving these data. As a result, the majority of these datasets exist only as fading computer printouts in binders on the investigator's bookshelf. This summer, undergraduate students from the NSF-funded IEDA-CCNY Data Internship Program started digitizing this enormous dataset under the supervision of Dennis Kent, the current custodian of the data and one of the investigators who oversaw some of the data collection process, and an active leader in the field. Undergraduate students worked on digitizing paper records, proof-reading and organizing the data sheets for future integration into an appropriate repository. Through observing and plotting the data, the students learned about how sediment cores and paleomagnetic data are collected and used in research, and the best practices in data publishing and preservation from IEDA (Interdisciplinary Earth Data Alliance) team members. The students also compared different optical character recognition (OCR) softwares and established an efficient workflow to digitize these datasets. These datasets will eventually be incorporated in the Magnetics Information Consortium (MagIC), so that they can be easily compared with similar datasets and have the potential to generate new findings. Through this data rescue project, the students had the opportunity to learn about an important field of scientific research and interact with world-class scientists.
From Romanticism to Deep Ecology: The Continuing Evolution in American Environmental Thought.
ERIC Educational Resources Information Center
Ackerson, David
2000-01-01
Describes the contributions to deep ecology of Henry Thoreau, who advocated acting upon strongly held convictions; John Muir, who adopted a biocentric view of nature; and Aldo Leopold, who formulated an egalitarian ecosystem ethic. While deep ecology is moving toward a new vision of humankind's relation to nature, it has yet to coalesce into a…
Reversal Frequency, Core-Mantle Conditions, and the SCOR-field Hypothesis
NASA Astrophysics Data System (ADS)
Hoffman, K. A.
2009-12-01
One of the most intriguing results from paleomagnetic data spanning the past 108 yr comes from the work of McFadden et al. (1991) who found that the variation in the rate of polarity reversal is apparently tied to the temporal variation in the harmonic content of the full-polarity field. Their finding indicates that it is the relative importance of the two dynamo families--i.e. the Primary Family (PF), the field antisymmetric about the equator, and the Secondary Family (SF), the field symmetric about the equator--that largely determines reversal frequency. More specifically, McFadden et al. found that as the relative significance of the SF increases, as is observed during the Cenozoic, so too does reversal rate. Such a finding is reminiscent of the seminal work of Allan Cox who some forty years ago proposed that interactions with the non-dipole field may provide the trigger for reversal of the axial dipole (AD) field. Hence, new questions arise: Do the two dynamo family fields interact in this manner, and, if so, how can such an interaction physically occur in the fluid core? Gaussian coefficient terms comprising the PF and SF have degree and order (n + m) that sum to an odd and even number, respectively. The most significant field term in the PF is by far that of the axial dipole (g10). The entire SF, starting with the equatorial dipole terms (g11 and h11) and the axial quadrupole (g20), are constituents of the non-axial dipole (NAD) field. By way of both paleomagnetic transition and geomagnetic data Hoffman and Singer (2008) recently proposed (1) that field sources exist within the shallow core (SCOR-field) associated with fluid motions affected by long-lived core-mantle boundary conditions; (2) that these SCOR-field sources are largely separated from, i.e. in “poor communication” with, deep field convection roll-generated sources; and (3) that the deep sources are largely responsible for the AD field, leaving the SCOR-field to be the primary source for the NAD-field. This SCOR-field would almost exclusively contain the observed SF field, while the AD-field sources deeper within the core would be most responsible for the observed PF field. If so, the McFadden et al. result may be explained as follows: That the observed increasing significance of the SF field during the Cenozoic is the result of intensifying interactions between shallow core SCOR-field sources and deep core AD-field sources. This then suggests a progressive enhancement in the variability of physical conditions along the CMB which may indicate an accelerating influx of descended lithospheric plates and/or increasing number of plume roots during the Cenozoic.
Characterizing the Weeks Island Salt Dome drilling of and seismic measurements from boreholes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sattler, A.R.; Harding, R.S.; Jacobson, R.D.
1996-10-01
A sinkhole 36 ft across, 30 ft deep was first observed in the alluvium over the Weeks Island Salt Dome (salt mine converted for oil storage by US Strategic Petroleum Reserve) May 1992. Four vertical, two slanted boreholes were drilled for diagnostics. Crosswell seismic data were generated; the velocity images suggest that the sinkhole collapse is complicated, not a simple vertical structure. The coring operation was moderately difficult; limited core was obtained through the alluvium, and the quality of the salt core from the first two vertical wells was poor. Core quality improved with better bit selection, mud, and drillingmore » method. The drilling fluid program provided fairly stable holes allowing open hole logs to be run. All holes were cemented successfully (although it took 3 attempts in one case).« less
A Composite Depth Scale for Sediments from Crevice Lake, Montana
Rosenbaum, J.G.; Skipp, G.; Honke, J.; Chapman, C.
2010-01-01
As part of a study to derive records of past environmental change from lake sediments in the western United States, a set of cores was collected from Crevice Lake, Montana, in late February and early March 2001. Crevice Lake (latitude 45.000N, longitude 110.578W, elevation 1,713 meters) lies adjacent to the Yellowstone River at the north edge of Yellowstone National Park. The lake is more than 31 meters deep and has a surface area of 7.76 hectares. The combination of small surface area and significant depth promote anoxic bottom-water conditions that preserve annual laminations (varves) in the sediment. Three types of cores were collected through the ice. The uppermost sediments were obtained in freeze cores that preserved the sediment water interface. Two sites were cored with a 5-centimeter diameter corer. Five cores were taken with a 2-meter-long percussion piston corer. The percussion core uses a plastic core liner with an inside diameter of 9 centimeters. Coring was done at two sites. Because of the relatively large diameter of the percussion cores, samples from these cores were used for a variety of analyses including pollen, charcoal, diatoms, stable isotopes, organic and inorganic carbon, elemental analyses, and magnetic properties.
Three-dimensional discrete element method simulation of core disking
NASA Astrophysics Data System (ADS)
Wu, Shunchuan; Wu, Haoyan; Kemeny, John
2018-04-01
The phenomenon of core disking is commonly seen in deep drilling of highly stressed regions in the Earth's crust. Given its close relationship with the in situ stress state, the presence and features of core disking can be used to interpret the stresses when traditional in situ stress measuring techniques are not available. The core disking process was simulated in this paper using the three-dimensional discrete element method software PFC3D (particle flow code). In particular, PFC3D is used to examine the evolution of fracture initiation, propagation and coalescence associated with core disking under various stress states. In this paper, four unresolved problems concerning core disking are investigated with a series of numerical simulations. These simulations also provide some verification of existing results by other researchers: (1) Core disking occurs when the maximum principal stress is about 6.5 times the tensile strength. (2) For most stress situations, core disking occurs from the outer surface, except for the thrust faulting stress regime, where the fractures were found to initiate from the inner part. (3) The anisotropy of the two horizontal principal stresses has an effect on the core disking morphology. (4) The thickness of core disk has a positive relationship with radial stress and a negative relationship with axial stresses.
Search for nonstandard neutrino interactions with IceCube DeepCore
NASA Astrophysics Data System (ADS)
Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brayeur, L.; Brenzke, M.; Bretz, H.-P.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Dvorak, E.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; Hünnefeld, M.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski, P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kirby, C.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Plum, M.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Rea, I. C.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Santander, M.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.; Stuttard, T.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vehring, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; Zoll, M.; IceCube Collaboration
2018-04-01
As atmospheric neutrinos propagate through the Earth, vacuumlike oscillations are modified by Standard Model neutral- and charged-current interactions with electrons. Theories beyond the Standard Model introduce heavy, TeV-scale bosons that can produce nonstandard neutrino interactions. These additional interactions may modify the Standard Model matter effect producing a measurable deviation from the prediction for atmospheric neutrino oscillations. The result described in this paper constrains nonstandard interaction parameters, building upon a previous analysis of atmospheric muon-neutrino disappearance with three years of IceCube DeepCore data. The best fit for the muon to tau flavor changing term is ɛμ τ=-0.0005 , with a 90% C.L. allowed range of -0.0067 <ɛμ τ<0.0081 . This result is more restrictive than recent limits from other experiments for ɛμ τ. Furthermore, our result is complementary to a recent constraint on ɛμ τ using another publicly available IceCube high-energy event selection. Together, they constitute the world's best limits on nonstandard interactions in the μ -τ sector.
NASA Astrophysics Data System (ADS)
Matsumoto, Koji; Yamada, Ryuhei; Kikuchi, Fuyuhiko; Kamata, Shunichi; Ishihara, Yoshiaki; Iwata, Takahiro; Hanada, Hideo; Sasaki, Sho
2015-09-01
The internal structure of the Moon is important for discussions on its origin and evolution. However, the deep structure of the Moon is still debated due to the absence of comprehensive seismic data. This study explores lunar interior models by complementing Apollo seismic travel time data with selenodetic data which have recently been improved by Gravity Recovery and Interior Laboratory (GRAIL) and Lunar Laser Ranging (LLR). The observed data can be explained by models including a deep-seated zone with a low velocity (S wave velocity = 2.9 ± 0.5 km/s) and a low viscosity (˜3 × 1016 Pa s). The thickness of this zone above the core-mantle boundary is larger than 170 km, showing a negative correlation with the radius of the fluid outer core. The inferred density of the lowermost mantle suggests a high TiO2 content (>11 wt.%) which prefers a mantle overturn scenario.
Measurement of Atmospheric Neutrino Oscillations at 6-56 GeV with IceCube DeepCore
NASA Astrophysics Data System (ADS)
Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brayeur, L.; Brenzke, M.; Bretz, H.-P.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; Hünnefeld, M.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalaczynski, P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Plum, M.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Rea, I. C.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soedingrekso, J.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Van Driessche, W.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Vehring, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Werthebach, J.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; Zoll, M.; IceCube Collaboration
2018-02-01
We present a measurement of the atmospheric neutrino oscillation parameters using three years of data from the IceCube Neutrino Observatory. The DeepCore infill array in the center of IceCube enables the detection and reconstruction of neutrinos produced by the interaction of cosmic rays in Earth's atmosphere at energies as low as ˜5 GeV . That energy threshold permits measurements of muon neutrino disappearance, over a range of baselines up to the diameter of the Earth, probing the same range of L /Eν as long-baseline experiments but with substantially higher-energy neutrinos. This analysis uses neutrinos from the full sky with reconstructed energies from 5.6 to 56 GeV. We measure Δ m322=2.31-0.13+0.11×10-3 eV2 and sin2θ23=0.5 1-0.09+0.07, assuming normal neutrino mass ordering. These results are consistent with, and of similar precision to, those from accelerator- and reactor-based experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, S. G.; Marsh, T. R.; Gaensicke, B. T.
Using Liverpool Telescope+RISE photometry we identify the 2.78 hr period binary star CSS 41177 as a detached eclipsing double white dwarf binary with a 21,100 K primary star and a 10,500 K secondary star. This makes CSS 41177 only the second known eclipsing double white dwarf binary after NLTT 11748. The 2 minute long primary eclipse is 40% deep and the secondary eclipse 10% deep. From Gemini+GMOS spectroscopy, we measure the radial velocities of both components of the binary from the H{alpha} absorption line cores. These measurements, combined with the light curve information, yield white dwarf masses of M{sub 1}more » = 0.283 {+-} 0.064 M{sub sun} and M{sub 2} = 0.274 {+-} 0.034 M{sub sun}, making them both helium core white dwarfs. As an eclipsing, double-lined spectroscopic binary, CSS 41177 is ideally suited to measuring precise, model-independent masses and radii. The two white dwarfs will merge in roughly 1.1 Gyr to form a single sdB star.« less
Probing velocity dependent self-interacting dark matter with neutrino telescopes
NASA Astrophysics Data System (ADS)
Robertson, Denis S.; Albuquerque, Ivone F. M.
2018-02-01
Self-interacting dark matter models constitute an attractive solution to problems in structure formation on small scales. A simple realization of these models considers the dark force mediated by a light particle which can couple to the Standard Model through mixings with the photon or the Z boson. Within this scenario we investigate the sensitivity of the IceCube-DeepCore and PINGU neutrino telescopes to the associated muon neutrino flux produced by dark matter annihilations in the Sun. Despite the model's simplicity, several effects naturally appear: momentum suppressed capture by nuclei, velocity dependent dark matter self-capture, Sommerfeld enhanced annihilation, as well as the enhancement on the neutrino flux due to mediator late decays. Taking all these effects into account, we find that most of the model relevant parameter space can be tested by the three years of data already collected by the IceCube-DeepCore. We show that indirect detection through neutrinos can compete with the strong existing limits from direct detection experiments, specially in the case of isospin violation.
NASA Technical Reports Server (NTRS)
Okal, E. A.
1978-01-01
The theory of the normal modes of the earth is investigated and used to build synthetic seismograms in order to solve source and structural problems. A study is made of the physical properties of spheroidal modes leading to a rational classification. Two problems addressed are the observability of deep isotropic seismic sources and the investigation of the physical properties of the earth in the neighborhood of the Core-Mantle boundary, using SH waves diffracted at the core's surface. Data sets of seismic body and surface waves are used in a search for possible deep lateral heterogeneities in the mantle. In both cases, it is found that seismic data do not require structural differences between oceans and continents to extend deeper than 250 km. In general, differences between oceans and continents are found to be on the same order of magnitude as the intrinsic lateral heterogeneity in the oceanic plate brought about by the aging of the oceanic lithosphere.
NASA Astrophysics Data System (ADS)
Nakatsuka, Takeshi; Watanabe, Kazuki; Handa, Nobuhiko; Matsumoto, Eiji; Wada, Eitaro
1995-12-01
Stable carbon and nitrogen isotopic ratios (δ13C and δ15N) of organic matter were measured in three sediment cores from deep basins of the Bering Sea to investigate past changes in surface nutrient conditions. For surface water reconstructions, hemipelagic layers in the cores were distinguished from turbidite layers (on the basis of their sedimentary structures and 14C ages) and analyzed for isotopic studies. Although δ13C profiles may have been affected by diagenesis, both δ15N and δ13C values showed common positive anomalies during the last deglaciation. We explain these anomalies as reflecting suppressed vertical mixing and low nutrient concentrations in surface waters caused by injection of meltwater from alpine glaciers around the Bering Sea. Appendix tables are available with entire article on microfiche. Order from American Geophysical Union, 2000 Florida Avenue, N.W., Washington , DC 20009. Document P95-003; $2.50. Payment must accompany order.
NASA Astrophysics Data System (ADS)
Ashi, J.; Ikehara, K.; Omura, A.; Ojima, T.; Murayama, M.
2013-12-01
ENE-WSW trending active faults, named Enshu fault system, are developed in the forearc basins of the eastern and central Nankai subduction zone. Three parallel faults developed in the Enshu forearc basin of the eastern Nankai have right lateral slip on the basis of dextral displacement of the canyon axis. Moreover, bathymetry data and side-scan sonar imageries indicate relative uplift of the northern region and the multichannel seismic (MCS) reflection profiles show northward dipping fault planes. In the central Nankai subuduction zone, an ENE-WSW trending step is distributed at the northern part of the Kumano forearc basin and is regarded as the western extension of the Enshu fault system. Although MCS records show deformations including an anticlinal fold beneath the bathymetric step, they have less resolution to identify deformation of basin sequence just below the seafloor. In contrast, deformation seems to reach to the seafloor on a profile by SBP mounted on a mother ship. Investigation of shallow deformation structures is significant for understanding of recent tectonic activity. We carried out deep towed SBP survey by ROV NSS (Navigable Sampling System) during Hakuho-maru KH-11-9 cruise. High resolution mapping of shallow structures was successfully conducted by a chirp SBP system of EdgeTech DW-106. ROV NSS also has capability to take a long core with a pinpoint accuracy around complex topographic region. The Kumano forearc basin is topographically divided into the northern part at a water depth of 2038 m and the other major region at a depth of 2042 m by the ENE-WSW linear step. Three deep towed SBP lines intersected this topographical step and revealed the following structures. This step is composed of 100 m wide gentle slope with an inclination of about 8 degrees. An anticlinal axis is located beneath the upper edge of this slope. Sedimentary layers continue at this slope region without any abut/termination and rapidly increase their thickness toward the seaward and the landward of the slope. This suggests that the anticlinal ridge trapped sediments from the landward region, and overflowed sediments thinly covered the slope and filled the basin floor seaward of it. Because the upper 25 m sequence recognized by deep towed SBP shows no fault deformation, the step is interpreted to be caused by flexure deformation. An acoustically transparent layer is observed in this area. The thickness of this layer is 1 m at the slope and 5 m at the other regions. Four core samples indicate that the transparent layer correspond to the sequence younger than 10,000 years ago. The sequence landward of the slope indicates growth strata: thinning toward the anticlinal axis and increase of tilt angle downward. This structure is recognized from the seafloor to the strata below the transparent layer suggesting continuous deformation to the present. It is inferred that the flexure structure observed on the deep towed SBP data was formed by a landward dipping thrust fault estimated on the MCS profiles. Flower structures on the MCS data also suggest strike slip displacement and are consistent to the deformation in the Enshu forearc basin 80 km northeast of the study area.
NASA Astrophysics Data System (ADS)
Ebrahimi, P.; Vilcaez, J.
2017-12-01
Hydraulic fracturing wastewater (HFW) containing high concentrations of Ba, is commonly disposed into the deep saline aquifers. We investigate the effect of brine salinity, competing cations (Ca and Mg), and guar gum (most common fracturing viscosifier) on the sorption and transport of Ba through dolomite rocks. To this aim, we have conducted batch sorption and core-flooding experiments at both ambient (22°C) and deep subsurface (60°C) temperature conditions. The effect of mineral composition is assessed by comparing batch and core-flooding experimental results obtained with sandstone and dolomite rocks. Batch sorption experiments conducted using powdered dolomite rocks (500-600 µm particle size) revealed that Ba sorption on dolomite greatly decreases with increasing brine salinity (0 - 180,000 mg-NaCl/L), and that at brine salinities of HFW, chloro-complexation reactions between Ba and Cl ions and changes in pH (that results from dolomite dissolution) are the controlling factors of Ba sorption on dolomite. Organo-complexation reactions between Ba and guar gum, and competition of Ba with common cations (Ca and Mg) for hydration sites of dolomite, play a secondary role. This finding is in accordance with core-flooding experimental results, showing that the transport of Ba through synthetic dolomite rocks of high flow properties (25-29.6% porosity, 9.6-13.7 mD permeability), increases with increasing brine salinity (0-180,000 mg-NaCl/L), while the presence of guar gum (50-500 mg/L) does not affect the transport of Ba. On the other hand, core-flooding experiments conducted using natural dolomite core plugs (6.5-8.6% porosity, 0.06-0.3 mD permeability), indicates that guar gum can clog the pore throats of tight dolomite rocks retarding the transport of Ba. Results of our numerical simulation studies indicate that the mechanism of Ba sorption on dolomite can be represented by a sorption model that accounts for both surface complexation reactions on three distinct hydration sites (>CaOHo, >MgOHo, and >CO3Ho), and the kinetic dissolution of dolomite. The presented results are important in understanding the fate of heavy metals present in HFW disposed into deep saline aquifers.
Macrofossil extinction patterns at Bay of Biscay Cretaceous-Tertiary boundary sections
NASA Technical Reports Server (NTRS)
Ward, Peter D.; Macleod, Kenneth
1988-01-01
Researchers examined several K-T boundary cores at Deep Sea Drilling Project (DSDP) core repositories to document biostratigraphic ranges of inoceramid shell fragments and prisms. As in land-based sections, prisms in the deep sea cores disappear well before the K-T boundary. Ammonites show a very different extinction pattern than do the inoceramids. A minimum of seven ammonite species have been collected from the last meter of Cretaceous strata in the Bay of Biscay basin. In three of the sections there is no marked drop in either species numbers or abundance prior to the K-T boundary Cretaceous strata; at the Zumaya section, however, both species richness and abundance drop in the last 20 m of the Cretaceous, with only a single ammonite specimen recovered to date from the uppermost 12 m of Cretaceous strata in this section. Researchers conclude that inoceramid bivalves and ammonites showed two different times and patterns of extinction, at least in the Bay of Biscay region. The inoceramids disappeared gradually during the Early Maestrichtian, and survived only into the earliest Late Maestrichtian. Ammonites, on the other hand, maintained relatively high species richness throughout the Maestrichtian, and then disappeared suddenly, either coincident with, or immediately before the microfossil extinction event marking the very end of the Cretaceous.
NASA Astrophysics Data System (ADS)
van der Kaars, Sander; de Deckker, Patrick; Gingele, Franz X.
2006-12-01
Pollen recovered from core tops of deep-sea cores from offshore northwestern Western Australia were used to build climatic transfer functions applied to sediment samples from major rivers bordering the ocean in the same region and a deep-sea core offshore Northwest Cape. Results show for the last 100 000 years, with a gap in the record spanning the 64 000 to 46 000 years interval, that from about 100 000 to 82 000 yr BP, climatic conditions represented by rainfall, temperature and number of humid months, were significantly higher than today's values. For the entire record, the coldest period occurred about 43 000 to 39 000 yr BP but it was wetter than today, whereas the Last Glacial Maximum saw a significant reduction in summer rainfall, interpreted as a result of the absence of monsoonal activity in the region. The Holocene can be divided into two distinct phases: one peaking around 6000 cal. yr BP with highest rainfall and summer temperatures; the second one commencing at 5000 cal. yr BP and showing a progressive decrease in summer rainfall in contrast to an increase in winter rainfall, paralleled by a progressive decrease in temperatures. Copyright
Advanced Mirror & Modelling Technology Development
NASA Technical Reports Server (NTRS)
Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl
2014-01-01
The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.
Entrainment versus Dilution in Tropical Deep Convection
Hannah, Walter M.
2017-11-01
In this paper, the distinction between entrainment and dilution is investigated with cloud-resolving simulations of deep convection in a tropical environment. A method for estimating the rate of dilution by entrainment and detrainment is presented and calculated for a series of bubble simulations with a range of initial radii. Entrainment generally corresponds to dilution of convection, but the two quantities are not well correlated. Core dilution by entrainment is significantly reduced by the presence of a shell of moist air around the core. Dilution by entrainment also increases with increasing updraft velocity but only for sufficiently strong updrafts. Entrainment contributesmore » significantly to the total net dilution, but detrainment and the various source/sink terms play large roles depending on the variable in question. Detrainment has a concentrating effect on average that balances out the dilution by entrainment. The experiments are also used to examine whether entrainment or dilution scale with cloud radius. The results support a weak negative relationship for dilution but not for entrainment. The sensitivity to resolution is briefly discussed. A toy Lagrangian thermal model is used to demonstrate the importance of the cloud shell as a thermodynamic buffer to reduce the dilution of the core by entrainment. Finally, the results suggest that explicit cloud heterogeneity may be a useful consideration for future convective parameterization development.« less
NASA Technical Reports Server (NTRS)
Dietrich, David E.; Mehra, Avichal; Haney, Robert L.; Bowman, Malcolm J.; Tseng, Yu-Heng
2003-01-01
Gulf Stream (GS) separation near its observed Cape Hatteras (CH) separation location, and its ensuing path and dynamics, is a challenging ocean modeling problem. If a model GS separates much farther north than CH, then northward GS meanders, which pinch off warm core eddies (rings), are not possible or are strongly constrained by the Grand Banks shelfbreak. Cold core rings pinch off the southward GS meanders. The rings are often re-absorbed by the GS. The important warm core rings enhance heat exchange and, especially, affect the northern GS branch after GS bifurcation near the New England Seamount Chain. This northern branch gains heat by contact with the southern branch water upstream of bifurcation, and warms the Arctic Ocean and northern seas, thus playing a major role in ice dynamics, thermohaline circulation and possible global climate warming. These rings transport heat northward between the separated GS and shelf slope/Deep Western Boundary Current system (DWBC). This region has nearly level time mean isopycnals. The eddy heat transport convergence/divergence enhances the shelfbreak and GS front intensities and thus also increases watermass transformation. The fronts are maintained by warm advection by the Florida Current and cool advection by the DWBC. Thus, the GS interaction with the DWBC through the intermediate eddy field is climatologically important.
Pore fluids and the LGM ocean salinity-Reconsidered
NASA Astrophysics Data System (ADS)
Wunsch, Carl
2016-03-01
Pore fluid chlorinity/salinity data from deep-sea cores related to the salinity maximum of the last glacial maximum (LGM) are analyzed using estimation methods deriving from linear control theory. With conventional diffusion coefficient values and no vertical advection, results show a very strong dependence upon initial conditions at -100 ky. Earlier inferences that the abyssal Southern Ocean was strongly salt-stratified in the LGM with a relatively fresh North Atlantic Ocean are found to be consistent within uncertainties of the salinity determination, which remain of order ±1 g/kg. However, an LGM Southern Ocean abyss with an important relative excess of salt is an assumption, one not required by existing core data. None of the present results show statistically significant abyssal salinity values above the global average, and results remain consistent, apart from a general increase owing to diminished sea level, with a more conventional salinity distribution having deep values lower than the global mean. The Southern Ocean core does show a higher salinity than the North Atlantic one on the Bermuda Rise at different water depths. Although much more sophisticated models of the pore-fluid salinity can be used, they will only increase the resulting uncertainties, unless considerably more data can be obtained. Results are consistent with complex regional variations in abyssal salinity during deglaciation, but none are statistically significant.
Gielen, Joris; Gupta, Harmala; Rajvanshi, Ambika; Bhatnagar, Sushma; Mishra, Seema; Chaturvedi, Arvind K; den Branden, Stef Van; Broeckaert, Bert
2011-01-01
We wanted to assess Indian palliative-care nurses and physicians' attitudes toward pain control and palliative sedation. From May to September 2008, we interviewed 14 physicians and 13 nurses working in different palliative-care programs in New Delhi, using a semi-structured questionnaire, and following grounded-theory methodology (Glaser and Strauss). The interviewees did not consider administration of painkillers in large doses an ethical problem, provided the pain killers are properly titrated. Mild palliative sedation was considered acceptable. The interviewees disagreed whether palliative sedation can also be deep and continuous. Arguments mentioned against deep continuous palliative sedation were the conviction that it may cause unacceptable side effects, and impedes basic daily activities and social contacts. A few interviewees said that palliative sedation may hasten death. Due to fears and doubts regarding deep continuous palliative sedation, it may sometimes be too easily discarded as a treatment option for refractory symptoms.
NASA Astrophysics Data System (ADS)
Hirayama, H.; Takai, K.; Inagaki, F.; Horikoshi, K.
2001-12-01
Deep subterranean microbial community structures in an epithermal gold-silver deposit, Hishikari gold mine, southern part of Kyusyu Japan, were evaluated through the combined use of enrichment culture methods and culture-independent molecular surveys. The geologic setting of the Hishikari deposit is composed of three lithologies; basement oceanic sediments of the Cretaceous Shimanto Supergroup, Quaternary andesites, and auriferous quartz vein. We studied the drilled core rock of these, and the geothermal hot waters from the basement aquifers collected by means of the dewatering system located at the deepest level in the mining sites. Culture-independent molecular phylogenetic analyses of PCR-amplified ribosomal DNA (rDNA) recovered from drilled cores suggested that the deep-sea oceanic microbial communities were present as ancient indigenous relicts confined in the Shimanto basement. On the other hand, genetic signals of active thermophilic microbial communities, mainly consisting of thermophilic hydrogen-oxidizer within Aquificales, thermophilic methanotroph within g-Proteobacteria and yet-uncultivated bacterium OPB37 within b-Proteobacteria, were detected with these of oceanic relicts from the subterranean geothermal hot aquifers (temp. 70-100ºC). Successful cultivation and FISH analyses strongly supported that these thermophilic lithotrophic microorganisms could be exactly active and they grew using geochemically produced hydrogen and methane gasses as nutrients. Based on these results, the deep-subsurface biosphere occurring in the Hishikari epithermal gold mine was delineated as endolithic ancient microbial relicts and modern habitats raising active lithotrophic thermophiles associated with the geological and geochemical features of the epithermal gold deposit.