Sample records for continuously generated h2o2

  1. Development of a reactor with carbon catalysts for modular-scale, low-cost electrochemical generation of H 2O 2

    DOE PAGES

    Chen, Zhihua; Chen, Shucheng; Siahrostami, Samira; ...

    2017-03-01

    The development of small-scale, decentralized reactors for H 2O 2 production that can couple to renewable energy sources would be of great benefit, particularly for water purification in the developing world. Herein, we describe our efforts to develop electrochemical reactors for H 2O 2 generation with high Faradaic efficiencies of >90%, requiring cell voltages of only ~1.6 V. The reactor employs a carbon-based catalyst that demonstrates excellent performance for H 2O 2 production under alkaline conditions, as demonstrated by fundamental studies involving rotating-ring disk electrode methods. Finally, the low-cost, membrane-free reactor design represents a step towards a continuous, modular-scale, de-centralizedmore » production of H 2O 2.« less

  2. Regulation of Electrochemically Generated H2O2 in Situ from a Novel CB-PTFE Cathode for Transformation of Chlorine Benzene in Groundwater

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Zhang, X.; Li, G.

    2014-12-01

    Fenton's reagents (H2O2 and Fe2+ catalyst commonly) have been widely used in soil and groundwater remediation. But the excessive H2O2 decomposition and the pH modification (acidification) problem have been limitations for Fenton based remediation strategies. The Electro-Fenton (E- Fenton) processes has been recently developed to solve the problems, in which Fe2+ or H2O2are generated in situ as continuing source of Fenton's reagents. In this study, a novel CB-PTFE cathode and a Fe cathode were employed to generate H2O2 and Fe2+ in situ simultaneously. The generated reactive oxidizing species, i.e., O2,H2O2 and hydroxyl radical (HO•), oxidized bio-refractory organics to nontoxic matters in groundwater. Automatic pH adjustments are achieved by appropriately arraying the electrodes. Laboratory batch tests and column tests for the E-Fenton oxidation and hybrid electrolysis system were conducted to evaluate the transformation efficiency of chlorine benzene. Results from batch experiments suggested the CB-PTFE cathode was effective for reducing O2 to H2O2. The H2O2 concentration reached 468 mg/L under the condition of pH 3.0 and 30mA/cm2 in 60 minutes, which was 5 and 10 times of that with a graphite and C-felt cathode. The removal efficiency of chlorine benzene reached 80% in 20 minutes. Both chlorine benzene degradation and H2O2 production increased with decreasing solution pH and increasing current density. The results from the columns tests proved that the in situ E-Fenton system is a feasible method for groundwater remediation.

  3. Ultrasonographic Imaging and Anti-inflammatory Therapy of Muscle and Tendon Injuries Using Polymer Nanoparticles.

    PubMed

    Kim, Gi-Wook; Kang, Changsun; Oh, Young-Bin; Ko, Myoung-Hwan; Seo, Jeong-Hwan; Lee, Dongwon

    2017-01-01

    Ultrasonography is a reliable diagnostic modality for muscle and tendon injuries, but it has been challenging to find right diagnosis of minor musculoskeletal injuries by conventional ultrasonographic imaging. A large amount of hydrogen peroxide (H 2 O 2 ) are known to be generated during tissue damages such as mechanical injury and therefore H 2 O 2 holds great potential as a diagnostic and therapeutic marker for mechanical injuries in the musculoskeletal system. We previously developed poly(vanillyl alcohol- co -oxalate) (PVAX), which rapidly scavenges H 2 O 2 and exerts antioxidant and anti-inflammatory activity in H 2 O 2 -associated diseases. Based on the notion that PVAX nanoparticles generate CO 2 bubbles through H 2 O 2 -triggered hydrolysis, we postulated that PVAX nanoparticles could serve as ultrasonographic contrast agents and therapeutic agents for musculoskeletal injuries associated with overproduction of H 2 O 2 . In the agarose gel phantom study, PVAX nanoparticles continuously generated CO 2 bubbles to enhance ultrasonographic echogenicity significantly. Contusion injury significantly elevated the level of H 2 O 2 in skeletal muscles and Achilles tendons. Upon intramuscular injection, PVAX nanoparticles significantly elevated the ultrasound contrast and suppressed inflammation and apoptosis in the contusion injury of musculoskeletal systems. We anticipate that PVAX nanoparticles hold great translational potential as theranostic agents for musculoskeletal injuries.

  4. How Escherichia coli Tolerates Profuse Hydrogen Peroxide Formation by a Catabolic Pathway

    PubMed Central

    Ravindra Kumar, Sripriya

    2013-01-01

    When Escherichia coli grows on conventional substrates, it continuously generates 10 to 15 μM/s intracellular H2O2 through the accidental autoxidation of redox enzymes. Dosimetric analyses indicate that scavenging enzymes barely keep this H2O2 below toxic levels. Therefore, it seemed potentially problematic that E. coli can synthesize a catabolic phenylethylamine oxidase that stoichiometrically generates H2O2. This study was undertaken to understand how E. coli tolerates the oxidative stress that must ensue. Measurements indicated that phenylethylamine-fed cells generate H2O2 at 30 times the rate of glucose-fed cells. Two tolerance mechanisms were identified. First, in enclosed laboratory cultures, growth on phenylethylamine triggered induction of the OxyR H2O2 stress response. Null mutants (ΔoxyR) that could not induce that response were unable to grow. This is the first demonstration that OxyR plays a role in protecting cells against endogenous H2O2. The critical element of the OxyR response was the induction of H2O2 scavenging enzymes, since mutants that lacked NADH peroxidase (Ahp) grew poorly, and those that additionally lacked catalase did not grow at all. Other OxyR-controlled genes were expendable. Second, phenylethylamine oxidase is an unusual catabolic enzyme in that it is localized in the periplasm. Calculations showed that when cells grow in an open environment, virtually all of the oxidase-generated H2O2 will diffuse across the outer membrane and be lost to the external world, rather than enter the cytoplasm where H2O2-sensitive enzymes are located. In this respect, the periplasmic compartmentalization of phenylethylamine oxidase serves the same purpose as the peroxisomal compartmentalization of oxidases in eukaryotic cells. PMID:23913322

  5. How Escherichia coli tolerates profuse hydrogen peroxide formation by a catabolic pathway.

    PubMed

    Ravindra Kumar, Sripriya; Imlay, James A

    2013-10-01

    When Escherichia coli grows on conventional substrates, it continuously generates 10 to 15 μM/s intracellular H2O2 through the accidental autoxidation of redox enzymes. Dosimetric analyses indicate that scavenging enzymes barely keep this H2O2 below toxic levels. Therefore, it seemed potentially problematic that E. coli can synthesize a catabolic phenylethylamine oxidase that stoichiometrically generates H2O2. This study was undertaken to understand how E. coli tolerates the oxidative stress that must ensue. Measurements indicated that phenylethylamine-fed cells generate H2O2 at 30 times the rate of glucose-fed cells. Two tolerance mechanisms were identified. First, in enclosed laboratory cultures, growth on phenylethylamine triggered induction of the OxyR H2O2 stress response. Null mutants (ΔoxyR) that could not induce that response were unable to grow. This is the first demonstration that OxyR plays a role in protecting cells against endogenous H2O2. The critical element of the OxyR response was the induction of H2O2 scavenging enzymes, since mutants that lacked NADH peroxidase (Ahp) grew poorly, and those that additionally lacked catalase did not grow at all. Other OxyR-controlled genes were expendable. Second, phenylethylamine oxidase is an unusual catabolic enzyme in that it is localized in the periplasm. Calculations showed that when cells grow in an open environment, virtually all of the oxidase-generated H2O2 will diffuse across the outer membrane and be lost to the external world, rather than enter the cytoplasm where H2O2-sensitive enzymes are located. In this respect, the periplasmic compartmentalization of phenylethylamine oxidase serves the same purpose as the peroxisomal compartmentalization of oxidases in eukaryotic cells.

  6. Ultrasonographic Imaging and Anti-inflammatory Therapy of Muscle and Tendon Injuries Using Polymer Nanoparticles

    PubMed Central

    Kim, Gi-Wook; Kang, Changsun; Oh, Young-Bin; Ko, Myoung-Hwan; Seo, Jeong-Hwan; Lee, Dongwon

    2017-01-01

    Ultrasonography is a reliable diagnostic modality for muscle and tendon injuries, but it has been challenging to find right diagnosis of minor musculoskeletal injuries by conventional ultrasonographic imaging. A large amount of hydrogen peroxide (H2O2) are known to be generated during tissue damages such as mechanical injury and therefore H2O2 holds great potential as a diagnostic and therapeutic marker for mechanical injuries in the musculoskeletal system. We previously developed poly(vanillyl alcohol-co-oxalate) (PVAX), which rapidly scavenges H2O2 and exerts antioxidant and anti-inflammatory activity in H2O2-associated diseases. Based on the notion that PVAX nanoparticles generate CO2 bubbles through H2O2-triggered hydrolysis, we postulated that PVAX nanoparticles could serve as ultrasonographic contrast agents and therapeutic agents for musculoskeletal injuries associated with overproduction of H2O2. In the agarose gel phantom study, PVAX nanoparticles continuously generated CO2 bubbles to enhance ultrasonographic echogenicity significantly. Contusion injury significantly elevated the level of H2O2 in skeletal muscles and Achilles tendons. Upon intramuscular injection, PVAX nanoparticles significantly elevated the ultrasound contrast and suppressed inflammation and apoptosis in the contusion injury of musculoskeletal systems. We anticipate that PVAX nanoparticles hold great translational potential as theranostic agents for musculoskeletal injuries. PMID:28744328

  7. Drinking water purification by electrosynthesis of hydrogen peroxide in a power-producing PEM fuel cell.

    PubMed

    Li, Winton; Bonakdarpour, Arman; Gyenge, Előd; Wilkinson, David P

    2013-11-01

    The industrial anthraquinone auto-oxidation process produces most of the world's supply of hydrogen peroxide. For applications that require small amounts of H2 O2 or have economically difficult transportation means, an alternate, on-site H2 O2 production method is needed. Advanced drinking water purification technologies use neutral-pH H2 O2 in combination with UV treatment to reach the desired water purity targets. To produce neutral H2 O2 on-site and on-demand for drinking water purification, the electroreduction of oxygen at the cathode of a proton exchange membrane (PEM) fuel cell operated in either electrolysis (power consuming) or fuel cell (power generating) mode could be a possible solution. The work presented here focuses on the H2 /O2 fuel cell mode to produce H2 O2 . The fuel cell reactor is operated with a continuous flow of carrier water through the cathode to remove the product H2 O2 . The impact of the cobalt-carbon composite cathode catalyst loading, Teflon content in the cathode gas diffusion layer, and cathode carrier water flowrate on the production of H2 O2 are examined. H2 O2 production rates of up to 200 μmol h(-1)  cmgeometric (-2) are achieved using a continuous flow of carrier water operating at 30 % current efficiency. Operation times of more than 24 h have shown consistent H2 O2 and power production, with no degradation of the cobalt catalyst. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Enhanced H2O2 Production at Reductive Potentials from Oxidized Boron-Doped Ultrananocrystalline Diamond Electrodes.

    PubMed

    Thostenson, James O; Ngaboyamahina, Edgard; Sellgren, Katelyn L; Hawkins, Brian T; Piascik, Jeffrey R; Klem, Ethan J D; Parker, Charles B; Deshusses, Marc A; Stoner, Brian R; Glass, Jeffrey T

    2017-05-17

    This work investigates the surface chemistry of H 2 O 2 generation on a boron-doped ultrananocrystalline diamond (BD-UNCD) electrode. It is motivated by the need to efficiently disinfect liquid waste in resource constrained environments with limited electrical power. X-ray photoelectron spectroscopy was used to identify functional groups on the BD-UNCD electrode surfaces while the electrochemical potentials of generation for these functional groups were determined via cyclic voltammetry, chronocoulometry, and chronoamperometry. A colorimetric technique was employed to determine the concentration and current efficiency of H 2 O 2 produced at different potentials. Results showed that preanodization of an as-grown BD-UNCD electrode can enhance the production of H 2 O 2 in a strong acidic environment (pH 0.5) at reductive potentials. It is proposed that the electrogeneration of functional groups at oxidative potentials during preanodization allows for an increased current density during the successive electrolysis at reductive potentials that correlates to an enhanced production of H 2 O 2 . Through potential cycling methods, and by optimizing the applied potentials and duty cycle, the functional groups can be stabilized allowing continuous production of H 2 O 2 more efficiently compared to static potential methods.

  9. Semicontinuous Fenton oxidation of phenol in aqueous solution. A kinetic study.

    PubMed

    Zazo, J A; Casas, J A; Mohedano, A F; Rodriguez, J J

    2009-09-01

    This work investigates the Fenton oxidation of phenol in a semicontinuous reactor where the overall amount of H(2)O(2) is distributed as a continuous feed upon the reaction time. The experiments were carried out at 25 degrees C and atmospheric pressure, with 100mg/L initial phenol concentration and iron dosages from 1 to 100 mg/L. H(2)O(2) aqueous solution was continuously fed during 4h reaction time up to an overall dose varying within the range of 500-5000 mg/L. The results in terms of evolution of phenol, H(2)O(2) and intermediates, as well as TOC abatement were compared with those obtained in conventional batch operation. It was found that the oxidation rates for phenol and intermediates were lower when adding the H(2)O(2) continuously. However, a higher abatement of TOC was reached at the end of the 4-h reaction time, in spite of a similar overall H(2)O(2) consumption. This is the result of a more efficient OH generation throughout the semicontinuous process, favouring the reaction with the organic species and reducing the occurrence of competitive scavenging reactions involving Fe(2+), H(2)O(2) and OH. Two kinetic models were proposed, one for describing the evolution of phenol, aromatics and H(2)O(2) and the other for TOC. The influence of the operating conditions on the kinetic constants was also studied, looking for the optimal conditions in terms of both, environmental and economic points of view.

  10. Continuous/Batch Mg/MgH2/H2O-Based Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew; Huang, Yuhong

    2010-01-01

    A proposed apparatus for generating hydrogen by means of chemical reactions of magnesium and magnesium hydride with steam would exploit the same basic principles as those discussed in the immediately preceding article, but would be designed to implement a hybrid continuous/batch mode of operation. The design concept would simplify the problem of optimizing thermal management and would help to minimize the size and weight necessary for generating a given amount of hydrogen.

  11. Enhanced H2O2 Production at Reductive Potentials from Oxidized Boron-Doped Ultrananocrystalline Diamond Electrodes

    PubMed Central

    2017-01-01

    This work investigates the surface chemistry of H2O2 generation on a boron-doped ultrananocrystalline diamond (BD-UNCD) electrode. It is motivated by the need to efficiently disinfect liquid waste in resource constrained environments with limited electrical power. X-ray photoelectron spectroscopy was used to identify functional groups on the BD-UNCD electrode surfaces while the electrochemical potentials of generation for these functional groups were determined via cyclic voltammetry, chronocoulometry, and chronoamperometry. A colorimetric technique was employed to determine the concentration and current efficiency of H2O2 produced at different potentials. Results showed that preanodization of an as-grown BD-UNCD electrode can enhance the production of H2O2 in a strong acidic environment (pH 0.5) at reductive potentials. It is proposed that the electrogeneration of functional groups at oxidative potentials during preanodization allows for an increased current density during the successive electrolysis at reductive potentials that correlates to an enhanced production of H2O2. Through potential cycling methods, and by optimizing the applied potentials and duty cycle, the functional groups can be stabilized allowing continuous production of H2O2 more efficiently compared to static potential methods. PMID:28471651

  12. Photogeneration of H2O2 in Water-Swollen SPEEK/PVA Polymer Films.

    PubMed

    Lockhart, PaviElle; Little, Brian K; Slaten, B L; Mills, G

    2016-06-09

    Efficient reduction of O2 took place via illumination with 350 nm photons of cross-linked films containing a blend of sulfonated poly(ether etherketone) and poly(vinyl alcohol) in contact with air-saturated aqueous solutions. Swelling of the solid macromolecular matrices in H2O enabled O2 diffusion into the films and also continuous extraction of the photogenerated H2O2, which was the basis for a method that allowed quantification of the product. Peroxide formed with similar efficiencies in films containing sulfonated polyketones prepared from different precursors and the initial photochemical process was found to be the rate-determining step. Generation of H2O2 was most proficient in the range of 4.9 ≤ pH ≤ 8 with a quantum yield of 0.2, which was 10 times higher than the efficiencies determined for solutions of the polymer blend. Increases in temperature as well as [O2] in solution were factors that enhanced the H2O2 generation. H2O2 quantum yields as high as 0.6 were achieved in H2O/CH3CN mixtures with low water concentrations, but peroxide no longer formed when film swelling was suppressed. A mechanism involving reduction of O2 by photogenerated α-hydroxy radicals from the polyketone in competition with second-order radical decay processes explains the kinetic features. Higher yields result from the films because cross-links present in them hinder diffusion of the radicals, limiting their decay and enhancing the oxygen reduction pathway.

  13. Ultramicroelectrode Studies of Self-Terminated Nickel Electrodeposition and Nickel Hydroxide Formation upon Water Reduction.

    PubMed

    Ritzert, Nicole L; Moffat, Thomas P

    2016-12-08

    The interaction between electrodeposition of Ni and electrolyte breakdown, namely the hydrogen evolution reaction (HER) via H 3 O + and H 2 O reduction, was investigated under well-defined mass transport conditions using ultramicroelectrodes (UME's) coupled with optical imaging, generation/collection scanning electrochemical microscopy (G/C-SECM), and preliminary microscale pH measurements. For 5 mmol/L NiCl 2 + 0.1 mol/L NaCl, pH 3.0, electrolytes, the voltammetric current at modest overpotentials, i.e. , between -0.6 V and -1.4 V vs. Ag/AgCl, was distributed between metal deposition and H 3 O + reduction, with both reactions reaching mass transport limited current values. At more negative potentials, an unusual sharp current spike appeared upon the onset of H 2 O reduction that was accompanied by a transient increase in H 2 production. The peak potential of the current spike was a function of both [Ni(H 2 O) 6 ] 2+ (aq) concentration and pH. The sharp rise in current was ascribed to the onset of autocatalytic H 2 O reduction, where electrochemically generated OH - species induce heterogeneous nucleation of Ni(OH) 2(ads) islands, the perimeter of which is reportedly active for H 2 O reduction. As the layer coalesces, further metal deposition is quenched while H 2 O reduction continues albeit at a decreased rate as fewer of the most reactive sites, e.g. , Ni/Ni(OH) 2 island edges, are available. At potentials below -1.5 V vs. Ag/AgCl, H 2 O reduction is accelerated, leading to homogeneous precipitation of bulk Ni(OH) 2 · x H 2 O within the nearly hemispherical diffusion layer of the UME.

  14. Degradation of 2,4-dichlorophenol with a novel TiO2/Ti-Fe-graphite felt photoelectrocatalytic oxidation process.

    PubMed

    Zhao, Bao-xiu; Li, Xiang-zhong; Wang, Peng

    2007-01-01

    Degradation of 2,4-dichlorophenol (2,4-DCP) was studied in a novel three-electrode photoelectrocatalytic (PEC) integrative oxidation process, and the factors influencing the degradation rate, such as applied current, flow speed of O2, pH, adscititious voltage and initial 2,4-DCP concentration were investigated and optimized. H2O2 was produced nearby cathode and Fe2+ continuously generated from Fe anode in solution when current and O2 were applied, so, main reactions, H2O2-assisted TiO2 PEC oxidation and E-Fenton reaction, occurred during degradation of 2,4-DCP in this integrative system. The degradation ratio of 2,4-DCP was 93% in this integrative oxidation process, while it was only 31% in E-Fenton process and 46% in H2O2-assisted TiO2 PEC process. So, it revealed that the degradation of 2,4-DCP was improved greatly by photoelectrical cooperation effect. By the investigation of pH, it showed that this integrative process could work well in a wide pH range from pH 3 to pH 9.

  15. Catalase as a sulfide-sulfur oxido-reductase: An ancient (and modern?) regulator of reactive sulfur species (RSS).

    PubMed

    Olson, Kenneth R; Gao, Yan; DeLeon, Eric R; Arif, Maaz; Arif, Faihaan; Arora, Nitin; Straub, Karl D

    2017-08-01

    Catalase is well-known as an antioxidant dismutating H 2 O 2 to O 2 and H 2 O. However, catalases evolved when metabolism was largely sulfur-based, long before O 2 and reactive oxygen species (ROS) became abundant, suggesting catalase metabolizes reactive sulfide species (RSS). Here we examine catalase metabolism of H 2 S n , the sulfur analog of H 2 O 2 , hydrogen sulfide (H 2 S) and other sulfur-bearing molecules using H 2 S-specific amperometric electrodes and fluorophores to measure polysulfides (H 2 S n ; SSP4) and ROS (dichlorofluorescein, DCF). Catalase eliminated H 2 S n , but did not anaerobically generate H 2 S, the expected product of dismutation. Instead, catalase concentration- and oxygen-dependently metabolized H 2 S and in so doing acted as a sulfide oxidase with a P 50 of 20mmHg. H 2 O 2 had little effect on catalase-mediated H 2 S metabolism but in the presence of the catalase inhibitor, sodium azide (Az), H 2 O 2 rapidly and efficiently expedited H 2 S metabolism in both normoxia and hypoxia suggesting H 2 O 2 is an effective electron acceptor in this reaction. Unexpectedly, catalase concentration-dependently generated H 2 S from dithiothreitol (DTT) in both normoxia and hypoxia, concomitantly oxidizing H 2 S in the presence of O 2 . H 2 S production from DTT was inhibited by carbon monoxide and augmented by NADPH suggesting that catalase heme-iron is the catalytic site and that NADPH provides reducing equivalents. Catalase also generated H 2 S from garlic oil, diallyltrisulfide, thioredoxin and sulfur dioxide, but not from sulfite, metabisulfite, carbonyl sulfide, cysteine, cystine, glutathione or oxidized glutathione. Oxidase activity was also present in catalase from Aspergillus niger. These results show that catalase can act as either a sulfide oxidase or sulfur reductase and they suggest that these activities likely played a prominent role in sulfur metabolism during evolution and may continue do so in modern cells as well. This also appears to be the first observation of catalase reductase activity independent of peroxide dismutation. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Retino-protective effect of Bucida buceras against oxidative stress induced by H2O2 in human retinal pigment epithelial cells line.

    PubMed

    Iloki-Assanga, Simon Bernard; Lewis-Luján, Lidianys María; Fernández-Angulo, Daniela; Gil-Salido, Armida Andrea; Lara-Espinoza, Claudia Lizeth; Rubio-Pino, José Luis

    2015-07-29

    Reactive Oxygen Species (ROS) impair the physiological functions of Retinal Pigment Epithelial (RPE) cells, which are known as one major cause of age-related macular degeneration and retinopathy diseases. The purpose of this study is to explore the cytoprotective effects of the antioxidant Bucida buceras extract in co-treatment with hydrogen peroxide (H2O2) delivery as a single addition or with continuous generation using glucose oxidase (GOx) in ARPE-19 cell cultures. The mechanism of Bucida buceras extract is believed to be associated with their antioxidant capacity to protect cells against oxidative stress. A comparative oxidative stress H2O2-induced was performed by addition and enzymatic generation using glucose oxidase on human retinal pigment epithelial cells line. H2O2-induced injury was measured by toxic effects (cell death and apoptotic pathway) and intracellular redox status: glutathione (GSH), antioxidant enzymes (catalase and glutathione peroxidase) and reducing power (FRAP). The retino-protective effect of co-treatment with Bucida buceras extract on H2O2-induced human RPE cell injury was investigated by cell death (MTT assay) and oxidative stress biomarkers (H2O2, GSH, CAT, GPx and FRAP). Bucida buceras L. extract is believed to be associated with the ability to prevent cellular oxidative stress. When added as a pulse, H2O2 is rapidly depleted and the cytotoxicity analyses show that cells can tolerate short exposure to high peroxide doses delivered as a pulse but are susceptible to lower chronic doses. Co-treatment with Bucida buceras was able to protect the cells against H2O2-induced injury. In addition to preventing cell death treatment with antioxidant plant could also reverse the significant decrease in GSH level, catalase activity and reducing power caused by H2O2. These findings suggest that Bucida buceras could protect RPE against ocular pathogenesis associated with oxidative stress induced by H2O2-delivered by addition and enzymatic generation.

  17. ESR investigation of ROS generated by H2O2 bleaching with TiO2 coated HAp.

    PubMed

    Saita, Makiko; Kobayashi, Kyo; Kobatashi, Kyou; Yoshino, Fumihiko; Hase, Hiriko; Nonami, Toru; Kimoto, Katsuhiko; Lee, Masaichi-Chang-il

    2012-01-01

    It is well known that clinical bleaching can be achieved with a solution of 30% hydrogen peroxide (H2O2) or H2O2/titanium dioxide (TiO2) combination. This study examined the hypothesis that TiO2 coated with hydroxyapatite (HAp-TiO2) can generate reactive oxygen species (ROS). ROS are generated via photocatalysis using electron spin resonance (ESR). The bleaching properties of HAp-TiO2 in the presence of H2O2 can be measured using hematoporphyrin litmus paper and extracted teeth. We demonstrate that superoxides (O2(•-)) and hydroxyl radicals (HO(•)) can be generated through excitation of anatase TiO2, rutile TiO2, anatase HAp-TiO2, and rutile HAp-TiO2 in the presence of H2O2. The combination of R HAp-TiO2 with H2O2 produced the highest level of HO(•) generation and the most marked bleaching effects of all the samples. The superior bleaching effects exhibited by R HAp-TiO2 with H2O2 suggest that this combination may lead to novel methods for the clinical application of bleaching treatments.

  18. Multi-stage microbial system for continuous hydrogen production

    DOEpatents

    Kosourov, Sergey; Ghirardi, Maria L.; Seibert, Michael

    2010-06-08

    A method of using sequential chemostat culture vessels to provide continuous H.sub.2 production, in which photosynthetic O.sub.2 evolution and H.sub.2 photoproduction are separated physically into two separate bioreactors, comprising: a) growing a microorganism culture able to continuously generate H.sub.2 by photosynthetically producing cells at about the early-to-late log state in a first photobioreactor operating as a sulfur chemostat under aerobic and/or conditions; b) continuously feeding cells from the first photobioreactor to a second photobioreactor operating under anaerobic conditions and sulfur deprivation conditions resulting from constant uptake of sulfate in the first bioreactor and a low rate of culture flow between the first and second bioreactors, for induction of hydrogenase and H.sub.2 photoproduction to allow for continuous cultivation of the microorganism's cells in the first photobioreactor and constant H.sub.2 production in the second photobioreactor, and c) H.sub.2 gas from the second photobioreactor.

  19. Continuous flow reduction of artemisinic acid utilizing multi-injection strategies-closing the gap towards a fully continuous synthesis of antimalarial drugs.

    PubMed

    Pieber, Bartholomäus; Glasnov, Toma; Kappe, C Oliver

    2015-03-09

    One of the rare alternative reagents for the reduction of carbon-carbon double bonds is diimide (HN=NH), which can be generated in situ from hydrazine hydrate (N2H4⋅H2O) and O2. Although this selective method is extremely clean and powerful, it is rarely used, as the rate-determining oxidation of hydrazine in the absence of a catalyst is relatively slow using conventional batch protocols. A continuous high-temperature/high-pressure methodology dramatically enhances the initial oxidation step, at the same time allowing for a safe and scalable processing of the hazardous reaction mixture. Simple alkenes can be selectively reduced within 10-20 min at 100-120 °C and 20 bar O2 pressure. The development of a multi-injection reactor platform for the periodic addition of N2H4⋅H2O enables the reduction of less reactive olefins even at lower reaction temperatures. This concept was utilized for the highly selective reduction of artemisinic acid to dihydroartemisinic acid, the precursor molecule for the semisynthesis of the antimalarial drug artemisinin. The industrially relevant reduction was achieved by using four consecutive liquid feeds (of N2H4⋅H2O) and residence time units resulting in a highly selective reduction within approximately 40 min at 60 °C and 20 bar O2 pressure, providing dihydroartemisinic acid in ≥93% yield and ≥95% selectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Oxygen Reduction Reaction for Generating H2 O2 through a Piezo-Catalytic Process over Bismuth Oxychloride.

    PubMed

    Shao, Dengkui; Zhang, Ling; Sun, Songmei; Wang, Wenzhong

    2018-02-09

    Oxygen reduction reaction (ORR) for generating H 2 O 2 through green pathways have gained much attention in recent years. Herein, we introduce a piezo-catalytic approach to obtain H 2 O 2 over bismuth oxychloride (BiOCl) through an ORR pathway. The piezoelectric response of BiOCl was directly characterized by piezoresponse force microscopy (PFM). The BiOCl exhibits efficient catalytic performance for generating H 2 O 2 (28 μmol h -1 ) only from O 2 and H 2 O, which is above the average level of H 2 O 2 produced by solar-to-chemical processes. A piezo-catalytic mechanism was proposed: with ultrasonic waves, an alternating electric field will be generated over BiOCl, which can drive charge carriers (electrons) to interact with O 2 and H 2 O, then to form H 2 O 2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Photochemical generation and decay kinetics of superoxide and hydrogen peroxide in the presence of standard humic and fulvic acids.

    PubMed

    Fujii, Manabu; Otani, Erika

    2017-10-15

    Reactive oxygen species (ROS) such as superoxide (O 2 - ) and hydrogen peroxide (H 2 O 2 ) can be photochemically generated in aerobic waters containing natural organic matters (NOM) such as humic substances (HS). To investigate the effect of NOM molecular composition on the kinetics and mechanism of ROS transformation, photochemical O 2 - generation and subsequent H 2 O 2 production via catalyzed and uncatalyzed (bimolecular dismutation) O 2 - decay were examined in the presence of 14 types of HS (pH 8.0). By using chemiluminescence and colorimetric techniques, the photochemical O 2 - generation rate, quasi-steady-state O 2 - concentration, catalyzed and uncatalyzed O 2 - decay rates, and H 2 O 2 production rate were found to vary significantly by factors of 72, 18, 14, 320, and 7.7, respectively, depending on the type of HS and degree of photolysis. For more than half of the HS samples, both uncatalyzed and catalyzed reductive decay of photogenerated O 2 - were significantly involved in H 2 O 2 generation, and their rates were comparable to those for O 2 - oxidative decay in which H 2 O 2 is not generated. These results suggest that the chemical quality of HS influenced the H 2 O 2 generation pathway. Correlation analyses indicated that rate constants associated with HS-mediated photochemical O 2 - and H 2 O 2 generation are significantly correlated with HS molecular composition including total and aromatic C contents. In particular, practical indices representing NOM aromaticity including specific ultraviolet absorbance (SUVA) can be useful for predicting NOM-mediated ROS generation and decay kinetics. Overall, the present work suggests that NOM concentration and its quality influence NOM-mediated ROS dynamics in aqueous systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Hierarchical Heterostructure of ZnO@TiO2 Hollow Spheres for Highly Efficient Photocatalytic Hydrogen Evolution

    NASA Astrophysics Data System (ADS)

    Li, Yue; Wang, Longlu; Liang, Jian; Gao, Fengxian; Yin, Kai; Dai, Pei

    2017-09-01

    The rational design and preparation of hierarchical nanoarchitectures are critical for enhanced photocatalytic hydrogen evolution reaction (HER). Herein, well-integrated hollow ZnO@TiO2 heterojunctions were obtained by a simple hydrothermal method. This unique hierarchical heterostructure not only caused multiple reflections which enhances the light absorption but also improved the lifetime and transfer of photogenerated charge carriers due to the potential difference generated on the ZnO-TiO2 interface. As a result, compared to bare ZnO and TiO2, the ZnO@TiO2 composite photocatalyst exhibited higher hydrogen production rated up to 0.152 mmol h-1 g-1 under simulated solar light. In addition, highly repeated photostability was also observed on the ZnO@TiO2 composite photocatalyst even after a continuous test for 30 h. It is expected that this low-cost, nontoxic, and readily available ZnO@TiO2 catalyst could exhibit promising potential in photocatalytic H2 to meet the future fuel needs.

  3. Supramolecular architectures in Co(II) and Cu(II) complexes with thiophene-2-carboxylate and 2-amino-4,6-dimethoxypyrimidine ligands.

    PubMed

    Karthikeyan, Ammasai; Thomas Muthiah, Packianathan; Perdih, Franc

    2016-05-01

    The coordination chemistry of mixed-ligand complexes continues to be an active area of research since these compounds have a wide range of applications. Many coordination polymers and metal-organic framworks are emerging as novel functional materials. Aminopyrimidine and its derivatives are flexible ligands with versatile binding and coordination modes which have been proven to be useful in the construction of organic-inorganic hybrid materials and coordination polymers. Thiophenecarboxylic acid, its derivatives and their complexes exhibit pharmacological properties. Cobalt(II) and copper(II) complexes of thiophenecarboxylate have many biological applications, for example, as antifungal and antitumor agents. Two new cobalt(II) and copper(II) complexes incorporating thiophene-2-carboxylate (2-TPC) and 2-amino-4,6-dimethoxypyrimidine (OMP) ligands have been synthesized and characterized by X-ray diffraction studies, namely (2-amino-4,6-dimethoxypyrimidine-κN)aquachlorido(thiophene-2-carboxylato-κO)cobalt(II) monohydrate, [Co(C5H3O2S)Cl(C6H9N3O2)(H2O)]·H2O, (I), and catena-poly[copper(II)-tetrakis(μ-thiophene-2-carboxylato-κ(2)O:O')-copper(II)-(μ-2-amino-4,6-dimethoxypyrimidine-κ(2)N(1):N(3))], [Cu2(C5H3O2S)4(C6H9N3O2)]n, (II). In (I), the Co(II) ion has a distorted tetrahedral coordination environment involving one O atom from a monodentate 2-TPC ligand, one N atom from an OMP ligand, one chloride ligand and one O atom of a water molecule. An additional water molecule is present in the asymmetric unit. The amino group of the coordinated OMP molecule and the coordinated carboxylate O atom of the 2-TPC ligand form an interligand N-H...O hydrogen bond, generating an S(6) ring motif. The pyrimidine molecules also form a base pair [R2(2)(8) motif] via a pair of N-H...N hydrogen bonds. These interactions, together with O-H...O and O-H...Cl hydrogen bonds and π-π stacking interactions, generate a three-dimensional supramolecular architecture. The one-dimensional coordination polymer (II) contains the classical paddle-wheel [Cu2(CH3COO)4(H2O)2] unit, where each carboxylate group of four 2-TPC ligands bridges two square-pyramidally coordinated Cu(II) ions and the apically coordinated OMP ligands bridge the dinuclear copper units. Each dinuclear copper unit has a crystallographic inversion centre, whereas the bridging OMP ligand has crystallographic twofold symmetry. The one-dimensional polymeric chains self-assemble via N-H...O, π-π and C-H...π interactions, generating a three-dimensional supramolecular architecture.

  4. Detection of hydrogen peroxide based on long-path absorption spectroscopy using a CW EC-QCL

    NASA Astrophysics Data System (ADS)

    Sanchez, N. P.; Yu, Y.; Dong, L.; Griffin, R.; Tittel, F. K.

    2016-02-01

    A sensor system based on a CW EC-QCL (mode-hop-free range 1225-1285 cm-1) coupled with long-path absorption spectroscopy was developed for the monitoring of gas-phase hydrogen peroxide (H2O2) using an interference-free absorption line located at 1234.055 cm-1. Wavelength modulation spectroscopy (WMS) with second harmonic detection was implemented for data processing. Optimum levels of pressure and modulation amplitude of the sensor system led to a minimum detection limit (MDL) of 25 ppb using an integration time of 280 sec. The selected absorption line for H2O2, which exhibits no interference from H2O, makes this sensor system suitable for sensitive and selective monitoring of H2O2 levels in decontamination and sterilization processes based on Vapor Phase Hydrogen Peroxide (VPHP) units, in which a mixture of H2O and H2O2 is generated. Furthermore, continuous realtime monitoring of H2O2 concentrations in industrial facilities employing this species can be achieved with this sensing system in order to evaluate average permissible exposure levels (PELs) and potential exceedances of guidelines established by the US Occupational Safety and Health Administration for H2O2.

  5. Mechanism of action of additives in chemical vapor generation of hydrogen selenide: Iodide and thiocyanate

    NASA Astrophysics Data System (ADS)

    Pitzalis, Emanuela; Onor, Massimo; Spiniello, Roberto; Braz, Carlos Eduardo Mendes; D'Ulivo, Alessandro

    2018-07-01

    The chemical vapor generation of H2Se has been investigated in the presence and in the absence of either NaI or NaSCN as additives (0.5 mol L-1), in HClO4 media (0.1-5.0 mol L-1) and using a low concentration of NaBH4 (0.02 mol L-1). The enhancement of generation efficiency of H2Se produced by iodide and thiocyanate was measured by a continuous flow reaction system coupled with a miniature argon‑hydrogen diffusion flame and atomic absorption detection. The chemifold of the continuous flow reactor was designed in order to change the mixing sequence and the interaction time of the reagents. By this way it has been possible to evaluate the contribution of additive‑selenium and additive-borane species to the mechanism producing the increase of generation efficiency of H2Se. Both the iodide complexes of selenium and borane contribute to enhance generation efficiency of H2Se, whereas the thiocyanate complexes of selenium rather than thiocyanate-borane complexes play a major role in the enhancement of the efficiency. At elevated acidities (2 < [H+] < 5 mol L-1), only thiocyanate continues to maintain its properties to increase H2Se generation efficiency while iodide causes a marked signal depression unless its addition is performed after the starting of SeIV- [BH4-] reaction with an appropriate time delay. Both iodide and thiocyanate caused marked depression of H2Se generation when NaBH4 was replaced by the amine boranes, NH3-BH3 and tert-ButylNH2-BH3.

  6. Degradation of nitrobenzene wastewater in an acidic environment by Ti(IV)/H2O2/O3 in a rotating packed bed.

    PubMed

    Yang, Peizhen; Luo, Shuai; Liu, Youzhi; Jiao, Weizhou

    2018-06-23

    The rotating packed bed (RPB) as a continuous flow reactor performs very well in degradation of nitrobenzene wastewater. In this study, acidic nitrobenzene wastewater was degraded using ozone (O 3 ) combined with hydrogen peroxide and titanium ions (Ti(IV)/H 2 O 2 /O 3 ) or using only H 2 O 2 /O 3 in a RPB. The degradation efficiency of nitrobenzene by Ti(IV)/H 2 O 2 /O 3 is roughly 16.84% higher than that by H 2 O 2 /O 3 , and it reaches as high as 94.64% in 30 min at a H 2 O 2 /O 3 molar ratio of 0.48. It is also found that the degradation efficiency of nitrobenzene is significantly affected by the high gravity factor, H 2 O 2 /O 3 molar ratio, and Ti(IV) concentration, and it reaches a maximum at a high gravity factor of 40, a Ti(IV) concentration of 0.50 mmol/L, a pH of 4.0, a H 2 O 2 /O 3 molar ratio of 0.48, a liquid flow rate of 120 L/h, and an initial nitrobenzene concentration of 1.22 mmol/L. Both direct ozonation and indirect ozonation are involved in the reaction of O 3 with organic pollutants. The indirect ozonation due to the addition of different amounts of tert-butanol (·OH scavenger) in the system accounts for 84.31% of the degradation efficiency of nitrobenzene, indicating that the nitrobenzene is dominantly oxidized by ·OH generated in the RPB-Ti(IV)/H 2 O 2 /O 3 process. Furthermore, the possible oxidative degradation mechanisms are also proposed to better understand the role of RPB in the removal of pollutants. Graphical abstract ᅟ.

  7. The reactions of HO2 with CO and NO and the reaction of O(1D) with H2O

    NASA Technical Reports Server (NTRS)

    Simonaitis, R.; Heicklen, J.

    1973-01-01

    HO2 radicals were generated by the photolysis of N2O at 2139 A in the presence of excess H2O or H2 and smaller amounts of CO and O2. The O(1D) atoms produced from the photolysis of N2O to give HO radicals or H2 to give HO + H. With H2O two HO radicals are produced for each O(1D) removed low pressures (i.e. approximately 20 torr H2O), but the HO yield drops as the pressure is raised. This drop is attributed to the insertion reaction: O(1D) + H2O + M yields H2O2 +M. The HO radicals generated can react with either CO or H2 to produce H atoms which then add to O2 to produce HO2. Two reactions are given for the reactions of the HO radicals, in the absence of NO.

  8. Integrated chemical treatment of municipal wastewater using waste hydrogen peroxide and ultraviolet light

    NASA Astrophysics Data System (ADS)

    Bhatti, Zulfiqar Ahmed; Mahmood, Qaisar; Raja, Iftikhar Ahmad; Malik, Amir Haider; Rashid, Naim; Wu, Donglei

    Dilemmas like water shortage, rapid industrialization, growing human population and related issues have seriously affected human health and environmental sustainability. For conservation and sustainable use of our water resources, innovative methods for wastewater treatment are continuously being explored. Advance Oxidation Processes (AOPs) show a promising approach to meet specific objectives of municipal wastewater treatment (MWW). The MWW samples were pretreated with Al 2(SO 4) 4·8H 2O (Alum) at different doses 4, 8, 12-50 mg/L to enhance the sedimentation. The maximum COD removal was observed at alum treatments in range of 28-32 mg/L without increasing total dissolved solids (TDS). TDS were found to increase when the alum dose was increased from 32-40 mg/L. In the present study, the optimum alum dose of 30 mg/L for 3 h of sedimentation and subsequent integrated H 2O 2/UV treatment was applied (using 2.5 mL/L of 40% waste H 2O 2 and 35% fresh H 2O 2 separately). Organic and inorganic pollutants, contributing towards chemical oxygen demand (COD), biological oxygen demand (BOD), turbidity and total dissolved solids were degraded by H 2O 2/UV. About 93% COD, 90% BOD and 83% turbidity reduction occurred when 40% waste H 2O 2 was used. When using fresh H 2O 2, 63% COD, 68% BOD and 86% turbidity reduction was detected. Complete disinfection of coliform bacteria occurred by using 40% H 2O 2/UV. The most interesting part of this research was to compare the effectiveness of waste H 2O 2 with fresh H 2O 2. Waste H 2O 2 generated from an industrial process of disinfection was found more effective in the treatment of MWW than fresh 35% H 2O 2.

  9. Tuning the Reversibility of Mg Anodes via Controlled Surface Passivation by H 2O/Cl – in Organic Electrolytes

    DOE PAGES

    Connell, Justin G.; Genorio, Bostjan; Lopes, Pietro Papa; ...

    2016-10-17

    Developing a new generation of battery chemistries is a critical challenge to moving beyond current Li-ion technologies. In this work, we introduce a surface-science-based approach for understanding the complex phenomena controlling the reversibility of Mg anodes for Mg-ion batteries. In addition, we identify the profound impact of trace levels of H 2O (≤3 ppm) on the kinetics of Mg deposition and determine that passive films of MgO and Mg(OH) 2 are formed only after Mg deposition ceases, rather than continuously during Mg reduction. We also find that Cl – inhibits passivation through the formation of adsorbed Cl – (Mg–Cl(ad)) and/ormore » MgCl 2 on the surface, as well as through a dynamic competition with H 2O in the double layer. In conclusion, this surface-science-based approach goes well beyond Mg anodes, highlighting the need for more in-depth understanding of electrolyte chemistries before a new generation of efficient and reversible battery technologies can be realized.« less

  10. NASA Tech Briefs, December 2010

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Topics include: Coherent Frequency Reference System for the NASA Deep Space Network; Diamond Heat-Spreader for Submillimeter-Wave Frequency Multipliers; 180-GHz I-Q Second Harmonic Resistive Mixer MMIC; Ultra-Low-Noise W-Band MMIC Detector Modules; 338-GHz Semiconductor Amplifier Module; Power Amplifier Module with 734-mW Continuous Wave Output Power; Multiple Differential-Amplifier MMICs Embedded in Waveguides; Rapid Corner Detection Using FPGAs; Special Component Designs for Differential-Amplifier MMICs; Multi-Stage System for Automatic Target Recognition; Single-Receiver GPS Phase Bias Resolution; Ultra-Wideband Angle-of-Arrival Tracking Systems; Update on Waveguide-Embedded Differential MMIC Amplifiers; Automation Framework for Flight Dynamics Products Generation; Product Operations Status Summary Metrics; Mars Terrain Generation; Application-Controlled Parallel Asynchronous Input/Output Utility; Planetary Image Geometry Library; Propulsion Design With Freeform Fabrication (PDFF); Economical Fabrication of Thick-Section Ceramic Matrix Composites; Process for Making a Noble Metal on Tin Oxide Catalyst; Stacked Corrugated Horn Rings; Refinements in an Mg/MgH2/H2O-Based Hydrogen Generator; Continuous/Batch Mg/MgH2/H2O-Based Hydrogen Generator; Strain System for the Motion Base Shuttle Mission Simulator; Ko Displacement Theory for Structural Shape Predictions; Pyrotechnic Actuator for Retracting Tubes Between MSL Subsystems; Surface-Enhanced X-Ray Fluorescence; Infrared Sensor on Unmanned Aircraft Transmits Time-Critical Wildfire Data; and Slopes To Prevent Trapping of Bubbles in Microfluidic Channels.

  11. Pd-catalytic in situ generation of H2O2 from H2 and O2 produced by water electrolysis for the efficient electro-fenton degradation of rhodamine B.

    PubMed

    Yuan, Songhu; Fan, Ye; Zhang, Yucheng; Tong, Man; Liao, Peng

    2011-10-01

    A novel electro-Fenton process was developed for wastewater treatment using a modified divided electrolytic system in which H2O2 was generated in situ from electro-generated H2 and O2 in the presence of Pd/C catalyst. Appropriate pH conditions were obtained by the excessive H+ produced at the anode. The performance of the novel process was assessed by Rhodamine B (RhB) degradation in an aqueous solution. Experimental results showed that the accumulation of H2O2 occurred when the pH decreased and time elapsed. The maximum concentration of H2O2 reached 53.1 mg/L within 120 min at pH 2 and a current of 100 mA. Upon the formation of the Fenton reagent by the addition of Fe2+, RhB degraded completely within 30 min at pH 2 with a pseudo first order rate constant of 0.109 ± 0.009 min(-1). An insignificant decline in H2O2 generation and RhB degradation was found after six repetitions. RhB degradation was achieved by the chemisorption of H2O2 on the Pd/C surface, which subsequently decomposed into •OH upon catalysis by Pd0 and Fe2+. The catalytic decomposition of H2O2 to •OH by Fe2+ was more powerful than that by Pd0, which was responsible for the high efficiency of this novel electro-Fenton process.

  12. Reinvestigation of the role of humic acid in the oxidation of phenols by permanganate.

    PubMed

    Sun, Bo; Zhang, Jing; Du, Juanshan; Qiao, Junlian; Guan, Xiaohong

    2013-12-17

    Humic acid (HA) affects the oxidation of phenolic compounds by permanganate, but the role of HA in the oxidation of phenols by permanganate is far from clear. The mechanisms by which HA influences the oxidation of phenols by permanganate at pH 5.0-9.0 were systematically examined in this study. The presence of HA enhanced the oxidation of phenolic compounds by permanganate at pH ≤7.0, with greater enhancement at lower pH values. The presence of HA facilitated the in situ formation of MnO2, implying the importance of reductive moieties of HA in this reaction. This was supported by the finding that HA preoxidized by ozone showed enhancements in the oxidation of phenols by permanganate at pH 5.0-6.0 smaller than those seen with pristine HA. The good correlation between HA-induced improvement in the oxidation rates of phenols by permanganate and those by preformed colloidal MnO2 at pH 5.0 confirmed that contribution of MnO2 formed in situ for the oxidation of phenols under this condition. The differences in the influence of Na2S2O3 and HA on the oxidation of phenol by permanganate revealed the fact that the continuous generation of fresh MnO2 and stabilization of the MnO2 formed in situ by HA were crucial for the HA-induced enhancement of the oxidation of phenols by permanganate at pH ≤7.0. The consumption of permanganate by HA and the poor oxidation ability of in situ-generated MnO2 under alkaline conditions resulted in the slightly negative effect of HA on the degradation rates of phenols by permanganate at pH >7.0.

  13. Capacity and recycling of polyoxometalate applied in As(III) oxidation by Fe(II)-Amended zero-valent aluminum.

    PubMed

    Hsu, Liang-Ching; Cho, Yen-Lin; Liu, Yu-Ting; Tzou, Yu-Min; Teah, Heng Yi

    2018-06-01

    Arsenic remediation is often initiated by oxidizing As(III) to As(V) to alleviate its toxicity and mobility. Due to the easy availability, zero-valent Al (ZVAl) like Al can was considered as potential alternatives to facilitate As(III) oxidation. This study determined the capability and recycling of polyoxometalate (POM) to catalyze As(III) oxidation in Fe(II)-amended ZVAl systems. POM acquired electrons from ZVAl more effectively at pH 1 than at pH 2. While 76% of the reduced POM [POM(e - )] reacted with O 2(g) to generate H 2 O 2 at pH 1, only 60% of POM(e - ) was used to produce H 2 O 2 at pH 2. The remaining POM(e - ) was oxidized by the generated H 2 O 2 . Such additional consumption of POM(e - ) and H 2 O 2 led to the incomplete As(III) oxidation in the system without residual ZVAl and emphasized the need for a continuous electron supply from ZVAl to compensate the depletion of POM(e - ). After the hydrolyzation at pH 6.0, the XANES data evidenced that not only As(V) but WO 4 released from the POM retained on surfaces of Al/Fe hydroxides. The competition for sorption sites on Al/Fe hydroxides between As(V) and WO 4 led to the incomplete As removal. Despite the loss of WO 4 , the POM re-polymerized at pH 1 still showed the comparable capability to catalyze As(III) oxidation with original POM. This study revealed electron transfer pathways from ZVAl to As(III) as catalyzed by POM and evidenced the effective POM recycling after As removal, which lowers the cost of POM application and turns the ZVAl/Fe(II)/POM/O 2 system into a practical strategy for As remediation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Use of Both Anode and Cathode Reactions in Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Brillas, Enric; Sirés, Ignasi; Cabot, Pere LluíS.

    Here, we describe the fundamentals, laboratory experiments, and environmental applications of indirect electrooxidation methods based on H2O2 electrogeneration such as electro-Fenton, photoelectro-Fenton and peroxicoagulation for the treatment of acidic wastewaters containing toxic and recalcitrant organics. These methods are electrochemical advanced oxidation processes that can be used in divided and undivided electrolytic cells in which pollutants are oxidized by hydroxyl radical (•OH) produced from anode and/or cathode reactions. H2O2 is generated from the two-electron reduction of O2 at reticulated vitreous carbon, graphite, carbon-felt, and O2-diffusion cathodes. The most usual method is electro-Fenton where Fe2 + added to the wastewater reacts with electrogenerated H2O2 to yield •OH and Fe3 + from Fenton's reaction. An advantage of this technique is that Fe2 + is continuously regenerated from cathodic reduction of Fe3 +. The characteristics of different electro-Fenton systems where pollutants are simultaneously destroyed by •OH formed in the medium from Fenton's reaction and at the anode surface from water oxidation are explained. The effect of the anode [Pt or boron-doped diamond (BDD)] and cathode (carbon-felt or O2-diffusion) on the degradation rate of persistent industrial by-products, herbicides, pharmaceuticals, dyes, etc. is examined. Initial pollutants react much more rapidly with •OH formed in the medium and their degradation sequences are discussed from aromatic intermediates and finally short aliphatic acids are detected. The synergetic positive catalytic effect of Cu2 + on the electro-Fenton process is evidenced. The photoelectro-Fenton method involves the irradiation of the wastewater with UVA light that rapidly photodecomposes complexes of Fe3 + with final carboxylic acids enhancing total decontamination. The peroxicoagulation method uses a sacrificial Fe anode that is continuously oxidized to Fe2 + and organics are either mineralized with •OH formed from both electrogenerated Fe2 + and H2O2 or removed by parallel coagulation with the FeOH3 precipitate formed from the excess of Fe3 + generated from Fenton's reaction.

  15. Moisture effects on greenhouse gases generation in nitrifying gas-phase compost biofilters.

    PubMed

    Maia, Guilherme D N; Day, George B; Gates, Richard S; Taraba, Joseph L; Coyne, Mark S

    2012-06-01

    Gas-phase compost biofilters are extensively used in concentrated animal feeding operations to remove odors and, in some cases, ammonia from air sources. The expected biochemical pathway for these predominantly aerobic systems is nitrification. However, non-uniform media with low oxygen levels can shift biofilter microbial pathways to denitrification, a source of greenhouse gases. Several factors contribute to the formation of anoxic/anaerobic zones: media aging, media and particle structure, air velocity distribution, compaction, biofilm thickness, and moisture content (MC) distribution. The present work studies the effects of media moisture conditions on ammonia (NH(3)) removal and greenhouse gas generation (nitrous oxide, N(2)O and methane, CH(4)) for gas-phase compost biofilters subject to a 100-day controlled drying process. Continuous recordings were made for the three gases and water vapor (2.21-h sampling cycle, each cycle consisted of three gas species, and water vapor, for a total of 10,050 data points). Media moisture conditions were classified into three corresponding media drying rate (DR) stages: Constant DR (wetter media), falling DR, and stable-dry system. The first-half of the constant DR period (0-750 h; MC=65-52%, w.b.) facilitated high NH(3) removal rates, but higher N(2)O generation and no CH(4) generation. At the drier stages of the constant DR (750-950 h; MC=52-48%, w.b.) NH(3) removal remained high but N(2)O net generation decreased to near zero. In the falling DR stage (1200-1480 h; MC=44-13%) N(2)O generation decreased, CH(4) increased, and NH(3) was no longer removed. No ammonia removal or greenhouse gas generation was observed in the stable-dry system (1500-2500 h; MC=13%). These results indicate that media should remain toward the drier region of the constant DR (in close proximity to the falling DR stage; MC=50%, approx.), to maintain high levels of NH(3) removal, reduced levels of N(2)O generation, and nullify levels of CH(4) generation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Self-Assembled Nano-FeO(OH)/Reduced Graphene Oxide Aerogel as a Reusable Catalyst for Photo-Fenton Degradation of Phenolic Organics.

    PubMed

    Liu, Renlan; Xu, Yiming; Chen, Baoliang

    2018-06-19

    Fabrication of visible-light-responsive, macroscopic photo-Fenton catalysts is crucial for wastewater treatment. Here, we report a facile fabrication method for nano-FeO(OH)/reduced graphene oxide aerogels (FeO(OH)-rGA) equipped with a stable macrostructure and a high efficiency for catalytic degradation of phenolic organics. The structure of FeO(OH)/rGA was characterized by SEM, TEM, XPS, Raman analysis. The FeO(OH) is the main constituent of ferrihydrite, which dispersed in the graphene aerogel with a particle size of ∼3 nm can efficiently activate H 2 O 2 to generate abundant •OH. The excellent performance of the FeO(OH)/rGO aerogel was specifically exhibited by the outstanding catalyst activity, sustained mineralization and eminent reaction rate for phenolic organics. A synergy effect between FeO(OH) and graphene aerogel was observed, which came from the extensive electron transfer channels and active sites of the 3D graphene aerogel and the visible-light-activated FeO(OH) and H 2 O 2 consistently producing •OH. The FeO(OH)/rGA could be reused for 10 cycles without a reduction in the catalytic activity and had less iron leaching, which guarantees that the active ingredient remains in the gel. Moreover, the FeO(OH)/rGA induced photo-Fenton degradation of 4-chlorophenol under near neutral pH conditions because the tight connection of FeO(OH) with the rGO aerogel results in less iron leaching and prevents the generation of Fe(OH) 3 . The 4-chlorophenol was completely removed in 80 min with a 0.074 min -1 rate constant in the FeO(OH)-rGA/H 2 O 2 photo-Fenton system under visible-light irradiation, and mineralization rate was up to 80% after 6 h. Oxidative •OH can continuously attack 4-chlorophenol, 2,4,6-trichlorophenol and bisphenol A without selectivity. These results lay a foundation for highly effective and durable photo-Fenton degradation of phenolic organics at near neutral pH and sufficient activation of H 2 O 2 for future applications.

  17. High Throughput Discovery of Solar Fuels Photoanodes in the CuO-V 2 O 5 System

    DOE PAGES

    Zhou, Lan; Yan, Qimin; Shinde, Aniketa; ...

    2015-08-26

    Solar photoelectrochemical generation of fuel is a promising energy technology yet the lack of an efficient, robust photoanode remains a primary materials challenge in the development and deployment of solar fuels generators. Metal oxides comprise the most promising class of photoanode materials, but no known material meets the demanding requirements of low band gap energy, photoelectrocatalysis of the oxygen evolution reaction, and stability under highly oxidizing conditions. Here, we report the identification of new photoelectroactive materials through a strategic combination of combinatorial materials synthesis, high-throughput photoelectrochemistry, optical spectroscopy, and detailed electronic structure calculations. We identify 4 photoelectrocatalyst phases - α-Cumore » 2V 2O 7, β-Cu 2V 2O 7, γ-Cu 3V 2O 8, and Cu 11V 6O 26 - with band gap energy at or below 2 eV. The photoelectrochemical properties and 30-minute stability of these copper vanadate phases are demonstrated in 3 different aqueous electrolytes (pH 7, pH 9, and pH 13), with select combinations of phase and electrolyte exhibiting unprecedented photoelectrocatalytic stability for metal oxides with sub-2 eV band gap. Through integration of experimental and theoretical techniques, we determine new structure-property relationships and establish CuO-V 2O 5 as the most prominent composition system for OER photoelectrocatalysts, providing crucial information for materials genomes initiatives and paving the way for continued development of solar fuels photoanodes.« less

  18. Formation of hydrogen peroxide in cell culture media by apple polyphenols and its effect on antioxidant biomarkers in the colon cell line HT-29.

    PubMed

    Bellion, Phillip; Olk, Melanie; Will, Frank; Dietrich, Helmut; Baum, Matthias; Eisenbrand, Gerhard; Janzowski, Christine

    2009-10-01

    Beneficial health effects of diets containing fruits have partly been attributed to polyphenols which display a spectrum of bioactive effects, including antioxidant activity. However, polyphenols can also exert prooxidative effects in vitro. In this study, polyphenol-mediated hydrogen peroxide (H(2)O(2)) formation was determined after incubation of apple juice extracts (AEs) and polyphenols in cell culture media. Effects of extracellular H(2)O(2 )on total glutathione (tGSH; =GSH + GSSG) and cellular reactive oxygen species (ROS) level of HT-29 cells were studied by coincubation +/- catalase (CAT). AEs ( > or =30 microg/mL) significantly generated H(2)O(2) in DMEM, depending on their composition. Similarly, H(2)O(2) was measured for individual apple polyphenols/degradation products (phenolic acids > epicatechin, flavonols > dihydrochalcones). Highest concentrations were generated by compounds bearing the o-catechol moiety. H(2)O(2) formation was found to be pH dependent; addition of CAT caused a complete decomposition of H(2)O(2) whereas superoxide dismutase was less/not effective. At incubation of HT-29 cells with quercetin (1-100 microM), generated H(2)O(2) slightly contributed to antioxidant cell protection by modulation of tGSH- and ROS-level. In conclusion, H(2)O(2) generation in vitro by polyphenols has to be taken into consideration when interpreting results of such cell culture experiments. Unphysiologically high polyphenol concentrations, favoring substantial H(2)O(2 )formation, are not expected to be met in vivo, even under conditions of high end nutritional uptake.

  19. Phytotoxic triterpene saponis from Bellis longifolia, an endemic plant of Crete

    USDA-ARS?s Scientific Manuscript database

    In continuation of our research on discovery of bioactive compounds from plants we have screened extracts of 65 plant species of the Cretan flora for their phytotoxic activity. All plants were extracted successively with CH2Cl2, MeOH and H2O. Phytotoxicity evaluation of the 249 generated extracts wa...

  20. Oxygen Reduction Reaction on Graphene in an Electro-Fenton System: In Situ Generation of H2 O2 for the Oxidation of Organic Compounds.

    PubMed

    Chen, Chen-Yu; Tang, Cheng; Wang, Hao-Fan; Chen, Cheng-Meng; Zhang, Xiaoyuan; Huang, Xia; Zhang, Qiang

    2016-05-23

    Fenton oxidation using an aqueous mixture of Fe(2+) and H2 O2 is a promising environmental remediation strategy. However, the difficulty of storage and shipment of concentrated H2 O2 and the generation of iron sludge limit its broad application. Therefore, highly efficient and cost-effective electrocatalysts are in great need. Herein, a graphene catalyst is proposed for the electro-Fenton process, in which H2 O2 is generated in situ by the two-electron reduction of the dissolved O2 on the cathode and then decomposes to generate (.) OH in acidic solution with Fe(2+) . The π bond of the oxygen is broken whereas the σ bond is generally preserved on the metal-free reduced graphene oxide owing to the high free energy change. Consequently, the oxygen is reduced to H2 O2 through a two-electron pathway. The thermally reduced graphene with a high specific surface area (308.8 m(2)  g(-1) ) and a large oxygen content (10.3 at %) exhibits excellent reactivity for the two-electron oxygen reduction reaction to H2 O2 . A highly efficient peroxide yield (64.2 %) and a remarkable decolorization of methylene blue (12 mg L(-1) ) of over 97 % in 160 min are obtained. The degradation of methylene blue with hydroxyl radicals generated in situ is described by a pseudo first-order kinetics model. This provides a proof-of-concept of an environmentally friendly electro-Fenton process using graphene for the oxygen reduction reaction in an acidic solution to generate H2 O2 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Interfacial contributions of H2O2 decomposition-induced reaction current on mesoporous Pt/TiO2 systems

    NASA Astrophysics Data System (ADS)

    Ray, Nathan J.; Styrov, Vladislav V.; Karpov, Eduard G.

    2017-12-01

    We report on conversion of energy released due to chemical reactions into current for the decomposition of aqueous hydrogen peroxide solution on single phases Pt and TiO2, in addition to Pt and TiO2 simultaneously. We observe that H2O2 decomposition-induced current on TiO2 drastically overshadows the current generated by H2O2 decomposition on Pt. Photo-effects avoided, H2O2 decomposition was found to yield a conversion efficiency of 10-3 electrons generated per H2O2 molecule. Further understanding of chemical reaction-induced current shows promise as a metric with which the surface reaction may be monitored and could be greatly extended into the field of analytical chemistry.

  2. High Ca2+ load promotes hydrogen peroxide generation via activation of α-glycerophosphate dehydrogenase in brain mitochondria.

    PubMed

    Tretter, Laszlo; Adam-Vizi, Vera

    2012-12-01

    H(2)O(2) generation associated with α-glycerophosphate (α-GP) oxidation was addressed in guinea pig brain mitochondria challenged with high Ca(2+) load (10 μM). Exposure to 10 μM Ca(2+) induced an abrupt 2.5-fold increase in H(2)O(2) release compared to that measured in the presence of a physiological cytosolic Ca(2+) concentration (100 nM) from mitochondria respiring on 5 mM α-GP in the presence of ADP (2 mM). The Ca(2+)-induced stimulation of H(2)O(2) generation was reversible and unaltered by the uniporter blocker Ru 360, indicating that it did not require Ca(2+) uptake into mitochondria. Enhanced H(2)O(2) generation by Ca(2+) was also observed in the absence of ADP when mitochondria exhibited permeability transition pore opening with a decrease in the NAD(P)H level, dissipation of membrane potential, and mitochondrial swelling. Furthermore, mitochondria treated with the pore-forming peptide alamethicin also responded with an elevated H(2)O(2) generation to a challenge with 10 μM Ca(2+). Ca(2+)-induced promotion of H(2)O(2) formation was further enhanced by the complex III inhibitor myxothiazol. With 20 mM α-GP concentration, stimulation of H(2)O(2) formation by Ca(2+) was detected only in the presence, not in the absence, of ADP. It is concluded that α-glycerophosphate dehydrogenase, which is accessible to and could be activated by a rise in the level of cytosolic Ca(2+), makes a major contribution to Ca(2+)-stimulated H(2)O(2) generation. This work highlights a unique high-Ca(2+)-stimulated reactive oxygen species-forming mechanism in association with oxidation of α-GP, which is largely independent of the bioenergetic state and can proceed even in damaged, functionally incompetent mitochondria. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Mechanism of oxidative DNA damage induction in a strict anaerobe, Prevotella melaninogenica.

    PubMed

    Takeuchi, T; Kato, N; Watanabe, K; Morimoto, K

    2000-11-01

    We investigated the mechanism of the oxidative DNA damage induction by exposure to O(2) in Prevotella melaninogenica, a strict anaerobe. Flow cytometry with hydroethidine and dichlorofluorescein diacetate showed that O(2) exposure generated O(2)*-) and H(2)O(2). Results of electron spin resonance with alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone and ethanol showed that O(2) exposure also induced *OH radical generation in P. melaninogenica loaded with FeCl(2) but not in samples without FeCl(2) loading. In P. melaninogenica, O(2) exposure increased 8-hydroxydeoxyguanosine (8OHdG), typical of oxidative DNA damage. Catalase inhibited the increase, but the *OH radical scavengers did not. Phenanthroline, a membrane-permeable Fe and Cu chelator, increased the 8OHdG induction. In FeCl(2)-loaded samples, induction of 8OHdG decreased. Addition of H(2)O(2) markedly increased 8OHdG levels. These results indicate that in P. melaninogenica, exposure to O(2) generated and accumulated O(2)* and H(2)O(2), and that a crypto-OH radical generated through H(2)O(2) was the active species in the 8OHdG induction.

  4. Oxidative stress inhibits caveolin-1 palmitoylation and trafficking in endothelial cells

    NASA Technical Reports Server (NTRS)

    Parat, Marie-Odile; Stachowicz, Rafal Z.; Fox, Paul L.

    2002-01-01

    During normal and pathological conditions, endothelial cells (ECs) are subjected to locally generated reactive oxygen species, produced by themselves or by other vessel wall cells. In excess these molecules cause oxidative injury to the cell but at moderate levels they might modulate intracellular signalling pathways. We have investigated the effect of oxidative stress on the palmitoylation and trafficking of caveolin-1 in bovine aortic ECs. Exogenous H2O2 did not alter the intracellular localization of caveolin-1 in ECs. However, metabolic labelling experiments showed that H2O2 inhibited the trafficking of newly synthesized caveolin-1 to membrane raft domains. Several mechanisms potentially responsible for this inhibition were examined. Impairment of caveolin-1 synthesis by H2O2 was not responsible for diminished trafficking. Similarly, the inhibition was independent of H2O2-induced caveolin-1 phosphorylation as shown by the markedly different concentration dependences. We tested the effect of H2O2 on palmitoylation of caveolin-1 by the incorporation of [3H]palmitic acid. Exposure of ECs to H2O2 markedly inhibited the palmitoylation of caveolin-1. Comparable inhibition was observed after treatment of cells with H2O2 delivered either as a bolus or by continuous delivery with glucose and glucose oxidase. Kinetic studies showed that H2O2 did not alter the rate of caveolin-1 depalmitoylation but instead decreased the 'on-rate' of palmitoylation. Together these results show for the first time the modulation of protein palmitoylation by oxidative stress, and suggest a cellular mechanism by which stress might influence caveolin-1-dependent cell activities such as the concentration of signalling proteins and cholesterol trafficking.

  5. Vitamin K3 triggers human leukemia cell death through hydrogen peroxide generation and histone hyperacetylation.

    PubMed

    Lin, Changjun; Kang, Jiuhong; Zheng, Rongliang

    2005-10-01

    Vitamin K3 (VK3) is a well-known anticancer agent, but its mechanism remains elusive. In the present study, VK3 was found to simultaneously induce cell death, reactive oxygen species (ROS) generation, including superoxide anion (O2*-) and hydrogen peroxide (H2O2) generation, and histone hyperacetylation in human leukemia HL-60 cells in a concentration- and time-dependent manner. Catalase (CAT), an antioxidant enzyme that specifically scavenges H2O2, could significantly diminish both histone acetylation increase and cell death caused by VK3, whereas superoxide dismutase (SOD), an enzyme that specifically eliminates O2*-, showed no effect on both of these, leading to the conclusion that H2O2 generation, but not O2*- generation, contributes to VK3-induced histone hyperacetylation and cell death. This conclusion was confirmed by the finding that enhancement of VK3-induced H2O2 generation by vitamin C (VC) could significantly promote both the histone hyperacetylation and cell death. Further studies suggested that histone hyperacetylation played an important role in VK3-induced cell death, since sodium butyrate, a histone deacetylase (HDAC) inhibitor, showed no effect on ROS generation, but obviously potentiated VK3-induced histone hyperacetylation and cell death. Collectively, these results demonstrate a novel mechanism for the anticancer activity of VK3, i.e., VK3 induced tumor cell death through H2O2 generation, which then further induced histone hyperacetylation.

  6. [A design and study of a novel electronic device for cuff-pressure monitoring].

    PubMed

    Wang, Shupeng; Li, Wei; Li, Wen; Song, Dejing; Chen, Desheng; Duan, Jun; Li, Chen; Li, Gang

    2017-06-01

    To design a novel electronic device for measuring the pressure in the cuff of the artificial airway; and to study the advantage of this device on continuous and intermittent cuff pressure monitoring. (1) a portable electronic device for cuff pressure measurement was invented, which could turn pressure signal into electrical signal through a pressure transducer. Meantime, it was possible to avoid pressure leak from the joint and the inside of the apparatus by modified Luer taper and sophisticated design. If the cuff pressure was out of the normal range, the apparatus could release a sound and light alarm. (2) Six traditional mechanical manometers were used to determine the cuff pressure in 6 tracheal tubes. The cuff pressure was maintain at 30 cmH 2 O (1 cmH 2 O = 0.098 kPa) by the manometer first, and repeated every 30 seconds for 4 times. (3) Study of continuous cuff pressure monitoring: We used a random number generator to randomize 6 tracheal tubes, 6 mechanical manometers and 6 our products by number 1-6, which has the same number of a group. Every group was further randomized into two balanced groups, one group used the mechanical manometer first, and the other used our product first. The baseline pressure was 30 cmH 2 O, measurement was performed every 4 hours for 6 times. When traditional mechanical manometer was used for cuff pressure monitoring, cuff pressure was decreased by an average of 2.9 cmH 2 O for each measurement (F = 728.2, P = 0.000). In study of continually monitoring, at each monitoring point, the pressure measured by electronic manometer was higher than the mechanical manometer. All the pressures measured by mechanical manometer were dropped below 20 cmH 2 O at 8th hour, and there was no pressure decrease below 20 cmH 2 O measured by electronic manometer in 24 hours by contrast. In study of intermittent monitoring, the same result was found. The pressure was dropped significantly with time when measured by mechanical manometer (F = 61.795, P = 0.000), the drops below 20 cmH 2 O began at 8th hour; but when measured by electronic manometer, all the value stayed unchanged around the baseline in 24 hours (F = 0.511, P = 0.796). Compared with traditional mechanical manometer, cuff pressures monitored by our novel electronic manometer were steadier in both continuous and intermittent monitoring. The device is compact and convenient, and can provide a good solution for continuously monitor of the tracheal cuff pressure.

  7. Hydrogen Peroxide Signaling in Plant Development and Abiotic Responses: Crosstalk with Nitric Oxide and Calcium

    PubMed Central

    Niu, Lijuan; Liao, Weibiao

    2016-01-01

    Hydrogen peroxide (H2O2), as a reactive oxygen species, is widely generated in many biological systems. It has been considered as an important signaling molecule that mediates various physiological and biochemical processes in plants. Normal metabolism in plant cells results in H2O2 generation, from a variety of sources. Also, it is now clear that nitric oxide (NO) and calcium (Ca2+) function as signaling molecules in plants. Both H2O2 and NO are involved in plant development and abiotic responses. A wide range of evidences suggest that NO could be generated under similar stress conditions and with similar kinetics as H2O2. The interplay between H2O2 and NO has important functional implications to modulate transduction processes in plants. Moreover, close interaction also exists between H2O2 and Ca2+ in response to development and abiotic stresses in plants. Cellular responses to H2O2 and Ca2+ signaling systems are complex. There is quite a bit of interaction between H2O2 and Ca2+ signaling in responses to several stimuli. This review aims to introduce these evidences in our understanding of the crosstalk among H2O2, NO, and Ca2+ signaling which regulates plant growth and development, and other cellular and physiological responses to abiotic stresses. PMID:26973673

  8. Cathodic detection of H2O2 based on nanopyramidal gold surface with enhanced electron transfer of myoglobin.

    PubMed

    Xia, Peipei; Liu, Haiqing; Tian, Yang

    2009-04-15

    Direct and reversible electron transfer of myoglobin (Mb), for the first time, is achieved at nanopyramidal gold surface, which was fabricated by one-step electrodeposition, with redox formal potential of 0.21+/-0.01 V (vs. Ag/AgCl) and an apparent heterogeneous electron-transfer rate constant (k(s)) of 1.6+/-0.2 s(-1). Electrochemical investigation indicates that Mb is stably confined on the nanopyramidal gold surface and maintains electrocatalytic activity toward hydrogen peroxide (H(2)O(2)). The facilitated electron transfer combined with the intrinsic catalytical activity of Mb substantially construct the third-generation biosensor for H(2)O(2). The positive redox potential of Mb at the nanostructured gold electrode gives a strong basis for determination of H(2)O(2) with high selectivity. Besides this advantage, the present biosensor also exhibits quick response time, broad linear range, and good sensitivity. The dynamic detection linear range is from 1 microM to 1.4 mM with a detection limit of 0.5 microM at 3sigma. The striking analytical performance of the present biosensor, as well as the biocompatibility of gold nanostructures provided a potential for continuous, on-line detection of H(2)O(2) in the biological system.

  9. Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase.

    PubMed

    Tretter, Laszlo; Adam-Vizi, Vera

    2004-09-08

    Alpha-ketoglutarate dehydrogenase (alpha-KGDH), a key enzyme in the Krebs' cycle, is a crucial early target of oxidative stress (Tretter and Adam-Vizi, 2000). The present study demonstrates that alpha-KGDH is able to generate H(2)O(2) and, thus, could also be a source of reactive oxygen species (ROS) in mitochondria. Isolated alpha-KGDH with coenzyme A (HS-CoA) and thiamine pyrophosphate started to produce H(2)O(2) after addition of alpha-ketoglutarate in the absence of nicotinamide adenine dinucleotide-oxidized (NAD(+)). NAD(+), which proved to be a powerful inhibitor of alpha-KGDH-mediated H(2)O(2) formation, switched the H(2)O(2) forming mode of the enzyme to the catalytic [nicotinamide adenine dinucleotide-reduced (NADH) forming] mode. In contrast, NADH stimulated H(2)O(2) formation by alpha-KGDH, and for this, neither alpha-ketoglutarate nor HS-CoA were required. When all of the substrates and cofactors of the enzyme were present, the NADH/NAD(+) ratio determined the rate of H(2)O(2) production. The higher the NADH/NAD(+) ratio the higher the rate of H(2)O(2) production. H(2)O(2) production as well as the catalytic function of the enzyme was activated by Ca(2+). In synaptosomes, using alpha-ketoglutarate as respiratory substrate, the rate of H(2)O(2) production increased by 2.5-fold, and aconitase activity decreased, indicating that alpha-KGDH can generate H(2)O(2) in in situ mitochondria. Given the NADH/NAD(+) ratio as a key regulator of H(2)O(2) production by alpha-KGDH, it is suggested that production of ROS could be significant not only in the respiratory chain but also in the Krebs' cycle when oxidation of NADH is impaired. Thus alpha-KGDH is not only a target of ROS but could significantly contribute to generation of oxidative stress in the mitochondria.

  10. Instrument-Free and Autonomous Generation of H2O2 from Mg-ZnO/Au Hybrids for Disinfection and Organic Pollutant Degradations

    NASA Astrophysics Data System (ADS)

    Park, Seon Yeong; Jung, Yeon Wook; Hwang, Si Hyun; Jang, Gun Hyuk; Seo, Hyunseon; Kim, Yu-Chan; Ok, Myoung-Ryul

    2018-03-01

    We proposed a new hybrid system that autonomously generates H2O2 without any instrument or external energy source, such as light. Electrons formed during spontaneous degradation process of Mg were conveyed to ZnO/Au oxygen-reduction-reaction nanocatalysts, and these transferred electrons converted O2 molecules in aqueous solution into H2O2. Autonomously released H2O2 from Mg-ZnO/Au hybrids effectively killed 97% of Escherichia coli cells within 1 h. Moreover, Mg-ZnO/Au nanohybrids could gradually degrade methylene blue over time with Fe2+. We believe our approach utilizing degradable metals and catalytic metal oxides in mesoporous-film form can be a promising method in the field of environment remediation.

  11. Instrument-Free and Autonomous Generation of H2O2 from Mg-ZnO/Au Hybrids for Disinfection and Organic Pollutant Degradations

    NASA Astrophysics Data System (ADS)

    Park, Seon Yeong; Jung, Yeon Wook; Hwang, Si Hyun; Jang, Gun Hyuk; Seo, Hyunseon; Kim, Yu-Chan; Ok, Myoung-Ryul

    2018-05-01

    We proposed a new hybrid system that autonomously generates H2O2 without any instrument or external energy source, such as light. Electrons formed during spontaneous degradation process of Mg were conveyed to ZnO/Au oxygen-reduction-reaction nanocatalysts, and these transferred electrons converted O2 molecules in aqueous solution into H2O2. Autonomously released H2O2 from Mg-ZnO/Au hybrids effectively killed 97% of Escherichia coli cells within 1 h. Moreover, Mg-ZnO/Au nanohybrids could gradually degrade methylene blue over time with Fe2+. We believe our approach utilizing degradable metals and catalytic metal oxides in mesoporous-film form can be a promising method in the field of environment remediation.

  12. Photogeneration of H2O2 in SPEEK/PVA aqueous polymer solutions.

    PubMed

    Little, Brian K; Lockhart, PaviElle; Slaten, B L; Mills, G

    2013-05-23

    Photolysis of air-saturated aqueous solutions containing sulphonated poly(ether etherketone) and poly(vinyl alcohol) results in the generation of hydrogen peroxide. Consumption of oxygen and H2O2 formation are initially concurrent processes with a quantum yield of peroxide generation of 0.02 in stirred or unstirred solutions within the range of 7 ≤ pH ≤ 9. The results are rationalized in terms of O2 reduction by photogenerated α-hydroxy radicals of the polymeric ketone in competition with radical-radical processes that consume the macromolecular reducing agents. Generation of H2O2 is controlled by the photochemical transformation that produces the polymer radicals, which is most efficient in neutral and slightly alkaline solutions. Quenching of the excited state of the polyketone by both H3O(+) and OH(-) affect the yields of the reducing macromolecular radicals and of H2O2. Deprotonation of the α-hydroxy polymeric radicals at pH > 9 accelerate their decay and contribute to suppressing the peroxide yields in basic solutions. Maxima in [H2O2] are observed when illuminations are performed with static systems, where O2 reduction is faster than diffusion of oxygen into the solutions. Under such conditions H2O2 can compete with O2 for the reducing radicals resulting in a consumption of the peroxide.

  13. Generation of H2, O2, and H2O2 from water by the use of intense femtosecond laser pulses and the possibility of laser sterilization

    NASA Astrophysics Data System (ADS)

    Chin, S. L.; Lagacé, S.

    1996-02-01

    An intense femtosecond Ti-sapphire laser pulse was focused into water, leading to self-focusing. Apart from generating a white light (supercontinuum), the intense laser field in the self-focusing regions of the laser pulse dissociated the water molecules, giving rise to hydrogen and oxygen gas as well as hydrogen peroxide. Our analysis shows that the formation of free radicals O, H, and OH preceded the formation of the stable products of H2, O2, and H2O2. Because O radicals and H2O2 are strong oxydizing agents, one can take advantage of this phenomenon to design a laser scheme for sterilization in medical and biological applications.

  14. Endogenous Catalytic Generation of O2 Bubbles for In Situ Ultrasound-Guided High Intensity Focused Ultrasound Ablation.

    PubMed

    Liu, Tianzhi; Zhang, Nan; Wang, Zhigang; Wu, Meiying; Chen, Yu; Ma, Ming; Chen, Hangrong; Shi, Jianlin

    2017-09-26

    High intensity focused ultrasound (HIFU) surgery generally suffers from poor precision and low efficiency in clinical application, especially for cancer therapy. Herein, a multiscale hybrid catalytic nanoreactor (catalase@MONs, abbreviated as C@M) has been developed as a tumor-sensitive contrast and synergistic agent (C&SA) for ultrasound-guided HIFU cancer surgery, by integrating dendritic-structured mesoporous organosilica nanoparticles (MONs) and catalase immobilized in the large open pore channels of MONs. Such a hybrid nanoreactor exhibited sensitive catalytic activity toward H 2 O 2 , facilitating the continuous O 2 gas generation in a relatively mild manner even if incubated with 10 μM H 2 O 2 , which finally led to enhanced ablation in the tissue-mimicking PAA gel model after HIFU exposure mainly resulting from intensified cavitation effect. The C@M nanoparticles could be accumulated within the H 2 O 2 -enriched tumor region through enhanced permeability and retention effect, enabling durable contrast enhancement of ultrasound imaging, and highly efficient tumor ablation under relatively low power of HIFU exposure in vivo. Very different from the traditional perfluorocarbon-based C&SA, such an on-demand catalytic nanoreactor could realize the accurate positioning of tumor without HIFU prestimulation and efficient HIFU ablation with a much safer power output, which is highly desired in clinical HIFU application.

  15. Kinetics and mechanism of auto- and copper-catalyzed oxidation of 1,4-naphthohydroquinone.

    PubMed

    Yuan, Xiu; Miller, Christopher J; Pham, A Ninh; Waite, T David

    2014-06-01

    Although quinones represent a class of organic compounds that may exert toxic effects both in vitro and in vivo, the molecular mechanisms involved in quinone species toxicity are still largely unknown, especially in the presence of transition metals, which may both induce the transformation of the various quinone species and result in generation of harmful reactive oxygen species. In this study, the oxidation of 1,4-naphthohydroquinone (NH2Q) in the absence and presence of nanomolar concentrations of Cu(II) in 10 mM NaCl solution over a pH range of 6.5-7.5 has been investigated, with detailed kinetic models developed to describe the predominant mechanisms operative in these systems. In the absence of copper, the apparent oxidation rate of NH2Q increased with increasing pH and initial NH2Q concentration, with concomitant oxygen consumption and peroxide generation. The doubly dissociated species, NQ(2-), has been shown to be the reactive species with regard to the one-electron oxidation by O2 and comproportionation with the quinone species, both generating the semiquinone radical (NSQ(·-)). The oxidation of NSQ(·-) by O2 is shown to be the most important pathway for superoxide (O2(·-)) generation with a high intrinsic rate constant of 1.0×10(8)M(-1)s(-1). Both NSQ(·-) and O2(·-) served as chain-propagating species in the autoxidation of NH2Q. Cu(II) is capable of catalyzing the oxidation of NH2Q in the presence of O2 with the oxidation also accelerated by increasing the pH. Both the uncharged (NH2Q(0)) and the mono-anionic (NHQ(-)) species were found to be the kinetically active forms, reducing Cu(II) with an intrinsic rate constant of 4.0×10(4) and 1.2×10(7)M(-1)s(-1), respectively. The presence of O2 facilitated the catalytic role of Cu(II) by rapidly regenerating Cu(II) via continuous oxidation of Cu(I) and also by efficient removal of NSQ(·-) resulting in the generation of O2(·-). The half-cell reduction potentials of various redox couples at neutral pH indicated good agreement between thermodynamic and kinetic considerations for various key reactions involved, further validating the proposed mechanisms involved in both the autoxidation and the copper-catalyzed oxidation of NH2Q in circumneutral pH solutions. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. A continuous [15O]H2O production and infusion system for PET imaging

    NASA Astrophysics Data System (ADS)

    Sajjad, Munawwar; Liow, Jeih-San

    1999-06-01

    A system for continuous production and infusion of [15O]H2O has been designed for PET cerebral blood flow studies. The injection system consists of a four-port-two-position valve, two Horizon Nxt infusion pumps, and a sterile 50 ml vial. The variation of the production of [15O]H2O was <1%. The variation of activity delivered measured by scanner counts during the steady state period was <2%.

  17. Redox cycling compounds generate H2O2 in HTS buffers containing strong reducing reagents – real hits or promiscuous artifacts?

    PubMed Central

    Johnston, Paul A.

    2010-01-01

    Redox cycling compounds (RCCs) generate µM concentrations of hydrogen peroxide (H2O2) in the presence of strong reducing agents, common buffer components used to maintain the catalytic activity and/or folding of target proteins for high throughput screening (HTS) assays. H2O2 generated by RCCs can indirectly inhibit the catalytic activity of proteins by oxidizing accessible cysteine, tryptophan, methionine, histidine or selenocysteine residues, and indeed several important classes of protein targets are susceptible to H2O2-mediated inactivation; protein tyrosine phosphatases, cysteine proteases, and metalloenzymes. The main sources of H2O2 in cells are the Nox enzyme/SOD systems, peroxisome metabolism, and the autoxidation of reactive chemicals by enzyme mediated redox cycling at both the microsomal and mitochondrial sites of electron transport. Given the role of H2O2 as a second messenger involved in the regulation of many signaling pathways it is hardly surprising that compounds which can generate intracellular H2O2 by enzyme mediated redox cycling would have pleiotropic effects. RCCs can therefore have serious negative consequences for the probe and/or lead generation process: primary HTS assay hit rates may be inflated by RCC false positives; critical resources will be diverted to develop and implement follow up assays to distinguish RCCs from real hits; and screening databases will become annotated with the promiscuous activity of RCCs. In an attempt to mitigate the serious impact of RCCs on probe and lead generation, two groups have independently developed assays to indentify RCCs. PMID:21075044

  18. Measuring hourly 18O and 2H fluxes in a mixed hardwood forest using an integrated cavity output spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, L.; Caylor, K.; Dragoni, D.

    2008-12-01

    The 18O and 2H of water vapor can be used to investigate couplings between biological processes (e.g., photosynthesis or transpiration) and hydrologic processes (e.g., evaporation) and therefore serve as powerful tracers in hydrological cycles. A typical method for determining δ18O and δ2H fluxes in landscapes is a 'Keeling Plot' approach, which uses field-collected vapor samples coupled with a traditional isotope ratio mass spectrometer to infer the isotopic composition of evapotranspiration. However, fractionation accompanying inefficient vapor trapping can lead to large measurement uncertainty and the intensive laboring involved in cold-trap make it almost impossible for continuous measurements. Over the last 3-4 years a few groups have developed continuous approaches for measuring δ18O and δ2H that use laser absorption spectroscopy (LAS) to achieve accuracy levels similar to lab-based mass spectrometry methods. Unfortunately, most LAS systems need cryogenic cooling, constant calibration to a reference gas, and substantial power requirements, which make them unsuitable for long-term field deployment at remote field sites. In this research, we tested out a new LAS--based water vapor isotope analyzer (WVIA, Los Gatos Research, Inc, Mountain View, CA) based on Integrated Cavity Output Spectroscopy (ICOS) and coupled this instrument with a flux gradient system. The WVIA was calibrated bi- weekly using a dew point generator and water with known δ18O and δ2H signatures. The field work was performed at Morgan-Monroe State Forest Ameriflux tower site (central Indiana) between August 8 and August 27, 2008. The combination method was able to produce hourly δ18O and δ2H fluxes data with reproducibility similar to lab-based mass spectrometry methods. Such high temporal resolution data were also able to capture signatures of canopy and bare soil evaporation to individual rainfall events. The use of the ICOS water vapor analyzer within a gradient system has the potential to greatly expand the use of continuous δ18O and δ2H fluxes measurements to address a wide range of ecohydrological research topics.

  19. Noradrenaline treatment of rats stimulates H2O2 generation in liver mitochondria.

    PubMed Central

    Swaroop, A; Patole, M S; Puranam, R S; Ramasarma, T

    1983-01-01

    Treatment of rats with noradrenaline stimulated H2O2 generation in liver mitochondria using succinate, choline or glycerol 1-phosphate as substrate. The dehydrogenase activity with either succinate or choline as substrate showed no change, whereas that with glycerol 1-phosphate increased. The effect was obtained with noradrenaline, but not with dihydroxyphenylserine. Phenoxybenzamine and yohimbine, but not propranolol, prevented the response to noradrenaline treatment. Phenylephrine could stimulate H2O2 generation, whereas isoprenaline had only a marginal effect. Theophylline treatment slightly decreased the generation of H2O2 in liver mitochondria, but treatment with pargyline, Ro4-1284 and dibutyryl cyclic AMP had little effect. These studies showed that noradrenaline might possibly be acting through the alpha 2-adrenergic system. PMID:6312963

  20. On the calibration of continuous, high-precision delta18O and delta2H measurements using an off-axis integrated cavity output spectrometer.

    PubMed

    Wang, Lixin; Caylor, Kelly K; Dragoni, Danilo

    2009-02-01

    The (18)O and (2)H of water vapor serve as powerful tracers of hydrological processes. The typical method for determining water vapor delta(18)O and delta(2)H involves cryogenic trapping and isotope ratio mass spectrometry. Even with recent technical advances, these methods cannot resolve vapor composition at high temporal resolutions. In recent years, a few groups have developed continuous laser absorption spectroscopy (LAS) approaches for measuring delta(18)O and delta(2)H which achieve accuracy levels similar to those of lab-based mass spectrometry methods. Unfortunately, most LAS systems need cryogenic cooling and constant calibration to a reference gas, and have substantial power requirements, making them unsuitable for long-term field deployment at remote field sites. A new method called Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) has been developed which requires extremely low-energy consumption and neither reference gas nor cryogenic cooling. In this report, we develop a relatively simple pumping system coupled to a dew point generator to calibrate an ICOS-based instrument (Los Gatos Research Water Vapor Isotope Analyzer (WVIA) DLT-100) under various pressures using liquid water with known isotopic signatures. Results show that the WVIA can be successfully calibrated using this customized system for different pressure settings, which ensure that this instrument can be combined with other gas-sampling systems. The precisions of this instrument and the associated calibration method can reach approximately 0.08 per thousand for delta(18)O and approximately 0.4 per thousand for delta(2)H. Compared with conventional mass spectrometry and other LAS-based methods, the OA-ICOS technique provides a promising alternative tool for continuous water vapor isotopic measurements in field deployments. Copyright 2009 John Wiley & Sons, Ltd.

  1. Cytotoxicity of cancer HeLa cells sensitivity to normal MCF10A cells in cultivations with cell culture medium treated by microwave-excited atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Takahashi, Yohei; Taki, Yusuke; Takeda, Keigo; Hashizume, Hiroshi; Tanaka, Hiromasa; Ishikawa, Kenji; Hori, Masaru

    2018-03-01

    Cytotoxic effects of human epithelial carcinoma HeLa cells sensitivity to human mammary epithelial MCF10A cells appeared in incubation with the plasma-activated medium (PAM), where the cell culture media were irradiated with the hollow-shaped contact of a continuously discharged plasma that was sustained by application of a microwave power under Ar gas flow at atmospheric pressure. The discharged plasma had an electron density of 7  ×  1014 cm-3. As the nozzle exit to the plasma source was a distance of 5 mm to the medium, concentrations of 180 µM for H2O2 and 77 µM for NO2- were generated in the PAM for 30 s irradiation, resulting in the control of irradiation periods for aqueous H2O2 with a generation rate of 6.0 µM s-1, and nitrite ion (NO2- ) with a rate of 2.2 µM s-1. Effective concentrations of H2O2 and NO2- for the antitumor effects were revealed in the microwave-excited PAM, with consideration of the complicated reactions at the plasma-liquid interfaces.

  2. Two distinct pathways mediate the formation of intermediate density cells and hyperdense cells from normal density sickle red blood cells.

    PubMed

    Schwartz, R S; Musto, S; Fabry, M E; Nagel, R L

    1998-12-15

    In sickle cell anemia (SS), some red blood cells dehydrate, forming a hyperdense (HD) cell fraction (>1.114 g/mL; mean corpuscular hemoglobin concentration [MCHC], >46 g/dL) that contains many irreversibly sickled cells (ISCs), whereas other SS red blood cells dehydrate to an intermediate density (ID; 1.090 to 1.114 g/mL; MCHC, 36 to 46 g/dL). This study asks if the potassium-chloride cotransporter (K:Cl) and the calcium-dependent potassium channel [K(Ca2+)] are participants in the formation of one or both types of dense SS red blood cells. We induced sickling by exposing normal density (ND; 1.080 to 1.090 g/mL; MCHC, 32 to 36 g/dL) SS discocytes to repetitive oxygenation-deoxygenation (O-D) cycles in vitro. At physiologic Na+, K+, and Cl-, and 0.5 to 2 mmol/L Ca2+, the appearance of dense cells was time- and pH-dependent. O-D cycling at pH 7.4 in 5% CO2-equilibrated buffer generated only ID cells, whereas O-D cycling at pH 6.8 in 5% CO2-equilibrated buffer generated both ID and HD cells, the latter taking more than 8 hours to form. At 22 hours, 35% +/- 17% of the parent ND cells were recovered in the ID fraction and 18% +/- 11% in the HD fraction. Continuous deoxygenation (N2/5% CO2) at pH 6.8 generated both ID and HD cells, but many of these cells had multiple projections, clearly different from the morphology of endogenous dense cells and ISCs. Continuous oxygenation (air/5% CO2) at pH 6.8 resulted in less than 10% dense cell (ID + HD) formation. ATP depletion substantially increased HD cell formation and moderately decreased ID cell formation. HD cells formed after 22 hours of O-D cycling at pH 6.8 contained fewer F cells than did ID cells, suggesting that HD cell formation is particularly dependent on HbS polymerization. EGTA chelation of buffer Ca2+ inhibited HD but not ID cell formation, and increasing buffer Ca2+ from 0.5 to 2 mmol/L promoted HD but not ID cell formation in some SS patients. Substitution of nitrate for Cl- inhibited ID cell formation, as did inhibitors of the K:Cl cotransporter, okadaic acid, and [(dihydroindenyl) oxy]alkanoic acid (DIOA). Conversely, inhibitors of K(Ca2+), charybdotoxin and clotrimazole, inhibited HD cell formation. The combined use of K(Ca2+) and K:Cl inhibitors nearly eliminated dense cell (ID + HD cell) formation. In summary, dense cells formed by O-D cycling for 22 hours at pH 7.4 cycling are predominately the ID type, whereas dense cells formed by O-D cycling for 22 hours at pH 6.8 are both the ID and HD type, with the latter low in HbF, suggesting that HD cell formation has a greater dependency on HbS polymerization. A combination of K:Cl cotransport and the K(Ca2+) activities account for the majority of dense cells formed, and these pathways can be driven independently. We propose a model in which reversible sickling-induced K+ loss by K:Cl primarily generates ID cells and K+ loss by the K(Ca2+) channel primarily generates HD cells. These results imply that both pathways must be inhibited to completely prevent dense SS cell formation and have potential therapeutic implications.

  3. Continuous measurements of water vapor isotopic compositions using an integrated cavity output spectrometer: calibrations and applications

    NASA Astrophysics Data System (ADS)

    Wang, L.; Caylor, K.; Dragoni, D.

    2009-04-01

    The 18O and 2H of water vapor can be used to investigate couplings between biological processes (e.g., photosynthesis or transpiration) and hydrologic processes (e.g., evaporation) and therefore serve as powerful tracers in hydrological cycles. A typical method for determining δ18O and δ2H fluxes in landscapes is a "Keeling Plot" approach, which uses field-collected vapor samples coupled with a traditional isotope ratio mass spectrometer to infer the isotopic composition of evapotranspiration. However, fractionation accompanying inefficient vapor trapping can lead to large measurement uncertainty and the intensive laboring involved in cold-trap make it almost impossible for continuous measurements. Over the last 3-4 years a few groups have developed continuous approaches for measuring δ18O and δ2H that use laser absorption spectroscopy (LAS) to achieve accuracy levels similar to lab-based mass spectrometry methods. Unfortunately, most LAS systems need cryogenic cooling, constant calibration to a reference gas, and substantial power requirements, which make them unsuitable for long-term field deployment at remote field sites. In this research, we tested out a new LAS-based water vapor isotope analyzer (WVIA, Los Gatos Research, Inc, Mountain View, CA) based on Integrated Cavity Output Spectroscopy (ICOS) and coupled this instrument with a flux gradient system. The WVIA was calibrated bi-weekly using a dew point generator and water with known δ18O and δ2H signatures. The field work was performed at Morgan-Monroe State Forest Ameriflux tower site (central Indiana) between August 8 and August 27, 2008. The combination method was able to produce hourly δ18O and δ2H fluxes data with reproducibility similar to lab-based mass spectrometry methods. Such high temporal resolution data were also able to capture signatures of canopy and bare soil evaporation to individual rainfall events. The use of the ICOS water vapor analyzer within a gradient system has the potential to greatly expand the use of continuous δ18O and δ2H fluxes measurements to address a wide range of ecohydrological research topics.

  4. Maltodextrin enhances biofilm elimination by electrochemical scaffold

    PubMed Central

    Sultana, Sujala T.; Call, Douglas R.; Beyenal, Haluk

    2016-01-01

    Electrochemical scaffolds (e-scaffolds) continuously generate low concentrations of H2O2 suitable for damaging wound biofilms without damaging host tissue. Nevertheless, retarded diffusion combined with H2O2 degradation can limit the efficacy of this potentially important clinical tool. H2O2 diffusion into biofilms and bacterial cells can be increased by damaging the biofilm structure or by activating membrane transportation channels by exposure to hyperosmotic agents. We hypothesized that e-scaffolds would be more effective against Acinetobacter baumannii and Staphylococcus aureus biofilms in the presence of a hyperosmotic agent. E-scaffolds polarized at −600 mVAg/AgCl were overlaid onto preformed biofilms in media containing various maltodextrin concentrations. E-scaffold alone decreased A. baumannii and S. aureus biofilm cell densities by (3.92 ± 0.15) log and (2.31 ± 0.12) log, respectively. Compared to untreated biofilms, the efficacy of the e-scaffold increased to a maximum (8.27 ± 0.05) log reduction in A. baumannii and (4.71 ± 0.12) log reduction in S. aureus biofilm cell densities upon 10 mM and 30 mM maltodextrin addition, respectively. Overall ~55% decrease in relative biofilm surface coverage was achieved for both species. We conclude that combined treatment with electrochemically generated H2O2 from an e-scaffold and maltodextrin is more effective in decreasing viable biofilm cell density. PMID:27782161

  5. New singlet oxygen generator for chemical oxygen-iodine lasers

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Saito, H.; Fujioka, T.; Yamakoshi, H.; Uchiyama, T.

    1986-11-01

    Experiments have been carried out to investigate a new method for generating O2(1Delta) with long-time operation of an efficient chemical oxygen-iodine laser system in mind. An impinging-jet nozzle was utilized to atomize a H2O2-KOH solution so that the alkaline H2O2/Cl2 reaction might occur in droplet-gas phase with high excitation efficiency. Experimental results indicate that the present generator can yield as high as 80 percent of O2(1Delta) with reasonable O2 flow rate.

  6. 2-Oxoglutarate dehydrogenase is a more significant source of O2(·-)/H2O2 than pyruvate dehydrogenase in cardiac and liver tissue.

    PubMed

    Mailloux, Ryan J; Gardiner, Danielle; O'Brien, Marisa

    2016-08-01

    Pyruvate dehydrogenase (Pdh) and 2-oxoglutarate dehydrogenase (Ogdh) are vital for Krebs cycle metabolism and sources of reactive oxygen species (ROS). O2(·-)/H2O2 formation by Pdh and Ogdh from porcine heart were compared when operating under forward or reverse electron transfer conditions. Comparisons were also conducted with liver and cardiac mitochondria. During reverse electron transfer (RET) from NADH, purified Ogdh generated ~3-3.5× more O2(·-)/H2O2 in comparison to Pdh when metabolizing 0.5-10µM NADH. Under forward electron transfer (FET) conditions Ogdh generated ~2-4× more O2(·-)/H2O2 than Pdh. In both liver and cardiac mitochondria, Ogdh displayed significantly higher rates of ROS formation when compared to Pdh. Ogdh was also a significant source of ROS in liver mitochondria metabolizing 50µM and 500µM pyruvate or succinate. Finally, we also observed that DTT directly stimulated O2(·-)/H2O2 formation by purified Pdh and Ogdh and in cardiac or liver mitochondria in the absence of substrates and cofactors. Taken together, Ogdh is a more potent source of ROS than Pdh in liver and cardiac tissue. Ogdh is also an important ROS generator regardless of whether pyruvate or succinate serve as the sole source of carbon. Our observations provide insight into the ROS generating capacity of either complex in cardiac and liver tissue. The evidence presented herein also indicates DTT, a reductant that is routinely added to biological samples, should be avoided when assessing mitochondrial O2(·-)/H2O2 production. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Photo degradation of methyl orange an azo dye by advanced Fenton process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism.

    PubMed

    Gomathi Devi, L; Girish Kumar, S; Mohan Reddy, K; Munikrishnappa, C

    2009-05-30

    Advanced Fenton process (AFP) using zero valent metallic iron (ZVMI) is studied as a potential technique to degrade the azo dye in the aqueous medium. The influence of various reaction parameters like effect of iron dosage, concentration of H(2)O(2)/ammonium per sulfate (APS), initial dye concentration, effect of pH and the influence of radical scavenger are studied and optimum conditions are reported. The degradation rate decreased at higher iron dosages and also at higher oxidant concentrations due to the surface precipitation which deactivates the iron surface. The rate constant for the processes Fe(0)/UV and Fe(0)/APS/UV is twice compared to their respective Fe(0)/dark and Fe(0)/APS/dark processes. The rate constant for Fe(0)/H(2)O(2)/UV process is four times higher than Fe(0)/H(2)O(2)/dark process. The increase in the efficiency of Fe(0)/UV process is attributed to the cleavage of stable iron complexes which produces Fe(2+) ions that participates in cyclic Fenton mechanism for the generation of hydroxyl radicals. The increase in the efficiency of Fe(0)/APS/UV or H(2)O(2) compared to dark process is due to continuous generation of hydroxyl radicals and also due to the frequent photo reduction of Fe(3+) ions to Fe(2+) ions. Though H(2)O(2) is a better oxidant than APS in all respects, but it is more susceptible to deactivation by hydroxyl radical scavengers. The decrease in the rate constant in the presence of hydroxyl radical scavenger is more for H(2)O(2) than APS. Iron powder retains its recycling efficiency better in the presence of H(2)O(2) than APS. The decrease in the degradation rate in the presence of APS as an oxidant is due to the fact that generation of free radicals on iron surface is slower compared to H(2)O(2). Also, the excess acidity provided by APS retards the degradation rate as excess H(+) ions acts as hydroxyl radical scavenger. The degradation of Methyl Orange (MO) using Fe(0) is an acid driven process shows higher efficiency at pH 3. The efficiency of various processes for the de colorization of MO dye is of the following order: Fe(0)/H(2)O(2)/UV>Fe(0)/H(2)O(2)/dark>Fe(0)/APS/UV>Fe(0)/UV>Fe(0)/APS/dark>H(2)O(2)/UV approximately Fe(0)/dark>APS/UV. Dye resisted to degradation in the presence of oxidizing agent in dark. The degradation process was followed by UV-vis and GC-MS spectroscopic techniques. Based on the intermediates obtained probable degradation mechanism has been proposed. The result suggests that complete degradation of the dye was achieved in the presence of oxidizing agent when the system was amended with iron powder under UV light illumination. The concentration of Fe(2+) ions leached at the end of the optimized degradation experiment is found to be 2.78 x 10(-3)M. With optimization, the degradation using Fe(0) can be effective way to treat azo dyes in aqueous solution.

  8. Oxidative degradation of benzene rings using iron sulfide activated by hydrogen peroxide/ozone.

    PubMed

    Hara, Junko

    2017-12-01

    Mineral pyrites-metal sulfides abundant in the earth's crust-exhibit oxidative ability when exposed to water. This oxidizing ability makes mineral pyrites suitable for the natural and enhanced remediation of environmentally hazardous materials. Herein, we evaluate the benzene ring degradation ability of iron bisulfide activated by H 2 O 2 and O 3 and elucidate the corresponding reaction pathways. A set of control experiments was conducted to optimize the reaction conditions, i.e., the FeS 2 /H 2 O ratio under aerobic conditions and the H 2 O 2 and/or O 3 dosages. Benzene ring was successfully decomposed to CO 2 via organic acids even by the simplest FeS 2 /H 2 O combination. This process was accelerated by the addition of both O 3 and H 2 O 2 . The extent of degradation to CO 2 increased in the presence of O 3 , while oxalic acid generation increased in the presence of H 2 O 2 . The reaction proceeded via the radicals generated on FeS 2 /H 2 O, which is enhanced by O 3 , and a Fenton-like reaction using the iron obtained from FeS 2 dissolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Influence of the Mode of Ventilation on Ketamine/Xylazine Requirements in Rabbits

    DTIC Science & Technology

    2007-01-01

    latory continuous positive airway pressure ( CPAP ) of 7–10 cmH2O, and demand CPAP of 8– 10 cmH2O. (4) A fourth group, spontaneously ventilating (SV, n...minute)1) superimposed on 40 minute)1 low-frequency respiratory cycles, I:E ratio ¼ 1:1, oscillatory continuous positive airway pressure ( CPAP ) of 7–10...cmH2O and demand CPAP of 8–10 cmH2O, FiO2 ¼ 0.5. Rabbits from group 4 (SV; n ¼ 17) were anesthetized, the trachea intu- bated, and breathed air

  10. Radiation-Driven Formation of Reactive Oxygen Species in Oxychlorine-Containing Mars Surface Analogues

    NASA Astrophysics Data System (ADS)

    Georgiou, Christos D.; Zisimopoulos, Dimitrios; Kalaitzopoulou, Electra; Quinn, Richard C.

    2017-04-01

    The present study demonstrates that γ-radiolyzed perchlorate-containing Mars soil salt analogues (in a CO2 atmosphere) generate upon H2O wetting the reactive oxygen species (ROS) superoxide radical (O2•-), hydrogen peroxide (H2O2), and hydroxyl radicals (•OH). This study also validates that analogue radiolysis forms oxychlorine species that, in turn, can UV-photolyze to •OH upon UV photolysis. This investigation was made possible by the development of a new assay for inorganic-origin O2•- and H2O2 determination and by the modification of a previous assay for soil •OH. Results show that radiolyzed Mg(ClO4)2 generates H2O2 and •OH; and when included as part of a mixture analogous to the salt composition of samples analyzed at the Mars Phoenix site, the analogue generated O2•-, H2O2, and •OH, with •OH levels 150-fold higher than in the radiolyzed Mg(ClO4)2 samples. Radiolyzed Mars Phoenix site salt analogue that did not contain Mg(ClO4)2 generated only •OH also at 150-fold higher concentration than Mg(ClO4)2 alone. Additionally, UV photolysis of the perchlorate γ radiolysis product chlorite (ClO2-) generated the oxychlorine products trihalide (Cl3-), chlorine dioxide (ClO2•), and hypochlorite (ClO-), with the formation of •OH by UV photolysis of ClO-. While the generation of ROS may have contributed in part to 14CO2 production in the Viking Labeled Release (LR) experiment and O2 (g) release in the Viking Gas Exchange (GEx) experiment, our results indicate that they are not likely to be the major contributor to the LR and GEx results. However, due to their highly reactive nature, they are expected to play a significant role in the alteration of organics on Mars. Additionally, experiments with hypochlorite show that the thermal stability of NaClO is in the range of the thermal stability observed for thermally liable oxidant responsible for the Viking LR results.

  11. H2O2 sensors of lungs and blood vessels and their role in the antioxidant defense of the body.

    PubMed

    Skulachev, V P

    2001-10-01

    This paper considers the composition and function of sensory systems monitoring H2O2 level by the lung neuroepithelial cells and carotid bodies. These systems are localized in the plasma membrane of the corresponding cells and are composed of (O2*-)-generating NADPH-oxidase and an H2O2-activated K+ channel. This complex structure of the H2O2 sensors is probably due to their function in antioxidant defense. By means of these sensors, an increase in the H2O2 level in lung or blood results in a decrease in lung ventilation and constriction of blood vessels. This action lowers the O2 flux to the tissues and, hence, intracellular [O2]. The [O2] decrease, in turn, inhibits intracellular generation of reactive oxygen species. The possible roles of such systems under normal conditions (e.g., the effect of O2*- in air) and in some pathologies (e.g., pneumonia) is discussed.

  12. Kinetic and mechanistic studies of reactive intermediates in photochemical and transition metal-assisted oxidation, decarboxylation and alkyl transfer reactions

    NASA Astrophysics Data System (ADS)

    Carraher, Jack McCaslin

    Reactive species like high-valent metal-oxo complexes and carbon and oxygen centered radicals are important intermediates in enzymatic systems, atmospheric chemistry, and industrial processes. Understanding the pathways by which these intermediates form, their relative reactivity, and their fate after reactions is of the utmost importance. Herein are described the mechanistic detail for the generation of several reactive intermediates, synthesis of precursors, characterization of precursors, and methods to direct the chemistry to more desirable outcomes yielding 'greener' sources of commodity chemicals and fuels. High-valent Chromium from Hydroperoxido-Chromium(III). The decomposition of pentaaquahydroperoxido chromium(III) ion (hereafter Cr aqOOH2+) in acidic aqueous solutions is kinetically complex and generates mixtures of products (Craq3+, HCrO 4-, H2O2, and O2). The yield of high-valent chromium products (known carcinogens) increased from a few percent at pH 1 to 70 % at pH 5.5 (near biological pH). Yields of H 2O2 increased with acid concentration. The reproducibility of the kinetic data was poor, but became simplified in the presence of H2O2 or 2,2‧-azinobis(3-ethylbenzothiazoline-6-sulfonate) dianion (ABTS2-). Both are capable of scavenging strongly oxidizing intermediates). The observed rate constants (pH 1, [O2] ≤ 0.03 mM) in the presence of these scavengers are independent of [scavenger] and within the error are the same (k,ABTS2- = (4.9 +/- 0.2) x 10-4 s-1 and kH2O2 = (5.3 +/- 0.7) x 10-4 s-1); indicating involvement of the scavengers in post-rate determining steps. In the presence of either scavenger, decomposition of CrOOH2+ obeyed a two-term rate law, k obs / s-1 = (6.7 +/- 0.7) x 10-4 + (7.6 +/- 1.1) x 10-4 [H+]. Effect of [H+] on the kinetics and the product distribution, cleaner kinetics in the presence of scavengers, and independence of kobs on [scavenger] suggest a dual-pathway mechanism for the decay of Craq OOH2+. The H+-catalyzed path leads to the dissociation of H2O2 from Cr(III), while in the H+-independent reaction, CraqOOH2+ is transformed to Cr(V). Both scavengers rapidly remove Cr(V) and simplify both the kinetics and products by impeding formation of Cr(IV, V, VI). Syntheses, Reactivity, and Thermodynamic Considerations LRhR2+. Macrocyclic rhodium(II) complexes LRh(H 2O)2+ (L = L1= cyclam and L2 = meso-Me6-cyclam) react with alkyl hydroperoxides R(CH3)2COOH to generate the corresponding rhodium(III) alkyls LRh(H2O)R2+ (R = CH3, C2 H5, PhCH2). Methyl and benzyl complexes can also be prepared by bimolecular group transfer from alkyl cobaloximes (dmgX) 2(H2O)CoR (where R = CH3, CH2Ph and dmgX is either dimethylglyoxime or a BF2-capped derivative of dmg) to LRh(H2O)2+. When R = C2H5, C3H7 or C4H9, the mechanism changes from group transfer to hydrogen atom abstraction from the coordinated alkyl and produces LRh(H2O)H2+ and an a-olefin. The new LRh(H2O)R2+ complexes were characterized by solution NMR and by crystal structure analysis. They exhibit great stability in aqueous solution at room temperature, but undergo efficient Rh-C bond cleavage upon photolysis. 'Green' Model for Decarboxylation of Biomass Derived Acids via Photolysis of in situ formed Metal-Carboxylate Complexes. Photolysis of aqueous solutions containing propionic acid and Fe 3+ aq in the absence of oxygen generates a mixture of hydrocarbons (ethane, ethylene and butane), carbon dioxide, and Fe2+. Photolysis in the presence of O2 yields catalytic amounts of hydrocarbon products. When halide ions are present during photolysis; nearly quantitative yields of ethyl halides are produced via extraction of a halide atom from FeX2+ by ethyl radical. The rate constants for ethyl radical reactions with FeCl2+ (k = 4.0 (+/- 0.5) x 106 M-1s-1) and with FeBr 2+ (k = 3.0 (+/- 0.5) x 107 M-1s -1) were determined via competition reactions. Irradiation of solutions containing aqueous Cu2+ salts and linear carboxylic acids yield alpha-olefins selectively. This process is made catalytic by the introduction of O2. Photochemical decarboxylation of propionic acid in the presence of Cu2+ generates ethylene and Cu +. Longer-chain acids also yield alpha olefins as exclusive products. In the absence of continued purging with O2 to aid removal of olefin, Cu+(olefin) complexes accumulate and catalytic activity slows dramatically due to depletion of Cu2+. The results underscore the profound effect that the choice of metal ions, the medium, and reaction conditions exert on the photochemistry of carboxylic acids. Free Oxygen Atom in Solution from 4-Benzoylpyridine N-Oxide Excited Singlet. Photolysis of 4-benzoylpyridine N-oxide (BPyO) in the presence of quenchers of the triplet excited state produces up to 41% O(3P) (as determined by generation of ethylene upon scavenging with cyclopentene). In the absence of 3BPyO* quenchers a maximum of 13% O(3P) relative to consumed BPyO is obtained. The remaining products are hydroxylated-4-benzoylpyridine and 4-benzoylpyridine. Additionally, the rate of BPyO consumption (as determined by UV-vis) decreases in the presence of 3BPyO* quenching agents. Second order rate constants for 3BPyO* quenching were determined. A mechanism for photochemical deoxygenation of BPyO is proposed on the basis of kinetic data and product distribution under various conditions. Additionally, comparisons are made between the observed intermediates and similar triplet excited states and radical anions.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahoney, Lenna A.

    Through radiolytic and thermolytic reactions, Hanford tank wastes generate and retain a variety of gases, including hydrogen, nitrous oxide, methane (and other hydrocarbons), ammonia, and nitrogen. This gas generation can be expected to continue during processing in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The generation rates in the WTP will change from those for the in-situ tank waste because of different process temperatures, different dose rates produced by in-process changes in the proportions of solid and liquid, and dilution of the waste liquid. The flammability of the generated gas that is continuously released, and of any retainedmore » gas that might be released into a vessel headspace in quantity due to a spontaneous release, depends on the concentrations not only of the fuel gases—primarily hydrogen (H2), methane, other hydrocarbons, and ammonia—but of the oxidizer nitrous oxide (N2O). As a result of high concentrations of N2O, some gas mixtures are “self-flammable” (i.e., ignition can occur when no air is present because N2O provides the only oxidizer needed). Self-flammability could potentially reduce the effectiveness of using a nitrogen (N2) purge in the headspace as a flammability control, if its effects are not accounted for. A given amount of inertant gas (N2) can accommodate only a certain amount of a generated self-flammable gas before the mixture with inertant gas becomes flammable.« less

  14. Cu2+ -Modified Metal-Organic Framework Nanoparticles: A Peroxidase-Mimicking Nanoenzyme.

    PubMed

    Chen, Wei-Hai; Vázquez-González, Margarita; Kozell, Anna; Cecconello, Alessandro; Willner, Itamar

    2018-02-01

    The synthesis and characterization of UiO-type metal-organic framework nanoparticles (NMOFs) composed of Zr 4+ ions bridged by 2,2'-bipyridine-5,5'-dicarboxylic acid ligands and the postmodification of the NMOFs with Cu 2+ ions are described. The resulting Cu 2+ -modified NMOFs, Cu 2+ -NMOFs, exhibit peroxidase-like catalytic activities reflected by the catalyzed oxidation of Amplex-Red to the fluorescent Resorufin by H 2 O 2 , the catalyzed oxidation of dopamine to aminochrome by H 2 O 2 , and the catalyzed generation of chemiluminescence in the presence of luminol/H 2 O 2 . Also, the Cu 2+ -NMOFs mimic NADH peroxidase functions and catalyze the oxidation of dihydronicotinamide adenine dinucleotide, NADH, to nicotinamide adenine dinucleotide, NAD + , in the presence of H 2 O 2 . The Cu 2+ -NMOFs-catalyzed generation of chemiluminescence in the presence of luminol/H 2 O 2 is used to develop a glucose sensor by monitoring the H 2 O 2 formed by the aerobic oxidation of glucose to gluconic acid in the presence of glucose oxidase. Furthermore, loading the Cu 2+ -NMOFs with fluorescein and activating the catalyzed generation of chemiluminescence in the presence of luminol/H 2 O 2 yield an efficient chemiluminescence resonance energy transfer (CRET) process to the fluorescein reflected by the activation of the fluorescence of the dye (λ = 520 nm, CRET efficiency 35%). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Tailoring Microbial Electrochemical Cells for Production of Hydrogen Peroxide at High Concentrations and Efficiencies.

    PubMed

    Young, Michelle N; Links, Mikaela J; Popat, Sudeep C; Rittmann, Bruce E; Torres, César I

    2016-12-08

    A microbial peroxide producing cell (MPPC) for H 2 O 2 production at the cathode was systematically optimized with minimal energy input. First, the stability of H 2 O 2 was evaluated using different catholytes, membranes, and catalyst materials. On the basis of these results, a flat-plate MPPC fed continuously using 200 mm NaCl catholyte at a 4 h hydraulic retention time was designed and operated, producing H 2 O 2 for 18 days. H 2 O 2 concentration of 3.1 g L -1 H 2 O 2 with 1.1 Wh g -1 H 2 O 2 power input was achieved in the MPPC. The high H 2 O 2 concentration was a result of the optimum materials selected. The small energy input was largely the result of the 0.5 cm distance between the anode and cathode, which reduced ionic transport losses. However, >50 % of operational overpotentials were due to the 4.5-5 pH unit difference between the anode and cathode chambers. The results demonstrate that a MPPC can continuously produce H 2 O 2 at high concentration by selecting compatible materials and appropriate operating conditions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synergistic disinfection and removal of biofilms by a sequential two-step treatment with ozone followed by hydrogen peroxide.

    PubMed

    Tachikawa, Mariko; Yamanaka, Kenzo

    2014-11-01

    Synergistic disinfection and removal of biofilms by ozone (O3) water in combination with hydrogen peroxide (H2O2) solution was studied by determining disinfection rates and observing changes of the biofilm structure in situ by confocal laser scanning microscopy (CLSM) using an established biofilm of Pseudomonas fluorescence. The sequential treatment with O3, 1.0-1.7 mg/L, followed by H2O2, 0.8-1.1%, showed synergistic disinfection effects, while the reversed treatment, first H2O2 followed by O3, showed only an additive effect. The decrease of synergistic disinfection effect by addition of methanol (CH3OH), a scavenger of hydroxyl radical (OH), into the H2O2 solution suggested generation of hydroxyl radicals on or in the biofilm by the sequential treatment with O3 followed by H2O2. The primary treatment with O3 increased disinfection rates of H2O2 in the secondary treatment, and the increase of O3 concentration enhanced the rates. The cold temperature of O3 water (14 °C and 8 °C) increased the synergistic effect, suggesting the increase of O3 adsorption and hydroxyl radical generation in the biofilm. CLSM observation showed that the sequential treatment, first with O3 followed by H2O2, loosened the cell connections and thinned the extracellular polysaccharides (EPS) in the biofilm. The hydroxyl radical generation in the biofilm may affect the EPS and biofilm structure and may induce effective disinfection with H2O2. This sequential treatment method may suggest a new practical procedure for disinfection and removal of biofilms by inorganic oxidants such as O3 and H2O2. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Lanthanum(III)-catalyzed disproportionation of hydrogen peroxide: a heterogeneous generator of singlet molecular oxygen-1O2 (1Deltag)-in near-neutral aqueous and organic media for peroxidation of electron-rich substrates.

    PubMed

    Nardello, Véronique; Barbillat, Jacques; Marko, Jean; Witte, Peter T; Alsters, Paul L; Aubry, Jean-Marie

    2003-01-20

    The decomposition of hydrogen peroxide into singlet molecular oxygen-(1)O(2) ((1)Delta(g))-in the presence of lanthanum(iii) salts was studied by monitoring its characteristic IR luminescence at 1270 nm. The process was found to be heterogeneously catalyzed by La(III), provided that the heterogeneous catalyst is generated in situ. The yield of (1)O(2) generation was assessed as 45+/-5 % both in water and in methanol. The pH-dependence on the rate of (1)O(2) generation corresponds to a bell-shaped curve from pH 4.5 to 13 with a maximum around pH 8. The study of the influence of H(2)O(2) showed that the formation of (1)O(2) begins as soon as one equivalent of H(2)O(2) is introduced. It then increases drastically up to two equivalents and more smoothly above. Unlike all other metal salt catalyst systems known to date for H(2)O(2) disproportionation, this chemical source of (1)O(2) is able to generate (1)O(2) not only in basic media, but also under neutral and slightly acidic conditions. In addition, this La-based catalyst system has a very low tendency to induce unwanted oxygenating side reactions, such as epoxidation of alkenes. These two characteristics of the heterogeneous lanthanum catalyst system allow non-photochemical (i.e., "dark") singlet oxygenation of substrate classes that cannot be peroxidized successfully with conventional molybdate catalysts, such as allylic alcohols and alkenyl amines.

  18. Late Holocene hydrous mafic magmatism at the Paint Pot Crater and Callahan flows, Medicine Lake Volcano, N. California and the influence of H2O in the generation of silicic magmas

    USGS Publications Warehouse

    Kinzler, R.J.; Donnelly-Nolan, J. M.; Grove, T.L.

    2000-01-01

    This paper characterizes late Holocene basalts and basaltic andesites at Medicine Lake volcano that contain high pre-eruptive H2O contents inherited from a subduction related hydrous component in the mantle. The basaltic andesite of Paint Pot Crater and the compositionally zoned basaltic to andesitic lavas of the Callahan flow erupted approximately 1000 14C years Before Present (14C years B.P.). Petrologic, geochemical and isotopic evidence indicates that this late Holocene mafic magmatism was characterized by H2O contents of 3 to 6 wt% H2O and elevated abundances of large ion lithophile elements (LILE). These hydrous mafic inputs contrast with the preceding episodes of mafic magmatism (from 10,600 to ~3000 14C years B.P.) that was characterized by the eruption of primitive high alumina olivine tholeiite (HAOT) with low H2O (< 0.2 wt%), lower LILE abundance and different isotopic characteristics. Thus, the mantle-derived inputs into the Medicine Lake system have not always been low H2O, primitive HAOT, but have alternated between HAOT and hydrous subduction related, calc-alkaline basalt. This influx of hydrous mafic magma coincides temporally and spatially with rhyolite eruption at Glass Mountain and Little Glass Mountain. The rhyolites contain quenched magmatic inclusions similar in character to the mafic lavas at Callahan and Paint Pot Crater. The influence of H2O on fractional crystallization of hydrous mafic magma and melting of pre-existing granite crust beneath the volcano combined to produce the rhyolite. Fractionation under hydrous conditions at upper crustal pressures leads to the early crystallization of Fe-Mg silicates and the suppression of plagioclase as an early crystallizing phase. In addition, H2O lowers the saturation temperature of Fe and Mg silicates, and brings the temperature of oxide crystallization closer to the liquidus. These combined effects generate SiO2-enrichment that leads to rhyodacitic differentiated lavas. In contrast, low H2O HAOT magmas at Medicine Lake differentiate to iron-rich basaltic liquids. When these Fe-enriched basalts mix with melted granitic crust, the result is an andesitic magma. Since mid-Holocene time, mafic volcanism has been dominated primarily by hydrous basaltic andesite and andesite at Medicine Lake Volcano. However, during the late Holocene, H2O-poor mafic magmas continued to be erupted along with hydrous mafic magmas, although in significantly smaller volumes.

  19. Temperature and H2O sensing in laminar premixed flames using mid-infrared heterodyne phase-sensitive dispersion spectroscopy

    NASA Astrophysics Data System (ADS)

    Ma, Liuhao; Wang, Zhen; Cheong, Kin-Pang; Ning, Hongbo; Ren, Wei

    2018-06-01

    We report the first demonstration of heterodyne phase-sensitive dispersion spectroscopy (HPSDS) for the simultaneous temperature and H2O concentration measurements in combustion environments. Two continuous-wave distributed-feedback quantum cascade lasers (DFB-QCLs) at 5.27 and 10.53 µm were used to exploit the strong H2O transitions (1897.52 and 949.53 cm-1) at high temperatures. The injection current of each QCL was modulated at sub-GHz or GHz to generate the three-tone radiation and the dispersion signal was detected by the radio-frequency down-conversion heterodyning. The peak-to-peak ratio of the two H2O dispersion spectra exhibits a monotonic relationship with temperature over the temperature range of 1000-3000 K, indicating the capability of performing two-line thermometry using laser dispersion spectroscopy. We measured the temperatures of CH4/air flames at different equivalence ratios ( Φ = 0.8-1.2), yielding a good agreement with the corresponding thermocouple measurements. In addition, one-dimensional kinetic modeling coupled with a detailed chemical kinetic mechanism (GRI 3.0) was conducted to compare with the measured H2O concentrations using HPSDS. Finally, we demonstrated HPSDS is immune to optical power fluctuations by measuring the dispersion spectra at varied incident laser powers.

  20. Evaluation of a potential generator-produced PET tracer for cerebral perfusion imaging: Single-pass cerebral extraction measurements and imaging with radiolabeled Cu-PTSM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathias, C.J.; Welch, M.J.; Raichle, M.E.

    1990-03-01

    Copper(II) pyruvaldehyde bis(N4-methylthiosemicarbazone) (Cu-PTSM), copper(II) pyruvaldehyde bis(N4-dimethylthiosemicarbazone) (Cu-PTSM2), and copper(II) ethylglyoxal bis(N4-methylthiosemicarbazone) (Cu-ETSM), have been proposed as PET tracers for cerebral blood flow (CBF) when labeled with generator-produced 62Cu (t1/2 = 9.7 min). To evaluate the potential of Cu-PTSM for CBF PET studies, baboon single-pass cerebral extraction measurements and PET imaging were carried out with the use of 67Cu (t1/2 = 2.6 days) and 64Cu (t1/2 = 12.7 hr), respectively. All three chelates were extracted into the brain with high efficiency. There was some clearance of all chelates in the 10-50-sec time frame and Cu-PTSM2 continued to clear. Cu-PTSM andmore » Cu-ETSM have high residual brain activity. PET imaging of baboon brain was carried out with the use of (64Cu)-Cu-PTSM. For comparison with the 64Cu brain image, a CBF (15O-labeled water) image (40 sec) was first obtained. Qualitatively, the H2(15)O and (64Cu)-Cu-PTSM images were very similar; for example, a comparison of gray to white matter uptake resulted in ratios of 2.42 for H2(15)O and 2.67 for Cu-PTSM. No redistribution of 64Cu was observed in 2 hr of imaging, as was predicted from the single-pass study results. Quantitative determination of blood flow using Cu-PTSM showed good agreement with blood flow determined with H2(15)O. This data suggests that (62Cu)-Cu-PTSM may be a useful generator-produced radiopharmaceutical for blood flow studies with PET.« less

  1. New insights into electrocatalytic ozone generation via splitting of water over PbO2 electrode: A DFT study

    NASA Astrophysics Data System (ADS)

    Gibson, Gregory; Morgan, Ashley; Hu, P.; Lin, Wen-Feng

    2016-06-01

    The viable mechanisms for O3 generation via the electrocatalytic splitting of H2O over β-PbO2 catalyst were identified through Density Functional Theory calculations. H2O adsorbed onto the surface was oxidized to form OH then O; the latter reacted with a surface bridging O to form O2 which in turn reacted with another surface O to form O3. The final step of the mechanisms occurs via an Eley-Rideal style interaction where surface O2 desorbs and then attacks the surface bridging oxygen, forming O3. A different reaction pathway via an O3H intermediate was found less favoured both thermodynamically and kinetically.

  2. Mechanistic and Kinetic Study of Singlet O2 Oxidation of Methionine by On-Line Electrospray Ionization Mass Spectrometry.

    PubMed

    Liu, Fangwei; Lu, Wenchao; Yin, Xunlong; Liu, Jianbo

    2016-01-01

    We report a reaction apparatus developed to monitor singlet oxygen ((1)O2) reactions in solution using on-line ESI mass spectrometry and spectroscopy measurements. (1)O2 was generated in the gas phase by the reaction of H2O2 with Cl2, detected by its emission at 1270 nm, and bubbled into aqueous solution continuously. (1)O2 concentrations in solution were linearly related to the emission intensities of airborne (1)O2, and their absolute scales were established based on a calibration using 9,10-anthracene dipropionate dianion as an (1)O2 trapping agent. Products from (1)O2 oxidation were monitored by UV-Vis absorption and positive/negative ESI mass spectra, and product structures were elucidated using collision-induced dissociation-tandem mass spectrometry. To suppress electrical discharge in negative ESI of aqueous solution, methanol was added to electrospray via in-spray solution mixing using theta-glass ESI emitters. Capitalizing on this apparatus, the reaction of (1)O2 with methionine was investigated. We have identified methionine oxidation intermediates and products at different pH, and measured reaction rate constants. (1)O2 oxidation of methionine is mediated by persulfoxide in both acidic and basic solutions. Persulfoxide continues to react with another methionine, yielding methionine sulfoxide as end-product albeit with a much lower reaction rate in basic solution. Density functional theory was used to explore reaction potential energy surfaces and establish kinetic models, with solvation effects simulated using the polarized continuum model. Combined with our previous study of gas-phase methionine ions with (1)O2, evolution of methionine oxidation pathways at different ionization states and in different media is described.

  3. Beneficial effects of substituting trivalent ions in the B-site of La0.5Sr0.5Mn1-xAxO3 (A = Al, Ga, Sc) on the thermochemical generation of CO and H2 from CO2 and H2O.

    PubMed

    Dey, Sunita; Naidu, B S; Rao, C N R

    2016-02-14

    The effect of substitution of Al(3+), Ga(3+) and Sc(3+) ions in the Mn(3+) site of La0.5Sr0.5MnO3 on the thermochemical splitting of CO2 to generate CO has been studied in detail. Both La0.5Sr0.5Mn1-xGaxO3 and La0.5Sr0.5Mn1-xScxO3 give high yields of O2 and generate CO more efficiently than La0.5Sr0.5Mn1-xAlxO3 or the parent La0.5Sr0.5MnO3. Substitution of even 5% Sc(3+) (x = 0.05) results in a remarkable improvement in performance. Thus La0.5Sr0.5Mn0.95Sc0.05O3 produces 417 μmol g(-1) of O2 and 545 μmol g(-1) of CO, respectively, i.e. 2 and 1.7 times more O2 and CO than La0.5Sr0.5MnO3. This manganite also generates H2 satisfactorily by the thermochemical splitting of H2O.

  4. Improvement of the model for surface process of tritium release from lithium oxide

    NASA Astrophysics Data System (ADS)

    Yamaki, Daiju; Iwamoto, Akira; Jitsukawa, Shiro

    2000-12-01

    Among the various tritium transport processes in lithium ceramics, the importance and the detailed mechanism of surface reactions remain to be elucidated. The dynamic adsorption and desorption model for tritium desorption from lithium ceramics, especially Li 2O was constructed. From the experimental results, it was considered that both H 2 and H 2O are dissociatively adsorbed on Li 2O and generate OH - on the surface. In the first model developed in 1994, it was assumed that either the dissociative adsorption of H 2 or H 2O on Li 2O generates two OH - on the surface. However, recent calculation results show that the generation of one OH - and one H - is more stable than that of two OH -s by the dissociative adsorption of H 2. Therefore, assumption of H 2 adsorption and desorption in the first model is improved and the tritium release behavior from Li 2O surface is evaluated again by using the improved model. The tritium residence time on the Li 2O surface is calculated using the improved model, and the results are compared with the experimental results. The calculation results using the improved model agree well with the experimental results than those using the first model.

  5. Anomalous hydrogen emissions from the San Andreas fault observed at the Cienega Winery, central California

    NASA Astrophysics Data System (ADS)

    Sato, Motoaki; Sutton, A. J.; McGee, K. A.

    1984-03-01

    We began continuous monitoring of H2 concentration in soil along the San Andreas and Calaveras faults in central California in December 1980, using small H2/O2 fuel-cell sensors. Ten monitoring stations deployed to date have shown that anomalous H2 emissions take place occasionally in addition to diurnal changes. Among the ten sites, the Cienega Winery site has produced data that are characterized by very small diurnal changes, a stable baseline, and remarkably distinct spike-like H2 anomalies since its installation in July 1982. A major peak appeared on 1 10 November 1982, and another on 3 April 1983, and a medium peak on 1 November 1983. The occurrences of these peaks coincided with periods of very low seismicity within a radius of 50 km from the site. In order to methodically assess how these peaks are related to earthquakes, three H2 degassing models were examined. A plausible correlational pattern was obtained by using a model that (1) adopts a hemicircular spreading pattern of H2 along an incipient fracture plane from the hypocenter of an earthquake, (2) relies on the FeO-H2O reaction for H2 generation, and (3) relates the accumulated amount of H2 to the mass of serpentinization of underlying ophiolitic rocks; the mass was tentatively assumed to be proportional to the seismic energy of the earthquake.

  6. Refinements in an Mg/MgH2/H2O-Based Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew; Huang, Yuhong

    2010-01-01

    Some refinements have been conceived for a proposed apparatus that would generate hydrogen (for use in a fuel cell) by means of chemical reactions among magnesium, magnesium hydride, and steam. The refinements lie in tailoring spatial and temporal distributions of steam and liquid water so as to obtain greater overall energy-storage or energy-generation efficiency than would otherwise be possible. A description of the prior art is prerequisite to a meaningful description of the present refinements. The hydrogen-generating apparatus in question is one of two versions of what was called the "advanced hydrogen generator" in "Fuel-Cell Power Systems Incorporating Mg-Based H2 Generators" (NPO-43554), NASA Tech Briefs, Vol. 33, No. 1 (January 2009), page 52. To recapitulate: The apparatus would include a reactor vessel that would be initially charged with magnesium hydride. The apparatus would exploit two reactions: The endothermic decomposition reaction MgH2-->Mg + H2, which occurs at a temperature greater than or equal to 300 C, and The exothermic oxidation reaction MgH2 + H2O MgO + 2H2, which occurs at a temperature greater than or equal to 330 C.

  7. Proposed formation mechanism and active species of hydrogen molecules generated from a novel magnesium-citric acid-hydroxypropyl cellulose coating (MgCC) material

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shigeki; Chikuma, Toshiyuki; Chiba, Kazuyoshi; Tsuchiya, Daisuke; Hirai, Tomomitsu

    2016-02-01

    The presence of acids is known to accelerate the reaction (Mg + 2H2O = Mg(OH)2 + H2). We developed a novel Mg-citric acid coating (MgCC) material produced by milling Mg powder coated with hydroxypropyl cellulose (HPC); because of its H2 generation, this material could be used in antioxidant therapy and antiaging applications. After milling in the presence of citric acid, this material produced H2-rich water upon addition to cooled water. Although the reaction was considered to involve a two-electron transfer from Mg to 2H2O, the role of the acid in H2 generation remains incompletely understood. To clarify the reaction mechanism, we performed studies on the deuterium kinetic isotope effects (KIE) and electron spin resonance (ESR). We observed differences in the concentration ratios, such as H2/D2 > 1 and H2/(H2 + D2 + HD) > 1, involved in H2, D2, and (H2 + D2 + HD) production, and found that adducts with hydrogen atoms (Hrad) were not obtained from the spin-trapping reaction between 5-(2, 2-Dimethyl-1,3-propoxy cyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO) and the MgCC material. The H2, D2, and HD produced from MgCC were identified by using a gas chromatograph connected to a mass spectrometer. The spin-trapping techniques showed that the Hrad adducts formed by the reaction of NaBH4 with CYPMPO could not be observed from reaction of MGCC with CYPMPO in H2O. The data suggest that the rate-controlling step and proposed transition state (TS) exist in the reaction pathway of the O-H bond cleavage and H-H bond formation. A TS of a structure such as [Mg(OH2)2]∗ could be expected in the reaction pathway between Mg and 2H2O by density functional theory calculations. Also, these results show that H2 generation is accelerated in the presence of acids because the activation energy of the TS is significantly smaller than that of H2O.

  8. Two mixed-ligand lanthanide–hydrazone complexes: [Pr(NCS)3(pbh)2]·H2O and [Nd(NCS)(NO3)(pbh)2(H2O)]NO3·2.33H2O [pbh is N′-(pyridin-2-ylmethylidene)benzo­hydrazide, C13H11N3O

    PubMed Central

    Paschalidis, Damianos G.; Harrison, William T. A.

    2016-01-01

    The gel-mediated syntheses and crystal structures of [N′-(pyridin-2-ylmethylidene-κN)benzohydrazide-κ2 N′,O]tris(thiocyanato-κN)praseodymium(III) mono­hydrate, [Pr(NCS)3(C13H11N3O)2]·H2O, (I), and aqua(nitrato-κ2 O,O′)[N′-(pyri­din-2-ylmethylidene-κN)benzohydrazide-κ2 N′,O](thiocyanato-κN)neo­dym­ium(III) nitrate 2.33-hydrate, [Nd(NCS)(NO3)(C13H11N3O)2(H2O)]NO3·2.33H2O, (II), are reported. The Pr3+ ion in (I) is coordinated by two N,N,O-tridentate N′-(pyridin-2-ylmethylidene)benzohydrazide (pbh) ligands and three N-bonded thio­cyanate ions to generate an irregular PrN7O2 coordination polyhedron. The Nd3+ ion in (II) is coordinated by two N,N,O-tridentate pbh ligands, an N-bonded thio­cyanate ion, a bidentate nitrate ion and a water mol­ecule to generate a distorted NdN5O5 bicapped square anti­prism. The crystal structures of (I) and (II) feature numerous hydrogen bonds, which lead to the formation of three-dimensional networks in each case. PMID:26958385

  9. Radiation-Driven Formation of Reactive Oxygen Species in Oxychlorine-Containing Mars Surface Analogues.

    PubMed

    Georgiou, Christos D; Zisimopoulos, Dimitrios; Kalaitzopoulou, Electra; Quinn, Richard C

    2017-04-01

    The present study demonstrates that γ-radiolyzed perchlorate-containing Mars soil salt analogues (in a CO 2 atmosphere) generate upon H 2 O wetting the reactive oxygen species (ROS) superoxide radical (O 2 •- ), hydrogen peroxide (H 2 O 2 ), and hydroxyl radicals ( • OH). This study also validates that analogue radiolysis forms oxychlorine species that, in turn, can UV-photolyze to • OH upon UV photolysis. This investigation was made possible by the development of a new assay for inorganic-origin O 2 •- and H 2 O 2 determination and by the modification of a previous assay for soil • OH. Results show that radiolyzed Mg(ClO 4 ) 2 generates H 2 O 2 and • OH; and when included as part of a mixture analogous to the salt composition of samples analyzed at the Mars Phoenix site, the analogue generated O 2 •- , H 2 O 2 , and • OH, with • OH levels 150-fold higher than in the radiolyzed Mg(ClO 4 ) 2 samples. Radiolyzed Mars Phoenix site salt analogue that did not contain Mg(ClO 4 ) 2 generated only • OH also at 150-fold higher concentration than Mg(ClO 4 ) 2 alone. Additionally, UV photolysis of the perchlorate γ radiolysis product chlorite (ClO 2 - ) generated the oxychlorine products trihalide (Cl 3 - ), chlorine dioxide (ClO 2 • ), and hypochlorite (ClO - ), with the formation of • OH by UV photolysis of ClO - . While the generation of ROS may have contributed in part to 14 CO 2 production in the Viking Labeled Release (LR) experiment and O 2 (g) release in the Viking Gas Exchange (GEx) experiment, our results indicate that they are not likely to be the major contributor to the LR and GEx results. However, due to their highly reactive nature, they are expected to play a significant role in the alteration of organics on Mars. Additionally, experiments with hypochlorite show that the thermal stability of NaClO is in the range of the thermal stability observed for thermally liable oxidant responsible for the Viking LR results. Key Words: Mars-Oxygen-Salts-Radiation-Habitability. Astrobiology 17, 319-336.

  10. Cells with dysfunctional telomeres are susceptible to reactive oxygen species hydrogen peroxide via generation of multichromosomal fusions and chromosomal fragments bearing telomeres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Seon Rang; Department of Biochemistry, College of Medicine, Korea University, Seoul 136-705; Park, Jeong-Eun

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Under conditions of telomere erosion, cells become extremely sensitive to H{sub 2}O{sub 2}. Black-Right-Pointing-Pointer Chromosomal regions adjacent to telomeres are cleaved by H{sub 2}O{sub 2} under such conditions. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} thus causes multichromosomal fusions and generation of small chromosomal fragments. Black-Right-Pointing-Pointer N-acetylcysteine prevents H{sub 2}O{sub 2}-induced chromosomal aberrations. -- Abstract: During genotoxic stress, reactive oxygen species hydrogen peroxide (H{sub 2}O{sub 2}) is a prime mediator of the DNA damage response. Telomeres function both to assist in DNA damage repair and to inhibit chromosomal end-to-end fusion. Here, we show that telomere dysfunction renders cells susceptible to H{submore » 2}O{sub 2}, via generation of multichromosomal fusion and chromosomal fragments. H{sub 2}O{sub 2} caused formation of multichromosomal end-to-end fusions involving more than three chromosomes, preferentially when telomeres were erosive. Interestingly, extensive chromosomal fragmentation (yielding small-sized fragments) occurred only in cells exhibiting such multichromosomal fusions. Telomeres were absent from fusion points, being rather present in the small fragments, indicating that H{sub 2}O{sub 2} cleaves chromosomal regions adjacent to telomeres. Restoration of telomere function or addition of the antioxidant N-acetylcysteine prevented development of chromosomal aberrations and rescued the observed hypersensitivity to H{sub 2}O{sub 2}. Thus, chromosomal regions adjacent to telomeres become sensitive to reactive oxygen species hydrogen peroxide when telomeres are dysfunctional, and are cleaved to produce multichromosomal fusions and small chromosomal fragments bearing the telomeres.« less

  11. Vapor segregation and loss in basaltic melts

    USGS Publications Warehouse

    Edmonds, M.; Gerlach, T.M.

    2007-01-01

    Measurements of volcanic gases at Pu'u'O??'o??, Kilauea Volcano, Hawai'i, reveal distinct degassing regimes with respect to vapor segregation and loss during effusive activity in 2004-2005. Three styles of vapor loss are distinguished by the chemical character of the emitted volcanic gases, measured by open path Fourier transform infrared spectroscopy: 1 persistent continuous gas emission, 2 gas piston events, and 3 lava spattering. Persistent continuous gas emission is associated with magma ascent and degassing beneath the crater vents, then eruption of the degassed magma from flank vents. Gas piston events are the result of static gas accumulation at depths of 400-900 m beneath Pu'u'O??'o??. A CO2-rich gas slug travels up the conduit at a few meters per second, displacing magma as it expands. Lava spattering occurs due to dynamic bubble coalescence in a column of relatively stagnant magma. The Large gas bubbles are H2O rich and are generated by open-system degassing at depths of <150 m. Static gas accumulation and dynamic bubble coalescence are both manifestations of vapor segregation in basaltic melts, but their implications differ. Accumulation and segregation of CO2-rich vapor at depth does not deplete the melt of H2O (required to drive lava fountains near to the surface) and therefore gas piston events can occur interspersed with lava fountaining activity. Lava spattering, however, efficiently strips H2O-rich vapor from magma beneath the crater vents; the magma must then erupt effusively from vents on the flank of the cone. ?? 2007 The Geological Society of America.

  12. Forming a Highly Active, Homogeneously Alloyed AuPt Co-catalyst Decoration on TiO2 Nanotubes Directly During Anodic Growth.

    PubMed

    Bian, Haidong; Nguyen, Nhat Truong; Yoo, JeongEun; Hejazi, Seyedsina; Mohajernia, Shiva; Müller, Julian; Spiecker, Erdmann; Tsuchiya, Hiroaki; Tomanec, Ondrej; Sanabria-Arenas, Beatriz E; Zboril, Radek; Li, Yang Yang; Schmuki, Patrik

    2018-05-30

    Au and Pt do not form homogeneous bulk alloys as they are thermodynamically not miscible. However, we show that anodic TiO 2 nanotubes (NTs) can in situ be uniformly decorated with homogeneous AuPt alloy nanoparticles (NPs) during their anodic growth. For this, a metallic Ti substrate containing low amounts of dissolved Au (0.1 atom %) and Pt (0.1 atom %) is used for anodizing. The matrix metal (Ti) is converted to oxide, whereas at the oxide/metal interface direct noble metal particle formation and alloying of Au and Pt takes place; continuously these particles are then picked up by the growing nanotube wall. In our experiments, the AuPt alloy NPs have an average size of 4.2 nm, and at the end of the anodic process, these are regularly dispersed over the TiO 2 nanotubes. These alloyed AuPt particles act as excellent co-catalyst in photocatalytic H 2 generation, with a H 2 production rate of 12.04 μL h -1 under solar light. This represents a strongly enhanced activity as compared to TiO 2 NTs decorated with monometallic particles of Au (7 μL h -1 ) or Pt (9.96 μL h -1 ).

  13. Reaction of N2O5 with H2O on carbonaceous surfaces

    NASA Technical Reports Server (NTRS)

    Brouwer, L.; Rossi, M. J.; Golden, D. M.

    1986-01-01

    The heterogeneous reaction of N2O5 with commercially available ground charcoal in the absence of H2O revealed a physisorption process (gamma = 0.003), together with a redox reaction generating mostly NO. Slow HNO3 formation was the result of the interaction of N2O5 with H2O that was still adsorbed after prolonged pumping at 0.0001 torr. In the presence of H2O, the same processes with gamma = 0.005 are observed. The redox reaction dominates in the early stages of the reaction, whereas the hydrolysis gains importance later at the expense of the redox reaction. The rate law for HNO3 generation was found to be d(HNO3)/dt = k(bi)(H2O)(N2O5) with k(bi), the effective bimolecular rate constants, for 10 mg of carbon being (1.6 + or - 0.3) x 10 to the -13th cu cm/s.

  14. Reactions of PO(x)Cl(y)-ions with O(2)(a1-delta-g), H(2)O, and Cl(2) at 298 K

    DTIC Science & Technology

    2008-03-10

    branching ratio values calculated in this way for the 02(X) reaction differ slightly from the previous SIFT measurement [17]. However, the difference is...been measured in a selected ion flow tube (SIFT) at 298 K. A mixture of 02(a’Ag) in 02 has been produced using a recently designed chemical singlet...oxygen generator (sparger) with an emission detection scheme adopted previously in our laboratory. The experiments continue a series of investigations

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, C.N.R., E-mail: cnrrao@jncasr.ac.in; Dey, Sunita

    Generation of H{sub 2} and CO by splitting H{sub 2}O and CO{sub 2} respectively constitutes an important aspect of the present-day concerns with energy and environment. The solar thermochemical route making use of metal oxides is a viable means of accomplishing these reduction reactions. The method essentially involves reducing a metal oxide by heating and passing H{sub 2}O or CO{sub 2} over the nonstoichiometric oxide to cause reverse oxidation by abstracting oxygen from H{sub 2}O or CO{sub 2}. While ceria, perovskites and other oxides have been investigated for this purpose, recent studies have demonstrated the superior performance of perovskites ofmore » the type Ln{sub 1−x}A{sub x}Mn{sub 1−y}M{sub y}O{sub 3} (Ln=rare earth, A=alkaline earth, M=various +2 and +3 metal ions), in the thermochemical generation of H{sub 2} and CO. We present the important results obtained hitherto to point out how the alkaine earth and the Ln ions, specially the radius of the latter, determine the performance of the perovskites. The encouraging results obtained are exemplefied by Y{sub 0.5}Sr{sub 0.5}MnO{sub 3} which releases 483 µmol/g of O{sub 2} at 1673 K and produces 757 µmol/g of CO from CO{sub 2} at 1173 K. The production of H{sub 2} from H{sub 2}O is also quite appreciable. Modification of the B site ion of the perovskite also affects the performance. In addition to perovskites, we present the generation of H{sub 2} based on the Mn{sub 3}O{sub 4}/NaMnO{sub 2} cycle briefly. - Graphical abstract: Ln{sub 0.5}A{sub 0.5}Mn{sub 1−x}M{sub x}O{sub 3} (Ln=lanthanide; A=Ca, Sr; M=Al, Ga, Sc, Mg, Cr, Fe, Co) perovskites are employed for the two step thermochemical splitting of CO{sub 2} and H{sub 2}O for the generation of CO and H{sub 2}. - Highlights: • Perovskite oxides based on Mn are ideal for the two-step thermochemical splitting of CO{sub 2} and H{sub 2}O. • In Ln{sub 1−x}A{sub x}MnO{sub 3} perovskite (Ln=rare earth, A=alkaline earth) both Ln and A ions play major roles in the thermochemical process. • H{sub 2}O splitting is also achieved by the use of the Mn{sub 3}O{sub 4}-sodium carbonate system. • Thermochemical splitting of CO{sub 2} and H{sub 2}O using perovskite oxides is explained. • Mn based perovskites.« less

  16. Air-supplied pinhole discharge in aqueous solution for the inactivation of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Suganuma, Ryota; Yasuoka, Koichi

    2018-04-01

    An air-supplied pinhole discharge in aqueous solution has been developed to provide a short-lived and odorless bactericide to replace current conventional disinfectants such as O3, ClO-, HClO, and ClO2. The pinhole discharge that was initiated inside a water bubble generated hydrogen peroxide (H2O2) and nitrous acid (HNO2) simultaneously. The concentrations of H2O2, HNO2, and HNO3 were 16.3, 13.9, and 17.4 mg/L, respectively when flow rates of NaCl solution and air were 72 and 12.5 mL/min, respectively. The pH value of the solution was 3.87, and HO2 radicals were generated from the reaction of H2O2 with HNO2. The efficacy of sterilization of discharge-treated water was evaluated by changing the acetic solutions. A 4-orders-of-magnitude decrease in Escherichia coli survival rate was observed after treatment with a sodium citrate solution of pH 3.2 for 60 s.

  17. Flow and evaporation cells for the detection of proteins on membranes with the peroxyoxalate chemiluminescent reaction in organic media.

    PubMed

    Castro-Hartmann, Pablo; Daban, Joan-Ramon

    2004-08-01

    The high-energy intermediates generated in the reaction of bis(2,4,6-trichlorophenyl)oxalate (TCPO) with H2O2 can excite electronically different fluorophores with a high quantum yield in organic solvents. We have previously applied this peroxyoxalate chemiluminescent reaction to the detection of proteins labeled with the fluorescent dye 2-methoxy-2,4-diphenyl-3(2H)-furanone (MDPF) on polyvinylidene difluoride (PVDF) membranes. In this work, we have investigated the possibility to enhance the sensitivity of this detection method using specially designed cells in which the reagents TCPO and H2O2 in acetone are continuously renewed. In the flow cell, two syringes are used to renew the reagents in the reaction chamber containing the PVDF membrane with blotted proteins labeled with MDPF. In the evaporation cell, a fresh solution of reagents continuously replaces the volume of acetone evaporated in the reaction chamber. Both cells show a low emission background but the observed elution of proteins from the membrane produced by the flow of reagents in acetone limits the maximum sensitivity attainable with these cells. The best result (detection of 1 ng of MDPF-labeled protein) has been obtained with the evaporation cell. Copyright 2004 Wiley-VCH Verlag GmbH and Co.

  18. Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species

    PubMed Central

    Mailloux, Ryan J.

    2015-01-01

    Mitochondria fulfill a number of biological functions which inherently depend on ATP and O2−•/H2O2 production. Both ATP and O2−•/H2O2 are generated by electron transfer reactions. ATP is the product of oxidative phosphorylation whereas O2−• is generated by singlet electron reduction of di-oxygen (O2). O2−• is then rapidly dismutated by superoxide dismutase (SOD) producing H2O2. O2−•/H2O2 were once viewed as unfortunately by-products of aerobic respiration. This characterization is fitting considering over production of O2−•/H2O2 by mitochondria is associated with range of pathological conditions and aging. However, O2−•/H2O2 are only dangerous in large quantities. If produced in a controlled fashion and maintained at a low concentration, cells can benefit greatly from the redox properties of O2−•/H2O2. Indeed, low rates of O2−•/H2O2 production are required for intrinsic mitochondrial signaling (e.g. modulation of mitochondrial processes) and communication with the rest of the cell. O2−•/H2O2 levels are kept in check by anti-oxidant defense systems that sequester O2−•/H2O2 with extreme efficiency. Given the importance of O2−•/H2O2 in cellular function, it is imperative to consider how mitochondria produce O2−•/H2O2 and how O2−•/H2O2 genesis is regulated in conjunction with fluctuations in nutritional and redox states. Here, I discuss the fundamentals of electron transfer reactions in mitochondria and emerging knowledge on the 11 potential sources of mitochondrial O2−•/H2O2 in tandem with their significance in contributing to overall O2−•/H2O2 emission in health and disease. The potential for classifying these different sites in isopotential groups, which is essentially defined by the redox properties of electron donator involved in O2−•/H2O2 production, as originally suggested by Brand and colleagues is also surveyed in detail. In addition, redox signaling mechanisms that control O2−•/H2O2 genesis from these sites are discussed. Finally, the current methodologies utilized for measuring O2−•/H2O2 in isolated mitochondria, cell culture and in vivo are reviewed. PMID:25744690

  19. Protein kinase G–regulated production of H2S governs oxygen sensing

    PubMed Central

    Yuan, Guoxiang; Vasavda, Chirag; Peng, Ying-Jie; Makarenko, Vladislav V.; Raghuraman, Gayatri; Nanduri, Jayasri; Gadalla, Moataz M.; Semenza, Gregg L.; Kumar, Ganesh K.; Snyder, Solomon H.; Prabhakar, Nanduri R.

    2015-01-01

    Reflexes initiated by the carotid body, the principal O2-sensing organ, are critical for maintaining cardio-respiratory homeostasis during hypoxia. O2 sensing by the carotid body requires carbon monoxide (CO) generation by heme oxygenase-2 (HO-2) and hydrogen sulfide (H2S) synthesis by cystathionine-γ-lyase (CSE). We report that O2 stimulated the generation of CO, but not that of H2S, and required two cysteine residues in the heme regulatory motif (Cys265 and Cys282) of HO-2. CO stimulated protein kinase G (PKG)–dependent phosphorylation of Ser377 of CSE, inhibiting the production of H2S. Hypoxia decreased the inhibition of CSE by reducing CO generation resulting in increased H2S, which stimulated carotid body neural activity. In carotid bodies from mice lacking HO-2, compensatory increased abundance of nNOS (neuronal nitric oxide synthase) mediated O2 sensing through PKG-dependent regulation of H2S by nitric oxide. These results provide a mechanism for how three gases work in concert in the carotid body to regulate breathing. PMID:25900831

  20. MPK6 controls H2 O2-induced root elongation by mediating Ca2+ influx across the plasma membrane of root cells in Arabidopsis seedlings.

    PubMed

    Han, Shuan; Fang, Lin; Ren, Xuejian; Wang, Wenle; Jiang, Jing

    2015-01-01

    Mitogen-activated protein kinases (MPKs) play critical roles in signalling and growth, and Ca(2+) and H2 O2 control plant growth processes associated with abscisic acid (ABA). However, it remains unclear how MPKs are involved in H2 O2 - and Ca(2+) -mediated root elongation. Root elongation in seedlings of the loss-of-function mutant Atmpk6 (Arabidopsis thaliana MPK6) was less sensitive to moderate H2 O2 or ABA than that in wild-type (WT) plants. The enhanced elongation was a result of root cell expansion. This effect disappeared when ABA-induced H2 O2 accumulation or the cytosolic Ca(2+) increase were defective. Molecular and biochemical evidence showed that increased expression of the cell wall peroxidase PRX34 in Atmpk6 root cells enhanced apoplastic H2 O2 generation; this promoted a cytosolic Ca(2+) increase and Ca(2+) influx across the plasma membrane. The plasma membrane damage caused by high levels of H2 O2 was ameliorated in a Ca(2+) -dependent manner. These results suggested that there was intensified PRX34-mediated H2 O2 generation in the apoplast and increased Ca(2+) flux into the cytosol of Atmpk6 root cells; that is, the spatial separation of apoplastic H2 O2 from cytosolic Ca(2+) in root cells prevented H2 O2 -induced inhibition of root elongation in Atmpk6 seedlings. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  1. Improved Electrolytic Hydrogen Peroxide Generator

    NASA Technical Reports Server (NTRS)

    James, Patrick I.

    2005-01-01

    An improved apparatus for the electrolytic generation of hydrogen peroxide dissolved in water has been developed. The apparatus is a prototype of H2O2 generators for the safe and effective sterilization of water, sterilization of equipment in contact with water, and other applications in which there is need for hydrogen peroxide at low concentration as an oxidant. Potential applications for electrolytic H2O2 generators include purification of water for drinking and for use in industrial processes, sanitation for hospitals and biotechnological industries, inhibition and removal of biofouling in heat exchangers, cooling towers, filtration units, and the treatment of wastewater by use of advanced oxidation processes that are promoted by H2O2.

  2. Microscopic adaptation of BaHfO3 and Y2O3 artificial pinning centers for strong and isotropic pinning landscape in YBa2Cu3O7-x thin films

    NASA Astrophysics Data System (ADS)

    Gautam, Bibek; Sebastian, Mary Ann; Chen, Shihong; Haugan, Timothy; Zhang, Wenrui; Huang, Jijie; Wang, Haiyan; Wu, Judy Z.

    2018-07-01

    A study of 3 vol% Y2O3 + 2-6 vol% BaHfO3 double-doped YBa2Cu3O7-x (BHO DD) epitaxial thin films was carried out to explore the morphology adaption of c-axis aligned one-dimensional BHO artificial pinning centers (1D APCs) to secondary Y2O3 nanoparticles (3D APCs). BHO 1D APCs have been predicted to have the least rigidity in an elastic strain energy model in APC/YBa2Cu3O7-x nanocomposite films. Consequently, they could be best ‘tuned’ away from the c-axis alignment by local strains generated by the Y2O3 3D APCs. This provides an opportunity to generate mixed-morphology APCs, especially at high BHO concentrations. Motivated by this, we have carried out a systematic study of the transport critical current density J c(H, T, θ) on the BHO DD samples in magnetic fields (H) up to 90 kOe at different H orientations from H//c-axis (θ = 0), to θ = 45°, and to H//ab-plane (θ = 90°). Enhanced pinning at all three orientations was observed as illustrated in the comparable low alpha (α) values in the range of 0.13-0.25 at 65 K, which is consistent with the mixed 1D (in c-axis) + 2D (in ab-plane) + 3D APCs observed in transmission electron microscopy (TEM). Upon increasing BHO concentration from 2 to 4 vol%, a monotonic increase of the accommodation field H* at θ = 0°, 45° and 90° was observed, indicative of the APC concentration increase of the mixed morphologies. At 6 vol% BHO, the H* continues the increase to 85 kOe at H//c-axis (θ = 0), and >90 kOe H//ab-plane (θ = 90°), while it decreases from 80 to 85 kOe at 2-4 vol% to 60 kOe at 6 vol% at θ = 45°, which is consistent with the TEM observation of the connection of 3D APCs, appeared at lower BHO concentration into 2D ones in ab-plane at the higher BHO concentrations. These results shed light on the quantitative adaptation of APCs of mixed morphologies with increasing BHO doping in the BHO DD thin films and are important for controlling the APC pinning landscape towards minimal angular dependence.

  3. Oxidant-induced DNA damage of target cells.

    PubMed Central

    Schraufstätter, I; Hyslop, P A; Jackson, J H; Cochrane, C G

    1988-01-01

    In this study we examined the leukocytic oxidant species that induce oxidant damage of DNA in whole cells. H2O2 added extracellularly in micromolar concentrations (10-100 microM) induced DNA strand breaks in various target cells. The sensitivity of a specific target cell was inversely correlated to its catalase content and the rate of removal of H2O2 by the target cell. Oxidant species produced by xanthine oxidase/purine or phorbol myristate acetate-stimulated monocytes induced DNA breakage of target cells in proportion to the amount of H2O2 generated. These DNA strand breaks were prevented by extracellular catalase, but not by superoxide dismutase. Cytotoxic doses of HOCl, added to target cells, did not induce DNA strand breakage, and myeloperoxidase added extracellularly in the presence of an H2O2-generating system, prevented the formation of DNA strand breaks in proportion to its H2O2 degrading capacity. The studies also indicated that H2O2 formed hydroxyl radical (.OH) intracellularly, which appeared to be the most likely free radical responsible for DNA damage: .OH was detected in cells exposed to H2O2; the DNA base, deoxyguanosine, was hydroxylated in cells exposed to H2O2; and intracellular iron was essential for induction of DNA strand breaks. PMID:2843565

  4. Further Investigation of a Nickel-Based Homogeneous Water Oxidation Catalyst with Two cis Labile Sites.

    PubMed

    Luo, Gang-Yi; Huang, Hai-Hua; Wang, Jia-Wei; Lu, Tong-Bu

    2016-03-08

    The reaction of N,N'-dimethyl-N,N'-bis(pyridin-2-ylmethyl)-1,2-diaminoethane ligand (L) with Ni(ClO4)2 ⋅6 H2O generated a complex of [NiL(H2O)2](ClO4)2 (1) with two cis labile sites occupied by two coordinated H2O molecules, which can homogeneously electrocatalyze water oxidation in pH 6.5 acetate (OAc(-)) buffer at room temperature. The catalytic mechanism was studied by electrochemical experiments and density functional theory calculations to elucidate the following steps: (a) one of two water molecules in 1 is exchanged by OAc(-) to generate [NiL(H2O)(OAc)](+) when dissolved in OAc(-) buffer, (b) Ni(II) is directly oxidized to Ni(IV) and OAc(-) is replaced with OH(-) to form [Ni(IV) L(OH)2 ](2+), and (c) a peroxide intermediate is formed through the intramolecular O-O coupling in the presence of OAc(-), which undergoes further oxidation to release O2. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. An experimental study of the fluid-melt partitioning of volatiles (H2O, CO2, S) during the degassing of ascending basalt

    NASA Astrophysics Data System (ADS)

    Le Gall, Nolwenn; Pichavant, Michel; Di Carlo, Ida; Scaillet, Bruno

    2017-04-01

    We performed decompression experiments to constrain the fluid-melt partitioning of volatiles (H2O, CO2, S) in ascending basalt magmas associated with violent eruptions. Experiments were conducted in an internally heated pressure vessel under oxidizing conditions (fO2: NNO+1.1) so that all sulphur occurs as sulfate (S6+) in the melt. Volatile-bearing (2.72 ± 0.02 wt% H2O, 1291 ± 85 ppm CO2, 1535 ± 369 ppm S) melts, prepared from Stromboli pumice, were synthesized at 1200°C and 200 MPa, decompressed between 150 and 25 MPa at constant rates of 39 and 78 kPa/s (or 1.5 and 3 m/s), and rapidly quenched. Run products were characterized both chemically (by IR spectroscopy and electron microprobe analysis) and texturally (by scanning electron microscopy), and then compared with Stromboli pumice products (glass inclusions, volcanic gases). In H2O-CO2-S-bearing basaltic melts, bubbles start to nucleate heterogeneously on Fe sulfides for supersaturation pressures ΔPHeN ≤ 1 MPa and to nucleate homogeneously for ΔPHoN < 50 MPa (ΔPHeN and ΔPHoN are the difference between the saturation pressure and the pressure at which heterogeneous and homogeneous bubble nucleation are observed, respectively). Bubble growth, coalescence and outgassing occur in addition to continuous bubble nucleation, which is sustained by the preservation of CO2 supersaturated melts during decompression. In addition to model the degassing behaviour of sulphur (and also of CO2 and H2O), our experiments aim to assist in the interpretation of geochemical observables. On the one hand, the volatile degassing trend recorded by Stromboli natural glasses (unsealed glass embayments) was closely experimentally simulated, with a coupled decrease of H2O and S whereas CO2 concentrations remain elevated. On the other hand, the experimental H2O/CO2 and CO2/SO2 fluid molar ratios, calculated by mass balance, both reproduced or closely approached the lower ranges of gas ratios measured at Stromboli for quiescent magma degassing and explosive activity. Compared to models that attribute a deep origin to CO2-rich fluxes and high CO2/SO2 gas ratios, our experimental observations support a model of low pressure (Pf << 25 MPa) explosive degassing of CO2-rich melts generated as a result of disequilibrium degassing to generate Strombolian paroxysms.

  6. Effect of H2O on the NO emission characteristics of pulverized coal during oxy-fuel combustion.

    PubMed

    Lei, Ming; Sun, Cen; Zou, Chan; Mi, Hang; Wang, Chunbo

    2018-04-01

    The NO emission characteristics of Datong bituminous coal and Yangquan anthracite in O 2 /H 2 O/CO 2 atmospheres were investigated by using a fixed-bed reactor system, and the emission characteristics were compared with the experimental results from O 2 /N 2 and O 2 /CO 2 atmospheres, especially at low O 2 concentrations and high temperatures. The results showed that NO emissions of pulverized coal in O 2 /CO 2 environments were less than those in the O 2 /N 2 environments, regardless of the O 2 concentration and the furnace temperature. Adding H 2 O decreased the possibility of reactions between the reductive groups (NH) and the oxygen radical during devolatilization, which led to a decrease in NO emissions at 1000 °C. However, as the furnace temperature increased, "additional" nitrogen precursors (HCN and NH 3 ) generated by enhanced char-H 2 O gasification were quickly oxidized to generate a large amount of NO during char oxidation that exceeded the amount of NO reduced by NH during devolatilization. Thus, the NO emissions in O 2 /CO 2 /H 2 O atmosphere were higher than those in O 2 /CO 2 atmosphere at a low O 2 concentration. However, as the O 2 concentration increased, the NO emissions in O 2 /CO 2 /H 2 O atmosphere became lower than those in O 2 /CO 2 atmosphere because the effect of H 2 O gasification became weaker. The NO emissions of Yangquan anthracite (YQ) were higher than those of DT, but the changing trend of YQ was similar to that of DT.

  7. Development and field testing of a mobile chlorine dioxide generation system for the decontamination of buildings contaminated with Bacillus anthracis.

    PubMed

    Wood, Joseph P; Blair Martin, G

    2009-05-30

    The numerous buildings that became contaminated with Bacillus anthracis (the bacterium causing the disease anthrax) in 2001, and more recent B. anthracis - related events, point to the need to have effective decontamination technologies for buildings contaminated with biological threat agents. The U.S. Government developed a portable chlorine dioxide (ClO(2)) generation system to decontaminate buildings contaminated with B. anthracis spores, and this so-called mobile decontamination trailer (MDT) prototype was tested through a series of three field trials. The first test of the MDT was conducted at Fort McClellan in Anniston, AL. during October 2004. Four test attempts occurred over two weekends; however, a number of system problems resulted in termination of the activity prior to any ClO(2) introduction into the test building. After making several design enhancements and equipment changes, the MDT was subjected to a second test. During this test, extensive leak checks were made using argon and nitrogen in lieu of chlorine gas; each subsystem was checked for functionality, and the MDT was operated for 24h. This second test demonstrated the MDT flow and control systems functioned satisfactorily, and thus it was decided to proceed to a third, more challenging field trial. In the last field test, ClO(2) was generated and routed directly to the scrubber in a 12-h continuous run. Measurement of ClO(2) levels at the generator outlet showed that the desired production rate was not achieved. Additionally, only one of the two scrubbers performed adequately with regard to maintaining ClO(2) emissions below the limit. Numerous lessons were learned in the field trials of this ClO(2) decontamination technology.

  8. Effect of Cu2O morphology on photocatalytic hydrogen generation and chemical stability of TiO2/Cu2O composite.

    PubMed

    Zhu, Lihong; Zhang, Junying; Chen, Ziyu; Liu, Kejia; Gao, Hong

    2013-07-01

    Improving photocatalytic activity and stability of TiO2/Cu2O composite is a challenge in generating hydrogen from water. In this paper, the TiO2 film/Cu2O microgrid composite was prepared via a microsphere lithography technique, which possesses a remarkable performance of producing H2 under UV-vis light irradiation, in comparison with pure TiO2 film, Cu2O film and TiO2 film/Cu2O film. More interesting is that in TiO2 film/Cu2O microgrid, photo-corrosion of Cu2O can be retarded. After deposition of Pt on its surface, the photocatalytic activity of TiO2/Cu2O microgrid in producing H2 is improved greatly.

  9. Zn-Fe-CNTs catalytic in situ generation of H2O2 for Fenton-like degradation of sulfamethoxazole.

    PubMed

    Liu, Yong; Fan, Qin; Wang, Jianlong

    2018-01-15

    A novel Fenton-like catalyst (Zn-Fe-CNTs) capable of converting O 2 to H 2 O 2 and further to OH was prepared through infiltration fusion method followed by chemical replacement in argon atmosphere. The catalyst was characterized by SEM, EDS, TEM, XRD and XPS. The reaction between Zn-Fe-CNTs and O 2 in aqueous solution could generate H 2 O 2 in situ, which was further transferred to OH. The Fenton-like degradation of sulfamethoxazole (SMX) using Zn-Fe-CNTs as catalyst was evaluated. The results indicated that Zn-Fe-CNTs had a coral porous structure with a BET area of 51.67m 2 /g, exhibiting excellent adsorption capacity for SMX, which enhanced its degradation. The particles of Zn 0 and Fe 0 /Fe 2 O 3 were observed on the surface of Zn-Fe-CNTs. The mixture of Zn 0 and CNTs could reduce O 2 into H 2 O 2 by micro-electrolysis and Fe 0 /Fe 2 O 3 could catalyze in-situ generation of H 2 O 2 to produce OH through Fenton-like process. When initial pH=1.5, T=25°C, O 2 flow rate=400mL/min, Zn-Fe-CNTs=0.6g/L, SMX=25mg/L and reaction time=10min, the removal efficiency of SMX and TOC was 100% and 51.3%, respectively. The intermediates were detected and the possible pathway of SMX degradation and the mechanism of Zn-Fe-CNTs/O 2 process were tentatively proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. In-liquid Plasma. A stable light source for advanced oxidation processes in environmental remediation

    NASA Astrophysics Data System (ADS)

    Tsuchida, Akihiro; Shimamura, Takeshi; Sawada, Seiya; Sato, Susumu; Serpone, Nick; Horikoshi, Satoshi

    2018-06-01

    A microwave-inspired device that generates stable in-liquid plasma (LP) in aqueous media and emits narrow light emission lines at 280-320 nm, 660 nm and 780 nm is examined as a light source capable of driving photochemical reactions and advanced oxidation processes in wastewater treatments. The microwave-driven lighting efficiency was improved by decompressing the inside of the reaction vessel, which resulted in lowering the incident power of the microwaves and suppressed the deterioration of the microwave irradiation antenna. This protocol made it possible to generate continuous stable plasma in water. Evaluation of the LP device was carried out by revisiting the decomposition of 1,4-dioxane in aqueous media against the use of such other conventional water treatment processes as (i) UV irradiation alone, (ii) TiO2-assisted photocatalysis with UV irradiation (UV/TiO2), (iii) oxidation with sodium hypochlorite (NaClO), and (iv) UV-assisted decomposition in the presence of NaClO (UV/NaClO). The in-liquid plasma technique proved superior to these four other methods. The influence of pH on the LP protocol was ascertained through experiments in acidified (HCl and H2SO4) and alkaline (NaOH and KOH) aqueous media. Except for H2SO4, decomposition of 1,4-dioxane was enhanced in both acidic and alkaline media.

  11. The role of nitric oxide in basal and induced resistance in relation with hydrogen peroxide and antioxidant enzymes.

    PubMed

    Keshavarz-Tohid, Vahid; Taheri, Parissa; Taghavi, Seyed Mohsen; Tarighi, Saeed

    2016-07-20

    Nitric oxide (NO) is one of the main signal molecules, which is involved in plant growth and development and can change regular physiological activity in biotic and abiotic stresses. In this study, the role of NO in induced resistance with Pseudomonas fluorescent (CHA0) and basal resistance against Rhizoctonia solani in bean plant was investigated. Our results revealed that P. fluorescent and R. solani can increase NO production at 6h post inoculation (hpi). Also, using the NO donor S-nitroso-N-acetyl D-penicillamine (SNAP) led to increase NO and bean plant resistance against R. solani. Utilizing the NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethy-limidazoline-1-oxyl-3-oxide (cPTIO), not only decreased basal resistance but also reduced induced resistance. In continue, the activity of antioxidant enzymes was studied in the former treatments. SNAP, CHA0 and R. solani increased the activity of peroxidase (POX), catalase (CAT) and ascorbate peroxidase (APX) at 6, 12 and 24h post inoculation (hpi). In contrast, using cPTIO and R. solani simultaneously (cPTIO+R) showed reduction in activity of POX and APX at 6 hpi. The cPTIO+R treatment increased POX, APX and CAT activity at 12 and 24 hpi. Hydrogen peroxide (H 2 O 2 ) monitoring in the leaf discs clarified that SNAP can increase H 2 O 2 production like CHA0 and R. solani. On the other hand, SNAP increased the resistance level of leaf discs against R. solani. Treating the leaf discs with cPTIO led to decrease resistance against the pathogen. These leaf discs showed reduction in H 2 O 2 production at 6 hpi and suddenly enhanced H 2 O 2 generation was observed at 24hpi. This study showed that CHA0 can increase NO level in bean plants. NO induced H 2 O 2 generation and regulated redox state of the host plant. This interaction resulted in significant defense against the pathogen. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Nanocomposites of phosphonic-acid-functionalized polyethylenes with inorganic quantum dots.

    PubMed

    Rünzi, Thomas; Baier, Moritz C; Negele, Carla; Krumova, Marina; Mecking, Stefan

    2015-01-01

    Insertion of diethyl vinyl phosphonates and free vinyl phosphonic acid, respectively, into [(P^O)Pd(Me)(dmso)] ((P^O) = κ(2)-P,O-Ar2PC6H4SO2O with Ar = 2-MeOC6H4) (1-dmso) occurs in a 2,1- as well as 1,2-fashion, to form a four-and a five-membered chelate [(P^O)Pd{κ(2)-C,O-CH(P(O)(OR)2)CH2CH3}] and [(P^O)Pd{κ(2)-C,O-CH2CH(P(O)(OR)2)CH3}] (R = H, Et). No decomposition or other reactions of 1 by free phosphonic acid moieties occur. Copolymerization in a pressure reactor by 1-dmso yields linear random poly(ethylene-co-diethyl vinyl phosphonate) and poly(ethylene-co-vinyl phosphonic acid). In these copolymerizations, reversible coordination of the phosphonate moieties of free monomer as well as chelate formation by incorporated monomer retards chain growth as also evidenced by relative binding studies of diethyl phosphonate towards 1. Post-polymerization emulsification of poly(ethylene-co-vinyl phosphonic acid) together with CdSe/CdS quantum dots (QDs) yields submicron (ca. 50 nm from dynamic light scattering (DLS) and transmission electron microscopy (TEM)) polymer particles with the QDs embedded in the functionalized polyethylene in a nonaggregated fashion. This embedding benefits the fluorescence behavior in terms of continuous emission and life-time as revealed by wide-field fluorescence measurements. These composite particle dispersions are employed as a ″masterbatch" together with an aqueous high density polyethylene (HDPE) dispersion to generate thin films (by spin-coating) and bulk materials (from the melt), respectively, in which the inorganic nanoparticles remain highly disperse. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. On the pathways feeding the H2 production process in nutrient-replete, hypoxic conditions. Commentary on the article "Low oxygen levels contribute to improve photohydrogen production in mixotrophic non-stressed Chlamydomonas cultures", by Jurado-Oller et al., Biotechnology for Biofuels, published September 7, 2015; 8:149.

    PubMed

    Scoma, Alberto; Tóth, Szilvia Z

    2017-01-01

    Under low O 2 concentration (hypoxia) and low light, Chlamydomonas cells can produce H 2 gas in nutrient-replete conditions. This process is hindered by the presence of O 2 , which inactivates the [FeFe]-hydrogenase enzyme responsible for H 2 gas production shifting algal cultures back to normal growth. The main pathways accounting for H 2 production in hypoxia are not entirely understood, as much as culture conditions setting the optimal redox state in the chloroplast supporting long-lasting H 2 production. The reducing power for H 2 production can be provided by photosystem II (PSII) and photofermentative processes during which proteins are degraded via yet unknown pathways. In hetero- or mixotrophic conditions, acetate respiration was proposed to indirectly contribute to H 2 evolution, although this pathway has not been described in detail. Recently, Jurado-Oller et al. (Biotechnol Biofuels 8: 149, 7) proposed that acetate respiration may substantially support H 2 production in nutrient-replete hypoxic conditions. Addition of low amounts of O 2 enhanced acetate respiration rate, particularly in the light, resulting in improved H 2 production. The authors surmised that acetate oxidation through the glyoxylate pathway generates intermediates such as succinate and malate, which would be in turn oxidized in the chloroplast generating FADH 2 and NADH. The latter would enter a PSII-independent pathway at the level of the plastoquinone pool, consistent with the light dependence of H 2 production. The authors concluded that the water-splitting activity of PSII has a minor role in H 2 evolution in nutrient-replete, mixotrophic cultures under hypoxia. However, their results with the PSII inhibitor DCMU also reveal that O 2 or acetate additions promoted acetate respiration over the usually dominant PSII-dependent pathway. The more oxidized state experienced by these cultures in combination with the relatively short experimental time prevented acclimation to hypoxia, thus precluding the PSII-dependent pathway from contributing to H 2 production. In Chlamydomonas , continuous H 2 gas evolution is expected once low O 2 partial pressure and optimal reducing conditions are set. Under nutrient-replete conditions, the electrogenic processes involved in H 2 photoproduction may rely on various electron transport pathways. Understanding how physiological conditions select for specific metabolic routes is key to achieve economic viability of this renewable energy source.

  14. The role of water in the petrogenesis of Marina trough magmas

    NASA Astrophysics Data System (ADS)

    Stolper, Edward; Newman, Sally

    1994-02-01

    Most variations in composition among primitive basalts from the Mariana back-arc trough can be explained by melting mixtures of an N-type mid-ocean ridge basalt (NMORB) mantle source and an H2O rich component, provided the degree of melting is positively and approximately linearly correlated with the proportion of the H2O-rich component in the mixture. We conclude that the degrees of melting by which Mariana trough magmas are generated increase from magmas similar to NMORB, through more H2O-enriched basalts, to 'arc-like' basalts, and that this increase is due to the lowering of the solidus of mantle peridotite that accompanies addition of the H2O-rich component. The H2O-rich component is likely to be ultimately derived from fluid from a subducting slab, but we propose that by the time fluids reach the source regions of Mariana trough basalts, they have interacted with sufficient mantle material that for all but the most incompatible of elements (with respect to fluid-mantle interaction), they are in equilibrium with the mantle. In contrast, fluids added to the source regions of Mariana island-arc magmas have typically interacted with less mantle and thus retain the signature of slab-derived fluids to varying degrees for all but the most compatible elements. Primitive Mariana arc basalts can be generated by melting mixtures of such incompletely exchanged slab-derived fluids and sources similar to NMORB-type mantle sources, but the degrees of melting are typically higher than those of Mariana trough NMORB and the sources have been variably depleted relative to the back-arc sources by previous melt extraction. This depletion may be related to earlier extraction of back-arc basin magmas or may evolve by repeated fluxing of the sources as fluid is continually added to them in the regions of arc magma generation. If fluid with partitioning behavior relative to the solid mantle similar to that deduced for the H2O-rich component involved in the generation of Mariana trough basalts were extracted from primitive mantle, the residual mantle would have many of the minor and trace element characteristics of typical oceanic upper mantle; primitive mantle enriched in such fluid would be a satisfactory source for the continental crust in terms of its trace and minor element chemical composition.

  15. Nitric oxide activates superoxide dismutase and ascorbate peroxidase to repress the cell death induced by wounding.

    PubMed

    Lin, Chih-Ching; Jih, Pei-Ju; Lin, Hsin-Hung; Lin, Jeng-Shane; Chang, Ling-Lan; Shen, Yu-Hsing; Jeng, Shih-Tong

    2011-10-01

    Wounding caused by rain, wind, and pathogen may lead plants to onset defense response. Previous studies indicated that mechanical wounding stimulates plants to generate nitric oxide (NO) and hydrogen peroxide (H(2)O(2)). In this study, the functions of NO and H(2)O(2) after wounding in sweet potato (Ipomoea batatas cv. Tainung 57) was further analyzed. Mechanical wounding damaged cells and resulted in necrosis, but the presence of NO donors or NO scavenger might reduce or enhance the cell death caused by wounding, respectively. The amount of H(2)O(2) induced by wounding was also decreased or increased when plants were incubated with NO donors or NO scavenger, individually. These results indicate that NO may regulate H(2)O(2) generation to affect cell death. NO-induced proteins isolated from two-dimensional electrophoresis were identified to be Copper/Zinc superoxide dismutases (CuZnSODs). The activities of CuZnSODs and ascorbate peroxidase (APX) could be enhanced by NO. In addition, the expression of CuZnSOD and APX was induced by wounding via NO, and their expression was further stimulated by NO through the generation of cGMP. The influx of calcium ions and the activity of NADPH oxidase were also involved in the NO signal transduction pathway inducing APX expression. Collectively, the generation of H(2)O(2) in wounded plants might trigger cell death. Meanwhile, the production of NO induced by wounding stimulated signal transducers including cGMP, calcium ions, and H(2)O(2) to activate CuZnSOD and APX, which further decreased H(2)O(2) level and reduced the cell death caused by wounding.

  16. 3-Methyl-7-(2-thienyl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione: pi-stacked bilayers built from N-H...O, C-H...O and C-H...pi hydrogen bonds.

    PubMed

    Trilleras, Jorge; Quiroga, Jairo; Cobo, Justo; Glidewell, Christopher

    2009-06-01

    In the title compound, C(12)H(9)N(3)O(2)S, the thienyl substituent is disordered over two sets of sites with occupancies of 0.749 (3) and 0.251 (3). A combination of N-H...O, C-H...O and C-H...pi hydrogen bonds links the molecules into bilayers and these bilayers are themselves linked into a continuous structure by pi-pi stacking interactions.

  17. Function of Oxygen Resistance Proteins in the Anaerobic, Sulfate-Reducing Bacterium Desulfovibrio vulgaris Hildenborough

    PubMed Central

    Fournier, Marjorie; Zhang, Yi; Wildschut, Janine D.; Dolla, Alain; Voordouw, Johanna K.; Schriemer, David C.; Voordouw, Gerrit

    2003-01-01

    Two mutant strains of Desulfovibrio vulgaris Hildenborough lacking either the sod gene for periplasmic superoxide dismutase or the rbr gene for rubrerythrin, a cytoplasmic hydrogen peroxide (H2O2) reductase, were constructed. Their resistance to oxidative stress was compared to that of the wild-type and of a sor mutant lacking the gene for the cytoplasmic superoxide reductase. The sor mutant was more sensitive to exposure to air or to internally or externally generated superoxide than was the sod mutant, which was in turn more sensitive than the wild-type strain. No obvious oxidative stress phenotype was found for the rbr mutant, indicating that H2O2 resistance may also be conferred by two other rbr genes in the D. vulgaris genome. Inhibition of Sod activity by azide and H2O2, but not by cyanide, indicated it to be an iron-containing Sod. The positions of Fe-Sod and Sor were mapped by two-dimensional gel electrophoresis (2DE). A strong decrease of Sor in continuously aerated cells, indicated by 2DE, may be a critical factor in causing cell death of D. vulgaris. Thus, Sor plays a key role in oxygen defense of D. vulgaris under fully aerobic conditions, when superoxide is generated mostly in the cytoplasm. Fe-Sod may be more important under microaerophilic conditions, when the periplasm contains oxygen-sensitive, superoxide-producing targets. PMID:12486042

  18. Experimental study and kinetic modeling of hydrogen and carbon monoxide oxidation perturbed by nitrogen and sulfur oxides

    NASA Astrophysics Data System (ADS)

    Mueller, Mark Anthony

    2000-10-01

    Increasingly stringent regulations have and will likely continue to place considerable constraints on combustion-generated pollutants, including carbon monoxide, nitrogen oxides, and sulfur oxides. The speciation of these pollutants and, by extension, their impact, is likely affected by kinetic interactions that occur during post-combustion processes. To gain a fundamental understanding of these interactions, the oxidation of hydrogen and carbon monoxide in the presence of trace quantities of NO, NO2, and SO2 was experimentally and numerically studied at conditions relevant to modern internal combustion engines. Experimental data were obtained using a well-characterized flow reactor over pressure and temperature ranges of 0.4--14.0 atm and 750--1040 K, respectively, using dilute (˜1% fuel) H2/O2 and CO/H2O/O2 mixtures perturbed with ppm quantities of NO, NO2, and/or SO2. The overall effects of these species were found to be highly sensitive to pressure, temperature, and equivalence ratio. In general, small quantities of NO promoted fuel consumption by converting HO2 radicals to highly reactive OH radicals, while high concentrations of NO and/or NO2 were inhibiting due to the catalysis of radical recombination reactions. In the absence of NO, SO2 strongly inhibited CO oxidation, but the simultaneous presence of NO and SO2 yielded synergistic effects that significantly reduced the inhibition from SO 2. Over the range of conditions explored, direct interactions between NOx and SOx species did rot appear to significantly influence the relative NO and NO2 concentrations; however, the reaction between NO2 and SO2 may be an important source of SO3 in certain circumstances. A detailed reaction mechanism. has been developed in a hierarchical manner, beginning with the H2/O2 and CO/H2O/O 2 systems and sequentially adding reactions necessary to describe the perturbing effects of NOx and SOx species. The experimental data were used in conjunction with gradient sensitivity and reaction flux analyses to determine key reaction pathways and to derive rate data for the H+O2(+M)=HO2(+M), H2+NO2=HONO+H, and SO2+O(+M) SO3(+M) reactions. Modifications to the rate constants for these and other reactions are discussed in relation to the mechanism's predictive ability with respect to the H2/O 2, CO/H2O/O2, H2/NO2, H 2/O2/NOx, and CO/H2O/O2/NO x/SOx systems over a wide range of conditions.

  19. Dye-sensitized MIL-101 metal organic frameworks loaded with Ni/NiO{sub x} nanoparticles for efficient visible-light-driven hydrogen generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xin-Ling; Wang, Rong; Yuan, Yu-Peng, E-mail: yupengyuan@ahu.edu.cn, E-mail: cxue@ntu.edu.sg

    2015-10-01

    The Ni/NiO{sub x} particles were in situ photodeposited on MIL-101 metal organic frameworks as catalysts for boosting H{sub 2} generation from Erythrosin B dye sensitization under visible-light irradiation. The highest H{sub 2} production rate of 125 μmol h{sup −1} was achieved from the system containing 5 wt. % Ni-loaded MIL-101 (20 mg) and 30 mg Erythrosin B dye. Moreover, the Ni/NiO{sub x} catalysts show excellent stability for long-term photocatalytic reaction. The enhancement on H{sub 2} generation is attributed to the efficient charge transfer from photoexcited dye to the Ni catalyst via MIL-101. Our results demonstrate that the economical Ni/NiO{sub x}more » particles are durable and active catalysts for photocatalytic H{sub 2} generation.« less

  20. Unlocking the Secrets of the Mantle Wedge: New Insights Into Melt Generation Processes in Subduction Zones

    NASA Astrophysics Data System (ADS)

    Grove, T. L.

    2007-05-01

    Recent laboratory studies of the melting and crystallization behavior of mantle peridotite and subduction zone lavas have led to new insights into melting processes in island arc settings. Melting of the mantle wedge in the presence of H2O begins at much lower temperatures than previously thought. The solidus of mantle peridotite at 3 GPa is ~ 800 °C, which is 200 °C below previous estimates. At pressures greater than 2.4 GPa chlorite becomes a stable phase on the solidus and it remains stable until ~ 3.5 GPa. Therefore, melting over this pressure range occurs in the presence of chlorite, which contains ~ 12 wt. % H2O. Chlorite stabilized on the peridotite solidus by slab-derived H2O may be the ultimate source of H2O for subduction zone magmatism. Thus, chlorite could transport large amounts of H2O into the descending mantle wedge to depths where it can participate in melting to generate hydrous arc magmas. Our ability to identify primitive mantle melts at subduction zones has led to the following observations. 1) Primitive mantle melts show evidence of final equilibration at shallow depths near the mantle - crust boundary. 2) They contain variable amounts of dissolved H2O (up to 6 wt. %). 3) They record variable extents of melting (up to > 25 wt. %). To produce melts with such variable characteristics requires more than one melting process and requires consideration of a new type of melting called hydrous flux melting. Flux melting occurs when the H2O - rich melt initially produced on the solidus near the base of the mantle wedge ascends and continuously reacts with overlying hotter, shallower mantle. The mantle melts and magmatic H2O content is constantly diluted as the melt ascends and reacts with shallower, hotter mantle. Anhydrous mantle melts are also found in close temporal and spatial proximity to hydrous flux melts. These melts are extracted at similar depths near the top of the mantle wedge when mantle is advected up and into the wedge corner and melted by adiabatic decompression. In light of these new insights into the chemical processes that lead to melt generation in subduction zones, further study of the influence of mantle dynamics and physical processes on melting is crucial. Variations in mantle permeability near the base of the wedge may exercise important controls on the access of fluids and/or melts to the overlying wedge. The presence of chlorite in the wedge may also influence rheological properties and seismicity in the vicinity of the slab - wedge interface. Improved knowledge of rheology and permeability will help us to develop more robust models of mantle flow and temperature distribution in the mantle wedge. These are crucial for refining melting models. By combining evidence from petrology, geochemistry and geophysics the mysteries that attend the generation of melt in the mantle wedge can be resolved.

  1. The reaction of H2O2 with NO2 and NO

    NASA Technical Reports Server (NTRS)

    Gray, D.; Lissi, E.; Heicklen, J.

    1972-01-01

    The reactions of NO and NO2 with H2O2 have been examined at 25 C. Reaction mixtures were monitored by continuously bleeding through a pinhole into a monopole mass spectrometer. NO2 was also monitored by its optical absorption in the visible part of the spectrum. Reaction mixtures containing initially 1.5 - 2.5 torr of NO2 and 0.8 - 1.4 torr of H2O2 or 1 - 12 torr of NO and 0.5 - 1.5 torr of H2O2 were studied. The H2O2 - NO reaction was complex. There was an induction period followed by a marked acceleration in reactant removal. The final products of the reaction, NO2, probably H2O, and possibly HONO2 were produced mainly after all the H2O2 was removed. The HONO intermediate was shown to disproportionate to NO2 + NO + H2O in a relatively slow first order reaction. The acceleration in H2O2 removal after the NO - H2O2 reaction is started is caused by NO2 catalysis.

  2. Hydrogen isotopic messages in sulfate reducer lipids: a recorder of metabolic state?

    NASA Astrophysics Data System (ADS)

    Bradley, A. S.; Leavitt, W.; Zhou, A.; Cobban, A.; Suess, M.

    2017-12-01

    A significant range in microbial lipid 2H/1H ratios is observed in modern marine sediments. The magnitude of hydrogen isotope fractionation between microbial lipids and growth water (2ɛlipid-H2O) is hypothesized to relate to the central carbon and energy metabolism. These observations raise the possibility for culture independent identification of the dominant metabolic pathways operating in a given environment [Zhang et al. 2009]. One such metabolism we aim to track is microbial sulfate reduction. To-date, sulfate reducing bacteria have been observed to produce lipids that are depleted in fatty acid H-isotope composition, relative to growth water (2ɛlipid-H2O -50 to -175 ‰) [Campbell et al. 2009; Dawson et al. 2015; Osburn et al.], with recent work demonstrating a systematic relationship between lipid/water fractionation and growth rate when the electron-bifurcating NAD(P)(H) transhydrogenase (ebTH) activity was disrupted and the available electron requires the ebTH [Leavitt et al. 2016. Front Microbio]. Recent work in aerobic methylotrophs [Bradley et al. 2014. AGU] implicates non-bifurcating NAD(P)(H) transhydrogenase activity is a critical control on 2ɛlipid-H2O. This suggests a specific mechanism to control the range in fractionation is the ratio of intracellular NADPH/NADH/NADP/NAD in aerobes and perhaps the same in anaerobes with some consideration for FADH/FAD. Fundamentally this implies 2ɛlipid-H2O records intracellular redox state. In our sulfate reducer model system Desulfovibrio alaskensis strain G20 a key component of energy metabolism is the activity of ebTH. Nonetheless, this strain contains two independent copies of the genes, only one of which generates a distinctive isotopic phenotype [Leavitt et al. 2016. Front Microbio]. In this study we extend the recent work in G20 to continuous culture experiments comparing WT to nfnAB-2 transposon interruptions, where both organisms are cultivated continuously, at the rate of the slower growing mutant. We compare fatty acid concentrations and 2ɛlipid-H2O from wild type and TH mutants in strain G20. We discuss implications for understanding H-isotope fractionation during microbial fatty acid biosynthesis in sulfate reducers and anaerobes in general in anoxic environments.

  3. Independent trafficking of flavocytochrome b558 and myeloperoxidase to phagosomes during phagocytosis visualised by energy-filtering and energy-dispersive spectroscopy-scanning transmission electron microscopy.

    PubMed

    Moriguchi, Keiichi

    2018-03-01

    When polymorphonuclear leukocytes (PMNs) phagocytose opsonised zymosan particles (OPZ), free radicals and reactive oxygen species (ROS) are formed in the phagosomes. ROS production is mediated by NADPH oxidase (Nox), which transfers electrons in converting oxygen to superoxide (O 2 - ). Nox-generated O 2 - is rapidly converted to other ROS. Free radical-forming secretory vesicles containing the Nox redox center flavocytochrome b558, a membrane protein, and azurophil granules with packaged myeloperoxidase (MPO) have been described. Presuming the probable fusion of these vesicular and granular organelles with phagosomes, the translation process of the enzymes was investigated using energy-filtering and energy-dispersive spectroscopy-scanning transmission electron microscopy. In this work, the primary method for imaging cerium (Ce) ions demonstrated the localisation of H 2 O 2 generated by phagocytosing PMNs. The MPO activity of the same PMNs was continuously monitored using 0.1% 3,3'-diaminobenzidine-tetrahydrochloride (DAB) and 0.01% H 2 O 2 . A detailed view of these vesicular and granular structures was created by overlaying each electron micrograph with pseudocolors: blue for Ce and green for nitrogen (N). © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  4. Anomalous hydrogen emissions from the San Andreas fault observed at the Cienega Winery, central California

    USGS Publications Warehouse

    Sato, M.; Sutton, A.J.; McGee, K.A.

    1985-01-01

    We began continuous monitoring of H2 concentration in soil along the San Andreas and Calaveras faults in central California in December 1980, using small H2/O2 fuel-cell sensors. Ten monitoring stations deployed to date have shown that anomalous H2 emissions take place occasionally in addition to diurnal changes. Among the ten sites, the Cienega Winery site has produced data that are characterized by very small diurnal changes, a stable baseline, and remarkably distinct spike-like H2 anomalies since its installation in July 1982. A major peak appeared on 1-10 November 1982, and another on 3 April 1983, and a medium peak on 1 November 1983. The occurrences of these peaks coincided with periods of very low seismicity within a radius of 50 km from the site. In order to methodically assess how these peaks are related to earthquakes, three H2 degassing models were examined. A plausible correlational pattern was obtained by using a model that (1) adopts a hemicircular spreading pattern of H2 along an incipient fracture plane from the hypocenter of an earthquake, (2) relies on the FeO-H2O reaction for H2 generation, and (3) relates the accumulated amount of H2 to the mass of serpentinization of underlying ophiolitic rocks; the mass was tentatively assumed to be proportional to the seismic energy of the earthquake. ?? 1985 Birkha??user Verlag.

  5. H2O2 levels in rainwater collected in south Florida and the Bahama Islands

    NASA Technical Reports Server (NTRS)

    Zika, R.; Saltzman, E.; Chameides, W. L.; Davis, D. D.

    1982-01-01

    Measurements of H2O2 in rainwater collected in Miami, Florida, and the Bahama Islands area indicate the presence of H2O2 concentration levels ranging from 100,000 to 700,000 M. No systematic trends in H2O2 concentration were observed during an individual storm, in marked contrast to the behavior of other anions for example, NO3(-), SO4(-2), and Cl(-). The data suggest that a substantial fraction of the H2O2 found in precipitation is generated by aqueous-phase reactions within the cloudwater rather than via rainout and washout of gaseous H2O2.

  6. Thyrotropin-induced hydrogen peroxide production in FRTL-5 thyroid cells is mediated not by adenosine 3',5'-monophosphate, but by Ca2+ signaling followed by phospholipase-A2 activation and potentiated by an adenosine derivative.

    PubMed

    Kimura, T; Okajima, F; Sho, K; Kobayashi, I; Kondo, Y

    1995-01-01

    The production of hydrogen peroxide (H2O2) as an essential process for iodide organification is a key reaction in TSH-induced thyroid hormone synthesis. Here we characterize the signal transduction pathway involved in TSH-induced H2O2 production in FRTL-5 thyroid cells. At higher than 1 nM TSH, N6-(L-2-phenylisopropyl)adenosine (PIA), an adenosine receptor agonist having, by itself, no influence on H2O2 generation, potentiated this TSH action, whereas the TSH increase and PIA addition reduced cAMP accumulation. RO 20-1724, a phosphodiesterase inhibitor, amplified the TSH-induced cAMP accumulation, but did not change H2O2 generation in the whole range of TSH used. Ca(2+)-mobilizing agonists, GTP and ATP, also induced H2O2 production without stimulating cAMP accumulation. Chelation of intracellular Ca2+ markedly inhibited the TSH action, but intracellular Ca2+ increases by either thapsigargin or ionomycin mimicking it. All of the findings show the participation of Ca2+, but not cAMP, in the action of TSH. Desensitization of protein kinase-C (PKC) did not influence the receptor-mediated H2O2 production, suggesting the reduced importance of PKC activation compared to Ca2+ signaling to the reaction. A rise in intracellular Ca2+ independent of receptor activation also induced H2O2 production as well as arachidonate release, and both were potentiated by PIA. In addition, inhibitors of phospholipase-A2 and the arachidonate metabolic pathway depressed H2O2 generation, suggesting the participation of an arachidonate cascade in the Ca(2+)-dependent H2O2 production. Lipoxygenase inhibitors depressed the Ca2+ action without influencing arachidonate release, suggesting the involvement of a lipoxygenase product(s) of arachidonate in the Ca(2+)-signaling mechanism. In conclusion, in FRTL-5 cells, TSH-induced H2O2 production is mediated not by cAMP, but by the phospholipase-C/Ca2+ cascade, possibly followed by the Ca(2+)-dependent phospholipase-A2/arachidonate cascade. PIA amplifies TSH-induced H2O2 production at the steps of phospholipase-C and phospholipase-A2 activation in a pertussis toxin-sensitive manner.

  7. Cyanide oxidation by singlet oxygen generated via reaction between H2O2 from cathodic reduction and OCl(-) from anodic oxidation.

    PubMed

    Tian, Shichao; Li, Yibing; Zeng, Huabin; Guan, Wei; Wang, Yan; Zhao, Xu

    2016-11-15

    Cyanide is widely present in electroplating wastewater or metallurgical effluents. In the present study, the electrochemical destruction of cyanide with various anode and cathode compositions under alkaline conditions was investigated. The results indicated that the electrochemical system using RuO2/Ti as anode and activated carbon fiber (ACF) as cathode in the presence of sodium chloride was efficient for the cyanide removal. In this system, in situ generation of HClO by anodic oxidation of Cl(-) at RuO2/Ti anode occurred with the H2O2 generation by O2 reduction at ACF cathode. As confirmed by the electron spin resonance technique, the reaction between HClO and H2O2 led to the generation of singlet oxygen, which was responsible for the cyanide removal. Further experiment indicated that the cyanide removal efficiency increased with the increase of the current density or the sodium chloride concentration. Cyanate was identified as main product in the system. Besides, the system exhibited good stability for the cyanide removal, which was beneficial to its practical application. Copyright © 2016. Published by Elsevier Inc.

  8. Stimulation of H(2)O(2) generation by calcium in brain mitochondria respiring on alpha-glycerophosphate.

    PubMed

    Tretter, Laszlo; Takacs, Katalin; Kövér, Kinga; Adam-Vizi, Vera

    2007-11-15

    It has been reported recently (Tretter et al., 2007b) that in isolated guinea pig brain mitochondria supported by alpha-glycerophosphate (alpha-GP) reactive oxygen species (ROS) are produced through the reverse electron transport (RET) in the respiratory chain and by alpha-glycerophosphate dehydrogenase (alpha-GPDH). We studied the effect of calcium on the generation of H(2)O(2) as measured by the Amplex Red fluorescent assay in this model. H(2)O(2) production in alpha-GP-supported mitochondria was increased significantly in the presence of 100, 250, and 500 nM Ca(2+), respectively. In addition, Ca(2+) enhanced the membrane potential, the rate of oxygen consumption, and the NAD(P)H autofluorescence in these mitochondria. Direct measurement of alpha-GPDH activity showed that Ca(2+) stimulated the enzyme by decreasing the Km for alpha-GP. In those mitochondria where RET was eliminated by the Complex I inhibitor rotenone (2 microM) or due to depolarization by ADP (1 mM), the rate of H(2)O(2) formation was smaller and the stimulation of H(2)O(2) generation by Ca(2+) was prevented partly, but the stimulatory effect of Ca(2+) was still significant. These data indicate that in alpha-GP-supported mitochondria activation of alpha-GPDH by Ca(2+) leads to an accelerated RET-mediated ROS generation as well as to a stimulated ROS production by alpha-GPDH.

  9. Hydrogen peroxide-responsive copolyoxalate nanoparticles for detection and therapy of ischemia-reperfusion injury.

    PubMed

    Lee, Dongwon; Bae, Soochan; Ke, Qingen; Lee, Jiyoo; Song, Byungjoo; Karumanchi, S Ananth; Khang, Gilson; Choi, Hak Soo; Kang, Peter M

    2013-12-28

    The main culprit in the pathogenesis of ischemia/reperfusion (I/R) injury is the generation of high level of hydrogen peroxide (H2O2). In this study, we report a novel diagnostic and therapeutic strategy for I/R injury based on H2O2-activatable copolyoxalate nanoparticles using a murine model of hind limb I/R injury. The nanoparticles are composed of hydroxybenzyl alcohol (HBA)-incorporating copolyoxalate (HPOX) that, in the presence of H2O2, degrades completely into three known and safe compounds, cyclohexanedimethanol, HBA and CO2. HPOX effectively scavenges H2O2 in a dose-dependent manner and hydrolyzes to release HBA which exerts intrinsic antioxidant and anti-inflammatory activities both in vitro and in vivo models of hind limb I/R. HPOX nanoparticles loaded with fluorophore effectively and robustly image H2O2 generated in hind limb I/R injury, demonstrating their potential for bioimaging of H2O2-associated diseases. Furthermore, HPOX nanoparticles loaded with anti-apoptotic drug effectively release the drug payload after I/R injury, exhibiting their effectiveness for a targeted drug delivery system for I/R injury. We anticipate that multifunctional HPOX nanoparticles have great potential as H2O2 imaging agents, therapeutics and drug delivery systems for H2O2-associated diseases. © 2013.

  10. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response.

    PubMed

    Delledonne, M; Zeier, J; Marocco, A; Lamb, C

    2001-11-06

    Nitric oxide (NO) and reactive oxygen intermediates (ROIs) play key roles in the activation of disease resistance mechanisms both in animals and plants. In animals NO cooperates with ROIs to kill tumor cells and for macrophage killing of bacteria. Such cytotoxic events occur because unregulated NO levels drive a diffusion-limited reaction with O(2)(-) to generate peroxynitrite (ONOO(-)), a mediator of cellular injury in many biological systems. Here we show that in soybean cells unregulated NO production at the onset of a pathogen-induced hypersensitive response (HR) is not sufficient to activate hypersensitive cell death. The HR is triggered only by balanced production of NO and ROIs. Moreover, hypersensitive cell death is activated after interaction of NO not with O(2)- but with H(2)O(2) generated from O(2)(-) by superoxide dismutase. Increasing the level of O(2)(-) reduces NO-mediated toxicity, and ONOO(-) is not a mediator of hypersensitive cell death. During the HR, superoxide dismutase accelerates O(2)(-) dismutation to H(2)O(2) to minimize the loss of NO by reaction with O(2)(-) and to trigger hypersensitive cell death through NO/H(2)O(2) cooperation. However, O(2)(-) rather than H(2)O(2) is the primary ROI signal for pathogen induction of glutathione S-transferase, and the rates of production and dismutation of O(2)(-) generated during the oxidative burst play a crucial role in the modulation and integration of NO/H(2)O(2) signaling in the HR. Thus although plants and animals use a similar repertoire of signals in disease resistance, ROIs and NO are deployed in strikingly different ways to trigger host cell death.

  11. Continuous Negative Abdominal Pressure Reduces Ventilator-induced Lung Injury in a Porcine Model.

    PubMed

    Yoshida, Takeshi; Engelberts, Doreen; Otulakowski, Gail; Katira, Bhushan; Post, Martin; Ferguson, Niall D; Brochard, Laurent; Amato, Marcelo B P; Kavanagh, Brian P

    2018-04-27

    In supine patients with acute respiratory distress syndrome, the lung typically partitions into regions of dorsal atelectasis and ventral aeration ("baby lung"). Positive airway pressure is often used to recruit atelectasis, but often overinflates ventral (already aerated) regions. A novel approach to selective recruitment of dorsal atelectasis is by "continuous negative abdominal pressure." A randomized laboratory study was performed in anesthetized pigs. Lung injury was induced by surfactant lavage followed by 1 h of injurious mechanical ventilation. Randomization (five pigs in each group) was to positive end-expiratory pressure (PEEP) alone or PEEP with continuous negative abdominal pressure (-5 cm H2O via a plexiglass chamber enclosing hindlimbs, pelvis, and abdomen), followed by 4 h of injurious ventilation (high tidal volume, 20 ml/kg; low expiratory transpulmonary pressure, -3 cm H2O). The level of PEEP at the start was ≈7 (vs. ≈3) cm H2O in the PEEP (vs. PEEP plus continuous negative abdominal pressure) groups. Esophageal pressure, hemodynamics, and electrical impedance tomography were recorded, and injury determined by lung wet/dry weight ratio and interleukin-6 expression. All animals survived, but cardiac output was decreased in the PEEP group. Addition of continuous negative abdominal pressure to PEEP resulted in greater oxygenation (PaO2/fractional inspired oxygen 316 ± 134 vs. 80 ± 24 mmHg at 4 h, P = 0.005), compliance (14.2 ± 3.0 vs. 10.3 ± 2.2 ml/cm H2O, P = 0.049), and homogeneity of ventilation, with less pulmonary edema (≈10% less) and interleukin-6 expression (≈30% less). Continuous negative abdominal pressure added to PEEP reduces ventilator-induced lung injury in a pig model compared with PEEP alone, despite targeting identical expiratory transpulmonary pressure.

  12. Pyrite-Induced Hydrogen Peroxide Formation as a Driving Force in the Evolution of Photosynthetic Organisms on an Early Earth

    NASA Astrophysics Data System (ADS)

    Borda, Michael J.; Elsetinow, Alicia R.; Schoonen, Martin A.; Strongin, Daniel R.

    2001-09-01

    The remarkable discovery of pyrite-induced hydrogen peroxide (H2O2) provides a key step in the evolution of oxygenic photosynthesis. Here we show that H2O2 can be generated rapidly via a reaction between pyrite and H2O in the absence of dissolved oxygen. The reaction proceeds in the dark, and H2O2 levels increase upon illumination with visible light. Since pyrite was stable in most photic environments prior to the rise of O2 levels, this finding represents an important mechanism for the formation of H2O2 on early Earth.

  13. Coupling UV-H2O2 to accelerate dimethyl phthalate (DMP) biodegradation and oxidation.

    PubMed

    Chen, Bin; Song, Jiaxiu; Yang, Lihui; Bai, Qi; Li, Rongjie; Zhang, Yongming; Rittmann, Bruce E

    2015-11-01

    Dimethyl phthalate (DMP), an important industrial raw material, is an endocrine disruptor of concern for human and environmental health. DMP exhibits slow biodegradation, and its coupled treatment by means of advanced oxidation may enhance its biotransformation and mineralization. We evaluated two ways of coupling UV-H2O2 advanced oxidation to biodegradation: sequential coupling and intimate coupling in an internal circulation baffled biofilm reactor (ICBBR). During sequential coupling, UV-H2O2 pretreatment generated carboxylic acids that depressed the pH, and subsequent biodegradation generated phthalic acid; both factors inhibited DMP biodegradation. During intimately coupled UV-H2O2 with biodegradation, carboxylic acids and phthalic acid (PA) did not accumulate, and the biodegradation rate was 13 % faster than with biodegradation alone and 78 % faster than with biodegradation after UV-H2O2 pretreatment. Similarly, DMP oxidation with intimate coupling increased by 5 and 39 %, respectively, compared with biodegradation alone and sequential coupling. The enhancement effects during intimate coupling can be attributed to the rapid catabolism of carboxylic acids, which generated intracellular electron carriers that directly accelerated di-oxygenation of PA and relieved the inhibition effect of PA and low pH. Thus, intimate coupling optimized the impacts of energy input from UV irradiation used together with biodegradation.

  14. Fate of a giant {Mo72Fe30}-type polyoxometalate cluster in an aqueous solution at higher temperature: understanding related Keplerate chemistry, from molecule to material.

    PubMed

    Mekala, Raju; Supriya, Sabbani; Das, Samar K

    2013-09-03

    When the giant icosahedral {Mo72Fe30} cluster containing compound [Mo72Fe30O252(CH3COO)12{Mo2O7(H2O)}2{H2Mo2O8(H2O)}(H2O)91]·150H2O (1) is refluxed in water for 36 h, it results in the formation of nanoiron molybdate, Fe2(MoO4)3, in the form of a yellow precipitate; this simple approach not only generates nanoferric molybdate at a moderate temperature but also helps to understand the stability of {Mo72Fe30} in terms of the linker-pentagon complementary relationship.

  15. Theoretical modeling to study the impact of different oxidizers (etchants) on the plasma-assisted catalytic carbon nanofiber growth

    NASA Astrophysics Data System (ADS)

    Gupta, Ravi; Sharma, Suresh C.

    2017-07-01

    An analytical model based on the various surface deposition processes and plasma sheath kinetics of the plasma species (electrons, positively charged ions, radicals, and neutrals) has been developed to investigate the effects of different plasmas (different etchants) on the catalyzed plasma aided growth of carbon nanofibers (CNFs). In particular, the model accounts the poisoning of the catalyst nanoparticle, i.e., the formation of the amorphous carbon layer on the catalyst active surface due to the continuous dissociation of incoming hydrocarbon species from the plasma. It is observed that oxidizers (H2O and O2) in the typical hydrocarbon/hydrogen (C2H2 + H2) plasma act as the dominant etchants and remove the amorphous carbon layer from the catalyst surface and, thus, preserve and enhance the catalyst activity. However, the growth rate of CNFs is much higher when O2 is added as an etchant in the reactive plasma as compared to H2O. This is due to the dual role played by the oxygen, i.e., (i) removal of amorphous carbon from the catalyst active surface, (ii) removal of hydrogen radicals that interact with the carbon species generated on the catalyst surface and suppress their diffusion through the catalyst nanoparticles. The CNF grows much longer in the presence of O2, therefore, etching of CNF tip and deformation of catalyst nanoparticle is the maximum, and hence, the CNF tip diameter is least. Moreover, in the present investigation, we also found that the relative concentrations of H2O or O2 species in the reactive plasma have significant effects on the CNF growth. Our theoretical results are in good agreement with the experimental observations.

  16. Preferential mitochondrial DNA injury caused by glucose oxidase as a steady generator of hydrogen peroxide in human fibroblasts.

    PubMed

    Salazar, J J; Van Houten, B

    1997-11-01

    To test the hypothesis that mitochondrial DNA (mtDNA) is more prone to reactive oxygen species (ROS) damage than nuclear DNA, a continuous flux of hydrogen peroxide (H2O2) was produced with the glucose/glucose oxidase system. Using a horse radish peroxidase (HRPO)-based colorimetric assay to detect H2O2, glucose oxidase (GO; 12 mU/ml) produced 95 microM of H2O2 in 1 h, whereas only 46 microM of hydrogen peroxide accumulated in the presence of SV40-transformed human fibroblasts ( approximately 1 x 10(6). DNA damage was assessed in the mitochondira and three nuclear regions using a quantitative PCR assay. GO (12 mU/ml) resulted in more damage to the mitochondrial DNA (2.250 +/- 0.045 lesions/10 kb) than in any one of three nuclear targets, which included the non-expressed beta-globin locus (0.436 +/- 0.029 lesions/10 kb); and the active DNA polymerase b gene (0.442 +/- 0.037 lesions/10 kb); and the active hprt gene (0.310 +/- 0.025). Damage to the mtDNA occurred within 15 min of GO treatment, whereas nuclear damage did not appear until after 30 min, and reached a maximum after 60 min. Repair of mitochondrial damage after a 15 min GO (6 mU/ml) treatment was examined. Mitochondria repaired 50% of the damage after 1 h, and by 6 h all the damage was repaired. Higher doses of GO-generated H202, or more extended treatment periods, lead to mitochondrial DNA damage which was not repaired. Mitochondrial function was monitored using the MTT (3,(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide) assay. A 15 min treatment with 6 mU/ml of GO decreased mitochondrial activity to 80% of the control; the activity recovered completely within 1 h after damage. These data show that GO-generated H202 causes acute damage to mtDNA and function, and demonstrate that this organelle is an important site for the cellular toxicity of ROS.

  17. Revelation of the dynamic progression of hypoxia-reoxygenation injury by visualization of the lysosomal hydrogen peroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yuanjun; Zhou, Tongliang; Yang, Lingfei

    Hydrogen peroxide (H{sub 2}O{sub 2}) plays an important role in pathological conditions, such as cerebral ischemia-reperfusion (I-R) injury. Fluorescent probes may serve as valuable tools to detect the amount, temporal and spatial distribution of H{sub 2}O{sub 2} in living cells. To investigate the role of lysosomal H{sub 2}O{sub 2} involved in cerebral I-R injury, we designed and synthesized a lysosome-targetable two-photon fluorescent probe ztl-4, through expansion and substitution of the original pyridazinone scaffold, conjugation of electronic-donating aromatic ring and precise terminal modification of the alkyl linker. The probe ztl-4 exhibited fast, sensitive and highly selective response toward H{sub 2}O{sub 2}.more » ztl-4 could image exogenous H{sub 2}O{sub 2} in SH-SY5Y cells and brain slices. In addition, ztl-4 was located in lysosomes with high colocalization coefficient compared with LysoTracker. ztl-4 was further applied for detecting the endogenous generation of H{sub 2}O{sub 2} in SH-SY5Y cells subjected to oxygen and glucose deprivation (OGD) or OGD/reoxygenation (OGD/R) injury. Both OGD- and OGD/R-induced cell injury caused a time-dependent increase of H{sub 2}O{sub 2} production within lysosomes. Moreover, OGD/R-treated cells showed much more amount of H{sub 2}O{sub 2} than OGD-treated cells, indicating that reoxygenation will promote H{sub 2}O{sub 2} accumulation in lysosomes of post-hypoxia cells. Therefore, the probe is suitable for monitoring the dynamic changes of lysosomal H{sub 2}O{sub 2} in cells. - Highlights: • New fluorescent probe displays high selectivity for H{sub 2}O{sub 2}. • The probe is lysosome-targetable. • The probe can real-time monitor hypoxia/reoxygenation injury-induced generation of H{sub 2}O{sub 2} in lysosomes of cells.« less

  18. A full understanding of oxygen reduction reaction mechanism on Au(1 1 1) surface

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Dai, Changqing; Fisher, Adrian; Shen, Yanchun; Cheng, Daojian

    2017-09-01

    Oxygen reduction and hydrogen peroxide reduction are technologically important reactions in energy-conversion devices. In this work, a full understanding of oxygen reduction reaction (ORR) mechanism on Au(1 1 1) surface is investigated by density functional theory (DFT) calculations, including the reaction mechanisms of O2 dissociation, OOH dissociation, and H2O2 dissociation. Among these ORR mechanisms on Au(1 1 1), the activation energy of \\text{O}2* hydrogenation reaction is much lower than that of \\text{O}2* dissociation, indicating that \\text{O}2* hydrogenation reaction is more appropriate at the first step than \\text{O}2* dissociation. In the following, H2O2 can be formed with the lower activation energy compared with the OOH dissociation reaction, and finally H2O2 could be generated as a detectable product due to the high activation energy of H2O2 dissociation reaction. Furthermore, the potential dependent free energy study suggests that the H2O2 formation is thermodynamically favorable up to 0.4 V on Au(1 1 1), reducing the overpotential for 2e - ORR process. And the elementary step of first H2O formation becomes non-spontaneous at 0.4 V, indicating the difficulty of 4e - reduction pathway. Our DFT calculations show that H2O2 can be generated on Au(1 1 1) and the first electron transfer is the rate determining step. Our results show that gold surface could be used as a good catalyst for small-scale manufacture and on-site production of H2O2.

  19. Inhibition of hydrogen sulfide generation from disposed gypsum drywall using chemical inhibitors.

    PubMed

    Xu, Qiyong; Townsend, Timothy; Bitton, Gabriel

    2011-07-15

    Disposal of gypsum drywall in landfills has been demonstrated to elevate hydrogen sulfide (H(2)S) concentrations in landfill gas, a problem with respect to odor, worker safety, and deleterious effect on gas-to-energy systems. Since H(2)S production in landfills results from biological activity, the concept of inhibiting H(2)S production through the application of chemical agents to drywall during disposal was studied. Three possible inhibition agents - sodium molybdate (Na(2)MoO(4)), ferric chloride (FeCl(3)), and hydrated lime (Ca(OH)(2)) - were evaluated using flask and column experiments. All three agents inhibited H(2)S generation, with Na(2)MoO(4) reducing H(2)S generation by interrupting the biological sulfate reduction process and Ca(OH)(2) providing an unfavorable pH for biological growth. Although FeCl(3) was intended to provide an electron acceptor for a competing group of bacteria, the mechanism found responsible for inhibiting H(2)S production in the column experiment was a reduction in pH. Application of both Na(2)MoO(4) and FeCl(3) inhibited H(2)S generation over a long period (over 180 days), but the impact of Ca(OH)(2) decreased with time as the alkalinity it contributed was neutralized by the generated H(2)S. Practical application and potential environmental implications need additional exploration. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Hydrogen peroxide generation in a model paediatric parenteral amino acid solution.

    PubMed

    Brawley, V; Bhatia, J; Karp, W B

    1993-12-01

    1. Parenteral amino acid solutions undergo photooxidation, which may be an important factor in total parenteral nutrition-associated hepatic dysfunction. Light-exposed parenteral solutions containing amino acids, in addition to vitamins and trace minerals, generate free radicals, which, in turn, may contribute to this type of injury. This study examined the characteristics of H2O2 production in a parenteral amino acid solution modelled on a commercially available paediatric parenteral amino acid solution. 2. The solution was exposed to light in the presence of riboflavin-5'-monophosphate (riboflavin), and peroxide formation in the presence and absence of catalase (H2O2 formation) was assayed using potassium iodide/molybdate. 3. Peak H2O2 production occurred at a light intensity of 8 microW cm-2 nm-1 in the 425-475 nm waveband and was linear to 2 h of light exposure. H2O2 production reached 500 mumol/l at 24 h. 4. H2O2 was directly related to a riboflavin concentration of up to 20 mumol/l and was maximal at 30 mumol/l. 5. H2O2 production was greatest in the amino acid/riboflavin solution at a pH of between 5 and 6. 6. Under the conditions of light exposure intensity, light exposure time, riboflavin concentration and pH found during the administration of parenteral nutrition in neonatal intensive care units, net H2O2 production occurs in solutions modelled on a paediatric parenteral amino acid preparation.

  1. Influence of Background H2O on the Collision-Induced Dissociation Products Generated from [UO2NO3]+

    NASA Astrophysics Data System (ADS)

    Van Stipdonk, Michael J.; Iacovino, Anna; Tatosian, Irena

    2018-04-01

    Developing a comprehensive understanding of the reactivity of uranium-containing species remains an important goal in areas ranging from the development of nuclear fuel processing methods to studies of the migration and fate of the element in the environment. Electrospray ionization (ESI) is an effective way to generate gas-phase complexes containing uranium for subsequent studies of intrinsic structure and reactivity. Recent experiments by our group have demonstrated that the relatively low levels of residual H2O in a 2-D, linear ion trap (LIT) make it possible to examine fragmentation pathways and reactions not observed in earlier studies conducted with 3-D ion traps (Van Stipdonk et al. J. Am. Soc. Mass Spectrom. 14, 1205-1214, 2003). In the present study, we revisited the dissociation of complexes composed of uranyl nitrate cation [UVIO2(NO3)]+ coordinated by alcohol ligands (methanol and ethanol) using the 2-D LIT. With relatively low levels of background H2O, collision-induced dissociation (CID) of [UVIO2(NO3)]+ primarily creates [UO2(O2)]+ by the ejection of NO. However, CID (using He as collision gas) of [UVIO2(NO3)]+ creates [UO2(H2O)]+ and UO2 + when the 2-D LIT is used with higher levels of background H2O. Based on the results presented here, we propose that product ion spectrum in the previous experiments was the result of a two-step process: initial formation of [UVIO2(O2)]+ followed by rapid exchange of O2 for H2O by ion-molecule reaction. Our experiments illustrate the impact of residual H2O in ion trap instruments on the product ions generated by CID and provide a more accurate description of the intrinsic dissociation pathway for [UVIO2(NO3)]+. [Figure not available: see fulltext.

  2. Radiation chemistry of physiological saline reinvestigated: evidence that chloride-derived intermediates play a key role in cytotoxicity.

    PubMed

    Saran, M; Bors, W

    1997-01-01

    Contrary to common belief, hydrogen peroxide (H2O2) and hypochlorite (HOCl) are not produced continuously and independently during the irradiation of buffer solution containing chloride. Different buildup and decay reactions are involved in a complex interaction of these substances during irradiation. Which of the species predominates is determined by the parameters of the solution. The amount of either compound detectable after irradiation depends on the dissolved gas (O2, N2O or N2), on the pH value and to some extent on the presence of catalytic metals: Under slightly acidic conditions, low oxygen content and high generation rates of OH radicals, the only detectable species is hypochlorite; at high oxygen content and at pH values in the physiological range, hydrogen peroxide is the main detectable product. However, H2O2 and HOCl react with each other in a pH-dependent way, yielding the stable products O2 and Cl-. This reaction limits the expected lifetime of both species in aqueous solution to some tens of seconds. Therefore, analysis of the sample solution after irradiation determines only the substance that was present in greater relative concentration at the termination of irradiation. Such analysis, however, does not allow conclusions about the processes that occurred during irradiation. We have investigated the decay and formation reactions of H2O2 and HOCl under all relevant irradiation conditions and found evidence that the formation and further reaction of HOCl-, the precursor of HOCl, is of central importance even in cases where no significant amounts of H2O2 or HOCl are detectable after irradiation. We discuss the consequences of these results for the cytotoxicity observed after irradiation of cells suspended in physiological saline and conclude that analogous processes must also be relevant for irradiations under in vivo conditions.

  3. Continuous process for singlet oxygenation of hydrophobic substrates in microemulsion using a pervaporation membrane.

    PubMed

    Caron, Laurent; Nardello, Véronique; Mugge, José; Hoving, Erik; Alsters, Paul L; Aubry, Jean-Marie

    2005-02-15

    Chemically generated singlet oxygen (1O2, 1Deltag) is able to oxidize a great deal of hydrophobic substrates from molybdate-catalyzed hydrogen peroxide decomposition, provided a suitable reaction medium such as a microemulsion system is used. However, high substrate concentrations or poorly reactive organics require large amounts of H2O2 that generate high amounts of water and thus destabilize the system. We report results obtained on combining dark singlet oxygenation of hydrophobic substrates in microemulsions with a pervaporation membrane process. To avoid composition alterations after addition of H2O2 during the peroxidation, the reaction mixture circulates through a ceramic membrane module that enables a partial and selective dewatering of the microemulsion. Optimization phase diagrams of sodium molybdate/water/alcohol/anionic surfactant/organic solvent have been elaborated to maximize the catalyst concentration and therefore the reaction rate. The membrane selectivity towards the mixture constituents has been investigated showing that a high retention is observed for the catalyst, for organic solvents and hydrophobic substrates, but not for n-propanol (cosurfactant) and water. The efficiency of such a process is illustrated with the peroxidation of a poorly reactive substrate, viz., beta-pinene.

  4. Pirfenidone inhibits p38-mediated generation of procoagulant microparticles by human alveolar epithelial cells.

    PubMed

    Neri, Tommaso; Lombardi, Stefania; Faìta, Francesca; Petrini, Silvia; Balìa, Cristina; Scalise, Valentina; Pedrinelli, Roberto; Paggiaro, Pierluigi; Celi, Alessandro

    2016-08-01

    Pirfenidone is a drug recently approved for idiopathic pulmonary fibrosis but its mechanisms of action are partially unknown. We have previously demonstrated that the airways of patients with idiopathic pulmonary fibrosis contain procoagulant microparticles that activate coagulation factor X to its active form, Xa, a proteinase that signals fibroblast growth and differentiation, thus potentially contributing to the pathogenesis of the disease. We also reported that in vitro exposure of human alveolar cells to H2O2 causes microparticle generation. Since p38 activation is involved in microparticle generation in some cell models and p38 inhibition is one of the mechanisms of action of pirfenidone, we investigated the hypothesis that H2O2-induced generation of microparticles by alveolar cells is dependent on p38 phosphorylation and is inhibited by pirfenidone. H2O2 stimulation of alveolar cells caused p38 phosphorylation that was inhibited by pirfenidone. The drug also inhibited H2O2 induced microparticle generation as assessed by two independent methods (solid phase thrombin generation and flow cytometry). The shedding of microparticle-bound tissue factor activity was also inhibited by pirfenidone. Inhibition of p38-mediated generation of procoagulant microparticle is a previously unrecognized mechanism of action of the antifibrotic drug, pirfenidone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Antibacterial effect of hydrogen peroxide-titanium dioxide suspensions in the decontamination of rough titanium surfaces.

    PubMed

    Wiedmer, David; Petersen, Fernanda Cristina; Lönn-Stensrud, Jessica; Tiainen, Hanna

    2017-07-01

    The chemical decontamination of infected dental implants is essential for the successful treatment of peri-implantitis. The aim of this study was to assess the antibacterial effect of a hydrogen peroxide-titanium dioxide (H 2 O 2 -TiO 2 ) suspension against Staphylococcus epidermidis biofilms. Titanium (Ti) coins were inoculated with a bioluminescent S. epidermidis strain for 8 h and subsequently exposed to H 2 O 2 with and without TiO 2 nanoparticles or chlorhexidine (CHX). Bacterial regrowth, bacterial load and viability after decontamination were analyzed by continuous luminescence monitoring, live/dead staining and scanning electron microscopy. Bacterial regrowth was delayed on surfaces treated with H 2 O 2 -TiO 2 compared to H 2 O 2 . H 2 O 2 -based treatments resulted in a lower bacterial load compared to CHX. Few viable bacteria were found on surfaces treated with H 2 O 2 and H 2 O 2 -TiO 2 , which contrasted with a uniform layer of dead bacteria for surfaces treated with CHX. H 2 O 2 -TiO 2 suspensions could therefore be considered an alternative approach in the decontamination of dental implants.

  6. Method of CO.sub.2 removal from a gasesous stream at reduced temperature

    DOEpatents

    Fisher, James C; Siriwardane, Ranjani V; Berry, David A; Richards, George A

    2014-11-18

    A method for the removal of H.sub.2O and CO.sub.2 from a gaseous stream comprising H.sub.2O and CO.sub.2, such as a flue gas. The method initially utilizes an H.sub.2O removal sorbent to remove some portion of the H.sub.2O, producing a dry gaseous stream and a wet H.sub.2O removal sorbent. The dry gaseous stream is subsequently contacted with a CO.sub.2 removal sorbent to remove some portion of the CO.sub.2, generating a dry CO.sub.2 reduced stream and a loaded CO.sub.2 removal sorbent. The loaded CO.sub.2 removal sorbent is subsequently heated to produce a heated CO.sub.2 stream. The wet H.sub.2O removal sorbent and the dry CO.sub.2 reduced stream are contacted in a first regeneration stage, generating a partially regenerated H.sub.2O removal sorbent, and the partially regenerated H.sub.2O removal sorbent and the heated CO.sub.2 stream are subsequently contacted in a second regeneration stage. The first and second stage regeneration typically act to retain an initial monolayer of moisture on the various removal sorbents and only remove moisture layers bound to the initial monolayer, allowing for relatively low temperature and pressure operation. Generally the applicable H.sub.2O sorption/desorption processes may be conducted at temperatures less than about 70.degree. C. and pressures less than 1.5 atmospheres, with certain operations conducted at temperatures less than about 50.degree. C.

  7. Reactive hydroxyl radical-driven oral bacterial inactivation by radio frequency atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Kang, Sung Kil; Choi, Myeong Yeol; Koo, Il Gyo; Kim, Paul Y.; Kim, Yoonsun; Kim, Gon Jun; Mohamed, Abdel-Aleam H.; Collins, George J.; Lee, Jae Koo

    2011-04-01

    We demonstrated bacterial (Streptococcus mutans) inactivation by a radio frequency power driven atmospheric pressure plasma torch with H2O2 entrained in the feedstock gas. Optical emission spectroscopy identified substantial excited state •OH generation inside the plasma and relative •OH formation was verified by optical absorption. The bacterial inactivation rate increased with increasing •OH generation and reached a maximum 5-log10 reduction with 0.6% H2O2 vapor. Generation of large amounts of toxic ozone is drawback of plasma bacterial inactivation, thus it is significant that the ozone concentration falls within recommended safe allowable levels with addition of H2O2 vapor to the plasma.

  8. High light harvesting efficiency CuInS2 quantum dots/TiO2/MoS2 photocatalysts for enhanced visible light photocatalytic H2 production.

    PubMed

    Yuan, Yong-Jun; Fang, Gaoliang; Chen, Daqin; Huang, Yanwei; Yang, Ling-Xia; Cao, Da-Peng; Wang, Jingjing; Yu, Zhen-Tao; Zou, Zhi-Gang

    2018-04-24

    Expanding the photoresponse range of TiO2-based photocatalysts is of great interest for photocatalytic H2 production. Herein, noble-metal-free CuInS2 quantum dots were employed as a novel inorganic dye to expand the visible light absorption of TiO2/MoS2 for solar H2 generation. The as-prepared CuInS2/TiO2/MoS2 photocatalysts exhibit broad absorption from the ultraviolet to near-infrared region. Under visible light irradiation (λ > 420 nm), the CuInS2/TiO2/MoS2 photocatalyst with 0.6 mmol g-1 CuInS2 and 0.5 wt% MoS2 showed the highest H2 evolution rate with a value of 1034 μmol h-1 g-1. Moreover, a considerable H2 evolution rate of 141 μmol h-1 g-1 was obtained under the irradiation of the optimized CuInS2/TiO2/MoS2 photocatalyst with >500 nm light. The reaction mechanism of the CuInS2/TiO2/MoS2 photocatalyst for photocatalytic H2 evolution was investigated in detail by photoluminescence decay study, and the results showed that the photoexcited electrons of CuInS2 can be transferred efficiently through TiO2 to MoS2 and then react with the absorbed protons to generate H2. The reported sensitization strategy tremendously improves the visible light absorption capacity and the photocatalytic performance of TiO2-based photocatalysts.

  9. Hydrazine-enhanced NO conversion in a pulsed corona discharge plasma (PCDP) reactor: Behaviors and mechanism

    NASA Astrophysics Data System (ADS)

    Hong, Liu; Chen, De-Zhen; Yin, Li-Jie; Chen, Hui; Wang, Du; Hu, Yu-Yan

    2016-09-01

    The NO conversion efficiency in a pulsed corona discharge plasma (PCDP) reactor in the presence of a new additive, hydrazine hydrate (N2H4.H2O), was studied, and the reaction mechanism was analyzed. The NO conversion efficiency reached 62.5%, and the NO conversion Energy Yield (EY) reached 20.9 gNO/kWh, which is higher than that obtained using water or ammonia additives under the same conditions. The predominant elementary reactions and radicals, as well as the mechanism by which the additive enhanced the NO conversion process, were determined by comparing experimental data with theoretical simulation results and by performing a sensitivity analysis. After the addition of N2H4.H2O, the N2H4 reacts with radicals generated in the PCDP reactor to form a large quantity of strongly reducing species with NH2 as the predominant component, which can directly reduce NO to N2 and effectively prevent the generation of N2O. Compared with the traditional PCDP-based De-NOx process in which nitric acid is generated by oxidation with an additional neutralization step required, this new PCDP-based De-NOx process with N2H4.H2O addition is superior because NO is mostly reduced to N2. The study provides a basis for the application of N2H4.H2O as a synergist to improve NO abatement in a PCDP reactor.

  10. Generation of hydroxyl radical in isolated pea root cell wall, and the role of cell wall-bound peroxidase, Mn-SOD and phenolics in their production.

    PubMed

    Kukavica, Biljana; Mojovic, Milos; Vuccinic, Zeljko; Maksimovic, Vuk; Takahama, Umeo; Jovanovic, Sonja Veljovic

    2009-02-01

    The hydroxyl radical produced in the apoplast has been demonstrated to facilitate cell wall loosening during cell elongation. Cell wall-bound peroxidases (PODs) have been implicated in hydroxyl radical formation. For this mechanism, the apoplast or cell walls should contain the electron donors for (i) H(2)O(2) formation from dioxygen; and (ii) the POD-catalyzed reduction of H(2)O(2) to the hydroxyl radical. The aim of the work was to identify the electron donors in these reactions. In this report, hydroxyl radical (.OH) generation in the cell wall isolated from pea roots was detected in the absence of any exogenous reductants, suggesting that the plant cell wall possesses the capacity to generate .OH in situ. Distinct POD and Mn-superoxide dismutase (Mn-SOD) isoforms different from other cellular isoforms were shown by native gel electropho-resis to be preferably bound to the cell walls. Electron paramagnetic resonance (EPR) spectroscopy of cell wall isolates containing the spin-trapping reagent, 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO), was used for detection of and differentiation between .OH and the superoxide radical (O(2)(-).). The data obtained using POD inhibitors confirmed that tightly bound cell wall PODs are involved in DEPMPO/OH adduct formation. A decrease in DEPMPO/OH adduct formation in the presence of H(2)O(2) scavengers demonstrated that this hydroxyl radical was derived from H(2)O(2). During the generation of .OH, the concentration of quinhydrone structures (as detected by EPR spectroscopy) increased, suggesting that the H(2)O(2) required for the formation of .OH in isolated cell walls is produced during the reduction of O(2) by hydroxycinnamic acids. Cell wall isolates in which the proteins have been denaturated (including the endogenous POD and SOD) did not produce .OH. Addition of exogenous H(2)O(2) again induced the production of .OH, and these were shown to originate from the Fenton reaction with tightly bound metal ions. However, the appearance of the DEPMPO/OOH adduct could also be observed, due to the production of O(2)(-). when endogenous SOD has been inactivated. Also, O(2)(-). was converted to .OH in an in vitro horseradish peroxidase (HRP)/H(2)O(2) system to which exogenous SOD has been added. Taken together with the discovery of the cell wall-bound Mn-SOD isoform, these results support the role of such a cell wall-bound SOD in the formation of .OH jointly with the cell wall-bound POD. According to the above findings, it seems that the hydroxycinnamic acids from the cell wall, acting as reductants, contribute to the formation of H(2)O(2) in the presence of O(2) in an autocatalytic manner, and that POD and Mn-SOD coupled together generate .OH from such H(2)O(2).

  11. Inherent variations in CO-H2S-mediated carotid body O2 sensing mediate hypertension and pulmonary edema

    PubMed Central

    Peng, Ying-Jie; Makarenko, Vladislav V.; Nanduri, Jayasri; Vasavda, Chirag; Raghuraman, Gayatri; Yuan, Guoxiang; Gadalla, Moataz M.; Kumar, Ganesh K.; Snyder, Solomon H.; Prabhakar, Nanduri R.

    2014-01-01

    Oxygen (O2) sensing by the carotid body and its chemosensory reflex is critical for homeostatic regulation of breathing and blood pressure. Humans and animals exhibit substantial interindividual variation in this chemosensory reflex response, with profound effects on cardiorespiratory functions. However, the underlying mechanisms are not known. Here, we report that inherent variations in carotid body O2 sensing by carbon monoxide (CO)-sensitive hydrogen sulfide (H2S) signaling contribute to reflex variation in three genetically distinct rat strains. Compared with Sprague-Dawley (SD) rats, Brown-Norway (BN) rats exhibit impaired carotid body O2 sensing and develop pulmonary edema as a consequence of poor ventilatory adaptation to hypobaric hypoxia. Spontaneous Hypertensive (SH) rat carotid bodies display inherent hypersensitivity to hypoxia and develop hypertension. BN rat carotid bodies have naturally higher CO and lower H2S levels than SD rat, whereas SH carotid bodies have reduced CO and greater H2S generation. Higher CO levels in BN rats were associated with higher substrate affinity of the enzyme heme oxygenase 2, whereas SH rats present lower substrate affinity and, thus, reduced CO generation. Reducing CO levels in BN rat carotid bodies increased H2S generation, restoring O2 sensing and preventing hypoxia-induced pulmonary edema. Increasing CO levels in SH carotid bodies reduced H2S generation, preventing hypersensitivity to hypoxia and controlling hypertension in SH rats. PMID:24395806

  12. High pressure autothermal reforming in low oxygen environments

    NASA Astrophysics Data System (ADS)

    Reese, Mark A.; Turn, Scott Q.; Cui, Hong

    Recent interest in fuel cells has led to the conceptual design of an ocean floor, fuel cell-based, power generating station fueled by methane from natural gas seeps or from the controlled decomposition of methane hydrates. Because the dissolved oxygen concentration in deep ocean water is too low to provide adequate supplies to a fuel processor and fuel cell, oxygen must be stored onboard the generating station. A lab scale catalytic autothermal reformer capable of operating at pressures of 6-50 bar was constructed and tested. The objective of the experimental program was to maximize H 2 production per mole of O 2 supplied (H 2(out)/O 2(in)). Optimization, using oxygen-to-carbon (O 2/C) and water-to-carbon (S/C) ratios as independent variables, was conducted at three pressures using bottled O 2. Surface response methodology was employed using a 2 2 factorial design. Optimal points were validated using H 2O 2 as both a stored oxidizer and steam source. The optimal experimental conditions for maximizing the moles of H 2(out)/O 2(in) occurred at a S/C ratio of 3.00-3.35 and an O 2/C ratio of 0.44-0.48. When using H 2O 2 as the oxidizer, the moles of H 2(out)/O 2(in) increased ≤14%. An equilibrium model was also used to compare experimental and theoretical results.

  13. Simple combination of oxidants with zero-valent-iron (ZVI) achieved very rapid and highly efficient removal of heavy metals from water.

    PubMed

    Guo, Xuejun; Yang, Zhe; Dong, Haiyang; Guan, Xiaohong; Ren, Qidong; Lv, Xiaofang; Jin, Xin

    2016-01-01

    This study, for the first time, demonstrated a continuously accelerated Fe(0) corrosion driven by common oxidants (i.e., NaClO, KMnO4 or H2O2) and thereby the rapid and efficient removal of heavy metals (HMs) by zero-valent iron (ZVI) under the experimental conditions of jar tests and column running. ZVI simply coupled with NaClO, KMnO4 or H2O2 (0.5 mM) resulted in almost complete As(V) removal within only 10 min with 1000 μg/L of initial As(V) at initial pH of 7.5(±0.1) and liquid solid ratio of 200:1. Simultaneous removal of 200 μg/L of initial Cd(II) and Hg(II) to 2.4-4.4 μg/L for Cd(II) and to 4.0-5.0 μg/L for Hg(II) were achieved within 30 min. No deterioration of HM removal was observed during the ten recycles of jar tests. The ZVI columns activated by 0.1 mM of oxidants had stably treated 40,200 (NaClO), 20,295 (KMnO4) and 40,200 (H2O2) bed volumes (BV) of HM-contaminated drinking water, but with no any indication of As breakthrough (<10 μg/L) even at short empty bed contact time (EBCT) of 8.0 min. The high efficiency of HMs removal from both the jar tests and column running implied a continuous and stable activation (overcoming of iron passivation) of Fe(0) surface by the oxidants. Via the proper increase in oxidant dosing, the ZVI/oxidant combination was applicable to treat highly As(V)-contaminated wastewater. During Fe(0) surface corrosion accelerated by oxidants, a large amount of fresh and reactive iron oxides and oxyhydroxides were continuously generated, which were responsible for the rapid and efficient removal of HMs through multiple mechanisms including adsorption and co-precipitation. A steady state of Fe(0) surface activation and HM removal enabled this simply coupled system to remove HMs with high speed, efficiency and perdurability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Controlled Synthesis of CuS/TiO2 Heterostructured Nanocomposites for Enhanced Photocatalytic Hydrogen Generation through Water Splitting.

    PubMed

    Chandra, Moumita; Bhunia, Kousik; Pradhan, Debabrata

    2018-04-16

    Photocatalytic hydrogen (H 2 ) generation through water splitting has attracted substantial attention as a clean and renewable energy generation process that has enormous potential in converting solar-to-chemical energy using suitable photocatalysts. The major bottleneck in the development of semiconductor-based photocatalysts lies in poor light absorption and fast recombination of photogenerated electron-hole pairs. Herein we report the synthesis of CuS/TiO 2 heterostructured nanocomposites with varied TiO 2 contents via simple hydrothermal and solution-based process. The morphology, crystal structure, composition, and optical properties of the as-synthesized CuS/TiO 2 hybrids are evaluated in detail. Controlling the CuS/TiO 2 ratio to an optimum value leads to the highest photocatalytic H 2 production rate of 1262 μmol h -1 g -1 , which is 9.7 and 9.3 times higher than that of pristine TiO 2 nanospindles and CuS nanoflakes under irradiation, respectively. The enhancement in the H 2 evolution rate is attributed to increased light absorption and efficient charge separation with an optimum CuS coverage on TiO 2 . The photoluminescence and photoelectrochemical measurements further confirm the efficient separation of charge carriers in the CuS/TiO 2 hybrid. The mechanism and synergistic role of CuS and TiO 2 semiconductors for enhanced photoactivity is further delineated.

  15. Effects of •OH and •NO radicals in the aqueous phase on H2O2 and \\text{NO}_{2}^{-} generated in plasma-activated medium

    NASA Astrophysics Data System (ADS)

    Kurake, Naoyuki; Tanaka, Hiromasa; Ishikawa, Kenji; Takeda, Keigo; Hashizume, Hiroshi; Nakamura, Kae; Kajiyama, Hiroaki; Kondo, Takashi; Kikkawa, Fumitaka; Mizuno, Masaaki; Hori, Masaru

    2017-04-01

    A plasma-activated medium (PAM), which means a cell-culture medium irradiated with cold atmospheric plasmas or non-equilibrium atmospheric pressure plasma (NEAPP), has shown strong antitumor effects on various kinds of cells such as gastric cancer cells, human lung adenocarcinoma cells, human breast cancer cells and so on. In order to clarify the mechanism, it is extremely important to investigate the behaviors of stable and unstable reactive oxygen nitrogen species in culture medium irradiated by NEAPP. The roles of hydroxyl radicals (•OH) and nitric oxide (•NO) were studied to understand the dominant synthetic pathways of H2O2 and \\text{NO}2- in culture medium irradiated with NEAPP. In the PAM, •OH in the aqueous phase was generated predominantly by photo-dissociation. However, most of the H2O2 nor \\text{NO}2- generated in the PAM did not originate from aqueous •OH and •NO. Pathways for the generation of H2O2 and \\text{NO}2- are suggested based on the high concentrations of intermediates generated at the gas/aqueous-phase interface following NEAPP irradiation. On the basis of these results, the reaction model of chemical species in the culture medium is proposed.

  16. Formation of iodo-trihalomethanes (I-THMs) during disinfection with chlorine or chloramine: Impact of UV/H2O2 pre-oxidation.

    PubMed

    Zhang, Jie; Liu, Jing; He, Chuan-Shu; Qian, Chen; Mu, Yang

    2018-06-04

    Ultraviolet/hydrogen peroxide (UV/H 2 O 2 ) pre-oxidation has the potential to induce reactions with dissolved organic matter (DOM) and alter the generation of disinfection byproducts (DBPs). This study evaluated the influence of UV/H 2 O 2 pretreatment on the formation of iodo-trihalomethanes (I-THMs) during disinfection with chlorine or chloramine. The changes of precursors, I - and Br - , after UV/H 2 O 2 pretreatment were investigated, and then, the formation and speciation of I-THMs during chlorination or chloramination after pre-oxidation were explored. Additionally, the effects of UV doses and H 2 O 2 concentrations on the formation and speciation of I-THMs were studied. It was found that UV/H 2 O 2 pretreatment could change larger molecular weight (MW) DOM to smaller MW species, which had less aromatic organic compounds and fluorescence substances. Additionally, insignificant transformations of I - and Br - were observed after UV/H 2 O 2 treatment. Compared to direct disinfection, UV/H 2 O 2 pretreatment resulted in 23.0 ± 3.5% reduction in I-THMs formation during post-chlorination while an enhancement was observed during post-chloramination at a UV dose of 460 mJ/cm 2 and 20 mg/L H 2 O 2 . Moreover, total I-THM concentration increased from 43.7 ± 2.4 to 97.6 ± 14.9 nM with the increase of UV doses from 0 to 1400 mJ/cm 2 during the post-chlorination process, while reduced when the UV fluence was >460 mJ/cm 2 during the post-chloramination. Additionally, the generation of I-THMs during both post-chlorination and post-chloramination was positively related to the H 2 O 2 levels from 0 to 20 mg/L in the UV/H 2 O 2 pretreatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Hydrolysis and regeneration of sodium borohydride (NaBH4) - A combination of hydrogen production and storage

    NASA Astrophysics Data System (ADS)

    Chen, W.; Ouyang, L. Z.; Liu, J. W.; Yao, X. D.; Wang, H.; Liu, Z. W.; Zhu, M.

    2017-08-01

    Sodium borohydride (NaBH4) hydrolysis is a promising approach for hydrogen generation, but it is limited by high costs, low efficiency of recycling the by-product, and a lack of effective gravimetric storage methods. Here we demonstrate the regeneration of NaBH4 by ball milling the by-product, NaBO2·2H2O or NaBO2·4H2O, with MgH2 at room temperature and atmospheric pressure without any further post-treatment. Record yields of NaBH4 at 90.0% for NaBO2·2H2O and 88.3% for NaBO2·4H2O are achieved. This process also produces hydrogen from the splitting of coordinate water in hydrated sodium metaborate. This compensates the need for extra hydrogen for generating MgH2. Accordingly, we conclude that our unique approach realizes an efficient and cost-effective closed loop system for hydrogen production and storage.

  18. 40 CFR 721.10356 - Zinc, bis[3-(acetyl-.kappa.O)-6-methyl-2H-pyran-2,4(3H)-dionato-.kappa.O4]diaqua-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Zinc, bis[3-(acetyl-.kappa.O)-6-methyl-2H-pyran-2,4(3H)-dionato-.kappa.O4]diaqua-. 721.10356 Section 721.10356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  19. 40 CFR 721.10356 - Zinc, bis[3-(acetyl-.kappa.O)-6-methyl-2H-pyran-2,4(3H)-dionato-.kappa.O4]diaqua-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Zinc, bis[3-(acetyl-.kappa.O)-6-methyl-2H-pyran-2,4(3H)-dionato-.kappa.O4]diaqua-. 721.10356 Section 721.10356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  20. 40 CFR 721.10356 - Zinc, bis[3-(acetyl-.kappa.O)-6-methyl-2H-pyran-2,4(3H)-dionato-.kappa.O4]diaqua-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Zinc, bis[3-(acetyl-.kappa.O)-6-methyl-2H-pyran-2,4(3H)-dionato-.kappa.O4]diaqua-. 721.10356 Section 721.10356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  1. Redox reactions of the α-synuclein-Cu(2+) complex and their effects on neuronal cell viability.

    PubMed

    Wang, Chengshan; Liu, Lin; Zhang, Lin; Peng, Yong; Zhou, Feimeng

    2010-09-21

    α-Synuclein (α-syn), a presynaptic protein believed to play an important role in neuropathology in Parkinson's disease (PD), is known to bind Cu(2+). Cu(2+) has been shown to accelerate the aggregation of α-syn to form various toxic aggregates in vitro. Copper is also a redox-active metal whose complexes with amyloidogenic proteins/peptides have been linked to oxidative stress in major neurodegenerative diseases. In this work, the formation of the Cu(2+) complex with α-syn or with an N-terminal peptide, α-syn(1-19), was confirmed with electrospray-mass spectrometry (ES-MS). The redox potentials of the Cu(2+) complex with α-syn (α-syn-Cu(2+)) and α-syn(1-19) were determined to be 0.018 and 0.053 V, respectively. Furthermore, the Cu(2+) center(s) can be readily reduced to Cu(+), and possible reactions of α-syn-Cu(2+) with cellular species (e.g., O(2), ascorbic acid, and dopamine) were investigated. The occurrence of a redox reaction can be rationalized by comparing the redox potential of the α-syn-Cu(2+) complex to that of the specific cellular species. For example, ascorbic acid can directly reduce α-syn-Cu(2+) to α-syn-Cu(+), setting up a redox cycle in which O(2) is reduced to H(2)O(2) and cellular redox species is continuously exhausted. In addition, the H(2)O(2) generated was demonstrated to reduce viability of the neuroblastoma SY-HY5Y cells. Although our results ruled out the direct oxidation of dopamine by α-syn-Cu(2+), the H(2)O(2) generated in the presence of α-syn-Cu(2+) can oxidize dopamine. Our results suggest that oxidative stress is at least partially responsible for the loss of dopaminergic cells in PD brain and reveal the multifaceted role of the α-syn-Cu(2+) complex in oxidative stress associated with PD symptoms.

  2. A corona discharge atmospheric pressure chemical ionization source with selective NO(+) formation and its application for monoaromatic VOC detection.

    PubMed

    Sabo, Martin; Matejčík, Štefan

    2013-11-21

    We have developed a new type of corona discharge (CD) for atmospheric pressure chemical ionization (APCI) for application in ion mobility spectrometry (IMS) as well as in mass spectrometry (MS). While the other CD-APCI sources are able to generate H3O(+)·(H2O)n as the major reactant ions in N2 or in zero air, the present CD-APCI source has the ability to generate up to 84% NO(+)·(H2O)n reactant ions in zero air. The change of the working gas from zero air to N2 allows us to change the major reactant ions from NO(+)·(H2O)n to H3O(+)·(H2O)n. In this paper we present the description of the new CD-APCI and discuss the processes associated with the NO(+) formation. The selective formation of NO(+)·(H2O)n reactant ions offers chemical ionization based on these ions which can be of great advantage for some classes of chemicals. We demonstrate here a significant increase in the sensitivity of the IMS-MS instrument for monoaromatic volatile organic compound (VOC) detection upon NO(+)·(H2O)n chemical ionization.

  3. Thioperoxy derivative generated by UV-induced transformation of N-hydroxypyridine-2(1H)-thione isolated in low-temperature matrixes.

    PubMed

    Lapinski, Leszek; Gerega, Anna; Sobolewski, Andrzej L; Nowak, Maciej J

    2008-01-17

    Photochemical transformations of N-hydroxypyridine-2(1H)-thione and its deuterated isotopologue were studied using the matrix-isolation technique. Low-temperature Ar and N2 matrixes containing monomers of this compound were irradiated with continuous-wave near-UV light. Photogeneration of two products was observed in these experiments. The relative population of these photogenerated species was found to be dependent on the wavelength of the UV light used for irradiation. By comparison of the IR spectra of the photoproducts with the spectra simulated theoretically at the DFT(B3LYP)/6-311++G(d, p) level, the final and the intermediate products were identified as rotameric forms of 2-hydroxysulfanyl-pyridine. This is the first report on generation of this thioperoxy derivative of pyridine. The mechanism of photogeneration of 2-hydroxysulfanyl-pyridine involves a photoinduced cleavage of the N-O bond in N-hydroxypyridine-2(1H)-thione, generation of the .OH radical weakly bound with the remaining pyridylthiyl radical, and recombination of these two radicals by formation of the new -S-O- bond. A theoretical model supporting this interpretation was constructed on the basis of approximate coupled cluster (CC2) calculations of the potential energy surfaces of the ground and first excited singlet electronic states of the system. After electronic excitation of the monomeric N-hydroxypyridine-2(1H)-thione, the molecule evolves to the conical intersection with the potential energy surface of the ground state and then to the global minimum corresponding to 2-hydroxysulfanyl-pyridine.

  4. NH4(+) Resides Inside the Water 20-mer Cage As Opposed to H3O(+), Which Resides on the Surface: A First Principles Molecular Dynamics Simulation Study.

    PubMed

    Willow, Soohaeng Yoo; Singh, N Jiten; Kim, Kwang S

    2011-11-08

    Experimental vibrational predissociation spectra of the magic NH4(+)(H2O)20 clusters are close to those of the magic H3O(+)(H2O)20 clusters. It has been assumed that the geometric features of NH4(+)(H2O)20 clusters might be close to those of H3O(+)(H2O)20 clusters, in which H3O(+) resides on the surface. Car-Parrinello molecular dynamics simulations in conjunction with density functional theory calculations are performed to generate the infrared spectra of the magic NH4(+)(H2O)20 clusters. In comparison with the experimental vibrational predissociation spectra of NH4(+)(H2O)20, we find that NH4(+) is inside the cage structure of NH4(+)(H2O)20 as opposed to on the surface structure. This shows a clear distinction between the structures of NH4(+)(H2O)20 and H3O(+)(H2O)20 as well as between the hydration phenomena of NH4(+) and H3O(+).

  5. Roles of free radicals in NO oxidation by Fenton system and the enhancement on NO oxidation and H2O2 utilization efficiency.

    PubMed

    Zhao, Haiqian; Dong, Ming; Wang, Zhonghua; Wang, Huaiyuan; Qi, Hanbing

    2018-06-20

    Low H 2 O 2 utilization efficiency is the main problem when Fenton system was used to oxidize NO in flue gas. To understand the behavior of the free radicals during NO oxidation process in Fenton system is crucial to solving this problem. The oxidation capacity of ·OH and HO 2 · on NO in Fenton system was compared and the useless consumption path of ·OH and HO 2 · that caused the low utilization efficiency of H 2 O 2 were studied. A method to enhance the oxidation ability and H 2 O 2 utilization efficiency by adding reducing additives in Fenton system was proposed. The results showed that both of ·OH and HO 2 · were active substances that oxidize NO. However, the oxidation ability of ·OH radicals was stronger. The vast majority of ·OH and HO 2 · was consumed by rapid reaction ·OH+HO 2 ·→H 2 O+O 2 , which was the primary reason for the low utilization efficiency of H 2 O 2 in Fenton system. Hydroxylamine hydrochloride and ascorbic acid could accelerate the conversion of Fe 3+ to Fe 2+ , thereby increase the generation rate of ·OH and decrease the generation rate of HO 2 ·. As a result, the oxidation ability and H 2 O 2 utilization efficiency were enhanced.

  6. Atmospheric H2O2 measurement: comparison of cold trap method with impinger bubbling method

    NASA Technical Reports Server (NTRS)

    Sakugawa, H.; Kaplan, I. R.

    1987-01-01

    Collection of atmospheric H2O2 was performed by a cold trap method using dry ice-acetone as the refrigerant. The air was drawn by a pump into a glass gas trap immersed in the dry ice-acetone slush in a dewar flask at a flow rate of 2.5 l min-1 for approximately 2 h. Collection efficiency was > 99% and negligible interferences by O3, SO2 or organic matter with the collected H2O2 in the trap were observed. This method was compared with the air impinger bubbling method which has been previously described (Kok et al., 1978a, b, Envir. Sci. Technol. 12, 1072-1080). The measured total peroxide (H2O2 + organic peroxide) values in a series of aim samples collected by the impinger bubbling method (0.06-3.7 ppb) were always higher than those obtained by the cold trap method (0.02-1.2 ppb). Laboratory experiments suggest that the difference in values between the two methods probably results from the aqueous phase generation of H2O2 and organic peroxide in the impinger solution by a reaction of atmospheric O3 with olefinic and aromatic compounds. If these O3-organic compound reactions which occur in the impinger also occur in aqueous droplets in the atmosphere, the process could be very important for aqueous phase generation of H2O2 in clouds and rainwater.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berto, Tobias F.; Sanwald, Kai E.; Byers, J. Paige

    Photocatalytic overall water splitting requires co-catalysts that efficiently promote the generation of H-2 but do not catalyze its reverse oxidation. We demonstrate that CO chemisorbed on metal co-catalysts (Rh, Pt, Pd) suppresses the back reaction while maintaining the rate of H-2 evolution. On Rh/GaN:ZnO, the highest H-2 production rates were obtained with 4-40 mbar of CO, the back reaction remaining suppressed below 7 mbar of O-2. The O-2 and H-2 evolution rates compete with CO oxidation and the back reaction. The rates of all reactions increased with increasing photon absorption. However, due to different dependencies on the rate of chargemore » carrier generation, the selectivities for O-2 and H-2 formation increased in comparison to CO oxidation and the back reaction with increasing photon flux and/or quantum efficiency. Under optimum conditions, the impact of CO to prevent the back reaction is identical to that of a Cr2O3 layer covering the active metal particle.« less

  8. NAD(P)H oxidase mediates the endothelial barrier dysfunction induced by TNF-alpha.

    PubMed

    Gertzberg, Nancy; Neumann, Paul; Rizzo, Victor; Johnson, Arnold

    2004-01-01

    We tested the hypothesis that the NAD(P)H oxidase-dependent generation of superoxide anion (O2-*) mediates tumor necrosis factor-alpha (TNF)-induced alterations in the permeability of pulmonary microvessel endothelial monolayers (PMEM). The permeability of PMEM was assessed by the clearance rate of Evans blue-labeled albumin. The NAD(P)H oxidase subcomponents p47phox and p22phox were assessed by immunofluorescent microscopy and Western blot. The reactive oxygen species O2-* was measured by the fluorescence of 6-carboxy-2',7'-dichlorodihydrofluorescein diacetatedi(acetoxymethyl ester), 5 (and 6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate-acetyl ester, and dihydroethidium. TNF treatment (50 ng/ml for 4.0 h) induced 1) p47phox translocation, 2) an increase in p22phox protein, 3) increased localization of p47phox with p22phox, 4) O2-* generation, and 5) increased permeability to albumin. p22phox antisense oligonucleotide prevented the TNF-induced effect on p22phox, p47phox, O2-*, and permeability. The scrambled nonsense oligonucleotide had no effect. The TNF-induced increase in O2-* and permeability to albumin was also prevented by the O2-* scavenger Cu-Zn superoxide dismutase (100 U/ml). The results indicate that the activation of NAD(P)H oxidase, via the generation of O2-*, mediates TNF-induced barrier dysfunction in PMEM.

  9. Treatment of industrial effluents by electrochemical generation of H2O2 using an RVC cathode in a parallel plate reactor.

    PubMed

    Bustos, Yaneth A; Rangel-Peraza, Jesús Gabriel; Rojas-Valencia, Ma Neftalí; Bandala, Erick R; Álvarez-Gallegos, Alberto; Vargas-Estrada, Laura

    2016-01-01

    Electrochemical techniques have been used for the discolouration of synthetic textile industrial wastewater by Fenton's process using a parallel plate reactor with a reticulated vitreous carbon (RVC) cathode. It has been shown that RVC is capable of electro-generating and activating H2O2 in the presence of Fe(2+) added as catalyst and using a stainless steel mesh as anode material. A catholyte comprising 0.05 M Na2SO4, 0.001 M FeSO4.7H2O, 0.01 M H2SO4 and fed with oxygen was used to activate H2O2.The anolyte contained only 0.8 M H2SO4. The operating experimental conditions were 170 mA (2.0 V < ΔECell < 3.0 V) to generate 5.3 mM H2O2. Synthetic effluents containing various concentrations (millimolar - mM) of three different dyes, Blue Basic 9 (BB9), Reactive Black 5 (RB5) and Acid Orange 7 (AO7), were evaluated for discolouration using the electro-assisted Fenton reaction. Water discolouration was measured by UV-VIS absorbance reduction. Dye removal by electrolysis was a function of time: 90% discolouration of 0.08, 0.04 and 0.02 mM BB9 was obtained at 14, 10 and 6 min, respectively. In the same way, 90% discolouration of 0.063, 0.031 and 0.016 mM RB5 was achieved at 90, 60 and 30 min, respectively. Finally, 90% discolouration of 0.14, 0.07 and 0.035 mM AO7 was achieved at 70, 40 and 20 min, respectively. The experimental results confirmed the effectiveness of electro-assisted Fenton reaction as a strong oxidizing process in water discolouration and the ability of RVC cathode to electro-generate and activate H2O2 in situ.

  10. CO2 bubble generation and migration during magma-carbonate interaction

    NASA Astrophysics Data System (ADS)

    Blythe, L. S.; Deegan, F. M.; Freda, C.; Jolis, E. M.; Masotta, M.; Misiti, V.; Taddeucci, J.; Troll, V. R.

    2015-04-01

    We conducted quantitative textural analysis of vesicles in high temperature and pressure carbonate assimilation experiments (1200 °C, 0.5 GPa) to investigate CO2 generation and subsequent bubble migration from carbonate into magma. We employed Mt. Merapi (Indonesia) and Mt. Vesuvius (Italy) compositions as magmatic starting materials and present three experimental series using (1) a dry basaltic-andesite, (2) a hydrous basaltic-andesite (2 wt% H2O), and (3) a hydrous shoshonite (2 wt% H2O). The duration of the experiments was varied from 0 to 300 s, and carbonate assimilation produced a CO2-rich fluid and CaO-enriched melts in all cases. The rate of carbonate assimilation, however, changed as a function of melt viscosity, which affected the 2D vesicle number, vesicle volume, and vesicle size distribution within each experiment. Relatively low-viscosity melts (i.e. Vesuvius experiments) facilitated efficient removal of bubbles from the reaction site. This allowed carbonate assimilation to continue unhindered and large volumes of CO2 to be liberated, a scenario thought to fuel sustained CO2-driven eruptions at the surface. Conversely, at higher viscosity (i.e. Merapi experiments), bubble migration became progressively inhibited and bubble concentration at the reaction site caused localised volatile over-pressure that can eventually trigger short-lived explosive outbursts. Melt viscosity therefore exerts a fundamental control on carbonate assimilation rates and, by consequence, the style of CO2-fuelled eruptions.

  11. Bis(2,2'-bipyridyl-κN,N')(carbonato-κO,O')cobalt(III) bromide trihydrate.

    PubMed

    Ma, Peng-Tao; Wang, Yu-Xia; Zhang, Guo-Qian; Li, Ming-Xue

    2007-12-06

    The title complex, [Co(CO(3))(C(10)H(8)N(2))(2)]Br·3H(2)O, is isostructural with the chloride analogue. The six-coordinated octahedral [Co(2,2'-bipy)(2)CO(3)](+) cation (2,2'-bipy is 2,2'-bipyrid-yl), bromide ion and water mol-ecules are linked together via O-H⋯Br and O-H⋯O hydrogen bonds, generating a one-dimensional chain.

  12. In vitro and in vivo anti-Staphylococcus aureus activities of a new disinfection system utilizing photolysis of hydrogen peroxide.

    PubMed

    Hayashi, Eisei; Mokudai, Takayuki; Yamada, Yasutomo; Nakamura, Keisuke; Kanno, Taro; Sasaki, Keiichi; Niwano, Yoshimi

    2012-08-01

    The present study aimed to evaluate in vitro and in vivo antibacterial activity of hydroxyl radical generation system by photolysis of H(2)O(2), which is a new disinfection system for the treatment of oral infection diseases such as periodontitis developed in our laboratory. Firstly, generation of the hydroxyl radical by the photolysis of H(2)O(2) in which 1 mol l(-1) H(2)O(2) was irradiated with a dual wavelength-light emitting diode (LED) at wavelengths of 400 and 465 nm was confirmed by applying an electron spin resonance-spin trapping technique. Secondly, the bactericidal effect of the system was examined under a similar condition in which Staphylococcus aureus suspended in 1 mol l(-1) H(2)O(2) was irradiated with LED light, resulting in substantial reduction of the colony forming unit (CFU) of the bacteria within a short time as 2 min. Finally, in vivo antibacterial effect of the photolysis of H(2)O(2) on a rat model of S. aureus infection was evaluated by a culture study. Since a significant reduction of recovered CFU of S. aureus was obtained, it is expected that in vitro antibacterial effect attributable to hydroxyl radicals generated by photolysis of H(2)O(2) could be well reflected in in vivo superficial bacterial infection. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Photoelectron Transfer at ZnTPyP Self-Assembly/TiO2 Interfaces for Enhanced Two-Photon Photodynamic Therapy.

    PubMed

    Liu, Yanyan; Meng, Xianfu; Wang, Han; Tang, Zhongmin; Zuo, Changjing; He, Mingyuan; Bu, Wenbo

    2018-01-17

    Two-photon (TP) absorption nanomaterials are highly desirable for deep-tissue clinical diagnostics and orthotopic disease treatment. Here, a well-designed core/shell nanostructure was successfully synthesized with a ZnTPyP self-assembly nanocrystal (ZSN) inner core coated by a homogeneous TiO 2 layer outside (ZSN-TO). The ZSN is a good photosemiconductor, showing both one-photon (OP) and TP absorption properties for red fluorescence emission and electron-hole pair generation; TiO 2 with good biocompatibility acts as the electron acceptor, which can transfer photoelectron from ZSN to TiO 2 for highly effective electron-hole separation, favoring the production of long-life superoxide anion (O 2 •- ) by electrons and oxygen and strong oxidizing hydroxyl radical (•OH) by holes and surrounding H 2 O. Once pretreated with ZSN-TO, the simultaneous OP-405 nm or TP-800 nm laser stimulation and fluorescent imaging of reactive oxygen species (ROS) showed dynamical and continuous generation of ROS in HeLa cells, with cytotoxicity significantly increasing via the type-1-like photodynamic therapy process. The results demonstrated that the combination of organic ZSN with inorganic TiO 2 has great applications as an excellent photosensitizer for deep-tissue fluorescent imaging and noninvasive disease treatment via TP photodynamic therapy.

  14. Enhanced degradation of Orange G by permanganate with the employment of iron anode.

    PubMed

    Bu, Lingjun; Shi, Zhou; Zhou, Shiqing

    2017-01-01

    Iron anode was employed to enhance the degradation of Orange G (OG) by permanganate (EC/KMnO 4 ). Continuously generated Fe 2+ from iron anode facilitated the formation of fresh MnO 2 , which plays a role in catalyzing permanganate oxidation. The EC/KMnO 4 system also showed a better performance to remove OG than Fe 2+ /KMnO 4 , indicating the importance of in situ formed fresh MnO 2 . Besides, the effects of applied current, KMnO 4 dosage, solution pH, and natural organics were evaluated and results demonstrated that high current and oxidant dosage are favorable for OG removal. And the application of iron anode has a promoting effect on the KMnO 4 oxidation over a wide pH range (5.0-9.0), while the Fe 2+ /KMnO 4 process does not. For natural organics, its presence could inhibit OG removal due to its competitive role. And the promoting effect of OG removal by the EC/KMnO 4 process in natural water was confirmed. At last, the EC/KMnO 4 process showed a satisfying performance on the decolorization and mineralization of OG. This study provides a potential technology to enhance permanganate oxidation and broadens the knowledge of azo dye removal.

  15. [Measurements of stable isotopes in atmospheric CO2 and H2O by open-path Fourier transform infrared spectrometry].

    PubMed

    Wang, Wei; Liu, Wen-Qing; Zhang, Tian-Shu

    2013-08-01

    The development of spectroscopic techniques has offered continuous measurement of stable isotopes in the ambient air. The method of measuring environmental stable isotopes based on Fourier transform infrared spectrometry (FTIR) is described. In order to verify the feasibility of the method for continuous measurement of the stable isotopes, an open-path FTIR system was used to measure stable isotopes of CO2 and H2O in ambient air directly in a seven-day field experiment, including 12CO2, 3CO2, H2 16O and HD16 O. Also, the time course of carbon isotopic ratio delta13 C and deuterium isotope composition deltaD was calculated. The measurement precision is about 1.08 per thousand for delta13 C and 1.32 per thousand for deltaD. The measured stable isotopes of CO2 and H2O were analyzed on different time scales by Keeling plot methods, and the deuterium isotopic ratios of evapotranspiration were determined. The results of the field experiment demonstrate the potential of the open-path FTIR system for continuous measurement of stable isotopes in the air.

  16. Bactericidal Effect of Photolysis of H2O2 in Combination with Sonolysis of Water via Hydroxyl Radical Generation.

    PubMed

    Sheng, Hong; Nakamura, Keisuke; Kanno, Taro; Sasaki, Keiichi; Niwano, Yoshimi

    2015-01-01

    The bactericidal effect of hydroxyl radical (·OH) generated by combination of photolysis of hydrogen peroxide (H2O2) and sonolysis of water was examined under the condition in which the yield of ·OH increased additively when H2O2 aqueous solution was concomitantly irradiated with laser and ultrasound. The suspension of Staphylococcus aureus mixed with the different concentrations of H2O2 was irradiated simultaneously with a laser light (wavelength: 405 nm, irradiance: 46 and 91 mW/cm2) and ultrasound (power: 30 w, frequency: 1.65 MHz) at 20 ± 1°C of the water bulk temperature for 2 min. The combination of laser and ultrasound irradiation significantly reduced the viable bacterial count in comparison with the laser irradiation of H2O2 alone. By contrast, the ultrasound irradiation alone exerted almost no bactericidal effect. These results suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity was synergistic. A multi-way analysis of variance also revealed that the interaction of H2O2 concentration, laser power and ultrasound irradiation significantly affected the bactericidal activity. Since the result of oxidative DNA damage evaluation demonstrated that the combination of laser and ultrasound irradiation significantly induced oxidative damage of bacterial DNA in comparison with the laser irradiation of H2O2 alone, it was suggested that the combination effect of photolysis of H2O2 and sonolysis of water on bactericidal activity would be exerted via oxidative damage of cellular components such as DNA.

  17. Noteworthy performance of La(1-x)Ca(x)MnO3 perovskites in generating H2 and CO by the thermochemical splitting of H2O and CO2.

    PubMed

    Dey, Sunita; Naidu, B S; Govindaraj, A; Rao, C N R

    2015-01-07

    Perovskite oxides of the composition La1-xCaxMnO3 (LCM) have been investigated for the thermochemical splitting of H2O and CO2 to produce H2 and CO, respectively. The study was carried out in comparison with La1-xSrxMnO3, CeO2 and other oxides. The LCM system exhibits superior characteristics in high-temperature evolution of oxygen, and in reducing CO2 to CO and H2O to H2. The best results were obtained with La0.5Ca0.5MnO3 whose performance is noteworthy compared to that of other oxides including ceria. The orthorhombic structure of LCM seems to be a crucial factor.

  18. Characterization and evaluation of cadmium indate photocatalysts for solar hydrogen conversion

    NASA Astrophysics Data System (ADS)

    Thornton, Jason M.

    Alternative energy sources are needed to respond to the continued increase in the global energy needs and a potential decrease in the future supplies of fossil fuels. Solar hydrogen conversion in which sunlight is harnessed to split water into H2 fuel and O2 is a promising source of energy because it is renewable and produces no CO2. A number of semiconducting oxide materials have shown promise for overall water splitting for the generation of hydrogen over the years. In this work we focus on the synthesis and analysis of undoped and C-doped cadmium indate (CdIn2O 4) thin films and nanoparticle powders, and their evaluation for hydrogen evolution via water splitting. The catalyst was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis, scanning electron microscopy (SEM), and BET surface adsorption measurements. Spray and sol-gel pyrolysis methods were used for the synthesis of the materials. Doping C into CdIn 2O4 leads to enhancement in light absorption and the band gap was determined to be 2.3 eV in the nanoparticle powders. Carbon doping improves the photocurrent density by 33% and the H2 evolution rate by a factor of two. The performance of C-doped CdIn2O4 were optimized with respect to several synthetic parameters, including the In:Cd molar ratio and glucose concentration, calcination temperature, and the film thickness while the nanoparticles were additionally optimized to F127 concentration and platinum cocatalyst loading. Hydrogen generation activity was evaluated under UV-visible irradiation without the use of a sacrificial reagent and using bandpass filters the quantum efficiency was determined. Compared to platinized TiO2 in methanol C-CdIn2O4 showed a 4-fold increase in hydrogen production. The material was capable of hydrogen generation using visible light only and with good efficiency even at 510 nm. Using natural sunlight illumination, the material evolved hydrogen at a rate of 17 micromol h-1. These studies show carbon-doped cadmium indate to be a promising catalyst for solar hydrogen conversion.

  19. Understanding the impact of operational conditions on performance of microbial peroxide producing cells

    NASA Astrophysics Data System (ADS)

    Young, Michelle N.; Chowdhury, Nadrat; Garver, Emily; Evans, Patrick J.; Popat, Sudeep C.; Rittmann, Bruce E.; Torres, César I.

    2017-07-01

    Microbial peroxide producing cells (MPPCs) are microbial electrochemical cells used to synthesize hydrogen peroxide (H2O2) in the cathode chamber. Catholyte hydraulic retention time (HRT), different catholytes and their concentrations, and a ferrochelating stabilizer are varied in a continuous-flow cathode MPPC to evaluate their impacts on performance. Using NaCl catholytes, the MPPC produced as high as 3.1 ± 0.37 g H2O2 L-1 at a 4-h HRT with as little as 1.13 W-h g-1 H2O2 energy input and with up to 57 g Lcathode-1 d-1 at a 1-h HRT. For these conditions, the H2O2 production rate provides more than 3 times the H2O2 required for disinfection or micro-pollutant removal while using 5-25% of the power used in conventional H2O2 production processes. Attempts to improve H2O2-production by adding weak acid buffers or H2O2-stabilizing EDTA fail for different reasons. The addition of the ferrochelator EDTA to prevent H2O2 auto-decay deteriorates MPPC performance, because EDTA diffuses from the cathode to the anode, inhibiting iron utilization by anode-respiring bacteria. Weak acid buffers failed to reduce cathode concentration overpotentials. Buffering catholytes lowered the H2O2 yield due to large pH gradients at the cathode chamber entrance, causing the formation of H2O instead of H2O2 or O2 re-formation from H2O2 auto-decay.

  20. Cells with impaired mitochondrial H2O2 sensing generate less •OH radicals and live longer.

    PubMed

    Martins, Dorival; Titorenko, Vladimir I; English, Ann M

    2014-10-01

    Mitochondria are major sites of reactive oxygen species (ROS) generation, and adaptive mitochondrial ROS signaling extends longevity. We aim at linking the genetic manipulation of mitochondrial H2O2 sensing in live cells to mechanisms driving aging in the model organism, Saccharomyces cerevisiae. To this end, we compare in vivo ROS (O2(•-), H2O2 and (•)OH) accumulation, antioxidant enzyme activities, labile iron levels, GSH depletion, and protein oxidative damage during the chronological aging of three yeast strains: ccp1Δ that does not produce the mitochondrial H2O2 sensor protein, cytochrome c peroxidase (Ccp1); ccp1(W191F) that produces a hyperactive variant of this sensor protein (Ccp1(W191F)); and the isogenic wild-type strain. Since they possess elevated manganese superoxide dismutase (Sod2) activity, young ccp1Δ cells accumulate low mitochondrial superoxide (O2(•-)) levels but high H2O2 levels. These cells exhibit stable aconitase activity and contain low amounts of labile iron and hydroxyl radicals ((•)OH). Furthermore, they undergo late glutathione (GSH) depletion, less mitochondrial protein oxidative damage and live longer than wild-type cells. In contrast, young ccp1(W191F) cells accumulate little H2O2, possess depressed Sod2 activity, enabling their O2(•-) level to spike and deactivate aconitase, which, ultimately, leads to greater mitochondrial oxidative damage, early GSH depletion, and a shorter lifespan than wild-type cells. Modulation of mitochondrial H2O2 sensing offers a novel interventional approach to alter mitochondrial H2O2 levels in live cells and probe the pro- versus anti-aging effects of ROS. The strength of mitochondrial H2O2 sensing modulates adaptive mitochondrial ROS signaling and, hence, lifespan.

  1. Activation of c-Jun N-terminal kinase and apoptosis in endothelial cells mediated by endogenous generation of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Ramachandran, Anup; Moellering, Douglas; Go, Young-Mi; Shiva, Sruti; Levonen, Anna-Liisa; Jo, Hanjoong; Patel, Rakesh P.; Parthasarathy, Sampath; Darley-Usmar, Victor M.

    2002-01-01

    Reactive oxygen species have been implicated in the activation of signal transduction pathways. However, extracellular addition of oxidants such as hydrogen peroxide (H2O2) often requires concentrations that cannot be readily achieved under physiological conditions to activate biological responses such as apoptosis. Explanations for this discrepancy have included increased metabolism of H2O2 in the extracellular environment and compartmentalization within the cell. We have addressed this issue experimentally by examining the induction of apoptosis of endothelial cells induced by exogenous addition of H2O2 and by a redox cycling agent, 2,3-dimethoxy-1,4-naphthoquinone, that generates H2O2 in cells. Here we show that low nanomolar steady-state concentrations (0.1-0.5 nmol x min(-1) x 10(6) cells) of H2O2 generated intracellularly activate c-Jun N terminal kinase and initiate apoptosis in endothelial cells. A comparison with bolus hydrogen peroxide suggests that the low rate of intracellular formation of this reactive oxygen species results in a similar profile of activation for both c-Jun N terminal kinase and the initiation of apoptosis. However, a detailed analysis reveals important differences in both the duration and profile for activation of these signaling pathways.

  2. Light-activated regulation of cofilin dynamics using a photocaged hydrogen peroxide generator.

    PubMed

    Miller, Evan W; Taulet, Nicolas; Onak, Carl S; New, Elizabeth J; Lanselle, Julie K; Smelick, Gillian S; Chang, Christopher J

    2010-12-08

    Hydrogen peroxide (H2O2) can exert diverse signaling and stress responses within living systems depending on its spatial and temporal dynamics. Here we report a new small-molecule probe for producing H2O2 on demand upon photoactivation and its application for optical regulation of cofilin-actin rod formation in living cells. This chemical method offers many potential opportunities for dissecting biological roles for H2O2 as well as remote control of cell behavior via H2O2-mediated pathways.

  3. Generation mechanism of hydrogen peroxide in dc plasma with a liquid electrode

    NASA Astrophysics Data System (ADS)

    Takeuchi, Nozomi; Ishibashi, Naoto

    2018-04-01

    The production mechanism of liquid-phase H2O2 in dc driven plasma in O2 and Ar with a water electrode was investigated. When a water anode was used, the concentration of H2O2 increased linearly with the treatment time. The production rate was proportional to the discharge current, and there was no dependence on the gap distance. On the other hand, the production rate was much smaller with a water anode. We concluded that the production of gas-phase H2O2 in the cathode sheath just above a water cathode and diffusion of this H2O2 into the water constitute the key mechanism in the production of liquid-phase H2O2.

  4. Threefold interweaving of (4,4) nets built from R(10)10(58) rings inthe hydrogen-bonded adduct 1,4-diazabicyclo

    PubMed

    Burchell; Ferguson; Lough; Glidewell

    2000-09-01

    The 1:1 adduct of 1,4-diazabicyclo[2.2.2]octane and 5-hydroxyisophthalic acid is a salt, [H(C(6)H(12)N(2))](+). [HOC(6)H(3)(COOH)COO](-) or C(6)H(13)N(2)(+).C(8)H(5)O(5)(-). The ions are linked by three types of hydrogen bond, i.e. N-H.O, O-H.O and O-H.N, into continuous two-dimensional (4,4) nets built from a single type of R(10)(10)(58) ring. Six independent sheets of this type make up the structure and these are interwoven in sets of three.

  5. Chemicals from ethanol: the acetone synthesis from ethanol employing Ce0.75Zr0.25O2, ZrO2 and Cu/ZnO/Al2O3.

    PubMed

    Rodrigues, Clarissa Perdomo; Zonetti, Priscila da Costa; Appel, Lucia Gorenstin

    2017-04-04

    Acetone is an important solvent and widely used in the synthesis of drugs and polymers. Currently, acetone is mainly generated by the Cumene Process, which employs benzene and propylene as fossil raw materials. Phenol is a co-product of this synthesis. However, this ketone can be generated from ethanol (a renewable feedstock) in one-step. The aim of this work is to describe the influence of physical-chemical properties of three different catalysts on each step of this reaction. Furthermore, contribute to improve the description of the mechanism of this synthesis. The acetone synthesis from ethanol was studied employing Cu/ZnO/Al 2 O 3 , Ce 0.75 Zr 0.25 O 2 and ZrO 2 . It was verified that the acidity of the catalysts needs fine-tuning in order to promote the oxygenate species adsorption and avoid the dehydration of ethanol. The higher the reducibility and the H 2 O dissociation activity of the catalysts are, the higher the selectivity to acetone is. In relation to the oxides, these properties are associated with the presence of O vacancies. The H 2 generation, which occurs during the TPSR, indicates the redox character of this synthesis. The main steps of the acetone synthesis from ethanol are the generation of acetaldehyde, the oxidation of this aldehyde to acetate species (which reduces the catalyst), the H 2 O dissociation, the oxidation of the catalyst producing H 2 , and, finally, the ketonization reaction. These pieces of information will support the development of active catalysts for not only the acetone synthesis from ethanol, but also the isobutene and propylene syntheses in which this ketone is an intermediate. Graphical abstract Acetone from ethanol.

  6. Bioenergy

    DTIC Science & Technology

    2012-03-06

    from electrode and then catalyzing O2 reduction. • Approach: Various MCO were linked to carbon nanotubes (CNT) using a chemical “tethering” reagent (1...Portable H2 Fuel Generated from H2O or Cellulose : - Cheap, self-healing inorganic catalysts split water into H2 and O2 - Engineered...chlorophyll light Sugar/ Cellulose Synthesis Light Reactions PSI and PSII Dark Reactions Triglyceride (Oil) Lipid Synthesis Microalgae

  7. Oxidative Stressors Modify the Response of Streptococcus mutans to Its Competence Signal Peptides

    PubMed Central

    De Furio, Matthew; Ahn, Sang Joon

    2017-01-01

    ABSTRACT The dental caries pathogen Streptococcus mutans is continually exposed to several types of stress in the oral biofilm environment. Oxidative stress generated by reactive oxygen species has a major impact on the establishment, persistence, and virulence of S. mutans. Here, we combined fluorescent reporter-promoter fusions with single-cell imaging to study the effects of reactive oxygen species on activation of genetic competence in S. mutans. Exposure to paraquat, which generates superoxide anion, produced a qualitatively different effect on activation of expression of the gene for the master competence regulator, ComX, than did treatment with hydrogen peroxide (H2O2), which can yield hydroxyl radical. Paraquat suppressed peptide-mediated induction of comX in a progressive and cumulative fashion, whereas the response to H2O2 displayed a strong threshold behavior. Low concentrations of H2O2 had little effect on induction of comX or the bacteriocin gene cipB, but expression of these genes declined sharply if extracellular H2O2 exceeded a threshold concentration. These effects were not due to decreased reporter gene fluorescence. Two different threshold concentrations were observed in the response to H2O2, depending on the gene promoter that was analyzed and the pathway by which the competence regulon was stimulated. The results show that paraquat and H2O2 affect the S. mutans competence signaling pathway differently, and that some portions of the competence signaling pathway are more sensitive to oxidative stress than others. IMPORTANCE Streptococcus mutans inhabits the oral biofilm, where it plays an important role in the development of dental caries. Environmental stresses such as oxidative stress influence the growth of S. mutans and its important virulence-associated behaviors, such as genetic competence. S. mutans competence development is a complex behavior that involves two different signaling peptides and can exhibit cell-to-cell heterogeneity. Although oxidative stress is known to influence S. mutans competence, it is not understood how oxidative stress interacts with the peptide signaling or affects heterogeneity. In this study, we used fluorescent reporters to probe the effect of reactive oxygen species on competence signaling at the single-cell level. Our data show that different reactive oxygen species have different effects on S. mutans competence, and that some portions of the signaling pathway are more acutely sensitive to oxidative stress than others. PMID:28887419

  8. The electrochemical generation of useful chemical species from lunar materials

    NASA Technical Reports Server (NTRS)

    Tsai, Kan J.; Kuchynka, Daniel J.; Sammells, Anthony F.

    1989-01-01

    The current status of work on an electrochemical technology for the simultaneous generation of oxygen and lithium from a Li2O containing molten salt (Li2O-LiCl-LiF) is discussed. The electrochemical cell utilizes an oxygen vacancy conducting solid electrolyte, yttria-stabilized zirconia, to effect separation between the oxygen evolving and lithium reduction half-cell reactions. The cell, which operates at 700 to 800 C, possesses rapid electrode kinetics at the lithium-alloy electrode with exchange current density values being greater than 60 mA/sq cm, showing high reversibility for this reaction. When used in the electrolytic mode, lithium produced at the negative electrode would be continuously removed from the cell for later use (under lunar conditions) as an easily storable reducting agent (compared to H2) for the chemical refining of lunar ores via the general reaction: 2Li + MO yields Li2O + M where MO represents a lunar ore. Emphasis to this time has been on the simulated lunar ore ilmenite (FeTiO3), which we have found becomes chemically reduced by Li at 432 C. Furthermore, both Fe2O3 and TiO2 have been reduced by Li to give the corresponding metal. This electrochemical approach provides a convenient route for producing metals under lunar conditions and oxygen for the continuous maintenance of human habitats on the Moon's surface. Because of the high reversibility of this electrochemical system, it has also formed the basis for the lithium-oxygen secondary battery. This secondary lithium-oxygen battery system posses the highest theoretical energy density yet investigated.

  9. The electrochemical generation of useful chemical species from lunar materials

    NASA Astrophysics Data System (ADS)

    Tsai, Kan J.; Kuchynka, Daniel J.; Sammells, Anthony F.

    1989-03-01

    The current status of work on an electrochemical technology for the simultaneous generation of oxygen and lithium from a Li2O containing molten salt (Li2O-LiCl-LiF) is discussed. The electrochemical cell utilizes an oxygen vacancy conducting solid electrolyte, yttria-stabilized zirconia, to effect separation between the oxygen evolving and lithium reduction half-cell reactions. The cell, which operates at 700 to 800 C, possesses rapid electrode kinetics at the lithium-alloy electrode with exchange current density values being greater than 60 mA/sq cm, showing high reversibility for this reaction. When used in the electrolytic mode, lithium produced at the negative electrode would be continuously removed from the cell for later use (under lunar conditions) as an easily storable reducting agent (compared to H2) for the chemical refining of lunar ores via the general reaction: 2Li + MO yields Li2O + M where MO represents a lunar ore. Emphasis to this time has been on the simulated lunar ore ilmenite (FeTiO3), which we have found becomes chemically reduced by Li at 432 C. Furthermore, both Fe2O3 and TiO2 have been reduced by Li to give the corresponding metal. This electrochemical approach provides a convenient route for producing metals under lunar conditions and oxygen for the continuous maintenance of human habitats on the Moon's surface. Because of the high reversibility of this electrochemical system, it has also formed the basis for the lithium-oxygen secondary battery. This secondary lithium-oxygen battery system posses the highest theoretical energy density yet investigated.

  10. Near-Infrared Spectroscopy of Small Protonated Water Clusters

    NASA Astrophysics Data System (ADS)

    Wagner, J. Philipp; McDonald, David C., II; McCoy, Anne B.; Duncan, Michael A.

    2017-06-01

    Small protonated water clusters and their argon tagged analogues of the general formula H^{+}(H_{2}O)_{n}Ar_{m} have been generated in a pulsed electric discharge source. Clusters containing n=1-8 water molecules were mass-selected and their absorptions in the near-infrared were probed with a tunable Nd/colonYAG pumped OPA/OPA laser system in the region from 4850-7350 cm^{-1}. A doublet corresponding to overtones of the free O-H stretches of the external waters was observed around 7200 cm^{-1} that was continuously decreasing in intensity with increasing cluster size. Broad, mostly featureless absorptions were found around 5300 cm^{-1} associated with stretch/bend combinations and with the hydrogen bonded waters in the core of the clusters. Vibrational assignments were substantiated by comparison to anharmonic frequency computations via second-order vibrational perturbation theory (VPT2) at the MP2/aug-cc-pVTZ level of theory.

  11. Compact and Lightweight Sabatier Reactor for Carbon Dioxide Reduction

    NASA Technical Reports Server (NTRS)

    Junaedi, Christian; Hawley, Kyle; Walsh, Dennis; Roychoudhury, Subir; Abney, Morgan B.; Perry, Jay L.

    2011-01-01

    The utilization of CO2 to produce life support consumables, such as O2 and H2O, via the Sabatier reaction is an important aspect of NASA s cabin Atmosphere Revitalization System and In-Situ Resource Utilization architectures for both low-earth orbit and long-term manned space missions. In the current International Space Station (ISS) and other low orbit missions, metabolically-generated CO2 is removed from the cabin air and vented into space, resulting in a net loss of O2. This requires a continuous resupply of O2 via water electrolysis, and thus highlights the need for large water storage capacity. For long-duration space missions, the amount of life support consumables is limited and resupply options are practically nonexistent, thus atmosphere resource management and recycle becomes crucial to significantly reduce necessary O2 and H2O storage. Additionally, the potential use of the Martian CO2-rich atmosphere and Lunar regolith to generate life support consumables and propellant fuels is of interest to NASA. Precision Combustion, Inc. (PCI) has developed a compact, lightweight Microlith(Registered TradeMark)-based Sabatier (CO2 methanation) reactor which demonstrates the capability of achieving high CO2 conversion and near 100% CH4 selectivity at space velocities of 30,000-60,000 hr-1. The combination of the Microlith(Registered TradeMark) substrates and durable, novel catalyst coating permitted efficient Sabatier reactor operation that favors high reactant conversion, high selectivity, and long-term durability. This paper presents the reactor development and performance results at various operating conditions. Additionally, results from 100-hr durability tests and mechanical vibration tests are discussed.

  12. Accelerating Quinoline Biodegradation and Oxidation with Endogenous Electron Donors.

    PubMed

    Bai, Qi; Yang, Lihui; Li, Rongjie; Chen, Bin; Zhang, Lili; Zhang, Yongming; Rittmann, Bruce E

    2015-10-06

    Quinoline, a recalcitrant heterocyclic compound, is biodegraded by a series of reactions that begin with mono-oxygenations, which require an intracellular electron donor. Photolysis of quinoline can generate readily biodegradable products, such as oxalate, whose bio-oxidation can generate endogenous electron donors that ought to accelerate quinoline biodegradation and, ultimately, mineralization. To test this hypothesis, we compared three protocols for the biodegradation of quinoline: direct biodegradation (B), biodegradation after photolysis of 1 h (P1h+B) or 2 h (P2h+B), and biodegradation by adding oxalate commensurate to the amount generated from photolysis of 1 h (O1+B) or 2 h (O2+B). The experimental results show that P1h+B and P2h+B accelerated quinoline biodegradation by 19% and 50%, respectively, compared to B. Protocols O1+B and O2+B also gave 19% and 50% increases, respectively. During quinoline biodegradation, its first intermediate, 2-hydroxyquinoline, accumulated gradually in parallel to quinoline loss but declined once quinoline was depleted. Mono-oxygenation of 2-hydroxyquinoline competed with mono-oxygenation of quinoline, but the inhibition was relieved when extra electrons donors were added from oxalate, whether formed by UV photolysis or added exogenously. Rapid oxalate oxidation stimulated both mono-oxygenations, which accelerated the overall quinoline oxidation that provided the bulk of the electron donor.

  13. FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation

    PubMed Central

    Bartell, Shoshana M.; Kim, Ha-Neui; Ambrogini, Elena; Han, Li; Iyer, Srividhya; Serra Ucer, S.; Rabinovitch, Peter; Jilka, Robert L.; Weinstein, Robert S.; Zhao, Haibo; O’Brien, Charles A.; Manolagas, Stavros C.; Almeida, Maria

    2014-01-01

    Besides their cell-damaging effects in the setting of oxidative stress, reactive oxygen species (ROS) play an important role in physiological intracellular signalling by triggering proliferation and survival. FoxO transcription factors counteract ROS generation by upregulating antioxidant enzymes. Here we show that intracellular H2O2 accumulation is a critical and purposeful adaptation for the differentiation and survival of osteoclasts, the bone cells responsible for the resorption of mineralized bone matrix. Using mice with conditional loss or gain of FoxO transcription factor function, or mitochondria-targeted catalase in osteoclasts, we demonstrate this is achieved, at least in part, by downregulating the H2O2-inactivating enzyme catalase. Catalase downregulation results from the repression of the transcriptional activity of FoxO1, 3 and 4 by RANKL, the indispensable signal for the generation of osteoclasts, via an Akt-mediated mechanism. Notably, mitochondria-targeted catalase prevented the loss of bone caused by loss of oestrogens, suggesting that decreasing H2O2 production in mitochondria may represent a rational pharmacotherapeutic approach to diseases with increased bone resorption. PMID:24781012

  14. Inhibitory Effect of Dissolved Silica on the H2O2 Decomposition by Iron(III) and Manganese(IV) Oxides: Implications for H2O2-based In Situ Chemical Oxidation

    PubMed Central

    Pham, Anh Le-Tuan; Doyle, Fiona M.; Sedlak, David L.

    2011-01-01

    The decomposition of H2O2 on iron minerals can generate •OH, a strong oxidant that can transform a wide range of contaminants. This reaction is critical to In Situ Chemical Oxidation (ISCO) processes used for soil and groundwater remediation, as well as advanced oxidation processes employed in waste treatment systems. The presence of dissolved silica at concentrations comparable to those encountered in natural waters decreases the reactivity of iron minerals toward H2O2, because silica adsorbs onto the surface of iron minerals and alters catalytic sites. At circumneutral pH values, goethite, amorphous iron oxide, hematite, iron-coated sand and montmorillonite that were pre-equilibrated with 0.05 – 1.5 mM SiO2 were significantly less reactive toward H2O2 decomposition than their original counterparts, with the H2O2 loss rates inversely proportional to the SiO2 concentration. In the goethite/H2O2 system, the overall •OH yield, defined as the percentage of decomposed H2O2 producing •OH, was almost halved in the presence of 1.5 mM SiO2. Dissolved SiO2 also slows the H2O2 decomposition on manganese(IV) oxide. The presence of dissolved SiO2 results in greater persistence of H2O2 in groundwater, lower H2O2 utilization efficiency and should be considered in the design of H2O2-based treatment systems. PMID:22129132

  15. Adsorption, Desorption, and Displacement Kinetics of H2O and CO2 on Forsterite, Mg2SiO4(011)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R. Scott; Li, Zhenjun; Dohnalek, Zdenek

    We have examined the adsorbate-substrate interaction kinetics of CO2 and H2O on a natural forsterite crystal surface, Mg2SiO4(011), with 10-15% of substitutional Fe2+. We use temperature programmed desorption (TPD) and molecular beam techniques to determine the adsorption, desorption, and displacement kinetics for H2O and CO2. Neither CO2 nor H2O has distinct sub-monolayer desorption peaks but instead both have a broad continuous desorption feature that evolve smoothly into multilayer desorption. Inversion of the monolayer coverage spectra for both molecules reveals that the corresponding binding energies for H2O are greater than that for CO2 on all sites. The relative strength of thesemore » interactions is the dominant factor in the competitive adsorption/displacement kinetics. In experiments where the two adsorbates are co-dosed, H2O always binds to the highest energy binding sites available and displaces CO2. The onset of CO2 displacement by H2O occurs between 65 and 75 K.« less

  16. Light-induced generation of singlet oxygen by naked gold nanoparticles and its implications to cancer cell phototherapy.

    PubMed

    Pasparakis, George

    2013-12-20

    Generation of singlet oxygen by direct irradiation of naked gold nanoparticles is observed using either continuous wave or pulsed laser sources. The underlying mechanism involves plasmon- and hot-electron-mediated reaction pathways and (1) O2 seems to significantly amplify the overall death rates during photothermal treatment of cancer cell lines in vitro. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effectiveness of Active Packaging on Control of Escherichia Coli O157:H7 and Total Aerobic Bacteria on Iceberg Lettuce.

    PubMed

    Lu, Haixia; Zhu, Junli; Li, Jianrong; Chen, Jinru

    2015-06-01

    Contaminated leafy green vegetables have been linked to several outbreaks of human gastrointestinal infections. Antimicrobial interventions that are adoptable by the fresh produce industry for control of pathogen contamination are in great demand. This study was undertaken to evaluate the efficacy of sustained active packaging on control of Escherichia coli O157:H7 and total aerobic bacteria on lettuce. Commercial Iceberg lettuce was inoculated with a 3-strain mixture of E. coli O157:H7 at 10(2) or 10(4) CFU/g. The contaminated lettuce and un-inoculated controls were placed respectively in 5 different active packaging structures. Traditional, nonactive packaging structure was included as controls. Packaged lettuce was stored at 4, 10, or 22 °C for 3 wk and sampled weekly for the population of E. coli O157:H7 and total aerobic bacteria. Results showed that packaging structures with ClO2 generator, CO2 generator, or one of the O2 scavengers effectively controlled the growth of E. coli O157:H7 and total aerobic bacteria under all storage conditions. Packaging structure with the ClO2 generator was most effective and no E. coli O157:H7 was detected in samples packaged in this structure except for those that were inoculated with 4 log CFU/g of E. coli O157:H7 and stored at 22 °C. Packaging structures with an oxygen scavenger and the allyl isothiocyanate generator were mostly ineffective in control of the growth of the bacteria on Iceberg lettuce. The research suggests that some of the packaging structures evaluated in the study can be used to control the presence of foodborne pathogens on leafy green vegetables. © 2015 Institute of Food Technologists®

  18. Sensitive Detection of Single-Cell Secreted H2O2 by Integrating a Microfluidic Droplet Sensor and Au Nanoclusters.

    PubMed

    Shen, Rui; Liu, Peipei; Zhang, Yiqiu; Yu, Zhao; Chen, Xuyue; Zhou, Lu; Nie, Baoqing; Żaczek, Anna; Chen, Jian; Liu, Jian

    2018-04-03

    As an important signaling molecule, hydrogen peroxide (H 2 O 2 ) secreted externally by the cells influences cell migration, immunity generation, and cellular communications. Herein, we have developed a microfluidic approach with droplets in combination with Au nanoclusters for the sensitive detection of H 2 O 2 secreted by a single cell. Isolated in the ultrasmall volume (4.2 nL) of a microdroplet, single-cell secreted H 2 O 2 can initiate dramatic fluorescence changes of horseradish peroxidase-Au nanoclusters. We have demonstrated an ultrahigh sensitivity (200-400 attomole H 2 O 2 directly measured from a single cell) with good specificity. It offers a useful research tool to study the cell-to-cell differences of H 2 O 2 secretion at the single-cell level.

  19. Di­hydro­cyclam dimaleate [H2(cyclam)(maleate)2

    PubMed Central

    Mireille Ninon, Mbonzi Ombenga; Fahim, Mohammed; Lachkar, Mohammed; Marco Contelles, José Luis; Perles, Josefina; El Bali, Brahim

    2013-01-01

    The asymmetric unit of the title mol­ecular salt [systematic name: 1,4,8,11-tetraazacyclotetradecane-1,8-diium bis(3-carboxy­prop-2-enoate)], C10H26N4 2+·2C4H3O4 −, contains two half-cations (both completed by crystallographic inversion symmetry) and two maleate anions. The cyclam macrocycles adopt trans-III conformations, supported by two intra­molecular N—H⋯O hydrogen bonds. The O-bonded H atom of each maleate ion is disordered over two positions with an occupancy ratio of 0.61 (5):0.39 (5): each one generates an intra­molecular O—H⋯O hydrogen bond. In the crystal, the cations are linked to the anions by N—H⋯O hydrogen bonds, generating [001] chains. PMID:24098252

  20. Characteristics of alpha-glycerophosphate-evoked H2O2 generation in brain mitochondria.

    PubMed

    Tretter, Laszlo; Takacs, Katalin; Hegedus, Vera; Adam-Vizi, Vera

    2007-02-01

    Characteristics of reactive oxygen species (ROS) production in isolated guinea-pig brain mitochondria respiring on alpha-glycerophosphate (alpha-GP) were investigated and compared with those supported by succinate. Mitochondria established a membrane potential (DeltaPsi(m)) and released H(2)O(2) in parallel with an increase in NAD(P)H fluorescence in the presence of alpha-GP (5-40 mm). H(2)O(2) formation and the increase in NAD(P)H level were inhibited by rotenone, ADP or FCCP, respectively, being consistent with a reverse electron transfer (RET). The residual H(2)O(2) formation in the presence of FCCP was stimulated by myxothiazol in mitochondria supported by alpha-GP, but not by succinate. ROS under these conditions are most likely to be derived from alpha-GP-dehydrogenase. In addition, huge ROS formation could be provoked by antimycin in alpha-GP-supported mitochondria, which was prevented by myxothiazol, pointing to the generation of ROS at the quinol-oxidizing center (Q(o)) site of complex III. FCCP further stimulated the production of ROS to the highest rate that we observed in this study. We suggest that the metabolism of alpha-GP leads to ROS generation primarily by complex I in RET, and in addition a significant ROS formation could be ascribed to alpha-GP-dehydrogenase in mammalian brain mitochondria. ROS generation by alpha-GP at complex III is evident only when this complex is inhibited by antimycin.

  1. Electrochemical treatment of 2, 4-dichlorophenol using a nanostructured 3D-porous Ti/Sb-SnO2-Gr anode: Reaction kinetics, mechanism, and continuous operation.

    PubMed

    Asim, Sumreen; Zhu, Yunqing; Batool, Aisha; Hailili, Reshalaiti; Luo, Jianmin; Wang, Yuanhao; Wang, Chuanyi

    2017-10-01

    2, 4-dichlorophenol (2, 4-DCP) is considered to be a highly toxic, mutagenic, and possibly carcinogenic pollutant. This study is focused on the electrochemical oxidation of 2, 4-DCP on nanostructured 3D-porous Ti/Sb-SnO 2 -Gr anodes, with the aim of presenting a comprehensive elucidation of mineralization process through the investigation of influential kinetics, the reactivity of hydroxyl radical's and analysis of intermediates. High efficiency was achieved at pH of 3 using Na 2 SO 4 electrolytes at a current density of 30 mA cm -2 . Under the optimized conditions, a maximum removal of 2, 4-DCP of up to 99.9% was reached, whereas a TOC removal of 81% was recorded with the lowest EC TOC (0.49 kW h g -1 ) within 40 min of electrolysis. To explore the stability of the 3D-Ti/Sb-SnO 2 -Gr electrodes, a continuous electrochemical operation was established, and the consistent mineralization results indicated the effectiveness of the 3D-Ti/Sb-SnO 2 -Gr system concerning its durability and practical utilization. EPR studies demonstrated the abundant generation of OH radicals on 3D-Ti/Sb-SnO 2 -Gr, resulting in fast recalcitrant pollutant incineration. From dechlorination and the reactivity of the OH radicals, several intermediates including six cyclic byproducts and three aliphatic carboxylic acids were detected, and two possible degradation pathways were proposed that justify the complete mineralization of 2, 4-DCP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Separation of Molybdenum from Acidic High-Phosphorus Tungsten Solution by Solvent Extraction

    NASA Astrophysics Data System (ADS)

    Li, Yongli; Zhao, Zhongwei

    2017-10-01

    A solvent-extraction process for deep separation of molybdenum from an acidic high-phosphate tungsten solution was developed using tributyl phosphate (TBP) as the extractant and hydrogen peroxide (H2O2) as a complexing agent. The common aqueous complexes of tungsten and molybdenum (PMoxW12-xO40 3-, x = 0-12) are depolymerized to {PO4[Mo(O)2(O-O)]4}3- and {PO4[W(O)2(O-O)]4}3- by H2O2. The former can be preferentially extracted by TBP. The extractant concentration, phase contact time, H2O2 dosage, and H2SO4 concentration were optimized. By employing 80% by volume TBP, O:A = 1:1, 1.0 mol/L H2SO4, 1.0 mol/L H3PO4, a contact time of 2 min, and a molar ratio of H2O2/(W + Mo) equal to 1.5, 60.2% molybdenum was extracted in a single stage, while limiting tungsten co-extraction to 3.2%. An extraction isotherm indicated that the raffinate could be reduced to <0.1 g/L Mo in six stages of continuous counter-current extraction.

  3. Facile control of nanoporosity in Cellulose Acetate using Nickel(II) nitrate additive and water pressure treatment for highly efficient battery gel separators.

    PubMed

    Lee, Woong Gi; Kim, Do Hyeong; Jeon, Woo Cheol; Kwak, Sang Kyu; Kang, Seok Ju; Kang, Sang Wook

    2017-04-28

    We succeed in fabricating nearly straight nanopores in cellulose acetate (CA) polymers for use as battery gel separators by utilizing an inorganic hexahydrate (Ni(NO 3 ) 2 ·6H 2 O) complex and isostatic water pressure treatment. The continuous nanopores are generated when the polymer film is exposed to isostatic water pressure after complexing the nickel(II) nitrate hexahydrate (Ni(NO 3 ) 2 ·6H 2 O) with the CA. These results can be attributed to the manner in which the polymer chains are weakened because of the plasticization effect of the Ni(NO 3 ) 2 ·6H 2 O that is incorporated into the CA. Furthermore, we performed extensive molecular dynamics simulation for confirming the interaction between electrolyte and CA separator. The well controlled CA membrane after water pressure treatment enables fabrication of highly reliable cell by utilizing 2032-type coin cell structure. The resulting cell performance exhibits not only the effect of the physical morphology of CA separator, but also the chemical interaction of electrolyte with CA polymer which facilitates the Li-ion in the cell.

  4. Effects of water, depth and temperature on partial melting of mantle-wedge fluxed by hydrous sediment-melt in subduction zones

    NASA Astrophysics Data System (ADS)

    Mallik, Ananya; Dasgupta, Rajdeep; Tsuno, Kyusei; Nelson, Jared

    2016-12-01

    This study investigates the partial melting of variable bulk H2O-bearing parcels of mantle-wedge hybridized by partial melt derived from subducted metapelites, at pressure-temperature (P-T) conditions applicable to the hotter core of the mantle beneath volcanic arcs. Experiments are performed on mixtures of 25% sediment-melt and 75% fertile peridotite, from 1200 to 1300 °C, at 2 and 3 GPa, with bulk H2O concentrations of 4 and 6 wt.%. Combining the results from these experiments with previous experiments containing 2 wt.% bulk H2O (Mallik et al., 2015), it is observed that all melt compositions, except those produced in the lowest bulk H2O experiments at 3 GPa, are saturated with olivine and orthopyroxene. Also, higher bulk H2O concentration increases melt fraction at the same P-T condition, and causes exhaustion of garnet, phlogopite and clinopyroxene at lower temperatures, for a given pressure. The activity coefficient of silica (ϒSiO2) for olivine-orthopyroxene saturated melt compositions (where the activity of silica, aSiO2 , is buffered by the reaction olivine + SiO2 = orthopyroxene) from this study and from mantle melting studies in the literature are calculated. In melt compositions generated at 2 GPa or shallower, with increasing H2O concentration, ϒSiO2 increases from <1 to ∼1, indicating a transition from non-ideal mixing as OH- in the melt (ϒSiO2 <1) to ideal mixing as molecular H2O (ϒSiO2 ∼1). At pressures >2 GPa, ϒSiO2 >1 at higher H2O concentrations in the melt, indicate requirement of excess energy to incorporate molecular H2O in the silicate melt structure, along with a preference for bridging species and polyhedral edge decorations. With vapor saturation in the presence of melt, ϒSiO2 decreases indicating approach towards ideal mixing of H2O in silicate melt. For similar H2O concentrations in the melt, ϒSiO2 for olivine-orthopyroxene saturated melts at 3 GPa is higher than melts at 2 GPa or shallower. This results in melts generated at 3 GPa being more silica-poor than melts at 2 GPa. Thus, variable bulk H2O and pressure of melt generation results in the partial melts from this study varying in composition from phonotephrite to basaltic andesite at 2 GPa and foidite/phonotephrite to basalt at 3 GPa, forming a spectrum of arc magmas. Modeling suggests that the trace element patterns of sediment-melt are unaffected by the process of hybridization within the hotter core of the mantle-wedge. K2O/H2O and H2O/Ce ratios of the sediment-melts are unaffected, within error, by the process of hybridization of the mantle-wedge. This implies that thermometers based on K2O/H2O and H2O/Ce ratios of arc lavas may be used to estimate slab-top temperatures when (a) sediment-melt from the slab reaches the hotter core of the mantle-wedge by focused flow (b) sediment-melt freezes in the overlying mantle at the slab-mantle interface and the hybridized package rises as a mélange diapir and partially melts at the hotter core of the mantle-wedge. Based on the results from this study and previous studies, both channelized and porous flow of sediment-melt/fluid through the sub-arc mantle can explain geochemical signatures of arc lavas under specific geodynamic scenarios of fluid/melt fluxing, hybridization, and subsequent mantle melting.

  5. Detection of Hydroxyl and Perhydroxyl Radical Generation from Bleaching Agents with Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Sharma, Himanshu; Sharma, Divya S

    Children/adolescent's orodental structures are different in anatomy and physiology from that of adults, therefore require special attention for bleaching with oxidative materials. Hydroxyl radical (OH . ) generation from bleaching agents has been considered directly related to both its clinical efficacy and hazardous effect on orodental structures. Nonetheless bleaching agents, indirectly releasing hydrogen peroxide (H 2 O 2 ), are considered safer yet clinically efficient. Apart from OH . , perhydroxyl radicals (HO 2 . ) too, were detected in bleaching chemistry but not yet in dentistry. Therefore, the study aims to detect the OH . and HO 2 . from bleaching agents with their relative integral value (RIV) using 31 P nuclear magnetic resonance ( 31 PNMR) spectroscope. Radicals were generated with UV light in 30% H 2 O 2 , 35% carbamide peroxide (CP), sodium perborate tetrahydrate (SPT) and; neutral and alkaline 30% H 2 O 2 . Radicals were spin-trapped with DIPPMPO in NMR tubes for each test agents as a function of time (0, 1, 2, 3min) at their original pH. Peaks were detected for OH . and HO 2 . on NMR spectrograph. RIV were read and compared for individual radicals detected. Only OH . were detected from acidic and neutral bleaching agent (30% acidic and neutral H 2 O 2 , 35%CP); both HO 2 . and OH . from 30% alkaline H 2 O 2 ; while only HO 2 . from more alkaline SPT. RIV for OH . was maximum at 1min irradiation of acidic 30%H 2 O 2 and 35%CP and minimum at 1min irradiation of neutral 30%H 2 O 2 . RIV for HO 2 . was maximum at 0min irradiation of alkaline 30%H 2 O 2 and minimum at 2min irradiation of SPT. The bleaching agents having pH- neutral and acidic were always associated with OH . ; weak alkaline with both OH . and HO 2 . ; and strong alkaline with HO 2 . only. It is recommended to check the pH of the bleaching agents and if found acidic, should be made alkaline to minimize oxidative damage to enamel itself and then to pulp/periodontal tissues. H 2 O 2 : hydrogen peroxide CP: carbamide peroxide SP: sodium perborate SPT: sodium perborate tetrahydrate ROS: reactive oxygen species 31 PNMR: 31 P nuclear magnetic resonance spectroscope RIV: relative integral value OH 2 . : hydroxyl radical HO 2 . : perhydroxyl radical O 2 . : super oxide radical DIPPMPO: 5-(Diisopropoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide DEPMPO: 5-diethoxyphosphoryl-5-methyl-1-pyrroline-n-oxide DMPO: 5,5-dimethyl-1-pyrroline-N-oxide D 2 O: heavy water EDTA: ethylene diamine tetra acetic acid.

  6. Overlap corrections for emissivity calculations of H2O-CO2-CO-N2 mixtures

    NASA Astrophysics Data System (ADS)

    Alberti, Michael; Weber, Roman; Mancini, Marco

    2018-01-01

    Calculations of total gas emissivities of gas mixtures containing several radiatively active species require corrections for band overlapping. In this paper, we generate such overlap correction charts for H2O-CO2-N2, H2O-CO-N2, and CO2-CO-N2 mixtures. These charts are applicable in the 0.1-40 bar total pressure range and in the 500 K-2500 K temperature range. For H2O-CO2-N2 mixtures, differences between our charts and Hottel's graphs as well as models of Leckner and Modak are highlighted and analyzed.

  7. Decomposition of sulfamethoxazole and trimethoprim by continuous UVA/LED/TiO2 photocatalysis: Decomposition pathways, residual antibacterial activity and toxicity.

    PubMed

    Cai, Qinqing; Hu, Jiangyong

    2017-02-05

    In this study, continuous LED/UVA/TiO 2 photocatalytic decomposition of sulfamethoxazole (SMX) and trimethoprim (TMP) was investigated. More than 90% of SMX and TMP were removed within 20min by the continuous photoreactor (with the initial concentration of 400ppb for each). The removal rates of SMX and TMP decreased with higher initial antibiotics loadings. SMX was much easier decomposed in acidic condition, while pH affected little on TMP's decomposition. 0.003% was found to be the optimum H 2 O 2 dosage to enhance SMX photocatalytic decomposition. Decomposition pathways of SMX and TMP were proposed based on the intermediates identified by using LC-MS-MS and GC-MS. Aniline was identified as a new intermediate generated during SMX photocatalytic decomposition. Antibacterial activity study with a reference Escherichia coli strain was also conducted during the photocatalytic process. Results indicated that with every portion of TMP removed, the residual antibacterial activity decreased by one portion. However, the synergistic effect between SMX and TMP tended to slow down the antibacterial activity removal of SMX and TMP mixture. Chronic toxicity studies conducted with Vibrio fischeri exhibited 13-20% bioluminescence inhibition during the decomposition of 1ppm SMX and 1ppm TMP, no acute toxicity to V. fischeri was observed during the photocatalytic process. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Evaluation of Sintering Behaviors of Saprolitic Nickeliferous Laterite Based on Quaternary Basicity

    NASA Astrophysics Data System (ADS)

    Luo, Jun; Li, Guanghui; Rao, Mingjun; Zhang, Yuanbo; Peng, Zhiwei; Zhi, Qian; Jiang, Tao

    2015-09-01

    The sintering behaviors of saprolitic nickeliferous laterite with various quaternary basicities [(CaO + MgO)/(SiO2 + Al2O3) mass ratio] in a reductive atmosphere are investigated by simulative sintering and validated by sintering pot tests. The simulative sintering results show that the generation of diopside (CaMgSi2O6) with low melting point is the key reason for the decrease in characteristic fusion temperatures when the quaternary basicity increases from 0.5 to 0.8-1.0. Continuous increase of basicity leads to transformation of diopside (CaMgSi2O6) into akermanite (Ca2MgSi2O7), which adversely increases the characteristic fusion temperatures. These findings are confirmed by the sinter pot tests, which demonstrate that the sintering indexes including vertical sintering velocity (VSV), yield ( Y), and productivity ( P), can be improved by optimizing quaternary basicity. At basicity of 1.0, the VSV, Y, P, and ISO tumbling index reach 49.2 mm/min, 80.5%, 1.0 t/(h m2), and 66.5%, respectively.

  9. A novel combined solar pasteurizer/TiO2 continuous-flow reactor for decontamination and disinfection of drinking water.

    PubMed

    Monteagudo, José María; Durán, Antonio; Martín, Israel San; Acevedo, Alba María

    2017-02-01

    A new combined solar plant including an annular continuous-flow compound parabolic collector (CPC) reactor and a pasteurization system was designed, built, and tested for simultaneous drinking water disinfection and chemical decontamination. The plant did not use pumps and had no electricity costs. First, water continuously flowed through the CPC reactor and then entered the pasteurizer. The temperature and water flow from the plant effluent were controlled by a thermostatic valve located at the pasteurizer outlet that opened at 80 °C. The pasteurization process was simulated by studying the effect of heat treatment on the death kinetic parameters (D and z values) of Escherichia coli K12 (CECT 4624). 99.1% bacteria photo-inactivation was reached in the TiO 2 -CPC system (0.60 mg cm -2 TiO 2 ), and chemical decontamination in terms of antipyrine degradation increased with increasing residence time in the TiO 2 -CPC system, reaching 70% degradation. The generation of hydroxyl radicals (between 100 and 400 nmol L -1 ) was a key factor in the CPC system efficiency. Total thermal bacteria inactivation was attained after pasteurization in all cases. Chemical degradation and bacterial photo-inactivation in the TiO 2 -CPC system were improved with the addition of 150 mg L -1 of H 2 O 2 , which generated approximately 2000-2300 nmol L -1 of HO ● radicals. Finally, chemical degradation and bacterial photo-inactivation kinetic modelling in the annular CPC photoreactor were evaluated. The effect of the superficial liquid velocity on the overall rate constant was also studied. Both antipyrine degradation and E. coli photo-inactivation were found to be controlled by the catalyst surface reaction rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The control of iron-induced oxidative damage in isolated rat-liver mitochondria by respiration state and ascorbate.

    PubMed

    Burkitt, M J; Gilbert, B C

    1989-01-01

    The reaction of iron (II) with H2O2 is believed to generate highly reactive species (e.g. .OH) capable of initiating biological damage. This study investigates the possibility that the severity of oxidative damage induced by iron in hepatic mitochondria is determined by the level of mitochondrial-H2O2 generation, which is believed to be particularly prominent in state-4 respiration. Iron-induced damage is found to be greater in state-4 than in state-3 respiration. Experiments using uncoupling agents and Ca++ to mimic state-3 conditions indicate that this effect reflects differences in the steady-state oxidation-level of the electron carriers of the respiratory chain (and hence the level of H2O2-generation), rather than changes in redox potential or transportation of the metal-ion. Evidence is also presented for a mechanism in which Fe(II) and H2O2 react inside the mitochondrial matrix. Ascorbate (vitamin C) is shown to be pro-oxidant in this system, except when present at very high concentration when it becomes antioxidant in nature.

  11. Degassing of basaltic magma: decompression experiments and implications for interpreting the textures of volcanic rocks

    NASA Astrophysics Data System (ADS)

    Le Gall, Nolwenn; Pichavant, Michel; Cai, Biao; Lee, Peter; Burton, Mike

    2017-04-01

    Decompression experiments were performed to simulate the ascent of basaltic magma, with the idea of approaching the textural features of volcanic rocks to provide insights into degassing processes. The experiments were conducted in an internally heated pressure vessel between NNO-1.4 and +0.9. H2O-only (4.9 wt%) and H2O-CO2-bearing (0.71-2.45 wt% H2O, 818-1094 ppm CO2) melts, prepared from Stromboli pumice, were synthesized at 1200°C and 200 MPa, continuously decompressed between 200 and 25 MPa at a rate of either 39 or 78 kPa/s (or 1.5 and 3 m/s, respectively), and rapidly quenched. Run products were characterized both texturally (by X-ray computed tomography and scanning electron microscopy) and chemically (by IR spectroscopy and electron microprobe analysis), and then compared with products from basaltic Plinian eruptions and Stromboli paroxysms (bubble textures, glass inclusions). The obtained results demonstrate that textures are controlled by the kinetics of nucleation, growth, coalescence and outgassing of the bubbles, as well as by fragmentation, which largely depend on the presence of CO2 in the melt and the achievement in chemical equilibrium. Textures of the H2O-only melts result from two nucleation events, the first at high pressure (200 < P < 150 MPa) and the second at low pressure (50 < P < 25 MPa), preceding fragmentation. Both events, restricted to narrow P intervals, are driven by melt H2O supersaturation. In contrast, textures of the H2O-CO2-bearing basaltic melts result from continuous bubble nucleation, which is driven by the generation of melts supersaturated in CO2. This persistent non-equilibrium degassing causes the bubbles to evolve through power law distributions, as small bubbles continue to form and grow. This is what is observed in Plinian products. From our results, the evolution to mixed power law-exponential distributions, as found in Stromboli products, is indicative of the prevalence of bubble coalescence and an evolution toward chemical equilibrium. In line with this, a strong correlation was found between experimental and natural bubble textures (bubble number densities, shapes, sizes and distributions), having implications for interpreting bubbles in volcanic rocks and quantifying magma ascent rates. Next step will be to perform in situ decompression experiments to simulate both degassing and crystallization of basaltic magma during ascent in the shallow volcanic conduit (P < 50 MPa), using synchrotron X-ray imaging. The obtained 4D (3D + time) data will help us refine our understanding of magma ascent processes. This experimental programme requires first technology adaptation and development, which is in progress.

  12. Sailuotong Prevents Hydrogen Peroxide (H2O2)-Induced Injury in EA.hy926 Cells

    PubMed Central

    Seto, Sai Wang; Chang, Dennis; Ko, Wai Man; Zhou, Xian; Kiat, Hosen; Bensoussan, Alan; Lee, Simon M. Y.; Hoi, Maggie P. M.; Steiner, Genevieve Z.; Liu, Jianxun

    2017-01-01

    Sailuotong (SLT) is a standardised three-herb formulation consisting of Panax ginseng, Ginkgo biloba, and Crocus sativus designed for the management of vascular dementia. While the latest clinical trials have demonstrated beneficial effects of SLT in vascular dementia, the underlying cellular mechanisms have not been fully explored. The aim of this study was to assess the ability and mechanisms of SLT to act against hydrogen peroxide (H2O2)-induced oxidative damage in cultured human vascular endothelial cells (EAhy926). SLT (1–50 µg/mL) significantly suppressed the H2O2-induced cell death and abolished the H2O2-induced reactive oxygen species (ROS) generation in a concentration-dependent manner. Similarly, H2O2 (0.5 mM; 24 h) caused a ~2-fold increase in lactate dehydrogenase (LDH) release from the EA.hy926 cells which were significantly suppressed by SLT (1–50 µg/mL) in a concentration-dependent manner. Incubation of SLT (50 µg/mL) increased superoxide dismutase (SOD) activity and suppressed the H2O2-enhanced Bax/Bcl-2 ratio and cleaved caspase-3 expression. In conclusion, our results suggest that SLT protects EA.hy916 cells against H2O2-mediated injury via direct reduction of intracellular ROS generation and an increase in SOD activity. These protective effects are closely associated with the inhibition of the apoptotic death cascade via the suppression of caspase-3 activation and reduction of Bax/Bcl-2 ratio, thereby indicating a potential mechanism of action for the clinical effects observed. PMID:28067784

  13. Protein Sulfenylation: A Novel Readout of Environmental Oxidant Stress

    PubMed Central

    Wages, Phillip A.; Lavrich, Katelyn S.; Zhang, Zhenfa; Cheng, Wan-Yun; Corteselli, Elizabeth; Gold, Avram; Bromberg, Philip; Simmons, Steven O.; Samet, James M.

    2016-01-01

    Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ) induce oxidative stress by redox cycling, which generates hydrogen peroxide (H2O2). Cysteinyl thiolate residues on regulatory proteins are subjected to oxidative modification by H2O2 in physiological contexts and are also toxicological targets of oxidant stress induced by environmental contaminants. We investigated whether exposure to environmentally relevant concentrations of 1,2-NQ can induce H2O2-dependent oxidation of cysteinyl thiols in regulatory proteins as a readout of oxidant stress in human airway epithelial cells. BEAS-2B cells were exposed to 0–1000 μM 1,2-NQ for 0–30 min, and levels of H2O2 were measured by ratiometric spectrofluorometry of HyPer. H2O2-dependent protein sulfenylation was measured using immunohistochemistry, immunoblotting, and isotopic mass spectrometry. Catalase overexpression was used to investigate the relationship between H2O2 generation and protein sulfenylation in cells exposed to 1,2-NQ. Multiple experimental approaches showed that exposure to 1,2-NQ at concentrations as low as 3 μM induces H2O2-dependent protein sulfenylation in BEAS-2B cells. Moreover, the time of onset and duration of 1,2-NQ-induced sulfenylation of the regulatory proteins GAPDH and PTP1B showed significant differences. Oxidative modification of regulatory cysteinyl thiols in human lung cells exposed to relevant concentrations of an ambient air contaminant represents a novel marker of oxidative environmental stress. PMID:26605980

  14. A carbon-air battery for high power generation.

    PubMed

    Yang, Binbin; Ran, Ran; Zhong, Yijun; Su, Chao; Tadé, Moses O; Shao, Zongping

    2015-03-16

    We report a carbon-air battery for power generation based on a solid-oxide fuel cell (SOFC) integrated with a ceramic CO2-permeable membrane. An anode-supported tubular SOFC functioned as a carbon fuel container as well as an electrochemical device for power generation, while a high-temperature CO2-permeable membrane composed of a CO3(2-) mixture and an O(2-) conducting phase (Sm(0.2)Ce(0.8)O(1.9)) was integrated for in situ separation of CO2 (electrochemical product) from the anode chamber, delivering high fuel-utilization efficiency. After modifying the carbon fuel with a reverse Boudouard reaction catalyst to promote the in situ gasification of carbon to CO, an attractive peak power density of 279.3 mW cm(-2) was achieved for the battery at 850 °C, and a small stack composed of two batteries can be operated continuously for 200 min. This work provides a novel type of electrochemical energy device that has a wide range of application potentials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Comparison of pharmaceutical abatement in various water matrices by conventional ozonation, peroxone (O3/H2O2), and an electro-peroxone process.

    PubMed

    Wang, Huijiao; Zhan, Juhong; Yao, Weikun; Wang, Bin; Deng, Shubo; Huang, Jun; Yu, Gang; Wang, Yujue

    2018-03-01

    Pharmaceutical abatement in a groundwater (GW), surface water (SW), and secondary effluent (SE) by conventional ozonation, the conventional peroxone (O 3 /H 2 O 2 ), and the electro-peroxone (E-peroxone) processes was compared in batch tests. SE had significantly more fast-reacting dissolved organic matter (DOM) moieties than GW and SW. Therefore, O 3 decomposed much faster in SE than in GW and SW. At specific ozone doses of 0.5-1.5 mg O 3 /mg dissolved organic carbon (DOC), the application of O 3 /H 2 O 2 and E-peroxone process (by adding external H 2 O 2 stocks or in-situ generating H 2 O 2 from cathodic O 2 reduction during ozonation) similarly enhanced the OH yield from O 3 decomposition by ∼5-12% and 5-7% in GW and SW, respectively, compared to conventional ozonation. In contrast, due to the slower reaction kinetics of O 3 with H 2 O 2 than O 3 with fast-reacting DOM moieties, the addition or electro-generation of H 2 O 2 hardly increased the OH yield (<4% increases) in SE. Corresponding to the changes in the OH yields, the abatement efficiencies of ozone-resistant pharmaceuticals (ibuprofen and clofibric acid) increased evidently in GW (up to ∼14-18% at a specific ozone dose of 1.5 mg O 3 /mg DOC), moderately in SW (up to 6-10% at 0.5 mg O 3 /mg DOC), and negligibly in SE during the O 3 /H 2 O 2 and E-peroxone treatment compared to conventional ozonation. These results indicate that similar to the conventional O 3 /H 2 O 2 process, the E-peroxone process can more pronouncedly enhance O 3 transformation to OH, and thus increase the abatement efficiency of ozone-resistant pharmaceuticals in water matrices exerting relatively high ozone stability (e.g., groundwater and surface water with low DOM contents). Therefore, by installing electrodes in existing ozone reactors, the E-peroxone process may provide a convenient way to enhance pharmaceutical abatement in drinking water applications, where groundwater and surface water with low DOM contents are used as the source waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Assessment of Factors Related to Auto-PEEP.

    PubMed

    Natalini, Giuseppe; Tuzzo, Daniele; Rosano, Antonio; Testa, Marco; Grazioli, Michele; Pennestrì, Vincenzo; Amodeo, Guido; Marsilia, Paolo F; Tinnirello, Andrea; Berruto, Francesco; Fiorillo, Marialinda; Filippini, Matteo; Peratoner, Alberto; Minelli, Cosetta; Bernardini, Achille

    2016-02-01

    Previous physiological studies have identified factors that are involved in auto-PEEP generation. In our study, we examined how much auto-PEEP is generated from factors that are involved in its development. One hundred eighty-six subjects undergoing controlled mechanical ventilation with persistent expiratory flow at the beginning of each inspiration were enrolled in the study. Volume-controlled continuous mandatory ventilation with PEEP of 0 cm H2O was applied while maintaining the ventilator setting as chosen by the attending physician. End-expiratory and end-inspiratory airway occlusion maneuvers were performed to calculate respiratory mechanics, and tidal flow limitation was assessed by a maneuver of manual compression of the abdomen. The variable with the strongest effect on auto-PEEP was flow limitation, which was associated with an increase of 2.4 cm H2O in auto-PEEP values. Moreover, auto-PEEP values were directly related to resistance of the respiratory system and body mass index and inversely related to expiratory time/time constant. Variables that were associated with the breathing pattern (tidal volume, frequency minute ventilation, and expiratory time) did not show any relationship with auto-PEEP values. The risk of auto-PEEP ≥5 cm H2O was increased by flow limitation (adjusted odds ratio 17; 95% CI: 6-56.2), expiratory time/time constant ratio <1.85 (12.6; 4.7-39.6), respiratory system resistance >15 cm H2O/L s (3; 1.3-6.9), age >65 y (2.8; 1.2-6.5), and body mass index >26 kg/m(2) (2.6; 1.1-6.1). Flow limitation, expiratory time/time constant, resistance of the respiratory system, and obesity are the most important variables that affect auto-PEEP values. Frequency expiratory time, tidal volume, and minute ventilation were not independently associated with auto-PEEP. Therapeutic strategies aimed at reducing auto-PEEP and its adverse effects should be primarily oriented to the variables that mainly affect auto-PEEP values. Copyright © 2016 by Daedalus Enterprises.

  17. Maillard reaction products as antimicrobial components for packaging films.

    PubMed

    Hauser, Carolin; Müller, Ulla; Sauer, Tanja; Augner, Kerstin; Pischetsrieder, Monika

    2014-02-15

    Active packaging foils with incorporated antimicrobial agents release the active ingredient during food storage. Maillard reaction products (MRPs) show antimicrobial activity that is at least partially mediated by H2O2. De novo generation of H2O2 by an MRP fraction, extracted from a ribose/lysine Maillard reaction mixture by 85% ethanol, was monitored at three concentrations (1.6, 16.1, and 32.3g/L) and three temperatures (4, 25, and 37 °C) between 0 and 96 h, reaching a maximum of 335 μM H2O2 (32.3g/L, 37 °C, 96 h). The active MRP fraction (16.1g/L) completely inhibited the growth of Escherichia coli for 24h and was therefore incorporated in a polyvinyl acetate-based lacquer and dispersed onto a low-density polyethylene film. The coated film generated about 100 μM H2O2 and resulted in a log-reduction of >5 log-cycles against E. coli. Thus, MRPs can be considered as active ingredients for antimicrobial packaging materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Reaction of Si nanopowder with water investigated by FT-IR and XPS

    NASA Astrophysics Data System (ADS)

    Imamura, Kentaro; Kobayashi, Yuki; Matsuda, Shinsuke; Akai, Tomoki; Kobayashi, Hikaru

    2017-08-01

    The initial reaction of Si nanopowder with water to generate hydrogen is investigated using FT-IR and XPS measurements. Si nanopowder is fabricated using the simple beads milling method. For HF-etched Si nanopowder, strong peaks due to Si-H and Si-H2 stretching vibrational modes and a weak shoulder peak due to Si-H3 are observed. Although no peaks due to oxide is observed in the Si 2p XPS spectrum, weak vibrational peaks due to HSiO2 and HSiO3 species are observable. The hydrogen generation rate greatly increases with pH, indicating that the reacting species is hydroxide ions (OH- ions). After the reaction, the intensities of the peaks due to SiH and SiH2 species decrease while those for HSiO, HSiO2, and HSiO3 species increase. This result demonstrates that OH- ions attack Si back-bonds, with surface Si-H bonds remaining. After initial reaction of HF-etched Si nanopowder with heavy water, vibrational peaks for SiD, SiDH, and SiDH2 appear, and then, a peak due to DSiO3 species is observed, but no peaks due to DSiO2 and DSiO species are observable. This result indicates that SiD, SiDH, and SiDH2 species are formed by substitution reactions, followed by oxidation of back-bonds to form DSiO3 species. After immersion in D2O for a day, 37% H atoms on the surface are replaced to D atoms.

  19. Peroxynitrite and hydrogen peroxide elicit similar cellular stress responses mediated by the Ccp1 sensor protein.

    PubMed

    Martins, Dorival; Bakas, Iolie; McIntosh, Kelly; English, Ann M

    2015-08-01

    Peroxynitrite [ONOO(H)] is an oxidant associated with deleterious effects in cells. Because it is an inorganic peroxide that reacts rapidly with peroxidases, we speculated that cells may respond to ONOO(H) and H2O2 challenge in a similar manner. We exposed yeast cells to SIN-1, a well-characterized ONOO(H) generator, and observed stimulation of catalase and peroxiredoxin (Prx) activities. Previously, we reported that H2O2 challenge increases these activities in wild-type cells and in cells producing the hyperactive mutant H2O2 sensor Ccp1(W191F) but not in Ccp1-knockout cells (ccp1Δ). We find here that the response of ccp1Δ and ccp1(W191F) cells to SIN-1 mirrors that to H2O2, identifying Ccp1 as a sensor of both peroxides. SIN-1 simultaneously releases (•)NO and O2(•-), which react to form ONOO(H), but exposure of the three strains separately to an (•)NO donor (spermine-NONOate) or an O2(•-) generator (paraquat) mainly depresses catalase or Prx activity, whereas co-challenge with the NONOate and paraquat stimulates these activities. Because Ccp1 appears to sense ONOO(H) in cells, we examined its reaction with ONOO(H) in vitro and found that peroxynitrous acid (ONOOH) rapidly (k2>10(6)M(-1)s(-1)) oxidizes purified Ccp1 to an intermediate with spectral and ferrocytochrome-oxidizing properties indistinguishable from those of its well-characterized compound I formed with H2O2. Importantly, the nitrite released from ONOOH is not oxidized to (•)NO2 by Ccp1(׳)s compound I, unlike peroxidases involved in immune defense. Overall, our results reveal that yeast cells mount a common antioxidant response to ONOO(H) and H2O2, with Ccp1 playing a pivotal role as an inorganic peroxide sensor. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Review of the Two-Step H2O/CO2-Splitting Solar Thermochemical Cycle Based on Zn/ZnO Redox Reactions

    PubMed Central

    Loutzenhiser, Peter G.; Meier, Anton; Steinfeld, Aldo

    2010-01-01

    This article provides a comprehensive overview of the work to date on the two‑step solar H2O and/or CO2 splitting thermochemical cycles with Zn/ZnO redox reactions to produce H2 and/or CO, i.e., synthesis gas—the precursor to renewable liquid hydrocarbon fuels. The two-step cycle encompasses: (1) The endothermic dissociation of ZnO to Zn and O2 using concentrated solar energy as the source for high-temperature process heat; and (2) the non-solar exothermic oxidation of Zn with H2O/CO2 to generate H2/CO, respectively; the resulting ZnO is then recycled to the first step. An outline of the underlying science and the technological advances in solar reactor engineering is provided along with life cycle and economic analyses. PMID:28883361

  1. Three polymorphs of an inclusion compound of 2,2'-(disulfanediyl)dibenzoic acid and trimethylamine.

    PubMed

    Yang, Yunxia; Li, Lihua; Zhang, Li; Dong, Wenjing; Ding, Keying

    2016-12-01

    Polymorphism is the ability of a solid material to exist in more than one form or crystal structure and this is of interest in the fields of crystal engineering and solid-state chemistry. 2,2'-(Disulfanediyl)dibenzoic acid (also called 2,2'-dithiosalicylic acid, DTSA) is able to form different hydrogen bonds using its carboxyl groups. The central bridging S atoms allow the two terminal arene rings to rotate freely to generate various hydrogen-bonded linking modes. DTSA can act as a potential host molecule with suitable guest molecules to develop new inclusion compounds. We report here the crystal structures of three new polymorphs of the inclusion compound of DTSA and trimethylamine, namely trimethylazanium 2-[(2-carboxyphenyl)disulfanyl]benzoate 2,2'-(disulfanediyl)dibenzoic acid monosolvate, C 3 H 10 N + ·C 14 H 9 O 4 S 2 - ·C 14 H 10 O 4 S 2 , (1), tetrakis(trimethylazanium) bis{2-[(2-carboxyphenyl)disulfanyl]benzoate} 2,2'-(disulfanediyl)dibenzoate 2,2'-(disulfanediyl)dibenzoic acid monosolvate, 4C 3 H 10 N + ·2C 14 H 9 O 4 S 2 - ·C 14 H 8 O 4 S 2 2- ·C 14 H 10 O 4 S 2 , (2), and trimethylazanium 2-[(2-carboxyphenyl)disulfanyl]benzoate, C 3 H 10 N + ·C 14 H 9 O 4 S 2 - , (3). In the three polymorphs, DTSA utilizes its carboxyl groups to form conventional O-H...O hydrogen bonds to generate different host lattices. The central N atoms of the guest amine molecules accept H atoms from DTSA molecules to give the corresponding cations, which act as counter-ions to produce the stable crystal structures via N-H...O hydrogen bonding between the host acid and the guest molecule. It is noticeable that although these three compounds are composed of the same components, the final crystal structures are totally different due to the various configurations of the host acid, the number of guest molecules and the inducer (i.e. ancillary experimental acid).

  2. Preliminary results in the NASA Lewis H2-O2 combustion MHD experiment

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1979-01-01

    MHD (magnetohydrodynamic) power generation experiments were carried out in the NASA Lewis Research Center cesium-seeded H2-O2 combustion facility. This facility uses a neon-cooled cryomagnet capable of producing magnetic fields in excess of 5 tesla. The effects of power takeoff location, generator loading, B-field strength, and electrode breakdown on generator performance are discussed. The experimental data is compared to a theory based on one-dimensional flow with heat transfer, friction, and voltage drops.

  3. Testosterone Stimulates Duox1 Activity through GPRC6A in Skin Keratinocytes*

    PubMed Central

    Ko, Eunbi; Choi, Hyun; Kim, Borim; Kim, Minsun; Park, Kkot-Nara; Bae, Il-Hong; Sung, Young Kwan; Lee, Tae Ryong; Shin, Dong Wook; Bae, Yun Soo

    2014-01-01

    Testosterone is an endocrine hormone with functions in reproductive organs, anabolic events, and skin homeostasis. We report here that GPRC6A serves as a sensor and mediator of the rapid action of testosterone in epidermal keratinocytes. The silencing of GPRC6A inhibited testosterone-induced intracellular calcium ([Ca2+]i) mobilization and H2O2 generation. These results indicated that a testosterone-GPRC6A complex is required for activation of Gq protein, IP3 generation, and [Ca2+]i mobilization, leading to Duox1 activation. H2O2 generation by testosterone stimulated the apoptosis of keratinocytes through the activation of caspase-3. The application of testosterone into three-dimensional skin equivalents increased the apoptosis of keratinocytes between the granular and stratified corneum layers. These results support an understanding of the molecular mechanism of testosterone-dependent apoptosis in which testosterone stimulates H2O2 generation through the activation of Duox1. PMID:25164816

  4. Photoionization-induced water migration in the amide group of trans-acetanilide-(H2O)1 in the gas phase.

    PubMed

    Sakota, Kenji; Harada, Satoshi; Shimazaki, Yuiga; Sekiya, Hiroshi

    2011-02-10

    IR-dip spectra of trans-acetanilide-water 1:1 cluster, AA-(H(2)O)(1), have been measured for the S(0) and D(0) state in the gas phase. Two structural isomers, where a water molecule binds to the NH group or the CO group of AA, AA(NH)-(H(2)O)(1) and AA(CO)-(H(2)O)(1), are identified in the S(0) state. One-color resonance-enhanced two-photon ionization, (1 + 1) RE2PI, of AA(NH)-(H(2)O)(1) via the S(1)-S(0) origin generates [AA(NH)-(H(2)O)(1)](+) in the D(0) state, however, photoionization of [AA(CO)-(H(2)O)(1)] does not produce [AA(CO)-(H(2)O)(1)](+), leading to [AA(NH)-(H(2)O)(1)](+). This observation explicitly indicates that the water molecule in [AA-(H(2)O)(1)](+) migrates from the CO group to the NH group in the D(0) state. The reorganization of the charge distribution from the neutral to the D(0) state of AA induces the repulsive force between the water molecule and the CO group of AA(+), which is the trigger of the water migration in [AA-(H(2)O)(1)](+).

  5. [Determination of peracetic acid and hydrogen peroxide in a preparation].

    PubMed

    Bodiroga, Milanka; Ognjanović, Jasminka

    2002-01-01

    Iodometric and permanganometric titrations were used for determination of peracetic acid and hydrogen peroxide (H2O2) in the mixture. Two procedures were described and compared. Titrations could be done in only one vessel, in the same reaction mixture, when iodometric titration of peracetic acid was continued after the permanganometric titration of H2O2, (procedure A). Peracetic acid and H2O2, as oxidizing agents, reacted with potassium iodide in an acid medium, evolving iodine. This reaction was used for the quantitative iodometric determination of total peroxide in procedure B. H2O2 reacted with potassium permanganate in acid medium, but peracetic acid did not react under the same conditions. That made possible the selective permanganometric determination of H2O2 in the presence of peracetic acid. The procedure B was performed in two titration vessels (KV = 3.4% for peracetic acid, 0.6% for H2O2). The procedure A for iodometric determination of peracetic acid in one titration vessel after permanganometric titration of H2O2 was recommended (KV = 2.5% for peracetic acid, 0.45% for H2O2).

  6. Metal-Organic Framework Photosensitized TiO2 Co-catalyst: A Facile Strategy to Achieve a High Efficiency Photocatalytic System.

    PubMed

    Xie, Ming-Hua; Shao, Rong; Xi, Xin-Guo; Hou, Gui-Hua; Guan, Rong-Feng; Dong, Peng-Yu; Zhang, Qin-Fang; Yang, Xiu-Li

    2017-03-17

    A 3D metal-organic framework (ADA-Cd=[Cd 2 L 2 (DMF) 2 ]⋅3 H 2 O where H 2 L is (2E,2'E)-3,3'-(anthracene-9,10-diyl)diacrylic acid) constructed from diacrylate substituted anthracene, sharing structural characteristics with some frequently employed anthraquinone-type dye sensitizers, was introduced as an effective sensitizer for anatase TiO 2 to achieve enhanced visible light photocatalytic performance. A facile mechanical mixing procedure was adopted to prepare the co-catalyst denoted as ADA-Cd/TiO 2 , which showed enhanced photodegradation ability, as well as sustainability, towards several dyes under visible light irradiation. Mechanistic studies revealed that ADA-Cd acted as the antenna to harvest visible light energy, generating excited electrons, which were injected to the conduction band (CB) of TiO 2 , facilitating the separation efficiency of charge carriers. As suggested by the results of control experiments, combined with the corresponding redox potential of possible oxidative species, . O 2 - , generated from the oxygen of ambient air at the CB of TiO 2 was believed to play a dominant role over . OH and h + . UV/Vis and photoluminescence technologies were adopted to monitor the generation of . O 2 - and . OH, respectively. This work presents a facile strategy to achieve a visible light photocatalyst with enhanced catalytic activity and sustainability; the simplicity, efficiency, and stability of this strategy may provide a promising way to achieve environmental remediation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis of MoS2 and MoO2 for their applications in H2 generation and lithium ion batteries: a review.

    PubMed

    Zhao, Yufei; Zhang, Yuxia; Yang, Zhiyu; Yan, Yiming; Sun, Kening

    2013-08-01

    Scientists increasingly witness the applications of MoS 2 and MoO 2 in the field of energy conversion and energy storage. On the one hand, MoS 2 and MoO 2 have been widely utilized as promising catalysts for electrocatalytic or photocatalytic hydrogen evolution in aqueous solution. On the other hand, MoS 2 and MoO 2 have also been verified as efficient electrode material for lithium ion batteries. In this review, the synthesis, structure and properties of MoS 2 and MoO 2 are briefly summarized according to their applications for H 2 generation and lithium ion batteries. Firstly, we overview the recent advancements in the morphology control of MoS 2 and MoO 2 and their applications as electrocatalysts for hydrogen evolution reactions. Secondly, we focus on the photo-induced water splitting for H 2 generation, in which MoS 2 acts as an important co-catalyst when combined with other semiconductor catalysts. The newly reported research results of the significant functions of MoS 2 nanocomposites in photo-induced water splitting are presented. Thirdly, we introduce the advantages of MoS 2 and MoO 2 for their enhanced cyclic performance and high capacity as electrode materials of lithium ion batteries. Recent key achievements in MoS 2 - and MoO 2 -based lithium ion batteries are highlighted. Finally, we discuss the future scope and the important challenges emerging from these fascinating materials.

  8. Hypoxic ventilatory sensitivity in men is not reduced by prolonged hyperoxia (Predictive Studies V and VI)

    NASA Technical Reports Server (NTRS)

    Gelfand, R.; Lambertsen, C. J.; Clark, J. M.; Hopkin, E.

    1998-01-01

    Potential adverse effects on the O2-sensing function of the carotid body when its cells are exposed to toxic O2 pressures were assessed during investigations of human organ tolerance to prolonged continuous and intermittent hyperoxia (Predictive Studies V and VI). Isocapnic hypoxic ventilatory responses (HVR) were determined at 1.0 ATA before and after severe hyperoxic exposures: 1) continuous O2 breathing at 1.5, 2.0, and 2.5 ATA for 17.7, 9.0, and 5.7 h and 2) intermittent O2 breathing at 2.0 ATA (30 min O2-30 min normoxia) for 14.3 O2 h within 30-h total time. Postexposure curvature of HVR hyperbolas was not reduced compared with preexposure controls. The hyperbolas were temporarily elevated to higher ventilations than controls due to increments in respiratory frequency that were proportional to O2 exposure time, not O2 pressure. In humans, prolonged hyperoxia does not attenuate the hypoxia-sensing function of the peripheral chemoreceptors, even after exposures that approach limits of human pulmonary and central nervous system O2 tolerance. Current applications of hyperoxia in hyperbaric O2 therapy and in subsea- and aerospace-related operations are guided by and are well within these exposure limits.

  9. 40 CFR 721.9511 - Silicic acid (H6SiO2O7), magnesium, strontium salt(1:1:2), dysprosium and europium-doped.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9511 Silicic acid (H6SiO2O7), magnesium, strontium salt(1:1:2), dysprosium and europium-doped. (a) Chemical substance and significant new...

  10. Catalytic Hydroxylation of Benzene to Phenol by Dioxygen with an NADH Analogue.

    PubMed

    Hirose, Kensaku; Ohkubo, Kei; Fukuzumi, Shunichi

    2016-08-26

    Hydroxylation of benzene by molecular oxygen (O2 ) occurs efficiently with 10-methyl-9,10-dihydroacridine (AcrH2 ) as an NADH analogue in the presence of a catalytic amount of Fe(ClO4 )3 or Fe(ClO4 )2 with excess trifluoroacetic acid in a solvent mixture of benzene and acetonitrile (1:1 v/v) to produce phenol, 10-methylacridinium ion and hydrogen peroxide (H2 O2 ) at 298 K. The catalytic oxidation of benzene by O2 with AcrH2 in the presence of a catalytic amount of Fe(ClO4 )3 is started by the formation of H2 O2 from AcrH2 , O2 , and H(+) . Hydroperoxyl radical (HO2 (.) ) is produced from H2 O2 with the redox pair of Fe(3+) /Fe(2+) by a Fenton type reaction. The rate-determining step in the initiation is the proton-coupled electron transfer from Fe(2+) to H2 O2 to produce HO(.) and H2 O. HO(.) abstracts hydrogen rapidly from H2 O2 to produce HO2 (.) and H2 O. The Fe(3+) produced was reduced back to Fe(2+) by H2 O2 . HO2 (.) reacts with benzene to produce the radical adduct, which abstracts hydrogen from AcrH2 to give the corresponding hydroperoxide, accompanied by generation of acridinyl radical (AcrH(.) ) to constitute the radical chain reaction. Hydroperoxyl radical (HO2 (.) ), which was detected by using the spin trap method with EPR analysis, acts as a chain carrier for the two radical chain pathways: one is the benzene hydroxylation with O2 and the second is oxidation of an NADH analogue with O2 to produce H2 O2 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Evidence for hydrous high-MgO melts in the Precambrian

    NASA Astrophysics Data System (ADS)

    Stone, William E.; Deloule, Etienne; Larson, Michelle S.; Lesher, C. Michael

    1997-02-01

    Prevailing petrogenetic models for Precambrian high-MgO melts such as komatiites invoke crystallization from nearly anhydrous melts (≪0.5% H2O) generated by partial melting of mantle peridotite at temperatures of (≤ 1900 °C and pressures of (18 GPa. However, ultramafic cumulate and gabbro zones of komatiitic and other high-MgO units in Precambrian greenstone belts contain vesicles and minor to major amounts (≤ 25%) of igneous amphibole. The textures (oikocrysts, rims on intercumulate pyroxene, and mineral inclusions within orthocumulate olivine) and the water-rich compositions (1.00% 2.50% H2O) of igneous amphiboles from the Archean Abitibi belt indicate crystallization in situ from significantly hydrous melts while the melt fraction was still as high as 40% 50%. Comparisons to experimental phase equilibria suggest that the residual melts from which the amphiboles crystallized contained 3% 4% H2O, and adjustments for fractional crystallization suggest that the initial melts may have contained as much as 2% H2O. H2O contents of this magnitude would require substantial revision of the nearly anhydrous models for Precambrian high-MgO melts, possibly permitting generation at lower temperatures and pressures, lowering their densities and viscosities, increasing their eruptibility, and enhancing the formation of spinifex textures.

  12. In situ Fenton reagent generated from TiO2/Cu2O composite film: a new way to utilize TiO2 under visible light irradiation.

    PubMed

    Zhang, Yong-Gang; Ma, Li-Li; Li, Jia-Lin; Yu, Ying

    2007-09-01

    TiO2/Cu2O composite is prepared by a simple electrochemical method and coated on glass matrix through a spraying method. The obtained composite is characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of TiO2/Cu2O composite films with different ratio of TiO2 and Cu2O on photodegradation of the dye methylene blue under visible light is investigated in detail. It is found that the photocatalytic activity of TiO2/Cu2O composite film with the presence of FeSO4 and EDTA is much higher than that for the similar system with only TiO2 and Cu2O film respectively. Without the presence of FeSO4 and EDTA, there is no degradation for methylene blue. The exploration of the optimized parameters for the degradation of methylene blue by using TiO2/Cu2O composite film as catalyst under visible light was also carried out. The most significant factor is the amount of Ti02 in the composite, and the second significant factor is the concentration of FeSO4. During the degradation of methylene blue under visible light, TiO2/Cu2O composite film generates H202, and Fenton regent is formed with Fe2+ and EDTA, which is detected in this study. The mechanism for the great improvement of photocatalytic activity of TiO2/Cu2O composite film under visible light is proposed by the valence band theory. Electrons excitated from TiO2/Cu2O composite under visible light are transferred from the conduction band of Cu2O to that of Ti02. The formed intermediate state of Ti 3+ ion is observed by X-ray photoelectron spectroscopy (XPS) on the TiO/Cu2O composite film. Additionally, the accumulated electrons in the conduction band of TiO2 are transferred to oxygen on the TiO2 surface for the formation of O2- or O2(2-), which combines with H+ to form H2O2. The evolved H202 with FeSO4 and EDTA forms Fenton reagentto degrade methylene blue. Compared to the traditional Fenton reagent, this new kind of in situ Fenton reagent generated from TiO2/Cu2O composite film does not need to supply H202. It is expected to be easily recycled, which may reduce second pollution and the cost of wastewater treatment. Moreover, this TiO/Cu2O composite film with FeSO4 and EDTA provides a new way to take advantage of TiO2 under visible light.

  13. Dissolution flowsheet for high flux isotope reactor fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, T.

    2016-09-27

    As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U 3O 8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H 2. The HFIR fuel cores will be dissolved and the recovered U will be down-blendedmore » into low-enriched U. HFIR fuel was previously processed in H-Canyon using a unique insert in both the 6.1D and 6.4D dissolvers. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The objective of this study was to identify flowsheet conditions through literature review and laboratory experimentation to safely and efficiently dissolve the HFIR fuel in H-Canyon. Laboratory-scale experiments were performed to evaluate the dissolution of HFIR fuel using both Al 1100 and Al 6061 T6 alloy coupons. The Al 1100 alloy was considered a representative surrogate which provided an upper bound on the generation of flammable (i.e., H 2) gas during the dissolution process. The dissolution of the Al 6061 T6 alloy proceeded at a slower rate than the Al 1100 alloy and was used to verify that the target Al concentration in solution could be achieved for the selected Hg concentration. Mass spectrometry and Raman spectroscopy were used to provide continuous monitoring of the concentration of H 2 and other permanent gases in the dissolution offgas allowing the development of H 2 generation rate profiles. The H 2 generation rates were subsequently used to evaluate if a full HFIR core could be dissolved in an H-Canyon dissolver without exceeding 60% of the calculated lower flammability limit (LFL) for H 2 at a given Hg concentration.« less

  14. Aqueous reactive species induced by a PCB surface micro-discharge air plasma device: a quantitative study

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Li, Fanying; Chen, Hai-Lan; Kong, Michael G.

    2017-11-01

    This paper presents a quantitative investigation on aqueous reactive species induced by air plasma generated from a printed circuit board surface micro-discharge (SMD) device. Under the conditions amenable for proliferation of mammalian cells, concentrations of ten types of reactive oxygen and nitrogen species (RONS) in phosphate buffering solution (PBS) are measured by chemical fluorescent assays and electron spin resonance spectroscopy (ESR). Results show that concentrations of several detected RNS (NO2- , NO3- , peroxynitrites, and NO2\\centerdot ) are higher than those of ROS (H2O2, O2\\centerdot - , and 1O2) in the air plasma treated solution. Concentrations of NO3- can reach 150 times of H2O2 with 60 s plasma treatment. For short-lived species, the air plasma generates more copious peroxynitrite than other RONS including NO2\\centerdot , O2\\centerdot - , 1O2, and N{{O}\\centerdot } in PBS. In addition, the existence of reaction between H2O2 and NO2- /HNO2 to produce peroxynitrite is verified by the chemical scavenger experiments. The reaction relations between detected RONS are also discussed.

  15. A novel carbon black graphite hybrid air-cathode for efficient hydrogen peroxide production in bioelectrochemical systems

    NASA Astrophysics Data System (ADS)

    Li, Nan; An, Jingkun; Zhou, Lean; Li, Tian; Li, Junhui; Feng, Cuijuan; Wang, Xin

    2016-02-01

    Carbon black and graphite hybrid air-cathode is proved to be effective for H2O2 production in bioelectrochemical systems. The optimal mass ratio of carbon black to graphite is 1:5 with the highest H2O2 yield of 11.9 mg L-1 h-1 cm-2 (12.3 mA cm-2). Continuous flow is found to improve the current efficiency due to the avoidance of H2O2 accumulation. In the biological system, the highest H2O2 yield reaches 3.29 mg L-1h-1 (0.079 kg m-3day-1) with a current efficiency of 72%, which is higher than the abiotic system at the same current density. H2O2 produced in this system is mainly from the oxygen diffused through this air-cathode (>66%), especially when a more negative cathode potential is applied (94% at -1.0 V). This hybrid air-cathode has advantages of high H2O2 yield, high current density and no need of aeration, which make the synthesis of H2O2 more efficient and economical.

  16. Spectrophotometric determination of H2O2-generating oxidases using oxyhemoglobin as oxygen donor and indicator.

    PubMed

    Bârzu, O; Dânşoreanu, M

    1980-01-01

    1. Spectrophotometric determination of oxygen uptake using oxyhemoglobin as oxygen donor and indicator was used for assay of H2O2-generating oxidases like monoamine oxidase and glucose oxidase. 2. In order to decompose H2O2 formed during the oxygen uptake, catalase and methanol (or ethanol) was added to the respiratory system. At pH values higher than 7.5 the oxydation of deoxygenated hemoglobin to methemoglobin was less than 3%. 2. Oxidases with low Km for oxygen can be assayed using the spectrophotometric method if suitable correction factors are introduced into the calculation of oxygen uptake. The correction factor represents the ratio of the rate of formation (or disappearance) of one of the reactants and the rate of oxyhemoglobin deoxygenation, measured under identical experimental conditions.

  17. Characterizing the discoloration of methylene blue in Fe0/H2O systems.

    PubMed

    Noubactep, C

    2009-07-15

    Methylene blue (MB) was used as a model molecule to characterize the aqueous reactivity of metallic iron in Fe(0)/H(2)O systems. Likely discoloration mechanisms under used experimental conditions are: (i) adsorption onto Fe(0) and Fe(0) corrosion products (CP), (ii) co-precipitation with in situ generated iron CP, (iii) reduction to colorless leukomethylene blue (LMB). MB mineralization (oxidation to CO(2)) is not expected. The kinetics of MB discoloration by Fe(0), Fe(2)O(3), Fe(3)O(4), MnO(2), and granular activated carbon were investigated in assay tubes under mechanically non-disturbed conditions. The evolution of MB discoloration was monitored spectrophotometrically. The effect of availability of CP, Fe(0) source, shaking rate, initial pH value, and chemical properties of the solution were studied. The results present evidence supporting co-precipitation of MB with in situ generated iron CP as main discoloration mechanism. Under high shaking intensities (>150 min(-1)), increased CP generation yields a brownish solution which disturbed MB determination, showing that a too high shear stress induced the suspension of in situ generated corrosion products. The present study clearly demonstrates that comparing results from various sources is difficult even when the results are achieved under seemingly similar conditions. The appeal for an unified experimental procedure for the investigation of processes in Fe(0)/H(2)O systems is reiterated.

  18. Characterization of the activity of L-ascorbic acid 2-[3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1-be nzopyran-6-yl-hydrogen phosphate] potassium salt in hydroxyl radical elimination.

    PubMed

    Tomita, T; Kashima, M; Tsujimoto, Y

    2000-03-01

    The effect of L-ascorbic acid 2-[3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H -1-benzopyran-6-yl-hydrogen phosphate] potassium salt (EPC-K1) on hydroxyl radical (*OH) elimination was studied using electron spin resonance (ESR) and spectrophotometric experiments. The addition of EPC-K, and *OH scavengers eliminated the *OH generated from Cu2+/H2O2, Fe2+/H2O2 and H2O2/UV-irradiation reaction systems. However, in competitive reactions using different concentrations of a spin-trap agent, the addition of the *OH scavenger altered the IC50 values, whereas the addition of EPC-K1 and a metal chelater did not change the value in the Cu2+/H2O2 and Fe2+/H2O2 reaction systems. The addition of EPC-K1 and metal chelater changed the ESR signal for free Cu2+. The spectrophotometric experiments confirmed that the addition of EPC-K1 and metal chelater altered the absorption spectra due to CuCl2 and FeSO4, whereas the *OH scavenger did not alter the spectra. Therefore, it was demonstrated that EPC-K, has the ability both to scavenge *OH directly and to inhibit the generation of *OH by the chelation of Cu2+ and Fe2+.

  19. A Co3O4-CDots-C3N4 three component electrocatalyst design concept for efficient and tunable CO2 reduction to syngas.

    PubMed

    Guo, Sijie; Zhao, Siqi; Wu, Xiuqin; Li, Hao; Zhou, Yunjie; Zhu, Cheng; Yang, Nianjun; Jiang, Xin; Gao, Jin; Bai, Liang; Liu, Yang; Lifshitz, Yeshayahu; Lee, Shuit-Tong; Kang, Zhenhui

    2017-11-28

    Syngas, a CO and H 2 mixture mostly generated from non-renewable fossil fuels, is an essential feedstock for production of liquid fuels. Electrochemical reduction of CO 2 and H + /H 2 O is an alternative renewable route to produce syngas. Here we introduce the concept of coupling a hydrogen evolution reaction (HER) catalyst with a CDots/C 3 N 4 composite (a CO 2 reduction catalyst) to achieve a cheap, stable, selective and efficient route for tunable syngas production. Co 3 O 4 , MoS 2 , Au and Pt serve as the HER component. The Co 3 O 4 -CDots-C 3 N 4 electrocatalyst is found to be the most efficient among the combinations studied. The H 2 /CO ratio of the produced syngas is tunable from 0.07:1 to 4:1 by controlling the potential. This catalyst is highly stable for syngas generation (over 100 h) with no other products besides CO and H 2 . Insight into the mechanisms balancing between CO 2 reduction and H 2 evolution when applying the HER-CDots-C 3 N 4 catalyst concept is provided.

  20. Application of NIR Laser Spectroscopy to the Monitoring of Volcanic Plumes: Principles and Practicalities

    NASA Astrophysics Data System (ADS)

    Hamish, A.; Christenson, B. W.; Mazot, A.

    2014-12-01

    The major volatile species in volcanic plume emissions (i.e., H2O, CO2, SO2, HCl, HF) are all strongly infrared (IR)-active, and lend themselves to infrared spectroscopic analysis. However, physical/optical access to plume gases along pathways which include a suitable natural or active IR radiation source is often difficult or impossible to achieve, particularly for timeframes extending beyond short campaign periods. In this study, we present results from preliminary tests conducted on three volcanic CO2 plume emissions using a tunable diode NIR laser system (TDL, Boreal Laser Inc.). The approach is proving itself as a good candidate for continuous monitoring of volcanic plume CO2, and by default all other IR-active constituents for which lasers of appropriate wavelength are available. The CO2 system is configured with a TDL in a transceiver generating laser light which can be tuned to coincide with one of several absorption lines in the CO2 absorption band between 1575 nm and 1585 nm. This beam propagates through the atmosphere (and plume) to a retro-reflector, which returns the beam to a photodiode detector in the transceiver which processes the signal to report real time CO2 column densities. The CO2 absorption line at 1579.1 nm was used to good effect on Mt Ruapehu (NZ) where volcanic gases emanate through a 100 m deep crater lake, resulting in CO2 concentrations of > 78 ppm above background in the mixing zone varying from 4 to 30 m above the lake surface. Subsequent tests on the main plume at White Island, however, generated only poor results with indicated CO2 amounts being less than atmospheric. We concluded that this was the result of interference from a neighboring but comparatively minor H2O absorption band which in the proximal, higher temperature plume (estimated 50-70 °C), had H2O concentrations some 4-5 times greater than ambient. A change to a less sensitive absorption line further removed from potential H2O band interference (1567.9 nm) appears to have solved this problem, and yielded maximum CO2 concentrations along the 730 m pathway in excess of 500 ppm.This approach holds promise for continuous, real-time monitoring of volcanic plume chemistry, and we will now turn our focus to the detection of SO2, HCl and HF plume species.

  1. Variable Asymmetric Chains in Transition Metal Oxyfluorides: Structure-Second-Harmonic-Generation Property Relationships.

    PubMed

    Ahmed, Belal; Jo, Hongil; Oh, Seung-Jin; Ok, Kang Min

    2018-05-15

    Four novel transition metal oxyfluorides, [Zn(pz) 3 ][MoO 2 F 4 ]·0.1H 2 O (1), [Zn(pz) 2 F 2 ][Zn(pz) 3 ] 2 [WO 2 F 4 ] 2 (2), [Cd(pz) 4 ][Cd(pz) 4 (H 2 O)][MoO 2 F 4 ] 2 ·0.625H 2 O (3), and [Zn(mpz) 3 ] 2 [MoO 2 F 4 ] 2 (4) (pz = pyrazole; mpz = 3-methyl pyrazole) have been synthesized. Compounds 1 and 4 contain helical chains. Compound 2 accommodates zigzag chains, and compound 3 has quasi-one-dimensional linear chains. The variable chain structures are found to be attributable to the different structure-directing anionic groups and hydrogen bonding interactions. Compound 4 crystallized in the noncentrosymmetric (NCS) polar space group, Pna2 1 , is nonphase-matchable (Type I), and reveals a moderate second-harmonic-generation (SHG) efficiency (10 × α-SiO 2 ). The observed SHG efficiency of compound 4 is due to the small net polarization occurring from the arrangement of ZnN 3 F 2 trigonal bipyramids. Spectroscopic and thermal characterizations along with calculations for the title materials are reported.

  2. A p-Type Zinc-Based Metal-Organic Framework.

    PubMed

    Shang, Congcong; Gautier, Romain; Jiang, Tengfei; Faulques, Eric; Latouche, Camille; Paris, Michael; Cario, Laurent; Bujoli-Doeuff, Martine; Jobic, Stéphane

    2017-06-05

    An original concept for the property tuning of semiconductors is demonstrated by the synthesis of a p-type zinc oxide (ZnO)-like metal-organic framework (MOF), (ZnC 2 O 3 H 2 ) n , which can be regarded as a possible alternative for ZnO, a natural n-type semiconductor. When small oxygen-rich organic linkers are introduced to the Zn-O system, oxygen vacancies and a deep valence-band maximum, the two obstacles for generating p-type behavior in ZnO, are restrained and raised, respectively. Further studies of this material on the doping and photoluminescence behaviors confirm its resemblance to metal oxides (MOs). This result answers the challenges of generating p-type behavior in an n-type-like system. This concept reveals that a new category of hybrid materials, with an embedded continuous metal-oxygen network, lies between the MOs and MOFs. It provides concrete support for the development of p-type hybrid semiconductors in the near future and, more importantly, the enrichment of tuning possibilities in inorganic semiconductors.

  3. Simultaneous visualization of water and hydrogen peroxide vapor using two-photon laser-induced fluorescence and photofragmentation laser-induced fluorescence.

    PubMed

    Larsson, Kajsa; Johansson, Olof; Aldén, Marcus; Bood, Joakim

    2014-01-01

    A concept based on a combination of photofragmentation laser-induced fluorescence (PF-LIF) and two-photon laser-induced fluorescence (LIF) is for the first time demonstrated for simultaneous detection of hydrogen peroxide (H2O2) and water (H2O) vapor. Water detection is based on two-photon excitation by an injection-locked krypton fluoride (KrF) excimer laser (248.28 nm), which induces broadband fluorescence (400-500 nm) from water. The same laser simultaneously photodissociates H2O2, whereupon the generated OH fragments are probed by LIF after a time delay of typically 50 ns, by a frequency-doubled dye laser (281.91 nm). Experiments in six different H2O2/H2O mixtures of known compositions show that both signals are linearly dependent on respective species concentration. For the H2O2 detection there is a minor interfering signal contribution from OH fragments created by two-photon photodissociation of H2O. Since the PF-LIF signal yield from H2O2 is found to be at least ∼24,000 times higher than the PF-LIF signal yield from H2O at room temperature, this interference is negligible for most H2O/H2O2 mixtures of practical interest. Simultaneous single-shot imaging of both species was demonstrated in a slightly turbulent flow. For single-shot imaging the minimum detectable H2O2 and H2O concentration is 10 ppm and 0.5%, respectively. The proposed measurement concept could be a valuable asset in several areas, for example, in atmospheric and combustion science and research on vapor-phase H2O2 sterilization in the pharmaceutical and aseptic food-packaging industries.

  4. Design and syntheses of hybrid metal-organic materials based on K3[M(C2O4)3]·3H2O [M(III)=Fe, Al, Cr] metallotectons

    NASA Astrophysics Data System (ADS)

    Sun, Yayong; Zong, Yingxia; Ma, Haoran; Zhang, Ao; Liu, Kang; Wang, Debao; Wang, Wenqiang; Wang, Lei

    2016-05-01

    By using K3[M(C2O4)3]·3H2O [M(III)=Fe, Al, Cr] (C2O42-=oxalate) metallotectons as the starting material, we have synthesized eight novel complexes with formulas [{Fe(C2O4)2(H2O)2}2]·(H-L1)2·H2O 1, [Fe(C2O4)Cl2]·(H2-L2)0.5·(L2)0.5·H2O 2, [{Fe(C2O4)1.5Cl2}2]·(H-L3)43, [Fe2(C2O4)Cl8]·(H2-L4)2·2H2O 4, K[Al(C2O4)3]·(H2-L5)·2H2O 5, K[Al(C2O4)3]·(H-L6)2·2H2O 6, K[Cr(C2O4)3]·2H2O 7, Na[Fe(C2O4)3]·(H-L6)2·2H2O 8 (with L1=4-dimethylaminopyridine, L2=2,3,5,6-tetramethylpyrazine, L3=2-aminobenzimidazole, L4=1,4-bis-(1H-imidazol-1-yl)benzene, L5=1,4-bis((2-methylimidazol-1-yl)methyl)benzene, L6=2-methylbenzimidazole). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra and thermogravimetric analyses. Compound 3 is a 2D H-bonded supramolecular architecture. Others are 3D supramolecular structures. Compound 1 shows a [Fe(C2O4)2(H2O)2]- unit and 3D antionic H-bonded framework. Compound 2 features a [Fe(C2O4)Cl2]- anion and 1D iron-oxalate-iron chain. Compound 3 features a [Fe2(C2O4)3Cl4]4- unit. Compound 4 features distinct [Fe2(C2O4)Cl8]4- units, which are mutual linked by water molecules to generated a 2D H-bonded network. Compound 5 features infinite ladder-like chains constructed by [Al(C2O4)3]3- units and K+ cations. The 1D chains are further extended into 3D antionic H-bonded framework through O-H···O H-bonds. Compounds 6-8 show 2D [KAl(C2O4)3]2- layer, [KCr(C2O4)3]2- layer and [NaFe(C2O4)3]2- layer, respectively.

  5. Straddling the tholeiitic/calc-alkaline transition: the effects of modest amounts of water on magmatic differentiation at Newberry Volcano, Oregon

    USGS Publications Warehouse

    Mandler, Ben E.; Donnelly-Nolan, Julie M.; Grove, Timothy L.

    2014-01-01

    Melting experiments have been performed at 1 bar (anhydrous) and 1- and 2-kbar H2O-saturated conditions to study the effect of water on the differentiation of a basaltic andesite. The starting material was a mafic pumice from the compositionally zoned tuff deposited during the ~75 ka caldera-forming eruption of Newberry Volcano, a rear-arc volcanic center in the central Oregon Cascades. Pumices in the tuff of Newberry caldera (TNC) span a continuous silica range from 53 to 74 wt% and feature an unusually high-Na2O content of 6.5 wt% at 67 wt% SiO2. This wide range of magmatic compositions erupted in a single event makes the TNC an excellent natural laboratory in which to study the conditions of magmatic differentiation. Our experimental results and mineral–melt hygrometers/thermometers yield similar estimates of pre-eruptive H2O contents and temperatures of the TNC liquids. The most primitive (mafic) basaltic andesites record a pre-eruptive H2O content of 1.5 wt% and a liquidus temperature of 1,060–1,070 °C at upper crustal pressure. This modest H2O content produces a distinctive fractionation trend that is much more enriched in Na, Fe, and Ti than the calc-alkaline trend typical of wetter arc magmas, but slightly less enriched in Fe and Ti than the tholeiitic trend of dry magmas. Modest H2O contents might be expected at Newberry Volcano given its location in the Cascade rear arc, and the same fractionation trend is also observed in the rim andesites of the rear-arc Medicine Lake volcano in the southern Cascades. However, the Na–Fe–Ti enrichment characteristic of modest H2O (1–2 wt%) is also observed to the west of Newberry in magmas erupted from the arc axis, such as the Shevlin Park Tuff and several lava flows from the Three Sisters. This shows that modest-H2O magmas are being generated directly beneath the arc axis as well as in the rear arc. Because liquid lines of descent are particularly sensitive to water content in the range of 0–3 wt% H2O, they provide a quantitative and reliable tool for precisely determining pre-eruptive H2O content using major-element data from pumices or lava flows. Coupled enrichment in Na, Fe, and Ti relative to the calc-alkaline trend is a general feature of fractional crystallization in the presence of modest amounts of H2O, which may be used to look for “damp” fractionation sequences elsewhere.

  6. Measurements and kinetic modeling of atomic species in fuel-oxidizer mixtures excited by a repetitive nanosecond pulse discharge

    NASA Astrophysics Data System (ADS)

    Winters, C.; Eckert, Z.; Yin, Z.; Frederickson, K.; Adamovich, I. V.

    2018-01-01

    This work presents the results of number density measurements of metastable Ar atoms and ground state H atoms in diluted mixtures of H2 and O2 with Ar, as well as ground state O atoms in diluted H2-O2-Ar, CH4-O2-Ar, C3H8-O2-Ar, and C2H4-O2-Ar mixtures excited by a repetitive nanosecond pulse discharge. The measurements have been made in a nanosecond pulse, double dielectric barrier discharge plasma sustained in a flow reactor between two plane electrodes encapsulated within dielectric material, at an initial temperature of 500 K and pressures ranging from 300 Torr to 700 Torr. Metastable Ar atom number density distribution in the afterglow is measured by tunable diode laser absorption spectroscopy, and used to characterize plasma uniformity. Temperature rise in the reacting flow is measured by Rayleigh scattering. H atom and O atom number densities are measured by two-photon absorption laser induced fluorescence. The results are compared with kinetic model predictions, showing good agreement, with the exception of extremely lean mixtures. O atoms and H atoms in the plasma are produced mainly during quenching of electronically excited Ar atoms generated by electron impact. In H2-Ar and O2-Ar mixtures, the atoms decay by three-body recombination. In H2-O2-Ar, CH4-O2-Ar, and C3H8-O2-Ar mixtures, O atoms decay in a reaction with OH, generated during H atom reaction with HO2, with the latter produced by three-body H atom recombination with O2. The net process of O atom decay is O  +  H  →  OH, such that the decay rate is controlled by the amount of H atoms produced in the discharge. In extra lean mixtures of propane and ethylene with O2-Ar the model underpredicts the O atom decay rate. At these conditions, when fuel is completely oxidized by the end of the discharge burst, the net process of O atom decay, O  +  O  →  O2, becomes nearly independent of H atom number density. Lack of agreement with the data at these conditions is likely due to diffusion of H atoms from the partially oxidized regions near the side walls of the reactor into the plasma. Although significant fractions of hydrogen and hydrocarbon fuels are oxidized by O atoms produced in the plasma, chain branching remains a minor effect at these relatively low temperature conditions.

  7. Simultaneous Online Measurement of H2O and CO2 in the Humid CO2 Adsorption/Desorption Process.

    PubMed

    Yu, Qingni; Ye, Sha; Zhu, Jingke; Lei, Lecheng; Yang, Bin

    2015-01-01

    A dew point meter (DP) and an infrared (IR) CO2 analyzer were assembled in a humid CO2 adsorption/desorption system in series for simultaneous online measurements of H2O and CO2, respectively. The humidifier, by using surface-flushing on a saturated brine solution was self-made for the generation of humid air flow. It was found that by this method it became relatively easy to obtain a low H2O content in air flow and that its fluctuation could be reduced compared to the bubbling method. Water calibration for the DP-IR detector is necessary to be conducted for minimizing the measurement error of H2O. It demonstrated that the relative error (RA) for simultaneous online measurements H2O and CO2 in the desorption process is lower than 0.1%. The high RA in the adsorption of H2O is attributed to H2O adsorption on the transfer pipe and amplification of the measurement error. The high accuracy of simultaneous online measurements of H2O and CO2 is promising for investigating their co-adsorption/desorption behaviors, especially for direct CO2 capture from ambient air.

  8. Vibrational Dynamics of Interfacial Water by Free Induction Decay Sum Frequency Generation (FID-SFG) at the Al2O3(1120)/H2O Interface.

    PubMed

    Boulesbaa, Abdelaziz; Borguet, Eric

    2014-02-06

    The dephasing dynamics of a vibrational coherence may reveal the interactions of chemical functional groups with their environment. To investigate this process at a surface, we employ free induction decay sum frequency generation (FID-SFG) to measure the time that it takes for free OH stretch oscillators at the charged (pH ≈ 13, KOH) interface of alumina/water (Al2O3/H2O) to lose their collective coherence. By employing noncollinear optical parametric amplification (NOPA) technology and nonlinear vibrational spectroscopy, we showed that the single free OH peak actually corresponds to two distinct oscillators oriented opposite to each other and measured the total dephasing time, T2, of the free OH stretch modes at the Al2O3/H2O interface with a sub-40 fs temporal resolution. Our results suggested that the free OH oscillators associated with interfacial water dephase on the time scale of 89.4 ± 6.9 fs, whereas the homogeneous dephasing of interfacial alumina hydroxyls is an order of magnitude slower.

  9. Development of second generation gold-supported palladium material with low-leaching and recyclable characteristics in aromatic amination.

    PubMed

    Al-Amin, Mohammad; Arai, Satoshi; Hoshiya, Naoyoki; Honma, Tetsuo; Tamenori, Yusuke; Sato, Takatoshi; Yokoyama, Mami; Ishii, Akira; Takeuchi, Masashi; Maruko, Tomohiro; Shuto, Satoshi; Arisawa, Mitsuhiro

    2013-08-02

    An improved process for the preparation of sulfur-modified gold-supported palladium material [SAPd, second generation] is presented. The developed preparation method is safer and generates less heat (aqueous Na2S2O8 and H2SO4) for sulfur fixation on a gold surface, and it is superior to the previous method of preparing SAPd (first generation), which requires the use of the more heat-generating and dangerous piranha solution (concentrated H2SO4 and 35% H2O2) in the sulfur fixation step. This safer and improved preparation method is particularly important for the mass production of SAPd (second generation) for which the catalytic activity was examined in ligand-free Buchwald-Hartwig cross-coupling reactions. The catalytic activities were the same between the first and second generation SAPds in aromatic aminations, but the lower palladium leaching properties and safer preparative method of second generation SAPd are a significant improvement over the first generation SAPd.

  10. Passive water flows driven across the isolated rabbit ileum by osmotic, hydrostatic and electrical gradients.

    PubMed Central

    Naftalin, R J; Tripathi, S

    1985-01-01

    Water flows generated by osmotic and hydrostatic pressure and electrical currents were measured in sheets of isolated rabbit ileum at 20 degrees C. Flows across the mucosal and serosal surfaces were monitored continuously by simultaneous measurement of tissue volume change (with an optical lever) and net water flows across one surface of the tissue (with a capacitance transducer). Osmotic gradients were imposed across the mucosal and serosal surfaces of the tissue separately, using probe molecules of various sizes from ethanediol (68 Da) to dextrans (161 000 Da). Flows across each surface were elicited with very short delay. The magnitudes of the flows were proportional to the osmotic gradient and related to the size of the probe molecule. Osmotic flow across the mucosal surface was associated with streaming potentials which were due to electro-osmotic water flow. The mucosal surface is a heteroporous barrier with narrow (0.7 nm radius, Lp (hydraulic conductivity) = (7.6 +/- 1.6) X 10(-9) cm s-1 cmH2O-1) cation-selective channels in parallel with wide neutral pores (ca. 6.5 nm radius, Lp = (2.3 +/- 0.2) X 10(-7) cm s-1 cmH2O-1) which admit large pressure-driven backflows from the submucosa to the lumen. There is additional evidence for a further set of narrow electroneutral pores less than 0.4 nm radius with Lp less than 7 X 10(-9) cm s-1 cmH2O-1. The serosal surface has neutral pores of uniform radius (ca. 6.5 nm), Lp = (7.6 +/- 1.6) X 10(-8) cm s-1 cmH2O-1. Hypertonic serosal solutions (100 mM-sucrose) cause osmotic transfer of fluid from isotonic mucosal solutions into the submucosa, expand it, and elevate the tissue pressure to 19.6 +/- 3.2 cmH2O (n = 4). Conversely, hypertonic mucosal solutions (100 mM-sucrose) draw fluid out of the submucosa in the presence of isotonic serosal solutions, collapse the submucosa, and lower the tissue pressure to -87.7 +/- 4.6 cmH2O (n = 5). Water flows coupled to cation movement could be generated across the mucosal surface in both directions by brief direct current pulses. The short latency of onset and cessation of flow (less than 2 s), absence of polarization potentials, and high electro-osmotic coefficients (range 50-520 mol water F-1), together with the presence of streaming potentials during osmotically generated water flows indicate electro-osmotic water flow through hydrated channels in the tight junctions and/or lateral intercellular spaces.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3989717

  11. Removal of recalcitrant organic matter content in wastewater by means of AOPs aiming industrial water reuse.

    PubMed

    Souza, Bianca M; Souza, Bruno S; Guimarães, Tarsila M; Ribeiro, Thiago F S; Cerqueira, Ana C; Sant'Anna, Geraldo L; Dezotti, Márcia

    2016-11-01

    This paper comes out from the need to provide an improvement in the current oil refinery wastewater treatment plant (WWTP) aiming to generate water for reuse. The wastewater was pretreated and collected in the WWTP after the biological treatment unit (bio-disks) followed by sand filtration. Ozonation (ozone concentration from 3.0-60 mgO 3  L -1 ), UV (power lamp from 15 to 95 W), H 2 O 2 (carbon:H 2 O 2 molar ratio of 1:1, 1:2, and 1:4), and two advanced oxidation processes (UV/O 3 and UV/H 2 O 2 ) were investigated aiming to reduce the wastewater organic matter and generate water with suitable characteristics for the reverse osmosis operation and subsequent industrial reuse. Even after the biological and filtration treatments, the oil refinery wastewater still presented an appreciable amount of recalcitrant organic matter (TOC of 12-19 mgC L -1 ) and silt density index (SDI) higher than 4, which is considered high for subsequent reverse osmosis due to membrane fouling risks. Experiments using non combined processes (O 3 , H 2 O 2 , and UV only) showed a low degree of mineralization after 60 min of reaction, although the pretreatment with ozone had promoted the oxidation of aromatic compounds originally found in the real matrix, which suggests the formation of recalcitrant compounds. When the combined processes were applied, a considerable increase in the TOC removal was observed (max of 95 % for UV/O 3 process, 55 W, 60 mgO 3  L -1 ), likely due the presence of higher amounts of reactive species, specially hydroxyl radicals, confirming the important role of these species on the photochemical degradation of the wastewater compounds. A zero-order kinetic model was fitted to the experimental data and the rate constant values (k, mgC L -1  h -1 ) ranged from 4.8 < k UV/O3  < 11 ([O 3 ] 0  = 30-60 mg L -1 ), and 8.6 < k UV/H2O2  < 11 (C:H 2 O 2 from 1:1 to 1:4). The minimum and maximum electrical energy per order (E EO ) required for 60 min of treatment were calculated as 5.4 and 81 Wh L -1 , respectively, for UV/O 3 (15 W, 60 mgO 3  L -1 ) and UV/H 2 O 2 (95 W, 1C:1H 2 O 2 ). Good results in terms of water conditioning for reverse osmosis operation were obtained using UV/H 2 O 2 process with initial molar ratio of 1 C:2 H 2 O 2 (UV lamp 55 W) and 1 C:4 H 2 O 2 (UV lamp 95 W), and total organic carbon (TOC) removals of 62 % (SDI 15  = 1.8) and 74 % (SDI 15  = 2.0) were achieved, respectively, after 60 min. The treated wastewater followed to the reverse osmosis system, which operated with an adequate flux of permeate, was very efficient to remove salt and generate a permeate water with the required quality for industrial reuse.

  12. Tonic signaling from O2 sensors sets neural circuit activity and behavioral state

    PubMed Central

    Busch, Karl Emanuel; Laurent, Patrick; Soltesz, Zoltan; Murphy, Robin Joseph; Faivre, Olivier; Hedwig, Berthold; Thomas, Martin; Smith, Heather L.; de Bono, Mario

    2012-01-01

    Tonic receptors convey stimulus duration and intensity and are implicated in homeostatic control. However, how tonic homeostatic signals are generated, and how they reconfigure neural circuits and modify animal behavior is poorly understood. Here we show that C. elegans O2-sensing neurons are tonic receptors that continuously signal ambient [O2] to set the animal’s behavioral state. Sustained signalling relies on a Ca2+ relay involving L-type voltage-gated Ca2+ channels, the ryanodine and the IP3 receptors. Tonic activity evokes continuous neuropeptide release, which helps elicit the enduring behavioral state associated with high [O2]. Sustained O2 receptor signalling is propagated to downstream neural circuits, including the hub interneuron RMG. O2 receptors evoke similar locomotory states at particular [O2], regardless of previous d[O2]/dt. However, a phasic component of the URX receptors’ response to high d[O2]/dt, as well as tonic-to-phasic transformations in downstream interneurons, enable transient reorientation movements shaped by d[O2]/dt. Our results highlight how tonic homeostatic signals can generate both transient and enduring behavioral change. PMID:22388961

  13. Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens.

    PubMed

    Choi, Hyong Woo; Kim, Young Jin; Lee, Sung Chul; Hong, Jeum Kyu; Hwang, Byung Kook

    2007-11-01

    Reactive oxygen species (ROS) are responsible for mediating cellular defense responses in plants. Controversy has existed over the origin of ROS in plant defense. We have isolated a novel extracellular peroxidase gene, CaPO2, from pepper (Capsicum annuum). Local or systemic expression of CaPO2 is induced in pepper by avirulent Xanthomonas campestris pv vesicatoria (Xcv) infection. We examined the function of the CaPO2 gene in plant defense using the virus-induced gene silencing technique and gain-of-function transgenic plants. CaPO2-silenced pepper plants were highly susceptible to Xcv infection. Virus-induced gene silencing of the CaPO2 gene also compromised hydrogen peroxide (H(2)O(2)) accumulation and hypersensitive cell death in leaves, both locally and systemically, during avirulent Xcv infection. In contrast, overexpression of CaPO2 in Arabidopsis (Arabidopsis thaliana) conferred enhanced disease resistance accompanied by cell death, H(2)O(2) accumulation, and PR gene induction. In CaPO2-overexpression Arabidopsis leaves infected by Pseudomonas syringae pv tomato, H(2)O(2) generation was sensitive to potassium cyanide (a peroxidase inhibitor) but insensitive to diphenylene iodonium (an NADPH oxidase inhibitor), suggesting that H(2)O(2) generation depends on peroxidase in Arabidopsis. Together, these results indicate that the CaPO2 peroxidase is involved in ROS generation, both locally and systemically, to activate cell death and PR gene induction during the defense response to pathogen invasion.

  14. Understanding Combustion of H2/O2 Gases inside Nanobubbles Generated by Water Electrolysis Using Reactive Molecular Dynamic Simulations.

    PubMed

    Jain, S; Qiao, L

    2018-06-21

    This work explored the mechanism of spontaneous combustion of hydrogen-oxygen mixtures inside nanobubbles (which were generated by water electrolysis) using reactive molecular dynamic simulations based on the first-principles derived reactive force field ReaxFF. The effects of surface-assisted dissociation of H 2 and O 2 gases that produced H and O radicals were examined. Additionally, the ignition outcome and species evolution as a function of the initial system pressure (or bubble size) were studied. A significant amount of hydrogen peroxide (H 2 O 2 ), 6-140 times water (H 2 O), was observed in the combustion products. This was attributed to the low-temperature (∼300 K) and high-pressure (2-80 atm) conditions at which the chemical reactions were taking place. In addition, the rate of consumption of H 2 and O 2 molecules was found to increase with an increase in added H and O radical concentrations and initial system pressure. The rate at which heat was being lost from the combustion chamber (nanobubbles) was also compared to the rate at which heat was being released from the chemical reactions. Only a slight rise in the reaction temperature was observed (∼68 K), signifying that, at such small scales, heat losses dominate. The resulting chemistry was quite different from macroscopic combustion, which usually takes place at a much higher temperatures of above 1000 K.

  15. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress.

    PubMed

    Sies, Helmut

    2017-04-01

    Hydrogen peroxide emerged as major redox metabolite operative in redox sensing, signaling and redox regulation. Generation, transport and capture of H 2 O 2 in biological settings as well as their biological consequences can now be addressed. The present overview focuses on recent progress on metabolic sources and sinks of H 2 O 2 and on the role of H 2 O 2 in redox signaling under physiological conditions (1-10nM), denoted as oxidative eustress. Higher concentrations lead to adaptive stress responses via master switches such as Nrf2/Keap1 or NF-κB. Supraphysiological concentrations of H 2 O 2 (>100nM) lead to damage of biomolecules, denoted as oxidative distress. Three questions are addressed: How can H 2 O 2 be assayed in the biological setting? What are the metabolic sources and sinks of H 2 O 2 ? What is the role of H 2 O 2 in redox signaling and oxidative stress? Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Carbon Dioxide Removal by Salty Aerosols

    NASA Astrophysics Data System (ADS)

    Gokturk, H.

    2016-12-01

    Aerosols consisting of salt ions dissolved in water are observed in nature as sea spray particles generated by breaking waves. Such aerosols can be also generated artificially by spraying seawater to the atmosphere to create clouds, which was suggested as a method of solar radiation management (SRM). Salty aerosols can be utilized not only for SRM, but also for carbon dioxide removal from the atmosphere, if salt ions carrying charges -2 or more negative are added to the seawater. CO2 is a very stable molecule where carbon to oxygen double bond has a bond strength of 8.3 eV (190 kcal/mol). Therefore the approach chosen here to modify CO2 is to further oxidize it to CO3. Quantum mechanical calculations indicate that CO2 reacts readily with hydroxyl minus ion (OH-) or oxygen double minus ion (O-) to form HCO3- or CO3-, respectively. What is studied in this paper is the utilization of hydrated negative salt ions to create OH- and possibly even O-. The negative ions chosen are chlorine minus ion (Cl-), sulfate double minus ion (SO4-), phosphate triple minus ion (PO4--) and silicate quadruple minus ion (SiO4--). The former two ions exist in seawater, but the latter two ions do not, though they are available as part of water soluble salts such as potassium phosphate. Using quantum mechanical calculations, following reactions were investigated: R1: (Cl-) + H2O => HCl + (OH-), R2: (SO4-) + H2O => (HSO4-) + (OH-), R3: (PO4--) + H2O => (HPO4-) + (OH-), R4: (SiO4--) + H2O => (HSiO4--) + (OH-), R5: (HPO4-) + H2O => (H2PO4-) + (OH-), R6: (HSiO4--) + H2O => (H2SiO4-) + (OH-), R7: (H2SiO4-) + H2O => (H3SiO4-) + (OH-), R8: (SiO4--) + H2O => (H2SiO4-) + (O-). Results indicate that singly charged negative salt ions, such as Cl- in R1, cannot create OH-. Doubly charged negative salt ions, such as SO4- in R2, can create OH-, though the amount of SO4- in seawater is relatively small. Triply or quadruply charged negative ions are even more favorable than doubly charged ions in creating OH- (R3, R4, R6). Quadruply charged negative ions can also create O- (R8), however in practice O- is likely to react with other water molecules to create more OH-. In conclusion, seawater fortified with highly charged negative salt ions and sprayed into the atmosphere has the potential to create aerosols containing OH- which can react with the CO2 and modify it to a carbonate.

  17. Relationship between fabrication method and chemical stability of Ni-BaZr0.8Y0.2O3-δ membrane

    NASA Astrophysics Data System (ADS)

    Fang, Shumin; Wang, Siwei; Brinkman, Kyle S.; Su, Qing; Wang, Haiyan; Chen, Fanglin

    2015-03-01

    NiO effectively promotes the sintering of highly refractory Y-doped BaZrO3 (BZY) through the formation of BaY2NiO5, providing a simple and cost-effective method for the fabrication of dense BZY electrolyte and Ni-BZY hydrogen separation membrane at ∼1400 °C. Unfortunately, insulating BaCO3 and Y2O3 phases formed on the surface of BZY and Ni-BZY prepared by solid state reaction method with NiO after annealing in wet CO2. Ni-BZY membranes prepared from different methods suffered different degree of performance loss in wet H2 at 900 °C. The chemical instability of Ni-BZY is attributed to the formation of a secondary phase (BaY2O4) generated from the reduction of BaY2NiO5 in H2 during the sintering process. Both BaY2O4 and BaY2NiO5 react with H2O, and CO2 at elevated temperatures, generating insulating Ba(OH)2 and BaCO3 phases, respectively. The less BaY2O4 is formed in the fabrication process, the better chemical stability the Ni-BZY membranes possess. Therefore, a new Ni-BZY membrane is prepared through a judicial combination of BZY powders prepared from combined EDTA-citric and solid state reaction methods, and demonstrates exceptional chemical stability in H2O and CO2, enabling stable and even improved hydrogen flux in wet 50% CO2 at 900 °C.

  18. Method for the production of atomic ion species from plasma ion sources

    DOEpatents

    Spence, David; Lykke, Keith

    1998-01-01

    A technique to enhance the yield of atomic ion species (H.sup.+, D.sup.+, O.sup.+, N.sup.+, etc.) from plasma ion sources. The technique involves the addition of catalyzing agents to the ion discharge. Effective catalysts include H.sub.2 O, D.sub.2 O, O.sub.2, and SF.sub.6, among others, with the most effective being water (H.sub.2 O) and deuterated water (D.sub.2 O). This technique has been developed at Argonne National Laboratory, where microwave generated plasmas have produced ion beams comprised of close to 100% purity protons (H.sup.+) and close to 100% purity deuterons (D.sup.+). The technique also increases the total yield of protons and deuterons by converting unwanted ion species, namely, H.sub.2.sup.+,H.sub.3.sup.+ and D.sub.2.sup.+, D.sub.3.sup.+, into the desired ion species, H.sup.+ and D.sup.+, respectively.

  19. Method for the production of atomic ion species from plasma ion sources

    DOEpatents

    Spence, D.; Lykke, K.

    1998-08-04

    A technique to enhance the yield of atomic ion species (H{sup +}, D{sup +}, O{sup +}, N{sup +}, etc.) from plasma ion sources. The technique involves the addition of catalyzing agents to the ion discharge. Effective catalysts include H{sub 2}O, D{sub 2}O, O{sub 2}, and SF{sub 6}, among others, with the most effective being water (H{sub 2}O) and deuterated water (D{sub 2}O). This technique has been developed at Argonne National Laboratory, where microwave generated plasmas have produced ion beams comprised of close to 100% purity protons (H{sup +}) and close to 100% purity deuterons (D{sup +}). The technique also increases the total yield of protons and deuterons by converting unwanted ion species, namely, H{sub 2}{sup +}, H{sub 3}{sup +} and D{sub 2}{sup +}, D{sub 3}{sup +}, into the desired ion species, H{sup +} and D{sup +}, respectively. 4 figs.

  20. Recovery of cobalt from spent lithium-ion batteries using supercritical carbon dioxide extraction.

    PubMed

    Bertuol, Daniel A; Machado, Caroline M; Silva, Mariana L; Calgaro, Camila O; Dotto, Guilherme L; Tanabe, Eduardo H

    2016-05-01

    Continuing technological development decreases the useful lifetime of electronic equipment, resulting in the generation of waste and the need for new and more efficient recycling processes. The objective of this work is to study the effectiveness of supercritical fluids for the leaching of cobalt contained in lithium-ion batteries (LIBs). For comparative purposes, leaching tests are performed with supercritical CO2 and co-solvents, as well as under conventional conditions. In both cases, sulfuric acid and H2O2 are used as reagents. The solution obtained from the supercritical leaching is processed using electrowinning in order to recover the cobalt. The results show that at atmospheric pressure, cobalt leaching is favored by increasing the amount of H2O2 (from 0 to 8% v/v). The use of supercritical conditions enable extraction of more than 95wt% of the cobalt, with reduction of the reaction time from 60min (the time employed in leaching at atmospheric pressure) to 5min, and a reduction in the concentration of H2O2 required from 8 to 4% (v/v). Electrowinning using a leach solution achieve a current efficiency of 96% and a deposit with cobalt concentration of 99.5wt%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Dynamics and unsteady morphologies at ice interfaces driven by D2O–H2O exchange

    PubMed Central

    Holmes-Cerfon, Miranda; Kohn, Robert V.

    2017-01-01

    The growth dynamics of D2O ice in liquid H2O in a microfluidic device were investigated between the melting points of D2O ice (3.8 °C) and H2O ice (0 °C). As the temperature was decreased at rates between 0.002 °C/s and 0.1 °C/s, the ice front advanced but retreated immediately upon cessation of cooling, regardless of the temperature. This is a consequence of the competition between diffusion of H2O into the D2O ice, which favors melting of the interface, and the driving force for growth supplied by cooling. Raman microscopy tracked H/D exchange across the solid H2O–solid D2O interface, with diffusion coefficients consistent with transport of intact H2O molecules at the D2O ice interface. At fixed temperatures below 3 °C, the D2O ice front melted continuously, but at temperatures near 0 °C a scalloped interface morphology appeared with convex and concave sections that cycled between growth and retreat. This behavior, not observed for D2O ice in contact with D2O liquid or H2O ice in contact with H2O liquid, reflects a complex set of cooperative phenomena, including H/D exchange across the solid–liquid interface, latent heat exchange, local thermal gradients, and the Gibbs–Thomson effect on the melting points of the convex and concave features. PMID:29042511

  2. Water redistribution in experimentally deformed natural milky quartz single crystals—Implications for H2O-weakening processes

    NASA Astrophysics Data System (ADS)

    Stünitz, H.; Thust, A.; Heilbronner, R.; Behrens, H.; Kilian, R.; Tarantola, A.; Fitz Gerald, J. D.

    2017-02-01

    Natural quartz single crystals were experimentally deformed in two orientations: (1) ⊥ to one prism plane and (2) in O+ orientation at 900 and 1000°C, 1.0 and 1.5 GPa, and strain rates of 1 × 10-6 s-1. In addition, hydrostatic and annealing experiments were performed. The starting material was milky quartz, which consisted of dry quartz with a large number of fluid inclusions of variable size up to several 100 µm. During pressurization fluid inclusions decrepitated producing much smaller fluid inclusions. Deformation on the sample scale is anisotropic due to dislocation glide on selected slip systems and inhomogeneous due to an inhomogeneous distribution of fluid inclusions. Dislocation glide is accompanied by minor dynamic recovery. Strongly deformed regions show a pointed broad absorption band in the 3400 cm-1 region consisting of a superposition of bands of molecular H2O and three discrete absorption bands (at 3367, 3400, and 3434 cm-1). In addition, there is a discrete absorption band at 3585 cm-1, which only occurs in deformed regions and reduces or disappears after annealing, so that this band appears to be associated with dislocations. H2O weakening in inclusion-bearing natural quartz crystals is assigned to the H2O-assisted dislocation generation and multiplication. Processes in these crystals represent recycling of H2O between fluid inclusions, cracking and crack healing, incorporation of structurally bound H in dislocations, release of H2O from dislocations during recovery, and dislocation generation at very small fluid inclusions. The H2O weakening by this process is of disequilibrium nature because it depends on the amount of H2O available.

  3. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: An optical boiler generating singlet oxygen O2 (a1Δg)

    NASA Astrophysics Data System (ADS)

    Lipatov, N. I.; Biryukov, A. S.; Gulyamova, E. S.

    2008-12-01

    An ecologically perfect generator of singlet oxygen O2 (a1Δg) is proposed which fundamentally differs from existing singlet-oxygen generators. Excited O2 (a1Δg) molecules are generated due to interaction of the O2 (X3Σ-g) molecules with a quasi-monochromatic field, which is supplied from an external source to a closed volume — an optical boiler containing oxygen. It is shown that, by pumping continuously the optical boiler by the light field of power ~3×105 W, it is possible to accumulate up to 40% of singlet oxygen (O2(b1Σ+g)) + (O2 (a1Δg)) in the boiler volume during ~10-2 s.

  4. An efficient one-pot two catalyst system in the construction of 2-substituted benzimidazoles: synthesis of benzimidazo[1,2-c]quinazolines.

    PubMed

    Cimarelli, Cristina; Di Nicola, Matteo; Diomedi, Simone; Giovannini, Riccardo; Hamprecht, Dieter; Properzi, Roberta; Sorana, Federico; Marcantoni, Enrico

    2015-12-28

    The benzimidazole core is a common moiety in a large number of natural products and pharmacologically active small molecules. The synthesis of novel benzimidazole derivatives remains a main focus in medicinal research. In continuation of the efforts towards Ce(III) catalysts for organic transformations, we observed for the first time the activity of the iodide ion and copper cation in activating CeCl3·7H2O in the selective formation of prototypical 2-substituted benzimidazoles. The one-pot CeCl3·7H2O-CuI catalytic system procedure includes the cyclo-dehydrogenation of aniline Schiff's bases, generated in situ from the condensation of 1,2-phenylenediamine and aldehydes, followed by the oxidation with iodine, which works as a hydrogen sponge. Mild reaction conditions, good to excellent yields, and clean reactions make the procedure a useful contribution to the synthesis of biologically active fused heterocycles containing benzimidazoquinazolines.

  5. Outbursts of H2O in Comet P/Halley

    NASA Astrophysics Data System (ADS)

    Larson, H. P.; Hu, H.-Y.; Mumma, M. J.; Weaver, H. A.

    1990-07-01

    Comet Halley gas-production monitoring efforts in March 1986 with the NASA Kuiper Airborne Observatory's Fourier transform spectrometer have indicated rapid temporal variations in H2O emissions; a continuous record of an H2O outburst was thus obtained. The event, in which H2O brightness increased by a factor of 2.2 in less than 10 min, is ascribable to an energetic process in the nucleus whose character may have been that of amorphous H2O ice crystallization, chemical explosion, thermal stress, or a compressed gas pocket. The timing and energy of the event appear to require an internal energy source; amorphous ice crystallization is held to be most consistent with compositional and thermal models of cometary nuclei as well as the observations.

  6. Nasal masks or binasal prongs for delivering continuous positive airway pressure in preterm neonates-a randomised trial.

    PubMed

    Chandrasekaran, Aparna; Thukral, Anu; Jeeva Sankar, M; Agarwal, Ramesh; Paul, Vinod K; Deorari, Ashok K

    2017-03-01

    The objective of this study was to compare the efficacy and safety of continuous positive airway pressure (CPAP) delivered using nasal masks with binasal prongs. We randomly allocated 72 neonates between 26 and 32 weeks gestation to receive bubble CPAP by either nasal mask (n = 37) or short binasal prongs (n = 35). Primary outcome was mean FiO 2 requirement at 6, 12 and 24 h of CPAP initiation and the area under curve (AUC) of FiO 2 against time during the first 24 h (FiO 2 AUC 0-24 ). Secondary outcomes were the incidence of CPAP failure and nasal trauma. FiO 2 requirement at 6, 12 and 24 h (mean (SD); 25 (5.8) vs. 27.9 (8); 23.8 (4.5) vs. 25.4 (6.8) and 22.6 (6.8) vs. 22.7 (3.3)) as well as FiO 2 AUC 0-24 (584.0 (117.8) vs. 610.6 (123.6)) were similar between the groups. There was no difference in the incidence of CPAP failure (14 vs. 20%; relative risk 0.67; 95% confidence interval 0.24-1.93). Incidence of severe nasal trauma was lower with the use of nasal masks (0 vs. 31%; p < .001). Nasal masks appear to be as efficacious as binasal prongs in providing CPAP. Masks are associated with lower risk of severe nasal trauma. CTRI2012/08/002868 What is Known? • Binasal prongs are better than single nasal and nasopharyngeal prongs for delivering continuous positive airway pressure (CPAP) in preventing need for re-intubation. • It is unclear if they are superior to newer generation nasal masks in preterm neonates requiring CPAP. What is New? • Oxygen requirement during the first 24 h of CPAP delivery is comparable with use of nasal masks and binasal prongs. • Use of nasal masks is, however, associated with significantly lower risk of severe grades of nasal injury.

  7. Multifunctional albumin-MnO₂ nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response.

    PubMed

    Prasad, Preethy; Gordijo, Claudia R; Abbasi, Azhar Z; Maeda, Azusa; Ip, Angela; Rauth, Andrew Michael; DaCosta, Ralph S; Wu, Xiao Yu

    2014-04-22

    Insufficient oxygenation (hypoxia), acidic pH (acidosis), and elevated levels of reactive oxygen species (ROS), such as H2O2, are characteristic abnormalities of the tumor microenvironment (TME). These abnormalities promote tumor aggressiveness, metastasis, and resistance to therapies. To date, there is no treatment available for comprehensive modulation of the TME. Approaches so far have been limited to regulating hypoxia, acidosis, or ROS individually, without accounting for their interdependent effects on tumor progression and response to treatments. Hence we have engineered multifunctional and colloidally stable bioinorganic nanoparticles composed of polyelectrolyte-albumin complex and MnO2 nanoparticles (A-MnO2 NPs) and utilized the reactivity of MnO2 toward peroxides for regulation of the TME with simultaneous oxygen generation and pH increase. In vitro studies showed that these NPs can generate oxygen by reacting with H2O2 produced by cancer cells under hypoxic conditions. A-MnO2 NPs simultaneously increased tumor oxygenation by 45% while increasing tumor pH from pH 6.7 to pH 7.2 by reacting with endogenous H2O2 produced within the tumor in a murine breast tumor model. Intratumoral treatment with NPs also led to the downregulation of two major regulators in tumor progression and aggressiveness, that is, hypoxia-inducible factor-1 alpha and vascular endothelial growth factor in the tumor. Combination treatment of the tumors with NPs and ionizing radiation significantly inhibited breast tumor growth, increased DNA double strand breaks and cancer cell death as compared to radiation therapy alone. These results suggest great potential of A-MnO2 NPs for modulation of the TME and enhancement of radiation response in the treatment of cancer.

  8. Detection of pH and Enzyme-Free H2O2 Sensing Mechanism by Using GdO x Membrane in Electrolyte-Insulator-Semiconductor Structure.

    PubMed

    Kumar, Pankaj; Maikap, Siddheswar; Qiu, Jian-Tai; Jana, Surajit; Roy, Anisha; Singh, Kanishk; Cheng, Hsin-Ming; Chang, Mu-Tung; Mahapatra, Rajat; Chiu, Hsien-Chin; Yang, Jer-Ren

    2016-12-01

    A 15-nm-thick GdO x membrane in an electrolyte-insulator-semiconductor (EIS) structure shows a higher pH sensitivity of 54.2 mV/pH and enzyme-free hydrogen peroxide (H2O2) detection than those of the bare SiO2 and 3-nm-thick GdO x membranes for the first time. Polycrystalline grain and higher Gd content of the thicker GdO x films are confirmed by transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS), respectively. In a thicker GdO x membrane, polycrystalline grain has lower energy gap and Gd(2+) oxidation states lead to change Gd(3+) states in the presence of H2O2, which are confirmed by electron energy loss spectroscopy (EELS). The oxidation/reduction (redox) properties of thicker GdO x membrane with higher Gd content are responsible for detecting H2O2 whereas both bare SiO2 and thinner GdO x membranes do not show sensing. A low detection limit of 1 μM is obtained due to strong catalytic activity of Gd. The reference voltage shift increases with increase of the H2O2 concentration from 1 to 200 μM owing to more generation of Gd(3+) ions, and the H2O2 sensing mechanism has been explained as well.

  9. Probing the Influence of Acidity and Temperature to Th(IV) on Hydrolysis, Nucleation, and Structural Topology.

    PubMed

    Lin, Jian; Qie, Meiying; Zhang, Linjuan; Wang, Xiaomei; Lin, Yuejian; Liu, Wei; Bao, Hongliang; Wang, Jianqiang

    2017-11-20

    Systematic control of the molar ratio between thorium hydroxides and selenic acid and their reaction temperature under hydrothermal conditions results in four novel thorium-based selenate complexes, namely, [Th 8 O 4 (OH) 8 (SeO 4 ) 6 (H 2 O) 16 ]·(SeO 4 ) 2 ·13H 2 O (Th-1), [Th 8 O 4 (OH) 8 (SeO 4 ) 8 (H 2 O) 13 ]·7H 2 O (Th-2), Th(OH) 2 (SeO 4 )H 2 O (Th-3), and Th 3 (SeO 4 ) 6 (H 2 O) 6 ·2.5H 2 O (Th-4), as well as the thorium mixed selenite selenate compound Th(SeO 3 )(SeO 4 ) (Th-5). Smaller [H 2 SeO 4 ]/[Th(IV)] ratio or lower temperature give rise to the formation of octameric [Th 8 (μ 3 -O) 4 (μ 2 -OH) 8 ] 16+ cores in Th-1/Th-2 and infinite [Th(μ 2 -OH) 2 H 2 O] 2+ chains in Th-3, respectively. Increasing the [H 2 SeO 4 ]/[Th(IV)] ratio or elevating the temperature generates a microporous (11.3 Å voids) open-framework Th-4, a monomeric thorium species without oxo/hydroxyl ligands, and a three-dimensional thorium structure Th-5. Formation of these compounds suggests that variables including acidity and temperature play a critical role in the hydrolysis and oligomerization of Th IV ions. Increasing acidity limits the deprotonation of water molecules and formation of nucleophilic hydroxo/oxo-aquo Th species, and high temperature appears to suppress the olation/oxolation hydrolysis reactions, which in both ways limit the formation of the thorium oligomers.

  10. Diverse Cd(II) compounds based on N-benzoyl-L-glutamic acid and N-donor ligands: Structures and photoluminescent properties

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Guo, Wei-Ying; Song, Hui-Hua; Yu, Hai-Tao

    2016-01-01

    Five new Cd(II) coordination polymers with N-benzoyl-L-glutamic acid (H2bzgluO) and different N-donor ligands, [Cd(bzgluO)(2,2‧-bipy)(H2O)]n (1), [Cd(bzgluO)(2,4‧-bipy)2(H2O)·3H2O]n (2), [Cd(bzgluO)(phen)·H2O]n (3), [Cd(bzgluO)(4,4‧-bipy)(H2O)]n (4), [Cd(bzgluO)(bpp)(H2O)·2H2O]n (5) were synthesized (2,2‧-bipy=2,2‧-bipyridine, 2,4‧-bipy=2,4‧-bipyridine, phen=1,10-phenanthroline, 4,4‧-bipy=4,4‧-bipyridine, bpp=1,3-di(4-pyridyl)propane). Compounds 1-2 exhibit a 1D single-chain structure. Compound 1 generates a 2D supramolecular structure via π-π stacking and hydrogen bonding, 3D architecture of compound 2 is formed by hydrogen bonding. Compound 3 features a 1D double-chain structure, which are linked by π-π interactions into a 2D supramolecular layer. Compounds 4-5 display a 2D network structure. Neighboring layers of 4 are extended into a 3D supramolecular architecture through hydrogen bonding. The structural diversity of these compounds is attributed to the effect of ancillary N-donor ligands and coordination modes of H2bzgluO. Luminescent properties of 1-5 were studied at room temperature. Circular dichroism of compounds 1, 2 and 5 were investigated.

  11. Independent Orbiter Assessment (IOA): Analysis of the electrical power generation/power reactant storage and distribution subsystem

    NASA Technical Reports Server (NTRS)

    Gotch, S. M.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NAA FMEA/CIL documentation. The independent analysis results corresponding to the Orbiter Electrical Power Generation (EPG)/Power Reactants Storage and Distribution (PRSD) System Hardware is documented. The EPG/PRSD hardware is required for performing critical functions of cryogenic hydrogen and oxygen storage and distribution to the Fuel Cell Powerplants (FCP) and Atmospheric Revitalization Pressure Control Subsystem (ARPCS). Specifically, the EPG/PRSD hardware consists of the following: Hydryogen (H2) tanks; Oxygen (O2) tanks; H2 Relief Valve/Filter Packages (HRVFP); O2 Relief Valve/Filter Packages (ORVFP); H2 Valve Modules (HVM); O2 Valve Modules (OVM); and O2 and H2 lines, components, and fittings.

  12. Highly efficient D2 generation by dehydrogenation of formic acid in D2O through H+/D+ exchange on an iridium catalyst: application to the synthesis of deuterated compounds by transfer deuterogenation.

    PubMed

    Wang, Wan-Hui; Hull, Jonathan F; Muckerman, James T; Fujita, Etsuko; Hirose, Takuji; Himeda, Yuichiro

    2012-07-23

    Deuterated compounds have received increasing attention in both academia and industrial fields. However, preparations of these compounds are limited for both economic and practical reasons. Herein, convenient generation of deuterium gas (D(2)) and the preparation of deuterated compounds on a laboratory scale are demonstrated by using a half-sandwich iridium complex with 4,4'-dihydroxy-2,2'-bipyridine. The "umpolung" (i.e., reversal of polarity) of a hydrogen atom of water was achieved in consecutive reactions, that is, a cationic H(+)/D(+) exchange reaction and anionic hydride or deuteride transfer, under mild conditions. Selective D(2) evolution (purity up to 89 %) was achieved by using HCO(2)H as an electron source and D(2)O as a deuterium source; a rhodium analogue provided HD gas (98 %) under similar conditions. Furthermore, pressurized D(2) (98 %) without CO gas was generated by using DCO(2)D in D(2)O in a glass autoclave. Transfer deuterogenation of ketones gave α-deuterated alcohols with almost quantitative yields and high deuterium content by using HCO(2)H in D(2)O. Mechanistic studies show that the H(+)/D(+) exchange reaction in the iridium hydride complex was much faster than β-elimination and hydride (deuteride) transfer. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Manganese ions enhance mitochondrial H2O2 emission from Krebs cycle oxidoreductases by inducing permeability transition.

    PubMed

    Bonke, Erik; Siebels, Ilka; Zwicker, Klaus; Dröse, Stefan

    2016-10-01

    Manganese-induced toxicity has been linked to mitochondrial dysfunction and an increased generation of reactive oxygen species (ROS). We could recently show in mechanistic studies that Mn 2+ ions induce hydrogen peroxide (H 2 O 2 ) production from the ubiquinone binding site of mitochondrial complex II (II Q ) and generally enhance H 2 O 2 formation by accelerating the rate of superoxide dismutation. The present study with intact mitochondria reveals that manganese additionally enhances H 2 O 2 emission by inducing mitochondrial permeability transition (mPT). In mitochondria fed by NADH-generating substrates, the combination of Mn 2+ and different respiratory chain inhibitors led to a dynamically increasing H 2 O 2 emission which was sensitive to the mPT inhibitor cyclosporine A (CsA) as well as Ru-360, an inhibitor of the mitochondrial calcium uniporter (MCU). Under these conditions, flavin-containing enzymes of the mitochondrial matrix, e.g. the mitochondrial 2-oxoglutaratedehydrogenase (OGDH), were major sources of ROS. With succinate as substrate, Mn 2+ stimulated ROS production mainly at complex II, whereby the applied succinate concentration had a marked effect on the tendency for mPT. Also Ca 2+ increased the rate of H 2 O 2 emission by mPT, while no direct effect on ROS-production of complex II was observed. The present study reveals a complex scenario through which manganese affects mitochondrial H 2 O 2 emission: stimulating its production from distinct sites (e.g. site II Q ), accelerating superoxide dismutation and enhancing the emission via mPT which also leads to the loss of soluble components of the mitochondrial antioxidant systems and favors the ROS production from flavin-containing oxidoreductases of the Krebs cycle. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Highly efficient alkane oxidation catalyzed by [Mn(V)(N)(CN)4](2-). Evidence for [Mn(VII)(N)(O)(CN)4](2-) as an active intermediate.

    PubMed

    Ma, Li; Pan, Yi; Man, Wai-Lun; Kwong, Hoi-Ki; Lam, William W Y; Chen, Gui; Lau, Kai-Chung; Lau, Tai-Chu

    2014-05-28

    The oxidation of various alkanes catalyzed by [Mn(V)(N)(CN)4](2-) using various terminal oxidants at room temperature has been investigated. Excellent yields of alcohols and ketones (>95%) are obtained using H2O2 as oxidant and CF3CH2OH as solvent. Good yields (>80%) are also obtained using (NH4)2[Ce(NO3)6] in CF3CH2OH/H2O. Kinetic isotope effects (KIEs) are determined by using an equimolar mixture of cyclohexane (c-C6H12) and cyclohexane-d12 (c-C6D12) as substrate. The KIEs are 3.1 ± 0.3 and 3.6 ± 0.2 for oxidation by H2O2 and Ce(IV), respectively. On the other hand, the rate constants for the formation of products using c-C6H12 or c-C6D12 as single substrate are the same. These results are consistent with initial rate-limiting formation of an active intermediate between [Mn(N)(CN)4](2-) and H2O2 or Ce(IV), followed by H-atom abstraction from cyclohexane by the active intermediate. When PhCH2C(CH3)2OOH (MPPH) is used as oxidant for the oxidation of c-C6H12, the major products are c-C6H11OH, c-C6H10O, and PhCH2C(CH3)2OH (MPPOH), suggesting heterolytic cleavage of MPPH to generate a Mn═O intermediate. In the reaction of H2O2 with [Mn(N)(CN)4](2-) in CF3CH2OH, a peak at m/z 628.1 was observed in the electrospray ionization mass spectrometry, which is assigned to the solvated manganese nitrido oxo species, (PPh4)[Mn(N)(O)(CN)4](-)·CF3CH2OH. On the basis of the experimental results the proposed mechanism for catalytic alkane oxidation by [Mn(V)(N)(CN)4](2-)/ROOH involves initial rate-limiting O-atom transfer from ROOH to [Mn(N)(CN)4](2-) to generate a manganese(VII) nitrido oxo active species, [Mn(VII)(N)(O)(CN)4](2-), which then oxidizes alkanes (R'H) via a H-atom abstraction/O-rebound mechanism. The proposed mechanism is also supported by density functional theory calculations.

  15. Synthesis and characterization of hyaluronic acid coated manganese dioxide microparticles that act as ROS scavengers.

    PubMed

    Bizeau, Joëlle; Tapeinos, Christos; Marella, Claudio; Larrañaga, Aitor; Pandit, Abhay

    2017-11-01

    Atherosclerosis is a chronic inflammatory disease of the arterial wall that leads to cardiovascular diseases which are the major cause of deaths worldwide. There is currently no treatment that can stop or reverse the disease. However, the use of microparticles with anti-inflammatory properties could represent a promising treatment. Herein, spherical microparticles with a core-shell structure and an average diameter of 1μm were synthesized. The microparticles were comprised of a MnCO 3 and MnO 2 core and a 4-arm PEG-amine cross-linked shell of hyaluronic acid. The HA-Mn-SM microparticles were loaded with D-α-tocopherol (vitamin-E) (TOC), to fabricate a targeted biocompatible delivery platform for the treatment of atherosclerotic inflamed cells. Loading and release studies of TOC demonstrated a lactic acid concentration dependant controlled release profile of the HA-Mn-SM mimicking the atherosclerotic environment where lactic acid is over-produced. The microparticles exhibited a high scavenging ability towards H 2 O 2 in addition to the controlled generation of O 2 . The optimal results were obtained for 250μg/mL microparticles which in the presence of 1000μM H 2 O 2 resulted in the scavenging of almost all the H 2 O 2 . Our results demonstrate that 50μg/mL of microparticles scavenged continuously produced H 2 O 2 up to a concentration of 1000μM, a characteristic that demonstrates the sustained therapeutic effect of the HA-Mn-SM microparticles in an environment that mimics that of inflamed tissues. Our results indicate the potential use of HA-Mn-SM as a novel platform for the treatment of atherosclerosis. In vitro studies confirmed that the microparticles are not cytotoxic at concentrations up to 250μg/mL and for 72h. These preliminary results indicate the potential use of HA-Mn-SM as a novel drug delivery system for atherosclerotic tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Oxidative Stressors Modify the Response of Streptococcus mutans to Its Competence Signal Peptides.

    PubMed

    De Furio, Matthew; Ahn, Sang Joon; Burne, Robert A; Hagen, Stephen J

    2017-11-15

    The dental caries pathogen Streptococcus mutans is continually exposed to several types of stress in the oral biofilm environment. Oxidative stress generated by reactive oxygen species has a major impact on the establishment, persistence, and virulence of S. mutans Here, we combined fluorescent reporter-promoter fusions with single-cell imaging to study the effects of reactive oxygen species on activation of genetic competence in S. mutans Exposure to paraquat, which generates superoxide anion, produced a qualitatively different effect on activation of expression of the gene for the master competence regulator, ComX, than did treatment with hydrogen peroxide (H 2 O 2 ), which can yield hydroxyl radical. Paraquat suppressed peptide-mediated induction of comX in a progressive and cumulative fashion, whereas the response to H 2 O 2 displayed a strong threshold behavior. Low concentrations of H 2 O 2 had little effect on induction of comX or the bacteriocin gene cipB , but expression of these genes declined sharply if extracellular H 2 O 2 exceeded a threshold concentration. These effects were not due to decreased reporter gene fluorescence. Two different threshold concentrations were observed in the response to H 2 O 2 , depending on the gene promoter that was analyzed and the pathway by which the competence regulon was stimulated. The results show that paraquat and H 2 O 2 affect the S. mutans competence signaling pathway differently, and that some portions of the competence signaling pathway are more sensitive to oxidative stress than others. IMPORTANCE Streptococcus mutans inhabits the oral biofilm, where it plays an important role in the development of dental caries. Environmental stresses such as oxidative stress influence the growth of S. mutans and its important virulence-associated behaviors, such as genetic competence. S. mutans competence development is a complex behavior that involves two different signaling peptides and can exhibit cell-to-cell heterogeneity. Although oxidative stress is known to influence S. mutans competence, it is not understood how oxidative stress interacts with the peptide signaling or affects heterogeneity. In this study, we used fluorescent reporters to probe the effect of reactive oxygen species on competence signaling at the single-cell level. Our data show that different reactive oxygen species have different effects on S. mutans competence, and that some portions of the signaling pathway are more acutely sensitive to oxidative stress than others. Copyright © 2017 American Society for Microbiology.

  17. The electrochemical generation of useful chemical species from lunar materials

    NASA Technical Reports Server (NTRS)

    Tsai, Kan J.; Kuchynka, Daniel J.; Sammells, Anthony F.

    1989-01-01

    Electrochemical cells have been fabricated for the simultaneous generation of oxygen and lithium from a Li2O containing molten salt (Li2O-LiCl-LiF). The cell utilizes an oxygen vacancy conducting solid electrolyte, yttria-stabilized zirconia (YSZ), to effect separation between oxygen evolving and lithium reduction half-cell reactions. The cell, which operates at 700 to 850 C, possesses rapid electrode kinetics at the lithium-alloy electrode with exchange current density (i sub o) values being greater than 60mA sq cm. When used in the electrolytic mode, lithium produced at the negative electrode would be continuously removed from the cell for later use (under lunar conditions) as an easily storable reducing agent (compared to H2) for the chemical refining of lunar ores. Because of the high reversibility of this electrochemical system, it has also formed tha basis for the lithium oxygen secondary battery system which possesses the highest theoretical energy density yet investigated.

  18. The electrochemical generation of useful chemical species from lunar materials

    NASA Astrophysics Data System (ADS)

    Tsai, Kan J.; Kuchynka, Daniel J.; Sammells, Anthony F.

    1989-12-01

    Electrochemical cells have been fabricated for the simultaneous generation of oxygen and lithium from a Li2O containing molten salt (Li2O-LiCl-LiF). The cell utilizes an oxygen vacancy conducting solid electrolyte, yttria-stabilized zirconia (YSZ), to effect separation between oxygen evolving and lithium reduction half-cell reactions. The cell, which operates at 700 to 850 C, possesses rapid electrode kinetics at the lithium-alloy electrode with exchange current density (i sub o) values being greater than 60mA sq cm. When used in the electrolytic mode, lithium produced at the negative electrode would be continuously removed from the cell for later use (under lunar conditions) as an easily storable reducing agent (compared to H2) for the chemical refining of lunar ores. Because of the high reversibility of this electrochemical system, it has also formed tha basis for the lithium oxygen secondary battery system which possesses the highest theoretical energy density yet investigated.

  19. Can apple antioxidants inhibit tumor cell proliferation? Generation of H(2)O(2) during interaction of phenolic compounds with cell culture media.

    PubMed

    Lapidot, Tair; Walker, Michael D; Kanner, Joseph

    2002-05-22

    It has recently been suggested that the ability of apple extracts to inhibit proliferation of tumor cells in vitro may be due to phenolic/flavonoid antioxidants. Our study demonstrates that this inhibition is caused indirectly by H(2)O(2) generated through interaction of the phenolics with the cell culture media. The results indicate that many previously reported effects of flavonoids and phenolic compounds on cultured cells may result from similar artifactual generation of oxidative stress. We suggest that in order to prevent such artifacts, the use of catalase and/or metmyoglobin in the presence of reducing agents should be considered as a method to decompose H(2)O(2) and prevent generation of other reactive oxygen species, which could affect cell proliferation. The use of tumor cells and "nontumor cells" in a bioassay to measure antioxidant activity, in this context, is potentially misleading and should be applied with caution.

  20. Ferrocene functionalized graphene based electrode for the electro-Fenton oxidation of ciprofloxacin.

    PubMed

    Divyapriya, Govindaraj; Nambi, Indumathi; Senthilnathan, Jaganathan

    2018-05-26

    Ferrocene functionalized graphene based graphite felt electrode was firstly investigated for heterogeneous electro-Fenton oxidation of ciprofloxacin in neutral pH condition. Electrochemical reduction of Ferrocene functionalized graphene oxide (Fc-ErGO) was performed by cyclic voltammetry technique. At neutral pH condition, Fc-ErGO electrode (0.035 min ─1 ) exhibited ∼3 times and ∼9 times higher removal rates in comparison with plane ErGO (0.010 min ─1 ) and plane graphite felt (0.004 min ─1 ) electrodes respectively. The effect of pH and applied potential were studied for the degradation of ciprofloxacin in Fc-ErGO based electrode. Higher removal rate was observed at acidic pH (0.222 min ─1 ), whereas alkaline pH showed lower removal efficiency (0.014 min ─1 ). > 99% removal of ciprofloxacin was achieved with in 15 min and 120 min of reactions period at pH 3.0 and pH 7.0, respectively. H 2 O 2 generation was found to be high in plane ErGO electrode system in all of the pH conditions. Owing to the high redox ability of ferrocene, Fc-ErGO electrode generated high concentration of OH radicals (426 μM pH 3.0; 247 μM pH 7.0; 210 μM pH 9.0) than ErGO and plane graphite felt electrodes; The electrode reusability study was performed to understand the electrode stability. There was no significant change in removal efficiency even after the 5th cycle of reusability study at both acidic and neutral conditions. The possible mechanism of oxidation in Fc-ErGO based electro-Fenton process was also proposed based on the continuous monitoring of H 2 O 2 and OH radicals generated in the system. Copyright © 2018. Published by Elsevier Ltd.

  1. A mechanism for the production of hydroxyl radical at surface defect sites on pyrite

    NASA Astrophysics Data System (ADS)

    Borda, Michael J.; Elsetinow, Alicia R.; Strongin, Daniel R.; Schoonen, Martin A.

    2003-03-01

    A previous contribution from our laboratory reported the formation of hydrogen peroxide (H 2O 2) upon addition of pyrite (FeS 2) to O 2-free water. It was hypothesized that a reaction between adsorbed H 2O and Fe(III), at a sulfur-deficient defect site, on the pyrite surface generates an adsorbed hydroxyl radical (OH •). ≡Fe(III) + H 2O (ads) → ≡Fe(II) + OH •(ads) + H + The combination of two OH • then produces H 2O 2. In the present study, we show spectroscopic evidence consistent with the conversion of Fe(III) to Fe(II) at defect sites, the origin of H 2O 2 from H 2O, and the existence of OH • in solution. To demonstrate the iron conversion at the surface, X-ray photoelectron spectroscopy (XPS) was employed. Using a novel mass spectrometry method, the production of H 2O 2 was evaluated. The aqueous concentration of OH • was measured using a standard radical scavenger method. The formation of OH • via the interaction of H 2O with the pyrite surface is consistent with several observations in earlier studies and clarifies a fundamental step in the oxidation mechanism of pyrite.

  2. Photocatalytic hydrogen evolution of palladium nanoparticles decorated black TiO2 calcined in argon atmosphere

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Chung; Hsiao, Kai-Chi; Chang, Yin-Hsuan; Chan, Shun-Hsiang

    2018-02-01

    Black TiO2 nanoparticles (BTN) was prepared by sol-gel derived precursor calcined in an argon atmosphere. The synthesized BTN with trivalent titanium ion, structural defect, and oxygen vacancy shows a remarkably high absorbance in the visible light spectrum. BTN thus behaves a higher visible-active nanoreactor than white TiO2 nanoparticles (WTN) in the aqueous solution for organic pollutant degradation. Moreover, palladium decoration on the BTN surface (Pd-BTN) demonstrates a fascinating clean energy application. The obtained Pd-BTN fulfills a satisfied green material demand in the photocatalytic hydrogen production application. Pd-BTN calcined at 400 °C (Pd-BTN-400) shows the high photocatalytic hydrogen generation rate of 5200 μmol/g h under UV-A irradiation and 9300 μmol/g h under UV-B irradiation, respectively. The well-developed material, Pd-BTN-400, could be one of the best solutions in the concern of clean energy and water-purification with regard to the continuous environmental issue.

  3. Crystal structure of di-methyl-formamidium bis-(tri-fluoro-methane-sulfon-yl)amide: an ionic liquid.

    PubMed

    Cardenas, Allan Jay P; O'Hagan, Molly

    2016-09-01

    At 100 K, the title mol-ecular salt, C 3 H 8 NO + ·C 2 F 6 NO 4 S 2 - , has ortho-rhom-bic ( P 2 1 2 1 2 1 ) symmetry; the amino H atom of bis-(tri-fluoro-methane-sulfon-yl)amine (HNTf 2 ) was transferred to the basic O atom of di-methyl-formamide (DMF) when the ionic liquid components were mixed. The structure displays an O-H⋯N hydrogen bond, which links the cation to the anion, which is reinforced by a non-conventional C-H⋯O inter-action, generating an R 2 2 (7) loop. A further very weak C-H⋯O inter-action generates an [001] chain.

  4. Transformation characteristics of refractory pollutants in plugboard wastewater by an optimal electrocoagulation and electro-Fenton process.

    PubMed

    Zhao, Xu; Zhang, Baofeng; Liu, Huijuan; Chen, Fayuan; Li, Angzhen; Qu, Jiuhui

    2012-05-01

    The treatment of the plugboard wastewater was performed by an optimal electrocoagulation and electro-Fenton. The organic components with suspended fractions accounting for 30% COD were preferably removed via electrocoagulation at initial 5 min. In contrast, the removal efficiency was increased to 76% with the addition of H(2)O(2). The electrogenerated Fe(2+) reacts with H(2)O(2) and leads to the generation of (·)OH, which is responsible for the higher COD removal. However, overdosage H(2)O(2) will consume (·)OH generated in the electro-Fenton process and lead to the low COD removal. The COD removal efficiency decreased with the increased pH. The concentration of Fe(2+) ions was dependent on the solution pH, H(2)O(2) dosage and current density. The changes of organic characteristics in coagulation and oxidation process were differenced and evaluated using gel permeation chromatography, fluorescence excitation-emission scans and Fourier transform infrared spectroscopy. The fraction of the wastewater with aromatic structure and large molecular weight was decomposed into aliphatic structure and small molecular weight fraction in the electro-Fenton process. Copyright © 2012. Published by Elsevier Ltd.

  5. Five inorganic–organic hybrids based on Keggin polyanion [SiMo{sub 12}O{sub 40}]{sup 4−}: From 0D to 2D network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xiao-Yang, E-mail: yangyangyu0103@sohu.com; Jilin Institute of Chemical Technology, Jilin City, Jilin 132022; Cui, Xiao-Bing

    2014-01-15

    Five new inorganic–organic hybrids based on 4,4′-bipyridine and Keggin-type polyoxometalate [SiMo{sub 12}O{sub 40}]{sup 4−}, (SiMo{sub 12}O{sub 40})(H{sub 2}bipy){sub 2}·2H{sub 2}O (1), [Cu(Hbipy){sub 4}(HSiMo{sub 12}O{sub 40})(SiMo{sub 12}O{sub 40})](H{sub 2}bipy){sub 0.5}·7H{sub 2}O (2), [Cu{sub 2}(Hbipy){sub 6}(bipy)(SiMo{sub 12}O{sub 40}){sub 3}](Hbipy){sub 2}·6H{sub 2}O (3), [Cu(bipy){sub 2}(SiMo{sub 12}O{sub 40})](H{sub 2}bipy)·2H{sub 2}O (4) and [Cu{sub 2}(bipy){sub 4}(H{sub 2}O){sub 4}](SiMo{sub 12}O{sub 40})·13H{sub 2}O (5) (bipy=4,4′-bipyridine), have been hydrothermally synthesized. 1 consists of H{sub 2}bipy{sup 2+} and [SiMo{sub 12}O{sub 40}]{sup 4−} units. In 2, two [SiMo{sub 12}O{sub 40}]{sup 4−} are bridged by [Cu(Hbipy){sub 4}]{sup 6+} to form a [Cu(Hbipy){sub 4}(SiMo{sub 12}O{sub 40}){sub 2}]{sup 2−} dimmer. In 3, [SiMo{submore » 12}O{sub 40}]{sup 4−} polyanions acting as bidentated bridging ligands and monodentated auxiliary ligands connect [Cu{sub 2}(Hbipy){sub 6}(bipy)]{sup 8+} units into a 1D zigzag chain. In 4, [SiMo{sub 12}O{sub 40}]{sup 4−} polyanions bridge neighboring 1D [Cu(bipy){sub 2}]{sup 2+} double chains into a 2D extended layer. In 5, [SiMo{sub 12}O{sub 40}]{sup 4−} polyanions acting as templates site alternately upon the grids from both sides of the square grid [Cu{sub 2}(bipy){sub 4}(H{sub 2}O){sub 4}]{sup 4+} layer. In addition, the electrochemical behaviors of 1, 3 and 4 and the photocatalysis property of 1 have been investigated. - Graphical abstract: Five new compounds based on [SiMo{sub 12}O{sub 40}]{sup 4−} have been successfully generated. [SiMo{sub 12}O{sub 40}]{sup 4−} anions play different roles in the structures of the five compounds. Display Omitted - Highlights: • Five new compounds based on [SiMo{sub 12}O{sub 40}]{sup 4−} have been generated. • [SiMo{sub 12}O{sub 40}]{sup 4−} anions play different roles in the five structures. • The electrochemical behaviors of 1, 3 and 4 have been investigated. • The photocatalysis property of 1 has been investigated.« less

  6. A Tale of Two Gases: Isotope Effects Associated with the Enzymatic Production of H2 and N2O

    NASA Astrophysics Data System (ADS)

    Yang, H.; Gandhi, H.; Kreuzer, H. W.; Moran, J.; Hill, E. A.; McQuarters, A.; Lehnert, N.; Ostrom, N. E.; Hegg, E. L.

    2014-12-01

    Stable isotopes can provide considerable insight into enzymatic mechanisms and fluxes in various biological processes. In our studies, we used stable isotopes to characterize both enzyme-catalyzed H2 and N2O production. H2 is a potential alternative clean energy source and also a key metabolite in many microbial communities. Biological H2 production is generally catalyzed by hydrogenases, enzymes that combine protons and electrons to produce H2 under anaerobic conditions. In our study, H isotopes and fractionation factors (α) were used to characterize two types of hydrogenases: [FeFe]- and [NiFe]-hydrogenases. Due to differences in the active site, the α associated with H2 production for [FeFe]- and [NiFe]-hydrogenases separated into two distinct clusters (αFeFe > αNiFe). The calculated kinetic isotope effects indicate that hydrogenase-catalyzed H2 production has a preference for light isotopes, consistent with the relative bond strengths of O-H and H-H bonds. Interestingly, the isotope effects associated with H2 consumption and H2-H2O exchange reactions were also characterized, but in this case no specific difference was observed between the different enzymes. N2O is a potent greenhouse gas with a global warming potential 300 times that of CO2, and the concentration of N2O is currently increasing at a rate of ~0.25% per year. Thus far, bacterial and fungal denitrification processes have been identified as two of the major sources of biologically generated N2O. In this study, we measured the δ15N, δ18O, δ15Nα (central N atom in N2O), and δ15Nβ (terminal N atom in N2O) of N2O generated by purified fungal P450 nitric oxide reductase (P450nor) from Histoplasma capsulatum. We observed normal isotope effects for δ18O and δ15Nα, and inverse isotope effects for bulk δ15N (the average of Nα and Nβ) and δ15Nβ. The observed isotope effects have been used in conjunction with DFT calculations to provide important insight into the mechanism of P450nor. Similar experiments were performed with bacterial nitric oxide reductase from Paracoccus denitrificans (cNOR). In this case both Nα and Nβ exhibited inverse isotope effects, while O had a normal isotope effect. Together, these data highlight the utility in using stable isotopes as both tracers and mechanistic probes when studying metabolic processes.

  7. Selective photocatalytic reduction of CO2 by H2O/H2 to CH4 and CH3OH over Cu-promoted In2O3/TiO2 nanocatalyst

    NASA Astrophysics Data System (ADS)

    Tahir, Muhammad; Tahir, Beenish; Saidina Amin, Nor Aishah; Alias, Hajar

    2016-12-01

    Photocatalytic CO2 reduction by H2O and/or H2 reductant to selective fuels over Cu-promoted In2O3/TiO2 photocatalyst has been investigated. The samples, prepared via a simple and direct sol-gel method, were characterized by XRD, SEM, TEM, XPS, N2 adsorption-desorption, UV-vis diffuse reflectance, Raman and PL spectroscopy. Cu and In loaded into TiO2, oxidized as Cu2+ and In3+, promoted efficient separation of photo-generated electron/hole pairs (e-/h+). The results indicate that the reduction rate of CO2 by H2O to CH4 approached to 181 μmol g-1 h-1 using 0.5% Cu-3% In2O3/TiO2 catalyst, a 1.53 fold higher than the production rate over the 3% In2O3/TiO2 and 5 times the amount produced over the pure TiO2. In addition, Cu was found to promote efficient production of CH3OH and yield rate reached to 68 μmol g-1 h-1 over 1% Cu-3% In2O3/TiO2 catalyst. This improvement was attributed to charge transfer property and suppressed recombination rate by Cu-metal. More importantly, H2 reductant was less favorable for CH4 production, yet a significant amount of CH4 and CH3OH were obtained using a mixture of H2O/H2 reductant. Therefore, Cu-loaded In2O3/TiO2 catalyst has shown to be capable for methanol production, whereas product selectivity was greatly depending on the amount of Cu-loading and the type of reductant. A photocatalytic reaction mechanism was proposed to understand the experimental results over the Cu-loaded In2O3/TiO2 catalyst.

  8. Fabrication of efficient TiO2-RGO heterojunction composites for hydrogen generation via water-splitting: Comparison between RGO, Au and Pt reduction sites

    NASA Astrophysics Data System (ADS)

    El-Bery, Haitham M.; Matsushita, Yoshihisa; Abdel-moneim, Ahmed

    2017-11-01

    A facile one-step synthesis approach of M/TiO2/RGO (M = Au or Pt) ternary composite by hydrothermal treatment for hydrogen generation via water-splitting was investigated. Photocurrent response measurements revealed that TiO2 (P25) nanoparticles anchored on the reduced graphene oxide (RGO) surface exhibited a p-n heterojunction interface by changing the photocurrent direction with the applied bias from reverse to forward potential. H2 evolution rate of TiO2/RGO (5 wt.%) composite was substantially enhanced by 12-fold in comparison to bare TiO2 under simulated solar light irradiation. Cyclic volatmmetry measurements manifested, that the optimized 0.3 wt.% of platinum metal loaded on TiO2/RGO composite was the most active catalytic reduction sites for hydrogen generation reaction with an initial hydrogen rate of 670 μmol h-1. This study sheds the light on the tunable semiconductor type of TiO2/RGO composite fabricated by solution mixing pathway and its merits to improve the photocatalytic activity.

  9. Visible-light responsive photocatalytic fuel cell based on WO(3)/W photoanode and Cu(2)O/Cu photocathode for simultaneous wastewater treatment and electricity generation.

    PubMed

    Chen, Quanpeng; Li, Jinhua; Li, Xuejin; Huang, Ke; Zhou, Baoxue; Cai, Weimin; Shangguan, Wenfeng

    2012-10-16

    A visible-light driven photocatalytic fuel cell (PFC) system comprised of WO(3)/W photoanode and Cu(2)O/Cu photocathode was established for organic compounds degradation with simultaneous electricity generation. The central idea for its operation is the mismatched Fermi levels between the two photoelectrodes. Under light illumination, the Fermi level of WO(3)/W photoanode is higher than that of Cu(2)O/Cu photocathode. An interior bias can be produced based on which the electrons of WO(3)/W photoanode can transfer from the external circuit to combine with the holes of Cu(2)O/Cu photocathode then generates the electricity. In this manner, the electron/hole pairs separations at two photoelectrodes are facilitated to release the holes of WO(3)/W photoanode and electrons of Cu(2)O/Cu photocathode. Organic compounds can be decomposed by the holes of WO(3)/W photoanode due to its high oxidation power (+3.1-3.2 V(NHE)). The results demonstrated that various model compounds including phenol, Rhodamine B, and Congo red can be successfully decomposed in this PFC system, with the degradation rate after 5 h operation were obtained to be 58%, 63%, and 74%, respectively. The consistent operation for continuous water treatment with the electricity generation at a long time scale was also confirmed from the result. The proposed PFC system provides a self-sustained and energy-saving way for simultaneous wastewater treatment and energy recovery.

  10. On the origin of high-temperature phenomena in Pt/Al2O3.

    PubMed

    Lisitsyn, Alexander S; Yakovina, Olga A

    2018-01-24

    Treatments of Pt/γ-Al 2 O 3 with H 2 under harsh conditions have long been known to strongly influence the properties of this important catalytic system, but the true causes of the high-temperature effects still remain unclear. We have performed a more detailed study of this issue, having used H 2 -TPD as a sensitive probe of metal-support interactions. The experimental results are in accordance with previous studies and demonstrate strong changes in adsorption and catalytic properties of Pt/γ-Al 2 O 3 after high-temperature H 2 treatments, as well as the possibility to reverse the changes, completely or in part, through O 2 and H 2 O treatments. Thorough examination has shown that such behaviour is an intrinsic property of Pt/γ-Al 2 O 3 and cannot be attributed to impurities or experimental artifacts. Moreover, there is no abrupt transition to a high-temperature state, but the system undergoes smooth and gradual changes upon increasing the H 2 -treatment temperature (T TR ), with the changes being already apparent at a T TR of ∼ 300 °C. The results suggest that hydrogen can generate oxygen vacancies on the surface of the support in close vicinity to the Pt particles, and the system appears under equilibrium to be kinetically driven by temperature and thermodynamically driven by the P H 2 /P H 2 O ratio or local concentration of surface hydroxyls near Pt particles. The generated vacancies change the properties of contacting particles, and the changes are most pronounced for sub-nanometric Pt clusters and single atoms. Implications of the phenomena for the synthesis, study, and use of Pt/γ-Al 2 O 3 and its related nanosystems are discussed.

  11. H2O2-responsive molecularly engineered polymer nanoparticles as ischemia/reperfusion-targeted nanotherapeutic agents

    NASA Astrophysics Data System (ADS)

    Lee, Dongwon; Bae, Soochan; Hong, Donghyun; Lim, Hyungsuk; Yoon, Joo Heung; Hwang, On; Park, Seunggyu; Ke, Qingen; Khang, Gilson; Kang, Peter M.

    2013-07-01

    The main culprit in the pathogenesis of ischemia/reperfusion (I/R) injury is the overproduction of reactive oxygen species (ROS). Hydrogen peroxide (H2O2), the most abundant form of ROS produced during I/R, causes inflammation, apoptosis and subsequent tissue damages. Here, we report H2O2-responsive antioxidant nanoparticles formulated from copolyoxalate containing vanillyl alcohol (VA) (PVAX) as a novel I/R-targeted nanotherapeutic agent. PVAX was designed to incorporate VA and H2O2-responsive peroxalate ester linkages covalently in its backbone. PVAX nanoparticles therefore degrade and release VA, which is able to reduce the generation of ROS, and exert anti-inflammatory and anti-apoptotic activity. In hind-limb I/R and liver I/R models in mice, PVAX nanoparticles specifically reacted with overproduced H2O2 and exerted highly potent anti-inflammatory and anti-apoptotic activities that reduced cellular damages. Therefore, PVAX nanoparticles have tremendous potential as nanotherapeutic agents for I/R injury and H2O2-associated diseases.

  12. Vapor segregation and loss in basaltic melts

    NASA Astrophysics Data System (ADS)

    Edmonds, Marie; Gerlach, Terrence M.

    2007-08-01

    Measurements of volcanic gases at Pu'u‘Ō’ō, Kilauea Volcano, Hawai'i, reveal distinct degassing regimes with respect to vapor segregation and loss during effusive activity in 2004-2005. Three styles of vapor loss are distinguished by the chemical character of the emitted volcanic gases, measured by open path Fourier transform infrared spectroscopy: (1) persistent continuous gas emission, (2) gas piston events, and (3) lava spattering. Persistent continuous gas emission is associated with magma ascent and degassing beneath the crater vents, then eruption of the degassed magma from flank vents. Gas piston events are the result of static gas accumulation at depths of 400-900 m beneath Pu'u‘Ō’ō. A CO2-rich gas slug travels up the conduit at a few meters per second, displacing magma as it expands. Lava spattering occurs due to dynamic bubble coalescence in a column of relatively stagnant magma. The large gas bubbles are H2O rich and are generated by open-system degassing at depths of <150 m. Static gas accumulation and dynamic bubble coalescence are both manifestations of vapor segregation in basaltic melts, but their implications differ. Accumulation and segregation of CO2-rich vapor at depth does not deplete the melt of H2O (required to drive lava fountains near to the surface) and therefore gas piston events can occur interspersed with lava fountaining activity. Lava spattering, however, efficiently strips H2O-rich vapor from magma beneath the crater vents; the magma must then erupt effusively from vents on the flank of the cone.

  13. A performance comparison of choline biosensors: anodic or cathodic detections of H2O2 generated by enzyme immobilized on a conducting polymer.

    PubMed

    Rahman, Md Aminur; Park, Deog-Soo; Shim, Yoon-Bo

    2004-07-15

    Amperometric choline biosensors were fabricated by the covalent immobilization of an enzyme of choline oxidase (ChO) and a bi-enzyme of ChO/horseradish peroxidase (ChO/HRP) onto poly-5,2':5',2"-terthiophene-3'-carboxylic acid (poly-TTCA) modified electrodes (CPMEs). A sensor modified with ChO utilized the oxidation process of enzymatically generated H(2)O(2) in a choline solution at +0.6V. The other one modified with ChO/HRP utilized the reduction process of H(2)O(2) in a choline solution at -0.2V. Experimental parameters affecting the sensitivity of sensors, such as pH, applied potential, and temperature were optimized. A performance comparison of two sensors showed that one based on ChO/HRP/CPME had a linear range from 1.0 x 10(-6) to 8.0 x 10(-5) M and the other based on ChO/CPME from 1.0 x 10(-6) to 5.0 x 10(-5) M. The detection limits for choline employing ChO/HRP/CPME and ChO/CPME were determined to be about 1.0 x 10(-7) and 4.0 x 10(-7) M, respectively. The response time of sensors was less than 5s. Sensors showed good selectivity to interfering species. The long-term storage stability of the sensor based on ChO/HRP/CPME was longer than that based on ChO/CPME.

  14. 1-(2-Hy-droxy-eth-yl)-3-[(2-hy-droxy-eth-yl)amino]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione.

    PubMed

    Xie, Zhi-Xiong; Zhao, Sheng-Yin

    2011-04-01

    There are four molecules in the asymmetric unit of the title compound, C(16)H(17)N(3)O(4), in which the dihedral angles between the indole ring system and maleimide ring are 4.5 (3), 8.3 (3), 8.4 (2) and 10.4 (2)°. In the crystal, mol-ecules are linked by numerous N-H⋯O and O-H⋯O hydrogen bonds, generating a three-dimensional network.

  15. Docosahexaenoic acid attenuates oxidative stress and protects human gingival fibroblasts against cytotoxicity induced by hydrogen peroxide and butyric acid.

    PubMed

    Zgorzynska, Emilia; Wierzbicka-Ferszt, Anita; Dziedzic, Barbara; Witusik-Perkowska, Monika; Zwolinska, Anna; Janas, Anna; Walczewska, Anna

    2015-01-01

    The oxidative burst of the host cells associated with bacterial pathogen infection contributes to the destruction of periodontal tissue. The present study investigates the effect of docosahexaenoic acid (DHA) on human gingival fibroblast (HGF) viability and ROS generation. The cell viability by MTT assay, ROS level using H2DCF-DA probe, and protein thiol content were measured in HGFs after 24h preincubation with different concentrations of DHA followed by treatment with H2O2. The cell death rate was determined by Annexin V/propidium iodide staining, and mitochondrial membrane potential (ΔΨm) was examined by MitoTracker Red probe in H2O2- and butyric acid-treated HGFs. The fatty acid composition of plasma membranes after incubation with DHA was determined by gas chromatography mass spectrometry. DHA preincubation in a dose-dependent manner increased the viability of HGFs exposed to H2O2 and decreased ROS generation compared to the control cells. In HGFs preincubated with 30μM DHA, the ΔΨm significantly increased in both H2O2- and butyric acid-treated cells. Moreover, incubation with DHA preserved the protein thiol level as effectively as N-acetylcysteine. Application of 50μM DHA increased the quantity of viable cells, decreased the number of necrotic cells after H2O2 treatment, and protected HGFs from apoptosis induced by butyric acid. DHA in the plasma membranes of these HGFs represented about 6% of the total amount of fatty acids. These results demonstrate that enrichment of HGFs with DHA reduces ROS generation and enhances the mitochondrial membrane potential protecting the fibroblasts against cytotoxic factors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Continuous in situ measurements of volcanic gases with a diode-laser-based spectrometer: CO2 and H2O concentration and soil degassing at Vulcano (Aeolian islands: Italy).

    PubMed

    De Rosa, Maurizio; Gagliardi, Gianluca; Rocco, Alessandra; Somma, Renato; De Natale, Paolo; De Natale, Giuseppe

    2007-04-20

    We report on a continuous-measurement campaign carried out in Vulcano (Aeolian islands, Sicily), devoted to the simultaneous monitoring of CO2 and H2O concentrations. The measurements were performed with an absorption spectrometer based on a semiconductor laser source emitting around a 2-microm wavelength. The emitted radiation was selectively absorbed by two molecular ro-vibrational transitions specific of the investigated species. Data for CO2 and H2O concentrations, and CO2 soil diffusive flux using an accumulation chamber configuration, were collected at several interesting sampling points on the island (Porto Levante beach- PLB, Fossa Grande Crater - FOG- and Valley of Palizzi, PAL). CO2/H2O values, measured on the ground, are very similar (around 0.019 (+/- 0.006)) and comparable to the previous discrete detected values of 0.213 (Fumarole F5-La Fossa crater rim) and 0.012 (Fumarole VFS - Baia Levante beach) obtaid during the 1977-1993 heating phase of the crater fumaroles. In this work much more homogeneous values are found in different points of the three sites investigated. The field work, although carried out in a limited time window (25th-28th August 2004), pointed out the new apparatus is suitable for continuous gas monitoring of the two species and their ratios, which are important geochemical indicators of volcanic activity, for which other reliable continuous monitoring systems are not yet available.

  17. Isolation of an oxomanganese(V) porphyrin intermediate in the reaction of a manganese(III) porphyrin complex and H2O2 in aqueous solution.

    PubMed

    Nam, Wonwoo; Kim, Inwoo; Lim, Mi Hee; Choi, Hye Jin; Lee, Je Seung; Jang, Ho G

    2002-05-03

    The reaction of [Mn(TF(4)TMAP)](CF(3)SO(3))(5) (TF(4)TMAP=meso-tetrakis(2,3,5,6-tetrafluoro-N,N,N-trimethyl-4-aniliniumyl)porphinato dianion) with H(2)O(2) (2 equiv) at pH 10.5 and 0 degrees C yielded an oxomanganese(V) porphyrin complex 1 in aqueous solution, whereas an oxomanganese(IV) porphyrin complex 2 was generated in the reactions of tert-alkyl hydroperoxides such as tert-butyl hydroperoxide and 2-methyl-1-phenyl-2-propyl hydroperoxide. Complex 1 was capable of epoxidizing olefins and exchanging its oxygen with H(2) (18)O, whereas 2 did not epoxidize olefins. From the reactions of [Mn(TF(4)TMAP)](5+) with various oxidants in the pH range 3-11, the O-O bond cleavage of hydroperoxides was found to be sensitive to the hydroperoxide substituent and the pH of the reaction solution. Whereas the O-O bond of hydroperoxides containing an electron-donating tert-alkyl group is cleaved homolytically, an electron-withdrawing substituent such as an acyl group in m-chloroperoxybenzoic acid (m-CPBA) facilitates O-O bond heterolysis. The mechanism of the O-O bond cleavage of H(2)O(2) depends on the pH of the reaction solution: O-O bond homolysis prevails at low pH and O-O bond heterolysis becomes a predominant pathway at high pH. The effect of pH on (18)O incorporation from H(2) (18)O into oxygenated products was examined over a wide pH range, by carrying out the epoxidation of carbamazepine (CBZ) with [Mn(TF(4)TMAP)](5+) and KHSO(5) in buffered H(2) (18)O solutions. A high proportion of (18)O was incorporated into the CBZ-10,11-oxide product at all pH values but this proportion was not affected significantly by the pH of the reaction solution.

  18. Mitochondria-derived hydrogen peroxide selectively enhances T cell receptor-initiated signal transduction.

    PubMed

    Gill, Tejpal; Levine, Alan D

    2013-09-06

    T cell receptor (TCR)-initiated signal transduction is reported to increase production of intracellular reactive oxygen species, such as superoxide (O2˙(-)) and hydrogen peroxide (H2O2), as second messengers. Although H2O2 can modulate signal transduction by inactivating protein phosphatases, the mechanism and the subcellular localization of intracellular H2O2 as a second messenger of the TCR are not known. The antioxidant enzyme superoxide dismutase (SOD) catalyzes the dismutation of highly reactive O2˙(-) into H2O2 and thus acts as an intracellular generator of H2O2. As charged O2˙(-) is unable to diffuse through intracellular membranes, cells express distinct SOD isoforms in the cytosol (Cu,Zn-SOD) and mitochondria (Mn-SOD), where they locally scavenge O2˙(-) leading to production of H2O2. A 2-fold organelle-specific overexpression of either SOD in Jurkat T cell lines increases intracellular production of H2O2 but does not alter the levels of intracellular H2O2 scavenging enzymes such as catalase, membrane-bound peroxiredoxin1 (Prx1), and cytosolic Prx2. We report that overexpression of Mn-SOD enhances tyrosine phosphorylation of TCR-associated membrane proximal signal transduction molecules Lck, LAT, ZAP70, PLCγ1, and SLP76 within 1 min of TCR cross-linking. This increase in mitochondrial H2O2 specifically modulates MAPK signaling through the JNK/cJun pathway, whereas overexpressing Cu,Zn-SOD had no effect on any of these TCR-mediated signaling molecules. As mitochondria translocate to the immunological synapse during TCR activation, we hypothesize this translocation provides the effective concentration of H2O2 required to selectively modulate downstream signal transduction pathways.

  19. Double-side illuminated titania nanotubes for high volume hydrogen generation by water splitting

    NASA Astrophysics Data System (ADS)

    Mohapatra, Susanta K.; Mahajan, Vishal K.; Misra, Mano

    2007-11-01

    A sonoelectrochemical anodization method is proposed to synthesize TiO2 nanotubular arrays on both sides of a titanium foil (TiO2/Ti/TiO2). Highly ordered TiO2 nanotubular arrays of 16 cm2 area with uniform surface distribution can be obtained using this anodization procedure. These double-sided TiO2/Ti/TiO2 materials are used as both photoanode (carbon-doped titania nanotubes) and cathode (Pt nanoparticles dispersed on TiO2 nanotubes; PtTiO2/Ti/PtTiO2) in a specially designed photoelectrochemical cell to generate hydrogen by water splitting at a rate of 38 ml h-1. The nanomaterials are characterized by FESEM, HRTEM, STEM, EDS, FFT, SAED and XPS techniques. The present approach can be used for large-scale hydrogen generation using renewable energy sources.

  20. N3 and O2 protonated tautomeric conformations of 2'-deoxycytidine and cytidine coexist in the gas phase.

    PubMed

    Wu, R R; Yang, Bo; Frieler, C E; Berden, G; Oomens, J; Rodgers, M T

    2015-05-07

    Infrared multiple photon dissociation action spectra of the protonated forms of the cytidyl nucleosides, 2'-deoxycytidine, [dCyd+H](+), and cytidine, [Cyd+H](+), are acquired over the IR fingerprint and hydrogen-stretching regions. Electronic structure calculations are performed at the B3LYP/6-311+G(d,p) level to determine the stable low-energy tautomeric conformations of these species generated upon electrospray ionization (ESI) and to generate the linear IR absorption spectra of these protonated nucleosides. Comparison between the experimental and theoretical spectra allows the tautomeric conformations of [dCyd+H](+) and [Cyd+H](+) populated by ESI to be determined. B3LYP predicts N3 as the preferred protonation site for both [dCyd+H](+) and [Cyd+H](+), whereas MP2 suggests that protonation at O2 is more favorable. The 2'-hydroxyl substituent does not significantly alter the structures of the B3LYP N3 and MP2 O2 protonated ground tautomeric conformations of [dCyd+H](+) vs [Cyd+H](+). [dCyd+H](+) and [Cyd+H](+) exhibit very similar spectral signatures in both regions. Nonetheless, the 2'-hydroxyl does affect the relative intensities of the IRMPD bands of [dCyd+H](+) vs [Cyd+H](+). The spectral features observed in the hydrogen-stretching region complement those of the fingerprint region and allow the N3 and O2 protonated tautomeric conformations to be readily distinguished. Comparison between the measured and computed spectra indicates that both N3 and O2 protonated tautomeric conformations coexist in the experiments, and the populations are dominated by the most stable N3 and O2 protonated tautomeric conformations. Least-squares fitting of the IRMPD spectra to the IR spectra for these most stable conformers suggests relative populations of ∼55% N3 vs 45% O2 protonated conformers of [dCyd+H](+), whereas ∼47% N3 vs 53% O2 protonated conformers of [Cyd+H](+). This change in the preferred site of protonation indicates that the 2'-hydroxyl substituent plays an important role in controlling the reactivity of the cytidyl nucleosides.

  1. Direct and Selective Synthesis of Hydrogen Peroxide over Palladium-Tellurium Catalysts at Ambient Pressure.

    PubMed

    Tian, Pengfei; Xu, Xingyan; Ao, Can; Ding, Doudou; Li, Wei; Si, Rui; Tu, Weifeng; Xu, Jing; Han, Yi-Fan

    2017-09-11

    Highly selective hydrogen peroxide (H 2 O 2 ) synthesis directly from H 2 and O 2 is a strongly desired reaction for green processes. Herein a highly efficient palladium-tellurium (Pd-Te/TiO 2 ) catalyst with a selectivity of nearly 100 % toward H 2 O 2 under mild conditions (283 K, 0.1 MPa, and a semi-batch continuous flow reactor) is reported. The size of Pd particles was remarkably reduced from 2.1 nm to 1.4 nm with the addition of Te. The Te-modified Pd surface could significantly weaken the dissociative activation of O 2 , leading to the non-dissociative hydrogenation of O 2 . Density functional theory calculations illuminated the critical role of Te in the selective hydrogenation of O 2 , in that the active sites composed of Pd and Te could significantly restrain side reactions. This work has made significant progress on the development of high-selectivity catalysts for the direct synthesis of H 2 O 2 at ambient pressure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Topical treatment of oral cavity and wounded skin with a new disinfection system utilizing photolysis of hydrogen peroxide in rats.

    PubMed

    Yamada, Yasutomo; Mokudai, Takayuki; Nakamura, Keisuke; Hayashi, Eisei; Kawana, Yoshiko; Kanno, Taro; Sasaki, Keiichi; Niwano, Yoshimi

    2012-01-01

    The present study aimed to evaluate the acute locally injurious property of hydroxyl radical generation system by photolysis of H(2)O(2), which is a new disinfection system for the treatment of periodontitis developed in our laboratory. Firstly, generation of the hydroxyl radical by a test device utilizing the photolysis of H(2)O(2) was confirmed by applying an electron spin resonance (ESR)-spin trapping technique. Secondly, the bactericidal effect of the device was examined under a simulant condition in which Staphylococcus aureus suspended in 1 M H(2)O(2) was irradiated with laser light emitted from the test device, resulting in substantial reduction of the colony forming unit of the bacteria within a short time as 2 min. Finally, acute topical effect of the disinfection system on rat oral mucosa and wounded skin was evaluated by histological examination. No abnormal findings were observed in the buccal mucosal region treated three times with 1 M H(2)O(2) and irradiation. Similarly, no abnormal findings were observed during the healing of skin treated with 1 M H(2)O(2) and irradiation immediately after wounding. Since topical treatment with the novel disinfection technique utilizing the photolysis of H(2)O(2) had no detrimental effect on the oral mucosa and the healing of full thickness skin wounds in rats, it is expected that the acute locally injurious property of the disinfection technique is low.

  3. RECOVERY OF URANIUM VALUES FROM URANIUM BEARING RAW MATERIALS

    DOEpatents

    Michal, E.J.; Porter, R.R.

    1959-06-16

    Uranium leaching from ground uranium-bearing raw materials using MnO/sub 2/ in H/sub 2/SO/sub 4/ is described. The MnO/sub 2/ oxidizes U to the leachable hexavalent state. The MnO/sub 2/ does not replace Fe normally added, because the Fe complexes P and catalyzes the MnO/sub 2/ reaction. Three examples of continuous processes are given, but batch operation is also possible. The use of MnO/sub 2/ makes possible recovery of very low U values. (T.R.H.)

  4. Porphyrin-induced photogeneration of hydrogen peroxide determined using the luminol chemiluminescence method in aqueous solution: A structure-activity relationship study related to the aggregation of porphyrin.

    PubMed

    Komagoe, Keiko; Katsu, Takashi

    2006-02-01

    A luminol chemiluminescence method was used to evaluate the porphyrin-induced photogeneration of hydrogen peroxide (H2O2). This method enabled us to detect H202 in the presence of a high concentration of porphyrin, which was not possible using conventional colorimetry. The limit of detection was about 1 microM. We compared the ability to generate H2O2, using uroporphyrin (UP), hexacarboxylporphyrin (HCP), coproporphyrin (CP), hematoporphyrin (HP), mesoporphyrin (MP), and protoporphyrin (PP). The amount of H2O2 photoproduced was strongly related to the state of the porphyrin in the aqueous solution. UP and HCP, which existed predominantly in a monomeric form, had a good ability to produce H2O2. HP and MP, existing as dimers, showed weak activity. CP, forming a mixture of monomer and dimer, had a moderate ability to produce H2O2. PP, which was highly aggregated, had a good ability. These results demonstrated that the efficiency of porphyrins to produce H2O2 was strongly dependent on their aggregated form, and the dimer suppressed the production of H2O2.

  5. What is limiting low-temperature atomic layer deposition of Al{sub 2}O{sub 3}? A vibrational sum-frequency generation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandalon, V., E-mail: v.vandalon@tue.nl, E-mail: w.m.m.kessels@tue.nl; Kessels, W. M. M., E-mail: v.vandalon@tue.nl, E-mail: w.m.m.kessels@tue.nl

    2016-01-04

    The surface reactions during atomic layer deposition (ALD) of Al{sub 2}O{sub 3} from Al(CH{sub 3}){sub 3} and H{sub 2}O have been studied with broadband sum-frequency generation to reveal what is limiting the growth at low temperatures. The –CH{sub 3} surface coverage was measured for temperatures between 100 and 300 °C and the absolute reaction cross sections, describing the reaction kinetics, were determined for both half-cycles. It was found that –CH{sub 3} groups persisted on the surface after saturation of the H{sub 2}O half-cycle. From a direct correlation with the growth per cycle, it was established that the reduced reactivity of H{submore » 2}O towards –CH{sub 3} is the dominant factor limiting the ALD process at low temperatures.« less

  6. Infrared and Microwave Spectra of Ne-WATER Complex

    NASA Astrophysics Data System (ADS)

    Liu, Xunchen; Thomas, Javix; Xu, Yunjie; Hou, Dan; Li, Hui

    2016-06-01

    The binary complex of rare gas atom and water is an ideal model to study the anisotropic potential energy surface of van der Waals interaction and the large amplitude motion. Although Xe-H_2O, Kr-H_2O, Ar-H_2O, Ar-D_2O and even Ne-D_2O complexes were studied by microwave or high resolution infrared spectroscopy, the lighter Ne-H_2O complex has remained unidentified. In this talk, we will present the theoretical and experimental investigation of the Ne-H_2O complex. A four-dimension PES for H_2O-Ne which only depended on the intramolecular (Q2) normal-mode coordinate of H2O monomer was calculated in this work to determine the rovibrational energy levels and mid-infrared transitions. Aided with the calculated transitions, we were able to assigned the high resolution mid-infrared spectra of both 20Ne-H_2O and 22Ne-H_2O complexes that are generated with a pulsed supersonic molecular beam in a multipass direct absorption spectrometer equiped with an external cavity quantum cascade laser at 6 μm. Several bands of both para and ortho Ne-H2O were assigned and fitted using the Hamiltonian with strong Coriolis and angular-radical coupling terms. The predicted groud state energy levels are then confirmed by the J=1-0 and J=2-1 transitions measurement using a cavity based Fourier transform microwave spectrometer.

  7. Survival of foodborne pathogens on commercially packed table grapes under simulated refrigerated transit conditions.

    PubMed

    Carter, Michelle Qiu; Feng, Doris; Chapman, Mary H; Gabler, Franka

    2018-06-01

    We examined the survival of Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella enterica Thompson inoculated on commercially packed table grapes under simulated refrigerated transit conditions (1.1 ± 0.5 °C; 90% RH). Grapes were placed in perforated polyethylene cluster bags, within a commercial expanded polystyrene box equipped with either a SO 2 -generating pad; a perforated polyethylene box liner; a SO 2 -generating pad and a box liner; or none of them. L. monocytogenes was most sensitive to SO 2 -generating pad. SO 2 -generating pad or SO 2 -generating pad with box liner inactivated this pathogen completely on day 12 following the inoculation. S. enterica Thompson displayed a similar cold sensitivity as L. monocytogenes, but was more resistant to SO 2 -generating pad than L. monocytogenes. While SO 2 -generating pad eliminated S. enterica Thompson on day 20, a combination of box liner with SO 2 -generating pad inactivated this pathogen completely on day 13. E. coli O157:H7 had the highest tolerance to transit temperature and to SO 2 -generating pad; SO 2 -generating pad inactivated this pathogen completely on Day 20. Our data suggest that use of SO 2 -generating pad combined with box liner is effective in reducing foodborne pathogens L. monocytogenes and S. enterica Thompson, while the use of SO 2 -generating pad alone was more effective on E. coli O157:H7. Published by Elsevier Ltd.

  8. Hydrogen peroxide (H/sub 2/O/sub 2/) stimulates the active transport of 5-hydroxytryptamine (5-HT) into platelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosin, T.R.

    1986-03-01

    Platelets function in a variety of physiological and pathological processes which may be altered by oxidant injury. One such process is the active transport 5-HT, which is an important mechanism in the control of circulating 5-HT levels. Exposure of mouse platelets (10/sup 8//ml) to H/sub 2/O/sub 2/ caused a time-dependent and dose-dependent increase in 5-HT (10/sup -7/M) uptake. The uptake 4 and 10 min following H/sub 2/O/sub 2/ (50 ..mu..M) was 228% and 145% of control values, respectively. Fluoxetine (10/sup -6/M) blocked all 5-HT uptake and catalase (1500 U/ml) blocked the H/sub 2/O/sub 2/-stimulated uptake. Enzymatically produced H/sub 2/O/sub 2/more » (glucose/glucose oxidase) and xanthine (X)/xanthine oxidase (XO) generated oxygen radicals produced quantitatively and qualitatively similar results. The stimulatory response of platelets to X/XO generated oxidants was unaffected by superoxide dismutase (250 U/ml) but, was inhibited using heat-denatured XO, allopurinol (0.5 mM) and catalase; fluoxetine inhibited all 5-HT uptake. Platelets exposed to X/XO in the presence of chelated (EDTA, 100 ..mu..M) or unchelated FeSO/sub 4/, FeNH/sub 4/(SO/sub 4/)/sub 2/ or CuCl (50 ..mu..M) did not have altered 5-HT uptake. These data indicate that brief exposure of platelets to physiological levels of H/sub 2/O/sub 2/ results in marked, reversible stimulation of active 5-HT uptake which may represent a homeostatic defense mechanism when H/sub 2/O/sub 2/ is elevated in the platelet microenvironment.« less

  9. Photoproduction of One-Electron Reducing Intermediates by Chromophoric Dissolved Organic Matter (CDOM): Relation to O2- and H2O2 Photoproduction and CDOM Photooxidation.

    PubMed

    Zhang, Yi; Blough, Neil V

    2016-10-06

    A molecular probe, 3-amino-2,2,5,5,-tetramethy-1-pyrrolydinyloxy (3ap), was employed to determine the formation rates of one-electron reducing intermediates generated photochemically from both untreated and borohydride-reduced Suwanee River fulvic and humic acids (SRFA and SRHA, respectively). This stable nitroxyl radical reacts rapidly with reducing radicals and other one-electron reductants to produce a relatively stable product, the hydroxylamine, which can be derivatized with fluorescamine, separated by HPLC and quantified fluorimetrically. We provide evidence that O 2 and 3ap compete for the same pool(s) of photoproduced reducing intermediates, and that under appropriate experimental conditions, the initial rate of hydroxylamine formation (R H ) can provide an estimate of the initial rate of superoxide (O 2 - ) formation. However, comparison of the initial rates of H 2 O 2 formation (R H2O2 ) to that of R H show far larger ratios of R H /R H2O2 (∼6-13) than be accounted for by simple O 2 - dismutation (R H /R H2O2 = 2), implying a significant oxidative sink of O 2 - (∼67-85%). Because of their high reactivity with O 2 - and their likely importance in the photochemistry of CDOM, we suggest that coproduced phenoxy radicals could represent a viable oxidative sink. Because O 2 - /phenoxy radical reactions can lead to more highly oxidized products, O 2 - could be playing a far more significant role in the photooxidation of CDOM than has been previously recognized.

  10. Degradation of bisphenol A in aqueous solution by H2O2-assisted photoelectrocatalytic oxidation.

    PubMed

    Xie, Yi-Bing; Li, Xiang-Zhong

    2006-12-01

    A series of titanium dioxide (TiO(2)/Ti) film electrodes were prepared from titanium (Ti) metal mesh by an improved anodic oxidation process and were further modified by photochemically depositing gold (Au) on the TiO(2) film surface as Au-TiO(2)/Ti film electrodes. The morphological characteristics, crystal structure and photoelectroreactivity of both the TiO(2)/Ti and Au-TiO(2)/Ti electrodes were studied. The experiments confirmed that the gold modification of TiO(2) film could enhance the efficiency of e(-)/h(+) separation on the TiO(2) conduction band and resulted in the higher photocatalytic (PC) and photoelectrocatalytic (PEC) activity under UV or visible illumination. To further enhance the TiO(2) PEC reaction, a reticulated vitreous carbon (RVC) electrode was applied in the same reaction system as the cathode to electrically generate H(2)O(2) in the aqueous solution. The experiments demonstrated that such a H(2)O(2)-assisted TiO(2) PEC reaction system could achieve a much better performance of BPA degradation in aqueous solution due to an interactive effect among TiO(2), Au, and H(2)O(2). It may have good potential for application in water and wastewater treatment in the future.

  11. VUV photoionization cross sections of HO2, H2O2, and H2CO.

    PubMed

    Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio

    2015-02-26

    The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra.

  12. Flow cytometric HyPer-based assay for hydrogen peroxide.

    PubMed

    Lyublinskaya, O G; Antonov, S A; Gorokhovtsev, S G; Pugovkina, N A; Kornienko, Ju S; Ivanova, Ju S; Shatrova, A N; Aksenov, N D; Zenin, V V; Nikolsky, N N

    2018-05-30

    HyPer is a genetically encoded fluorogenic sensor for hydrogen peroxide which is generally used for the ratiometric imaging of H 2 O 2 fluxes in living cells. Here, we demonstrate the advantages of HyPer-based ratiometric flow cytometry assay for H 2 O 2 , by using K562 and human mesenchymal stem cell lines expressing HyPer. We show that flow cytometry analysis is suitable to detect HyPer response to submicromolar concentrations of extracellularly added H 2 O 2 that is much lower than concentrations addressed previously in the other HyPer-based assays (such as cell imaging or fluorimetry). Suggested technique is also much more sensitive to hydrogen peroxide than the widespread flow cytometry assay exploiting H 2 O 2 -reactive dye H 2 DCFDA and, contrary to the H 2 DCFDA-based assay, can be employed for the kinetic studies of H 2 O 2 utilization by cells, including measurements of the rate constants of H 2 O 2 removal. In addition, flow cytometry multi-parameter ratiometric measurements enable rapid and high-throughput detection of endogenously generated H 2 O 2 in different subpopulations of HyPer-expressing cells. To sum up, HyPer can be used in multi-parameter flow cytometry studies as a highly sensitive indicator of intracellular H 2 O 2 . Copyright © 2018. Published by Elsevier Inc.

  13. Hydroxyl radical generation in electro-Fenton process with a gas-diffusion electrode: Linkages with electro-chemical generation of hydrogen peroxide and iron redox cycle.

    PubMed

    Yatagai, Tomonori; Ohkawa, Yoshiko; Kubo, Daichi; Kawase, Yoshinori

    2017-01-02

    The hydroxyl radical generation in an electro-Fenton process with a gas-diffusion electrode which is strongly linked with electro-chemical generation of hydrogen peroxide and iron redox cycle was studied. The OH radical generation subsequent to electro-chemical generations of H 2 O 2 was examined under the constant potential in the range of Fe 2+ dosage from 0 to 1.0 mM. The amount of generated OH radical initially increased and gradually decreased after the maximum was reached. The initial rate of OH radical generation increased for the Fe 2+ dosage <0.25 mM and at higher Fe 2+ dosages remained constant. At higher Fe 2+ dosages the precipitation of Fe might inhibit the enhancement of OH radical generation. The experiments for decolorization and total organic carbon (TOC) removal of azo-dye Orange II by the electro-Fenton process were conducted and the quick decolorization and slow TOC removal of Orange II were found. To quantify the linkages of OH radical generation with dynamic behaviors of electro-chemically generated H 2 O 2 and iron redox cycle and to investigate effects of OH radical generation on the decolorization and TOC removal of Orange II, novel reaction kinetic models were developed. The proposed models could satisfactory clarify the linkages of OH radical generation with electro-chemically generated H 2 O 2 and iron redox cycle and simulate the decolorization and TOC removal of Orange II by the electro-Fenton process.

  14. Characteristics of ZnO nanostructures synthesized by sonochemical reaction: Effects of continuous and pulse waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widiyastuti, W., E-mail: widi@chem-eng.its.ac.id; Machmudah, Siti; Kusdianto,

    Nanostructured ZnO was synthesized by a sonochemical reaction. Ultrasonic irradiation were set up in continuous, pulse in 3 seconds on and a second off (on:off=3:1), and pulse in 2 seconds on and a second off (on:off=2:1) wave modes for 1.5 hours. The characteristics of particles generated by these modes such as morphology, crystallinity, FTIR, photoluminescence, and photocatalytic activity to degrade methylene blue were compared. Zinc nitrate and ammonia water-based solutions were selected as chemicals without the addition of other surfactants. The morphology of the generated ZnO particles could be tuned from flower-like, needle- or hairy-like, and spherical structures by changingmore » the mode of ultrasonic irradiation from continuous, on:off=3:1, and on:off=2:1 modes, respectively. The generated particles indicated that a wurtzite structure of ZnO in a hexagonal phase was formed. The crystalline sizes of particles generated in continuous, on:off=3:1, and on:off=2:1 modes were 28, 27, 24 nm. A similar position of reduction peak of FTIR in all samples indicated that no differences in particles chemical bonding characteristics. Photoluminescence intensity was also decreased with changes the wave mode from continuous to pulse. Photocatalytic activity was also evaluated resulting in particles synthesized by continuous mode had the highest methylene blue degradation degree following by on:off=3:1, and on:off=2:1 modes.« less

  15. Characteristics of ZnO nanostructures synthesized by sonochemical reaction: Effects of continuous and pulse waves

    NASA Astrophysics Data System (ADS)

    Widiyastuti, W.; Machmudah, Siti; Kusdianto, Nurtono, Tantular; Winardi, Sugeng

    2015-12-01

    Nanostructured ZnO was synthesized by a sonochemical reaction. Ultrasonic irradiation were set up in continuous, pulse in 3 seconds on and a second off (on:off=3:1), and pulse in 2 seconds on and a second off (on:off=2:1) wave modes for 1.5 hours. The characteristics of particles generated by these modes such as morphology, crystallinity, FTIR, photoluminescence, and photocatalytic activity to degrade methylene blue were compared. Zinc nitrate and ammonia water-based solutions were selected as chemicals without the addition of other surfactants. The morphology of the generated ZnO particles could be tuned from flower-like, needle- or hairy-like, and spherical structures by changing the mode of ultrasonic irradiation from continuous, on:off=3:1, and on:off=2:1 modes, respectively. The generated particles indicated that a wurtzite structure of ZnO in a hexagonal phase was formed. The crystalline sizes of particles generated in continuous, on:off=3:1, and on:off=2:1 modes were 28, 27, 24 nm. A similar position of reduction peak of FTIR in all samples indicated that no differences in particles chemical bonding characteristics. Photoluminescence intensity was also decreased with changes the wave mode from continuous to pulse. Photocatalytic activity was also evaluated resulting in particles synthesized by continuous mode had the highest methylene blue degradation degree following by on:off=3:1, and on:off=2:1 modes.

  16. Copper Nanowires: A Substitute for Noble Metals to Enhance Photocatalytic H2 Generation.

    PubMed

    Xiao, Shuning; Liu, Peijue; Zhu, Wei; Li, Guisheng; Zhang, Dieqing; Li, Hexing

    2015-08-12

    Microwave-assisted hydrothermal approach was developed as a general strategy to decorate copper nanowires (CuNWs) with nanorods (NRs) or nanoparticles (NPs) of metal oxides, metal sulfides, and metal organic frameworks (MOFs). The microwave irradiation induced local "super hot" dots generated on the CuNWs surface, which initiated the adsorption and chemical reactions of the metal ions, accompanied by the growth and assembly of NPs building blocks along the metal nanowires' surfaces. This solution-processed approach enables the NRs (NPs) @CuNWs hybrid structure to exhibit three unique characteristics: (1) high coverage density of NRs (NPs) per NWs with the morphology of NRs (NPs) directly growing from the CuNWs core, (2) intimate contact between CuNWs and NRs (NPs), and (3) flexible choices of material composition. Such hybrid structures also increased light absorption by light scattering. In general, the TiO2/CuNWs showed excellent photocatalytic activity for H2 generation. The corresponding hydrogen production rate is 5104 μmol h(-1) g(-1) with an apparent quantum yield (AQY) of 17.2%, a remarkably high AQY among the noble-metal free TiO2 photocatalysts. Such performance may be associated with the favorable geometry of the hybrid system, which is characterized by a large contact area between the photoactive materials (TiO2) and the H2 evolution cocatalyst (Cu), the fast and short diffusion paths of photogenerated electrons transferring from the TiO2 to the CuNWs. This study not only shows a possibility for the utilization of low cost copper nanowires as a substitute for noble metals in enhanced solar photocatalytic H2 generation but also exhibits a general strategy for fabricating other highly active H2 production photocatalysts by a facile microwave-assisted solution approach.

  17. Carbon Nanodots as Dual-Mode Nanosensors for Selective Detection of Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Shen, Cheng-Long; Su, Li-Xia; Zang, Jin-Hao; Li, Xin-Jian; Lou, Qing; Shan, Chong-Xin

    2017-07-01

    Hydrogen peroxide (H2O2) is an important product of oxidase-based enzymatic reactions, such as glucose/glucose oxidase (GOD) reaction. Therefore, the probing of generated H2O2 for achieving the detection of various carbohydrates and their oxidases is very significative. Herein, we report one kind of dual-emission carbon nanodots (CDs) that can serve as novel dual-mode nanosensors with both fluorometric and colorimetric output for the selective detection of H2O2. The dual-model nanosensors are established only by the undecorated dual-emission CDs, where significant fluorometric and colorimetric changes are observed with the addition of different concentrations of H2O2 in the CD solution, which benefit to the achievement of the naked-eye detection for H2O2. The mechanism of the nanosensors can be attributed to the fact that the external chemical stimuli like hydroxyl radicals from H2O2 bring about the change of surface properties and the aggregation of CDs, which dominate the emission and absorption of CDs. The constructed dual-mode nanosensors exhibit good biocompatibility and high selectivity toward H2O2 with a linear detection range spanning from 0.05 to 0.5 M and allow the detection of H2O2 as low as 14 mM.

  18. Production of Hydroxyl Radical via the Activation of Hydrogen Peroxide by Hydroxylamine.

    PubMed

    Chen, Liwei; Li, Xuchun; Zhang, Jing; Fang, Jingyun; Huang, Yanmin; Wang, Ping; Ma, Jun

    2015-09-01

    The production of the hydroxyl radical (HO·) is important in environmental chemistry. This study reports a new source of HO· generated solely from hydrogen peroxide (H2O2) activated by hydroxylamine (HA). Electron paramagnetic resonance analysis and the oxidation of a HO· probe, benzoic acid, were used to confirm the production of HO·. The production of HO· increased with increasing concentrations of either HA or H2O2 as well as decreasing pH. The second-order rate constant for the reaction was (2.2 ± 0.2) × 10(-4) M(-1) s(-1). HO· was probably produced in two steps: the activation of H2O2 by protonated HA and then reaction between the H2O2 and the intermediate protonated aminoxyl radical generated in the first step. Such a two-step oxidation can possibly be ascribed to the ionizable hydroxyl moiety in the molecular structure of HA, as is suggested by comparing the reactivity of a series of HA derivatives in HO· production. The results shed light on a previously unknown source of HO· formation, which broadens the understanding of its role in environmental processes.

  19. Bis(2,2′-bipyridyl-κ2 N,N′)(carbonato-κ2 O,O′)cobalt(III) bromide trihydrate

    PubMed Central

    Ma, Peng-Tao; Wang, Yu-Xia; Zhang, Guo-Qian; Li, Ming-Xue

    2008-01-01

    The title complex, [Co(CO3)(C10H8N2)2]Br·3H2O, is isostructural with the chloride analogue. The six-coordinated octahedral [Co(2,2′-bipy)2CO3]+ cation (2,2′-bipy is 2,2′-bipyrid­yl), bromide ion and water mol­ecules are linked together via O—H⋯Br and O—H⋯O hydrogen bonds, generating a one-dimensional chain. PMID:21200495

  20. PREDICTING FENTON-DRIVEN DEGRADATION USING CONTAMINANT ANALOG

    EPA Science Inventory

    The reaction of hydrogen peroxide (H2O2) and Fe(II) (Fenton's reaction) generates hydroxyl radicals (OH) that can be used to oxidize contaminants in soils and aquifers. In such environments, insufficient iron, reactions involving H2O2 that do not yield OH, and OH reactions with ...

  1. Susceptibility of Trichophyton quinckeanum and Trichophyton rubrum to products of oxidative metabolism.

    PubMed

    Calderon, R A; Shennan, G I

    1987-07-01

    Two dermatophyte strains, Trichophyton quinckeanum and Trichophyton rubrum, were highly susceptible to in vitro killing by components of the H2O2-peroxidase-halide system. Both strains were, however, resistant to relatively high concentrations of reagent H2O2 or H2O2 enzymatically generated by glucose and glucose oxidase, KI, or lactoperoxidase (LPO) alone. Resistance to hydrogen peroxidase killing was found to be in part due to the presence of endogenous catalase in the fungi; susceptibility was increased by pretreatment of the fungi with a catalase inhibitor. Kinetic studies using small quantities of reagent or enzymatically generated H2O2 and LPO-KI showed that the system was lethal for both fungal strains within 1 min. Furthermore, using the glucose-glucose oxidase-LPO-KI system, it was shown that catalase, superoxide dismutase and histidine scavengers of H2O2, superoxide anion and singlet oxygen, respectively, prevented the killing of fungus, whereas scavengers of hydroxyl radicals such as benzoate and mannitol had no effect. T. quinckeanum was found to contain large quantities of superoxide anion, as judged by the nitroblue-tetrazolium test. Consequently, the xanthine (or hypoxanthine) and xanthine oxidase system in which the main product is superoxide anion had no toxic effect on the fungus. The high sensitivity of dermatophytes to killing by the H2O2-peroxidase-halide system active in polymorphonuclear neutrophils and macrophages may account in part for fungal toxicity in vivo.

  2. Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser.

    PubMed

    Cao, Yingchun; Sanchez, Nancy P; Jiang, Wenzhe; Griffin, Robert J; Xie, Feng; Hughes, Lawrence C; Zah, Chung-en; Tittel, Frank K

    2015-02-09

    A continuous wave (CW) quantum cascade laser (QCL) based absorption sensor system was demonstrated and developed for simultaneous detection of atmospheric nitrous oxide (N(2)O), methane (CH(4)), and water vapor (H(2)O). A 7.73-µm CW QCL with its wavelength scanned over a spectral range of 1296.9-1297.6 cm(-1) was used to simultaneously target three neighboring strong absorption lines, N(2)O at 1297.05 cm(-1), CH(4) at 1297.486 cm(-1), and H(2)O at 1297.184 cm(-1). An astigmatic multipass Herriott cell with a 76-m path length was utilized for laser based gas absorption spectroscopy at an optimum pressure of 100 Torr. Wavelength modulation and second harmonic detection was employed for data processing. Minimum detection limits (MDLs) of 1.7 ppb for N(2)O, 8.5 ppb for CH(4), and 11 ppm for H(2)O were achieved with a 2-s integration time for individual gas detection. This single QCL based multi-gas detection system possesses applications in environmental monitoring and breath analysis.

  3. [Bactericidal effect of soybean peroxidase-hydrogen peroxide-potassium iodide system].

    PubMed

    Jin, Jianling; Zhang, Weican; Li, Yu; Zhao, Yue; Wang, Fei; Gao, Peiji

    2011-03-01

    To study the bactericidal effect and the possible mechanisms of the three components system [soybean peroxidases (SBP)-hydrogen peroxide (H2O2)-potassium iodide (KI), SBP-H2O2-KI]. The inhibition and bactericidal effect of SBP-H2O2-KI system to bacteria was detected by OD600 and the number of live bacteria (CFU). The sensitivity was tested by comparing the minimum inhibitory concentration (MIC) of bacterial cultures before and after cultured under sub-lethal dose of SBP-H2O2-KI system. Oxidizing activity groups were detected with physical and chemical methods in order to explain the bactericidal mechanisms of SBP-H2O2-KI system. SBP-H2O2-KI ternary system had rapid and high efficient bactericidal effect to a variety of bacterial strains in just several minutes. The MICs had no significant changes when bacterial cultures continuously cultured in sub-lethal dose of SBP-H2O2-KI system, and no resistance/tolerance mutant strains could be isolated from them. Both physical and chemical test results showed that no hydroxyl radical produced in SBP- H2O2-KI reaction system, chemical test results showed that no superoxide anion but a singlet oxygen and iodine produced in SBP-H2O2-KI reaction system. These results suggested that singlet oxygen and iodine or the iodine intermediate state may possible be the main sterilization factors for SBP-H2O2-KI system, and hydroxyl radical and superoxide anion not. In addition, the both characteristics of SBP-H2O2-KI system: rapid and high efficient bactericidal effect, and bacteria difficultly resisting to it, indicated it would have a good potential application in medical and plant protection area.

  4. Facile synthesis of core-shell Cu2O@ ZnO structure with enhanced photocatalytic H2 production

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Hui; Jiu, Bei-Bei; Gong, Fei-Long; Lu, Kuan; Jiang, Nan; Zhang, Hao-Li; Chen, Jun-Li

    2018-05-01

    Core-shell Cu2O@ZnO composites were synthesized successfully based on a one-pot hydrothermal method in the presence of dioctyl sulfosuccinate sodium salt (AOT) surfactant. The Cu2O can be converted to rough core-shell Cu2O@ZnO structure by adjusting the amount of zinc powder added. The as-synthesized Cu2O@ZnO composites exhibited excellent photocatalytic activity and the amount of H2 generated using these composites was 4.5-fold more than that produced with Cu2O cubes. A possible photocatalytic mechanism for the Cu2O@ZnO composites with enhanced photocatalytic activity could be the separation by ZnO of the effective charge carriers.

  5. Collision-Induced Dissociation Study of Strong Hydrogen-Bonded Cluster Ions Y-(HF) n (Y=F, O2) Using Atmospheric Pressure Corona Discharge Ionization Mass Spectrometry Combined with a HF Generator.

    PubMed

    Sakamoto, Kenya; Sekimoto, Kanako; Takayama, Mitsuo

    2017-01-01

    Hydrogen fluoride (HF) was produced by a homemade HF generator in order to investigate the properties of strong hydrogen-bonded clusters such as (HF) n . The HF molecules were ionized in the form of complex ions associated with the negative core ions Y - produced by atmospheric pressure corona discharge ionization (APCDI). The use of APCDI in combination with the homemade HF generator led to the formation of negative-ion HF clusters Y - (HF) n (Y=F, O 2 ), where larger clusters with n ≥4 were not detected. The mechanisms for the formation of the HF, F - (HF) n , and O 2 - (HF) n species were discussed from the standpoints of the HF generator and APCDI MS. By performing energy-resolved collision-induced dissociation (CID) experiments on the cluster ions F - (HF) n ( n =1-3), the energies for the loss of HF from F - (HF) 3 , F - (HF) 2 , and F - (HF) were evaluated to be 1 eV or lower, 1 eV or higher, and 2 eV, respectively, on the basis of their center-of-mass energy ( E CM ). These E CM values were consistent with the values of 0.995, 1.308, and 2.048 eV, respectively, obtained by ab initio calculations. The stability of [O 2 (HF) n ] - ( n =1-4) was discussed on the basis of the bond lengths of O 2 H-F - (HF) n and O 2 - H-F(HF) n obtained by ab initio calculations. The calculations indicated that [O 2 (HF) 4 ] - separated into O 2 H and F - (HF) 3 .

  6. Hypochlorite and superoxide radicals can act synergistically to induce fragmentation of hyaluronan and chondroitin sulphates

    PubMed Central

    2004-01-01

    Activated phagocytes release the haem enzyme MPO (myeloperoxidase) and also generate superoxide radicals (O2•−), and hence H2O2, via an oxidative burst. Reaction of MPO with H2O2 in the presence of chloride ions generates HOCl (the physiological mixture of hypochlorous acid and its anion present at pH 7.4). Exposure of glycosaminoglycans to a MPO–H2O2–Cl− system or reagent HOCl generates long-lived chloramides [R-NCl-C(O)-R′] derived from the glycosamine N-acetyl functions. Decomposition of these species by transition metal ions gives polymer-derived amidyl (nitrogen-centred) radicals [R-N•-C(O)-R′], polymer-derived carbon-centred radicals and site-specific strand scission. In the present study, we have shown that exposure of glycosaminoglycan chloramides to O2•− also promotes chloramide decomposition and glycosaminoglycan fragmentation. These processes are inhibited by superoxide dismutase, metal ion chelators and the metal ion-binding protein BSA, consistent with chloramide decomposition and polymer fragmentation occurring via O2•−-dependent one-electron reduction, possibly catalysed by trace metal ions. Polymer fragmentation induced by O2•− [generated by the superoxide thermal source 1, di-(4-carboxybenzyl)hyponitrite] was demonstrated to be entirely chloramide dependent as no fragmentation occurred with the native polymers or when the chloramides were quenched by prior treatment with methionine. EPR spin-trapping experiments using 5,5-dimethyl1-pyrroline-N-oxide and 2-methyl-2-nitrosopropane have provided evidence for both O2•− and polymer-derived carbon-centred radicals as intermediates. The results obtained are consistent with a mechanism involving one-electron reduction of the chloramides to yield polymer-derived amidyl radicals, which subsequently undergo intramolecular hydrogen atom abstraction reactions to give carbon-centred radicals. The latter undergo fragmentation reactions in a site-specific manner. This synergistic damage to glycosaminoglycans induced by HOCl and O2•− may be of significance at sites of inflammation where both oxidants are generated concurrently. PMID:15078224

  7. Quantifying Fenton reaction pathways driven by self-generated H2O2 on pyrite surfaces

    NASA Astrophysics Data System (ADS)

    Gil-Lozano, C.; Davila, A. F.; Losa-Adams, E.; Fairén, A. G.; Gago-Duport, L.

    2017-03-01

    Oxidation of pyrite (FeS2) plays a significant role in the redox cycling of iron and sulfur on Earth and is the primary cause of acid mine drainage (AMD). It has been established that this process involves multi-step electron-transfer reactions between surface defects and adsorbed O2 and H2O, releasing sulfoxy species (e.g., S2O32-, SO42-) and ferrous iron (Fe2+) to the solution and also producing intermediate by-products, such as hydrogen peroxide (H2O2) and other reactive oxygen species (ROS), however, our understanding of the kinetics of these transient species is still limited. We investigated the kinetics of H2O2 formation in aqueous suspensions of FeS2 microparticles by monitoring, in real time, the H2O2 and dissolved O2 concentration under oxic and anoxic conditions using amperometric microsensors. Additional spectroscopic and structural analyses were done to track the dependencies between the process of FeS2 dissolution and the degradation of H2O2 through the Fenton reaction. Based on our experimental results, we built a kinetic model which explains the observed trend of H2O2, showing that FeS2 dissolution can act as a natural Fenton reagent, influencing the oxidation of third-party species during the long term evolution of geochemical systems, even in oxygen-limited environments.

  8. Nanostructured N-doped orthorhombic Nb2O5 as an efficient stable photocatalyst for hydrogen generation under visible light.

    PubMed

    Kulkarni, Aniruddha K; Praveen, C S; Sethi, Yogesh A; Panmand, Rajendra P; Arbuj, Sudhir S; Naik, Sonali D; Ghule, Anil V; Kale, Bharat B

    2017-11-07

    The synthesis of orthorhombic nitrogen-doped niobium oxide (Nb 2 O 5-x N x ) nanostructures was performed and a photocatalytic study carried out in their use in the conversion of toxic H 2 S and water into hydrogen under UV-Visible light. Nanostructured orthorhombic Nb 2 O 5-x N x was synthesized by a simple solid-state combustion reaction (SSCR). The nanostructural features of Nb 2 O 5-x N x were examined by FESEM and HRTEM, which showed they had a porous chain-like structure, with chains interlocked with each other and with nanoparticles sized less than 10 nm. Diffuse reflectance spectra depicted their extended absorbance in the visible region with a band gap of 2.4 eV. The substitution of nitrogen in place of oxygen atoms as well as Nb-N bond formation were confirmed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. A computational study (DFT) of Nb 2 O 5-x N x was also performed for investigation and conformation of the crystal and electronic structure. N-Substitution clearly showed a narrowing of the band gap due to N 2p bands cascading above the O 2p band. Considering the band gap in the visible region, Nb 2 O 5-x N x exhibited enhanced photocatalytic activity toward hydrogen evolution (3010 μmol h -1 g -1 ) for water splitting and (9358 μmol h -1 g -1 ) for H 2 S splitting under visible light. The enhanced photocatalytic activity of Nb 2 O 5-x N x was attributed to its extended absorbance in the visible region due to its electronic structure being modified upon doping, which in turn generates more electron-hole pairs, which are responsible for higher H 2 generation. More significantly, the mesoporous nanostructure accelerated the supression of electron and hole recombination, which also contributed to the enhancement of its activity.

  9. Two- and three-dimensional lanthanide-organic frameworks constructed using 1-hydro-6-oxopyridine-3-carboxylate and oxalate ligands.

    PubMed

    Liu, Cai-Ming; Xiong, Ming; Zhang, De-Qing; Du, Miao; Zhu, Dao-Ben

    2009-08-07

    6-Hydroxypyridine-3-carboxylic acid (6-HOPy-3-CO(2)H) reacts with Ln(2)O(3) (Ln = Nd, Sm, Eu, Gd) and oxalic acid (H(2)OX) under hydrothermal conditions to generate four novel lanthanide-organic coordination polymeric networks [Ln(2)(1H-6-Opy-3-CO(2))(2)(OX)(2)(H(2)O)(3)] x 2.5 H(2)O (Ln = Nd, 1; Sm, 2; 1H-6-Opy-3-CO(2)(-) = 1-hydro-6-oxopyridine-3-carboxylate) and [Ln(1H-6-Opy-3-CO(2))(OX)(H(2)O)(2)] x H(2)O (Ln = Eu, 3; Gd, 4). The new co-ligand 1H-6-Opy-3-CO(2)(-) anion was generated by the autoisomerization of the single deprotonated 6-HOPy-3-CO(2)(-) anion (from the enol form into the ketone one). 1 and 2 are isomorphous, they possess a three-dimensional architecture constructed from Ln(3+) ions bridged by oxalate anions and two types of 1H-6-Opy-3-CO(2)(-) bridges, showing a three-nodal (4,5)-connected topology (3.4(2).5(2).6(3).7.8)(2)(3.5(3).6(2))(2)(3(2).6.7(2).8) or a simplified uninodal 6-connected topology (3(3).4(6).5(5).6), both topologies are completely new; while only one type of 1H-6-Opy-3-CO(2)(-) bridge is used to construct the two-dimensional layer networks of 3 and 4 besides oxalate bridges, both complexes 3 and 4 are isostructural, exhibiting the honeycomb topology 6(3). The lanthanide contraction effect is believed to play a key role in directing the formation of a particular structure. A magnetic study of 1-3 indicated that the coupling interaction between Ln(3+) ions is weak.

  10. Two novel metal-organic coordination polymers based on diphosphonate and oxalate: Synthesis, structures and properties

    NASA Astrophysics Data System (ADS)

    Niu, Qing-Jun; Zheng, Yue-Qing; Zhou, Lin-Xia; Zhu, Hong-Lin

    2015-07-01

    Two 2-(1-imidazole)-1-hydroxyl-1,1'-ethylidenediphosphonato and oxalic acid bridged coordination polymers (H2en)[Co3(H2zdn)2(ox)(H2O)2] (1) and Cd2(H2zdn)(ox)0.5(H2O) (2) (2-(1-imidazole)-1-hydroxyl-1,1'-ethylidenediphosphonic acid=H5zdn; oxalic acid=H2ox) were synthesized under hydrothermal conditions and characterized by the infrared (IR), thermogravimetric analyses (TGA), elemental analyses (EA) and X-ray diffraction (XRD). Compound 1 is bridged by phosphonate anions to 1D chain, and further linked by oxalate anions to 2D layer. Compound 2 is bridged by O-P-O units of H5zdn to the layer, and then pillared by oxalate anions to generate 3D frameworks. Compound 1 shows anti-ferromagnetic behaviors analyzed with the temperature-dependent zero-field ac magnetic susceptibilities, while compound 2 exhibits an influence on the luminescent property.

  11. Single photon ionization of van der Waals clusters with a soft x-ray laser: (CO2)n and (CO2)n(H2O)m.

    PubMed

    Heinbuch, S; Dong, F; Rocca, J J; Bernstein, E R

    2006-10-21

    Pure neutral (CO2)n clusters and mixed (CO2)n(H2O)m clusters are investigated employing time of flight mass spectroscopy and single photon ionization at 26.5 eV. The distribution of pure (CO2)n clusters decreases roughly exponentially with increasing cluster size. During the ionization process, neutral clusters suffer little fragmentation because almost all excess cluster energy above the vertical ionization energy is taken away by the photoelectron and only a small part of the photon energy is deposited into the (CO2)n cluster. Metastable dissociation rate constants of (CO2)n+ are measured in the range of (0.2-1.5) x 10(4) s(-1) for cluster sizes of 5< or =n< or =16. Mixed CO2-H2O clusters are studied under different generation conditions (5% and 20% CO2 partial pressures and high and low expansion pressures). At high CO2 concentration, predominant signals in the mass spectrum are the (CO2)n+ cluster ions. The unprotonated cluster ion series (CO2)nH2O+ and (CO2)n(H2O)2+ are also observed under these conditions. At low CO2 concentration, protonated cluster ions (H2O)nH+ are the dominant signals, and the protonated CO2(H2O)nH+ and unprotonated (H2O)n+ and (CO2)(H2O)n+ cluster ion series are also observed. The mechanisms and dynamics of the formation of these neutral and ionic clusters are discussed.

  12. Cerium incorporated MCM-48 (Ce-MCM-48) as a catalyst to inhibit bromate formation during ozonation of bromide-containing water: Efficacy and mechanism.

    PubMed

    Li, Weiwei; Lu, Xiaowei; Xu, Ke; Qu, Jiuhui; Qiang, Zhimin

    2015-12-01

    The composite mesoporous sieve Ce-MCM-48 (cerium incorporated MCM-48) with different Si/Ce molar ratios were synthesized hydrothermally and characterized with X-ray diffraction, X-ray photoelectron spectroscopy, BET surface area, and pHpzc. Results indicate that Ce-MCM-48, especially with a Si/Ce molar ratio of 66 (i.e., Ce66-MCM-48), could significantly inhibit bromate (BrO3(-)) formation during ozonation of Br(-)-containing water, achieving 91% of inhibition efficiency at pH 7.6 and 25 °C. An acidic or alkaline pH decreased the inhibition efficiency of Ce66-MCM-48 to some extent, but reaction temperature ranging from 15 to 30 °C had no significant impact. By comparing the bromine mass balance, aqueous O3 decomposition, and newly formed H2O2 between O3 and O3/Ce66-MCM-48 processes, the inhibition mechanism was proposed: Ce66-MCM-48 promoted aqueous O3 decomposition to generate hydroxyl radicals (OH) that could merge into H2O2, so the oxidative transformation of Br(-) and HOBr/OBr(-) by O3 and OH was primarily suppressed. The catalytic ability of Ce66-MCM-48 was continuously regenerated through the circulating reactions between Ce(III) and Ce(IV) occurring on the catalyst surface. Besides its inhibition on BrO3(-) formation, Ce66-MCM-48 could also enhance the degradation of refractory organic micropollutants. Because of these distinct merits, Ce66-MCM-48 has potential applications to water treatment by ozone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Parasiticidal activity of bovine lactoperoxidase against Toxoplasma gondii.

    PubMed

    Tanaka, Tetsuya; Murakami, Shin; Kumura, Haruto; Igarashi, Ikuo; Shimazaki, Kei-Ichi

    2006-10-01

    Toxoplasma gondii is an obligatory intracellular parasitic protozoan transmitted via the ingestion of raw, infected meat that causes congenital infections. In a cell-free environment, virulent Toxoplasma was strikingly resistant to H2O2. The activity of H2O2 or H2O2 generated by glucose-glucose oxidase against the resistant tachyzoite stage of pathogenic T. gondii was enhanced by adding KI and bovine lactoperoxidase (bLPO), referred to here as the bLPO system. Replacing bLPO (heme content, 90%) with recombinant bLPO (heme content, 6%) did not enhance the parasiticidal activity with KI and H2O2. These results indicated that heme contributed to the enzyme activity and resulted in the killing of tachyzoites of T. gondii. Tachyzoites treated with the bLPO system also lost the ability to penetrate the mouse fibroblast cell line (NIH/3T3), and could be killed intracellularly after exposure by bLPO to a mouse macrophage cell line (J774A.1). These findings suggested that toxicity was mediated through small amounts of H2O2 generated by phagocytic events in naive macrophages, and by the peroxidative activity of bLPO. Our observations suggest that the bLPO system could help prevent the development of Toxoplasmosis in humans after ingesting raw, infected meat.

  14. Antioxidative response in variegated Pelargonium zonale leaves and generation of extracellular H2O2 in (peri)vascular tissue induced by sunlight and paraquat.

    PubMed

    Vidović, Marija; Morina, Filis; Prokić, Ljiljana; Milić-Komić, Sonja; Živanović, Bojana; Jovanović, Sonja Veljović

    2016-11-01

    In this study we exposed variegated leaves of Pelargonium zonale to strong sunlight (>1100μmolm -2 s -1 of photosynthetically active radiation) with and without paraquat (Pq), with the aim to elucidate the mechanisms of H 2 O 2 regulation in green and white tissues with respect to the photosynthetically-dependent generation of reactive oxygen species (ROS). Sunlight induced marked accumulation of H 2 O 2 in the apoplast of vascular and (peri)vascular tissues only in green sectors. This effect was enhanced by the addition of Pq. In the presence of diphenyl iodide, an NADPH oxidase inhibitor, H 2 O 2 accumulation was abolished. Distinct light-induced responses were observed: in photosynthetic cells, sunlight rapidly provoked ascorbate (Asc) biosynthesis and an increase of glutathione reductase (GR) and catalase activities, while in non-photosynthetic cells, early up-regulation of soluble ascorbate peroxidase, dehydroascorbate reductase (DHAR) and GR activities was observed. Paraquat addition stimulated DHAR and GR activities in green sectors, while in white sectors activities of monodehydroascorbate reductase, DHAR and class III peroxidases, as well as Asc content rapidly increased. Differential antioxidative responses in the two tissues in the frame of their contrasting metabolisms, and the possible role of (peri)vascular H 2 O 2 in signaling were discussed. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. [Advanced treatment of coking wastewater with a novel heterogeneous electro-Fenton technology].

    PubMed

    Li, Hai-Tao; Li, Yu-Ping; Zhang, An-Yang; Cao, Hong-Bin; Li, Xin-Gang; Zhang, Yi

    2011-01-01

    A novel electro-catalytic reactor, with oxygen-reduction cathode (PAQ/GF), dimensionally stable anode (IrO2-RuO2 -TiO2/ Ti) and heterogeneous catalysts, is developed for advanced treatment of coking wastewater after biological process, integrating cathodic and anodic simultaneous oxidation processes. A PAQ/GF electrode was synthesized by the electro-polymerization of 2-ethyl anthraquinone on graphite felt, which was characterized with cyclic voltametry measurements; the results indicated that the PAQ/GF electrode showed high reversibility for oxidation-reduction reaction of anthraquinone and catalytic activity for O2 reduction to H2O2; 13.5 mmol/L H2O2 was obtained after electrolysis for 6 h at -0.7 V (vs. SCE) and pH 6 with a current efficiency of 50% in a membrane reactor. Fe-Cu/Y350 catalysts, prepared by impregnation method, could catalyze the production of hydroxyl radicals (*OH) from H2O2, which was confirmed both by fading reaction of crystal violet and oxidation of *OH-probe compound (p-chlorobenzoic acid); Fe-Cu/Y350 also showed high catalytic-activity for the oxidation of organics by hypochlorous sodium, because COD removal of coking wastewater reached 26% in the catalytic process while only 11% of COD removal was obtained in the absence of Fe-Cu/Y350. COD removal of coking wastewater reached 49.4% (26.0% and 23.4% in cathodic system and anodic system, respectively) in the developed electrolytic-reactor, which was higher than that of conventional cathodic-anodic-oxidation process (29.8%). At optimal reaction condition of initial COD = 192 mg/L, I = 10A x m(-2) and pH 4-5, more than 50% COD were removed after electrolysis for 1 h. The mechanism might be as follows: in cathodic system, H2O2 is generated from reduction of O2 on PAQ/GF cathode, and catalyzed by Fe-Cu/Y350 for production of *OH, which causes mineralization and degradation of organic pollutants; in anodic system, Cl2 and HClO are generated from Cl- oxidation on IrO2-RuO2-TiO2/Ti anode and the organic pollutants are oxidized by Cl2, and HClO with Fe-Cu/Y350 catalysts or by direct anodic oxidation.

  16. The enhancement of oxidative DNA damage by anti-diabetic metformin, buformin, and phenformin, via nitrogen-centered radicals.

    PubMed

    Ohnishi, Shiho; Mizutani, Hideki; Kawanishi, Shosuke

    2016-08-01

    Metformin (N,N-dimethylbiguanide), buformin (1-butylbiguanide), and phenformin (1-phenethylbiguanide) are anti-diabetic biguanide drugs, expected to having anti-cancer effect. The mechanism of anti-cancer effect by these drugs is not completely understood. In this study, we demonstrated that these drugs dramatically enhanced oxidative DNA damage under oxidative condition. Metformin, buformin, and phenformin enhanced generation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in isolated DNA reacted with hydrogen peroxide (H2O2) and Cu(II), although these drugs did not form 8-oxodG in the absence of H2O2 or Cu(II). An electron paramagnetic resonance (EPR) study, utilizing alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone and 3,3,5,5-tetramethyl-1-pyrroline-N-oxide as spin trapping agents, showed that nitrogen-centered radicals were generated from biguanides in the presence of Cu(II) and H2O2, and that these radicals were decreased by the addition of DNA. These results suggest that biguanides enhance Cu(II)/H2O2-mediated 8-oxodG generation via nitrogen-centered radical formation. The enhancing effect on oxidative DNA damage may play a role on anti-cancer activity.

  17. Role of heme in intracellular trafficking of thyroperoxidase and involvement of H2O2 generated at the apical surface of thyroid cells in autocatalytic covalent heme binding.

    PubMed

    Fayadat, L; Niccoli-Sire, P; Lanet, J; Franc, J L

    1999-04-09

    Thyroperoxidase (TPO) is a glycosylated hemoprotein that plays a key role in thyroid hormone synthesis. We previously showed that in CHO cells expressing human TPO (hTPO) only 2% of synthesized hTPO reaches the cell surface. Herein, we investigated the role of heme moiety insertion in the exit of hTPO from the endoplasmic reticulum. Peroxidase activity at the cell surface and cell surface expression of hTPO were decreased by approximately 30 and approximately 80%, respectively, with succinyl acetone, an inhibitor of heme biosynthesis, and were increased by 20% with holotransferrin and aminolevulinic acid, precursors of heme biosynthesis. Results were similar with holotransferrin plus aminolevulinic acid or hemin, but hemin increased cell surface activity more efficiently (+120%) relative to the control. It had been suggested (DePillis, G., Ozaki, S., Kuo, J. M., Maltby, D. A., and Ortiz de Montellano, P. R. (1997) J. Biol. Chem. 272, 8857-8960) that covalent attachment of heme to mammalian peroxidases could be an H2O2-dependent autocatalytic processing. In our study, heme associated intracellularly with hTPO, and we hypothesized that there was insufficient exposure to H2O2 in Chinese hamster ovary cells before hTPO reached the cell surface. After a 10-min incubation, 10 microM H2O2 led to a 65% increase in cell surface activity. In contrast, in thyroid cells, H2O2 was synthesized at the apical cell surface and allowed covalent attachment of heme. Two-day incubation of primocultures of thyroid cells with catalase led to a 30% decrease in TPO activity at the cell surface. In conclusion, we provide compelling evidence for an essential role of 1) heme incorporation in the intracellular trafficking of hTPO and of 2) H2O2 generated at the apical pole of thyroid cells in the autocatalytic covalent heme binding to the TPO molecule.

  18. Activation of Oxygen and Hydrogen Peroxide by Copper(II) Coupled with Hydroxylamine for Oxidation of Organic Contaminants.

    PubMed

    Lee, Hongshin; Lee, Hye-Jin; Seo, Jiwon; Kim, Hyung-Eun; Shin, Yun Kyung; Kim, Jae-Hong; Lee, Changha

    2016-08-02

    This study reports that the combination of Cu(II) with hydroxylamine (HA) (referred to herein as Cu(II)/HA system) in situ generates H2O2 by reducing dissolved oxygen, subsequently producing reactive oxidants through the reaction of Cu(I) with H2O2. The external supply of H2O2 to the Cu(II)/HA system (i.e., the Cu(II)/H2O2/HA system) was found to further enhance the production of reactive oxidants. Both the Cu(II)/HA and Cu(II)/H2O2/HA systems effectively oxidized benzoate (BA) at pH between 4 and 8, yielding a hydroxylated product, p-hydroxybenzoate (pHBA). The addition of a radical scavenger, tert-butyl alcohol, inhibited the BA oxidation in both systems. However, electron paramagnetic resonance (EPR) spectroscopy analysis indicated that (•)OH was not produced under either acidic or neutral pH conditions, suggesting that the alternative oxidant, cupryl ion (Cu(III)), is likely a dominant oxidant.

  19. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin

    NASA Technical Reports Server (NTRS)

    Yang, T.; Poovaiah, B. W.

    2002-01-01

    Environmental stimuli such as UV, pathogen attack, and gravity can induce rapid changes in hydrogen peroxide (H(2)O(2)) levels, leading to a variety of physiological responses in plants. Catalase, which is involved in the degradation of H(2)O(2) into water and oxygen, is the major H(2)O(2)-scavenging enzyme in all aerobic organisms. A close interaction exists between intracellular H(2)O(2) and cytosolic calcium in response to biotic and abiotic stresses. Studies indicate that an increase in cytosolic calcium boosts the generation of H(2)O(2). Here we report that calmodulin (CaM), a ubiquitous calcium-binding protein, binds to and activates some plant catalases in the presence of calcium, but calcium/CaM does not have any effect on bacterial, fungal, bovine, or human catalase. These results document that calcium/CaM can down-regulate H(2)O(2) levels in plants by stimulating the catalytic activity of plant catalase. Furthermore, these results provide evidence indicating that calcium has dual functions in regulating H(2)O(2) homeostasis, which in turn influences redox signaling in response to environmental signals in plants.

  20. Dissociation of iodine molecules and singlet oxygen generation in O2 - I2 mixture induced by 1315-nm laser radiation

    NASA Astrophysics Data System (ADS)

    Zagidullin, M. V.; Khvatov, N. A.; Malyshev, M. S.; Azyazov, V. N.

    2017-11-01

    It is observed that laser light at a wavelength of 1315 nm induces continuous stable fluorescence at the O2(b1Σ → X3Σ) and I2(B3Πu → X1Σ) bands in a O2 - I2 mixture preliminarily irradiated at a wavelength of 532 nm to achieve partial photolysis of iodine molecules. This testifies to generation of iodine atoms and excited O2(a1Δ), O2(b1Σ), and I2(B3Πu) molecules in the O2 - I2 mixture under irradiation at 1315 nm.

  1. Crystal structure of tin(II) perchlorate trihydrate

    PubMed Central

    Hennings, Erik; Schmidt, Horst; Köhler, Martin; Voigt, Wolfgang

    2014-01-01

    The title compound, [Sn(H2O)3](ClO4)2, was synthesized by the redox reaction of copper(II) perchlorate hexa­hydrate and metallic tin in perchloric acid. Both the trigonal–pyramidal [Sn(H2O)3]2+ cations and tetra­hedral perchlorate anions lie on crystallographic threefold axes. In the crystal, the cations are linked to the anions by O—H⋯O hydrogen bonds, generating (001) sheets. PMID:25552969

  2. Real-Time In Vivo Monitoring of Reactive Oxygen Species in Guard Cells.

    PubMed

    Park, Ky Young; Roubelakis-Angelakis, Kalliopi A

    2018-01-01

    The intra-/intercellular homeostasis of reactive oxygen species (ROS), and especially of superoxides (O 2 .- ) and hydrogen peroxide (O 2 .- ) participate in signalling cascades which dictate developmental processes and reactions to biotic/abiotic stresses. Polyamine oxidases terminally oxidize/back convert polyamines generating H 2 O 2 . Recently, an NADPH-oxidase/Polyamine oxidase feedback loop was identified to control oxidative burst under salinity. Thus, the real-time localization/monitoring of ROS in specific cells, such as the guard cells, can be of great interest. Here we present a detailed description of the real-time in vivo monitoring of ROS in the guard cells using H 2 O 2 - and O 2 .- specific fluorescing probes, which can be used for studying ROS accumulation generated from any source, including the amine oxidases-dependent pathway, during development and stress.

  3. Solvothermal synthesis and structure of coordination polymers of Nd(III) and Dy(III) with rigid isophthalic acid derivatives and flexible adipic acid

    NASA Astrophysics Data System (ADS)

    Kariem, Mukaddus; Kumar, Manesh; Yawer, Mohd; Sheikh, Haq Nawaz

    2017-12-01

    Two new coordination polymers (CPs) with the formula [Nd(hip)(adip) 0.5(H2O)2]n.nH2O (1) and [Dy(aip)(adip)0.5(H2O)2]n.nH2O (2) were synthesized by self-assembly of lanthanide salts with rigid [5-hydroxyisophthalic acid (H2hip)], [5-aminoisophthalic acid (H2aip)] and flexible [adipic acid (H2adip)] linkers under solvothermal conditions. The CPs 1 &2 crystallize in monoclinic C2/c space group. Both the CPs have 1D linear ladder shaped extension with the linkages having the backbone of hip2-, aip2- and adip2- ligands. The 1D linear ladder chains generate three dimensional (3D) supramolecular frameworks via significant π-π and hydrogen bonding interactions. The CP 2 (Dy) emit strong ligand sensitized characteristic f-f luminescence emission. The CP 2 also exhibit weak ferromagnetic interactions at low temperatures.

  4. Dissociation of O(2-)2 defects into paramagnetic O(-) in wide band-gap insulators - A magnetic susceptibility study of magnesium oxide

    NASA Technical Reports Server (NTRS)

    Batllo, F.; Leroy, R. C.; Parvin, K.; Freund, F.

    1990-01-01

    The magnetic susceptibility of single-crystal MgO has been measured in the temperature range 300-1000 K, using a Faraday balance. The high-purity crystal (less than 100 ppm transition metals), grown from the melt in a H2O-containing atmosphere, was found to be paramagnetic due to the presence of defects on the O(2-) sublattice. The defects derive from OH(-) introduced into the MgO matrix by the dissolution of traces of H2O during crystal growth. The OH(-) converts into O(2-)2 and H2. Each O(2-)2 represents two coupled, spin-paired O(-) states. The observed strongly temperature-dependent paramagnetism can be described by three contributions that overlay the intrinsic diamagnetism of MgO and arise from the low level of transition-metal impurities, O(-) generated by 0(2-)2 dissociation, and O(-) states trapped by quenching from high temperatures from previous experiments.

  5. Brief exposure to carbon monoxide preconditions cardiomyogenic cells against apoptosis in ischemia-reperfusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondo-Nakamura, Mihoko; Shintani-Ishida, Kaori, E-mail: kaori@m.u-tokyo.ac.jp; Uemura, Koichi

    We examined whether and how pretreatment with carbon monoxide (CO) prevents apoptosis of cardioblastic H9c2 cells in ischemia-reperfusion. Reperfusion (6 h) following brief ischemia (10 min) induced cytochrome c release, activation of caspase-9 and caspase-3, and apoptotic nuclear condensation. Brief CO pretreatment (10 min) or a caspase-9 inhibitor (Z-LEHD-FMK) attenuated these apoptotic changes. Ischemia-reperfusion increased phosphorylation of Akt at Ser472/473/474, and this was enhanced by CO pretreatment. A specific Akt inhibitor (API-2) blunted the anti-apoptotic effects of CO in reperfusion. In normoxic cells, CO enhanced O{sub 2}{sup -} generation, which was inhibited by a mitochondrial complex III inhibitor (antimycin A)more » but not by a NADH oxidase inhibitor (apocynin). The CO-enhanced Akt phosphorylation was suppressed by an O{sub 2}{sup -} scavenger (Tiron), catalase or a superoxide dismutase (SOD) inhibitor (DETC). These results suggest that CO pretreatment induces mitochondrial generation of O{sub 2}{sup -}, which is then converted by SOD to H{sub 2}O{sub 2}, and subsequent Akt activation by H{sub 2}O{sub 2} attenuates apoptosis in ischemia-reperfusion.« less

  6. Experimental and theoretical study of the reactions between neutral vanadium oxide clusters and ethane, ethylene, and acetylene.

    PubMed

    Dong, Feng; Heinbuch, Scott; Xie, Yan; Rocca, Jorge J; Bernstein, Elliot R; Wang, Zhe-Chen; Deng, Ke; He, Sheng-Gui

    2008-02-13

    Reactions of neutral vanadium oxide clusters with small hydrocarbons, namely C2H6, C2H4, and C2H2, are investigated by experiment and density functional theory (DFT) calculations. Single photon ionization through extreme ultraviolet (EUV, 46.9 nm, 26.5 eV) and vacuum ultraviolet (VUV, 118 nm, 10.5 eV) lasers is used to detect neutral cluster distributions and reaction products. The most stable vanadium oxide clusters VO2, V2O5, V3O7, V4O10, etc. tend to associate with C2H4 generating products V(m)O(n)C2H4. Oxygen-rich clusters VO3(V2O5)(n=0,1,2...), (e.g., VO3, V3O8, and V5O13) react with C2H4 molecules to cause a cleavage of the C=C bond of C2H4 to produce (V2O5)(n)VO2CH2 clusters. For the reactions of vanadium oxide clusters (V(m)O(n)) with C2H2 molecules, V(m)O(n)C2H2 are assigned as the major products of the association reactions. Additionally, a dehydration reaction for VO3 + C2H2 to produce VO2C2 is also identified. C2H6 molecules are quite stable toward reaction with neutral vanadium oxide clusters. Density functional theory calculations are employed to investigate association reactions for V2O5 + C2H(x). The observed relative reactivity of C2 hydrocarbons toward neutral vanadium oxide clusters is well interpreted by using the DFT calculated binding energies. DFT calculations of the pathways for VO3+C2H4 and VO3+C2H2 reaction systems indicate that the reactions VO3+C2H4 --> VO2CH2 + H2CO and VO3+C2H2 --> VO2C2 + H2O are thermodynamically favorable and overall barrierless at room temperature, in good agreement with the experimental observations.

  7. A new modification of an old framework: Hofmann layers with unusual tetracyanidometallate groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keene, Tony D.; Murphy, Michael J.; Price, Jason R.

    2012-05-10

    Cyanidometallate complexes are highly versatile building units for the generation of functional porous materials. Here we report five new pillared Hofmann layer compounds incorporating the tetracyanidometallates [MoO(CN){sub 4}]{sup 2-} and [MnN(CN){sub 4}]{sup 2-}. These metalloligands, which are new to this class of materials, have been combined with divalent 1st-row transition metals to produce Hofmann layers that are linked into three-dimensional frameworks by ditopic bridging dipyridyls. We report the structures and anomalous thermal expansion properties of five new materials: [Mn(H{sub 2}O)(bpy){sub 1/2}{l_brace}MoO(CN){sub 4}(bpy){sub 1/2}{r_brace}] {center_dot} 2H{sub 2}O (1), [Mn(H{sub 2}O)(bpy){sub 1/2}{l_brace}MnN(CN){sub 4}(bpy){sub 1/2}{r_brace}] {center_dot} 2H{sub 2}O (2), [Fe(H{sub 2}O)(bpy){sub 1/2}{l_brace}MnN(CN){sub 4}(bpy){submore » 1/2}{r_brace}] {center_dot} 2H{sub 2}O (3), [Co(H{sub 2}O)(bpy){sub 1/2}{l_brace}MnN(CN){sub 4}(bpy){sub 1/2}{r_brace}] {center_dot} 2H{sub 2}O (4) and [{l_brace}Mn(H{sub 2}O){sub 2}{r_brace}{sub 1/2}{l_brace}Mn(bpa){sub 2}{r_brace}{sub 1/2}{l_brace}MoO(CN){sub 4}(bpa){sub 1/2}{r_brace}] {center_dot} MeOH (5), (where bpy = 4,4'-bipyridine and bpa = 4,4'-bipyridylacetylene).« less

  8. Hippophae rhamnoides L. Fruits Reduce the Oxidative Stress in Human Blood Platelets and Plasma.

    PubMed

    Olas, Beata; Kontek, Bogdan; Malinowska, Paulina; Żuchowski, Jerzy; Stochmal, Anna

    2016-01-01

    Effects of the phenolic fraction from Hippophae rhamnoides fruits on the production of thiobarbituric acid reactive substances (TBARS, a marker of lipid peroxidation) and the generation of superoxide anion (O2 (-∙)) in human blood platelets (resting platelets and platelets stimulated by a strong physiological agonist, thrombin) were studied in vitro. We also examined antioxidant properties of this fraction against human plasma lipid peroxidation and protein carbonylation induced by a strong biological oxidant, hydrogen peroxide (H2O2) or H2O2/Fe (a donor of hydroxyl radicals). The tested fraction of H. rhamnoides (0.5- 50 µg/mL; the incubation time: 15 and 60 min) inhibited lipid peroxidation induced by H2O2 or H2O2/Fe. The H. rhamnoides phenolic fraction inhibited not only plasma lipid peroxidation, but also plasma protein carbonylation stimulated by H2O2 or H2O2/Fe. Moreover, the level of O2 (-∙) in platelets significantly decreased. In comparative experiments, the H. rhamnoides fraction was a more effective antioxidant than aronia extract or grape seed extract (at the highest tested concentration, 50 µg/mL). The obtained results suggest that H. rhamnoides fruits may be a new, promising source of natural compounds with antioxidant and antiplatelet activity beneficial not only for healthy people, but also for those with oxidative stress-associated diseases.

  9. Reactions between komatiite and CO2-rich seawater at 250 and 350 °C, 500 bars: implications for hydrogen generation in the Hadean seafloor hydrothermal system

    NASA Astrophysics Data System (ADS)

    Ueda, Hisahiro; Shibuya, Takazo; Sawaki, Yusuke; Saitoh, Masafumi; Takai, Ken; Maruyama, Shigenori

    2016-12-01

    To understand the chemical nature of hydrothermal fluids in the komatiite-hosted seafloor hydrothermal system in the Hadean, we conducted two hydrothermal serpentinization experiments involving synthetic komatiite and a CO2-rich acidic NaCl fluid at 250 and 350 °C, 500 bars. During the experiments, the komatiites were strongly carbonated to yield iron-rich dolomite (3-9 wt.% FeO) at 250 °C and calcite (<0.8 wt.% FeO) at 350 °C, respectively. The carbonation of komatiites suppressed H2 generation in the fluids. The steady-state H2 concentrations in the fluid were approximately 0.024 and 2.9 mmol/kg at 250 and 350 °C, respectively. This correlation between the Fe content in carbonate mineral and the H2 concentration in the fluid suggests that the incorporation of ferrous iron into the carbonate mineral probably limited magnetite formation and consequent generation of hydrogen during the serpentinization of komatiites. The H2 concentration of the fluid at 350 °C corresponds to that of modern H2-rich seafloor hydrothermal systems, such as the Kairei hydrothermal field, where hydrogenotrophic methanogens dominate in the prosperous microbial ecosystem. Accordingly, the high-temperature serpentinization of komatiite would provide the H2-rich hydrothermal environments that were necessary for the emergence and early evolution of life in the Hadean ocean. In contrast, H2-rich fluids may not have been generated by serpentinization at temperatures below 250 °C because carbonate minerals become more stable with decreasing temperature in the komatiite-H2O-CO2 system.

  10. The α-Effect and Competing Mechanisms: The Gas-Phase Reactions of Microsolvated Anions with Methyl Formate

    NASA Astrophysics Data System (ADS)

    Thomsen, Ditte L.; Nichols, Charles M.; Reece, Jennifer N.; Hammerum, Steen; Bierbaum, Veronica M.

    2014-02-01

    The enhanced reactivity of α-nucleophiles, which contain an electron lone pair adjacent to the reactive site, has been demonstrated in solution and in the gas phase and, recently, for the gas-phase SN2 reactions of the microsolvated HOO-(H2O) ion with methyl chloride. In the present work, we continue to explore the significance of microsolvation on the α-effect as we compare the gas-phase reactivity of the microsolvated α-nucleophile HOO-(H2O) with that of microsolvated normal alkoxy nucleophiles, RO-(H2O), in reactions with methyl formate, where three competing reactions are possible. The results reveal enhanced reactivity of HOO-(H2O) towards methyl formate, and clearly demonstrate the presence of an overall α-effect for the reactions of the microsolvated α-nucleophile. The association of the nucleophiles with a single water molecule significantly lowers the degree of proton abstraction and increases the SN2 and BAC2 reactivity compared with the unsolvated analogs. HOO-(H2O) reacts with methyl formate exclusively via the BAC2 channel. While microsolvation lowers the overall reaction efficiency, it enhances the BAC2 reaction efficiency for all anions compared with the unsolvated analogs. This may be explained by participation of the solvent water molecule in the BAC2 reaction in a way that continuously stabilizes the negative charge throughout the reaction.

  11. Advanced nanoporous TiO2 photocatalysts by hydrogen plasma for efficient solar-light photocatalytic application

    NASA Astrophysics Data System (ADS)

    An, Ha-Rim; Park, So Young; Kim, Hyeran; Lee, Che Yoon; Choi, Saehae; Lee, Soon Chang; Seo, Soonjoo; Park, Edmond Changkyun; Oh, You-Kwan; Song, Chan-Geun; Won, Jonghan; Kim, Youn Jung; Lee, Jouhahn; Lee, Hyun Uk; Lee, Young-Chul

    2016-07-01

    We report an effect involving hydrogen (H2)-plasma-treated nanoporous TiO2(H-TiO2) photocatalysts that improve photocatalytic performance under solar-light illumination. H-TiO2 photocatalysts were prepared by application of hydrogen plasma of assynthesized TiO2(a-TiO2) without annealing process. Compared with the a-TiO2, the H-TiO2 exhibited high anatase/brookite bicrystallinity and a porous structure. Our study demonstrated that H2 plasma is a simple strategy to fabricate H-TiO2 covering a large surface area that offers many active sites for the extension of the adsorption spectra from ultraviolet (UV) to visible range. Notably, the H-TiO2 showed strong ·OH free-radical generation on the TiO2 surface under both UV- and visible-light irradiation with a large responsive surface area, which enhanced photocatalytic efficiency. Under solar-light irradiation, the optimized H-TiO2 120(H2-plasma treatment time: 120 min) photocatalysts showed unprecedentedly excellent removal capability for phenol (Ph), reactive black 5(RB 5), rhodamine B (Rho B) and methylene blue (MB) — approximately four-times higher than those of the other photocatalysts (a-TiO2 and P25) — resulting in complete purification of the water. Such well-purified water (>90%) can utilize culturing of cervical cancer cells (HeLa), breast cancer cells (MCF-7), and keratinocyte cells (HaCaT) while showing minimal cytotoxicity. Significantly, H-TiO2 photocatalysts can be mass-produced and easily processed at room temperature. We believe this novel method can find important environmental and biomedical applications.

  12. Advanced nanoporous TiO2 photocatalysts by hydrogen plasma for efficient solar-light photocatalytic application

    PubMed Central

    An, Ha-Rim; Park, So Young; Kim, Hyeran; Lee, Che Yoon; Choi, Saehae; Lee, Soon Chang; Seo, Soonjoo; Park, Edmond Changkyun; Oh, You-Kwan; Song, Chan-Geun; Won, Jonghan; Kim, Youn Jung; Lee, Jouhahn; Lee, Hyun Uk; Lee, Young-Chul

    2016-01-01

    We report an effect involving hydrogen (H2)-plasma-treated nanoporous TiO2(H-TiO2) photocatalysts that improve photocatalytic performance under solar-light illumination. H-TiO2 photocatalysts were prepared by application of hydrogen plasma of assynthesized TiO2(a-TiO2) without annealing process. Compared with the a-TiO2, the H-TiO2 exhibited high anatase/brookite bicrystallinity and a porous structure. Our study demonstrated that H2 plasma is a simple strategy to fabricate H-TiO2 covering a large surface area that offers many active sites for the extension of the adsorption spectra from ultraviolet (UV) to visible range. Notably, the H-TiO2 showed strong ·OH free-radical generation on the TiO2 surface under both UV- and visible-light irradiation with a large responsive surface area, which enhanced photocatalytic efficiency. Under solar-light irradiation, the optimized H-TiO2 120(H2-plasma treatment time: 120 min) photocatalysts showed unprecedentedly excellent removal capability for phenol (Ph), reactive black 5(RB 5), rhodamine B (Rho B) and methylene blue (MB) — approximately four-times higher than those of the other photocatalysts (a-TiO2 and P25) — resulting in complete purification of the water. Such well-purified water (>90%) can utilize culturing of cervical cancer cells (HeLa), breast cancer cells (MCF-7), and keratinocyte cells (HaCaT) while showing minimal cytotoxicity. Significantly, H-TiO2 photocatalysts can be mass-produced and easily processed at room temperature. We believe this novel method can find important environmental and biomedical applications. PMID:27406992

  13. Supercritical gasification for the treatment of o-cresol wastewater.

    PubMed

    Wei, Chao-hai; Hu, Cheng-sheng; Wu, Chao-fei; Yan, Bo

    2006-01-01

    The supercritical water gasification of phenolic wastewater without oxidant was performed to degrade pollutants and produce hydrogen-enriched gases. The simulated o-cresol wastewater was gasified at 440-650 degrees C and 27.6 MPa in a continuous Inconel 625 reactor with the residence time of 0.42-1.25 min. The influence of the reaction temperature, residence time, pressure, catalyst, oxidant and the pollutant concentration on the gasification efficiency was investigated. Higher temperature and longer residence time enhanced the o-cresol gasification. The TOC removal rate and hydrogen gasification rate were 90.6% and 194.6%, respectively, at the temperature of 650 degrees C and the residence time of 0.83 min. The product gas was mainly composed of H2, CO2, CH4 and CO, among which the total molar percentage of H2 and CH4 was higher than 50%. The gasification efficiency decreased with the pollutant concentration increasing. Both the catalyst and oxidant could accelerate the hydrocarbon gasification at a lower reaction temperature, in which the catalyst promoted H2 production and the oxidant enhanced CO2 generation. The intermediates of liquid effluents were analyzed and phenol was found to be the main composition. The results indicate that the supercritical gasification is a promising way for the treatment of hazardous organic wastewater.

  14. Revealing the relationship between the photocatalytic property and structure characteristic of reduced TiO2 by hydrogen and carbon monoxide treatment.

    PubMed

    Liu, Yunpeng; Li, Yuhang; Yang, Siyuan; Lin, Yuan; Zuo, Jianliang; Liang, Hong; Peng, Feng

    2018-06-04

    The hydrogenation (reduction) has been considered as an effective method to improve the photocatalytic activity of TiO2, however, the underlying relationship between structure and photocatalytic performance has still not been adequately unveiled so far. Herein, to obtain insight into the effect of structure on photocatalytic activity, two types of reduced TiO2 were prepared by CO (CO-TiO2) and H2 (H-TiO2), respectively. For H-TiO2, Ti-H bonds and oxygen vacancies are formed on the surface of H-TiO2, resulting in a more disorder surface lattice. However, for CO-TiO2, the more Ti-OH bonds are formed on the surface and the more bulk oxygen vacancies are introduced, the disorder layer of CO-TiO2 is relatively thin owing to the most of surface vacancies repaired by Ti-OH bonds. Under the simulated solar irradiation, the photocatalytic H2 evolution rate of CO-TiO2 reaches 7.17 mmol g-1 h-1, which is 4.14 and 1.50 times those of TiO2 and H-TiO2, respectively. The photocatalytic degradation rate constant of methyl orange on CO-TiO2 is 2.45 and 6.39 times those on H-TiO2 and TiO2. The superior photocatalytic activity of CO-TiO2 is attributed to the effective separation and transfer of the photo-generated electron-hole pairs, due to the synergistic effects of oxygen vacancies and surface Ti-OH bonds. This study reveals the relation between the photocatalytic property and structure, and provides a new method to prepare highly active TiO2 for H2 production and environmental treatment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Spectral identification of abiotic O2 buildup from early runaways and rarefied atmospheres

    NASA Astrophysics Data System (ADS)

    Schwieterman, Edward; Meadows, Victoria; Domagal-Goldman, Shawn; Arney, Giada; Robinson, Tyler D.; Luger, Rodrigo; Barnes, Rory

    2016-01-01

    The spectral detection of oxygen (O2) in a planetary atmosphere has been considered a robust signature of life because O2 is highly reactive on planets with Earth-like redox buffers and because significant continuous abiotic sources were thought to be implausible. However, recent work has revealed the possibility that significant O2 may build-up in terrestrial atmospheres through (1) photochemical channels or (2) through the escape of hydrogen. We focus on the latter category here. Significant amounts of abiotic O2 could remain in the atmospheres of planets in the habitable zones of late type stars, where an early runaway greenhouse and massive hydrogen escape during the pre-main-sequence phase could have irreversibly oxidized the crust and mantle (Luger & Barnes 2015). Additionally, it has been hypothesized that O2 could accumulate in the atmospheres of planets with sufficiently low abundances of non-condensable gases such as N2 where water would not be cold trapped in the troposphere, leading to H-escape from UV photolysis in a wet stratosphere (Wordsworth & Pierrehumbert 2014). We self-consistently model the climate, photochemistry, and spectra of both rarefied and post-runaway, high-O2 atmospheres. Because an early runaway might not have lasted long enough for the entire water inventory to escape, we explore both completely desiccated scenarios and cases where a surface ocean remains. We find "habitable" surface conditions for a wide variety of oxygen abundances, atmospheric masses, and CO2 mixing ratios. If O2 builds up from massive or sustained H escape, the O2 abundance should be very high, and could be spectrally indicated by the presence of O2-O2 (O4) collisionally-induced absorption (CIA) features. We generate synthetic direct-imaging and transit transmission spectra of these atmospheres and calculate the strength of the UV/Visible and NIR O4 features. We find that while both the UV/Visible and NIR O4 features are strong in the radiance spectra of very high-O2 atmospheres, only the NIR O4 features are strong in transmission spectra. We also conclude that detection of N2-N2 CIA near 4.2 μm in transmission or direct-imaging spectra could rule out O2 origination from H-escape from thin atmospheres.

  16. Novel denture-cleaning system based on hydroxyl radical disinfection.

    PubMed

    Kanno, Taro; Nakamura, Keisuke; Ikai, Hiroyo; Hayashi, Eisei; Shirato, Midori; Mokudai, Takayuki; Iwasawa, Atsuo; Niwano, Yoshimi; Kohno, Masahiro; Sasaki, Keiichi

    2012-01-01

    The purpose of this study was to evaluate a new denture-cleaning device using hydroxyl radicals generated from photolysis of hydrogen peroxide (H2O2). Electron spin resonance analysis demonstrated that the yield of hydroxyl radicals increased with the concentration of H2O2 and light irradiation time. Staphylococcus aureus, Pseudomonas aeruginosa, and methicillin-resistant S aureus were killed within 10 minutes with a > 5-log reduction when treated with photolysis of 500 mM H2O2; Candida albicans was killed within 30 minutes with a > 4-log reduction with photolysis of 1,000 mM H2O2. The clinical test demonstrated that the device could effectively reduce microorganisms in denture plaque by approximately 7-log order within 20 minutes.

  17. Enhanced hydrophilicity of chlorided aluminum oxide particulates

    NASA Technical Reports Server (NTRS)

    Cofer, W. R., III

    1978-01-01

    An enhancement of hydrophilicity for chlorided aluminas was demonstrated by the results obtained from gaseous H2O sorptions at 70-, 80-, and 86-percent relative humidity on alpha and gamma aluminum oxide particulates and on alpha and gamma aluminum oxide particulates with a chemisorbed surface chloride phase (produced by reactions of gaseous HCl + H2O on alumina). Continuous sorption histories for H2O on chlorided aluminas having specific surface areas that range from 7 to 227 sq m/g before chloriding indicated that initial sorption rates were directly linked to the extent of chemisorbed chlorided coverage and implied the same relationship for sorption capacities. The initial sorption rate on chlorided aluminas was found to be slower for the first exposure to H2O than for subsequent exposures (which reached equilibrated H2O coverages much faster), suggesting that slow chemical reactions between H2O and chlorided alumina may have been operative during initial exposures. Chlorided alumina particles were found to remain very hydrophilic (relative to nonchlorided analogs) for several H2O sorption/desorption cycles.

  18. Alkaline-Acid Zn-H2 O Fuel Cell for the Simultaneous Generation of Hydrogen and Electricity.

    PubMed

    Cai, Pingwei; Li, Yan; Wang, Genxiang; Wen, Zhenhai

    2018-04-03

    An alkaline-acid Zn-H 2 O fuel cell is proposed for the simultaneous generation of electricity with an open circuit voltage of about 1.25 V and production of H 2 with almost 100 % Faradic efficiency. We demonstrate that, as a result of harvesting energy from both electrochemical neutralization and electrochemical Zn oxidation, the as-developed hybrid cell can deliver a power density of up to 80 mW cm -2 and an energy density of 934 Wh kg -1 and maintain long-term stability for H 2 production with an output voltage of 1.16 V at a current density of 10 mA cm -2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Application of thermodynamics and Wagner model on two problems in continuous hot-dip galvanizing

    NASA Astrophysics Data System (ADS)

    Liu, Huachu; He, Yanlin; Li, Lin

    2009-12-01

    Firstly in this paper, the influence of H 2 and water vapor content on selective oxidation occurred in continuous hot-dip galvanizing has been studied by thermodynamics and Wagner model, then, the Gibbs energy of each possible aluminothermic reducing reaction in zinc bath was calculated in order to judge the possibility of these reactions. It was found that oxides' amounts and oxidation type were greatly related to the H 2 and water content in the annealing atmosphere. And from the view of thermodynamics, surface oxides (MnO, Cr 2O 3, SiO 2 etc.) can be reduced by the effective Al in Zn bath.

  20. Detection of hydrogen peroxide and glucose by using Tb2(MoO4)3 nanoplates as peroxidase mimics

    NASA Astrophysics Data System (ADS)

    Rahimi-Nasrabadi, Mehdi; Mizani, Farhang; Hosseini, Morteza; Keihan, Amir Homayoun; Ganjali, Mohammad Reza

    2017-11-01

    Tb2(MoO4)3 nanostructures are demonstrated for the first time to have an intrinsic peroxidase-like activity. Tb2(MoO4)3 nanoplates could efficiently catalyse the oxidation of 3,3‧,5,5‧-tetramethylbenzidine (TMB) to generate a blue dye (with an absorbance maximum at 652 nm) in the presence of H2O2. Based on the highly efficient catalytic of Tb2(MoO4)3 nanoplates, a novel system for optical determination of H2O2 and glucose was successfully established under optimized conditions. The assay had 0.0.08 μM and 0.1 μM detection limit for H2O2 and glucose, respectively. In our opinion, this enzyme mimetic has a potential to use in other oxidase based assays.

  1. Nafion-coating of the electrodes improves the flow-stability of the Ag/SiO2/Ag2O electroosmotic pump.

    PubMed

    Shin, Woonsup; Zhu, Enhua; Nagarale, Rajaram Krishna; Kim, Chang Hwan; Lee, Jong Myung; Shin, Samuel Jaeho; Heller, Adam

    2011-06-15

    When a current or a voltage is applied across the ceramic membrane of the nongassing Ag/Ag(2)O-SiO(2)-Ag/Ag(2)O pump, protons produced in the anodic reaction 2Ag(s) + H(2)O → Ag(2)O(s) + 2H(+) + 2e(-) are driven to the cathode, where they are consumed by the reaction Ag(2)O(s) + H(2)O + 2e(-) → 2Ag(s) + 2 OH(-). The flow of water is induced by momentum transfer from the electric field-driven proton-sheet at the surface of the ceramic membrane. About 10(4) water molecules flowed per reacted electron. Because dissolved ions decrease the field at the membrane surface, the flow decreases upon increasing the ionic strength. For this reason Ag(+) ions introduced through the anodic reaction and by dissolution of Ag(2)O decrease the flow. Their accumulation is reduced by applying Nafion-films to the electrodes. The 20 μL min(-1) flow rate of 6 mm i.d. pumps with Nafion coated electrodes operate daily for 5 min at 1 V for 1 month, for 70 h when the pump is pulsed for 30 s every 30 min, and for 2 h when operating continuously.

  2. [Comparison of different continuous positive airway pressure titration methods for obstructive sleep apnea hypopnea syndrome].

    PubMed

    Li, Jingjing; Ye, Jingying; Zhang, Peng; Kang, Dan; Cao, Xin; Zhang, Yuhuan; Ding, Xiu; Zheng, Li; Li, Hongguang; Bian, Qiuli

    2014-10-01

    To explore whether there were differences between the results of automatic titration and the results of manual titration for positive airway pressure treatment in patients with obstructive sleep apnea hypopnea syndrome (OSAHS) and its influencing factors, the results might provide a theoretical basis for the rational use of two pressure titration methods. Sixty one patients with OSAHS were included in this study. All patients underwent a manual titration and an automatic titration within one week. The clinical informations, polysomnography data, and the results of both two titration of all patients were obtained for analysis. The overall apnea/hypopnea index was (63.1 ± 17.7)/h, with a range of 14.9/h to 110.4/h. The treatment pressure of manual titration was (8.4 ± 2.1) cmH(2)O, which was significantly lower than the treatment pressure of automatic titration, (11.5 ± 2.7) cmH(2)O (t = -9.797, P < 0.001). After using a ΔP of 3 cmH(2)O for the cutoff value (ΔP was defined as the difference of automatic titration and manual titration), it was found that the pressure of automatic titration was significantly higher in patients with a ΔP > 3 cmH(2)O than in patients with a ΔP ≤ 3 cmH(2)O, which was (13.3 ± 2.3) cmH(2)O vs (10.0 ± 2.0) cmH(2)O (t = -6.159, P < 0.001). However, there were no differences for the pressure of manual titration between these two groups, which was (8.6 ± 2.4) cmH(2)O vs (8.3 ± 2.0)cmH(2)O (P > 0.05). There was no significant difference in age, body mass index, neck circumference, abdomen circumference, apnea hypopnea index, and arterial oxygen saturation between these two groups. The treatment pressure of automatic titration is usually higher than that of manual titration. For patients with a high treatment pressure which is derived from automatic titration, a suggestion about manual titration could be given to decrease the potential treatment pressure of continuous positive airway pressure, which may be helpful in improving the comfortableness and the compliance of this treatment.

  3. In Situ Generation and Consumption of H2O2 by Bienzyme-Quantum Dots Bioconjugates for Improved Chemiluminescence Resonance Energy Transfer.

    PubMed

    Xu, Shuxia; Li, Xianming; Li, Chaobi; Li, Jialin; Zhang, Xinfeng; Wu, Peng; Hou, Xiandeng

    2016-06-21

    Exploration of quantum dots (QDs) as energy acceptors revolutionizes the current chemiluminescence resonance energy transfer (CRET), since QDs possess large Stokes shifts and high luminescence efficiency. However, the strong and high concentration of oxidant (typically H2O2) needed for luminol chemiluminescence (CL) reaction could cause oxidative quenching to QDs, thereby decreasing the CRET performance. Here we proposed the use of bienzyme-QDs bioconjugate as the energy acceptor for improved CRET sensing. Two enzymes, one for H2O2 generation (oxidase) and another for H2O2 consumption (horseradish peroxidase, HRP), were bioconjugated onto the surface of QDs. The bienzyme allowed fast in situ cascaded H2O2 generation and consumption, thus alleviating fluorescence quenching of QDs. The nanosized QDs accommodate the two enzymes in a nanometric range, and the CL reaction was confined on the surface of QDs accordingly, thereby amplifying the CL reaction rate and improving CRET efficiency. As a result, CRET efficiency of 30-38% was obtained; the highest CRET efficiency by far was obtained using QDs as the energy acceptor. The proposed CRET system could be explored for ultrasensitive sensing of various oxidase substrates (here exemplified with cholesterol, glucose, and benzylamine), allowing for quantitative measurement of a spectrum of metabolites with high sensitivity and specificity. Limits of detection (LOD, 3σ) for cholesterol, glucose, and benzylamine were found to be 0.8, 3.4, and 10 nM, respectively. Furthermore, multiparametric blood analysis (glucose and cholesterol) is demonstrated.

  4. Catalytically induced electrokinetics for motors and micropumps.

    PubMed

    Paxton, Walter F; Baker, Paul T; Kline, Timothy R; Wang, Yang; Mallouk, Thomas E; Sen, Ayusman

    2006-11-22

    We have explored the role of electrokinetics in the spontaneous motion of platinum-gold nanorods suspended in hydrogen peroxide (H2O2) solutions that may arise from the bimetallic electrochemical decomposition of H2O2. The electrochemical decomposition pathway was confirmed by measuring the steady-state short-circuit current between platinum and gold interdigitated microelectrodes (IMEs) in the presence of H2O2. The resulting ion flux from platinum to gold implies an electric field in the surrounding solution that can be estimated from Ohm's Law. This catalytically generated electric field could in principle bring about electrokinetic effects that scale with the Helmholtz-Smoluchowski equation. Accordingly, we observed a linear relationship between bimetallic rod speed and the resistivity of the bulk solution. Previous observations relating a decrease in speed to an increase in ethanol concentration can be explained in terms of a decrease in current density caused by the presence of ethanol. Furthermore, we found that the catalytically generated electric field in the solution near a Pt/Au IME in the presence of H2O2 is capable of inducing electroosmotic fluid flow that can be switched on and off externally. We demonstrate that the velocity of the fluid flow in the plane of the IME is a function of the electric field, whether catalytically generated or applied from an external current source. Our findings indicate that the motion of PtAu nanorods in H2O2 is primarily due to a catalytically induced electrokinetic phenomenon and that other mechanisms, such as those related to interfacial tension gradients, play at best a minor role.

  5. Effect of H(2)SO(4) and HCl in the anode purging solution for the electrokinetic-Fenton remediation of soil contaminated with phenanthrene.

    PubMed

    Kim, Jung-Hwan; Kim, Jong Yun; Kim, Soo-Sam

    2009-09-01

    The Electrokinetic-Fenton (EK-Fenton) process is a powerful technology to remediate organic-contaminated soil. The behavior of salts and acids introduced for the pH control has significant influence on the H(2)O(2) stabilization and destruction of organic contaminants. In this study, the effects of the type and concentration of acids, which were introduced at the anode, were investigated for the treatment of clayey soil contaminated with phenanthrene. In experiments with H(2)SO(4) as the anode solution, H(2)O(2) concentration in the anode reservoir decreased due to reaction between reduced species of sulfate and H(2)O(2), as time elapsed. By contrast, HCl as an electrolyte in the anode reservoir did not decrease the H(2)O(2) concentration in the anode reservoir. The reaction between the reduced species of sulfate and H(2)O(2) hindered the stabilization of H(2)O(2) in the soil and anode reservoir. In experiments with HCl for pH control, Cl(.), and Cl(2)(. -), which could be generated with mineral catalyzed Fenton-like reaction, did not significantly hinder H(2)O(2) stabilization. H(2)O(2) transportation with electro-osmotic flow and mineral catalyzed Fenton-like reaction on the soil surface resulted in the simultaneous transport and degradation of phenanthrene, which are dependent of the advancement rate of the acid front and electro-osmotic flow toward the cathode according to HCl and H(2)SO(4) concentrations in the anode purging solution.

  6. Production of MHD fluid

    DOEpatents

    Lacey, James J.; Kurtzrock, Roy C.; Bienstock, Daniel

    1976-08-24

    A hot gaseous fluid of low ash content, suitable for use in open-cycle MHD (magnetohydrodynamic) power generation, is produced by means of a three-stage process comprising (1) partial combustion of a fossil fuel to produce a hot gaseous product comprising CO.sub.2 CO, and H.sub.2 O, (2) reformation of the gaseous product from stage (1) by means of a fluidized char bed, whereby CO.sub.2 and H.sub.2 O are converted to CO and H.sub.2, and (3) combustion of CO and H.sub.2 from stage (2) to produce a low ash-content fluid (flue gas) comprising CO.sub.2 and H.sub.2 O and having a temperature of about 4000.degree. to 5000.degree.F.

  7. Superoxide-responsive gene expression in Arabidopsis thaliana and Zea mays.

    PubMed

    Xu, Junhuan; Tran, Thu; Padilla Marcia, Carmen S; Braun, David M; Goggin, Fiona L

    2017-08-01

    Superoxide (O 2 - ) and other reactive oxygen species (ROS) are generated in response to numerous biotic and abiotic stresses. Different ROS have been reported to elicit different transcriptional responses in plants, and so ROS-responsive marker genes and promoter::reporter gene fusions have been proposed as indirect means of detecting ROS and discriminating among different species. However, further information about the specificity of transcriptional responses to O 2 - is needed in order to assess potential markers for this critical stress-responsive signaling molecule. Using qRT-PCR, the expression of 12 genes previously reported to be upregulated by O 2 - was measured in Arabidopsis thaliana plants exposed to elicitors of common stress-responsive ROS: methyl viologen (an inducer of O 2 - ), rose bengal (an inducer of singlet oxygen, 1 ΔO 2 ), and exogenous hydrogen peroxide (H 2 O 2 ). Surprisingly, Zinc-Finger Protein 12 (AtZAT12), which had previously been used as a reporter for H 2 O 2 , responded more strongly to O 2 - than to H 2 O 2 ; moreover, the expression of an AtZAT12 promoter-reporter fusion (AtZAT12::Luc) was enhanced by diethyldithiocarbamate, which inhibits dismutation of O 2 - to H 2 O 2 . These results suggest that AtZAT12 is transcriptionally upregulated in response to O 2 - , and that AtZAT12::Luc may be a useful biosensor for detecting O 2 - generation in vivo. In addition, transcripts encoding uncoupling proteins (AtUCPs) showed selectivity for O 2 - in Arabidopsis, and an AtUCP homolog upregulated by methyl viologen was also identified in maize (Zea mays L.), indicating that there are O 2 - -responsive members of this family in monocots. These results expand our limited knowledge of ROS-responsive gene expression in monocots, as well as O 2 - -selective responses in dicots. Copyright © 2017 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  8. Image-Based Measurement of H2O2 Reaction-Diffusion in Wounded Zebrafish Larvae.

    PubMed

    Jelcic, Mark; Enyedi, Balázs; Xavier, João B; Niethammer, Philipp

    2017-05-09

    Epithelial injury induces rapid recruitment of antimicrobial leukocytes to the wound site. In zebrafish larvae, activation of the epithelial NADPH oxidase Duox at the wound margin is required early during this response. Before injury, leukocytes are near the vascular region, that is, ∼100-300 μm away from the injury site. How Duox establishes long-range signaling to leukocytes is unclear. We conceived that extracellular hydrogen peroxide (H 2 O 2 ) generated by Duox diffuses through the tissue to directly regulate chemotactic signaling in these cells. But before it can oxidize cellular proteins, H 2 O 2 must get past the antioxidant barriers that protect the cellular proteome. To test whether, or on which length scales this occurs during physiological wound signaling, we developed a computational method based on reaction-diffusion principles that infers H 2 O 2 degradation rates from intravital H 2 O 2 -biosensor imaging data. Our results indicate that at high tissue H 2 O 2 levels the peroxiredoxin-thioredoxin antioxidant chain becomes overwhelmed, and H 2 O 2 degradation stalls or ceases. Although the wound H 2 O 2 gradient reaches deep into the tissue, it likely overcomes antioxidant barriers only within ∼30 μm of the wound margin. Thus, Duox-mediated long-range signaling may require other spatial relay mechanisms besides extracellular H 2 O 2 diffusion. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Treatment of an actual slaughterhouse wastewater by integration of biological and advanced oxidation processes: Modeling, optimization, and cost-effectiveness analysis.

    PubMed

    Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab

    2016-11-01

    Biological and advanced oxidation processes are combined to treat an actual slaughterhouse wastewater (SWW) by a sequence of an anaerobic baffled reactor, an aerobic activated sludge reactor, and a UV/H2O2 photoreactor with recycle in continuous mode at laboratory scale. In the first part of this study, quadratic modeling along with response surface methodology are used for the statistical analysis and optimization of the combined process. The effects of the influent total organic carbon (TOC) concentration, the flow rate, the pH, the inlet H2O2 concentration, and their interaction on the overall treatment efficiency, CH4 yield, and H2O2 residual in the effluent of the photoreactor are investigated. The models are validated at different operating conditions using experimental data. Maximum TOC and total nitrogen (TN) removals of 91.29 and 86.05%, respectively, maximum CH4 yield of 55.72%, and minimum H2O2 residual of 1.45% in the photoreactor effluent were found at optimal operating conditions. In the second part of this study, continuous distribution kinetics is applied to establish a mathematical model for the degradation of SWW as a function of time. The agreement between model predictions and experimental values indicates that the proposed model could describe the performance of the combined anaerobic-aerobic-UV/H2O2 processes for the treatment of SWW. In the final part of the study, the optimized combined anaerobic-aerobic-UV/H2O2 processes with recycle were evaluated using a cost-effectiveness analysis to minimize the retention time, the electrical energy consumption, and the overall incurred treatment costs required for the efficient treatment of slaughterhouse wastewater effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Electron-induced chemistry in microhydrated sulfuric acid clusters

    NASA Astrophysics Data System (ADS)

    Lengyel, Jozef; Pysanenko, Andriy; Fárník, Michal

    2017-11-01

    We investigate the mixed sulfuric acid-water clusters in a molecular beam experiment with electron attachment and negative ion mass spectrometry and complement the experiment by density functional theory (DFT) calculations. The microhydration of (H2SO4)m(H2O)n clusters is controlled by the expansion conditions, and the electron attachment yields the main cluster ion series (H2SO4)m(H2O)nHSO4- and (H2O)nH2SO4-. The mass spectra provide an experimental evidence for the onset of the ionic dissociation of sulfuric acid and ion-pair (HSO4- ṡ ṡ ṡ H3O+) formation in the neutral H2SO4(H2O)n clusters with n ≥ 5 water molecules, in excellent agreement with the theoretical predictions. In the clusters with two sulfuric acid molecules (H2SO4)2(H2O)n this process starts as early as n ≥ 2 water molecules. The (H2SO4)m(H2O)nHSO4- clusters are formed after the dissociative electron attachment to the clusters containing the (HSO4- ṡ ṡ ṡ H3O+) ion-pair structure, which leads to the electron recombination with the H3O+ moiety generating H2O molecule and the H-atom dissociation from the cluster. The (H2O)nH2SO4- cluster ions point to an efficient caging of the H atom by the surrounding water molecules. The electron-energy dependencies exhibit an efficient electron attachment at low electron energies below 3 eV, and no resonances above this energy, for all the measured mass peaks. This shows that in the atmospheric chemistry only the low-energy electrons can be efficiently captured by the sulfuric acid-water clusters and converted into the negative ions. Possible atmospheric consequences of the acidic dissociation in the clusters and the electron attachment to the sulfuric acid-water aerosols are discussed.

  11. The reaction between GSNO and H2S: On the generation of NO, HNO and N2O.

    PubMed

    Kumar, Murugaeson R; Clover, Tara; Olaitan, Abayomi D; Becker, Christopher; Solouki, Touradj; Farmer, Patrick J

    2018-04-26

    Several recent reports suggest that HNO may be produced endogenously by reaction of H 2 S and S-nitrosoglutathione (GSNO). This hypothesis was tested using deoxymyoglobin (MbFe II ) to trap the expected HNO released from the target reaction, which should generate the stable HNO adduct, HNO-Mb, under anaerobic conditions. Under numerous experimental conditions, the sole globin product was NO-Mb, as characterized by absorbance, EPR, and NMR spectroscopies. Analogous reactions of GSNO with other biological reductants such as ascorbic acid, dithiothreitol, glutathione, and dithionite also yielded NO-Mb as the sole globin product; however, whereas analogous reduction of GSNO using NaBH 4 generates HNO-Mb in high yield. Quantitative GC/MS analyses of reactions of GS 15 NO with H 2 S showed that the main reaction product was 15 NO, with 15 N 2 produced at a comparable level to 15 N 2 O. Overall yield of N 2 O is unchanged by the presence of MbFe II , discounting the intermediacy of either NO or HNO in its formation. Taken together, these results argue against the generation of free HNO as a major pathway in the reactions of GSNO with H 2 S, and instead imply some as yet uncharacterized intermediates generate the nitrogenic gases. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. {Mo96La8} eggshell ring and self-assembly to {Mo132} Keplerate through Mo-blue intermediate, involved in UV-photolysis of [Mo7O24](6-)/carboxylic acid system at pH 4.

    PubMed

    Yamase, Toshihiro; Kumagai, Shun; Prokop, Petra V; Ishikawa, Eri; Tomsa, Adrian-Raul

    2010-10-18

    The prolonged UV-photolysis of aqueous solutions containing [Mo(7)O(24)](6-) and C(2)H(5)CO(2)H (as electron donor) at pH 3.9-4.1 generates the carboxylate-coordinated {Mo(132)} Keplerate (1a) isolated as a formamidinium/ammonium-mixed salt, [HC(NH(2))(2)](26)(NH(4))(28)[Mo(V)(60)Mo(VI)(72)O(372)(H(2)O)(48)(C(2)H(5)CO(2))(36)((i)C(3)H(7)CO(2))(6)]·16H(2)O (1), through the Mo-blue intermediate (2). The coordination of 2 to La(3+) gives rise to the formation of the chain structure of the C(2)-symmetric {Mo(96)La(8)} eggshell rings, formulated by H(22)[Mo(V)(20)Mo(VI)(76)O(301)(H(2)O)(29){La(H(2)O)(6)}(2)]{La(H(2)O)(5)}(6)]·54.5H(2)O (3). The eggshell-ring geometry results from the insertion of [Mo(VI)(2)O(7)(H(2)O)](2-) (spacer) into the equator outer ring of the wheel-shaped Mo-blue, and 10 {(Mo(VI))(Mo(VI)(5))} pentagonal subunits alternately above and below the equator outer ring are connected by eight La(3+) and two {Mo(VI)(2)} linkers within two inner rings. The neighboring eggshell rings are linked through two Mo-O-Mo bonds formed by dehydrative condensation between the {Mo(VI)(2)} linkers to result in the chain structure. Together with the results of the elemental analysis and IR, electronic absorption, (13)C NMR, and ESI-MS spectra for 2, the ring profile analysis of 3 let us identify 2 with a carbolylate-coordinated Mo-blue ring of high nuclearity. The Mo(VI)→Mo(V) photoreductive change of 2 to the 60-electron reduced Keplerate in the presence of C(2)H(5)CO(2)H involves both degradation of the outer ring and splitting of the binuclear linkers, which leads to the formation of [(Mo(VI))Mo(VI)(5)O(21)(H(2)O)(4)(carboxylate)](7-) pentagonal subunits and [Mo(V)(2)O(4)(carboxylate)](+)/[Mo(V)O(2)(carboxylate)(1/2)](0.5+)-mixed linkers for 1.

  13. Continuous in situ measurements of volcanic gases with a diode-laser-based spectrometer: CO2 and H2O concentration and soil degassing at Vulcano (Aeolian islands: Italy)

    PubMed Central

    De Rosa, Maurizio; Gagliardi, Gianluca; Rocco, Alessandra; Somma, Renato; De Natale, Paolo; De Natale, Giuseppe

    2007-01-01

    We report on a continuous-measurement campaign carried out in Vulcano (Aeolian islands, Sicily), devoted to the simultaneous monitoring of CO2 and H2O concentrations. The measurements were performed with an absorption spectrometer based on a semiconductor laser source emitting around a 2-μm wavelength. The emitted radiation was selectively absorbed by two molecular ro-vibrational transitions specific of the investigated species. Data for CO2 and H2O concentrations, and CO2 soil diffusive flux using an accumulation chamber configuration, were collected at several interesting sampling points on the island (Porto Levante beach- PLB, Fossa Grande Crater – FOG- and Valley of Palizzi, PAL). CO2/H2O values, measured on the ground, are very similar (around 0.019 (± 0.006)) and comparable to the previous discrete detected values of 0.213 (Fumarole F5-La Fossa crater rim) and 0.012 (Fumarole VFS – Baia Levante beach) obtaid during the 1977–1993 heating phase of the crater fumaroles. In this work much more homogeneous values are found in different points of the three sites investigated. The field work, although carried out in a limited time window (25th–28th August 2004), pointed out the new apparatus is suitable for continuous gas monitoring of the two species and their ratios, which are important geochemical indicators of volcanic activity, for which other reliable continuous monitoring systems are not yet available. PMID:17448243

  14. Electrochemical, H2O2-Boosted Catalytic Oxidation System

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Thompson, John O.; Schussel, Leonard J.

    2004-01-01

    An improved water-sterilizing aqueous-phase catalytic oxidation system (APCOS) is based partly on the electrochemical generation of hydrogen peroxide (H2O2). This H2O2-boosted system offers significant improvements over prior dissolved-oxygen water-sterilizing systems in the way in which it increases oxidation capabilities, supplies H2O2 when needed, reduces the total organic carbon (TOC) content of treated water to a low level, consumes less energy than prior systems do, reduces the risk of contamination, and costs less to operate. This system was developed as a variant of part of an improved waste-management subsystem of the life-support system of a spacecraft. Going beyond its original intended purpose, it offers the advantage of being able to produce H2O2 on demand for surface sterilization and/or decontamination: this is a major advantage inasmuch as the benign byproducts of this H2O2 system, unlike those of systems that utilize other chemical sterilants, place no additional burden of containment control on other spacecraft air- or water-reclamation systems.

  15. Endothelial function and vascular oxidative stress in long-lived GH/IGF-deficient Ames dwarf mice

    PubMed Central

    Csiszar, Anna; Labinskyy, Nazar; Perez, Viviana; Recchia, Fabio A.; Podlutsky, Andrej; Mukhopadhyay, Partha; Losonczy, Gyorgy; Pacher, Pal; Austad, Steven N.; Bartke, Andrzej; Ungvari, Zoltan

    2008-01-01

    Hypopituitary Ames dwarf mice have low circulating growth hormone (GH)/IGF-I levels, and they have extended longevity and exhibit many symptoms of delayed aging. To elucidate the vascular consequences of Ames dwarfism we compared endothelial O2•− and H2O2 production, mitochondrial reactive oxygen species (ROS) generation, expression of antioxidant enzymes, and nitric oxide (NO) production in aortas of Ames dwarf and wild-type control mice. In Ames dwarf aortas endothelial O2•− and H2O2 production and ROS generation by mitochondria were enhanced compared with those in vessels of wild-type mice. In Ames dwarf aortas there was a less abundant expression of Mn-SOD, Cu,Zn-SOD, glutathione peroxidase (GPx)-1, and endothelial nitric oxide synthase (eNOS). NO production and acetylcholine-induced relaxation were also decreased in aortas of Ames dwarf mice. In cultured wild-type mouse aortas and in human coronary arterial endothelial cells treatment with GH and IGF significantly reduced cellular O2•− and H2O2 production and ROS generation by mitochondria and upregulated expression of Mn-SOD, Cu,Zn-SOD, GPx-1, and eNOS. Thus GH and IGF-I promote antioxidant phenotypic changes in the endothelial cells, whereas Ames dwarfism leads to vascular oxidative stress. PMID:18757483

  16. Enhancement of Photovoltaic Performance by Utilizing Readily Accessible Hole Transporting Layer of Vanadium(V) Oxide Hydrate in a Polymer-Fullerene Blend Solar Cell.

    PubMed

    Jiang, Youyu; Xiao, Shengqiang; Xu, Biao; Zhan, Chun; Mai, Liqiang; Lu, Xinhui; You, Wei

    2016-05-11

    Herein, a successful application of V2O5·nH2O film as hole transporting layer (HTL) instead of PSS in polymer solar cells is demonstrated. The V2O5·nH2O layer was spin-coated from V2O5·nH2O sol made from melting-quenching sol-gel method by directly using vanadium oxide powder, which is readily accessible and cost-effective. V2O5·nH2O (n ≈ 1) HTL is found to have comparable work function and smooth surface to that of PSS. For the solar cell containing V2O5·nH2O HTL and the active layer of the blend of a novel polymer donor (PBDSe-DT2PyT) and the acceptor of PC71BM, the PCE was significantly improved to 5.87% with a 30% increase over 4.55% attained with PSS HTL. Incorporation of V2O5·nH2O as HTL in the polymer solar cell was found to enhance the crystallinity of the active layer, electron-blocking at the anode and the light-harvest in the wavelength range of 400-550 nm in the cell. V2O5·nH2O HTL improves the charge generation and collection and suppress the charge recombination within the PBDSe-DT2PyT:PC71BM solar cell, leading to a simultaneous enhancement in Voc, Jsc, and FF. The V2O5·nH2O HTL proposed in this work is envisioned to be of great potential to fabricate highly efficient PSCs with low-cost and massive production.

  17. Evaluation of advanced bladder technology

    NASA Technical Reports Server (NTRS)

    Christensen, M. V.; Pasternak, R. A.

    1972-01-01

    Research conducted during this period is reported. Studies presented include: (1) diffusion and permeation of CO2, O2, N2, and NO2 through polytetra fluoroethylene; (2) diffusion, permeation and solubility of simple gases (CO2, O2, N2, CH4, C2H6, C3H8, and C2H4) through a copolymer of hexafluoro propylene and tetrafluoro ethylene (FEP); (3) viscous flow and diffusion of gases throug small apertures; (4) diffusion and permeation of O2, N2, CO2, CH4, C2H6, and C3H8 through nitroso rubber; and (5) results of gas transport studies with carborane siloxane, nitroso rubber, silicone membrane, krytox coating on teflon, and FEP coated glass cloth. Publications generated under this program are listed.

  18. Quantifying Fenton reaction pathways driven by self-generated H2O2 on pyrite surfaces.

    PubMed

    Gil-Lozano, C; Davila, A F; Losa-Adams, E; Fairén, A G; Gago-Duport, L

    2017-03-06

    Oxidation of pyrite (FeS 2 ) plays a significant role in the redox cycling of iron and sulfur on Earth and is the primary cause of acid mine drainage (AMD). It has been established that this process involves multi-step electron-transfer reactions between surface defects and adsorbed O 2 and H 2 O, releasing sulfoxy species (e.g., S 2 O 3 2- , SO 4 2- ) and ferrous iron (Fe 2+ ) to the solution and also producing intermediate by-products, such as hydrogen peroxide (H 2 O 2 ) and other reactive oxygen species (ROS), however, our understanding of the kinetics of these transient species is still limited. We investigated the kinetics of H 2 O 2 formation in aqueous suspensions of FeS 2 microparticles by monitoring, in real time, the H 2 O 2 and dissolved O 2 concentration under oxic and anoxic conditions using amperometric microsensors. Additional spectroscopic and structural analyses were done to track the dependencies between the process of FeS 2 dissolution and the degradation of H 2 O 2 through the Fenton reaction. Based on our experimental results, we built a kinetic model which explains the observed trend of H 2 O 2 , showing that FeS 2 dissolution can act as a natural Fenton reagent, influencing the oxidation of third-party species during the long term evolution of geochemical systems, even in oxygen-limited environments.

  19. Implementation of New System for Oxygen Generation and Carbon Dioxide Removal =

    NASA Astrophysics Data System (ADS)

    Karavolos, Angelo Peter

    This research effort develops an integrated system for CO2 removal and O2 production. A unique material, dodeca-tungsto-phosphoric acid (H3PO4W12O3; henceforth referred to as DTPA) is mixed with tetra-ethyl-ortho-silicate Si(OC2H 5)4 or TEOS. This mixture exhibits unique properties of heat absorption and high electrical conductivity. In the system described herein, the DTPA resides within a cross linked arrangement of TEOS. The DTPA furnishes a source of O2, while the TEOS furnishes structural support for the large DTPA crystals. In addition, the large amount of H2O within the crystal also adsorbs CO2. It can also be cross-linked with other polymers such as polycarbonate, for different applications and properties such as flexible textiles. A set of isolated bench experiments were designed to test CO2 adsorption, O2 production, heat production, and voltage production were conducted to test the hypothesis that DTPA can provide CO2 adsorption, O2 generation, heat generation and electrical generation. Five experiments with this apparatus were conducted: (1) a mass balance experiment; (2) an X-ray diffraction experiment; (3) a photo spectroscopic experiment; (4) a calorimetric experiment; and (5) a dielectric experiment. Results illustrate that approximately 2880 grams of this material produces 576 grams of O2, and removes 1760 grams of CO2. The reaction also produces approximately 844 kJ/mole heat, and can supply 12.2 V potential over a period of 4.5 hours. The amount of unused material and the recycling ability suggests the usefulness of the technique to achieve between a 50-75% closed system. In addition, an experiment using 18O tracer demonstrated that approximately 20% of the O2 produced comes from processed CO2 adsorbed by the crystal, while the remaining 80% of the O2 produced comes from replaced O2 within the crystal itself. The device has multiple applications including environmental control and life support for aircraft cabins, space vehicle interiors, submarine pressure vessels, sealed armored vehicles, and personal protective equipment for individuals working in confined spaces such as mines. None

  20. Modelling the helium plasma jet delivery of reactive species into a 3D cancer tumour

    NASA Astrophysics Data System (ADS)

    Szili, Endre J.; Oh, Jun-Seok; Fukuhara, Hideo; Bhatia, Rishabh; Gaur, Nishtha; Nguyen, Cuong K.; Hong, Sung-Ha; Ito, Satsuki; Ogawa, Kotaro; Kawada, Chiaki; Shuin, Taro; Tsuda, Masayuki; Furihata, Mutsuo; Kurabayashi, Atsushi; Furuta, Hiroshi; Ito, Masafumi; Inoue, Keiji; Hatta, Akimitsu; Short, Robert D.

    2018-01-01

    Cold atmospheric plasmas have attracted significant worldwide attention for their potential beneficial effects in cancer therapy. In order to further improve the effectiveness of plasma in cancer therapy, it is important to understand the generation and transport of plasma reactive species into tissue fluids, tissues and cells, and moreover the rates and depths of delivery, particularly across physical barriers such as skin. In this study, helium (He) plasma jet treatment of a 3D cancer tumour, grown on the back of a live mouse, induced apoptosis within the tumour to a depth of 2.8 mm. The He plasma jet was shown to deliver reactive oxygen species through the unbroken skin barrier before penetrating through the entire depth of the tumour. The depth and rate of transport of He plasma jet generated H2O2, NO3 - and NO2 -, as well as aqueous oxygen [O2(aq)], was then tracked in an agarose tissue model. This provided an approximation of the H2O2, NO3 -, NO2 - and O2(aq) concentrations that might have been generated during the He plasma jet treatment of the 3D tumour. It is proposed that the He plasma jet can induce apoptosis within a tumour by the ‘deep’ delivery of H2O2, NO3 - and NO2 - coupled with O2(aq); the latter raising oxygen tension in hypoxic tissue.

  1. A series of coordination polymers constructed from R-isophthalic acid (R=-SO3H, -NO2, and -OH) and N-donor ligands: Syntheses, structures and fluorescence properties

    NASA Astrophysics Data System (ADS)

    Zhou, Yong-Hong; Zhou, Xu-Wan; Zhou, Su-Rong; Tian, Yu-Peng; Wu, Jie-Ying

    2017-01-01

    Six novel Zn(II), Cd(II), and Cu(II) mixed-ligand coordination complexes, namely, [Zn2Na(sip)2(bpp)3(Hbpp)(H2O)2]·8H2O (1), [Cd3(sip)2(nbi)6(H2O)2]·7H2O (2), [Zn(sip)(nbi)2(H2O)]·Hnbi·3H2O (3), [Cd(hip)(nbi)2(H2O)]·nbi·5H2O (4), [Cd2(nip)2(nbi)2(H2O)2]·DMF (5), and [Cu(nip)(nbi)(H2O)2]·H2O (6) (H3sip=5-sulfoisophthalic acid, H2hip=5-hydroxylisophthalic acid, H2nip=5-nitroisophthalic acid, bpp=1,3-bis(4-pyridyl)propane, and nbi=6-nitrobenzimidazole) have been synthesized hydrothermally by the self-assembly of R-isophthalic acid (R=-SO3H, -NO2, and -OH) and N-donor ligands. Single crystal X-ray analyses reveal that two Zn(II) ions and one Na(I) ion of complex 1 are linked through O atoms to generate a 1D linear chain. Then the 2D supramolecular architectures are constructed via intermolecular interactions. In complex 2, the Cd1 ions are connected by bridging carboxyl groups from sip3- anions to form 1D double chain, which are further connected by Cd2 ions to afford 2D layer structure. The adjacent 2D layers are further linked via hydrogen-bonding interactions to give 3D supramolecular network. Compounds 3-5 show 1D chain structures, which are assembled into 2D or 3D supramolecular frameworks via weak interactions. In compound 6, the Cu(II) ions are bridged by the nip2- ligands to form 48-membered ring, which is assembled into 1Dchain via the π-π stacking interaction. In addition, the thermal stabilities and fluorescence properties of these compounds have also been studied.

  2. Communication: H-atom reactivity as a function of temperature in solid parahydrogen: The H + N2O reaction

    NASA Astrophysics Data System (ADS)

    Mutunga, Fredrick M.; Follett, Shelby E.; Anderson, David T.

    2013-10-01

    We present low temperature kinetic measurements for the H + N2O association reaction in solid parahydrogen (pH2) at liquid helium temperatures (1-5 K). We synthesize 15N218O doped pH2 solids via rapid vapor deposition onto an optical substrate attached to the cold tip of a liquid helium bath cryostat. We then subject the solids to short duration 193 nm irradiations to generate H-atoms produced as byproducts of the in situ N2O photodissociation, and monitor the subsequent reaction kinetics using rapid scan FTIR. For reactions initiated in solid pH2 at 4.3 K we observe little to no reaction; however, if we then slowly reduce the temperature of the solid we observe an abrupt onset to the H + N2O → cis-HNNO reaction at temperatures below 2.4 K. This abrupt change in the reaction kinetics is fully reversible as the temperature of the solid pH2 is repeatedly cycled. We speculate that the observed non-Arrhenius behavior (negative activation energy) is related to the stability of the pre-reactive complex between the H-atom and 15N218O reagents.

  3. In situ electrochemical and photo-electrochemical generation of the fenton reagent: a potentially important new water treatment technology.

    PubMed

    Peralta-Hernández, J M; Meas-Vong, Yunny; Rodríguez, Francisco J; Chapman, Thomas W; Maldonado, Manuel I; Godínez, Luis A

    2006-05-01

    In this work, the design and construction of an annular tube reactor for the electrochemical and photo-electrochemical in situ generation of H2O2 are described. By cathodic reduction of dissolved oxygen and the coupled oxidation of water at a UV-illuminated nanocrystalline-TiO2 semiconductor anode, it was found that the electrochemically generated H2O2 can be employed to readily oxidize the model compound Direct Yellow-52 in dilute acidic solution at high rates in the presence of small quantities of dissolved iron(II). Although, the model organic compound is chemically stable under UV radiation, its electrochemical oxidation rate increases substantially when the semiconductor anode is illuminated as compared to the same processes carried out in the dark.

  4. Water-Soluble Fe(II)−H2O Complex with a Weak O−H Bond Transfers a Hydrogen Atom via an Observable Monomeric Fe(III)−OH

    PubMed Central

    Brines, Lisa M.; Coggins, Michael K.; Poon, Penny Chaau Yan; Toledo, Santiago; Kaminsky, Werner; Kirk, Martin L.

    2015-01-01

    Understanding the metal ion properties that favor O−H bond formation versus cleavage should facilitate the development of catalysts tailored to promote a specific reaction, e.g., C−H activation or H2O oxidation. The first step in H2O oxidation involves the endothermic cleavage of a strong O−H bond (BDFE = 122.7 kcal/mol), promoted by binding the H2O to a metal ion, and by coupling electron transfer to proton transfer (PCET). This study focuses on details regarding how a metal ion’s electronic structure and ligand environment can tune the energetics of M(HO−H) bond cleavage. The synthesis and characterization of an Fe(II)−H2O complex, 1, that undergoes PCET in H2O to afford a rare example of a monomeric Fe(III)−OH, 7, is described. High-spin 7 is also reproducibly generated via the addition of H2O to {[FeIII(OMe2N4(tren))]2-(µ-O)}2+ (8). The O−H bond BDFE of Fe(II)−H2O (1) (68.6 kcal/mol) is calculated using linear fits to its Pourbaix diagram and shown to be 54.1 kcal/mol less than that of H2O and 10.9 kcal/mol less than that of [Fe(II)(H2O)6]2+. The O−H bond of 1 is noticeably weaker than the majority of reported Mn+(HxO−H) (M = Mn, Fe; n+ = 2+, 3+; x = 0, 1) complexes. Consistent with their relative BDFEs, Fe(II)−H2O (1) is found to donate a H atom to TEMPO•, whereas the majority of previously reported Mn+−O(H) complexes, including [MnIII(SMe2N4(tren))(OH)]+ (2), have been shown to abstract H atoms from TEMPOH. Factors responsible for the weaker O−H bond of 1, such as differences in the electron-donating properties of the ligand, metal ion Lewis acidity, and electronic structure, are discussed. PMID:25611075

  5. Degradation of 5-FU by means of advanced (photo)oxidation processes: UV/H2O2, UV/Fe2+/H2O2 and UV/TiO2--Comparison of transformation products, ready biodegradability and toxicity.

    PubMed

    Lutterbeck, Carlos Alexandre; Wilde, Marcelo Luís; Baginska, Ewelina; Leder, Christoph; Machado, Ênio Leandro; Kümmerer, Klaus

    2015-09-15

    The present study investigates the degradation of the antimetabolite 5-fluorouracil (5-FU) by three different advanced photo oxidation processes: UV/H2O2, UV/Fe(2+)/H2O2 and UV/TiO2. Prescreening experiments varying the H2O2 and TiO2 concentrations were performed in order to set the best catalyst concentrations in the UV/H2O2 and UV/TiO2 experiments, whereas the UV/Fe(2+)/H2O2 process was optimized varying the pH, Fe(2+) and H2O2 concentrations by means of the Box-Behnken design (BBD). 5-FU was quickly removed in all the irradiation experiments. The UV/Fe(2+)/H2O2 and UV/TiO2 processes achieved the highest degree of mineralization, whereas the lowest one resulted from the UV/H2O2 treatment. Six transformation products were formed during the advanced (photo)oxidation processes and identified using low and high resolution mass spectrometry. Most of them were formed and further eliminated during the reactions. The parent compound of 5-FU was not biodegraded, whereas the photolytic mixture formed in the UV/H2O2 treatment after 256 min showed a noticeable improvement of the biodegradability in the closed bottle test (CBT) and was nontoxic towards Vibrio fischeri. In silico predictions showed positive alerts for mutagenic and genotoxic effects of 5-FU. In contrast, several of the transformation products (TPs) generated along the processes did not provide indications for mutagenic or genotoxic activity. One exception was TP with m/z 146 with positive alerts in several models of bacterial mutagenicity which could demand further experimental testing. Results demonstrate that advanced treatment can eliminate parent compounds and its toxicity. However, transformation products formed can still be toxic. Therefore toxicity screening after advanced treatment is recommendable. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Osmopriming-induced salt tolerance during seed germination of alfalfa most likely mediates through H2O2 signaling and upregulation of heme oxygenase.

    PubMed

    Amooaghaie, Rayhaneh; Tabatabaie, Fatemeh

    2017-07-01

    The present study showed that osmopriming or pretreatment with low H 2 O 2 doses (2 mM) for 6 h alleviated salt-reduced seed germination. The NADPH oxidase activity was the main source, and superoxide dismutase (SOD) activity might be a secondary source of H 2 O 2 generation during osmopriming or H 2 O 2 pretreatment. Hematin pretreatment similar to osmopriming improved salt-reduced seed germination that was coincident with the enhancement of heme oxygenase (HO) activity. The semi-quantitative RT-PCR confirmed that osmopriming or H 2 O 2 pretreatment was able to upregulate heme oxygenase HO-1 transcription, while the application of N,N-dimethyl thiourea (DMTU as trap of endogenous H 2 O 2 ) and diphenyleneiodonium (DPI as inhibitor of NADPHox) not only blocked the upregulation of HO but also reversed the osmopriming-induced salt attenuation. The addition of CO-saturated aqueous rescued the inhibitory effect of DMTU and DPI on seed germination and α-amylase activity during osmopriming or H 2 O 2 pretreatment, but H 2 O 2 could not reverse the inhibitory effect of ZnPPIX (as HO inhibitor) or Hb (as CO scavenger) that indicates that the CO acts downstream of H 2 O 2 in priming-driven salt acclimation. The antioxidant enzymes and proline synthesis were upregulated in roots of seedlings grown from primed seeds, and these responses were reversed by adding DMTU, ZnPPIX, and Hb during osmopriming. These findings for the first time suggest that H 2 O 2 signaling and upregulation of heme oxygenase play a crucial role in priming-driven salt tolerance.

  7. Results of duct area ratio changes in the NASA Lewis H2-O2 combustion MHD experiment

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1979-01-01

    MHD power generation experiments utilizing a cesium-seeded H2-O2 working fluid were carried out using a diverging area Hall duct having an entrance Mach number of 2. The experiments were conducted in a high field strength cryomagnet facility at field strengths up to 5 tesla. The effects of power takeoff location, generator loading B field strength, and electrode breakdown voltage were investigated. The effect of area ratio, multiple loading of the duct, and duct location within the magnetic field are considered.

  8. Reaction dynamics of H + O2 at 1.6 eV collision energy

    NASA Technical Reports Server (NTRS)

    Bronikowski, Michael J.; Zhang, Rong; Rakestraw, David J.; Zare, Richard N.

    1989-01-01

    The hot hydrogen atom reaction, H + O2 yields OH + O, has been studied at a center of mass collision energy of 1.6 eV. H atoms were generated by 266 nm photolysis of HI in a mixture of HI and O2 at 293 K. The OH product was probed by laser induced fluorescence and the nascent OH vibrational, rotational, and fine structure distributions were determined. The OH(v=0)/OH(v=1) vibrational branching ratio was measured to be 1.72 + or - 0.09. The data suggest that the H + O2 reaction at this collision energy proceeds via two competing mechanisms: reaction involving a long-lived complex and direct reaction.

  9. Reaction dynamics of H + O2 at 1.6 eV collision energy

    NASA Technical Reports Server (NTRS)

    Bronikowski, Michael J.; Rong, Zhang; Rakestraw, David J.; Zare, Richard N.

    1989-01-01

    The hot hydrogen atom reaction, H + O2 yields OH + O, has been studied at a center of mass collision energy of 1.6 eV. H atoms were generated by 266 nm photolysis of HI in a mixture of HI and O2 at 293 K. The OH product was probed by laser induced fluorescence and the nascent OH vibrational, rotational, and fine structure distributions were determined. The OH(v=0/OH(v=1) vibrational branching ratio was measured to be 1.72 + or - 0.09. The data suggest that the H + O2 reaction at this collision energy proceeds via two competing mechanisms: reaction involving a long-lived complex and direct reaction.

  10. Multimodal probing of oxygen and water interaction with metallic and semiconducting carbon nanotube networks under ultraviolet irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Anthony J.; Ivanov, Ilia N.; Muckley, Eric S.

    In this study, carbon nanotube (CNT) networks composed of semiconducting single wall nanotubes (s-SWNTs), metallic single wall nanotubes (m-SWNTs), and multiwall nanotubes (MWNTs) were exposed to O 2 and H 2O vapor in the dark and under UV irradiation. Changes in film resistance and mass were measured in situ. In the dark, resistance of metallic nanotube networks increases in the presence of O 2 and H 2O, whereas resistance of s-SWNT networks decreases. We find that UV irradiation increases the sensitivity of CNT networks to O 2 and H 2O by more than an order of magnitude. Under UV irradiation,more » the resistance of metallic nanotube networks decreases in the presence of O 2 and H 2O likely through the generation of free charge carriers. UV irradiation increases the gas/vapor sensitivity of s-SWNT networks by nearly a factor of 2 compared to metallic nanotube networks. Networks of s-SWNTs show evidence of delamination from the gold-plated QCM crystal, possibly due to preferential adsorption of O 2 and H 2O on gold.« less

  11. Multimodal probing of oxygen and water interaction with metallic and semiconducting carbon nanotube networks under ultraviolet irradiation

    DOE PAGES

    Nelson, Anthony J.; Ivanov, Ilia N.; Muckley, Eric S.; ...

    2016-06-01

    In this study, carbon nanotube (CNT) networks composed of semiconducting single wall nanotubes (s-SWNTs), metallic single wall nanotubes (m-SWNTs), and multiwall nanotubes (MWNTs) were exposed to O 2 and H 2O vapor in the dark and under UV irradiation. Changes in film resistance and mass were measured in situ. In the dark, resistance of metallic nanotube networks increases in the presence of O 2 and H 2O, whereas resistance of s-SWNT networks decreases. We find that UV irradiation increases the sensitivity of CNT networks to O 2 and H 2O by more than an order of magnitude. Under UV irradiation,more » the resistance of metallic nanotube networks decreases in the presence of O 2 and H 2O likely through the generation of free charge carriers. UV irradiation increases the gas/vapor sensitivity of s-SWNT networks by nearly a factor of 2 compared to metallic nanotube networks. Networks of s-SWNTs show evidence of delamination from the gold-plated QCM crystal, possibly due to preferential adsorption of O 2 and H 2O on gold.« less

  12. Metabolism of D-[1-3H]glucose, D-[2-3H]glucose, D-[5-3H]glucose, D-[6-3H]glucose and D-[U-14C]glucose by rat and human erythrocytes incubated in the presence of H2O or D2O.

    PubMed

    Conget, I; Malaisse, W J

    1995-02-01

    The present study investigates whether heavy water affects the efficiency of 3HOH production from D-[1-3H]glucose, D-[2-3H]glucose, D-[5-3H]glucose and D-[6-3H]glucose relative to the total generation of tritiated metabolites produced by either rat or human erythrocytes. The relative 3HOH yield was close to 95% with D-[5-3H]glucose, 72% with D-[2-3H]glucose, 22-32% with D-[1-3H]glucose, and only 12% with D-[6-3H]glucose. In the latter case, the comparison of the specific radioactivity of intracellular and extracellular acidic metabolites, expressed relative to that of 14C-labelled metabolites produced from D-[U-14C]glucose, indicated that the generation of 3HOH from D-[6-3H]glucose occurs at distal metabolic steps, such as the partial reversion of the pyruvate kinase reaction or the interconversion of pyruvate and L-alanine in the reaction catalysed by glutamate-pyruvate transaminase. As a rule, the substitution of H2O by D2O only caused minor to negligible changes in the relative 3HOH yield. This implies that the unexpectedly high deuteration of 13C-labelled D-glucose metabolites recently documented in erythrocytes exposed to D2O cannot be attributed to any major interference of heavy water with factors regulating both the deuteration and detritiation efficiency, such as the enzyme-to-enzyme tunnelling of specific glycolytic intermediates.

  13. Capture and storage of hydrogen gas by zero-valent iron.

    PubMed

    Reardon, Eric J

    2014-02-01

    Granular Fe(o), used to reductively degrade a variety of contaminants in groundwater, corrodes in water to produce H2(g). A portion enters the Fe(o) lattice where it is stored in trapping sites such as lattice defects and microcracks. The balance is dissolved by the groundwater where it may exsolve as a gas if its solubility is exceeded. Gas exsolution can reduce the effectiveness of the Fe(o) treatment zone by reducing contact of the contaminant with iron surfaces or by diverting groundwater flow. It also represents a lost electron resource that otherwise could be involved in reductive degradation of contaminants. It is advantageous to select an iron for remediation purposes that captures a large proportion of the H2(g) it generates. This study examines various aspects of the H2(g) uptake process and has found 1) H2(g) does not have to be generated at the water/iron interface to enter the lattice. It can enter directly from the gas/water phases, 2) exposure of granular sponge iron to H2(g) reduces the dormant period for the onset of iron corrosion, 3) the large quantities of H2(g) generated by nano-Fe(o) injected into a reactive barrier of an appropriate granular iron can be captured in the lattice of that iron, and 4) lattice-bound hydrogen represents an additional electron resource to Fe(o) for remediation purposes and may be accessible using physical or chemical means. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Derivation of intermediate to silicic magma from the basalt analyzed at the Vega 2 landing site, Venus.

    PubMed

    Shellnutt, J Gregory

    2018-01-01

    Geochemical modeling using the basalt composition analyzed at the Vega 2 landing site indicates that intermediate to silicic liquids can be generated by fractional crystallization and equilibrium partial melting. Fractional crystallization modeling using variable pressures (0.01 GPa to 0.5 GPa) and relative oxidation states (FMQ 0 and FMQ -1) of either a wet (H2O = 0.5 wt%) or dry (H2O = 0 wt%) parental magma can yield silicic (SiO2 > 60 wt%) compositions that are similar to terrestrial ferroan rhyolite. Hydrous (H2O = 0.5 wt%) partial melting can yield intermediate (trachyandesite to andesite) to silicic (trachydacite) compositions at all pressures but requires relatively high temperatures (≥ 950°C) to generate the initial melt at intermediate to low pressure whereas at high pressure (0.5 GPa) the first melts will be generated at much lower temperatures (< 800°C). Anhydrous partial melt modeling yielded mafic (basaltic andesite) and alkaline compositions (trachybasalt) but the temperature required to produce the first liquid is very high (≥ 1130°C). Consequently, anhydrous partial melting is an unlikely process to generate derivative liquids. The modeling results indicate that, under certain conditions, the Vega 2 composition can generate silicic liquids that produce granitic and rhyolitic rocks. The implication is that silicic igneous rocks may form a small but important component of the northeast Aphrodite Terra.

  15. Derivation of intermediate to silicic magma from the basalt analyzed at the Vega 2 landing site, Venus

    PubMed Central

    2018-01-01

    Geochemical modeling using the basalt composition analyzed at the Vega 2 landing site indicates that intermediate to silicic liquids can be generated by fractional crystallization and equilibrium partial melting. Fractional crystallization modeling using variable pressures (0.01 GPa to 0.5 GPa) and relative oxidation states (FMQ 0 and FMQ -1) of either a wet (H2O = 0.5 wt%) or dry (H2O = 0 wt%) parental magma can yield silicic (SiO2 > 60 wt%) compositions that are similar to terrestrial ferroan rhyolite. Hydrous (H2O = 0.5 wt%) partial melting can yield intermediate (trachyandesite to andesite) to silicic (trachydacite) compositions at all pressures but requires relatively high temperatures (≥ 950°C) to generate the initial melt at intermediate to low pressure whereas at high pressure (0.5 GPa) the first melts will be generated at much lower temperatures (< 800°C). Anhydrous partial melt modeling yielded mafic (basaltic andesite) and alkaline compositions (trachybasalt) but the temperature required to produce the first liquid is very high (≥ 1130°C). Consequently, anhydrous partial melting is an unlikely process to generate derivative liquids. The modeling results indicate that, under certain conditions, the Vega 2 composition can generate silicic liquids that produce granitic and rhyolitic rocks. The implication is that silicic igneous rocks may form a small but important component of the northeast Aphrodite Terra. PMID:29584745

  16. Urban Emissions of Water Vapor in Winter.

    PubMed

    Salmon, Olivia E; Shepson, Paul B; Ren, Xinrong; Marquardt Collow, Allison B; Miller, Mark A; Carlton, Annmarie G; Cambaliza, Maria O L; Heimburger, Alexie; Morgan, Kristan L; Fuentes, Jose D; Stirm, Brian H; Grundman, Robert; Dickerson, Russell R

    2017-09-16

    Elevated water vapor (H 2 O v ) mole fractions were occassionally observed downwind of Indianapolis, IN, and the Washington, D.C.-Baltimore, MD, area during airborne mass balance experiments conducted during winter months between 2012 and 2015. On days when an urban H 2 O v excess signal was observed, H 2 O v emissions estimates range between 1.6 × 10 4 and 1.7 × 10 5 kg s -1 , and account for up to 8.4% of the total (background + urban excess) advected flow of atmospheric boundary layer H 2 O v from the urban study sites. Estimates of H 2 O v emissions from combustion sources and electricity generation facility cooling towers are 1-2 orders of magnitude smaller than the urban H 2 O v emission rates estimated from observations. Instances of urban H 2 O v enhancement could be a result of differences in snowmelt and evaporation rates within the urban area, due in part to larger wintertime anthropogenic heat flux and land cover differences, relative to surrounding rural areas. More study is needed to understand why the urban H 2 O v excess signal is observed on some days, and not others. Radiative transfer modeling indicates that the observed urban enhancements in H 2 O v and other greenhouse gas mole fractions contribute only 0.1°C day -1 to the urban heat island at the surface. This integrated warming through the boundary layer is offset by longwave cooling by H 2 O v at the top of the boundary layer. While the radiative impacts of urban H 2 O v emissions do not meaningfully influence urban heat island intensity, urban H 2 O v emissions may have the potential to alter downwind aerosol and cloud properties.

  17. Critical Role of Water and Oxygen Defects in C-O Scission during CO2 Reduction on Zn2GeO4(010).

    PubMed

    Yang, Jing; Li, Yanlu; Zhao, Xian; Fan, Weiliu

    2018-03-27

    Exploration of catalyst structure and environmental sensitivity for C-O bond scission is essential for improving the conversion efficiency because of the inertness of CO 2 . We performed density functional theory calculations to understand the influence of the properties of adsorbed water and the reciprocal action with oxygen vacancy on the CO 2 dissociation mechanism on Zn 2 GeO 4 (010). When a perfect surface was hydrated, the introduction of H 2 O was predicted to promote the scission step by two modes based on its appearance, with the greatest enhancement from dissociative adsorbed H 2 O. The dissociative H 2 O lowers the barrier and reaction energy of CO 2 dissociation through hydrogen bonding to preactivate the C-O bond and assisted scission via a COOH intermediate. The perfect surface with bidentate-binding H 2 O was energetically more favorable for CO 2 dissociation than the surface with monodentate-binding H 2 O. Direct dissociation was energetically favored by the former, whereas monodentate H 2 O facilitated the H-assisted pathway. The defective surface exhibited a higher reactivity for CO 2 decomposition than the perfect surface because the generation of oxygen vacancies could disperse the product location. When the defective surface was hydrated, the reciprocal action for vacancy and surface H 2 O on CO 2 dissociation was related to the vacancy type. The presence of H 2 O substantially decreased the reaction energy for the direct dissociation of CO 2 on O 2c1 - and O 3c2 -defect surfaces, which converts the endoergic reaction to an exoergic reaction. However, the increased decomposition barrier made the step kinetically unfavorable and reduced the reaction rate. When H 2 O was present on the O 2c2 -defect surface, both the barrier and reaction energy for direct dissociation were invariable. This result indicated that the introduction of H 2 O had little effect on the kinetics and thermodynamics. Moreover, the H-assisted pathway was suppressed on all hydrated defect surfaces. These results provide a theoretical perspective for the design of highly efficient catalysts.

  18. Sterilization Effect of Wet Oxygen Plasma in the Bubbling Method.

    PubMed

    Tamazawa, Kaoru; Shintani, Hideharu; Tamazawa, Yoshinori; Shimauchi, Hidetoshi

    2015-01-01

    A new low-temperature sterilization method to replace the ethylene oxide gas sterilization is needed. Strong bactericidal effects of OH and O2H radicals are well known. The purpose of this study was to evaluate the sterilization effect of wet oxygen ("O2+H2O") plasma in the bubbling method, confirming the effect of humidity. Sterility assurance was confirmed by using a biological indicator (Geobacillus stearothermophilus ATCC7953, Namsa, USA). One hundred and eight samples (10(5) spores/carrier) were divided into three groups of 36 in each for treatment with a different type of gas (O2, O2+H2O, Air+H2O). Plasma processing was conducted using a plasma ashing apparatus (13.56 MHz, PACK-3(®), Y. A. C., Japan) under various gas pressures (13, 25, 50 Pa) and gas flows (50, 100, 200 sccm). Fixed plasma treatment parameters were power at 150 W, temperature of 60 ℃, treatment time of 10 min. The samples after treatment were incubated in trypticase soy broth at 58 ℃ for 72 h. The negative culture rate in the "O2+H2O" group was significantly (Mantel-Haenszel procedure, p<0.001) higher than in the other gas groups. It is suggested that the significant sterilization effect of the "O2+H2O" group depends on the bubbling method which is the method of introducing vapor into the chamber. The bubbling method seems able to generate OH and O2H radicals in a stable way.

  19. Photosensitized H2 Production Using a Zinc Porphyrin-Substituted Protein, Platinum Nanoparticles, and Ascorbate with No Electron Relay: Participation of Good's Buffers.

    PubMed

    Clark, Emily R; Kurtz, Donald M

    2017-04-17

    Development of efficient light-driven splitting of water, 2H 2 O → 2H 2 + O 2 , often attempts to optimize photosensitization of the reductive and oxidative half-reactions individually. Numerous homogeneous and heterogeneous systems have been developed for photochemical stimulation of the reductive half reaction, 2H + + 2e - → H 2 . These systems generally consist of various combinations of a H + reduction catalyst, a photosensitizer (PS), and a "sacrificial" electron donor. Zinc(II)-porphyrins (ZnPs) have frequently been used as PSs for H 2 generation, but they are subject to various self-quenching processes in aqueous solutions. Colloidal platinum in nanoparticle form (Pt NP) is a classical H + reduction catalyst using ZnP photosensitizers, but efficient photosensitized H 2 generation requires an electron relay molecule between ZnP and Pt NP. The present report describes an aqueous system for visible (white) light-sensitized generation of H 2 using a protein-embedded Zn(II)-protoporphyrin IX as PS and Pt NP as H + reduction catalyst without an added electron relay. This system operated efficiently in piperazino- and morpholino-alkylsulfonic acid (Good's buffers), which served as sacrificial electron donors. The system also required ascorbate at relatively modest concentrations, which stabilized the Zn(II)-protoporphyrin IX against photodegradation. In the absence of an electron relay molecule, the photosensitized H 2 generation must involve formation of at least a transient complex between a protein-embedded Zn(II)-protoporphyrin IX species and Pt NP.

  20. Oxalate deposition on asbestos bodies.

    PubMed

    Ghio, Andrew J; Roggli, Victor L; Richards, Judy H; Crissman, Kay M; Stonehuerner, Jacqueline D; Piantadosi, Claude A

    2003-08-01

    We report on a deposition of oxalate crystals on ferruginous bodies after occupational exposure to asbestos demonstrated in 3 patients. We investigated the mechanism and possible significance of this deposition by testing the hypothesis that oxalate generated through nonenzymatic oxidation of ascorbate by asbestos-associated iron accounts for the deposition of the crystal on a ferruginous body. Crocidolite asbestos (1000 microg/mL) was incubated with 500 micromol H(2)O(2) and 500 micromol ascorbate for 24 hours at 22 degrees C. The dependence of oxalate generation on iron-catalyzed oxidant production was tested with the both the metal chelator deferoxamine and the radical scavenger dimethylthiourea. Incubation of crocidolite, H(2)O(2), and ascorbate in vitro generated approximately 42 nmol of oxalate in 24 hours. Oxalate generation was diminished significantly by the inclusion of either deferoxamine or dimethylthiourea in the reaction mixture. Incubation of asbestos bodies and uncoated fibers isolated from human lung with 500 micromol H(2)O(2) and 500 micromol ascorbate for 24 hours at 22 degrees C resulted in the generation of numerous oxalate crystals. We conclude that iron-catalyzed production of oxalate from ascorbate can account for the deposition of this crystal on ferruginous bodies.

  1. INVESTIGATION OF ARSENIC SPECIATION ON DRINKING WATER TREATMENT MEDIA UTILIZING AUTOMATED SEQUENTIAL CONTINUOUS FLOW EXTRACTION WITH IC-ICP-MS DETECTION

    EPA Science Inventory

    Three treatment media, used for the removal of arsenic from drinking water, were sequentially extracted using 10mM MgCl2 (pH 8), 10mM NaH2PO4 (pH 7) followed by 10mM (NH4)2C2O4 (pH 3). The media were extracted using an on-line automated continuous extraction system which allowed...

  2. How pH Modulates the Reactivity and Selectivity of a Siderophore-Associated Flavin Monooxygenase

    PubMed Central

    2015-01-01

    Flavin-containing monooxygenases (FMOs) catalyze the oxygenation of diverse organic molecules using O2, NADPH, and the flavin adenine dinucleotide (FAD) cofactor. The fungal FMO SidA initiates peptidic siderophore biosynthesis via the highly selective hydroxylation of l-ornithine, while the related amino acid l-lysine is a potent effector of reaction uncoupling to generate H2O2. We hypothesized that protonation states could critically influence both substrate-selective hydroxylation and H2O2 release, and therefore undertook a study of SidA’s pH-dependent reaction kinetics. Consistent with other FMOs that stabilize a C4a-OO(H) intermediate, SidA’s reductive half reaction is pH independent. The rate constant for the formation of the reactive C4a-OO(H) intermediate from reduced SidA and O2 is likewise independent of pH. However, the rate constants for C4a-OO(H) reactions, either to eliminate H2O2 or to hydroxylate l-Orn, were strongly pH-dependent and influenced by the nature of the bound amino acid. Solvent kinetic isotope effects of 6.6 ± 0.3 and 1.9 ± 0.2 were measured for the C4a-OOH/H2O2 conversion in the presence and absence of l-Lys, respectively. A model is proposed in which l-Lys accelerates H2O2 release via an acid–base mechanism and where side-chain position determines whether H2O2 or the hydroxylation product is observed. PMID:24490904

  3. Supramolecular hydrogen-bonding patterns in 1:1 cocrystals of 5-fluorouracil with 4-methylbenzoic acid and 3-nitrobenzoic acid.

    PubMed

    Mohana, Marimuthu; Muthiah, Packianathan Thomas; McMillen, Colin D

    2017-03-01

    The design of a pharmaceutical cocrystal is based on the identification of specific hydrogen-bond donor and acceptor groups in active pharmaceutical ingredients (APIs) in order to choose a `complementary interacting' molecule that can act as an efficient coformer. 5-Fluorouracil (5FU) is a pyrimidine derivative with two N-H donors and C=O acceptors and shows a diversity of hydrogen-bonding motifs. Two 1:1 cocrystals of 5-fluorouracil (5FU), namely 5-fluorouracil-4-methylbenzoic acid (5FU-MBA), C 4 H 3 FN 2 O 2 ·C 8 H 8 O 2 , (I), and 5-fluorouracil-3-nitrobenzoic acid (5FU-NBA), C 4 H 3 FN 2 O 2 ·C 7 H 5 NO 4 , (II), have been prepared and characterized by single-crystal X-ray diffraction. In (I), the MBA molecules form carboxylic acid dimers [R 2 2 (8) homosynthon]. Similarly, the 5FU molecules form two types of base pair via a pair of N-H...O hydrogen bonds [R 2 2 (8) homosynthon]. In (II), 5FU interacts with the carboxylic acid group of NBA via N-H...O and O-H...O hydrogen bonds, generating an R 2 2 (8) ring motif (heterosynthon). Furthermore, the 5FU molecules form base pairs [R 2 2 (8) homosynthon] via N-H...O hydrogen bonds. Both of the crystal structures are stabilized by C-H...F interactions.

  4. Further insights into the kinetics of thermal decomposition during continuous cooling.

    PubMed

    Liavitskaya, Tatsiana; Guigo, Nathanaël; Sbirrazzuoli, Nicolas; Vyazovkin, Sergey

    2017-07-26

    Following the previous work (Phys. Chem. Chem. Phys., 2016, 18, 32021), this study continues to investigate the intriguing phenomenon of thermal decomposition during continuous cooling. The phenomenon can be detected and its kinetics can be measured by means of thermogravimetric analysis (TGA). The kinetics of the thermal decomposition of ammonium nitrate (NH 4 NO 3 ), nickel oxalate (NiC 2 O 4 ), and lithium sulfate monohydrate (Li 2 SO 4 ·H 2 O) have been measured upon heating and cooling and analyzed by means of the isoconversional methodology. The results have confirmed the hypothesis that the respective kinetics should be similar for single-step processes (NH 4 NO 3 decomposition) but different for multi-step ones (NiC 2 O 4 decomposition and Li 2 SO 4 ·H 2 O dehydration). It has been discovered that the differences in the kinetics can be either quantitative or qualitative. Physical insights into the nature of the differences have been proposed.

  5. Energy storage for a lunar base by the reversible chemical reaction: CaO+H2O reversible reaction Ca(OH)2

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Difilipo, Frank

    1990-01-01

    A thermochemical solar energy storage concept involving the reversible reaction CaO + H2O yields Ca(OH)2 is proposed as a power system element for a lunar base. The operation and components of such a system are described. The CaO/H2O system is capable of generating electric power during both the day and night. The specific energy (energy to mass ratio) of the system was estimated to be 155 W-hr/kg. Mass of the required amount of CaO is neglected since it is obtained from lunar soil. Potential technical problems, such as reactor design and lunar soil processing, are reviewed.

  6. Hyperoside prevents oxidative damage induced by hydrogen peroxide in lung fibroblast cells via an antioxidant effect.

    PubMed

    Piao, Mei Jing; Kang, Kyoung Ah; Zhang, Rui; Ko, Dong Ok; Wang, Zhi Hong; You, Ho Jin; Kim, Hee Sun; Kim, Ju Sun; Kang, Sam Sik; Hyun, Jin Won

    2008-12-01

    We elucidated the cytoprotective effects of hyperoside (quercetin-3-O-galactoside) against hydrogen peroxide (H2O2)-induced cell damage. We found that hyperoside scavenged the intracellular reactive oxygen species (ROS) detected by fluorescence spectrometry, flow cytometry, and confocal microscopy. In addition, we found that hyperoside scavenged the hydroxyl radicals generated by the Fenton reaction (FeSO4)+H2O2) in a cell-free system, which was detected by electron spin resonance (ESR) spectrometry. Hyperoside was found to inhibit H2O2-induced apoptosis in Chinese hamster lung fibroblast (V79-4) cells, as shown by decreased apoptotic nuclear fragmentation, decreased sub-G(1) cell population, and decreased DNA fragmentation. In addition, hyperoside pretreatment inhibited the H2O2-induced activation of caspase-3 measured in terms of levels of cleaved caspase-3. Hyperoside prevented H2O2-induced lipid peroxidation as well as protein carbonyl. In addition, hyperoside prevented the H2O2-induced cellular DNA damage, which was established by comet tail, and phospho histone H2A.X expression. Furthermore, hyperoside increased the catalase and glutathione peroxidase activities. Conversely, the catalase inhibitor abolished the cytoprotective effect of hyperoside from H2O2-induced cell damage. In conclusion, hyperoside was shown to possess cytoprotective properties against oxidative stress by scavenging intracellular ROS and enhancing antioxidant enzyme activity.

  7. Generation of fast protons by interaction of modest laser intensities with H2O “snow” nano-wire targets

    NASA Astrophysics Data System (ADS)

    Bruner, Nir; Schleifer, Elad; Palchan, Tala; Pikuz, Sergey A.; Eisenmann, Shmuel; Botton, Mordechai; Gordon, Dan; Zigler, Arie

    2011-10-01

    We report on the generation of protons with energies of 5.5 MeV when irradiating an H 2O nano-wire layer grown on a sapphire plate with an intensity of 5×10 17 W/cm 2. A theoretical model is suggested in which plasma near the tip of the wire is subject to enhanced electrical fields and protons are accelerated to several MeVs.

  8. Kinetics of the Reaction of CH3O2 Radicals with OH Studied over the 292-526 K Temperature Range.

    PubMed

    Yan, Chao; Kocevska, Stefani; Krasnoperov, Lev N

    2016-08-11

    Reaction of methyl peroxy radicals with hydroxyl radicals, CH3O2 + OH → CH3O + HO2 (1a) and CH3O2 + OH → CH2OO + H2O (1b) was studied using pulsed laser photolysis coupled to transient UV-vis absorption spectroscopy over the 292-526 K temperature range and pressure 1 bar (bath gas He). Hydroxyl radicals were generated in the reaction of electronically excited oxygen atoms O((1)D), produced in the photolysis of N2O at 193.3 nm, with H2O. Methyl peroxy radicals were generated in the reaction of methyl radicals, CH3, produced in the photolysis of acetone at 193.3 nm, and subsequent reaction of CH3 with O2. Temporal profiles of OH were monitored via transient absorption of light from a DC discharge H2O/Ar low-pressure resonance lamp at ca. 308 nm. The absolute intensity of the photolysis light was determined by accurate in situ actinometry based on the ozone formation in the presence of molecular oxygen. The overall rate constant of the reaction is k1a+1b = (8.4 ± 1.7) × 10(-11)(T/298 K)(-0.81) cm(3) molecule(-1) s(-1) (292-526 K). The branching ratio of channel 1b at 298 K is less than 5%.

  9. Liquid rocket booster study. Volume 2, book 4, appendices 6-8: Reports of Rocketdyne, Pratt and Whitney, and TRW

    NASA Technical Reports Server (NTRS)

    1988-01-01

    For the pressure fed engines, detailed trade studies were conducted defining engine features such as thrust vector control methods, thrust chamber construction, etc. This was followed by engine design layouts and booster propulsion configuration layouts. For the pump fed engines parametric performance and weight data was generated for both O2/H2 and O2/RP-1 engines. Subsequent studies resulted in the selection of both LOX/RP-1 and O2/H2 propellants for the pump fed engines. More detailed analysis of the selected LOX/RP-1 and O2/H2 engines was conducted during the final phase of the study.

  10. Continuous multi-plot measurements of CO2, CH4, N2O and H2O in a managed boreal forest - The importance of accounting for all greenhouse gases

    NASA Astrophysics Data System (ADS)

    Vestin, P.; Mölder, M.; Sundqvist, E.; Båth, A.; Lehner, I.; Weslien, P.; Klemedtsson, L.; Lindroth, A.

    2015-12-01

    In order to assess the effects of different management practices on the exchange of greenhouse gases (GHG), it is desirable to perform repeated and parallel measurements on both experimental and control plots. Here we demonstrate how a system system combining eddy covariance and gradient techniques can be used to perform this assessment in a managed forest ecosystem.The net effects of clear-cutting and stump harvesting on GHG fluxes were studied at the ICOS site Norunda, Sweden. Micrometeorological measurements (i.e., flux-gradient measurements in 3 m tall towers) allowed for quantification of CO2, CH4 and H2O fluxes (from May 2010) as well as N2O and H2O fluxes (from June 2011) at two stump harvested plots and two control plots. There was one wetter and one drier plot of each treatment. Air was continuously sampled at two heights in the towers and gas concentrations were analyzed for CH4, CO2, H2O (LGR DLT-100, Los Gatos Research) and N2O, H2O (QCL Mini Monitor, Aerodyne Research). Friction velocities and sensible heat fluxes were measured by sonic anemometers (Gill Windmaster, Gill Instruments Ltd). Automatic chamber measurements (CO2, CH4, H2O) were carried out in the adjacent forest stand and at the clear-cut during 2010.Average CO2 emissions for the first year ranged between 14.4-20.2 ton CO2 ha-1 yr-1. The clear-cut became waterlogged after harvest and a comparison of flux-gradient data and chamber data (from the adjacent forest stand) indicated a switch from a weak CH4 sink to a significant source at all plots. The CH4 emissions ranged between 0.8-4.5 ton CO2-eq. ha-1 yr-1. N2O emissions ranged between 0.4-2.6 ton CO2-eq. ha-1 yr-1. Enhanced N2O emission on the drier stump harvested plot was the only clear treatment effect on GHG fluxes that was observed. Mean CH4 and N2O emissions for the first year of measurements amounted up to 29% and 20% of the mean annual CO2 emissions, respectively. This highlights the importance of including all GHGs when assessing the climate impacts of different forest management options. Our results show that continuous multi-plot measurements of the main GHGs are possible also at sites where GHG fluxes are low, at a reasonable cost and with reduced plot inter-comparison uncertainties.

  11. Fabrication and characterization of sol-gel based nanoparticles for drug delivery

    NASA Astrophysics Data System (ADS)

    Yadav, Reeta

    Nanogels are cross linked polymeric sol-gel based nanoparticles that offer an interior network for incorporation and protection of biomolecules, exhibiting unique advantages for polymer based delivery systems. We have successfully synthesized stable sol-gel nanoparticles by means of [a] silicification reactions using cationic peptides like polylysine as gelating agents, and [b] lyophilization of sol-gels. Macromolecules such as Hemoglobin and Glucose Oxidase and small molecules such as Sodium Nitroprusside (SNP) and antibiotics were encapsulated within the nanogels. We have used transmission electron microscopy, dynamic light scattering, zeta potential analysis, and spectroscopy to perform a physicochemical characterization of the nanogels resulting from the two approaches. Our studies have indicated that the nanogel encapsulated proteins and small molecules remain intact, stable and functional. A Hydrogen Peroxide (H2O2) and Nitric Oxide (NO) generating drug carrier was synthesized using these nanogels and the effect of generation of H2O2 from Glucose Oxidase encapsulated nanogels and NO from SNP encapsulated nanogels was tested on E.coli. The results show that the nanoparticles exert antimicrobial activity against E.Coli, in addition NO generating nanogels potentiated H2O2 generating nanogels induced killing. These data suggest that these NO and H2O2 releasing nanogels have the potential to serve as a novel class of antimicrobials for the treatment of multidrug resistant bacteria. The unique properties of these protein/drug incorporated nanogels raise the prospect of fine tailoring to specific applications such as drug delivery and bio imaging.

  12. Zn0-CNTs-Fe3O4 catalytic in situ generation of H2O2 for heterogeneous Fenton degradation of 4-chlorophenol.

    PubMed

    Yang, Zhao; Gong, Xiao-Bo; Peng, Lin; Yang, Dan; Liu, Yong

    2018-06-04

    A novel Zn 0 -CNTs-Fe 3 O 4 composite was synthesized by the chemical co-precipitation combined with high sintering process at nitrogen atmosphere. The as-prepared composite was characterized by SEM, EDS, XRD, XPS, VSM and N 2 adsorption/desorption experiments. A novel heterogeneous Fenton-like system, composed of Zn 0 -CNTs-Fe 3 O 4 composite and dissolved oxygen (O 2 ) in solution, which can in situ generate H 2 O 2 and OH, was used for the degradation of 4-chlorophenol (4-CP). The influences of various operational parameters, including the initial pH, dosage of Zn 0 -CNTs-Fe 3 O 4 and initial concentration of 4-CP on the removal of 4-CP were investigated. The removal efficiencies of 4-CP and total organic carbon (TOC) were 99% and 57%, respectively, at the initial pH of 1.5, Zn 0 -CNTs-Fe 3 O 4 dosage of 2 g/L, 4-CP initial concentration of 50 mg/L and oxygen flow rate of 400 mL/min. Based on the results of the radical scavenger effect study, the hydroxyl radical was considered as the main reactive oxidants in Zn 0 -CNTs-Fe 3 O 4 /O 2 system and a possible degradation pathway of 4-CP was proposed. Copyright © 2018. Published by Elsevier Ltd.

  13. [Oxidative stress experimental model of rat with stria vascularis marginal cells injury induced by hydrogen peroxide in vitro].

    PubMed

    Li, Jun; Kong, Wei-jia; Zhao, Xue-yan; Hu, Yu-juan

    2008-11-01

    To set up the oxidative stress experimental model of rat cochlea with stria vascularis marginal cells injury induced by hydrogen peroxide in vitro. Cultured marginal cells of rat were treated by 200, 300, 400, 600 and 800 micromol/L hydrogen peroxide (H(2)O(2)) for 0.5, 1, 2, 4, 16 and 24 hours, respectively. Cell viability was assessed by the CCK-8 assay. The content of the lipid peroxidation production malondialdehyde (MDA) were detected in H(2)O(2) induced marginal cells injury with different concentration H(2)O(2). Apoptosis was assessed by flow cytometry by propidium sodium staining. The expression of the cleaved-caspase-3 was assessed by Western blot. Being exposed to H(2)O(2), marginal cells displayed nuclear pyknosis and margination, cytoplasmic condensation, cell shrinkage and formation of membrane and bounded apoptotic bodies. A time-dependent and dose-dependent decrease of cellular viability was detected with the treatment of H(2)O(2). Cellular maleic dialdehyde was generated in proportion to the concentration of H(2)O(2) at 2 hours and the number of apoptotic cells increased significantly (P < 0. 05). Western blot showed the expression of the cleaved-caspase-3 increased when 200 micromol/L, 300 micromol/L and 400 micromol/L H(2)O(2) treated cultured marginal cells. Thereafter the expression of the cleaved-caspase-3 decreased with 600 micromol/L H(2)O(2) and with 800 micromol/L H(2)O(2) the expression of cleaved-caspase-3 was weak. The findings indicated that the experimental model can be established successfully using cultured cells exposed to H(2)O(2) and activation of caspase-3 is associated with hydrogen peroxide induced rat marginal cells the oxidative stress injury.

  14. Dual properties of a hydrogen oxidation Ni-catalyst entrapped within a polymer promote self-defense against oxygen.

    PubMed

    Oughli, Alaa A; Ruff, Adrian; Boralugodage, Nilusha Priyadarshani; Rodríguez-Maciá, Patricia; Plumeré, Nicolas; Lubitz, Wolfgang; Shaw, Wendy J; Schuhmann, Wolfgang; Rüdiger, Olaf

    2018-02-28

    The Ni(P 2 N 2 ) 2 catalysts are among the most efficient non-noble-metal based molecular catalysts for H 2 cycling. However, these catalysts are O 2 sensitive and lack long term stability under operating conditions. Here, we show that in a redox silent polymer matrix the catalyst is dispersed into two functionally different reaction layers. Close to the electrode surface is the "active" layer where the catalyst oxidizes H 2 and exchanges electrons with the electrode generating a current. At the outer film boundary, insulation of the catalyst from the electrode forms a "protection" layer in which H 2 is used by the catalyst to convert O 2 to H 2 O, thereby providing the "active" layer with a barrier against O 2 . This simple but efficient polymer-based electrode design solves one of the biggest limitations of these otherwise very efficient catalysts enhancing its stability for catalytic H 2 oxidation as well as O 2 tolerance.

  15. Effect of substituent groups (R= sbnd CH3, sbnd Br and sbnd CF3) on the structure, stability and redox property of [Cr(R-pic)2(H2O)2]NO3·H2O complexes

    NASA Astrophysics Data System (ADS)

    Chai, Jie; Liu, Yanfei; Liu, Bin; Yang, Binsheng

    2017-12-01

    Complexes [Cr(3-CH3-pic)2(H2O)2]NO3·H2O (1), [Cr(5-Br-pic)2(H2O)2]NO3·H2O (2) and [Cr(5-CF3-pic)2(H2O)2]NO3·H2O (3) were synthesized (pic = pyridine-2-carboxylic acid) and characterized by X-ray crystal diffraction. Crystal structure indicates that two bidentate ligands occupy equatorial position and two H2O occupy axial positions in trans-configuration. (i) Decomposition of complexes 1, 2 and 3 in different medium (phosphate buffered saline (PBS), apo-ovotransferrin (apootf) and EDTA) indicates that decomposition rate constants of these complexes follow the sequence of 1 < 2 < 3. (ii) The redox potential of Cr(III)/Cr(II) by cyclic voltammetry follows the sequence of 1 (-1.20 V) > 3 (-1.29 V) > 2 (-1.31 V). (iii) In addition, ·OH-generation of the new synthesized complexes was determined by Fenton-like reaction in comparison with Cr(pic)3, and it may be related to the reduction potential of the complexes. (iv) Moreover, Hammett substituent constants σp (inductive) and σm (resonance) (R = 3-CH3, 5-Br, 5-CF3) were introduced to evaluate the impact of substituent groups on the bond length and decomposition kinetics. The substituent group on the ligand has great effect on the properties of the complexes.

  16. Experimental Studies on the Formation of D2O and D2O2 by Implantation of Energetic D+ Ions into Oxygen Ices

    NASA Astrophysics Data System (ADS)

    Bennett, Chris J.; Ennis, Courtney P.; Kaiser, Ralf I.

    2014-02-01

    The formation of water (H2O) in the interstellar medium is intrinsically linked to grain-surface chemistry; thought to involve reactions between atomic (or molecular) hydrogen with atomic oxygen (O), molecular oxygen (O2), and ozone (O3). Laboratory precedent suggests that H2O is produced efficiently when O2 ices are exposed to H atoms (~100 K). This leads to the sequential generation of the hydroxyperoxyl radical (HO2), then hydrogen peroxide (H2O2), and finally H2O and a hydroxyl radical (OH); despite a barrier of ~2300 K for the last step. Recent detection of the four involved species toward ρ Oph A supports this general scenario; however, the precise formation mechanism remains undetermined. Here, solid O2 ice held at 12 K is exposed to a monoenergetic beam of 5 keV D+ ions. Products formed during the irradiation period are monitored through FTIR spectroscopy. O3 is observed through seven archetypal absorptions. Three additional bands found at 2583, 2707, and 1195 cm -1 correspond to matrix isolated DO2 (ν1) and D2O2 (ν1, ν5), and D2O (ν2), respectively. During subsequent warming, the O2 ice sublimates, revealing a broad band at 2472 cm-1 characteristic of amorphous D2O (ν1, ν3). Sublimating D2, D2O, D2O2, and O3 products were confirmed through their subsequent detection via quadrupole mass spectrometry. Reaction schemes based on both thermally accessible and suprathermally induced chemistries were developed to fit the observed temporal profiles are used to elucidate possible reaction pathways for the formation of D2-water. Several alternative schemes to the hydrogenation pathway (O2→HO2→H2O2→H2O) were identified; their astrophysical implications are briefly discussed.

  17. Randomized controlled clinical trial on bleaching sensitivity and whitening efficacy of hydrogen peroxide versus combinations of hydrogen peroxide and ozone.

    PubMed

    Al-Omiri, Mahmoud K; Al Nazeh, Abdullah A; Kielbassa, Andrej M; Lynch, Edward

    2018-02-05

    The clinical efficacy regarding bleaching sensitivity and tooth shade lightening using a standard hydrogen peroxide (H 2 O 2 ) bleaching gel was compared with the additional use of ozone either before or after application of H 2 O 2 . Using computer-generated tables, 45 participants were randomly allocated into three groups (n = 15 each) in this investigator-driven, single-centre trial. In Group 1, upper anterior teeth were bleached using ozone (produced via a healOzone X4 device) for 60 seconds, then 38% H 2 O 2 for 20 minutes; in Group 2, 38% H 2 O 2 application (20 min) was followed by ozone (60 s); air produced by the healOzone machine (60 s) followed by 38% H 2 O 2 (20 min) was used in Group 3 (control). Bleaching sensitivity was evaluated via visual analogue scales, and a treatment-blinded reader objectively recorded tooth shades using a colorimeter before and 24 hours after bleaching (at α = 0.05). The H 2 O 2 /ozone combination did not result in pain sensations, while both ozone/H 2 O 2 and H 2 O 2 alone increased bleaching sensitivity (p < 0.001). Teeth achieved lighter shades (higher L*/lower b* values) after bleaching in all groups (p < 0.001), while Ozone boosted lighter tooth shades, irrespective of its use before or after H 2 O 2 (p < 0.05). Due to the complimentary effects, applying ozone after H 2 O 2 seems preferable for bleaching.

  18. Automated calibration of laser spectrometer measurements of δ18 O and δ2 H values in water vapour using a Dew Point Generator.

    PubMed

    Munksgaard, Niels C; Cheesman, Alexander W; Gray-Spence, Andrew; Cernusak, Lucas A; Bird, Michael I

    2018-06-30

    Continuous measurement of stable O and H isotope compositions in water vapour requires automated calibration for remote field deployments. We developed a new low-cost device for calibration of both water vapour mole fraction and isotope composition. We coupled a commercially available dew point generator (DPG) to a laser spectrometer and developed hardware for water and air handling along with software for automated operation and data processing. We characterised isotopic fractionation in the DPG, conducted a field test and assessed the influence of critical parameters on the performance of the device. An analysis time of 1 hour was sufficient to achieve memory-free analysis of two water vapour standards and the δ 18 O and δ 2 H values were found to be independent of water vapour concentration over a range of ≈20,000-33,000 ppm. The reproducibility of the standard vapours over a 10-day period was better than 0.14 ‰ and 0.75 ‰ for δ 18 O and δ 2 H values, respectively (1 σ, n = 11) prior to drift correction and calibration. The analytical accuracy was confirmed by the analysis of a third independent vapour standard. The DPG distillation process requires that isotope calibration takes account of DPG temperature, analysis time, injected water volume and air flow rate. The automated calibration system provides high accuracy and precision and is a robust, cost-effective option for long-term field measurements of water vapour isotopes. The necessary modifications to the DPG are minor and easily reversible. Copyright © 2018 John Wiley & Sons, Ltd.

  19. Induction of antroquinonol production by addition of hydrogen peroxide in the fermentation of Antrodia camphorata S-29.

    PubMed

    Xia, Yongjun; Zhou, Xuan; Wang, Guangqiang; Zhang, Bobo; Xu, Ganrong; Ai, Lianzhong

    2017-01-01

    Antroquinonol have significantly anti-tumour effects on various cancer cells. There is still lack of reports on regulation of environmental factors on antroquinonol production by Antrodia camphorata. An effective submerged fermentation method was employed to induce antroquinonol with adding H 2 O 2 . The production of antroquinonol was 57.81 mg L -1 after fermentation for 10 days when adding 25 mmol L -1 H 2 O 2 at day 4 of the fermentation process. Then, antroquinonol was further increased to 80.10 mg L -1 with cell productivity of 14.94 mg g -1 dry mycelium when the feeding rate of H 2 O 2 was adjusted to 0.2 mmol L -1 h -1 in the 7 L fermentation bioreactor. After inhibiting the generation of reactive oxygen species with the inhibitor diphenyleneiodoium, the synthesis of antroquinonol from A. camphorata was significantly reduced, and the yield was only 3.3 mg L -1 . The results demonstrated that addition of H 2 O 2 was a very effective strategy to induce and regulate the synthesis of antroquinonol in submerged fermentation. Reactive oxygen species generated by H 2 O 2 during fermentation caused oxidative stress, which induced the synthesis of antroquinonol and other chemical compounds. Moreover, it is very beneficial process to improve production and diversity of the active compounds during liquid fermentation of A. camphorata mycelium. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Hydroxyl radical generation by photosystem II.

    PubMed

    Pospísil, Pavel; Arató, András; Krieger-Liszkay, Anja; Rutherford, A William

    2004-06-01

    The photogeneration of hydroxyl radicals (OH(*)) in photosystem II (PSII) membranes was studied using EPR spin-trapping spectroscopy. Two kinetically distinguishable phases in the formation of the spin trap-hydroxyl (POBN-OH) adduct EPR signal were observed: the first phase (t(1/2) = 7.5 min) and the second phase (t(1/2) = 30 min). The generation of OH(*) was found to be suppressed in the absence of the Mn-complex, but it was restored after readdition of an artificial electron donor (DPC). Hydroxyl radical generation was also lost in the absence of oxygen, whereas it was stimulated when the oxygen concentration was increased. The production of OH(*) during the first kinetic phase was sensitive to the presence of SOD, whereas catalase and EDTA diminished the production of OH(*) during the second kinetic phase. The POBN-OH adduct EPR signal during the first phase exhibits a similar pH-dependence as the ability to oxidize the non-heme iron, as monitored by the Fe(3+) (g = 8) EPR signal: both EPR signals gradually decreased as the pH value was lowered below pH 6.5 and were absent at pH 5. Sodium formate decreases the production of OH(*) in intact and Mn-deleted PSII membranes. Upon illumination of PSII membranes, both superoxide, as measured by EPR signal from the spin trap-superoxide (EMPO-OOH) adduct, and H(2)O(2), measured colormetrically, were generated. These results indicated that OH(*) is produced on the electron acceptor side of PSII by two different routes, (1) O(2)(*)(-), which is generated by oxygen reduction on the acceptor side of PSII, interacts with a PSII metal center, probably the non-heme iron, to form an iron-peroxide species that is further reduced to OH(*) by an electron from PSII, presumably via Q(A)(-), and (2) O(2)(*)(-) dismutates to form free H(2)O(2) that is then reduced to OH(*) via the Fenton reaction in the presence of metal ions, the most likely being Mn(2+) and Fe(2+) released from photodamaged PSII. The two different routes of OH(*) generation are discussed in the context of photoinhibition.

  1. Polyoxometalates-based chiral frameworks involving helical motifs generated by spontaneous resolution

    NASA Astrophysics Data System (ADS)

    Li, Ning; Jiang, Dingding; Pan, Qiliang; Zhao, Jianguo; Zhang, Sufang; Xing, Baoyan; Du, Yaqin; Zhang, Zhong; Liu, Shuxia

    2018-05-01

    Two enantiomerically 3D chiral polyoxometalate frameworks L,D-[K(H2O)]6[H2GeMo2W10O40]3ṡ40H2O (1a and 1b), were conventionally synthesized and characterized by X-ray single-crystal diffraction, IR spectrum, elemental analysis, powder X-ray diffraction, thermogravimetric analysis, UV-Vis spectroscopy, circular dichroism spectra. Structural analysis indicates that 1a and 1b are enantiomers. The terminal O and μ2-O atoms of Keggin-type polyanion [GeMo2W10O40]4- and {K(H2O)}n segments are connected one another to form 1D chiral helical chains, which are further extended by the achiral Keggin-type [GeMo2W10O40]4- anion to construct 3D 4,8-connected chiral frameworks. The enantiomers were isolated by spontaneous resolution during crystallization without any chiral auxiliary. They represent rare examples of enantiomerically pure chiral polyoxometalate-based inorganic porous frameworks.

  2. Poly[[di-μ-aqua-(μ-4-formyl-2-meth­oxy­phenol­ato)disodium] 4-formyl-2-meth­oxy­phenolate

    PubMed Central

    Asghar, Muhammad Nadeem; Şahin, Onur; Arshad, Muhammad Nadeem; Mazhar, Uzma; Khan, Islam Ullah; Büyükgüngör, Orhan

    2010-01-01

    In the title coordination polymer, {[Na2(C8H7O3)(H2O)4](C8H7O3)}n, all the non-H atoms except the water O atoms lie on a crystallographic mirror plane. One sodium cation is bonded to four water O atoms and one vanillinate O atom in a distorted square-based pyramidal arrangement; the other Na+ ion is six-coordinated by four water O atoms and two vanillinate O atoms in an irregular geometry. One of the vanillinate anions is directly bonded to two sodium ions, whilst the other only inter­acts with the polymeric network by way of hydrogen bonds. In the crystal, a two-dimensional polymeric array is formed; this is reinforced by O—H⋯O hydrogen bonds, which generate R 2 1(6) and R 2 2(20) loops. PMID:21579628

  3. Improvement of Tribological Performance of AISI H13 Steel by Means of a Self-Lubricated Oxide-Containing Tribo-layer

    NASA Astrophysics Data System (ADS)

    Cui, Xianghong; Jin, Yunxue; Chen, Wei; Zhang, Qiuyang; Wang, Shuqi

    2018-03-01

    A self-lubricated oxide-containing tribo-layer was induced to form by continuously adding particles of MoS2, Fe2O3 or their mixtures onto sliding interfaces of AISI H13 and 52100 steels. The artificial tribo-layer was always noticed to form continuously and cover the worn surface (termed as cover-type), whereas the original tribo-layer spontaneously formed with no additive was usually discontinuous and inserted into the substrate (termed as insert-type). Clearly, the cover-type and insert-type tribo-layers exactly corresponded to low and high wear rates, respectively. For the mixed additives of Fe2O3 + MoS2, the protective tribo-layers presented a load-carrying capability and lubricative function, which are attributed to the existence of Fe2O3 and MoS2. Hence, the wear rates and friction coefficients of H13 steel were markedly reduced.

  4. Nitric oxide reactivity of [2Fe-2S] clusters leading to H2S generation.

    PubMed

    Tran, Camly T; Williard, Paul G; Kim, Eunsuk

    2014-08-27

    The crosstalk between two biologically important signaling molecules, nitric oxide (NO) and hydrogen sulfide (H2S), proceeds via elusive mechanism(s). Herein we report the formation of H2S by the action of NO on synthetic [2Fe-2S] clusters when the reaction environment is capable of providing a formal H(•) (e(-)/H(+)). Nitrosylation of (NEt4)2[Fe2S2(SPh)4] (1) in the presence of PhSH or (t)Bu3PhOH results in the formation of (NEt4)[Fe(NO)2(SPh)2] (2) and H2S with the concomitant generation of PhSSPh or (t)Bu3PhO(•). The amount of H2S generated is dependent on the electronic environment of the [2Fe-2S] cluster as well as the type of H(•) donor. Employment of clusters with electron-donating groups or H(•) donors from thiols leads to a larger amount of H2S evolution. The 1/NO reaction in the presence of PhSH exhibits biphasic decay kinetics with no deuterium kinetic isotope effect upon PhSD substitution. However, the rates of decay increase significantly with the use of 4-MeO-PhSH or 4-Me-PhSH in place of PhSH. These results provide the first chemical evidence to suggest that [Fe-S] clusters are likely to be a site for the crosstalk between NO and H2S in biology.

  5. Mechanism of thirst attenuation during head-out water immersion in men

    NASA Technical Reports Server (NTRS)

    Wada, F.; Sagawa, S.; Miki, K.; Nagaya, K.; Nakamitsu, S.; Shiraki, K.; Greenleaf, J. E.

    1995-01-01

    The purpose was to determine whether extracellular volume or osmolality was the major contributing factor for reduction of thirst in air and head-out water immersion in hypohydrated subjects. Eight males (19-25 yr) were subjected to thermoneutral immersion and thermoneutral air under two hydration conditions without further drinking: euhydration in water (Eu-H2O) and euhydration in air, and hypohydration in water (Hypo-H2O) and hypohydration in air (3.7% wt loss after exercise in heat). The increased thirst sensation with Hypo-H2O decreased (P < 0.05) within 10 min of immersion and continued thereafter. Mean plasma osmolality (288 +/- 1 mosmol/kgH2O) and sodium (140 +/- 1 meq/l) remained elevated, and plasma volume increased by 4.2 +/- 1.0% (P < 0.05) throughout Hypo-H2O. A sustained increase (P < 0.05) in stroke volume accompanied the prompt and sustained decrease in plasma renin activity and sustained increase (P < 0.05) in plasma atrial natriuretic peptide during Eu-H2O and Hypo-H2O. Plasma vasopressin decreased from 5.3 +/- 0.7 to 2.9 +/- 0.5 pg/ml (P < 0.05) during Hypo-H2O but was unchanged in Eu-H2O. These findings suggest a sustained stimulation of the atrial baroreceptors and reduction of a dipsogenic stimulus without major alterations of extracellular osmolality in Hypo-H2O. Thus it appears that vascular volume-induced stimuli of cardiopulmonary baroreceptors play a more important role than extracellular osmolality in reducing thirst sensations during immersion in hypohydrated subjects.

  6. Hydrogen peroxide-induced reduction of delayed rectifier potassium current in hippocampal neurons involves oxidation of sulfhydryl groups.

    PubMed

    Hasan, Sonia M K; Redzic, Zoran B; Alshuaib, Waleed B

    2013-07-03

    This study examined the effect of H2O2 on the delayed rectifier potassium current (IKDR) in isolated hippocampal neurons. Whole-cell voltage-clamp experiments were performed on freshly dissociated hippocampal CA1 neurons of SD rats before and after treatment with H2O2. To reveal the mechanism behind H2O2-induced changes in IKDR, cells were treated with different oxidizing and reducing agents. External application of membrane permeable H2O2 reduced the amplitude and voltage-dependence of IKDR in a concentration dependent manner. Desferoxamine (DFO), an iron-chelator that prevents hydroxyl radical (OH) generation, prevented H2O2-induced reduction in IKDR. Application of the sulfhydryl-oxidizing agent 5,5 dithio-bis-nitrobenzoic acid (DTNB) mimicked the effect of H2O2. Sulfhydryl-reducing agents dithiothreitol (DTT) and glutathione (GSH) alone did not affect IKDR; however, DTT and GSH reversed and prevented the H2O2-induced inhibition of IKDR, respectively. Membrane impermeable agents GSH and DTNB showed effects only when added intracellularly identifying intracellular sulfhydryl groups as potential targets for hydroxyl-mediated oxidation. However, the inhibitory effects of DTNB and H2O2 at the positive test potentials were completely and partially abolished by DTT, respectively, suggesting an additional mechanism of action for H2O2, that is not shared by DTNB. In summary, this study provides evidence for the redox modulation of IKDR, identifies hydroxyl radical as an intermediate oxidant responsible for the H2O2-induced decrease in current amplitude and identifies intracellular sulfhydryl groups as an oxidative target. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan®): part II. Fine structures of O-acetylated residues.

    PubMed

    Xing, Xiaohui; Cui, Steve W; Nie, Shaoping; Phillips, Glyn O; Goff, H Douglas; Wang, Qi

    2015-03-06

    Main objective of this study was to investigate the detailed structural information about O-acetylated sugar residues in Dendronan(®). A water solution (2%, w/w) of Dendronan(®) was treated with endo-β-mannanase to produce oligosaccharides rich in O-acetylated sugar residues. The oligosaccharides were partly recovered by ethanol precipitation (70%, w/w). The recovered sample (designated Hydrolyzed Dendrobium officinale Polysaccharide, HDOP) had a yield of 24.7% based on the dry weight of Dendronan(®) and was highly O-acetylated. A D2O solution of HDOP (6%, w/w) generated strong signals in (1)H, (13)C, 2D (1)H-(1)H COSY, 2D (1)H-(1)H TOCSY, 2D (1)H-(1)H NOESY, 2D (1)H-(13)C HMQC, and 2D (1)H-(13)C HMBC NMR spectra. Results of NMR analyses showed that the majority of O-acetylated mannoses were mono-substituted with acetyl groups at O-2 or O-3 position. There were small amounts of mannose residues with di-O-acetyl substitution at both O-2 and O-3 positions. Minor levels of mannoses with 6-O-acetyl, 2,6-di-O-acetyl, and 3,6-di-O-acetyl substitutions were also identified. Much information about sugar residue sequence was extracted from 2D (1)H-(13)C HMBC and 2D (1)H-(1)H NOESY spectra. (1)J(C-H) coupling constants of major sugar residues were obtained. Evidences for the existence of branches or O-acetylated glucoses in HDOP were not found. The major structure of Dendronan(®) is shown as follows: [Formula: see text] M: β-D-mannopyranose; G: β-D-glucopyranose; a: O-acetyl group. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  8. Hippophae rhamnoides L. Fruits Reduce the Oxidative Stress in Human Blood Platelets and Plasma

    PubMed Central

    Olas, Beata; Kontek, Bogdan; Malinowska, Paulina; Żuchowski, Jerzy; Stochmal, Anna

    2016-01-01

    Effects of the phenolic fraction from Hippophae rhamnoides fruits on the production of thiobarbituric acid reactive substances (TBARS, a marker of lipid peroxidation) and the generation of superoxide anion (O2 −∙) in human blood platelets (resting platelets and platelets stimulated by a strong physiological agonist, thrombin) were studied in vitro. We also examined antioxidant properties of this fraction against human plasma lipid peroxidation and protein carbonylation induced by a strong biological oxidant, hydrogen peroxide (H2O2) or H2O2/Fe (a donor of hydroxyl radicals). The tested fraction of H. rhamnoides (0.5– 50 µg/mL; the incubation time: 15 and 60 min) inhibited lipid peroxidation induced by H2O2 or H2O2/Fe. The H. rhamnoides phenolic fraction inhibited not only plasma lipid peroxidation, but also plasma protein carbonylation stimulated by H2O2 or H2O2/Fe. Moreover, the level of O2 −∙ in platelets significantly decreased. In comparative experiments, the H. rhamnoides fraction was a more effective antioxidant than aronia extract or grape seed extract (at the highest tested concentration, 50 µg/mL). The obtained results suggest that H. rhamnoides fruits may be a new, promising source of natural compounds with antioxidant and antiplatelet activity beneficial not only for healthy people, but also for those with oxidative stress-associated diseases. PMID:26933473

  9. Neutrophils kill pulmonary endothelial cells by a hydrogen-peroxide-dependent pathway. An in vitro model of neutrophil-mediated lung injury.

    PubMed

    Martin, W J

    1984-08-01

    Neutrophil-mediated injury to lung parenchymal cells has been proposed as an important step in the pathogenesis of many acute and chronic lung disorders. As an in vitro model of neutrophil-mediated injury, this study used activated human neutrophils as effector cells in an 18-h cytotoxicity assay with 51Cr-labeled bovine pulmonary artery endothelial cells serving as target cells. Neutrophils effectively injured pulmonary endothelial cells, expressed as cytotoxic index (CI), of 63.8 +/- 5.4, and this injury could be significantly reduced by several agents, including 1% dimethyl sulfoxide (CI, 51.3 +/- 3.7), 50 micrograms/ml ascorbic acid (CI, 40.8 +/- 4.7), and especially 1,100 U/ml catalase (CI, 14.3 +/- 4.1). As cell-free models of neutrophil-mediated endothelial cell injury, H2O2 (30 microM), O2- (generated by 0.5 mU xanthine oxidase), and the myeloperoxidase-dependent (0.32 U) hypohalite ion were each capable of injuring the target cells with CI of 6.21 +/- 2.8, 53.6 +/- 5.3, and 21.2 +/- 1.5, respectively. Catalase was effective in reducing the injurious effect of each of these oxidant-generating systems (p less than 0.01, all comparisons), confirming the important role for H2O2 in the mediation of this injury. The data indicate that neutrophils are capable of killing pulmonary endothelial cells by a pathway largely dependent on the generation of H2O2, and suggest the possibility that removal of H2O2 from the alveolar structures in subjects with these disorder might be an effective future therapeutic approach.

  10. Photoelectrochemical Bioanalysis Platform for Cells Monitoring Based on Dual Signal Amplification Using in Situ Generation of Electron Acceptor Coupled with Heterojunction.

    PubMed

    Li, Ruyan; Zhang, Yue; Tu, Wenwen; Dai, Zhihui

    2017-07-12

    By using in situ generation of electron acceptor coupled with heterojunction as dual signal amplification, a simple photoelectrochemical (PEC) bioanalysis platform was designed. The synergic effect between the photoelectrochemical (PEC) activities of carbon nitride (C 3 N 4 ) nanosheets and PbS quantum dots (QDs) achieved almost nine-fold photocurrent intensity increment compared with the C 3 N 4 alone. After the G-quadruplex/hemin/Pt nanoparticles (NPs) with catalase-like activity toward H 2 O 2 were introduced, oxygen was in situ generated and acted as electron donor by improving charge separation efficiency and further enhancing photocurrent response. The dually amplified signal made enough sensitivity for monitoring H 2 O 2 released from live cells. The photocathode was prepared by the stepwise assembly of C 3 N 4 nanosheets and PbS QDs on indium tin oxide (ITO) electrode, which was characterized by scanning electron microscope. A signal-on protocol was achieved for H 2 O 2 detection in vitro due to the relevance of photocurrent on the concentration of H 2 O 2 . Under the optimized condition, the fabricated PEC bioanalysis platform exhibited a linear range of 10-7000 μM with a detection limit of 1.05 μM at S/N of 3. Besides, the bioanalysis platform displayed good selectivity against other reductive biological species. By using HepG2 cells as a model, a dual signal amplifying PEC bioanalysis platform for monitoring cells was developed. The bioanalysis platform was successfully applied to the detection of H 2 O 2 release from live cells, which provided a novel method for cells monitoring and would have prospect in clinical assay.

  11. In-situ synthesis of hydrogen peroxide in a novel Zn-CNTs-O2 system

    NASA Astrophysics Data System (ADS)

    Gong, Xiao-bo; Yang, Zhao; Peng, Lin; Zhou, An-lan; Liu, Yan-lan; Liu, Yong

    2018-02-01

    A novel strategy of in-situ synthesis of hydrogen peroxide (H2O2) was formulated and evaluated. Oxygen was selectively reduced to H2O2 combined with electrochemical corrosion of zinc in the Zn-CNTs-O2 system. The ratio of zinc and CNTs, heat treatment temperature, and operational parameters such as composite dosage, initial pH, solution temperature, oxygen flow rate were systematically investigated to improve the efficiency of H2O2 generation. The Zn-CNTs composite (weight ratio of 2.5:1) prepared at 500 °C showed the maximum H2O2 accumulation concentration of 293.51 mg L-1 within 60 min at the initial pH value of 3.0, Zn-CNTs dosage of 0.4 g and oxygen flow rate of 400 mL min-1. The oxygen was reduced through two-electron pathway to hydrogen peroxide on CNTs while the zinc was oxidized in the system and the dissolved zinc ions convert to zinc hydroxide and depositing on the surface of CNTs. It was proposed that the increment of direct H2O2 production was caused by the improvement of the formed Zn/CNTs corrosion cell. This provides promising strategy for in-situ synthesis and utilization of hydrogen peroxide in the novel Zn-CNTs-O2 system, which enhances the environmental and economic attractiveness of the use of H2O2 as green oxidant for wastewater treatments.

  12. Infrared absorption band in deformed qtz crystals analyzed by combining different microstructural methods

    NASA Astrophysics Data System (ADS)

    Stunitz, Holger; Thust, Anja; Behrens, Harald; Heilbronner, Renee; Kilian, Ruediger

    2016-04-01

    Natural single crystals of quartz have been experimentally deformed in two orientations: (1) normal to one prism-plane, (2) In O+ orientation at temperatures of 900 and 1000°C, pressures of 1.0 and 1.5 GPa, and strain rates of ~1 x 10-6s-1. The starting material is milky quartz, consisting of dry quartz (H2O contents of <150 H/106Si) with fluid inclusions (FI). During pressurization many FÍs decrepitate. Cracks heal and small neonate FÍs form, increasing the number of FÍs drastically. During subsequent deformation, the size of FÍs is further reduced (down to ~10 nm). Sample deformation occurs by dominant dislocation glide on selected slip systems, accompanied by some dynamic recovery. Strongly deformed regions show FTIR spectra with a pointed broad absorption band in the ~3400 cm-1 region as a superposition of molecular H2O bands and three discrete absorption bands (at 3367, 3400, and 3434 cm-1). In addition, there is a discrete absorption band at 3585 cm-1, which only occurs in deformed regions. The 3585 cm-1 band is reduced or even disappears after annealing. This band is polarized and represents structurally bound H, its H-content is estimated to be 1-3% of the total H2O-content and appears to be associated with dislocations. The H2O weakening effect in our FI-bearing natural quartz crystals is assigned to the processes of dislocation generation and multiplication at small FÍs. The deformation processes in these crystals represent a recycling of H2O between FÍs, dislocation generation at very small fluid inclusions, incorporation of structurally bound H into dislocation cores, and release of H2O from dislocations back into FÍs during recovery. Cracking and crack healing play an important role in the recycling process and imply a close interrelationship between brittle and crystal plastic deformation. The H2O weakening by this process is of a disequilibrium nature and thus depends on the amount of H2O available.

  13. Water weakening in experimentally deformed milky quartz single crystals

    NASA Astrophysics Data System (ADS)

    Stunitz, H.; Thust, A.; Kilian, R.; Heilbronner, R.; Behrens, H.; Tarantola, A.; Fitz Gerald, J. D.

    2015-12-01

    Natural single crystals of quartz have been experimentally deformed in two orientations: (1) normal to one prism-plane, (2) In O+ orientation at temperatures of 900 and 1000°C, pressures of 1.0 and 1.5 GPa, and strain rates of ~1 x 10-6s-1. The starting material is milky quartz, consisting of dry quartz (H2O contents of <150 H/106Si) with fluid inclusions (FI). During pressurization many FI´s decrepitate. Cracks heal and small neonate FI´s form, increasing the number of FI´s drastically. During subsequent deformation, the size of FI´s is further reduced (down to ~10 nm). Sample deformation occurs by dominant dislocation glide on selected slip systems, accompanied by some dynamic recovery. Strongly deformed regions show FTIR spectra with a pointed broad absorption band in the ~3400 cm-1 region as a superposition of molecular H2O bands and three discrete absorption bands (at 3367, 3400, and 3434 cm-1). In addition, there is a discrete absorption band at 3585 cm-1, which only occurs in deformed regions. The 3585 cm-1 band is reduced or even disappears after annealing. This band is polarized and represents structurally bound H, its H-content is estimated to be 1-3% of the total H2O-content and appears to be associated with dislocations. The H2O weakening effect in our FI-bearing natural quartz crystals is assigned to the processes of dislocation generation and multiplication at small FI´s. The deformation processes in these crystals represent a recycling of H2O between FI´s, dislocation generation at very small fluid inclusions, incorporation of structurally bound H into dislocation cores, and release of H2O from dislocations back into FI´s during recovery. Cracking and crack healing play an important role in the recycling process and imply a close interrelationship between brittle and crystal plastic deformation. The H2O weakening by this process is of a disequilibrium nature and thus depends on the amount of H2O available.

  14. Water purification by electrical discharges

    NASA Astrophysics Data System (ADS)

    Arif Malik, Muhammad; Ghaffar, Abdul; Akbar Malik, Salman

    2001-02-01

    There is a continuing need for the development of effective, cheap and environmentally friendly processes for the disinfection and degradation of organic pollutants from water. Ozonation processes are now replacing conventional chlorination processes because ozone is a stronger oxidizing agent and a more effective disinfectant without any side effects. However, the fact that the cost of ozonation processes is higher than chlorination processes is their main disadvantage. In this paper recent developments targeted to make ozonation processes cheaper by improving the efficiency of ozone generation, for example, by incorporation of catalytic packing in the ozone generator, better dispersion of ozone in water and faster conversion of dissolved ozone to free radicals are described. The synthesis of ozone in electrical discharges is discussed. Furthermore, the generation and plasma chemical reactions of several chemically active species, such as H2O2, Obullet, OHbullet, HO2bullet, O3*, N2*, e-, O2-, O-, O2+, etc, which are produced in the electrical discharges are described. Most of these species are stronger oxidizers than ozone. Therefore, water treatment by direct electrical discharges may provide a means to utilize these species in addition to ozone. Much research and development activity has been devoted to achieve these targets in the recent past. An overview of these techniques and important developments that have taken place in this area are discussed. In particular, pulsed corona discharge, dielectric barrier discharge and contact glow discharge electrolysis techniques are being studied for the purpose of cleaning water. The units based on electrical discharges in water or close to the water level are being tested at industrial-scale water treatment plants.}

  15. Improvement in electrical characteristics of eco-friendly indium zinc oxide thin-film transistors by photocatalytic reaction.

    PubMed

    Kang, Jun Ki; Park, Sung Pyo; Na, Jae Won; Lee, Jin Hyeok; Kim, Dongwoo; Kim, Hyun Jae

    2018-05-11

    Eco-friendly solution-processed oxide thin-film transistors (TFTs) were fabricated through photocatalytic reaction of titanium dioxide (PRT). The titanium dioxide (TiO 2 ) surface reacts with H 2 O under ultraviolet (UV) light irradiation and generates hydroxyl radicals (OH∙). These hydroxyl radicals accelerate the decomposition of large organic compounds such as 2-methoxyethanol (2ME; one of the representative solvents for solution-processed metal oxides), creating smaller organic molecular structures compared with 2ME. The decomposed small organic materials have low molar masses and low boiling points, which help improving electrical properties via diminishing defect sites in oxide channel layers and fabricating low temperature solution-processed oxide TFTs. As a result, the field-effect mobility improved from 4.29 to 10.24 cm 2 /V·s for IGZO TFTs and from 2.78 to 7.82 cm 2 /V·s for IZO TFTs, and the V th shift caused by positive bias stress (PBS) and negative bias illumination stress (NBIS) over 1,000 s under 5,700 lux decreased from 6.2 to 2.9 V and from 15.3 to 2.8 V, respectively. In theory, TiO 2 has a permanent photocatalytic reaction; as such, hydroxyl radicals are generated continuously under UV irradiation, improving the electrical characteristics of solution-processed IZO TFTs even after four iterations of TiO 2 recycling in this study. Thus, the PRT method provides an eco-friendly approach for high-performance solution-processed oxide TFTs.

  16. Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Swain, Basudev; Jeong, Jinki; Lee, Jae-chun; Lee, Gae-Ho; Sohn, Jeong-Soo

    The paper presents a new leaching-solvent extraction hydrometallurgical process for the recovery of a pure and marketable form of cobalt sulfate solution from waste cathodic active material generated during manufacturing of lithium ion batteries (LIBs). Leaching of the waste was carried out as a function of the leachant H 2SO 4 concentration, temperature, pulp density and reductant H 2O 2 concentration. The 93% of cobalt and 94% of lithium were leached at suitable optimum conditions of pulp density: 100 g L -1, 2 M H 2SO 4, 5 vol.% of H 2O 2, with a leaching time 30 min and a temperature 75 °C. In subsequent the solvent extraction study, 85.42% of the cobalt was recovered using 1.5 M Cyanex 272 as an extractant at an O/A ratio of 1.6 from the leach liquor at pH 5.00. The rest of the cobalt was totally recovered from the raffinate using 0.5 M of Cyanex 272 and an O/A ratio of 1, and a feed pH of 5.35. Then the co-extracted lithium was scrubbed from the cobalt-loaded organic using 0.1 M Na 2CO 3. Finally, the cobalt sulfate solution with a purity 99.99% was obtained from the cobalt-loaded organic by stripping with H 2SO 4.

  17. Mitochondrial specialization revealed by single muscle fiber proteomics: focus on the Krebs cycle.

    PubMed

    Schiaffino, S; Reggiani, C; Kostrominova, T Y; Mann, M; Murgia, M

    2015-12-01

    We have developed a highly sensitive mass spectrometry-based proteomic workflow to examine the proteome of single muscle fibers. This study revealed significant differences in the mitochondrial proteome of the four major fiber types present in mouse skeletal muscle. Here, we focus on Krebs cycle enzymes and in particular on the differential distribution of the two mitochondrial isocitrate dehydrogenases, IDH2 and IDH3. Type 1/slow fibers contain high levels of IDH2 and relatively low levels of IDH3, whereas fast 2X and 2B fibers show an opposite expression pattern. The findings suggest that in skeletal muscle, IDH2 functions in the forward direction of the Krebs cycle and that substrate flux along the cycle occurs predominantly via IDH2 in type 1 fibers and via IDH3 in 2X and 2B fibers. IDH2-mediated conversion of isocitrate to α-ketoglutarate leads to the generation of NADPH, which is critical to buffering the H2O2 produced by the respiratory chain. Nicotinamide nucleotide transhydrogenase (NNT), the other major mitochondrial enzyme involved in NADPH generation, is also more abundant in type 1 fibers. We suggest that the continuously active type 1 fibers are endowed with a more efficient H2O2 scavenging capacity to cope with the higher levels of reactive oxygen species production. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Combined effect of protein and oxygen on reactive oxygen and nitrogen species in the plasma treatment of tissue

    NASA Astrophysics Data System (ADS)

    Gaur, Nishtha; Szili, Endre J.; Oh, Jun-Seok; Hong, Sung-Ha; Michelmore, Andrew; Graves, David B.; Hatta, Akimitsu; Short, Robert D.

    2015-09-01

    The influence of protein and molecular, ground state oxygen (O2) on the plasma generation, and transport of reactive oxygen and nitrogen species (RONS) in tissue are investigated. A tissue target, comprising a 1 mm thick gelatin film (a surrogate for real tissue), is placed on top of a 96-well plate; each well is filled with phosphate buffered saline (PBS, pH 7.4) containing one fluorescent or colorimetric reporter that is specific for one of three RONS (i.e., H2O2, NO2-, or OH•) or a broad spectrum reactive oxygen species reporter (2,7-dichlorodihydrofluorescein). A helium cold atmospheric plasma (CAP) jet contacts the top of the gelatin surface, and the concentrations of RONS generated in PBS are measured on a microplate reader. The data show that H2O2, NO2-, or OH• are generated in PBS underneath the target. Independently, measurements are made of the O2 concentration in the PBS with and without the gelatin target. Adding bovine serum albumin protein to the PBS or gelatin shows that protein either raises or inhibits RONS depending upon the O2 concentration. Our results are discussed in the context of plasma-soft tissue interactions that are important in the development of CAP technology for medicine, biology, and food manufacturing.

  19. 2-[(2-Hy­droxy-4-meth­oxy­benzyl­idene)aza­nium­yl]benzoate monohydrate

    PubMed Central

    Hang, Zhi-Xi; Dong, Bo; Wang, Xing-Wen

    2010-01-01

    In the title compound, C15H13NO4·H2O, the Schiff base exists in a zwitterionic form and a bifurcated intra­molecular N—H⋯(O,O) hydrogen bond generates two S(6) rings. The dihedral angle between the two benzene rings is 25.8 (2)°. The crystal structure is stabilized by inter­molecular O—H⋯O hydrogen bonds. PMID:21587989

  20. Application of integrated ozone and granular activated carbon for decolorization and chemical oxygen demand reduction of vinasse from alcohol distilleries.

    PubMed

    Hadavifar, Mojtaba; Younesi, Habibollah; Zinatizadeh, Ali Akbar; Mahdad, Faezeh; Li, Qin; Ghasemi, Zahra

    2016-04-01

    This study investigates the treatment of the distilleries vinasse using a hybrid process integrating ozone oxidation and granular activated carbons (GAC) in both batch and continuous operation mode. The batch-process studies have been carried out to optimize initial influent pH, GAC doses, the effect of the ozone (O3) and hydrogen peroxide (H2O2) concentrations on chemical oxygen demand (COD) and color removal of the distilleries vinasse. The continuous process was carried out on GAC and ozone treatment alone as well as the hybrid process comb both methods to investigate the synergism effectiveness of the two methods for distilleries vinasse COD reduction and color removal. In a continuous process, the Yan model described the experimental data better than the Thomas model. The efficiency of ozonation of the distilleries vinasse was more effective for color removal (74.4%) than COD removal (25%). O3/H2O2 process was not considerably more effective on COD and color removal. Moreover, O3/GAC process affected negatively on the removal efficiency by reducing COD and color from distilleries vinasse. The negative effect decreased by increasing pH value of the influent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Study of factors influencing the effective delivery of O2(1delta) into the resonator of the oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Krukowski, I. M.; Halin, A. L.

    1994-08-01

    Experimental studies have been performed on the processes: chlorine utilization in the bubbler type singlet oxygen generator, the quenching of O2(1(Delta) ) in the OIL path, the propagation of the gas mixture O2 + O2 (1(Delta) ) + H2O throughout forward flow-type water vapor trap.

  2. Atomic hydrogen surrounded by water molecules, H(H2O)m, modulates basal and UV-induced gene expressions in human skin in vivo.

    PubMed

    Shin, Mi Hee; Park, Raeeun; Nojima, Hideo; Kim, Hyung-Chel; Kim, Yeon Kyung; Chung, Jin Ho

    2013-01-01

    Recently, there has been much effort to find effective ingredients which can prevent or retard cutaneous skin aging after topical or systemic use. Here, we investigated the effects of the atomic hydrogen surrounded by water molecules, H(H2O)m, on acute UV-induced responses and as well as skin aging. Interestingly, we observed that H(H2O)m application to human skin prevented UV-induced erythema and DNA damage. And H(H2O)m significantly prevented UV-induced MMP-1, COX-2, IL-6 and IL-1β mRNA expressions in human skin in vivo. We found that H(H2O)m prevented UV-induced ROS generation and inhibited UV-induced MMP-1, COX-2 and IL-6 expressions, and UV-induced JNK and c-Jun phosphorylation in HaCaT cells. Next, we investigated the effects of H(H2O)m on intrinsically aged or photoaged skin of elderly subjects. In intrinsically aged skin, H(H2O)m application significantly reduced constitutive expressions of MMP-1, IL-6, and IL-1β mRNA. Additionally, H(H2O)m significantly increased procollagen mRNA and also decreased MMP-1 and IL-6 mRNA expressions in photoaged facial skin. These results demonstrated that local application of H(H2O)m may prevent UV-induced skin inflammation and can modulate intrinsic skin aging and photoaging processes. Therefore, we suggest that modifying the atmospheric gas environment within a room may be a new way to regulate skin functions or skin aging.

  3. Atomic Hydrogen Surrounded by Water Molecules, H(H2O)m, Modulates Basal and UV-Induced Gene Expressions in Human Skin In Vivo

    PubMed Central

    Shin, Mi Hee; Park, Raeeun; Nojima, Hideo; Kim, Hyung-Chel; Kim, Yeon Kyung; Chung, Jin Ho

    2013-01-01

    Recently, there has been much effort to find effective ingredients which can prevent or retard cutaneous skin aging after topical or systemic use. Here, we investigated the effects of the atomic hydrogen surrounded by water molecules, H(H2O)m, on acute UV-induced responses and as well as skin aging. Interestingly, we observed that H(H2O)m application to human skin prevented UV-induced erythema and DNA damage. And H(H2O)m significantly prevented UV-induced MMP-1, COX-2, IL-6 and IL-1β mRNA expressions in human skin in vivo. We found that H(H2O)m prevented UV-induced ROS generation and inhibited UV-induced MMP-1, COX-2 and IL-6 expressions, and UV-induced JNK and c-Jun phosphorylation in HaCaT cells. Next, we investigated the effects of H(H2O)m on intrinsically aged or photoaged skin of elderly subjects. In intrinsically aged skin, H(H2O)m application significantly reduced constitutive expressions of MMP-1, IL-6, and IL-1β mRNA. Additionally, H(H2O)m significantly increased procollagen mRNA and also decreased MMP-1 and IL-6 mRNA expressions in photoaged facial skin. These results demonstrated that local application of H(H2O)m may prevent UV-induced skin inflammation and can modulate intrinsic skin aging and photoaging processes. Therefore, we suggest that modifying the atmospheric gas environment within a room may be a new way to regulate skin functions or skin aging. PMID:23637886

  4. A mechanistic study of hydrogen gas sensing by PdO nanoflake thin films at temperatures below 250 °C.

    PubMed

    Chiang, Yu-Ju; Li, Kuang-Chung; Lin, Yi-Chieh; Pan, Fu-Ming

    2015-02-07

    We prepared PdO nanoflake thin films on the SiO2 substrate by reactive sputter deposition, and studied their sensing response to H2 at temperatures between 25 and 250 °C. In addition to the oxygen ionosorption model, which is used to describe the early H2 sensing response over the temperature range studied, the H2 sensing kinetics of the PdO thin films can be separated into three temperature regimes: temperatures below 100 °C, around 150 °C and above 200 °C. At temperatures below 100 °C, PdO reduction is the dominant reaction affecting the H2 sensing behavior. At temperatures around 150 °C, Pd reoxidation kinetically competes with PdO reduction leading to a complicated sensing characteristic. Active PdO reduction by H2 promotes the continuing growth of Pd nanoislands, facilitating dissociative oxygen adsorption and thus the subsequent Pd reoxidation in the H2-dry air gas mixture. The kinetic competition between the PdO reduction and reoxidation at 150 °C leads to the observation of an inverse of the increase in the sensor conductivity. At temperatures above 200 °C, the PdO sensor exhibits a sensor signal monotonically increasing with the H2 concentration, and the H2 sensing behavior is consistent with the Mars-van-Krevelen redox mechanism.

  5. Modeling the Syn-Disposition of Nitrogen Donors in Non-Heme Diiron Enzymes. Synthesis, Characterization, and Hydrogen Peroxide Reactivity of Diiron(III) Complexes with the Syn N-Donor Ligand H2BPG2DEV

    PubMed Central

    Friedle, Simone; Kodanko, Jeremy J.; Morys, Anna J.; Hayashi, Takahiro; Moënne-Loccoz, Pierre; Lippard, Stephen J.

    2009-01-01

    In order to model the syn disposition of histidine residues in carboxylate-bridged non-heme diiron enzymes, we prepared a new dinucleating ligand, H2BPG2DEV, that provides this geometric feature. The ligand incorporates biologically relevant carboxylate functionalities, which have not been explored as extensively as nitrogen-only analogs. Three novel oxo-bridged diiron(III) complexes [Fe2(μ-O)(H2O)2-(BPG2DEV)](ClO4)2 (6), [Fe2(μ-O)(μ-O CAriPrO)(BPG2DEV)](ClO4) (7), and [Fe2(μ-O)(μ-CO3)(BPG2DEV)] (8) were prepared. Single crystal X-ray structural characterization confirms that two pyridines are bound syn with respect to the Fe–Fe vector in these compounds. The carbonato-bridged complex 8 forms quantitatively from 6 in a rapid reaction with gaseous CO2 in organic solvents. A common maroon-colored intermediate (λmax = 490 nm; ε = 1500 M−1 cm−1) forms in reactions of 6, 7, or 8 with H2O2 and NEt3 in CH3CN/H2O solutions. Mass spectrometric analyses of this species, formed using 18O-labeled H2O2, indicate the presence of a peroxide ligand bound to the oxo-bridged diiron(III) center. The Mössbauer spectrum at 90 K of the EPR-silent intermediate exhibits a quadrupole doublet with δ. = 0.58 mm/s and ΔEQ = 0.58 mm/s. The isomer shift is typical for a peroxodiiron(III) species, but the quadrupole splitting parameter is unusually small compared to related complexes. These Mössbauer parameters are comparable to those observed for a peroxo intermediate formed in the reaction of reduced toluene/o-xylene monooxygenase hydroxylase (ToMOH) with dioxygen. Resonance Raman studies reveal an unusually low-energy O–O stretching mode in the peroxo intermediate that is consistent with a short diiron distance. Although peroxodiiron(III) intermediates generated from 6, 7, and 8 are poor O-atom transfer catalysts, they display highly efficient catalase activity, with turnover numbers up to 10,000. In contrast to hydrogen peroxide reactions of diiron(III) complexes that lack a dinucleating ligand, the intermediates generated here could be reformed in significant quantities after a second addition of H2O2, as observed spectroscopically and by mass spectrometry. PMID:19757795

  6. Properties of anaerobic fungi isolated from several habitats: complexity of phenotypes.

    PubMed

    Zelená, Viera; Birošová, Lucia; Olejníková, Petra; Polák, Martin; Lakatoš, Boris; Varečka, Ľudovít

    2016-01-01

    Isolates of anaerobic fungi from rumen, animal faeces and compost displayed morphological similarity with known anaerobic fungi. According to their ITS sequences, species were related to Neocallimastix and Piromyces. Rumen fungi tolerated exposure to an aerobic atmosphere for at least four days. Under anaerobic conditions, they could grow on both, defined or complex substrates. Growth in liquid media was monitored by the continuous measurement of metabolic gases (O2, CO2, H2, CO, H2S, CH4). Monitored metabolism was complex, showed that both CO2 and H2 were produced and subsequently consumed by yet unknown metabolic pathway(s). CO and H2S were evolved similarly, but not identically with the generation of CO2 and H2 suggesting their connection with energetic metabolism. Anaerobic fungi from snail faeces and compost produced concentrations of H2S, H2, CO near the lower limit of detection. The rumen isolates produced cellulases and xylanases with similar pH and temperature optima. Proteolytic enzymes were secreted as well. Activities of some enzymes of the main catabolic pathways were found in cell-free homogenates of mycelia. The results indicate the presence of the pentose cycle, the glyoxylate cycle and an incomplete citrate cycle in these fungi. Differences between isolates indicate phenotypic variability between anaerobic fungi.

  7. Enhanced visible-light-driven photocatalytic H2-production activity of CdS-loaded TiO2 microspheres with exposed (001) facets

    NASA Astrophysics Data System (ADS)

    Gao, Bifen; Yuan, Xia; Lu, Penghui; Lin, Bizhou; Chen, Yilin

    2015-12-01

    CdS-loaded TiO2 microspheres with highly exposed (001) facets were prepared by hydrothermal treatment of a TiF4-HCl-H2O mixed solution followed by a chemical bath deposition of CdS onto TiO2 microspheres. The crystal structure, surficial micro-structure and photo-absorption property of the samples were characterized by XRD, FE-SEM, TEM and UV-vis diffuse reflectance spectroscopy, etc. The as-prepared samples exhibited superior visible-light-driven photocatalytic H2-production activity from lactic acid aqueous solution in comparison with CdS-sensitized TiO2 nanoparticles, whose surface was dominated by (101) facets. Photoelectrochemical measurement confirmed that (001) facet is beneficial for the transfer of photo-generated electron from CdS to TiO2 microsphere, which led to the unexpected high photocatalytic activity of CdS-loaded TiO2 microspheres.

  8. Polyamine regulates tolerance to water stress in leaves of white clover associated with antioxidant defense and dehydrin genes via involvement in calcium messenger system and hydrogen peroxide signaling

    PubMed Central

    Li, Zhou; Zhang, Yan; Peng, Dandan; Wang, Xiaojuan; Peng, Yan; He, Xiaoshuang; Zhang, Xinquan; Ma, Xiao; Huang, Linkai; Yan, Yanhong

    2015-01-01

    Endogenous polyamine (PA) may play a critical role in tolerance to water stress in plants acting as a signaling molecule activator. Water stress caused increases in endogenous PA content in leaves, including putrescine (Put), spermidine (Spd), and spermine (Spm). Exogenous application of Spd could induce the instantaneous H2O2 burst and accumulation of cytosolic free Ca2+, and activate NADPH oxidase and CDPK gene expression in cells. To a great extent, PA biosynthetic inhibitor reduced the water stress-induced H2O2 accumulation, free cytosolic Ca2+ release, antioxidant enzyme activities and genes expression leading to aggravate water stress-induced oxidative damage, while these suppressing effects were alleviated by the addition of exogenous Spd, indicating PA was involved in water stress-induced H2O2 and cytosolic free Ca2+ production as well as stress tolerance. Dehydrin genes (Y2SK, Y2K, and SK2) were showed to be highly responsive to exogenous Spd. PA-induced antioxidant defense and dehydrin genes expression could be blocked by the scavenger of H2O2 and the inhibitors of H2O2 generation or Ca2+ channels blockers, a calmodulin antagonist, as well as the inhibitor of CDPK. These findings suggested that PA regulated tolerance to water stress in white clover associated with antioxidant defenses and dehydrins via involvement in the calcium messenger system and H2O2 signaling pathways. PA-induced H2O2 production required Ca2+ release, while PA-induced Ca2+ release was also essential for H2O2 production, suggesting an interaction between PA-induced H2O2 and Ca2+ signaling. PMID:26528187

  9. Fluorescent proteins such as eGFP lead to catalytic oxidative stress in cells.

    PubMed

    Ganini, Douglas; Leinisch, Fabian; Kumar, Ashutosh; Jiang, JinJie; Tokar, Erik J; Malone, Christine C; Petrovich, Robert M; Mason, Ronald P

    2017-08-01

    Fluorescent proteins are an important tool that has become omnipresent in life sciences research. They are frequently used for localization of proteins and monitoring of cells [1,2]. Green fluorescent protein (GFP) was the first and has been the most used fluorescent protein. Enhanced GFP (eGFP) was optimized from wild-type GFP for increased fluorescence yield and improved expression in mammalian systems [3]. Many GFP-like fluorescent proteins have been discovered, optimized or created, such as the red fluorescent protein TagRFP [4]. Fluorescent proteins are expressed colorless and immature and, for eGFP, the conversion to the fluorescent form, mature, is known to produce one equivalent of hydrogen peroxide (H 2 O 2 ) per molecule of chromophore [5,6]. Even though it has been proposed that this process is non-catalytic and generates nontoxic levels of H 2 O 2 [6], this study investigates the role of fluorescent proteins in generating free radicals and inducing oxidative stress in biological systems. Immature eGFP and TagRFP catalytically generate the free radical superoxide anion (O 2 •- ) and H 2 O 2 in the presence of NADH. Generation of the free radical O 2 •- and H 2 O 2 by eGFP in the presence of NADH affects the gene expression of cells. Many biological pathways are altered, such as a decrease in HIF1α stabilization and activity. The biological pathways altered by eGFP are known to be implicated in the pathophysiology of many diseases associated with oxidative stress; therefore, it is critical that such experiments using fluorescent proteins are validated with alternative methodologies and the results are carefully interpreted. Since cells inevitably experience oxidative stress when fluorescent proteins are expressed, the use of this tool for cell labeling and in vivo cell tracing also requires validation using alternative methodologies. Published by Elsevier B.V.

  10. Reconstructing the history of water ice formation from HDO/H2O and D2O/HDO ratios in protostellar cores

    NASA Astrophysics Data System (ADS)

    Furuya, K.; van Dishoeck, E. F.; Aikawa, Y.

    2016-02-01

    Recent interferometer observations have found that the D2O/HDO abundance ratio is higher than that of HDO/H2O by about one order of magnitude in the vicinity of low-mass protostar NGC 1333-IRAS 2A, where water ice has sublimated. Previous laboratory and theoretical studies show that the D2O/HDO ice ratio should be lower than the HDO/H2O ice ratio, if HDO and D2O ices are formed simultaneously with H2O ice. In this work, we propose that the observed feature, D2O/HDO > HDO/H2O, is a natural consequence of chemical evolution in the early cold stages of low-mass star formation as follows: 1) majority of oxygen is locked up in water ice and other molecules in molecular clouds, where water deuteration is not efficient; and 2) water ice formation continues with much reduced efficiency in cold prestellar/protostellar cores, where deuteration processes are highly enhanced as a result of the drop of the ortho-para ratio of H2, the weaker UV radiation field, etc. Using a simple analytical model and gas-ice astrochemical simulations, which traces the evolution from the formation of molecular clouds to protostellar cores, we show that the proposed scenario can quantitatively explain the observed HDO/H2O and D2O/HDO ratios. We also find that the majority of HDO and D2O ices are likely formed in cold prestellar/protostellar cores rather than in molecular clouds, where the majority of H2O ice is formed. This work demonstrates the power of the combination of the HDO/H2O and D2O/HDO ratios as a tool to reveal the past history of water ice formation in the early cold stages of star formation, and when the enrichment of deuterium in the bulk of water occurred. Further observations are needed to explore if the relation, D2O/HDO > HDO/H2O, is common in low-mass protostellar sources.

  11. Crystal structures of three indole derivatives: 3-ethnyl-2-methyl-1-phenyl­sulfonyl-1H-indole, 4-phenyl­sulfonyl-3H,4H-cyclo­penta­[b]indol-1(2H)-one and 1-{2-[(E)-2-(5-chloro-2-nitro­phen­yl)ethen­yl]-1-phenyl­sulfonyl-1H-indol-3-yl}ethan-1-one chloro­form monosolvate

    PubMed Central

    Gopinath, S.; Sethusankar, K.; Ramalingam, Bose Muthu; Mohanakrishnan, Arasambattu K.

    2015-01-01

    The title compounds, C17H13NO2S, (I), C17H13NO3S, (II), and C24H17ClN2O5S·CHCl3, (III), are indole derivatives. Compounds (I) and (II) crystalize with two independent mol­ecules in the asymmetric unit. The indole ring systems in all three structures deviate only slightly from planarity, with dihedral angles between the planes of the pyrrole and benzene rings spanning the tight range 0.20 (9)–1.65 (9)°. These indole ring systems, in turn, are almost orthogonal to the phenyl­sulfonyl rings [range of dihedral angles between mean planes = 77.21 (8)–89.26 (8)°]. In the three compounds, the mol­ecular structure is stabilized by intra­molecular C—H⋯O hydrogen bonds, generating S(6) ring motifs with the sulfone O atom. In compounds (I) and (II), the two independent mol­ecules are linked by C—H⋯O hydrogen bonds and C—H⋯π inter­actions, while in compound (III), the mol­ecules are linked by C—H⋯O hydrogen bonds, generating R 2 2(22) inversion dimers. PMID:26396842

  12. Rational design for enhancing inflammation-responsive in vivo chemiluminescence via nanophotonic energy relay to near-infrared AIE-active conjugated polymer.

    PubMed

    Seo, Young Hun; Singh, Ajay; Cho, Hong-Jun; Kim, Youngsun; Heo, Jeongyun; Lim, Chang-Keun; Park, Soo Young; Jang, Woo-Dong; Kim, Sehoon

    2016-04-01

    H2O2-specific peroxalate chemiluminescence is recognized as a potential signal for sensitive in vivo imaging of inflammation but the effect of underlying peroxalate-emitter energetics on its efficiency has rarely been understood. Here we report a simple nanophotonic way of boosting near-infrared chemiluminescence with no need of complicated structural design and synthesis of an energetically favored emitter. The signal enhancement was attained from the construction of a nanoparticle imaging probe (∼26 nm in size) by dense nanointegration of multiple molecules possessing unique photonic features, i.e., i) a peroxalate as a chemical fuel generating electronic excitation energy in response to inflammatory H2O2, ii) a low-bandgap conjugated polymer as a bright near-infrared emitter showing aggregation-induced emission (AIE), and iii) an energy gap-bridging photonic molecule that relays the chemically generated excitation energy to the emitter for its efficient excitation. From static and kinetic spectroscopic studies, a green-emissive BODIPY dye has proven to be an efficient relay molecule to bridge the energy gap between the AIE polymer and the chemically generated excited intermediate of H2O2-reacted peroxalates. The energy-relayed nanointegration of AIE polymer and peroxalate in water showed a 50-times boosted sensing signal compared to their dissolved mixture in THF. Besides the high H2O2 detectability down to 10(-9) M, the boosted chemiluminescence presented a fairly high tissue penetration depth (>12 mm) in an ex vivo condition, which enabled deep imaging of inflammatory H2O2 in a hair-covered mouse model of peritonitis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Exogenous Hydrogen Peroxide Contributes to Heme Oxygenase-1 Delaying Programmed Cell Death in Isolated Aleurone Layers of Rice Subjected to Drought Stress in a cGMP-Dependent Manner

    PubMed Central

    Wang, Guanghui; Xiao, Yu; Deng, Xiaojiang; Zhang, Heting; Li, Tingge; Chen, Huiping

    2018-01-01

    Hydrogen peroxide (H2O2) is a reactive oxygen species (ROS) that plays a dual role in plant cells. Here, we discovered that drought (20% polyethylene glycol-6000, PEG)-triggered decreases of HO-1 transcript expression and HO activity. However, exogenous H2O2 contributed toward the increase in HO-1 gene expression and activity of the enzyme under drought stress. Meanwhile, the HO-1 inducer hematin could mimic the effects of the H2O2 scavengers ascorbic acid (AsA) and dimethylthiourea (DMTU) and the H2O2 synthesis inhibitor diphenyleneiodonium (DPI) for scavenging or diminishing drought-induced endogenous H2O2. Conversely, the zinc protoporphyrin IX (ZnPPIX), an HO-1-specific inhibitor, reversed the effects of hematin. We further analyzed the endogenous H2O2 levels and HO-1 transcript expression levels of aleurone layers treated with AsA, DMTU, and DPI in the presence of exogenous H2O2 under drought stress, respectively. The results showed that in aleurone layers subjected to drought stress, when the endogenous H2O2 level was inhibited, the effect of exogenous H2O2 on the induction of HO-1 was enhanced. Furthermore, exogenous H2O2-activated HO-1 effectively enhanced amylase activity. Application of 8-bromoguanosine 3′,5′-cyclic guanosine monophosphate (8-Br-cGMP) (the membrane permeable cGMP analog) promoted the effect of exogenous H2O2-delayed PCD of aleurone layers in response to drought stress. More importantly, HO-1 delayed the programmed cell death (PCD) of aleurone layers by cooperating with nitric oxide (NO), and the delayed effect of NO on PCD was achieved via mediation by cGMP under drought stress. In short, in rice aleurone layers, exogenous H2O2 (as a signaling molecule) triggered HO-1 and delayed PCD via cGMP which possibly induced amylase activity under drought stress. In contrast, as a toxic by-product of cellular metabolism, the drought-generated H2O2 promoted cell death. PMID:29449858

  14. Exogenous Hydrogen Peroxide Contributes to Heme Oxygenase-1 Delaying Programmed Cell Death in Isolated Aleurone Layers of Rice Subjected to Drought Stress in a cGMP-Dependent Manner.

    PubMed

    Wang, Guanghui; Xiao, Yu; Deng, Xiaojiang; Zhang, Heting; Li, Tingge; Chen, Huiping

    2018-01-01

    Hydrogen peroxide (H 2 O 2 ) is a reactive oxygen species (ROS) that plays a dual role in plant cells. Here, we discovered that drought (20% polyethylene glycol-6000, PEG)-triggered decreases of HO-1 transcript expression and HO activity. However, exogenous H 2 O 2 contributed toward the increase in HO-1 gene expression and activity of the enzyme under drought stress. Meanwhile, the HO-1 inducer hematin could mimic the effects of the H 2 O 2 scavengers ascorbic acid (AsA) and dimethylthiourea (DMTU) and the H 2 O 2 synthesis inhibitor diphenyleneiodonium (DPI) for scavenging or diminishing drought-induced endogenous H 2 O 2 . Conversely, the zinc protoporphyrin IX (ZnPPIX), an HO-1-specific inhibitor, reversed the effects of hematin. We further analyzed the endogenous H 2 O 2 levels and HO-1 transcript expression levels of aleurone layers treated with AsA, DMTU, and DPI in the presence of exogenous H 2 O 2 under drought stress, respectively. The results showed that in aleurone layers subjected to drought stress, when the endogenous H 2 O 2 level was inhibited, the effect of exogenous H 2 O 2 on the induction of HO-1 was enhanced. Furthermore, exogenous H 2 O 2 -activated HO-1 effectively enhanced amylase activity. Application of 8-bromoguanosine 3',5'-cyclic guanosine monophosphate (8-Br-cGMP) (the membrane permeable cGMP analog) promoted the effect of exogenous H 2 O 2 -delayed PCD of aleurone layers in response to drought stress. More importantly, HO-1 delayed the programmed cell death (PCD) of aleurone layers by cooperating with nitric oxide (NO), and the delayed effect of NO on PCD was achieved via mediation by cGMP under drought stress. In short, in rice aleurone layers, exogenous H 2 O 2 (as a signaling molecule) triggered HO-1 and delayed PCD via cGMP which possibly induced amylase activity under drought stress. In contrast, as a toxic by-product of cellular metabolism, the drought-generated H 2 O 2 promoted cell death.

  15. Bimolecular Coupling as a Vector for Decomposition of Fast-Initiating Olefin Metathesis Catalysts.

    PubMed

    Bailey, Gwendolyn A; Foscato, Marco; Higman, Carolyn S; Day, Craig S; Jensen, Vidar R; Fogg, Deryn E

    2018-06-06

    The correlation between rapid initiation and rapid decomposition in olefin metathesis is probed for a series of fast-initiating, phosphine-free Ru catalysts: the Hoveyda catalyst HII, RuCl 2 (L)(═CHC 6 H 4 - o-O i Pr); the Grela catalyst nG (a derivative of HII with a nitro group para to O i Pr); the Piers catalyst PII, [RuCl 2 (L)(═CHPCy 3 )]OTf; the third-generation Grubbs catalyst GIII, RuCl 2 (L)(py) 2 (═CHPh); and dianiline catalyst DA, RuCl 2 (L)( o-dianiline)(═CHPh), in all of which L = H 2 IMes = N,N'-bis(mesityl)imidazolin-2-ylidene. Prior studies of ethylene metathesis have established that various Ru metathesis catalysts can decompose by β-elimination of propene from the metallacyclobutane intermediate RuCl 2 (H 2 IMes)(κ 2 -C 3 H 6 ), Ru-2. The present work demonstrates that in metathesis of terminal olefins, β-elimination yields only ca. 25-40% propenes for HII, nG, PII, or DA, and none for GIII. The discrepancy is attributed to competing decomposition via bimolecular coupling of methylidene intermediate RuCl 2 (H 2 IMes)(═CH 2 ), Ru-1. Direct evidence for methylidene coupling is presented, via the controlled decomposition of transiently stabilized adducts of Ru-1, RuCl 2 (H 2 IMes)L n (═CH 2 ) (L n = py n' ; n' = 1, 2, or o-dianiline). These adducts were synthesized by treating in situ-generated metallacyclobutane Ru-2 with pyridine or o-dianiline, and were isolated by precipitating at low temperature (-116 or -78 °C, respectively). On warming, both undergo methylidene coupling, liberating ethylene and forming RuCl 2 (H 2 IMes)L n . A mechanism is proposed based on kinetic studies and molecular-level computational analysis. Bimolecular coupling emerges as an important contributor to the instability of Ru-1, and a potentially major pathway for decomposition of fast-initiating, phosphine-free metathesis catalysts.

  16. 21 CFR 184.1272 - L-Cysteine monohydrochloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... monohydrochloride is the chemical L-2-amino-3-mercaptopropanoic acid monohydrochloride monohydrate (C3H7O2NS HCl H2O... 21 Food and Drugs 3 2011-04-01 2011-04-01 false L-Cysteine monohydrochloride. 184.1272 Section 184.1272 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...

  17. 21 CFR 184.1272 - L-Cysteine monohydrochloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... monohydrochloride is the chemical L-2-amino-3-mercaptopropanoic acid monohydrochloride monohydrate (C3H7O2NS HCl H2O... 21 Food and Drugs 3 2010-04-01 2009-04-01 true L-Cysteine monohydrochloride. 184.1272 Section 184.1272 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED...

  18. High-frequency underwater plasma discharge application in antibacterial activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O{sub 2}) injected and hydrogen peroxide (H{sub 2}O{sub 2}) added discharge in water was achieved. The effect of H{sub 2}O{sub 2} dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H{sub 2}O{sub 2} addition with O{sub 2} injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population onmore » the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH{sup •}, H, and O). Interestingly, the results demonstrated that O{sub 2} injected and H{sub 2}O{sub 2} added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.« less

  19. High-frequency underwater plasma discharge application in antibacterial activity

    NASA Astrophysics Data System (ADS)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-03-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli ( E. coli) by generating high-frequency, high-voltage, oxygen (O2) injected and hydrogen peroxide (H2O2) added discharge in water was achieved. The effect of H2O2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H2O2 addition with O2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH•, H, and O). Interestingly, the results demonstrated that O2 injected and H2O2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  20. Efficient degradation of TCE in groundwater using Pd and electro-generated H2 and O2: a shift in pathway from hydrodechlorination to oxidation in the presence of ferrous ions.

    PubMed

    Yuan, Songhu; Mao, Xuhui; Alshawabkeh, Akram N

    2012-03-20

    Degradation of trichloroethylene (TCE) in simulated groundwater by Pd and electro-generated H(2) and O(2) is investigated in the absence and presence of Fe(II). In the absence of Fe(II), hydrodechlorination dominates TCE degradation, with accumulation of H(2)O(2) up to 17 mg/L. Under weak acidity, low concentrations of oxidizing •OH radicals are detected due to decomposition of H(2)O(2), slightly contributing to TCE degradation via oxidation. In the presence of Fe(II), the degradation efficiency of TCE at 396 μM improves to 94.9% within 80 min. The product distribution proves that the degradation pathway shifts from 79% hydrodechlorination in the absence of Fe(II) to 84% •OH oxidation in the presence of Fe(II). TCE degradation follows zeroth-order kinetics with rate constants increasing from 2.0 to 4.6 μM/min with increasing initial Fe(II) concentration from 0 to 27.3 mg/L at pH 4. A good correlation between TCE degradation rate constants and •OH generation rate constants confirms that •OH is the predominant reactive species for TCE oxidation. Presence of 10 mM Na(2)SO(4), NaCl, NaNO(3), NaHCO(3), K(2)SO(4), CaSO(4), and MgSO(4) does not significantly influence degradation, but sulfite and sulfide greatly enhance and slightly suppress degradation, respectively. A novel Pd-based electrochemical process is proposed for groundwater remediation.

  1. Efficient Degradation of TCE in Groundwater Using Pd and Electro-generated H2 and O2: A Shift in Pathway from Hydrodechlorination to Oxidation in the Presence of Ferrous Ions

    PubMed Central

    Yuan, Songhu; Mao, Xuhui; Alshawabkeh, Akram N.

    2012-01-01

    Degradation of trichloroethylene (TCE) in simulated groundwater by Pd and electro-generated H2 and O2 is investigated in the absence and presence of Fe(II). In the absence of Fe(II), hydrodechlorination dominates TCE degradation, with accumulation of H2O2 up to 17 mg/L. Under weak acidity, low concentrations of oxidizing •OH radical are detected due to decomposition of H2O2, slightly contributing to TCE degradation via oxidation. In the presence of Fe(II), the degradation efficiency of TCE at 396 μM improves to 94.9% within 80 min. The product distribution proves that the degradation pathway shifts from 79% hydrodechlorination in the absence of Fe(II) to 84% •OH oxidation in the presence of Fe(II). TCE degradation follows zeroth-order kinetics with rate constants increasing from 2.0 to 4.6 μM/min with increasing initial Fe(II) concentration from 0 to 27.3 mg/L at pH 4. A good correlation between TCE degradation rate constants and •OH generation rate constants confirms that •OH is the predominant reactive species for TCE oxidation. Presence of 10 mM Na2SO4, NaCl, NaNO3, NaHCO3, K2SO4, CaSO4 and MgSO4 does not significantly influence degradation, but sulfite and sulfide greatly enhance and slightly suppresses degradation, respectively. A novel Pd-based electrochemical process is proposed for groundwater remediation. PMID:22315993

  2. Detectability of planetary characteristics in disk-averaged spectra. I: The Earth model.

    PubMed

    Tinetti, Giovanna; Meadows, Victoria S; Crisp, David; Fong, William; Fishbein, Evan; Turnbull, Margaret; Bibring, Jean-Pierre

    2006-02-01

    Over the next 2 decades, NASA and ESA are planning a series of space-based observatories to detect and characterize extrasolar planets. This first generation of observatories will not be able to spatially resolve the terrestrial planets detected. Instead, these planets will be characterized by disk-averaged spectroscopy. To assess the detectability of planetary characteristics in disk-averaged spectra, we have developed a spatially and spectrally resolved model of the Earth. This model uses atmospheric and surface properties from existing observations and modeling studies as input, and generates spatially resolved high-resolution synthetic spectra using the Spectral Mapping Atmospheric Radiative Transfer model. Synthetic spectra were generated for a variety of conditions, including cloud coverage, illumination fraction, and viewing angle geometry, over a wavelength range extending from the ultraviolet to the farinfrared. Here we describe the model and validate it against disk-averaged visible to infrared observations of the Earth taken by the Mars Global Surveyor Thermal Emission Spectrometer, the ESA Mars Express Omega instrument, and ground-based observations of earthshine reflected from the unilluminated portion of the Moon. The comparison between the data and model indicates that several atmospheric species can be identified in disk-averaged Earth spectra, and potentially detected depending on the wavelength range and resolving power of the instrument. At visible wavelengths (0.4-0.9 microm) O3, H2O, O2, and oxygen dimer [(O2)2] are clearly apparent. In the mid-infrared (5-20 microm) CO2, O3, and H2O are present. CH4, N2O, CO2, O3, and H2O are visible in the near-infrared (1-5 microm). A comprehensive three-dimensional model of the Earth is needed to produce a good fit with the observations.

  3. Catalytic ethanolysis and gasification of kraft lignin into aromatic alcohols and H2-rich gas over Rh supported on La2O3/CeO2-ZrO2.

    PubMed

    Yang, Jing; Zhao, Liang; Liu, Chunze; Wang, Yuanyuan; Dai, Liyi

    2016-10-01

    Efficient catalytic ethanolysis and gasification of kraft lignin were conducted over a versatile supported catalyst Rh/La2O3/CeO2-ZrO2 to give high-value aromatic alcohols and H2-rich gas. The removal of phenolic hydroxyl group was the most prevalent reaction, and importantly, almost no phenols, undesired char and saturating the aromatic ring were detected. Meanwhile, the feedstock and solvent both played key roles in H2 generation that contributed to the hydrodeoxygenation of liquid components and made the whole catalytic process out of H2 supply. Reusability tests of catalyst indicated that the crystalline phase transition and agglomeration of support, the loss of noble metal Rh and carbon deposition were the possible reasons for its deactivation in supercritical ethanol. Comparing with water, methanol and isopropanol system, ethanol was the only effective solvent for the depolymerization process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effect of photocatalytic oxidation technology on GaN CMP

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Tongqing; Pan, Guoshun; Lu, Xinchun

    2016-01-01

    GaN is so hard and so chemically inert that it is difficult to obtain a high material removal rate (MRR) in the chemical mechanical polishing (CMP) process. This paper discusses the application of photocatalytic oxidation technology in GaN planarization. Three N-type semiconductor particles (TiO2, SnO2, and Fe2O3) are used as catalysts and added to the H2O2-SiO2-based slurry. By optical excitation, highly reactive photoinduced holes are produced on the surface of the particles, which can oxidize OH- and H2O absorbed on the surface of the catalysts; therefore, more OH* will be generated. As a result, GaN MRRs in an H2O2-SiO2-based polishing system combined with catalysts are improved significantly, especially when using TiO2, the MRR of which is 122 nm/h. The X-ray photoelectron spectroscopy (XPS) analysis shows the variation trend of chemical composition on the GaN surface after polishing, revealing the planarization process. Besides, the effect of pH on photocatalytic oxidation combined with TiO2 is analyzed deeply. Furthermore, the physical model of GaN CMP combined with photocatalytic oxidation technology is proposed to describe the removal mechanism of GaN.

  5. Two actinide-organic frameworks constructed by a tripodal flexible ligand: Occurrence of infinite {(UO2)O2(OH)3}4n and hexanuclear {Th6O4(OH)4} motifs

    NASA Astrophysics Data System (ADS)

    Liang, Lingling; Zhang, Ronglan; Zhao, Jianshe; Liu, Chiyang; Weng, Ng Seik

    2016-11-01

    Two new actinide metal-organic frameworks were constructed by using a tripodal flexible ligand tris (2-carboxyethyl) isocyanurate (H3tci) under hydrothermal condition. The combination of H3tci and uranyl nitrate hexahydrate in aqueous solution leads to the isolation of [(UO2)2(H2O)4]0.5(tci)2(UO2)4(OH)4·18H2O (1), which contains two distinct UO22+ coordination environments. Four uranyl cations, linked through μ3-OH respectively, result in the edge-sharing ribbons. Then, the layer structure is constructed by U-O clusters linked through other eight-coordinated uranyl unions, giving rise to a porous structure in the space. Topological analysis reveals that complex 1 belongs to a (4, 8)-connected net with a schläfli symbol of (34.26.3)2(34.46.56.68.73.8). Th3(tci)2O2(OH)2(H2O)3·12H2O (2) generated by the reaction of H3tci and thorium nitrate tetrahydrate, possesses nine-fold coodinated Th(IV) centers with a monocapped square antiprismatic geometry. The hexamers "Th6O4(OH)4" motifs are connected together by the carboxylate groups, showing a three-dimensional structures. Complex 2 takes on an 8-connected architecture and the point symbol is (424.64).

  6. Early evolution of the earth - Accretion, atmosphere formation, and thermal history

    NASA Technical Reports Server (NTRS)

    Abe, Yutaka; Matsui, Takafumi

    1986-01-01

    The thermal and atmospheric evolution of the earth growing planetesimal impacts are studied. The generation of an H2O protoatmosphere is examined, and the surface temperatures are estimated. The evolution of an impact-induced H2O atmosphere is analyzed. Consideration is given to the formation time of a 'magma ocean'and internal water budgets. The thermal history of an accreting earth is reviewed. The wet convection and greenhouse effects are discussed, and the role of Fe oxidation on the evolution of an impact-induced H2O atmopshere is described. The relationship between differentiation processes and core segregation, the H2O and FeO content of the mantle, and the origin of the hydrosphere is also examined.

  7. UV and VUV photolysis vs. UV/H2O2 and VUV/H2O2, treatment for removal of clofibric acid from aqueous solution.

    PubMed

    Li, Wenzhen; Lu, Shuguang; Qiu, Zhaofu; Lin, Kuangfei

    2011-07-01

    Clofibric acid (CA), a metabolite of lipid regulators, was investigated in ultra-pure water and sewage treatment plant (STP) effluent at 10 degrees C under UV, vacuum UV (VUV), UV/H2O2 and VUV/H2O2 processes. The influences of NO3-, HCO3- and humic acid (HA) on CA photolysis in all processes were examined. The results showed that all the experimental data well fitted the pseudo-first-order kinetic model, and the apparent rate constant (k(ap)) and half-life time (t(1/2)) were calculated accordingly. Direct photolysis of CA through UV irradiation was the main process, compared with the indirect oxidation of CA due to the slight generation of hydroxyl radicals dissociated from water molecules under UV irradiation below 200 nm monochromatic wavelength emission. In contrast, indirect oxidation was the main CA degradation mechanism in UV/H2O2 and VUV/H2O2, and VUV/H2O2 was the most effective process for CA degradation. The addition of 20 mg L(-1) HA could significantly inhibit CA degradation, whereas, except for UV irradiation, the inhibitive effects of NO3- and HCO3- (1.0 x 10(-3) and 0.1 mol L(-1), respectively) on CA degradation were observed in all processes, and their adverse effects were more significant in UV/H2O2 and VUV/H2O2 processes, particularly at the high NO3- and HCO3- concentrations. The degradation rate decreased 1.8-4.9-fold when these processes were applied to a real STP effluent owing to the presence of complex constituents. Of the four processes, VUV/H2O2 was the most effective, and the CA removal efficiency reached over 99% after 40 min in contrast to 80 min in both the UV/H2O2 and VUV processes and 240 min in the UV process.

  8. Degradation of p-Nitrophenol by Lignin and Cellulose Chars: H2O2-Mediated Reaction and Direct Reaction with the Char.

    PubMed

    Yang, Jing; Pignatello, Joseph J; Pan, Bo; Xing, Baoshan

    2017-08-15

    Chars and other black carbons are reactive toward certain compounds. Such reactivity has been attributed to reduction of O 2 by persistent free radicals in the solid to H 2 O 2 , which then back-reacts with the solid to generate reactive oxygen species (ROS; especially HO • ). We studied the decomposition of p-nitrophenol (PNP) by pure lignin and cellulose chars aged in moist air or a vacuum at room temperature for up to a month. In air, the chars chemisorbed oxygen, a portion of which was liberated as H 2 O 2 when the char was submerged in water. The evolved H 2 O 2 was simultaneously decomposed by the char. PNP reacted predominantly in the sorbed state and only reduction products (phenol, catechol) were identified. Aging the char in air sharply (within hours) reduced H 2 O 2 -producing capacity and free radical concentration, but more gradually reduced PNP decay rate over the month-long period. PNP decay was only modestly suppressed (12-30%) by H 2 O 2 removal (catalase), and had little effect on the free radical signal (<6 radicals annihilated per 1000 PNP reacted). Contrasting with previous studies, the results show that direct reaction of PNP with char predominates over H 2 O 2 -dependent reactions, and the vast majority of direct-reacting sites are nonradical in character. Nonradical sites are also responsible in part for H 2 O 2 decomposition; in fact, H 2 O 2 pretreatment depleted PNP reactive sites. Lignin char was generally more reactive than cellulose char. The Fe impurity in lignin played no role. The results are relevant to the fate of pollutants in black carbon-rich environments and the use of carbons in remediation.

  9. Hydrodynamic cavitation in combination with the ozone, hydrogen peroxide and the UV-based advanced oxidation processes for the removal of natural organic matter from drinking water.

    PubMed

    Čehovin, Matej; Medic, Alojz; Scheideler, Jens; Mielcke, Jörg; Ried, Achim; Kompare, Boris; Žgajnar Gotvajn, Andreja

    2017-07-01

    Natural organic matter in drinking water is causing concern especially due to the formation of disinfection by-products (DBPs) by chlorine, as these are proven to have adverse health effects on consumers. In this research, humic acid was used as a source of dissolved organic carbon (DOC) in drinking water (up to 3mgL -1 ). The efficiency of DOC removal was studied by applying O 3 , H 2 O 2 /O 3 , H 2 O 2 /UV and O 3 /UV advanced oxidation processes (AOPs) alone and combined with hybrid hydrodynamic cavitation (HC), generated by an orifice plate, as this technology recently shows promising potential for the treatment of water, containing recalcitrant organic substances. It was observed that the combined treatment by HC could significantly affect the performance of the applied AOPs, with as little as 3-9 passes through the cavitation generators. For O 3 and H 2 O 2 dosages up to 2 and 4mgL -1 , respectively, and UV dosage up to 300mJcm -2 , HC enhanced DOC removal by 5-15% in all combinations, except for O 3 /UV AOPs. Overall, the potential benefits of HC for DOC removal were emphasized for low ratio between applied oxidants to DOC and high UV absorbance of the sample. Investigated DBPs formation potentials require special attention for H 2 O 2 /UV AOPs and combinations with HC. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. 4-Hydroxyphenylacetic acid oxidation in sulfate and real olive oil mill wastewater by electrochemical advanced processes with a boron-doped diamond anode.

    PubMed

    Flores, Nelly; Cabot, Pere Lluís; Centellas, Francesc; Garrido, José Antonio; Rodríguez, Rosa María; Brillas, Enric; Sirés, Ignasi

    2017-01-05

    The degradation of 4-hydroxyphenylacetic acid, a ubiquitous component of olive oil mill wastewater (OOMW), has been studied by anodic oxidation with electrogenerated H 2 O 2 (AO-H 2 O 2 ), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments were performed in either a 0.050M Na 2 SO 4 solution or a real OOMW at pH 3.0, using a cell with a boron-doped diamond (BDD) anode and an air-diffusion cathode for H 2 O 2 generation. Hydroxyl radicals formed at the BDD surface from water oxidation in all processes and/or in the bulk from Fenton's reaction between added Fe 2+ and generated H 2 O 2 in EF and PEF were the main oxidants. In both matrices, the oxidation ability of the processes increased in the order AO-H 2 O 2

  11. Suppression of chlorinated aromatics by nitrogen and sulphur inhibitors in iron ore sintering.

    PubMed

    Zhang, Yadi; Buekens, Alfons; Liu, Lina; Zhang, Yibo; Zeng, Xiaolan; Sun, Yifei

    2016-07-01

    Dioxins generated by iron and steel industry account for the majority of industrial dioxins emissions. This study compares the performance of different additives (including calcium sulphate dehydrate CaSO4·2H2O; calcium polysulphide CaSx; ammonium sulphate (NH4)2SO4; 4-methylthiosemicarbazide H3C-SC(NH)2NH2 and thiourea H2NCSNH2) as suppressant of chlorinated aromatics in iron ore sintering. The formation of chlorobenzenes (CBz) and polychlorinated biphenyls (PCBs), used as surrogates for dioxins, was suppressed significantly in the present of various inhibitors (1 wt%) except for CaSO4·2H2O. Moreover, a larger molar ratio of (S + N)/Cl leads to a higher suppression efficiency, so that the inhibition capacity of (NH4)2SO4 on both CBz and PCBs was weaker than H2NCSNH2. The generation of dioxin-like PCBs (Co- or dl-PCB) was also analysed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Dual Mechanism of an Intramolecular Charge Transfer (ICT)-FRET-Based Fluorescent Probe for the Selective Detection of Hydrogen Peroxide.

    PubMed

    Liang, Xiao; Xu, Xiaoyi; Qiao, Dan; Yin, Zheng; Shang, Luqing

    2017-12-14

    A dual-mechanism intramolecular charge transfer (ICT)-FRET fluorescent probe for the selective detection of H 2 O 2 in living cells has been designed and synthesized. This probe used a coumarin-naphthalimide hybrid as the FRET platform and a boronate moiety as the recognition group. Upon the addition of H 2 O 2 , the probe exhibited a redshifted (73 nm) fluorescence emission, and the ratio of fluorescence intensities at λ=558 and 485 nm (F 558 /F 485 ) shifted notably (up to 100-fold). Moreover, there was a good linearity (R 2 =0.9911) between the ratio and concentration of H 2 O 2 in the range of 0 to 60 μm, with a limit of detection of 0.28 μm (signal to noise ratio (S/N)=3). This probe could also detect enzymatically generated H 2 O 2 . Importantly, it could be used to visualize endogenous H 2 O 2 produced by stimulation from epidermal growth factor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Reactive oxygen species as a signal in glucose-stimulated insulin secretion.

    PubMed

    Pi, Jingbo; Bai, Yushi; Zhang, Qiang; Wong, Victoria; Floering, Lisa M; Daniel, Kiefer; Reece, Jeffrey M; Deeney, Jude T; Andersen, Melvin E; Corkey, Barbara E; Collins, Sheila

    2007-07-01

    One of the unique features of beta-cells is their relatively low expression of many antioxidant enzymes. This could render beta-cells susceptible to oxidative damage but may also provide a system that is sensitive to reactive oxygen species as signals. In isolated mouse islets and INS-1(832/13) cells, glucose increases intracellular accumulation of H2O2. In both models, insulin secretion could be stimulated by provision of either exogenous H2O2 or diethyl maleate, which raises intracellular H2O2 levels. Provision of exogenous H2O2 scavengers, including cell permeable catalase and N-acetyl-L-cysteine, inhibited glucose-stimulated H2O2 accumulation and insulin secretion (GSIS). In contrast, cell permeable superoxide dismutase, which metabolizes superoxide into H2O2, had no effect on GSIS. Because oxidative stress is an important risk factor for beta-cell dysfunction in diabetes, the relationship between glucose-induced H2O2 generation and GSIS was investigated under various oxidative stress conditions. Acute exposure of isolated mouse islets or INS-1(832/13) cells to oxidative stressors, including arsenite, 4-hydroxynonenal, and methylglyoxal, led to decreased GSIS. This impaired GSIS was associated with increases in a battery of endogenous antioxidant enzymes. Taken together, these findings suggest that H2O2 derived from glucose metabolism is one of the metabolic signals for insulin secretion, whereas oxidative stress may disturb its signaling function.

  14. Application of electrochemical advanced oxidation to bisphenol A degradation in water. Effect of sulfate and chloride ions.

    PubMed

    Burgos-Castillo, Rutely C; Sirés, Ignasi; Sillanpää, Mika; Brillas, Enric

    2018-03-01

    Electrochemical oxidation with electrogenerated H 2 O 2 (EO- H 2 O 2 ), electro-Fenton (EF), photoelectro-Fenton (PEF) and solar PEF (SPEF) have been applied to mineralize bisphenol A solutions in 0.050 M Na 2 SO 4 or 0.008 M NaCl + 0.047 M Na 2 SO 4 at pH 3.0. The assays were performed in an undivided cell with a boron-doped diamond (BDD) anode and an air-diffusion cathode for continuous H 2 O 2 production. The PEF and SPEF processes yielded almost total mineralization due to the potent synergistic action of generated hydroxyl radicals and active chlorine, in conjunction with the photolytic action of UV radiation. The higher intensity of UV rays from sunlight explained the superior oxidation ability of SPEF. The effect of applied current density was studied in all treatments, whereas the role of bisphenol A concentration was examined in PEF. Bisphenol A abatement followed a pseudo-first-order kinetics, which was very quick in SPEF since UV light favored a large production of hydroxyl radicals from Fenton's reaction. Eight non-chlorinated and six chlorinated aromatics were identified as primary products in the chloride matrix. Ketomalonic, tartronic, maleic and oxalic acids were detected as final short-chain aliphatic carboxylic acids. The large stability of Fe(III)-oxalate complexes in EF compared to their fast photomineralization in PEF and PEF accounted for by the superior oxidation power of the latter processes. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Enhancement of CO Evolution by Modification of Ga2O3 with Rare-Earth Elements for the Photocatalytic Conversion of CO2 by H2O.

    PubMed

    Tatsumi, Hiroyuki; Teramura, Kentaro; Huang, Zeai; Wang, Zheng; Asakura, Hiroyuki; Hosokawa, Saburo; Tanaka, Tsunehiro

    2017-12-12

    Modification of the surface of Ga 2 O 3 with rare-earth elements enhanced the evolution of CO as a reduction product in the photocatalytic conversion of CO 2 using H 2 O as an electron donor under UV irradiation in aqueous NaHCO 3 as a pH buffer, with the rare-earth species functioning as a CO 2 capture and storage material. Isotope experiments using 13 CO 2 as a substrate clearly revealed that CO was generated from the introduced gaseous CO 2 . In the presence of the NaHCO 3 additive, the rare-earth (RE) species on the Ga 2 O 3 surface are transformed into carbonate hydrates (RE 2 (CO 3 ) 3 ·nH 2 O) and/or hydroxycarbonates (RE 2 (OH) 2(3-x) (CO 3 ) x ) which are decomposed upon photoirradiation. Consequently, Ag-loaded Yb-modified Ga 2 O 3 exhibits much higher activity (209 μmol h -1 of CO) than the pristine Ag-loaded Ga 2 O 3 . The further modification of the surface of the Yb-modified Ga 2 O 3 with Zn afforded a selectivity toward CO evolution of 80%. Thus, we successfully achieved an efficient Ag-loaded Yb- and Zn-modified Ga 2 O 3 photocatalyst with high activity and controllable selectivity, suitable for use in artificial photosynthesis.

  16. Experimental study of the visible-light photocatalytic activity of oxygen-deficient TiO2 prepared with Ar/H2 plasma surface treatment

    NASA Astrophysics Data System (ADS)

    Nakano, Takuma; Yazawa, Shota; Araki, Shota; Kogoshi, Sumio; Katayama, Noboru; Kudo, Yusuke; Nakanishi, Tetsuya

    2015-01-01

    Oxygen-deficient TiO2 (TiO2-x) has been proposed as a visible-light-responsive photocatalyst. TiO2-x thin films were prepared by Ar/H2 plasma surface treatment, applying varying levels of microwave input power and processing times. The highest visible light photocatalytic activity was observed when using an input power of 200 W, a plasma processing time of 10 min, and a 1:1 \\text{Ar}:\\text{H}2 ratio, conditions that generate an electron temperature of 5.7(±1.0) eV and an electron density of 8.5 × 1010 cm-3. The maximum formaldehyde (HCHO) removal rate of the TiO2-x film was 2.6 times higher than that obtained from a TiO2-xNx film under the same test conditions.

  17. A nanocomposite-based electrochemical sensor for non-enzymatic detection of hydrogen peroxide

    PubMed Central

    Du, Xin; Chen, Yuan; Dong, Wenhao; Han, Bingkai; Liu, Min; Chen, Qiang; Zhou, Jun

    2017-01-01

    Hydrogen peroxide (H2O2) plays important signaling roles in normal physiology and disease. However, analyzing the actions of H2O2 is often impeded by the difficulty in detecting this molecule. Herein, we report a novel nanocomposite-based electrochemical sensor for non-enzymatic detection of H2O2. Graphene oxide (GO) was selected as the dopant for the synthesis of polyaniline (PANI), leading to the successful fabrication of a water-soluble and stable GO-PANI composite. GO-PANI was subsequently subject to cyclic voltammetry to generate reduced GO-PANI (rGO-PANI), enhancing the conductivity of the material. Platinum nanoparticles (PtNPs) were then electrodeposited on the surface of the rGO-PANI-modified glassy carbon electrode (GCE) to form an electrochemical H2O2 sensor. Compared to previously reported sensors, the rGO-PANI-PtNP/GCE exhibited an expanded linear range, higher sensitivity, and lower detection limit in the quantification of H2O2. In addition, the sensor displayed outstanding reproducibility and selectivity in real-sample examination. Our study suggests that the rGO-PANI-PtNP/GCE may have broad utility in H2O2 detection under physiological and pathological conditions. PMID:28035076

  18. Chlorogenic acid analogues from Gynura nepalensis protect H9c2 cardiomyoblasts against H2O2-induced apoptosis

    PubMed Central

    Yu, Bang-wei; Li, Jin-long; Guo, Bin-bin; Fan, Hui-min; Zhao, Wei-min; Wang, He-yao

    2016-01-01

    Aim: Chlorogenic acid has shown protective effect on cardiomyocytes against oxidative stress-induced damage. Herein, we evaluated nine caffeoylquinic acid analogues (1–9) isolated from the leaves of Gynura nepalensis for their protective effect against H2O2-induced H9c2 cardiomyoblast damage and explored the underlying mechanisms. Methods: H9c2 cardiomyoblasts were exposed to H2O2 (0.3 mmol/L) for 3 h, and cell viability was detected with MTT assay. Hoechst 33342 staining was performed to evaluate cell apoptosis. MMPs (mitochondrial membrane potentials) were measured using a JC-1 assay kit, and ROS (reactive oxygen species) generation was measured using CM-H2 DCFDA. The expression levels of relevant proteins were detected using Western blot analysis. Results: Exposure to H2O2 markedly decreased the viability of H9c2 cells and catalase activity, and increased LDH release and intracellular ROS production; accompanied by a loss of MMP and increased apoptotic rate. Among the 9 chlorogenic acid analogues as well as the positive control drug epigallocatechin gallate (EGCG) tested, compound 6 (3,5-dicaffeoylquinic acid ethyl ester) was the most effective in protecting H9c2 cells from H2O2-induced cell death. Pretreatment with compound 6 (1.56–100 μmol/L) dose-dependently alleviated all the H2O2-induced detrimental effects. Moreover, exposure to H2O2 significantly increased the levels of Bax, p53, cleaved caspase-8, and cleaved caspase-9, and decreased the level of Bcl-2, resulting in cell apoptosis. Exposure to H2O2 also significantly increased the phosphorylation of p38, JNK and ERK in the H9c2 cells. Pretreatment with compound 6 (12.5 and 25 μmol/L) dose-dependently inhibited the H2O2-induced increase in the level of cleaved caspase-9 but not of cleaved caspase-8. It also dose-dependently suppressed the H2O2-induced phosphorylation of JNK and ERK but not that of p38. Conclusion: Compound 6 isolated from the leaves of Gynura nepalensis potently protects H9c2 cardiomyoblasts against H2O2-induced apoptosis, possibly by inhibiting intrinsic apoptosis and the ERK/JNK pathway. PMID:27593219

  19. 3-(4-Methoxy­phen­yl)pent-2-ene-1,5-dioic acid

    PubMed Central

    Das, Ushati; Chheda, Shardul B.; Pednekar, Suhas R.; Karambelkar, Narendra P; Guru Row, T. N.

    2008-01-01

    In the title compound, C12H12O5, mol­ecules are linked into anti­parallel hydrogen-bonded sheets through inversion dimers generated via two O—H⋯O hydrogen bonds. Using the R 2 2(8) motif as a building block, hydrogen-bonded chains of a C 2 2(8) superstructure are then generated. PMID:21581357

  20. Intracellular accumulation dynamics and fate of zinc ions in alveolar epithelial cells exposed to airborne ZnO nanoparticles at the air–liquid interface

    DOE PAGES

    Mihai, Cosmin; Chrisler, William B.; Xie, Yumei; ...

    2013-12-02

    Airborne nanoparticles (NPs) that enter the respiratory tract are likely to reach the alveolar region. Accumulating observations support a role for zinc oxide (ZnO) NP dissolution in toxicity, but the majority of in vitro studies were conducted in cells exposed to NPs in growth media, where large doses of dissolved ions are shed into the exposure solution. To determine the precise intracellular accumulation dynamics and fate of zinc ions (Zn 2+) shed by airborne NPs in the cellular environment, we exposed alveolar epithelial cells to aerosolized NPs at the air-liquid interface (ALI). Using a fluorescent indicator for Zn 2+, togethermore » with organelle-specific fluorescent proteins, we quantified Zn 2+ in single cells and organelles over time. We found that at the ALI, intracellular Zn 2+ values peaked 3 h post exposure and decayed to normal values by 12 h, while in submersed cultures, intracellular Zn 2+ values continued to increase over time. The lowest toxic NP dose at the ALI generated peak intracellular Zn 2+ values that were nearly 3 folds lower than the peak values generated by the lowest toxic dose of NPs in submersed cultures, and 8 folds lower than the peak values generated by the lowest toxic dose of ZnSO4 or Zn 2+. At the ALI, the majority of intracellular Zn 2+ was found in endosomes and lysosomes as early as 1 h post exposure. In contrast, the majority of intracellular Zn 2+ following exposures to ZnSO 4 was found in other larger vesicles, with less than 10% in endosomes and lysosomes. In conclusion, together, our observations indicate that low but critical levels of intracellular Zn 2+ have to be reached, concentrated specifically in endosomes and lysosomes, for toxicity to occur, and point to the focal dissolution of the NPs in the cellular environment and the accumulation of the ions specifically in endosomes and lysosomes as the processes underlying the potent toxicity of airborne ZnO NPs.« less

  1. Intracellular accumulation dynamics and fate of zinc ions in alveolar epithelial cells exposed to airborne ZnO nanoparticles at the air–liquid interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihai, Cosmin; Chrisler, William B.; Xie, Yumei

    Airborne nanoparticles (NPs) that enter the respiratory tract are likely to reach the alveolar region. Accumulating observations support a role for zinc oxide (ZnO) NP dissolution in toxicity, but the majority of in vitro studies were conducted in cells exposed to NPs in growth media, where large doses of dissolved ions are shed into the exposure solution. To determine the precise intracellular accumulation dynamics and fate of zinc ions (Zn 2+) shed by airborne NPs in the cellular environment, we exposed alveolar epithelial cells to aerosolized NPs at the air-liquid interface (ALI). Using a fluorescent indicator for Zn 2+, togethermore » with organelle-specific fluorescent proteins, we quantified Zn 2+ in single cells and organelles over time. We found that at the ALI, intracellular Zn 2+ values peaked 3 h post exposure and decayed to normal values by 12 h, while in submersed cultures, intracellular Zn 2+ values continued to increase over time. The lowest toxic NP dose at the ALI generated peak intracellular Zn 2+ values that were nearly 3 folds lower than the peak values generated by the lowest toxic dose of NPs in submersed cultures, and 8 folds lower than the peak values generated by the lowest toxic dose of ZnSO4 or Zn 2+. At the ALI, the majority of intracellular Zn 2+ was found in endosomes and lysosomes as early as 1 h post exposure. In contrast, the majority of intracellular Zn 2+ following exposures to ZnSO 4 was found in other larger vesicles, with less than 10% in endosomes and lysosomes. In conclusion, together, our observations indicate that low but critical levels of intracellular Zn 2+ have to be reached, concentrated specifically in endosomes and lysosomes, for toxicity to occur, and point to the focal dissolution of the NPs in the cellular environment and the accumulation of the ions specifically in endosomes and lysosomes as the processes underlying the potent toxicity of airborne ZnO NPs.« less

  2. Intracellular accumulation dynamics and fate of zinc ions in alveolar epithelial cells exposed to airborne ZnO nanoparticles at the air–liquid interface

    PubMed Central

    Mihai, Cosmin; Chrisler, William B.; Xie, Yumei; Hu, Dehong; Szymanski, Craig J.; Tolic, Ana; Klein, Jessica A.; Smith, Jordan N.; Tarasevich, Barbara J.; Orr, Galya

    2015-01-01

    Airborne nanoparticles (NPs) that enter the respiratory tract are likely to reach the alveolar region. Accumulating observations support a role for zinc oxide (ZnO) NP dissolution in toxicity, but the majority of in-vitro studies were conducted in cells exposed to NPs in growth media, where large doses of dissolved ions are shed into the exposure solution. To determine the precise intracellular accumulation dynamics and fate of zinc ions (Zn2+) shed by airborne NPs in the cellular environment, we exposed alveolar epithelial cells to aerosolized NPs at the air–liquid interface (ALI). Using a fluorescent indicator for Zn2+, together with organelle-specific fluorescent proteins, we quantified Zn2+ in single cells and organelles over time. We found that at the ALI, intracellular Zn2+ values peaked 3 h post exposure and decayed to normal values by 12 h, while in submerged cultures, intracellular Zn2+ values continued to increase over time. The lowest toxic NP dose at the ALI generated peak intracellular Zn2+ values that were nearly three-folds lower than the peak values generated by the lowest toxic dose of NPs in submerged cultures, and eight-folds lower than the peak values generated by the lowest toxic dose of ZnSO4 or Zn2+. At the ALI, the majority of intracellular Zn2+ was found in endosomes and lysosomes as early as 1 h post exposure. In contrast, the majority of intracellular Zn2+ following exposures to ZnSO4 was found in other larger vesicles, with less than 10% in endosomes and lysosomes. Together, our observations indicate that low but critical levels of intracellular Zn2+ have to be reached, concentrated specifically in endosomes and lysosomes, for toxicity to occur, and point to the focal dissolution of the NPs in the cellular environment and the accumulation of the ions specifically in endosomes and lysosomes as the processes underlying the potent toxicity of airborne ZnO NPs. PMID:24289294

  3. Intracellular accumulation dynamics and fate of zinc ions in alveolar epithelial cells exposed to airborne ZnO nanoparticles at the air-liquid interface.

    PubMed

    Mihai, Cosmin; Chrisler, William B; Xie, Yumei; Hu, Dehong; Szymanski, Craig J; Tolic, Ana; Klein, Jessica A; Smith, Jordan N; Tarasevich, Barbara J; Orr, Galya

    2015-02-01

    Airborne nanoparticles (NPs) that enter the respiratory tract are likely to reach the alveolar region. Accumulating observations support a role for zinc oxide (ZnO) NP dissolution in toxicity, but the majority of in-vitro studies were conducted in cells exposed to NPs in growth media, where large doses of dissolved ions are shed into the exposure solution. To determine the precise intracellular accumulation dynamics and fate of zinc ions (Zn(2+)) shed by airborne NPs in the cellular environment, we exposed alveolar epithelial cells to aerosolized NPs at the air-liquid interface (ALI). Using a fluorescent indicator for Zn(2+), together with organelle-specific fluorescent proteins, we quantified Zn(2+) in single cells and organelles over time. We found that at the ALI, intracellular Zn(2+) values peaked 3 h post exposure and decayed to normal values by 12 h, while in submerged cultures, intracellular Zn(2+) values continued to increase over time. The lowest toxic NP dose at the ALI generated peak intracellular Zn(2+) values that were nearly three-folds lower than the peak values generated by the lowest toxic dose of NPs in submerged cultures, and eight-folds lower than the peak values generated by the lowest toxic dose of ZnSO4 or Zn(2+). At the ALI, the majority of intracellular Zn(2+) was found in endosomes and lysosomes as early as 1 h post exposure. In contrast, the majority of intracellular Zn(2+) following exposures to ZnSO4 was found in other larger vesicles, with less than 10% in endosomes and lysosomes. Together, our observations indicate that low but critical levels of intracellular Zn(2+) have to be reached, concentrated specifically in endosomes and lysosomes, for toxicity to occur, and point to the focal dissolution of the NPs in the cellular environment and the accumulation of the ions specifically in endosomes and lysosomes as the processes underlying the potent toxicity of airborne ZnO NPs.

  4. Methane-methanol cycle for the thermochemical production of hydrogen

    DOEpatents

    Dreyfuss, Robert M.; Hickman, Robert G.

    1976-01-01

    A thermochemical reaction cycle for the generation of hydrogen from water comprising the following sequence of reactions wherein M represents a metal: CH.sub.4 + H.sub.2 O .fwdarw. CO + 3H.sub.2 (1) co + 2h.sub.2 .fwdarw. ch.sub.3 oh (2) ch.sub.3 oh + so.sub.2 + mo .fwdarw. mso.sub.4 + ch.sub.4 (3) mso.sub.4 .fwdarw. mo + so.sub.2 + 1/2o.sub.2 (4) the net reaction is the decomposition of water into hydrogen and oxygen.

  5. [Economical benefit of continuous total intravenous anesthesia].

    PubMed

    Onaka, M; Yamamoto, H; Akatsuka, M; Mori, H

    1999-05-01

    Total intravenous anesthesia (TIVA) has been recommended in view of avoiding air pollution. However, intermittent administration of anesthetic agents has a large disadvantage of delayed emergence. We reported that continuous TIVA with propofol, ketamine, vecuronium and buprenorphine (PKBp) could bring rapid emergence. In this study, we calculated and compared the cost of anesthesia in the subjects who had undergone general anesthesia either with continuous PKBp or nitrous oxide-oxygen-sevoflurane. In group PKBp subjects, after induction with propofol, ketamine, vecuronium and buprenorphine, anesthesia was maintained with continuous intravenous administration of propofol corresponding to the patient's age using twice step down method; ketamine (240 micrograms.kg-1.h-1), vecuronium (80 micrograms.kg-1.h-1) and buprenorphine (0.4 microgram.kg-1.h-1). Group GOS subjects, after the same induction method, received nitrous oxide, sevoflurane and vecuronium. Moreover, the group GOS subjects were divided to two groups; the high flow GOS (N2O:O2:sevoflurane = 4 l:2 l:30 ml) and the low flow GOS (N2O:O2:sevoflurane = 2 l:1 l:15 ml). Continuous PKBp group showed lower cost than the high flow GOS group. The PKBp group showed lower cost than the low flow GOS group except in patients weighing more than 100 kg. Furthermore, we calculated the cost of continuous PKBp anesthesia in Japan, U.S.A. and U.K. The U.S.A. cost of PKBp was higher than the Japanese and the U.K., because the cost of ketamine in U.S.A. is higher than in the other countries. Continuous PKBp is more economical than the high flow GOS, and continuous PKBp in Japan is more economical than in U.S.A.

  6. Glucose-Responsive Sequential Generation of Hydrogen Peroxide and Nitric Oxide for Synergistic Cancer Starving-Like/Gas Therapy.

    PubMed

    Fan, Wenpei; Lu, Nan; Huang, Peng; Liu, Yi; Yang, Zhen; Wang, Sheng; Yu, Guocan; Liu, Yijing; Hu, Junkai; He, Qianjun; Qu, Junle; Wang, Tianfu; Chen, Xiaoyuan

    2017-01-24

    Glucose is a key energy supplier and nutrient for tumor growth. Herein, inspired by the glucose oxidase (GOx)-assisted conversion of glucose into gluconic acid and toxic H 2 O 2 , a novel treatment paradigm of starving-like therapy is developed for significant tumor-killing effects, more effective than conventional starving therapy by only cutting off the energy supply. Furthermore, the generated acidic H 2 O 2 can oxidize l-Arginine (l-Arg) into NO for enhanced gas therapy. By using hollow mesoporous organosilica nanoparticle (HMON) as a biocompatible/biodegradable nanocarrier for the co-delivery of GOx and l-Arg, a novel glucose-responsive nanomedicine (l-Arg-HMON-GOx) has been for the first time constructed for synergistic cancer starving-like/gas therapy without the need of external excitation, which yields a remarkable H 2 O 2 -NO cooperative anticancer effect with minimal adverse effect. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Structurally characterized 1,1,3,3-tetramethylguanidine solvated magnesium aryloxide complexes: [Mg(mu-OEt)(DBP)(H-TMG)]2, [Mg(mu-OBc)(DBP)(H-TMG)]2, [Mg(mu-TMBA)(DBP)(H-TMG)]2, [Mg(mu-DPP)(DBP)(H-TMG)]2, [Mg(BMP)2(H-TMG)2], [Mg(O-2,6-Ph2C6H3)2 (H-TMG)2].

    PubMed

    Monegan, Jessie D; Bunge, Scott D

    2009-04-06

    The synthesis and structural characterization of several 1,1,3,3-tetramethylguanidine (H-TMG) solvated magnesium aryloxide complexes are reported. Bu(2)Mg was successfully reacted with H-TMG, HOC(6)H(3)(CMe(3))(2)-2,6 (H-DBP), and either ethanol, a carboxylic acid, or diphenyl phosphate in a 1:1 ratio to yield the corresponding [Mg(mu-L)(DBP)(H-TMG)](2) where L = OCH(2)CH(3) (OEt, 1), O(2)CC(CH(3))(3) (OBc, 2), O(2)C(C(6)H(2)-2,4,6-(CH(3))(3)) (TMBA, 3), or O(2)P(OC(6)H(5))(2) (DPP, 4). Bu(2)Mg was also reacted with two equivalents of H-TMG and HOC(6)H(3)(CMe(3))-2-(CH(3))-6 (BMP) or HO-2,6-Ph(2)C(6)H(3) to yield [Mg(BMP)(2)(H-TMG)(2)] (5) and [Mg(O-2,6-Ph(2)C(6)H(3))(2)(H-TMG)(2)] (6). Compounds 1-6 were characterized by single-crystal X-ray diffraction. Polymerization of l- and rac-lactide with 1 was found to generate polylactide (PLA). A discussion concerning the relevance of compounds 2 - 4 to the structure of Mg-activated phosphatase enzymes is also provided. The bulk powders for all complexes were found to be in agreement with the crystal structures based on elemental analyses, FT-IR spectroscopy, and (1)H, (13)C and (31)P NMR studies.

  8. Series of mixed uranyl-lanthanide (Ce, Nd) organic coordination polymers with aromatic polycarboxylates linkers.

    PubMed

    Mihalcea, Ionut; Volkringer, Christophe; Henry, Natacha; Loiseau, Thierry

    2012-09-17

    Three series of mixed uranyl-lanthanide (Ce or Nd) carboxylate coordination polymers have been successfully synthesized by means of a hydrothermal route using either conventional or microwave heating methods. These compounds have been prepared from mixtures of uranyl nitrate, lanthanide nitrate together with phthalic acid (1,2), pyromellitic acid (3,4), or mellitic acid (5,6) in aqueous solution. The X-ray diffraction (XRD) single-crystal revealed that the phthalate complex (UO(2))(4)O(2)Ln(H(2)O)(7)(1,2-bdc)(4)·NH(4)·xH(2)O (Ln = Ce(1), Nd(2); x = 1 for 1, x = 0 for 2), is based on the connection of tetranuclear uranyl-centered building blocks linked to discrete monomeric units LnO(2)(H(2)O)(7) via the organic species to generate infinite chains, intercalated by free ammonium cations. The pyromellitate phase (UO(2))(3)Ln(2)(H(2)O)(12)(btec)(3)·5H(2)O (Ce(3), Nd(4)) contains layers of monomeric uranyl-centered hexagonal and pentagonal bipyramids linked via the carboxylate arms of the organic molecules. The three-dimensionality of the structure is ensured by the connection of remaining free carboxylate groups with isolated monomeric units LnO(2)(H(2)O)(7). The network of the third series (UO(2))(2)(OH)Ln(H(2)O)(7)(mel)·5H(2)O (Ce(5), Nd(6)) is built up from dinuclear uranyl units forming layers through connection with the mellitate ligands, which are further linked to each other through discrete monomers LnO(3)(H(2)O)(6). The thermal decomposition of the various coordination complexes led to the formation of mixed uranium-lanthanide oxide, with the fluorite-type structure at 1500 °C (for 1, 2) or 1400 °C for 3-6. Expected U/Ln ratio from the crystal structures were observed for compounds 1-6.

  9. Shuttle APS propellant thermal conditioner study

    NASA Technical Reports Server (NTRS)

    Pearson, W. E.

    1971-01-01

    A study program was performed to allow selection of thermal conditioner assemblies for superheating O2 and H2 at supercritical pressures. The application was the auxiliary propulsion system (APS) for the space shuttle vehicle. The O2/H2 APS propellant feed system included propellant conditioners, of which the thermal conditioner assemblies were a part. Cryogens, pumped to pressures above critical, were directed to the thermal conditioner assembly included: (1) a gas generator assembly with ignition system and bipropellant valves, which burned superheated O2 and H2 at rich conditions; (2) a heat exchanger assembly for thermal conditioning of the cryogenic propellant; and (3) a dump nozzle for heat exchanger exhaust.

  10. 1-(2-Hy­droxy­eth­yl)-3-[(2-hy­droxy­eth­yl)amino]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione

    PubMed Central

    Xie, Zhi-Xiong; Zhao, Sheng-Yin

    2011-01-01

    There are four molecules in the asymmetric unit of the title compound, C16H17N3O4, in which the dihedral angles between the indole ring system and maleimide ring are 4.5 (3), 8.3 (3), 8.4 (2) and 10.4 (2)°. In the crystal, mol­ecules are linked by numerous N—H⋯O and O—H⋯O hydrogen bonds, generating a three-dimensional network. PMID:21754135

  11. Numerical Modelling and Simulation of Chemical Reactions in a Nano-Pulse Discharged Bubble for Water Treatment

    NASA Astrophysics Data System (ADS)

    He, Yuchen; Satoshi, Uehara; Hidemasa, Takana; Hideya, Nishiyama

    2016-09-01

    A zero-dimensional model to simulate a nano-pulse-discharged bubble in water was developed. The model consists of gas and liquid phases corresponding to the inside and outside of the bubble, respectively. The diffusions of chemical species from the gas to the liquid phase through the bubble interface was also investigated. The initial gas is Ar, but includes a little H2O and O2 in the bubble. The time evolution of the OH concentration in the liquid phase was mainly investigated as an important species for water treatment. It was shown that OH was generated in the bubble and then diffused into the liquid. With the application of a continuous nano-pulse discharge, more OH radicals were generated as the frequency increased at a low voltage for a given power consumption. supported partially by Japan Society for the Promotion of Science (JSPS) KAKENHI (No. 26249015)

  12. Army Generating Force Census Utilization. FY2008 Summer Study

    DTIC Science & Technology

    2009-10-01

    TD 󈧻 -a ^ 01 3 3" 𔃽 3 QJ <j IH b rj •3 re .£ > OJ re a re (— ft- c g...73 £ rn H QJ -3 QJ J3 co Ŗ •*•’ ro 3 •_ .a - Si «o 2 g.| S c x > 2 2 O £ Q. QJ .£ o X ft- 3 TD O 3 co re QJ IH X T3 >H...co to 󈧻 — _>» TD c 5 < CO 75 CD .2 II CO o n LJ- LL U O • c CD E CD O) 03 c 03 CD o CL c

  13. Continuous field measurements of δD in water vapor by open-path Fourier transform infrared spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Liu, Wenqing; Zhang, Tianshu

    2012-12-01

    The stable isotopes in atmospheric water vapor contain rich information on the hydrologic cycles and gaseous exchange processes between biosphere and atmosphere. About one-week field experiment was conducted to continuously measure the isotope composition of water vapor in ambient air using an open-path FTIR system. Mixing ratios of H2 16O and HD16O were measured simultaneously. Analysis of water vapor isotopes revealed that the variations of H2 16O and HD16O were highly related. Mixing ratios of both isotopes varied considerably on a daily timescale or between days, with no obvious diurnal cycle, whereas the deuterium isotopic [delta]D showed clear diel cycle. The results illustrated that the correlation between [delta]D and H2O mixing ratio was relatively weak, which was also demonstrated by the Keeling plot analysis with the whole data. Yet the further Keeling analysis on a daily timescale displayed more obvious linear relationship between [delta]D and the total H2O concentration. All daily isotopic values of evapotranspiration source were obtained, with the range between -113.93±10.25‰ and -245.63±17.61‰ over the observation period.

  14. Dissection of the binding of hydrogen peroxide to trypsin using spectroscopic methods and molecular modeling

    NASA Astrophysics Data System (ADS)

    Song, Wei; Yu, Zehua; Hu, Xinxin; Liu, Rutao

    2015-02-01

    Studies on the effects of environmental pollutants to protein in vitro has become a global attention. Hydrogen peroxide (H2O2) is used as an effective food preservative and bleacher in industrial production. The toxicity of H2O2 to trypsin was investigated by multiple spectroscopic techniques and the molecular docking method at the molecular level. The intrinsic fluorescence of trypsin was proved to be quenched in a static process based on the results of fluorescence lifetime experiment. Hydrogen bonds interaction and van der Waals forces were the main force to generate the trypsin-H2O2 complex on account of the negative ΔH0 and ΔS0. The binding of H2O2 changed the conformational structures and internal microenvironment of trypsin illustrated by UV-vis absorption, fluorescence, synchronous fluorescence, three-dimensional (3D) fluorescence and circular dichroism (CD) results. However, the binding site was far away from the active site of trypsin and the trypsin activity was only slightly affected by H2O2, which was further explained by molecular docking investigations.

  15. Antibacterial mechanisms of a novel type picosecond laser-generated silver-titanium nanoparticles and their toxicity to human cells

    PubMed Central

    Korshed, Peri; Li, Lin; Liu, Zhu; Mironov, Aleksandr; Wang, Tao

    2018-01-01

    In this study, we explored the antibacterial mechanisms for a novel type of Ag-TiO2 compound nanoparticles (NPs) produced from an Ag-TiO2 alloy using a picosecond laser and evaluated the toxicity of the Ag-TiO2 NPs to a range of human cell types. Transmission electron microscopy was used to determine the morphology, shapes, and size distribution of the laser-generated Ag-TiO2 NPs. UV-visible spectrometer was used to confirm the shift of light absorbance of the NPs toward visible light wavelength. Results showed that the laser-generated Ag-TiO2 NPs had significant antibacterial activities against both Gram-negative and Gram-positive bacterial strains, including Escherichia coli, Pseudomonas aeruginosa, and the methicillin-resistant Staphylococcus aureus. Increased level of reactive oxygen species was produced by E. coli after exposure to the Ag-TiO2 NPs, which was accompanied with lipid peroxidation, glutathione depletion, disintegration of cell membrane and protein leakage, leading to the cell death. Five types of human cells originated from lung (A549), liver (HePG2), kidney (HEK293), endothelium cells (human coronary artery endothelial cells [hCAECs]), and skin (human dermal fibroblast cells [HDFc]) were used to evaluate the cytotoxicity of the laser-generated Ag-TiO2 NPs. A weak but statistically significant decrease in cell proliferation was observed for hCAECs, A549 and HDFc cells when co-cultured with 2.5 µg/mL or 20 µg/mL of the laser-generated Ag-TiO2 NPs for 48 hours. However, this effect was no longer apparent when a higher concentration of NPs (20 µg/mL) was used after 72 hours of co-culture with human cells, suggesting a possible adaptive process in the cells had occurred. We conclude that picosecond laser-generated Ag-TiO2 NPs have a broad spectrum of antibacterial effect, including against the drug-resistant strain, with multiple underlying molecular mechanisms and low human cell toxicity. The antimicrobial properties of the new type of picoseconds laser-generated Ag-TiO2 compound NPs could have potential biomedical applications. PMID:29317818

  16. Antibacterial mechanisms of a novel type picosecond laser-generated silver-titanium nanoparticles and their toxicity to human cells.

    PubMed

    Korshed, Peri; Li, Lin; Liu, Zhu; Mironov, Aleksandr; Wang, Tao

    2018-01-01

    In this study, we explored the antibacterial mechanisms for a novel type of Ag-TiO 2 compound nanoparticles (NPs) produced from an Ag-TiO 2 alloy using a picosecond laser and evaluated the toxicity of the Ag-TiO 2 NPs to a range of human cell types. Transmission electron microscopy was used to determine the morphology, shapes, and size distribution of the laser-generated Ag-TiO 2 NPs. UV-visible spectrometer was used to confirm the shift of light absorbance of the NPs toward visible light wavelength. Results showed that the laser-generated Ag-TiO 2 NPs had significant antibacterial activities against both Gram-negative and Gram-positive bacterial strains, including Escherichia coli, Pseudomonas aeruginosa , and the methicillin-resistant Staphylococcus aureus . Increased level of reactive oxygen species was produced by E. coli after exposure to the Ag-TiO 2 NPs, which was accompanied with lipid peroxidation, glutathione depletion, disintegration of cell membrane and protein leakage, leading to the cell death. Five types of human cells originated from lung (A549), liver (HePG2), kidney (HEK293), endothelium cells (human coronary artery endothelial cells [hCAECs]), and skin (human dermal fibroblast cells [HDFc]) were used to evaluate the cytotoxicity of the laser-generated Ag-TiO 2 NPs. A weak but statistically significant decrease in cell proliferation was observed for hCAECs, A549 and HDFc cells when co-cultured with 2.5 µg/mL or 20 µg/mL of the laser-generated Ag-TiO 2 NPs for 48 hours. However, this effect was no longer apparent when a higher concentration of NPs (20 µg/mL) was used after 72 hours of co-culture with human cells, suggesting a possible adaptive process in the cells had occurred. We conclude that picosecond laser-generated Ag-TiO 2 NPs have a broad spectrum of antibacterial effect, including against the drug-resistant strain, with multiple underlying molecular mechanisms and low human cell toxicity. The antimicrobial properties of the new type of picoseconds laser-generated Ag-TiO 2 compound NPs could have potential biomedical applications.

  17. Defining the chemical role of H2O in mantle melts: Effect of melt composition and H2O content on the activity of SiO2

    NASA Astrophysics Data System (ADS)

    Moore, G.; Roggensack, K.

    2007-12-01

    Quantifying the influence of volatiles (H2O, CO2) on the chemistry of mantle melts is a critical aspect of understanding the petrogenesis of arc magmas. A significant amount of experimental work done on the effect of H2O on the solidii of various mantle compositions, as well as on multiple saturation points of various primitive melts, has shown that H2O stabilizes olivine with respect to orthopyroxene. Or, in other words, at constant activity of SiO2, the presence of H2O decreases the activity coefficient of SiO2 in the melt, potentially leading to mantle melts that have suprisingly high SiO2 contents (Carmichael, 2002). Quantification and modelling of this behavior in hydrous silicate melts in equilibrium with the mantle have proven problematic, due mainly to a relatively small set of experiments that allow this type of thermodynamic analysis, and because of the experimental and analytical difficulties of dealing with hydrous high P-T samples (e.g. quench to a glass, rapid melt-solid reaction on quench, electron beam sensitivity of resulting glass, volatile content determination, etc). A further complication in the existing data includes co-variance of important experimental parameters (e.g. T and H2O content), making robust statistical regression analysis difficult and potentially misleading. We present here results of high P-T experiments conducted at a single pressure and temperature (1.0 GPa, 1200 deg C) that have the specific goal of quantifying the effect of H2O, as well as other melt components, on the activity coefficient of SiO2 in mantle melts. Using a "sandwich" type experiment, basaltic melts are saturated with an olivine plus orthopyroxene mineral assemblage with varying H2O and CO2 contents. The resulting samples have their bulk solid phase and glass compositions determined using EPMA, and the volatile content of the glass is determined by FTIR. The activity of SiO2 is then calculated using the olivine and orthopyroxene compositions. This value is then used, along with the mole fraction of SiO2 that is measured in the glass, to calculate an activity coefficient for SiO2 in that particular melt. The results show that for two starting compositions, H2O clearly has a strong negative effect on the activity coefficient of SiO2, consistent with some earlier intepretations. Further work is being conducted on differing starting compositions, as well as increasing the range of volatile contents, in order to better quantify their influence on this important chemical parameter of mantle melts. Ultimately, these experiments will help determine whether hydrous arc lavas, including high-Mg andesites, can be attributed to a primitive mantle origin, or whether other magmatic processes are necessary to generate their observed bulk compositions. It will also quantify the amount of H2O necessary to generate such magmas, giving insight into the potential H2O content present in the sub-arc mantle source regions, and allowing a more precise estimate of volatile fluxes in volcanic arc settings.

  18. Molecular adsorption properties of CO and H2O on Au-, Cu-, and AuxCuy-doped MoS2 monolayer

    NASA Astrophysics Data System (ADS)

    Kadioglu, Yelda; Gökoğlu, Gökhan; Üzengi Aktürk, Olcay

    2017-12-01

    In this study, we investigate the adsorption properties of Au, Cu, and AuxCuy nanoclusters on MoS2 sheet and the interactions of the adsorbed systems with CO and H2O molecules by using first principles calculations. Results indicate that Au, Cu, or AuxCuy strongly binds to MoS2 monolayer resulting in enhanced chemical activity and sensitivity toward CO and H2O molecules compared to bare MoS2 monolayer. Although both CO and H2O molecules bind weakly to pristine MoS2 monolayer, CO strongly binds to MoS2 sheet in the presence of Au, Cu atoms or AuxCuy clusters. Semiconductor MoS2 monolayer turns into metal upon Au or Cu adsorption. AuxCuy nanocluster adsorption decreases the band gap of MoS2 monolayer acting as a n-type dopant. AuxCuy-doped MoS2 systems have improved adsorption properties for CO and H2O molecules, so the conclusions provided in this study can be useful as a guide for next generation device modeling.

  19. Photodissociation dynamics of the simplest alkyl peroxy radicals, CH 3OO and C 2H 5OO, at 248 nm

    DOE PAGES

    Sullivan, Erin N.; Nichols, Bethan; Neumark, Daniel M.

    2018-01-28

    The photodissociation dynamics of the simplest alkyl peroxy radicals, methyl peroxy (CH 3OO) and ethyl peroxy C 2H 5OO , are investigated using fast beam photofragment translational spectroscopy. A fast beam of CH3OO- or C2H5OO- anions is photodetached to generate neutral radicals that are subsequently dissociated using 248 nm photons. The coincident detection of the photofragment positions and arrival times allows for the determination of mass, translational energy, and angular distributions for both two-body and three-body dissociation events. CH3OO exhibits repulsive O loss resulting in the formation of O(1D) + CH3O with high translational energy release. Minor two-body channels leadingmore » to OH + CH2O and CH3O + O(3P) formation are also detected. In addition, small amounts of H + O(3P) + CH2O are observed and attributed to O loss followed by CH3O dissociation. C2H5OO exhibits more complex dissociation dynamics, in which O loss and OH loss occur in roughly equivalent amounts with O(1D) formed as the dominant O atom electronic state via dissociation on a repulsive surface. Minor two-body channels leading to the formation of O2 + C2H5 and HO2 + C2H4 are also observed and attributed to a ground state dissociation pathway following internal conversion. Additionally, C2H5OO dissociation yields a three-body product channel, CH3 + O(3P) + CH2O, for which the proposed mechanism is repulsive O loss followed by the dissociation of C2H5O over a barrier. These results are compared to a recent study of tert-butyl peroxy (t-BuOO) in which 248 nm excitation results in three-body dissociatio n and ground state two-body dissociation but no O(1D) production.« less

  20. Photodissociation dynamics of the simplest alkyl peroxy radicals, CH 3OO and C 2H 5OO, at 248 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Erin N.; Nichols, Bethan; Neumark, Daniel M.

    The photodissociation dynamics of the simplest alkyl peroxy radicals, methyl peroxy (CH 3OO) and ethyl peroxy C 2H 5OO , are investigated using fast beam photofragment translational spectroscopy. A fast beam of CH3OO- or C2H5OO- anions is photodetached to generate neutral radicals that are subsequently dissociated using 248 nm photons. The coincident detection of the photofragment positions and arrival times allows for the determination of mass, translational energy, and angular distributions for both two-body and three-body dissociation events. CH3OO exhibits repulsive O loss resulting in the formation of O(1D) + CH3O with high translational energy release. Minor two-body channels leadingmore » to OH + CH2O and CH3O + O(3P) formation are also detected. In addition, small amounts of H + O(3P) + CH2O are observed and attributed to O loss followed by CH3O dissociation. C2H5OO exhibits more complex dissociation dynamics, in which O loss and OH loss occur in roughly equivalent amounts with O(1D) formed as the dominant O atom electronic state via dissociation on a repulsive surface. Minor two-body channels leading to the formation of O2 + C2H5 and HO2 + C2H4 are also observed and attributed to a ground state dissociation pathway following internal conversion. Additionally, C2H5OO dissociation yields a three-body product channel, CH3 + O(3P) + CH2O, for which the proposed mechanism is repulsive O loss followed by the dissociation of C2H5O over a barrier. These results are compared to a recent study of tert-butyl peroxy (t-BuOO) in which 248 nm excitation results in three-body dissociatio n and ground state two-body dissociation but no O(1D) production.« less

Top