Science.gov

Sample records for continuously stirred tank

  1. A cubic autocatalytic reaction in a continuous stirred tank reactor

    SciTech Connect

    Yakubu, Aisha Aliyu; Yatim, Yazariah Mohd

    2015-10-22

    In the present study, the dynamics of the cubic autocatalytic reaction model in a continuous stirred tank reactor with linear autocatalyst decay is studied. This model describes the behavior of two chemicals (reactant and autocatalyst) flowing into the tank reactor. The behavior of the model is studied analytically and numerically. The steady state solutions are obtained for two cases, i.e. with the presence of an autocatalyst and its absence in the inflow. In the case with an autocatalyst, the model has a stable steady state. While in the case without an autocatalyst, the model exhibits three steady states, where one of the steady state is stable, the second is a saddle point while the last is spiral node. The last steady state losses stability through Hopf bifurcation and the location is determined. The physical interpretations of the results are also presented.

  2. A cubic autocatalytic reaction in a continuous stirred tank reactor

    NASA Astrophysics Data System (ADS)

    Yakubu, Aisha Aliyu; Yatim, Yazariah Mohd

    2015-10-01

    In the present study, the dynamics of the cubic autocatalytic reaction model in a continuous stirred tank reactor with linear autocatalyst decay is studied. This model describes the behavior of two chemicals (reactant and autocatalyst) flowing into the tank reactor. The behavior of the model is studied analytically and numerically. The steady state solutions are obtained for two cases, i.e. with the presence of an autocatalyst and its absence in the inflow. In the case with an autocatalyst, the model has a stable steady state. While in the case without an autocatalyst, the model exhibits three steady states, where one of the steady state is stable, the second is a saddle point while the last is spiral node. The last steady state losses stability through Hopf bifurcation and the location is determined. The physical interpretations of the results are also presented.

  3. Bistability in an uncatalyzed bromate oscillator in a continuously fed stirred tank reactor

    NASA Astrophysics Data System (ADS)

    Dutt, Arun K.; Müller, S. C.

    1996-01-01

    Uncatalyzed gallic acid oscillating system has been investigated in a continuously fed stirred tank reactor (CSTR). In the [Bromate]0-[Bromide]0 concentration space, a region has been located where a bistability is observed between an oscillatory branch and a flow branch. To our knowledge this is the first evidence of bistability in an uncatalyzed bromate oscillator. Some observations have been explained in terms of the skeleton mechanism proposed in the past.

  4. Continuous production of diatom Entomoneis sp. in mechanically stirred tank and flat-panel airlift photobioreactors.

    PubMed

    Viriyayingsiri, Thunyaporn; Sittplangkoon, Pantaporn; Powtongsook, Sorawit; Nootong, Kasidit

    2016-10-02

    Continuous production of diatom Entomonies sp. was performed in mechanically stirred tank and flat-panel airlift photobioreactors (FPAP). The maximum specific growth rate of diatom from the batch experiment was 0.98 d(-1). A series of dilution rate and macronutrient concentration adjustments were performed in a stirred tank photobioreactor and found that the dilution rate ranged from 0.7 to 0.8 d(-1) and modified F/2 growth media containing nitrate at 3.09 mg N/L, phosphate at 2.24 mg P/L, and silicate at 11.91 mg Si/L yielded the maximum cell number density. Finally, the continuous cultivation of Entomonies sp. was conducted in FPAP using the optimal conditions determined earlier, resulting in the maximum cell number density of 19.69 × 10(4) cells/mL, which was approximately 47 and 73% increase from the result using the stirred tank photobioreactor fed with modified and standard F/2 growth media, respectively.

  5. Continuous-flow stirred-tank reactor 20-L demonstration test: Final report

    SciTech Connect

    Lee, D.D.; Collins, J.L.

    2000-02-01

    One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test using the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required.

  6. Dynamics of bromate oscillators with 1,4-cyclohexanedione in a continuously fed stirred tank reactor

    NASA Astrophysics Data System (ADS)

    Keresztúri, Klára; Szalai, István

    2006-09-01

    The dynamics of the bromate-1,4-cyclohexanedione reaction and its ferroin catalyzed version in a continuously fed stirred tank reactor are reported. In the ([Br -] 0, [H 2SO 4] 0) and ([Br -] 0, [ferroin] 0) planes steady-state bistability and oscillations are observed. Close to the upper [Br -] 0 limit of the oscillatory domain the oscillations become aperiodic. By increasing the [ferroin] 0 the characteristic of the oscillations switches from 'uncatalyzed' to 'catalyzed'-type. Additionally, the effects of the bromide ions and ferroin on the batch dynamics are investigated.

  7. Fluid dynamic analysis of a continuous stirred tank reactor for technical optimization of wastewater digestion.

    PubMed

    Hurtado, F J; Kaiser, A S; Zamora, B

    2015-03-15

    Continuous stirred tank reactors (CSTR) are widely used in wastewater treatment plants to reduce the organic matter and microorganism present in sludge by anaerobic digestion. The present study carries out a numerical analysis of the fluid dynamic behaviour of a CSTR in order to optimize the process energetically. The characterization of the sludge flow inside the digester tank, the residence time distribution and the active volume of the reactor under different criteria are determined. The effects of design and power of the mixing system on the active volume of the CSTR are analyzed. The numerical model is solved under non-steady conditions by examining the evolution of the flow during the stop and restart of the mixing system. An intermittent regime of the mixing system, which kept the active volume between 94% and 99%, is achieved. The results obtained can lead to the eventual energy optimization of the mixing system of the CSTR.

  8. Bio-hydrogen production from molasses by anaerobic fermentation in continuous stirred tank reactor

    NASA Astrophysics Data System (ADS)

    Han, Wei; Li, Yong-feng; Chen, Hong; Deng, Jie-xuan; Yang, Chuan-ping

    2010-11-01

    A study of bio-hydrogen production was performed in a continuous flow anaerobic fermentation reactor (with an available volume of 5.4 L). The continuous stirred tank reactor (CSTR) for bio-hydrogen production was operated under the organic loading rates (OLR) of 8-32 kg COD/m3 reactor/d (COD: chemical oxygen demand) with molasses as the substrate. The maximum hydrogen production yield of 8.19 L/d was obtained in the reactor with the OLR increased from 8 kg COD/m3 reactor/d to 24 kg COD/m3 d. However, the hydrogen production and volatile fatty acids (VFAs) drastically decreased at an OLR of 32 kg COD/m3 reactor/d. Ethanoi, acetic, butyric and propionic were the main liquid fermentation products with the percentages of 31%, 24%, 20% and 18%, which formed the mixed-type fermentation.

  9. Thermodynamics of open nonlinear systems far from equilibrium: The continuously stirred tank reactor

    NASA Astrophysics Data System (ADS)

    Yoshida, Nobuo

    1993-11-01

    A thermodynamic analysis is made of a continuously stirred tank reactor (CSTR) which is fed with ideal gases and in which arbitrary types of chemical reactions take place. For stationary states and oscillatory ones in which limit cycles are established, expressions are derived which describe the change of entropy of the reactor contents relative to the feed in terms of explicit quantities, including the rate of entropy production due to the chemical reactions. This entropy change is shown to be always greater than what would be observed in closed systems under comparable circumstances. It is pointed out that this statement is beyond what the second law of thermodynamics can predict. In previous articles, entropy and entropy production have been found to follow certain systematic trends in some specific models based on the CSTR. That work is compared with the present theory.

  10. Nonlinear versus Ordinary Adaptive Control of Continuous Stirred-Tank Reactor.

    PubMed

    Vojtesek, Jiri; Dostal, Petr

    2015-01-01

    Unfortunately, the major group of the systems in industry has nonlinear behavior and control of such processes with conventional control approaches with fixed parameters causes problems and suboptimal or unstable control results. An adaptive control is one way to how we can cope with nonlinearity of the system. This contribution compares classic adaptive control and its modification with Wiener system. This configuration divides nonlinear controller into the dynamic linear part and the static nonlinear part. The dynamic linear part is constructed with the use of polynomial synthesis together with the pole-placement method and the spectral factorization. The static nonlinear part uses static analysis of the controlled plant for introducing the mathematical nonlinear description of the relation between the controlled output and the change of the control input. Proposed controller is tested by the simulations on the mathematical model of the continuous stirred-tank reactor with cooling in the jacket as a typical nonlinear system.

  11. Biohydrogen production from waste bread in a continuous stirred tank reactor: A techno-economic analysis.

    PubMed

    Han, Wei; Hu, Yun Yi; Li, Shi Yi; Li, Fei Fei; Tang, Jun Hong

    2016-12-01

    Biohydrogen production from waste bread in a continuous stirred tank reactor (CSTR) was techno-economically assessed. The treating capacity of the H2-producing plant was assumed to be 2 ton waste bread per day with lifetime of 10years. Aspen Plus was used to simulate the mass and energy balance of the plant. The total capital investment (TCI), total annual production cost (TAPC) and annual revenue of the plant were USD931020, USD299746/year and USD639920/year, respectively. The unit hydrogen production cost was USD1.34/m(3) H2 (or USD14.89/kg H2). The payback period and net present value (NPV) of the plant were 4.8years and USD1266654, respectively. Hydrogen price and operators cost were the most important variables on the NPV. It was concluded that biohydrogen production from waste bread in the CSTR was feasible for practical application.

  12. Performance of continuous stirred tank reactor (CSTR) on fermentative biohydrogen production from melon waste

    NASA Astrophysics Data System (ADS)

    Cahyari, K.; Sarto; Syamsiah, S.; Prasetya, A.

    2016-11-01

    This research was meant to investigate performance of continuous stirred tank reactor (CSTR) as bioreactor for producing biohydrogen from melon waste through dark fermentation method. Melon waste are commonly generated from agricultural processing stages i.e. cultivation, post-harvesting, industrial processing, and transportation. It accounted for more than 50% of total harvested fruit. Feedstock of melon waste was fed regularly to CSTR according to organic loading rate at value 1.2 - 3.6 g VS/ (l.d). Optimum condition was achieved at OLR 2.4 g VS/ (l.d) with the highest total gas volume 196 ml STP. Implication of higher OLR value is reduction of total gas volume due to accumulation of acids (pH 4.0), and lower substrate volatile solid removal. In summary, application of this method might valorize melon waste and generates renewable energy sources.

  13. Nonlinear versus Ordinary Adaptive Control of Continuous Stirred-Tank Reactor

    PubMed Central

    Vojtesek, Jiri; Dostal, Petr

    2015-01-01

    Unfortunately, the major group of the systems in industry has nonlinear behavior and control of such processes with conventional control approaches with fixed parameters causes problems and suboptimal or unstable control results. An adaptive control is one way to how we can cope with nonlinearity of the system. This contribution compares classic adaptive control and its modification with Wiener system. This configuration divides nonlinear controller into the dynamic linear part and the static nonlinear part. The dynamic linear part is constructed with the use of polynomial synthesis together with the pole-placement method and the spectral factorization. The static nonlinear part uses static analysis of the controlled plant for introducing the mathematical nonlinear description of the relation between the controlled output and the change of the control input. Proposed controller is tested by the simulations on the mathematical model of the continuous stirred-tank reactor with cooling in the jacket as a typical nonlinear system. PMID:26346878

  14. CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production.

    PubMed

    Ding, Jie; Wang, Xu; Zhou, Xue-Fei; Ren, Nan-Qi; Guo, Wan-Qian

    2010-09-01

    There has been little work on the optimal configuration of biohydrogen production reactors. This paper describes three-dimensional computational fluid dynamics (CFD) simulations of gas-liquid flow in a laboratory-scale continuous stirred-tank reactor used for biohydrogen production. To evaluate the role of hydrodynamics in reactor design and optimize the reactor configuration, an optimized impeller design has been constructed and validated with CFD simulations of the normal and optimized impeller over a range of speeds and the numerical results were also validated by examination of residence time distribution. By integrating the CFD simulation with an ethanol-type fermentation process experiment, it was shown that impellers with different type and speed generated different flow patterns, and hence offered different efficiencies for biohydrogen production. The hydrodynamic behavior of the optimized impeller at speeds between 50 and 70 rev/min is most suited for economical biohydrogen production.

  15. Anaerobic digestion performance of vinegar residue in continuously stirred tank reactor.

    PubMed

    Li, Lin; Feng, Lu; Zhang, Ruihong; He, Yanfeng; Wang, Wen; Chen, Chang; Liu, Guangqing

    2015-06-01

    Anaerobic digestion (AD) of vinegar residue was investigated in continuously stirred tank reactor (CSTR). The influence of organic loading rate (OLR) and effluent recirculation on AD performance of vinegar residue was tested. Five OLRs, 1.0, 1.5, 2.0, 2.5, and 3.0 g(vs) L(-1) d(-1), were used. The highest volumetric methane productivity of 581.88 mL L(-1) was achieved at OLR of 2.5 g(vs) L(-1) d(-1). Effluent reflux ratio was set as 50%, the results showed that effluent recirculation could effectively neutralize the acidity of vinegar residue, raise the pH of the feedstock, and enhance the buffering capacity of the AD system. Anaerobic digestion of vinegar residue could be a promising way not only for converting this waste into gas energy but also alleviating environmental pollution which might be useful for future industrial application.

  16. Dynamics of the microbial community during continuous methane fermentation in continuously stirred tank reactors.

    PubMed

    Tang, Yue-Qin; Shigematsu, Toru; Morimura, Shigeru; Kida, Kenji

    2015-04-01

    Methane fermentation is an attractive technology for the treatment of organic wastes and wastewaters. However, the process is difficult to control, and treatment rates and digestion efficiency require further optimization. Understanding the microbiology mechanisms of methane fermentation is of fundamental importance to improving this process. In this review, we summarize the dynamics of microbial communities in methane fermentation chemostats that are operated using completely stirred tank reactors (CSTRs). Each chemostat was supplied with one substrate as the sole carbon source. The substrates include acetate, propionate, butyrate, long-chain fatty acids, glycerol, protein, glucose, and starch. These carbon sources are general substrates and intermediates of methane fermentation. The factors that affect the structure of the microbial community are discussed. The carbon source, the final product, and the operation conditions appear to be the main factors that affect methane fermentation and determine the structure of the microbial community. Understanding the structure of the microbial community during methane fermentation will guide the design and operation of practical wastewater treatments. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. High-performance recombinant protein production with Escherichia coli in continuously operated cascades of stirred-tank reactors.

    PubMed

    Schmideder, Andreas; Weuster-Botz, Dirk

    2017-03-01

    The microbial expression of intracellular, recombinant proteins in continuous bioprocesses suffers from low product concentrations. Hence, a process for the intracellular production of photoactivatable mCherry with Escherichia coli in a continuously operated cascade of two stirred-tank reactors was established to separate biomass formation (first reactor) and protein expression (second reactor) spatially. Cascades of miniaturized stirred-tank reactors were implemented, which enable the 24-fold parallel characterization of cascade processes and the direct scale-up of results to the liter scale. With PAmCherry concentrations of 1.15 g L(-1) cascades of stirred-tank reactors improved the process performance significantly compared to production processes in chemostats. In addition, an optimized fed-batch process was outperformed regarding space-time yield (149 mg L(-1) h(-1)). This study implicates continuous cascade processes to be a promising alternative to fed-batch processes for microbial protein production and demonstrates that miniaturized stirred-tank reactors can reduce the timeline and costs for cascade process characterization.

  18. Solubilization of Trace Metals from FGD Gypsum Using a Continuously Stirred Tank Reactor

    SciTech Connect

    Kairies, C.L.; Schroeder, K.T.; Thompson, R.L.; Cardone, C.R.; Rohar, P.C.

    2007-07-01

    A continuous, stirred-tank extractor (CSTX) is an effective technique for evaluating the leachability of contaminants from flue gas desulfurization (FGD) products and other materials with low permeability or cementitious properties and allows the chemistry of the leaching process to be studied at a level unachievable through more traditional batch and column techniques. In this study, metal release patterns were examined in detail over a range of pH values extending from the material’s natural, slightly alkaline pH to acidic pH conditions. Understanding the fundamental mechanisms operating during the leaching process provides a basis for evaluating the safety of FGD byproducts and ensuring these materials are used and disposed of appropriately. The results indicate that the leaching behavior of individual elements depends on several factors including, but not limited to, the solubility of the mineral phases present, sorption properties of the remaining phases, behavior of the solubilized material in the tank, the type of species in solution and the neutralization capacity of the minerals. Bulk gypsum is moderately soluble; dissolution is controlled by its solubility product and hydration reactions rather than pH. Elution and pH profiles indicate the presence of alkaline material(s) that buffer the system during the initial leaching. Iron and aluminum are not leached until the buffering capacity is exhausted. Any elements bound to these phases can be mobilized during this dissolution. Arsenic, lead and mercury are not released during the leaching of most samples and become concentrated in a minor, insoluble residue remaining at the end of each experiment

  19. [Research on change process of nitrosation granular sludge in continuous stirred-tank reactor].

    PubMed

    Yin, Fang-Fang; Liu, Wen-Ru; Wang, Jian-Fang; Wu, Peng; Shen, Yao-Liang

    2014-11-01

    In order to investigate the effect of different types of reactors on the nitrosation granular sludge, a continuous stirred-tank reactor (CSTR) was studied, using mature nitrosation granular sludge cultivated in sequencing batch reactor (SBR) as seed sludge. Results indicated that the change of reactor type and influent mode could induce part of granules to lose stability with gradual decrease in sludge settling ability during the initial period of operation. However, the flocs in CSTR achieved fast granulation in the following reactor operation. In spite of the changes of particle size distribution, e. g. the decreasing number of granules with diameter larger than 2.5 mm and the increasing number of granules with diameter smaller than 0.3 mm, granular sludge held the absolute predominance of sludge morphology in CSTR during the entire experimental period. Moreover, results showed that the change of reactor type and influent mode didn't affect the nitrite accumulation rate which was still kept at about 85% in effluent. Additionally, the average activity of the sludge in CSTR was stronger than that of the seed sludge, because the newly generated small particles in CSTR had higher specific reactive activity than the larger granules.

  20. Cassava Stillage Treatment by Thermophilic Anaerobic Continuously Stirred Tank Reactor (CSTR)

    NASA Astrophysics Data System (ADS)

    Luo, Gang; Xie, Li; Zou, Zhonghai; Zhou, Qi

    2010-11-01

    This paper assesses the performance of a thermophilic anaerobic Continuously Stirred Tank Reactor (CSTR) in the treatment of cassava stillage under various organic loading rates (OLRs) without suspended solids (SS) separation. The reactor was seeded with mesophilic anaerobic granular sludge, and the OLR increased by increments to 13.80 kg COD/m3/d (HRT 5d) over 80 days. Total COD removal efficiency remained stable at 90%, with biogas production at 18 L/d (60% methane). Increase in the OLR to 19.30 kg COD/m3/d (HRT 3d), however, led to a decrease in TCOD removal efficiency to 79% due to accumulation of suspended solids and incomplete degradation after shortened retention time. Reactor performance subsequently increased after OLR reduction. Alkalinity, VFA and pH levels were not significantly affected by OLR variation, indicating that no additional alkaline or pH adjustment is required. More than half of the SS in the cassava stillage could be digested in the process when HRT was 5 days, which demonstrated the suitability of anaerobic treatment of cassava stillage without SS separation.

  1. Quantifying the reactive uptake of OH by organic aerosols in a continuous flow stirred tank reactor.

    PubMed

    Che, Dung L; Smith, Jared D; Leone, Stephen R; Ahmed, Musahid; Wilson, Kevin R

    2009-09-28

    Here we report a new method for measuring the heterogeneous chemistry of sub-micron organic aerosol particles using a continuous flow stirred tank reactor. This approach is designed to quantify the real time heterogeneous kinetics, using a relative rate method, under conditions of low oxidant concentration and long reaction times that more closely mimic the real atmosphere than the conditions used in a typical flow tube reactor. A general analytical expression, which couples the aerosol chemistry with the flow dynamics in the chamber is developed and applied to the heterogeneous oxidation of squalane particles by hydroxyl radicals (OH) in the presence of O2. The particle phase reaction is monitored via photoionization aerosol mass spectrometry and yields a reactive uptake coefficient of 0.51+/-0.10, using OH concentrations of 1-7x10(8) molecule cm(-3) and reaction times of 1.5-3 h. In general, this approach provides a new way to connect the chemical aging of organic particles measured at short reaction times and high oxidant concentrations in flow tubes with the long reaction times and low oxidant conditions in smog chambers and the real atmosphere.

  2. Biodegradation of Fresh vs. Oven-Dried Inedible Crop Residue in a Continuously Stirred Tank Reactor

    NASA Technical Reports Server (NTRS)

    Crawford, Kamau; Strayer, Richard

    1998-01-01

    The degradation of soluble organics and mineral recovery from fresh and oven-dried biomass were compared in an Intermediate-Scale Aerobic Bioreactor (8 L working volume) to determine if drying crop residue improves performance in a continuously stirred tank reactor (CSTR). The study was conducted in an Intermediate-Scale Aerobic Bioreactor (ISAB) CSTR with dimensions of 390 mm height x 204 mm diameter. The pH in the bioreactor was controlled at 6.0, temperature at 30 C, and aeration at 7.0 L/min. Gases monitored were CO2 evolution and dissolved oxygen. Homogeneously mixed wheat cultures, used either fresh or oven-dried biomass and were leached, then placed in the ISAB for a 4-day degradation period. Studies found that mineral recovery was greater for leached oven-dried crop residue. However, after activity by the mixed microbial communities in the ISAB CSTR, there were little notable differences in the measured mineral recovery and degradation of soluble organic compounds. Degradation of soluble organic compounds was also shown to improve for leached oven-dried crop residue, but after mixing in the CSTR the degradation of the fresh biomass seemed to be slightly greater. Time for the biomass to turn in the CSTR appeared to be one factor for the experimental differences between the fresh and oven-dried biomass. Other factors, although not as defined, were the differing physical structures in the cell walls and varying microbial components of the fresh and oven-dried treatments due to changes in chemical composition after drying of the biomass.

  3. Biodegradation of Fresh vs. Oven-Dried Inedible Crop Residue in a Continuously Stirred Tank Reactor

    NASA Technical Reports Server (NTRS)

    Crawford, Kamau; Strayer, Richard

    1998-01-01

    The degradation of soluble organics and mineral recovery from fresh and oven-dried biomass were compared in an Intermediate-Scale Aerobic Bioreactor (8 L working volume) to determine if drying crop residue improves performance in a continuously stirred tank reactor (CSTR). The study was conducted in an Intermediate-Scale Aerobic Bioreactor (ISAB) CSTR with dimensions of 390 mm height x 204 mm diameter. The pH in the bioreactor was controlled at 6.0, temperature at 30 C, and aeration at 7.0 L/min. Gases monitored were CO2 evolution and dissolved oxygen. Homogeneously mixed wheat cultures, used either fresh or oven-dried biomass and were leached, then placed in the ISAB for a 4-day degradation period. Studies found that mineral recovery was greater for leached oven-dried crop residue. However, after activity by the mixed microbial communities in the ISAB CSTR, there were little notable differences in the measured mineral recovery and degradation of soluble organic compounds. Degradation of soluble organic compounds was also shown to improve for leached oven-dried crop residue, but after mixing in the CSTR the degradation of the fresh biomass seemed to be slightly greater. Time for the biomass to turn in the CSTR appeared to be one factor for the experimental differences between the fresh and oven-dried biomass. Other factors, although not as defined, were the differing physical structures in the cell walls and varying microbial components of the fresh and oven-dried treatments due to changes in chemical composition after drying of the biomass.

  4. The nonequilibrium electromotive force. I. Measurements in a continuously stirred tank reactor

    NASA Astrophysics Data System (ADS)

    Keizer, Joel; Chang, On-Kok

    1987-10-01

    Based on a statistical thermodynamic theory, it has been predicted [J. Keizer, J. Chem. Phys. 82, 2751 (1985)] that at nonequilibrium steady states the electromotive force (EMF) of an electrochemical cell will differ from the local equilibrium value given by the Nernst equation. We describe here experiments designed to test this prediction for aqueous solutions of Fe2+ and Fe3+ in sulfate buffer. Using a continuously stirred tank reactor driven by a peristaltic pump, a feed solution containing Fe2+ and Fe3+ was mixed with a second feed solution containing the oxidant sodium peroxydisulfate Na2S2O8. The reaction leads to a steady nonequilibrium mixture, which at acidic pH in sulfate buffer is composed of Fe2+ and the ferric sulfate complexes FeSO+4 and Fe(SO4)-2. The EMF of this half-cell was measured vs a saturated calomel reference electrode as a function of residence time in the reactor. These potentials were compared to the Nernst potential calculated on the basis of the concentration ratio of Fe2+ to total Fe3+ at the steady states. The Nernst potential was reproducibly larger than the measured EMF by values that depended on the concentration ratio of Fe2+/Fe3+ in the feed solution and the residence time. The largest deviations were -1.8 mV, which occurred when the Fe2+/Fe3+ ratio was small and the residence time was about 40 s. We have ruled out streaming potentials, junction potentials, and incomplete mixing as the origin of this effect. We show that the dependence of the nonequilibrium portion of the EMF on feed concentrations and residence time is in good agreement with calculations based on methods that are described in the second paper in this series.

  5. Extended continuous-flow stirred-tank reactor (ECSTR) as a simple model of life under thermodynamically open conditions

    NASA Astrophysics Data System (ADS)

    Takinoue, Masahiro; Ma, Yue; Mori, Yoshihito; Yoshikawa, Kenichi

    2009-07-01

    A continuous-flow stirred-tank reactor (CSTR) is a vital tool for investigating the nonlinear dynamics of chemical systems. This report proposes an extended CSTR (ECSTR) inspired by active and passive transports through a closed membrane in living systems. In addition to the externally-controlled flow in a conventional CSTR, we introduce passive diffusion through a membrane into the ECSTR. This extension allows us to control the chemical dynamics with a larger parameter-dimension. Numerical analyses show that the ECSTR can expand an oscillatory region in the parameter space and can convert a non-oscillatory chemical system to an oscillatory system.

  6. Stochastic resonance in the presence or absence of external signal in the continuous stirred tank reactor system

    NASA Astrophysics Data System (ADS)

    Hou, Zhonghuai; Xin, Houwen

    1999-07-01

    A two variable model, which has been proposed to describe a first-order, exothermic, irreversible reaction A→B carried out in a continuous stirred tank reactor (CSTR), is investigated when the control parameter is modulated by random and/or periodic forces. Within the bistable region where a limit cycle and a stable node coexist, stochastic resonance (SR) is observed when both random and periodic modulations are present. In the absence of periodic external signal noise induced coherent oscillations (NICO) appear when the control parameter is randomly modulated near the supercritical Hopf bifurcation point. In addition, the NICO-strength goes through a maximum with the increment of the noise intensity, characteristic for the occurrence of internal signal stochastic resonance (ISSR).

  7. Comparison between continuous stirred tank reactor extractor and soxhlet extractor for extraction of El-Lajjun oil shale

    SciTech Connect

    Anabtawi, M.Z.

    1996-02-01

    Extraction on El-Lajjun oil shale in a continuous stirred tank reactor extractor (CSTRE) and a Soxhlet extractor was carried out using toluene and chloroform as solvents. Solvents were recovered using two distillation stages, a simple distillation followed by a fractional distillation. Gas chromotography was used to test for the existence of trapped solvent in the yield. It was found that extraction using a CSTRE gave a 12% increase in yield on average compared with the Soxhlet extractor, and an optimum shale size of 1.0mm offered a better yield and solvent recovery for both techniques. It was also found that an optimum ratio of solvent to oil shale of 2:1 gave the best oil yield. The Soxhlet extractor was found to offer an extraction rate of 1 hour to complete extraction compared with 4 hours in a CSTRE. The yield in a CSTRE was found to increase on increase of stirring. When extraction was carried out at the boiling point of the solvents in a CSTRE, the yield was found to increase by 30% on average compared to that of extraction when the solvent was at room temperature. When toluene was used for extraction, the average amount of bitumen extracted was 0.032 g/g of oil shale and 76.4% of the solvent recovered, compared with 0.037 g/g of oil shale and 84.1% of the solvent recovered using a Soxhlet extractor.

  8. Production of biohythane from food waste via an integrated system of continuously stirred tank and anaerobic fixed bed reactors.

    PubMed

    Yeshanew, Martha M; Frunzo, Luigi; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni

    2016-11-01

    The continuous production of biohythane (mixture of biohydrogen and methane) from food waste using an integrated system of a continuously stirred tank reactor (CSTR) and anaerobic fixed bed reactor (AFBR) was carried out in this study. The system performance was evaluated for an operation period of 200days, by stepwise shortening the hydraulic retention time (HRT). An increasing trend of biohydrogen in the CSTR and methane production rate in the AFBR was observed regardless of the HRT shortening. The highest biohydrogen yield in the CSTR and methane yield in the AFBR were 115.2 (±5.3)L H2/kgVSadded and 334.7 (±18.6)L CH4/kgCODadded, respectively. The AFBR presented a stable operation and excellent performance, indicated by the increased methane production rate at each shortened HRT. Besides, recirculation of the AFBR effluent to the CSTR was effective in providing alkalinity, maintaining the pH in optimal ranges (5.0-5.3) for the hydrogen producing bacteria.

  9. Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents.

    PubMed

    Gargouri, Boutheina; Karray, Fatma; Mhiri, Najla; Aloui, Fathi; Sayadi, Sami

    2011-05-15

    A continuously stirred tank bioreactor (CSTR) was used to optimize feasible and reliable bioprocess system in order to treat hydrocarbon-rich industrial wastewaters. A successful bioremediation was developed by an efficient acclimatized microbial consortium. After an experimental period of 225 days, the process was shown to be highly efficient in decontaminating the wastewater. The performance of the bioaugmented reactor was demonstrated by the reduction of COD rates up to 95%. The residual total petroleum hydrocarbon (TPH) decreased from 320 mg TPH l(-1) to 8 mg TPH l(-1). Analysis using gas chromatography-mass spectrometry (GC-MS) identified 26 hydrocarbons. The use of the mixed cultures demonstrated high degradation performance for hydrocarbons range n-alkanes (C10-C35). Six microbial isolates from the CSTR were characterized and species identification was confirmed by sequencing the 16S rRNA genes. The partial 16S rRNA gene sequences demonstrated that 5 strains were closely related to Aeromonas punctata (Aeromonas caviae), Bacillus cereus, Ochrobactrum intermedium, Stenotrophomonas maltophilia and Rhodococcus sp. The 6th isolate was affiliated to genera Achromobacter. Besides, the treated wastewater could be considered as non toxic according to the phytotoxicity test since the germination index of Lepidium sativum ranged between 57 and 95%. The treatment provided satisfactory results and presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Biohydrogen and Bioethanol Production from Biodiesel-Based Glycerol by Enterobacter aerogenes in a Continuous Stir Tank Reactor.

    PubMed

    Jitrwung, Rujira; Yargeau, Viviane

    2015-05-11

    Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process from small batches performed in small bottles to a 3.6-L continuous stir tank reactor (CSTR). Fresh feed rate, liquid recycling, pH, mixing speed, glycerol concentration, and waste recycling were optimized for biohydrogen and bioethanol production. Results confirmed that E. aerogenes uses small amounts of oxygen under semi-anaerobic conditions for growth before using oxygen from decomposable salts, mainly NH4NO3, under anaerobic condition to produce hydrogen and ethanol. The optimal conditions were determined to be 500 rpm, pH 6.4, 18.5 g/L crude glycerol (15 g/L glycerol) and 33% liquid recycling for a fresh feed rate of 0.44 mL/min. Using these optimized conditions, the process ran at a lower media cost than previous studies, was stable after 7 days without further inoculation and resulted in yields of 0.86 mol H2/mol glycerol and 0.75 mol ethanol/mole glycerol.

  11. Efficient azo dye decolorization in a continuous stirred tank reactor (CSTR) with built-in bioelectrochemical system.

    PubMed

    Cui, Min-Hua; Cui, Dan; Gao, Lei; Cheng, Hao-Yi; Wang, Ai-Jie

    2016-10-01

    A continuous stirred tank reactor with built-in bioelectrochemical system (CSTR-BES) was developed for azo dye Alizarin Yellow R (AYR) containing wastewater treatment. The decolorization efficiency (DE) of the CSTR-BES was 97.04±0.06% for 7h with sludge concentration of 3000mg/L and initial AYR concentration of 100mg/L, which was superior to that of the sole CSTR mode (open circuit: 54.87±4.34%) and the sole BES mode (without sludge addition: 91.37±0.44%). The effects of sludge concentration and sodium acetate (NaAc) concentration on azo dye decolorization were investigated. The highest DE of CSTR-BES for 4h was 87.66±2.93% with sludge concentration of 12,000mg/L, NaAc concentration of 2000mg/L and initial AYR concentration of 100mg/L. The results in this study indicated that CSTR-BES could be a practical strategy for upgrading conventional anaerobic facilities against refractory wastewater treatment.

  12. Biohydrogen and Bioethanol Production from Biodiesel-Based Glycerol by Enterobacter aerogenes in a Continuous Stir Tank Reactor

    PubMed Central

    Jitrwung, Rujira; Yargeau, Viviane

    2015-01-01

    Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process from small batches performed in small bottles to a 3.6-L continuous stir tank reactor (CSTR). Fresh feed rate, liquid recycling, pH, mixing speed, glycerol concentration, and waste recycling were optimized for biohydrogen and bioethanol production. Results confirmed that E. aerogenes uses small amounts of oxygen under semi-anaerobic conditions for growth before using oxygen from decomposable salts, mainly NH4NO3, under anaerobic condition to produce hydrogen and ethanol. The optimal conditions were determined to be 500 rpm, pH 6.4, 18.5 g/L crude glycerol (15 g/L glycerol) and 33% liquid recycling for a fresh feed rate of 0.44 mL/min. Using these optimized conditions, the process ran at a lower media cost than previous studies, was stable after 7 days without further inoculation and resulted in yields of 0.86 mol H2/mol glycerol and 0.75 mol ethanol/mole glycerol. PMID:25970750

  13. Reuse of drinking water treatment residuals in a continuous stirred tank reactor for phosphate removal from urban wastewater.

    PubMed

    Bai, Leilei; Wang, Changhui; Pei, Yuansheng; Zhao, Jinbo

    2014-01-01

    This work proposed a new approach of reusing drinking water treatment residuals (WTR) in a continuous stirred tank reactor (CSTR) to remove phosphate (P) from urban wastewater. The results revealed that the P removal efficiency of the WTR was more than 94% for urban wastewater, in the condition of initial P concentration (P0) of 10 mg L⁻¹, hydraulic retention time (HRT) of 2 h and WTR dosage (M0) of 10 g L⁻¹. The P mass transfer from the bulk to the solid-liquid interface in the CSTR system increased at lower P0, higher M0 and longer HRT. The P adsorption capacity of WTR from urban wastewater was comparable to that of the 201 × 4 resin and unaffected by ions competition. Moreover, WTR had a limited effect on the metals' (Fe, Al, Zn, Cu, Mn and Ni) concentrations of the urban wastewater. Based on the principle of waste recycling, the reuse of WTR in CSTR is a promising alternative technology for P removal from urban wastewater.

  14. Continuous stirred-tank-reactor investigation of the gas-phase reaction of hydroxyl radicals and toluene

    SciTech Connect

    Gery, M.W.; Fox, D.L.; Jeffries, H.E.; Stockburger, L.; Weathers, W.S.

    1985-01-01

    A continuous stirred-tank reactor (CSTR) was used to study the gas-phase reaction between HO and toluene. HO was generated by the in situ photolysis of nitrous acid. Flow-reactor operation at steady-state conditions with a residence time of 20 minutes allowed investigation of primary and very rapid secondary reactions. CSTR and batch-reactor experiments were also performed with selected products. Both gas-phase and aerosol products were identified by chromatography and mass spectroscopy, with total product yields between 55 and 75% of reacted carbon. Toluene reaction products included cresols, nitrocresols, nitrotoluenes, 3,5-dinitrotoluene, benzaldehyde, benzyl nitrate, nitrophenols, methyl-p-benzoquinone, methylglyoxal, glyoxal, formaldehyde, methyl nitrate, PAN, and CO. The fraction of HO methyl hydrogen abstraction was calculated to be 0.13 + or - 0.04. The ratio of reaction rate constants for nitrotoluene versus cresol formation from the HO adduct was calculated to be about 3.3 x 10,000. Also, the ratio of cresol formation versus O2 addition to the HO adduct was estimated to be > or = 0.55. Comparisons of these measurements with previous values and the implications with respect to photochemical kinetics modeling of the atmosphere are discussed.

  15. Effect of Hydraulic Retention Time on Anaerobic Digestion of Wheat Straw in the Semicontinuous Continuous Stirred-Tank Reactors

    PubMed Central

    Shi, Xiao-Shuang; Yu, Jun-Hong; Yin, Hua; Hu, Shu-Min; Huang, Shu-Xia

    2017-01-01

    Three semicontinuous continuous stirred-tank reactors (CSTR) operating at mesophilic conditions (35°C) were used to investigate the effect of hydraulic retention time (HRT) on anaerobic digestion of wheat straw. The results showed that the average biogas production with HRT of 20, 40, and 60 days was 46.8, 79.9, and 89.1 mL/g total solid as well as 55.2, 94.3, and 105.2 mL/g volatile solids, respectively. The methane content with HRT of 20 days, from 14.2% to 28.5%, was the lowest among the three reactors. The pH values with HRT of 40 and 60 days were in the acceptable range compared to that with HRT of 20 days. The propionate was dominant in the reactor with HRT of 20 days, inhibiting the activities of methanogens and causing the lower methane content in biogas. The degradation of cellulose, hemicellulose, and crystalline cellulose based on XRD was also strongly influenced by HRTs. PMID:28589134

  16. Entropy production in a chemical system involving an autocatalytic reaction in an isothermal, continuous stirred tank reactor

    NASA Astrophysics Data System (ADS)

    Yoshida, Nobuo

    1990-02-01

    The rate of entropy production due to chemical reaction is calculated for various combinations of parameter values in the cubic autocatalator model in an isothermal, continuous stirred tank reactor (CSTR) proposed by Gray and Scott and by Escher and Ross. Values of the entropy production averaged over periods of limit cycle oscillations are compared with those in coexistent unstable stationary states. It is found that in ranges of the residence time over which there are limit cycles, the entropy production in coexisting stationary states increases as the residence time is shortened, i.e., as the system is removed farther from thermodynamic equilibrium. The average entropy production over a limit cycle is less than that in the corresponding stationary state over wide ranges of parameter values, but not necessarily for the whole oscillatory region. More specifically, the former inequality always prevails in ranges where the entropy production of stationary states is larger, i.e., the residence time is shorter, but in some cases the inequality is reversed in ranges of lower magnitudes of the entropy production.

  17. Quantifying the Reactive Uptake of OH by Organic Aerosols in aContinuous Flow Stirred Tank Reactor

    SciTech Connect

    Che, Dung L.; Smith, Jared D.; Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.

    2009-03-01

    Here we report a new method for measuring the heterogeneous chemistry of submicron organic aerosol particles using a continuous flow stirred tank reactor. This approach is designed to quantify the real time heterogeneous kinetics, using a relative rate method, under conditions of low oxidant concentration and long reaction times that more closely mimic the real atmosphere. A general analytical expression, which couples the aerosol chemistry with the flow dynamics in the chamber is developed and applied to the heterogeneous oxidation of squalane particles by hydroxyl radicals (OH) in the presence of O2. The particle phase reaction is monitored via photoionization aerosol mass spectrometry and yields a reactive uptake coefficient of 0.51+-0.10, using OH concentrations of 1-7x108 molec cdot cm-3 and reaction times of 1.5+-3 hours. This uptake coefficient is larger than that found for the reaction carried out under high OH concentrations (~;;1x1010 molec cdot cm-3) and short reaction times in a flow tube reactor. This difference suggests that oxidant concentration and reaction time are not interchangeable quantities in reactions of organic aerosols with radicals. In general, this approach provides a new way to examine how the chemical aging of organic particles measured at short reaction times and high oxidant concentrations in flow tubes might differ from the long reaction times and low oxidant levels found in the real atmosphere.

  18. Operational strategies for thermophilic anaerobic digestion of organic fraction of municipal solid waste in continuously stirred tank reactors.

    PubMed

    Angelidaki, I; Cui, J; Chen, X; Kaparaju, P

    2006-08-01

    Three operational strategies to reduce inhibition due to ammonia during thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste (SS-OFMSW) rich in proteins were investigated. Feed was prepared by diluting SS-OFMSW (ratio of 1:4) with tap water or reactor process water with or without stripping ammonia. Three continuously stirred tank reactors were operated at 55 degrees C with 11.4 gVS d(-1) loading rate and 15 d retention time. Total ammonia nitrogen (TAN) level in the reactor fed with recirculated water alone was spiked to 3.5 and 5.5 g-N l(-1) through ammonium bicarbonate additions. Dilution of SS-OFMSW with fresh water showed a stable performance with volatile fatty acids of < 1g l(-1) and methane yield of 0.40 m3 kg(-1) volatile solids (VS). Use of recirculated process water after stripping ammonia showed even better performance with a methane yield of 0.43 m3 kg(-1) VS. Recirculation of process water alone on the other hand, resulted in process inhibition at both TAN levels of 3.5 and 5.5 g-N l(-1). However, after a short period, the process recovered and adapted to the tested TAN levels. Thus, use of recirculated process water after stripping ammonia would not only evade potential inhibition due to ammonia but could avoid the use of fresh water for dilution of high solids protein-rich SS-OFMSW.

  19. Stabilization of unstable steady states of a continuous stirred tank bioreactor with predator-prey kinetics.

    PubMed

    Tabiś, Bolesław; Skoneczny, Szymon

    2013-07-20

    Nonlinear properties of a bioreactor with a developed microbiological predator-prey food chain are discussed. The presence of the predator microorganism completely changes the position and stability of the stationary states. A wide range of unstable steady states appears, associated with high amplitude oscillations of the state variables. Without automatic control such a system can only operate in transient states, with the yield undergoing periodic changes following the dynamics of the stable limit cycle. Technologically, this is undesirable. It has been shown that the oscillations can be removed by employing continuous P or PI controllers. Moreover, with a PI-controller, the predator can be eliminated from the system. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. A Mathematical model for ethanol production by extractive fermentation in a continuous stirred tank fermentor.

    PubMed

    Kollerup, F; Daugulis, A J

    1985-09-01

    Extractive fermentation is a technique that can be used to reduce the effect of end product inhibition through the use of a water-immiscible phase that removes fermentation products in situ. This has the beneficial effect of not only removing inhibitory products as they are formed (thus keeping reaction rates high) but also has the potential for reducing product recovery costs. We have chosen to examine the ethanol fermentation as a model system for end product inhibition and extractive fermentation and have developed a computer model predicting the productivity enhancement possible with this technique together with other key parameters such as extraction efficiency and residual glucose concentration. The model accommodates variable liquid flowrates entering and leaving the system, since it was found that the aqueous outlet flowrate could be up to 35% lower than the inlet flowrate during extractive fermentation of concentrated glucose feeds due to the continuous removal of ethanol from the fermentation broth by solvent extraction. The model predicts a total ethanol productivity of 82.6 g/L h if a glucose feed of 750 g/L is fermented with a solvent having a distribution coefficient of 0.5 at a solvent dilution rate of 5.0 h(-1). This is more than 10 times higher than for a conventional chemostat fermentation of a 250 g/L glucose feed. The model has furthermore illustrated the possible trade-offs that exist between obtaining a high extraction efficiency and a low residual glucose concentration.

  1. Effect of organic loading rate on dark fermentative hydrogen production in the continuous stirred tank reactor and continuous mixed immobilized sludge reactor from waste pastry hydrolysate.

    PubMed

    Han, Wei; Hu, Yunyi; Li, Shiyi; Nie, Qiulin; Zhao, Hongting; Tang, Junhong

    2016-12-01

    Waste pastry (6%, w/v) was hydrolyzed by the produced glucoamylase and protease to obtain the glucose (19.8g/L) and free amino nitrogen (179mg/L) solution. Then, the effect of organic loading rate (OLR) (8-40kgCOD/(m(3)d)) on dark fermentative hydrogen production in the continuous stirred tank reactor (CSTR) and continuous mixed immobilized sludge reactor (CMISR) from waste pastry hydrolysate was investigated and compared. The maximum hydrogen production rate of CSTR (277.76mL/(hL)) and CMISR (320.2mL/(hL)) were achieved at OLR of 24kgCOD/(m(3)d) and 32kgCOD/(m(3)d), respectively. Carbon recovery ranged from 75.2-84.1% in the CSTR and CMISR with the balance assumed to be converted to biomass. One gram waste pastry could produce 0.33g (1.83mmol) glucose which could be further converted to 79.24mL (3.54mmol) hydrogen in the CMISR or 91.66mL (4.09mmol) hydrogen in the CSTR. This is the first study which reports dark fermentative hydrogen production from waste pastry.

  2. Effect of noise correlation on noise-induced oscillation frequency in the photosensitive Belousov-Zhabotinsky reaction in a continuous stirred tank reactor.

    PubMed

    Simakov, David S A; Pérez-Mercader, Juan

    2013-12-27

    We report on the experimental study of noise-induced oscillations in the photosensitive Ru(bpy)3(2+)-catalyzed Belousov-Zhabotinsky reaction in a continuous stirred tank reactor (CSTR). In the absence of deterministic oscillations and any external periodic forcing, oscillations appear when the system is perturbed by stochastic fluctuations in light irradiation with sufficiently high amplitude in the vicinity of the bifurcation point. The frequency distribution of the noise-induced oscillations is strongly affected by noise correlation. There is a shift of the noise-induced oscillation frequency toward higher frequencies for an intermediate range of the noise correlation exponent, indicating the occurrence of coherence resonance. Our findings indicate that, in principle, noise correlation can be used to direct chemical reactions toward certain behavior.

  3. The effect of feed rate and recycle rate variable on leaching process of Na2Zro3 with HCl in continuous stirred tank reactor (CSTR) series

    NASA Astrophysics Data System (ADS)

    Palupi, Bekti; Supranto, Sediawan, Wahyudi Budi; Setyadji, Moch.

    2017-05-01

    This time, the natural resources of zircon sand is processed into several zirconium products which is utilized for various industries, such as ceramics, glass industry, metal industry and nuclear industry. The process of zircon sand into zirconium products through several stages, one of them is leaching process of Na2ZrO3 with HCl. In this research, several variations of recycle-rate/feed-rate had been done to determine the effect on leaching process. The leaching was processed at temperature of 90°C, ratio of Na2ZrO3:HCl = 1g:30mL, and 142 rotary per minute of stirring speed for 30 minutes with variation of recycle-rate/feed-rate such as 0.478, 0.299, 0.218, 0.171 and 0.141. The diameter size of Na2ZrO3 powder that used are 0.088 to 0.149 mm. This process was carried out in Continuous Stirred Tank Reactor (CSTR) series with recycle. Based on this research, the greater of the recycle-rate/feed-rate variable, the obtained Zr recovery decreased. The correlation between recycle-rate/feed-rate and Zr recovery is shown by the equation y = -146.91x + 103.51, where y is the Zr recovery and x is the recycle-rate/feed-rate. The highest Zr recovery was 90.52% obtained at recycle-rate/feed-rate 0.141. The mathematical modeling involving the probability model P(r) = 2β2r2 exp(-βr2) can be applied to this leaching process with Sum of Squared Errors (SSE) values in the range of 6×10-7 - 7×10-6.

  4. Coproduction of hydrogen and methane via anaerobic fermentation of cornstalk waste in continuous stirred tank reactor integrated with up-flow anaerobic sludge bed.

    PubMed

    Cheng, Xi-Yu; Li, Qian; Liu, Chun-Zhao

    2012-06-01

    A 10 L continuous stirred tank reactor (CSTR) system was developed for a two-stage hydrogen fermentation process with an integrated alkaline treatment. The maximum hydrogen production rate reached 218.5 mL/L h at a cornstalk concentration of 30 g/L, and the total hydrogen yield and volumetric hydrogen production rate reached 58.0 mL/g-cornstalk and 0.55-0.57 L/L d, respectively. A 10 L up-flow anaerobic sludge bed (UASB) was used for continuous methane fermentation of the effluents obtained from the two-stage hydrogen fermentation. At the optimal organic loading rate of 15.0 g-COD/Ld, the COD removal efficiency and volumetric biogas production rate reached 83.3% and 4.6L/Ld, respectively. Total methane yield reached 200.9 mL/g-cornstalk in anaerobic fermentation with the effluents and alkaline hydrolysate. As a result, the total energy recovery by coproduction of hydrogen and methane with anaerobic fermentation of cornstalk reached 67.1%.

  5. Characterization of dissolved organic matter in full scale continuous stirred tank biogas reactors using ultrahigh resolution mass spectrometry: a qualitative overview.

    PubMed

    Yekta, Sepehr Shakeri; Gonsior, Michael; Schmitt-Kopplin, Philippe; Svensson, Bo H

    2012-11-20

    Dissolved organic matter (DOM) was characterized in eight full scale continuous stirred tank biogas reactors (CSTBR) using solid-phase extraction and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS). An overview of the DOM molecular complexity in the samples from biogas reactors with conventional operational conditions and various substrate profiles is provided by assignments of unambiguous exact molecular formulas for each measured mass peak. Analysis of triplicate samples for each reactor demonstrated the reproducibility of the solid-phase extraction procedure and ESI-FT-ICR-MS which allowed precise evaluation of the DOM molecular differences among the different reactors. Cluster analysis on mass spectrometric data set showed that the biogas reactors treating sewage sludge had distinctly different DOM characteristics compared to the codigesters treating a combination of organic wastes. Furthermore, the samples from thermophilic and mesophilic codigesters had different DOM composition in terms of identified masses and corresponding intensities. Despite the differences, the results demonstrated that compositionally linked organic compounds comprising 28-59% of the total number of assigned formulas for the samples were shared in all the reactors. This suggested that the shared assigned formulas in studied CSTBRs might be related to common biochemical transformation in anaerobic digestion process and therefore, performance of the CSTBRs.

  6. Hydrolysis-acidogenesis of food waste in solid-liquid-separating continuous stirred tank reactor (SLS-CSTR) for volatile organic acid production.

    PubMed

    Karthikeyan, Obulisamy Parthiba; Selvam, Ammaiyappan; Wong, Jonathan W C

    2016-01-01

    The use of conventional continuous stirred tank reactor (CSTR) can affect the methane (CH4) recovery in a two-stage anaerobic digestion of food waste (FW) due to carbon short circuiting in the hydrolysis-acidogenesis (Hy-Aci) stage. In this research, we have designed and tested a solid-liquid-separating CSTR (SLS-CSTR) for effective Hy-Aci of FW. The working conditions were pH 6 and 9 (SLS-CSTR-1 and -2, respectively); temperature-37°C; agitation-300rpm; and organic loading rate (OLR)-2gVSL(-1)day(-1). The volatile fatty acids (VFA), enzyme activities and bacterial population (by qPCR) were determined as test parameters. Results showed that the Hy-Aci of FW at pH 9 produced ∼35% excess VFA as compared to that at pH 6, with acetic and butyric acids as major precursors, which correlated with the high enzyme activities and low lactic acid bacteria. The design provided efficient solid-liquid separation there by improved the organic acid yields from FW. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Effects of organic loading rate on hydrogen and volatile fatty acid production and microbial community during acidogenic hydrogenesis in a continuous stirred tank reactor using molasses wastewater.

    PubMed

    Yun, J; Cho, K-S

    2016-12-01

    Microbial community associated with hydrogen production and volatile fatty acids (VFAs) accumulation was characterized in acidogenic hydrogenesis using molasses wastewater as a feedstock. Hydrogen and VFAs production were measured under an organic loading rate (OLR) from 19 to 35 g-COD l(-1)  day(-1) . The active microbial community was analysed using RNA-based massively parallel sequencing technique, and their correlation patterns were analysed using networking analysis. The continuous stirred tank reactor achieved stable hydrogen production at different OLR conditions, and the maximum hydrogen production rate (HPR) was 1·02 L-H2  l(-1)  day(-1) at 31·0 g-COD l(-1)  day(-1) . Butyrate (50%) and acetate (38%) positively increased with increase in OLR. Total VFA production stayed around 7135 mg l(-1) during the operation period. Although Clostridiales and Lactobacillales were relatively abundant, the HPR was positively associated with Pseudomonadaceae and Micrococcineae. Total VFA and acetate, butyrate and propionate concentrations were positively correlated with lactic acid bacteria (LAB) such as Bacillales, Sporolactobacillus and Lactobacillus. The close relationship between Pseudomonadaceae and Micrococcineae, and LAB play important roles for stable hydrogen and VFA production from molasses wastewater. Microbial information on hydrogen and VFA production can be useful to design and operate for acidogenic hydrogenesis using high strength molasses wastewater. © 2016 The Society for Applied Microbiology.

  8. Determination of Noncovalent Binding Using a Continuous Stirred Tank Reactor as a Flow Injection Device Coupled to Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Santos, Inês C.; Waybright, Veronica B.; Fan, Hui; Ramirez, Sabra; Mesquita, Raquel B. R.; Rangel, António O. S. S.; Fryčák, Petr; Schug, Kevin A.

    2015-07-01

    Described is a new method based on the concept of controlled band dispersion, achieved by hyphenating flow injection analysis with ESI-MS for noncovalent binding determinations. A continuous stirred tank reactor (CSTR) was used as a FIA device for exponential dilution of an equimolar host-guest solution over time. The data obtained was treated for the noncovalent binding determination using an equimolar binding model. Dissociation constants between vancomycin and Ac-Lys(Ac)-Ala-Ala-OH peptide stereoisomers were determined using both the positive and negative ionization modes. The results obtained for Ac- L-Lys(Ac)- D-Ala- D-Ala (a model for a Gram-positive bacterial cell wall) binding were in reasonable agreement with literature values made by other mass spectrometry binding determination techniques. Also, the developed method allowed the determination of dissociation constants for vancomycin with Ac- L-Lys(Ac)- D-Ala- L-Ala, Ac- L-Lys(Ac)- L-Ala- D-Ala, and Ac- L-Lys(Ac)- L-Ala- L-Ala. Although some differences in measured binding affinities were noted using different ionization modes, the results of each determination were generally consistent. Differences are likely attributable to the influence of a pseudo-physiological ammonium acetate buffer solution on the formation of positively- and negatively-charged ionic complexes.

  9. Determination of Noncovalent Binding Using a Continuous Stirred Tank Reactor as a Flow Injection Device Coupled to Electrospray Ionization Mass Spectrometry.

    PubMed

    Santos, Inês C; Waybright, Veronica B; Fan, Hui; Ramirez, Sabra; Mesquita, Raquel B R; Rangel, António O S S; Fryčák, Petr; Schug, Kevin A

    2015-07-01

    Described is a new method based on the concept of controlled band dispersion, achieved by hyphenating flow injection analysis with ESI-MS for noncovalent binding determinations. A continuous stirred tank reactor (CSTR) was used as a FIA device for exponential dilution of an equimolar host-guest solution over time. The data obtained was treated for the noncovalent binding determination using an equimolar binding model. Dissociation constants between vancomycin and Ac-Lys(Ac)-Ala-Ala-OH peptide stereoisomers were determined using both the positive and negative ionization modes. The results obtained for Ac-L-Lys(Ac)-D-Ala-D-Ala (a model for a Gram-positive bacterial cell wall) binding were in reasonable agreement with literature values made by other mass spectrometry binding determination techniques. Also, the developed method allowed the determination of dissociation constants for vancomycin with Ac-L-Lys(Ac)-D-Ala-L-Ala, Ac-L-Lys(Ac)-L-Ala-D-Ala, and Ac-L-Lys(Ac)-L-Ala-L-Ala. Although some differences in measured binding affinities were noted using different ionization modes, the results of each determination were generally consistent. Differences are likely attributable to the influence of a pseudo-physiological ammonium acetate buffer solution on the formation of positively- and negatively-charged ionic complexes.

  10. Reactor models for a series of continuous stirred tank reactors with a gas-liquid-solid leaching system: Part I. Surface reaction control

    NASA Astrophysics Data System (ADS)

    Papangelakis, V. G.; Demopoulos, G. P.

    1992-12-01

    In this three-part series of articles, comprehensive three-phase steady-state hydrometallurgical reactor models of the continuous stirred tank reactor (CSTR) type are developed and applied to a commercial (pressure oxidation) process. The key features of the developed models are the coupling of both mass and heat balance equations, the description of the nonisothermal performance (autothermal) of a multistage continuous reactor, and the treatment of multimineral feed materials. The model considers only the oxidation reactions, because they mainly affect the thermal balance of the reactor. The stoichiometries and intrinsic kinetics of the heterogeneous leaching reactions, which are established via independent experiments, are the foundation of the developed model. A three-phase (g-l-s) reaction process might be controlled by either surface reaction control, i.e., the rate(s) of the heterogeneous leaching reaction(s), or by gas transfer control, i.e., the rate of transfer of the gaseous reactant into the liquid phase. In the present article (Part I), the case of surface reaction control is treated. The article addresses, in particular, the following topics: (1) it outlines the basic mass and heat balance equations which describe the performance of a multistage leaching reactor; (2) it presents a continuous function to describe the particle size distribution of the feed; and (3) it develops, on the basis of probability theory, number- and mass-particle size density functions which give the size distribution of particle populations reacting according to the surface reaction control-shrinking core model.

  11. Recovery of resources for advanced life support space applications: effect of retention time on biodegradation of two crop residues in a fed-batch, continuous stirred tank reactor

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.; Finger, B. W.; Alazraki, M. P.; Cook, K.; Garland, J. L.

    2002-01-01

    Bioreactor retention time is a key process variable that will influence costs that are relevant to long distance space travel or long duration space habitation. However. little is known about the effects of this parameter on the microbiological treatment options that are being proposed for Advanced Life Support (ALS) systems. Two bioreactor studies were designed to examine this variable. In the first one, six retention times ranging from 1.3 to 21.3 days--were run in duplicate, 81 working-volume continuous stirred tank reactors (CSTR) that were fed ALS wheat residues. Ash-free dry weight loss, carbon mineralization, soluble TOC reduction, changes in fiber content (cellulose, hemicellulose, and lignin), bacterial numbers, and mineral recoveries were monitored. At short retention times--1.33 days--biodegradation was poor (total: 16-20%, cellulose - 12%, hemicellulose - 28%) but soluble TOC was decreased by 75-80% and recovery of major crop inorganic nutrients was adequate, except for phosphorus. A high proportion of the total bacteria (ca. 83%) was actively respiring. At the longest retention time tested, 21.3 days, biodegradation was good (total: 55-60%, cellulose ca. 70%, hemicellulose - ca. 55%) and soluble TOC was decreased by 80%. Recovery of major nutrients, except phosphorus, remained adequate. A very low proportion of total bacteria was actively respiring (ca. 16%). The second bioreactor study used potato residue to determine if even shorter retention times could be used (range 0.25-2.0 days). Although overall biodegradation deteriorated, the degradation of soluble TOC continued to be ca. 75%. We conclude that if the goal of ALS bioprocessing is maximal degradation of crop residues, including cellulose, then retention times of 10 days or longer will be needed. If the goal is to provide inorganic nutrients with the smallest volume/weight bioreactor possible, then a retention time of 1 day (or less) is sufficient.

  12. Recovery of resources for advanced life support space applications: effect of retention time on biodegradation of two crop residues in a fed-batch, continuous stirred tank reactor.

    PubMed

    Strayer, R F; Finger, B W; Alazraki, M P; Cook, K; Garland, J L

    2002-09-01

    Bioreactor retention time is a key process variable that will influence costs that are relevant to long distance space travel or long duration space habitation. However. little is known about the effects of this parameter on the microbiological treatment options that are being proposed for Advanced Life Support (ALS) systems. Two bioreactor studies were designed to examine this variable. In the first one, six retention times ranging from 1.3 to 21.3 days--were run in duplicate, 81 working-volume continuous stirred tank reactors (CSTR) that were fed ALS wheat residues. Ash-free dry weight loss, carbon mineralization, soluble TOC reduction, changes in fiber content (cellulose, hemicellulose, and lignin), bacterial numbers, and mineral recoveries were monitored. At short retention times--1.33 days--biodegradation was poor (total: 16-20%, cellulose - 12%, hemicellulose - 28%) but soluble TOC was decreased by 75-80% and recovery of major crop inorganic nutrients was adequate, except for phosphorus. A high proportion of the total bacteria (ca. 83%) was actively respiring. At the longest retention time tested, 21.3 days, biodegradation was good (total: 55-60%, cellulose ca. 70%, hemicellulose - ca. 55%) and soluble TOC was decreased by 80%. Recovery of major nutrients, except phosphorus, remained adequate. A very low proportion of total bacteria was actively respiring (ca. 16%). The second bioreactor study used potato residue to determine if even shorter retention times could be used (range 0.25-2.0 days). Although overall biodegradation deteriorated, the degradation of soluble TOC continued to be ca. 75%. We conclude that if the goal of ALS bioprocessing is maximal degradation of crop residues, including cellulose, then retention times of 10 days or longer will be needed. If the goal is to provide inorganic nutrients with the smallest volume/weight bioreactor possible, then a retention time of 1 day (or less) is sufficient.

  13. Recovery of resources for advanced life support space applications: effect of retention time on biodegradation of two crop residues in a fed-batch, continuous stirred tank reactor

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.; Finger, B. W.; Alazraki, M. P.; Cook, K.; Garland, J. L.

    2002-01-01

    Bioreactor retention time is a key process variable that will influence costs that are relevant to long distance space travel or long duration space habitation. However. little is known about the effects of this parameter on the microbiological treatment options that are being proposed for Advanced Life Support (ALS) systems. Two bioreactor studies were designed to examine this variable. In the first one, six retention times ranging from 1.3 to 21.3 days--were run in duplicate, 81 working-volume continuous stirred tank reactors (CSTR) that were fed ALS wheat residues. Ash-free dry weight loss, carbon mineralization, soluble TOC reduction, changes in fiber content (cellulose, hemicellulose, and lignin), bacterial numbers, and mineral recoveries were monitored. At short retention times--1.33 days--biodegradation was poor (total: 16-20%, cellulose - 12%, hemicellulose - 28%) but soluble TOC was decreased by 75-80% and recovery of major crop inorganic nutrients was adequate, except for phosphorus. A high proportion of the total bacteria (ca. 83%) was actively respiring. At the longest retention time tested, 21.3 days, biodegradation was good (total: 55-60%, cellulose ca. 70%, hemicellulose - ca. 55%) and soluble TOC was decreased by 80%. Recovery of major nutrients, except phosphorus, remained adequate. A very low proportion of total bacteria was actively respiring (ca. 16%). The second bioreactor study used potato residue to determine if even shorter retention times could be used (range 0.25-2.0 days). Although overall biodegradation deteriorated, the degradation of soluble TOC continued to be ca. 75%. We conclude that if the goal of ALS bioprocessing is maximal degradation of crop residues, including cellulose, then retention times of 10 days or longer will be needed. If the goal is to provide inorganic nutrients with the smallest volume/weight bioreactor possible, then a retention time of 1 day (or less) is sufficient.

  14. Photocatalytic inactivation of Flavobacterium and E. coli in water by a continuous stirred tank reactor (CSTR) fed with suspended/immobilised TiO2 medium.

    PubMed

    Cohen-Yaniv, Vered; Narkis, Nava; Armon, Robert

    2008-01-01

    A photocatalytic continuous stirred tank reactor (CSTR) was built at laboratory scale to inactivate two environmental bacteria strains (Flavobacterium and E. coli) in tap water. Several parameters were found to impact reactor efficiency. Bacterial initial concentration is an important factor in inactivation rate. After 30 minutes of irradiation at 10(8)-10(9) CFU mL(-1) starting concentration, a >5 log reduction was achieved while at 10(4)-10(6) CFU mL(-1) only a 2 log reduction was observed. Water hardness and pH have an important influence on the photocatalytic inactivation process. Soft water, with low Ca(+2) and Mg(+2) at low pH approximately 5.3 resulted in increased inactivation of Flavobacterium reaching >6 orders of magnitude reduction. E. coli and Flavobacterium at pH 5 were inactivated by 3 logs more as compared to pH 7 under similar conditions. pH below TiO2 isoelectric point (approximately 5.6) supports better contact between bacteria and anatase particles resulting in superior inactivation. TiO2 powder suspension was compared with immobilised powder in sol-gel coated glass beads in order to exclude the need for particles separation from the treated water. TiO2 suspension was more effective by 3 orders of magnitude when compared to coated glass beads. An interesting observation was found between the two bacterial strains based on their hydrophobicity/hydrophilicity balance. The more hydrophobic Flavobacterium compared to E. coli was inactivated photocatalytically by >3 logs more then E. coli in the first 30 minutes of irradiation interval. The results indicate the importance of the parameters involved in the contact between TiO2 particles and microorganisms that govern the successful inactivation rate in CSTR.

  15. Coupling of acrylic dyeing wastewater treatment by heterogeneous Fenton oxidation in a continuous stirred tank reactor with biological degradation in a sequential batch reactor.

    PubMed

    Esteves, Bruno M; Rodrigues, Carmen S D; Boaventura, Rui A R; Maldonado-Hódar, F J; Madeira, Luís M

    2016-01-15

    This work deals with the treatment of a recalcitrant effluent, from the dyeing stage of acrylic fibres, by combination of the heterogeneous Fenton's process in a continuous stirred tank reactor (CSTR) with biological degradation in a sequential batch reactor (SBR). Three different catalysts (a commercial Fe/ZSM-5 zeolite and two distinct Fe-containing activated carbons - ACs - prepared by wet impregnation of iron acetate and iron nitrate) were employed on the Fenton's process, and afterwards a parametric study was carried out to determine the effect of the main operating conditions, namely the hydrogen peroxide feed concentration, temperature and contact time. Under the best operating conditions found, using the activated carbon impregnated with iron nitrate, 62.7% of discolouration and 39.9% of total organic carbon (TOC) reduction were achieved, at steady-state. Furthermore, a considerable increase in the effluent's biodegradability was attained (BOD5:COD ratio increased from <0.001 to 0.27 and SOUR - specific oxygen uptake rate - from <0.2 to 11.1 mg O2/(gVSS·h)), alongside a major decrease in its toxicity (from 92.1 to 94.0% of Vibrio fischeri inhibition down to 6.9-9.9%). This allowed the application of the subsequent biological degradation stage. The combination of the two processes provided a treated effluent that clearly complies with the legislated discharge limits. It was also found that the iron leaching from the three catalysts tested was very small in all runs, a crucial factor for the stability and long-term use of such materials.

  16. Anaerobic co-digestion of chicken manure and corn stover in batch and continuously stirred tank reactor (CSTR).

    PubMed

    Li, Yeqing; Zhang, Ruihong; He, Yanfeng; Zhang, Chenyu; Liu, Xiaoying; Chen, Chang; Liu, Guangqing

    2014-03-01

    Anaerobic co-digestion of chicken manure and corn stover in batch and CSTR were investigated. The batch co-digestion tests were performed at an initial volatile solid (VS) concentration of 3gVS/L, carbon-to-nitrogen (C/N) ratio of 20, and retention time of 30d. The methane yield was determined to be 281±12mL/gVSadded. Continuous reactor was carried out with feeding concentration of 12% total solids and C/N ratio of 20 at organic loading rates (OLRs) of 1-4gVS/L/d. Results showed that at OLR of 4gVS/L/d, stable and preferable methane yield of 223±7mL/gVSadded was found, which was equal to energy yield (EY) of 8.0±0.3MJ/kgVSadded. Post-digestion of digestate gave extra EY of 1.5-2.6MJ/kgVSadded. Pyrolysis of digestate provided additional EY of 6.1MJ/kgVSadded. Pyrolysis can be a promising technique to reduce biogas residues and to produce valuable gas products simultaneously.

  17. Evaluation of the Small-Tank Tetraphenylborate Process Using a Bench-Scale, 20-L Continuous Stirred Tank Reactor System at Oak Ridge National Laboratory: Results of Test 5

    SciTech Connect

    Lee, D.D.

    2001-08-30

    The goal of the Savannah River Salt Waste Processing Program (SPP) is to evaluate the presently available technologies and select the most effective approach for treatment of high-level waste salt solutions currently stored in underground tanks at the U.S. Department of Energy's Savannah River Site in Aiken, South Carolina. One of the three technologies currently being developed for this application is the Small-Tank Tetraphenylborate Process (STTP). This process uses sodium tetraphenylborate (TPB) to precipitate and remove radioactive cesium from the waste and monosodium titanate (MST) to sorb and remove radioactive strontium and actinides. Oak Ridge National Laboratory is demonstrating this process at the 1:4000 scale using a 20-L-capacity continuous-flow stirred-tank reactor (CSTR) system. Since March 1999, five operating campaigns of the 20-L CSTR have been conducted. The ultimate goal is to verify that this process, under certain extremes of operating conditions, can meet the minimum treatment criteria necessary for processing and disposing of the salt waste at the Savannah River Saltstone Facility. The waste acceptance criteria (WAC) for {sup 137}Cs, {sup 90}Sr, and total alpha nuclides are <40 nCi/g, <40 nCi/g, and <18 nCi/g, respectively. However, to allow for changes in process conditions, the SPP is seeking a level of treatment that is about 50% of the WAC. The bounding separation goals for {sup 137}Cs and {sup 90}Sr are to obtain decontamination factors (DFs) of 40,000 (99.998% removal) and 26 (96.15% removal), respectively. (DF is mathematically defined as the concentration of contaminant in the waste feed divided by the concentration of contaminant in the effluent stream.)

  18. Thermophilic anaerobic digestion of source-sorted organic fraction of household municipal solid waste: start-up procedure for continuously stirred tank reactor.

    PubMed

    Angelidaki, Irini; Chen, Xingxing; Cui, Junbo; Kaparaju, Prasad; Ellegaard, Lars

    2006-08-01

    Two feeding strategies for start-up of continuously stirred tank reactors (CSTR) treating source-sorted organic fraction of household municipal solid waste (SS-OFMSW) at 55 degrees C were evaluated. Two reactors were started up separately with a limited amount of initial inoculum (i.e. 10% of the final volume of 3.5l) and operated in a fed batch mode until the reactors were filled (30 days). A reference reactor was filled up with 3.5l of inoculum and fed at a constant rate (11.4 g volatile solids (VS)/d). Loading at progressively increasing rate (from 1.7 to 15 gVS/d), as calculated based on an activated biomass concept, showed superior process performance compared to a fixed feed rate (5.7 gVS/d). Methane yield of 0.32 m(3)/kg VS was produced during the start-up in reactor filled at progressively increasing rate and was comparable to the reference reactor. On the contrary, significant inhibition due to volatile fatty acid (VFA) build-up, mainly due to butyrate, was noticed in the reactor filled at constant rate. Thus, low initial and progressive increasing inoculum loading rate could be used as a strategy for a successful start-up of CSTR treating SS-OFMSW as it allowed a gradual acclimation of the biomass. Lab-scale results were further reaffirmed from the start-up of a full-scale plant (7000 m(3) total capacity) which was supplied with inoculum corresponding to approx. 16% of final volume and operated in a fed batch mode until the reactors were filled (58 days). Stable biogas production with low VFA (<3 g/L; based on titration method) were noticed during the start-up period when fed at progressively increasing rate. Thus, a controlled and reliable start-up procedure was found essential, which could allow rapid process stabilization and time to focus on other technical aspects of plant operation. In addition, the influence of substrate to inoculum amount (1.5-30% TS) and temperature (5-65 degrees C) on anaerobic degradation and methane production of SS-OFMSW was

  19. Stirring system for radioactive waste water storage tank

    SciTech Connect

    Ogata, Yoshimune; Nishizawa, Kunihide . Radioisotope Research Center)

    1999-07-01

    A stirring system for 100-m[sup 3] radioactive liquid waste tanks was constructed to unify radioactive concentrations in the tank. The stirring system is effective in certifying that the radioactive concentrations in the tanks are less than the legal limits before they are drained away as waste liquid. This system is composed of discharge units, pipe lines, and a controller. The performance of the system was assessed by comparing the calculated red ink and [sup 32]P concentrations with those monitored at six locations in the tanks. The concentration reached equilibrium after stirring 60 o 120 min with discharge units equipped with six fixed openings configured in differing directions. Residual chlorine in city water used for dilution occasionally bleached the red ink and reduced its concentration. The adsorption of [sup 32]P by slime on the walls of the tanks storing actual waste water lowered the equilibrium concentration.

  20. Dynamics of rotationally reciprocating stirred tank with planetary actuator

    NASA Astrophysics Data System (ADS)

    Prikhodko, A. A.; Smelyagin, A. I.

    2017-06-01

    The article investigates the dynamics of rotationally reciprocating stirred tank (RRST), whose actuator is the original planetary mechanism with elliptical gears. The dynamic model is constructed by reduction of driving forces, masses and moments to the reduction link (the input shaft of the actuator). The study of the resulting dynamic model was carried out by energy-mass method. As a result of the dynamic analysis we determined the necessary moment of driven forces and found the reduction link law of motion. The flywheel has been designed to ensure the required coefficient of rotation irregularity. Resulting dynamic model can be used for development and research of rotationally reciprocating stirred tanks.

  1. Effects of nitrobenzene concentration and hydraulic retention time on the treatment of nitrobenzene in sequential anaerobic baffled reactor (ABR)/continuously stirred tank reactor (CSTR) system.

    PubMed

    Kuscu, Ozlem Selcuk; Sponza, Delia Teresa

    2009-04-01

    The effects of increasing nitrobenzene (NB) concentrations and hydraulic retention times (HRT) on the treatment of NB were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system. In the first step of the study, the maximum COD removal efficiencies were found as 88% and 92% at NB concentrations varying between 30 mg L(-1) and 210 mg L(-1) in ABR. The minimum COD removal efficiency was 79% at a NB concentration of 700 mg L(-1). The removal efficiency of NB was nearly 100% for all NB concentrations in the ABR reactor. The methane gas production and the methane gas percentage remained stable (1500 mL day(-1) and 48-50%, respectively) as the NB concentration was increased from 30 to 210 mg L(-1). In the second step of the study it was found that as the HRT decreased from 10.38 days to 2.5 days the COD removal efficiencies decreased slightly from 94% to 92% in the ABR. For maximum COD and NB removal efficiencies the optimum HRT was found as 2.5 days in the ABR. The total COD removal efficiency was 95% in sequential anaerobic (ABR)/aerobic (CSTR) reactor system at a minimum HRT of 1 day. When the HRT was decreased from 10.38 days to 1 day, the methane percentage decreased from 42% to 29% in an ABR reactor treating 100 mg L(-1) NB. Nitrobenzene was reduced to aniline under anaerobic conditions while aniline was mineralized to catechol with meta cleavage under aerobic conditions.

  2. The continuous production of stir cast material

    NASA Astrophysics Data System (ADS)

    Hamoen, A.

    1986-06-01

    The production of AlSi8 extrusion billets using a semicontinuous caster is described. The continuous casting process and the process parameters are outlined. The mathematical model, developed to calculate the temperature distribution within the billet during casting as a function of the process parameters, is explained. Quality control focussed on inversion segregation which causes the formation of a surface layer with a different structure and composition, imposing peeling of billets. Product development focussed on the production of stir-cast material of the same AlSi8 alloy. The use of AlSi8 as a wrought alloy by modification of the structure by stirring is discussed.

  3. Friction Stir Welded Thin Wall Cryogenic Tank Skins

    NASA Astrophysics Data System (ADS)

    Potter, David M.; Takeshita, Jennifer A.; Holguin, Michael J.

    2007-01-01

    A cryogenic propellant tank is the common element of trans-planetary transportation systems, in-space storage depots, lunar landers, in-space habitats/laboratories, ascent/descent, and launch vehicles. Lockheed Martin's (LM) cryogenic tank approach integrates Friction Stir Welding (FSW) with thin-gage aluminum monocoque structural design, common spin formed FSW domes and variable tank lengths to tailor the cryogenic tank from smaller stages, such as landers or ascent/descent stages, to very large on-orbit or In Space Resource Utilization (ISRU) storage systems. Thin gage corrosion resistant steel (CRES) construction combined with normal fusion welding as used on LM's Centaur has already been demonstrated to provide the highest cryogenic tank mass fraction (~.90) for large scale, cryogenic propellant storage. However, current fusion welding technology is limited by the alloys that are considered weldable and typically achieves only 50% of the parent material ultimate strength at the weld joint. Preliminary LM technology development indicates that in certain aluminum alloys, the FSW joint retains up to 100% of the parent material ultimate strength at LH2 temperatures. Combining FSW and aluminum monocoque tank design would create a large scale cryogenic tank with a mass fraction in excess of the current industry standard and therefore is ideal for affordable, reliable, high capacity propellant storage required for all facets of space exploration.

  4. Anaerobic co-digestion of cheese whey and the screened liquid fraction of dairy manure in a single continuously stirred tank reactor process: Limits in co-substrate ratios and organic loading rate.

    PubMed

    Rico, Carlos; Muñoz, Noelia; Rico, José Luis

    2015-01-01

    Mesophilic anaerobic co-digestion of cheese whey and the screened liquid fraction of dairy manure was investigated with the aim of determining the treatment limits in terms of the cheese whey fraction in feed and the organic loading rate. The results of a continuous stirred tank reactor that was operated with a hydraulic retention time of 15.6 days showed that the co-digestion process was possible with a cheese whey fraction as high as 85% in the feed. The efficiency of the process was similar within the range of the 15-85% cheese whey fraction. To study the effect of the increasing loading rate, the HRT was progressively shortened with the 65% cheese whey fraction in the feed. The reactor efficiency dropped as the HRT decreased but enabled a stable operation over 8.7 days of HRT. At these operating conditions, a volumetric methane production rate of 1.37 m(3) CH4 m(-3) d(-1) was achieved.

  5. Importance of reduced sulfur for the equilibrium chemistry and kinetics of Fe(II), Co(II) and Ni(II) supplemented to semi-continuous stirred tank biogas reactors fed with stillage.

    PubMed

    Shakeri Yekta, Sepehr; Lindmark, Amanda; Skyllberg, Ulf; Danielsson, Asa; Svensson, Bo H

    2014-03-30

    The objective of the present study was to assess major chemical reactions and chemical forms contributing to solubility and speciation of Fe(II), Co(II), and Ni(II) during anaerobic digestion of sulfur (S)-rich stillage in semi-continuous stirred tank biogas reactors (SCSTR). These metals are essential supplements for efficient and stable performance of stillage-fed SCSTR. In particular, the influence of reduced inorganic and organic S species on kinetics and thermodynamics of the metals and their partitioning between aqueous and solid phases were investigated. Solid phase S speciation was determined by use of S K-edge X-ray absorption near-edge spectroscopy. Results demonstrated that the solubility and speciation of supplemented Fe were controlled by precipitation of FeS(s) and formation of the aqueous complexes of Fe-sulfide and Fe-thiol. The relatively high solubility of Co (∼ 20% of total Co content) was attributed to the formation of compounds other than Co-sulfide and Co-thiol, presumably of microbial origin. Nickel had lower solubility than Co and its speciation was regulated by interactions with FeS(s) (e.g. co-precipitation, adsorption, and ion substitution) in addition to precipitation/dissolution of discrete NiS(s) phase and formation of aqueous Ni-sulfide complexes.

  6. Ce-Zr-La/Al2O3 prepared in a continuous stirred-tank reactor: a highly thermostable support for an efficient Rh-based three-way catalyst.

    PubMed

    Wang, Su-Ning; Lan, Li; Hua, Wei-Bo; Shi, Zhong-Hua; Chen, Yao-Qiang; Gong, Mao-Chu; Zhong, Lin

    2015-12-21

    Two Ce-Zr-La/Al2O3 composite oxides, CZLA-C and CZLA-B, were synthesized using a co-precipitation method in a continuous stirred-tank reactor (CSTR) and a batch reactor (BR), respectively. Two Rh-based three-way catalysts (TWCs), Rh/CZLA-C and Rh/CZLA-B were obtained by a wet-impregnation method using the two composites as the supports. The physicochemical properties of the samples before and after thermal treatment at 1000 °C were characterized by N2 adsorption-desorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), H2-temperature programmed reduction (H2-TPR) and CO chemisorption. The results indicated that CZLA-C shows higher thermal stability than CZLA-B due to a sparsely-agglomerated morphology. Compared with Rh/CZLA-B, Rh/CZLA-C displayed better reducibility and higher thermal stability and exhibited significantly higher activity in the catalytic removal of the simulated gasoline vehicle exhaust emission (NO, CO and C3H8). Our work can provide a facile and economical synthesis route to advanced support materials and catalysts for exhaust emission control.

  7. Aeration costs in stirred-tank and bubble column bioreactors

    DOE PAGES

    Humbird, D.; Davis, R.; McMillan, J. D.

    2017-08-10

    To overcome knowledge gaps in the economics of large-scale aeration for production of commodity products, Aspen Plus is used to simulate steady-state oxygen delivery in both stirred-tank and bubble column bioreactors, using published engineering correlations for oxygen mass transfer as a function of aeration rate and power input, coupled with new equipment cost estimates developed in Aspen Capital Cost Estimator and validated against vendor quotations. Here, these simulations describe the cost efficiency of oxygen delivery as a function of oxygen uptake rate and vessel size, and show that capital and operating costs for oxygen delivery drop considerably moving from standard-sizemore » (200 m3) to world-class size (500 m3) reactors, but only marginally in further scaling up to hypothetically large (1000 m3) reactors. Finally, this analysis suggests bubble-column reactor systems can reduce overall costs for oxygen delivery by 10-20% relative to stirred tanks at low to moderate oxygen transfer rates up to 150 mmol/L-h.« less

  8. Comparison of two methods for designing calorimeters using stirred tank reactors.

    PubMed

    Regestein, Lars; Giese, Heiner; Zavrel, Michael; Büchs, Jochen

    2013-01-01

    Calorimetry is a robust method for online monitoring and controlling bioprocesses in stirred tank reactors. Up to now, reactor calorimeters have not been optimally constructed for pilot scale applications. Thus, the objective of this paper is to compare two different ways for designing reactor calorimeters and validate them. The "heat capacity" method based on the mass flow of the cooling liquid in the jacket was compared with the "heat transfer" method based on the heat transfer coefficient continuously measured in the cultivation of Escherichia coli VH33 in a 50 L stirred tank reactor. It was found that the values of the "heat transfer" method agreed very well with the calculated values from the oxygen consumption. By contrast, the curve of the "heat capacity" method deviated from that of the oxygen consumption calculated with the oxycaloric equivalent. In conclusion, the "heat transfer" method has been proven to have a higher degree of validity than the "heat capacity" method. Thus, it is a better and more robust means to measure heat generation of fermentations in stirred tank bioreactors on a pilot scale. Copyright © 2012 Wiley Periodicals, Inc.

  9. Modeling and simulation of large scale stirred tank

    NASA Astrophysics Data System (ADS)

    Neuville, John R.

    The purpose of this dissertation is to provide a written record of the evaluation performed on the DWPF mixing process by the construction of numerical models that resemble the geometry of this process. There were seven numerical models constructed to evaluate the DWPF mixing process and four pilot plants. The models were developed with Fluent software and the results from these models were used to evaluate the structure of the flow field and the power demand of the agitator. The results from the numerical models were compared with empirical data collected from these pilot plants that had been operated at an earlier date. Mixing is commonly used in a variety ways throughout industry to blend miscible liquids, disperse gas through liquid, form emulsions, promote heat transfer and, suspend solid particles. The DOE Sites at Hanford in Richland Washington, West Valley in New York, and Savannah River Site in Aiken South Carolina have developed a process that immobilizes highly radioactive liquid waste. The radioactive liquid waste at DWPF is an opaque sludge that is mixed in a stirred tank with glass frit particles and water to form slurry of specified proportions. The DWPF mixing process is composed of a flat bottom cylindrical mixing vessel with a centrally located helical coil, and agitator. The helical coil is used to heat and cool the contents of the tank and can improve flow circulation. The agitator shaft has two impellers; a radial blade and a hydrofoil blade. The hydrofoil is used to circulate the mixture between the top region and bottom region of the tank. The radial blade sweeps the bottom of the tank and pushes the fluid in the outward radial direction. The full scale vessel contains about 9500 gallons of slurry with flow behavior characterized as a Bingham Plastic. Particles in the mixture have an abrasive characteristic that cause excessive erosion to internal vessel components at higher impeller speeds. The desire for this mixing process is to ensure the

  10. Friction-Stir-Welded and Spin-Formed End Domes for Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Hales, S. J.; Tayon, W. A.; Domack, M. S.

    2012-01-01

    Manufacturing of single-piece end domes for cryogenic tanks employing spin forming of tailored, friction-stir-welded blanks of Al-Li alloy 2195 plate offers cost and reliability benefits. The introduction of plastic deformation into a friction stir weld is a unique feature of the proposed manufacturing route. This investigation addressed abnormal grain growth [AGG] within the friction stir weldments during postfabrication processing of a prototype dome. The phenomenon of AGG was observed during the solution heat treatment [SHT] phase of T8 tempering and is a major concern for meeting specifications. Such abrupt microstructural transitions can be detrimental to notch-sensitive mechanical properties, such as ductility and/or fracture toughness. If the issue of AGG cannot be resolved, then the acceptance of this approach as a viable manufacturing route may be in jeopardy. The innovative approach adopted in this investigation was the insertion of a stand-alone, Intermediate Annealing Treatment [IAT] between the spin forming and T8 processing operations. A simple, recovery annealing step was deemed to be the most readily-scalable solution when fabricating thin-walled, ellipsoidal domes. The research effort culminated in the development of an effective IAT, which resulted in a significant decrease in AGG following SHT. The processing philosophy adopted in designing the IAT is outlined and the microstructural reasons for success are discussed. The analytical results presented are consistent with promoting continuous grain growth during the IAT, thereby suppressing AGG during the SHT.

  11. A novel milliliter-scale chemostat system for parallel cultivation of microorganisms in stirred-tank bioreactors.

    PubMed

    Schmideder, Andreas; Severin, Timm Steffen; Cremer, Johannes Heinrich; Weuster-Botz, Dirk

    2015-09-20

    A pH-controlled parallel stirred-tank bioreactor system was modified for parallel continuous cultivation on a 10 mL-scale by connecting multichannel peristaltic pumps for feeding and medium removal with micro-pipes (250 μm inner diameter). Parallel chemostat processes with Escherichia coli as an example showed high reproducibility with regard to culture volume and flow rates as well as dry cell weight, dissolved oxygen concentration and pH control at steady states (n=8, coefficient of variation <5%). Reliable estimation of kinetic growth parameters of E. coli was easily achieved within one parallel experiment by preselecting ten different steady states. Scalability of milliliter-scale steady state results was demonstrated by chemostat studies with a stirred-tank bioreactor on a liter-scale. Thus, parallel and continuously operated stirred-tank bioreactors on a milliliter-scale facilitate timesaving and cost reducing steady state studies with microorganisms. The applied continuous bioreactor system overcomes the drawbacks of existing miniaturized bioreactors, like poor mass transfer and insufficient process control. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. CFD simulation of an unbaffled stirred tank reactor driven by a magnetic rod: assessment of turbulence models.

    PubMed

    Li, Jiajia; Deng, Baoqing; Zhang, Bing; Shen, Xiuzhong; Kim, Chang Nyung

    2015-01-01

    A simulation of an unbaffled stirred tank reactor driven by a magnetic stirring rod was carried out in a moving reference frame. The free surface of unbaffled stirred tank was captured by Euler-Euler model coupled with the volume of fluid (VOF) method. The re-normalization group (RNG) k-ɛ model, large eddy simulation (LES) model and detached eddy simulation (DES) model were evaluated for simulating the flow field in the stirred tank. All turbulence models can reproduce the tangential velocity in an unbaffled stirred tank with a rotational speed of 150 rpm, 250 rpm and 400 rpm, respectively. Radial velocity is underpredicted by the three models. LES model and RNG k-ɛ model predict the better tangential velocity and axial velocity, respectively. RNG k-ɛ model is recommended for the simulation of the flow in an unbaffled stirred tank with magnetic rod due to its computational effort.

  13. Experimental Study on Scale-Up of Solid-Liquid Stirred Tank with an Intermig Impeller

    NASA Astrophysics Data System (ADS)

    Zhao, Hongliang; Zhao, Xing; Zhang, Lifeng; Yin, Pan

    2017-02-01

    The scale-up of a solid-liquid stirred tank with an Intermig impeller was characterized via experiments. Solid concentration, impeller just-off-bottom speed and power consumption were measured in stirred tanks of different scales. The scale-up criteria for achieving the same effect of solid suspension in small-scale and large-scale vessels were evaluated. The solids distribution improves if the operating conditions are held constant as the tank is scaled-up. The results of impeller just-off-bottom speed gave X = 0.868 in the scale-up relationship ND X = constant. Based on this criterion, the stirring power per unit volume obviously decreased at N = N js, and the power number ( N P) was approximately equal to 0.3 when the solids are uniformly distributed in the vessels.

  14. Loading Considerations for Implementing Friction STIR Welding for Large Diameter Tank Fabrication

    NASA Technical Reports Server (NTRS)

    Adams, Glynn

    1998-01-01

    The main objectives of the research presented here are to determine the reaction loads associated with friction stir welding (FSW) and to determine the suitability of an existing welding fixture for implementing this welding process in the fabrication of large diameter tanks. Friction stir welding is a relatively new process which is being investigated as a method for joining aluminum alloys. The aluminum-lithium alloy, Al-Li 2195, which is being used to fabricate the super-light-weight shuttle external tank has proven difficult to join using fusion techniques. Therefore, FSW and its potential applicability to joining Al-Li 2195 are of particular interest to NASA.

  15. Friction Stir Welding of Large Scale Cryogenic Tanks for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Russell, Carolyn; Ding, R. Jeffrey

    1998-01-01

    The Marshall Space Flight Center (MSFC) has established a facility for the joining of large-scale aluminum cryogenic propellant tanks using the friction stir welding process. Longitudinal welds, approximately five meters in length, have been made by retrofitting an existing vertical fusion weld system, designed to fabricate tank barrel sections ranging from two to ten meters in diameter. The structural design requirements of the tooling, clamping and travel system will be described in this presentation along with process controls and real-time data acquisition developed for this application. The approach to retrofitting other large welding tools at MSFC with the friction stir welding process will also be discussed.

  16. Optimal Impeller Clearance for a Dual Stirred Unbaffled Tank with a Concave Blade Impeller

    NASA Astrophysics Data System (ADS)

    Devi, T. T.; Kumar, B.

    2016-07-01

    An experimental investigation of unbaffled stirred tanks is carried out with the use of a dual concave blade impeller to evaluate the mass transfer coefficient, power number, and vortex depth. The effect of the impeller clearance on mass transfer is analyzed to estimate the optimal impeller clearance for lower and upper impellers. It is found that the lower impeller positioned at 0.25 of the tank diameter with the clearance between the lower and upper impellers equal to 0.38 of the tank diameter gives the maximum mass transfer coefficient. A comparison with the results for dual Rushton and Rushton-concave impellers at the optimal clearance shows that the concave-concave impellers are most efficient. The scale-up criteria for optimal, geometrically similar systems of unbaffled stirred tanks with a dual concave impeller are proposed.

  17. Evaluation of an integrated continuous stirred microbial electrochemical reactor: Wastewater treatment, energy recovery and microbial community.

    PubMed

    Wang, Haiman; Qu, Youpeng; Li, Da; Zhou, Xiangtong; Feng, Yujie

    2015-11-01

    A continuous stirred microbial electrochemical reactor (CSMER) was developed by integrating anaerobic digestion (AD) and microbial electrochemical system (MES). The system was capable of treating high strength artificial wastewater and simultaneously recovering electric and methane energy. Maximum power density of 583±9, 562±7, 533±10 and 572±6 mW m(-2) were obtained by each cell in a four-independent circuit mode operation at an OLR of 12 kg COD m(-3) d(-1). COD removal and energy recovery efficiency were 87.1% and 32.1%, which were 1.6 and 2.5 times higher than that of a continuous stirred tank reactor (CSTR). Larger amount of Deltaproteobacteria (5.3%) and hydrogenotrophic methanogens (47%) can account for the better performance of CSMER, since syntrophic associations among them provided more degradation pathways compared to the CSTR. Results demonstrate the CSMER holds great promise for efficient wastewater treatment and energy recovery.

  18. Oil filaments produced by an impeller in a water stirred tank

    NASA Astrophysics Data System (ADS)

    Sanjuan-Galindo, Rene; Soto, Enrique; Ascanio, Gabriel; Zenit, Roberto

    2010-11-01

    Oil dispersions in aqueous media produced in stirred tanks are part of many industrial processes. The oil drops size and dispersion stability are determined by the impeller geometry, stirring velocity and the physicochemical properties of the mixture. A critical parameter is the total interfacial area which is increased as the drop size is decreased. The mechanism that disperses the oil and generates the drops has not been completely explained. In the present work, castor oil (1% v/v, viscosity 500mPa) and water are stirred with a Scaba impeller in a flat bottom cylindrical tank. The process was recorded with high-speed video and the Reynolds number was fixed to 24,000. Before the stirring, the oil is added at the air water interface. At the beginning of the stirring, the oil is suctioned at the impeller shaft and incorporated into the flow ejected by the impeller. In this region, the flow is turbulent and exhibits velocity gradients that elongate the oil phase. Viscous thin filaments are generated and expelled from the impeller. Thereafter, the filaments are elongated and break to form drops. This process is repeated in all the oil phase and drops are incorporated into the dispersion. Two main zones can be identified in the tank: the impeller discharge characterized by high turbulence and the rest of the flow where low velocity gradients appear. In this region surface forces dominate the inertial ones, and drops became spheroidal.

  19. Drawdown of floating solids in stirred tanks: scale-up study using CFD modeling.

    PubMed

    Waghmare, Yogesh; Falk, Rick; Graham, Lisa; Koganti, Venkat

    2011-10-14

    This work shows development of a scale up correlation using computational fluid dynamic (CFD) simulations for floating solids drawdown operation in stirred tanks. Discrete phase modeling (DPM) simulations were used in conjunction with the lab scale experimental measurements to develop a semi-empirical correlation for the prediction of rate of drawdown of floating solid particles. The rate was correlated to average liquid velocity at the free liquid surface. Since, this correlation is based on a fundamental hydrodynamic parameter, velocity, rather than an operating parameters such as the impeller speed, it can be used for a variety of impeller types and tank geometries. The correlation was developed based on the data obtained from the 2L tank using four different tank designs and was validated against the data obtained from the 10L scale tank. The correlation was further extended to the pilot and the commercial scale tanks ranging from 40L to 4000L scale based solely on the CFD model.

  20. A Colorful Mixing Experiment in a Stirred Tank Using Non-Newtonian Blue Maize Flour Suspensions

    ERIC Educational Resources Information Center

    Trujilo-de Santiago, Grissel; Rojas-de Gante, Cecillia; García-Lara, Silverio; Ballesca´-Estrada, Adriana; Alvarez, Marion Moise´s

    2014-01-01

    A simple experiment designed to study mixing of a material of complex rheology in a stirred tank is described. Non-Newtonian suspensions of blue maize flour that naturally contain anthocyanins have been chosen as a model fluid. These anthocyanins act as a native, wide spectrum pH indicator exhibiting greenish colors in alkaline environments, blue…

  1. Production of xylanolytic enzymes by Aspergillus terricola in stirred tank and airlift tower loop bioreactors.

    PubMed

    Michelin, Michele; Polizeli, Maria de Lourdes Teixeira de Moraes; Silva, Daniel Pereira da; Ruzene, Denise Santos; Vicente, António Augusto; Jorge, João Atílio; Terenzi, Héctor Francisco; Teixeira, José António

    2011-12-01

    Fungi producing high xylanase levels have attracted considerable attention because of their potential industrial applications. Batch cultivations of Aspergillus terricola fungus were evaluated in stirred tank and airlift bioreactors, by using wheat bran particles suspended in the cultivation medium as substrate for xylanase and β-xylosidase production. In the stirred tank bioreactor, in physical conditions of 30°C, 300 rpm, and aeration of 1 vvm (1 l min⁻¹), with direct inoculation of fungal spores, 7,475 U l⁻¹ xylanase was obtained after 36 h of operation, remaining constant after 24 h. In the absence of air injection in the stirred tank reactor, limited xylanase production was observed (final concentration 740 U l⁻¹). When the fermentation process was realized in the airlift bioreactor, xylanase production was higher than that observed in the stirred tank bioreactor, being 9,265 U l⁻¹ at 0.07 vvm (0.4 l min⁻¹) and 12,845 U l⁻¹ at 0.17 vvm (1 l min⁻¹) aeration rate.

  2. A Colorful Mixing Experiment in a Stirred Tank Using Non-Newtonian Blue Maize Flour Suspensions

    ERIC Educational Resources Information Center

    Trujilo-de Santiago, Grissel; Rojas-de Gante, Cecillia; García-Lara, Silverio; Ballesca´-Estrada, Adriana; Alvarez, Marion Moise´s

    2014-01-01

    A simple experiment designed to study mixing of a material of complex rheology in a stirred tank is described. Non-Newtonian suspensions of blue maize flour that naturally contain anthocyanins have been chosen as a model fluid. These anthocyanins act as a native, wide spectrum pH indicator exhibiting greenish colors in alkaline environments, blue…

  3. Monoterpenoid oxindole alkaloid production by Uncaria tomentosa (Willd) D.C. cell suspension cultures in a stirred tank bioreactor.

    PubMed

    Trejo-Tapia, Gabriela; Cerda-García-Rojas, Carlos M; Rodríguez-Monroy, Mario; Ramos-Valdivia, Ana C

    2005-01-01

    Cell growth, monoterpenoid oxindole alkaloid (MOA) production, and morphological properties of Uncaria tomentosa cell suspension cultures in a 2-L stirred tank bioreactor were investigated. U. tomentosa (cell line green Uth-3) was able to grow in a stirred tank at an impeller tip speed of 95 cm/s (agitation speed of 400 rpm), showing a maximum biomass yield of 11.9 +/- 0.6 g DW/L and a specific growth rate of 0.102 d(-1). U. tomentosa cells growing in a stirred tank achieved maximum volumetric and specific MOA concentration (467.7 +/- 40.0 microg/L, 44.6 +/- 5.2 microg/g DW) at 16 days of culture. MOA chemical profile of cell suspension cultures growing in a stirred tank resembled that of the plant. Depending on culture time, from the total MOA produced, 37-100% was found in the medium in the bioreactor culture. MOA concentration achieved in a stirred tank was up to 10-fold higher than that obtained in Erlenmeyer flasks (agitated at 110 rpm). In a stirred tank, average area of the single cells of U. tomentosa increased up to 4-fold, and elliptical form factor increased from 1.40 to 2.55, indicating enlargement of U. tomentosa single cells. This work presents the first report of U. tomentosa green cell suspension cultures that grow and produce MOA in a stirred tank bioreactor.

  4. CONTINUOSLY STIRRED TANK REACTOR PARAMETERS THAT AFFECT SLUDGE BATCH 6 SIMULANT PROPERTIES

    SciTech Connect

    Newell, J.; Lambert, D.; Stone, M.; Fernandez, A.

    2010-05-28

    The High Level Radioactive Waste (HLW) Sludge in Savannah River Site (SRS) waste tanks was produced over a period of over 60 years by neutralizing the acidic waste produced in the F and H Separations Canyons with sodium hydroxide. The HLW slurries have been stored at free hydroxide concentrations above 1 M to minimize the corrosion of the carbon steel waste tanks. Sodium nitrite is periodically added as a corrosion inhibitor. The resulting waste has been subjected to supernate evaporation to minimize the volume of the stored waste. In addition, some of the waste tanks experienced high temperatures so some of the waste has been at elevated temperatures. Because the waste is radioactive, the waste is transforming through the decay of shorter lived radioactive species and the radiation damage that the decay releases. The goal of the Savannah River National Laboratory (SRNL) simulant development program is to develop a method to produce a sludge simulant that matches both the chemical and physical characteristics of the HLW without the time, temperature profile, chemical or radiation exposure of that of the real waste. Several different approaches have been taken historically toward preparing simulated waste slurries. All of the approaches used in the past dozen years involve some precipitation of the species using similar chemistry to that which formed the radioactive waste solids in the tank farm. All of the approaches add certain chemical species as commercially available insoluble solid compounds. The number of species introduced in this manner, however, has varied widely. All of the simulant preparation approaches make the simulated aqueous phase by adding the appropriate ratios of various sodium salts. The simulant preparation sequence generally starts with an acidic pH and ends up with a caustic pH (typically in the 10-12 range). The current method for making sludge simulant involves the use of a temperature controlled continuously stirred tank reactor (CSTR

  5. New milliliter-scale stirred tank bioreactors for the cultivation of mycelium forming microorganisms.

    PubMed

    Hortsch, Ralf; Stratmann, Ansgar; Weuster-Botz, Dirk

    2010-06-15

    A novel milliliter-scale stirred tank bioreactor was developed for the cultivation of mycelium forming microorganisms on a 10 milliliter-scale. A newly designed one-sided paddle impeller is driven magnetically and rotates freely on an axis in an unbaffled reaction vessel made of polystyrene. A rotating lamella is formed which spreads out along the reactor wall. Thus an enhanced surface-to-volume ratio of the liquid phase is generated where oxygen is introduced via surface aeration. Volumetric oxygen transfer coefficients (k(L)a) > 0.15 s(-1) were measured. The fast moving liquid lamella efficiently prevents wall growth and foaming. Mean power consumption and maximum local energy dissipation were measured as function of operating conditions in the milliliter-scale stirred tank bioreactor (V = 10 mL) and compared to a standard laboratory-scale stirred tank bioreactor with six-bladed Rushton turbines (V = 2,000 mL). Mean power consumption increases with increasing impeller speed and shows the same characteristics and values on both scales. The maximum local energy dissipation of the milliliter-scale stirred tank bioreactor was reduced compared to the laboratory-scale at the same mean volumetric power input. Hence the milliliter impeller distributes power more uniformly in the reaction medium. Based on these data a reliable and robust scale-up of fermentation processes is possible. This was demonstrated with the cultivation of the actinomycete Streptomyces tendae on both scales. It was shown that the process performances were equivalent with regard to biomass concentration, mannitol consumption and production of the pharmaceutical relevant fungicide nikkomycin Z up to a process time of 120 h. A high parallel reproducibility was observed on the milliliter-scale (standard deviation < 8%) with up to 48 stirred tank bioreactors operated in a magnetic inductive drive. Rheological behavior of the culture broth was measured and showed a highly viscous shear-thinning non

  6. Friction-Stir Welding of Large Scale Cryogenic Fuel Tanks for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Jones, Clyde S., III; Venable, Richard A.

    1998-01-01

    The Marshall Space Flight Center has established a facility for the joining of large-scale aluminum-lithium alloy 2195 cryogenic fuel tanks using the friction-stir welding process. Longitudinal welds, approximately five meters in length, were made possible by retrofitting an existing vertical fusion weld system, designed to fabricate tank barrel sections ranging from two to ten meters in diameter. The structural design requirements of the tooling, clamping and the spindle travel system will be described in this paper. Process controls and real-time data acquisition will also be described, and were critical elements contributing to successful weld operation.

  7. Friction Stir Welding of the Space Shuttle External Tank Longitudinal Barrel Welds

    NASA Technical Reports Server (NTRS)

    Adams, Glynn; Pareti, Paul; Thompson, Jack; Lawless, Kirby; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    Through the implementation of friction stir welding, the safety, reliability, and producibility of the external tank is enhanced. Such fusion procedures are accomplished with the use of a short barrel weld tool or a long barrel weld tool. Forecasted developments in the fusion tooling field include the advent of a universal tool which is capable to fusing all barrel configurations. A wide array of mechanical and electrical controls are described for such a device.

  8. New miniature stirred-tank bioreactors for parallel study of enzymatic biomass hydrolysis.

    PubMed

    Riedlberger, Peter; Weuster-Botz, Dirk

    2012-02-01

    Many factors strongly influence the enzymatic hydrolysis of biomass to fermentable sugars (feedstock composition, pretreatment, enzymes and enzyme loading). In order to optimize the reaction conditions for the hydrolysis of biomass, an accurate high-throughput bioprocess development tool is mandatory, which enables a parallelization and an easy scale-up. New S-shaped impellers were developed for magnetically inductive driven stirred-tank bioreactors at a 10mL-scale. An efficient and reproducible homogenization was shown at 20% w/w solids loading of microcrystalline cellulose and at, 4-10% with wheat straw in 48 parallel operated stirred-tank bioreactors. The scale-up was successfully validated for the enzymatic hydrolysis of wheat straw suspensions and microcrystalline cellulose mixtures by application of a cellulase complex at a milliliter- and liter-scale. As an example, the parallel stirred-tank bioreactor system was applied for the evaluation of enzymatic batch hydrolyses of plant materials with varying pretreatments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Growth and production of microencapsulated recombinant CHO in a stirred tank bioreactor.

    PubMed

    Wang, Yu; Zhang, Ying; Li, Na; Chen, Li; Zhang, Demeng; Sun, Dongsheng; Lv, Guojun; Yu, Weiting; Guo, Xin; Ma, Xiaojun

    2015-07-01

    Microencapsulation supplies cells with a three-dimensional microenvironment enhancing the metabolic activity, cell density and recombinant protein expression in a stirred tank bioreactor which is used widely to culture mammalian cells in many biochemical processes. In this paper, we address the growth and Desmodus rotundus salivary plasminogen activator (DSPA) production of recombinant CHO (rCHO) in a stirred tank bioreactor. Cells were cultured using two different methods--in an unmicroencapsulated versus microencapsulated culture--and compared differences between them in terms of cell reproduction and DSPA protein productivity. Compared to the unmicroencapsulated rCHO, microencapsulated cells got higher cell density and prolonged the plateau phase. Microencapsulated rCHO promoted DSPA production, with a maximum rate that was 4.8 times higher than in unmicroencapsulated cells, and the accumulated production of DSPA was 3.3 higher than in unmicroencapsulated cells. Negative relationship was found between specific growth rate and DSPA production capacity of unit cells. These findings will facilitate the methods for higher DSPA production in stirred tank bioreactors.

  10. Kinetic modeling and scale up of lipoic acid (LA) production from Saccharomyces cerevisiae in a stirred tank bioreactor.

    PubMed

    Jayakar, Shilpa S; Singhal, Rekha S

    2013-08-01

    Scale up studies for production of lipoic acid (LA) from Saccharomyces cerevisiae have been reported in this paper for the first time. LA production in batch mode was carried out in a stirred tank bioreactor at varying agitation and aeration with maximum LA production of 512 mg/L obtained at 350 rpm and 25 % dissolved oxygen in batch culture conditions. Thus, LA production increased from 352 mg/L in shake flask to 512 mg/L in batch mode in a 5 L stirred tank bioreactor. Biomass production under these conditions was mathematically explained using logistic equation and data obtained for LA production and substrate utilization were successfully fitted using Luedeking-Piret and Mercier's models. The kinetic studies showed LA production to be growth associated. Further enhancement of LA production was carried out using fed-batch (variable volume) and semi-continuous modes of fermentation. Semi-continuous fermentation with three feeding cycles of sucrose effectively increased the production of LA from 512 to 725 mg/L.

  11. High cell density cultivation of recombinant yeasts and bacteria under non-pressurized and pressurized conditions in stirred tank bioreactors.

    PubMed

    Knoll, Arnd; Bartsch, Stefan; Husemann, Bernward; Engel, Philip; Schroer, Kirsten; Ribeiro, Betina; Stöckmann, Christoph; Seletzky, Juri; Büchs, Jochen

    2007-10-31

    This study demonstrates the applicability of pressurized stirred tank bioreactors for oxygen transfer enhancement in aerobic cultivation processes. The specific power input and the reactor pressure was employed as process variable. As model organism Escherichia coli, Arxula adeninivorans, Saccharomyces cerevisiae and Corynebacterium glutamicum were cultivated to high cell densities. By applying specific power inputs of approx. 48kWm(-3) the oxygen transfer rate of a E. coli culture in the non-pressurized stirred tank bioreactor was lifted up to values of 0.51moll(-1)h(-1). When a reactor pressure up to 10bar was applied, the oxygen transfer rate of a pressurized stirred tank bioreactor was lifted up to values of 0.89moll(-1)h(-1). The non-pressurized stirred tank bioreactor was able to support non-oxygen limited growth of cell densities of more than 40gl(-1) cell dry weight (CDW) of E. coli, whereas the pressurized stirred tank bioreactor was able to support non-oxygen limited growth of cell densities up to 225gl(-1) CDW of A. adeninivorans, 89gl(-1) CDW of S. cerevisiae, 226gl(-1) CDW of C. glutamicum and 110gl(-1) CDW of E. coli. Compared to literature data, some of these cell densities are the highest values ever achieved in high cell density cultivation of microorganisms in stirred tank bioreactors. By comparing the specific power inputs as well as the k(L)a values of both systems, it is demonstrated that only the pressure is a scaleable tool for oxygen transfer enhancement in industrial stirred tank bioreactors. Furthermore, it was shown that increased carbon dioxide partial pressures did not remarkably inhibit the growth of the investigated model organisms.

  12. Method of chaotic mixing and improved stirred tank reactors

    DOEpatents

    Muzzio, Fernando J.; Lamberto, David J.

    1999-01-01

    The invention provides a method and apparatus for efficiently achieving a homogeneous mixture of fluid components by introducing said components having a Reynolds number of between about .ltoreq.1 to about 500 into a vessel and continuously perturbing the mixing flow by altering the flow speed and mixing time until homogeniety is reached. This method prevents the components from aggregating into non-homogeneous segregated regions within said vessel during mixing and substantially reduces the time the admixed components reach homogeneity.

  13. Mass transfer in stirred tank for phenolic extraction from coal tar

    NASA Astrophysics Data System (ADS)

    Fardhyanti, Dewi Selvia; Wibowo, Bahy; Rafiqi, Muhammad

    2017-01-01

    Coal production in Indonesia on 2014 reached 368.9 million tons. The used of coal utilization using pyrolysis process to produce coal tar is 15.8% by weight. Coal tar solution containing phenol as much as 8.06% (v / v) were extracted using a solvent of 80 % methanol. Time extraction is conducted for 30 minutes by making every 5 minutes. Samples are then separated to form two layers so that become layer of extract and raffinate. Extract and raffinate layer was then tested by using UV - Vis sektrofotometer so that the data obtained experimental results.The reserach about phenomenon and models of mass transfering and taking the phenol compound from coal tir is less. The result shows, the highest extracted of concentration phenol in 40°C, tank diameter 9cm, stirrer diameter 3,5cm, stirring speed of 250rpm and at 20 minutes extraction time got 2,35% concentration of phenol. Thus, the increasing temperature and stirred velocity will increase phenol concentration. In other hand, decreasing tank diameter will increase phenol concentration.

  14. A simple eccentric stirred tank mini-bioreactor: mixing characterization and mammalian cell culture experiments.

    PubMed

    Bulnes-Abundis, David; Carrillo-Cocom, Leydi M; Aráiz-Hernández, Diana; García-Ulloa, Alfonso; Granados-Pastor, Marisa; Sánchez-Arreola, Pamela B; Murugappan, Gayathree; Alvarez, Mario M

    2013-04-01

    In industrial practice, stirred tank bioreactors are the most common mammalian cell culture platform. However, research and screening protocols at the laboratory scale (i.e., 5-100 mL) rely primarily on Petri dishes, culture bottles, or Erlenmeyer flasks. There is a clear need for simple-easy to assemble, easy to use, easy to clean-cell culture mini-bioreactors for lab-scale and/or screening applications. Here, we study the mixing performance and culture adequacy of a 30 mL eccentric stirred tank mini-bioreactor. A detailed mixing characterization of the proposed bioreactor is presented. Laser induced fluorescence (LIF) experiments and computational fluid dynamics (CFD) computations are used to identify the operational conditions required for adequate mixing. Mammalian cell culture experiments were conducted with two different cell models. The specific growth rate and the maximum cell density of Chinese hamster ovary (CHO) cell cultures grown in the mini-bioreactor were comparable to those observed for 6-well culture plates, Erlenmeyer flasks, and 1 L fully instrumented bioreactors. Human hematopoietic stem cells were successfully expanded tenfold in suspension conditions using the eccentric mini-bioreactor system. Our results demonstrate good mixing performance and suggest the practicality and adequacy of the proposed mini-bioreactor. Copyright © 2012 Wiley Periodicals, Inc.

  15. Large Eddy Simulations of a Stirred Tank Using the Lattice Boltzmann Method on a Nonuniform Grid

    NASA Astrophysics Data System (ADS)

    Lu, Zhenyu; Liao, Ying; Qian, Dongying; McLaughlin, J. B.; Derksen, J. J.; Kontomaris, K.

    2002-09-01

    A nonuniform grid lattice Boltzmann technique previously described by He et al. [1] has been extended to simulate three-dimensional flows in complex geometries. The technique is applied to the computation of the turbulent flow in a stirred tank driven by a standard Rushton turbine. With the nonuniform grid approach, the total CPU time required for a simulation of the flow in a stirred tank can be reduced by roughly 75% and still provide the same spatial accuracy as would be obtained with a uniform high-resolution grid. Statistical results for the computed flow fields will be compared with experimental results (H. Wu and G. K. Patterson, Chem. Eng. Sci.44, 2207 (1989)) and with simulations by J. G. M. Eggels ( Int. J. Heat Fluid Flow17, 307 (1996)) and J. J. Derksen and H. E. A. Van den Akker ( AIChE J.45, 209 (1999)). The results of the nonuniform mesh simulation are in reasonable agreement with the available experimental data and the results of previous simulations.

  16. The cumulative and sublethal effects of turbulence on erythrocytes in a stirred-tank model.

    PubMed

    Aziz, Abdulhameed; Werner, Brian C; Epting, Kevin L; Agosti, Christopher D; Curtis, Wayne R

    2007-12-01

    Mechanical forces generated by prosthetic heart devices (artificial valves, artificial hearts, ventricular assist devices) have been known to cause damage and destruction of erythrocytes. Turbulent flow within such devices generates shear stresses and can induce cell damage. Current models of cell damage rate utilize only the power input per unit mass as a modeling parameter. A stirred-tank reactor provides for a more extensive characterization of turbulence through eddy scale calculations. Through a simplified model, turbulence can be characterized by evaluating the Kolmogorov microscale. Our analysis of erythrocyte rupture in a stirred tank reactor suggests that parameters such as eddy wavelength and eddy velocity may better characterize and model the turbulent damage. Further, hemolysis of red blood cells by turbulent effects has been shown to have a fixed rate for constant levels of power input. Damage inflicted on the remaining, intact erythrocytes (sublethal damage) was evaluated by exposure to turbulence followed by osmotic fragility (OF) testing. Logistic models were fit to the OF data indicating a significant osmotic sensitivity in the sublethal damaged population between control and turbulence-exposed cells (chi(2) test; p < 0.001). This susceptibility indicates a significant cell population more susceptible to destruction as a result of turbulent exposure. This work has therefore helped identify optimization parameters for evaluating cell damage potential when engineering cardiovascular prosthetic devices.

  17. Mass Transfer Coefficientin Stirred Tank for p-Cresol Extraction Process from Coal Tar

    NASA Astrophysics Data System (ADS)

    Fardhyanti, D. S.; Tyaningsih, D. S.; Afifah, S. N.

    2017-04-01

    Indonesia is a country that has a lot of coal resources. The Indonesian coal has a low caloric value. Pyrolysis is one of the process to increase the caloric value. One of the by-product of the pyrolysis process is coal tar. It contains a lot of aliphatic or aromatic compounds such asp-cresol (11% v/v). It is widely used as a disinfectant. Extractionof p-Cresol increases the economic value of waste of coal. The aim of this research isto study about mass tranfer coefficient in the baffled stirred tank for p-Cresolextraction from coal tar. Mass transfer coefficient is useful for design and scale up of industrial equipment. Extraction is conducted inthe baffled stirred tank equipped with a four-bladed axial impeller placed vertically in the vessel. Sample for each time processing (5, 10, 15, 20, 25 and 30minutes) was poured into a separating funnel, settled for an hour and separated into two phases. Then the two phases were weighed. The extract phases and raffinate phases were analyzed by Spectronic UV-Vis. The result showed that mixing speed of p-Cresol extraction increasesthe yield of p-Cresol and the mass transfer coefficient. The highest yield of p-Cresol is 49.32% and the highest mass transfer coefficient is 4.757 x 10-6kg/m2s.

  18. Effects of baffle configuration and tank size on spherical agglomerates of dimethyl fumarate in a common stirred tank.

    PubMed

    Lin, Po Yen; Lee, Hung Lin; Chen, Chih Wei; Lee, Tu

    2015-11-30

    To pave the way for technology transfer and scale up of the spherical agglomeration (SA) process for dimethyl fumarate, effects of the US, European and Kawashima type baffles and 0.5, 2.0 and 10 L-sized common stirred tank were studied. It was found that the particle size distribution varied significantly. However, the size-related properties such as dissolution profile and flowability of agglomerates from the same size cut after sieving could remain unchanged. The interior structure-related properties such as particle density and mechanical property of agglomerates upon baffle change and scale up from the same size cut were decayed and the agglomerates could become denser and stronger by prolonged maturation time. To maintain the same size distribution, agglomerates from any batch could have been separated and classified by sieving and then blended back together artificially by the desired weight% of each cut.

  19. Using spatio-temporal asymmetry to enhance mixing in chaotic flows: From maps to stirred tanks

    NASA Astrophysics Data System (ADS)

    Alvarez, Mario Moises

    Under laminar flow conditions, chaos is the only route to achieve effective mixing. Indeed, industrially relevant devices such as static mixers, stirred tanks, and roller bottles work because they create chaotic flows. However, they are generally operated and designed in a symmetric fashion (e.g. symmetric construction, periodic operation). Under such circumstances, chaotic and nonchaotic regions always co-exist, often hindering mixing performance. The introduction of asymmetries (in space or time) has been proposed as a means to improve mixing performance by generating globally chaotic systems in which the entire flow domain is subject to the action of exponential stretching and repeated folding, key features of chaotic flows capable of good mixing. Here we compare mixing performance of symmetric and asymmetric mixing flows from the point of view of the properties of the structure that they generate. In particular, we analyze two classes of systems: We use computer simulations to follow the process of elongation and deformation of interfaces as they are advected by time-periodic and aperiodic protocols in an idealized 2-D flow (the sine flow). The distribution of length scales characteristic of the partially mixed structures in this flow is calculated and their statistical properties are investigated. As the main conclusion, we find that the distribution of length scales is universal (independently on the periodic or aperiodic nature of the flow), and predictable (based on stretching calculations) for any globally chaotic flow. Subsequently, mixing structures and flow patterns in stirred tank systems of geometries encountered in engineering practice and operated in the laminar regime are investigated experimentally using UV visualization techniques, Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (p-LIF). It is experimentally demonstrated that concentric stirred tank configurations achieve partial chaos only by virtue of the small

  20. Lycopene production from synthetic medium by Blakeslea trispora NRRL 2895 (+) and 2896 (-) in a stirred-tank fermenter.

    PubMed

    Liu, Xiu-Ji; Liu, Rui-Sang; Li, Hong-Mei; Tang, Ya-Jie

    2012-06-01

    The dissolved oxygen tension of 20% of air saturation, pH-shift from 4.0 to 5.5 on day 3, and a moderate shear stress (calculated as an impeller tip speed, V(tip) = 0.926 - 2.161 m/s) were identified to be the key factors in scaling-up the mated fermentation of Blakeslea trispora NRRL 2895 (+) and 2896 (-) for lycopene production from a shake flask to a stirred-tank fermenter. The maximal lycopene production of 183.3 mg/L was obtained in 7.5-L stirred-tank fermenter, and then the mated fermentation process was successfully step-wise scaled-up from 7.5- to 200-L stirred-tank fermenter. The comparability of the fermentation process was well controlled and the lycopene production was maintained during the process scale-up. Furthermore, with the integrated addition of 150 μmol/L abscisic acid on day 3, 0.5 g/L leucine and 0.1 g/L penicillin on day 4, the highest lycopene production of 270.3 mg/L was achieved in the mated fermentation of B. trispora in stirred-tank fermenter.

  1. Effect of inoculation process on lycopene production by Blakeslea trispora in a stirred-tank reactor.

    PubMed

    Wang, Qiang; Feng, Ling-Ran; Luo, Wei; Li, Han-Guang; Zhou, Ya; Yu, Xiao-Bin

    2015-01-01

    Lycopene biosynthesis by Blakeslea trispora was greatly enhanced in a stirred-tank reactor when a nonsynchronous inoculation process, in which the (+) mating type was inoculated after the (-) mating type has been grown for a certain period of time, was applied. The lycopene concentration with nonsynchronous inoculation in a 24-h inoculation interval was 33 % higher than that with synchronous inoculation. The optimum inoculation ratio was 1:2 (+/-) at the 36 and 48 h inoculum age of mating types (+) and (-), respectively. Fermentation time for the individual strains and mated conditions showed that the (+) mating type grows faster than the (-) mating type. Morphological observation showed that the mycelium ratio of B. trispora (-) in mating culture with nonsynchronous inoculation was higher than that with synchronous inoculation. The results indicated that nonsynchronous inoculation process increased the dominance of B. trispora (-) in joint cultivation and hence stimulated lycopene biosynthesis.

  2. Effect of blade modifications on the torque and flow field of radial impellers in stirred tanks

    NASA Astrophysics Data System (ADS)

    Steiros, K.; Bruce, P. J. K.; Buxton, O. R. H.; Vassilicos, J. C.

    2017-09-01

    We perform both high- and low-speed particle image velocimetry and torque measurements to characterize eight radial impeller types in an unbaffled stirred tank. The blade types consist of a set of regular flat blades, used as a baseline, regular blades of increased thickness, perforated blades, and fractal blades. We find a qualitative correlation between the blades' torque coefficient and both vortex coherence and turbulent kinetic energy, possibly explaining the torque differences of the tested impellers. Furthermore, we find that the proposed modifications increase the bulk turbulence levels and mass flow rates while at the same time reducing the shaft torque, showing promise for applications. Finally, we attempt a comparison between fractal and perforated geometries using data from this study and the literature.

  3. Ozone degradation of alkylbenzene sulfonate in aqueous solutions using a stirred tank reactor with recirculation.

    PubMed

    Jurado-Alameda, Encarnación; Vicaria, José M; Altmajer-Vaz, Deisi; Luzón, Germán; Jiménez-Pérez, José L; Moya-Ramírez, Ignacio

    2012-01-01

    The degradation of linear alkylbenzene sulfonates (LAS) in aqueous solutions by ozone has been investigated. The ozonation process was performed in a stirred tank reactor with recirculation which simulates the clean-in-place process used in many industrial facilities. The gas-liquid mass transfer of ozone in a buffer solution at different temperatures (25-55°C) was also studied in the same device, revealing that ozone decomposition can be considered negligible under the experimental conditions assayed. The effect of the initial LAS concentration, temperature, and ozone concentration on the concentration of homologues and total LAS were analysed as a function of time. Both concentrations diminished with time, this effect being more significant when higher temperatures were assayed. The relative proportion of homologues shows that the homologues of higher chain length are degraded in a greater proportion than are the homologues with shorter chain lengths.

  4. Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes

    PubMed Central

    2013-01-01

    In this study, a miniature stirred tank bioreactor was designed for treatment of waste gas containing benzene, toluene and xylene. Oxygen mass transfer characteristics for various twin and single-impeller systems were investigated for 6 configurations in a vessel with 10 cm of inner diameter and working volume of 1.77L. Three types of impellers, namely, Rushton turbine, Pitched 4blades and Pitched 2blades impellers with downward pumping have been used. Deionized water was used as a liquid phase. With respect to other independent variables such as agitation speed, aeration rate, type of sparger, number of impellers, the relative performance of these impellers was assessed by comparing the values of (KLa) as a key parameter. Based on the experimental data, empirical correlations as a function of the operational conditions have been proposed, to study the oxygen transfer rates from air bubbles generated in the bioreactor. It was shown that twin Rushton turbine configuration demonstrates superior performance (23% to 77% enhancement in KLa) compared with other impeller compositions and that sparger type has negligible effect on oxygen mass transfer rate. Agitation speeds of 400 to 800 rpm were the most efficient speeds for oxygen mass transfer in the stirred bioreactor. PMID:23369581

  5. Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes.

    PubMed

    Karimi, Ali; Golbabaei, Farideh; Mehrnia, Momammad Reza; Neghab, Masoud; Mohammad, Kazem; Nikpey, Ahmad; Pourmand, Mohammad Reza

    2013-01-07

    In this study, a miniature stirred tank bioreactor was designed for treatment of waste gas containing benzene, toluene and xylene. Oxygen mass transfer characteristics for various twin and single-impeller systems were investigated for 6 configurations in a vessel with 10 cm of inner diameter and working volume of 1.77L. Three types of impellers, namely, Rushton turbine, Pitched 4blades and Pitched 2blades impellers with downward pumping have been used. Deionized water was used as a liquid phase. With respect to other independent variables such as agitation speed, aeration rate, type of sparger, number of impellers, the relative performance of these impellers was assessed by comparing the values of (KLa) as a key parameter. Based on the experimental data, empirical correlations as a function of the operational conditions have been proposed, to study the oxygen transfer rates from air bubbles generated in the bioreactor. It was shown that twin Rushton turbine configuration demonstrates superior performance (23% to 77% enhancement in KLa) compared with other impeller compositions and that sparger type has negligible effect on oxygen mass transfer rate. Agitation speeds of 400 to 800 rpm were the most efficient speeds for oxygen mass transfer in the stirred bioreactor.

  6. Azadirachtin production by hairy root cultivation of Azadirachta indica in a modified stirred tank reactor.

    PubMed

    Srivastava, Smita; Srivastava, A K

    2012-11-01

    Present investigation involves hairy root cultivation of Azadirachta indica in a modified stirred tank reactor under optimized culture conditions for maximum volumetric productivity of azadirachtin. The selected hairy root line (Az-35) was induced via Agrobacterium rhizogenes LBA 920-mediated transformation of A. indica leaf explants (Coimbatore variety, India). Liquid culture of the hairy roots was developed in a modified Murashige and Skoog medium (MM2). To further enhance the productivity of azadirachtin, selected growth regulators (1.0 mg/l IAA and 0.025 mg/l GA(3)), permeabilizing agent (0.5 % v/v DNBP), a biotic elicitor (1 % v/v Curvularia (culture filtrate)) and an indirectly linked biosynthetic precursor (50 mg/l cholesterol) were added in the growth medium on 15th day of the hairy root cultivation period in shake flask. Highest azadirachtin production (113 mg/l) was obtained on 25th day of the growth cycle with a biomass of 21 g/l DW. Further, batch cultivation of hairy roots was carried out in a novel liquid-phase bioreactor configuration (modified stirred tank reactor with polyurethane foam as root support) to investigate the possible scale-up of the established A. indica hairy root culture. A biomass production of 15.2 g/l with azadirachtin accumulation in the hairy roots of 6.4 mg/g (97.28 mg/l) could be achieved after 25 days of the batch cultivation period, which was ~27 and ~14 % less biomass and azadirachtin concentration obtained respectively, in shake flasks. An overall volumetric productivity of 3.89 mg/(l day) of azadirachtin was obtained in the bioreactor.

  7. Justification for Continued Operation for Tank 241-Z-361

    SciTech Connect

    BOGEN, D.M.

    1999-09-01

    This justification for continued operations (JCO) summarizes analyses performed to better understand and control the potential hazards associated with Tank 241-2-361. This revision to the JCO has been prepared to identify and control the hazards associated with sampling the tank using techniques developed and approved for use in the Tank Waste Remediation System (TWRS) at Hanford.

  8. Center Segregation with Final Electromagnetic Stirring in Billet Continuous Casting Process

    NASA Astrophysics Data System (ADS)

    Jiang, Dongbin; Zhu, Miaoyong

    2017-02-01

    With a multiphase solidification model built, the effect of F-EMS parameters on center segregation was investigated in 160 mm × 160 mm billet continuous casting process. In the model, the initial growth of equiaxed grains which could move freely with liquid was treated as slurry, while the coherent equiaxed zone was regarded as porous media. The results show that the stirring velocity is not the main factor influencing center segregation improvement, which is more affected by current intensity and stirring pool width. Because solute transport is controlled by solidification rate as stirring pool width is 73 mm, center segregation declines continuously with current intensity increasing. As liquid pool width decreases to 61 mm and less latent heat needs to dissipate in the later solidification, the center segregation could be improved more obviously by F-EMS. Due to center liquid solute enrichment and liquid phase accumulation in the stirring zone, center segregation turns to rise reversely with higher current intensity and becomes more serious with stirring pool width further decreasing to 43 mm. As the stirring pool width is 25 mm, the positive segregation has already formed and solute could still concentrate with weak stirring, leading to center segregation deterioration. With the optimized current intensity (400 A) and stirring pool width (61 mm) set for continuous mode, center segregation improvement is better than that of alternative mode.

  9. Enumeration and Characterization of Acidophilic Microorganisms Isolated from a Pilot Plant Stirred-Tank Bioleaching Operation

    PubMed Central

    Okibe, Naoko; Gericke, Mariekie; Hallberg, Kevin B.; Johnson, D. Barrie

    2003-01-01

    Microorganisms were enumerated and isolated on selective solid media from a pilot-scale stirred-tank bioleaching operation in which a polymetallic sulfide concentrate was subjected to biologically accelerated oxidation at 45°C. Four distinct prokaryotes were isolated: three bacteria (an Acidithiobacillus caldus-like organism, a thermophilic Leptospirillum sp., and a Sulfobacillus sp.) and one archaeon (a Ferroplasma-like isolate). The relative numbers of these prokaryotes changed in the three reactors sampled, and the Ferroplasma isolate became increasingly dominant as mineral oxidation progressed, eventually accounting for >99% of plate isolates in the third of three in-line reactors. The identities of the isolates were confirmed by analyses of their 16S rRNA genes, and some key physiological traits (e.g., oxidation of iron and/or sulfur and autotrophy or heterotrophy) were examined. More detailed studies were carried out with the Leptospirillum and Ferroplasma isolates. The data presented here represent the first quantitative study of the microorganisms in a metal leaching situation and confirm that mixed cultures of iron- and sulfur-oxidizing prokaryotic acidophiles catalyze the accelerated dissolution of sulfidic minerals in industrial tank bioleaching operations. The results show that indigenous acidophilic microbial populations change as mineral dissolution becomes more extensive. PMID:12676667

  10. Friction Stir Welding Development

    NASA Technical Reports Server (NTRS)

    Romine, Peter L.

    1998-01-01

    The research of this summer was a continuation of work started during the previous summer faculty fellowship period. The Friction Stir Welding process (FSW) patented by The Welding Institute (TWI), in Great Britain, has become a popular topic at the Marshall Space Flight Center over the past year. Last year it was considered a novel approach to welding but few people took it very seriously as a near term solution. However, due to continued problems with cracks in the new aluminum-lithium space shuttle external tank (ET), the friction stir process is being mobilized at full speed in an effort to mature this process for the potential manufacture of flight hardware. It is now the goal of NASA and Lockheed-Martin Corporation (LMC) to demonstrate a full-scale friction stir welding system capable of welding ET size barrel sections. The objectives this summer were: (1) Implementation and validation of the rotating dynamometer on the MSFC FSW system; (2) Collection of data for FSW process modeling efforts; (3) Specification development for FSW implementation on the vertical weld tool; (4) Controls and user interface development for the adjustable pin tool; and (5) Development of an instrumentation system for the planishing process. The projects started this summer will lead to a full scale friction stir welding system that is expected to produce a friction stir welded shuttle external tank type barrel section. The success of this could lead to the implementation of the friction stir process for manufacturing future shuttle external tanks.

  11. Continuous tank reactors in series: an improved alternative in the removal of phenolic compounds with immobilized peroxidase.

    PubMed

    Gómez, E; Máximo, M F; Montiel, M C; Gómez, M; Murcia, M D; Ortega, S

    2012-01-01

    Immobilized derivatives of soybean peroxidase, covalently bound to a glass support, were used in a continuous stirred tank reactor in series, in order to study the removal of two phenolic compounds: phenol and 4-chlorophenol. The use of two reactors in series, rather than one continuous tank, improved the removal efficiencies of phenol and 4-chlorophenol. The distribution of different amounts of enzyme between the two tanks showed that the relative distributions influenced the removal efficiency reached and the degree of the enzyme deactivation. The highest removal percentages were reached at the outlet of the second tank for a distribution of 50% of the enzyme in each tank. However, with a distribution of 75% in the first tank and 25% in the second, the elimination percentage in the second tank was slightly lower than in the previous case, and the effects of deactivation of the enzyme in the first tank were less pronounced. In all the distributions assayed it was observed that the first tank acts as a filter for the second one, which receives a feed with a smaller load of phenolic compounds, thus diminishing enzyme deactivation in the second tank.

  12. Continuously-stirred Anaerobic Digester to Convert Organic Wastes into Biogas: System Setup and Basic Operation

    PubMed Central

    Usack, Joseph G.; Spirito, Catherine M.; Angenent, Largus T.

    2012-01-01

    Anaerobic digestion (AD) is a bioprocess that is commonly used to convert complex organic wastes into a useful biogas with methane as the energy carrier 1-3. Increasingly, AD is being used in industrial, agricultural, and municipal waste(water) treatment applications 4,5. The use of AD technology allows plant operators to reduce waste disposal costs and offset energy utility expenses. In addition to treating organic wastes, energy crops are being converted into the energy carrier methane 6,7. As the application of AD technology broadens for the treatment of new substrates and co-substrate mixtures 8, so does the demand for a reliable testing methodology at the pilot- and laboratory-scale. Anaerobic digestion systems have a variety of configurations, including the continuously stirred tank reactor (CSTR), plug flow (PF), and anaerobic sequencing batch reactor (ASBR) configurations 9. The CSTR is frequently used in research due to its simplicity in design and operation, but also for its advantages in experimentation. Compared to other configurations, the CSTR provides greater uniformity of system parameters, such as temperature, mixing, chemical concentration, and substrate concentration. Ultimately, when designing a full-scale reactor, the optimum reactor configuration will depend on the character of a given substrate among many other nontechnical considerations. However, all configurations share fundamental design features and operating parameters that render the CSTR appropriate for most preliminary assessments. If researchers and engineers use an influent stream with relatively high concentrations of solids, then lab-scale bioreactor configurations cannot be fed continuously due to plugging problems of lab-scale pumps with solids or settling of solids in tubing. For that scenario with continuous mixing requirements, lab-scale bioreactors are fed periodically and we refer to such configurations as continuously stirred anaerobic digesters (CSADs). This article

  13. Continuously-stirred anaerobic digester to convert organic wastes into biogas: system setup and basic operation.

    PubMed

    Usack, Joseph G; Spirito, Catherine M; Angenent, Largus T

    2012-07-13

    Anaerobic digestion (AD) is a bioprocess that is commonly used to convert complex organic wastes into a useful biogas with methane as the energy carrier. Increasingly, AD is being used in industrial, agricultural, and municipal waste(water) treatment applications. The use of AD technology allows plant operators to reduce waste disposal costs and offset energy utility expenses. In addition to treating organic wastes, energy crops are being converted into the energy carrier methane. As the application of AD technology broadens for the treatment of new substrates and co-substrate mixtures, so does the demand for a reliable testing methodology at the pilot- and laboratory-scale. Anaerobic digestion systems have a variety of configurations, including the continuously stirred tank reactor (CSTR), plug flow (PF), and anaerobic sequencing batch reactor (ASBR) configurations. The CSTR is frequently used in research due to its simplicity in design and operation, but also for its advantages in experimentation. Compared to other configurations, the CSTR provides greater uniformity of system parameters, such as temperature, mixing, chemical concentration, and substrate concentration. Ultimately, when designing a full-scale reactor, the optimum reactor configuration will depend on the character of a given substrate among many other nontechnical considerations. However, all configurations share fundamental design features and operating parameters that render the CSTR appropriate for most preliminary assessments. If researchers and engineers use an influent stream with relatively high concentrations of solids, then lab-scale bioreactor configurations cannot be fed continuously due to plugging problems of lab-scale pumps with solids or settling of solids in tubing. For that scenario with continuous mixing requirements, lab-scale bioreactors are fed periodically and we refer to such configurations as continuously stirred anaerobic digesters (CSADs). This article presents a general

  14. Removal of dichloromethane from waste gases in one- and two-liquid-phase stirred tank bioreactors and biotrickling filters.

    PubMed

    Bailón, Laura; Nikolausz, Marcell; Kästner, Matthias; Veiga, María C; Kennes, Christian

    2009-01-01

    The removal of dichloromethane (DCM) from polluted air was studied both in biotrickling filters and in continuous stirred tank bioreactors, using either a single-liquid aqueous phase or a combination of an aqueous-organic liquid phase. The presence of the organic phase, i.e. silicone oil, at a volume ratio of 10% of the liquid phase, increased the maximum EC by about 25% in the BTF, reaching 200 gm(3)/h, and by as much as 300% in the CSTB, reaching 350 gm(3)/h. Based on data of chloride release in the aqueous phase and carbon dioxide production in the gas phase, complete dechlorination and mineralization of the pollutant could be confirmed. When applying shock loads, a more stable behaviour was observed in the presence of the organic phase. Generally, the completely mixed reactors were also more stable than the plug-flow biotrickling filters, irrespective of the presence of the organic phase. The use of molecular techniques allowed showing that the originally inoculated DCM-degrading Hyphomicrobium strains remained present, although not dominant, after long-term bioreactor operation. Different new bacterial populations did also appear in the systems, some of which were unable to degrade DCM.

  15. Energy-efficient stirred-tank photobioreactors for simultaneous carbon capture and municipal wastewater treatment.

    PubMed

    Mohammed, K; Ahammad, S Z; Sallis, P J; Mota, C R

    2014-01-01

    Algal based wastewater treatment (WWT) technologies are attracting renewed attention because they couple energy-efficient sustainable treatment with carbon capture, and reduce the carbon footprint of the process. A low-cost energy-efficient mixed microalgal culture-based pilot WWT system, coupled with carbon dioxide (CO2) sequestration, was investigated. The 21 L stirred-tank photobioreactors (STPBR) used light-emitting diodes as the light source, resulting in substantially reduced operational costs. The STPBR were operated at average optimal light intensity of 582.7 μmol.s(-1).m(-2), treating synthetic municipal wastewater containing approximately 250, 90 and 10 mg.L(-1) of soluble chemical oxygen demand (SCOD), ammonium (NH4-N), and phosphate, respectively. The STPBR were maintained for 64 days without oxygen supplementation, but had a supply of CO2 (25 mL.min(-1), 25% v/v in N2). Relatively high SCOD removal efficiency (>70%) was achieved in all STPBR. Low operational cost was achieved by eliminating the need for mechanical aeration, with microalgal photosynthesis providing all oxygenation. The STPBR achieved an energy saving of up to 95%, compared to the conventional AS system. This study demonstrates that microalgal photobioreactors can provide effective WWT and carbon capture, simultaneously, in a system with potential for scaling-up to municipal WWT plants.

  16. Growth kinetics of biopigment production by Thai isolated Monascus purpureus in a stirred tank bioreactor.

    PubMed

    Kongruang, Sasithorn

    2011-01-01

    Monascus purpureus is a biopigment-producing fungi whose pigments can be used in many biotechnological and food industries. The growth kinetics of biopigment production were investigated in a liquid fermentation medium in a 5-l stirred tank bioreactor at 30°C, pH 7, for 8 days with 100 rpm agitation and 1.38 × 10(5) N/m(2) aeration. Thai Monascus purpureus strains TISTR 3002, 3180, 3090 and 3385 were studied for color production, growth kinetics and productivity. Citrinin as a toxic metabolite was measured from the Monascus fermentation broth. The biopigment productions were detected from fermentation broth by scanning spectra of each strain produced. Results showed a mixture of yellow, orange and red pigments with absorption peaks of pigments occurring at different wavelengths for the four strains. It was found that for each pigment color, the color production from the strains increased in the order TISTR 3002, 3180, 3090, 3385 with 3385 production being approximately 10 times that of 3002. Similar results were found for growth kinetics and productivity. HPLC results showed that citrinin was not produced under the culture conditions of this study. The L*, a* and b* values of the CIELAB color system were also obtained for the yellow, orange and red pigments produced from the TISTR 3002, 3180, 3090 and 3385 strains. The colors of the pigments ranged from burnt umber to deep red.

  17. Scale-up synthesis of lipase-catalyzed palm esters in stirred-tank reactor.

    PubMed

    Keng, P S; Basri, M; Ariff, A B; Abdul Rahman, M B; Abdul Rahman, R N Z; Salleh, A B

    2008-09-01

    Lipase-catalyzed production of palm esters by alcoholysis of palm oil with oleyl alcohol in n-hexane was performed in 2L stirred-tank reactor (STR). Investigation on the performance of reactor operation was carried out in batch mode STR with single impeller mounted on the centrally located shaft. Rushton turbine (RT) impellers provide the highest reaction yield (95.8%) at lower agitation speed as compared to AL-hydrofoil (AL-H) and 2-bladed elephant ear (EE) impellers. Homogenous enzyme particles suspension was obtained at 250 rpm by using RT impeller. At higher impeller speed, the shear effect on the enzyme particles caused by agitation has decreased the reaction performance. Palm esters reaction mixture in STR follows Newtons' law due to the linear relation between the shear stress (tau) and shear rate (dupsilon/dy). High stability of Lipozyme RM IM was observed as shown by its ability to be repeatedly used to give high percentage yield (79%) of palm esters even after 15 cycles of reaction. The process was successfully scale-up to 75 L STR (50 L working volume) based on a constant impeller tip speed approach, which gave the yield of 97.2% after 5h reaction time.

  18. Carbon monoxide mass transfer for syngas fermentation in a stirred tank reactor with dual impeller configurations.

    PubMed

    Ungerman, Andrew J; Heindel, Theodore J

    2007-01-01

    This study compares the power demand and gas-liquid volumetric mass transfer coefficient, kLa, in a stirred tank reactor (STR) (T = 0.211 m) using different impeller designs and schemes in a carbon monoxide-water system, which is applicable to synthesis gas (syngas) fermentation. Eleven different impeller schemes were tested over a range of operating conditions typically associated with the "after large cavity" region (ALC) of a Rushton-type turbine (D/T = 0.35). It is found that the dual Rushton-type impeller scheme exhibits the highest volumetric mass transfer rates for all operating conditions; however, it also displays the lowest mass transfer performance (defined as the volumetric mass transfer coefficient per unit power input) for all conditions due to its high power consumption. Dual impeller schemes with an axial flow impeller as the top impeller show improved mass transfer rates without dramatic increases in power draw. At high gas flow rates, dual impeller schemes with a lower concave impeller have kLa values similar to those of the Rushton-type dual impeller schemes but show improved mass transfer performance. It is believed that the mass transfer performance can be further enhanced for the bottom concave impeller schemes by operating at conditions beyond the ALC region defined for Rushton-type impellers because the concave impeller can handle higher gas flow rates prior to flooding.

  19. Biodegradation of high concentrations of benzene vapors in a two phase partition stirred tank bioreactor

    PubMed Central

    2013-01-01

    The present study examined the biodegradation rate of benzene vapors in a two phase stirred tank bioreactor by a bacterial consortium obtained from wastewater of an oil industry refinery house. Initially, the ability of the microbial consortium for degrading benzene was evaluated before running the bioreactor. The gaseous samples from inlet and outlet of bioreactor were directly injected into a gas chromatograph to determine benzene concentrations. Carbone oxide concentration at the inlet and outlet of bioreactor were also measured with a CO2 meter to determine the mineralization rate of benzene. Influence of the second non-aqueous phase (silicon oil) has been emphasized, so at the first stage the removal efficiency (RE) and elimination capacity (EC) of benzene vapors were evaluated without any organic phase and in the second stage, 10% of silicon oil was added to bioreactor media as an organic phase. Addition of silicon oil increased the biodegradation performance up to an inlet loading of 5580 mg/m3, a condition at which, the elimination capacity and removal efficiency were 181 g/m3/h and 95% respectively. The elimination rate of benzene increased by 38% in the presence of 10% of silicone oil. The finding of this study demonstrated that two phase partition bioreactors (TPPBs) are potentially effective tools for the treatment of gas streams contaminated with high concentrations of poorly water soluble organic contaminant, such as benzene. PMID:23369269

  20. Evaluation of oxygen transfer rates in stirred-tank bioreactors for clinical manufacturing.

    PubMed

    Bellucci, Joseph J; Hamaker, Kent H

    2011-01-01

    Several methods are available for determining the volumetric oxygen transfer coefficient in bioreactors, though their application in industrial bioprocess has been limited. To be practically useful, mass transfer measurements made in nonfermenting systems must be consistent with observed microbial respiration rates. This report details a procedure for quantifying the relationship between agitation frequency and oxygen transfer rate that was applied in stirred-tank bioreactors used for clinical biologics manufacturing. The intrinsic delay in dissolved oxygen (DO) measurement was evaluated by shifting the bioreactor pressure and fitting a first-order mathematical model to the DO response. The dynamic method was coupled with the DO lag results to determine the oxygen transfer rate in Water for Injection (WFI) and a complete culture medium. A range of agitation frequencies was investigated at a fixed air sparge flow rate, replicating operating conditions used in Pichia pastoris fermentation. Oxygen transfer rates determined by this method were in excellent agreement with off-gas calculations from cultivation of the organism (P = 0.1). Fermentation of Escherichia coli at different operating parameters also produced respiration rates that agreed with the corresponding dynamic method results in WFI (P = 0.02). The consistency of the dynamic method results with the off-gas data suggests that compensation for the delay in DO measurement can be combined with dynamic gassing to provide a practical, viable model of bioreactor oxygen transfer under conditions of microbial fermentation. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  1. Volatilization of organic compounds in an aerated stirred-tank reactor

    SciTech Connect

    Libra, J.A.

    1991-01-01

    Volatilization must be considered as a removal mechanism when treating waste-waters containing volatile organic compounds (VOC's). This study investigated the simultaneous mass transfer of oxygen and three organic compounds in an aerated stirred tank reactor to determine if the ratio of the two mass transfer coefficients, K{sub L}a{sub VOC}/k{sub L}a{sub O2}, can be used to predict volatilization rates for semi-volatile compounds. This work expands the range of compound volatility and the types of waters investigated to semi-volatile organic compounds in water containing an anionic surfactant over a larger power range than previously studied. The mass transfer coefficients of oxygen and three VOC's: toluene, dichloromethane, and 1,2-dichlorobenzene, were determined in three water systems: tap water, tap water with an anionic surfactant, dodecyl sodium sulfate (DSS), and tap water with biomass (k{sub L}a{sub O2} only). A steady state method was used. Experiments were made to span the range of mass transfer coefficients found in both municipal and industrial wastewater treatment processes. The results were analyzed using dimensional analysis.

  2. Online measurement of viscosity for biological systems in stirred tank bioreactors.

    PubMed

    Schelden, Maximilian; Lima, William; Doerr, Eric Will; Wunderlich, Martin; Rehmann, Lars; Büchs, Jochen; Regestein, Lars

    2016-11-14

    One of the most critical parameters in chemical and biochemical processes is the viscosity of the medium. Its impact on mixing, as well as on mass and energy transfer is substantial. An increase of viscosity with reaction time can be caused by the formation of biopolymers like xanthan or by filamentous growth of microorganisms. In either case the properties of fermentation broth are changing and frequently non-Newtonian behavior are observed, resulting in major challenges for the measurement and control of mixing and mass transfer. This study demonstrates a method for the online determination of the viscosity inside a stirred tank reactor. The presented method is based on online measurement of heat transfer capacity from the bulk medium to the jacket of the reactor. To prove the feasibility of the method, fermentations with the xanthan producing bacterium Xanthomonas campestris pv. campestris B100 as model system were performed. Excellent correlation between offline measured apparent viscosity and online determined heat transfer capacity were found. The developed tool should be applicable to any other process with formation of biopolymers and filamentous growth. Biotechnol. Bioeng. 2016;9999: 1-8. © 2016 Wiley Periodicals, Inc.

  3. Fully automated single-use stirred-tank bioreactors for parallel microbial cultivations.

    PubMed

    Kusterer, Andreas; Krause, Christian; Kaufmann, Klaus; Arnold, Matthias; Weuster-Botz, Dirk

    2008-04-01

    Single-use stirred tank bioreactors on a 10-mL scale operated in a magnetic-inductive bioreaction block for 48 bioreactors were equipped with individual stirrer-speed tracing, as well as individual DO- and pH-monitoring and control. A Hall-effect sensor system was integrated into the bioreaction block to measure individually the changes in magnetic field density caused by the rotating permanent magnets. A restart of the magnetic inductive drive was initiated automatically each time a Hall-effect sensor indicates one non-rotating gas-inducing stirrer. Individual DO and pH were monitored online by measuring the fluorescence decay time of two chemical sensors immobilized at the bottom of each single-use bioreactor. Parallel DO measurements were shown to be very reliable and independently from the fermentation media applied in this study for the cultivation of Escherichia coli and Saccharomyces cerevisiae. The standard deviation of parallel pH measurements was pH 0.1 at pH 7.0 at the minimum and increased to a standard deviation of pH 0.2 at pH 6.0 or at pH 8.5 with the complex medium applied for fermentations with S. cerevisiae. Parallel pH-control was thus shown to be meaningful with a tolerance band around the pH set-point of +/- pH 0.2 if the set-point is pH 6.0 or lower.

  4. Unique differentiation profile of mouse embryonic stem cells in rotary and stirred tank bioreactors.

    PubMed

    Fridley, Krista M; Fernandez, Irina; Li, Mon-Tzu Alice; Kettlewell, Robert B; Roy, Krishnendu

    2010-11-01

    Embryonic stem (ES)-cell-derived lineage-specific stem cells, for example, hematopoietic stem cells, could provide a potentially unlimited source for transplantable cells, especially for cell-based therapies. However, reproducible methods must be developed to maximize and scale-up ES cell differentiation to produce clinically relevant numbers of therapeutic cells. Bioreactor-based dynamic culture conditions are amenable to large-scale cell production, but few studies have evaluated how various bioreactor types and culture parameters influence ES cell differentiation, especially hematopoiesis. Our results indicate that cell seeding density and bioreactor speed significantly affect embryoid body formation and subsequent generation of hematopoietic stem and progenitor cells in both stirred tank (spinner flask) and rotary microgravity (Synthecon™) type bioreactors. In general, high percentages of hematopoietic stem and progenitor cells were generated in both bioreactors, especially at high cell densities. In addition, Synthecon bioreactors produced more sca-1(+) progenitors and spinner flasks generated more c-Kit(+) progenitors, demonstrating their unique differentiation profiles. cDNA microarray analysis of genes involved in pluripotency, germ layer formation, and hematopoietic differentiation showed that on day 7 of differentiation, embryoid bodies from both bioreactors consisted of all three germ layers of embryonic development. However, unique gene expression profiles were observed in the two bioreactors; for example, expression of specific hematopoietic genes were significantly more upregulated in the Synthecon cultures than in spinner flasks. We conclude that bioreactor type and culture parameters can be used to control ES cell differentiation, enhance unique progenitor cell populations, and provide means for large-scale production of transplantable therapeutic cells.

  5. Unique Differentiation Profile of Mouse Embryonic Stem Cells in Rotary and Stirred Tank Bioreactors

    PubMed Central

    Fridley, Krista M.; Fernandez, Irina; Li, Mon-Tzu Alice; Kettlewell, Robert B.

    2010-01-01

    Embryonic stem (ES)-cell-derived lineage-specific stem cells, for example, hematopoietic stem cells, could provide a potentially unlimited source for transplantable cells, especially for cell-based therapies. However, reproducible methods must be developed to maximize and scale-up ES cell differentiation to produce clinically relevant numbers of therapeutic cells. Bioreactor-based dynamic culture conditions are amenable to large-scale cell production, but few studies have evaluated how various bioreactor types and culture parameters influence ES cell differentiation, especially hematopoiesis. Our results indicate that cell seeding density and bioreactor speed significantly affect embryoid body formation and subsequent generation of hematopoietic stem and progenitor cells in both stirred tank (spinner flask) and rotary microgravity (Synthecon™) type bioreactors. In general, high percentages of hematopoietic stem and progenitor cells were generated in both bioreactors, especially at high cell densities. In addition, Synthecon bioreactors produced more sca-1+ progenitors and spinner flasks generated more c-Kit+ progenitors, demonstrating their unique differentiation profiles. cDNA microarray analysis of genes involved in pluripotency, germ layer formation, and hematopoietic differentiation showed that on day 7 of differentiation, embryoid bodies from both bioreactors consisted of all three germ layers of embryonic development. However, unique gene expression profiles were observed in the two bioreactors; for example, expression of specific hematopoietic genes were significantly more upregulated in the Synthecon cultures than in spinner flasks. We conclude that bioreactor type and culture parameters can be used to control ES cell differentiation, enhance unique progenitor cell populations, and provide means for large-scale production of transplantable therapeutic cells. PMID:20528675

  6. Cascade degradation of organic matters in brewery wastewater using a continuous stirred microbial electrochemical reactor and analysis of microbial communities

    PubMed Central

    Wang, Haiman; Qu, Youpeng; Li, Da; Ambuchi, John J.; He, Weihua; Zhou, Xiangtong; Liu, Jia; Feng, Yujie

    2016-01-01

    A continuous stirred microbial electrochemical reactor (CSMER), comprising of a complete mixing zone (CMZ) and microbial electrochemical zone (MEZ), was used for brewery wastewater treatment. The system realized 75.4 ± 5.7% of TCOD and 64.9 ± 4.9% of TSS when fed with brewery wastewater concomitantly achieving an average maximum power density of 304 ± 31 m W m−2. Cascade utilization of organic matters made the CSMER remove a wider range of substrates compared with a continuous stirred tank reactor (CSTR), in which process 79.1 ± 5.6% of soluble protein and 86.6 ± 2.2% of soluble carbohydrates were degraded by anaerobic digestion in the CMZ and short-chain volatile fatty acids were further decomposed and generated current in the MEZ. Co-existence of fermentative bacteria (Clostridium and Bacteroides, 19.7% and 5.0%), acetogenic bacteria (Syntrophobacter, 20.8%), methanogenic archaea (Methanosaeta and Methanobacterium, 40.3% and 38.4%) and exoelectrogens (Geobacter, 12.4%) as well as a clear spatial distribution and syntrophic interaction among them contributed to the cascade degradation process in CSMER. The CSMER shows great promise for practical wastewater treatment application due to high pre-hydrolysis and acidification rate, high energy recovery and low capital cost. PMID:27270788

  7. Friction Stir Weld Tooling Development for Application on the 2195 Al-Cu-Li Space Transportation System External Tank

    NASA Technical Reports Server (NTRS)

    Loftus, Zachary; Arbegast, W. J.; Hartley, P. J.

    1998-01-01

    Friction Stir Welding (FSW) is a new and innovative solid-state joining process which can be applied to difficult-to- weld aluminum alloys. However, the large forces involved with the process have posed a production tooling challenge. Lockheed Martin Michoud Space Systems has overcome many of these challenges on the Super Lightweight External Tank (ET) program. Utilizing Aluminum-Copper-Lithium alloy 2195 in the form of plate and extrusions, investigations of FSW process parameters have been completed. Major loading mechanisms are discussed in conjunction with deflection measurements. Since the ET program is a cryogenic application, a brief comparison of cryogenic material properties with room temperature material properties is offered for both FSW and fusion welds. Finally, a new approach to controlling the FSW process from a load perspective is introduced. Emphasis will be put on tooling development, as well as the impact of tooling design and philosophy on Friction Stir Weld success probability.

  8. Perfusion Stirred-Tank Bioreactors for 3D Differentiation of Human Neural Stem Cells.

    PubMed

    Simão, Daniel; Arez, Francisca; Terasso, Ana P; Pinto, Catarina; Sousa, Marcos F Q; Brito, Catarina; Alves, Paula M

    2016-01-01

    Therapeutic breakthroughs in neurological disorders have been hampered by the lack of accurate central nervous system (CNS) models. The development of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of new therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmental, anatomic, and physiological) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity, etc.). Recapitulation of CNS phenotypic and functional features in vitro requires the implementation of advanced culture strategies, such as 3D culture systems, which enable to mimic the in vivo structural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. The development of robust and scalable processes for the 3D differentiation of hNSC can improve the accuracy of early stage development in preclinical research. In this context, the use of software-controlled stirred-tank bioreactors (STB) provides an efficient technological platform for hNSC aggregation and differentiation. This system enables to monitor and control important physicochemical parameters for hNSC culture, such as dissolved oxygen. Importantly, the adoption of a perfusion operation mode allows a stable flow of nutrients and differentiation/neurotrophic factors, while clearing the toxic by-products. This contributes to a setting closer to the physiological, by mimicking the in vivo microenvironment. In this chapter, we address the technical requirements and procedures for the implementation of 3D differentiation strategies of hNSC, by operating STB under perfusion mode for long-term cultures. This strategy is suitable

  9. Establishment of cultivating strategy for highly aggregated mycelia of Morchella esculenta in a stirred-tank bioreactor.

    PubMed

    Ma, Te-Wei; Xiao, Bo-Yuan; Yang, Fan-Chiang

    2012-11-01

    Mycelia of Morchella esculenta were found to aggregate rapidly in a submerged culture, which caused the decrease in dispersed mycelia and the problem of diffusion limitation. The effect of different agitation schemes on the growth of mycelia was investigated in a stirred-tank bioreactor. At the constant speed of 100 or 300 rpm, rapid aggregation caused the biomass concentration to drop to zero in 30 h, which was even worse than achieved under static culture. Intermittent agitation maintained a higher mycelium fragment concentration for 48 h and enhanced the biomass concentration to 4.73 g/L at 120 h. The operation with a polytron connection disrupted effectively mycelium aggregation, thus increasing the specific growth rate, biomass concentration and maximum productivity to 0.0613 1/h, 7.73 g/L and 0.0878 g/L h at 88 h, respectively. Moreover, logistic equations and genetic algorithm (GA) were used for the simulation of biomass growth and estimation of all kinetic coefficients. The operating strategy developed in this study could be used for the production of highly aggregated mycelia, which could also achieve a high cell-density culture in a stirred tank reactor.

  10. Production of Newcastle Disease Virus by Vero Cells Grown on Cytodex 1 Microcarriers in a 2-Litre Stirred Tank Bioreactor

    PubMed Central

    Arifin, Mohd Azmir; Mel, Maizirwan; Abdul Karim, Mohamed Ismail; Ideris, Aini

    2010-01-01

    The aim of this study is to prepare a model for the production of Newcastle disease virus (NDV) lentogenic F strain using cell culture in bioreactor for live attenuated vaccine preparation. In this study, firstly we investigated the growth of Vero cells in several culture media. The maximum cell number was yielded by culture of Vero cells in Dulbecco's Modified Eagle Medium (DMEM) which was 1.93 × 106 cells/ml. Secondly Vero cells were grown in two-litre stirred tank bioreactor by using several commercial microcarriers. We achieved the maximum cell concentration about 7.95 × 105 cells/ml when using Cytodex 1. Later we produced Newcastle Disease virus in stirred tank bioreactor based on the design developed using Taguchi L4 method. Results reveal that higher multiplicity of infection (MOI) and size of cell inoculums can yield higher virus titer. Finally, virus samples were purified using high-speed centrifugation based on 3∗∗(3-1) Fractional Factorial Design. Statistical analysis showed that the maximum virus titer can be achieved at virus sample concentration of 58.45% (v/v), centrifugation speed of 13729 rpm, and centrifugation time of 4 hours. As a conclusion, high yield of virus titer could be achieved through optimization of cell culture in bioreactor and separation by high-speed centrifugation. PMID:20625497

  11. Large Spun Formed Friction-Stir Welded Tank Domes for Liquid Propellant Tanks Made from AA2195: A Technology Demonstration for the Next Generation of Heavy Lift Launchers

    NASA Technical Reports Server (NTRS)

    Stachulla, M.; Pernpeinter, R.; Brewster J.; Curreri, P.; Hoffman, E.

    2010-01-01

    Improving structural efficiency while reducing manufacturing costs are key objectives when making future heavy-lift launchers more performing and cost efficient. The main enabling technologies are the application of advanced high performance materials as well as cost effective manufacture processes. This paper presents the status and main results of a joint industrial research & development effort to demonstrate TRL 6 of a novel manufacturing process for large liquid propellant tanks for launcher applications. Using high strength aluminium-lithium alloy combined with the spin forming manufacturing technique, this development aims at thinner wall thickness and weight savings up to 25% as well as a significant reduction in manufacturing effort. In this program, the concave spin forming process is used to manufacture tank domes from a single flat plate. Applied to aluminium alloy, this process allows reaching the highest possible material strength status T8, eliminating numerous welding steps which are typically necessary to assemble tank domes from 3D-curved panels. To minimize raw material costs for large diameter tank domes for launchers, the dome blank has been composed from standard plates welded together prior to spin forming by friction stir welding. After welding, the dome blank is contoured in order to meet the required wall thickness distribution. For achieving a material state of T8, also in the welding seams, the applied spin forming process allows the required cold stretching of the 3D-curved dome, with a subsequent ageing in a furnace. This combined manufacturing process has been demonstrated up to TRL 6 for tank domes with a 5.4 m diameter. In this paper, the manufacturing process as well as test results are presented. Plans are shown how this process could be applied to future heavy-lift launch vehicles developments, also for larger dome diameters.

  12. Unsteady numerical analysis of solid-liquid two-phase flow in stirred tank with double helical ribbon impeller

    NASA Astrophysics Data System (ADS)

    Bai, He; Chen, Xiangshan; Zhao, Guangyu; Xiao, Chenglei; Li, Chen; Zhong, Cheng; Chen, Yu

    2017-08-01

    In order to enhance the mixing process of soil contaminated by oil and water, one kind of double helical ribbon (DHR) impeller was developed. In this study, the unsteady simulation analysis of solid-liquid two-phase flow in stirring tank with DHR impeller was conducted by the the computational fluid dynamics and the multi-reference frame (MRF) method. It was found that at 0-3.0 s stage, the rate of liquid was greater than the rate of solid particles, while the power consumption was 5-6 times more than the smooth operation. The rates of the liquid and the solid particles were almost the same, and the required power was 32 KW at t > 3.0 s. The flow of the solid particles in the tank was a typical axial circle flow, and the dispersed sequence of the solid that was accumulated at the bottom of the tank was: the bottom loop region, the annular region near the wall of the groove and finally the area near axial center. The results show that the DHR impeller was suitable for the mixing of liquid-solid two-phase.

  13. Nondestructive Inspection Techniques for Friction Stir Weld Verification on the Space Shuttle External Tank

    NASA Technical Reports Server (NTRS)

    Suits, Michael W.; Leak, Jeffery; Bryson, Craig

    2003-01-01

    Friction Stir Welding (FSW) has gained wide acceptance as a reliable joining process for aerospace hardware as witnessed by its recent incorporation into the Delta Launch vehicle cryotanks. This paper describes the development of nondestructive evaluation methods and techniques used to verify the FSW process for NASA's Space Shuttle.

  14. Experimental correlation of gas-liquid-solid mass transfer coefficient in a stirred tank using response surface methodology

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Duan, Xili; Gao, Zhengming

    2017-10-01

    In this paper, the three-phase (gas-liquid-solid) system in a stirred tank is experimentally studied. The response surface methodology (RSM) is used to analyze the three phase mass transfer coefficient under different conditions, i.e., rotation speeds (8, 10, and 12 s-1), volumetric solid content fractions (0, 6 and 12%), gas flow rates (6, 8, and 10 m3 h-1) and temperatures (40, 54, and 68 °C). With the RSM, it was found that all of these four operational parameters are significant in affecting the mass transfer coefficient, with the rotation speed being the most significant one. A new correlation is developed with a quadratic term for solid content fraction, indicating that there is a minimum value of mass transfer coefficient at a certain solid content fraction. Compared with traditional experimental design and correlation methods, the RSM in this study reduces experiment time and provides a better correlation to predict the mass transfer coefficient.

  15. Production of polygalacturonases by Aspergillus oryzae in stirred tank and internal- and external-loop airlift reactors.

    PubMed

    Fontana, Roselei Claudete; da Silveira, Maurício Moura

    2012-11-01

    The production of endo- and exo-polygalacturonase (PG) by Aspergillus oryzae was assessed in stirred tank reactors (STRs), internal-loop airlift reactors (ILARs) and external-loop airlift reactors (ELARs). For STR production, we compared culture media formulated with either pectin (WBE) or partially hydrolyzed pectin. The highest enzyme activities were obtained in medium that contained 50% pectin in hydrolyzed form (WBE5). PG production in the three reactor types was compared for WBE5 and low salt WBE medium, with additional salts added at 48, 60 and 72h (WBES). The ELARs performed better than the ILARs in WBES medium where the exo-PG was the same concentration as for STRs and the endo-PG was 20% lower. These results indicate that PG production is higher under experimental conditions that result in higher cell growth with minimum pH values less than 3.0.

  16. CFD simulation of the laminar flow in stirred tanks generated by double helical ribbons and double helical screw ribbons impellers

    NASA Astrophysics Data System (ADS)

    Driss, Zied; Karray, Sarhan; Kchaou, Hedi; Abid, Mohamed Salah

    2011-12-01

    In this paper, the mixing performance of double helical ribbons and double helical screw ribbons impellers mounted on stirred tanks is numerical investigated. The computer simulations are conducted within a specific computational fluid dynamic (CFD) code, based on resolution of the Naviers-Stokes equations in the laminar flow with a finite volume discretization. The field velocity and the viscous dissipation rate are presented in different vessel planes. The global characteristics and the power consumption of these impellers are also studied. The numerical results showed that the velocity field is more active with the double helical screw ribbons impeller. In this case, the effectiveness of the viscous dissipation and the pumping flow has been obviously noted. Also, the pumping and the energy efficiency reach the highest values at the same Reynolds number. The good agreement between the numerical results and the experimental data quietly confirmed the analysed method.

  17. Gaseous hexane biodegradation by Fusarium solani in two liquid phase packed-bed and stirred-tank bioreactors.

    PubMed

    Arriaga, Sonia; Muñoz, Raúl; Hernández, Sergio; Guieysse, Benoit; Revah, Sergio

    2006-04-01

    Biofiltration of hydrophobic volatile pollutants is intrinsically limited by poor transfer of the pollutants from the gaseous to the liquid biotic phase, where biodegradation occurs. This study was conducted to evaluate the potential of silicone oil for enhancing the transport and subsequent biodegradation of hexane by the fungus Fusarium solani in various bioreactor configurations. Silicone oil was first selected among various solvents for its biocompatibility, nonbiodegradability, and good partitioning properties toward hexane. In batch tests, the use of silicone oil improved hexane specific biodegradation by approximately 60%. Subsequent biodegradation experiments were conducted in stirred-tank (1.5 L) and packed-bed (2.5 L) bioreactors fed with a constant gaseous hexane load of 180 g x m(-3)(reactor) x h(-1) and operated for 12 and 40 days, respectively. In the stirred reactors, the maximum hexane elimination capacity (EC) increased from 50 g x m(-3)(reactor) x h(-1) (removal efficiency, RE of 28%) in the control not supplied with silicone oil to 120 g x m(-3)(reactor) x h(-1) in the biphasic system (67% RE). In the packed-bed bioreactors, the maximum EC ranged from 110 (50% RE) to 180 g x m(-3)(reactor) x h(-1) (> 90% RE) in the control and two-liquid-phase systems, respectively. These results represent, to the best of our knowledge, the first reported case of fungi use in a two-liquid-phase bioreactor and the highest hexane removal capacities so far reported in biofilters.

  18. Tank farms justification for continued operations 007 Implementation Plan

    SciTech Connect

    Propson, J.G., Westinghouse Hanford

    1996-08-23

    This Implementation Plan (IP) provides detailed descriptions, cost estimates, and schedules of activities required to implement the controls specified in Flammable Gas/Slurry Growth Unreviewed Safety Question: Justification for Continued Operation for the Tank Farms at Hanford Site (WHC-SD-WM-JCO-007, Rev.0). This IP complies with the Interim Operational Safety Requirements (IOSR) Administrative Control 5.27 and WHC-IP-0842 Volume 4 Section 5.6 for such a plan.

  19. Development of Inspection for Friction Stir Welds for Rocket Fuel Tanks

    NASA Technical Reports Server (NTRS)

    Russell, Samuel S.

    2012-01-01

    During development of the Ares I weld processes nondestructive and destructive testing were used to identify and characterize defects that occurred. These defects were named and character noted. This catalogue of defects and characteristics was then used to develop inspection methods for Self Reacting Friction Stir Welds (SR ]FSW) and Conventional Friction Stir Welds (C ]FSW). Dye penetrant, eddy current, x ]radiography, single element ultrasonic, and phased array ultrasonic (PAUT) inspection procedures were developed to target the expected defects. Once the method procedure was developed a comparison was performed to allow for selection of the best inspection method. Tests of the effectiveness of the inspection were performed on purposely fabricated flawed specimens and electrodischarge machined notches. The initial test results prompted a revisit of the PAUT procedure and a redesign of the inspection. Subsequent testing showed that a multi ]angle PAUT inspection resulted in better detection capability. A discussion of the most effective orientations of the PAUT transducer will be presented. Also, the implementation of the inspection on production hardware will be presented. In some cases the weld tool is used as the transducer manipulator and in some cases a portable scanner is used

  20. Numerical simulation on macro-instability of coupling flow field structure in jet-stirred tank

    NASA Astrophysics Data System (ADS)

    Luan, D. Y.; Lu, J. P.; Bu, Q. X.; Zhang, S. F.; Zheng, S. X.

    2016-05-01

    The velocity field macro-instability (MI) can help to improve the mixing efficiency. In this work, the MI features of flow field induced by jet-stirred coupling action is studied by using computational fluid dynamics (CFD) simulations. The numerical simulation method of jet-stirred model was established based on standard turbulent equations, and the impeller rotation was modeled by means of the Sliding Mesh (SM) technology. The numerical results of test fluid (water) power consumption were compared with the data obtained by power test experiments. The effects of jet flow velocity and impeller speed on MI frequency were analyzed thoroughly. The results show that the calculated values of power consumption agree well with the experiment measured data, which validates the turbulent model, and the flow structure and MI frequency distribution are affected by both impeller speed and jet flow rate. The amplitude of MI frequency increases obviously with the increasing rotation speed of impeller and the eccentric jet rate, and it can be enhanced observably by eccentric jet rate, in condition of comparatively high impeller speed. At this time, the MI phenomenon disappears with the overall chaotic mixing.

  1. A long-lived lunar dynamo driven by continuous mechanical stirring.

    PubMed

    Dwyer, C A; Stevenson, D J; Nimmo, F

    2011-11-09

    Lunar rocks contain a record of an ancient magnetic field that seems to have persisted for more than 400 million years and which has been attributed to a lunar dynamo. Models of conventional dynamos driven by thermal or compositional convection have had difficulty reproducing the existence and apparently long duration of the lunar dynamo. Here we investigate an alternative mechanism of dynamo generation: continuous mechanical stirring arising from the differential motion, due to Earth-driven precession of the lunar spin axis, between the solid silicate mantle and the liquid core beneath. We show that the fluid motions and the power required to drive a dynamo operating continuously for more than one billion years and generating a magnetic field that had an intensity of more than one microtesla 4.2 billion years ago are readily obtained by mechanical stirring. The magnetic field is predicted to decrease with time and to shut off naturally when the Moon recedes far enough from Earth that the dissipated power is insufficient to drive a dynamo; in our nominal model, this occurred at about 48 Earth radii (2.7 billion years ago). Thus, lunar palaeomagnetic measurements may be able to constrain the poorly known early orbital evolution of the Moon. This mechanism may also be applicable to dynamos in other bodies, such as large asteroids.

  2. Bio-processing of copper from combined smelter dust and flotation concentrate: a comparative study on the stirred tank and airlift reactors.

    PubMed

    Vakylabad, Ali Behrad; Schaffie, Mahin; Ranjbar, Mohammad; Manafi, Zahra; Darezereshki, Esmaeel

    2012-11-30

    To scrutinize the influence of the design and type of the bioreactors on the bioleaching efficiency, the bioleaching were evaluated in a batch airlift and a batch stirred tank bioreactors with mixed mesophilic and mixed moderately thermophilic bacteria. According to the results, maximum copper recoveries were achieved using the cultures in the stirred tank bioreactors. It is worth noting that the main phase of the flotation concentrate was chalcopyrite (as a primary sulphide), but the smelter dust mainly contained secondary copper sulphides such as Cu(2)S, CuS, and Cu(5)FeS(4).Under optimum conditions, copper dissolution from the combined flotation concentrate and smelter dust (as an environmental hazard) reached 94.50% in the STR, and 88.02% in the airlift reactor with moderately thermophilic, after 23 days. Also, copper extractions calculated for the bioleaching using mesophilic bacteria were 48.73% and 37.19% in the STR (stirred tank reactor) and the airlift bioreactor, respectively. In addition, the SEM/EDS, XRD, chemical, and mineralogical analyses and studies confirmed the above results.

  3. Remediation of a mixture of analgesics in a stirred-tank photobioreactor using microalgal-bacterial consortium coupled with attempt to valorise the harvested biomass.

    PubMed

    Ismail, Maha M; Essam, Tamer M; Ragab, Yasser M; El-Sayed, Abo El-Khair B; Mourad, Fathia E

    2017-05-01

    An artificial microalgal-bacterial consortium was used to remediate a mixture of analgesics (ketoprofen, paracetamol and aspirin) in a stirred-tank photobioreactor. A hydraulic retention time (HRT) of 3days supported poor treatment because of the formation of p-aminophenol (paracetamol toxic metabolite). Increasing the HRT to 4days enhanced the bioremediation efficiency. After applying an acclimatization regime, 95% removal of the analgesics mixture, p-aminophenol and COD reduction were achieved. However, shortening the HRT again to 3days neither improved the COD reduction nor ketoprofen removal. Applying continuous illumination achieved the best analgesics removal results. The harvested biomass contained 50% protein, which included almost all essential amino acids. The detected fatty acid profile suggested the harvested biomass to be a good biodiesel-producing candidate. The water-extractable fraction possessed the highest phenolic content and antioxidant capacity. These findings suggest the whole process to be an integrated eco-friendly and cost-efficient strategy for remediating pharmaceutical wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Decolourization of anaerobically digested and polyaluminium chloride treated distillery spentwash in a fungal stirred tank aerobic reactor.

    PubMed

    Singh, S S; Dikshit, A K

    2011-11-01

    Decolourization of anaerobically digested and polyaluminium chloride treated distillery spentwash was studied in a fungal stirred tank aerobic reactor without dilution of wastewater. Aspergillus niger isolate IITB-V8 was used as the fungal inoculum. The main objectives of the study were to optimize the stirrer speed for achieving maximum decolourization and to determine the kinetic parameters. A mathematical model was developed to describe the batch culture kinetics. Volumetric oxygen transfer coefficient (k (L) a) was obtained using dynamic method. The maximum specific growth rate and growth yield of fungus were determined using Logistic equation and using Luedeking-Piret equation. 150 rpm was found to be optimum stirrer speed for overall decolourization of 87%. At the optimum stirrer speed, volumetric oxygen transfer coefficient (k (L) a) was 0.4957 min(-1) and the maximum specific growth rate of fungus was 0.224 h(-1). The values of yield coefficient (Y ( x/s)) and maintenance coefficient (m (s)) were found to be 0.48 g cells (g substrate)(-1) and 0.015 g substrate (g cells)(-1) h(-1).

  5. Recycling of metals from pretreated waste printed circuit boards effectively in stirred tank reactor by a moderately thermophilic culture.

    PubMed

    Xia, Ming-Chen; Wang, Ya-Ping; Peng, Tang-Jian; Shen, Li; Yu, Run-Lan; Liu, Yuan-Dong; Chen, Miao; Li, Jiao-Kun; Wu, Xue-Ling; Zeng, Wei-Min

    2017-06-01

    To seek a feasible technique for processing waste printed circuit boards (PCBs), pretreatment of PCBs by table separation and further bioleached by moderate thermophiles in a stirred tank reactor were investigated. The shaking table separation, conducted after grinding and sieving of PCBs, produced two fractions: metal-rich parts (RPCBs), which is more suitable for pyrometallurgy process than untreated PCBs, and metal-poor parts (PPCBs) with only 8.83% metals was then bioleached by a mixed culture of moderate thermophiles effectively. After adaptation, the mixed culture could tolerate 80 g/L PPCBs. The bioleaching results showed that metals recovery was 85.23% Zn, 76.59% Cu and 70.16% Al in only 7 days. Trace Pb and Sn were detected in the leachate because of precipitating. The microorganism community structure was analyzed by amplified ribosomal DNA restriction analysis. Two moderately thermophilic bacteria species were identified as Leptospirillum ferriphilum and Acidithiobacillus caldus. Furthermore, uncultured Thermoplasmatales archaeon was also detected in the leaching system. It was also shown that moderate thermophiles revealed best bioleaching ability when compared with mesophiles and the mixture of mesophiles and moderate thermophiles. Finally, we designed a two-stage process model according to the present study to achieve semi-industrial waste PCBs recycling and economic feasibility analysis indicated that the process was profitable. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  6. Serial completely stirred tank reactors for improving biogas production and substance degradation during anaerobic digestion of corn stover.

    PubMed

    Li, YuQian; Liu, ChunMei; Wachemo, Akiber Chufo; Yuan, HaiRong; Zou, DeXun; Liu, YanPing; Li, XiuJin

    2017-03-11

    Several completely stirred tank reactors (CSTR) connected in series for anaerobic digestion of corn stover were investigated in laboratory scale. Serial anaerobic digestion systems operated at a total HRT of 40days, and distribution of HRT are 10+30days (HRT10+30d), 20+20days (HRT20+20d), and 30+10days (HRT30+10d) were compared to a conventional one-step CSTR at the same HRT of 40d. The results showed that in HRT10+30d serial system, the process became very unstable at organic load of 50gTS·L(-1). The HRT20+20d and HRT30+10d serial systems improved methane production by 8.3-14.6% compared to the one-step system in all loads of 50, 70, 90gTS·L(-1). The conversion rates of total solid, cellulose, and hemicellulose were increased in serial anaerobic digestion systems compared to single system. The serial systems showed more stable process performance in high organic load. HRT30+10d system showed the best biogas production and conversions among all systems.

  7. Citrus peel influences the production of an extracellular naringinase by Staphylococcus xylosus MAK2 in a stirred tank reactor.

    PubMed

    Puri, Munish; Kaur, Aneet; Barrow, Colin J; Singh, Ram Sarup

    2011-02-01

    Staphylococcus xylosus MAK2, Gram-positive coccus, a nonpathogenic member of the coagulase-negative Staphylococcus family was isolated from soil and used to produce naringinase in a stirred tank reactor. An initial medium at pH 5.5 and a cultivation temperature of 30°C was found to be optimal for enzyme production. The addition of Ca(+)² caused stimulation of enzyme activity. The effect of various physico-chemical parameters, such as pH, temperature, agitation, and inducer concentration was studied. The enzyme production was enhanced by the addition of citrus peel powder (CPP) in the optimized medium. A twofold increase in naringinase production was achieved using different technological combinations. The process optimization using technological combinations allowed rapid optimization of large number of variables, which significantly improved enzyme production in a 5-l reactor in 34 h. An increase in sugar concentration (15 g l⁻¹) in the fermentation medium further increased naringinase production (8.9 IU ml⁻¹) in the bioreactor. Thus, availability of naringinase renders it attractive for potential biotechnological applications in citrus processing industry.

  8. Tagatose production with pH control in a stirred tank reactor containing immobilized L-arabinose rom Thermotoga neapolitana.

    PubMed

    Lim, Byung-Chul; Kim, Hye-Jung; Oh, Deok-Kun

    2008-06-01

    Chitopearl beads were used as immobilization supports for D-tagatose production from D-galactose by L-arabinose isomerase from Thermotoga neapolitana because chitopearl beads were more stable than alginate beads at temperatures above 60 degrees C. The pH and temperature for the maximum isomerization of galactose were 7.5 and 90 degrees C, respectively. In thermostability experiments, the half-lives of the immobilized enzyme at 70, 75, 80, 85, and 90 degrees C were 388, 106, 54, 36, and 22 h, respectively. The reaction temperature was determined to be 70 degrees C because the enzyme is highly stable up to 70 degrees C during the reaction. When the reaction time, galactose concentration, and temperature were increased, the pH of a mixture containing enzyme and galactose decreased by the Maillard reaction, resulting in decreased tagatose production. With pH control at 7.5, tagatose production (138 g/L) at 70 degrees C in a stirred tank reactor containing immobilized enzyme and 300 g/L galactose increased two times higher, comparing that without pH control.

  9. Biological treatment of sewage treatment plant sludge by pure bacterial culture with optimum process conditions in a stirred tank bioreactor.

    PubMed

    Alam, M Z; Muyibi, Suleyman A; Jamal, P

    2007-09-01

    Biological treatment of sewage treatment plant (STP) sludge by potential pure bacterial culture (Bacillus sp.) with optimum process conditions for effective biodegradation and bioseparation was carried out in the laboratory. The effective and efficient bioconversion was evaluated with the treatment of pure bacterial culture and existing microbes (uninnoculated) in sludge. The optimum process conditions i.e., temperature, 40 degrees C; pH, 6; inoculum, 5% (v/v); aeration, 1 vvm; agitation speed, 50 rpm obtained from the previous studies with chemical oxygen demand COD at 30 mgL(-1) were applied for the biological treatment of sludge. The results indicated that pure bacterial culture (Bacillus sp.) showed higher degradation and separation of treated sludge compared to treatment with the existing mixed microbes in a stirred tank bioreactor. The treated STP sludge by potential pure bacterial culture and existing microbes gave 30% and 11%; 91.2% and 59.1; 88.5% and 52.3%; 98.4% and 51.3%; 96.1% and 75.2%; 99.4% and 72.8% reduction of total suspended solids (TSS, biosolids), COD, soluble protein, turbidity, total dissolved solids (TDS) and specific resistance to filtration (SRF), respectively within 7 days of treatment. The pH was observed at 6.5 and 4 during the treatment of sludge by pure culture and existing microbes, respectively.

  10. Enhanced production of artemisinin by hairy root cultivation of Artemisia annua in a modified stirred tank reactor.

    PubMed

    Patra, Nivedita; Srivastava, Ashok K

    2014-11-01

    Artemisinin is an important drug commonly used in the treatment of malaria as a combination therapy. It is primarily produced by a plant Artemisia annua, however, its supply from plant is significantly lower than its huge demand and therefore alternative in vitro production routes are sought. Hairy root cultivation could be one such alternative production protocol. Agrobacterium rhizogenes was used to induce hairy roots of A. annua. Statistical optimization of media was thereafter attempted to maximize the biomass/artemisinin production. The growth and product formation kinetics and the significant role of O2 in hairy root propagation were established in optimized media. Mass cultivation of hairy roots was, thereafter, attempted in a modified 3-L Stirred Tank Bioreactor (Applikon Dependable Instruments, The Netherlands) using optimized culture conditions. The reactor was suitably modified to obtain profuse growth of hairy roots by segregating and protecting the growing roots from the agitator rotation in the reactor using a perforated Teflon disk. It was possible to produce 18 g biomass L(-1) (on dry weight basis) and 4.63 mg L(-1) of artemisinin in 28 days, which increased to 10.33 mg L(-1) by the addition of elicitor methyl jasmonate.

  11. Batch and Pulsed Fed-Batch Cultures of Aspergillus flavipes FP-500 Growing on Lemon Peel at Stirred Tank Reactor.

    PubMed

    Wolf-Márquez, V E; García-García, E; García-Rivero, M; Aguilar-Osorio, G; Martínez Trujillo, M A

    2015-11-01

    Aspergillus flavipes FP-500 grew up on submerged cultures using lemon peel as the only carbon source, developing several batch and pulsed fed-batch trials on a stirred tank reactor. The effect of carbon source concentration, reducing sugar presence and initial pH on exopectinase and endopectinase production, was analyzed on batch cultures. From this, we observed that the highest substrate concentration favored biomass (X max) but had not influence on the corresponding specific production (q p) of both pectinases; the most acid condition provoked higher endopectinase-specific productions but had not a significant effect on those corresponding to exopectinases; and reducing sugar concentrations higher than 1.5 g/L retarded pectinase production. On the other hand, by employing the pulsed fed-batch operation mode, we observed a prolonged growth phase, and an increase of about twofold on endopectinase production without a significant raise on biomass concentration. So, pulsed fed-batch seems to be a good alternative for obtaining higher endopectinase titers by using high lemon peel quantities without having mixing and repression problems to the system. The usefulness of unstructured kinetic models for explaining, under a theoretic level, the behavior of the fungus along the batch culture with regard to pectinase production was evident.

  12. Experimental data and numerical predictions of a single-phase flow in a batch square stirred tank reactor with a rotating cylinder agitator

    NASA Astrophysics Data System (ADS)

    Escamilla-Ruíz, I. A.; Sierra-Espinosa, F. Z.; García, J. C.; Valera-Medina, A.; Carrillo, F.

    2017-09-01

    Single-phase flows in stirred tank reactors have useful characteristics for a wide number of industrial applications. Usually, reactors are cylindrical vessels and complex impeller designs, which are often highly energy consuming and produce complicated flow patterns. Therefore, a novel configuration consisting of a square stirred tank reactor is proposed in this study with potential advantages over conventional reactors. In the present work hydrodynamics and turbulence have been studied for a single-phase flow in steady state operating in batch condition. The flow was induced by drag from a rotating cylinder with two diameters. The effects of drag from the stirrer as well as geometrical parameters of the system on the hydrodynamic behavior were investigated using Computational Fluids Dynamics (CFD) and non-intrusive Laser Doppler Anemometry, (LDA). Data obtained from LDA measurements were used for the validation of the CFD simulations, and to detecting the macro-instabilities inside the tank, based on the time series analysis for three rotational speeds N = 180, 1000 and 2000 rpm. The numerical results revealed the formation of flow patterns and macro-vortex structures in the upper part of the tank as consequence of the Reynolds number and the stream discharge emanated from the cylindrical stirrer. Moreover, increasing the cylinder diameter has an impact on the number of recirculation loops as well as the energy consumption of the entire system showing better performance in the presence of turbulent flows.

  13. Experimental data and numerical predictions of a single-phase flow in a batch square stirred tank reactor with a rotating cylinder agitator

    NASA Astrophysics Data System (ADS)

    Escamilla-Ruíz, I. A.; Sierra-Espinosa, F. Z.; García, J. C.; Valera-Medina, A.; Carrillo, F.

    2017-04-01

    Single-phase flows in stirred tank reactors have useful characteristics for a wide number of industrial applications. Usually, reactors are cylindrical vessels and complex impeller designs, which are often highly energy consuming and produce complicated flow patterns. Therefore, a novel configuration consisting of a square stirred tank reactor is proposed in this study with potential advantages over conventional reactors. In the present work hydrodynamics and turbulence have been studied for a single-phase flow in steady state operating in batch condition. The flow was induced by drag from a rotating cylinder with two diameters. The effects of drag from the stirrer as well as geometrical parameters of the system on the hydrodynamic behavior were investigated using Computational Fluids Dynamics (CFD) and non-intrusive Laser Doppler Anemometry, (LDA). Data obtained from LDA measurements were used for the validation of the CFD simulations, and to detecting the macro-instabilities inside the tank, based on the time series analysis for three rotational speeds N = 180, 1000 and 2000 rpm. The numerical results revealed the formation of flow patterns and macro-vortex structures in the upper part of the tank as consequence of the Reynolds number and the stream discharge emanated from the cylindrical stirrer. Moreover, increasing the cylinder diameter has an impact on the number of recirculation loops as well as the energy consumption of the entire system showing better performance in the presence of turbulent flows.

  14. Assembly of a Full-Scale External Tank Barrel Section Using Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Jones, Chip; Adams, Glynn

    1999-01-01

    A full-scale pathfinder barrel section of the External Tank for the National Aeronautics and Space Administration (NASA) Space Transport System (Space Shuttle) has been assembled at Marshall Space Flight Center (MSFC) via a collaborative effort between NASA/MSFC and Lockheed Martin Michoud Space Systems. The barrel section is 27.5 feet in diameter and 15 feet in height. The barrel was assembled using Super-Light-Weight (SLWT), orthogrid, Al-Li 2195 panel sections and a single longeron panel. A vertical weld tool at MSFC was modified to accommodate FSW and used to assemble the barrel. These modifications included the addition of a FSW weld head and new controller hardware and software, the addition of a backing anvil and the replacement of the clamping system with individually actuated clamps. Weld process 4evelopment was initially conducted to optimize the process for the welds required for completing the assembly. The variable thickness welds in the longeron section were conducted via both two-sided welds and with the use of a retractable pin tool. The barrel assembly was completed in October 1998. Details of the vertical weld tool modifications and the assembly process are presented.

  15. Biodegradation of perchlorate from real and synthetic effluent by Proteobacterium ARJR SMBS in a stirred tank bioreactor system.

    PubMed

    Raj, J R Anoop; Muruganandam, L

    2013-01-01

    The present work is a laboratory-scale study of perchlorate degradation using Proteobacterium ARJR SMBS in a stirred tank bioreactor (STBR). Anaerobically grown cultures of ARJR SMBS exposed to a variety of ClO4(-) levels within the range 30 to 150 mg L(-1) under anoxic conditions have been studied. The chloride released was measured and the average value found to be 43.55 mg L(-1). The average daily value of perchlorate degradation rate in this system was 17.24 mg L(-1) at optimum pH 7.5 and 0.25% NaCl salinity. The mixed liquor suspension solids of the system gradually increased from 0.025-0.156 g L(-1) during the operating period of 55 days. Mass balance indicated that the chloride produced was 0.45 mole per mole of perchlorate. The salinity of the system varied from 2.50-18.46 g L(-1), dependent primarily upon the inlet perchlorate concentration. The degradation mechanism, which obeyed a first-order substrate-utilizing kinetic model, allowed the growth rates and the half-saturation constants to be determined. The maximum observed anoxic growth rates (0.83-1.2 h(-1)) for ARJR SMBS in a synthetic effluent (SE) were considerably higher than in real effluent (RE) (0.45-0.59 h(-1)). The biomass yield of ARJR SMBS in STBR was higher in SE (1 +/- 0.4 mg L(-1)) than in RE (1 +/- 0.1 mg L(-1)). From the experimental findings, the uptake of perchlorate by the bacterium is suggested to be a non-interfacially-based mechanism. Under steady state operating condition the performance of the reactor was comparatively lower for RE than for SE but still offers significant control over the degradation of perchlorate under full-scale conditions.

  16. Analysis of cracking phenomena in continuous casting of 1Cr13 stainless steel billets with final electromagnetic stirring

    NASA Astrophysics Data System (ADS)

    Xu, Yu; Xu, Rong-jun; Fan, Zheng-jie; Li, Cheng-bin; Deng, An-yuan; Wang, En-gang

    2016-05-01

    Solidification cracking that occurs during continuous casting of 1Cr13 stainless steel was investigated with and without final electromagnetic stirring (F-EMS). The results show that cracks initiates and propagates along the grain boundaries where the elements of carbon and sulfur are enriched. The final stirrer should be appropriately placed at a location that is 7.5 m away from the meniscus, and the appropriate thickness of the liquid core in the stirring zone is 50 mm. As a stirring current of 250 A is imposed, it can promote columnar-equiaxed transition, decrease the secondary dendrite arm spacing, and reduce the segregation of both carbon and sulfur. F-EMS can effectively decrease the amount of cracks in 1Cr13 stainless steel.

  17. Batch and continuous production of stable dense suspensions of drug nanoparticles in a wet stirred media mill

    NASA Astrophysics Data System (ADS)

    Afolabi, Afola we mi

    One way to improve the bioavailability of poorly water-soluble drugs is to reduce particle size of drug crystals down to nanoscale via wet stirred media milling. An increase in total surface area per mass loading of the drug and specific surface area as well as reduced external mass transfer resistance allow a faster dissolution of the poorly-water soluble drug from nanocrystals. To prevent aggregation of nanoparticles, polymers and surfactants are dissolved in water acting as stabilizers via adsorption onto the drug crystals. In the last two decades, ample experimental data were generated in the area of wet stirred media milling for the production of drug nanoparticle suspensions. However, a fundamental scientific/engineering understanding of various aspects of this process is still lacking. These challenges include elucidation of the governing mechanism(s) during nanoparticle formation and physical stabilization of the nanosuspension with the use of polymers and surfactants (formulation parameters), understanding the impact of process parameters in the context of first-principle-based models, and production of truly nanosized drug particles (10-100 nm) with acceptable physical stability and minimal contamination with the media. Recirculation mode of milling operation, where the drug suspension in a holding tank continuously circulates through the stirred media mill, has been commonly used in lab, pilot, and commercial scales. Although the recirculation is continuous, the recirculation operation mode is overall a batch operation, requiring significant number of batches for a large-volume pharmaceutical product. Hence, development and investigation of a truly continuous process should offer significant advantages. To explain the impact of some of the processing parameters, stress intensity and stress number concepts were widely used in literature, which do not account for the effect of suspension viscosity explicitly. The impact of the processing parameters has not

  18. Stirring and mixing effects on oscillations and inhomogeneities in the minimal bromate oscillator

    NASA Astrophysics Data System (ADS)

    Dutt, A. K.; Menzinger, M.

    1999-04-01

    Stirring and mixing effects on the oscillations and inhomogeneities in the bromate-bromide-cerous system (minimal bromate oscillator) have been investigated in a continuously fed stirred tank reactor (CSTR). A movable microelectrode is used to monitor the inhomogeneities inside the CSTR in an oscillating phase. The results are explained in terms of the theory of imperfect mixing.

  19. Continuous biological waste gas treatment in stirred trickle-bed reactor with discontinuous removal of biomass.

    PubMed

    Laurenzis, A; Heits, H; Wübker, S; Heinze, U; Friedrich, C; Werner, U

    1998-02-20

    A new reactor for biological waste gas treatment was developed to eliminate continuous solvents from waste gases. A trickle-bed reactor was chosen with discontinuous movement of the packed bed and intermittent percolation. The reactor was operated with toluene as the solvent and an optimum average biomass concentration of between 5 and 30 kg dry cell weight per cubic meter packed bed (m3pb). This biomass concentration resulted in a high volumetric degradation rate. Reduction of surplus biomass by stirring and trickling caused a prolonged service life and prevented clogging of the trickle bed and a pressure drop increase. The pressure drop after biomass reduction was almost identical to the theoretical pressure drop as calculated for the irregular packed bed without biomass. The reduction in biomass and intermittent percolation of mineral medium resulted in high volumetric degradation rates of about 100 g of toluene m-3pb h-1 at a load of 150 g of toluene m-3pb h-1. Such a removal rate with a trickle-bed reactor was not reported before.

  20. High-density mammalian cell cultures in stirred-tank bioreactor without external pH control.

    PubMed

    Xu, Sen; Chen, Hao

    2016-08-10

    Maintaining desired pH is a necessity for optimal cell growth and protein production. It is typically achieved through a two-sided pH control loop on the bioreactor controller. Here we investigated cell culture processes with minimum or no pH control and demonstrated that high-density mammalian cell cultures could be maintained for long-term protein production without pH control. The intrinsic interactions between pCO2, lactate, and pH were leveraged to maintain culture pH. Fed-batch cultures at the same lower pH limit of 6.75 but different upper pH limits (7.05, 7.30, 7.45, 7.65) were evaluated in the 3L bioreactors and comparable results were obtained. Neither CO2 sparging nor base addition was required to control pH in the pH range of 6.75-7.65. The impact of sparger configurations (drilled hole sparger vs. frit sparger) and scales (3L vs. 200L) on CO2 accumulation and culture pH was also demonstrated. The same principle was applied in two perfusion cultures with steady state cell densities at 42.5±3.3 or 68.3±6.0×10(6)cells/mL with low cell specific perfusion rates (15±2 to 23±3pL/cell/day), achieving up to 1.9±0.1g/L/day bioreactor productivity. Culture pH level in the 3L perfusion bioreactors was steadily maintained by controlling the residual lactate and pCO2 levels without the requirement of external pH control for up to 40days with consistent productivity and product quality. Furthermore, culture pH could be potentially modulated via adjusting residual glucose levels and CO2 stripping capability in perfusion cultures. To the best of our knowledge, this is the first time a systematic study was performed to evaluate the long-term cell cultivation and protein production in stirred-tank bioreactors without external pH control. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Impact of Feeding Strategies on the Scalable Expansion of Human Pluripotent Stem Cells in Single-Use Stirred Tank Bioreactors.

    PubMed

    Kropp, Christina; Kempf, Henning; Halloin, Caroline; Robles-Diaz, Diana; Franke, Annika; Scheper, Thomas; Kinast, Katharina; Knorpp, Thomas; Joos, Thomas O; Haverich, Axel; Martin, Ulrich; Zweigerdt, Robert; Olmer, Ruth

    2016-10-01

    : The routine application of human pluripotent stem cells (hPSCs) and their derivatives in biomedicine and drug discovery will require the constant supply of high-quality cells by defined processes. Culturing hPSCs as cell-only aggregates in (three-dimensional [3D]) suspension has the potential to overcome numerous limitations of conventional surface-adherent (two-dimensional [2D]) cultivation. Utilizing single-use instrumented stirred-tank bioreactors, we showed that perfusion resulted in a more homogeneous culture environment and enabled superior cell densities of 2.85 × 10(6) cells per milliliter and 47% higher cell yields compared with conventional repeated batch cultures. Flow cytometry, quantitative reverse-transcriptase polymerase chain reaction, and global gene expression analysis revealed a high similarity across 3D suspension and 2D precultures, underscoring that matrix-free hPSC culture efficiently supports maintenance of pluripotency. Interestingly, physiological data and gene expression assessment indicated distinct changes of the cells' energy metabolism, suggesting a culture-induced switch from glycolysis to oxidative phosphorylation in the absence of hPSC differentiation. Our data highlight the plasticity of hPSCs' energy metabolism and provide clear physiological and molecular targets for process monitoring and further development. This study paves the way toward more efficient GMP-compliant cell production and underscores the enormous process development potential of hPSCs in suspension culture. Human pluripotent stem cells (hPSCs) are a unique source for the, in principle, unlimited production of functional human cell types in vitro, which are of high value for therapeutic and industrial applications. This study applied single-use, clinically compliant bioreactor technology to develop advanced, matrix-free, and more efficient culture conditions for the mass production of hPSCs in scalable suspension culture. Using extensive analytical tools to

  2. Stirred tank bioreactor culture combined with serum-/xenogeneic-free culture medium enables an efficient expansion of umbilical cord-derived mesenchymal stem/stromal cells.

    PubMed

    Mizukami, Amanda; Fernandes-Platzgummer, Ana; Carmelo, Joana G; Swiech, Kamilla; Covas, Dimas T; Cabral, Joaquim M S; da Silva, Cláudia L

    2016-08-01

    Mesenchymal stem/stromal cells (MSC) are being widely explored as promising candidates for cell-based therapies. Among the different human MSC origins exploited, umbilical cord represents an attractive and readily available source of MSC that involves a non-invasive collection procedure. In order to achieve relevant cell numbers of human MSC for clinical applications, it is crucial to develop scalable culture systems that allow bioprocess control and monitoring, combined with the use of serum/xenogeneic (xeno)-free culture media. In the present study, we firstly established a spinner flask culture system combining gelatin-based Cultispher(®) S microcarriers and xeno-free culture medium for the expansion of umbilical cord matrix (UCM)-derived MSC. This system enabled the production of 2.4 (±1.1) x10(5) cells/mL (n = 4) after 5 days of culture, corresponding to a 5.3 (±1.6)-fold increase in cell number. The established protocol was then implemented in a stirred-tank bioreactor (800 mL working volume) (n = 3) yielding 115 million cells after 4 days. Upon expansion under stirred conditions, cells retained their differentiation ability and immunomodulatory potential. The development of a scalable microcarrier-based stirred culture system, using xeno-free culture medium that suits the intrinsic features of UCM-derived MSC represents an important step towards a GMP compliant large-scale production platform for these promising cell therapy candidates.

  3. Comparative performance evaluation of conventional and two-phase hydrophobic stirred tank reactors for methane abatement: Mass transfer and biological considerations.

    PubMed

    Cantera, Sara; Estrada, José M; Lebrero, Raquel; García-Encina, Pedro A; Muñoz, Raúl

    2016-06-01

    This study demonstrated for the first time the capability of methanotrophs to grow inside silicone oil (SO200) and identified the optimum cultivation conditions for enrichment of hydrophobic methanotrophs (high dilution rates (D) and low CH4 transfer rates). The potential of the hydrophobic methanotrophs enriched was assessed in a single-phase stirred tank reactor (1P-STR) and in a two-phase stirred tank reactor (2P-STR). Different operational conditions were systematically evaluated in both reactors (SO200 fractions of 30 and 60 %, stirring rates of 250 and 500 rpm, and D of 0.1-0.35 day(-1) with and without biomass retention). The results showed that the TPPB only supported a superior CH4 abatement performance compared to the 1P-STR (40% enhancement at 250 rpm and 25% enhancement at 500 rpm) at a D of 0.3 day(-1) due to the retention of the biocatalytic activity inside the SO200, while the 1P-STR achieved higher elimination capacities (EC up to ≈3 times) than the TPPB under the rest of conditions tested (ECmax  = 91.1 g m(-3)  h(-1) ). Furthermore, the microscopic examination and DGGE-sequencing of the communities showed that the presence of SO200 influenced the microbial population structure, impacting on bacterial biodiversity and favoring the growth of methanotrophs such as Methylosarcina. Biotechnol. Bioeng. 2016;113: 1203-1212. © 2015 Wiley Periodicals, Inc.

  4. Stirring-induced bifurcation driven by the chaotic regime in the Belousov—Zhabotinsky reaction in a CSTR

    NASA Astrophysics Data System (ADS)

    Strizhak, Peter E.

    1995-09-01

    The stirring-induced bifurcation at low stirring rate S 0 = 23 rpm of the reaction volume has been observed for the chaotic regime in the Belousov—Zhabotinsky oscillating chemical reaction (malonic acidbromatecerium(III)sulfuric acid) in a continuously stirred tank reactor in premixing mode. This bifurcation is characterized by a stepwise growth of the macroscopic spatial concentration gradients that is shown by the use of the time dependencies of the potential difference between two platinum electrodes.

  5. Numerical Bifurcation Analysis of Delayed Recycle Stream in a Continuously Stirred Tank Reactor

    NASA Astrophysics Data System (ADS)

    Gangadhar, Nalwala Rohitbabu; Balasubramanian, Periyasamy

    2010-10-01

    In this paper, we present the stability analysis of delay differential equations which arise as a result of transportation lag in the CSTR-mechanical separator recycle system. A first order irreversible elementary reaction is considered to model the system and is governed by the delay differential equations. The DDE-BIFTOOL software package is used to analyze the stability of the delay system. The present analysis reveals that the system exhibits delay independent stability for isothermal operation of the CSTR. In the absence of delay, the system is dynamically unstable for non-isothermal operation of the CSTR, and as a result of delay, the system exhibits delay dependent stability.

  6. Design of nonlinear PID controller and nonlinear model predictive controller for a continuous stirred tank reactor.

    PubMed

    Prakash, J; Srinivasan, K

    2009-07-01

    In this paper, the authors have represented the nonlinear system as a family of local linear state space models, local PID controllers have been designed on the basis of linear models, and the weighted sum of the output from the local PID controllers (Nonlinear PID controller) has been used to control the nonlinear process. Further, Nonlinear Model Predictive Controller using the family of local linear state space models (F-NMPC) has been developed. The effectiveness of the proposed control schemes has been demonstrated on a CSTR process, which exhibits dynamic nonlinearity.

  7. Suppressing the Neurospora crassa circadian clock while maintaining light responsiveness in continuous stirred tank reactors

    PubMed Central

    Cockrell, Allison L.; Pirlo, Russell K.; Babson, David M.; Cusick, Kathleen D.; Soto, Carissa M.; Petersen, Emily R.; Davis, Miah J.; Hong, Christian I.; Lee, Kwangwon; Fitzgerald, Lisa A.; Biffinger, Justin C.

    2015-01-01

    Neurospora crassa has been utilized as a model organism for studying biological, regulatory, and circadian rhythms for over 50 years. These circadian cycles are driven at the molecular level by gene transcription events to prepare for environmental changes. N. crassa is typically found on woody biomass and is commonly studied on agar-containing medium which mimics its natural environment. We report a novel method for disrupting circadian gene transcription while maintaining light responsiveness in N. crassa when held in a steady metabolic state using bioreactors. The arrhythmic transcription of core circadian genes and downstream clock-controlled genes was observed in constant darkness (DD) as determined by reverse transcription-quantitative PCR (RT-qPCR). Nearly all core circadian clock genes were up-regulated upon exposure to light during 11hr light/dark cycle experiments under identical conditions. Our results demonstrate that the natural timing of the robust circadian clock in N. crassa can be disrupted in the dark when maintained in a consistent metabolic state. Thus, these data lead to a path for the production of industrial scale enzymes in the model system, N. crassa, by removing the endogenous negative feedback regulation by the circadian oscillator. PMID:26031221

  8. Decision analysis for continuous cover gas monitoring of Ferrocyanide Watch List tanks

    SciTech Connect

    Fowler, K.D.; Graves, R.D.

    1994-07-01

    This document pertains to underground waste storage tanks at the Hanford Site that have been identified to potentially contain a significant amount of ferrocyanide compounds. This document evaluates the need for continuously monitoring the headspace vapors in Ferrocyanide Watch List tanks to detect flammable gases or gases that could indicate the occurrence of a propagating ferrocyanide-nitrate/nitrite reaction. The results of modeling studies and gas monitoring, and sludge sample analyses of actual ferrocyanide tank wastes have indicated no need to continuously monitor the vapor spaces in ferrocyanide tanks. This conclusion is based in part on the following factors: (1) a study performance on waste aging suggests that the ferrocyanide has degraded in the tanks during the more than 35 years of storage; therefore, the ferrocyanide is not present in concentrations that could support an exothermic reaction, also, the moisture present in the waste is sufficient to preclude a self-sustaining (propagating) ferrocyanide-nitrate reaction; (2) evaluation of core sample results from Tank 241-C-109 and Tank 241-C-112 support laboratory studies showing that ferrocyanide has degraded and the fuel concentration in the tanks is considerably lower than postulated by flowsheet simulants; (3) no gases have been identified that would indicate the occurrence of a ferrocyanide nitrate/nitrite reaction; additionally, a self-sustaining ferrocyanide nitrate/nitrite reaction is not possible under current and future planned storage conditions. After reviewing the available information, it is evident that there would be little safety benefit from continuous in-tank vapor monitoring, and the time and commitment of operations schedule and equipment funds are not justified in the face of competing needs.

  9. Effect of the 6PBT stirrer eccentricity and off-bottom clearance on mixing of pseudoplastic fluid in a stirred tank

    NASA Astrophysics Data System (ADS)

    Luan, Deyu; Zhang, Shengfeng; Wei, Xing; Duan, Zhenya

    The aim of this work is to investigate the effect of the shaft eccentricity on the flow field and mixing characteristics in a stirred tank with the novel stirrer composed of perturbed six-bent-bladed turbine (6PBT). The difference between coaxial and eccentric agitations is studied using computational fluid dynamics (CFD) simulations combined with standard k-ε turbulent equations, that offer a complete image of the three-dimensional flow field. In order to determine the capability of CFD to forecast the mixing process, particle image velocimetry (PIV), which provide an accurate representation of the time-averaged velocity, was used to measure fluid velocity. The test liquid used was 1.25% (wt) xanthan gum solution, a pseudoplastic fluid with a yield stress. The comparison of the experimental and simulated mean flow fields has demonstrated that calculations based on Reynolds-averaged Navier-Stokes equations are suitable for obtaining accurate results. The effects of the shaft eccentricity and the stirrer off-bottom distance on the flow model, mixing time and mixing efficiency were extensively analyzed. It is observed that the microstructure of the flow field has a significant effect on the tracer mixing process. The eccentric agitation can lead to the flow model change and the non-symmetric flow structure, which would possess an obvious superiority of mixing behavior. Moreover, the mixing rate and mixing efficiency are dependent on the shaft eccentricity and the stirrer off-bottom distance, showing the corresponding increase of the eccentricity with the off-bottom distance. The efficient mixing process of pseudoplastic fluid stirred by 6PBT impeller is obtained with the considerably low mixing energy per unit volume when the stirrer off-bottom distance, C, is T/3 and the eccentricity, e, is 0.2. The research results provide valuable references for the improvement of pseudoplastic fluid agitation technology.

  10. A pilot-scale study of struvite precipitation in a stirred tank reactor: conditions influencing the process.

    PubMed

    Pastor, L; Mangin, D; Barat, R; Seco, A

    2008-09-01

    Currently, the two most developed techniques for recovering phosphorus from wastewater consist of the formation of calcium phosphates and struvite (MgNH(4)PO(4).6H(2)O). In this work the influence of the operational conditions on the struvite precipitation process (pH in the reactor, hydraulic retention time, and magnesium:phosphorus, nitrogen:phosphorus, and calcium:magnesium molar ratios) have been studied. Twenty-three experiments with artificial wastewater were performed in a stirred reactor. In order to obtain the pH value maintenance during the crystallization process, a fuzzy logic control has been developed. High phosphorus removal efficiencies were reliably achieved precipitating the struvite as easily dried crystals or as pellets made up of agglomerated crystals.

  11. Comprehensive clone screening and evaluation of fed-batch strategies in a microbioreactor and lab scale stirred tank bioreactor system: application on Pichia pastoris producing Rhizopus oryzae lipase

    PubMed Central

    2014-01-01

    Background In Pichia pastoris bioprocess engineering, classic approaches for clone selection and bioprocess optimization at small/micro scale using the promoter of the alcohol oxidase 1 gene (PAOX1), induced by methanol, present low reproducibility leading to high time and resource consumption. Results An automated microfermentation platform (RoboLector) was successfully tested to overcome the chronic problems of clone selection and optimization of fed-batch strategies. Different clones from Mut+P. pastoris phenotype strains expressing heterologous Rhizopus oryzae lipase (ROL), including a subset also overexpressing the transcription factor HAC1, were tested to select the most promising clones. The RoboLector showed high performance for the selection and optimization of cultivation media with minimal cost and time. Syn6 medium was better than conventional YNB medium in terms of production of heterologous protein. The RoboLector microbioreactor was also tested for different fed-batch strategies with three clones producing different lipase levels. Two mixed substrates fed-batch strategies were evaluated. The first strategy was the enzymatic release of glucose from a soluble glucose polymer by a glucosidase, and methanol addition every 24 hours. The second strategy used glycerol as co-substrate jointly with methanol at two different feeding rates. The implementation of these simple fed-batch strategies increased the levels of lipolytic activity 80-fold compared to classical batch strategies used in clone selection. Thus, these strategies minimize the risk of errors in the clone selection and increase the detection level of the desired product. Finally, the performance of two fed-batch strategies was compared for lipase production between the RoboLector microbioreactor and 5 liter stirred tank bioreactor for three selected clones. In both scales, the same clone ranking was achieved. Conclusion The RoboLector showed excellent performance in clone selection of P

  12. Comprehensive clone screening and evaluation of fed-batch strategies in a microbioreactor and lab scale stirred tank bioreactor system: application on Pichia pastoris producing Rhizopus oryzae lipase.

    PubMed

    Hemmerich, Johannes; Adelantado, Núria; Barrigón, José Manuel; Ponte, Xavier; Hörmann, Astrid; Ferrer, Pau; Kensy, Frank; Valero, Francisco

    2014-03-07

    In Pichia pastoris bioprocess engineering, classic approaches for clone selection and bioprocess optimization at small/micro scale using the promoter of the alcohol oxidase 1 gene (PAOX1), induced by methanol, present low reproducibility leading to high time and resource consumption. An automated microfermentation platform (RoboLector) was successfully tested to overcome the chronic problems of clone selection and optimization of fed-batch strategies. Different clones from Mut+P. pastoris phenotype strains expressing heterologous Rhizopus oryzae lipase (ROL), including a subset also overexpressing the transcription factor HAC1, were tested to select the most promising clones.The RoboLector showed high performance for the selection and optimization of cultivation media with minimal cost and time. Syn6 medium was better than conventional YNB medium in terms of production of heterologous protein.The RoboLector microbioreactor was also tested for different fed-batch strategies with three clones producing different lipase levels. Two mixed substrates fed-batch strategies were evaluated. The first strategy was the enzymatic release of glucose from a soluble glucose polymer by a glucosidase, and methanol addition every 24 hours. The second strategy used glycerol as co-substrate jointly with methanol at two different feeding rates. The implementation of these simple fed-batch strategies increased the levels of lipolytic activity 80-fold compared to classical batch strategies used in clone selection. Thus, these strategies minimize the risk of errors in the clone selection and increase the detection level of the desired product.Finally, the performance of two fed-batch strategies was compared for lipase production between the RoboLector microbioreactor and 5 liter stirred tank bioreactor for three selected clones. In both scales, the same clone ranking was achieved. The RoboLector showed excellent performance in clone selection of P. pastoris Mut+ phenotype. The use of

  13. Defluoridation of drinking water by electrocoagulation/electroflotation in a stirred tank reactor with a comparative performance to an external-loop airlift reactor.

    PubMed

    Essadki, A H; Gourich, B; Vial, Ch; Delmas, H; Bennajah, M

    2009-09-15

    Defluoridation using batch electrocoagulation/electroflotation (EC/EF) was carried out in two reactors for comparison purpose: a stirred tank reactor (STR) close to a conventional EC cell and an external-loop airlift reactor (ELAR) that was recently described as an innovative reactor for EC. The respective influences of current density, initial concentration and initial pH on the efficiency of defluoridation were investigated. The same trends were observed in both reactors, but the efficiency was higher in the STR at the beginning of the electrolysis, whereas similar values were usually achieved after 15min operation. The influence of the initial pH was explained using the analyses of sludge composition and residual soluble aluminum species in the effluents, and it was related to the prevailing mechanisms of defluoridation. Fluoride removal and sludge reduction were both favored by an initial pH around 4, but this value required an additional pre-treatment for pH adjustment. Finally, electric energy consumption was similar in both reactors when current density was lower than 12mA/cm(2), but mixing and complete flotation of the pollutants were achieved without additional mechanical power in the ELAR, using only the overall liquid recirculation induced by H(2) microbubbles generated by water electrolysis, which makes subsequent treatments easier to carry out.

  14. Optimization of lignin peroxidase production and stability by Phanerochaete chrysosporium using sewage-treatment-plant sludge as substrate in a stirred-tank bioreactor.

    PubMed

    Alam, Md Zahangir; Mansor, Mariatul F; Jalal, K C A

    2009-05-01

    A laboratory-scale study was carried out to produce lignin peroxidase (ligninase) by white rot fungus (Phanerochaete chrysosporium) using sewage-treatment-plant (STP) sludge as the major substrate. The optimization was done using full-factorial design (FFD) with agitation and aeration as the two parameters. Nine experiments indicated by the FFD were fermented in a stirred-tank bioreactor for 3 days. A second-order quadratic model was developed using the regression analysis of the experimental results with the linear, quadratic, and interaction effects of the parameters. Analysis of variance (ANOVA) showed a high coefficient of determination (R (2)) value of 0.972, thus indicating a satisfactory fit of the quadratic model with the experimental data. Using statistical analysis, the optimum aeration and agitation rates were determined to be 2.0 vvm and 200 rpm, respectively, with a maximum activity of 225 U l(-1) in the first 3 days of fermentation. The validation experiment showed the maximum activity of lignin peroxidase was 744 U l(-1) after 5 days of fermentation. The results for the tests of the stability of lignin peroxidase showed that the activity was more than 80% of the maximum for the first 12 h of incubation at an optimum pH of 5 and temperature of 55 degrees C.

  15. A comparison of orbitally-shaken and stirred-tank bioreactors: pH modulation and bioreactor type affect CHO cell growth and protein glycosylation.

    PubMed

    Monteil, Dominique T; Juvet, Valentin; Paz, Jonathan; Moniatte, Marc; Baldi, Lucia; Hacker, David L; Wurm, Florian M

    2016-09-01

    Orbitally shaken bioreactors (OSRs) support the suspension cultivation of animal cells at volumetric scales up to 200 L and are a potential alternative to stirred-tank bioreactors (STRs) due to their rapid and homogeneous mixing and high oxygen transfer rate. In this study, a Chinese hamster ovary cell line producing a recombinant antibody was cultivated in a 5 L OSR and a 3 L STR, both operated with or without pH control. Effects of bioreactor type and pH control on cell growth and metabolism and on recombinant protein production and glycosylation were determined. In pH-controlled bioreactors, the glucose consumption and lactate production rates were higher relative to cultures grown in bioreactors without pH control. The cell density and viability were higher in the OSRs than in the STRs, either with or without pH control. Volumetric recombinant antibody yields were not affected by the process conditions, and a glycan analysis of the antibody by mass spectrometry did not reveal major process-dependent differences in the galactosylation index. The results demonstrated that OSRs are suitable for recombinant protein production from suspension-adapted animal cells. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1174-1180, 2016.

  16. Production in stirred-tank bioreactor of recombinant bovine chymosin B by a high-level expression transformant clone of Pichia pastoris.

    PubMed

    Noseda, Diego Gabriel; Recúpero, Matías; Blasco, Martín; Bozzo, Joaquín; Galvagno, Miguel Ángel

    2016-07-01

    An intense screening of Pichia pastoris clones transformed with the gene of bovine chymosin under methanol-inducible AOX1 promoter was performed, obtaining a transformant clone with a higher milk-clotting activity value in comparison with our previous studies. The scaling of recombinant-chymosin production was carried out by a fed-batch strategy in a stirred-tank bioreactor using biodiesel-byproduct crude glycerol as the carbon source and pure methanol for the induction of chymosin expression, achieving a biomass concentration of 158 g DCW/L and a maximum coagulant activity of 192 IMCU/ml after 120 h of methanol induction. Recombinant bovine chymosin was purified from bioreactor-fermentation culture by a procedure including anion-exchange chromatography which allowed obtaining heterologous chymosin with high level of purity and activity; suggesting that this downstream step could be scaled up in a successful manner for chymosin purification. Thermoestability assay permitted to establish that unformulated recombinant chymosin could be stored at 5 °C without decrease of enzyme activity throughout at least 120 days. Finally, reiterative methanol-inductions of recombinant chymosin expression in bioreactor demonstrated that the reutilization of cell biomass overcame the low enzyme productivity usually reached by P. pastoris system.

  17. Spatially-resolved current and impedance analysis of a stirred tank reactor and serpentine fuel cell flow-field at low relative humidity

    NASA Astrophysics Data System (ADS)

    Hogarth, Warren H. J.; Steiner, Johannes; Benziger, Jay B.; Hakenjos, Alex

    A 20 cm 2 segmented anode fuel cell is used to investigate the performance of a hydrogen-air fuel cell at 1 atm. with two different flow-fields using spatially-resolved current and impedance measurements. A self-draining stirred tank reactor (STR) fuel cell and a single-channel serpentine fuel cell are compared with humidified and dry feed conditions. The current density distribution, impedance distribution, heat distribution and water evolution are compared for the two different flow-fields. With inlet feed dew points of 30 °C, the STR fuel cell and serpentine system performed comparably with moderate current gradients. With drier feeds, however, the STR fuel cell exhibited superior overall performance in terms of a higher total current and lower current, impedance and temperature distribution gradients. The STR fuel cell design is superior to a single-channel serpentine design under dry conditions because its open channel design allows the feed gases to mix with the product water and auto-humidify the cell.

  18. Characterization and application of a miniature 10 mL stirred-tank bioreactor, showing scale-down equivalence with a conventional 7 L reactor.

    PubMed

    Betts, Jonathan I; Doig, Steven D; Baganz, Frank

    2006-01-01

    The aim of this study was to characterize the engineering environment of an instrumented 10 mL miniature stirred-tank bioreactor and evaluate its potential as a scale-down device for microbial fermentation processes. Miniature bioreactors such as the one detailed in this work have been developed by several research groups and companies and seek to address the current bottleneck at the screening stage of bioprocess development. The miniature bioreactor was characterized in terms of overall volumetric oxygen transfer coefficient and mixing time over a wide range of impeller speeds. Power input to the miniature bioreactor was directly measured, and from this the power number of each impeller was calculated and specific power input estimated, allowing the performance of the miniature bioreactor to be directly compared with that of a conventional 7 L bioreactor. The capability of the miniature bioreactor to carry out microbial fermentations was also investigated. Replicate batch fermentations of Escherichia coli DH5alpha producing plasmid DNA were performed at equal specific power input, under fully aerobic and oxygen-limiting conditions. The results showed a high degree of equivalence between the two scales with regard to growth and product kinetics. This was underlined by the equal maximum specific growth rate and equal specific DNA product yield on biomass obtained at the two scales of operation, demonstrating the feasibility of scaling down to 10 mL on the basis of equivalent specific power input.

  19. Submerged fermentation of the edible mushroom Pleurotus ostreatus in a batch stirred tank bioreactor as a promising alternative for the effective production of bioactive metabolites.

    PubMed

    Papaspyridi, Lefki-Maria; Aligiannis, Nektarios; Topakas, Evangelos; Christakopoulos, Paul; Skaltsounis, Alexandros-Leandros; Fokialakis, Nikolas

    2012-03-06

    The aim of this study was to investigate the potential of the submerged fermentation procedure in the production of bioactive metabolites of the common edible mushroom Pleurotus ostreatus. The biomass of the mushroom strain was produced by submerged fermentation in a batch stirred tank bioreactor and extracted by solvents of increasing polarity. The dichloromethane and methanol extract were fractioned by different techniques including Adsorption Chromatography and Fast Centrifugal Partition Chromatography (FCPC). The structures of pure compounds were elucidated with 1D/2D NMR-spectroscopic analyses, and chemical correlations combined with GC/MS and LC/MS experiments. Nineteen metabolites (e.g., fatty acids, phenolic metabolites, nucleotides and alkaloids) were isolated. Beyond the production of known metabolites, we report herein the production also of trans-3,4-dihydro-3,4,8-trihydroxynapthalen-1(2H)-one, indolo-3-carboxylic acid, 3-formylpyrrole and 4-hydroxybenzoic acid, that have pharmaceutical interest and are isolated for the first time from Pleurotus strains. This work indicates the great potential of the established bioprocess for the production of P. ostreatus mycelia with enhanced metabolic profile.

  20. Removal of oxytetracycline (OTC) in a synthetic pharmaceutical wastewater by a sequential anaerobic multichamber bed reactor (AMCBR)/completely stirred tank reactor (CSTR) system: biodegradation and inhibition kinetics.

    PubMed

    Sponza, Delia Teresa; Çelebi, Hakan

    2012-01-01

    An anaerobic multichamber bed reactor (AMCBR) was effective in removing both molasses-chemical oxygen demand (COD), and the antibiotic oxytetracycline (OTC). The maximum COD and OTC removals were 99% in sequential AMCBR/completely stirred tank reactor (CSTR) at an OTC concentration of 300 mg L(-1). 51%, 29% and 9% of the total volatile fatty acid (TVFA) was composed of acetic, propionic acid and butyric acids, respectively. The OTC loading rates at between 22.22 and 133.33 g OTC m(-3) d(-1) improved the hydrolysis of molasses-COD (k), the maximum specific utilization of molasses-COD (k(mh)) and the maximum specific utilization rate of TVFA (k(TVFA)). The direct effect of high OTC loadings (155.56 and -177.78 g OTC m(-3) d(-1)) on acidogens and methanogens were evaluated with Haldane inhibition kinetic. A significant decrease of the Haldane inhibition constant was indicative of increases in toxicity at increasing loading rates.

  1. Gypsum crystal size distribution in four continuous flow stirred slurry boric acid reactors in series compared with the batch

    NASA Astrophysics Data System (ADS)

    Çakal, G. Ö.; Eroğlu, İ.; Özkar, S.

    2006-04-01

    Colemanite, one of the important boron minerals, is dissolved in aqueous sulfuric acid to produce boric acid. In this reaction, gypsum is obtained as a by-product. Gypsum crystals are in the shape of thin needles. These crystals should be grown to an easily filterable size in order to increase the production yield and purity of boric acid. In this paper, the particle size distributions and the volume-weighted mean diameters of the gypsum crystals obtained in batch and continuous flow systems were compared. Experiments in both batch and continuous reactors were performed at a temperature of 85 °C, a stirring rate of 400 rpm, and the inlet CaO to SO42- molar ratio of 1.0 using colemanite mineral in particle size smaller than 150 μm. The average diameter of the gypsum crystals obtained at 3.5 h from the batch reactor was found to be 37-41 μm. This value for the continuous system at steady state was observed to change between 44-163 μm. The particle size of the gypsum crystals was found to increase with the residence time of the solid in the continuous system.

  2. Constantly stirred sorbent and continuous flow integrative sampler: new integrative samplers for the time weighted average water monitoring.

    PubMed

    Llorca, Julio; Gutiérrez, Cristina; Capilla, Elisabeth; Tortajada, Rafael; Sanjuán, Lorena; Fuentes, Alicia; Valor, Ignacio

    2009-07-31

    Two innovative integrative samplers have been developed enabling high sampling rates unaffected by turbulences (thus avoiding the use of performance reference compounds) and with negligible lag time values. The first, called the constantly stirred sorbent (CSS) consists of a rotator head that holds the sorbent. The rotation speed given to the head generates a constant turbulence around the sorbent making it independent of the external hydrodynamics. The second, called the continuous flow integrative sampler (CFIS) consists of a small peristaltic pump which produces a constant flow through a glass cell. The sorbent is located inside this cell. Although different sorbents can be used, poly(dimethylsiloxane) PDMS under the commercial twister format (typically used for stir bar sorptive extraction) was evaluated for the sampling of six polycyclic aromatic hydrocarbons and three organochlorine pesticides. These new devices have many analogies with passive samplers but cannot truly be defined as such since they need a small energy supply of around 0.5 W supplied by a battery. Sampling rates from 181 x 10(-3) to 791 x 10(-3) L/day were obtained with CSS and 18 x 10(-3) to 53 x 10(-3) with CFIS. Limits of detection for these devices are in the range from 0.3 to 544 pg/L with a precision below 20%. An in field evaluation for both devices was carried out for a 5 days sampling period in the outlet of a waste water treatment plant with comparable results to those obtained with a classical sampling method.

  3. Flammable gas/slurry growth unreviewed safety question:justification for continued operation for the tank farms at the Hanford site

    SciTech Connect

    Leach, C.E., Westinghouse Hanford

    1996-07-31

    This Justification for Continued Operation (JCO) provides a basis for continued operation in 176 high level waste tanks, double contained receiver tanks (DCRTs), catch tanks, 244-AR Vault, 242-S and 242-T Evaporators and inactive miscellaneous underground storage tanks (IMUSTs) relative to flammable gas hazards. Required controls are specified.

  4. Influence of Light Intensity and Temperature on Cultivation of Microalgae Desmodesmus Communis in Flasks and Laboratory-Scale Stirred Tank Photobioreactor

    NASA Astrophysics Data System (ADS)

    Vanags, J.; Kunga, L.; Dubencovs, K.; Galvanauskas, V.; Grīgs, O.

    2015-04-01

    Optimization of the microalgae cultivation process and of the bioprocess in general traditionally starts with cultivation experiments in flasks. Then the scale-up follows, when the process from flasks is transferred into a laboratory-scale bioreactor, in which further experiments are performed before developing the process in a pilot-scale reactor. This research was done in order to scale-up the process from a 0.4 1 shake flask to a 4.0 1 laboratory-scale stirred-tank photobioreactor for the cultivation of Desmodesmus (D.) communis microalgae. First, the effect of variation in temperature (21-29 ºC) and in light intensity (200-600 μmol m-2s-1) was studied in the shake-flask experiments. It was shown that the best results (the maximum biomass concentration of 2.72 g 1-1 with a specific growth rate of 0.65 g g-1d-1) can be achieved at the cultivation temperature and light intensity being 25 °C and 300 μmol m2s-1, respectively. At the same time, D. communis cultivation under the same conditions in stirred-tank photobioreactor resulted in average volumetric productivities of biomass due to the light limitation even when the light intensity was increased during the experiment (the maximum biomass productivity 0.25 g 1-1d-1; the maximum biomass concentration 1.78 g 1-1). Mikroaļģu kultivēšanas procesa optimizēšana parasti sākas ar kultivēšanas eksperimentiem kolbās. Tālāk seko procesa pārnese uz laboratorijas mēroga fotobioreaktoru, kurā tiek veikti tālāki eksperimenti, pirms tiek izveidots pilota mēroga reaktors. Šis pētījums tika veikts ar mērķi, pārnest Desmodesmus communis kultivēšanas procesu no 0.4 1 kolbas uz 4.0 1 laboratorijas fotobioreaktoru. Vispirms tika pētīta dažādu temperatūru (21-29 ºC) un gaismas intensitātes (200-600 μmol m-2s-1) ietekme uz aļģu biomasu veicot eksperimentus kolbās. Labākie rezultāti (maksimālā biomasas koncentrācija 2.72 g 1-1; īpatnējais augšanas ātrums 0.65 g g-1d-1) sasniegti, kad

  5. Effect of aeration and agitation regimes on lipase production by newly isolated Rhodotorula mucilaginosa-MTCC 8737 in stirred tank reactor using molasses as sole production medium.

    PubMed

    Potumarthi, Ravichandra; Subhakar, Chennupati; Vanajakshi, J; Jetty, Annapurna

    2008-12-01

    The influence of media and process parameters (aeration and agitation) on fermentation broth rheology and biomass formation has been studied in 1.5-l stirred tank reactor for lipase production using Rhodotorula mucilaginosa MTCC 8737. Molasses, as sole production medium, is used for lipase production by varying aeration (1, 2, and 3 vvm) and agitation speeds (100, 200, and 300 rpm). Maximum lipase activity of 72 U/ml was obtained during 96 h of fermentation at 2 vvm, 200 rpm, pH 7, and 25 +/- 2 degrees C temperature. Lipase production kinetics with respect to dry cell weight of biomass showed Y (P/S) of 25.71 U/mg, specific product formation of 10.9 U/mg DC, and Y (X/S) 2.35 mg/mg. Maximum lipase activity (MC 2) of 56 U/ml was observed at 1% molasses, and a further increase in the molasses concentration of (%) 1.5 and 2 inhibited the product formation of lipase with 15 and 8.5 U/ml, respectively. The production kinetics of molasses media showed Y (P/X) was 14 U/mg DC, Y (P/S) 16 U/mg, and Y (X/S) 1.14 mg/mg during 96 h of bioreactor operation. The k(L)a values for all batches (MC 1-MC 4) at 96 h of fermentation were 32, 28, 21, and 19/h, and the |oxygen transfer rate were 54.4, 56, 35.7, and 17.29 mg/l h, respectively. Increase in molasses concentration resulted in decreased lipase activity by increase in viscosity of the fermentation broth.

  6. Interpreting hydrodynamic behaviour by the model of stirred tanks in series with exchanged zones: preliminary study in lab-scale trickling filters.

    PubMed

    Zeng, Ming; Soric, Audrey; Ferrasse, Jean-Henry; Roche, Nicolas

    2013-01-01

    In trickling filters for wastewater treatment, hydrodynamic behaviour is affected by the growth of biofilm on the porous medium. Therefore, modelling hydrodynamic behaviour is necessary and efficient to predict the biodegradation of pollutants. In this study, laboratory-scale trickling filters were filled with two different porous media (glass beads and plastic rings) and were fed by a synthetic substrate in batch mode. Total organic carbon (TOC) of the effluent was measured and retention time distribution (RTD) was determined by injecting NaCl. Results showed that medium had no significant effect on TOC removal rate (around 80% and 60% respectively for batch time of seven and two days). However, regarding the hydrodynamic behaviour, the effective volume ratio and hydraulic efficiency in the glass beads bed increased remarkably from 28% and 18% to 80% and 70%, respectively, with the reduction of dispersion coefficient (from 4.55 to 1.53). Moreover, the short batch time accelerated this change. Conversely, no variation of hydrodynamic behaviour in plastic rings bed was evident. Along with the feeding of synthetic substrate, biofilm concentration ranged from 1.5 to 10.1 g/L in the glass beads reactor and it achieved around 2.8 g/L in the plastic rings reactor. Hydrodynamic modelling indicated that the model of stirred tanks in series with exchanged zones fitted the experimental results well. These gave values of mobile and immobile volumes of 51 mL and 17 mL, respectively, in the glass beads filter and 25 mL and 15 mL, respectively, in the plastic rings filter.

  7. A continuous stirred hydrogen-based polyvinyl chloride membrane biofilm reactor for the treatment of nitrate contaminated drinking water.

    PubMed

    Xia, Siqing; Zhang, YanHao; Zhong, FoHua

    2009-12-01

    A continuous stirred hydrogen-based polyvinyl chloride (PVC) membrane biofilm reactor (MBfR) was investigated to remove nitrate from the drinking water. The reactor was operated over 100 days, and the result showed that the average nitrate denitrification rate of 1.2 g NO(3)(-)-N/m(2) d and the total nitrogen (TN) removal of 95.1% were achieved with the influent nitrate concentration of 50 mg NO(3)(-)-N/L and the hydrogen pressure of 0.05 MPa. Under the same conditions, the average rate of hydrogen utilization by biofilm was 0.031 mg H(2)/cm(2) d, which was sufficient to remove 50 mg NO(3)(-)-N/L from the contaminated water with the effluent nitrate and nitrite concentrations below drinking water limit values. The average hydrogen utilization efficiency was achieved as high as 99.5%. Flux analysis demonstrated that, compared to sulfate reduction, nitrate reduction competed more strongly for hydrogen electron, and obtained more electrons in high influent nitrate loading.

  8. Simultaneous removal of selected oxidized contaminants in groundwater using a continuously stirred hydrogen-based membrane biofilm reactor.

    PubMed

    Xia, Siqing; Liang, Jun; Xu, Xiaoyin; Shen, Shuang

    2013-01-01

    A laboratory trial was conducted for evaluating the capability of a continuously stirred hydrogen-based membrane biofilm reactor to simultaneously reduce nitrate (NO(3-)-N), sulfate (SO4(2-)), bromate (BrO3-), hexavalent chromium (Cr(VI)) and parachloronitrobenzene (p-CNB). The reactor contained two bundles of hollow fiber membranes functioning as an autotrophic biofilm carrier and hydrogen pipe as well. On the condition that hydrogen was supplied as electron donor and diffused into water through membrane pores, autohydrogenotrophic bacteria were capable of reducing contaminants to forms with lower toxicity. Reduction occurred within 1 day and removal fluxes for NO(3-)-N, SO4(2-), BrO3-, Cr(VI), and p-CNB reached 0.641, 2.396, 0.008, 0.016 and 0.031 g/(day x m2), respectively after 112 days of continuous operation. Except for the fact that sulfate was 37% removed under high surface loading, the other four contaminants were reduced by over 95%. The removal flux comparison between phases varying in surface loading and H2 pressure showed that decreasing surface loading or increasing H2 pressure would promote removal flux. Competition for electrons occurred among the five contaminants. Electron-equivalent flux analysis showed that the amount of utilized hydrogen was mainly controlled by NO(3-)-N and SO4(2-) reduction, which accounted for over 99% of the electron flux altogether. It also indicated the electron acceptor order, showing that nitrate was the most prior electron acceptor while suIfate was the second of the five contaminants.

  9. Process design and dynamics of a series of continuously fed aerated tank reactors treating dairy manure.

    PubMed

    Alitalo, Anni; Alakukku, Laura; Aura, Erkki

    2013-09-01

    A 6-month trial was carried out to study operational conditions and process dynamics in a system of six continuously fed aerated tank bioreactors grouped by serial connection. Feedback was with NH3-stripped solution after biological treatment, with the purpose of lowering the NH3 content of the feedback solution in order to improve the process. The fate of carbon and nutrients during treatment were determined, as well as the ammonia stripping performance of the biological treatment. The results of the study confirmed the dynamic nature of the serial system and indicated its resistance to process disturbances. The feedback of slurry resulted in a dilution effect and significantly reduced the carbon and nutrients concentrations in the first tank, increasing the treatment efficiency. Overall, after mechanical separation, low intensity aeration treatment and ammonia stripping, up to 61%, 67%, 79% and 83% average reductions of TS, Ntot, NH4(+)-N and Ptot, respectively, were reached.

  10. Nitrate treatment effects on bacterial community biofilm formed on carbon steel in produced water stirred tank bioreactor.

    PubMed

    Marques, Joana Montezano; de Almeida, Fernando Pereira; Lins, Ulysses; Seldin, Lucy; Korenblum, Elisa

    2012-06-01

    To better understand the impact of nitrate in Brazilian oil reservoirs under souring processes and corrosion, the goal of this study was to analyse the effect of nitrate on bacterial biofilms formed on carbon steel coupons using reactors containing produced water from a Brazilian oil platform. Three independent experiments were carried out (E1, E2 and E3) using the same experimental conditions and different incubation times (5, 45 and 80 days, respectively). In every experiment, two biofilm-reactors were operated: one was treated with continuous nitrate flow (N reactor), and the other was a control reactor without nitrate (C reactor). A Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis approach using the 16S rRNA gene was performed to compare the bacterial groups involved in biofilm formation in the N and C reactors. DGGE profiles showed remarkable changes in community structure only in experiments E2 and E3. Five bands extracted from the gel that represented the predominant bacterial groups were identified as Bacillus aquimaris, B. licheniformis, Marinobacter sp., Stenotrophomonas maltophilia and Thioclava sp. A reduction in the sulfate-reducing bacteria (SRB) most probable number counts was observed only during the longer nitrate treatment (E3). Carbon steel coupons used for biofilm formation had a slightly higher weight loss in N reactors in all experiments. When the coupon surfaces were analysed by scanning electron microscopy, an increase in corrosion was observed in the N reactors compared with the C reactors. In conclusion, nitrate reduced the viable SRB counts. Nevertheless, the nitrate dosing increased the pitting of coupons.

  11. Quantitative measurements of mixing intensity in shake-flasks and stirred tank reactors. Use of the Mixmeter, a mixing process analyzer.

    PubMed

    Gerson, D F.; Kole, M M.

    2001-03-01

    A new mixing probe has been developed which measures the motions of the fluid during mixing as pressure fluctuations and converts the measurements into a mixing signal (MS). The MS is the root mean square (RMS) pressure fluctuation in the 1-64Hz range as determined by a sensitive pressure sensor and a digital signal processor specifically designed for the purpose. The MS is a measure of the actual mixing flow of the fluid rather than a measurement of the input motions or energies into the reactor system (e.g. RPM, torque or power). In other studies, the MS has been measured as a function of mixing speed in numerous sized reactors from 10 to 1000l, and provides consistent and reproducible measurements. The MS increases monotonically as a function of mixing speed, with a change of slope corresponding to the transition from laminar to turbulent mixing regimes. Maps of MS as a function of location in the reactor are useful in understanding stirred tank reactor design and performance. Quantitative measurements of mixing are especially useful during process development as a tool to increase the success of scale-up during the transition from process development to manufacturing. Measurements at a fixed location in a given reactor are useful in understanding changes in mixing that occur during the course of a given process, and are useful in manufacturing situations where validated documentation of lot-to-lot consistency of mixing is required (e.g. pharmaceutical manufacturing). In addition, the probe has been used to measure mixing in vessels with vibrational mixers with similar results. The probe has been successfully used in feedback loops to control either mixing speed or vibrational mixing amplitude in order to maintain constant mixing of the fluid during processing. With this system it is possible to maintain constant mixing over a wide range of fluid volumes in a given reactor, and, for instance, to compensate for changes in viscosity throughout the course of the

  12. Tristability in the iodate-As(III) chemical system arising from a model of stirring and mixing effects

    NASA Astrophysics Data System (ADS)

    Ganapathisubramanian, N.

    1991-08-01

    The iodate-As(III) system which exhibits bistability in an ideal continuous flow stirred tank reactor (CSTR), exhibits tristability when subjected to the mixing model of Kumpinsky and Epstein [J. Chem. Phys. 82, 53 (1985)]. The cross flow between the major and minor reactors influences the system's lower hysteresis limit more than its upper hysteresis limit.

  13. Co-digestion of food and garden waste with mixed sludge from wastewater treatment in continuously stirred tank reactors.

    PubMed

    Fitamo, T; Boldrin, A; Boe, K; Angelidaki, I; Scheutz, C

    2016-04-01

    Co-digestions of urban organic waste were conducted to investigate the effect of the mixing ratio between sludge, food waste, grass clippings and green waste at different hydraulic retention times (HRTs). Compared to the digestion of 100% sludge, the methane yield increased by 48% and 35%, when co-digesting sludge with food waste, grass clippings and garden waste with a corresponding %VS of 10:67.5:15.75:6.75 (R1) and 10:45:31.5:13.5 (R2), respectively. The methane yield remained constant at around 425 and 385 NmL CH4/g VS in R1 and R2, respectively, when the reactors were operated at HRTs of 15, 20 and 30 days. However, the methane yield dropped significantly to 356 (R1) and 315 (R2) NmL CH4/g VS when reducing the HRT to 10 days, indicating that the process was stressed. Since the methane production rate improved significantly with decreasing HRT, the trade-off between yield and productivity was obtained at 15 days HRT.

  14. Anaerobic digestion of blackwater from vacuum toilets and kitchen refuse in a continuous stirred tank reactor (CSTR).

    PubMed

    Wendland, C; Deegener, S; Behrendt, J; Toshev, P; Otterpohl, R

    2007-01-01

    The objective of this research was mesophilic anaerobic digestion of blackwater from vacuum toilets (BW) and kitchen refuse (KR) in a CSTR within an ecological sanitation system. A detailed investigation of the BW characteristics was carried out. Research on anaerobic digestion was performed with CSTR of 101 volume at HRT of 10, 15 and 20 days. The digestion of BW at 20 days HRT showed stable performance without inhibition effects, in spite of relatively high ammonium concentrations. The removal of total and particulate COD was 61% and 53%, respectively, and the methane yield 10/CH4/cap/day. The addition of kitchen refuse (KR) improved the performance of the CSTR in terms of COD removal efficiency and methane yield. At 20 days HRT the removal of total and particulate COD increased up to 71% and 67%, respectively, and the methane yield to 27/CH4/cap/day. The results at 15 days HRT showed similar performance. At HRT of 10 days, the anaerobic treatment was limited but reached steady state conditions at higher VFA concentrations in the effluent, with a decrease of COD removal of 30 to 33% and of methane yields of 19 to 21%.

  15. Biogas Upgrading via Hydrogenotrophic Methanogenesis in Two-Stage Continuous Stirred Tank Reactors at Mesophilic and Thermophilic Conditions.

    PubMed

    Bassani, Ilaria; Kougias, Panagiotis G; Treu, Laura; Angelidaki, Irini

    2015-10-20

    This study proposes an innovative setup composed by two stage reactors to achieve biogas upgrading coupling the CO2 in the biogas with external H2 and subsequent conversion into CH4 by hydrogenotrophic methanogenesis. In this configuration, the biogas produced in the first reactor was transferred to the second one, where H2 was injected. This configuration was tested at both mesophilic and thermophilic conditions. After H2 addition, the produced biogas was upgraded to average CH4 content of 89% in the mesophilic reactor and 85% in the thermophilic. At thermophilic conditions, a higher efficiency of CH4 production and CO2 conversion was recorded. The consequent increase of pH did not inhibit the process indicating adaptation of microorganisms to higher pH levels. The effects of H2 on the microbial community were studied using high-throughput Illumina random sequences and full-length 16S rRNA genes extracted from the total sequences. The relative abundance of archaeal community markedly increased upon H2 addition with Methanoculleus as dominant genus. The increase of hydrogenotrophic methanogens and syntrophic Desulfovibrio and the decrease of aceticlastic methanogens indicate a H2-mediated shift toward the hydrogenotrophic pathway enhancing biogas upgrading. Moreover, Thermoanaerobacteraceae were likely involved in syntrophic acetate oxidation with hydrogenotrophic methanogens in absence of aceticlastic methanogenesis.

  16. Improving the production yield and productivity of 1,3-dihydroxyacetone from glycerol fermentation using Gluconobacter oxydans NL71 in a compressed oxygen supply-sealed and stirred tank reactor (COS-SSTR).

    PubMed

    Zhou, Xin; Zhou, Xuelian; Xu, Yong; Yu, Shiyuan

    2016-08-01

    In this study, a compressed oxygen gas supply was connected to a sealed aerated stirred tank reactor (COS-SSTR) bio-system, leading to a high-oxygen pressure bioreactor used to improve the bio-transformative performance in the production of 1,3-dihydroxyacetone (DHA) from glycerol using Gluconobacter oxydans NL71. A concentration of 301.2 ± 8.2 g L(-1) DHA was obtained from glycerol after 32 h of fed-batch fermentation in the COS-SSTR system. The volumetric productivity for this process was 9.41 ± 0.23 g L(-1) h(-1), which is presently the highest obtained level of glycerol bioconversion into DHA. These results show that the application of this bioreactor would enable microbial production of DHA from glycerol at the industrial scale.

  17. A laboratory and pilot plant scaled continuous stirred reactor separator for the production of ethanol from sugars, corn grits/starch or biomass streams

    SciTech Connect

    Dale, M.C.; Lei, Shuiwang; Zhou, Chongde

    1995-10-01

    An improved bio-reactor has been developed to allow the high speed, continues, low energy conversion of various substrates to ethanol. The Continuous Stirred Reactor Separator (CSRS) incorporates gas stripping of the ethanol using a recalculating gas stream between cascading stirred reactors in series. We have operated a 4 liter lab scale unit, and built and operated a 24,000 liter pilot scale version of the bioreactor. High rates of fermentation are maintained in the reactor stages using a highly flocculent yeast strain. Ethanol is recovered from the stripping gas using a hydrophobic solvent absorber (isothermal), after which the gas is returned to the bioreactor. Ethanol can then be removed from the solvent to recover a highly concentrated ethanol product. We have applied the lab scale CSRS to sugars (glucose/sucrose), molasses, and raw starch with simultaneous saccharification and fermentation of the starch granules (SSF). The pilot scale CSRS has been operated as a cascade reactor using dextrins as a feed. Operating data from both the lab and pilot scale CSRS are presented. Details of how the system might be applied to cellulosics, with some preliminary data are also given.

  18. Cathodic protection of underground storage tanks using continuous polymeric cable anode systems

    SciTech Connect

    Werner, D.P.; Mussall, E.J.

    1995-12-31

    The US Environmental Protection Agency (EPA) has mandated several compliance deadlines for owners of underground storage tanks. These regulations include installation of vapor recovery systems, inventory control systems, tank tightness testing, overfill and overspill protection, and installation of cathodic protection systems, et al. This paper will focus on the installation of cathodic protection systems, the installation of which the EPA has mandated be complete prior to the end of 1998 for underground storage tanks.

  19. Continuous tank reactor synthesis of highly substituted sulphobutylether β-cyclodextrins.

    PubMed

    Savage, Tammy; Mitchell, John; Trivedi, Vivek; Wicks, Stephen; Waters, Laura J

    2015-11-30

    Batch synthesis of sulphobutyl ether β-cyclodextrin (also known as SBE-β-CD or SBECD) is a process effectively divided into three main stages, i.e. initial reagent dissolution, a sulphoalkylation reaction and final reaction quenching. This reaction is followed by downstream processing and purification, and ultimate isolation of the solid SBECD material. However, a feature associated with using this synthetic method is that a high proportion of lower substituted SBECD is observed. There is therefore a need to provide an improved synthetic method for producing higher substituted cyclodextrins. The authors here present a Continuous Tank Reactor (CTR) method for preparing sulphobutyl ether-cyclodextrins. The method comprises first contacting cyclodextrin with a base to form activated cyclodextrin. The method then involves separately contacting the activated cyclodextrin with an 1,4-butane sultone to form sulphoalkyl ether-cyclodextrin. The activation reaction is carried out in batch synthesis mode and the sulphoalkylation reaction is carried out under continuous flow conditions resulting in a novel method for the synthesis of highly derivatised cyclodextrins. The work is particularly concerned with producing controlled substitution in sulphobutyl ether β-cyclodextrins and novel compositions of highly substituted sulphoalkyl ether β-cyclodextrins are described.

  20. Generalized predictive control for a coupled four tank MIMO system using a continuous-discrete time observer.

    PubMed

    Gouta, Houssemeddine; Hadj Saïd, Salim; Barhoumi, Nabil; M'Sahli, Faouzi

    2017-03-01

    This paper deals with the problem of the observer based control design for a coupled four-tank liquid level system. For this MIMO system's dynamics, motivated by a desire to provide precise and sensorless liquid level control, a nonlinear predictive controller based on a continuous-discrete observer is presented. First, an analytical solution from the model predictive control (MPC) technique is developed for a particular class of nonlinear MIMO systems and its corresponding exponential stability is proven. Then, a high gain observer that runs in continuous-time with an output error correction time that is updated in a mixed continuous-discrete fashion is designed in order to estimate the liquid levels in the two upper tanks. The effectiveness of the designed control schemes are validated by two tests; The first one is maintaining a constant level in the first bottom tank while making the level in the second bottom tank to follow a sinusoidal reference signal. The second test is more difficult and it is made using two trapezoidal reference signals in order to see the decoupling performance of the system's outputs. Simulation and experimental results validate the objective of the paper.

  1. Modeling of gas-liquid mass transfer in a stirred tank bioreactor agitated by a Rushton turbine or a new pitched blade impeller.

    PubMed

    Gelves, Ricardo; Dietrich, A; Takors, Ralf

    2014-03-01

    A combined computational fluid dynamics (CFD) and population balance model (PBM) approach has been applied to simulate hydrodynamics and mass transfer in a 0.18 m(3) gas-liquid stirred bioreactor agitated by (1) a Rushton turbine, and (2) a new pitched blade geometry with rotating cartridges. The operating conditions chosen were motivated by typical settings used for culturing mammalian cells. The effects of turbulence, rotating flow, bubbles breakage and coalescence were simulated using the k-ε, multiple reference frame (MRF), Sliding mesh (SM) and PBM approaches, respectively. Considering the new pitched blade geometry with rotating aeration microspargers, [Formula: see text] mass transfer was estimated to be 34 times higher than the conventional Rushton turbine set-up. Notably, the impeller power consumption was modeled to be about 50 % lower. Independent [Formula: see text] measurements applying the same operational conditions confirmed this finding. Motivated by these simulated and experimental results, the new aeration and stirring device is qualified as a very promising tool especially useful for cell culture applications which are characterized by the challenging problem of achieving relatively high mass transfer conditions while inserting only low stirrer energy.

  2. Analysis on the Deflection Angle of Columnar Dendrites of Continuous Casting Steel Billets Under the Influence of Mold Electromagnetic Stirring

    NASA Astrophysics Data System (ADS)

    Wang, Xincheng; Wang, Shengqian; Zhang, Lifeng; Sridhar, Seetharaman; Conejo, Alberto; Liu, Xuefeng

    2016-11-01

    In the current study, the deflection angle of columnar dendrites on the cross section of steel billets under mold electromagnetic stirring (M-EMS) was observed. A mathematical model was developed to define the effect of M-EMS on fluid flow and then to analyze the relationship between flow velocities and deflection angle. The model was validated using experimental data that was measured with a Tesla meter on magnetic intensity. By coupling the numerical results with the experimental data, it was possible to define a relationship between the velocities of the fluid with the deflection angle of high-carbon steel. The deflection angle of high-carbon steel reached maximum values from 18 to 23 deg for a velocity from 0.35 to 0.40 m/s. The deflection angles of low-carbon steel under different EM parameters were discussed. The deflection angle of low-carbon steel was increased as the magnetic intensity, EM force, and velocity of molten steel increased.

  3. A Continuous Liquid-Level Sensor for Fuel Tanks Based on Surface Plasmon Resonance

    PubMed Central

    Pozo, Antonio M.; Pérez-Ocón, Francisco; Rabaza, Ovidio

    2016-01-01

    A standard problem in large tanks at oil refineries and petrol stations is that water and fuel usually occupy the same tank. This is undesirable and causes problems such as corrosion in the tanks. Normally, the water level in tanks is unknown, with the problems that this entails. We propose herein a method based on surface plasmon resonance (SPR) to detect in real time the interfaces in a tank which can simultaneously contain water, gasoline (or diesel) and air. The plasmonic sensor is composed of a hemispherical glass prism, a magnesium fluoride layer, and a gold layer. We have optimized the structural parameters of the sensor from the theoretical modeling of the reflectance curve. The sensor detects water-fuel and fuel-air interfaces and measures the level of each liquid in real time. This sensor is recommended for inflammable liquids because inside the tank there are no electrical or electronic signals which could cause explosions. The sensor proposed has a sensitivity of between 1.2 and 3.5 RIU−1 and a resolution of between 5.7 × 10−4 and 16.5 × 10−4 RIU. PMID:27213388

  4. A Continuous Liquid-Level Sensor for Fuel Tanks Based on Surface Plasmon Resonance.

    PubMed

    Pozo, Antonio M; Pérez-Ocón, Francisco; Rabaza, Ovidio

    2016-05-19

    A standard problem in large tanks at oil refineries and petrol stations is that water and fuel usually occupy the same tank. This is undesirable and causes problems such as corrosion in the tanks. Normally, the water level in tanks is unknown, with the problems that this entails. We propose herein a method based on surface plasmon resonance (SPR) to detect in real time the interfaces in a tank which can simultaneously contain water, gasoline (or diesel) and air. The plasmonic sensor is composed of a hemispherical glass prism, a magnesium fluoride layer, and a gold layer. We have optimized the structural parameters of the sensor from the theoretical modeling of the reflectance curve. The sensor detects water-fuel and fuel-air interfaces and measures the level of each liquid in real time. This sensor is recommended for inflammable liquids because inside the tank there are no electrical or electronic signals which could cause explosions. The sensor proposed has a sensitivity of between 1.2 and 3.5 RIU(-1) and a resolution of between 5.7 × 10(-4) and 16.5 × 10(-4) RIU.

  5. Computational fluid dynamics (CFD) tools for investigating flow and mixing in industrial systems: The Koch-Glitsch SMX(RTM) static mixer and a three Rushton turbine stirred tank

    NASA Astrophysics Data System (ADS)

    Zalc, Jeffrey Michael

    2000-11-01

    A suite of numerical tools, encompassing both commercial software and algorithms developed over the course of this dissertation research, is implemented for a detailed analysis of laminar flow and mixing in two industrial systems. A four element SMX static mixer geometry and a batch stirred tank equipped with three Rushton turbines are considered. Computational fluid dynamics (CFD) is used to compute the fully three-dimensional flow fields over tine unstructured tetrahedral meshes; at least ten flow conditions are considered for each system. Particle tracking routines are then employed to characterize the velocity components, pressure fields, and local mixing rates. Lagrangian mixing analysis is based on the dispersion of tracer particles. The stretching of fluid elements is used to quantify mixing performance. In the SMX static mixer, CFD results are validated through comparison of computed pressure drops with experimental results reported in the literature. Flow behavior is characterized by contour plots and probability density functions of velocity components and the magnitude of the deformation tensor. It is found that the flow in the static mixer is essentially independent of flow rate up through a Reynolds number of 1, beyond which inertial effects become significant and substantial differences in the nature of the flow are observed. Computed mixing patterns exhibit self-similarity and asymptotic directionality, which are fingerprints of chaotic behavior. Statistical characterization of the partially mixed structures reveals an exponential decay of the coefficient of variance with increasing axial distance. In the three Rushton turbine stirred tank, planar velocity vectors extracted from the CFD results are compared with experimental results obtained from particle imaging velocimetry (PIV). Planar laser-induced fluorescence (PLIF) and Poincare sections are both used to expose persistent poor-mixing regions, whose sizes and shapes depend strongly on the

  6. Comparison of a production process in a membrane-aerated stirred tank and up to 1000-L airlift bioreactors using BHK-21 cells and chemically defined protein-free medium.

    PubMed

    Hesse, Friedemann; Ebel, Maria; Konisch, Nadine; Sterlinski, Reinhard; Kessler, Wolfgang; Wagner, Roland

    2003-01-01

    The applicability of a protein-free medium for the production of recombinant human interleukin-2 with baby hamster kidney cells in airlift bioreactors was investigated. For this purpose, a BHK-21 cell line, adapted to grow and produce in protein-free SMIF7 medium without forming spheroids in membrane-aerated bubble-free bioreactors, was used as the producer cell line. First, cultivation of the cells was established at a 20-L scale using an internal loop airlift bioreactor system. During the culturing process the medium formulation was optimized according to the specific requirements associated with cultivation of mammalian cells under protein-free conditions in a bubble-aerated system. The effects of the addition of an antifoam agent on growth, viability, productivity, metabolic rates, and release of lactate dehydrogenase were investigated. Although it was possible to establish cultivation and production at a 20-L scale without the use of antifoaming substances, the addition of 0.002% silicon-oil-based antifoaming reagent improved the cultivation system by completely preventing foam formation. This reduced the release of lactate dehydrogenase activity to the level found in bubble-free aerated stirred tank membrane bioreactors and led to a reduction in generation doubling times by about 5 h (17%). Using the optimized medium formulation, cells were cultivated at a 1000-L scale, resulting in a culture performance comparable to the 20-L airlift bioreactor. For comparison, cultivations with protein-containing SMIF7 medium were carried out at 20- and 1000-L scales. The application of protein supplements did not lead to a significant improvement in the cultivation conditions. The results were also compared with experiments performed in a bubble-free aerated stirred tank membrane bioreactor to evaluate the influence of bubbles on the investigated culture parameters. The data implied a higher metabolic activity of the cells in airlift bioreactors with a 150% higher glucose

  7. FSW Implementation on the Space Shuttle's External Tank

    NASA Technical Reports Server (NTRS)

    Hartley, David; Smelser, Jerry W. (Technical Monitor)

    2001-01-01

    This paper presents, in viewgraph form, friction stir welding on the external tank of the Space Shuttle. The topics include: 1) Friction Stir Welding Process; 2) Implementation Status; and 3) Summary.

  8. Evaluation and Improvement of Liquid Propellant Rocket Chugging Analysis Techniques. Part 2: a Study of Low Frequency Combustion Instability in Rocket Engine Preburners Using a Heterogeneous Stirred Tank Reactor Model. Final Report M.S. Thesis - Aug. 1987

    NASA Technical Reports Server (NTRS)

    Bartrand, Timothy A.

    1988-01-01

    During the shutdown of the space shuttle main engine, oxygen flow is shut off from the fuel preburner and helium is used to push the residual oxygen into the combustion chamber. During this process a low frequency combustion instability, or chug, occurs. This chug has resulted in damage to the engine's augmented spark igniter due to backflow of the contents of the preburner combustion chamber into the oxidizer feed system. To determine possible causes and fixes for the chug, the fuel preburner was modeled as a heterogeneous stirred tank combustion chamber, a variable mass flow rate oxidizer feed system, a constant mass flow rate fuel feed system and an exit turbine. Within the combustion chamber gases were assumed perfectly mixed. To account for liquid in the combustion chamber, a uniform droplet distribution was assumed to exist in the chamber, with mean droplet diameter determined from an empirical relation. A computer program was written to integrate the resulting differential equations. Because chamber contents were assumed perfectly mixed, the fuel preburner model erroneously predicted that combustion would not take place during shutdown. The combustion rate model was modified to assume that all liquid oxygen that vaporized instantaneously combusted with fuel. Using this combustion model, the effect of engine parameters on chamber pressure oscillations during the SSME shutdown was calculated.

  9. Improvement of the conversion of polystyrene to polyhydroxyalkanoate through the manipulation of the microbial aspect of the process: a nitrogen feeding strategy for bacterial cells in a stirred tank reactor.

    PubMed

    Goff, Miriam; Ward, Patrick G; O'Connor, Kevin E

    2007-11-01

    Pseudomonas putida CA-3 has been shown to accumulate the biodegradable plastic polyhydroxyalkanoate (PHA) when fed styrene or polystyrene pyrolysis oil as the sole carbon and energy source under nitrogen limiting growth conditions (67 mg nitrogen per litre at time 0). Batch fermentation of P. putida CA-3 grown on styrene or polystyrene pyrolysis oil in a stirred tank reactor yields PHA at 30% of the cell dry weight (CDW). The feeding of nitrogen at a rate of 1mg N/l/h resulted in a 1.1-fold increase in the percentage of CDW accumulated as PHA. An increase in the rate of nitrogen feeding up to 1.5mg N/l/h resulted in further increases in the percentage of the cell dry weight composed of PHA. However, feeding rates of 1.75 and 2mg N/l/h resulted in dramatic decreases in the percentage of cell dry weight composed of PHA. Interestingly nitrogen was not detectable in the growth medium after 16 h, in any of the growth conditions tested. A higher cell density was observed in cells supplied with nitrogen and thus further increases in the overall production of PHA were observed through nitrogen feeding. The highest yield of PHA was 0.28 g PHA per g styrene supplied with a nitrogen feeding rate of 1.5mg/l/h.

  10. Application of a diffusion-reaction kinetic model for the removal of 4-chlorophenol in continuous tank reactors.

    PubMed

    Murcia, M D; Gómez, M; Bastida, J; Hidalgo, A M; Montiel, M C; Ortega, S

    2014-08-01

    A continuous tank reactor was used to remove 4-chlorophenol from aqueous solutions, using immobilized soybean peroxidase and hydrogen peroxide. The influence of operational variables (enzyme and substrate concentrations and spatial time) on the removal efficiency was studied. By using the kinetic law and the intrinsic kinetic parameters obtained in a previous work with a discontinuous tank reactor, the mass-balance differential equations of the transient state reactor model were solved and the theoretical conversion values were calculated. Several experimental series were used to obtain the values of the remaining model parameters by numerical calculation and using an error minimization algorithm. The model was checked by comparing the results obtained in some experiments (not used for the determination of the parameters) and the theoretical ones. The good concordance between the experimental and calculated conversion values confirmed that the design model can be used to predict the transient behaviour of the reactor.

  11. Data Pre-Processing Method to Remove Interference of Gas Bubbles and Cell Clusters During Anaerobic and Aerobic Yeast Fermentations in a Stirred Tank Bioreactor

    NASA Astrophysics Data System (ADS)

    Princz, S.; Wenzel, U.; Miller, R.; Hessling, M.

    2014-11-01

    One aerobic and four anaerobic batch fermentations of the yeast Saccharomyces cerevisiae were conducted in a stirred bioreactor and monitored inline by NIR spectroscopy and a transflectance dip probe. From the acquired NIR spectra, chemometric partial least squares regression (PLSR) models for predicting biomass, glucose and ethanol were constructed. The spectra were directly measured in the fermentation broth and successfully inspected for adulteration using our novel data pre-processing method. These adulterations manifested as strong fluctuations in the shape and offset of the absorption spectra. They resulted from cells, cell clusters, or gas bubbles intercepting the optical path of the dip probe. In the proposed data pre-processing method, adulterated signals are removed by passing the time-scanned non-averaged spectra through two filter algorithms with a 5% quantile cutoff. The filtered spectra containing meaningful data are then averaged. A second step checks whether the whole time scan is analyzable. If true, the average is calculated and used to prepare the PLSR models. This new method distinctly improved the prediction results. To dissociate possible correlations between analyte concentrations, such as glucose and ethanol, the feeding analytes were alternately supplied at different concentrations (spiking) at the end of the four anaerobic fermentations. This procedure yielded low-error (anaerobic) PLSR models for predicting analyte concentrations of 0.31 g/l for biomass, 3.41 g/l for glucose, and 2.17 g/l for ethanol. The maximum concentrations were 14 g/l biomass, 167 g/l glucose, and 80 g/l ethanol. Data from the aerobic fermentation, carried out under high agitation and high aeration, were incorporated to realize combined PLSR models, which have not been previously reported to our knowledge.

  12. 49 CFR 179.401 - Individual specification requirements applicable to inner tanks for cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to inner tanks for cryogenic liquid tank car tanks. 179.401 Section 179.401 Transportation Other..., DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank... requirements applicable to inner tanks for cryogenic liquid tank car tanks....

  13. Solidification Structure and Macrosegregation of Billet Continuous Casting Process with Dual Electromagnetic Stirrings in Mold and Final Stage of Solidification: A Numerical Study

    NASA Astrophysics Data System (ADS)

    Jiang, D.; Zhu, M.

    2016-12-01

    Coupling macroscale heat transfer and fluid flow with microscale grain nucleation and crystal growth, a mixed columnar-equiaxed solidification model was established to study the SWRT82B steel solidification structure and macrosegregation in 160 mm × 160 mm billet continuous casting with dual electromagnetic stirrings in mold and final stage of solidification (M-EMS and F-EMS). In the model, the phases of liquid, columnar, and equiaxed were treated separately and the initial growing equiaxed phase, which could move freely with liquid, was regarded as slurry. To obtain the equiaxed grains nucleation and columnar front evolution, the unit tracking method and the columnar front tracking model were built. The model was validated by magnetic induction intensity of stirrer, billet surface temperature, and carbon segregation. The equiaxed phase evolution and the solute transport with effect of fluid flow and grains transport were described in this article. The results show that the equiaxed phase ratio will not increase obviously with higher current intensity of M-EMS, while the negative segregation near the strand surface becomes more serious. The negative segregation zone near the billet center and the center positive segregation come into being with the effect of equiaxed grains sedimentation and liquid thermosolutal flow. It is also found that the liquid solute transport in the F-EMS zone becomes the main factor with higher current intensity rather than the solidification rate, and therefore, the final billet center segregation decreases first and then turns to rise with the current intensity. The optimal current intensities of M-EMS and F-EMS proposed for SWRT82B billet continuous casting are 200 and 400 A, respectively.

  14. The Continued Need for Modeling and Scaled Testing to Advance the Hanford Tank Waste Mission

    SciTech Connect

    Peurrung, Loni M.; Fort, James A.; Rector, David R.

    2013-09-03

    Hanford tank wastes are chemically complex slurries of liquids and solids that can exhibit changes in rheological behavior during retrieval and processing. The Hanford Waste Treatment and Immobilization Plant (WTP) recently abandoned its planned approach to use computational fluid dynamics (CFD) supported by testing at less than full scale to verify the design of vessels that process these wastes within the plant. The commercial CFD tool selected was deemed too difficult to validate to the degree necessary for use in the design of a nuclear facility. Alternative, but somewhat immature, CFD tools are available that can simulate multiphase flow of non-Newtonian fluids. Yet both CFD and scaled testing can play an important role in advancing the Hanford tank waste mission—in supporting the new verification approach, which is to conduct testing in actual plant vessels; in supporting waste feed delivery, where scaled testing is ongoing; as a fallback approach to design verification if the Full Scale Vessel Testing Program is deemed too costly and time-consuming; to troubleshoot problems during commissioning and operation of the plant; and to evaluate the effects of any proposed changes in operating conditions in the future to optimize plant performance.

  15. Effects of methocel A15LV, polyethylene glycol, and polyvinyl alcohol on CD13 and CD33 receptor surface content and metabolism of HL60 cells cultured in stirred tank bioreactors.

    PubMed

    McDowell, C L; Carver, R T; Papoutsakis, E T

    1998-10-20

    Flow cytometry was used to examine the effect of hydrodynamic forces in a stirred tank bioreactor on the CD13 and CD33 receptor surface content of HL60 (human promyelocytic leukemia) cells. A step increase in agitation rate from 80 to 400 rpm reduced the HL60 cell apparent growth rate and increased the CD13 receptor surface content per cell, on average, by 95%. In contrast, this step increase in agitation rate to 400 rpm decreased the CD33 receptor surface content per cell, on average, by 10%. The protective effects of 0.1% Methocel A15LV, polyethylene glycol (PEG), and polyvinyl alcohol (PVA) on CD13 and CD33 receptor surface content were examined under agitation at 300 rpm in parallel 2 L bioreactor runs. The average CD33 receptor surface content was unaffected by the presence of Methocel A15LV or PEG, while PVA had a slight protective effect. In contrast, in terms of CD13 receptor content, HL60 cells agitated at 300 rpm with Methocel A15LV, PEG, or PVA behaved like cells agitated at 80 rpm with no media additives (McDowell and Papoutsakis, 1998). That is, Methocel A15LV, PEG, and PVA prevented the transduction of mechanical forces which affect CD13 cell content. HL60 cells cultured with 0.1% A15LV, PEG or PVA under conditions of mild agitation (60 rpm) in spinner flasks exhibited glucose consumption and lactate production rates that were approximately 20% lower than values of cultures containing no additive. Under conditions of agitation at 300 rpm in the 2 L bioreactor, the presence of A15LV, PEG, and PVA reduced the HL60 glucose consumption and lactate production rates by approximately 50%. Thus, media additives can dramatically reduce lactate accumulation in agitated bioreactors due to cell growth, in addition to providing protection from cellular injury.

  16. Friction Stir Welding and NASA

    NASA Technical Reports Server (NTRS)

    Horton, K Renee

    2016-01-01

    Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks and other areas used on the Space Launch System (SLS) NASA's SLS is an advanced, heavy-lift launch vehicle which will provide an entirely new capability for science and human exploration beyond Earth's orbit. The SLS will give the nation a safe, affordable and sustainable means of reaching beyond our current limits and open new doors of discovery from the unique vantage point of space This talk will elaborate on the SR-FSW process and it's usage on the current Space Launch System Program at NASA.

  17. Control of Protein Crystal Nucleation and Growth Using Stirring Solution

    NASA Astrophysics Data System (ADS)

    Niino, Ai; Adachi, Hiroaki; Takano, Kazufumi; Matsumura, Hiroyoshi; Kinoshita, Takayoshi; Warizaya, Masaichi; Inoue, Tsuyoshi; Mori, Yusuke; Sasaki, Takatomo

    2004-11-01

    We have previously developed a protein crystallization technique using a stirring protein solution and revealed that (i) continuous stirring prevents excess spontaneous nucleation and accelerates the growth of protein crystals and (ii) prestirring (solution stirring in advance) promotes the crystal nucleation of hen egg-white lysozyme. In bovine adenosine deaminase (ADA) crystallization, continuous stirring improves the crystal quality but elongates the nucleation time. In this paper, in order to control both the crystal nucleation and growth of ADA using a Micro-Stirring technique, we carried out five different stirring patterns such as (i) no stirring, (ii) continuous stirring, (iii) prestirring, (iv) poststirring (stirring late in the growth period) and (v) restirring (combined pre- and poststirring). The results showed that high-quality well-shaped crystals were obtained under the continuous stirring and restirring conditions and the nucleation time under the prestirring and restirring conditions was shorter than that under the continuous stirring and poststirring conditions. Consequently, high-quality crystals were promptly obtained under the restirring condition. These results suggest that we are able to control both the nucleation and growth of protein crystals with the stirring techniques.

  18. Repair work continues on the external tank of Space Shuttle Discovery after damage from hail

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Vehicle Assembly Building (VAB), United Space Alliance technician Robert Williams sands the repaired areas near the top of Space Shuttle Discovery's external tank. Repairs were required for damage caused by hail during recent storms. Because access to all of the damaged areas was not possible at the pad, the Shuttle was rolled back from Pad 39B to the VAB. The work is expected to take two to three days, allowing Discovery to roll back to the pad late this week for launch of mission STS-96, the 94th launch in the Space Shuttle Program. Liftoff will occur no earlier than May 27. STS-96 is a logistics and resupply mission for the International Space Station, carrying such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-shared experiment.

  19. Relationship between bioleaching performance, bacterial community structure and mineralogy in the bioleaching of a copper concentrate in stirred-tank reactors.

    PubMed

    Spolaore, Pauline; Joulian, Catherine; Gouin, Jérôme; Morin, Dominique; d'Hugues, Patrick

    2011-01-01

    During the Bioshale European project, a techno-economic study of the bioleaching of a copper concentrate originating from a black shale ore was carried out. This concentrate is a multi-mineral resource in which the copper sulphides are mainly chalcocite, covellite, bornite and chalcopyrite. The experiments undertaken to produce the techno-economic data were also an opportunity to carry out more fundamental research. The objective of this work was to combine the results of the bioleaching experiments, in terms of copper recovery, with the results of bacterial community monitoring and mineralogy residue analysis. Batch and continuous bioleaching tests were carried out with 10% solids, at 42 °C and with a pH between 1.2 and 1.6. Final copper recovery was higher in batch cultures than in continuous mode (>95% vs. 91%). Mineralogical analysis showed that the limiting factor for copper recovery was incomplete chalcopyrite dissolution in both cases. However, chalcopyrite was even less dissolved in continuous conditions. This was also related to a variation in bacterial community structure. The population in all tests was composed of Acidithiobacillus caldus, Leptospirillum ferriphilum and one or two species of Sulfobacillus (Sulfobacillus thermosulfidooxidans and sometimes Sulfobacillus benefaciens), but Sulfobacillus and more generally sulphur oxidizers were more represented in batch mode. It was proposed that due to their capacity to reduce inorganic compounds, sulphur oxidizers may be efficient in limiting chalcopyrite surface hindering. It may help to better dissolve this mineral and reach a better copper recovery.

  20. Wireless Sensor Network Continuous Plume Monitoring and Model Calibration: Proof of Concept in Intermediate-Scale Tank Test

    NASA Astrophysics Data System (ADS)

    Porta, L.; Illangasekare, T. H.; Loden, P.; Liptak, D.; Han, Q.; Jayasumana, A. P.

    2006-12-01

    The current practice for monitoring of subsurface plumes involves the collection of water samples from monitoring wells and laboratory analysis to determine concentrations. This data is used to make decisions for site management and in modeling. Cost and time constraints limit the number of samples and this approach becomes impractical for continuous monitoring of large, transient plumes. With the development of new sensor technologies and wireless sensor networks (WSNs), the potential exists to develop new and efficient subsurface data collection and monitoring methods. The goal is to automatically collect data from the sensors and wirelessly transmit the data to computer platforms where inversion codes and forward simulation models reside. This data can then be used to continuously monitor and update model parameters for the prediction of plume behavior. Many technological and operational challenges related to sensor placement and distribution, automation of real-time data collection, wireless communication, and modeling have to be overcome before the field implementation of complex plume monitoring systems. This preliminary proof of concept demonstration study assesses this technology using a physical aquifer test bed constructed in an intermediate scale tank. The test system includes a set of ten conductivity probes individually connected to wireless sensor boards (motes). The tank was packed using five well-characterized silica sands to represent a heterogeneous aquifer. Bromide tracer was continuously injected into a steady flow field and concentration at different points in the tank was measured with ten calibrated soil moisture/electrical conductivity sensors attached to six different motes. The motes in turn are connected to a computer for data analysis and coupled to models simulating flow and transport. The accuracy of the sensor-measured concentrations was tested against traditional grab samples analyzed using an ion chromatograph. Inverse modeling will

  1. Application of Box-Wilson experimental design method for 2,4-dinitrotoluene treatment in a sequential anaerobic migrating blanket reactor (AMBR)/aerobic completely stirred tank reactor (CSTR) system.

    PubMed

    Kuşçu, Özlem Selçuk; Sponza, Delia Teresa

    2011-03-15

    A sequential aerobic completely stirred tank reactor (CSTR) following the anaerobic migrating blanket reactor (AMBR) was used to treat a synthetic wastewater containing 2,4-dinitrotoluene (2,4-DNT). A Box-Wilson statistical experiment design was used to determine the effects of 2,4-DNT and the hydraulic retention times (HRTs) on 2,4-DNT and COD removal efficiencies in the AMBR reactor. The 2,4-DNT concentrations in the feed (0-280 mg/L) and the HRT (0.5-10 days) were considered as the independent variables while the 2,4-DNT and chemical oxygen demand (COD) removal efficiencies, total and methane gas productions, methane gas percentage, pH, total volatile fatty acid (TVFA) and total volatile fatty acid/bicarbonate alkalinity (TVFA/Bic.Alk.) ratio were considered as the objective functions in the Box-Wilson statistical experiment design in the AMBR. The predicted data for the parameters given above were determined from the response functions by regression analysis of the experimental data and exhibited excellent agreement with the experimental results. The optimum HRT which gave the maximum COD (97.00%) and 2,4-DNT removal (99.90%) efficiencies was between 5 and 10 days at influent 2,4-DNT concentrations 1-280 mg/L in the AMBR. The aerobic CSTR was used for removals of residual COD remaining from the AMBR, and for metabolites of 2,4-DNT. The maximum COD removal efficiency was 99% at an HRT of 1.89 days at a 2,4-DNT concentration of 239 mg/L in the aerobic CSTR. It was found that 280 mg/L 2,4-DNT transformed to 2,4-diaminotoluene (2,4-DAT) via 2-amino-4-nitrotoluene (2-A-4-NT) and 4-amino-2-nitrotoluene (4-A-2-NT) in the AMBR. The maximum 2,4-DAT removal was 82% at an HRT of 8.61 days in the aerobic CSTR. The maximum total COD and 2,4-DNT removal efficiencies were 99.00% and 99.99%, respectively, at an influent 2,4-DNT concentration of 239 mg/L and at 1.89 days of HRT in the sequential AMBR/CSTR.

  2. Flammable gas tank safety program: Technical basis for gas analysis and monitoring

    SciTech Connect

    Sherwood, D.J.

    1995-09-08

    Flammable gases generated in radioactive liquids. Twenty-five high level radioactive liquid waste storage tanks located underground at the Hanford Site are on a Flammable Gas Watch List because they contain waste which tends to retain the gases generated in it until rather large quantities are available for sudden release to the tank head space; if a tank is full it has little dome space, and a flammable concentration of gases could be produced--even if the tank is ventilated. If the waste has no tendency to retain gas generated in it then a continual flammable gas concentration in the tank dome space is established by the gas production rate and the tank ventilation rate (or breathing rate for unventilated tanks); this is also a potential problem for Flammable Gas Watch List tanks, and perhaps other Hanford tanks too. All Flammable Gas Watch List tanks will be fitted with Standard Hydorgen Monitoring Systems so that their behavior can be observed. In some cases, such as tank 241-SY-101, the data gathered from such observations will indicate that tank conditions need to be mitigated so that gas release events are either eliminated or rendered harmless. For example, a mixer pump was installed in tank 241-SY-101; operating the pump stirs the waste, replacing the large gas release events with small releases of gas that are kept below twenty-five percent of the lower flammability limit by the ventilation system. The concentration of hydrogen measured in Hanford waste tanks is greater than that of any other flammable gas. Hydrogen levels measured with a Standard Hydrogen Monitoring System in excess of 0.6 volume percent will cause Westinghouse Hanford Company to consider actions which will decrease the amount of flammable gas in the tank

  3. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In addition...

  4. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201 Individual specification requirements applicable to non-pressure tank car tanks....

  5. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201 Individual specification requirements applicable to non-pressure tank car tanks....

  6. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In addition...

  7. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank...

  8. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank...

  9. 49 CFR 179.301 - Individual specification requirements for multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-unit tank car tanks. 179.301 Section 179.301 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Multi-Unit Tank Car Tanks (Classes DOT-106A and 110AW) § 179.301 Individual specification requirements for multi-unit tank car tanks. (a) In addition...

  10. 49 CFR 179.201 - Individual specification requirements applicable to non-pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to non-pressure tank car tanks. 179.201 Section 179.201 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201 Individual specification requirements applicable to non-pressure tank car tanks....

  11. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... liquid tank car tanks. 179.400 Section 179.400 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank...

  12. Complex dynamic behavior in the bromate-oxalic acid-acetone-Mn(II) oscillating reaction in a continuous stirred tank reactor (CSTR)

    NASA Astrophysics Data System (ADS)

    Silva, Lucyane C.; Faria, Roberto B.

    2007-05-01

    The oscillating reaction bromate-oxalic acid-acetone-Mn(II)-sulfuric acid was observed for the first time in a CSTR at 20 °C. Depending on the bromate concentrations and flow rate, the system showed large amplitude oscillations, two kinds of mixed mode oscillations, quasiperiodicity and bursts of large amplitude oscillations, all mapped in a phase diagram. More complex behavior was favored at low bromate concentrations. The system without acetone was discovered to oscillate too, but the more complex patterns were not seen, indicating that acetone is implied in their formation.

  13. On-line estimation of the dissolved zinc concentration during ZnS precipitation in a continuous stirred tank reactor (CSTR).

    PubMed

    Grootscholten, T I M; Keesman, K J; Lens, P N L

    2008-01-01

    In this paper a method is presented to estimate the reaction term of zinc sulphide precipitation and the zinc concentration in a CSTR, using the read-out signal of a sulphide selective electrode. The reaction between zinc and sulphide is described by a non-linear model and therefore classical observer theory cannot be applied directly, as this theory was initially developed for linear systems. However, by linear reparametrization of this non-linear system, the linear observer theory can be applied in an effective way. This is illustrated by a zinc sulphide example using real data.

  14. Early warning indicators for process failure due to organic overloading by rapeseed oil in one-stage continuously stirred tank reactor, sewage sludge and waste digesters.

    PubMed

    Kleyböcker, A; Liebrich, M; Verstraete, W; Kraume, M; Würdemann, H

    2012-11-01

    Early warning indicators for process failures were investigated to develop a reliable method to increase the production efficiency of biogas plants. Organic overloads by the excessive addition of rapeseed oil were used to provoke the decrease in the gas production rate. Besides typical monitoring parameters, as pH, methane and hydrogen contents, biogas production rate and concentrations of fatty acids; carbon dioxide content, concentrations of calcium and phosphate were monitored. The concentration ratio of volatile fatty acids to calcium acted as an early warning indicator (EWI-VFA/Ca). The EWI-VFA/Ca always clearly and reliably indicated a process imbalance by exhibiting a 2- to 3-fold increase 3-7days before the process failure occurred. At this time, it was still possible to take countermeasures successfully. Furthermore, increases in phosphate concentration and in the concentration ratio of phosphate to calcium also indicated a process failure, in some cases, even earlier than the EWI-VFA/Ca. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Ultrasonic Stir Welding

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  16. Damage Tolerance Behavior of Friction Stir Welds in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of various aerospace structures. Self-reacting and conventional friction stir welding are variations of the friction stir weld process employed in the fabrication of cryogenic propellant tanks which are classified as pressurized structure in many spaceflight vehicle architectures. In order to address damage tolerance behavior associated with friction stir welds in these safety critical structures, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data describing fracture behavior, residual strength capability, and cyclic mission life capability of friction stir welds at ambient and cryogenic temperatures have been generated and will be presented in this paper. Fracture behavior will include fracture toughness and tearing (R-curve) response of the friction stir welds. Residual strength behavior will include an evaluation of the effects of lack of penetration on conventional friction stir welds, the effects of internal defects (wormholes) on self-reacting friction stir welds, and an evaluation of the effects of fatigue cycled surface cracks on both conventional and selfreacting welds. Cyclic mission life capability will demonstrate the effects of surface crack defects on service load cycle capability. The fracture data will be used to evaluate nondestructive inspection and proof test requirements for the welds.

  17. The influence of intensively managed rotational grazing, traditional continuous grazing, and confinement housing on bulk tank milk quality and udder health.

    PubMed

    Goldberg, J J; Wildman, E E; Pankey, J W; Kunkel, J R; Howard, D B; Murphy, B M

    1992-01-01

    Monthly bulk tank milk samples and veterinary records were analyzed for 1 yr on 15 Vermont dairy farms. Data were evaluated using ANOVA to compare effects of grazing management systems on milk quality and udder health. Systems evaluated were intensively managed rotational grazing, traditional continuous grazing, and confinement housing. Bulk tank samples were evaluated for standard plate count, bacterial type counts on tryptose-blood-esculin agar, and SCC. Veterinary records were evaluated for incidence of clinical mastitis, udder edema, and teat injuries. Within- and between-treatment group analyses were conducted by season, herd size, and udder sanitation systems. Mean standard plate counts were lower in rotationally grazed herds than counts of confined herds during the grazing season. Similarly, rotationally grazed herds with fewer than 60 cows had lower standard plate counts than confined herds of similar size. Mean bulk tank counts of streptococci other than Streptococcus agalactiae during the grazing season differed among treatments. The lowest counts occurred in rotationally grazed herds. Among herd using predip products recognized as efficacious, fewer streptococci other than S. agalactiae were isolated from bulk tank milk of rotationally grazed herds than confined herds. Rotationally grazed herds using postdips recognized as efficacious had lower SCC than those using unrecognized postdips. No udder health differences were observed among grazing treatments.

  18. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank...

  19. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank...

  20. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank...

  1. 49 CFR 179.101 - Individual specification requirements applicable to pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to pressure tank car tanks. 179.101 Section 179.101 Transportation Other Regulations Relating to... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Pressure Tank Car Tanks (Classes DOT-105, 109, 112, 114 and 120) § 179.101 Individual specification requirements applicable to pressure tank...

  2. Operational stability of naringinase PVA lens-shaped microparticles in batch stirred reactors and mini packed bed reactors-one step closer to industry.

    PubMed

    Nunes, Mário A P; Rosa, M Emilia; Fernandes, Pedro C B; Ribeiro, Maria H L

    2014-07-01

    The immobilization of naringinase in PVA lens-shaped particles, a cheap and biocompatible hydrogel was shown to provide an effective biocatalyst for naringin hydrolysis, an appealing reaction in the food and pharmaceutical industries. The present work addresses the operational stability and scale-up of the bioconversion system, in various types of reactors, namely shaken microtiter plates (volume ⩽ 2 mL), batch stirred tank reactors (volume <400 mL) and a packed-bed reactor (PBR, 6.8 mL). Consecutive batch runs were performed with the shaken/stirred vessels, with reproducible and encouraging results, related to operational stability. The PBR was used to establish the feasibility for continuous operation, running continuously for 54 days at 45°C. The biocatalyst activity remained constant for 40 days of continuous operation. The averaged specific productivity was 9.07 mmol h(-1) g enzyme(-1) and the half-life of 48 days.

  3. TANK 50 BATCH 0 SALTSTONE FORMULATION CONFIRMATION

    SciTech Connect

    Langton, C.

    2006-06-05

    Savannah River National Laboratory (SRNL) personnel were requested to confirm the Tank 50 Batch 0 grout formulation per Technical Task Request, SSF-TTR-2006-0001 (task 1 of 2) [1]. Earlier Batch 0 formulation testing used a Tank 50 sample collected in September 2005 and is described elsewhere [2]. The current testing was performed using a sample of Tank 50 waste collected in May 2006. This work was performed according to the Technical Task and Quality Assurance Plan (TT/QAP), WSRC-RP-2006-00594 [3]. The salt solution collected from Tank 50 in May 2006 contained approximately 3 weight percent more solids than the sample collected in September 2005. The insoluble solids took longer to settle in the new sample which was interpreted as indicating finer particles in the current sample. The saltstone formulation developed for the September 2005 Tank 50 Batch 0 sample was confirmed for the May 2006 sample with one minor exception. Saltstone prepared with the Tank 50 sample collected in May 2006 required 1.5 times more Daratard 17 set retarding admixture than the saltstone prepared with the September In addition, a sample prepared with lower shear mixing (stirring with a spatula) had a higher plastic viscosity (57 cP) than samples made with higher shear mixing in a blender (23cP). The static gel times of the saltstone slurries made with low shear mixing were also shorter ({approx}32 minutes) than those for comparable samples made in the blender ({approx}47 minutes). The addition of the various waste streams (ETP, HEU-HCAN, and GPE-HCAN) to Tank 50 from September 2005 to May 2006 has increased the amount of set retarder, Daratard 17, required for processing saltstone slurries through the Saltstone facility. If these streams are continued to be added to Tank 50, the quantity of admixtures required to maintain the same processing conditions for the Saltstone facility will probably change and additional testing is recommended to reconfirm the Tank 50 Saltstone formulation.

  4. Friction stir welding tool

    DOEpatents

    Tolle; Charles R. , Clark; Denis E. , Barnes; Timothy A.

    2008-04-15

    A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.

  5. Friction stir welding tool

    DOEpatents

    Tolle, Charles R.; Clark, Denis E.; Barnes, Timothy A.

    2008-04-15

    A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.

  6. Friction-Stir Processing

    DTIC Science & Technology

    2006-01-01

    fatigue results for friction stir welded 2219 aluminum in the following conditions: 1) milled, 2) milled + LPB, 3) milled + 100 hours in a salt...same alloy following friction stir processing. Increased fatigue life in 5083-H321 aluminum fusion welds It will not be possible to friction...fine grain and weld defects near the surface will be eliminated. Potential benefits include both increased corrosion resistance and fatigue life

  7. Tanks and Tank Troops

    DTIC Science & Technology

    1982-03-01

    operational in the Bundeswehr. These include the well-known U.S. M113 APC, the HS-30 APC, developed by the Swiss company Hispano- Suiza , as well as the...powered by the Leyland L-60 engine, and the French AMX-30, powered by the Hispano- Suiza HS-110 engine. The new Japanese STB-6 tank (ඒ") is...of all foreign series-produced tank engines. A complete tank engine replacement can be performed in four hours. The Hispano- Suiza HS-110 engine

  8. Tool For Friction Stir Tack Welding of Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerald W.; Dingler, Johnny W.; Loftus, Zachary

    2003-01-01

    A small friction-stir-welding tool has been developed for use in tack welding of aluminum-alloy workpieces. It is necessary to tack-weld the workpieces in order to hold them together during friction stir welding because (1) in operation, a full-size friction-stir-welding tool exerts a large force that tends to separate the workpieces and (2) clamping the workpieces is not sufficient to resist this force. It is possible to tack the pieces together by gas tungsten arc welding, but the process can be awkward and time-consuming and can cause sufficient damage to necessitate rework. Friction stir tack welding does not entail these disadvantages. In addition, friction stir tack welding can be accomplished by use of the same automated equipment (except for the welding tool) used in subsequent full friction stir welding. The tool for friction stir tack welding resembles the tool for full friction stir welding, but has a narrower shoulder and a shorter pin. The shorter pin generates a smaller workpiece-separating force so that clamping suffices to keep the workpieces together. This tool produces a continuous or intermittent partial-penetration tack weld. The tack weld is subsequently consumed by action of the larger tool used in full friction stir welding tool.

  9. Planar oscillatory stirring apparatus

    NASA Astrophysics Data System (ADS)

    Wolf, M. F.

    1985-08-01

    The present invention is directed to an apparatus for stirring materials using planar orthogonal axes oscillations. The apparatus has a movable slide plate sandwiched between two fixed parallel support plates. Pressurized air is supplied to the movable slide plate which employs a tri-arm air bearing vent structure which allows the slide plate to float and to translate between the parallel support plates. The container having a material to be stirred is secured to the upper surface of the slide plate through an aperture in the upper support plate. A motor driven eccentric shaft loosely extends into a center hole bearing of the slide plate to cause the horizontal oscillations. Novelty lies in the combination of elements which exploits the discovery that low frequency, orthogonal oscillations applied horizontally to a Bridgman crucible provides a very rigorous stirring action, comparable with and more effective by an order of magnitude than the accelerated crucible rotation technique.

  10. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING... ballast water containing an oily mixture of 3 percent or more of the oil carrying capacity. Two percent... tank. (2) A new vessel of 70,000 tons DWT or more must have at least two slop tanks. (b) Capacity....

  11. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING... ballast water containing an oily mixture of 3 percent or more of the oil carrying capacity. Two percent... tank. (2) A new vessel of 70,000 tons DWT or more must have at least two slop tanks. (b) Capacity....

  12. 33 CFR 157.15 - Slop tanks in tank vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING... ballast water containing an oily mixture of 3 percent or more of the oil carrying capacity. Two percent... tank. (2) A new vessel of 70,000 tons DWT or more must have at least two slop tanks. (b) Capacity....

  13. 49 CFR 179.400 - General specification applicable to cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400 General specification applicable to cryogenic liquid tank car... 49 Transportation 3 2014-10-01 2014-10-01 false General specification applicable to...

  14. Friction Stir Welding at MSFC: Kinematics

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    2001-01-01

    In 1991 The Welding Institute of the United Kingdom patented the Friction Stir Welding (FSW) process. In FSW a rotating pin-tool is inserted into a weld seam and literally stirs the faying surfaces together as it moves up the seam. By April 2000 the American Welding Society International Welding and Fabricating Exposition featured several exhibits of commercial FSW processes and the 81st Annual Convention devoted a technical session to the process. The FSW process is of interest to Marshall Space Flight Center (MSFC) as a means of avoiding hot-cracking problems presented by the 2195 aluminum-lithium alloy, which is the primary constituent of the Lightweight Space Shuttle External Tank. The process has been under development at MSFC for External Tank applications since the early 1990's. Early development of the FSW process proceeded by cut-and-try empirical methods. A substantial and complex body of data resulted. A theoretical model was wanted to deal with the complexity and reduce the data to concepts serviceable for process diagnostics, optimization, parameter selection, etc. A first step in understanding the FSW process is to determine the kinematics, i.e., the flow field in the metal in the vicinity of the pin-tool. Given the kinematics, the dynamics, i.e., the forces, can be targeted. Given a completed model of the FSW process, attempts at rational design of tools and selection of process parameters can be made.

  15. Grain misorientation in thixo-billets prepared by melt stirring

    SciTech Connect

    Nafisi, S.; Szpunar, J.; Vali, H.; Ghomashchi, R.

    2009-09-15

    For semi solid metal (SSM) slurries, in addition to the morphology, size, distribution and percentage of the solid phase particles, the microstructure of individual solid particles is another important parameter to be considered. This is particularly an issue when SSM billets are prepared by continuous stirring of the melt to temperatures below liquidus, as in the case of electromagnetic stirring of Al-Si alloys. Microstructural evolution of the electromagnetically stirred Al-Si alloy is investigated by means of optical and electron microscopy. Electron backscatter diffraction (EBSD) analysis of the stirred and unstirred cast billets has shown stirring to generate local misorientation within individual solid particles. This is an indication of growing dendrites undergoing plastic deformation during the course of SSM slurry preparation. The formation of dislocations and their subsequent rearrangement into subgrain boundaries has been shown by EBSD analysis and TEM studies of thin foil specimens respectively.

  16. Inactivating effects of lignin-derived compounds released during lignocellulosic biomass pretreatment on the endo-glucanase catalyzed hydrolysis of carboxymethylcellulose: A study in continuous stirred ultrafiltration-membrane reactor.

    PubMed

    Cantarella, Maria; Mucciante, Claudia; Cantarella, Laura

    2014-03-01

    This study focusses on the reversible/irreversible damage that selected phenolic compounds, released during steam-explosion pretreatment, mandatory for cellulose accessibility, causes on both stability and activity of a commercial cellulase (half-life=173h) during carboxymethyl-cellulose hydrolysis. Long-term experiments performed in continuous stirred UF-membrane bioreactors, operating at steady-state regime, in controlled operational conditions, allowed evaluating the inactivation-constant in the phenol presence (kd1) and after its removal (kd2) from the reactor feed. p-Hydroxybenzoic acid (1 and 2g L(-1)) are the extreme limits in the inactivating effect with enzyme half-lives 99.02 and 14.15h, respectively. The inactivation reversibility was assessed for vanillic acid, p-hydroxybenzoic acid, syringaldehyde, p-coumaric acid, being kd1>kd2. p-Hydroxybenzaldehyde and protocatechuic acid irreversibly affected cellulase stability increasing its inactivation with kd2>kd1. p-Hydroxybenzaldehyde, 1g L(-1), syringaldehyde, and vanillin, at 2gL(-1), had similar kd1÷kd2. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. 49 CFR 179.201-3 - Lined tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... specifications, must be furnished by party lining tank to car owner. Reports of the latest lining application... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201-3 Lined tanks. (a) Rubber-lined tanks. (1...

  18. 49 CFR 179.201-3 - Lined tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... specifications, must be furnished by party lining tank to car owner. Reports of the latest lining application... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.201-3 Lined tanks. (a) Rubber-lined tanks. (1...

  19. 49 CFR 179.400-18 - Test of inner tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-18 Test of inner tank... 49 Transportation 3 2011-10-01 2011-10-01 false Test of inner tank. 179.400-18 Section...

  20. 49 CFR 179.400-18 - Test of inner tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-18 Test of inner tank... 49 Transportation 3 2013-10-01 2013-10-01 false Test of inner tank. 179.400-18 Section...

  1. 49 CFR 179.500-8 - Openings in tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500-8 Openings in tanks... 49 Transportation 3 2011-10-01 2011-10-01 false Openings in tanks. 179.500-8 Section...

  2. 49 CFR 179.400-17 - Inner tank piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-17 Inner tank piping... 49 Transportation 3 2012-10-01 2012-10-01 false Inner tank piping. 179.400-17 Section...

  3. 49 CFR 179.400-18 - Test of inner tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-18 Test of inner tank... 49 Transportation 3 2012-10-01 2012-10-01 false Test of inner tank. 179.400-18 Section...

  4. 49 CFR 179.500-8 - Openings in tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500-8 Openings in tanks... 49 Transportation 3 2013-10-01 2013-10-01 false Openings in tanks. 179.500-8 Section...

  5. 49 CFR 179.400-17 - Inner tank piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-17 Inner tank piping... 49 Transportation 3 2014-10-01 2014-10-01 false Inner tank piping. 179.400-17 Section...

  6. 49 CFR 179.500-8 - Openings in tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500-8 Openings in tanks... 49 Transportation 3 2014-10-01 2014-10-01 false Openings in tanks. 179.500-8 Section...

  7. 49 CFR 179.500-8 - Openings in tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500-8 Openings in tanks... 49 Transportation 3 2012-10-01 2012-10-01 false Openings in tanks. 179.500-8 Section...

  8. 49 CFR 179.400-18 - Test of inner tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400-18 Test of inner tank... 49 Transportation 3 2014-10-01 2014-10-01 false Test of inner tank. 179.400-18 Section...

  9. Prediction of inclusion body solubilization from shaken to stirred reactors.

    PubMed

    Walther, Cornelia; Mayer, Sabrina; Trefilov, Alexandru; Sekot, Gerhard; Hahn, Rainer; Jungbauer, Alois; Dürauer, Astrid

    2014-01-01

    Inclusion bodies (IBs) were solubilized in a µ-scale system using shaking microtiter plates or a stirred tank reactor in a laboratory setting. Characteristic dimensionless numbers for mixing, the Phase number Ph and Reynolds number Re did not correlate with the kinetics and equilibrium of protein solubilization. The solubilization kinetics was independent of the mixing system, stirring or shaking rate, shaking diameter, and energy input. Good agreement was observed between the solubilization kinetics and yield on the µ-scale and laboratory setting. We show that the IB solubilization process is controlled predominantly by pore diffusion. Thus, for the process it is sufficient to keep the IBs homogeneously suspended, and additional power input will not improve the process. The high-throughput system developed on the µ-scale can predict solubilization in stirred reactors up to a factor of 500 and can therefore be used to determine optimal solubilization conditions on laboratory and industrial scale.

  10. Toroidal Tank Development for Upper-stages

    NASA Technical Reports Server (NTRS)

    DeLay, Tom; Roberts, Keith

    2003-01-01

    The advantages, development, and fabrication of toroidal propellant tanks are profiled in this viewgraph presentation. Several images are included of independent research and development (IR&D) of toroidal propellant tanks at Marshall Space Flight Center (MSFC). Other images in the presentation give a brief overview of Thiokol conformal tank technology development. The presentation describes Thiokol's approach to continuous composite toroidal tank fabrication in detail. Images are shown of continuous and segmented toroidal tanks fabricated by Thiokol.

  11. Multiple steady states in coupled flow tank reactors

    NASA Astrophysics Data System (ADS)

    Hunt, Katharine L. C.; Kottalam, J.; Hatlee, Michael D.; Ross, John

    1992-05-01

    Coupling between continuous-flow, stirred tank reactors (CSTR's), each having multiple steady states, can produce new steady states with different concentrations of the chemical species in each of the coupled tanks. In this work, we identify a kinetic potential ψ that governs the deterministic time evolution of coupled tank reactors, when the reaction mechanism permits a single-variable description of the states of the individual tanks; examples include the iodate-arsenous acid reaction, a cubic model suggested by Noyes, and two quintic models. Stable steady states correspond to minima of ψ, and unstable steady states to maxima or saddle points; marginally stable states typically correspond to saddle-node points. We illustrate the variation in ψ due to changes in the rate constant for external material intake (k0) and for exchange between tanks (kx). For fixed k0 values, we analyze the changes in numbers and types of steady states as kx increases from zero. We show that steady states disappear by pairwise coalescence; we also show that new steady states may appear with increasing kx, when the reaction mechanism is sufficiently complex. For fixed initial conditions, the steady state ultimately reached in a mixing experiment may depend on the exchange rate constant as a function of time, kx(t) : Adiabatic mixing is obtained in the limit of slow changes in kx(t) and instantaneous mixing in the limit as kx(t)→∞ while t remains small. Analyses based on the potential ψ predict the outcome of mixing experiments for arbitrary kx(t). We show by explicit counterexamples that a prior theory developed by Noyes does not correctly predict the instability points or the transitions between steady states of coupled tanks, to be expected in mixing experiments. We further show that the outcome of such experiments is not connected to the relative stability of steady states in individual tank reactors. We find that coupling may effectively stabilize the tanks. We provide

  12. Biological production of ethanol from coal. Task 4 report, Continuous reactor studies

    SciTech Connect

    Not Available

    1992-10-01

    The production of ethanol from synthesis gas by the anaerobic bacterium C. ljungdahlii has been demonstrated in continuous stirred tank reactors (CSTRs), CSTRs with cell recycle and trickle bed reactors. Various liquid media were utilized in these studies including basal medium, basal media with 1/2 B-vitamins and no yeast extract and a medium specifically designed for the growth of C. ljungdahlii in the CSTR. Ethanol production was successful in each of the three reactor types, although trickle bed operation with C. ljungdahlii was not as good as with the stirred tank reactors. Operation in the CSTR with cell recycle was particularly promising, producing 47 g/L ethanol with only minor concentrations of the by-product acetate.

  13. Friction Stir Weld Tools

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)

    2007-01-01

    A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.

  14. Friction stir weld tools

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)

    2007-01-01

    A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.

  15. STIR: Advanced Quantum Sensing

    DTIC Science & Technology

    2014-07-18

    STIR: Advanced Quantum Sensing Recycling unmeasured photons in a system utilizing weak measurements can substantially improve the signal-to- noise...Quantum Sensing Report Title Recycling unmeasured photons in a system utilizing weak measurements can substantially improve the signal-to-noise ratio. We...Kevin Lyons, Andrew N. Jordan, Trent M. Graham, Paul G. Kwiat. Strengthening weak- value amplification with recycled photons , Physical Review A, (08

  16. Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  17. 46 CFR 64.29 - Tank saddles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Tank saddles. 64.29 Section 64.29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.29 Tank saddles. If a tank is not completely supported by a...

  18. 46 CFR 64.29 - Tank saddles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Tank saddles. 64.29 Section 64.29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.29 Tank saddles. If a tank is not completely supported by a...

  19. 46 CFR 64.29 - Tank saddles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Tank saddles. 64.29 Section 64.29 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.29 Tank saddles. If a tank is not completely supported by a...

  20. 46 CFR 154.446 - Tank design.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.446 Section 154.446 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... Tank Type B § 154.446 Tank design. An independent tank type B must meet the calculations under §...

  1. Texture Development in Friction Stir Welds

    DTIC Science & Technology

    2011-01-01

    distor- tion). Friction stir welding was initially developed for aluminium alloys, but has since been demonstrated for copper, iron, titanium and...textures. The predominant mode of deformation, particularly in regions near the tool, is simple shear, as confirmed in previous FSW studies of aluminium ...alloys.3–8 It has been demonstrated that continuous dynamic recrystallisation, i.e. the concurrent processes of deformation and dynamic recovery, is

  2. LOX tank installation

    NASA Image and Video Library

    2011-06-08

    Construction of the A-3 Test Stand at Stennis Space Center continued June 8 with installation of a 35,000-gallon liquid oxygen tank atop the steel structure. The stand is being built to test next-generation rocket engines that will carry humans into deep space once more. The LOX tank and a liquid hydrogen tank to be installed atop the stand later will provide propellants for testing the engines. The A-3 Test Stand is scheduled for completion and activation in 2013.

  3. 49 CFR 179.401 - Individual specification requirements applicable to inner tanks for cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Individual specification requirements applicable to inner tanks for cryogenic liquid tank car tanks. 179.401 Section 179.401 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED)...

  4. 49 CFR 179.401 - Individual specification requirements applicable to inner tanks for cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Individual specification requirements applicable to inner tanks for cryogenic liquid tank car tanks. 179.401 Section 179.401 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED)...

  5. 49 CFR 179.401 - Individual specification requirements applicable to inner tanks for cryogenic liquid tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Individual specification requirements applicable to inner tanks for cryogenic liquid tank car tanks. 179.401 Section 179.401 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED)...

  6. Continued Evaluation of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations

    SciTech Connect

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy WJ; Burns, Carolyn A.; Schonewill, Philip P.; Hopkins, Derek F.; Thien, Michael G.; Wooley, Theodore A.

    2012-04-01

    Laboratory (PNNL) conducted an extensive evaluation of the ability of three ultrasonic instruments to detect critical velocity for a broad range of simulated Hanford nuclear waste streams containing particles with mean particle sizes of >50 microns. Evaluations were perform using the pipe loop at the Process Development Laboratory – East (PDL-E) at PNNL that was designed and built to evaluate the pipeline plugging issue during slurry transfer operations at the Hanford Waste Treatment Plant. In 2011 the ability of the ultrasonic PulseEcho system to detect critical velocity continued to be evaluated using the PDL-E flow loop and new simulants containing high-density particles with a mean particle size of < 15 microns. The PDL-E flow loop was modified for the 2011 testing to include a new test section that contained 5-MHz and 10-MHz ultrasonic transducers non-invasively mounted to schedule 40 pipe. The test section also contained reference instrumentation to facilitate direct comparison of the real-time PulseEcho transducer responses with experimentally observed critical velocities. This paper presents the results from the 2011 PulseEcho evaluation using a variety of simulated Hanford nuclear waste streams that were selected to encompass the expected high-level waste feed properties.

  7. Effect of Stirring Method on Protein Crystallization

    NASA Astrophysics Data System (ADS)

    Yaoi, Mari; Adachi, Hiroaki; Takano, Kazufumi; Matsumura, Hiroyoshi; Inoue, Tsuyoshi; Mori, Yusuke; Sasaki, Takatomo

    2004-10-01

    We previously proposed the use of solution stirring during the growth of protein crystals using the Micro-Stirring technique with a rotary shaker. In this paper, we report on the effects of a new type solution flow on the crystallization of hen egg-white lysozyme (HEWL) using a wave shaker. The time required for nucleation was reduced by wave stirring, but increased by rotary stirring. Nucleation was stimulated by wave stirring. This result indicates that protein crystal growth in a stirred solution is strongly dependent on the stirring method used and the solution flow. Therefore, optimized stirring conditions are essential for producing high-quality protein crystals.

  8. Friction Stir Spot Welding of DP780 Carbon Steel

    SciTech Connect

    Santella, M. L.; Hovanski, Yuri; Frederick, Alan; Grant, Glenn J.; Dahl, Michael E.

    2009-09-15

    Friction stir spot welds were made in uncoated and galvannneled DP780 sheets using polycrystalline boron nitride stir tools. The tools were plunged at either a single continuous rate or in two segments consisting of a relatively high rate followed by a slower rate of shorter depth. Welding times ranged from 1-10 s. Increasing tool rotation speed from 800 to 1600 rpm increased strength values. The 2-segment welding procedures also produced higher strength joints. Average lap-shear strengths exceeding 10.3 kN were consistently obtained in 4 s on both the uncoated and the galvannealed DP780. The likelihood of diffusion and mechanical interlocking contributing to bond formation was supported by metallographic examinations. A cost analysis based on spot welding in automobile assembly showed that for friction stir spot welding to be economically competitive with resistance spot welding the cost of stir tools must approach that of resistance spot welding electrode tips.

  9. 49 CFR 179.400-16 - Access to inner tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400... 49 Transportation 3 2011-10-01 2011-10-01 false Access to inner tank. 179.400-16 Section...

  10. 49 CFR 179.400-16 - Access to inner tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400... 49 Transportation 3 2012-10-01 2012-10-01 false Access to inner tank. 179.400-16 Section...

  11. 49 CFR 179.400-16 - Access to inner tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400... 49 Transportation 3 2014-10-01 2014-10-01 false Access to inner tank. 179.400-16 Section...

  12. 49 CFR 179.400-16 - Access to inner tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400... 49 Transportation 3 2013-10-01 2013-10-01 false Access to inner tank. 179.400-16 Section...

  13. 49 CFR 179.220-14 - Openings in the tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-14 Openings in the tanks... Specifications for Tank Cars, appendix E (IBR, see § 171.7 of this subchapter). In determining the required...

  14. 49 CFR 179.220-14 - Openings in the tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-14 Openings in the tanks... Specifications for Tank Cars, appendix E (IBR, see § 171.7 of this subchapter). In determining the required...

  15. 49 CFR 179.220-14 - Openings in the tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-14 Openings in the tanks... Specifications for Tank Cars, appendix E (IBR, see § 171.7 of this subchapter). In determining the required...

  16. Think Tanks

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A new inspection robot from Solex Robotics Systems was designed to eliminate hazardous inspections of petroleum and chemical storage tanks. The submersible robot, named Maverick, is used to inspect the bottoms of tanks, keeping the tanks operational during inspection. Maverick is able to provide services that will make manual tank inspections obsolete. While the inspection is conducted, Maverick's remote human operators remain safe outside of the tank. The risk to human health and life is now virtually eliminated. The risk to the environment is also minimal because there is a reduced chance of spillage from emptying and cleaning the tanks, where previously, tons of pollutants were released through the process of draining and refilling.

  17. Hydrothermal processing of Hanford tank waste. Organic destruction technology development task annual report -- FY 1993

    SciTech Connect

    Orth, R.J.; Schmidt, A.J.; Zacher, A.H.

    1993-09-01

    Low-temperature hydrothermal processing (HTP) is a thermal-chemical autogenous processing method that can be used to destroy organics and ferrocyanide in Hanford tank waste at temperatures from 250 C to 400 C. With HTP, organics react with oxidants, such as nitrite and nitrate, already present in the waste. Ferrocyanides and free cyanide will hydrolyze at similar temperatures and may also react with nitrates or other oxidants in the waste. No air or oxygen or additional chemicals need to be added to the autogenous HTP system. However, enhanced kinetics may be realized by air addition, and, if desired, chemical reductants can be added to the system to facilitate complete nitrate/nitrate destruction. Tank waste can be processed in a plug-flow, tubular reactor, or a continuous-stirred tank reactor system designed to accommodate the temperature, pressure, gas generation, and heat release associated with decomposition of the reactive species. The work described in this annual report was conducted in FY 1993 for the Organic Destruction Technology Development Task of Hanford`s Tank Waste Remediation System (TWRS). This task is part of an overall program to develop organic destruction technologies originally funded by TWRS to meet tank safety and waste form disposal criteria and condition the feed for further pretreatment. During FY 1993 the project completed seven experimental test plans, a 30-hr pilot-scale continuous run, over 200 hr of continuous bench-scale HTP testing, and 20 batch HTP tests; two contracts were established with commercial vendors, and a commercial laboratory reactor was procured and installed in a glovebox for HTP testing with actual Hanford tank waste.

  18. Stirring turbulence with turbulence

    NASA Astrophysics Data System (ADS)

    Cekli, Hakki Ergun; Joosten, René; van de Water, Willem

    2015-12-01

    We stir wind-tunnel turbulence with an active grid that consists of rods with attached vanes. The time-varying angle of these rods is controlled by random numbers. We study the response of turbulence on the statistical properties of these random numbers. The random numbers are generated by the Gledzer-Ohkitani-Yamada shell model, which is a simple dynamical model of turbulence that produces a velocity field displaying inertial-range scaling behavior. The range of scales can be adjusted by selection of shells. We find that the largest energy input and the smallest anisotropy are reached when the time scale of the random numbers matches that of the largest eddies of the wind-tunnel turbulence. A large mismatch of these times creates a highly intermittent random flow with interesting but quite anomalous statistics.

  19. Friction-Stir Welding of Aluminum For the Space Program

    NASA Technical Reports Server (NTRS)

    Jones, Clyde S.; Smelser, Jerry W. (Technical Monitor)

    2002-01-01

    The Marshall Space Flight Center is developing and characterizing the friction stir welding process for the Space Shuttle and other space programs. This revolutionary process, invented and patented by The Weld Institute in England, offers tremendous advantages for joining aluminum for high performance applications. It is particularly suited for advanced aluminum-lithium alloys, such as 2195, the primary structural alloy used in the External Tank. The friction stir welding process joins metals with minimal heat input, resulting in high-strength joints with high ductility. It is a simple process to demonstrate using a common milling machine for sample parts, but relatively expensive to implement on large-scale hardware, due to the high cost of tooling needed to handle the high forging pressures characteristic of the process. Recent developments at the Marshall Space Flight Center have demonstrated friction stir welding on linear joints up to 5 meters (15 ft.), with material thickness ranging between 2.5 mm and 16.5 mm (0.100" to 0.650"). High efficiency weld joints have been produced in aluminum from the 2000, 5000, and 6000 series alloy systems. A "retractable pin tool" system was patented by MSFC that allows use of friction stir welding for joints with changing material thickness, and with less rigid tooling than previously considered. This presentation will describe the details of alloys welded to-date and technical advances under development at MSFC. These developments could have substantial benefit to industrial applications for welding aluminum.

  20. Friction-Stir Welding of Aluminum For the Space Program

    NASA Technical Reports Server (NTRS)

    Jones, Clyde S.; Smelser, Jerry W. (Technical Monitor)

    2002-01-01

    The Marshall Space Flight Center is developing and characterizing the friction stir welding process for the Space Shuttle and other space programs. This revolutionary process, invented and patented by The Weld Institute in England, offers tremendous advantages for joining aluminum for high performance applications. It is particularly suited for advanced aluminum-lithium alloys, such as 2195, the primary structural alloy used in the External Tank. The friction stir welding process joins metals with minimal heat input, resulting in high-strength joints with high ductility. It is a simple process to demonstrate using a common milling machine for sample parts, but relatively expensive to implement on large-scale hardware, due to the high cost of tooling needed to handle the high forging pressures characteristic of the process. Recent developments at the Marshall Space Flight Center have demonstrated friction stir welding on linear joints up to 5 meters (15 ft.), with material thickness ranging between 2.5 mm and 16.5 mm (0.100" to 0.650"). High efficiency weld joints have been produced in aluminum from the 2000, 5000, and 6000 series alloy systems. A "retractable pin tool" system was patented by MSFC that allows use of friction stir welding for joints with changing material thickness, and with less rigid tooling than previously considered. This presentation will describe the details of alloys welded to-date and technical advances under development at MSFC. These developments could have substantial benefit to industrial applications for welding aluminum.

  1. Thermal Stir Welds in Titanium

    NASA Astrophysics Data System (ADS)

    Fonda, Richard W.; Knipling, Keith E.; Pilchak, Adam L.

    2016-01-01

    Although conventional friction stir welding (FSW) has proven unsuccessful in joining thick sections of alpha and near-alpha titanium alloys, thermal stir welding, a variant of the FSW process in which an external heat source is used to preheat the workpiece, is demonstrated to be able to reliably join 12.3-mm-thick plates of CP titanium. This paper describes the microstructures and textures that develop in these thermal stir welds. The observed microstructure was used to reconstruct the high-temperature microstructure and texture present during the welding process and therefore reveal the genesis of the welding structures.

  2. Composite Tank

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K. (Inventor)

    2000-01-01

    A composite tank for containing liquid oxygen and the method of making the same Wherein a water-soluble mandrel having ing the desired tank configuration and a cylindrical protuberance on at least one end is fitted with an inner boss conformance, to the configuration of the mandrel and in outer boss conforming to the configuration of the inner boss, the bosses each having a tubular portion for receiving the protuberance on the mandrel and a spherical portion. The mandrel and the bosses are first coated with a nickel coating. The mandrel is then wrapped with graphite fibers wetted with an epoxy resin and this resin is cured. A layer of insulating foam is then applied to the tank and cured. The insulating foam is machined to a desired concentration and a layer of aramid fibers wetted with a second epoxy resin is wrapped around the tank. The second resin is cured and the water soluble mandrel is washed from inside the tank.

  3. SOLIDIFICATION OF THE HANFORD LAW WASTE STREAM PRODUCED AS A RESULT OF NEAR-TANK CONTINUOUS SLUDGE LEACHING AND SODIUM HYDROXIDE RECOVERY

    SciTech Connect

    Reigel, M.; Johnson, F.; Crawford, C.; Jantzen, C.

    2011-09-20

    The U.S. Department of Energy (DOE), Office of River Protection (ORP), is responsible for the remediation and stabilization of the Hanford Site tank farms, including 53 million gallons of highly radioactive mixed wasted waste contained in 177 underground tanks. The plan calls for all waste retrieved from the tanks to be transferred to the Waste Treatment Plant (WTP). The WTP will consist of three primary facilities including pretreatment facilities for Low Activity Waste (LAW) to remove aluminum, chromium and other solids and radioisotopes that are undesirable in the High Level Waste (HLW) stream. Removal of aluminum from HLW sludge can be accomplished through continuous sludge leaching of the aluminum from the HLW sludge as sodium aluminate; however, this process will introduce a significant amount of sodium hydroxide into the waste stream and consequently will increase the volume of waste to be dispositioned. A sodium recovery process is needed to remove the sodium hydroxide and recycle it back to the aluminum dissolution process. The resulting LAW waste stream has a high concentration of aluminum and sodium and will require alternative immobilization methods. Five waste forms were evaluated for immobilization of LAW at Hanford after the sodium recovery process. The waste forms considered for these two waste streams include low temperature processes (Saltstone/Cast stone and geopolymers), intermediate temperature processes (steam reforming and phosphate glasses) and high temperature processes (vitrification). These immobilization methods and the waste forms produced were evaluated for (1) compliance with the Performance Assessment (PA) requirements for disposal at the IDF, (2) waste form volume (waste loading), and (3) compatibility with the tank farms and systems. The iron phosphate glasses tested using the product consistency test had normalized release rates lower than the waste form requirements although the CCC glasses had higher release rates than the

  4. A Chaotic Stirring by an Oscillating Point Vortex

    NASA Astrophysics Data System (ADS)

    Suh, Yong Kweon

    1991-03-01

    Aref’s blinking vortex system (H. Aref: J. Fluid Mech. 143 (1984) 1.) is extended to the case when the vortex oscillates harmonically. The equations of motion of the passive particle are given in coordinates suitable for integration. Stirring mechanism could be described by the horse-shoe map in the rotational way not in the linear way. The optimal operating condition for the best stirring exists for the parameter μ (proportional to the vortex strength, the period of the vortex motion and the inverse of the tank area). Merging and splitting between the chaotic regions takes place abruptly near the boundary when the parameters are changed and is responsible for the abrupt change in the chaotic area. The present system gives on the whole the chaotic region smaller than the original system.

  5. In-tank recirculating arsenic treatment system

    DOEpatents

    Brady, Patrick V [Albuquerque, NM; Dwyer, Brian P [Albuquerque, NM; Krumhansl, James L [Albuquerque, NM; Chwirka, Joseph D [Tijeras, NM

    2009-04-07

    A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

  6. Bifurcation Phenomena in Stirred Tanks and Catalytic Reactors.

    DTIC Science & Technology

    1980-02-01

    AO-AOM IO UISIN MNIV-NDZSG MATEMATICS inEARCH CWTV 71 BIURCATION PHCHMIN S Di IT AWS AM CATALYTIC MEACOMI.(WI Pmo SO NAY. KFJI PAAS-,g-COWa...bifurcation analysis for the case of two consecutive reactions A + P + C in a CSTR and have shown secondary static branching and a rich variety of...do not readily ignite, but must be "activated" by heat treatment which rouahens the surface. (ii) Smooth wires do not oscillate and analysis of simple

  7. Effect of Electromagnetic Stirring on Weld Pools.

    DTIC Science & Technology

    1983-10-01

    Cminue an reverse sde If neceewer mE identity b block nmber) GTAW Electromagnetic Agitation Titanium Thermal Gradient 20. A RACT (Continue en revers... GTAW Gas Tungsten Arc Welding V Voltage iv -- ’ -’y - -’ e - a + . - - . - CONVERSION FACTORS 1 -1/sin - 2.12 cfh I J - 5 (9F - 32) 1 cm - 0.394 in...carefully controlled and monitored conditions. The set of welds made to determine the effect of stirring frequency on grain size employed automated GTAW

  8. 40 CFR 264.1084 - Standards: Tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... interface of the roof edge and the tank wall. (iii) Each opening in the fixed roof, and any manifold system... sections or between the roof and the tank wall; broken, cracked, or otherwise damaged seals or gaskets on... a continuous seal between the wall of the tank and the floating roof edge that meets either of...

  9. 40 CFR 264.1084 - Standards: Tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... interface of the roof edge and the tank wall. (iii) Each opening in the fixed roof, and any manifold system... sections or between the roof and the tank wall; broken, cracked, or otherwise damaged seals or gaskets on... a continuous seal between the wall of the tank and the floating roof edge that meets either of...

  10. 40 CFR 265.1085 - Standards: Tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... spaces between roof section joints or between the interface of the roof edge and the tank wall. (iii... the roof and the tank wall; broken, cracked, or otherwise damaged seals or gaskets on closure devices... continuous seal between the wall of the tank and the floating roof edge that meets either of the...

  11. 40 CFR 265.1085 - Standards: Tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... spaces between roof section joints or between the interface of the roof edge and the tank wall. (iii... the roof and the tank wall; broken, cracked, or otherwise damaged seals or gaskets on closure devices... continuous seal between the wall of the tank and the floating roof edge that meets either of the...

  12. 7 CFR 58.427 - Paraffin tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Paraffin tanks. 58.427 Section 58.427 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....427 Paraffin tanks. The metal tank should be adequate in size, have wood rather than metal racks...

  13. The Effect of Friction on Penetration in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Rapp, Steve

    2002-01-01

    "Friction stir butt welding," as it was originally termed by Wayne Thomas and Christopher Dawes, in the early 1990s, but now commonly called "friction stir welding," has made great progress as a new welding technique. Marshall Space Flight Center has been investigating the use of FSW for assembly of the Shuttle's external fuel tank since the late 1990s and hopes to have the process in use by the summer of 2002. In FSW, a cylindrical pin tool of hardened steel, is rotated and plunged into the abutting edges of the parts to be joined. The tool is plunged into the weldment to within about .050 in of the bottom to assure full penetration. As the tool moves along the joint, the tool shoulder helps produce frictional heating, causing the material to plasticize. The metal of the two abutting plates flows from the front of the tool to the back where it cools and coalesces to form a weld in the solid phase. One quarter inch thick plates of aluminum alloy 2219 were used in this study. Two samples, each consisting of two 4 in x 12 in plates, were friction stir welded. The anvil for one sample was coated with molybdenum sulfide, while for the other sample a sheet of roughened stainless steel was placed between the anvil and the sample. The retractable pin tool was used so that the depth of the pin tool penetration could be varied. As welding proceeded, the length of the pin tool was gradually increased from the starting point. The purpose of this investigation is to find out at what point, in the down ramp, penetration occurs. Differences in root structure of the friction stir weld due to differences in anvil friction will be observed. These observations will be analyzed using friction stir weld theory.

  14. Phased array ultrasonic inspection of Friction Stir Weldments

    NASA Astrophysics Data System (ADS)

    Lamarre, André; Moles, Michael; Lupien, Vincent

    2000-05-01

    Phased array ultrasonic inspection methods have been developed for the rapid inspection of Friction Stir Weldments (FSW) on Delta rocket cryogenic tanks. A comprehensive review was performed to identify NDE methods that are suitable for the detection of defects in this new welding process. The search included a review of traditional and advanced NDE methods that were capable of demonstrating both the sensitivity and inspection rates required for this examination. This paper will discuss the theory behind phased array techniques, fundamentals of several probe designs for FSW configurations, and the advantages of using phased arrays over conventional NDE methods for this applications.

  15. Modeling analysis for grout hopper waste tank

    SciTech Connect

    Lee, S. Y.; Ryans, J. M.

    2012-07-01

    The Saltstone facility at Savannah River Site (SRS) has a grout hopper tank to provide agitator stirring of the Saltstone feed materials. The tank has about 300 gallon capacity to provide a larger working volume for the grout nuclear waste slurry to be held in case of a process upset, and it is equipped with a mechanical agitator, which is intended to keep the grout in motion and agitated so that it won't start to set up. The primary objective of the work was to evaluate the flow performance for mechanical agitators to keep an adequate stirring of the feed materials and to estimate an agitator speed which provides acceptable flow performance with a 45 deg. pitched four-blade agitator. In addition, the power consumption required for the agitator operation was estimated. The modeling calculations were performed by taking two steps of the Computational Fluid Dynamics (CFD) modeling approach. A series of sensitivity calculations for different designs of agitators and operating conditions have been performed to investigate the impact of key parameters on the grout hydraulic performance in a 300-gallon hopper tank. Recommended operational guidance was developed by using the basic concept that local shear rates and flow patterns can be used as a measure of hydraulic performance and spatial stirring. Flow patterns and fluid residence time were estimated by a Lagrangian integration technique along the flow paths from the material feed inlet. (authors)

  16. Nonlinear predictive controller based on S-PARAFAC Volterra models applied to a communicating two-tank system

    NASA Astrophysics Data System (ADS)

    Khouaja, Anis; Garna, Tarek; Ragot, José; Messaoud, Hassani

    2015-08-01

    This paper proposes a new predictive controller approach for nonlinear process based on a reduced complexity homogeneous, quadratic discrete-time Volterra model called quadratic S-PARAFAC Volterra model. The proposed model is yielded by using the symmetry property of the Volterra kernels and their tensor decomposition using the PARAFAC technique that provides a parametric reduction compared to the conventional Volterra model. This property allows synthesising a new nonlinear-model-based predictive control (NMBPC). We develop the general form of a new predictor, and therefore, we propose an optimisation algorithm formulated as a quadratic programming under linear and nonlinear constraints. The performances of the proposed quadratic S-PARAFAC Volterra model and the developed NMBPC algorithm are illustrated on a numerical simulation and validated on a benchmark as a continuous stirred-tank reactor system. Moreover, the efficiency of the proposed quadratic S-PARAFAC Volterra model and the NMBPC approach are validated on an experimental communicating two-tank system.

  17. Fuel Tank Technology

    DTIC Science & Technology

    1989-11-01

    do leur mise sous prossion. on a prdvu en at? ucturc dos garnitures do produit on mousse rigide (Kidgecol) pour assurer uine assiso continue do is...number of years. In the Royal Air Force in particular, repairing and resealing integral fuel tanks has always been difficult and has frequently...surface preparation and resealing . In each area we are continually improving both equipment and procedures in order to reduce aircraft downtime and

  18. Friction Stir Spot Welding of Advanced High Strength Steels

    SciTech Connect

    Santella, M. L.; Hovanski, Yuri; Grant, Glenn J.; Carpenter, Joseph A.; Warren, C. D.; Smith, Mark T.

    2008-12-28

    Experiments are continuing to evaluate the feasibility of friction stir spot welding advanced high-strength steels including, DP780, martensitic hot-stamp boron steel, and TRIP steels. Spot weld lap-shear strengths can exceed those required by industry standards such as AWS D8.1.

  19. Melt Stirring by Horizontal Crucible Vibration

    NASA Technical Reports Server (NTRS)

    Wolf, M. F.; Elwell, D.; Feigelson, R. S.

    1985-01-01

    Horizontal vibration suggested as technique for more effective stirring of melts in crystal-growth apparatus. Vibrational technique may replace accelerated crucible rotation. Potential superiority of vibrational technique shown by preliminary experiments in which ink stirred into water.

  20. 49 CFR 179.400-14 - Cleaning of inner tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400... cleaned and dried prior to use. Proper precautions must be taken to avoid contamination of the system...

  1. 49 CFR 179.400-14 - Cleaning of inner tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400... cleaned and dried prior to use. Proper precautions must be taken to avoid contamination of the system...

  2. 49 CFR 179.400-14 - Cleaning of inner tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400... cleaned and dried prior to use. Proper precautions must be taken to avoid contamination of the system...

  3. 49 CFR 179.400-14 - Cleaning of inner tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400... cleaned and dried prior to use. Proper precautions must be taken to avoid contamination of the system...

  4. 46 CFR 58.50-10 - Diesel fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-10 Diesel fuel tanks. (a) Construction. (1) Tanks... allowed in the construction of independent fuel tanks shall be as indicated in Table 58.50-10(a), except...

  5. 46 CFR 58.50-10 - Diesel fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-10 Diesel fuel tanks. (a) Construction. (1) Tanks... allowed in the construction of independent fuel tanks shall be as indicated in Table 58.50-10(a), except...

  6. 7 CFR 58.321 - Cream storage tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Cream storage tanks. 58.321 Section 58.321 Agriculture....321 Cream storage tanks. Cream storage tanks shall meet the requirements of § 58.128(d). Cream storage tanks for continuous churns should be equipped with effective temperature controls and recording...

  7. Vitrification of simulated radioactive Rocky Flats plutonium containing ash residue with a Stir Melter System

    SciTech Connect

    Marra, J.C.; Kormanyos, K.R.; Overcamp, T.J.

    1996-10-01

    A demonstration trial has been completed in which a simulated Rocky Flats ash consisting of an industrial fly-ash material doped with cerium oxide was vitrified in an alloy tank Stir-Melter{trademark} System. The cerium oxide served as a substitute for plutonium oxide present in the actual Rocky Flats residue stream. The glass developed falls within the SiO{sub 2} + Al{sub 2}O{sub 3}/{Sigma}Alkali/B{sub 2}O{sub 3} system. The glass batch contained approximately 40 wt% of ash, the ash was modified to contain {approximately} 5 wt% CeO{sub 2} to simulate plutonium chemistry in the glass. The ash simulant was mixed with water and fed to the Stir-Melter as a slurry with a 60 wt% water to 40 wt% solids ratio. Glass melting temperature was maintained at approximately 1,050 C during the melting trials. Melting rates as functions of impeller speed and slurry feed rate were determined. An optimal melting rate was established through a series of evolutionary variations of the control variables` settings. The optimal melting rate condition was used for a continuous six hour steady state run of the vitrification system. Glass mass flow rates of the melter were measured and correlated with the slurry feed mass flow. Melter off-gas was sampled for particulate and volatile species over a period of four hours during the steady state run. Glass composition and durability studies were run on samples collected during the steady state run.

  8. Dual Tank Fuel System

    DOEpatents

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  9. Deformation During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    White, Henry J.

    2002-01-01

    Friction Stir Welding (FSW) is a solid state welding process that exhibits characteristics similar to traditional metal cutting processes. The plastic deformation that occurs during friction stir welding is due to the superposition of three flow fields: a primary rotation of a radially symmetric solid plug of metal surrounding the pin tool, a secondary uniform translation, and a tertiary ring vortex flow (smoke rings) surrounding the tool. If the metal sticks to the tool, the plug surface extends down into the metal from the outer edge of the tool shoulder, decreases in diameter like a funnel, and closes up beneath the pin. Since its invention, ten years have gone by and still very little is known about the physics of the friction stir welding process. In this experiment, an H13 steel weld tool (shoulder diameter, 0.797 in; pin diameter, 0.312 in; and pin length, 0.2506 in) was used to weld three 0.255 in thick plates. The deformation behavior during friction stir welding was investigated by metallographically preparing a plan view sections of the weldment and taking Vickers hardness test in the key-hole region.

  10. Laser-Assisted Stir Welding of 25-mm-Thick HSLA-65 Plate

    NASA Astrophysics Data System (ADS)

    Williamson, Keith M.

    2002-12-01

    Laser-assisted stir welding is a hybrid process that combines energy from a laser with functional heating and mechanical energy to join materials in the solid state. The technology is an adaptation of friction stir welding which is particularly suited for joining thick plates. Aluminum plates up to 75 mm thick have been successfully joined using friction stir welding. Since joining occurs in the solid state, stir technology offers the capability for fabricating full penetration joints in thick plates with better mechanical properties and less weld distortion than is possible by fusion processes. Currently friction stir welding is being used in several industries to improve productivity, reduce weight, and increase the strength of welded structures. Examples include: (a) the aircraft/aerospace industry where stir technology is currently being used to fabricate the space shuttle's external tank as well as components of the Delta family of rockets; (b) the shipping industry where container manufacturers are using stir technology to produce lighter containers with more payload capacity; and (c) the oil industry where offshore platform manufactures are using automated stir welding plants to fabricate large panels and structures up to 16 meters long with widths as required. In all these cases, stir technology has been restricted to aluminum alloys; however, stainless and HSLA 65 steels have been recently stir welded with friction as the primary heat source. One of the difficulties in adapting stir welding to steel is tool wear aggravated by the high tool rubbing velocities needed to provide frictional heat input into the material. Early work showed that the tool shoulder reached temperatures above 1000 C and the weld seam behind the tool stayed within this temperature range for up to 25 mm behind the tool. Cross sections of stir welded samples showed that the heat-affected zone is relatively wide and follows the profile of the tool shoulder. Besides minimizing the tool

  11. Think Tank.

    ERIC Educational Resources Information Center

    Governick, Heather; Wellington, Thom

    1998-01-01

    Examines the options for upgrading, replacing, and removal or closure of underground storage tanks (UST). Reveals the diverse regulatory control involving USTs, the Environmental Protection Agency's interest in pursuing violators, and stresses the need for administrators to be knowledgeable about state and local agency definitions of regulated…

  12. New Tool Creates a Big Stir

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A new self-adjusting, retractable pin tool for friction stir welding is now used in the manufacturing of components for NASA Space Shuttles. Friction stir welding is a process that makes straight-line welds without bringing the parent material to a liquid state. This is accomplished through high-speed rotation, which generates frictional heat between the welding tool and the piece being welded. This heat causes the material to soften to the point of plasticity without allowing it to melt. The plasticized material is then transferred from the front edge of the welding tool to the trail edge, where it joins the pieces being welded. However, a major flaw of this method is its reliance on a single-piece pin tool. The weld is left unfinished and a hole remains where the pin was inserted. The hole must be covered with a rivet in order to preserve the integrity of the weld. The NASA-developed pin tool, however, eliminates the need for this finishing step, as its retraction allows continuous rewelding at lesser depths, until the hole is completely closed. With this NASA technology, welding of higher strength alloys, as well as non-planer and variable thickness structures can be achieved.

  13. A new type of bromate oscillator: the bromate-iodide reaction in a stirred-flow reactor

    SciTech Connect

    Alamgir, M.; De Kepper, P.; Orban, M.; Epstein, I.R.

    1983-05-04

    Sustained oscillations and bistability have been observed in the reaction between bromate and iodide in acidic solution in a stirred tank reactor at 25/sup 0/C. This reaction appears to be the first bromate oscillator that requires a mechanism more analogous to that of chlorite oscillators than to that of other bromate systems such as the Belousov-Zhobotinskii reaction.

  14. 49 CFR 179.10 - Tank mounting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Tank mounting. 179.10 Section 179.10 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS General Design...

  15. Continuous adsorption and recovery of Cr(VI) in different types of reactors.

    PubMed

    Bai, Sudha R; Abraham, T Emilia

    2005-01-01

    This study reports the results of experiments on continuous adsorption and desorption of Cr(VI) ions by a chemically modified and polysulfone-immobilized biomass of the fungus Rhizopus nigricans. A fixed quantity of polymer-entrapped biomass beads corresponding to 2 g of dry biomass powder was employed in packed bed, fluidized bed, and stirred tank reactor for monitoring the continuous removal and recovery of Cr(VI) ions from aqueous solution and synthetic chrome plating effluent. Parameters such as flow rate (5, 10 and 15 mL/min), inlet concentration of Cr(VI) ions (50, 100, 150 and 250 mg/L) and the depth of biosorbent packing (22.8, 11.2 and 4.9 cm) were evaluated for the packed bed reactor. The breakthrough time and the adsorption rates in the packed bed column were found to decrease with increasing flow rate and higher Cr inlet concentrations and to increase with higher depths of sorbent packing. To have a comparative analysis of Cr adsorption efficiency in different types of reactors, the fluidized bed reactor and stirred tank reactor were operated using the same quantities of biosorbent material. For the fluidized bed reactor, Cr(VI) solution of 100 mg/L was pumped at 5 mL/min and fluidized by compressed air at a flow rate of 0.5 kg/cm.(2) The stirred tank reactor had a working volume of 200 mL capacity and the inlet/outlet flow rate was 5 mL/min. The maximum removal efficiency (mg Cr/g biomass) was obtained for the stirred tank reactor (159.26), followed by the fluidized reactor (153.04) and packed bed reactor (123.33). In comparison to the adsorption rate from pure chromate solution, approximately 16% reduction was monitored for synthetic chrome plating effluent in the packed bed. Continuous desorption of bound Cr ions from the reactors was effective with 0.01 N Na(2)CO(3) and nearly 80-94% recoveries have been obtained for all the reactors.

  16. Microtiter plates versus stirred mini-bioreactors in biocatalysis: a scalable approach.

    PubMed

    Nunes, Mário A P; Fernandes, Pedro C B; Ribeiro, Maria H L

    2013-05-01

    To place the application of miniaturized vessels as microbioreactors on a firm footing, focus has been given to engineering characterization. Studies on this matter have mostly involved carrier-free biological systems, while support-based systems have been overlooked. The present work aims to contribute to fill in such gap. Thus, it intended to establish a robust scaled down approach to identify and optimize relevant operational conditions of naringin hydrolysis by naringinase in PVA lens-shaped particles. The influence of geometric and dynamic (viz. Reynolds number) parameters was evaluated. Naringin hydrolysis in round, flat bottom MTP proved more effective than in square, pyramidal bottom. The bioconversion at MTP and stirred tank reactors scales showed that, given the 12.5-fold scale difference was in agreement between the bioconversion rates. The external mass transfer resistances were negligible as deduced from Damkohler modulus ≤1. The bioconversion was effectively scaled-up 200-fold from shaken microtiter plates to stirred tank reactors.

  17. Moving, Moving, Moving- A Giant Rocket Fuel Tank

    NASA Image and Video Library

    2016-10-07

    Technicians moved a giant fuel tank from the Vertical Assembly Center where the tank recently completed friction stir welding to an adjacent work area at NASA's Michoud Assembly Facility in New Orleans. More than 1.7 miles of welds have been completed for core stage hardware at Michoud. This liquid hydrogen fuel tank is the largest piece of the core stage that will provide the fuel for the first flight of NASA's new rocket, the Space Launch System, with the Orion spacecraft in 2018. The tank is more than 130 feet long, and together with the liquid oxygen tank holds 733,000 gallons of propellant to feed the vehicle's four RS-25 engines to produce a total of 2 million pounds of thrust. SLS will have the power and capacity to carry humans to Mars. For more information on the core stage: http://www.nasa.gov/exploration/syste... Video Credit: NASA/MAF/Eric Bordelon

  18. Hybrid Tank Technology

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Researchers have accomplished great advances in pressure vessel technology by applying high-performance composite materials as an over-wrap to metal-lined pressure vessels. These composite over-wrapped pressure vessels (COPVs) are used in many areas, from air tanks for firefighters and compressed natural gas tanks for automobiles, to pressurant tanks for aerospace launch vehicles and propellant tanks for satellites and deep-space exploration vehicles. NASA and commercial industry are continually striving to find new ways to make high-performance pressure vessels safer and more reliable. While COPVs are much lighter than all-metal pressure vessels, the composite material, typically graphite fibers with an epoxy matrix resin, is vulnerable to impact damage. Carbon fiber is most frequently used for the high-performance COPV applications because of its high strength-to-weight characteristics. Other fibers have been used, but with limitations. For example, fiberglass is inexpensive but much heavier than carbon. Aramid fibers are impact resistant but have less strength than carbon and their performance tends to deteriorate.

  19. 49 CFR 179.500-1 - Tanks built under these specifications shall meet the requirements of § 179.500.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500-1 Tanks built under these specifications shall... 49 Transportation 3 2013-10-01 2013-10-01 false Tanks built under these specifications shall...

  20. 49 CFR 179.500-1 - Tanks built under these specifications shall meet the requirements of § 179.500.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500-1 Tanks built under these specifications shall... 49 Transportation 3 2014-10-01 2014-10-01 false Tanks built under these specifications shall...

  1. 49 CFR 179.500-1 - Tanks built under these specifications shall meet the requirements of § 179.500.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500-1 Tanks built under these specifications shall... 49 Transportation 3 2011-10-01 2011-10-01 false Tanks built under these specifications shall...

  2. 49 CFR 179.500-1 - Tanks built under these specifications shall meet the requirements of § 179.500.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.500-1 Tanks built under these specifications shall... 49 Transportation 3 2012-10-01 2012-10-01 false Tanks built under these specifications shall...

  3. Tank 241-U-204 tank characterization plan

    SciTech Connect

    Bell, K.E.

    1995-03-23

    This document is the tank characterization plan for Tank 241-U-204 located in the 200 Area Tank Farm on the Hanford Reservation in Richland, Washington. This plan describes Data Quality Objectives (DQO) and presents historical information and scheduled sampling events for tank 241-U-204.

  4. Friction Stir Welding of Curved Plates

    NASA Technical Reports Server (NTRS)

    Sanchez, Nestor

    1999-01-01

    Friction stir welding (FSW) is a remarkable technology for making butt and lap joints in aluminum alloys. The process operates by passing a rotating tool between two closely butted plates. This process generates heat and the heated material is stirred from both sides of the plates to generate a high quality weld. Application of this technique has a very broad field for NASA. In particular, NASA is interested in using this welding process to manufacture tanks and curved elements. Therefore, this research has been oriented to the study the FSW of curved plates. The study has covered a number of topics that are important in the model development and to uncover the physical process involve in the welding itself. The materials used for the experimental welds were as close to each other as we could possibly find, aluminum 5454-0 and 5456-0 with properties listed at http://matweb.com. The application of FSW to curved plates needs to consider the behavior that we observed in this study. There is going to be larger force in the normal direction (Fz) as the curvature of the plate increases. A particular model needs to be derived for each material and thickness. A more complete study should also include parameters such as spin rate, tool velocity, and power used. The force in the direction of motion (Fx) needs to be reconsidered to make sure of its variability with respect to other parameters such as velocity, thickness, etc. It seems like the curvature does not play a role in this case. Variations in temperature were found with respect to the curvature. However, these changes seem to be smaller than the effect on Fz. The temperatures were all below the melting point. We understand now that the process of FSW produces a three dimensional flow of material that takes place during the weld. This flow needs to be study in a more detailed way to see in which directions the flow of material is stronger. It could be possible to model the flow using a 2-dimensional model in the

  5. Tank Insulation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    For NASA's Apollo program, McDonnell Douglas Astronautics Company, Huntington Beach, California, developed and built the S-IVB, uppermost stage of the three-stage Saturn V moonbooster. An important part of the development task was fabrication of a tank to contain liquid hydrogen fuel for the stage's rocket engine. The liquid hydrogen had to be contained at the supercold temperature of 423 degrees below zero Fahrenheit. The tank had to be perfectly insulated to keep engine or solar heat from reaching the fuel; if the hydrogen were permitted to warm up, it would have boiled off, or converted to gaseous form, reducing the amount of fuel available to the engine. McDonnell Douglas' answer was a supereffective insulation called 3D, which consisted of a one-inch thickness of polyurethane foam reinforced in three dimensions with fiberglass threads. Over a 13-year development and construction period, the company built 30 tanks and never experienced a failure. Now, after years of additional development, an advanced version of 3D is finding application as part of a containment system for transporting Liquefied Natural Gas (LNG) by ship.

  6. Feed tank transfer requirements

    SciTech Connect

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented.

  7. Pulsed ultrasonic stir welding system

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  8. Friction Stir Process Mapping Methodology

    NASA Technical Reports Server (NTRS)

    Kooney, Alex; Bjorkman, Gerry; Russell, Carolyn; Smelser, Jerry (Technical Monitor)

    2002-01-01

    In FSW (friction stir welding), the weld process performance for a given weld joint configuration and tool setup is summarized on a 2-D plot of RPM vs. IPM. A process envelope is drawn within the map to identify the range of acceptable welds. The sweet spot is selected as the nominal weld schedule. The nominal weld schedule is characterized in the expected manufacturing environment. The nominal weld schedule in conjunction with process control ensures a consistent and predictable weld performance.

  9. External Tank - The Structure Backbone

    NASA Technical Reports Server (NTRS)

    Welzyn, Kenneth; Pilet, Jeffrey C.; Diecidue-Conners, Dawn; Worden, Michelle; Guillot, Michelle

    2011-01-01

    The External Tank forms the structural backbone of the Space Shuttle in the launch configuration. Because the tank flies to orbital velocity with the Space Shuttle Orbiter, minimization of weight is mandatory, to maximize payload performance. Choice of lightweight materials both for structure and thermal conditioning was necessary. The tank is large, and unique manufacturing facilities, tooling, handling, and transportation operations were required. Weld processes and tooling evolved with the design as it matured through several block changes, to reduce weight. Non Destructive Evaluation methods were used to assure integrity of welds and thermal protection system materials. The aluminum-lithium alloy was used near the end of the program and weld processes and weld repair techniques had to be refined. Development and implementation of friction stir welding was a substantial technology development incorporated during the Program. Automated thermal protection system application processes were developed for the majority of the tank surface. Material obsolescence was an issue throughout the 40 year program. The final configuration and tank weight enabled international space station assembly in a high inclination orbit allowing international cooperation with the Russian Federal Space Agency. Numerous process controls were implemented to assure product quality, and innovative proof testing was accomplished prior to delivery. Process controls were implemented to assure cleanliness in the production environment, to control contaminants, and to preclude corrosion. Each tank was accepted via rigorous inspections, including non-destructive evaluation techniques, proof testing, and all systems testing. In the post STS-107 era, the project focused on ascent debris risk reduction. This was accomplished via stringent process controls, post flight assessment using substantially improved imagery, and selective redesigns. These efforts were supported with a number of test programs to

  10. Flexible Friction Stir Joining Technology

    SciTech Connect

    Feng, Zhili; Lim, Yong Chae; Mahoney, Murray; Sanderson, Samuel; Larsen, Steve; Steel, Russel; Fleck, Dale; Fairchild, Doug P; Wasson, Andrew J; Babb, Jon; Higgins, Paul

    2015-07-23

    Reported herein is the final report on a U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) project with industry cost-share that was jointly carried out by Oak Ridge National Laboratory (ORNL), ExxonMobil Upstream Research Company (ExxonMobil), and MegaStir Technologies (MegaStir). The project was aimed to advance the state of the art of friction stir welding (FSW) technology, a highly energy-efficient solid-state joining process, for field deployable, on-site fabrications of large, complex and thick-sectioned structures of high-performance and high-temperature materials. The technology innovations developed herein attempted to address two fundamental shortcomings of FSW: 1) the inability for on-site welding and 2) the inability to weld thick section steels, both of which have impeded widespread use of FSW in manufacturing. Through this work, major advance has been made toward transforming FSW technology from a “specialty” process to a mainstream materials joining technology to realize its pervasive energy, environmental, and economic benefits across industry.

  11. 49 CFR 179.500-15 - Handling of tanks failing in tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and... 49 Transportation 3 2012-10-01 2012-10-01 false Handling of tanks failing in tests....

  12. 49 CFR 179.500-15 - Handling of tanks failing in tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and... 49 Transportation 3 2014-10-01 2014-10-01 false Handling of tanks failing in tests....

  13. 49 CFR 179.500-15 - Handling of tanks failing in tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and... 49 Transportation 3 2013-10-01 2013-10-01 false Handling of tanks failing in tests....

  14. 49 CFR 179.400-13 - Support system for inner tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and... 49 Transportation 3 2014-10-01 2014-10-01 false Support system for inner tank. 179.400-13...

  15. 49 CFR 179.500-15 - Handling of tanks failing in tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and... 49 Transportation 3 2011-10-01 2011-10-01 false Handling of tanks failing in tests....

  16. 33 CFR 157.10d - Double hulls on tank vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING... within the cargo tank length that carry any oil must be protected by double sides and a double bottom as... tanks, and afterpeak tanks must not be less than the capacity of segregated ballast tanks required...

  17. 33 CFR 157.10d - Double hulls on tank vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING... within the cargo tank length that carry any oil must be protected by double sides and a double bottom as... tanks, and afterpeak tanks must not be less than the capacity of segregated ballast tanks required...

  18. Friction Stir Spot Welding of DP780 Carbon Steel

    SciTech Connect

    Santella, Michael L; Hovanski, Yuri; Frederick, David Alan; Grant, Glenn J; Dahl, Michael E

    2010-01-01

    Friction stir spot welds were made in uncoated and galvannealed DP780 sheets using polycrystalline boron nitride stir tools. The tools were plunged at either a single continuous rate or in two segments consisting of a relatively high rate followed by a slower rate of shorter depth. Welding times ranged from 1 to 10 s. Increasing tool rotation speed from 800 to 1600 rev min{sup -1} increased strength values. The 2-segment welding procedures also produced higher strength joints. Average lap shear strengths exceeding 10 {center_dot} 3 kN were consistently obtained in 4 s on both the uncoated and the galvannealed DP780. The likelihood of diffusion and mechanical interlocking contributing to bond formation was supported by metallographic examinations. A cost analysis based on spot welding in automobile assembly showed that for friction stir spot welding to be economically competitive with resistance spot welding the cost of stir tools must approach that of resistance spot welding electrode tips.

  19. Simulated Service and Stress Corrosion Cracking Testing for Friction Stir Welded Spun Formed Domes

    NASA Technical Reports Server (NTRS)

    Stewart, Thomas J.; Torres, Pablo D.; Caratus, Andrei A.; Curreri, Peter A.

    2010-01-01

    Simulated service testing (SST) development was required to help qualify a new 2195 aluminum lithium (Al-Li) alloy spin forming dome fabrication process for the National Aeronautics and Space Administration (NASA) Exploration Development Technology Program. The application for the technology is to produce high strength low weight tank components for NASA s next generation launch vehicles. Since plate material is not currently manufactured large enough to fabricate these domes, two plates are joined by means of friction stir welding. The plates are then pre-contour machined to near final thicknesses allowing for a thicker weld land and anticipating the level of stretch induced by the spin forming process. The welded plates are then placed in a spin forming tool and hot stretched using a trace method producing incremental contours. Finally the dome receives a room temperature contour stretch to final dimensions, heat treatment, quenching, and artificial aging to emulate a T-8 condition of temper. Stress corrosion cracking (SCC) tests were also performed by alternate immersion in a sodium chloride (NaCl) solution using the typical double beam assembly and with 4-point loaded specimens and use of bent-beam stress-corrosion test specimens under alternate immersion conditions. In addition, experiments were conducted to determine the threshold stress intensity factor for SCC (K(sub ISCC)) which to our knowledge has not been determined previously for Al-Li 2195 alloy. The successful simulated service and stress corrosion testing helped to provide confidence to continue to Ares 1 scale dome fabrication

  20. Vapor sampling of the headspace of radioactive waste storage tanks

    SciTech Connect

    Reynolds, D.A., Westinghouse Hanford

    1996-05-22

    This paper recants the history of vapor sampling in the headspaces of radioactive waste storage tanks at Hanford. The first two tanks to receive extensive vapor pressure sampling were Tanks 241-SY-101 and 241-C-103. At various times, a gas chromatography, on-line mass spectrometer, solid state hydrogen monitor, FTIR, and radio acoustic ammonia monitor have been installed. The head space gas sampling activities will continue for the next few years. The current goal is to sample the headspace for all the tanks. Some tank headspaces will be sampled several times to see the data vary with time. Other tanks will have continuous monitors installed to provide additional data.

  1. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each...

  2. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each...

  3. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each...

  4. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each...

  5. 49 CFR 172.331 - Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Bulk packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. 172.331 Section 172.331 Transportation Other Regulations... packagings other than portable tanks, cargo tanks, tank cars and multi-unit tank car tanks. (a) Each...

  6. Stirring effect on kaolinite dissolution rate

    NASA Astrophysics Data System (ADS)

    Metz, Volker; Ganor, Jiwchar

    2001-10-01

    Experiments were carried out measuring kaolinite dissolution rates using stirred and nonstirred flow-through reactors at pHs 2 to 4 and temperatures of 25°C, 50°C, and 70°C. The results show an increase of kaolinite dissolution rate with increasing stirring speed. The stirring effect is reversible, i.e., as the stirring slows down the dissolution rate decreases. The effect of stirring speed on kaolinite dissolution rate is higher at 25°C than at 50°C and 70°C and at pH 4 than at pHs 2 and 3. It is suggested that fine kaolinite particles are formed as a result of stirring-induced spalling or abrasion of kaolinite. These very fine particles have an increased ratio of reactive surface area to specific surface area, which results in enhancement of kaolinite dissolution rate. A balance between production and dissolution of the fine particles explains both the reversibility and the temperature and pH dependence of the stirring effect. Since the stirring effect on kaolinite dissolution rate varies with temperature and pH, measurement of kinetic parameters such as activation energy may be influenced by stirring. Therefore, standard use of nonagitated reaction vessels for kinetic experiments of mineral dissolution and precipitation is recommended, at least for slow reactions that are surface controlled.

  7. Pulsed ultrasonic stir welding method

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  8. Transesterification of vegetable oils: Simulating the replacement of batch reactors with continuous reactors.

    PubMed

    Fonseca, Felipe A S; Vidal-Vieira, José A; Ravagnani, Sergio P

    2010-11-01

    A kinetic model was employed to represent biodiesel production via transesterification of vegetable oils. Reaction rate constants found in the open literature were used in order to compare the behavior of batch and continuous processes. A single continuous stirred tank reactor (CSTR) under the usual operation conditions was not capable of achieving the same productivity as a batch process. However, when reactors in series were used, the continuous process presented a behavior similar to batch processes. As a result, it was evidenced that a series of CSTRs can be an industrially feasible choice for replacing batch transesterification reactors in large scale biodiesel plants. Further, it was shown that the loss in productivity caused by changing from batch to continuous process can be compensated by means of using higher catalyst concentrations.

  9. AX Tank Farm tank removal study

    SciTech Connect

    SKELLY, W.A.

    1999-02-24

    This report examines the feasibility of remediating ancillary equipment associated with the 241-AX Tank Farm at the Hanford Site. Ancillary equipment includes surface structures and equipment, process waste piping, ventilation components, wells, and pits, boxes, sumps, and tanks used to make waste transfers to/from the AX tanks and adjoining tank farms. Two remedial alternatives are considered: (1) excavation and removal of all ancillary equipment items, and (2) in-situ stabilization by grout filling, the 241-AX Tank Farm is being employed as a strawman in engineering studies evaluating clean and landfill closure options for Hanford single-shell tanks. This is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  10. Retractable Pin Tools for the Friction Stir Welding Process

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Two companies have successfully commercialized a specialized welding tool developed at the Marshall Space Flight Center (MSFC). Friction stir welding uses the high rotational speed of a tool and the resulting frictional heat created from contact to crush, 'stir' together, and forge a bond between two metal alloys. It has had a major drawback, reliance on a single-piece pin tool. The pin is slowly plunged into the joint between two materials to be welded and rotated as high speed. At the end of the weld, the single-piece pin tool is retracted and leaves a 'keyhole,' something which is unacceptable when welding cylindrical objects such as drums, pipes and storage tanks. Another drawback is the requirement for different-length pin tools when welding materials of varying thickness. An engineer at the MSFC helped design an automatic retractable pin tool that uses a computer-controlled motor to automatically retract the pin into the shoulder of the tool at the end of the weld, preventing keyholes. This design allows the pin angle and length to be adjusted for changes in material thickness and results in a smooth hole closure at the end of the weld. Benefits of friction stir welding, using the MSFC retractable pin tool technology, include the following: The ability to weld a wide range of alloys, including previously unweldable and composite materials; provision of twice the fatigue resistance of fusion welds and no keyholes; minimization of material distortion; no creation of hazards such as welding fumes, radiation, high voltage, liquid metals, or arcing; automatic retraction of the pin at the end of the weld; and maintaining full penetration of the pin.

  11. 14 CFR 121.316 - Fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Fuel tanks. 121.316 Section 121.316 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.316 Fuel tanks....

  12. 14 CFR 121.316 - Fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fuel tanks. 121.316 Section 121.316 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.316 Fuel tanks....

  13. 14 CFR 121.316 - Fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Fuel tanks. 121.316 Section 121.316 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.316 Fuel tanks....

  14. 14 CFR 121.316 - Fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Fuel tanks. 121.316 Section 121.316 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.316 Fuel tanks....

  15. 14 CFR 121.316 - Fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Fuel tanks. 121.316 Section 121.316 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.316 Fuel tanks....

  16. 7 CFR 58.218 - Surge tanks.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT (CONTINUED) GRADING AND INSPECTION, GENERAL SPECIFICATIONS FOR APPROVED PLANTS AND STANDARDS FOR GRADES OF DAIRY PRODUCTS 1 General....218 Surge tanks. If surge tanks are used for hot milk, and temperatures of product including...

  17. 7 CFR 58.218 - Surge tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURAL MARKETING ACT OF 1946 AND THE EGG PRODUCTS INSPECTION ACT (CONTINUED) GRADING AND INSPECTION, GENERAL SPECIFICATIONS FOR APPROVED PLANTS AND STANDARDS FOR GRADES OF DAIRY PRODUCTS 1 General....218 Surge tanks. If surge tanks are used for hot milk, and temperatures of product including...

  18. Tank 241-U-203: Tank Characterization Plan

    SciTech Connect

    Sathyanarayana, P.

    1995-03-27

    The revised Federal Facility Agreement and Consent Order states that a tank characterization plan will be developed for each double-shell tank and single-shell tank using the data quality objective process. The plans are intended to allow users and regulators to ensure their needs will be met and resources are devoted to gaining only necessary information. This document satisfies that requirement for Tank 241-U-203 sampling activities.

  19. Friction Stir Weld Restart+Reweld Repair Allowables

    NASA Technical Reports Server (NTRS)

    Clifton, Andrew

    2008-01-01

    A friction stir weld (FSW) repair method has been developed and successfully implemented on Al 2195 plate material for the Space Shuttle External Fuel Tank (ET). The method includes restarting the friction stir weld in the termination hole of the original weld followed by two reweld passes. Room temperature and cryogenic temperature mechanical properties exceeded minimum FSW design strength and compared well with the development data. Simulated service test results also compared closely to historical data for initial FSW, confirming no change to the critical flaw size or inspection requirements for the repaired weld. Testing of VPPA fusion/FSW intersection weld specimens exhibited acceptable strength and exceeded the minimum design value. Porosity, when present at the intersection was on the root side toe of the fusion weld, the "worst case" being 0.7 inch long. While such porosity may be removed by sanding, this "worst case" porosity condition was tested "as is" and demonstrated that porosity did not negatively affect the strength of the intersection weld. Large, 15-inch "wide panels" FSW repair welds were tested to demonstrate strength and evaluate residual stresses using photo stress analysis. All results exceeded design minimums, and photo stress analysis showed no significant stress gradients due to the presence of the restart and multi-pass FSW repair weld.

  20. Investigation of Machine Design for Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Romine, Peter L.

    1996-01-01

    The process of joining two pieces of metal together has not significantly changed over the last few decades. The basic idea used is to bring the pieces together and apply enough heat to melt the metal at the interface. The molten metal mixes and after cooling forms a strong joint. This process is called the fusion process. The most significant difference between the many fusion processes is how the heat is generated and applied. The Welding Institute (TWI), in Great Britain, has recently patented an innovative application of mechanical friction. TWI designed a tool and process called Friction Stir Welding (FSW) that uses friction to heat the metal to within a few hundred degrees Fahrenheit of melting, just to the point of being plastic-like. The tool then stirs the plasticized metal together forming a joint that has been shown to be as good or better than an equivalent fusion joint. The FSW process is well suited for the joining of the aluminum alloys used in the aerospace industry. The relatively low melting point of aluminum eliminates the requirements for exotic materials for pin tool design. The FSW process has been successfully used to join alloys such as 7075 which were before considered "unweldable", and aluminum-lithium 2195 which exhibits many problems when fusion welded. The objective this summer was to investigate the design of a FSW system that could take this process from the laboratory to the manufacturing floor. In particular, it was the goal of my NASA colleague to develop a concept for applying the FSW process to the manufacturing of aluminum cryogenic oxygen and hydrogen tanks, of the sort used to make the Shuttle External Tank.

  1. Effects of mechanical force on grain structures of friction stir welded oxide dispersion strengthened ferritic steel

    NASA Astrophysics Data System (ADS)

    Han, Wentuo; Kimura, Akihiko; Tsuda, Naoto; Serizawa, Hisashi; Chen, Dongsheng; Je, Hwanil; Fujii, Hidetoshi; Ha, Yoosung; Morisada, Yoshiaki; Noto, Hiroyuki

    2014-12-01

    The weldability of oxide dispersion strengthened (ODS) ferritic steels is a critical obstructive in the development and use of these steels. Friction stir welding has been considered to be a promising way to solve this problem. The main purpose of this work was to reveal the effects of mechanical force on grain structures of friction stir welded ODS ferritic steel. The grain appearances and the misorientation angles of grain boundaries in different welded zones were investigated by the electron backscatter diffraction (EBSD). Results showed that the mechanical force imposed by the stir tool can activate and promote the recrystallization characterized by the transformation of boundaries from LABs to HABs, and contribute to the grain refinement. The type of recrystallization in the stir zone can be classified as the continuous dynamic recrystallization (CDRX).

  2. Wiping Metal Transfer in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Much evidence suggests that as the friction stir pin-tool moves along a weld seam the displacement of metal takes place by a wiping action at the surface of a plug of metal that rotates with the tool. The wiping model is explained and some consequences for the friction stir welding process are drawn.

  3. Gimbaled-shoulder friction stir welding tool

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Lawless, Kirby G. (Inventor)

    2010-01-01

    A gimbaled-shoulder friction stir welding tool includes a pin and first and second annular shoulders coupled to the pin. At least one of the annular shoulders is coupled to the pin for gimbaled motion with respect thereto as the tool is rotated by a friction stir welding apparatus.

  4. Stirring properties of vortex rings

    NASA Astrophysics Data System (ADS)

    Auerbach, David

    1991-05-01

    Ring vortex evolution, from the initial roll-up phase through to the final turbulent phase, was experimentally studied to see the dependence of its stirring properties on both the initial (accelerating, constant, decelerating, slow, fast) piston motion as well as on the boundary (tube/hole geometry) conditions. Stirring between fluid initially upstream and that initially downstream of the nozzle plane is done more by convective entrainment at the beginning (roll-up and contraction phases), by diffusive entrainment during the laminar and wavy phases, and by mixed entrainment and ejection during the transition to turbulence and the turbulent phase itself. During vortex roll-up, it was found that tubes eject shorter streaklines than do holes, and that there is less Re dependence for this for tubes than for holes. During the contraction phase, entrainment ends, save for minimal entrainment due to axial inflow into the ring from along the cores of Goertler-type vortices. Generally, the rate of fluid ejected is largest during the transition from the wavy to the turbulent state. As far as the stability of the vortices is concerned, rings generated at holes are less stable than those generated at tubes. During the final turbulent phase, rings not only entrain fluid but eject it periodically into the wake: Between two and four hairpin vortices are generated and laid off in the wake during each ejection. The frequency at which such ejections takes place scales as a Strouhal number that takes on values of between 2 and 4.

  5. Calibration of a passive sampler based on stir bar sorptive extraction for the monitoring of hydrophobic organic pollutants in water.

    PubMed

    Vrana, Branislav; Komancová, Lucie; Sobotka, Jaromír

    2016-05-15

    A passive sampler based on stir bars coated with polydimethylsiloxane (PDMS) was calibrated for the measurement of time-weighted average concentrations of hydrophobic micropollutants, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls and organochlorine pesticides, in water. Stir bar/water partition coefficients were measured by equilibrating bars with sheets made of silicone rubber material for which partition coefficients had been reported previously. Kinetic parameters characterising the exchange of analytes between stir bars and water were determined under controlled exposure conditions using a passive dosing system. The dosing system consisted of silicone rubber sheets with a large surface area, spiked with analytes. During stir bar sampler exposure, analytes partitioned from dosing sheets to water in the exposure tank and maintained constant exposure concentrations. Reversible and isotropic exchange kinetics of analytes between sampler and water was confirmed by measuring the release of a range of performance reference compounds (PRCs) from stir bars. Application of a two-resistance model confirmed that, except for hexachlorocyclohexane isomers, uptake of the test compounds under the experimental conditions was controlled by diffusion in the water boundary layer. This permits the application of PRCs for in situ calibration of uptake kinetics of test compounds to stir bars.

  6. 49 CFR 172.330 - Tank cars and multi-unit tank car tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Tank cars and multi-unit tank car tanks. 172.330..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.330 Tank cars and multi-unit tank car tanks. (a... material— (1) In a tank car unless the following conditions are met: (i) The tank car must be marked...

  7. [Study on immobilized cells for producing alpha-amylase by using polyving alcohol as the carrier(II): The effect of fermentating conditions on the ability producing alpha-amylase of the cells immobilized with polyving alcohol as the corrier and continuous fermentation of the immobilized cells in CSTR].

    PubMed

    Liu, Z; Wang, J; Li, Z

    1998-03-01

    The effects of fermentating conditions on the ability of immobilized cells with PVA as carrier for producing alpha-amylase were studied. The continuous fermentation with the immobilized cells were tested in continuous flow stirred tank reactor (CSTR). The results showed that the adaptability of the immobilized Bacillus substilis to pH increased after immobilization. In CSTR, the immobilized cells can be fermentated continuously for 360 hrs and the activity of alpha-amylase can be kept on the level of about 170 u/ml.

  8. Identifiability of sorption parameters in stirred flow-through reactor experiments and their identification with a Bayesian approach.

    PubMed

    Nicoulaud-Gouin, V; Garcia-Sanchez, L; Giacalone, M; Attard, J C; Martin-Garin, A; Bois, F Y

    2016-10-01

    This paper addresses the methodological conditions -particularly experimental design and statistical inference- ensuring the identifiability of sorption parameters from breakthrough curves measured during stirred flow-through reactor experiments also known as continuous flow stirred-tank reactor (CSTR) experiments. The equilibrium-kinetic (EK) sorption model was selected as nonequilibrium parameterization embedding the Kd approach. Parameter identifiability was studied formally on the equations governing outlet concentrations. It was also studied numerically on 6 simulated CSTR experiments on a soil with known equilibrium-kinetic sorption parameters. EK sorption parameters can not be identified from a single breakthrough curve of a CSTR experiment, because Kd,1 and k(-) were diagnosed collinear. For pairs of CSTR experiments, Bayesian inference allowed to select the correct models of sorption and error among sorption alternatives. Bayesian inference was conducted with SAMCAT software (Sensitivity Analysis and Markov Chain simulations Applied to Transfer models) which launched the simulations through the embedded simulation engine GNU-MCSim, and automated their configuration and post-processing. Experimental designs consisting in varying flow rates between experiments reaching equilibrium at contamination stage were found optimal, because they simultaneously gave accurate sorption parameters and predictions. Bayesian results were comparable to maximum likehood method but they avoided convergence problems, the marginal likelihood allowed to compare all models, and credible interval gave directly the uncertainty of sorption parameters θ. Although these findings are limited to the specific conditions studied here, in particular the considered sorption model, the chosen parameter values and error structure, they help in the conception and analysis of future CSTR experiments with radionuclides whose kinetic behaviour is suspected.

  9. 49 CFR 229.97 - Grounding fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Grounding fuel tanks. 229.97 Section 229.97 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 229.97 Grounding fuel tanks. Fuel tanks and related piping shall be electrically grounded....

  10. 49 CFR 229.97 - Grounding fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Grounding fuel tanks. 229.97 Section 229.97 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 229.97 Grounding fuel tanks. Fuel tanks and related piping shall be electrically grounded....

  11. 49 CFR 229.97 - Grounding fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Grounding fuel tanks. 229.97 Section 229.97 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 229.97 Grounding fuel tanks. Fuel tanks and related piping shall be electrically grounded....

  12. 33 CFR 183.512 - Fuel tanks: Prohibited materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tanks: Prohibited materials... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.512 Fuel tanks: Prohibited materials. (a) A fuel tank must not be constructed from terneplate. (b) Unless it...

  13. 49 CFR 178.255 - Specification 60; steel portable tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 60; steel portable tanks. 178.255 Section 178.255 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... PACKAGINGS Specifications for Portable Tanks § 178.255 Specification 60; steel portable tanks....

  14. 49 CFR 178.255 - Specification 60; steel portable tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 60; steel portable tanks. 178.255 Section 178.255 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... PACKAGINGS Specifications for Portable Tanks § 178.255 Specification 60; steel portable tanks....

  15. 49 CFR 178.255 - Specification 60; steel portable tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 60; steel portable tanks. 178.255 Section 178.255 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... PACKAGINGS Specifications for Portable Tanks § 178.255 Specification 60; steel portable tanks....

  16. 49 CFR 178.255 - Specification 60; steel portable tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 60; steel portable tanks. 178.255 Section 178.255 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND... PACKAGINGS Specifications for Portable Tanks § 178.255 Specification 60; steel portable tanks....

  17. 33 CFR 183.512 - Fuel tanks: Prohibited materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Fuel tanks: Prohibited materials... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.512 Fuel tanks: Prohibited materials. (a) A fuel tank must not be constructed from terneplate. (b) Unless it...

  18. 7 CFR 58.321 - Cream storage tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cream storage tanks. 58.321 Section 58.321 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....321 Cream storage tanks. Cream storage tanks shall meet the requirements of § 58.128(d). Cream...

  19. 7 CFR 58.512 - Cheese vats or tanks.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Cheese vats or tanks. 58.512 Section 58.512 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....512 Cheese vats or tanks. (a) Cheese vats or tanks shall meet the requirements of § 58.416. When...

  20. 7 CFR 58.512 - Cheese vats or tanks.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Cheese vats or tanks. 58.512 Section 58.512 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....512 Cheese vats or tanks. (a) Cheese vats or tanks shall meet the requirements of § 58.416. When...

  1. 49 CFR 229.97 - Grounding fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Grounding fuel tanks. 229.97 Section 229.97 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Equipment § 229.97 Grounding fuel tanks. Fuel tanks and related piping shall be electrically grounded....

  2. 46 CFR 154.1705 - Independent tank type C.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Independent tank type C. 154.1705 Section 154.1705 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... § 154.1705 Independent tank type C. The following cargoes must be carried in an independent tank type...

  3. AX Tank Farm tank removal study

    SciTech Connect

    SKELLY, W.A.

    1998-10-14

    This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

  4. 49 CFR 231.8 - Tank cars without side sills and tank cars with short side sills and end platforms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Tank cars without side sills and tank cars with short side sills and end platforms. 231.8 Section 231.8 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.8 Tank cars without...

  5. 49 CFR 231.8 - Tank cars without side sills and tank cars with short side sills and end platforms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Tank cars without side sills and tank cars with short side sills and end platforms. 231.8 Section 231.8 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.8 Tank cars without...

  6. Macrostructure of Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Aloor, S.; Nowak, B.; Vargas, R.; McClure, J. C.; Murr, L. E.; Nunes, A. C.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    This paper will discuss two of the well know large scale features of friction stir welds: the "onion rings" seen in transverse sections, and the striations on the surface of the work piece. It will be shown that the surface features (sometimes called "tool marks") are the result of irregularities on the rotating shoulder of the pin tool and disappear when the shoulder is polished. The "onion ring" structure seen in transverse cross sections is formed by parts of the "carousel", the zone of material adjacent to and rotating with the pin tool, that are shed off in each rotation. The relation between the carousel and the "ring vortex", a rotational flow extending both in and out of the carousel and resembling a smoke-ring with the hole centered on the pin tool, will be discussed.

  7. Friction Stir Welding and Processing

    SciTech Connect

    Hovanski, Yuri; Carsley, John; Clarke, Kester D.; Krajewski, Paul E.

    2015-05-01

    With nearly twenty years of international research and collaboration in friction stir welding (FSW) and processing industrial applications have spread into nearly every feasible market. Currently applications exist in aerospace, railway, automotive, personal computers, technology, marine, cutlery, construction, as well as several other markets. Implementation of FSW has demonstrated diverse opportunities ranging from enabling new materials to reducing the production costs of current welding technologies by enabling condensed packaging solutions for traditional fabrication and assembly. TMS has sponsored focused instruction and communication in this technology area for more than fifteen years, with leadership from the Shaping and Forming Committee, which organizes a biannual symposium each odd year at the annual meeting. A focused publication produced from each of these symposia now comprises eight volumes detailing the primary research and development activities in this area over the last two decades. The articles assembled herein focus on both recent developments and technology reviews of several key markets from international experts in this area.

  8. HANFORD TANK CLEANUP UPDATE

    SciTech Connect

    BERRIOCHOA MV

    2011-04-07

    Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

  9. Tank waste concentration mechanism study

    SciTech Connect

    Pan, L.C.; Johnson, L.J.

    1994-09-01

    This study determines whether the existing 242-A Evaporator should continue to be used to concentrate the Hanford Site radioactive liquid tank wastes or be replaced by an alternative waste concentration process. Using the same philosophy, the study also determines what the waste concentration mechanism should be for the future TWRS program. Excess water from liquid DST waste should be removed to reduce the volume of waste feed for pretreatment, immobilization, and to free up storage capacity in existing tanks to support interim stabilization of SSTS, terminal cleanout of excess facilities, and other site remediation activities.

  10. DESTRUCTION OF TETRAPHENYLBORATE IN TANK 48H USING WET AIR OXIDATION BATCH BENCH SCALE AUTOCLAVE TESTING WITH ACTUAL RADIOACTIVE TANK 48H WASTE

    SciTech Connect

    Adu-Wusu, K; Paul Burket, P

    2009-03-31

    Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtained from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a

  11. Tank 241-C-103 tank characterization plan

    SciTech Connect

    Schreiber, R.D.

    1994-10-06

    The data quality objective (DQO) process was chosen as a tool to be used to identify the sampling analytical needs for the resolution of safety issues. A Tank Characterization Plant (TCP) will be developed for each double shell tank (DST) and single-shell tank (SST) using the DQO process. There are four Watch list tank classifications (ferrocyanide, organic salts, hydrogen/flammable gas, and high heat load). These classifications cover the six safety issues related to public and worker health that have been associated with the Hanford Site underground storage tanks. These safety issues are as follows: ferrocyanide, flammable gas, organic, criticality, high heat, and vapor safety issues. Tank C-103 is one of the twenty tanks currently on the Organic Salts Watch List. This TCP will identify characterization objectives pertaining to sample collection, hot cell sample isolation, and laboratory analytical evaluation and reporting requirements in accordance with the appropriate DQO documents. In addition, the current contents and status of the tank are projected from historical information. The relevant safety issues that are of concern for tanks on the Organic Salts Watch List are: the potential for an exothermic reaction occurring from the flammable mixture of organic materials and nitrate/nitrite salts that could result in a release of radioactive material and the possibility that other safety issues may exist for the tank.

  12. Tank 241-AW-101 tank characterization plan

    SciTech Connect

    Sathyanarayana, P.

    1994-11-22

    The first section gives a summary of the available information for Tank AW-101. Included in the discussion are the process history and recent sampling events for the tank, as well as general information about the tank such as its age and the risers to be used for sampling. Tank 241-AW-101 is one of the 25 tanks on the Flammable Gas Watch List. To resolve the Flammable Gas safety issue, characterization of the tanks, including intrusive tank sampling, must be performed. Prior to sampling, however, the potential for the following scenarios must be evaluated: the potential for ignition of flammable gases such as hydrogen-air and/or hydrogen-nitrous oxide; and the potential for secondary ignition of organic-nitrate/nitrate mixtures in crust layer initiated by the burning of flammable gases or by a mechanical in-tank energy source. The characterization effort applicable to this Tank Characterization Plan is focused on the resolution of the crust burn flammable gas safety issue of Tank AW-101. To evaluate the potential for a crust burn of the waste material, calorimetry tests will be performed on the waste. Differential Scanning Calorimetry (DSC) will be used to determine whether an exothermic reaction exists.

  13. Evaluation of tank waste transfers at 241-AW tank farm

    SciTech Connect

    Willis, W.L.

    1998-05-27

    A number of waste transfers are needed to process and feed waste to the private contractors in support of Phase 1 Privatization. Other waste transfers are needed to support the 242-A Evaporator, saltwell pumping, and other ongoing Tank Waste Remediation System (TWRS) operations. The purpose of this evaluation is to determine if existing or planned equipment and systems are capable of supporting the Privatization Mission of the Tank Farms and continuing operations through the end of Phase 1B Privatization Mission. Projects W-211 and W-314 have been established and will support the privatization effort. Equipment and system upgrades provided by these projects (W-211 and W-314) will also support other ongoing operations in the tank farms. It is recognized that these projects do not support the entire transfer schedule represented in the Tank Waste Remediation system Operation and Utilization Plan. Additionally, transfers surrounding the 241-AW farm must be considered. This evaluation is provided as information, which will help to define transfer paths required to complete the Waste Feed Delivery (WFD) mission. This document is not focused on changing a particular project, but it is realized that new project work in the 241-AW Tank Farm is required.

  14. Self-Reacting Friction Stir Welding for Aluminum Alloy Circumferential Weld Applications

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerry; Cantrell, Mark; Carter, Robert

    2003-01-01

    Friction stir welding is an innovative weld process that continues to grow in use, in the commercial, defense, and space sectors. It produces high quality and high strength welds in aluminum alloys. The process consists of a rotating weld pin tool that plasticizes material through friction. The plasticized material is welded by applying a high weld forge force through the weld pin tool against the material during pin tool rotation. The high weld forge force is reacted against an anvil and a stout tool structure. A variation of friction stir welding currently being evaluated is self-reacting friction stir welding. Self-reacting friction stir welding incorporates two opposing shoulders on the crown and root sides of the weld joint. In self-reacting friction stir welding, the weld forge force is reacted against the crown shoulder portion of the weld pin tool by the root shoulder. This eliminates the need for a stout tooling structure to react the high weld forge force required in the typical friction stir weld process. Therefore, the self-reacting feature reduces tooling requirements and, therefore, process implementation costs. This makes the process attractive for aluminum alloy circumferential weld applications. To evaluate the application of self-reacting friction stir welding for aluminum alloy circumferential welding, a feasibility study was performed. The study consisted of performing a fourteen-foot diameter aluminum alloy circumferential demonstration weld using typical fusion weld tooling. To accomplish the demonstration weld, weld and tack weld development were performed and fourteen-foot diameter rings were fabricated. Weld development consisted of weld pin tool selection and the generation of a process map and envelope. Tack weld development evaluated gas tungsten arc welding and friction stir welding for tack welding rings together for circumferential welding. As a result of the study, a successful circumferential demonstration weld was produced leading

  15. A Review of Permanent Magnet Stirring During Metal Solidification

    NASA Astrophysics Data System (ADS)

    Zeng, Jie; Chen, Weiqing; Yang, Yindong; Mclean, Alexander

    2017-08-01

    Rather than using conventional electromagnetic stirring (EMS) with three-phase alternating current, permanent magnet stirring (PMS), based on the use of sintered NdFeB material which has excellent magnetic characteristics, can be employed to generate a magnetic field for the stirring of liquid metal during solidification. Recent experience with steel casting indicates that PMS requires less than 20 pct of the total energy compared with EMS. Despite the excellent magnetic density properties and low power consumption, this relatively new technology has received comparatively little attention by the metal casting community. This paper reviews simulation modeling, experimental studies, and industrial trials of PMS conducted during recent years. With the development of magnetic simulation software, the magnetic field and associated flow patterns generated by PMS have been evaluated. Based on the results obtained from laboratory experiments, the effects of PMS on metal solidification structures and typical defects such as surface pinholes and center cavities are summarized. The significance of findings obtained from trials of PMS within the metals processing sector, including the continuous casting of steel, are discussed with the aim of providing an overview of the relevant parameters that are of importance for further development and industrial application of this innovative technology.

  16. On the potentialities of intensification of electromagnetic stirring of melts

    NASA Astrophysics Data System (ADS)

    Branover, H.; Golbraikh, E.; Kapusta, A.; Mikhailovich, B.; Dardik, I.; Thompson, R.; Lesin, S.; Khavkin, M.

    2006-09-01

    The effciency of technological processes of producing metals and alloys, continuous ingots and castings of ferrous and non­ferrous metals is mainly determined by the intensity of heat and mass transfer in the liquid phase. To increase the latter, various methods are used, including electromagnetic ones. Most electromagnetic methods are based on the application of electromagnetic fields, harmonically varying in time. In this case, the mean velocity of metal motion is a determining parameter. Since the process of stirring is directly connected with the turbulence level in the flow, the latter is also determined by the mean velocity value. In the present paper, we set forth the results of the studies of liquid metal flows in anharmonic rotating magnetic fields generated by amplitude­modulated alter­ native currents in inductor coils. As demonstrated below, changes in modulation parameters lead to the appearance of additional degrees of freedom in the control of turbulent flows of liquid metals and expand the potentialities for controlling the processes of stirring. With a suitable choice of the modulation parameters, we can considerably increase the intensity of melt stirring at the expense of increased turbulent transfer intensity due to the excitation of the so­called forced turbulence, without increasing the mean velocity of convective flows. Thus, in this case, a more intense mixing can be achieved due to a more intense turbulent transfer at a reduced mean velocity (convective transfer). Figs 4, Refs 4.

  17. Recent Developments in Friction Stir Welding of Al-alloys

    NASA Astrophysics Data System (ADS)

    Çam, Gürel; Mistikoglu, Selcuk

    2014-06-01

    The diversity and never-ending desire for a better life standard result in a continuous development of the existing manufacturing technologies. In line with these developments in the existing production technologies the demand for more complex products increases, which also stimulates new approaches in production routes of such products, e.g., novel welding procedures. For instance, the friction stir welding (FSW) technology, developed for joining difficult-to-weld Al-alloys, has been implemented by industry in manufacturing of several products. There are also numerous attempts to apply this method to other materials beyond Al-alloys. However, the process has not yet been implemented by industry for joining these materials with the exception of some limited applications. The microstructures and mechanical properties of friction stir welded Al-alloys existing in the open literature will be discussed in detail in this review. The correlations between weld parameters used during FSW and the microstructures evolved in the weld region and thus mechanical properties of the joints produced will be highlighted. However, the modeling studies, material flow, texture formation and developments in tool design are out of the scope of this work as well as the other variants of this technology, such as friction stir spot welding (FSSW).

  18. Process Model for Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Adams, Glynn

    1996-01-01

    Friction stir welding (FSW) is a relatively new process being applied for joining of metal alloys. The process was initially developed by The Welding Institute (TWI) in Cambridge, UK. The FSW process is being investigated at NASA/MSEC as a repair/initial weld procedure for fabrication of the super-light-weight aluminum-lithium shuttle external tank. The FSW investigations at MSFC were conducted on a horizontal mill to produce butt welds of flat plate material. The weldment plates are butted together and fixed to a backing plate on the mill bed. A pin tool is placed into the tool holder of the mill spindle and rotated at approximately 400 rpm. The pin tool is then plunged into the plates such that the center of the probe lies at, one end of the line of contact, between the plates and the shoulder of the pin tool penetrates the top surface of the weldment. The weld is produced by traversing the tool along the line of contact between the plates. A lead angle allows the leading edge of the shoulder to remain above the top surface of the plate. The work presented here is the first attempt at modeling a complex phenomenon. The mechanical aspects of conducting the weld process are easily defined and the process itself is controlled by relatively few input parameters. However, in the region of the weld, plasticizing and forging of the parent material occurs. These are difficult processes to model. The model presented here addresses only variations in the radial dimension outward from the pin tool axis. Examinations of the grain structure of the weld reveal that a considerable amount of material deformation also occurs in the direction parallel to the pin tool axis of rotation, through the material thickness. In addition, measurements of the axial load on the pin tool demonstrate that the forging affect of the pin tool shoulder is an important process phenomenon. Therefore, the model needs to be expanded to account for the deformations through the material thickness and the

  19. Continuous propionic acid production with Propionibacterium acidipropionici immobilized in a novel xylan hydrogel matrix.

    PubMed

    Wallenius, Janne; Pahimanolis, Nikolaos; Zoppe, Justin; Kilpeläinen, Petri; Master, Emma; Ilvesniemi, Hannu; Seppälä, Jukka; Eerikäinen, Tero; Ojamo, Heikki

    2015-12-01

    The cell immobilization potential of a novel xylan based disulfide-crosslinked hydrogel matrix reinforced with cellulose nanocrystals was studied with continuous cultivation of Propionibacterium acidipropionici using various dilution rates. The cells were immobilized to hydrogel beads suspended freely in the fermentation broth or else packed into a column connected to a stirred tank reactor. The maximum propionic acid productivity for the combined stirred tank and column was 0.88gL(-1)h(-1) and the maximum productivity for the column was determined to be 1.39gL(-1)h(-1). The maximum propionic acid titer for the combined system was 13.9gL(-1) with a dilution rate of 0.06h(-1). Dry cell density of 99.7gL(-1) was obtained within the column packed with hydrogel beads and productivity of 1.02gL(-1)h(-1) was maintained in the column even with the high circulation rate of 3.37h(-1).

  20. Spray nozzles, pressures, additives and stirring time on viability and pathogenicity of entomopathogenic nematodes (nematoda: rhabditida) for greenhouses.

    PubMed

    Moreira, Grazielle Furtado; Batista, Elder Simões de Paula; Campos, Henrique Borges Neves; Lemos, Raphael Emilio; Ferreira, Marcelo da Costa

    2013-01-01

    The objective of this study was to evaluate different strategies for the application of entomopathogenic nematodes (EPN). Three different models of spray nozzles with air induction (AI 11003, TTI 11003 and AD-IA 11004), three spray pressures (207, 413 and 720 kPa), four different additives for tank mixtures (cane molasses, mineral oil, vegetable oil and glycerin) and the influence of tank mixture stirring time were all evaluated for their effect on EPN (Steinernema feltiae) viability and pathogenicity. The different nozzles, at pressures of up to 620 kPa, were found to be compatible with S. feltiae. Vegetable oil, mineral oil and molasses were found to be compatible adjuvants for S. feltiae, and stirring in a motorized backpack sprayer for 30 minutes did not impact the viability or pathogenicity of this nematode. Appropriate techniques for the application of nematodes with backpack sprayers are discussed.

  1. Spray Nozzles, Pressures, Additives and Stirring Time on Viability and Pathogenicity of Entomopathogenic Nematodes (Nematoda: Rhabditida) for Greenhouses

    PubMed Central

    Moreira, Grazielle Furtado; Batista, Elder Simões de Paula; Campos, Henrique Borges Neves; Lemos, Raphael Emilio; Ferreira, Marcelo da Costa

    2013-01-01

    The objective of this study was to evaluate different strategies for the application of entomopathogenic nematodes (EPN). Three different models of spray nozzles with air induction (AI 11003, TTI 11003 and AD-IA 11004), three spray pressures (207, 413 and 720 kPa), four different additives for tank mixtures (cane molasses, mineral oil, vegetable oil and glycerin) and the influence of tank mixture stirring time were all evaluated for their effect on EPN (Steinernema feltiae) viability and pathogenicity. The different nozzles, at pressures of up to 620 kPa, were found to be compatible with S. feltiae. Vegetable oil, mineral oil and molasses were found to be compatible adjuvants for S. feltiae, and stirring in a motorized backpack sprayer for 30 minutes did not impact the viability or pathogenicity of this nematode. Appropriate techniques for the application of nematodes with backpack sprayers are discussed. PMID:23755280

  2. Tank characterization report: Tank 241-C-109

    SciTech Connect

    Simpson, B.C.; Borshiem, G.L.; Jensen, L.

    1993-09-01

    Single-shell tank 241-C-109 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in September 1992. Analyses of materials obtained from tank 241-C-109 were conducted to support the resolution of the ferrocyanide unreviewed safety question (USQ) and to support Hanford Federal Facility Agreement and consent Order (Tri- Party Agreement) Milestone M-10-00. This report describes this analysis.

  3. 46 CFR 153.250 - Double-bottom and deep tanks as cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Double-bottom and deep tanks as cargo tanks. 153.250 Section 153.250 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and...

  4. 49 CFR 179.103 - Special requirements for class 114A * * * tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Special requirements for class 114A * * * tank car tanks. 179.103 Section 179.103 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...

  5. 49 CFR 179.102 - Special commodity requirements for pressure tank car tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Special commodity requirements for pressure tank car tanks. 179.102 Section 179.102 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...

  6. What Adolescents Stir up in Me.

    ERIC Educational Resources Information Center

    Dupont, Philippe J.

    2001-01-01

    Fritz Redl challenged professionals to examine situations in which adolescents stir up negative feelings in them. The author also applies Redl's concepts to his own work in administering a school for troubled students. (Author)

  7. Material Flow in Friction Stir Welds

    NASA Astrophysics Data System (ADS)

    Fonda, Richard; Reynolds, Anthony; Feng, C. R.; Knipling, Keith; Rowenhorst, David

    2013-01-01

    Friction stir welding generates periodic features within the weld. These "onion ring" features are associated with variations in both texture and the orientation of that texture along the length of the weld. Analysis of an AA2195 friction stir weld reveals the presence of periodic oscillations between the dominant B and overline{{B}} components of the ideal shear texture, suggesting a periodic reversal in the predominant shear orientation during welding that is inconsistent with current understandings of the friction stir welding process. Microstructural features present in the weld and machine force variations during welding indicate that these textures may arise from the oscillation of an off-centered tool. Such a tool oscillation can generate a periodic extrusion of material around the tool, giving rise to the observed flow features, machine force variations, and reversals of the local shear texture orientations. A new model of material flow during friction stir welding is proposed to explain the observed features.

  8. Tank evaluation system shielded annular tank application

    SciTech Connect

    Freier, D.A.

    1988-10-04

    TEST (Tank Evaluation SysTem) is a research project utilizing neutron interrogation techniques to analyze the content of nuclear poisons and moderators in tank shielding. TEST experiments were performed on an experimental SAT (Shielded Annular Tank) at the Rocky Flats Plant. The purpose of these experiments was threefold: (1) to assess TEST application to SATs, (2) to determine if Nuclear Safety inspection criteria could be met, and (3) to perform a preliminary calibration of TEST for SATs. Several experiments were performed, including measurements of 11 tank shielding configurations, source-simulated holdup experiments, analysis of three detector modes, resolution studies, and TEST scanner geometry experiments. 1 ref., 21 figs., 4 tabs.

  9. Tank Characterization Report for Single Shell Tank 241-C-104

    SciTech Connect

    ADAMS, M.R.

    2000-04-06

    Interprets information about the tank answering a series of six questions covering areas such as information drivers, tank history, tank comparisons, disposal implications, data quality and quantity, and unique aspects of the tank.

  10. Assemblies of Conformal Tanks

    NASA Technical Reports Server (NTRS)

    DeLay, Tom

    2009-01-01

    Assemblies of tanks having shapes that conform to each other and/or conform to other proximate objects have been investigated for use in storing fuels and oxidizers in small available spaces in upper stages of spacecraft. Such assemblies might also prove useful in aircraft, automobiles, boats, and other terrestrial vehicles in which space available for tanks is limited. The basic concept of using conformal tanks to maximize the utilization of limited space is not new in itself: for example, conformal tanks are used in some automobiles to store windshield -washer liquid and coolant that overflows from radiators. The novelty of the present development lies in the concept of an assembly of smaller conformal tanks, as distinguished from a single larger conformal tank. In an assembly of smaller tanks, it would be possible to store different liquids in different tanks. Even if the same liquid were stored in all the tanks, the assembly would offer an advantage by reducing the mechanical disturbance caused by sloshing of fuel in a single larger tank: indeed, the requirement to reduce sloshing is critical in some applications. The figure shows a prototype assembly of conformal tanks. Each tank was fabricated by (1) copper plating a wax tank mandrel to form a liner and (2) wrapping and curing layers of graphite/epoxy composite to form a shell supporting the liner. In this case, the conformal tank surfaces are flat ones where they come in contact with the adjacent tanks. A band of fibers around the outside binds the tanks together tightly in the assembly, which has a quasi-toroidal shape. For proper functioning, it would be necessary to maintain equal pressure in all the tanks.

  11. Continuous-Reading Cryogen Level Sensor

    NASA Technical Reports Server (NTRS)

    Barone, F. E.; Fox, E.; Macumber, S.

    1984-01-01

    Two pressure transducers used in system for measuring amount of cryogenic liquid in tank. System provides continuous measurements accurate within 0.03 percent. Sensors determine pressure in liquid and vapor in tank. Microprocessor uses pressure difference to compute mass of cryogenic liquid in tank. New system allows continuous sensing; unaffected by localized variations in composition and density as are capacitance-sensing schemes.

  12. Evaluation of coupons from Tank 50

    SciTech Connect

    Mickalonis, J.I.

    1995-09-01

    The coupons from the corrosion coupon rig (CCR) were removed from tank 50 after a ten-month exposure. The evaluation consisted of microscopic examination, weight losses, and pit depth measurements. The coupons were exposed in both the liquid waste and the air space above the waste. The corrosion in the air space was characterized by variable-depth degradation under adherent corrosion products. Corrosion degradation was not significant for coupons in the waste. The coupon areas exposed at the air-waste interface had pits; the deepest measuring 6 mils. These results provide cur-rent information on actual corrosion in the waste tank. Continued use of the CCR on tank 50 is recommended (i) to monitor pitting rates, (ii) to verify the low corrosion degradation of the tanks, and (iii) to complete the CCR development for future implementation in tanks 43 and 48.

  13. Combustion of n-heptane in a shock tube and in a stirred reactor: A detailed kinetic modeling study

    SciTech Connect

    Gaffuri, P.; Curran, H.J.; Pitz, W.J.; Westbrook, C.K.

    1995-04-13

    A detailed chemical kinetic reaction mechanism is used to study the oxidation of n-heptane under several classes of conditions. Experimental results from ignition behind reflected shock waves and in a rapid compression machine were used to develop and validate the reaction mechanism at relatively high temperatures, while data from a continuously stirred tank reactor (cstr) were used to refine the low temperature portions of the reaction mechanism. In addition to the detailed kinetic modeling, a global or lumped kinetic mechanism was used to study the same experimental results. The lumped model was able to identify key reactions and reaction paths that were most sensitive in each experimental regime and provide important guidance for the detailed modeling effort. In each set of experiments, a region of negative temperature coefficient (NTC) was observed. Variation in pressure from 5 to 40 bars were found to change the temperature range over which the NTC region occurred. Both the lumped and detailed kinetic models reproduced the measured results in each type of experiments, including the features of the NTC region, and the specific elementary reactions and reaction paths responsible for this behavior were identified and rate expressions for these reactions were determined.

  14. [High Pressure Gas Tanks

    NASA Technical Reports Server (NTRS)

    Quintana, Rolando

    2002-01-01

    Four high-pressure gas tanks, the basis of this study, were especially made by a private contractor and tested before being delivered to NASA Kennedy Space Center. In order to insure 100% reliability of each individual tank the staff at KSC decided to again submit the four tanks under more rigorous tests. These tests were conducted during a period from April 10 through May 8 at KSC. This application further validates the predictive safety model for accident prevention and system failure in the testing of four high-pressure gas tanks at Kennedy Space Center, called Continuous Hazard Tracking and Failure Prediction Methodology (CHTFPM). It is apparent from the variety of barriers available for a hazard control that some barriers will be more successful than others in providing protection. In order to complete the Barrier Analysis of the system, a Task Analysis and a Biomechanical Study were performed to establish the relationship between the degree of biomechanical non-conformities and the anomalies found within the system on particular joints of the body. This relationship was possible to obtain by conducting a Regression Analysis to the previously generated data. From the information derived the body segment with the lowest percentage of non-conformities was the neck flexion with 46.7%. Intense analysis of the system was conducted including Preliminary Hazard Analysis (PHA), Failure Mode and Effect Analysis (FMEA), and Barrier Analysis. These analyses resulted in the identification of occurrences of conditions, which may be becoming hazardous in the given system. These conditions, known as dendritics, may become hazards and could result in an accident, system malfunction, or unacceptable risk conditions. A total of 56 possible dendritics were identified. Work sampling was performed to observe the occurrence each dendritic. The out of control points generated from a Weighted c control chart along with a Pareto analysis indicate that the dendritics "Personnel not

  15. 40 CFR Table 4 to Subpart Dd of... - Tank Control Levels for Tanks at New Affected Sources as Required by 40 CFR 63.685(b)(2)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS...)(2) Tank design capacity (cubic meters) Maximum HAP vapor pressure of off-site material managed in tank (kilopascals) Tank control level Design capacity less than 38 m3 Maximum HAP vapor pressure less...

  16. 40 CFR Table 3 to Subpart Dd of... - Tank Control Levels for Tanks at Existing Affected Sources as Required by 40 CFR 63.685(b)(1)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION....685(b)(1) Tank design capacity (cubic meters) Maximum HAP vapor pressure of off-site material managed in tank (kilopascals) Tank control level Design capacity less than 75 m3 Maximum HAP vapor pressure...

  17. Tank 241-SX-103 tank characterization plan

    SciTech Connect

    Homi, C.S.

    1995-03-08

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-SX-103.

  18. Tank 241-U-103 tank characterization plan

    SciTech Connect

    Carpenter, B.C.

    1995-01-24

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-U-103.

  19. Tank 241-T-107 tank characterization plan

    SciTech Connect

    Homi, C.S.

    1995-01-05

    This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-T-107.

  20. Liquid rocket metal tanks and tank components

    NASA Technical Reports Server (NTRS)

    Wagner, W. A.; Keller, R. B. (Editor)

    1974-01-01

    Significant guidelines are presented for the successful design of aerospace tanks and tank components, such as expulsion devices, standpipes, and baffles. The state of the art is reviewed, and the design criteria are presented along with recommended practices. Design monographs are listed.

  1. TANK48 CFD MODELING ANALYSIS

    SciTech Connect

    Lee, S.

    2011-05-17

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitative mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single

  2. Phase Chemistry of Tank Sludge Residual Components

    SciTech Connect

    J.L. Krumhansl

    2002-04-02

    The US Department of Energy (DOE) has millions of gallons of high level nuclear waste stored in underground tanks at Hanford, Washington and Savannah River, South Carolina. These tanks will eventually be emptied and decommissioned. This will leave a residue of sludge adhering to the interior tank surfaces that may contaminate nearby groundwaters with radionuclides and RCRA metals. Performance assessment (PA) calculations must be carried out prior to closing the tanks. This requires developing radionuclide release models from the sludges so that the PA calculations can be based on credible source terms. These efforts continued to be hindered by uncertainties regarding the actual nature of the tank contents and the distribution of radionuclides among the various phases. In particular, it is of vital importance to know what radionuclides are associated with solid sludge components. Experimentation on actual tank sludges can be difficult, dangerous and prohibitively expensive. The research funded under this grant for the past three years was intended to provide a cost-effective method for developing the needed radionuclide release models using non-radioactive artificial sludges. Insights gained from this work will also have more immediate applications in understanding the processes responsible for heel development in the tanks and in developing effective technologies for removing wastes from the tanks.

  3. Tank 241-AZ-101 tank characterization plan

    SciTech Connect

    Schreiber, R.D.

    1995-02-06

    The Defense Nuclear Facilities Safety Board has advised the DOE to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The Data Quality Objective (DQO) process was chosen as a tool to be used in the resolution of safety issues. As a result, A revision in the Federal Facilities Agreement and Consent Order (Tri-Party Agreement) milestone M-44 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process. Development of TCPs by the DQO process is intended to allow users to ensure their needs will be met and that resources are devoted to gaining only necessary information``. This document satisfies that requirement for Tank 241-AZ-101 (AZ-101) sampling activities. Tank AZ-101 is currently a non-Watch List tank, so the only DQOs applicable to this tank are the safety screening DQO and the compatibility DQO, as described below. The contents of Tank AZ-101, as of October 31, 1994, consisted of 3,630 kL (960 kgal) of dilute non-complexed waste and aging waste from PUREX (NCAW, neutralized current acid waste). Tank AZ-101 is expected to have two primary layers. The bottom layer is composed of 132 kL of sludge, and the top layer is composed of 3,500 kL of supernatant, with a total tank waste depth of approximately 8.87 meters.

  4. Ammonia tank failure

    SciTech Connect

    Sweat, M.E.

    1983-04-01

    An ammonia tank failure at Hawkeye Chemical of Clinton, Iowa is discussed. The tank was a double-wall, 27,000 metric-ton tank built in 1968 and commissioned in December 1969. The paper presented covers the cause of the failure, repair, and procedural changes made to prevent recurrence of the failure. (JMT)

  5. Feed tank transfer requirements

    SciTech Connect

    Freeman-Pollard, J.R.

    1998-09-16

    This document presents a definition of tank turnover; DOE responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements; records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor for use during Phase 1B.

  6. Criticality Safety Evaluation of Hanford Tank Farms Facility

    SciTech Connect

    WEISS, E.V.

    2000-12-15

    Data and calculations from previous criticality safety evaluations and analyses were used to evaluate criticality safety for the entire Tank Farms facility to support the continued waste storage mission. This criticality safety evaluation concludes that a criticality accident at the Tank Farms facility is an incredible event due to the existing form (chemistry) and distribution (neutron absorbers) of tank waste. Limits and controls for receipt of waste from other facilities and maintenance of tank waste condition are set forth to maintain the margin subcriticality in tank waste.

  7. Gimballed Shoulders for Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Carter, Robert; Lawless, Kirby

    2008-01-01

    In a proposed improvement of tooling for friction stir welding, gimballed shoulders would supplant shoulders that, heretofore, have been fixedly aligned with pins. The proposal is especially relevant to self-reacting friction stir welding. Some definitions of terms, recapitulated from related prior NASA Tech Briefs articles, are prerequisite to a meaningful description of the proposed improvement. In friction stir welding, one uses a tool that includes (1) a rotating shoulder on top (or front) of the workpiece and (2) a pin that rotates with the shoulder and protrudes from the shoulder into the depth of the workpiece. In conventional friction stir welding, the main axial force exerted by the tool on the workpiece is reacted through a ridged backing anvil under (behind) the workpiece. When conventional friction stir welding is augmented with an auto-adjustable pin-tool (APT) capability, the depth of penetration of the pin into the workpiece is varied in real time by a position- or forcecontrol system that extends or retracts the pin as needed to obtain the desired effect. In self-reacting (also known as self-reacted) friction stir welding as practiced heretofore, there are two shoulders: one on top (or front) and one on the bottom (or back) of the workpiece. In this case, a threaded shaft protrudes from the tip of the pin to beyond the back surface of the workpiece. The back shoulder is held axially in place against tension by a nut on the threaded shaft. Both shoulders rotate with the pin and remain aligned coaxially with the pin. The main axial force exerted on the workpiece by the tool and front shoulder is reacted through the back shoulder and the threaded shaft into the friction-stir-welding machine head, so that a backing anvil is no longer needed. A key transmits torque between the bottom shoulder and the threaded shaft, so that the bottom shoulder rotates with the shaft. This concludes the prerequisite definitions of terms.

  8. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car..., Large Packaging, cargo tank, or multi-unit tank car tank) containing a hazardous material in...

  9. SLI Complex Curvature Friction Stir Weld Risk Reduction Program

    NASA Technical Reports Server (NTRS)

    Hartley, Paula J.; Schneider, Jules; Jones, Chip; Lawless, Kirby; Russell, Carolyn

    2003-01-01

    The Space Launch Initiative Program (SLI) in conjunction with the National Center for Advanced Manufacturing (NCAM) will demonstrate the ability to produce large-scale complex curvature hardware using the self-reacting friction stir welding process. This multi-phased risk reduction program includes friction stir welding process development and manufacture of a 22-ft diameter quarter dome using a conventional tooling approach; it culminates in a 27.5-ft diameter quarter dome demonstration performed on a 5-axis Universal Weld System. The design, fabrication, and installation of the Universal Weld System is made possible through a collaboration between the State of Louisiana, NASA, and the University of New Orleans. The Universal Weld System, manufactured by MTS Systems Corporation, will be installed at the Michoud Assembly Facility in New Orleans, Louisiana, and will be capable of manufacturing domes up to 30 ft in diameter. All welding will be accomplished using the Adaptable Adjustable Pin Tool (AdAPT) weld head and controller manufactured by MTS. Weld parameters will be developed for an aluminum alloy in gauges ranging from 0.320 to 0.400 in. thick. Weld quality will be verified through radiography, mechanical property testing at ambient and LN2 temperatures, and metallurgical analysis. The AdAPT weld head will then be mounted on a 22-ft diameter dome tool, which will be modified to include a welding track and drive system for moving the AdAPT weld head along the weld joint. This tool will then be used to manufacture a 22-ft diameter dome of an aluminum alloy, with 0.320-in. constant thickness joints, consisting of three individual gore panels. Finally, the 27.5-ft diameter quarter dome will be welded on the Universal Weld System. The quarter dome will consist of three individual gore panels with weld lands tapering from 0.320 to 0.360 in. in thickness. With the demonstration of these welds, the ability to manufacture large diameter domes using the friction stir

  10. 40 CFR 52.1931 - Petroleum storage tank controls.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Petroleum storage tank controls. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Oklahoma § 52.1931 Petroleum... plan, the petroleum storage tanks listed in paragraphs (b) through (e) of this section shall be...

  11. 40 CFR 52.1931 - Petroleum storage tank controls.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Petroleum storage tank controls. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Oklahoma § 52.1931 Petroleum... plan, the petroleum storage tanks listed in paragraphs (b) through (e) of this section shall be...

  12. 49 CFR 179.220-9 - Compartment tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Compartment tanks. 179.220-9 Section 179.220-9 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for...

  13. 49 CFR 179.201-3 - Lined tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Lined tanks. 179.201-3 Section 179.201-3 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for...

  14. 49 CFR 179.200-9 - Compartment tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Compartment tanks. 179.200-9 Section 179.200-9 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for...

  15. 49 CFR 179.200-9 - Compartment tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Compartment tanks. 179.200-9 Section 179.200-9 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for...

  16. 49 CFR 179.200-9 - Compartment tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Compartment tanks. 179.200-9 Section 179.200-9 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for...

  17. 49 CFR 179.220-14 - Openings in the tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Openings in the tanks. 179.220-14 Section 179.220-14 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK...

  18. 49 CFR 179.201-3 - Lined tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Lined tanks. 179.201-3 Section 179.201-3 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SPECIFICATIONS FOR TANK CARS Specifications for...

  19. 46 CFR 151.25-1 - Cargo tank.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... continuously swept with air by means of blowers or other mechanical devices requiring power. (d) Ventilated (natural). Vapor space above the liquid surface in the tank is continuously swept with atmospheric air... within the cargo tanks are filled and maintained with a liquid, gas (other than air), or vapor which will...

  20. 46 CFR 151.25-1 - Cargo tank.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... continuously swept with air by means of blowers or other mechanical devices requiring power. (d) Ventilated (natural). Vapor space above the liquid surface in the tank is continuously swept with atmospheric air... within the cargo tanks are filled and maintained with a liquid, gas (other than air), or vapor which will...

  1. 46 CFR 151.25-1 - Cargo tank.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... continuously swept with air by means of blowers or other mechanical devices requiring power. (d) Ventilated (natural). Vapor space above the liquid surface in the tank is continuously swept with atmospheric air... within the cargo tanks are filled and maintained with a liquid, gas (other than air), or vapor which will...

  2. 46 CFR 151.25-1 - Cargo tank.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... continuously swept with air by means of blowers or other mechanical devices requiring power. (d) Ventilated (natural). Vapor space above the liquid surface in the tank is continuously swept with atmospheric air... within the cargo tanks are filled and maintained with a liquid, gas (other than air), or vapor which will...

  3. 46 CFR 151.25-1 - Cargo tank.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... continuously swept with air by means of blowers or other mechanical devices requiring power. (d) Ventilated (natural). Vapor space above the liquid surface in the tank is continuously swept with atmospheric air... within the cargo tanks are filled and maintained with a liquid, gas (other than air), or vapor which will...

  4. Tank 241-B-103 tank characterization plan

    SciTech Connect

    Carpenter, B.C.

    1995-01-23

    The Defense Nuclear Facilities Safety Board (DNFSB) has advised the US Department of Energy (DOE) to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The data quality objective (DQO) process was chosen as a tool to be used to identify sampling and analytical needs for the resolution of safety issues. As a result, a revision in the Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) milestone M-44-00 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process... Development of TCPs by the DQO process is intended to allow users (e.g., Hanford Facility user groups, regulators) to ensure their needs will be met and that resources are devoted to gaining only necessary information.`` This document satisfies that requirement for Tank 241-B-103 (B-103) sampling activities. Tank B-103 was placed on the Organic Watch List in January 1991 due to review of TRAC data that predicts a TOC content of 3.3 dry weight percent. The tank was classified as an assumed leaker of approximately 30,280 liters (8,000 gallons) in 1978 and declared inactive. Tank B-103 is passively ventilated with interim stabilization and intrusion prevention measures completed in 1985.

  5. MODELING ANALYSIS FOR GROUT HOPPER WASTE TANK

    SciTech Connect

    Lee, S.

    2012-01-04

    The Saltstone facility at Savannah River Site (SRS) has a grout hopper tank to provide agitator stirring of the Saltstone feed materials. The tank has about 300 gallon capacity to provide a larger working volume for the grout nuclear waste slurry to be held in case of a process upset, and it is equipped with a mechanical agitator, which is intended to keep the grout in motion and agitated so that it won't start to set up. The primary objective of the work was to evaluate the flow performance for mechanical agitators to prevent vortex pull-through for an adequate stirring of the feed materials and to estimate an agitator speed which provides acceptable flow performance with a 45{sup o} pitched four-blade agitator. In addition, the power consumption required for the agitator operation was estimated. The modeling calculations were performed by taking two steps of the Computational Fluid Dynamics (CFD) modeling approach. As a first step, a simple single-stage agitator model with 45{sup o} pitched propeller blades was developed for the initial scoping analysis of the flow pattern behaviors for a range of different operating conditions. Based on the initial phase-1 results, the phase-2 model with a two-stage agitator was developed for the final performance evaluations. A series of sensitivity calculations for different designs of agitators and operating conditions have been performed to investigate the impact of key parameters on the grout hydraulic performance in a 300-gallon hopper tank. For the analysis, viscous shear was modeled by using the Bingham plastic approximation. Steady state analyses with a two-equation turbulence model were performed. All analyses were based on three-dimensional results. Recommended operational guidance was developed by using the basic concept that local shear rate profiles and flow patterns can be used as a measure of hydraulic performance and spatial stirring. Flow patterns were estimated by a Lagrangian integration technique along the

  6. 7 CFR 58.711 - Cheddar, colby, washed or soaked curd, granular or stirred curd cheese.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Cheddar, colby, washed or soaked curd, granular or stirred curd cheese. 58.711 Section 58.711 Agriculture Regulations of the Department of Agriculture... AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND THE...

  7. Deterministic Chaos in Open Well-stirred Bray-Liebhafsky Reaction System

    NASA Astrophysics Data System (ADS)

    Kolar-Anić, Ljiljana; Vukojević, Vladana; Pejić, Nataša; Grozdić, Tomislav; Anić, Slobodan

    2004-12-01

    Dynamics of the Bray-Liebhafsky (BL) oscillatory reaction is analyzed in a Continuously-fed well-Stirred Thank Reactor (CSTR). Deterministic chaos is found under different conditions, when temperature and acidity are chosen as control parameters. Dynamic patterns observed in real experiments are also numerically simulated.

  8. Selecting fuel storage tanks

    SciTech Connect

    Doherty, R. )

    1993-07-01

    Until the use of underground storage tanks (USTs) for fuel storage was mandated by the 1970 Uniform Fire Code, above-ground storage tanks (ASTs) were widely used. The tanks were relatively crude by today's standards so the technical superiority and fire protection afforded by use of underground tanks soon made USTs the system of choice for almost all uses. As a result, tens of thousands of tanks have been underground for more than 20 years, and at some point, many of them began leaking. Often, the first sign of these leaks appeared when groundwater became contaminated. The EPA responded to this major environmental problem by strictly regulating the use of below-ground tanks to store flammable liquids. These added regulations have had a severe effect on both service stations and private fueling. The removal of underground tanks and the removal and disposal of any contaminated soil is an extremely expensive proposition. Furthermore, new Uniform Fire Code regulations have added to the costs, imposing requirements for double-walled tanks, corrosion protection, electronic leak monitoring, and annual tank testing. These requirements, plus the financial responsibility requirements the EPA imposed on owners and users of below-ground tanks, led directly to a reconsideration of the use of above-ground tanks for some applications.

  9. Tank characterization report for single-shell tank 241-B-104

    SciTech Connect

    Field, J.G.

    1996-04-08

    This document summarizes information on the historical uses, present status, and the sampling and analysis results of waste stored in Tank 241-B-104. Sampling and analyses meet safety screening and historical data quality objectives. This report supports the requirements of Tri-party Agreement Milestone M-44-09. his characterization report summoned the available information on the historical uses and the current status of single-shell tank 241-B-104, and presents the analytical results of the June 1995 sampling and analysis effort. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-44-09 (Ecology et al. 1994). Tank 241-B-104 is a single-shell underground waste storage tank located in the 200 East Area B Tank Farm on the Hanford Site. It is the first tank in a three-tank cascade series. The tank went into service in August 1946 with a transfer of second-cycle decontamination waste generated from the bismuth phosphate process. The tank continued to receive this waste type until the third quarter of 1950, when it began receiving first-cycle decontamination waste also produced during the bismuth phosphate process. Following this, the tank received evaporator bottoms sludge from the 242-B Evaporator and waste generated from the flushing of transfer lines. A description and the status of tank 241-B-104 are sum in Table ES-1 and Figure ES-1. The tank has an operating capacity of 2,010 kL (530 kgal), and presently contains 1,400 kL (371 kgal) of waste. The total amount is composed of 4 kL (1 kgal) of supernatant, 260 kL (69 kgal) of saltcake, and 1,140 kL (301 kgal) of sludge (Hanlon 1995). Current surveillance data and observations appear to support these results.

  10. Homogeneity of passively ventilated waste tanks

    SciTech Connect

    Huckaby, J.L.; Jensen, L.; Cromar, R.D.; Hayes, J.C.

    1997-07-01

    Gases and vapors in the high-level radioactive waste underground storage tanks at the Hanford Site are being characterized to help resolve waste storage safety issues and estimate air emissions. Characterization is accomplished by collecting and analyzing air samples from the headspaces of the tanks. Samples are generally collected from a single central location within the headspace, and it is assumed that they are representative of the entire headspace. The validity of this assumption appears to be very good for most tanks, because thermally induced convection currents within the headspaces mix constituents continuously. In the coolest waste tanks, however, thermally induced convection may be suppressed for several months of each year because of the seasonal soil temperature cycle. To determine whether composition does vary significantly with location in a cool tank, the headspaces of three waste tanks have been sampled at different horizontal and vertical locations during that part of the year when thermally induced convection is minimized. This report describes the bases for tank selection and the sampling and analytical methods used, then analyzes and discusses the results. Headspace composition data from two risers at three elevations in Tanks 241-B-103, TY-103, and U-112 have been analyzed by standard analysis of variance (ANOVA) methods, which indicate that these tank headspaces are essentially homogeneous. No stratification of denser vapors (e.g., carbon tetrachloride, dodecane) or lighter gases (e.g., ammonia, hydrogen) was detected in any of the three tanks. A qualitative examination of all tentatively identified organic vapors in SUMMA{trademark} and TST samples supported this conclusion.

  11. Friction Stir Spot Welding of DP780 and Hot-Stamp Boron Steels

    SciTech Connect

    Santella, Michael L.; Frederick, Alan; Hovanski, Yuri; Grant, Glenn J.

    2008-05-16

    Friction stir spot welds were made in two high-strength steels: DP780, and a hot-stamp-boron steel with tensile strength of 1500 MPa. The spot welds were made at either 800 or 1600 rpm using either of two polycrystalline boron nitride tools. One stir tool, BN77, had the relatively common pin-tool shape. The second tool, BN46, had a convex rather than a concave shoulder profile and a much wider and shorter pin. The tools were plunged to preprogrammed depths either at a continuous rate (1-step schedule) or in two segments consisting of a relatively high rate followed by a slower rate. In all cases, the welds were completed in 4s. The range of lap-shear values were compared to values required for resistance spot welds on the same steels. The minimum value of 10.3 kN was exceeded for friction stir spot welding of DP780 using a 2-step schedule and either the BN77- or the BN46-type stir tool. The respective minimum value of 12 kN was also exceeded for the HSB steel using the 2-step process and the BN46 stir tool.

  12. Mitigating Abnormal Grain Growth for Friction Stir Welded Al-Li 2195 Spun Formed Domes

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou; Russell, Carolyn

    2012-01-01

    Formability and abnormal grain growth (AGG) are the two major issues that have been encountered for Al alloy spun formed dome development using friction stir welded blanks. Material properties that have significant influence on the formability include forming range and strain hardening exponent. In this study, tensile tests were performed for two 2195 friction stir weld parameter sets at 400 F to study the effects of post weld anneal on the forming range and strain hardening exponent. It was found that the formability can be enhanced by applying a newly developed post weld anneal to heat treat the friction stir welded panels. This new post weld anneal leads to a higher forming range and much improved strain hardening exponent. AGG in the weld nugget is known to cause a significant reduction of ductility and fracture toughness. This study also investigated how AGG may be influenced by the heating rate to the solution heat treatment temperature. After post-weld annealing, friction stir welds were strained to 15% and 39% by compression at 400 F before they were subjected to SHT at 950 F for 1 hour. Salt bath SHT is very effective in reducing the grain size as it helps arrest the onset of AGG and promote normal recrystallization and grain growth. However, heat treating a 18 ft dome using a salt bath is not practical. Efforts are continuing at Marshall Space Flight Center to identify the welding parameters and heat treating parameters that can help mitigate the AGG in the friction stir welds.

  13. Friction Stir Spot Welding of DP780 and Hot-Stamp Boron Steels

    SciTech Connect

    Santella, Michael L; Frederick, David Alan; Hovanski, Yuri; Grant, Glenn J

    2008-01-01

    Friction stir spot welds were made in two high-strength steels: DP780, and a hot-stamp-boron steel with tensile strength of 1500 MPa. The spot welds were made at either 800 or 1600 rpm using either of two polycrystalline boron nitride tools. One stir tool, BN77, had the relatively common pin-tool shape. The second tool, BN46, had a convex rather than a concave shoulder profile and a much wider and shorter pin. The tools were plunged to preprogrammed depths either at a continuous rate (1-step schedule) or in two segments consisting of a relatively high rate followed by a slower rate. In all cases, the welds were completed in 4s. The range of lap-shear values were compared to values required for resistance spot welds on the same steels. The minimum value of 10.3 kN was exceeded for friction stir spot welding of DP780 using a 2-step schedule and either the BN77- or the BN46-type stir tool. The respective minimum value of 12 kN was also exceeded for the HSB steel using the 2-step process and the BN46 stir tool.

  14. Friction Stir Welding of Steel Alloys

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    The friction stir welding process has been developed primarily for the welding of aluminum alloys. Other higher melting allows such, as steels are much more difficult to join. Special attention must be given to pin tool material selection and welding techniques. This paper addresses the joining of steels and other high melting point materials using the friction stir welding process. Pin tool material and welding parameters will be presented. Mechanical properties of weldments will also be presented. Significance: There are many applications for the friction stir welding process other than low melting aluminum alloys. The FSW process can be expanded for use with high melting alloys in the pressure vessel, railroad and ship building industries.

  15. Friction Stir Welding of Steel Alloys

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    The friction stir welding process has been developed primarily for the welding of aluminum alloys. Other higher melting allows such, as steels are much more difficult to join. Special attention must be given to pin tool material selection and welding techniques. This paper addresses the joining of steels and other high melting point materials using the friction stir welding process. Pin tool material and welding parameters will be presented. Mechanical properties of weldments will also be presented. Significance: There are many applications for the friction stir welding process other than low melting aluminum alloys. The FSW process can be expanded for use with high melting alloys in the pressure vessel, railroad and ship building industries.

  16. Infrared properties of an anisotropically stirred fluid

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Barton, J. Michael

    1987-01-01

    A renormalization group is developed for the Navier-Stokes equations driven by an anisotropically correlated random stirring force. The stirring force generates homogeneous turbulence with a preferred direction. The force correlation is the sum of a small anisotropic perturbation and an isotropic correlation chosen, so that the fixed point of renormalization group has a k exp -5/3 energy spectrum. Fixed points for the anisotropic correlation are found near this isotropic fixed point. Two types of anisotropy are analyzed. when the additional stirring is in the plane perpendicular to the preferred direction, the renormalized viscosity is increased. When it is aligned with the preferred direction, the viscosity is decreased. A possible connection with the inverse energy cascade of two-dimensional turbulence is discussed.

  17. Two-sided friction stir riveting by extrusion: A process for joining dissimilar materials

    SciTech Connect

    Evans, William T.; Cox, Chase D.; Strauss, Alvin M.; Cook, George E.; Gibson, Brian T.

    2016-06-25

    Two-sided friction stir riveting (FSR) by extrusion is an innovative process developed to rapidly, efficiently, and securely join dissimilar materials. This process extends a previously developed one sided friction stir extrusion process to create a strong and robust joint by producing a continuous, rivet-like structure through a preformed hole in one of the materials with a simultaneous, two-sided friction stir spot weld. The two-sided FSR by extrusion process securely joins the dissimilar materials together and effectively locks them in place without the use of any separate materials or fasteners. Lastly, in this paper we demonstrate the process by joining aluminum to steel and illustrate its potential application to automotive and aerospace manufacturing processes.

  18. Two-sided friction stir riveting by extrusion: A process for joining dissimilar materials

    SciTech Connect

    Evans, William T.; Cox, Chase D.; Strauss, Alvin M.; Cook, George E.; Gibson, Brian T.

    2016-06-25

    Two-sided friction stir riveting (FSR) by extrusion is an innovative process developed to rapidly, efficiently, and securely join dissimilar materials. This process extends a previously developed one sided friction stir extrusion process to create a strong and robust joint by producing a continuous, rivet-like structure through a preformed hole in one of the materials with a simultaneous, two-sided friction stir spot weld. The two-sided FSR by extrusion process securely joins the dissimilar materials together and effectively locks them in place without the use of any separate materials or fasteners. Lastly, in this paper we demonstrate the process by joining aluminum to steel and illustrate its potential application to automotive and aerospace manufacturing processes.

  19. Two-sided friction stir riveting by extrusion: A process for joining dissimilar materials

    DOE PAGES

    Evans, William T.; Cox, Chase D.; Strauss, Alvin M.; ...

    2016-06-25

    Two-sided friction stir riveting (FSR) by extrusion is an innovative process developed to rapidly, efficiently, and securely join dissimilar materials. This process extends a previously developed one sided friction stir extrusion process to create a strong and robust joint by producing a continuous, rivet-like structure through a preformed hole in one of the materials with a simultaneous, two-sided friction stir spot weld. The two-sided FSR by extrusion process securely joins the dissimilar materials together and effectively locks them in place without the use of any separate materials or fasteners. Lastly, in this paper we demonstrate the process by joining aluminummore » to steel and illustrate its potential application to automotive and aerospace manufacturing processes.« less

  20. Tank 241-C-107 tank characterization plan

    SciTech Connect

    Schreiber, R.D.

    1995-02-06

    The Defense Nuclear Facilities Safety Board (DNFSB) has advised the US Department of Energy (DOE) to concentrate the near-term sampling and analysis activities on identification and resolution of safety issues. The data quality objective (DQO) process was chosen as a tool to be used to identify sampling and analytical needs for the resolution of safety issues. As a result, a revision in the Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) milestone M-44-00 has been made, which states that ``A Tank Characterization Plan (TCP) will also be developed for each double-shell tank (DST) and single-shell tank (SST) using the DQO process... Development of TCPs by the DQO process is intended to allow users (e.g., Hanford Facility user groups, regulators) to ensure their needs will be met and that resources are devoted to gaining only necessary information.`` This document satisfies that requirement for the Tank 241-C-107 (C-107) sampling activities. Currently tank C-107 is categorized as a sound, low-heat load tank with partial isolation completed in December 1982. The tank is awaiting stabilization. Tank C-107 is expected to contain three primary layers of waste. The bottom layer should contain a mixture of the following wastes: ion exchange, concentrated phosphate waste from N-Reactor, Hanford Lab Operations, strontium semi-works, Battelle Northwest, 1C, TBP waste, cladding waste, and the hot semi-works. The middle layer should contain strontium recovery supernate. The upper layer should consist of non-complexed waste.

  1. Study of stirred layers on 316L steel created by friction stir processing

    NASA Astrophysics Data System (ADS)

    Langlade, C.; Roman, A.; Schlegel, D.; Gete, E.; Folea, M.

    2014-08-01

    Nanostructured materials are known to exhibit attractive properties, especially in the mechanical field where high hardness is of great interest. The friction stir process (FSP) is a recent surface engineering technique derived from the friction stir welding method (FSW). In this study, the FSP of an 316L austenitic stainless steel has been evaluated. The treated layers have been characterized in terms of hardness and microstructure and these results have been related to the FSP operational parameters. The process has been analysed using a Response Surface Method (RSM) to enable the stirred layer thickness prediction.

  2. Multifunctional Tanks for Spacecraft

    NASA Technical Reports Server (NTRS)

    Collins, David H.; Lewis, Joseph C.; MacNeal, Paul D.

    2006-01-01

    A document discusses multifunctional tanks as means to integrate additional structural and functional efficiencies into designs of spacecraft. Whereas spacecraft tanks are traditionally designed primarily to store fluids and only secondarily to provide other benefits, multifunctional tanks are designed to simultaneously provide multiple primary benefits. In addition to one or more chamber(s) for storage of fluids, a multifunctional tank could provide any or all of the following: a) Passageways for transferring the fluids; b) Part or all of the primary structure of a spacecraft; c) All or part of an enclosure; d) Mechanical interfaces to components, subsystems, and/or systems; e) Paths and surfaces for transferring heat; f)Shielding against space radiation; j) Shielding against electromagnetic interference; h) Electrically conductive paths and surfaces; and i) Shades and baffles to protect against sunlight and/or other undesired light. Many different multifunctional-tank designs are conceivable. The design of a particular tank can be tailored to the requirements for the spacecraft in which the tank is to be installed. For example, the walls of the tank can be flat or curved or have more complicated shapes, and the tank can include an internal structure for strengthening the tank and/or other uses.

  3. 40 CFR 61.343 - Standards: Tanks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Standards: Tanks. 61.343 Section 61.343 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Waste...

  4. 40 CFR 61.343 - Standards: Tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Standards: Tanks. 61.343 Section 61.343 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Waste...

  5. A fundamental study on the structural integrity of magnesium alloys joined by friction stir welding

    NASA Astrophysics Data System (ADS)

    Rao, Harish Mangebettu

    The goal of this research is to study the factors that influence the physical and mechanical properties of lap-shear joints produced using friction stir welding. This study focuses on understanding the effect of tool geometry and weld process parameters including the tool rotation rate, tool plunge depth and dwell time on the mechanical performance of similar magnesium alloy and dissimilar magnesium to aluminum alloy weld joints. A variety of experimental activities were conducted including tensile and fatigue testing, fracture surface and failure analysis, microstructure characterization, hardness measurements and chemical composition analysis. An investigation on the effect of weld process conditions in friction stir spot welding of magnesium to magnesium produced in a manner that had a large effective sheet thickness and smaller interfacial hook height exhibited superior weld strength. Furthermore, in fatigue testing of friction stir spot welded of magnesium to magnesium alloy, lap-shear welds produced using a triangular tool pin profile exhibited better fatigue life properties compared to lap-shear welds produced using a cylindrical tool pin profile. In friction stir spot welding of dissimilar magnesium to aluminum, formation of intermetallic compounds in the stir zone of the weld had a dominant effect on the weld strength. Lap-shear dissimilar welds with good material mixture and discontinues intermetallic compounds in the stir zone exhibited superior weld strength compared to lap-shear dissimilar welds with continuous formation of intermetallic compounds in the stir zone. The weld structural geometry like the interfacial hook, hook orientation and bond width also played a major role in influencing the weld strength of the dissimilar lap-shear friction stir spot welds. A wide scatter in fatigue test results was observed in friction stir linear welds of aluminum to magnesium alloys. Different modes of failure were observed under fatigue loading including crack

  6. 49 CFR 174.63 - Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank car tanks. 174.63 Section 174.63 Transportation Other....63 Portable tanks, IM portable tanks, IBCs, Large Packagings, cargo tanks, and multi-unit tank...

  7. 33 CFR 157.144 - Tank vessels of the same class: Inspections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SECURITY (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS.... SW., Stop 7581, Washington, DC 20593-7581, for only one of those tank vessels to be inspected...

  8. 33 CFR 157.144 - Tank vessels of the same class: Inspections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SECURITY (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS.... SW., Stop 7581, Washington, DC 20593-7581, for only one of those tank vessels to be inspected...

  9. Vented Chill / No-Vent Fill of Cryogenic Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Rhys, Noah O.; Foster, Lee W.; Martin, Adam K.; Stephens, Jonathan R.

    2016-01-01

    Architectures for extended duration missions often include an on-orbit replenishment of the space vehicle's cryogenic liquid propellants. Such a replenishment could be accomplished via a tank-to-tank transfer from a dedicated tanker or a more permanent propellant depot storage tank. Minimizing the propellant loss associated with transfer line and receiver propellant tank thermal conditioning is essential for mass savings. A new methodology for conducting tank-to-tank transfer while minimizing such losses has been demonstrated. Charge-Hold-Vent is the traditional methodology for conducting a tank-to-tank propellant transfer. A small amount of cryogenic liquid is introduced to chill the transfer line and propellant tank. As the propellant absorbs heat and undergoes a phase change, the tank internal pressure increases. The tank is then vented to relieve pressure prior to another charge of cryogenic liquid being introduced. This cycle is repeated until the transfer lines and tank are sufficiently chilled and the replenishment of the propellant tank is complete. This method suffers inefficiencies due to multiple chill and vent cycles within the transfer lines and associated feed system components. Additionally, this system requires precise measuring of cryogenic fluid delivery for each transfer, multiple valve cycling events, and other complexities associated with cycled operations. To minimize propellant loss and greatly simplify on-orbit operations, an alternate methodology has been designed and demonstrated. The Vented Chill / No Vent Fill method is a simpler, constant flow approach in which the propellant tank and transfer lines are only chilled once. The receiver tank is continuously vented as cryogenic liquid chills the transfer lines, tank mass and ullage space. Once chilled sufficiently, the receiver tank valve is closed and the tank is completely filled. Interestingly, the vent valve can be closed prior to receiver tank components reaching liquid saturation

  10. A two-phase flow model of the stirring of Al-SiC composite melt

    NASA Astrophysics Data System (ADS)

    Bui, R. T.; Ouellet, R.; Kocaefe, D.

    1994-08-01

    A two-phase flow, three-dimensional, steady-state model is developed to study the flow field and volume fraction distribution in a stirred tank used in the processing of silicon carbide-reinforced aluminum composites in the melt state. The aim is to optimize the stirring to obtain a good mixing of SiC particles. The model is based on the general-purpose code PHOENICS. In addition to the liquid-aluminum phase, the SiC particles are treated as a nonviscous second phase. Interphase momentum transfer occurs through a drag force. Sedimentation is simulated by assigning a high viscosity to the second phase and removing the gravity force when particle concentration reaches a critical value. The stirrers' blades impart a momentum on both phases, proportional to their respective volume fractions. A water model is simulated first, followed by the real Al-SiC melt. The study reveals the importance of particle size that affects the drag force applied on the particles and hence their motion and distribution. The model can be used to study the effect on mixing of tank geometry and the stirrers' operation.

  11. LH tank installation

    NASA Image and Video Library

    2011-07-25

    Stennis Space Center employees marked another construction milestone July 25 with installation of the 85,000-gallon liquid hydrogen tank atop the A-3 Test Stand. The 300-foot-tall stand is being built to test next-generation rocket engines that could carry humans into deep space once more. The liquid hydrogen tank and a 35,000-gallon liquid oxygen tank installed atop the steel structure earlier in June will provide fuel propellants for testing the engines.

  12. Tank overpressure: An uplifting experience

    SciTech Connect

    Morgenegg, E.E.

    1982-05-01

    One of the most common causes of tank damage is uplift. The paper discusses the sources and magnitude of pressure that causes tank uplift, repairs that can be performed on tanks that have lifted, and the prevention of tank uplift. Discussion and examples given are limited to tanks 70 feet or less in diameter.

  13. Friction Stir & Ultrasonic Solid State Joining Magnesium

    SciTech Connect

    Grant, Glenn J.; Hovanski, Yuri; Santella, M. L.

    2009-12-30

    Solid state joining between automotive sheet steel and magnesium alloys was investigated. Both friction stir welding and ultrasonic welding were utilized to study the potential for creating structural bonds between these dissimilar materials. A detailed investigation into the joint characteristics was undertaken including an evaluation of joint strength, microstructure, chemical structures, and alloy formation.

  14. Stirring the Ashes of Public Discourse.

    ERIC Educational Resources Information Center

    Marinara, Martha

    Sylvia Plath's confessional poem, "Lady Lazarus" can be used to illustrate a connection between autobiography and social critique. "You poke and stir" among the institutions that form social relations--the educational system, the court system, the economic system--to find individuals whose lives, whose joys and pains, and…

  15. School-Meals Makeover Stirs the Pot

    ERIC Educational Resources Information Center

    Shah, Nirvi

    2011-01-01

    Proposed new federal rules governing the meals served to school children across the country each weekday are causing a stir among food industry groups, cafeteria managers, parents, and students. The skirmish is over the U.S. Department of Agriculture's efforts, prompted by the recent passage of the Healthy, Hunger-Free Kids Act, to rewrite the…

  16. School-Meals Makeover Stirs the Pot

    ERIC Educational Resources Information Center

    Shah, Nirvi

    2011-01-01

    Proposed new federal rules governing the meals served to school children across the country each weekday are causing a stir among food industry groups, cafeteria managers, parents, and students. The skirmish is over the U.S. Department of Agriculture's efforts, prompted by the recent passage of the Healthy, Hunger-Free Kids Act, to rewrite the…

  17. Water Tank with Capillary Air/Liquid Separation

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Smith, Frederick; Edeen, Gregg; Almlie, Jay C.

    2010-01-01

    A bladderless water tank (see figure) has been developed that contains capillary devices that allow it to be filled and emptied, as needed, in microgravity. When filled with water, the tank shields human occupants of a spacecraft against cosmic radiation. A membrane that is permeable by air but is hydrophobic (neither wettable nor permeable by liquid water) covers one inside surface of the tank. Grooves between the surface and the membrane allow air to flow through vent holes in the surface as the tank is filled or drained. A margin of wettable surface surrounds the edges of the membrane, and all the other inside tank surfaces are also wettable. A fill/drain port is located in one corner of the tank and is covered with a hydrophilic membrane. As filling begins, water runs from the hydrophilic membrane into the corner fillets of the tank walls. Continued filling in the absence of gravity will result in a single contiguous air bubble that will be vented through the hydrophobic membrane. The bubble will be reduced in size until it becomes spherical and smaller than the tank thickness. Draining the tank reverses the process. Air is introduced through the hydrophobic membrane, and liquid continuity is maintained with the fill/drain port through the corner fillets. Even after the tank is emptied, as long as the suction pressure on the hydrophilic membrane does not exceed its bubble point, no air will be drawn into the liquid line.

  18. Hanford tanks initiative plan

    SciTech Connect

    McKinney, K.E.

    1997-07-01

    Abstract: The Hanford Tanks Initiative (HTI) is a five-year project resulting from the technical and financial partnership of the U.S. Department of Energy`s Office of Waste Management (EM-30) and Office of Science and Technology Development (EM-50). The HTI project accelerates activities to gain key technical, cost performance, and regulatory information on two high-level waste tanks. The HTI will provide a basis for design and regulatory decisions affecting the remainder of the Tank Waste Remediation System`s tank waste retrieval Program.

  19. Underground petroleum tanks

    SciTech Connect

    Not Available

    1990-07-01

    This book presents the results of a survey of 46 state underground storage tank program officials. The survey covers: Whether petroleum tank insurance (mandated by the EPA) is available in each state and whether category 3 and 4 owners can obtain it; state programs that help owners meet the financial responsibility and/or technical requirements of such insurance; and lending institutions' attitudes towards providing loans to storage tank owners. A survey of the number and terms of insurance policies offered to tank owners is also presented.

  20. 241-AZ Double Shell Tanks (DST) Integrity Assessment Report

    SciTech Connect

    JENSEN, C.E.

    1999-09-21

    This report presents the results of the integrity assessment of the 241-A2 double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks.