Sample records for continuum flux variations

  1. UV spectroscopy of Z Chamaeleontis. II - The 1988 January normal outburst

    NASA Technical Reports Server (NTRS)

    Harlaftis, E. T.; Naylor, T.; Hassall, B. J. M.; Charles, P. A.; Sonneborn, G.; Bailey, J.

    1992-01-01

    IUE observations taken during the 1988 January normal outburst of Z Cha are presented and a detailed comparison with the 1987 April superoutburst is made. The most important difference from the superoutburst is that the normal outburst continuum flux shows less than 10 percent orbital variation away from the eclipse, implying that there is no 'cool' bulge on the disk to occult the brighter inner disk periodically. The implications for the outburst mechanism in the types of outburst are discussed. The evolution of the continuum flux distribution and emission-line fluxes, the modulation of the continuum and line fluxes with orbital phase, and the behavior of the mideclipse spectral during normal outburst are investigated.

  2. Variation character of stagnation point heat flux for hypersonic pointed bodies from continuum to rarefied flow states and its bridge function study

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Bao, Lin; Tong, Binggang

    2009-12-01

    This paper is a research on the variation character of stagnation point heat flux for hypersonic pointed bodies from continuum to rarefied flow states by using theoretical analysis and numerical simulation methods. The newly developed near space hypersonic cruise vehicles have sharp noses and wingtips, which desires exact and relatively simple methods to estimate the stagnation point heat flux. With the decrease of the curvature radius of the leading edge, the flow becomes rarefied gradually, and viscous interaction effects and rarefied gas effects come forth successively, which results in that the classical Fay-Riddell equation under continuum hypothesis will become invalid and the variation of stagnation point heat flux is characterized by a new trend. The heat flux approaches the free molecular flow limit instead of an infinite value when the curvature radius of the leading edge tends to 0. The physical mechanism behind this phenomenon remains in need of theoretical study. Firstly, due to the fact that the whole flow regime can be described by Boltzmann equation, the continuum and rarefied flow are analyzed under a uniform framework. A relationship is established between the molecular collision insufficiency in rarefied flow and the failure of Fourier’s heat conduction law along with the increasing significance of the nonlinear heat flux. Then based on an inspiration drew from Burnett approximation, control factors are grasped and a specific heat flux expression containing the nonlinear term is designed in the stagnation region of hypersonic leading edge. Together with flow pattern analysis, the ratio of nonlinear to linear heat flux W r is theoretically obtained as a parameter which reflects the influence of nonlinear factors, i.e. a criterion to classify the hypersonic rarefied flows. Ultimately, based on the characteristic parameter W r , a bridge function with physical background is constructed, which predicts comparative reasonable results in coincidence well with DSMC and experimental data in the whole flow regime.

  3. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. 6: Variability of NGC 3783 from ground-based data

    NASA Technical Reports Server (NTRS)

    Stirpe, G. M.; Winge, C.; Altieri, B.; Alloin, D.; Aguero, E. L.; Anupama, G. C.; Ashley, R.; Bertram, R.; Calderon, J. H.; Catchpole, R. M.

    1994-01-01

    The Seyfert 1 galaxy NGC 3783 was intensely monitored in several bands between 1991 December and 1992 August. This paper presents the results from the ground-based observations in the optical and near-IR bands, which complement the data set formed by the International Ultraviolet Explorer (IUE) spectra, discussed elsewhere. Spectroscopic and photometric data from several observatories were combined in order to obtain well-sampled light curves of the continuum and of H(beta). During the campaign the source underwent significant variability. The light curves of the optical continuum and of H(beta) display strong similarities to those obtained with the IUE. The near-IR flux did not vary significantly except for a slight increase at the end of the campaign. The cross-correlation analysis shows that the variations of the optical continuum have a lag of 1 day or less with respect to those of the UV continuum, with an uncertainty of is less than or equal to 4 days. The integrated flux of H(beta) varies with a delay of about 8 days. These results confirm that (1) the continuum variations occur simultaneously or with a very small lag across the entire UV-optical range, as in the Seyfert galaxy NGC 5548; and (2) the emission lines of NGC 3783 respond to ionizing continuum variations with less delay than those of NGC 5548. As observed in NGC 5548, the lag of H(beta) with respect to the continuum is greater than those of the high-ionization lines.

  4. M Dwarf Flare Continuum Variations on One-second Timescales: Calibrating and Modeling of ULTRACAM Flare Color Indices

    NASA Astrophysics Data System (ADS)

    Kowalski, Adam F.; Mathioudakis, Mihalis; Hawley, Suzanne L.; Wisniewski, John P.; Dhillon, Vik S.; Marsh, Tom R.; Hilton, Eric J.; Brown, Benjamin P.

    2016-04-01

    We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color-color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 104 K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100. Based on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium, based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias, and observations, and based on observations made with the ESO Telescopes at the La Silla Paranal Observatory under programme ID 085.D-0501(A).

  5. Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. 8: An intensive HST, IUE, and ground-based study of NGC 5548

    NASA Technical Reports Server (NTRS)

    Korista, K.; Alloin, D.; Barr, P.; Clavel, J.; Cohen, R. D.; Crenshaw, D. M.; Evans, I. N.; Horne, K.; Koratkar, A. P.; Kriss, G. A.

    1994-01-01

    We present the data and initial results from a combined HST/IUE/ground-based spectroscopic monitoring campaign on the Seyfert 1 galaxy NGC 5548 that was undertaken in order to address questions that require both higher temporal resolution and higher signal-to-noise ratios than were obtained in our previous multiwavelength monitoring of this galaxy in 1988-89. IUE spectra were obtained once every two days for a period of 74 days beginning on 14 March 1993. During the last 39 days of this campaign, spectroscopic observations were also made with the HST Faint Object Spectrograph (FOS) on a daily basis. Ground-based observations, consisting of 165 optical spectra and 77 photometric observations (both CCD imaging and aperture photometry), are reported for the period 1992 October to 1993 September, although much of the data are concentrated around the time of the satellite-based program. These data constitute a fifth year of intensive optical monitoring of this galaxy. In this contribution, we describe the acquisition and reduction of all of the satellite and ground-based data obtained in this program. We describe in detail various photometric problems with the FOS and explain how we identified and corrected for various anomalies. During the HST portion of the monitoring campaign, the 1350 A continuum flux is found to have varied by nearly a factor of two. In other wavebands, the continuum shows nearly identical behavior, except that the amplitude of variability is larger at shorter wavelengths, and the continuum light curves appear to show more short time-scale variability at shorter wavelengths. The broad emission lines also vary in flux, with amplitudes that are slightly smaller than the UV continuum variations and with a small time delay relative to the UV continuum. On the basis of simple time-series analysis of the UV and optical continuum and emission line light curves, we find (1) that the ultraviolet and optical continuum variations are virtually simultaneous, with any lag between the 1350 A continuum and the 5100 A continuum amounting to less than about one day; (2) that the variations in the highest ionization lines observed, He II lambda 1640 and N V lambda 1240, lag behind the continuum variations by somewhat less than 2 days, and (3) that the velocity field of the C IV-emitting region is not dominated by radial motion. The results on the C IV velocity field are preliminary and quite uncertain, but there are some weak indications that the emission-line (wings absolute value of Delta upsilon is greater than or equal to 3000 km/s) respond to continuum variations slightly more rapidly than does the core. The optical observations show that the variations in the broad H beta line flux follow the continuum variations with a time lag of around two weeks, about twice the lag for Ly alpha and C IV, as in our previous monitoring campaign on this same galaxy. However, the lags measured for Ly alpha, C IV, and H Beta are each slightly smaller than previously determined. We confirm two trends reported earlier, namely (1) that the UV/optical continuum becomes 'harder' as it gets brighter, and (2) that the highest ionization emission lines have the shortest lags, thus indicating radial ionization stratificatin of a broad-line region that spans over an order of magnitude range in radius.

  6. Steps Toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei XVI: A 13 Year Study of Spectral Variability in NGC 5548

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Berlind, P.; Bertram, R.; Bischoff, K.; Bochkarev, N. G.; Burenkov, A. N.; Calkins, M.; Carrasco, L.; Chavushyan, V. H.

    2002-01-01

    We present the final installment of an intensive 13 year study of variations of the optical continuum and broad H beta emission line in the Seyfert 1 galaxy NGC 5548. The database consists of 1530 optical continuum measurements and 1248 H beta measurements. The H beta variations follow the continuum variations closely, with a typical time delay of about 20 days. However, a year-by-year analysis shows that the magnitude of emission-line time delay is correlated with the mean continuum flux. We argue that the data are consistent with the simple model prediction between the size of the broad-line region and the ionizing luminosity, r is proportional to L(sup 1/2)(sub ion). Moreover, the apparently linear nature of the correlation between the H beta response time and the nonstellar optical continuum F(sub opt) arises as a consequence of the changing shape of the continuum as it varies, specifically F(sub opt) is proportional to F(sup 0.56)(sub UV).

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalski, Adam F.; Mathioudakis, Mihalis; Hawley, Suzanne L.

    We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. Themore » NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color–color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 10{sup 4} K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100.« less

  8. SPECTRAL OPTICAL MONITORING OF THE NARROW-LINE SEYFERT 1 GALAXY Ark 564

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapovalova, A. I.; Burenkov, A. N.; Popovic, L. C.

    2012-09-15

    We present the results of a long-term (1999-2010) spectral optical monitoring campaign of the active galactic nucleus (AGN) Ark 564, which shows a strong Fe II line emission in the optical. This AGN is a narrow-line Seyfert 1 (NLS1) galaxy, a group of AGNs with specific spectral characteristics. We analyze the light curves of the permitted H{alpha}, H{beta}, optical Fe II line fluxes, and the continuum flux in order to search for a time lag between them. Additionally, in order to estimate the contribution of iron lines from different multiplets, we fit the H{beta} and Fe II lines with amore » sum of Gaussian components. We find that during the monitoring period the spectral variation (F{sub max}/F{sub min}) of Ark 564 is between 1.5 for H{alpha} and 1.8 for the Fe II lines. The correlation between the Fe II and H{beta} flux variations is of higher significance than that of H{alpha} and H{beta} (whose correlation is almost absent). The permitted-line profiles are Lorentzian-like and do not change shape during the monitoring period. We investigate, in detail, the optical Fe II emission and find different degrees of correlation between the Fe II emission arising from different spectral multiplets and the continuum flux. The relatively weak and different degrees of correlations between permitted lines and continuum fluxes indicate a rather complex source of ionization of the broad-line emission region.« less

  9. Multi-year X-Ray Variations of Iron-K and Continuum Emissions in the Young Supernova Remnant Cassiopeia A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Toshiki; Masai, Kuniaki; Maeda, Yoshitomo

    2017-02-20

    We found a simultaneous decrease of the Fe–K line and 4.2–6 keV continuum of Cassiopeia A with the monitoring data taken by the Chandra X-ray Observatory in 2000–2013. The flux change rates in the whole remnant are −0.65 ± 0.02% yr{sup −1} in the 4.2–6.0 keV continuum and −0.6 ± 0.1% yr{sup −1} in the Fe–K line. In the eastern region where the thermal emission is considered to dominate, the variations show the largest values: −1.03 ± 0.05% yr{sup −1} (4.2–6 keV band) and −0.6 ± 0.1% yr{sup −1} (Fe–K line). In this region, the time evolution of the emissionmore » measure and the temperature have a decreasing trend. This could be interpreted as adiabatic cooling with the expansion of m = 0.66. On the other hand, in the non-thermal emission dominated regions, variations of the 4.2–6 keV continuum show smaller rates: −0.60 ± 0.04% yr{sup −1} in the southwestern region, −0.46 ± 0.05% yr{sup −1} in the inner region, and +0.00 ± 0.07% yr{sup −1} in the forward shock region. In particular, flux does not show significant change in the forward shock region. These results imply that strong braking in shock velocity has not been occurring in Cassiopeia A (<5 km s{sup −1} yr{sup −1}). All of our results support the idea that X-ray flux decay in the remnant is mainly caused by thermal components.« less

  10. Air–water CO2 and CH4 fluxes along a river–reservoir continuum: Case study in the Pengxi River, a tributary of the Yangtze River in the Three Gorges Reservoir, China

    USDA-ARS?s Scientific Manuscript database

    Water surface greenhouse gas (GHG) emissions in freshwater reservoirs are closely related to limnological processes in the water column. Affected by both reservoir operation and seasonal changes, variations in the hydro-morphological conditions in the river–reservoir continuum will create distinctiv...

  11. EVIDENCE FOR PHOTOIONIZATION-DRIVEN BROAD ABSORPTION LINE VARIABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Tinggui; Yang, Chenwei; Wang, Huiyuan

    2015-12-01

    We present a qualitative analysis of the variability of quasar broad absorption lines using the large multi-epoch spectroscopic data set of the Sloan Digital Sky Survey Data Release 10. We confirm that variations of absorption lines are highly coordinated among different components of the same ion or the same absorption component of different ions for C iv, Si iv, and N v. Furthermore, we show that the equivalent widths (EWs) of the lines decrease or increase statistically when the continuum brightens or dims. This is further supported by the synchronized variations of emission and absorption-line EWs when the well-established intrinsicmore » Baldwin effect for emission lines is taken into account. We find that the emergence of an absorption component is usually accompanied by the dimming of the continuum while the disappearance of an absorption-line component is accompanied by the brightening of the continuum. This suggests that the emergence or disappearance of a C iv absorption component is only the extreme case, when the ionic column density is very sensitive to continuum variations or the continuum variability the amplitude is larger. These results support the idea that absorption-line variability is driven mainly by changes in the gas ionization in response to continuum variations, that the line-absorbing gas is highly ionized, and in some extreme cases, too highly ionized to be detected in UV absorption lines. Due to uncertainties in the spectroscopic flux calibration, we cannot quantify the fraction of quasars with asynchronized continuum and absorption-line variations.« less

  12. Parameterizations of Chromospheric Condensations in dG and dMe Model Flare Atmospheres

    NASA Astrophysics Data System (ADS)

    Kowalski, Adam F.; Allred, Joel C.

    2018-01-01

    The origin of the near-ultraviolet and optical continuum radiation in flares is critical for understanding particle acceleration and impulsive heating in stellar atmospheres. Radiative-hydrodynamic (RHD) simulations in 1D have shown that high energy deposition rates from electron beams produce two flaring layers at T ∼ 104 K that develop in the chromosphere: a cooling condensation (downflowing compression) and heated non-moving (stationary) flare layers just below the condensation. These atmospheres reproduce several observed phenomena in flare spectra, such as the red-wing asymmetry of the emission lines in solar flares and a small Balmer jump ratio in M dwarf flares. The high beam flux simulations are computationally expensive in 1D, and the (human) timescales for completing NLTE models with adaptive grids in 3D will likely be unwieldy for some time to come. We have developed a prescription for predicting the approximate evolved states, continuum optical depth, and emergent continuum flux spectra of RHD model flare atmospheres. These approximate prescriptions are based on an important atmospheric parameter: the column mass ({m}{ref}) at which hydrogen becomes nearly completely ionized at the depths that are approximately in steady state with the electron beam heating. Using this new modeling approach, we find that high energy flux density (>F11) electron beams are needed to reproduce the brightest observed continuum intensity in IRIS data of the 2014 March 29 X1 solar flare, and that variation in {m}{ref} from 0.001 to 0.02 g cm‑2 reproduces most of the observed range of the optical continuum flux ratios at the peak of M dwarf flares.

  13. Anomalous H-beta Variability in the 2014 NGC 5548 AGN-STORM Monitoring Campaign

    NASA Astrophysics Data System (ADS)

    Pei, Liuyi; AGN STORM Collaboration

    2016-06-01

    Reverberation mapping programs generally find that the continuum and H-beta flux variations in AGNs are well correlated. In the 2014 AGN STORM monitoring program for NGC 5548, we observed a distinct decorrelation of the emission-line light curves from the AGN continuum light curve during the second half of the six-month campaign. This effect was first detected for the C IV, Ly a, HeII 1640 and SiIV/OIV] 1400 lines in Hubble Space Telescope data, then observed for the H-beta line in ground-based data taken during the same monitoring period. We present measurements of the H-beta lags, equivalent width variations, and line responsivity changes during our campaign. We show that the AGN demonstrated unusual behavior in that the broad H-beta responsivity to flux variations decreased significantly during the second half of the campaign. The discovery of this decorrelation phenomenon was made possible by the high cadence and long duration of our monitoring campaign. More multi-wavelength observing campaigns with high sampling cadence, high signal-to-noise ratio, and long temporal baseline are needed for other AGNs in order to determine the prevalence of this phenomenon and to understand its physical origin.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leitherer, Claus; Lee, Janice C.; Hernandez, Svea

    We report on the detection of Lyman continuum radiation in two nearby starburst galaxies. Tol 0440-381, Tol 1247-232, and Mrk 54 were observed with the Cosmic Origins Spectrograph on board the Hubble Space Telescope . The three galaxies have radial velocities of ∼13,000 km s{sup −1}, permitting a ∼35 Å window on the restframe Lyman continuum shortward of the Milky Way Lyman edge at 912 Å. The chosen instrument configuration using the G140L grating covers the spectral range from 912 to 2000 Å. We developed a dedicated background subtraction method to account for the temporal and spatial background variations ofmore » the detector, which is crucial at the low flux levels around 912 Å. This modified pipeline allowed us to significantly improve the statistical and systematic detector noise and will be made available to the community. We detect Lyman continuum in all three galaxies. However, we conservatively interpret the emission in Tol 0440-381 as an upper limit due to possible contamination by geocoronal Lyman series lines. We determined the current star formation properties from the far-ultraviolet continuum and spectral lines and used synthesis models to predict the Lyman continuum radiation emitted by the current population of hot stars. We discuss various model uncertainties such as, among others, atmospheres and evolution models. Lyman continuum escape fractions were derived from a comparison between the observed and predicted Lyman continuum fluxes. Tol 1247-232, Mrk 54, and Tol 0440-381 have absolute escape fractions of (4.5 ± 1.2)%, (2.5 ± 0.72)%, and <(7.1 ± 1.1)%, respectively.« less

  15. Population decay time and distribution of exciton states analyzed by rate equations based on theoretical phononic and electron-collisional rate coefficients

    NASA Astrophysics Data System (ADS)

    Oki, Kensuke; Ma, Bei; Ishitani, Yoshihiro

    2017-11-01

    Population distributions and transition fluxes of the A exciton in bulk GaN are theoretically analyzed using rate equations of states of the principal quantum number n up to 5 and the continuum. These rate equations consist of the terms of radiative, electron-collisional, and phononic processes. The dependence of the rate coefficients on temperature is revealed on the basis of the collisional-radiative model of hydrogen plasma for the electron-collisional processes and theoretical formulation using Fermi's "golden rule" for the phononic processes. The respective effects of the variations in electron, exciton, and lattice temperatures are exhibited. This analysis is a base of the discussion on nonthermal equilibrium states of carrier-exciton-phonon dynamics. It is found that the exciton dissociation is enhanced even below 150 K mainly by the increase in the lattice temperature. When the thermal-equilibrium temperature increases, the population fluxes between the states of n >1 and the continuum become more dominant. Below 20 K, the severe deviation from the Saha-Boltzmann distribution occurs owing to the interband excitation flux being higher than the excitation flux from the 1 S state. The population decay time of the 1 S state at 300 K is more than ten times longer than the recombination lifetime of excitons with kinetic energy but without the upper levels (n >1 and the continuum). This phenomenon is caused by a shift of population distribution to the upper levels. This phonon-exciton-radiation model gives insights into the limitations of conventional analyses such as the ABC model, the Arrhenius plot, the two-level model (n =1 and the continuum), and the neglect of the upper levels.

  16. Evidence for a supermassive black hole in the nucleus of the Seyfert galaxy NGC 5548

    NASA Technical Reports Server (NTRS)

    Crenshaw, D. Michael; Blackwell, James H., Jr.

    1990-01-01

    The international campaign to monitor the variable Seyfert 1 galaxy NGC 5548 with the IUE has provided an extensive and well-sampled set of spectroscopic observations. These observations are used to study the response of the C IV 1550 A emission-line profile to changes in the photoionizing continuum. Near the end of the IUE campaign, the continuum flux at 1440 A and the total C IV flux dopped by factors of 2.9 and 1.8, respectively, in 16 days. The red wing of the C IV profile responded more rapidly to the sharp continuum drop than the blue wing, indicating that clouds in the inner broad-line region (BLR) are undergoing gravitational infall. These results provide direct evidence that the central engine is a supermassive object, presumably a black hole, with a mass on the order of 10 to the 7th solar masses. Analysis of the profile variations also demonstrates that excess emission in the blue wing of C IV is from a component that is physically distinct from the bulk of the BLR.

  17. PHOTOMETRIC TRENDS IN THE VISIBLE SOLAR CONTINUUM AND THEIR SENSITIVITY TO THE CENTER-TO-LIMB PROFILE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peck, C. L.; Rast, M. P.

    2015-08-01

    Solar irradiance variations over solar rotational timescales are largely determined by the passage of magnetic structures across the visible solar disk. Variations on solar cycle timescales are thought to be similarly due to changes in surface magnetism with activity. Understanding the contribution of magnetic structures to total solar irradiance and solar spectral irradiance requires assessing their contributions as a function of disk position. Since only relative photometry is possible from the ground, the contrasts of image pixels are measured with respect to a center-to-limb intensity profile. Using nine years of full-disk red and blue continuum images from the Precision Solarmore » Photometric Telescope at the Mauna Loa Solar Observatory, we examine the sensitivity of continuum contrast measurements to the center-to-limb profile definition. Profiles which differ only by the amount of magnetic activity allowed in the pixels used to determine them yield oppositely signed solar cycle length continuum contrast trends, either agreeing with previous results and showing negative correlation with solar cycle or disagreeing and showing positive correlation with solar cycle. Changes in the center-to-limb profile shape over the solar cycle are responsible for the contradictory contrast results, and we demonstrate that the lowest contrast structures, internetwork and network, are most sensitive to these. Thus the strengths of the full-disk, internetwork, and network photometric trends depend critically on the magnetic flux density used in the quiet-Sun definition. We conclude that the contributions of low contrast magnetic structures to variations in the solar continuum output, particularly to long-term variations, are difficult, if not impossible, to determine without the use of radiometric imaging.« less

  18. Space Telescope and Optical Reverberation Mapping Project: Unraveling the Broad Line Region and the Intrinsic Absorption in NGC 5548

    NASA Astrophysics Data System (ADS)

    Kriss, G.; Storm Team

    2015-07-01

    The Space Telescope and Optical Reverberation Mapping (STORM) project monitored the Seyfert 1 galaxy NGC 5548 over a six-month period, obtaining 171 far-ultraviolet HST/COS spectra at approximately daily intervals. We find significant correlated variability in the continuum and broad emission lines, with amplitudes ranging from a factor of two in the emission lines to a factor of three in the continuum. The variations of all the strong emission lines lag behind those of the continuum, with He II lagging by ˜ 2.5 days and Ly&alpha,; C IV, and Si IV lagging by 5 to 6 days. The broad UV absorption lines discovered by Kaastra et al. (2014) and associated with the new soft X-ray obscurer are continuously present in the STORM campaign COS spectra. Their strength varies with the degree of soft X-ray obscuration as revealed by the Swift X-ray spectra. The narrow absorption lines associated with the historical warm absorber varied in response to the changing UV flux on a daily basis with lags of 3 to 8 days. The ionization response allows precise determinations of the locations, mass flux, and kinetic luminosities of the absorbers.

  19. Rapid variation in the circumstellar 10 micron emission of Alpha Orionis

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Danchi, W. C.; Townes, C. H.

    1985-01-01

    The spatial distribution of 10 micron continuum flux around the supergiant star Alpha Orionis was measured on two occasions separated by an interval of 1 yr. A significant change in the infrared radiation pattern on the subarcsecond scale was observed. This change cannot be explained plausibly by macroscopic motion but may be due to a change in the physical properties of the circumstellar dust.

  20. Heating mechanism(s) for transition layers in giants

    NASA Technical Reports Server (NTRS)

    Bohm-Vitense, Erika; Mena-Werth, Jose

    1991-01-01

    The emission-line fluxes of lines originating in the lower parts of the transition layers between stellar chromospheres and coronas are studied. Simon and Drake (1989) suspect different heating mechanisms for 'hot' and cool stars. Changes in the flux ratios for the C IV to C II emission lines support this suspicion. Large C IV/C II line flux ratios appear to be indicative of magnetically controlled heating. A correlation between excess continuum flux around 1950 A and C II emission-line fluxes are confirmed for the cooler giants (late F and cooler). Excess continuum flux correlates positively with large C IV/C II line flux ratio. The excess continuum flux corresponds to an increase in temperature by several hundred degrees in layers with a mean optical depth of about 0.03. For chromospherically active stars these layers experience a mechanical flux deposition of the order of 1 percent of the total radiative flux. This flux is tentatively identified as an MHD wave flux similar to Alfven waves.

  1. Variability of broad and blueshifted component of [OIII]λ5007 in I ZWI

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wei, J. Y.; He, X. T.

    2005-04-01

    Although the existence of asymmetrical profile of [OIII]λ5007 has been discovered for ages, its filiation and physics are poorly understood. Two new spectra of I ZWI taken on November 16, 2001 and on December 3, 2002 were compared with the spectra taken by BG92. Following results are obtained. (1) The certain variations of broad [OIII] during about 10 years separating the observations are identified. The inferred length scale of broad [OIII] emitting region ranges from 0.3 to 3 pc. By assuming a Keplerian motion in line emitting region, the material emitting broad [OIII] is likely to be located at the transient emission line region, between BLR and NLR. (2) We find a positive relation between the FeII emission and flux of Hβ (or continuum). On the other hand, the parameter RFe decreases with ionizing continuum marginally. (3) We detect a low ionized NLR in I ZWI, because of the low flux ratios [OIII]n/Hβn (∼1.7).

  2. Discrete and continuum links to a nonlinear coupled transport problem of interacting populations

    NASA Astrophysics Data System (ADS)

    Duong, M. H.; Muntean, A.; Richardson, O. M.

    2017-07-01

    We are interested in exploring interacting particle systems that can be seen as microscopic models for a particular structure of coupled transport flux arising when different populations are jointly evolving. The scenarios we have in mind are inspired by the dynamics of pedestrian flows in open spaces and are intimately connected to cross-diffusion and thermo-diffusion problems holding a variational structure. The tools we use include a suitable structure of the relative entropy controlling TV-norms, the construction of Lyapunov functionals and particular closed-form solutions to nonlinear transport equations, a hydrodynamics limiting procedure due to Philipowski, as well as the construction of numerical approximates to both the continuum limit problem in 2D and to the original interacting particle systems.

  3. Simultaneous X-ray, UV, and Optical Variations in lambda ERI (B2e)

    NASA Astrophysics Data System (ADS)

    Smith, M. A.; Murakami, T.; Anandarao, B.

    1996-12-01

    We have carried out a simultaneous observing campaign on the prototypical Be star lambda Eri using ground stations and ROSAT, ASCA, IUE, and Voyager spacecrafts during the week of February-March 1995; a smaller campaign was carried out the following September. In late February lambda Eri showed extraordinary disk-wind activity. ROSAT/HRI monitoring disclosed no large flares such as ROSAT observed in 1991 in lambda Eri. Possible low amplitude fluctuations in the 1995 data occurred at the same time with unusual activity in Hα , HeI lambda 6678, HeII lambda 1640, CIII, and the CIV doublet. The helium line activity suggests that mass ejection occurred at the base of the wind. The strong CIII and CIV lines implies that shock interactions originated in the wind flow. It is not clear that the X-ray fluctuations are directly related to the increases in wind line absorption. Within hours of the mild X-ray flux variations found by ROSAT on February 28, the Voyager UVS observed a ``ringing" that decayed over three 3-hr. cycles. The amplitude of these fluctuations was large (50%) at lambda lambda 950-1100, decreased rapidly with wavelength, and faded to nondetection above lambda 1300. Various considerations indicate that these continuum variations were not due to an instrument pathology in the UVS. Rather, they appear to be due to a time-dependent flux deficit in the lambda lambda 1250 during the minima of these cycles. We outline a scenario in which dense plasma over the star's surface is alternately heated and cooled quasi-periodically to produce the flux changes. Additional examples of this new phenomenon are needed. Amateur astronomers can make a significant contribution to the understanding of flickering in Be star light curves during their outburst phases. We also draw attention to an increase in the emission of the Hα line that occurred at about the same time the FUV ringing started. This increased emission hints that ~ 50,000K plasma near the star's surface can infuence the circumstellar disc some distance away by its increased Lyman continuum flux.

  4. Quantitative estimation of the energy flux during an explosive chromospheric evaporation in a white light flare kernel observed by Hinode, IRIS, SDO, and RHESSI

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-Sun; Imada, Shinsuke; Kyoko, Watanabe; Bamba, Yumi; Brooks, David H.

    2016-10-01

    An X1.6 flare occurred at the AR 12192 on 2014 October 22 at14:02 UT was observed by Hinode, IRIS, SDO, and RHESSI. We analyze a bright kernel which produces a white light (WL) flare with continuum enhancement and a hard X-ray (HXR) peak. Taking advantage of the spectroscopic observations of IRIS and Hinode/EIS, we measure the temporal variation of the plasma properties in the bright kernel in the chromosphere and corona. We found that explosive evaporation was observed when the WL emission occurred, even though the intensity enhancement in hotter lines is quite weak. The temporal correlation of the WL emission, HXR peak, and evaporation flows indicate that the WL emission was produced by accelerated electrons. To understand the white light emission processes, we calculated the deposited energy flux from the non-thermal electrons observed by RHESSI and compared it to the dissipated energy estimated from the chromospheric line (Mg II triplet) observed by IRIS. The deposited energy flux from the non-thermal electrons is about 3.1 × 1010erg cm-2 s-1 when we consider a cut-off energy 20 keV. The estimated energy flux from the temperature changes in the chromosphere measured from the Mg II subordinate line is about 4.6-6.7×109erg cm-2 s-1, ˜ 15-22% of the deposited energy. By comparison of these estimated energy fluxes we conclude that the continuum enhancement was directly produced by the non-thermal electrons.

  5. Multi-Wavelength Spectroscopic Observations of a White Light Flare Produced Directly by Non-thermal Electrons

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-Sun; Imada, Shinsuke; Watanabe, Kyoko; Bamba, Yumi; Brooks, David

    2017-08-01

    An X1.6 flare on 2014 October 22 was observed by multiple spectrometers in UV, EUV and X-ray (Hinode/EIS, IRIS, and RHESSI), and multi-wavelength imaging observations (SDO/AIA and HMI). We analyze a bright kernel that produces a white light (WL) flare with continuum enhancement and a hard X-ray (HXR) peak. Taking advantage of the spectroscopic observations of IRIS and Hinode/EIS, we measure the temporal variation of the plasma properties in the bright kernel in the chromosphere and corona. We find that explosive evaporation was observed when the WL emission occurred. The temporal correlation of the WL emission, HXR peak, and evaporation flows indicates that the WL emission was produced by accelerated electrons. We calculated the energy flux deposited by non-thermal electrons (observed by RHESSI) and compared it to the dissipated energy estimated from a chromospheric line (Mg II triplet) observed by IRIS. The deposited energy flux from the non-thermal electrons is about (3-7.7)x1010 erg cm-2 s-1 for a given low-energy cutoff of 30-40 keV, assuming the thick-target model. The energy flux estimated from the changes in temperature in the chromosphere measured using the Mg II subordinate line is about (4.6-6.7)×109 erg cm-2 s-1: ˜6%-22% of the deposited energy. This comparison of estimated energy fluxes implies that the continuum enhancement was directly produced by the non-thermal electrons.

  6. Chandra ACIS-I particle background: an analytical model

    NASA Astrophysics Data System (ADS)

    Bartalucci, I.; Mazzotta, P.; Bourdin, H.; Vikhlinin, A.

    2014-06-01

    Aims: Imaging and spectroscopy of X-ray extended sources require a proper characterisation of a spatially unresolved background signal. This background includes sky and instrumental components, each of which are characterised by its proper spatial and spectral behaviour. While the X-ray sky background has been extensively studied in previous work, here we analyse and model the instrumental background of the ACIS-I detector on board the Chandra X-ray observatory in very faint mode. Methods: Caused by interaction of highly energetic particles with the detector, the ACIS-I instrumental background is spectrally characterised by the superimposition of several fluorescence emission lines onto a continuum. To isolate its flux from any sky component, we fitted an analytical model of the continuum to observations performed in very faint mode with the detector in the stowed position shielded from the sky, and gathered over the eight-year period starting in 2001. The remaining emission lines were fitted to blank-sky observations of the same period. We found 11 emission lines. Analysing the spatial variation of the amplitude, energy and width of these lines has further allowed us to infer that three lines of these are presumably due to an energy correction artefact produced in the frame store. Results: We provide an analytical model that predicts the instrumental background with a precision of 2% in the continuum and 5% in the lines. We use this model to measure the flux of the unresolved cosmic X-ray background in the Chandra deep field south. We obtain a flux of 10.2+0.5-0.4 × 10-13 erg cm-2 deg-2 s-1 for the [1-2] keV band and (3.8 ± 0.2) × 10-12 erg cm-2 deg-2 s-1 for the [2-8] keV band.

  7. CONTINUUM INTENSITY AND [O i] SPECTRAL LINE PROFILES IN SOLAR 3D PHOTOSPHERIC MODELS: THE EFFECT OF MAGNETIC FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabbian, D.; Moreno-Insertis, F., E-mail: damian@iac.es, E-mail: fmi@iac.es

    2015-04-01

    The importance of magnetic fields in three-dimensional (3D) magnetoconvection models of the Sun’s photosphere is investigated in terms of their influence on the continuum intensity at different viewing inclination angles and on the intensity profile of two [O i] spectral lines. We use the RH numerical radiative transfer code to perform a posteriori spectral synthesis on the same time series of magnetoconvection models used in our publications on the effect of magnetic fields on abundance determination. We obtain a good match of the synthetic disk-center continuum intensity to the absolute continuum values from the Fourier Transform Spectrometer (FTS) observational spectrum; the matchmore » of the center-to-limb variation synthetic data to observations is also good, thanks, in part, to the 3D radiation transfer capabilities of the RH code. The different levels of magnetic flux in the numerical time series do not modify the quality of the match. Concerning the targeted [O i] spectral lines, we find, instead, that magnetic fields lead to nonnegligible changes in the synthetic spectrum, with larger average magnetic flux causing both of the lines to become noticeably weaker. The photospheric oxygen abundance that one would derive if instead using nonmagnetic numerical models would thus be lower by a few to several centidex. The inclusion of magnetic fields is confirmed to be important for improving the current modeling of the Sun, here in particular in terms of spectral line formation and of deriving consistent chemical abundances. These results may shed further light on the still controversial issue regarding the precise value of the solar oxygen abundance.« less

  8. A catalog of 0.2 A resolution far-ultraviolet stellar spectra measured with Copernicus

    NASA Technical Reports Server (NTRS)

    Snow, T. P., Jr.; Jenkins, E. B.

    1977-01-01

    Spectra between 1000 and 1450 A for 60 O- and B-type stars observed by Copernicus at 0.2-A resolution are presented in three forms: tables containing the numerical data, plots showing renormalized spectra, and synthetic photographic spectra. The data have been corrected for all instrument effects of importance for the photometric accuracy except fluctuations in continuum level caused by small variations in spacecraft guidance. Spectrometer sensitivity curves are provided for use in converting to absolute fluxes. It is expected that this catalog will be of use for research on many aspects of stellar UV spectra, including spectral classification, line identification, abundance determinations, spectrum synthesis, model atmosphere calculations, flux distributions, bolometric corrections, stellar winds, and mass loss.

  9. Reconstruction of total solar irradiance 1974-2009

    NASA Astrophysics Data System (ADS)

    Ball, W. T.; Unruh, Y. C.; Krivova, N. A.; Solanki, S.; Wenzler, T.; Mortlock, D. J.; Jaffe, A. H.

    2012-05-01

    Context. The study of variations in total solar irradiance (TSI) is important for understanding how the Sun affects the Earth's climate. Aims: Full-disk continuum images and magnetograms are now available for three full solar cycles. We investigate how modelled TSI compares with direct observations by building a consistent modelled TSI dataset. The model, based only on changes in the photospheric magnetic flux can then be tested on rotational, cyclical and secular timescales. Methods: We use Kitt Peak and SoHO/MDI continuum images and magnetograms in the SATIRE-S model to reconstruct TSI over cycles 21-23. To maximise independence from TSI composites, SORCE/TIM TSI data are used to fix the one free parameter of the model. We compare and combine the separate data sources for the model to estimate an uncertainty on the reconstruction and prevent any additional free parameters entering the model. Results: The reconstruction supports the PMOD composite as being the best historical record of TSI observations, although on timescales of the solar rotation the IRMB composite provides somewhat better agreement. Further to this, the model is able to account for 92% of TSI variations from 1978 to 2009 in the PMOD composite and over 96% during cycle 23. The reconstruction also displays an inter-cycle, secular decline of 0.20+0.12-0.09 W m-2 between cycle 23 minima, in agreement with the PMOD composite. Conclusions: SATIRE-S is able to recreate TSI observations on all timescales of a day and longer over 31 years from 1978. This is strong evidence that changes in photospheric magnetic flux alone are responsible for almost all solar irradiance variations over the last three solar cycles.

  10. INTEGRAL and RXTE Observations of Centaurus A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothschild, Richard E.; /San Diego, CASS; Wilms, Joern

    2006-01-17

    INTEGRAL and RXTE performed three simultaneous observations of the nearby radio galaxy Centaurus A in 2003 March, 2004 January, and 2004 February with the goals of investigating the geometry and emission processes via the spectral/temporal variability of the X-ray/low energy gamma ray flux, and intercalibration of the INTEGRAL instruments with respect to those on RXTE. Cen A was detected by both sets of instruments from 3-240 keV. When combined with earlier archival RXTE results, we find the power law continuum flux and the line-of-sight column depth varied independently by 60% between 2000 January and 2003 March. Including the three archivalmore » RXTE observations, the iron line flux was essentially unchanging, and from this we conclude that the iron line emitting material is distant from the site of the continuum emission, and that the origin of the iron line flux is still an open question. Taking X-ray spectral measurements from satellite missions since 1970 into account, we discover a variability in the column depth between 1.0 x 10{sup 23} cm{sup -2} and 1.5 x 10{sup 23} cm{sup -2} separated by approximately 20 years, and suggest that variations in the edge of a warped accretion disk viewed nearly edge-on might be the cause. The INTEGRAL OSA 4.2 calibration of JEM-X, ISGRI, and SPI yields power law indices consistent with the RXTE PCA and HEXTE values, but the indices derived from ISGRI alone are about 0.2 greater. Significant systematics are the limiting factor for INTEGRAL spectral parameter determination.« less

  11. IRIS, Hinode, SDO, and RHESSI Observations of a White Light Flare Produced Directly by Nonthermal Electrons

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-Sun; Imada, Shinsuke; Watanabe, Kyoko; Bamba, Yumi; Brooks, David H.

    2017-02-01

    An X1.6 flare occurred in active region AR 12192 on 2014 October 22 at 14:02 UT and was observed by Hinode, IRIS, SDO, and RHESSI. We analyze a bright kernel that produces a white light (WL) flare with continuum enhancement and a hard X-ray (HXR) peak. Taking advantage of the spectroscopic observations of IRIS and Hinode/EIS, we measure the temporal variation of the plasma properties in the bright kernel in the chromosphere and corona. We find that explosive evaporation was observed when the WL emission occurred, even though the intensity enhancement in hotter lines is quite weak. The temporal correlation of the WL emission, HXR peak, and evaporation flows indicates that the WL emission was produced by accelerated electrons. To understand the WL emission process, we calculated the energy flux deposited by non-thermal electrons (observed by RHESSI) and compared it to the dissipated energy estimated from a chromospheric line (Mg II triplet) observed by IRIS. The deposited energy flux from the non-thermal electrons is about (3-7.7) × 1010 erg cm-2 s-1 for a given low-energy cutoff of 30-40 keV, assuming the thick-target model. The energy flux estimated from the changes in temperature in the chromosphere measured using the Mg II subordinate line is about (4.6-6.7) × 109 erg cm-2 s-1: ˜6%-22% of the deposited energy. This comparison of estimated energy fluxes implies that the continuum enhancement was directly produced by the non-thermal electrons.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yu-Han; Wang, Jun-Xian; Chen, Xiao-Yang

    Quasars are variable on timescales from days to years in UV/optical and generally appear bluer while they brighten. The physics behind the variations in fluxes and colors remains unclear. Using Sloan Digital Sky Survey g- and r-band photometric monitoring data for quasars in Stripe 82, we find that although the flux variation amplitude increases with timescale, the color variability exhibits the opposite behavior. The color variability of quasars is prominent at timescales as short as ∼10 days, but gradually reduces toward timescales up to years. In other words, the variable emission at shorter timescales is bluer than that at longermore » timescales. This timescale dependence is clearly and consistently detected at all redshifts from z = 0 to 3.5; thus, it cannot be due to contamination to broadband photometry from emission lines that do not respond to fast continuum variations. The discovery directly rules out the possibility that simply attributes the color variability to contamination from a non-variable redder component such as the host galaxy. It cannot be interpreted as changes in global accretion rate either. The thermal accretion disk fluctuation model is favored in the sense that fluctuations in the inner, hotter region of the disk are responsible for short-term variations, while longer-term and stronger variations are expected from the larger and cooler disk region. An interesting implication is that one can use quasar variations at different timescales to probe disk emission at different radii.« less

  13. An ISO far-infrared survey of line and continuum emission for 227 galaxies

    NASA Technical Reports Server (NTRS)

    Brauher, J. R.

    2002-01-01

    Far-infrared line and continuum fluxes are presented for a sample of 227 galaxies observed with the Long Wavelength Spectrometer on the Infrared Space Observatory, selected from the ISO Data Archive and having an IRAS 60/100 mu m color ration of 0.2-1.4 and IRAS 60 mu m flux density between 0.1 Jy and 1300 Jy.

  14. Revisiting the Short-term X-ray Spectral Variability of NGC 4151 with Chandra

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Risaliti, G.; Fabbiano, G.; Elvis, M.; Zezas, A.; Karovska, M.

    2010-05-01

    We present new X-ray spectral data for the Seyfert 1 nucleus in NGC 4151 observed with Chandra for ~200 ks. A significant ACIS pileup is present, resulting in a nonlinear count rate variation during the observation. With pileup corrected spectral fitting, we are able to recover the spectral parameters and find consistency with those derived from unpiled events in the ACIS readout streak and outer region from the bright nucleus. The absorption corrected 2-10 keV flux of the nucleus varied between 6 × 10-11 erg s-1 cm-2 and 10-10 erg s-1 cm-2 (L 2-10 keV ~ 1.3-2.1 × 1042 erg s-1). Similar to earlier Chandra studies of NGC 4151 at a historical low state, the photon indices derived from the same absorbed power-law model are Γ ~ 0.7-0.9. However, we show that Γ is highly dependent on the adopted spectral models. Fitting the power-law continuum with a Compton reflection component gives Γ ~ 1.1. By including passage of non-uniform X-ray obscuring clouds, we can reproduce the apparent flat spectral states with Γ ~ 1.7, typical for Seyfert 1 active galactic nuclei. The same model also fits the hard spectra from previous ASCA "long look" observation of NGC 4151 in the lowest flux state. The spectral variability during our observation can be interpreted as variations in intrinsic soft continuum flux relative to a Compton reflection component that is from distant cold material and constant on short timescale, or variations of partially covering absorber in the line of sight toward the nucleus. An ionized absorber model with ionization parameter log ξ ~ 0.8-1.1 can also fit the low-resolution ACIS spectra. If the partial covering model is correct, adopting a black hole mass M_{BH}˜ 4.6× 10^7 M sun we constrain the distance of the obscuring cloud from the central black hole to be r <~ 9 lt-day, consistent with the size of the broad emission line region of NGC 4151 from optical reverberation mapping.

  15. NuSTAR reveals the Comptonizing corona of the broad-line radio galaxy 3C 382

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballantyne, D. R.; Bollenbacher, J. M.; Brenneman, L. W.

    Broad-line radio galaxies (BLRGs) are active galactic nuclei that produce powerful, large-scale radio jets, but appear as Seyfert 1 galaxies in their optical spectra. In the X-ray band, BLRGs also appear like Seyfert galaxies, but with flatter spectra and weaker reflection features. One explanation for these properties is that the X-ray continuum is diluted by emission from the jet. Here, we present two NuSTAR observations of the BLRG 3C 382 that show clear evidence that the continuum of this source is dominated by thermal Comptonization, as in Seyfert 1 galaxies. The two observations were separated by over a year andmore » found 3C 382 in different states separated by a factor of 1.7 in flux. The lower flux spectrum has a photon-index of Γ=1.68{sub −0.02}{sup +0.03}, while the photon-index of the higher flux spectrum is Γ=1.78{sub −0.03}{sup +0.02}. Thermal and anisotropic Comptonization models provide an excellent fit to both spectra and show that the coronal plasma cooled from kT{sub e} = 330 ± 30 keV in the low flux data to 231{sub −88}{sup +50} keV in the high flux observation. This cooling behavior is typical of Comptonizing corona in Seyfert galaxies and is distinct from the variations observed in jet-dominated sources. In the high flux observation, simultaneous Swift data are leveraged to obtain a broadband spectral energy distribution and indicates that the corona intercepts ∼10% of the optical and ultraviolet emitting accretion disk. 3C 382 exhibits very weak reflection features, with no detectable relativistic Fe Kα line, that may be best explained by an outflowing corona combined with an ionized inner accretion disk.« less

  16. Wind asymmetry imprint in the UV light curves of the symbiotic binary SY Mus

    NASA Astrophysics Data System (ADS)

    Shagatova, N.; Skopal, A.

    2017-06-01

    Context. Light curves (LCs) of some symbiotic stars show a different slope of the ascending and descending branch of their minimum profile. The origin of this asymmetry is not well understood. Aims: We explain this effect in the ultraviolet LCs of the symbiotic binary SY Mus. Methods: We model the continuum fluxes in the spectra obtained by the International Ultraviolet Explorer at ten wavelengths, from 1280 to 3080 Å. We consider that the white dwarf radiation is attenuated by H0 atoms, H- ions, and free electrons in the red giant wind. Variation in the nebular component is approximated by a sine wave along the orbit as suggested by spectral energy distribution models. The model includes asymmetric wind velocity distribution and the corresponding ionization structure of the binary. Results: We determined distribution of the H0 and H+, as well as upper limits of H- and H0 column densities in the neutral and ionized region at the selected wavelengths as functions of the orbital phase. Corresponding models of the LCs match well the observed continuum fluxes. In this way, we suggested the main UV continuum absorbing (scattering) processes in the circumbinary environment of S-type symbiotic stars. Conclusions: The asymmetric profile of the ultraviolet LCs of SY Mus is caused by the asymmetric distribution of the circumstellar matter at the near-orbital-plane area. Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A71

  17. The broad-band x ray spectral variability of Mkn 841

    NASA Technical Reports Server (NTRS)

    George, I. M.; Nandra, K.; Fabian, A. C.; Turner, T. J.; Done, C.; Day, C. S. R.

    1992-01-01

    The results of a detailed spectral analysis of four X-ray observations of the luminous Seyfert 1.5 galaxy Mkn 841 performed using the EXOSAT and Ginga satellites over the period June 1984 to July 1990 are reported. Preliminary results from a short ROSAT PSPC observation of Mkn 841 in July 1990 are also presented. Variability is apparent in both the soft (0.1-1.0 keV) and medium (1-20 keV) energy bands. Above 1 keV, the spectra are adequately modelled by a power-law with a strong emission line of equivalent width approximately 450 eV. The energy of the line (approximately 6.4 keV) is indicative of K-shell fluorescence from neutral iron, leading to the interpretation that the line arises via X-ray illumination of cold material surrounding the source. In addition to the flux variability, the continuum shape also changes in a dramatic fashion, with variations in the apparent photon index Delta(Gamma) approximately 0.6. The large equivalent width of the emission line clearly indicates a strongly enhanced reflection component in the source, compared to other Seyferts observed with Ginga. The spectral changes are interpreted in terms of a variable power-law continuum superimposed on a flatter reflection component. For one Ginga observation, the reflected flux appears to dominate the medium energy X-ray emission, resulting in an unusually flat slope (Gamma approximately 1.0). The soft X-ray excess is found to be highly variable by a factor approximately 10. These variations are not correlated with the hard flux, but it seems likely that the soft component arises via reprocessing of the hard X-rays. We find no evidence for intrinsic absorption, with the equivalent hydrogen column density constrained to be less than or equal to few x 10(exp 20) cm(exp -2). The implications of these results for physical models for the emission regions in this and other X-ray bright Seyferts are briefly discussed.

  18. Reconstruction of solar UV irradiance since 1974

    NASA Astrophysics Data System (ADS)

    Krivova, N. A.; Solanki, S. K.; Wenzler, T.; Podlipnik, B.

    2009-09-01

    Variations of the solar UV irradiance are an important driver of chemical and physical processes in the Earth's upper atmosphere and may also influence global climate. Here we reconstruct solar UV irradiance in the range 115-400 nm over the period 1974-2007 by making use of the recently developed empirical extension of the Spectral And Total Irradiance Reconstruction (SATIRE) models employing Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) data. The evolution of the solar photospheric magnetic flux, which is a central input to the model, is described by the magnetograms and continuum images recorded at the Kitt Peak National Solar Observatory between 1974 and 2003 and by the Michelson Doppler Imager instrument on SOHO since 1996. The reconstruction extends the available observational record by 1.5 solar cycles. The reconstructed Ly-α irradiance agrees well with the composite time series by Woods et al. (2000). The amplitude of the irradiance variations grows with decreasing wavelength and in the wavelength regions of special interest for studies of the Earth's climate (Ly-α and oxygen absorption continuum and bands between 130 and 350 nm) is 1-2 orders of magnitude stronger than in the visible or if integrated over all wavelengths (total solar irradiance).

  19. IRIS , Hinode , SDO , and RHESSI Observations of a White Light Flare Produced Directly by Non-thermal Electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyoung-Sun; Imada, Shinsuke; Watanabe, Kyoko

    An X1.6 flare occurred in active region AR 12192 on 2014 October 22 at 14:02 UT and was observed by Hinode , IRIS , SDO , and RHESSI . We analyze a bright kernel that produces a white light (WL) flare with continuum enhancement and a hard X-ray (HXR) peak. Taking advantage of the spectroscopic observations of IRIS and Hinode /EIS, we measure the temporal variation of the plasma properties in the bright kernel in the chromosphere and corona. We find that explosive evaporation was observed when the WL emission occurred, even though the intensity enhancement in hotter lines ismore » quite weak. The temporal correlation of the WL emission, HXR peak, and evaporation flows indicates that the WL emission was produced by accelerated electrons. To understand the WL emission process, we calculated the energy flux deposited by non-thermal electrons (observed by RHESSI ) and compared it to the dissipated energy estimated from a chromospheric line (Mg ii triplet) observed by IRIS . The deposited energy flux from the non-thermal electrons is about (3–7.7) × 10{sup 10} erg cm{sup −2} s{sup −1} for a given low-energy cutoff of 30–40 keV, assuming the thick-target model. The energy flux estimated from the changes in temperature in the chromosphere measured using the Mg ii subordinate line is about (4.6–6.7) × 10{sup 9} erg cm{sup −2} s{sup −1}: ∼6%–22% of the deposited energy. This comparison of estimated energy fluxes implies that the continuum enhancement was directly produced by the non-thermal electrons.« less

  20. On the nature of the high-energy rollover in 1H 0419-577

    NASA Astrophysics Data System (ADS)

    Turner, T. J.; Reeves, J. N.; Braito, V.; Costa, M.

    2018-05-01

    A NuSTAR/Swift observation of the luminous Seyfert 1 galaxy 1H 0419-577 taken during 2015 reveals one of the most extreme high-energy cut-offs observed to date from an AGN - an origin due to thermal Comptonization would imply a remarkably low coronal temperature kT ˜ 15 keV. The low-energy peak of the spectrum in the hard X-ray NuSTAR band, which peaks before the expected onset of a Compton hump, rules out strong reflection as the origin of the hard excess in this AGN. We show the origin of the high-energy rollover is likely due to a combination of both thermal Comptonization and an intrinsically steeper continuum, which is modified by absorption at lower energies. Furthermore, modelling the broad-band XUV continuum shape as a colour-corrected accretion disc, requires the presence of a variable warm absorber to explain all flux and spectral states of the source, consistent with the previous work on this AGN. While absorber variations produce marked spectral variability in this AGN, consideration of all flux states allows us to isolate a colourless component of variability that may arise from changes in the inner accretion flow, typically at around 10 rg.

  1. Variable H13CO+ Emission in the IM Lup Disk: X-Ray Driven Time-dependent Chemistry?

    NASA Astrophysics Data System (ADS)

    Cleeves, L. Ilsedore; Bergin, Edwin A.; Öberg, Karin I.; Andrews, Sean; Wilner, David; Loomis, Ryan

    2017-07-01

    We report the first detection of a substantial brightening event in an isotopologue of a key molecular ion, HCO+, within a protoplanetary disk of a T Tauri star. The H13CO+ J=3-2 rotational transition was observed three times toward IM Lup between 2014 July and 2015 May with the Atacama Large Millimeter/submillimeter Array. The first two observations show similar spectrally integrated line and continuum fluxes, while the third observation shows a doubling in the disk-integrated J=3-2 line flux compared to the continuum, which does not change between the three epochs. We explore models of an X-ray active star irradiating the disk via stellar flares, and find that the optically thin H13CO+ emission variation can potentially be explained via X-ray-driven chemistry temporarily enhancing the HCO+ abundance in the upper layers of the disk atmosphere during large or prolonged flaring events. If the HCO+ enhancement is indeed caused by an X-ray flare, future observations should be able to spatially resolve these events and potentially enable us to watch the chemical aftermath of the high-energy stellar radiation propagating across the face of protoplanetary disks, providing a new pathway to explore ionization physics and chemistry, including electron density, in disks.

  2. How fast do quasar emission lines vary? First results from a program to monitor the Balmer lines of the Palomar-Green Quasars

    NASA Technical Reports Server (NTRS)

    Maoz, Dan; Smith, Paul S.; Jannuzi, Buell T.; Kaspi, Shai; Netzer, Hagai

    1994-01-01

    We have monitored spectrophotometrically a subsample (28) of the Palomar-Green Bright Quasar Sample for 2 years in order to test for correlations between continuum and emission-line variations and to determine the timescales relevant to mapping the broad-line regions of high-luminosity active galactic nuclei (AGNs). Half of the quasars showed optical continuum variations with amplitudes in the range 20-75%. The rise and fall time for the continuum variations is typically 0.5-2 years. In most of the objects with continuum variations, we detect correlated variations in the broad H-alpha and H-beta emission lines. The amplitude of the line variations is usually 2-4 times smaller than the optical continuum fluctuations. We present light curves and analyze spectra for six of the variable quasars with 1000-10,000 A luminosity in the range 0.3-4 x 10(exp 45) ergs/s. In four of these objects the lines respond to the continuum variations with a lag that is smaller than or comparable to our typical sampling interval (a few months). Although continued monitoring is required to confirm these results and increase their accuracy, the present evidence indicates that quasars with the above luminosities have broad-line regions smaller than about 1 1t-yr. Two of the quasars monitored show no detectable line variations despite relatively large-amplitude continuum changes. This could be a stronger manifestation of the low-amplitude line-response phenomenon we observe in the other quasars.

  3. The correlation between far-IR and radio continuum emission from spiral galaxies

    NASA Technical Reports Server (NTRS)

    Dickey, John M.; Garwood, Robert W.; Helou, George

    1987-01-01

    A sample of 30 galaxies selected for their intense IRAS flux at 60 and 100 micron using the Arecibo telescope at 21 cm to measure the continuum and HI line luminosities were observed. The centimeter wave continuum correlates very well with the far-infrared flux, with a correlation coefficient as high as that found for other samples, and the same ratio between FIR and radio luminosities. Weaker correlations are seen between the FIR and optical luminosity and between the FIR and radio continuum. There is very little correlation between the FIR and the HI mass deduced from the integral of the 21 cm line. The strength of the radio continuum correlation suggests that there is little contribution to either the radio and FIR from physical processes not affecting both. If they each reflect time integrals of the star formation rate then the time constants must be similar, or the star formation rate must change slowly in these galaxies.

  4. The Beta Pictoris circumstellar disk. XV - Highly ionized species near Beta Pictoris

    NASA Technical Reports Server (NTRS)

    Deleuil, M.; Gry, C.; Lagrange-Henri, A.-M.; Vidal-Madjar, A.; Beust, H.; Ferlet, R.; Moos, H. W.; Livengood, T. A.; Ziskin, D.; Feldman, P. D.

    1993-01-01

    Temporal variations of the Fe II, Mg II, and Al III circumstellar lines towards Beta Pictoris have been detected and monitored since 1985. However, the unusual presence of Al III ions is still puzzling, since the UV stellar flux from an A5V star such as Beta Pic is insufficient to produce such an ion. In order to better define the origin of such a phenomenon, new observations have been carried out to detect faint signatures of other highly ionized species in the short UV wavelength range, where the stellar continuum flux is low. These observations reveal variations not only near the C IV doublet lines, but also in C I and Al II lines, two weakly ionized species, not clearly detectable until now. In the framework of an infalling body scenario, highly ionized species would be created in the tail, far from the comet head, by collisions with ambient gas surrounding the star, or a weak stellar wind. Spectral changes have also been detected near a CO molecular band location, which, if confirmed, would provide the first molecular signature around Beta Pictoris.

  5. Numerical modelling of bedload sediment transport

    NASA Astrophysics Data System (ADS)

    Langlois, Vincent J.

    2010-05-01

    We present a numerical study of sediment transport in the bedload regime. Classical bedload transport laws only describe the variation of the vertically integrated flux of grains as a function of the Shields number. However, these relations are only valid if the moving layer of the bed is at equilibrium with the external flow. Besides, they do not contain enough information for many geomorphological applications. For instance, understanding inertial effects in the moving bed requires models that are able to account for the variability of hydrodynamical conditions, and the discrete nature of the sediment material. We developped a numerical modelling of the behaviour of a three-dimensional bed of grains sheared by a unidirectional fluid flow. These simulations are based on a combination of discrete and continuum approaches: sediment particles are modelled by hard spheres interacting through simple contact forces, whereas the fluid flow is described by a 'mean field' model. Both the drag exerted on grains by the fluid and the retroactive effect of the presence of grains on the flow are accounted for, allowing the system to converge to its equilibrium state (no assumption is made on the fluid velocity profile inside the layer of moving grains). Above the motion threshold, the variation of the flux of grains in the steady state is found to vary like the cube of the Shields number (as predicted by Bagnold). Besides, our simulations allow us to obtain new insights into the detailed mechanisms of bedload transport, by giving access to non-integral quantities, such as the trajectories of each individual grains, the detailed velocity and packing fraction profiles inside the granular bed, etc. It is therefore possible to investigate some effects that are not accounted for in usual continuum models, such as the polydispersity of grains, the ageing of the bed, the response to a variation of the flowrate, etc.

  6. FIRST LONG-TERM OPTICAL SPECTRAL MONITORING OF A BINARY BLACK HOLE CANDIDATE E1821+643. I. VARIABILITY OF SPECTRAL LINES AND CONTINUUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapovalova, A. I.; Burenkov, A. N.; Zhdanova, V. E.

    2016-02-15

    We report the results of the first long-term (1990–2014) optical spectrophotometric monitoring of a binary black hole candidate QSO E1821+643, a low-redshift, high-luminosity, radio-quiet quasar. In the monitored period, the continua and Hγ fluxes changed about two times, while the Hβ flux changed about 1.4 times. We found periodical variations in the photometric flux with periods of 1200, 1850, and 4000 days, and 4500-day periodicity in the spectroscopic variations. However, the periodicity of 4000–4500 days covers only one cycle of variation and should be confirmed with a longer monitoring campaign. There is an indication of the period around 1300 daysmore » in the spectroscopic light curves, buts with small significance level, while the 1850-day period could not be clearly identified in the spectroscopic light curves. The line profiles have not significantly changed, showing an important red asymmetry and broad line peak redshifted around +1000 km s{sup −1}. However, Hβ shows a broader mean profile and has a larger time lag (τ ∼ 120 days) than Hγ (τ ∼ 60 days). We estimate that the mass of the black hole is ∼2.6 × 10{sup 9} M{sub ⊙}. The obtained results are discussed in the frame of the binary black hole hypothesis. To explain the periodicity in the flux variability and high redshift of the broad lines, we discuss a scenario where dense, gas-rich, cloudy-like structures are orbiting around a recoiling black hole.« less

  7. SHORT-TIMESCALE MONITORING OF THE X-RAY, UV, AND BROAD DOUBLE-PEAK EMISSION LINE OF THE NUCLEUS OF NGC 1097

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schimoia, Jaderson S.; Storchi-Bergmann, Thaisa; Grupe, Dirk

    2015-02-10

    Recent studies have suggested that the short-timescale (≲ 7 days) variability of the broad (∼10,000 km s{sup –1}) double-peaked Hα profile of the LINER nucleus of NGC 1097 could be driven by a variable X-ray emission from a central radiatively inefficient accretion flow. To test this scenario, we have monitored the NGC 1097 nucleus in X-ray and UV continuum with Swift and the Hα flux and profile in the optical spectrum using SOAR and Gemini-South from 2012 August to 2013 February. During the monitoring campaign, the Hα flux remained at a very low level—three times lower than the maximum flux observed in previousmore » campaigns and showing only limited (∼20%) variability. The X-ray variations were small, only ∼13% throughout the campaign, while the UV did not show significant variations. We concluded that the timescale of the Hα profile variation is close to the sampling interval of the optical observations, which results in only a marginal correlation between the X-ray and Hα fluxes. We have caught the active galaxy nucleus in NGC 1097 in a very low activity state, in which the ionizing source was very weak and capable of ionizing just the innermost part of the gas in the disk. Nonetheless, the data presented here still support the picture in which the gas that emits the broad double-peaked Balmer lines is illuminated/ionized by a source of high-energy photons which is located interior to the inner radius of the line-emitting part of the disk.« less

  8. ALMA BAND 8 CONTINUUM EMISSION FROM ORION SOURCE I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirota, Tomoya; Matsumoto, Naoko; Machida, Masahiro N.

    2016-12-20

    We have measured continuum flux densities of a high-mass protostar candidate, a radio source I in the Orion KL region (Orion Source I) using the Atacama Large Millimeter/Submillimeter Array (ALMA) at band 8 with an angular resolution of 0.″1. The continuum emission at 430, 460, and 490 GHz associated with Source I shows an elongated structure along the northwest–southeast direction perpendicular to the so-called low-velocity bipolar outflow. The deconvolved size of the continuum source, 90 au × 20 au, is consistent with those reported previously at other millimeter/submillimeter wavelengths. The flux density can be well fitted to the optically thick blackbody spectral energy distribution, and the brightness temperaturemore » is evaluated to be 700–800 K. It is much lower than that in the case of proton–electron or H{sup −} free–free radiations. Our data are consistent with the latest ALMA results by Plambeck and Wright, in which the continuum emission was proposed to arise from the edge-on circumstellar disk via thermal dust emission, unless the continuum source consists of an unresolved structure with a smaller beam filling factor.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Showman, Adam P.; Lewis, Nikole K.; Fortney, Jonathan J., E-mail: showman@lpl.arizona.edu

    Efforts to characterize extrasolar giant planet (EGP) atmospheres have so far emphasized planets within 0.05 AU of their stars. Despite this focus, known EGPs populate a continuum of orbital separations from canonical hot Jupiter values (0.03–0.05 AU) out to 1 AU and beyond. Unlike typical hot Jupiters, these more distant EGPs will not generally be synchronously rotating. In anticipation of observations of this population, we here present three-dimensional atmospheric circulation models exploring the dynamics that emerge over a broad range of rotation rates and incident stellar fluxes appropriate for warm and hot Jupiters. We find that the circulation resides inmore » one of two basic regimes. On typical hot Jupiters, the strong day–night heating contrast leads to a broad, fast superrotating (eastward) equatorial jet and large day–night temperature differences. At faster rotation rates and lower incident fluxes, however, the day–night heating gradient becomes less important, and baroclinic instabilities emerge as a dominant player, leading to eastward jets in the midlatitudes, minimal temperature variations in longitude, and, often, weak winds at the equator. Our most rapidly rotating and least irradiated models exhibit similarities to Jupiter and Saturn, illuminating the dynamical continuum between hot Jupiters and the weakly irradiated giant planets of our own solar system. We present infrared (IR) light curves and spectra of these models, which depend significantly on incident flux and rotation rate. This provides a way to identify the regime transition in future observations. In some cases, IR light curves can provide constraints on the rotation rate of nonsynchronously rotating planets.« less

  10. ACTIVITY-BRIGHTNESS CORRELATIONS FOR THE SUN AND SUN-LIKE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preminger, D. G.; Chapman, G. A.; Cookson, A. M.

    2011-10-01

    We analyze the effect of solar features on the variability of the solar irradiance in three different spectral ranges. Our study is based on two solar-cycles' worth of full-disk photometric images from the San Fernando Observatory, obtained with red, blue, and Ca II K-line filters. For each image we measure the photometric sum, {Sigma}, which is the relative contribution of solar features to the disk-integrated intensity of the image. The photometric sums in the red and blue continuum, {Sigma}{sub r} and {Sigma}{sub b}, exhibit similar temporal patterns: they are negatively correlated with solar activity, with strong short-term variability, and weakmore » solar-cycle variability. However, the Ca II K-line photometric sum, {Sigma}{sub K}, is positively correlated with solar activity and has strong variations on solar-cycle timescales. We show that we can model the variability of the Sun's bolometric flux as a linear combination of {Sigma}{sub r} and {Sigma}{sub K}. We infer that, over solar-cycle timescales, the variability of the Sun's bolometric irradiance is directly correlated with spectral line variability, but inversely correlated with continuum variability. Our blue and red continuum filters are quite similar to the Stroemgren b and y filters used to measure stellar photometric variability. We conclude that active stars whose visible continuum brightness varies inversely with activity, as measured by the Ca HK index, are displaying a pattern that is similar to that of the Sun, i.e., radiative variability in the visible continuum that is spot-dominated.« less

  11. A TWO-RIBBON WHITE-LIGHT FLARE ASSOCIATED WITH A FAILED SOLAR ERUPTION OBSERVED BY ONSET, SDO, AND IRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, X.; Hao, Q.; Ding, M. D.

    Two-ribbon brightenings are one of the most remarkable characteristics of an eruptive solar flare and are often used to predict the occurrence of coronal mass ejections (CMEs). Nevertheless, it was recently called into question whether all two-ribbon flares are eruptive. In this paper, we investigate a two-ribbon-like white-light (WL) flare that is associated with a failed magnetic flux rope (MFR) eruption on 2015 January 13, which has no accompanying CME in the WL coronagraph. Observations by the Optical and Near-infrared Solar Eruption Tracer and the Solar Dynamics Observatory reveal that with the increase of the flare emission and the acceleration ofmore » the unsuccessfully erupting MFR, two isolated kernels appear at the WL 3600 Å passband and quickly develop into two elongated ribbon-like structures. The evolution of the WL continuum enhancement is completely coincident in time with the variation of Fermi hard X-ray 26–50 keV flux. An increase of continuum emission is also clearly visible at the whole FUV and NUV passbands observed by the Interface Region Imaging Spectrograph. Moreover, in one WL kernel, the Si iv, C ii, and Mg ii h/k lines display significant enhancement and non-thermal broadening. However, their Doppler velocity pattern is location-dependent. At the strongly bright pixels, these lines exhibit a blueshift, while at moderately bright ones, the lines are generally redshifted. These results show that the failed MFR eruption is also able to produce a two-ribbon flare and high-energy electrons that heat the lower atmosphere, causing the enhancement of the WL and FUV/NUV continuum emissions and chromospheric evaporation.« less

  12. Resolving the X-ray emission from the Lyman-continuum emitting galaxy Tol 1247-232

    NASA Astrophysics Data System (ADS)

    Kaaret, P.; Brorby, M.; Casella, L.; Prestwich, A. H.

    2017-11-01

    Chandra observations of the nearby, Lyman-continuum (LyC) emitting galaxy Tol 1247-232 resolve the X-ray emission and show that it is dominated by a point-like source with a hard spectrum (Γ = 1.6 ± 0.5) and a high luminosity [(9 ± 2) × 1040 erg s- 1]. Comparison with an earlier XMM-Newton observation shows flux variation of a factor of 2. Hence, the X-ray emission likely arises from an accreting X-ray source: a low-luminosity active galactic nucleus or one or a few X-ray binaries. The Chandra X-ray source is similar to the point-like, hard spectrum (Γ = 1.2 ± 0.2), high-luminosity (1041 erg s- 1) source seen in Haro 11, which is the only other confirmed LyC-emitting galaxy that has been resolved in X-rays. We discuss the possibility that accreting X-ray sources contribute to LyC escape.

  13. Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST.

    PubMed

    Xu, X Q

    2008-07-01

    We present gyrokinetic neoclassical simulations of tokamak plasmas with a self-consistent electric field using a fully nonlinear (full- f ) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five-dimensional computational grid in phase space. The present implementation is a method of lines approach where the phase-space derivatives are discretized with finite differences, and implicit backward differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving the gyrokinetic Poisson equation with self-consistent poloidal variation. With a four-dimensional (psi,theta,micro) version of the TEMPEST code, we compute the radial particle and heat fluxes, the geodesic-acoustic mode, and the development of the neoclassical electric field, which we compare with neoclassical theory using a Lorentz collision model. The present work provides a numerical scheme for self-consistently studying important dynamical aspects of neoclassical transport and electric field in toroidal magnetic fusion devices.

  14. Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.

    2008-07-01

    We present gyrokinetic neoclassical simulations of tokamak plasmas with a self-consistent electric field using a fully nonlinear (full- f ) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five-dimensional computational grid in phase space. The present implementation is a method of lines approach where the phase-space derivatives are discretized with finite differences, and implicit backward differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving the gyrokinetic Poisson equation with self-consistent poloidal variation. With a four-dimensional (ψ,θ,γ,μ) version of the TEMPEST code, we compute the radial particle and heat fluxes, the geodesic-acoustic mode, and the development of the neoclassical electric field, which we compare with neoclassical theory using a Lorentz collision model. The present work provides a numerical scheme for self-consistently studying important dynamical aspects of neoclassical transport and electric field in toroidal magnetic fusion devices.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, B.; Menten, K. M.; Wu, Y.

    We conducted Very Large Array C-configuration observations to measure positions and luminosities of Galactic Class II 6.7 GHz methanol masers and their associated ultra-compact H ii regions. The spectral resolution was 3.90625 kHz and the continuum sensitivity reached 45 μ Jy beam{sup −1}. We mapped 372 methanol masers with peak flux densities of more than 2 Jy selected from the literature. Absolute positions have nominal uncertainties of 0.″3. In this first paper on the data analysis, we present three catalogs; the first gives information on the strongest feature of 367 methanol maser sources, and the second provides information on allmore » detected maser spots. The third catalog presents derived data of the 127 radio continuum counterparts associated with maser sources. Our detection rate of radio continuum counterparts toward methanol masers is approximately one-third. Our catalogs list properties including distance, flux density, luminosity, and the distribution in the Galactic plane. We found no significant relationship between luminosities of masers and their associated radio continuum counterparts, however, the detection rate of radio continuum emission toward maser sources increases statistically with the maser luminosities.« less

  16. Comparison between KPVT/SPM and SoHO/MDI magnetograms with an application to solar irradiance reconstructions

    NASA Astrophysics Data System (ADS)

    Wenzler, T.; Solanki, S. K.; Krivova, N. A.; Fluri, D. M.

    2004-12-01

    To be able to use both space- and ground-based solar magnetograms and construct long time series of derived parameters it is important to cross-calibrate them so that we can estimate their reliability and combine them. Using two different techniques, we compare magnetograms as well as continuum images recorded by the Spectropolarimeter (SPM) on Kitt Peak and the Michelson Doppler Interferometer (MDI) on board SoHO. We find that the result obtained depends on the method used. The method we favour gives almost identical umbral and penumbral areas and very similar total magnetic fluxes in faculae. The magnetic fluxes in umbrae and penumbrae returned by the two instruments, however, differ considerably. We also demonstrate that SPM data can be employed to reconstruct total solar irradiance variations with almost the same accuracy as recently shown for MDI data.

  17. First Science Verification of the VLA Sky Survey Pilot

    NASA Astrophysics Data System (ADS)

    Cavanaugh, Amy

    2017-01-01

    My research involved analyzing test images by Steve Myers for the upcoming VLA Sky Survey. This survey will cover the entire sky visible from the VLA site in S band (2-4 GHz). The VLA will be in B configuration for the survey, as it was when the test images were produced, meaning a resolution of approximately 2.5 arcseconds. Conducted using On-the-Fly mode, the survey will have a speed of approximately 20 deg2 hr-1 (including overhead). New Python imaging scripts are being developed and improved to process the VLASS images. My research consisted of comparing a continuum test image over S band (from the new imaging scripts) to two previous images of the same region of the sky (from the CNSS and FIRST surveys), as well as comparing the continuum image to single spectral windows (from the new imaging scripts and of the same sky region). By comparing our continuum test image to images from CNSS and FIRST, we tested on-the-Fly mode and the imaging script used to produce our images. Another goal was to test whether individual spectral windows could be used in combination to calculate spectral indices close to those produced over S band (based only on our continuum image). Our continuum image contained 64 sources as opposed to the 99 sources found in the CNSS image. The CNSS image also had lower noise level (0.095 mJy/beam compared to 0.119 mJy/beam). Additionally, when our continuum image was compared to the CNSS image, separation showed no dependence on total flux density (in our continuum image). At lower flux densities, sources in our image were brighter than the same ones in the CNSS image. When our continuum image was compared to the FIRST catalog, the spectral index difference showed no dependence on total flux (in our continuum image). In conclusion, the quality of our images did not completely match the quality of the CNSS and FIRST images. More work is needed in developing the new imaging scripts.

  18. Spectroscopic monitoring of the BL Lac object AO 0235+164

    NASA Astrophysics Data System (ADS)

    Raiteri, C. M.; Villata, M.; Capetti, A.; Heidt, J.; Arnaboldi, M.; Magazzù, A.

    2007-03-01

    Aims:Spectroscopic monitoring of BL Lac objects is a difficult task that nonetheless can provide important information on the different components of the active galactic nucleus. Methods: We performed optical spectroscopic monitoring of the BL Lac object AO 0235+164 (z=0.94) with the VLT and TNG telescopes from Aug. 2003 to Dec. 2004, during an extended WEBT campaign. The flux of this source is both contaminated and absorbed by a foreground galactic system at z=0.524, the stars of which can act as gravitational micro-lenses. Results: In this period the object was in an optically faint, though variable state, and a broad Mg II emission line was visible at all epochs. The spectroscopic analysis reveals an overall variation in the Mg II line flux of a factor 1.9, while the corresponding continuum flux density changed by a factor 4.3. Most likely, the photoionising radiation can be identified with the emission component that was earlier recognised to be present as a UV-soft-X-ray bump in the source spectral energy distribution and that is visible in the optical domain only in very faint optical states. We estimate an upper limit to the broad line region (BLR) size of a few light months from the historical minimum brightness level; from this we infer the maximum amplification of the Mg II line predicted by the microlensing scenario. Conclusions: .Unless we have strongly overestimated the size of the BLR, only very massive stars could significantly magnify the broad Mg II emission line, but the time scale of variations due to these (rare) events would be of several years. In contrast, the continuum flux, coming from much smaller emission regions in the jet, could be affected by microlensing from the more plausible MACHO deflectors, with variability time scales of the order of some months. Based on observations collected at the European Southern Observatory, Chile (ESO Programme 71.A-0174), and on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.

  19. Luminous clusters of Wolf-Rayet stars in the SBmIII galaxy NGC 4214

    NASA Technical Reports Server (NTRS)

    Sargent, Wallace L. W.; Filippenko, Alexei V.

    1991-01-01

    Observations are reported of strong broad emission lines attributed to WR stars in the spectra of several bright knots in the nearby Magellanic irregular galaxy NGC 4214 (classified as type SBmIII), in addition to the emission produced by the more prevalent WN stars). Data are presented on measurements of the line fluxes, the line equivalent widths, and continuum flux densities in the four observed knots, showing that the strongest WR lines generally appear in knots having the most luminous stellar continuum. The significance of this observation is discussed.

  20. Kinetic Monte Carlo simulations of ion-induced ripple formation: Dependence on flux, temperature, and defect concentration in the linear regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chason, E.; Chan, W. L.; Bharathi, M. S.

    Low-energy ion bombardment produces spontaneous periodic structures (sputter ripples) on many surfaces. Continuum theories describe the pattern formation in terms of ion-surface interactions and surface relaxation kinetics, but many features of these models (such as defect concentration) are unknown or difficult to determine. In this work, we present results of kinetic Monte Carlo simulations that model surface evolution using discrete atomistic versions of the physical processes included in the continuum theories. From simulations over a range of parameters, we obtain the dependence of the ripple growth rate, wavelength, and velocity on the ion flux and temperature. The results are discussedmore » in terms of the thermally dependent concentration and diffusivity of ion-induced surface defects. We find that in the early stages of ripple formation the simulation results are surprisingly well described by the predictions of the continuum theory, in spite of simplifying approximations used in the continuum model.« less

  1. Spectrophotometry of Comet West

    NASA Technical Reports Server (NTRS)

    Ahearn, M. F.; Hanisch, R. J.; Thurber, C. H.

    1980-01-01

    Postperihelion observations of Comet West (1975n = 1976 VI) have been made with a Fourier transform spectrometer at heliocentric distances from 0.57 to 1.68 AU. Measurements were made of the emission bands of C2, CN, C3, CH, and NH2, as well as the emission lines of Na D and forbidden (O I), and the flux in the continuum in nine different bandpasses. Several ratios of the band strengths of CN have been used to determine the two free parameters in the fluorescence equilibrium model of CN of Danks and Arpigny (1973). From the values of the parameters it is inferred that the vibrational transition probability for the ground electronic state is between 0.025 and 0.075 per sec and that the ratio of oscillator strengths between the (0-0) bands of the violet and red systems is between 25 and 30. When corrected for field-of-view effects, NH2 shows no systematic variation in abundance relative to C2 while CH shows a small increase. The cometary continuum is found to be slightly redder than the solar continuum, consistent with results for other bright, dusty comets. The equivalent width of the Delta u = 0 sequence of C2 shows a marked decrease at r(H) = 1.2 AU.

  2. Estimation of Land Surface Fluxes and Their Uncertainty via Variational Data Assimilation Approach

    NASA Astrophysics Data System (ADS)

    Abdolghafoorian, A.; Farhadi, L.

    2016-12-01

    Accurate estimation of land surface heat and moisture fluxes as well as root zone soil moisture is crucial in various hydrological, meteorological, and agricultural applications. "In situ" measurements of these fluxes are costly and cannot be readily scaled to large areas relevant to weather and climate studies. Therefore, there is a need for techniques to make quantitative estimates of heat and moisture fluxes using land surface state variables. In this work, we applied a novel approach based on the variational data assimilation (VDA) methodology to estimate land surface fluxes and soil moisture profile from the land surface states. This study accounts for the strong linkage between terrestrial water and energy cycles by coupling the dual source energy balance equation with the water balance equation through the mass flux of evapotranspiration (ET). Heat diffusion and moisture diffusion into the column of soil are adjoined to the cost function as constraints. This coupling results in more accurate prediction of land surface heat and moisture fluxes and consequently soil moisture at multiple depths with high temporal frequency as required in many hydrological, environmental and agricultural applications. One of the key limitations of VDA technique is its tendency to be ill-posed, meaning that a continuum of possibilities exists for different parameters that produce essentially identical measurement-model misfit errors. On the other hand, the value of heat and moisture flux estimation to decision-making processes is limited if reasonable estimates of the corresponding uncertainty are not provided. In order to address these issues, in this research uncertainty analysis will be performed to estimate the uncertainty of retrieved fluxes and root zone soil moisture. The assimilation algorithm is tested with a series of experiments using a synthetic data set generated by the simultaneous heat and water (SHAW) model. We demonstrate the VDA performance by comparing the (synthetic) true measurements (including profile of soil moisture and temperature, land surface water and heat fluxes, and root water uptake) with VDA estimates. In addition, the feasibility of extending the proposed approach to use remote sensing observations is tested by limiting the number of LST observations and soil moisture observations.

  3. The continuum slope of Mars - Bidirectional reflectance investigations and applications to Olympus Mons

    NASA Astrophysics Data System (ADS)

    Fischer, E. M.; Pieters, C. M.

    1993-04-01

    Two primary causes of near-IR continuum slope variations have been observed in an investigation of the bidirectional reflectance characteristics of ferric coatings on the continuum slope of Mars. First, the presence of a thin ferric coating on a dark substrate produces a negative continuum slope due to the wavelength-dependent transparency of the ferric coating. Second, wavelength-dependent directional reflectance occurs when the surface particles are tightly packed, particle sizes are on the order of or smaller than the wavelength of light, or the surface is otherwise smooth on the order of the wavelength of light. Based on these results, the annuli on the flanks of Olympus Mons which are defined by reflectance and continuum slope are consistent with spatial variations in surface texture and possibly with spatial variations in the thickness of a ferric dust coating or rind.

  4. X-ray spectral variability of Seyfert 2 galaxies

    NASA Astrophysics Data System (ADS)

    Hernández-García, L.; Masegosa, J.; González-Martín, O.; Márquez, I.

    2015-07-01

    Context. Variability across the electromagnetic spectrum is a property of active galactic nuclei (AGN) that can help constrain the physical properties of these galaxies. Nonetheless, the way in which the changes happen and whether they occur in the same way in every AGN are still open questions. Aims: This is the third in a series of papers with the aim of studying the X-ray variability of different families of AGN. The main purpose of this work is to investigate the variability pattern(s) in a sample of optically selected Seyfert 2 galaxies. Methods: We use the 26 Seyfert 2s in the Véron-Cetty and Véron catalog with data available from Chandra and/or XMM-Newton public archives at different epochs, with timescales ranging from a few hours to years. All the spectra of the same source were simultaneously fitted, and we let different parameters vary in the model. Whenever possible, short-term variations from the analysis of the light curves and/or long-term UV flux variations were studied. We divided the sample into Compton-thick and Compton-thin candidates to account for the degree of obscuration. When transitions between Compton-thick and thin were obtained for different observations of the same source, we classified it as a changing-look candidate. Results: Short-term variability at X-rays was studied in ten cases, but variations are not found. From the 25 analyzed sources, 11 show long-term variations. Eight (out of 11) are Compton-thin, one (out of 12) is Compton-thick, and the two changing-look candidates are also variable. The main driver for the X-ray changes is related to the nuclear power (nine cases), while variations at soft energies or related to absorbers at hard X-rays are less common, and in many cases these variations are accompanied by variations in the nuclear continuum. At UV frequencies, only NGC 5194 (out of six sources) is variable, but the changes are not related to the nucleus. We report two changing-look candidates, MARK 273 and NGC 7319. Conclusions: A constant reflection component located far away from the nucleus plus a variable nuclear continuum are able to explain most of our results. Within this scenario, the Compton-thick candidates are dominated by reflection, which suppresses their continuum, making them seem fainter, and they do not show variations (except MARK 3), while the Compton-thin and changing-look candidates do. Appendices are available in electronic form at http://www.aanda.org

  5. RXTE Observations of the Seyfert 2 Galaxy MrK 348

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Georgantopoulos, Ioannis; Warwick, Robert S.

    2000-01-01

    We present RXTE monitoring observations of the Seyfert 2 galaxy Mrk 348 spanning a 6 month period. The time-averaged spectrum in the 3-20 keV band shows many features characteristic of a Compton-thin Seyfert 2 galaxy, namely a hard underlying power-law continuum (Gamma approximately equal 1.8) with heavy soft X-ray absorption (N(sub H) approximately 10(exp 23)/sq cm) plus measurable iron K.alpha emission (equivalent width approximately 100 eV) and, at high energy, evidence for a reflection component (R approximately < 1). During the first half of the monitoring period the X-ray continuum flux from Mrk 348 remained relatively steady. However this was followed by a significant brightening of the source (by roughly a factor of 4) with the fastest change corresponding to a doubling of its X-ray flux on a timescale of about 20 days. The flux increase was accompanied by a marked softening of X-ray spectrum most likely attributable to a factor approximately 3 decline in the intrinsic line-of-sight column density. In contrast the iron K.alpha line and the reflection components showed no evidence of variability. These observations suggest a scenario in which the central X-ray source is surrounded by a patchy distribution of absorbing material located within about a light-week of the nucleus of Mrk 348. The random movement of individual clouds within the absorbing screen, across our line of sight, produces substantial temporal variations in the measured column density on timescales of weeks to months and gives rise to the observed X-ray spectral variability. However, as viewed from the nucleus the global coverage and typical thickness of the cloud layer remains relatively constant.

  6. Spectral Variations of T Tauri stars

    NASA Astrophysics Data System (ADS)

    Guenther, E.

    1994-02-01

    Although it can now be taken for granted that T Tauri stars accrete matter from circumstellar disks, the way in which the matter is ultimately accreted by the star is still under discussion. Boundary layer models, as well as models of magnetic accretion are considered. Since the very inner part of the disk, the star, and the boundary layer or the accretion shock radiate mainly in the optical, it is necessary to investigate this wavelength region. Optical spectra of classical T Tauri stars consist of emission lines superimposed on a late-type photospheric spectrum, but the photospheric lines in T Tauri stars are much weaker than the lines of main sequence stars of the same spectral type. This is generally attributed to the presence of an additional continuum which veils the photospheric spectrum of the star, which may be be the emission of the boundary layer, or the emission of the immediate vicinity of an accretion shock. The aim of this work is to give additional information on the nature of the region that emits the veiling continuum by investigating the correlations between the veiling and line fluxes in time serieses of T Tauri stars. For this work a time series of 27, 117, and 89 spectra of BM And, DI Cep and DG Tau, were taken in 9, 13, and 12 nights, using the Echellette-Spectrograph of the 2.2m telescope on Calar Alto, Spain. These T Tauri stars were selected because of their different of levels of activity. The spectra cover the whole region between 3200Å and 11000Å with a resolution of about Δ λ λ = 3000. Using 32 template stars the spectral types of the stars were determined, which is found to remain unchanged during the whole time series. The wavelengths of all photospheric lines are in agreement with a single doppler shift (+/- 6 km/s), which is taken as the systemic velocity. It is thus assumed that the low excitation lines are indeed the photospheric lines of the star and the veiling is an additional continuum source. The spectrum of the veiling continuum is determined by subtracting a flux calibrated, scaled template spectrum from the flux calibrated, deredened T Taui star spectrum. The spectra of the veiling continuum exhibit a strong, variable Balmer Jump, but no Pashen Jump is seen. Hα is the only emission line in the spectrum of BM And, all other Balmer lines and the lines of He I appear in absorption, and are redshifted by at least 100 km/s. While the correlation between Hα and the veiling continuum is high, the correlation between all redshifted absorption lines and the veiling continuum is very low. From a comparison of observed and computed profiles of He I it is concluded that this line might form close to an accretion shock, and so should the higher Balmer. Since no redshifted absorption component is seen in Hα, the emission component must be optically thick, and should then be formed at a larger distance from the star than the redshifted absorption components, and hence the veiling continuum. The observations of BM And clearly show that the magnetic model is valid in this case, but the veiling continuum is not the emission of the accretion shock itself. DG Tau and DI Cep show the same kind of behavior. All emission lines have correlation factors between about 0.3 and 0.8. The highest correlations are found in the Balmer lines and low excitation Fe I and Fe II lines. There are no delay effects between the lines, all lines reach their maxima and minima at the same time. From the large Balmer decrement, and calculation of the Balmer lines and the veiling continuum in a simple slab model, it is concluded that the emitting region that is responsible for the emission lines and the veiling continuum has a temperature of 10000 K, and a density of 3**1018m-3 or less. In the slab geometry this corresponds to an emitting region which is at least 10000 km (≅ 0.01 R*) thick. It can thus be concluded that the region emitting the veiling continuum is relatively large and thin.

  7. Dynamic Processes in Be Star Atmospheres. VI. Simultaneous X-Ray, Ultraviolet, and Optical Variations in λ Eridani

    NASA Astrophysics Data System (ADS)

    Smith, Myron A.; Murakami, T.; Ezuka, H.; Anandarao, B. G.; Chakraborty, A.; Corcoran, M. F.; Hirata, R.

    1997-05-01

    We document the results of simultaneous wavelength monitoring of the B2e star λ Eri. This campaign was carried out from ground stations and with the ROSAT, ASCA, IUE, and Voyager 2 space platforms during a week in 1995 February-March a smaller follow-up was conducted in 1995 September. During the first of these intervals λ Eri exhibited extraordinary wind and disk-ejection activity. The ROSAT/HRI X-ray light curves showed no large flares such as the one the ROSAT/PSPC observed in 1991. However, possible low-level fluctuations in the February-March ROSAT data occurred at the same time as unusual activity in Hα, He I λ6678, He II λ1640, and the C IV doublet. For example, the hydrogen and helium lines exhibited an emission in the blue half of their profiles, probably lasting several hours. The C IV lines showed a strong high-velocity discrete absorption component (DAC) accompanied by unusually strong absorption at lower velocities. The helium line activity suggests that a mass ejection occurred at the base of the wind, while the strong C III (Voyager) and C IV (IUE) lines imply that shock interactions occurred in the wind flow. It is not clear that the X-ray elevations are directly related to the strong C IV absorptions because the former changed on a much more rapid timescale than absorptions in the C IV lines. Within hours of the mild X-ray flux variations found by ROSAT on February 28, the Voyager UV spectrometer (UVS) observed a ``ringing'' that decayed over three 3 hr cycles. The amplitude of these fluctuations was strong (50%) at 950-1100 Å, decreased rapidly with wavelength, and faded to nondetection longward of 1300 Å. Various considerations indicate that these continuum variations were not due to an instrumental pathology in the UVS. Rather, they appear to be due to a time-dependent flux deficit in the 950-1250 Å region. We outline a scenario in which a dense plasma structure over the star's surface is heated and cooled quasi-periodically to produce such flux changes. Observations of new examples of this phenomenon are badly needed. Amateur astronomers can make a significant contribution to its understanding by searching for ringing in light curves of Be stars during their outburst phases. Finally, we draw attention to an increase in the emission of the Hα line that occurred at about the time the far-ultraviolet ringing started. This increased emission hints that ~50,000 K plasma near the star's surface can influence the circumstellar disk at ~12 R* by its increased Lyman continuum flux.

  8. Reactive solid surface morphology variation via ionic diffusion.

    PubMed

    Sun, Zhenchao; Zhou, Qiang; Fan, Liang-Shih

    2012-08-14

    In gas-solid reactions, one of the most important factors that determine the overall reaction rate is the solid morphology, which can be characterized by a combination of smooth, convex and concave structures. Generally, the solid surface structure varies in the course of reactions, which is classically noted as being attributed to one or more of the following three mechanisms: mechanical interaction, molar volume change, and sintering. Here we show that if a gas-solid reaction involves the outward ionic diffusion of a solid-phase reactant then this outward ionic diffusion could eventually smooth the surface with an initial concave and/or convex structure. Specifically, the concave surface is filled via a larger outward diffusing surface pointing to the concave valley, whereas the height of the convex surface decreases via a lower outward diffusion flux in the vertical direction. A quantitative 2-D continuum diffusion model is established to analyze these two morphological variation processes, which shows consistent results with the experiments. This surface morphology variation by solid-phase ionic diffusion serves to provide a fourth mechanism that supplements the traditionally acknowledged solid morphology variation or, in general, porosity variation mechanisms in gas-solid reactions.

  9. Neoclassical Simulation of Tokamak Plasmas using Continuum Gyrokinetc Code TEMPEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, X Q

    We present gyrokinetic neoclassical simulations of tokamak plasmas with self-consistent electric field for the first time using a fully nonlinear (full-f) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five dimensional computational grid in phase space. The present implementation is a Method of Lines approach where the phase-space derivatives are discretized with finite differences and implicit backwards differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving gyrokinetic Poisson equation with self-consistent poloidal variation. Withmore » our 4D ({psi}, {theta}, {epsilon}, {mu}) version of the TEMPEST code we compute radial particle and heat flux, the Geodesic-Acoustic Mode (GAM), and the development of neoclassical electric field, which we compare with neoclassical theory with a Lorentz collision model. The present work provides a numerical scheme and a new capability for self-consistently studying important aspects of neoclassical transport and rotations in toroidal magnetic fusion devices.« less

  10. Timing the warm absorber in NGC4051

    NASA Astrophysics Data System (ADS)

    Silva, C.; Uttley, P.; Costantini, E.

    2015-07-01

    In this work we have combined spectral and timing analysis in the characterization of highly ionized outflows in Seyfert galaxies, the so-called warm absorbers. Here, we present our results on the extensive ˜600ks of XMM-Newton archival observations of the bright and highly variable Seyfert 1 galaxy NGC4051, whose spectrum has revealed a complex multi-component wind. Working simultaneously with RGS and PN data, we have performed a detailed analysis using a time-dependent photoionization code in combination with spectral and Fourier timing techniques. This method allows us to study in detail the response of the gas due to variations in the ionizing flux of the central source. As a result, we will show the contribution of the recombining gas to the time delays of the most highly absorbed energy bands relative to the continuum (Silva, Uttley & Costantini in prep.), which is also vital information for interpreting the continuum lags associated with propagation and reverberation effects in the inner emitting regions. Furthermore, we will illustrate how this powerful method can be applied to other sources and warm-absorber configurations, allowing for a wide range of studies.

  11. Radio continuum observations of local star-forming galaxies using the Caltech Continuum Backend on the green bank telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabidoux, Katie; Pisano, D. J.; Kepley, Amanda A.

    2014-01-01

    We observed radio continuum emission in 27 local (D < 70 Mpc) star-forming galaxies with the Robert C. Byrd Green Bank Telescope between 26 GHz and 40 GHz using the Caltech Continuum Backend. We obtained detections for 22 of these galaxies at all four sub-bands and four more marginal detections by taking the average flux across the entire bandwidth. This is the first detection (full or marginal) at these frequencies for 22 of these galaxies. We fit spectral energy distributions (SEDs) for all of the four sub-band detections. For 14 of the galaxies, SEDs were best fit by a combinationmore » of thermal free-free and nonthermal synchrotron components. Eight galaxies with four sub-band detections had steep spectra that were only fit by a single nonthermal component. Using these fits, we calculated supernova rates, total number of equivalent O stars, and star formation rates within each ∼23'' beam. For unresolved galaxies, these physical properties characterize the galaxies' recent star formation on a global scale. We confirm that the radio-far-infrared correlation holds for the unresolved galaxies' total 33 GHz flux regardless of their thermal fractions, though the scatter on this correlation is larger than that at 1.4 GHz. In addition, we found that for the unresolved galaxies, there is an inverse relationship between the ratio of 33 GHz flux to total far-infrared flux and the steepness of the galaxy's spectral index between 1.4 GHz and 33 GHz. This relationship could be an indicator of the timescale of the observed episode of star formation.« less

  12. Photometric Properties of Network and faculae derived by HMI data compensated for scattered-light

    NASA Astrophysics Data System (ADS)

    Criscuoli, Serena; Norton, Aimee Ann; Whitney, Taylor

    2017-08-01

    We report on the photometric properties of faculae and network as observed in full-disk,scattered-light corrected images from the Helioseismic Magnetic Imager (HMI). We usea Lucy-Richardson deconvolution routine that corrects a full-disk intensity image in lessthan one second. Faculae are distinguished from network through proximity to activeregions in addition to continuum intensity and magnetogram thresholds. This is the firstreport that full-disk image data, including center-to-limb variations, reproduce the photometric properties of faculae and network observed previously only in sub-arcsecond resolution, small field-of-view studies, i.e. that network exhibit in general higher photometric contrasts. More specifically, for magnetic flux values larger than approximately 300 G, the network is always brighter than faculae and the contrast differences increases toward the limb, where the network contrast is about twice the facular one. For lower magnetic flux values, pixels in network regions appear always darker than facular ones. Contrary to reports from previous full-disk observations, we also found that network exhibits a higher center-to-limb variation. Our results are in agreement with reports from simulations that indicate magnetic flux alone is a poor proxy of the photometric properties of magnetic features. We estimate that the facular and network contribution to irradiance variability of the current Cycle 24 is overestimated by at least 11% due to the photometric properties of network and faculae not being recognized as distinctly different.

  13. Fast Variations In Spectrum of Comet Halley

    NASA Astrophysics Data System (ADS)

    Borysenko, S. A.

    The goal of this work is to research fast variations of spectral lines intensities in spectra of comet Halley. The present research was made on the basis of more then 500 high- resolution spectrogram obtained by L.M. Shulman and H.K. Nazarchuk in November- December, 1985 at the 6-m telescope (SAO, Russia). Some fast variations with different quasiperiods were detected in all the spectrograms. Quasiperiods of these variations were from 15 - 40 min to 1.5 - 2 hours. As data from spacecraft "Vega-2" show, more fast variations with quasiperiods 5 - 10 min are obviously present in cometary time variations. Only the most important lines so as C2, C3, CN, CH and NH2 were analyzed. False periods were checked by comparison of the power spectra of the variations with the computed spectral window of the data. Only false periods about 400 sec (the avarage period of exposition) were detected. An algorithm for analysis of locally Poisson's time series was proposed. Two types of fast variations are detected: 1)high amplitude variations with more long quasiperiods (1.5 - 2 hours) and the coefficient of crosscorrelations between line intensities about 0.9 - 0.95; 2)low amplitude variations with short periods (15 - 40 min), which look like white noise and have the coefficient of crosscorrelations about 0.1 - 0.3. This difference may be caused by nature of variations. The first type variations may be an effect of both active processes in cometary nucleus and streams of solar protons. Analysis of solar proton flux variation with energies >1 MeV in November - Decem- ber 1985 confirms the above-mentioned version. In the second case it may by only inner processes in the nucleus that generate the observed variations. For determination of general parameters of cometary atmosphere, such as the produc- tion rates of radicals C2, C3, CN, CH, and NH2 it was necessary to estimate the contri- bution of dust grains luminiscence into the continuum of the comet. Space and wave- length distribution of the lumminescent continuum was calculated. A simple model of a comet atmosphere (the Haser's model) was taken to make synthetic photomet- rical data and to calibrate the spectra by comparison the synthetic photometry with the data of the absolute photometry from the IHW archive. This way the gas obtained production rates and numbers of basic molecules in the cometary atmosphere.

  14. Using principal component analysis to understand the variability of PDS 456

    NASA Astrophysics Data System (ADS)

    Parker, M. L.; Reeves, J. N.; Matzeu, G. A.; Buisson, D. J. K.; Fabian, A. C.

    2018-02-01

    We present a spectral-variability analysis of the low-redshift quasar PDS 456 using principal component analysis. In the XMM-Newton data, we find a strong peak in the first principal component at the energy of the Fe absorption line from the highly blueshifted outflow. This indicates that the absorption feature is more variable than the continuum, and that it is responding to the continuum. We find qualitatively different behaviour in the Suzaku data, which is dominated by changes in the column density of neutral absorption. In this case, we find no evidence of the absorption produced by the highly ionized gas being correlated with this variability. Additionally, we perform simulations of the source variability, and demonstrate that PCA can trivially distinguish between outflow variability correlated, anticorrelated and un-correlated with the continuum flux. Here, the observed anticorrelation between the absorption line equivalent width and the continuum flux may be due to the ionization of the wind responding to the continuum. Finally, we compare our results with those found in the narrow-line Seyfert 1 IRAS 13224-3809. We find that the Fe K UFO feature is sharper and more prominent in PDS 456, but that it lacks the lower energy features from lighter elements found in IRAS 13224-3809, presumably due to differences in ionization.

  15. Simulating C fluxes along the terrestrial-aquatic continuum of the Amazon basin from 1861-2100

    NASA Astrophysics Data System (ADS)

    Lauerwald, R.; Regnier, P. A. G.; Ciais, P.

    2017-12-01

    To date, Earth System Models (ESM) ignore the lateral transfers of carbon (C) along the terrestrial-aquatic continuum down to the oceans and thus overestimate the terrestrial C storage. Here, we present the implementation of fluvial transport of dissolved organic carbon (DOC) and CO2 into ORCHIDEE, the land surface scheme of the Institut Pierre-Simon Laplace ESM. This new model branch, called ORCHILEAK, represents DOC production from canopy and soils, DOC and CO2 leaching from soils to streams, DOC decomposition and CO2 evasion to the atmosphere during its lateral transport in rivers, as well as exchange with the soil carbon and litter stocks in riparian wetlands. The model is calibrated and applied to the Amazon basin, including historical simulations starting from 1861 and future projections to the end of the 21st century. The model is found to reproduce well the observed dynamics in lateral DOC fluxes and CO2 evasion from the water surface. According to the simulations, half of the evading CO2 and 2/3 of the DOC transported in the rivers are produced within the water column or in flooded wetlands. We predict an increase in fluvial DOC exports to the coast and CO2 evasion to the atmosphere of about 1/4 over the 21st century (RCP 6.0). These long-term trends are mainly controlled by increasing atmospheric CO2 concentration and its fertilizing effect on terrestrial primary production in the model, while the effects of land-use change and increasing air temperature are minor. Interannual variations and seasonality of CO2 evasion and DOC transported by the river are however mainly controlled by hydrology. Over the simulation period, the actual land C sink represents less than half of the balance between terrestrial production and respiration in the Amazon basin, while the larger proportion is exported through the terrestrial-aquatic interface. These results highlight the importance of the terrestrial-aquatic continuum in the global C cycle.

  16. Continuum theory of edge states of topological insulators: variational principle and boundary conditions.

    PubMed

    Medhi, Amal; Shenoy, Vijay B

    2012-09-05

    We develop a continuum theory to model low energy excitations of a generic four-band time reversal invariant electronic system with boundaries. We propose a variational energy functional for the wavefunctions which allows us to derive natural boundary conditions valid for such systems. Our formulation is particularly suited for developing a continuum theory of the protected edge/surface excitations of topological insulators both in two and three dimensions. By a detailed comparison of our analytical formulation with tight binding calculations of ribbons of topological insulators modelled by the Bernevig-Hughes-Zhang (BHZ) Hamiltonian, we show that the continuum theory with a natural boundary condition provides an appropriate description of the low energy physics.

  17. The variability of Halley's Comet during the Vega, Planet-A, and Giotto encounters

    NASA Technical Reports Server (NTRS)

    Schleicher, D. G.; Millis, R. L.; Tholen, D.; Lark, N.; Birch, Peter V.; Martin, Ralph; Ahearn, Michael F.

    1986-01-01

    Narrowband photometry of Halley obtained at Cerro Tololo Inter-American Observatory (CTIO), Mauna Kea Observatory (MKO), and Perth Observatory was combined to determine the relative level of activity during the interval spanning the spacecraft encounters. Measurements of the flux from the comet in emission bands of OH, NH, CN, C3, and C2, as well as at 2 continuum points, were obtained at CTIO on each night between 5 March and 17 March 1986. Observations were made on many of these same dates at MKO and Perth using comparable interference filters. The date clearly show variation of a factor of 2.5 in the production of all observed species with a characteristic time scale of a few days.

  18. Water and energy balances in the soil-plant atmosphere continuum

    USDA-ARS?s Scientific Manuscript database

    Energy fluxes at soil-atmosphere and plant-atmosphere interfaces can be summed to zero because the surfaces have no capacity for energy storage. The resulting energy balance equations may be written in terms of physical descriptions of these fluxes; and have been the basis for problem casting and so...

  19. Time-resolved IUE studies of cataclysmic variables. I - Eclipsing systems IP Peg, PG 1030+590, and V1315 Aql

    NASA Technical Reports Server (NTRS)

    Szkody, Paula

    1987-01-01

    IUE time-resolved spectra of the high-inclination cataclysmic variables IP Peg, PG 1030+590, and V1315 Aql are analyzed in order to determine the characteristics of the disk, hotspots, and white dwarfs. The UV continuum flux distributions are generally flatter than systems of low inclination and high mass-transfer rate, and the white dwarfs/inner disk appear to be relatively cool (15,000-19,000 K) for their orbital periods, possibly because the boundary layers are blocked from view. The continuum fluxes increase at spot phases, with the spot providing the dominant flux in IP Peg. The spot temperatures range from hot (20,000 K) in IP Peg, and perhaps in PG 1030+590, to cool (11,000 K) in V1315 Aql. The C IV emission lines show slightly larger decreases at spot phases than during eclipse, which implies an extended stream area.

  20. The next-generation ESL continuum gyrokinetic edge code

    NASA Astrophysics Data System (ADS)

    Cohen, R.; Dorr, M.; Hittinger, J.; Rognlien, T.; Collela, P.; Martin, D.

    2009-05-01

    The Edge Simulation Laboratory (ESL) project is developing continuum-based approaches to kinetic simulation of edge plasmas. A new code is being developed, based on a conservative formulation and fourth-order discretization of full-f gyrokinetic equations in parallel-velocity, magnetic-moment coordinates. The code exploits mapped multiblock grids to deal with the geometric complexities of the edge region, and utilizes a new flux limiter [P. Colella and M.D. Sekora, JCP 227, 7069 (2008)] to suppress unphysical oscillations about discontinuities while maintaining high-order accuracy elsewhere. The code is just becoming operational; we will report initial tests for neoclassical orbit calculations in closed-flux surface and limiter (closed plus open flux surfaces) geometry. It is anticipated that the algorithmic refinements in the new code will address the slow numerical instability that was observed in some long simulations with the existing TEMPEST code. We will also discuss the status and plans for physics enhancements to the new code.

  1. VizieR Online Data Catalog: Jekyll & Hyde galaxies ALMA cube & spectrum (Schreiber+, 2018)

    NASA Astrophysics Data System (ADS)

    Schreiber, C.; Labbe, I.; Glazebrook, K.; Bekiaris, G.; Papovich, C.; Costa, T.; Elbaz, D.; Kacprzak, G. G.; Nanayakkara, T.; Oesch, P.; Pannella, M.; Spitler, L.; Straatman, C.; Tran, K.-V.; Wang, T.

    2017-11-01

    These files consist of the full ALMA data cube for the galaxies Jekyll and Hyde, together with the extracted continuum image and the spectrum of Hyde. The data cube was produced by CASA (v4.7.0), the continuum image was constructed as the weighted average in line-free channels, and the spectrum was extracted at the peak flux position of Hyde. The data cube and spectrum files contain two extensions, one for the flux, and another for the uncertainty. This uncertainty was determined from the RMS of the cube data between 2 and 8" away from the center. All fluxes are in units of Jansky, and the spectral axis is given in observed frequency (GHz). The images were not CLEANed, therefore the dirty beam (which is also provided here) is the correct point-spread function to use when analyzing these images. (2 data files).

  2. On the observability of the gamma-ray line flux from dark matter annihilation

    NASA Technical Reports Server (NTRS)

    Rudaz, S.; Stecker, F. W.

    1991-01-01

    The limits on the possible cosmic gamma-ray line flux from the two-photon annihilation of dark matter in the Galaxy are discussed. These limits are derived using both particle physics and cosmological constraints on dark matter candidates which arise in supersymmetric extensions of the standard model of particle physics. Results are given in terms of allowed and prescribed areas in the flux-energy plane. Then these bounds are used to consider the observability of the line flux above continuum background fluxes using future high-resolution gamma-ray telescopes.

  3. Impact of the temporal variation of oxygen contents in the water column on the biogeochemistry of the benthic zone

    NASA Astrophysics Data System (ADS)

    Rigaud, Sylvain; Deflandre, Bruno; Grenz, Christian; Pozzato, Lara; Cesbron, Florian; Meulé, Samuel; Bonin, Patricia; Michotey, Valérie; Mirleau, Pascal; Mirleau, Fatma; Knoery, Joel; Zuberer, Frédéric; Guillemain, Dorian; Marguerite, Sébatien; Mayot, Nicolas; Faure, Vincent; Grisel, Raphael; Radakovitch, Olivier

    2017-04-01

    The desoxygenation of the water column in coastal areas, refered as coastal hypoxia, is currently a growing phenomenon still particularly complex to predict. This is mainly due to the fact that the biogeochemical response of the benthic ecosystem to the variation of the oxygen contents in the water column remains poorly understood. Dissolved oxygen concentration is a key parameter controling the benthic micro- and macro-community as well as the biogeochemical reactions occuring in the surface sediment. More particularly, the variation over variable time scales (from hour to years) of the oxygen deficit may induce different pathways for biogeochemical processes such as the oxydation of freshly deposited organic matter and nutrients and metals recycling. This results in variable chemical fluxes at the sediment-water interface, that may in turn, support the eutrophication and desoxygenation of the aquatic system. Our study focus on the Berre lagoon, an eutrophicated mediterranean lagoon impacted by hypoxia events in the water column. Three stations, closely located but impacted by contrasted temporal variation of oxygen deficit in the water column were selected: one station with rare oxygen deficit and with functionnal macrofauna community, one station with almost permanent oxygen deficit and no macrofauna community and one intermediate station with seasonnal oxygen deficit and degraded macrofauna community. Each station was surveyed once during a same field survey while the intermediate station was surveyed seasonnaly. For each campaign, we report vertical profiles of the main chemical components (oxygen, nutrients, metals) along the water-column/sediment continuum, with an increased vertical resolution in the benthic zone using a multi-tool approach (high vertical resolution suprabenthic water sampler and microsensors profiler). In addition, total chemical fluxes at the sediment-water interface was obtained using benthic chambers. This dataset was used to evaluate the influence, of the oxygen concentrations (and its short and long-term variations) in the water column on the nature and location of the main biogeochemical reactions occuring in the benthic zone and the resulting fluxes at the sediment-water interface.

  4. Air-water CO2 and CH4 fluxes along a river-reservoir continuum: Case study in the Pengxi River, a tributary of the Yangtze River in the Three Gorges Reservoir, China.

    PubMed

    Huang, Yang; Yasarer, Lindsey M W; Li, Zhe; Sturm, Belinda S M; Zhang, Zengyu; Guo, Jinsong; Shen, Yu

    2017-05-01

    Water surface greenhouse gas (GHG) emissions in freshwater reservoirs are closely related to limnological processes in the water column. Affected by both reservoir operation and seasonal changes, variations in the hydro-morphological conditions in the river-reservoir continuum will create distinctive patterns in water surface GHG emissions. A one-year field survey was carried out in the Pengxi River-reservoir continuum, a part of the Three Gorges Reservoir (TGR) immediately after the TGR reached its maximum water level. The annual average water surface CO 2 and CH 4 emissions at the riverine background sampling sites were 6.23 ± 0.93 and 0.025 ± 0.006 mmol h -1  m -2 , respectively. The CO 2 emissions were higher than those in the downstream reservoirs. The development of phytoplankton controlled the downstream decrease in water surface CO 2 emissions. The presence of thermal stratification in the permanent backwater area supported extensive phytoplankton blooms, resulting in a carbon sink during several months of the year. The CH 4 emissions were mainly impacted by water temperature and dissolved organic carbon. The greatest water surface CH 4 emission was detected in the fluctuating backwater area, likely due to a shallower water column and abundant organic matter. The Pengxi River backwater area did not show significant increase in water surface GHG emissions reported in tropical reservoirs. In evaluating the net GHG emissions by the impoundment of TGR, the net change in the carbon budget and the contribution of nitrogen and phosphorus should be taken into consideration in this eutrophic river-reservoir continuum.

  5. Properties of the smallest solar magnetic elements. I - Facular contrast near sun center

    NASA Technical Reports Server (NTRS)

    Topka, K. P.; Tarbell, T. D.; Title, A. M.

    1992-01-01

    Measurements are presented which indicate that the continuum intensity of facular areas in solar active regions, outside sunspots and pores, is less than that of the quiet sun very near disk center. It is shown that the observed continuum intensity of faculae at disk center near 5000 A is nearly 3 percent less than that of the quiet sun. The continuum contrast increases rapidly away from disk center, reaching +2 percent at 45 deg. The zero-crossing point, where the contrast changes sign, occurs at 20-degree heliocentric angle. This is contrary to many earlier observations. The constraint these observations place on the size of flux tubes depends upon the value of the zero-crossing point. It is proposed that most of the flux tubes in solar faculae may be very small, in the range 50-100 km in diameter, and that inclination from local vertical of about 10 deg at the photosphere is common on the sun. Footpoints of opposite polarity tend to tilt toward one another.

  6. Probing the Cold Dust Emission in the AB Aur Disk: A Dust Trap in a Decaying Vortex?

    PubMed

    Fuente, Asunción; Baruteau, Clément; Neri, Roberto; Carmona, Andrés; Agúndez, Marcelino; Goicoechea, Javier R; Bachiller, Rafael; Cernicharo, José; Berné, Olivier

    2017-09-01

    One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0".58×0".78 ≈ 80×110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthal variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets.

  7. Quantum mechanical/molecular mechanical/continuum style solvation model: linear response theory, variational treatment, and nuclear gradients.

    PubMed

    Li, Hui

    2009-11-14

    Linear response and variational treatment are formulated for Hartree-Fock (HF) and Kohn-Sham density functional theory (DFT) methods and combined discrete-continuum solvation models that incorporate self-consistently induced dipoles and charges. Due to the variational treatment, analytic nuclear gradients can be evaluated efficiently for these discrete and continuum solvation models. The forces and torques on the induced point dipoles and point charges can be evaluated using simple electrostatic formulas as for permanent point dipoles and point charges, in accordance with the electrostatic nature of these methods. Implementation and tests using the effective fragment potential (EFP, a polarizable force field) method and the conductorlike polarizable continuum model (CPCM) show that the nuclear gradients are as accurate as those in the gas phase HF and DFT methods. Using B3LYP/EFP/CPCM and time-dependent-B3LYP/EFP/CPCM methods, acetone S(0)-->S(1) excitation in aqueous solution is studied. The results are close to those from full B3LYP/CPCM calculations.

  8. Reverberation Mapping of the Kepler target KA1858+48

    NASA Astrophysics Data System (ADS)

    Pei, Liuyi; Barth, A. J.; Malkan, M. A.; Cenko, S. B.; Clubb, K. I.; Filippenko, A. V.; Gates, E. L.; Horst, J.; Joner, M. D.; Leonard, D. C.; Sand, D. J.

    2013-01-01

    KA1858+48 is a Seyfert 1 galaxy at redshift 0.078 and is among the brightest active galaxies being monitored by the Kepler mission. We have carried out a reverberation mapping program designed to measure the broad-line region size and estimate the mass of the black hole in KA1858+48. We obtained spectroscopic data using the Kast Spectrograph at the Lick 3 m telescope during dark runs from late winter through fall of 2012, by requesting an observation on each night that the Kast Spectrograph was mounted on the telescope. We also obtained V-band images from the Nickel 1 m telescope at Lick Observatory, the 0.9 m telescope at Brigham Young University West Mountain Observatory, the Faulkes Telescope North at the Las Cumbres Observatory Global Telescope, the KAIT telescope at Lick Observatory, and the 1 m telescope at Mt. Laguna Observatory. The H-beta light curve shows a lag time of approximately 12 days with respect to the V-band continuum flux variations. We will present the continuum and emission-line light curves, cross-correlation lag measurements, and a preliminary estimate of the black hole mass in KA1858+48.

  9. A complete disclosure of the hidden type-1 AGN in NGC 1068 thanks to 52 years of broadband polarimetric observation

    NASA Astrophysics Data System (ADS)

    Marin, F.

    2018-06-01

    We create the first broadband polarization spectrum of an active galactic nucleus (AGN) by compiling the 0.1 - 100 μm, 4.9 GHz and 15 GHz continuum polarization of NGC 1068 from more than 50 years of observations. Despite the diversity of instruments and apertures, the observed spectrum of linear continuum polarization has distinctive wavelength-dependent signatures that can be related to the AGN and host galaxy physics. The impact of the Big Blue bump and infrared bump, together with electron, Mie scattering, dichroism and synchrotron emission are naturally highlighted in polarization, allowing us to reveal the type-1 AGN core inside this type-2 object with unprecedented precision. In order to isolate the AGN component, we reconstruct the spectral energy distribution of NGC 1068 and estimate the fraction of diluting light in the observed continuum flux. This allows us to clearly and independently show that, in the case of NGC 1068, Thomson scattering is the dominant mechanism for the polarization in the optical band. We also investigate the effect of aperture on the observed polarization and confirm previous findings on the extension of the narrow line region of NGC 1068 and on the B-band and K-band polarization from the host. Finally, we do not detect statistically significant aperture-corrected polarimetric variations over the last 52 years, suggesting that the parsec-scale morphological and magnetic geometries probably remained stable for more than half a century.

  10. Role of zonal flows in trapped electron mode turbulence through nonlinear gyrokinetic particle and continuum simulationa)

    NASA Astrophysics Data System (ADS)

    Ernst, D. R.; Lang, J.; Nevins, W. M.; Hoffman, M.; Chen, Y.; Dorland, W.; Parker, S.

    2009-05-01

    Trapped electron mode (TEM) turbulence exhibits a rich variety of collisional and zonal flow physics. This work explores the parametric variation of zonal flows and underlying mechanisms through a series of linear and nonlinear gyrokinetic simulations, using both particle-in-cell and continuum methods. A new stability diagram for electron modes is presented, identifying a critical boundary at ηe=1, separating long and short wavelength TEMs. A novel parity test is used to separate TEMs from electron temperature gradient driven modes. A nonlinear scan of ηe reveals fine scale structure for ηe≳1, consistent with linear expectation. For ηe<1, zonal flows are the dominant saturation mechanism, and TEM transport is insensitive to ηe. For ηe>1, zonal flows are weak, and TEM transport falls inversely with a power law in ηe. The role of zonal flows appears to be connected to linear stability properties. Particle and continuum methods are compared in detail over a range of ηe=d ln Te/d ln ne values from zero to five. Linear growth rate spectra, transport fluxes, fluctuation wavelength spectra, zonal flow shearing spectra, and correlation lengths and times are in close agreement. In addition to identifying the critical parameter ηe for TEM zonal flows, this paper takes a challenging step in code verification, directly comparing very different methods of simulating simultaneous kinetic electron and ion dynamics in TEM turbulence.

  11. Analysis of Voyager spectra of the beta Cephei star nu Eridani

    NASA Technical Reports Server (NTRS)

    Porri, A.; Stalio, R.; Ali, B.; Polidan, R. S.; Morossi, C.

    1994-01-01

    Voyager 500-1700 A spectrophotometric observations of the beta Cephei star nu Eri are presented and discussed. The Voyager observations were obtained in 1981 and cover six pulsation cycles of the star. These data are supplemented with a set of nine International Ultraviolet Explorer (IUE) SWP high-resolution observations covering one, earlier epoch, pulsation cycle. Light curves are derived from the Voyager data at 1055 and 1425 A. These light curves are found to be consistent in both shape and period with published optical curves. The 1055 A light curve also exhibits a phenomenon not seen in the optical curves: a small but highly significant systematic increase in the flux of the maximum light phases while maintaining a constant minimum light level over the interval of observation. Substantially larger errors in the longer wavelength data preclude discussion of this phenomenon in the 1425 A light curve. Examination of the far-UV continuum in nu Eri during this period shows that the color temperature is lower for the brighter maxima. Analysis of the far-UV continuum at maximum and minimum light yields an effective temperature difference between these two phases of 2200 + or - 750 K. Spectroscopically, three prominent features are seen in the Voyager data: a feature at 985 A mostly due to a blend of C III 977 A, H I Ly gamma 972 A, and N III 990 A; a feature at 1030 A due to H I Ly beta 1026 A and C II 1037 A; and the Si IV resonance doublet near 1400 A. A comparison of the 912-1700 A spectral region in nu Eri with a set of standard, i.e., nonpulsating stars, shows that nu Eri closely resembles the standard both in continuum shape and spectral line strengths with the possible exception of a slight flux excess between 912 and 975 A. The equivalent width of the 985 A feature is shown to vary in strength over the pulsation cycle in antiphase with the light curve and variations seen in the C IV 1548-1551 lines from the IUE data. This behavior of the 985 A feature is most likely caused by variations in the strength of the Ly gamma component of the blend. Comparisons are also made between nu Eri and the only other beta Cephei star studied in the far-UV, BW Vul, with the most notable differences between the two stars being the much larger delta(T(sub eff)) for BW Vul and the almost total absence of abnormalities in observed spectrum of nu Eri.

  12. PHYSICAL PROPERTIES OF LARGE AND SMALL GRANULES IN SOLAR QUIET REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Daren; Xie Zongxia; Hu Qinghua

    The normal mode observations of seven quiet regions obtained by the Hinode spacecraft are analyzed to study the physical properties of granules. An artificial intelligence technique is introduced to automatically find the spatial distribution of granules in feature spaces. In this work, we investigate the dependence of granular continuum intensity, mean Doppler velocity, and magnetic fields on granular diameter. We recognized 71,538 granules by an automatic segmentation technique and then extracted five properties: diameter, continuum intensity, Doppler velocity, and longitudinal and transverse magnetic flux density to describe the granules. To automatically explore the intrinsic structures of the granules in themore » five-dimensional parameter space, the X-means clustering algorithm and one-rule classifier are introduced to define the rules for classifying the granules. It is found that diameter is a dominating parameter in classifying the granules and two families of granules are derived: small granules with diameters smaller than 1.''44, and large granules with diameters larger than 1.''44. Based on statistical analysis of the detected granules, the following results are derived: (1) the averages of diameter, continuum intensity, and Doppler velocity in the upward direction of large granules are larger than those of small granules; (2) the averages of absolute longitudinal, transverse, and unsigned flux density of large granules are smaller than those of small granules; (3) for small granules, the average of continuum intensity increases with their diameters, while the averages of Doppler velocity, transverse, absolute longitudinal, and unsigned magnetic flux density decrease with their diameters. However, the mean properties of large granules are stable; (4) the intensity distributions of all granules and small granules do not satisfy Gaussian distribution, while that of large granules almost agrees with normal distribution with a peak at 1.04 I{sub 0}.« less

  13. SWIFT Observations of a Far UV Luminosity Component in SS433

    NASA Technical Reports Server (NTRS)

    Cannizzo, J. K.; Boyd, P. T.; Dolan, J. F.

    2007-01-01

    SS433 is a binary system showing relativistic Doppler shifts in its two sets of emission lines. The origin of its UV continuum is not well established. We observed SS433 to determine the emission mechanism responsible for its far UV spectrum. The source was observed at several different phases of both its 13 d orbital period and 162.5 d precession period using the UVOT and XRT detector systems on Swift. The far UV spectrum down to 1880 Angstrom lies significantly above the spectral flux distribution predicted by extrapolating the reddened blackbody continuum that fits the spectrum above 3500 Angstroms. The intensity of the far UV flux varies over a period of days and the variability is correlated with the variability of the soft X-ray flux from the source. An emission mechanism in addition to those previously detected in the optical and X-ray regions must exist in the far UV spectrum of SS433.

  14. Theoretical Calculation and Validation of the Water Vapor Continuum Absorption

    NASA Technical Reports Server (NTRS)

    Ma, Qiancheng; Tipping, Richard H.

    1998-01-01

    The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multispectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/sq m, which compared to the 4 W/sq m magnitude of the greenhouse gas forcing and the 1-2 W/sq m estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude tuning, the empirical continuum models over the full spectral range of interest for remote sensing and climate applications. Thus, we propose to further develop and refine our existing, far-wing formalism to provide an improved treatment applicable from the near-infrared through the microwave. Based on the results of this investigation, we will provide to the remote sensing/climate modeling community a practical and accurate tabulation of the continuum absorption covering the near-infrared through the microwave region of the spectrum for the range of temperatures and pressures of interest for atmospheric applications.

  15. Theoretical Calculation and Validation of the Water Vapor Continuum Absorption

    NASA Technical Reports Server (NTRS)

    Ma, Qiancheng; Tipping, Richard H.

    1998-01-01

    The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multi-spectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/ml, which compared to the 4 W/m' magnitude of the greenhouse gas forcing and the 1-2 W/m' estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude tuning the empirical continuum models over the full spectral range of interest for remote sensing and climate applications. Thus, we propose to further develop and refine our existing far-wing formalism to provide an improved treatment applicable from the near-infrared through the microwave. Based on the results of this investigation, we will provide to the remote sensing/climate modeling community a practical and accurate tabulation of the continuum absorption covering the near-infrared through the microwave region of the spectrum for the range of temperatures and pressures of interest for atmospheric applications.

  16. X-Ray Flare Characteristics in the B2e Star Lambda Eridani (ROSAT)

    NASA Technical Reports Server (NTRS)

    Smith, Myron A.

    1997-01-01

    We document the results of a simultaneous wavelength monitoring on the B2e star (lambda) Eri. This campaign was carried out from ground stations and with the ROSAT, ASCA, IUE, and Voyager 2 space platforms during a week in February-March 1995; a smaller follow-up was conducted in September 1995. During the first of these intervals (lambda) Eri exhibited extraordinary wind and disk-ejection activity. The ROSAT/HRI X-ray light curves showed no large flares such as the one the ROSAT/PSCA observed in 1991. However, possible low level fluctuations in the February-March ROSAT data occurred at the same time as unusual activity in H(alpha) He I (lambda)6678, He II (lambda)1640, and the C IV doublet. For example, the hydrogen and helium lines exhibited an emission in the blue half of their profiles, probably lasting several hours. The C IV lines showed a strong high-velocity Discrete Absorption Component (DAC) accompanied by unusually strong absorption at lower velocities. The helium line activity suggests that a mass ejection occurred at the base of the wind while the strong C III (Voyager) and C IV (IUE) lines implies that shock interactions occurred in the wind flow. It is not clear that the X-ray elevations are directly related to the strong C IV absorptions because the former changed on a much more rapid timescale than absorptions in the C IV lines. Within hours of the mild X-ray flux variations found by ROSAT on February 28, the Voyager UVS observed a "ringing" that decayed over three 3-hr. cycles. The amplitude of these fluctuations was strong (50%) at (lambda)(lambda)950-1100, decreased rapidly with wavelength, and faded to nondetection longward of (lambda)1300. Various considerations indicate that these continuum variations were not due to an instrumental pathology in the UVS. Rather, they appear to be due to a time-dependent flux deficit in the (lambda)(lambda)950-1250 region. We outline a scenario in which a dense plasma structure over the star's surface is heated and cooled quasi-periodically to produce such flux changes. Observations of new examples of this phenomenon are badly needed. Amateur astronomers can make a significant contribution to its understanding by searching for ringing in light curves of Be stars during their outburst phases. Finally we draw attention to an increase in the emission of the H(alpha) line that occurred at about the time the FUV ringing started. This increased emission hints that approximately 50,000K plasma near the star's surface can influence the circumstellar disc at approximately 12R. by its increased Lyman continuum flux.

  17. Stonefly (Plecoptera) Feeding Modes: Variation Along a California River Continuum

    Treesearch

    Richard L. Bottorff; Allen W. Knight

    1989-01-01

    The distribution of Plecoptera along a California river was used to test several predictions of the River Continuum Concept about how functional feeding groups should change along a stream's length. Stoneflies were collected from stream orders 1-6 (123 km) of the Cosumnes River continuum in the central Sierra Nevada. The 69 stonefly species collected were...

  18. Algorithm refinement for stochastic partial differential equations: II. Correlated systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, Francis J.; Garcia, Alejandro L.; Tartakovsky, Daniel M.

    2005-08-10

    We analyze a hybrid particle/continuum algorithm for a hydrodynamic system with long ranged correlations. Specifically, we consider the so-called train model for viscous transport in gases, which is based on a generalization of the random walk process for the diffusion of momentum. This discrete model is coupled with its continuous counterpart, given by a pair of stochastic partial differential equations. At the interface between the particle and continuum computations the coupling is by flux matching, giving exact mass and momentum conservation. This methodology is an extension of our stochastic Algorithm Refinement (AR) hybrid for simple diffusion [F. Alexander, A. Garcia,more » D. Tartakovsky, Algorithm refinement for stochastic partial differential equations: I. Linear diffusion, J. Comput. Phys. 182 (2002) 47-66]. Results from a variety of numerical experiments are presented for steady-state scenarios. In all cases the mean and variance of density and velocity are captured correctly by the stochastic hybrid algorithm. For a non-stochastic version (i.e., using only deterministic continuum fluxes) the long-range correlations of velocity fluctuations are qualitatively preserved but at reduced magnitude.« less

  19. Fingering and Intermittent Flow in Unsaturated Fractured Porous Media

    NASA Astrophysics Data System (ADS)

    Or, D.; Ghezzehei, T. A.

    2003-12-01

    Because of the dominance of gravitational forces over capillary and viscous forces in relatively large fracture apertures, flow processes in unsaturated fractures are considerably different from flow in rock matrix or in unsaturated soils. Additionally, variations in fracture geometry and properties perturb the delicate balance between gravitational, capillary, and viscous forces, leading to liquid fragmentation, fingering and intermittent flows. We developed a quantitative framework for modeling fluid fragmentation and the subsequent flow behavior of discrete fluid elements (slugs). The transition from a slowly growing but stationary liquid cluster to a finger-forming mobile slug in a non horizontal fracture is estimated from the force balance between retarding capillary forces dominated by contact angle hysteresis, and the weight and shape of the cluster. For a steady flux we developed a model for liquid fragmentation within the fracture plane that gives rise to intermittent discharge, as has been observed experimentally. Intermittency is shown to be a result of interplay between capillary, viscous, and gravitational forces, much like internal dripping. Liquid slug size, detachment interval, and travel velocity are dependent primarily on the local fracture-aperture geometry shaping the seed cluster, rock-surface roughness and wetness, and liquid flux feeding the bridge (either by film flow or from the rock matrix). We show that the presence of even a few irregularities in a vertical fracture surface could affect liquid cluster formation and growth, resulting in complicated flux patterns at the fracture bottom. Such chaotic-like behavior has been observed in previous studies involving gravity-driven unsaturated flow. Inferences based on statistical description of fracture-aperture variations and simplified representation of the fragmentation processes yield insights regarding magnitude and frequency of liquid avalanches. The study illustrates that attempts at describing intermittent and preferential flow behavior by adjustment of macroscopic continuum approaches are destined to failure at most local scales. In accordance with recent observations, flow behavior in partially saturated fractures tends to produce highly localize pathways that focus otherwise diffusive fluxes (film flow or matrix seepage).

  20. THE X-RAY THROUGH OPTICAL FLUXES AND LINE STRENGTHS OF TIDAL DISRUPTION EVENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Nathaniel; Kasen, Daniel; Guillochon, James

    We study the emission from tidal disruption events (TDEs) produced as radiation from black hole accretion propagates through an extended, optically thick envelope formed from stellar debris. We analytically describe key physics controlling spectrum formation, and present detailed radiative transfer calculations that model the spectral energy distribution and optical line strengths of TDEs near peak brightness. The steady-state transfer is coupled to a solver for the excitation and ionization states of hydrogen, helium, and oxygen (as a representative metal), without assuming local thermodynamic equilibrium. Our calculations show how an extended envelope can reprocess a fraction of soft X-rays and producemore » the observed optical fluxes of the order of 10{sup 43} erg s{sup −1}, with an optical/UV continuum that is not described by a single blackbody. Variations in the mass or size of the envelope may help explain how the optical flux changes over time with roughly constant color. For high enough accretion luminosities, X-rays can escape to be observed simultaneously with the optical flux. Due to optical depth effects, hydrogen Balmer line emission is often strongly suppressed relative to helium line emission (with He ii-to-H line ratios of at least 5:1 in some cases) even in the disruption of a solar-composition star. We discuss the implications of our results to understanding the type of stars destroyed in TDEs and the physical processes responsible for producing the observed flares.« less

  1. Temperature Variations from HST Imagery of NGC 7009

    NASA Astrophysics Data System (ADS)

    Rubin, R. H.; Bhatt, N.; Dufour, R. J.; Buckalew, B.; Barlow, M. J.; Liu, X.; Storey, P. J.; Balick, B.; Ferland, G. J.; Harrington, J. P.; Martin, P. G.

    2000-12-01

    We present new HST/WFPC2 imagery for the planetary nebula (PN) NGC 7009. Observations were made in line filters F437N, F487N, F502N, and F656N plus continuum filter F547M. The primary goal was to develop a high spatial resolution ( ~0.1'') map of the intrinsic line ratio [O 3] 4363/5007 and thereby evaluate the electron temperature (Te) and the mean-square Te variation (t2) across the nebula. In this process we developed an extinction map from the F487N (Hβ ) and F656N (Hα ) images by comparing the observed line ratios in each pixel to the theoretical ratio and computing a c(Hβ ) map which was used to correct the observed 4363/5007 ratios for reddening. As has been known, extinction is not large for this PN as we further demonstrate in our reddening map. The most difficult and uncertain step is to extract the flux for [O 3] 4363 from the F437N data. Because this line is relatively weak, the continuum contribution to the observed F437N filter data is not negligible. Additionally, it is necessary to adjust for Hγ ``leakage" in the F437N bandpass. Because the dominant contribution to the nebular continuum for NGC 7009 is recombination processes, we correct for the continuum emission as well as the Hγ ``leakage" into the F437N bandpass using our F487N (Hβ ) image. A preliminary tie-in with ground-based spectra indicates this is best done by subtracting 0.012*F487N from F437N. We present a picture of the [O 3] Te map, as well as our determinations of t2. The preliminary map is rather uniform; almost all values are between 9000 -- 10500 K, with the higher Tes closely coinciding with the inner He++-zone as seen in blue in the WFPC2 image of Balick et al. (1998, AJ, 116, 360). Improvements are in progress that utilize our recent HST/STIS long-slit spectra to provide excellent co-spatial registration with the WFPC2 data to test/refine our methodology and analysis. Supported by AURA/STScI grant related to GO-8114.

  2. Particle/Continuum Hybrid Simulation in a Parallel Computing Environment

    NASA Technical Reports Server (NTRS)

    Baganoff, Donald

    1996-01-01

    The objective of this study was to modify an existing parallel particle code based on the direct simulation Monte Carlo (DSMC) method to include a Navier-Stokes (NS) calculation so that a hybrid solution could be developed. In carrying out this work, it was determined that the following five issues had to be addressed before extensive program development of a three dimensional capability was pursued: (1) find a set of one-sided kinetic fluxes that are fully compatible with the DSMC method, (2) develop a finite volume scheme to make use of these one-sided kinetic fluxes, (3) make use of the one-sided kinetic fluxes together with DSMC type boundary conditions at a material surface so that velocity slip and temperature slip arise naturally for near-continuum conditions, (4) find a suitable sampling scheme so that the values of the one-sided fluxes predicted by the NS solution at an interface between the two domains can be converted into the correct distribution of particles to be introduced into the DSMC domain, (5) carry out a suitable number of tests to confirm that the developed concepts are valid, individually and in concert for a hybrid scheme.

  3. Probing the Cold Dust Emission in the AB Aur Disk: A Dust Trap in a Decaying Vortex?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuente, Asunción; Bachiller, Rafael; Baruteau, Clément

    One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0.″58 × 0.″78 ≈ 80 × 110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthalmore » variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets.« less

  4. An Azimuthal Asymmetry in the LkHα 330 Disk

    NASA Astrophysics Data System (ADS)

    Isella, Andrea; Pérez, Laura M.; Carpenter, John M.; Ricci, Luca; Andrews, Sean; Rosenfeld, Katherine

    2013-09-01

    Theory predicts that giant planets and low mass stellar companions shape circumstellar disks by opening annular gaps in the gas and dust spatial distribution. For more than a decade it has been debated whether this is the dominant process that leads to the formation of transitional disks. In this paper, we present millimeter-wave interferometric observations of the transitional disk around the young intermediate mass star LkHα 330. These observations reveal a lopsided ring in the 1.3 mm dust thermal emission characterized by a radius of about 100 AU and an azimuthal intensity variation of a factor of two. By comparing the observations with a Gaussian parametric model, we find that the observed asymmetry is consistent with a circular arc, that extends azimuthally by about 90° and emits about 1/3 of the total continuum flux at 1.3 mm. Hydrodynamic simulations show that this structure is similar to the azimuthal asymmetries in the disk surface density that might be produced by the dynamical interaction with unseen low mass companions orbiting within 70 AU from the central star. We argue that such asymmetries might lead to azimuthal variations in the millimeter-wave dust opacity and in the dust temperature, which will also affect the millimeter-wave continuum emission. Alternative explanations for the observed asymmetry that do not require the presence of companions cannot be ruled out with the existing data. Further observations of both the dust and molecular gas emission are required to derive firm conclusions on the origin of the asymmetry observed in the LkHα 330 disk.

  5. Intensive HST, RXTE, and ASCA Monitoring of NGC 3516: Evidence against Thermal Reprocessing

    NASA Technical Reports Server (NTRS)

    Edelson, Rick; Koratkar, Anuradha; Nandra, Kirpal; Goad, Michael; Peterson, Bradley M.; Collier, Stefan; Krolik, Julian; Malkan, Matthew; Maoz, Dan; OBrien, Paul

    2000-01-01

    During 1998 April 1316, the bright, strongly variable Seyfert 1 galaxy NGC 3516 was monitored almost continuously with HST for 10.3 hr at ultraviolet wavelengths and 2.8 days at optical wavelengths, and simultaneous RXTE and ASCA monitoring covered the same period. The X-ray fluxes were strongly variable with the soft (0.5-2 keV) X-rays showing stronger variations (approx. 65% peak to peak) than the hard (2-10 keV) X-rays (approx. 50% peak to peak). The optical continuum showed much smaller but still highly significant variations: a slow approx. 2.5% rise followed by a faster approx. 3.5% decline. The short ultraviolet observation did not show significant variability. The soft and hard X-ray light curves were strongly correlated, with no evidence for a significant interband lag. Likewise, the optical continuum bands (3590 and 5510 A) were also strongly correlated, with no measurable lag, to 3(sigma) limits of approx. less than 0.15 day. However, the optical and X-ray light curves showed very different behavior, and no significant correlation or simple relationship could be found. These results appear difficult to reconcile with previous reports of correlations between X-ray and optical variations and of measurable lags within the optical band for some other Seyfert 1 galaxies. These results also present serious problems for "reprocessing" models in which the X-ray source heats a stratified accretion disk, which then reemits in the optical/ultraviolet : the synchronous variations within the optical would suggest that the emitting region is approx. less than 0.3 It-day across, while the lack of correlation between X-ray and optical variations would indicate, in the context of this model, that any reprocessing region must be approx. greater than 1 It-day in size. It may be possible to resolve this conflict by invoking anisotropic emission or special geometry, but the most natural explanation appears to be that the bulk of the optical luminosity is generated by some mechanism other than reprocessing.

  6. MONITORING H{alpha} EMISSION AND CONTINUUM OF UXORs: RR Tauri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedell, Megan; Villaume, Alexa; Weiss, Lauren

    2011-11-15

    The Maria Mitchell Observatory, in collaboration with the Astrokolkhoz Observatory, started a program of photometric monitoring of UX Ori-type stars (UXORs) with narrowband interference filters (IFs; augmented with the traditional broadband filters) aimed at separating the H{alpha} emission variations from those of the continuum. We present the method of separation and the first results for RR Tau obtained in two seasons, each roughly 100 days long (2010 Winter-Spring and 2010 Fall-2011 Spring). We confirm the conclusion from previous studies that the H{alpha} emission in this star is less variable than the continuum. Although some correlation between the two is notmore » excluded, the amplitude of H{alpha} variations is much smaller (factors of 3-5) than that of the continuum. These results are compatible with Grinin's model of UXORs, which postulates the presence of small obscuring circumstellar clouds as the cause of the continuum fading, as well as the presence of a circumstellar reflection/emission nebula, larger than the star and the obscuring clouds, which is responsible for H{alpha} emission and the effect of the 'color reversal' in deep minima. However, the results of both our broadband and narrowband photometry indicate that the obscuration model may be insufficient to explain all of the observations. Disk accretion, the presence of stellar or (proto) planetary companion(s), as well as the intrinsic variations of the star, may contribute to the observed light variations. We argue, in particular, that the H{alpha} emission may be more closely correlated with the intrinsic variations of the star than with the much stronger observed variations caused by the cloud obscuration. If this hypothesis is correct, the close monitoring of H{alpha} emission with IFs, accessible to small-size telescopes, may become an important tool in studying the physical nature of the UXORs' central stars.« less

  7. Comparison of Nernst-Planck and reaction rate models for multiply occupied channels.

    PubMed Central

    Levitt, D G

    1982-01-01

    The Nernst-Planck continuum equation for a channel that can be occupied by at most two ions is solved for two different physical cases. The first case is for the assumption that the water and ion cannot get around each other anywhere in the channel, so that if there are two ions in the channel the distance between them is fixed by the number of water molecules between them. The second case is for the assumption that there are regions at he ends of the channel where the ions and water can get around each other. For these two cases, the validity of the simple two-site reaction-rate approximation when there is a continuously varying central energy barrier was evaluated by comparing it with the exact Nernst-Planck solution. For the first continuum case, the kinetics for the continuum and reaction-rate models are nearly identical. For the second case, the agreement depends on the strength of the ion-ion interaction energy. For a low interaction energy (large channel diameter) a high ion concentrations, there is a large difference in the flux as a function of voltage for the two models-with the continuum flux becoming more than four times larger at 250 mV. Simple analytical expressions are derived for the two-ion continuum channel for the case where the ends are in equilibrium with the bulk solution and for the case where ion mobility becomes zero when there are two ions in the channel. The implications of these results for biological channels are discussed. PMID:6280783

  8. The Atmospheric Response to High Nonthermal Electron Beam Fluxes in Solar Flares. I. Modeling the Brightest NUV Footpoints in the X1 Solar Flare of 2014 March 29

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalski, Adam F.; Allred, Joel C.; Daw, Adrian

    2017-02-10

    The 2014 March 29 X1 solar flare (SOL20140329T17:48) produced bright continuum emission in the far- and near-ultraviolet (NUV) and highly asymmetric chromospheric emission lines, providing long-sought constraints on the heating mechanisms of the lower atmosphere in solar flares. We analyze the continuum and emission line data from the Interface Region Imaging Spectrograph (IRIS) of the brightest flaring magnetic footpoints in this flare. We compare the NUV spectra of the brightest pixels to new radiative-hydrodynamic predictions calculated with the RADYN code using constraints on a nonthermal electron beam inferred from the collisional thick-target modeling of hard X-ray data from Reuven Ramatymore » High Energy Solar Spectroscopic Imager . We show that the atmospheric response to a high beam flux density satisfactorily achieves the observed continuum brightness in the NUV. The NUV continuum emission in this flare is consistent with hydrogen (Balmer) recombination radiation that originates from low optical depth in a dense chromospheric condensation and from the stationary beam-heated layers just below the condensation. A model producing two flaring regions (a condensation and stationary layers) in the lower atmosphere is also consistent with the asymmetric Fe ii chromospheric emission line profiles observed in the impulsive phase.« less

  9. The Atmospheric Response to High Nonthermal Electron Beam Fluxes in Solar Flares. I. Modeling the Brightest NUV Footpoints in the X1 Solar Flare of 2014 March 29

    NASA Technical Reports Server (NTRS)

    Kowalski, Adam F.; Allred, Joel C.; Daw, Adrian N.; Cauzzi, Gianna; Carlsson, Mats

    2017-01-01

    The 2014 March 29 X1 solar flare (SOL20140329T17:48) produced bright continuum emission in the far- and near-ultraviolet (NUV) and highly asymmetric chromospheric emission lines, providing long-sought constraints on the heating mechanisms of the lower atmosphere in solar flares. We analyze the continuum and emission line data from the Interface Region Imaging Spectrograph (IRIS) of the brightest flaring magnetic footpoints in this flare. We compare the NUV spectra of the brightest pixels to new radiative-hydrodynamic predictions calculated with the RADYN code using constraints on a nonthermal electron beam inferred from the collisional thick-target modeling of hard X-ray data from Reuven Ramaty High Energy Solar Spectroscopic Imager. We show that the atmospheric response to a high beam flux density satisfactorily achieves the observed continuum brightness in the NUV. The NUV continuum emission in this flare is consistent with hydrogen (Balmer) recombination radiation that originates from low optical depth in a dense chromospheric condensation and from the stationary beam-heated layers just below the condensation. A model producing two flaring regions (a condensation and stationary layers) in the lower atmosphere is also consistent with the asymmetric Fe II chromospheric emission line profiles observed in the impulsive phase.

  10. The MUSCLES Treasury Survey. III. X-Ray to Infrared Spectra of 11 M and K Stars Hosting Planets

    NASA Astrophysics Data System (ADS)

    Loyd, R. O. P.; France, Kevin; Youngblood, Allison; Schneider, Christian; Brown, Alexander; Hu, Renyu; Linsky, Jeffrey; Froning, Cynthia S.; Redfield, Seth; Rugheimer, Sarah; Tian, Feng

    2016-06-01

    We present a catalog of panchromatic spectral energy distributions (SEDs) for 7 M and 4 K dwarf stars that span X-ray to infrared wavelengths (5 Å -5.5 μm). These SEDs are composites of Chandra or XMM-Newton data from 5-˜50 Å, a plasma emission model from ˜50-100 Å, broadband empirical estimates from 100-1170 Å, Hubble Space Telescope data from 1170-5700 Å, including a reconstruction of stellar Lyα emission at 1215.67 Å, and a PHOENIX model spectrum from 5700-55000 Å. Using these SEDs, we computed the photodissociation rates of several molecules prevalent in planetary atmospheres when exposed to each star’s unattenuated flux (“unshielded” photodissociation rates) and found that rates differ among stars by over an order of magnitude for most molecules. In general, the same spectral regions drive unshielded photodissociations both for the minimally and maximally FUV active stars. However, for O3 visible flux drives dissociation for the M stars whereas near-UV flux drives dissociation for the K stars. We also searched for an far-UV continuum in the assembled SEDs and detected it in 5/11 stars, where it contributes around 10% of the flux in the range spanned by the continuum bands. An ultraviolet continuum shape is resolved for the star ɛ Eri that shows an edge likely attributable to Si II recombination. The 11 SEDs presented in this paper, available online through the Mikulski Archive for Space Telescopes, will be valuable for vetting stellar upper-atmosphere emission models and simulating photochemistry in exoplanet atmospheres.

  11. The high-energy view of the broad-line radio galaxy 3C 111

    NASA Astrophysics Data System (ADS)

    Ballo, L.; Braito, V.; Reeves, J. N.; Sambruna, R. M.; Tombesi, F.

    2011-12-01

    We present the analysis of Suzaku and XMM-Newton observations of the broad-line radio galaxy (BLRG) 3C 111. Its high-energy emission shows variability, a harder continuum with respect to the radio-quiet active galactic nucleus population, and weak reflection features. Suzaku found the source in a minimum flux level; a comparison with the XMM-Newton data implies an increase of a factor of 2.5 in the 0.5-10 keV flux, in the 6 months separating the two observations. The iron K complex is detected in both data sets, with rather low equivalent width(s). The intensity of the iron K complex does not respond to the change in continuum flux. An ultrafast, high-ionization outflowing gas is clearly detected in the Suzaku/X-ray Imaging Spectrometer data; the absorber is most likely unstable. Indeed, during the XMM-Newton observation, which was 6 months after, the absorber was not detected. No clear rollover in the hard X-ray emission is detected, probably due to the emergence of the jet as a dominant component in the hard X-ray band, as suggested by the detection above ˜100 keV with the GSO onboard Suzaku, although the present data do not allow us to firmly constrain the relative contribution of the different components. The fluxes observed by the γ-ray satellites CGRO and Fermi would be compatible with the putative jet component if peaking at energies E˜ 100 MeV. In the X-ray band, the jet contribution to the continuum starts to be significant only above 10 keV. If the detection of the jet component in 3C 111 is confirmed, then its relative importance in the X-ray energy band could explain the different observed properties in the high-energy emission of BLRGs, which are otherwise similar in their other multiwavelength properties. Comparison between X-ray and γ-ray data taken at different epochs suggests that the strong variability observed for 3C 111 is probably driven by a change in the primary continuum.

  12. Two-wavelength Method Estimates Heat fluxes over Heterogeneous Surface in North-China

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Zheng, N.; Zhang, J.

    2017-12-01

    Heat fluxes is a key process of hydrological and heat transfer of soil-plant-atmosphere continuum (SPAC), and now it is becoming an important topic in meteorology, hydrology, ecology and other related research areas. Because the temporal and spatial variation of fluxes at regional scale is very complicated, it is still difficult to measure fluxes at the kilometer scale over a heterogeneous surface. A technique called "two-wavelength method" which combines optical scintillometer with microwave scintillometer is able to measure both sensible and latent heat fluxes over large spatial scales at the same time. The main purpose of this study is to investigate the fluxes over non-uniform terrain in North-China. Estimation of heat fluxes was carried out with the optical-microwave scintillometer and an eddy covariance (EC) system over heterogeneous surface in Tai Hang Mountains, China. EC method was set as a benchmark in the study. Structure parameters obtained from scintillometer showed that the typical measurement values of Cn2 are around 10-13 m-2/3 for microwave scintillometer, and values of Cn2 were around 10-15 m-2/3 for optical scintillometer. The correlation of heat fluxes (H) derived from scintillometer and EC system showed as a ratio of 1.05,and with R2=0.75, while the correlation of latent heat fluxes (LE) showed as 1.29 with R2=0.67. It was also found that heat fluxes derived from the two system showed good agreement (R2=0.9 for LE, R2=0.97 for H) when the Bowen ratio (β) was 1.03, while discrepancies showed significantly when β=0.75, and RMSD in H was 139.22 W/m2, 230.85 W/m2 in LE respectively.Experiment results in our research shows that, the two-wavelength method gives a larger heat fluxes over the study area, and a deeper study should be conduct. We expect that our investigate and analysis can be promoted the application of scintillometry method in regional evapotranspiration measurements and relevant disciplines.

  13. The Compact, ˜1 kpc Host Galaxy of a Quasar at a Redshift of 7.1

    NASA Astrophysics Data System (ADS)

    Venemans, Bram P.; Walter, Fabian; Decarli, Roberto; Bañados, Eduardo; Hodge, Jacqueline; Hewett, Paul; McMahon, Richard G.; Mortlock, Daniel J.; Simpson, Chris

    2017-03-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the [C II] fine-structure line and the underlying far-infrared (FIR) dust continuum emission in J1120+0641, the most distant quasar currently known (z=7.1). We also present observations targeting the CO(2-1), CO(7-6), and [C I] 369 μm lines in the same source obtained at the Very Large Array and Plateau de Bure Interferometer. We find a [C II] line flux of {F}[{{C}{{II}}]}=1.11+/- 0.10 Jy {km} {{{s}}}-1 and a continuum flux density of {S}227{GHz}=0.53+/- 0.04 mJy beam-1, consistent with previous unresolved measurements. No other source is detected in continuum or [C II] emission in the field covered by ALMA (˜ 25″). At the resolution of our ALMA observations (0.″23, or 1.2 kpc, a factor of ˜70 smaller beam area compared to previous measurements), we find that the majority of the emission is very compact: a high fraction (˜80%) of the total line and continuum flux is associated with a region 1-1.5 kpc in diameter. The remaining ˜20% of the emission is distributed over a larger area with radius ≲4 kpc. The [C II] emission does not exhibit ordered motion on kiloparsec scales: applying the virial theorem yields an upper limit on the dynamical mass of the host galaxy of (4.3+/- 0.9)× {10}10 {M}⊙ , only ˜20 × higher than the central black hole (BH). The other targeted lines (CO(2-1), CO(7-6), and [C I]) are not detected, but the limits of the line ratios with respect to the [C II] emission imply that the heating in the quasar host is dominated by star formation, and not by the accreting BH. The star formation rate (SFR) implied by the FIR continuum is 105-340 {M}⊙ {{yr}}-1, with a resulting SFR surface density of ˜100-350 {M}⊙ {{yr}}-1 kpc-2, well below the value for Eddington-accretion-limited star formation.

  14. The XMM-Newton Wide Angle Survey (XWAS): the X-ray spectrum of type-1 AGN

    NASA Astrophysics Data System (ADS)

    Mateos, S.; Carrera, F. J.; Page, M. J.; Watson, M. G.; Corral, A.; Tedds, J. A.; Ebrero, J.; Krumpe, M.; Schwope, A.; Ceballos, M. T.

    2010-02-01

    Aims: We discuss the broad band X-ray properties of one of the largest samples of X-ray selected type-1 AGN to date (487 objects in total), drawn from the XMM-Newton Wide Angle Survey (XWAS). The objects presented in this work cover 2-10 keV (rest-frame) luminosities from 1042-1045 erg s-1 and are detected up to redshift 4. We constrain the overall properties of the broad band continuum, soft excess and X-ray absorption, along with their dependence on the X-ray luminosity and redshift. We discuss the implications for models of AGN emission. Methods: We fitted the observed 0.2-12 keV broad band spectra with various models to search for X-ray absorption and soft excess. The F-test was used with a significance threshold of 99% to statistically accept the detection of additional spectral components. Results: We constrained the mean spectral index of the broad band X-ray continuum to <Γ> = 1.96 ± 0.02 with intrinsic dispersion {σ< Γ >} = 0.27-0.02+0.01. The continuum becomes harder at faint fluxes and at higher redshifts and hard (2-10 keV) luminosities. The dependence of Γ with flux is likely due to undetected absorption rather than to spectral variation. We found a strong dependence of the detection efficiency of objects on the spectral shape. We expect this effect to have an impact on the measured mean continuum shapes of sources at different redshifts and luminosities. We detected excess absorption in ⪆3% of our objects, with rest-frame column densities a few ×1022 cm-2. The apparent mismatch between the optical classification and X-ray properties of these objects is a challenge for the standard orientation-based AGN unification model. We found that the fraction of objects with detected soft excess is 36%. Using a thermal model, we constrained the soft excess mean rest-frame temperature and intrinsic dispersion to kT 100 eV and σkT 34 eV. The origin of the soft excess as thermal emission from the accretion disk or Compton scattered disk emission is ruled out on the basis of the temperatures detected and the lack of correlation of the soft excess temperature with the hard X-ray luminosity over more than 2 orders of magnitude in luminosity. Furthermore, the high luminosities of the soft excess rule out an origin in the host galaxy.

  15. Protoplanetary Disk Properties in the Orion Nebula Cluster: Initial Results from Deep, High-resolution ALMA Observations

    NASA Astrophysics Data System (ADS)

    Eisner, J. A.; Arce, H. G.; Ballering, N. P.; Bally, J.; Andrews, S. M.; Boyden, R. D.; Di Francesco, J.; Fang, M.; Johnstone, D.; Kim, J. S.; Mann, R. K.; Matthews, B.; Pascucci, I.; Ricci, L.; Sheehan, P. D.; Williams, J. P.

    2018-06-01

    We present Atacama Large Millimeter Array 850 μm continuum observations of the Orion Nebula Cluster that provide the highest angular resolution (∼0.″1 ≈ 40 au) and deepest sensitivity (∼0.1 mJy) of the region to date. We mosaicked a field containing ∼225 optical or near-IR-identified young stars, ∼60 of which are also optically identified “proplyds.” We detect continuum emission at 850 μm toward ∼80% of the proplyd sample, and ∼50% of the larger sample of previously identified cluster members. Detected objects have fluxes of ∼0.5–80 mJy. We remove submillimeter flux due to free–free emission in some objects, leaving a sample of sources detected in dust emission. Under standard assumptions of isothermal, optically thin disks, submillimeter fluxes correspond to dust masses of ∼0.5–80 Earth masses. We measure the distribution of disk sizes, and find that disks in this region are particularly compact. Such compact disks are likely to be significantly optically thick. The distributions of submillimeter flux and inferred disk size indicate smaller, lower-flux disks than in lower-density star-forming regions of similar age. Measured disk flux is correlated weakly with stellar mass, contrary to studies in other star-forming regions that found steeper correlations. We find a correlation between disk flux and distance from the massive star θ 1 Ori C, suggesting that disk properties in this region are influenced strongly by the rich cluster environment.

  16. Infrasonic attenuation in the upper mesosphere-lower thermosphere: a comparison between Navier-Stokes and Burnett predictions.

    PubMed

    Akintunde, Akinjide; Petculescu, Andi

    2014-10-01

    This paper presents the results of a pilot study comparing the use of continuum and non-continuum fluid dynamics to predict infrasound attenuation in the rarefied lower thermosphere. The continuum approach is embodied by the Navier-Stokes equations, while the non-continuum method is implemented via the Burnett equations [Proc. London Math. Soc. 39, 385-430 (1935); 40, 382-435 (1936)]. In the Burnett framework, the coupling between stress tensor and heat flux affects the dispersion equation, leading to an attenuation coefficient smaller than its Navier-Stokes counterpart by amounts of order 0.1 dB/km at 0.1 Hz, 10 dB/km at 1 Hz, and 100 dB/km at 10 Hz. It has been observed that many measured thermospheric arrivals are stronger than current predictions based on continuum mechanics. In this context, the consistently smaller Burnett-based absorption is cautiously encouraging.

  17. Long time scale hard X-ray variability in Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Markowitz, Alex Gary

    This dissertation examines the relationship between long-term X-ray variability characteristics, black hole mass, and luminosity of Seyfert 1 Active Galactic Nuclei. High dynamic range power spectral density functions (PSDs) have been constructed for six Seyfert 1 galaxies. These PSDs show "breaks" or characteristic time scales, typically on the order of a few days. There is resemblance to PSDs of lower-mass Galactic X-ray binaries (XRBs), with the ratios of putative black hole masses and variability time scales approximately the same (106--7) between the two classes of objects. The data are consistent with a linear correlation between Seyfert PSD break time scale and black hole mass estimate; the relation extrapolates reasonably well over 6--7 orders of magnitude to XRBs. All of this strengthens the case for a physical similarity between Seyfert galaxies and XRBs. The first six years of RXTE monitoring of Seyfert 1s have been systematically analyzed to probe hard X-ray variability on multiple time scales in a total of 19 Seyfert is in an expansion of the survey of Markowitz & Edelson (2001). Correlations between variability amplitude, luminosity, and black hole mass are explored, the data support the model of PSD movement with black hole mass suggested by the PSD survey. All of the continuum variability results are consistent with relatively more massive black holes hosting larger X-ray emission regions, resulting in 'slower' observed variability. Nearly all sources in the sample exhibit stronger variability towards softer energies, consistent with softening as they brighten. Direct time-resolved spectral fitting has been performed on continuous RXTE monitoring of seven Seyfert is to study long-term spectral variability and Fe Kalpha variability characteristics. The Fe Kalpha line displays a wide range of behavior but varies less strongly than the broadband continuum. Overall, however, there is no strong evidence for correlated variability between the line and continuum, severely challenging models in which the line tracks continuum variations modified only by a light-travel time delay. This experiment yields further support for spectral softening as continuum flux increases.

  18. Space Telescope and Optical Reverberation Mapping Project VI. Variations of the Intrinsic Absorption Lines in NGC 5548

    NASA Astrophysics Data System (ADS)

    Kriss, Gerard A.; Agn Storm Team

    2015-01-01

    The AGN STORM collaboration monitored the Seyfert 1 galaxy NGC 5548 over a six-month period, with observations spanning the hard X-ray to mid-infrared wavebands. The core of this campaign was an intensive HST COS program, which obtained 170 far-ultraviolet spectra at approximately daily intervals, with twice-per-day monitoring of the X-ray, near-UV, and optical bands during much of the same period using Swift. The broad UV absorption lines discovered by Kaastra et al. (2014) and associated with the new soft X-ray obscurer are continuously present in the STORM campaign COS spectra. Their strength varies with the degree of soft X-ray obscuration as revealed by the Swift X-ray spectra. The narrow associated absorption lines in the UV spectrum of NGC 5548 remain strong. The lower-ionization transitions that appeared concurrently with the soft X-ray obscuration vary in response to the changing UV flux on a daily basis. Their depths over the longer term, however, also respond to the strength of the soft X-ray obscuration, indicating that the soft X-ray obscurer has a significant influence on the ionizing UV continuum that is not directly tracked by the observable UV continuum itself.

  19. Total joint arthroplasty: practice variation of physiotherapy across the continuum of care in Alberta.

    PubMed

    Jones, C Allyson; Martin, Ruben San; Westby, Marie D; Beaupre, Lauren A

    2016-11-04

    Comprehensive and timely rehabilitation for total joint arthroplasty (TJA) is needed to maximize recovery from this elective surgical procedure for hip and knee arthritis. Administrative data do not capture the variation of treatment for rehabilitation across the continuum of care for TJA, so we conducted a survey for physiotherapists to report practice for TJA across the continuum of care. The primary objective was to describe the reported practice of physiotherapy for TJA across the continuum of care within the context of a provincial TJA clinical pathway and highlight possible gaps in care. A cross-sectional on-line survey was accessible to licensed physiotherapists in Alberta, Canada for 11 weeks. Physiotherapists who treated at least five patients with TJA annually were asked to complete the survey. The survey consisted of 58 questions grouped into pre-operative, acute care and post-acute rehabilitation. Variation of practice was described in terms of number, duration and type of visits along with goals of care and program delivery methods. Of the 80 respondents, 26 (33 %) stated they worked in small centres or rural settings in Alberta with the remaining respondents working in two large urban sites. The primary treatment goal differed for each phase across the continuum of care in that pre-operative phase was directed at improving muscle strength, functional activities were commonly reported for acute care, and post-acute phase was directed at improving joint range-of-motion. Proportionally, more physiotherapists from rural areas treated patients in out-patient hospital departments (59 %), whereas a higher proportion in urban physiotherapists saw patients in private clinics (48 %). Across the continuum of care, treatment was primarily delivered on an individual basis rather than in a group format. Variation of practice reported with pre-and post-operative care in the community will stimulate dialogue within the profession as to what is the minimal standard of care to provide patients undergoing TJA.

  20. Human mobility in a continuum approach.

    PubMed

    Simini, Filippo; Maritan, Amos; Néda, Zoltán

    2013-01-01

    Human mobility is investigated using a continuum approach that allows to calculate the probability to observe a trip to any arbitrary region, and the fluxes between any two regions. The considered description offers a general and unified framework, in which previously proposed mobility models like the gravity model, the intervening opportunities model, and the recently introduced radiation model are naturally resulting as special cases. A new form of radiation model is derived and its validity is investigated using observational data offered by commuting trips obtained from the United States census data set, and the mobility fluxes extracted from mobile phone data collected in a western European country. The new modeling paradigm offered by this description suggests that the complex topological features observed in large mobility and transportation networks may be the result of a simple stochastic process taking place on an inhomogeneous landscape.

  1. An Atlas of Computed Equivalent Widths of Quasar Broad Emission Lines

    NASA Astrophysics Data System (ADS)

    Korista, Kirk; Baldwin, Jack; Ferland, Gary; Verner, Dima

    We present graphically the results of several thousand photoionization calculations of broad emission-line clouds in quasars, spanning 7 orders of magnitude in hydrogen ionizing flux and particle density. The equivalent widths of 42 quasar emission lines are presented as contours in the particle density-ionizing flux plane for a typical incident continuum shape, solar chemical abundances, and cloud column density of N(H) = 1023 cm-2. Results are similarly given for a small subset of emission lines for two other column densities (1022 and 1024 cm-2), five other incident continuum shapes, and a gas metallicity of 5 Z⊙. These graphs should prove useful in the analysis of quasar emission-line data and in the detailed modeling of quasar broad emission-line regions. The digital results of these emission-line grids and many more are available over the Internet.

  2. Human Mobility in a Continuum Approach

    PubMed Central

    Simini, Filippo; Maritan, Amos; Néda, Zoltán

    2013-01-01

    Human mobility is investigated using a continuum approach that allows to calculate the probability to observe a trip to any arbitrary region, and the fluxes between any two regions. The considered description offers a general and unified framework, in which previously proposed mobility models like the gravity model, the intervening opportunities model, and the recently introduced radiation model are naturally resulting as special cases. A new form of radiation model is derived and its validity is investigated using observational data offered by commuting trips obtained from the United States census data set, and the mobility fluxes extracted from mobile phone data collected in a western European country. The new modeling paradigm offered by this description suggests that the complex topological features observed in large mobility and transportation networks may be the result of a simple stochastic process taking place on an inhomogeneous landscape. PMID:23555885

  3. Time-Resolved Properties and Global Trends in dMe Flares from Simultaneous Photometry and Spectra

    NASA Astrophysics Data System (ADS)

    Kowalski, Adam F.

    We present a homogeneous survey of near-ultraviolet (NUV) /optical line and continuum emission during twenty M dwarf flares with simultaneous, high cadence photometry and spectra. These data were obtained to study the white-light continuum components to the blue and red of the Balmer jump to break the degeneracy with fitting emission mechanisms to broadband colors and to provide constraints for radiative-hydrodynamic flare models that seek to reproduce the white-light flare emission. The main results from the continuum analysis are the following: 1) the detection of Balmer continuum (in emission) that is present during all flares, with a wide range of relative contribution to the continuum flux in the NUV; 2) a blue continuum at the peak of the photometry that is linear with wavelength from λ = 4000 - 4800Å, matched by the spectral shape of hot, blackbody emission with typical temperatures of 10 000 - 12 000 K; 3) a redder continuum apparent at wavelengths longer than Hβ; this continuum becomes relatively more important to the energy budget during the late gradual phase. The hot blackbody component and redder continuum component (which we call "the conundruum") have been detected in previous UBVR colorimetry studies of flares. With spectra, one can compare the properties and detailed timings of all three components. Using time-resolved spectra during the rise phase of three flares, we calculate the speed of an expanding flare region assuming a simple geometry; the speeds are found to be ~5- 10 km s-1 and 50 - 120 km s -1, which are strikingly consistent with the speeds at which two-ribbon flares develop on the Sun. The main results from the emission line analysis are 1) the presentation of the "time-decrement", a relation between the timescales of the Balmer series; 2) a Neupert-like relation between Ca \\pcy K and the blackbody continuum, and 3) the detection of absorption wings in the Hydrogen Balmer lines during times of peak continuum emission, indicative of hot-star spectra forming during the flare. A byproduct of this study is a new method for deriving absolute fluxes during M dwarf flare observations obtained from narrow-slit spectra or during variable weather conditions. This technique allows us to analyze the spectra and photometry independently of one another, in order to connect the spectral properties to the rise, peak, and decay phases of broadband light curve morphology. We classify the light curve morphology according to an "impulsiveness index" and find that the fast (impulsive) flares have less Balmer continuum at peak emission than the slow (gradual) flares. In the gradual phase, the energy budget of the flare spectrum during almost all flares has a larger contribution from the Hydrogen Balmer component than in the impulsive phase, suggesting that the heating and cooling processes evolve over the course of a flare. We find that, in general, the evolution of the hot blackbody is rapid, and that the blackbody temperature decreases to ~8000 K in the gradual phase. The Balmer continuum evolves more slowly than the blackbody ¨C similar to the higher order Balmer lines but faster than the lower order Balmer lines. The height of the Balmer jump increases during the gradual decay phase. We model the Balmer continuum emission using the RHD F11 model spectrum from Allred et al. (2006), but we discuss several important systematic uncertainties in relating the apparent amount of Balmer continuum to a given RHD beam model. Good fits to the shape of the RHD F11 model spectrum are not obtained at peak times, in contrast to the gradual phase. We model the blackbody component using model hot star atmospheres from Castelli & Kurucz (2004) in order to account for the effects of flux redistribution in the flare atmosphere. This modeling is motivated by observations during a secondary flare in the decay phase of a megaflare, when the newly formed flare spectrum resembled that of Vega with the Balmer continuum and lines in absorption. We model this continuum phenomenologically with the RH code using hot spots placed at high column mass in the M dwarf quiescent atmosphere; a superposition of hot spot models and the RHD model are used to explain the anti-correlation in the apparent amount of Balmer continuum in emission and the U-band light curve. We attempt to reproduce the blackbody component in self-consistent 1D radiative hydrodynamic flare models using the RADYN code. We simulate the flare using a solar-type nonthermal electron beam heating function with a total energy flux of 1012 ergs cm-2 s-1 (F12) for a duration of 5 seconds and a subsequent gradual phase. Although there is a larger amount of NUV backwarming at log mc/(1g cm-2)~0 than in the F11 model, the resulting flare continuum shape is similar to the F11 model spectrum with a larger Balmer jump and a much redder spectral shape than is seen in the observations. We do not find evidence of white-light emitting chromospheric condensations, in contrast to the previous F12 model of Livshits et al. (1981). We discuss future avenues for RHD modeling in order to produce a hot blackbody component, including the treatment of nonthermal protons in M dwarf flares.

  4. Continuum approach to the BF vacuum: The U(1) case

    NASA Astrophysics Data System (ADS)

    Drobiński, Patryk; Lewandowski, Jerzy

    2017-12-01

    A quantum representation of holonomies and exponentiated fluxes of a U(1) gauge theory that contains the Pullin-Dittrich-Geiller (DG) vacuum is presented and discussed. Our quantization is performed manifestly in a continuum theory, without any discretization. The discreteness emerges on the quantum level as a property of the spectrum of the quantum holonomy operators. The new type of a cylindrical consistency present in the DG approach now follows easily and naturally. A generalization to the non-Abelian case seems possible.

  5. Nova Oph 2017 (TCP J17394608-2457555) detected at millimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Kaminski, T.; Gehrz, R.

    2017-06-01

    Millimeter-wave continuum emission was detected in Nova Oph 2017 (ATel #10366, #10367) with the Submillimeter Array in Hawaii. The object was observed on July 20, 2017 in four spectral ranges: 224.3-232.3, 240.6-248.6, 336-344, and 352-360 GHz. The combined continuum flux in the two lower ranges (i.e., at a wavelength of 1.3 mm) is of 4.8 mJy, well above the noise with an rms of 0.6 mJy per beam.

  6. The Variable Hard X-Ray Emission of NGC4945 as Observed by NuSTAR

    NASA Technical Reports Server (NTRS)

    Puccetti, Simonetta; Comastri, Andrea; Fiore, Fabrizio; Arevalo, Patricia; Risaliti, Guido; Bauer, Franz E.; Brandt, William N.; Stern, Daniel; Harrison, Fiona A.; Alexander, David M.; hide

    2014-01-01

    We present a broadband (approx. 0.5 - 79 keV) spectral and temporal analysis of multiple NuSTAR observations combined with archival Suzaku and Chandra data of NGC4945, the brightest extragalactic source at 100 keV. We observe hard X-ray (> 10 keV) flux and spectral variability, with flux variations of a factor 2 on timescales of 20 ksec. A variable primary continuum dominates the high energy spectrum (> 10 keV) in all the states, while the reflected/scattered flux which dominates at E< 10 keV stays approximately constant. From modelling the complex reflection/transmission spectrum we derive a Compton depth along the line of sight of Thomson approx.2.9, and a global covering factor for the circumnuclear gas of approx. 0.15. This agrees with the constraints derived from the high energy variability, which implies that most of the high energy flux is transmitted, rather that Compton-scattered. This demonstrates the effectiveness of spectral analysis in constraining the geometric properties of the circumnuclear gas, and validates similar methods used for analyzing the spectra of other bright, Compton-thick AGN. The lower limits on the e-folding energy are between 200 - 300 keV, consistent with previous BeppoSAX, Suzaku and Swift BAT observations. The accretion rate, estimated from the X-ray luminosity and assuming a bolometric correction typical of type 2 AGN, is in the range approx. 0.1 - 0.3 lambda(sub Edd) depending on the flux state. The substantial observed X-ray luminosity variability of NGC4945 implies that large errors can arise from using single-epoch X-ray data to derive L/L(sub Edd) values for obscured AGNs.

  7. The Variable Hard X-Ray Emission of NGC 4945 as Observed by NUSTAR

    DOE PAGES

    Puccetti, Simonetta; Comastri, Andrea; Fiore, Fabrizio; ...

    2014-09-02

    Here, we present a broadband (~0.5-79 keV) spectral and temporal analysis of multiple NuSTAR observations combined with archival Suzaku and Chandra data of NGC 4945, the brightest extragalactic source at 100 keV. We observe hard X-ray (>10 keV) flux and spectral variability, with flux variations of a factor of two on timescales of 20 ks. A variable primary continuum dominates the high-energy spectrum (>10 keV) in all states, while the reflected/scattered flux that dominates at E <10 keV stays approximately constant. From modeling the complex reflection/transmission spectrum, we derive a Compton depth along the line of sight of τThomson ~more » 2.9, and a global covering factor for the circumnuclear gas of ~0.15. This agrees with the constraints derived from the high-energy variability, which implies that most of the high-energy flux is transmitted rather than Compton-scattered. This demonstrates the effectiveness of spectral analysis at constraining the geometric properties of the circumnuclear gas, and validates similar methods used for analyzing the spectra of other bright, Compton-thick active galactic nuclei (AGNs). The lower limits on the e-folding energy are between 200 and 300 keV, consistent with previous BeppoSAX, Suzaku, and Swift Burst Alert Telescope observations. The accretion rate, estimated from the X-ray luminosity and assuming a bolometric correction typical of type 2 AGN, is in the range ~0.1-0.3 λEdd depending on the flux state. As a result, the substantial observed X-ray luminosity variability of NGC 4945 implies that large errors can arise from using single-epoch X-ray data to derive L/L Edd values for obscured AGNs.« less

  8. Line identifications, line strengths, and continuum flux measurements in the ultraviolet spectrum of Arcturus

    NASA Technical Reports Server (NTRS)

    Carpenter, K. G.; Wing, R. F.; Stencel, R. E.

    1985-01-01

    The ultraviolet spectrum of Arcturus has been observed at high resolution with the IUE satellite. Line identifications, mean absolute 'continuum' flux measurements, integrated absolute emission-line fluxes, and measurements of selected absorption line strengths are presented for the 2250-2930 A region. In the 1150-2000 A region, identifications are given primarily on the basis of low-resolution spectra. Chromospheric emission lines have been identified with low-excitation species including H I, C I, C II, O I, Mg I, Mg II, Al II, Si I, Si II, S I, and Fe II; there is no evidence for lines of C IV, N V, or other species requiring high temperatures. A search for molecular absorption features in the 2500-2930 A interval has led to several tentative identifications, but only OH could be established as definitely present. Iron lines strongly dominate the identifications in the 2250-2930 A region, Fe II accounting for about 86 percent of the emission features and Fe I for 43 percent of the identified absorption features.

  9. PACE-90 water and solute transport calculations for 0.01, 0.1, and 0. 5 mm/yr infiltration into Yucca Mountain; Yucca Mountain Site Characterization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykhuizen, R.C.; Eaton, R.R.; Hopkins, P.L.

    1991-12-01

    Numerical results are presented for the Performance Assessment Calculational Exercise (PACE-90). One- and two-dimensional water and solute transport are presented for steady infiltration into Yucca Mountain. Evenly distributed infiltration rates of 0.01, 0.1, and 0.5 mm/yr were considered. The calculations of solute transport show that significant amounts of radionuclides can reach the water table over 100,000 yr at the 0.5 mm/yr rate. For time periods less than 10,000 yr or infiltrations less than 0.1 mm/yr very little solute reaches the water table. The numerical simulations clearly demonstrate that multi-dimensional effects can result in significant decreases in the travel time ofmore » solute through the modeled domain. Dual continuum effects are shown to be negligible for the low steady state fluxes considered. However, material heterogeneities may cause local amplification of the flux level in multi-dimensional flows. These higher flux levels may then require modeling of a dual continuum porous medium.« less

  10. A critical test of bivelocity hydrodynamics for mixtures.

    PubMed

    Brenner, Howard

    2010-10-21

    The present paper provides direct noncircumstantial evidence in support of the existence of a diffuse flux of volume j(v) in mixtures. As such, it supersedes an earlier paper [H. Brenner, J. Chem. Phys. 132, 054106 (2010)], which offered only indirect circumstantial evidence in this regard. Given the relationship of the diffuse volume flux to the fluid's volume velocity, this finding adds additional credibility to the theory of bivelocity hydrodynamics for both gaseous and liquid continua, wherein the term bivelocity refers to the independence of the fluid's respective mass and volume velocities. Explicitly, the present work provides a new and unexpected linkage between a pair of diffuse fluxes entering into bivelocity mixture theory, fluxes that were previously regarded as constitutively independent, except possibly for their coupling arising as a consequence of Onsager reciprocity. In particular, for the case of a binary mixture undergoing an isobaric, isothermal, external force-free, molecular diffusion process we establish by purely macroscopic arguments-while subsequently confirming by purely molecular arguments-the validity of the ansatz j(v)=(v(1)-v(2))j(1) relating the diffuse volume flux j(v) to the diffuse mass fluxes j(1)(=-j(2)) of the two species and, jointly, their partial specific volumes v(1),v(2). Confirmation of that relation is based upon the use of linear irreversible thermodynamic principles to embed this ansatz in a broader context, and to subsequently establish the accord thereof with Shchavaliev's solution of the multicomponent Boltzmann equation for dilute gases [M. Sh. Shchavaliev, Fluid Dyn. 9, 96 (1974)]. Moreover, because the terms v(1), v(2), and j(1) appearing on the right-hand side of the ansatz are all conventional continuum fluid-mechanical terms (with j(1) given, for example, by Fick's law for thermodynamically ideal solutions), parity requires that j(v) appearing on the left-hand side of that relation also be a continuum term. Previously, diffuse volume fluxes, whether in mixtures or single-component fluids, were widely believed to be noncontinuum in nature, and hence of interest only to those primarily concerned with transport phenomena in rarefied gases. This demonstration of the continuum nature of bivelocity hydrodynamics suggests that the latter subject should be of general interest to all fluid mechanicians, even those with no special interest in mixtures.

  11. The ISO View of Star Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Helou, George

    1999-01-01

    ISO studies of normal galaxies in the local Universe have revealed basic new properties whose significant implications for the star formation process and cosmology are only starting to be understood. This review will touch on the general results of a statistical nature, and provide a quick summary of the profusion of exciting results on individual objects. In the mid-infrared, PHT-S has established that the spectra of star forming galaxies between 6 and-13microns are dominated by the Aromatic Features in Emission (AFE), and show little variation as a function of the heating intensity. The Carriers of the AFE (CAFE) are thus a universal component of dust with standard properties, and contribute between 10 and 25% of the total dust luminosity. In addition to AFE, the spectra show a low-level continuum detectable at wavelengths longer than 3.5microns whose origin is still under investigation. The mid-infrared colors formed as the ratio of flux densities in the 6.75micron and the 15micron bands of ISO-CAM remain essentially constant and near unity for quiescent and mildly active galaxies. As dust heating increases further, the 15micron flux increases steeply compared to 6.75microns, indicating that dust heated to 100K

  12. A detailed analysis of the high-resolution X-ray spectra of NGC 3516: variability of the ionized absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huerta, E. M.; Krongold, Y.; Jimenez-Bailon, E.

    2014-09-20

    The 1.5 Seyfert galaxy NGC 3516 presents a strong time variability in X-rays. We re-analyzed the nine observations performed in 2006 October by XMM-Newton and Chandra in the 0.3 to 10 keV energy band. An acceptable model was found for the XMM-Newton data fitting the EPIC-PN and RGS spectra simultaneously; later, this model was successfully applied to the contemporary Chandra high-resolution data. The model consists of a continuum emission component (power law + blackbody) absorbed by four ionized components (warm absorbers), and 10 narrow emission lines. Three absorbing components are warm, producing features only in the soft X-ray band. Themore » fourth ionization component produces Fe XXV and Fe XXVI in the hard-energy band. We study the time response of the absorbing components to the well-detected changes in the X-ray luminosity of this source and find that the two components with the lower ionization state show clear opacity changes consistent with gas close to photoionization equilibrium. These changes are supported by the models and by differences in the spectral features among the nine observations. On the other hand, the two components with higher ionization state do not seem to respond to continuum variations. The response time of the ionized absorbers allows us to constrain their electron density and location. We find that one component (with intermediate ionization) must be located within the obscuring torus at a distance 2.7 × 10{sup 17} cm from the central engine. This outflowing component likely originated in the accretion disk. The three remaining components are at distances larger than 10{sup 16}-10{sup 17} cm. Two of the absorbing components in the soft X-rays have similar outflow velocities and locations. These components may be in pressure equilibrium, forming a multi-phase medium, if the gas has metallicity larger than the solar one (≳ 5 Z {sub ☉}). We also search for variations in the covering factor of the ionized absorbers (although partial covering is not required in our models). We find no correlation between the change in covering factor and the flux of the source. This, in connection with the observed variability of the ionized absorbers, suggests that the changes in flux are not produced by this material. If the variations are indeed produced by obscuring clumps of gas, these must be located much closer in to the central source.« less

  13. Changes in the ultraviolet spectrum of EG Andromedae

    NASA Technical Reports Server (NTRS)

    Stencel, R. E.

    1984-01-01

    Ultraviolet observations of EG Andromedae, a symbiotic star, are reported which clearly show pronounced eclipse-like effects on the high-temperature far-UV continuum. Continuum and emission-line variations with phase are reported and related to synoptic hydrogen alpha data. System parameters are characterized.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veyette, Mark J.; Muirhead, Philip S.; Mann, Andrew W.

    We present near-infrared (NIR) synthetic spectra based on PHOENIX stellar atmosphere models of typical early and mid-M dwarfs with varied C and O abundances. We apply multiple recently published methods for determining M dwarf metallicity to our models to determine the effects of C and O abundances on metallicity indicators. We find that the pseudo-continuum level is very sensitive to C/O and that all metallicity indicators show a dependence on C and O abundances, especially in lower T {sub eff} models. In some cases, the inferred metallicity ranges over a full order of magnitude (>1 dex) when [C/Fe] and [O/Fe]more » are varied independently by ±0.2. We also find that [(O−C)/Fe], the difference in O and C abundances, is a better tracer of the pseudo-continuum level than C/O. Models of mid-M dwarfs with [C/Fe], [O/Fe], and [M/H] that are realistic in the context of galactic chemical evolution suggest that variation in [(O−C)/Fe] is the primary physical mechanism behind the M dwarf metallicity tracers investigated here. Empirically calibrated metallicity indicators are still valid for most nearby M dwarfs due to the tight correlation between [(O−C)/Fe] and [Fe/H] evident in spectroscopic surveys of solar neighborhood FGK stars. Variations in C and O abundances also affect the spectral energy distribution of M dwarfs. Allowing [O/Fe] to be a free parameter provides better agreement between the synthetic spectra and observed spectra of metal-rich M dwarfs. We suggest that flux-calibrated, low-resolution, NIR spectra can provide a path toward measuring C and O abundances in M dwarfs and breaking the degeneracy between C/O and [Fe/H] present in M dwarf metallicity indicators.« less

  15. The Dual-channel Extreme Ultraviolet Continuum Experiment: Sounding Rocket EUV Observations of Local B Stars to Determine Their Potential for Supplying Intergalactic Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Erickson, Nicholas; Green, James C.; France, Kevin; Stocke, John T.; Nell, Nicholas

    2018-06-01

    We describe the scientific motivation and technical development of the Dual-channel Extreme Ultraviolet Continuum Experiment (DEUCE). DEUCE is a sounding rocket payload designed to obtain the first flux-calibrated spectra of two nearby B stars in the EUV 650-1150Å bandpass. This measurement will help in understanding the ionizing flux output of hot B stars, calibrating stellar models and commenting on the potential contribution of such stars to reionization. DEUCE consists of a grazing incidence Wolter II telescope, a normal incidence holographic grating, and the largest (8” x 8”) microchannel plate detector ever flown in space, covering the 650-1150Å band in medium and low resolution channels. DEUCE will launch on December 1, 2018 as NASA/CU sounding rocket mission 36.331 UG, observing Epsilon Canis Majoris, a B2 II star.

  16. Investigation of surface boundary conditions for continuum modeling of RF plasmas

    NASA Astrophysics Data System (ADS)

    Wilson, A.; Shotorban, B.

    2018-05-01

    This work was motivated by a lacking general consensus in the exact form of the boundary conditions (BCs) required on the solid surfaces for the continuum modeling of Radiofrequency (RF) plasmas. Various kinds of number and energy density BCs on solid surfaces were surveyed, and how they interacted with the electric potential BC to affect the plasma was examined in two fundamental RF plasma reactor configurations. A second-order local mean energy approximation with equations governing the electron and ion number densities and the electron energy density was used to model the plasmas. Zero densities and various combinations of drift, diffusion, and thermal fluxes were considered to set up BCs. It was shown that the choice of BC can have a significant impact on the sheath and bulk plasma. The thermal and diffusion fluxes to the surface were found to be important. A pure drift BC for dielectric walls failed to produce a sheath.

  17. International Ultraviolet Explorer observations of the peculiar variable spectrum of the eclipsing binary R Arae

    NASA Technical Reports Server (NTRS)

    Mccluskey, G. E.; Kondo, Y.

    1983-01-01

    The eclipsing binary system R Arae = HD 149730 is a relatively bright southern system with an orbital period of about 4.4 days. It is a single-lined spectroscopic binary. The spectral class of the primary component is B9 Vp. The system was included in a study of mass flow and evolution in close binary systems using the International Ultraviolet Explorer satellite (IUE). Four spectra in the wavelength range from 1150 to 1900 A were obtained with the far-ultraviolet SWP camera, and six spectra in the range from 1900 to 3200 range were obtained with the mid-ultraviolet LWR camera. The close binary R Arae exhibits very unusual ultraviolet spectra. It appears that no other close binary system, observed with any of the orbiting satellites, shows outside-eclipse ultraviolet continuum flux variations of this nature.

  18. The Rhythm of Fairall 9. I. Observing the Spectral Variability With XMM-Newton and NuSTAR

    NASA Technical Reports Server (NTRS)

    Lohfink, A. M.; Reynolds, S. C.; Pinto, C.; Alston, W.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Fabian, A.C; Hailey, C. J.; Harrison, F. A.; hide

    2016-01-01

    We present a multi-epoch X-ray spectral analysis of the Seyfert 1 galaxy Fairall 9. Our analysis shows that Fairall 9 displays unique spectral variability in that its ratio residuals to a simple absorbed power law in the 0.510 keV band remain constant with time in spite of large variations in flux. This behavior implies an unchanging source geometry and the same emission processes continuously at work at the timescale probed. With the constraints from NuSTAR on the broad-band spectral shape, it is clear that the soft excess in this source is a superposition of two different processes, one being blurred ionized reflection in the innermost parts of the accretion disk, and the other a continuum component such as a spatially distinct Comptonizing region. Alternatively, a more complex primary Comptonization component together with blurred ionized reflection could be responsible.

  19. Thermal Conductivity within Nanoparticle Powder Beds

    NASA Astrophysics Data System (ADS)

    Wilson, Mark; Chandross, Michael

    Non-equilibrium molecular dynamics is utilized to compute thermal transport properties within nanoparticle powder beds. In the realm of additive manufacturing of metals, the electronic contribution to thermal conduction is critical. To this end, our simulations incorporate the two temperature model, coupling a continuum representation of the electronic thermal contribution and the atomic phonon system. The direct method is used for conductivity determination, wherein thermal gradients between two different temperature heat flux reservoirs are calculated. The approach is demonstrated on several example cases including 304L stainless steel. The results from size distribution variations of mono/poly-disperse systems are extrapolated to predict values at the micron length scale, along with bulk properties at infinite system sizes. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Reduction and Analysis of GALFACTS Data in Search of Compact Variable Sources

    NASA Astrophysics Data System (ADS)

    Wenger, Trey; Barenfeld, S.; Ghosh, T.; Salter, C.

    2012-01-01

    The Galactic ALFA Continuum Transit Survey (GALFACTS) is an all-Arecibo sky, full-Stokes survey from 1225 to 1525 MHz using the multibeam Arecibo L-band Feed Array (ALFA). Using data from survey field N1, the first field covered by GALFACTS, we are searching for compact sources that vary in intensity and/or polarization. The multistep procedure for reducing the data includes radio frequency interference (RFI) removal, source detection, Gaussian fitting in multiple dimensions, polarization leakage calibration, and gain calibration. We have developed code to analyze and calculate the calibration parameters from the N1 calibration sources, and apply these to the data of the main run. For detected compact sources, our goal is to compare results from multiple passes over a source to search for rapid variability, as well as to compare our flux densities with those from the NRAO VLA Sky Survey (NVSS) to search for longer time-scale variations.

  1. Dislocation Transport in Continuum Crystal Plasticity Simulations (First-year Report)

    DTIC Science & Technology

    2011-12-01

    plasticity model are taken from an existing implementation in ALE3D (Becker, 2004). A brief description is given below. An idealized, two...fluxes are determined on element faces during a first phase , and the deformation due to those fluxes is applied in the subsequent phase . This is...this first phase are averaged on the faces, giving values denoted as , where the superscript refers to the face number associated with the element

  2. Anthropogenic Phosphorus Inputs to a River Basin and Their Impacts on Phosphorus Fluxes Along Its Upstream-Downstream Continuum

    NASA Astrophysics Data System (ADS)

    Zhang, Wangshou; Swaney, Dennis P.; Hong, Bongghi; Howarth, Robert W.

    2017-12-01

    The increasing trend in riverine phosphorus (P) loads resulting from anthropogenic inputs has gained wide attention because of the well-known role of P in eutrophication. So far, however, there is still limited scientific understanding of anthropogenic P inputs and their impacts on riverine flux in river reaches along the upstream-to-downstream continuum. Here we investigated P budgets in a series of nested watersheds draining into Hongze Lake of China and developed an empirical function to describe the relationship between anthropogenic inputs and riverine P fluxes. Our results indicated that there are obvious gradients regarding P budgets in response to changes in human activities. Fertilizer application and food and feed P import was always the dominant source of P inputs in all sections, followed by nonfood P. Further interpretation using the model revealed the processes of P loading to the lake. About 2%-9% of anthropogenic P inputs are transported from the various sections into the corresponding tributaries of the river systems, depending upon local precipitation rates. Of this amount, around 41%-95% is delivered to the main stem of the Huai River after in-stream attenuation in its tributaries. Ultimately, 55%-86% of the P loads delivered to different locations of the main stem are transported into the receiving lake of the downstream, due to additional losses in the main stem. An integrated P management strategy that considers the gradients of P loss along the upstream-to-downstream continuum is required to assess and optimize P management to protect the region's freshwater resource.

  3. Far-Infrared and Millimeter Continuum Studies of K-Giants: Alpha Boo and Alpha Tau

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Carbon, Duane F.; Welch, William J.; Lim, Tanya; Forster, James R.; Goorvitch, David; Thigpen, William (Technical Monitor)

    2002-01-01

    We have imaged two normal, non-coronal, infrared-bright K-giants, alpha Boo and alpha Tau, in the 1.4-millimeter and 2.8-millimeter continuum using BIMA. These stars have been used as important absolute calibrators for several infrared satellites. Our goals are: (1) to probe the structure of their upper photospheres; (2) to establish whether these stars radiate as simple photospheres or possess long-wavelength chromospheres; and (3) to make a connection between millimeter-wave and far-infrared absolute flux calibrations. To accomplish these goals we also present ISO Long Wavelength Spectrometer (LWS) measurements of both these K-giants. The far-infrared and millimeter continuum radiation is produced in the vicinity of the temperature minimum in a Boo and a Tau, offering a direct test of the model photospheres and chromospheres for these two cool giants. We find that current photospheric models predict fluxes in reasonable agreement with those observed for those wavelengths which sample the upper photosphere, namely less than or equal to 170 micrometers in alpha Tau and less than or equal to 125 micrometers in alpha Boo. It is possible that alpha Tau is still radiative as far as 0.9 - 1.4 millimeters. We detect chromospheric radiation from both stars by 2.8 millimeters (by 1.4 millimeters in alpha Boo), and are able to establish useful bounds on the location of the temperature minimum. An attempt to interpret the chromospheric fluxes using the two-component "bifurcation model" proposed by Wiedemann et al. (1994) appears to lead to a significant contradiction.

  4. Acoustic field of a pulsating cylinder in a rarefied gas: Thermoviscous and curvature effects

    NASA Astrophysics Data System (ADS)

    Ben Ami, Y.; Manela, A.

    2017-09-01

    We study the acoustic field of a circular cylinder immersed in a rarefied gas and subject to harmonic small-amplitude normal-to-wall displacement and heat-flux excitations. The problem is analyzed in the entire range of gas rarefaction rates and excitation frequencies, considering both single cylinder and coaxial cylinders setups. Numerical calculations are carried out via the direct simulation Monte Carlo method, applying a noniterative algorithm to impose the boundary heat-flux condition. Analytical predictions are obtained in the limits of ballistic- and continuum-flow conditions. Comparing with a reference inviscid continuum solution, the results illustrate the specific impacts of gas rarefaction and boundary curvature on the acoustic source efficiency. Inspecting the far-field properties of the generated disturbance, the continuum-limit solution exhibits an exponential decay of the signal with the distance from the source, reflecting thermoviscous effects, and accompanied by an inverse square-root decay, characteristic of the inviscid problem. Stronger attenuation is observed in the ballistic limit, where boundary curvature results in "geometric reduction" of the molecular layer affected by the source, and the signal vanishes at a distance of few acoustic wavelengths from the cylinder. The combined effects of mechanical and thermal excitations are studied to seek for optimal conditions to monitor the vibroacoustic signal. The impact of boundary curvature becomes significant in the ballistic-flow regime, where the optimal heat-flux amplitude required for sound reduction decreases with the distance from the source and is essentially a function of the acoustic-wavelength-scaled distance only.

  5. Constraints on the optical polarization source in the luminous non-blazar quasar 3C 323.1 (PG 1545+210) from the photometric and polarimetric variability

    NASA Astrophysics Data System (ADS)

    Kokubo, Mitsuru

    2017-05-01

    We examine the optical photometric and polarimetric variability of the luminous type 1 non-blazar quasar 3C 323.1 (PG 1545+210). Two optical spectropolarimetric measurements taken during the periods 1996-1998 and 2003 combined with a V-band imaging-polarimetric measurement taken in 2002 reveal that (1) as noted in the literature, the polarization of 3C 323.1 is confined only to the continuum emission, I.e. the emission from the broad-line region is unpolarized; (2) the polarized flux spectra show evidence of a time-variable broad absorption feature in the wavelength range of the Balmer continuum and other recombination lines; (3) weak variability in the polarization position angle (PA) of ˜4°over a time-scale of 4-6 yr is observed and (4) the V-band total flux and the polarized flux show highly correlated variability over a time-scale of 1 yr. Taking the above-mentioned photometric and polarimetric variability properties and the results from previous studies into consideration, we propose a geometrical model for the polarization source in 3C 323.1, in which an equatorial absorbing region and an axi-asymmetric equatorial electron-scattering region are assumed to be located between the accretion disc and the broad-line region. The scattering/absorbing regions can perhaps be attributed to the accretion disc wind or flared disc surface, but further polarimetric monitoring observations for 3C 323.1 and other quasars with continuum-confined polarization are needed to probe the true physical origins of these regions.

  6. Failure of continuum methods for determining the effective temperature of hot stars

    NASA Technical Reports Server (NTRS)

    Hummer, D. G.; Abbott, David C.; Voels, Stephen A.; Bohannan, Bruce

    1988-01-01

    It is demonstrated here that, for hot stars, methods based on the integrated continuum flux are completely unreliable discriminators of the effective temperature. Absorption line profiles provide much more accurate values of these parameters. It is not necessary to invoke nonradiative energy and momentum effects to explain the spectroscopic appearance of O-type stars of very different spectral type; rather, the observed spectra can be well modeled and fully interpreted by normal interaction of gas and radiation in stellar atmospheres of differing effective temperature and gravity.

  7. High-resolution ultraviolet radiation fields of classical T Tauri stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    France, Kevin; Schindhelm, Eric; Bergin, Edwin A.

    2014-04-01

    The far-ultraviolet (FUV; 912-1700 Å) radiation field from accreting central stars in classical T Tauri systems influences the disk chemistry during the period of giant planet formation. The FUV field may also play a critical role in determining the evolution of the inner disk (r < 10 AU), from a gas- and dust-rich primordial disk to a transitional system where the optically thick warm dust distribution has been depleted. Previous efforts to measure the true stellar+accretion-generated FUV luminosity (both hot gas emission lines and continua) have been complicated by a combination of low-sensitivity and/or low-spectral resolution and did not includemore » the contribution from the bright Lyα emission line. In this work, we present a high-resolution spectroscopic study of the FUV radiation fields of 16 T Tauri stars whose dust disks display a range of evolutionary states. We include reconstructed Lyα line profiles and remove atomic and molecular disk emission (from H{sub 2} and CO fluorescence) to provide robust measurements of both the FUV continuum and hot gas lines (e.g., Lyα, N V, C IV, He II) for an appreciable sample of T Tauri stars for the first time. We find that the flux of the typical classical T Tauri star FUV radiation field at 1 AU from the central star is ∼10{sup 7} times the average interstellar radiation field. The Lyα emission line contributes an average of 88% of the total FUV flux, with the FUV continuum accounting for an average of 8%. Both the FUV continuum and Lyα flux are strongly correlated with C IV flux, suggesting that accretion processes dominate the production of both of these components. On average, only ∼0.5% of the total FUV flux is emitted between the Lyman limit (912 Å) and the H{sub 2} (0-0) absorption band at 1110 Å. The total and component-level high-resolution radiation fields are made publicly available in machine-readable format.« less

  8. Evapotranspiration flux partitioning using an Iso-SPAC model in a temperate grassland ecosystem

    NASA Astrophysics Data System (ADS)

    Wang, P.

    2014-12-01

    To partition evapotranspiration (ET) into soil evaporation and vegetation transpiration (T), a new numerical Iso-SPAC (coupled heat, water with isotopic tracer in Soil-Plant-Atmosphere-Continuum) model was developed and applied to a temperate-grassland ecosystem in central Japan. Several models of varying complexity have been tested with the aim of obtaining the close to true value for the isotope composition of leaf water and transpiration flux. The agreement between the model predictions and observations demonstrates that the Iso-SPAC model with a steady-state assumption for transpiration flux can reproduce seasonal variations of all the surface energy balance components,leaf and ground surface temperature as well as isotope data (canopy foliage and ET flux). This good performance was confirmed not only at diurnal timescale but also at seasonal timescale. Thus, although the non-steady-state behavior of isotope budget in a leaf and isotopic diffusion between leaf and stem or root is exactly important, the steady-state assumption is practically acceptable for seasonal timescale as a first order approximation. Sensitivity analysis both in physical flux part and isotope part suggested that T/ET is relatively insensitive to uncertainties/errors in assigned model parameters and measured input variables, which illustrated the partitioning validity. Estimated transpiration fractions using isotope composition in ET flux by Iso-SPAC model and Keeling plot are generally in good agreement, further proving validity of the both approaches. However, Keeling plot approach tended to overestimate the fraction during an early stage of glowing season and a period just after clear cutting. This overestimation is probably due to insufficient fetch and influence of transpiration from upwind forest. Consequently, Iso-SPAC model is more reliable than Keeling plot approach in most cases.The T/ET increased with grass growth, and the sharp reduction caused by clear cutting was well reflected. The transpiration fraction ranges from 0.02 to 0.99 during growing seasons, and the mean value was 0.75 with a standard deviation of 0.24.

  9. The evolving corona and evidence for jet launching from the supermassive black hole in Markarian 335

    NASA Astrophysics Data System (ADS)

    Wilkins, Daniel; Gallo, Luigi C.

    2015-01-01

    Through detailed analysis of the X-rays that are reflected from the accretion disc, it is possible to probe structures right down to the innermost stable circular orbit and event horizon around the supermassive black holes in AGN. By measuring the illumination pattern of the accretion disc, along with reverberation time lags between variability in the X-ray continuum and reflection, unprecedented detail of the geometry and spatial extent of the corona that produces the X-ray continuum has emerged when the observed data are combined with insight gained from general relativistic ray tracing simulations.We conducted detailed analysis of both the X-ray continuum and its reflection from the accretion disc in the narrow line Seyfert 1 galaxy Markarian 335, over observations spanning nearly a decade to measure the underlying changes in the structure of the X-ray emitting corona that gave rise to more than an order of magnitude variation in luminosity.Underlying this long timescale variability lies much more complex patterns of behaviour on short timescales. We are, for the first time, able to observe and measure the changes in the structure of the corona that give rise to transient phenomena including a flare in the X-ray emission seen during a low flux state by Suzaku in July 2013. This flaring event was found to mark a reconfiguration of the corona while there is evidence that the flare itself was cased by an aborted jet-launching event. More recently, detailed analysis of a NuSTAR target of opportunity observation is letting us understand the sudden increase in X-ray flux by a factor of 15 in Markarian 335 seen in September 2014.These observations allow us to trace, from observations, the evolution of the X-ray emitting corona that gives rise to not only the extreme variability seen in the X-ray emission from AGN, but also the processes by which jets and other outflow are launched from the extreme environments around black holes. This gives us important insight into the physical processes by which energy is liberated from black hole accretion flows and allows observational constraints to be placed upon theoretical models of how these extreme objects are powered.

  10. Understanding Measurements Returned by the Helioseismic and Magnetic Imager

    NASA Astrophysics Data System (ADS)

    Cohen, Daniel Parke; Criscuoli, Serena

    2014-06-01

    The Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO) observes the Sun at the FeI 6173 Å line and returns full disk maps of line-of-sight observables including the magnetic field flux, FeI line width, line depth, and continuum intensity. To properly interpret such data it is important to understand any issues with the HMI and the pipeline that produces these observables. At this aim, HMI data were analyzed at both daily intervals for a span of 3 years at disk center in the quiet Sun and hourly intervals for a span of 200 hours around an active region. Systematic effects attributed to issues with instrument adjustments and re-calibrations, variations in the transmission filters and the orbital velocities of the SDO were found while the actual physical evolutions of such observables were difficult to determine. Velocities and magnetic flux measurements are less affected, as the aforementioned effects are partially compensated for by the HMI algorithm; the other observables are instead affected by larger uncertainties. In order to model these uncertainties, the HMI pipeline was tested with synthetic spectra generated through various 1D atmosphere models with radiative transfer code (the RH code). It was found that HMI estimates of line width, line depth, and continuum intensity are highly dependent on the shape of the line, and therefore highly dependent on the line-of-sight angle and the magnetic field associated to the model. The best estimates are found for Quiet regions at disk center, for which the relative differences between theoretical and HMI algorithm values are 6-8% for line width, 10-15% for line depth, and 0.1-0.2% for continuum intensity. In general, the relative difference between theoretical values and HMI estimates increases toward the limb and with the increase of the field; the HMI algorithm seems to fail in regions with fields larger than ~2000 G. This work is carried out through the National Solar Observatory Research Experiences for Undergraduate (REU) site program, which is co-funded by the Department of Defense in partnership with the NSF REU Program. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.

  11. Dissolved Black Carbon in the Headwaters-To Continuum of PARAÍBA do Sul River, Brazil

    NASA Astrophysics Data System (ADS)

    Marques, Jomar S. J.; Dittmar, Thorsten; Niggemann, Jutta; Almeida, Marcelo G.; Gomez-Saez, Gonzalo V.; Rezende, Carlos E.

    2017-02-01

    Rivers annually carry 25-28 Tg carbon in the form of pyrogenic dissolved organic matter (dissolved black carbon, DBC) into the ocean, which is equivalent to about 10% of the entire riverine land-ocean flux of dissolved organic carbon (DOC). The objective of this study was to identify the main processes behind the release and turnover of DBC on a riverine catchment scale. As a model system, we chose the headwater-to-ocean continuum of Paraíba do Sul River (Brazil), the only river system with long-term DBC flux data available. The catchment was originally covered by Atlantic rain forest (mainly C3 plants) which was almost completely destroyed over the past centuries by slash-and-burn. As a result, large amounts of wood-derived charcoal reside in the soils. Today, fire-managed pasture and sugar cane (both dominated by C4 plants) cover most of the catchment area. Water samples were collected along the river, at the main tributaries, and also along the salinity gradient in the estuary and up to 35 km offshore during three different seasons. DBC was determined on a molecular level as benzenepolycarboxylic acids (BPCAs). Stable carbon isotopes (δ13C) were determined in solid phase extractable DOC (SPE-DOC) to distinguish C4 and C3 sources. Our results clearly show a relationship between hydrology and DBC concentrations in the river, with highest DBC concentrations and fluxes in the wet season (flux of 770 moles .sec 1 in 2013 and 59 moles .sec 1 in 2014) and lowest in the dry season (flux of 27 moles .sec 1). This relationship indicates that DBC is mainly mobilized from the upper soil horizons during heavy rainfalls. The relationship between DBC concentrations and δ13C-SPE-DOC indicated that most of DBC in the river system originated from C3 plants, i.e. from the historic burning event of the Atlantic rain forest. A conservative mixing model could largely reproduce the observed DBC fluxes within the catchment and the land to ocean continuum. Comparably slight deviations from conservative mixing were accompanied by changes in the molecular composition of DBC (i.e. the ratio of benzenepenta- to benzenehexacarboxylic acid) that are indicative for photodegradation of DBC.

  12. Band-9 ALMA Observations of the [N II] 122 μm Line and FIR Continuum in Two High-z galaxies.

    NASA Astrophysics Data System (ADS)

    Ferkinhoff, Carl; Brisbin, Drew; Nikola, Thomas; Stacey, Gordon J.; Sheth, Kartik; Hailey-Dunsheath, Steve; Falgarone, Edith

    2015-06-01

    We present Atacama Large Millimeter Array (ALMA) observations of two high-redshift systems (SMMJ02399-0136 at z 1 ˜ 2.8 and the Cloverleaf QSO at z 1 ˜ 2.5) in their rest-frame 122 μm continuum (ν sky ˜ 650 GHz, λ sky ˜ 450 μm) and [N ii] 122 μm line emission. The continuum observations with a synthesized beam of ˜0.″ 25 resolve both sources and recover the expected flux. The Cloverleaf is resolved into a partial Einstein ring, while SMMJ02399-0136 is unambiguously separated into two components: a point source associated with an active galactic nucleus and an extended region at the location of a previously identified dusty starburst. We detect the [N ii] line in both systems, though significantly weaker than our previous detections made with the first generation z (Redshift) and Early Universe Spectrometer. We show that this discrepancy is mostly explained if the line flux is resolved out due to significantly more extended emission and longer ALMA baselines than expected. Based on the ALMA observations we determine that ≥75% of the total [N ii] line flux in each source is produced via star formation. We use the [N ii] line flux that is recovered by ALMA to constrain the N/H abundance, ionized gas mass, hydrogen- ionizing photon rate, and star formation rate. In SMMJ02399-0136 we discover it contains a significant amount (˜1000 M ⊙ yr-1) of unobscured star formation in addition to its dusty starburst and argue that SMMJ02399-0136 may be similar to the Antennae Galaxies (Arp 244) locally. In total these observations provide a new look at two well-studied systems while demonstrating the power and challenges of Band-9 ALMA observations of high-z systems.

  13. Thermal and Nonthermal Contributions to the Solar Flare X-Ray Flux

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Phillips, K. J. H.; Sylwester, Janusz; Sylwester, Barbara; Schwartz, Richard A.; Tolbert, A. Kimberley

    2004-01-01

    The relative thermal and nonthermal contributions to the total energy budget of a solar flare are being determined through analysis of RHESSI X-ray imaging and spectral observations in the energy range from approx. 5 to approx. 50 keV. The classic ways of differentiating between the thermal and nonthermal components - exponential vs. sources - can now be combined for individual flares. In addition, RHESSI's sensitivity down to approx. 4 keV and energy resolution of approx. 1 keV FWHM allow the intensities and equivalent widths of the complex of highly ionized iron lines at approx. 6.7 keV and the complex of highly ionized iron and nickel lines at approx. 8 keV to be measured as a function of time. Using the spectral line and continuum intensities from the Chianti (version 4.2) atomic code, the thermal component of the total flare emission can be more reliably separated from the nonthermal component in the measured X-ray spectrum. The abundance of iron can also be determined from RHESSI line-to-continuum measurements as a function of time during larger flares. Results will be shown of the intensity and equivalent widths of these line complexes for several flares and the temperatures, emission measures, and iron abundances derived from them. Comparisons will be made with 6.7-keV Fe-line fluxes measured with the RESIK bent crystal spectrometer on the Coronas-F spacecraft operating in third order during the peak times of three flares (2002 May 31 at 00:12 UT, 2002 December 2 at 19:26 UT, and 2003 April 26 at 03:OO UT). During the rise and decay of these flares, RESIK was operating in first order allowing the continuum flux to be measured between 2.9 and 3.7 keV for comparison with RHESSI fluxes at its low-energy end.

  14. THE LICK AGN MONITORING PROJECT 2011: SPECTROSCOPIC CAMPAIGN AND EMISSION-LINE LIGHT CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela

    2015-04-15

    In the Spring of 2011 we carried out a 2.5 month reverberation mapping campaign using the 3 m Shane telescope at Lick Observatory, monitoring 15 low-redshift Seyfert 1 galaxies. This paper describes the observations, reductions and measurements, and data products from the spectroscopic campaign. The reduced spectra were fitted with a multicomponent model in order to isolate the contributions of various continuum and emission-line components. We present light curves of broad emission lines and the active galactic nucleus (AGN) continuum, and measurements of the broad Hβ line widths in mean and rms spectra. For the most highly variable AGNs wemore » also measured broad Hβ line widths and velocity centroids from the nightly spectra. In four AGNs exhibiting the highest variability amplitudes, we detect anticorrelations between broad Hβ width and luminosity, demonstrating that the broad-line region “breathes” on short timescales of days to weeks in response to continuum variations. We also find that broad Hβ velocity centroids can undergo substantial changes in response to continuum variations; in NGC 4593, the broad Hβ velocity shifted by ∼250 km s{sup −1} over a 1 month period. This reverberation-induced velocity shift effect is likely to contribute a significant source of confusion noise to binary black hole searches that use multi-epoch quasar spectroscopy to detect binary orbital motion. We also present results from simulations that examine biases that can occur in measurement of broad-line widths from rms spectra due to the contributions of continuum variations and photon-counting noise.« less

  15. The Lick AGN Monitoring Project 2011: Spectroscopic Campaign and Emission-line Light Curves

    NASA Technical Reports Server (NTRS)

    Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela; Filippenko, Alexei V.; Gates, Elinor L.; Greene, Jenny E..; Li, Weidong; Malkan, Matthew A.; Pancoast, Anna; Sand, David J.; hide

    2016-01-01

    In the Spring of 2011 we carried out a 2.5 month reverberation mapping campaign using the 3 m Shane telescope at Lick Observatory, monitoring 15 low-redshift Seyfert 1 galaxies. This paper describes the observations, reductions and measurements, and data products from the spectroscopic campaign. The reduced spectra were fitted with a multicomponent model in order to isolate the contributions of various continuum and emission-line components. We present light curves of broad emission lines and the active galactic nucleus (AGN) continuum, and measurements of the broad Hß line widths in mean and rms spectra. For the most highly variable AGNs we also measured broad H beta line widths and velocity centroids from the nightly spectra. In four AGNs exhibiting the highest variability amplitudes, we detect anticorrelations between broad H beta width and luminosity, demonstrating that the broad-line region "breathes" on short timescales of days to weeks in response to continuum variations. We also find that broad H beta velocity centroids can undergo substantial changes in response to continuum variations; in NGC 4593, the broad H beta velocity shifted by approximately 250 km s(exp -1) over a 1 month period. This reverberation-induced velocity shift effect is likely to contribute a significant source of confusion noise to binary black hole searches that use multi-epoch quasar spectroscopy to detect binary orbital motion. We also present results from simulations that examine biases that can occur in measurement of broad-line widths from rms spectra due to the contributions of continuum variations and photon-counting noise.

  16. Temporal and spatial variations of soil carbon dioxide, methane, and nitrous oxide fluxes in a Southeast Asian tropical rainforest

    NASA Astrophysics Data System (ADS)

    Itoh, M.; Kosugi, Y.; Takanashi, S.; Hayashi, Y.; Kanemitsu, S.; Osaka, K.; Tani, M.; Nik, A. R.

    2010-09-01

    To clarify the factors controlling temporal and spatial variations of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes, we investigated these gas fluxes and environmental factors in a tropical rainforest in Peninsular Malaysia. Temporal variation of CO2 flux in a 2-ha plot was positively related to soil water condition and rainfall history. Spatially, CO2 flux was negatively related to soil water condition. When CO2 flux hotspots were included, no other environmental factors such as soil C or N concentrations showed any significant correlation. Although the larger area sampled in the present study complicates explanations of spatial variation of CO2 flux, our results support a previously reported bipolar relationship between the temporal and spatial patterns of CO2 flux and soil water condition observed at the study site in a smaller study plot. Flux of CH4 was usually negative with little variation, resulting in the soil at our study site functioning as a CH4 sink. Both temporal and spatial variations of CH4 flux were positively related to the soil water condition. Soil N concentration was also related to the spatial distribution of CH4 flux. Some hotspots were observed, probably due to CH4 production by termites, and these hotspots obscured the relationship between both temporal and spatial variations of CH4 flux and environmental factors. Temporal variation of N2O flux and soil N2O concentration was large and significantly related to the soil water condition, or in a strict sense, to rainfall history. Thus, the rainfall pattern controlled wet season N2O production in soil and its soil surface flux. Spatially, large N2O emissions were detected in wet periods at wetter and anaerobic locations, and were thus determined by soil physical properties. Our results showed that, even in Southeast Asian rainforests where distinct dry and wet seasons do not exist, variation in the soil water condition related to rainfall history controlled the temporal variations of soil CO2 flux, CH4 uptake, and N2O emission. The soil water condition associated with soil hydraulic properties was also the important controlling factor of the spatial distributions of these gas fluxes.

  17. Comet P/Halley 1910, 1986: An objective-prism study

    NASA Technical Reports Server (NTRS)

    Carsenty, U.; Bus, E. S.; Wyckoff, S.; Lutz, B.

    1986-01-01

    V. M. Slipher of the Lowell Obs. collected a large amount of spectroscopic data during the 1910 apparition of Halley's comet. Three of his post perihelion objective-prism plates were selected, digitized, and subjected to modern digital data reduction procedures. Some of the important steps in the analysis where: (1) Density to intensity conversion for which was used 1910 slit spectra of Fe-arc lamp on similar plates (Sigma) and derived an average characteristic curve; (2) Flux calibration using the fact that during the period June 2 to 7 1910 P/Halley was very close (angular distance) to the bright star Alpha Sex (A0III, V-4.49), and the spectra of both star and comet were recorded on the same plates. The flux distribution of Alpha Sex was assumed to be similar to that of the standard star 58 Aql and derived a sensitivity curve for the system; (3) Atmospheric extinction using the standard curve for the Lowell Obs.; (4) Solar continuum subtraction using the standard solar spectrum binned to the spectral resolution. An example of a flux-calibrated spectrum of the coma (integrated over 87,000km) before the subtraction of solar continuum is presented.

  18. Carbon Transformations and Source - Sink Dynamics along a River, Marsh, Estuary, Ocean Continuum

    NASA Astrophysics Data System (ADS)

    Anderson, I. C.; Crosswell, J.; Czapla, K.; Van Dam, B.

    2017-12-01

    Estuaries, the transition zone between land and the coastal ocean, are highly dynamic systems in which carbon sourced from watersheds, marshes, atmosphere, and ocean may be transformed, sequestered, or exported. The net fate of carbon in estuaries, governed by the interactions of biotic and physical drivers varying on spatial and temporal scales, is currently uncertain because of limited observational data. In this study, conducted in a temperate, microtidal, and shallow North Carolina USA estuary, carbon exchanges via river, tributary, and fringing salt marsh, air-water fluxes, sediment C accumulation, and metabolism were monitored over two-years, with sharply different amounts of rainfall. Air-water CO2 fluxes and metabolic variables were simultaneously measured in channel and shoal by conducting high-resolution surveys at dawn, dusk and the following dawn. Marsh CO2 exchanges, sediment C inputs, and lateral exports of DIC and DOC were also measured. Carbon flows between estuary regions and export to the coastal ocean were calculated by quantifying residual transport of DIC and TOC down-estuary as flows were modified by sources, sinks and internal transformations. Variation in metabolic rates, CO2, TOC and DIC exchanges were large when determined for short time and limited spatial scales. However, when scaled to annual and whole estuarine scales, variation tended to decrease because of counteracting metabolic rates and fluxes between channel and shoal or between seasons. Although overall salt marshes accumulated OC, they were a negligible source of DIC and DOC to the estuary, and net inputs of C to the marsh were mainly derived from sediment OC. These results, as observed in other observational studies of estuaries, show that riverine input, light, temperature and metabolism are major controls on carbon cycling. Comparison of our results with other types of estuaries varying in depth, latitude, and nutrification demonstrates large discrepancies underscoring the limitations of current sampling designs, models and datasets in representing system-scale diversity; thus, a more practical approach may be to choose a small number of representative coastal systems, coordinate research efforts to quantify the relevant fluxes and constrain a range of environmental conditions that influence carbon cycling.

  19. HIREGS observations of the Galactic center and Galactic plane: Separation of the diffuse Galactic hard X-ray continuum from the point source spectra

    NASA Technical Reports Server (NTRS)

    Boggs, S. E.; Lin, R. P.; Coburn, W.; Feffer, P.; Pelling, R. M.; Schroeder, P.; Slassi-Sennou, S.

    1997-01-01

    The balloon-borne high resolution gamma ray and X-ray germanium spectrometer (HIREGS) was used to observe the Galactic center and two positions along the Galactic plane from Antarctica in January 1995. For its flight, the collimators were configured to measure the Galactic diffuse hard X-ray continuum between 20 and 200 keV by directly measuring the point source contributions to the wide field of view flux for subtraction. The hard X-ray spectra of GX 1+4 and GRO J1655-40 were measured with the diffuse continuum subtracted off. The analysis technique for source separation is discussed and the preliminary separated spectra for these point sources and the Galactic diffuse emission are presented.

  20. The near-infrared broad emission line region of active galactic nuclei - II. The 1-μm continuum

    NASA Astrophysics Data System (ADS)

    Landt, Hermine; Elvis, Martin; Ward, Martin J.; Bentz, Misty C.; Korista, Kirk T.; Karovska, Margarita

    2011-06-01

    We use quasi-simultaneous near-infrared (near-IR) and optical spectroscopy from four observing runs to study the continuum around 1 μm in 23 well-known broad emission line active galactic nuclei (AGN). We show that, after correcting the optical spectra for host galaxy light, the AGN continuum around this wavelength can be approximated by the sum of mainly two emission components, a hot dust blackbody and an accretion disc. The accretion disc spectrum appears to dominate the flux at ˜ 1 μm, which allows us to derive a relation for estimating AGN black hole masses based on the near-IR virial product. This result also means that a near-IR reverberation programme can determine the AGN state independent of simultaneous optical spectroscopy. On average we derive hot dust blackbody temperatures of ˜1400 K, a value close to the sublimation temperature of silicate dust grains, and relatively low hot dust covering factors of ˜7 per cent. Our preliminary variability studies indicate that in most sources, the hot dust emission responds to changes in the accretion disc flux with the expected time lag; however, a few sources show a behaviour that can be attributed to dust destruction.

  1. The cause of spatial structure in solar He I 1083 nm multiplet images

    NASA Astrophysics Data System (ADS)

    Leenaarts, Jorrit; Golding, Thomas; Carlsson, Mats; Libbrecht, Tine; Joshi, Jayant

    2016-10-01

    Context. The He I 1083 nm is a powerful diagnostic for inferring properties of the upper solar chromosphere, in particular for the magnetic field. The basic formation of the line in one-dimensional models is well understood, but the influence of the complex three-dimensional structure of the chromosphere and corona has however never been investigated. This structure must play an essential role because images taken in He I 1083 nm show structures with widths down to 100 km. Aims: We aim to understand the effect of the three-dimensional temperature and density structure in the solar atmosphere on the formation of the He I 1083 nm line. Methods: We solved the non-LTE radiative transfer problem assuming statistical equilibrium for a simple nine-level helium atom that nevertheless captures all essential physics. As a model atmosphere we used a snapshot from a 3D radiation-MHD simulation computed with the Bifrost code. Ionising radiation from the corona was self-consistently taken into account. Results: The emergent intensity in the He I 1083 nm is set by the source function and the opacity in the upper chromosphere. The former is dominated by scattering of photospheric radiation and does not vary much with spatial location. The latter is determined by the photonionisation rate in the He I ground state continuum, as well as the electron density in the chromosphere. The spatial variation of the flux of ionising radiation is caused by the spatially-structured emissivity of the ionising photons from material at T ≈ 100 kK in the transition region. The hotter coronal material produces more ionising photons, but the resulting radiation field is smooth and does not lead to small-scale variation of the UV flux. The corrugation of the transition region further increases the spatial variation of the amount of UV radiation in the chromosphere. Finally we find that variations in the chromospheric electron density also cause strong variation in He I 1083 nm opacity. We compare our findings to observations using SST, IRIS and SDO/AIA data. A movie associated to Fig. 4 is available at http://www.aanda.org

  2. Disentangling the role of athermal walls on the Knudsen paradox in molecular and granular gases

    NASA Astrophysics Data System (ADS)

    Gupta, Ronak; Alam, Meheboob

    2018-01-01

    The nature of particle-wall interactions is shown to have a profound impact on the well-known "Knudsen paradox" [or the "Knudsen minimum" effect, which refers to the decrease of the mass-flow rate of a gas with increasing Knudsen number Kn, reaching a minimum at Kn˜O (1 ) and increasing logarithmically with Kn as Kn→∞ ] in the acceleration-driven Poiseuille flow of rarefied gases. The nonmonotonic variation of the flow rate with Kn occurs even in a granular or dissipative gas in contact with thermal walls. The latter result is in contradiction with recent work [Alam et al., J. Fluid Mech. 782, 99 (2015), 10.1017/jfm.2015.523] that revealed the absence of the Knudsen minimum in granular Poiseuille flow for which the flow rate was found to decrease at large values of Kn. The above conundrum is resolved by distinguishing between "thermal" and "athermal" walls, and it is shown that, for both molecular and granular gases, the momentum transfer to athermal walls is much different than that to thermal walls which is directly responsible for the anomalous flow-rate variation with Kn in the rarefied regime. In the continuum limit of Kn→0 , the athermal walls are shown to be closely related to "no-flux" ("adiabatic") walls for which the Knudsen minimum does not exist either. A possible characterization of athermal walls in terms of (1) an effective specularity coefficient for the slip velocity and (2) a flux-type boundary condition for granular temperature is suggested based on simulation results.

  3. Statistical mechanical foundation of the peridynamic nonlocal continuum theory: energy and momentum conservation laws.

    PubMed

    Lehoucq, R B; Sears, Mark P

    2011-09-01

    The purpose of this paper is to derive the energy and momentum conservation laws of the peridynamic nonlocal continuum theory using the principles of classical statistical mechanics. The peridynamic laws allow the consideration of discontinuous motion, or deformation, by relying on integral operators. These operators sum forces and power expenditures separated by a finite distance and so represent nonlocal interaction. The integral operators replace the differential divergence operators conventionally used, thereby obviating special treatment at points of discontinuity. The derivation presented employs a general multibody interatomic potential, avoiding the standard assumption of a pairwise decomposition. The integral operators are also expressed in terms of a stress tensor and heat flux vector under the assumption that these fields are differentiable, demonstrating that the classical continuum energy and momentum conservation laws are consequences of the more general peridynamic laws. An important conclusion is that nonlocal interaction is intrinsic to continuum conservation laws when derived using the principles of statistical mechanics.

  4. Near-infrared line and continuum emission from the blue dwarf galaxy II Zw 40

    NASA Technical Reports Server (NTRS)

    Joy, Marshall; Lester, Daniel F.

    1988-01-01

    A multicolor analysis of new near-infrared line and continuum measurements indicates that nebular recombination emission and photospheric radiation from young blue stars produce most of the near-infrared continuum emission in the central 6 arcsec of the dwarf galaxy II Zw 40. The derived nebular recombination level is in excellent agreement with independent observations of the radio free-free continuum. It is found that evolved stars, which dominate the near-infrared emission from normal galaxies, contribute no more than 25 percent of the total 2.2 micron flux in the central region of II Zw 40. It is concluded that the total mass of the evolved stellar population in the central 400 pc of the galaxy is less than about two hundred million solar. The total mass of recently formed stars is about two million solar, and the stellar mass ratio is exceptionally large. Thus, II Zw 40 is a quintessential starburst galaxy.

  5. Polarizable Molecular Dynamics in a Polarizable Continuum Solvent

    PubMed Central

    Lipparini, Filippo; Lagardère, Louis; Raynaud, Christophe; Stamm, Benjamin; Cancès, Eric; Mennucci, Benedetta; Schnieders, Michael; Ren, Pengyu; Maday, Yvon; Piquemal, Jean-Philip

    2015-01-01

    We present for the first time scalable polarizable molecular dynamics (MD) simulations within a polarizable continuum solvent with molecular shape cavities and exact solution of the mutual polarization. The key ingredients are a very efficient algorithm for solving the equations associated with the polarizable continuum, in particular, the domain decomposition Conductor-like Screening Model (ddCOSMO), a rigorous coupling of the continuum with the polarizable force field achieved through a robust variational formulation and an effective strategy to solve the coupled equations. The coupling of ddCOSMO with non variational force fields, including AMOEBA, is also addressed. The MD simulations are feasible, for real life systems, on standard cluster nodes; a scalable parallel implementation allows for further speed up in the context of a newly developed module in Tinker, named Tinker-HP. NVE simulations are stable and long term energy conservation can be achieved. This paper is focused on the methodological developments, on the analysis of the algorithm and on the stability of the simulations; a proof-of-concept application is also presented to attest the possibilities of this newly developed technique. PMID:26516318

  6. Investigation of Coupled model of Pore network and Continuum in shale gas

    NASA Astrophysics Data System (ADS)

    Cao, G.; Lin, M.

    2016-12-01

    Flow in shale spanning over many scales, makes the majority of conventional treatment methods disabled. For effectively simulating, a coupled model of pore-scale and continuum-scale was proposed in this paper. Based on the SEM image, we decompose organic-rich-shale into two subdomains: kerogen and inorganic matrix. In kerogen, the nanoscale pore-network is the main storage space and migration pathway so that the molecular phenomena (slip and diffusive transport) is significant. Whereas, inorganic matrix, with relatively large pores and micro fractures, the flow is approximate to Darcy. We use pore-scale network models (PNM) to represent kerogen and continuum-scale models (FVM or FEM) to represent matrix. Finite element mortars are employed to couple pore- and continuum-scale models by enforcing continuity of pressures and fluxes at shared boundary interfaces. In our method, the process in the coupled model is described by pressure square equation, and uses Dirichlet boundary conditions. We discuss several problems: the optimal element number of mortar faces, two categories boundary faces of pore network, the difference between 2D and 3D models, and the difference between continuum models FVM and FEM in mortars. We conclude that: (1) too coarse mesh in mortars will decrease the accuracy, while too fine mesh will lead to an ill-condition even singular system, the optimal element number is depended on boundary pores and nodes number. (2) pore network models are adjacent to two different mortar faces (PNM to PNM, PNM to continuum model), incidental repeated mortar nodes must be deleted. (3) 3D models can be replaced by 2D models under certain condition. (4) FVM is more convenient than FEM, for its simplicity in assigning interface nodes pressure and calculating interface fluxes. This work is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB10020302), the 973 Program (2014CB239004), the Key Instrument Developing Project of the CAS (ZDYZ2012-1-08-02), the National Natural Science Foundation of China (41574129).

  7. Galactic supernova remnant candidates discovered by THOR

    NASA Astrophysics Data System (ADS)

    Anderson, L. D.; Wang, Y.; Bihr, S.; Rugel, M.; Beuther, H.; Bigiel, F.; Churchwell, E.; Glover, S. C. O.; Goodman, A. A.; Henning, Th.; Heyer, M.; Klessen, R. S.; Linz, H.; Longmore, S. N.; Menten, K. M.; Ott, J.; Roy, N.; Soler, J. D.; Stil, J. M.; Urquhart, J. S.

    2017-09-01

    Context. There is a considerable deficiency in the number of known supernova remnants (SNRs) in the Galaxy compared to that expected. This deficiency is thought to be caused by a lack of sensitive radio continuum data. Searches for extended low-surface brightness radio sources may find new Galactic SNRs, but confusion with the much larger population of H II regions makes identifying such features challenging. SNRs can, however, be separated from H II regions using their significantly lower mid-infrared (MIR) to radio continuum intensity ratios. Aims: Our goal is to find missing SNR candidates in the Galactic disk by locating extended radio continuum sources that lack MIR counterparts. Methods: We use the combination of high-resolution 1-2 GHz continuum data from The HI, OH, Recombination line survey of the Milky Way (THOR) and lower-resolution VLA 1.4 GHz Galactic Plane Survey (VGPS) continuum data, together with MIR data from the Spitzer GLIMPSE, Spitzer MIPSGAL, and WISE surveys to identify SNR candidates. To ensure that the candidates are not being confused with H II regions, we exclude radio continuum sources from the WISE Catalog of Galactic H II Regions, which contains all known and candidate H II regions in the Galaxy. Results: We locate 76 new Galactic SNR candidates in the THOR and VGPS combined survey area of 67.4° > ℓ > 17.5°, | b | ≤ 1.25° and measure the radio flux density for 52 previously-known SNRs. The candidate SNRs have a similar spatial distribution to the known SNRs, although we note a large number of new candidates near ℓ ≃ 30°, the tangent point of the Scutum spiral arm. The candidates are on average smaller in angle compared to the known regions, 6.4' ± 4.7' versus 11.0' ± 7.8', and have lower integrated flux densities. Conclusions: The THOR survey shows that sensitive radio continuum data can discover a large number of SNR candidates, and that these candidates can be efficiently identified using the combination of radio and MIR data. If the 76 candidates are confirmed as true SNRs, for example using radio polarization measurements or by deriving radio spectral indices, this would more than double the number of known Galactic SNRs in the survey area. This large increase would still, however, leave a discrepancy between the known and expected SNR populations of about a factor of two.

  8. Probing the origin of UX Ori-type variability in the YSO binary CO Ori with VLTI/GRAVITY

    NASA Astrophysics Data System (ADS)

    Davies, C. L.; Kreplin, A.; Kluska, J.; Hone, E.; Kraus, S.

    2018-03-01

    The primary star in the young stellar object binary CO Ori displays UX Ori-type variability: irregular, high amplitude optical, and near-infrared photometric fluctuations where flux minima coincide with polarization maxima. This is attributed to changes in local opacity. In CO Ori A, these variations exhibit a 12.4 yr cycle. Here, we investigate the physical origin of the fluctuating opacity and its periodicity using interferometric observations of CO Ori obtained using VLTI/GRAVITY. Continuum K-band circum-primary and circum-secondary emission are marginally spatially resolved for the first time, while Brγ emission is detected in the spectrum of the secondary. We estimate a spectral type range for CO Ori B of K2-K5 assuming visual extinction, AV = 2 and a distance of 430 pc. From geometric modelling of the continuum visibilities, the circum-primary emission is consistent with a central point source plus a Gaussian component with a full width at half-maximum of 2.31 ± 0.04 mas, inclined at 30.2° ± 2.2° and with a major axis position angle of 40° ± 6°. This inclination is lower than that reported for the discs of other UX Ori-type stars, providing a first indication that the UX Ori phenomena may arise through fluctuations in circum-stellar material exterior to a disc, for example, in a dusty outflow. An additional wide, symmetric Gaussian component is required to fit the visibilities of CO Ori B, signifying a contribution from scattered light. Finally, closure phases of CO Ori A were used to investigate whether the 12.4 yr periodicity is associated with an undetected third component, as has been previously suggested. We rule out any additional companions contributing more than 3.6 per cent to the K-band flux within ˜7.3-20 mas of CO Ori A.

  9. Vacuum ultraviolet imagery of the Virgo Cluster region. II - Total far-ultraviolet flux of galaxies

    NASA Astrophysics Data System (ADS)

    Kodaira, K.; Watanabe, T.; Onaka, T.; Tanaka, W.

    1990-11-01

    The total flux in the far-ultraviolet region around 150 nm was measured for more than 40 galaxies in the central region of the Virgo Cluster, using two imaging telescopes on board a sounding rocket. The observed far-ultraviolet flux shows positive correlations with the H I 21 cm flux and the far-infrared flux for spiral galaxies, and with the X-ray flux and the radio continuum flux for elliptical galaxies. The former correlations of spiral galaxies are interpreted in terms of star formation activity, which indicates substantial depletion in the Virgo galaxies in accordance with the H I stripping. The latter correlations of elliptical galaxies indicate possible far-ultraviolet sources of young population, in addition to evolved hot stars. Far-ultraviolet fluxes from two dwarf elliptical galaxies were obtained tentatively, indicating star formation activity in elliptical galaxies. A high-resolution UV imagery by HST would be effective to distinguish the young population and the old population in elliptical galaxies.

  10. Environmental Drivers of Benthic Flux Variation and Ecosystem Functioning in Salish Sea and Northeast Pacific Sediments.

    PubMed

    Belley, Rénald; Snelgrove, Paul V R; Archambault, Philippe; Juniper, S Kim

    2016-01-01

    The upwelling of deep waters from the oxygen minimum zone in the Northeast Pacific from the continental slope to the shelf and into the Salish Sea during spring and summer offers a unique opportunity to study ecosystem functioning in the form of benthic fluxes along natural gradients. Using the ROV ROPOS we collected sediment cores from 10 sites in May and July 2011, and September 2013 to perform shipboard incubations and flux measurements. Specifically, we measured benthic fluxes of oxygen and nutrients to evaluate potential environmental drivers of benthic flux variation and ecosystem functioning along natural gradients of temperature and bottom water dissolved oxygen concentrations. The range of temperature and dissolved oxygen encountered across our study sites allowed us to apply a suite of multivariate analyses rarely used in flux studies to identify bottom water temperature as the primary environmental driver of benthic flux variation and organic matter remineralization. Redundancy analysis revealed that bottom water characteristics (temperature and dissolved oxygen), quality of organic matter (chl a:phaeo and C:N ratios) and sediment characteristics (mean grain size and porosity) explained 51.5% of benthic flux variation. Multivariate analyses identified significant spatial and temporal variation in benthic fluxes, demonstrating key differences between the Northeast Pacific and Salish Sea. Moreover, Northeast Pacific slope fluxes were generally lower than shelf fluxes. Spatial and temporal variation in benthic fluxes in the Salish Sea were driven primarily by differences in temperature and quality of organic matter on the seafloor following phytoplankton blooms. These results demonstrate the utility of multivariate approaches in differentiating among potential drivers of seafloor ecosystem functioning, and indicate that current and future predictive models of organic matter remineralization and ecosystem functioning of soft-muddy shelf and slope seafloor habitats should consider bottom water temperature variation. Bottom temperature has important implications for estimates of seasonal and spatial benthic flux variation, benthic-pelagic coupling, and impacts of predicted ocean warming at high latitudes.

  11. ON HIGHLY CLUMPED MAGNETIC WIND MODELS FOR COOL EVOLVED STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, G. M.

    2010-09-10

    Recently, it has been proposed that the winds of non-pulsating and non-dusty K and M giants and supergiants may be driven by some form of magnetic pressure acting on highly clumped wind material. While many researchers believe that magnetic processes are responsible for cool evolved stellar winds, existing MHD and Alfven wave-driven wind models have magnetic fields that are essentially radial and tied to the photosphere. The clumped magnetic wind scenario is quite different in that the magnetic flux is also being carried away from the star with the wind. We test this clumped wind hypothesis by computing continuum radiomore » fluxes from the {zeta} Aur semiempirical model of Baade et al., which is based on wind-scattered line profiles. The radio continuum opacity is proportional to the electron density squared, while the line scattering opacity is proportional to the gas density. This difference in proportionality provides a test for the presence of large clumping factors. We derive the radial distribution of clump factors (CFs) for {zeta} Aur by comparing the nonthermal pressures required to produce the semiempirical velocity distribution with the expected thermal pressures. The CFs are {approx}5 throughout the sub-sonic inner wind region and then decline outward. These implied clumping factors lead to excess radio emission at 2.0 cm, while at 6.2 cm it improves agreement with the smooth unclumped model. Smaller clumping factors of {approx}2 lead to better overall agreement but also increase the discrepancy at 2 cm. These results do not support the magnetic clumped wind hypothesis and instead suggest that inherent uncertainties in the underlying semiempirical model probably dominate uncertainties in predicted radio fluxes. However, new ultraviolet line and radio continuum observations are needed to test the new generations of inhomogeneous magnetohydrodynamic wind models.« less

  12. Astronomical observations with the University College London balloon borne telescope

    NASA Technical Reports Server (NTRS)

    Jennings, R. E.

    1974-01-01

    The characteristics of a telescope system which was developed for high altitude balloon astronomy are discussed. A drawing of the optical system of the telescope is provided. A sample of the signals recorded during one of the flights is included. The correlation between the infrared flux and the radio continuum flux is analyzed. A far infrared map of the radio and infrared peaks of selected stars is developed. The spectrum of the planet Saturn is plotted to show intensity as compared with wavenumber.

  13. Predicted continuum spectra of type II supernovae - LTE results

    NASA Technical Reports Server (NTRS)

    Shaviv, G.; Wehrse, R.; Wagoner, R. V.

    1985-01-01

    The continuum spectral energy distribution of the flux emerging from type II supernovae is calculated from quasi-static radiative transfer through a power-law density gradient, assuming radiative equilibrium and LTE. It is found that the Balmer jump disappears at high effective temperatures and low densities, while the spectrum resembles that of a dilute blackbody but is flatter with a sharper cutoff at the short-wavelength end. A significant UV excess is found in all models calculated. The calculation should be considered exploratory because of significant effects which are anticipated to arise from departure from LTE.

  14. REVIEWS OF TOPICAL PROBLEMS: Gamma astronomy of the Sun and study of solar cosmic rays

    NASA Astrophysics Data System (ADS)

    Kuzhevskiĭ, B. M.

    1982-06-01

    A detailed discussion is given of the various nuclear reactions proceeding in the Sun's atmosphere under the influence of flare-accelerated particles. The role of such reactions in formation of the line spectrum and continuum of gamma-rays from the disturbed and quiet Sun is discussed. The gamma-ray fluxes in individual lines and in the continuum are estimated. The possibility of applying data on gamma-ray emission from the Sun to analysis of particle acceleration in solar flares and the conditions of their ejection into interplanetary space is analyzed.

  15. VizieR Online Data Catalog: BAL QSOs from SDSS DR3 (Trump+, 2006)

    NASA Astrophysics Data System (ADS)

    Trump, J. R.; Hall, P. B.; Reichard, T. A.; Richards, G. T.; Schneider, D. P.; vanden Berk, D. E.; Knapp, G. R.; Anderson, S. F.; Fan, X.; Brinkman, J.; Kleinman, S. J.; Nitta, A.

    2007-11-01

    We present a total of 4784 unique broad absorption line quasars from the Sloan Digital Sky Survey Third Data Release (Cat. ). An automated algorithm was used to match a continuum to each quasar and to identify regions of flux at least 10% below the continuum over a velocity range of at least 1000km/s in the CIV and MgII absorption regions. The model continuum was selected as the best-fit match from a set of template quasar spectra binned in luminosity, emission line width, and redshift, with the power-law spectral index and amount of dust reddening as additional free parameters. We characterize our sample through the traditional balnicity index and a revised absorption index, as well as through parameters such as the width, outflow velocity, fractional depth, and number of troughs. (1 data file).

  16. Predictive models for radial sap flux variation in coniferous, diffuse-porous and ring-porous temperate trees

    Treesearch

    Aaron B. Berdanier; Chelcy F. Miniat; James S. Clark

    2016-01-01

    Accurately scaling sap flux observations to tree or stand levels requires accounting for variation in sap flux between wood types and by depth into the tree. However, existing models for radial variation in axial sap flux are rarely used because they are difficult to implement, there is uncertainty about their predictive ability and calibration measurements...

  17. Heat flux variations over sea ice observed at the coastal area of the Sejong Station, Antarctica

    NASA Astrophysics Data System (ADS)

    Park, Sang-Jong; Choi, Tae-Jin; Kim, Seong-Joong

    2013-08-01

    This study presents variations of sensible heat flux and latent heat flux over sea ice observed in 2011 from the 10-m flux tower located at the coast of the Sejong Station on King George Island, Antarctica. A period from July to September was selected as a sea ice period based on daily record of sea state and hourly photos looking at the Marian Cove in front of the Sejong Station. For the sea ice period, mean sensible heat flux is about -11 Wm-2, latent heat flux is about +2 W m-2, net radiation is -12 W m-2, and residual energy is -3 W m-2 with clear diurnal variations. Estimated mean values of surface exchange coefficients for momentum, heat and moisture are 5.15 × 10-3, 1.19 × 10-3, and 1.87 × 10-3, respectively. The observed exchange coefficients of heat shows clear diurnal variations while those of momentum and moisture do not show diurnal variation. The parameterized exchange coefficients of heat and moisture produces heat fluxes which compare well with the observed diurnal variations of heat fluxes.

  18. Reddening and extinction towards H II regions

    NASA Technical Reports Server (NTRS)

    Caplan, James; Deharveng, Lise

    1989-01-01

    The light emitted by the gas in H II regions is attenuated by dust. This extinction can be measured by comparing H alpha, H beta, and radio continuum fluxes, since the intrinsic ratios of the Balmer line and thermal radio continuum emissivities are nearly constant for reasonable conditions in H II regions. In the case of giant extragalactic H II regions, the extinction was found to be considerably greater than expected. The dust between the Earth and the emitting gas may have an optical thickness which varies. The dust may be close enough to the source that scattered light contributes to the flux, or the dust may be actually mixed with the emitting gas. It is difficult to decide which configuration is correct. A rediscussion of this question in light of recent observations, with the Fabry-Perot spectrophotometers, of the large Galactic H II region is presented. The color excesses are compared for stars embedded in these H II regions with those derived (assuming the standard law) from the nebular extinction and reddening.

  19. Monitoring the Violent Activity from the Inner Accretion Disk of the Seyfert 1.9 Galaxy NGC 2992 with RXTE

    NASA Technical Reports Server (NTRS)

    Mruphy, Kendrah D.; Yaqoob, Tahir; Terashima, Yuichi

    2007-01-01

    We present the results of a one year monitoring campaign of the Seyfert 1.9 galaxy NGC 2992 with RXTE. Historically, the source has been shown to vary dramatically in 2-10 keV flux over timescales of years and was thought to be slowly transitioning between periods of quiescence and active accretion. Our results show that in one year the source continuum flux covered almost the entire historical range, making it unlikely that the low-luminosity states correspond to the accretion mechanism switching off. During flaring episodes we found that a highly redshifted Fe K line appears, implying that the violent activity is occurring in the inner accretion disk, within 100 gravitational radii of the central black hole. We also found that the Compton y parameter for the X-ray continuum remained approximately constant during the large amplitude variability. These observations make NGC 2992 well-suited for future multi-waveband monitoring, as a test-bed for constraining accretion models.

  20. IUE short-wavelength high-dispersion line list for the symbiotic nova RR Telescopii

    NASA Technical Reports Server (NTRS)

    Aufdenberg, Jason P.

    1993-01-01

    An 820 minute and other long-exposure archival SWP IUE high-dispersion spectra of symbiotic star RR Tel have been combined to form a composite spectrum. In most of these spectra many lines are saturated, but weaker features appear above the continuum. Their wavelengths were measured from the composite spectrum and compared with the line list from a thorough study of RR Tel by Penston et al. (1983). Among the revised line list are 22 new line identifications from ions C III, O I, N I, Mg VI, Si I, S I, S IV, Fe II, and Ni II. N I exists inside RR Tel's H II region and is pumped by the hot component's continuum. The fluxes for all the lines in each of the spectra are presented. All of the observed ions show a secular flux decrease between 1978 and 1988. A list of SWP high-dispersion camera artifacts is also presented. The list was generated by comparing RR Tel spectra to a long-exposure sky flat.

  1. Four-Dimensional Continuum Gyrokinetic Code: Neoclassical Simulation of Fusion Edge Plasmas

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.

    2005-10-01

    We are developing a continuum gyrokinetic code, TEMPEST, to simulate edge plasmas. Our code represents velocity space via a grid in equilibrium energy and magnetic moment variables, and configuration space via poloidal magnetic flux and poloidal angle. The geometry is that of a fully diverted tokamak (single or double null) and so includes boundary conditions for both closed magnetic flux surfaces and open field lines. The 4-dimensional code includes kinetic electrons and ions, and electrostatic field-solver options, and simulates neoclassical transport. The present implementation is a Method of Lines approach where spatial finite-differences (higher order upwinding) and implicit time advancement are used. We present results of initial verification and validation studies: transition from collisional to collisionless limits of parallel end-loss in the scrape-off layer, self-consistent electric field, and the effect of the real X-point geometry and edge plasma conditions on the standard neoclassical theory, including a comparison of our 4D code with other kinetic neoclassical codes and experiments.

  2. GBT CHANG-ES: Enhancing Radio Halos in Edge-on Galaxies Through Short-Spacing Corrections

    NASA Astrophysics Data System (ADS)

    Trent Braun, Timothy; Kepley, Amanda; Rand, Richard J.; Mason, Brian Scott; CHANG-ES

    2018-01-01

    We present L- and C-band continuum Stokes I data from the Green Bank Telescope (GBT) of 35 edge-on spiral galaxies that are part of the Continuum Halos in Nearby Galaxies, an EVLA Survey (CHANG-ES). CHANG-ES is an Expanded Very Large Array (EVLA) large program to measure radio continuum emission from the halos of 35 edge-on spiral galaxies in order to address a wide variety of science goals, including constraining the structure of magnetic fields, understanding the origins of radio halos, and probing both cosmic ray transport and cosmic ray driven winds. These goals can be reached by studying radio halo scale heights, spectral index variations with height, and the distribution of intensity and position angle of polarized emission. In particular, we are interested in modeling non-thermal presssure gradients in the gaseous halos of nearby galaxies to predict how they contribute to the decrease in the rotation of extraplanar gas with increasing height off of the galactic midplanes (lagging halos). Ultimately, the study of lagging halos will help us probe the efficacy of gas cycling between the disk and the halo in nearby galaxies. Crucial to this and the rest of the CHANG-ES analysis is the combination of the VLA data (B,C,D configurations in L-band and C,D configurations in C-band) with the GBT data in order to fill in the missing short-spacings in the u-v plane, which increases our sensitivity to large-scale emission and allows us to recover the total flux density. We present preliminary results from two methods of combining single-dish and interferometic data, namely the use of GBT data cubes as a model for the CASA task tclean and combining the Fourier transforms of the images as weighted sums in the u-v plane (feathering). Lastly, we detail our new data reduction pipeline for our wideband GBT continuum data, with an emphasis on the application of a least-squares basket-weaving technique used to remove striping image artifacts that notoriously plague single-dish maps.

  3. Photometric Flux in EXONEST

    NASA Astrophysics Data System (ADS)

    Young, Steven K.

    As a planet orbits its parent star, the amount of light that reaches Earth from that system is dependent on the dynamics of that star system. Known as photometric variations, these slight changes in light flux are detectable by the Kepler Space Telescope and must be fully understood in order to properly model the system. There are four main factors that contribute to the photometric flux: reflected light from the planet, thermal emissions from the planet, doppler boosting in the light being emitted by the star, and ellipsoidal variations in the star. The total observed flux from each contribution then determines how much light will be seen from the star system to be used for analysis. Previous studies have normalized the photometric variation fluxes by the observed flux emitted from the star. However, normalizing data inherently and unphysically skews the result which must then be taken into account. Additionally, when the stellar flux is an unknown it is impossible to normalize the photometric variation fluxes with respect to it. This paper will preliminarily attempt to improve upon the existing studies by removing the source of the deviation for the flux results, i.e. the stellar flux. The fluxes found from each photometric variation factor will then be incorporated into EXONEST, an algorithm using Bayesian inference, that will be implemented for characterizing extrasolar systems.

  4. Morphology and time variation of the Jovian Far UV aurora: Hubble Space Telescope observations

    NASA Technical Reports Server (NTRS)

    Gerard, Jean-Claude; Dols, Vincent; Paresce, Francesco; Prange, Renee

    1993-01-01

    High spatial resolution images of the north polar region of Jupiter have been obtained with the Faint Object Camera (FOC) on board the Hubble Space Telescope (HST). The first set of two images collected 87 min apart in February 1992 shows a bright (approximately or equal to 180 kR) emission superimposed on the background in rotation with the planet. Both Ly alpha images show common regions of enhanced emission but differences are also observed, possibly due to temporal variations. The second group of images obtained on June 23 and 26, 1992 isolates a spectral region near 153 nm dominated by the H2 Lyman bands and continuum. Both pictures exhibit a narrow arc structure fitting the L = 30 magnetotail field line footprint in the morning sector and a broader diffuse aurora in the afternoon. They show no indication of an evening twilight enhancement. Although the central meridian longitudes were similar, significant differences are seen in the two exposures, especially in the region of diffuse emission, and interpreted as signatures of temporal variations. The total power radiated in the H2 bands is approximately or equal to 2 x 10(exp 12) W, in agreement with previous UV spectrometer observations. The high local H2 emission rates (approximately 450 kR) imply a particle precipitation carrying an energy flux of about 5 x 10(exp -2) W/sq m.

  5. Carbon Fluxes and Transport Along the Terrestrial Aquatic Continuum

    NASA Astrophysics Data System (ADS)

    Butman, D. E.; Kolka, R.; Fennel, K.; Stackpoole, S. M.; Trettin, C.; Windham-Myers, L.

    2017-12-01

    Terrestrial wetlands, inland surface waters, tidal wetlands and estuaries, and the coastal ocean are distinct aquatic ecosystems that integrate carbon (C) fluxes and processing among the major earth system components: the continents, oceans, and atmosphere. The development of the 2nd State of the Carbon Cycle Report (SOCCR2) noted that incorporating the C cycle dynamics for these ecosystems was necessary to reconcile some of the gaps associated with the North American C budget. We present major C stocks and fluxes for Canada, Mexico and the United States. North America contains nearly 42% of the global terrestrial wetland area. Terrestrial wetlands, defined as soils that are seasonally or permanently inundated or saturated, contain significant C stocks equivalent to 174,000 Tg C in the top 40 cm of soil. While terrestrial wetlands are a C sink of approximately 64 Tg C yr-1, they also emit 21 Tg of CH4 yr-1. Inland waters are defined as lakes, reservoirs, rivers, and streams. Carbon fluxes, which include lateral C export to the coast, riverine and lacustrine CO2 emissions, and C burial in lakes and reservoirs are estimated at 507 Tg yr-1. Estuaries and tidal wetlands assimilate C and nutrients from uplands and rivers, and their total C stock is 1,323 Tg C in the top 1 m of soils and sediment. Accounting for soil accretion, lateral C flux, and CO2 assimilation and emission, tidal wetlands and estuaries are net sinks with a total flux equal to 6 Tg C yr-1. The coastal ocean and sea shelfs, defined as non-estuarine waters within 200 nautical miles (370 km) of the coast, function as net sinks, with the air-sea exchange of CO2 estimated at 150 Tg C yr-1. In total, fluxes from these four aquatic ecosystems are equal to a loss of 302 Tg C yr-1. Including these four discrete fluxes in this assessment demonstrates the importance of linking hydrology and biogeochemical cycling to evaluate the impacts of climate change and human activities on carbon fluxes across the terrestrial-aquatic continuum.

  6. Human perturbation increases the fluxes of dissolved molybdenum from land to ocean - The case of the Jiulong River in China.

    PubMed

    Wang, Deli; Lu, Shuimiao; Chen, Nengwang; Dai, Minhan; Guéguen, Céline

    2018-03-15

    Rivers contribute a substantial amount of trace metals including molybdenum (Mo) into the oceans. The driving forces controlling the riverine fluxes of dissolved metals still remain not fully understood. Our study then investigated the spatial variations of dissolved metals including molybdenum in a typically human perturbed river, the Jiulong River (JR), China. The aim of the study is to elucidate the relevance of anthropogenic perturbation on the fluxes of dissolved metals such as molybdenum from land to ocean. Our study shows a large spatial variability of dissolved Mo across tributary to main stream of the JR. Particularly, dissolved Mo was generally low (average: 5 ± 1 nM) in the "pristine" JR headwaters, and elevated (19 ± 6 nM) along the lower river continuum. Sporadically high levels of dissolved Mo occurred in the upper North River (77 ± 19 nM), as a result of mining activities locally. Significant correlations of dissolved Mo with total dissolved solids (TDS) and dissolved strontium (Sr) were observed in the whole JR (Mo = 1.4* TDS -1.7, R 2  = 0.86, p < .01; Mo = 1.2*Sr - 2.2, R 2  = 0.70, p < .01, logarithmic scales). This indicates that dissolved Mo is mobilized mainly along with other major ions such as Sr during similar mineral dissolution processes. From the "pristine" headwaters to the mouth of the JR, riverine Mo fluxes at the mouth of the JR has elevated by at least 3 times due to human perturbation. Compiled historic data regarding metal fluxes from world rivers further confirmed that small and medium rivers are relatively more sensitive to human perturbation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The gamma ray continuum spectrum from the galactic center disk and point sources

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Tueller, Jack

    1992-01-01

    A light curve of gamma-ray continuum emission from point sources in the galactic center region is generated from balloon and satellite observations made over the past 25 years. The emphasis is on the wide field-of-view instruments which measure the combined flux from all sources within approximately 20 degrees of the center. These data have not been previously used for point-source analyses because of the unknown contribution from diffuse disk emission. In this study, the galactic disk component is estimated from observations made by the Gamma Ray Imaging Spectrometer (GRIS) instrument in Oct. 1988. Surprisingly, there are several times during the past 25 years when all gamma-ray sources (at 100 keV) within about 20 degrees of the galactic center are turned off or are in low emission states. This implies that the sources are all variable and few in number. The continuum gamma-ray emission below approximately 150 keV from the black hole candidate 1E1740.7-2942 is seen to turn off in May 1989 on a time scale of less than two weeks, significantly shorter than ever seen before. With the continuum below 150 keV turned off, the spectral shape derived from the HEXAGONE observation on 22 May 1989 is very peculiar with a peak near 200 keV. This source was probably in its normal state for more than half of all observations since the mid-1960's. There are only two observations (in 1977 and 1979) for which the sum flux from the point sources in the region significantly exceeds that from 1E1740.7-2942 in its normal state.

  8. Joint Bayesian Estimation of Quasar Continua and the Lyα Forest Flux Probability Distribution Function

    NASA Astrophysics Data System (ADS)

    Eilers, Anna-Christina; Hennawi, Joseph F.; Lee, Khee-Gan

    2017-08-01

    We present a new Bayesian algorithm making use of Markov Chain Monte Carlo sampling that allows us to simultaneously estimate the unknown continuum level of each quasar in an ensemble of high-resolution spectra, as well as their common probability distribution function (PDF) for the transmitted Lyα forest flux. This fully automated PDF regulated continuum fitting method models the unknown quasar continuum with a linear principal component analysis (PCA) basis, with the PCA coefficients treated as nuisance parameters. The method allows one to estimate parameters governing the thermal state of the intergalactic medium (IGM), such as the slope of the temperature-density relation γ -1, while marginalizing out continuum uncertainties in a fully Bayesian way. Using realistic mock quasar spectra created from a simplified semi-numerical model of the IGM, we show that this method recovers the underlying quasar continua to a precision of ≃ 7 % and ≃ 10 % at z = 3 and z = 5, respectively. Given the number of principal component spectra, this is comparable to the underlying accuracy of the PCA model itself. Most importantly, we show that we can achieve a nearly unbiased estimate of the slope γ -1 of the IGM temperature-density relation with a precision of +/- 8.6 % at z = 3 and +/- 6.1 % at z = 5, for an ensemble of ten mock high-resolution quasar spectra. Applying this method to real quasar spectra and comparing to a more realistic IGM model from hydrodynamical simulations would enable precise measurements of the thermal and cosmological parameters governing the IGM, albeit with somewhat larger uncertainties, given the increased flexibility of the model.

  9. ALMA Survey of Lupus Protoplanetary Disks. II. Gas Disk Radii

    NASA Astrophysics Data System (ADS)

    Ansdell, M.; Williams, J. P.; Trapman, L.; van Terwisga, S. E.; Facchini, S.; Manara, C. F.; van der Marel, N.; Miotello, A.; Tazzari, M.; Hogerheijde, M.; Guidi, G.; Testi, L.; van Dishoeck, E. F.

    2018-05-01

    We present Atacama Large Millimeter/Sub-Millimeter Array (ALMA) Band 6 observations of a complete sample of protoplanetary disks in the young (∼1–3 Myr) Lupus star-forming region, covering the 1.33 mm continuum and the 12CO, 13CO, and C18O J = 2–1 lines. The spatial resolution is ∼0.″25 with a medium 3σ continuum sensitivity of 0.30 mJy, corresponding to M dust ∼ 0.2 M ⊕. We apply Keplerian masking to enhance the signal-to-noise ratios of our 12CO zero-moment maps, enabling measurements of gas disk radii for 22 Lupus disks; we find that gas disks are universally larger than millimeter dust disks by a factor of two on average, likely due to a combination of the optically thick gas emission and the growth and inward drift of the dust. Using the gas disk radii, we calculate the dimensionless viscosity parameter, α visc, finding a broad distribution and no correlations with other disk or stellar parameters, suggesting that viscous processes have not yet established quasi-steady states in Lupus disks. By combining our 1.33 mm continuum fluxes with our previous 890 μm continuum observations, we also calculate the millimeter spectral index, α mm, for 70 Lupus disks; we find an anticorrelation between α mm and millimeter flux for low-mass disks (M dust ≲ 5), followed by a flattening as disks approach α mm ≈ 2, which could indicate faster grain growth in higher-mass disks, but may also reflect their larger optically thick components. In sum, this work demonstrates the continuous stream of new insights into disk evolution and planet formation that can be gleaned from unbiased ALMA disk surveys.

  10. The linear polarization of 3C 345 in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Dolan, Joseph F.; Boyd, Patricia T.; Wolinski, Karen G.; Smith, Paul S.; Impey, C. D.; Bless, Robert C.; Nelson, M. J.; Percival, J. W.; Taylor, M. J.; Elliot, J. L.

    1994-01-01

    The linear polarization of 3C 345, a superluminal radio source and OVV quasar, was observed in two bandpasses in the ultraviolet (centered at 2160 A and 2770 A) in 1993 April using the High Speed Photometer on the Hubble Space Telescope. The quasar is significantly polarized in the UV (p greater than 5%). Ground-based polarimetry was obtained 11 days later, but a difference in the position angle between the observations in the visible and those in the UV indicate that the magnitude of the polarization of 3C 345 may have changed over that time. If the two observation sets represent the same state of spectral polarization, then the large UV flux implies that either the polarization of the synchrotron continuum must stop decreasing in the UV, or that there is an additional source of polarized flux in the ultraviolet. Only if the UV observations represent a spectral polarization state with the same position angle in the visible seen previously in 3C 345 can the polarized flux be represented by a single power law consistent with the three-component model of Smith et al. This model consists of a polarized synchrotron component, an unpolarized component from the broad-line region, and an unpolarized component attributed to thermal radiation from an optically thick accretion disk. Additional simultaneous polarimetry in the UV and visible will be required to further constrain models of the continuum emission processes in 3C 345 and determine if the UV polarized flux is synchrotron in origin.

  11. TRACE Images of the Solar Chromosphere, Transition Region, and Low Corona at High Cadence and High Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Tarbell, T. D.; Handy, B. N.; Judge, P. G.

    1999-05-01

    We present TRACE images and movies showing C IV emission (transition region at 80,000 degrees) and UV continuum (temperature minimum region) of quiet and active regions. TRACE images using the 1550, 1600, and 1700 Angstroms filters can be combined to estimate the total emission in the C IV 1548 and 1550 lines and the UV continuum. These are supplemented in different observations with MDI magnetograms, TRACE 171 Angstroms images (Fe IX/X and perhaps O VI), and SUMER spectra of chromospheric and transition region lines from SOHO JOP 72. In quiet sun, bright C IV transients are seen in the vicinity of flux emergence, flux cancellation, and less dramatic interactions of small magnetic structures. Some of these are accompanied by high-velocity explosive events seen in SUMER spectra. The C IV emission can be well-separated from the photospheric magnetic footpoints, suggesting that it takes place on current sheets higher in the atmosphere separating different flux systems. In active regions, both bright and dark fibrils or loops are seen in C IV. Many nano/micro/sub flares are seen, some but not all of which are associated with emerging flux. The C IV emission of "moss" regions, footpoints of hot coronal loops, is contrasted with that of similar plage which does not have hot loops above it. This work was supported by the NASA contracts and grants for TRACE, MDI, and SOHO.

  12. Cosmic-ray effects in the Gum nebula

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Boldt, E. A.

    1971-01-01

    The effects of low energy heavy nuclei from the supernova explosion on nearby interstellar space were investigated. In addition to the ionization and heating of the Gum nebula, these particles may produce detectable fluxes of X-rays and gamma rays, both as continuum radiation and line emission.

  13. Parameterisation of multi-scale continuum perfusion models from discrete vascular networks.

    PubMed

    Hyde, Eoin R; Michler, Christian; Lee, Jack; Cookson, Andrew N; Chabiniok, Radek; Nordsletten, David A; Smith, Nicolas P

    2013-05-01

    Experimental data and advanced imaging techniques are increasingly enabling the extraction of detailed vascular anatomy from biological tissues. Incorporation of anatomical data within perfusion models is non-trivial, due to heterogeneous vessel density and disparate radii scales. Furthermore, previous idealised networks have assumed a spatially repeating motif or periodic canonical cell, thereby allowing for a flow solution via homogenisation. However, such periodicity is not observed throughout anatomical networks. In this study, we apply various spatial averaging methods to discrete vascular geometries in order to parameterise a continuum model of perfusion. Specifically, a multi-compartment Darcy model was used to provide vascular scale separation for the fluid flow. Permeability tensor fields were derived from both synthetic and anatomically realistic networks using (1) porosity-scaled isotropic, (2) Huyghe and Van Campen, and (3) projected-PCA methods. The Darcy pressure fields were compared via a root-mean-square error metric to an averaged Poiseuille pressure solution over the same domain. The method of Huyghe and Van Campen performed better than the other two methods in all simulations, even for relatively coarse networks. Furthermore, inter-compartment volumetric flux fields, determined using the spatially averaged discrete flux per unit pressure difference, were shown to be accurate across a range of pressure boundary conditions. This work justifies the application of continuum flow models to characterise perfusion resulting from flow in an underlying vascular network.

  14. Variational principles for relativistic smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Monaghan, J. J.; Price, D. J.

    2001-12-01

    In this paper we show how the equations of motion for the smoothed particle hydrodynamics (SPH) method may be derived from a variational principle for both non-relativistic and relativistic motion when there is no dissipation. Because the SPH density is a function of the coordinates the derivation of the equations of motion through variational principles is simpler than in the continuum case where the density is defined through the continuity equation. In particular, the derivation of the general relativistic equations is more direct and simpler than that of Fock. The symmetry properties of the Lagrangian lead immediately to the familiar additive conservation laws of linear and angular momentum and energy. In addition, we show that there is an approximately conserved quantity which, in the continuum limit, is the circulation.

  15. The Spectral Variability of the T Tauri Star DF Tauri

    NASA Astrophysics Data System (ADS)

    Johns-Krull, Christopher M.; Basri, Gibor

    1997-01-01

    We analyze 117 echelle spectra of the T Tauri star DF Tau, concentrating on variations in the optical continuum veiling and the strong emission lines. Although this star was the inspiration for the original suggestion of magnetospheric accretion in T Tauri stars (TTSs), this hypothesis is only partially supported in our data. We find that variations in the Ca II infrared triplet lines correlate with the veiling variations; there is some evidence that the broad component of the He I line does, too. The narrow component of He I is shown to arise at the stellar surface, but it correlates with the broad component. There is a surprising lack of periodicity in the lines, and it does not occur where expected when seen. The correlation between continuum veiling and the line components expected to be most related to the veiling is poor. There is a great deal of variability in all the lines and line components; a snapshot spectrum is a poor way to characterize the star as a whole. The total Balmer line fluxes are poorly correlated with the veiling, unlike previous results on a large sample of TTSs. Redshifted absorption components are found in the weaker lines but are not common. The strength of the blueshifted absorption feature in Hα is correlated with the veiling, but changes in it perhaps occur before veiling changes by about one day. This time delay supports the idea that the wind originates at some distance from the stellar surface and is related to accretion. Spherically symmetric wind models are unable to reproduce well the relative absorption levels on the blue side of the Hα and Hβ lines simultaneously. Hα does not display the asymmetries expected of magnetospheric accretion, but it is sometimes suggestive of azimuthally asymmetric corotating structures. The line wings indicate that the formation region of the Hα line is dominated by high turbulence. Hβ does show more of the asymmetry expected of magnetospheric accretion. Based on observations obtained at the Lick Observatory operated by the University of California.

  16. Constraining UV Continuum Slopes of Active Galactic Nuclei with CLOUDY Models of Broad-line Region Extreme-ultraviolet Emission Lines

    NASA Astrophysics Data System (ADS)

    Moloney, Joshua; Shull, J. Michael

    2014-10-01

    Understanding the composition and structure of the broad-line region (BLR) of active galactic nuclei (AGNs) is important for answering many outstanding questions in supermassive black hole evolution, galaxy evolution, and ionization of the intergalactic medium. We used single-epoch UV spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to measure EUV emission-line fluxes from four individual AGNs with 0.49 <= z <= 0.64, two AGNs with 0.32 <= z <= 0.40, and a composite of 159 AGNs. With the CLOUDY photoionization code, we calculated emission-line fluxes from BLR clouds with a range of density, hydrogen ionizing flux, and incident continuum spectral indices. The photoionization grids were fit to the observations using single-component and locally optimally emitting cloud (LOC) models. The LOC models provide good fits to the measured fluxes, while the single-component models do not. The UV spectral indices preferred by our LOC models are consistent with those measured from COS spectra. EUV emission lines such as N IV λ765, O II λ833, and O III λ834 originate primarily from gas with electron temperatures between 37,000 K and 55,000 K. This gas is found in BLR clouds with high hydrogen densities (n H >= 1012 cm-3) and hydrogen ionizing photon fluxes (ΦH >= 1022 cm-2 s-1). Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS5-26555.

  17. Determination of the size of the dust torus in H0507+164 through optical and infrared monitoring

    NASA Astrophysics Data System (ADS)

    Mandal, Amit Kumar; Rakshit, Suvendu; Kurian, Kshama S.; Stalin, C. S.; Mathew, Blesson; Hoenig, Sebastian; Gandhi, Poshak; Sagar, Ram; Pandge, M. B.

    2018-04-01

    The time delay between flux variations in different wavelength bands can be used to probe the inner regions of active galactic nuclei (AGNs). Here, we present the first measurements of the time delay between optical and near-infrared (NIR) flux variations in H0507+164, a nearby Seyfert 1.5 galaxy at z = 0.018. The observations in the optical V-band and NIR J, H, and Ks bands carried over 35 epochs during the period 2016 October to 2017 April were used to estimate the inner radius of the dusty torus. From a careful reduction and analysis of the data using cross-correlation techniques, we found delayed responses of the J, H, and Ks light curves to the V-band light curve. In the rest frame of the source, the lags between optical and NIR bands are found to be 27.1^{+13.5}_{-12.0} d (V versus J), 30.4^{+13.9}_{-12.0} d (V versus H) and 34.6^{+12.1}_{-9.6} d (V versus Ks). The lags between the optical and different NIR bands are thus consistent with each other. The measured lags indicate that the inner edge of dust torus is located at a distance of 0.029 pc from the central ultraviolet/optical AGN continuum. This is larger than the radius of the broad line region of this object determined from spectroscopic monitoring observations thereby supporting the unification model of AGN. The location of H0507+164 in the τ-MV plane indicates that our results are in excellent agreement with the now known lag-luminosity scaling relationship for dust in AGN.

  18. HST Rotational Spectral Mapping Of Two L-Type Brown Dwarfs: Variability In And Out Of Water Bands Indicates High-Altitude Haze Layers

    DOE PAGES

    Yang, Hao; Apai, Dániel; Marley, Mark S.; ...

    2014-12-17

    We present time-resolved near-infrared spectroscopy of two L5 dwarfs, 2MASS J18212815+1414010 and 2MASS J15074759-1627386, observed with the Wide Field Camera 3 instrument on the Hubble Space Telescope (HST). We study the wavelength dependence of rotation-modulated flux variations between 1.1 μm and 1.7 μm. We find that the water absorption bands of the two L5 dwarfs at 1.15 μm and 1.4 μm vary at similar amplitudes as the adjacent continuum. This differs from the results of previous HST observations of L/T transition dwarfs, in which the water absorption at 1.4 μm displays variations of about half of the amplitude at othermore » wavelengths. We find that the relative amplitude of flux variability out of the water band with respect to that in the water band shows a increasing trend from the L5 dwarfs toward the early T dwarfs. We utilize the models of Saumon & Marley (2008) and find that the observed variability of the L5 dwarfs can be explained by the presence of spatially varying high-altitude haze layers above the condensate clouds. Therefore, our observations show that the heterogeneity of haze layers - the driver of the variability - must be located at very low pressures, where even the water opacity is negligible. In the near future, the rotational spectral mapping technique could be utilized for other atomic and molecular species to probe different pressure levels in the atmospheres of brown dwarfs and exoplanets and uncover both horizontal and vertical cloud structures.« less

  19. Results from the solar maximum mission

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.

    1986-01-01

    The major results from SMM (Solar Max Mission) are presented as they relate to the understanding of the energy release and particle transportation processes that led to the high energy X-ray aspects of solar flares. Evidence is reviewed for a 152- to 158-day periodicity in various aspects of solar activity including the rate of occurrence of hard X-ray and gamma-ray flares. The statistical properties of over 7000 hard X-ray flares detected with the Hard X-Ray Burst Spectrometer are presented including the spectrum of peak rates and the distribution of the photo number spectrum. A flare classification scheme is used to divide flares into three different types. Type A flares have purely thermal, compact sources with very steep hard X-ray spectra. Type B flares are impulsive bursts which show double footpoints in hard X-rays, and soft-hard-soft spectral evolution. Type C flares have gradually varying hard X-ray and microwave fluxes from high altitudes and show hardening of the X-ray spectrum through the peak and on the decay. SSM data are presented for examples of Type B and Type C events. New results are presented showing coincident hard X rays, O V, and UV continuum observations in Type B events with a time resolution of 128 ms. The subsecond variations in the hard X-ray flux during 10% of the stronger events are discussed and the fastest observed variation in a time of 20 ms is presented. The properties of Type C flares are presented as determined primarily from the non-imaged hard X-ray and microwave spectral data. A model based on the association of Type C flares and coronal mass ejections is presented to explain many of the characteristics of these gradual flares.

  20. HST ROTATIONAL SPECTRAL MAPPING OF TWO L-TYPE BROWN DWARFS: VARIABILITY IN AND OUT OF WATER BANDS INDICATES HIGH-ALTITUDE HAZE LAYERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hao; Apai, Dániel; Karalidi, Theodora

    We present time-resolved near-infrared spectroscopy of two L5 dwarfs, 2MASS J18212815+1414010 and 2MASS J15074759–1627386, observed with the Wide Field Camera 3 instrument on the Hubble Space Telescope (HST). We study the wavelength dependence of rotation-modulated flux variations between 1.1 μm and 1.7 μm. We find that the water absorption bands of the two L5 dwarfs at 1.15 μm and 1.4 μm vary at similar amplitudes as the adjacent continuum. This differs from the results of previous HST observations of L/T transition dwarfs, in which the water absorption at 1.4 μm displays variations of about half of the amplitude at othermore » wavelengths. We find that the relative amplitude of flux variability out of the water band with respect to that in the water band shows a increasing trend from the L5 dwarfs toward the early T dwarfs. We utilize the models of Saumon and Marley and find that the observed variability of the L5 dwarfs can be explained by the presence of spatially varying high-altitude haze layers above the condensate clouds. Therefore, our observations show that the heterogeneity of haze layers—the driver of the variability—must be located at very low pressures, where even the water opacity is negligible. In the near future, the rotational spectral mapping technique could be utilized for other atomic and molecular species to probe different pressure levels in the atmospheres of brown dwarfs and exoplanets and uncover both horizontal and vertical cloud structures.« less

  1. HST Rotational Spectral Mapping Of Two L-Type Brown Dwarfs: Variability In And Out Of Water Bands Indicates High-Altitude Haze Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hao; Apai, Dániel; Marley, Mark S.

    We present time-resolved near-infrared spectroscopy of two L5 dwarfs, 2MASS J18212815+1414010 and 2MASS J15074759-1627386, observed with the Wide Field Camera 3 instrument on the Hubble Space Telescope (HST). We study the wavelength dependence of rotation-modulated flux variations between 1.1 μm and 1.7 μm. We find that the water absorption bands of the two L5 dwarfs at 1.15 μm and 1.4 μm vary at similar amplitudes as the adjacent continuum. This differs from the results of previous HST observations of L/T transition dwarfs, in which the water absorption at 1.4 μm displays variations of about half of the amplitude at othermore » wavelengths. We find that the relative amplitude of flux variability out of the water band with respect to that in the water band shows a increasing trend from the L5 dwarfs toward the early T dwarfs. We utilize the models of Saumon & Marley (2008) and find that the observed variability of the L5 dwarfs can be explained by the presence of spatially varying high-altitude haze layers above the condensate clouds. Therefore, our observations show that the heterogeneity of haze layers - the driver of the variability - must be located at very low pressures, where even the water opacity is negligible. In the near future, the rotational spectral mapping technique could be utilized for other atomic and molecular species to probe different pressure levels in the atmospheres of brown dwarfs and exoplanets and uncover both horizontal and vertical cloud structures.« less

  2. Hybrid discrete/continuum algorithms for stochastic reaction networks

    DOE PAGES

    Safta, Cosmin; Sargsyan, Khachik; Debusschere, Bert; ...

    2014-10-22

    Direct solutions of the Chemical Master Equation (CME) governing Stochastic Reaction Networks (SRNs) are generally prohibitively expensive due to excessive numbers of possible discrete states in such systems. To enhance computational efficiency we develop a hybrid approach where the evolution of states with low molecule counts is treated with the discrete CME model while that of states with large molecule counts is modeled by the continuum Fokker-Planck equation. The Fokker-Planck equation is discretized using a 2nd order finite volume approach with appropriate treatment of flux components to avoid negative probability values. The numerical construction at the interface between the discretemore » and continuum regions implements the transfer of probability reaction by reaction according to the stoichiometry of the system. As a result, the performance of this novel hybrid approach is explored for a two-species circadian model with computational efficiency gains of about one order of magnitude.« less

  3. Coupling lattice Boltzmann and continuum equations for flow and reactive transport in porous media.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coon, Ethan; Porter, Mark L.; Kang, Qinjun

    2012-06-18

    In spatially and temporally localized instances, capturing sub-reservoir scale information is necessary. Capturing sub-reservoir scale information everywhere is neither necessary, nor computationally possible. The lattice Boltzmann Method for solving pore-scale systems. At the pore-scale, LBM provides an extremely scalable, efficient way of solving Navier-Stokes equations on complex geometries. Coupling pore-scale and continuum scale systems via domain decomposition. By leveraging the interpolations implied by pore-scale and continuum scale discretizations, overlapping Schwartz domain decomposition is used to ensure continuity of pressure and flux. This approach is demonstrated on a fractured medium, in which Navier-Stokes equations are solved within the fracture while Darcy'smore » equation is solved away from the fracture Coupling reactive transport to pore-scale flow simulators allows hybrid approaches to be extended to solve multi-scale reactive transport.« less

  4. Variational analysis of the coupling between a geometrically exact Cosserat rod and an elastic continuum

    NASA Astrophysics Data System (ADS)

    Sander, Oliver; Schiela, Anton

    2014-12-01

    We formulate the static mechanical coupling of a geometrically exact Cosserat rod to a nonlinearly elastic continuum. In this setting, appropriate coupling conditions have to connect a one-dimensional model with director variables to a three-dimensional model without directors. Two alternative coupling conditions are proposed, which correspond to two different configuration trace spaces. For both, we show existence of solutions of the coupled problems, using the direct method of the calculus of variations. From the first-order optimality conditions, we also derive the corresponding conditions for the dual variables. These are then interpreted in mechanical terms.

  5. Lyα-Lyman continuum connection in 3.5 ≤ z ≤ 4.3 star-forming galaxies from the VUDS survey

    NASA Astrophysics Data System (ADS)

    Marchi, F.; Pentericci, L.; Guaita, L.; Schaerer, D.; Verhamme, A.; Castellano, M.; Ribeiro, B.; Garilli, B.; Fèvre, O. Le; Amorin, R.; Bardelli, S.; Cassata, P.; Durkalec, A.; Grazian, A.; Hathi, N. P.; Lemaux, B. C.; Maccagni, D.; Vanzella, E.; Zucca, E.

    2018-06-01

    Context. To identify the galaxies responsible for the reionization of the Universe, we must rely on the investigation of the Lyman continuum (LyC) properties of z ≲ 5 star-forming galaxies, where we can still directly observe their ionizing radiation. Aims: The aim of this work is to explore the correlation between the LyC emission and some of the proposed indirect indicators of LyC radiation at z 4 such as a bright Lyα emission and a compact UV continuum size. Methods: We selected a sample of 201 star-forming galaxies from the Vimos Ultra Deep Survey (VUDS) at 3.5 ≤ z ≤ 4.3 in the COSMOS, ECDFS, and VVDS-2h fields, including only those with reliable spectroscopic redshifts, a clean spectrum in the LyC range and clearly not contaminated by bright nearby sources in the same slit. For all galaxies we measured the Lyα EW, the Lyα velocity shift with respect to the systemic redshift, the Lyα spatial extension and the UV continuum effective radius. We then selected different sub-samples according to the properties predicted to be good LyC emission indicators: in particular we created sub-samples of galaxies with EW(Lyα) ≥ 70 Å, Lyαext ≤ 5.7 kpc, rUV ≤ 0.30 kpc and |ΔvLyα|≤ 200 km s-1. We stacked all the galaxies in each sub-sample and measured the flux density ratio (fλ(895)/fλ(1470)), that we considered to be a proxy for LyC emission. We then compared these ratios to those obtained for the complementary samples. Finally, to estimate the statistical contamination from lower redshift inter-lopers in our samples, we performed dedicated Monte Carlo simulations using an ultradeep U-band image of the ECDFS field. Results: We find that the stacks of galaxies which are UV compact (rUV ≤ 0.30 kpc) and have bright Lyα emission (EW(Lyα) ≥ 70 Å), have much higher LyC fluxes compared to the rest of the galaxy population. These parameters appear to be good indicators of LyC radiation in agreement with theoretical studies and previous observational works. In addition we find that galaxies with a low Lyα spatial extent (Lyαext ≤ 5.7 kpc) have higher LyC flux compared to the rest of the population. Such a correlation had never been analysed before and seems even stronger than the correlation with high EW(Lyα) and small rUV. These results assume that the stacks from all sub-samples present the same statistical contamination from lower redshift interlopers. If we subtract a statistical contamination from low redshift interlopers obtained with the simulations from the flux density ratios (fλ(895)/fλ(1470)) of the significant sub-samples we find that these samples contain real LyC leaking flux with a very high probability, although the true average escape fractions are very uncertain. Conclusions: Our work indicates that galaxies with very high EW(Lyα), small Ly αext and small rUV are very likely the best candidates to show Lyman continuum radiation at z 4 and could therefore be the galaxies that have contributed most to reionisation. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yan-Rong; Wang, Jian-Min; Bai, Jin-Ming, E-mail: liyanrong@mail.ihep.ac.cn

    Broad emission lines of active galactic nuclei stem from a spatially extended region (broad-line region, BLR) that is composed of discrete clouds and photoionized by the central ionizing continuum. The temporal behaviors of these emission lines are blurred echoes of continuum variations (i.e., reverberation mapping, RM) and directly reflect the structures and kinematic information of BLRs through the so-called transfer function (also known as the velocity-delay map). Based on the previous works of Rybicki and Press and Zu et al., we develop an extended, non-parametric approach to determine the transfer function for RM data, in which the transfer function ismore » expressed as a sum of a family of relatively displaced Gaussian response functions. Therefore, arbitrary shapes of transfer functions associated with complicated BLR geometry can be seamlessly included, enabling us to relax the presumption of a specified transfer function frequently adopted in previous studies and to let it be determined by observation data. We formulate our approach in a previously well-established framework that incorporates the statistical modeling of continuum variations as a damped random walk process and takes into account long-term secular variations which are irrelevant to RM signals. The application to RM data shows the fidelity of our approach.« less

  7. Well-posed two-temperature constitutive equations for stable dense fluid shock waves using molecular dynamics and generalizations of Navier-Stokes-Fourier continuum mechanics.

    PubMed

    Hoover, Wm G; Hoover, Carol G

    2010-04-01

    Guided by molecular dynamics simulations, we generalize the Navier-Stokes-Fourier constitutive equations and the continuum motion equations to include both transverse and longitudinal temperatures. To do so we partition the contributions of the heat transfer, the work done, and the heat flux vector between the longitudinal and transverse temperatures. With shockwave boundary conditions time-dependent solutions of these equations converge to give stationary shockwave profiles. The profiles include anisotropic temperature and can be fitted to molecular dynamics results, demonstrating the utility and simplicity of a two-temperature description of far-from-equilibrium states.

  8. Analogies in electronic properties of graphene wormhole and perturbed nanocylinder

    NASA Astrophysics Data System (ADS)

    Pincak, R.; Smotlacha, J.

    2013-11-01

    The electronic properties of the wormhole and the perturbed nanocylinder were investigated using two different methods: the continuum gauge field-theory model that deals with the continuum approximation of the surface and the Haydock recursion method that transforms the surface into a simplier structure and deals with the nearest-neighbor interactions. Furthermore, the changes of the electronic properties were investigated for the case of enclosing the appropriate structure, and possible substitutes for the encloser were derived. Finally, the character of the electron flux through the perturbed wormhole was predicted from the model based on the multiwalled nanotubes. The effect of the "graphene blackhole" is introduced.

  9. New insights from a statistical analysis of IUE spectra of dwarf novae and nova-like stars. I - Inclination effects in lines and continua

    NASA Technical Reports Server (NTRS)

    La Dous, Constanze

    1991-01-01

    IUE observations of dwarf novae at maximum at quiescence and novalike objects at the high brightness state are analyzed for effects of the inclination angle on the emitted continuum and line radiation. A clear pattern in the continuum flux distribution is exhibited only by dwarf novae at maximum where some 80 percent of the non-double-eclipsing systems show essentially identical distributions. This result is not in disagreement with theoretical expectations. All classes of objects exhibit a clear, but in each case different, dependence of the line radiation on the inclination angle.

  10. The 1982 ultraviolet eclipse of the symbiotic binary AR Pav

    NASA Technical Reports Server (NTRS)

    Hutchings, J. B.; Cowley, A. P.; Ake, T. B.; Imhoff, C. L.

    1983-01-01

    Observations with the International Ultraviolet Explorer (IUE) of the symbiotic binary AR Pav through its 1982 eclipse show that the hot star is not eclipsed. The hot star is associated with an extended region of continuum emission which is partially eclipsed. The eclipsed radiation is hotter near to its center, with a maximum temperature of about 9000 K. The uneclipsed flux is hotter than this. UV emission lines are not measurably eclipsed and presumably arise in a much larger region than the continuum. These data provide new constraints on models of the system but also are apparently in contradiction to those based on ground-based data.

  11. The Soil-Plant-Atmosphere Continuum of Mangroves: A Simple Ecohydrological model

    NASA Astrophysics Data System (ADS)

    Perri, Saverio; Viola, Francesco; Valerio Noto, Leonardo; Molini, Annalisa

    2016-04-01

    Mangroves represent the only forest able to grow at the interface between a terrestrial and a marine habitat. Although globally they have been estimated to account only for 1% of carbon sequestration from forests, as coastal ecosystems they account for about 14% of carbon sequestration by the global ocean. Despite the continuously increasing number of hydrological and ecological field observations, the ecohydrology of mangroves remains largely understudied. Modeling mangrove response to variations in environmental conditions needs to take into account the effect of waterlogging and salinity on transpiration and CO2 assimilation. However, similar ecohydrological models for halophytes are not yet documented in the literature. In this contribution we adapt a Soil-Plant-Atmosphere Continuum (SPAC) model to the mangrove ecosystems. Such SPAC model is based on a macroscopic approach and the transpiration rate is hence obtained by solving the plant and leaf water balance and the leaf energy balance, taking explicitly into account the role of osmotic water potential and salinity in governing plant resistance to water fluxes. Exploiting the well-known coupling of transpiration and CO2 exchange through the stomatal conductance, we also estimate the CO2 assimilation rate. The SPAC is hence tested against experimental data obtained from the literature, showing the reliability and effectiveness of this minimalist approach in reproducing observed processes. Results show that the developed SPAC model is able to realistically simulate the main ecohydrological traits of mangroves, indicating the salinity as a crucial limiting factor for mangrove trees transpiration and CO2 assimilation.

  12. VUV-absorption cross section of carbon dioxide from 150 to 800 K and applications to warm exoplanetary atmospheres

    NASA Astrophysics Data System (ADS)

    Venot, O.; Bénilan, Y.; Fray, N.; Gazeau, M.-C.; Lefèvre, F.; Es-sebbar, Et.; Hébrard, E.; Schwell, M.; Bahrini, C.; Montmessin, F.; Lefèvre, M.; Waldmann, I. P.

    2018-01-01

    Context. Most exoplanets detected so far have atmospheric temperatures significantly higher than 300 K. Often close to their star, they receive an intense UV photons flux that triggers important photodissociation processes. The temperature dependency of vacuum ultraviolet (VUV) absorption cross sections are poorly known, leading to an undefined uncertainty in atmospheric models. Similarly, data measured at low temperatures similar to those of the high atmosphere of Mars, Venus, and Titan are often lacking. Aims: Our aim is to quantify the temperature dependency of the VUV absorption cross sections of important molecules in planetary atmospheres. We want to provide high-resolution data at temperatures prevailing in these media, and a simple parameterisation of the absorption in order to simplify its use in photochemical models. This study focuses on carbon dioxide (CO2). Methods: We performed experimental measurements of CO2 absorption cross sections with synchrotron radiation for the wavelength range (115-200 nm). For longer wavelengths (195-230 nm), we used a deuterium lamp and a 1.5 m Jobin-Yvon spectrometer. We used these data in our one-dimensional (1D) thermo-photochemical model in order to study their impact on the predicted atmospheric compositions. Results: The VUV absorption cross section of CO2 increases with the temperature. The absorption we measured at 150 K seems to be close to the absorption of CO2 in the fundamental ground state. The absorption cross section can be separated into two parts: a continuum and a fine structure superimposed on the continuum. The variation in the continuum of absorption can be represented by the sum of three Gaussian functions. Using data at high temperature in thermo-photochemical models significantly modifies the abundance and the photodissociation rates of many species in addition to CO2, such as methane and ammonia. These deviations have an impact on synthetic transmission spectra, leading to variations of up to 5 ppm. Conclusions: We present a full set of high-resolution (Δλ = 0.03 nm) absorption cross sections of CO2 from 115 to 230 nm for temperatures ranging from 150 to 800 K. A parameterisation allows us to calculate the continuum of absorption in this wavelength range. Extrapolation at higher temperature has not been validated experimentally and therefore should be used with caution. Similar studies on other major species are necessary to improve our understanding of planetary atmospheres. The data presented in Fig. 1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A34

  13. H2O from R Cas: ISO LWS-SWS observations and detailed modelling

    NASA Astrophysics Data System (ADS)

    Truong-Bach; Sylvester, R. J.; Barlow, M. J.; Nguyen-Q-Rieu; Lim, T.; Liu, X. W.; Baluteau, J. P.; Deguchi, S.; Justtanont, K.; Tielens, A. G. G. M.

    1999-05-01

    We present 29-197 mu m spectra of the oxygen-rich Mira variable star, R Cas, obtained with the Long- and Short- Wavelength Spectrometers (LWS and SWS) on board the Infrared Space Observatory (ISO). The LWS grating observations were made during two pulsational stellar phases, phi { ~ } 0.5 and 0.2 in August 1996 and June 1997 when the stellar luminosity was near its minimum and mean values, respectively. The infrared flux at the latter epoch was { ~ } 30-40% stronger than at the former. SWS grating observations were also made in June 1997. The spectrum presents a strong far-infrared (FIR) continuum and is rich in water lines suitable for use as circumstellar diagnostics. We have constructed a circumstellar model which consistently treats radiative transfer, chemical exchanges, photodissociation, and heating and cooling effects. The overall FIR excitation field was scaled by a factor which varied with the stellar phase. By fitting the model to the observed FIR water line fluxes and continuum while adopting the stellar parameters based on the Hipparcos distance we have found a mass-loss rate of dot {M} { ~ } 3.4*E(-7) Msun yr(-1) and a total ortho and para water vapour abundance (relative to {H_2} ) of f { ~ } 1.1x\\ex{-5}. The kinetic temperature and the relative abundances of {H2O} , OH, and O in chemical equilibrium have been derived as functions of radial distance r. {H2O} excitation is mainly dominated by FIR emitted by dust grains. The deduced model continuum flux at 29-197 mu m for the phi ~ 0.5 phase was 61% of the flux at phi ~ 0.2. Photodissociation by the FUV interstellar field and CO cooling effects operate farther out than the {H2O} excitation region. Our derived mass-loss rate of R Cas is similar to the value 6x\\ex{-7} Msun yr(-1) previously published for WHya, another oxygen-rich AGB star. Based on observations with ISO, an ESA project with instruments funded by ESA Members States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of ISAS and NASA.

  14. The science case for simultaneous mm-wavelength receivers in radio astronomy

    NASA Astrophysics Data System (ADS)

    Dodson, Richard; Rioja, María J.; Jung, Taehyun; Goméz, José L.; Bujarrabal, Valentin; Moscadelli, Luca; Miller-Jones, James C. A.; Tetarenko, Alexandra J.; Sivakoff, Gregory R.

    2017-11-01

    This review arose from the European Radio Astronomy Technical Forum (ERATec) meeting held in Firenze, October 2015, and aims to highlight the breadth and depth of the high-impact science that will be aided and assisted by the use of simultaneous mm-wavelength receivers. Recent results and opportunities are presented and discussed from the fields of: continuum VLBI (observations of weak sources, astrometry, observations of AGN cores in spectral index and Faraday rotation), spectral line VLBI (observations of evolved stars and massive star-forming regions) and time domain observations of the flux variations arising in the compact jets of X-ray binaries. Our survey brings together a large range of important science applications, which will greatly benefit from simultaneous observing at mm-wavelengths. Such facilities are essential to allow these applications to become more efficient, more sensitive and more scientifically robust. In some cases without simultaneous receivers the science goals are simply unachievable. Similar benefits would exist in many other high frequency astronomical fields of research.

  15. Monitoring the Crab Nebula with LOFT

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2012-01-01

    From 2008-2010, the Crab Nebula was found to decline by 7% in the 15-50 keV band, consistently in Fermi GBM, INTEGRAL IBIS, SPI, and JEMX, RXTE PCA, and Swift BAT. From 2001-2010, the 15-50 keV flux from the Crab Nebula typically varied by about 3.5% per year. Analysis of RXTE PCA data suggests possible spectral variations correlated with the flux variations. I will present estimates of the LOFT sensitivity to these variations. Prior to 2001 and since 2010, the observed flux variations have been much smaller. Monitoring the Crab with the LOFT WFM and LAD will provide precise measurements of flux variations in the Crab Nebula if it undergoes a similarly active episode.

  16. Does the river continuum concept apply on a tropical island? Longitudinal variation in a Puerto Rican stream.

    Treesearch

    Effie A. Greathouse; Catherine M. Pringle

    2006-01-01

    We examined whether a tropical stream in Puerto Rico matched predictions of the river continuum concept (RCC) for macroinvertebrate functional feeding groups (FFGs). Sampling sites for macroinvertebrates, basal resources, and fishes ranged from headwaters to within 2.5 km of the fourth-order estuary. In a comparison with a model temperate system in which RCC...

  17. Radiation characteristics of Al wire arrays on Z*

    NASA Astrophysics Data System (ADS)

    Coverdale, C. A.; Ampleford, D. J.; Jones, B.; Cuneo, M. E.; Hansen, S.; Jennings, C. A.; Moore, N.; Jones, S. C.; Deeney, C.

    2011-10-01

    Analysis of mixed material nested wire array experiments at Z have shown that the inner wire array dominates the hottest regions of the stagnated z pinch. In those experiments, substantial free-bound continuum radiation was observed when Al was fielded on the inner wire array. Experiments with Al (5% Mg) on both wire arrays have also been fielded, with variations in the free-bound continuum observed. These variations appear to be tied to the initial mass and diameter of the wire array. The results presented here will investigate the trends in the measured emission (Al and Mg K-shell and free-bound continuum) and will compare the measured output to more recent Al wire array experimental results on the refurbished Z accelerator. *Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. +current address: NNSA/DOE Headquarters, Washington D.C.

  18. Determining decision thresholds and evaluating indicators when conservation status is measured as a continuum.

    PubMed

    Connors, B M; Cooper, A B

    2014-12-01

    Categorization of the status of populations, species, and ecosystems underpins most conservation activities. Status is often based on how a system's current indicator value (e.g., change in abundance) relates to some threshold of conservation concern. Receiver operating characteristic (ROC) curves can be used to quantify the statistical reliability of indicators of conservation status and evaluate trade-offs between correct (true positive) and incorrect (false positive) classifications across a range of decision thresholds. However, ROC curves assume a discrete, binary relationship between an indicator and the conservation status it is meant to track, which is a simplification of the more realistic continuum of conservation status, and may limit the applicability of ROC curves in conservation science. We describe a modified ROC curve that treats conservation status as a continuum rather than a discrete state. We explored the influence of this continuum and typical sources of variation in abundance that can lead to classification errors (i.e., random variation and measurement error) on the true and false positive rates corresponding to varying decision thresholds and the reliability of change in abundance as an indicator of conservation status, respectively. We applied our modified ROC approach to an indicator of endangerment in Pacific salmon (Oncorhynchus nerka) (i.e., percent decline in geometric mean abundance) and an indicator of marine ecosystem structure and function (i.e., detritivore biomass). Failure to treat conservation status as a continuum when choosing thresholds for indicators resulted in the misidentification of trade-offs between true and false positive rates and the overestimation of an indicator's reliability. We argue for treating conservation status as a continuum when ROC curves are used to evaluate decision thresholds in indicators for the assessment of conservation status. © 2014 Society for Conservation Biology.

  19. Modelling of Electron and Proton Beams in a White-light Solar Flare

    NASA Astrophysics Data System (ADS)

    Milligan, R. O.; Procházka, O.; Reid, A.; Allred, J. C.; Mathioudakis, M.

    2017-12-01

    Observations of an X1 class WL solar flare on 2014 June 11 showed a surprisingly weak emission in both higher order Balmer and Lyman lines and continua. The flare was observed by RHESSI but low energy cut-off of non-thermal component was indeterminable due to the unusually hard electron spectrum (delta = 3). An estimate of power in non-thermal electron beams together with an area of WL emission observed by HMI yielded to an upper and lower estimate of flux 1E9 and 3E10 erg/cm2/s, respectively. We performed a grid of models using a radiative hydrodynamic code RADYN in order to compare synthetic spectra with observations. For low energy cut-off we chose a range from 20 to 120 keV with a step of 20 keV and delta parameter equal to 3. Electron beam-driven models show that higher low energy cut-off is more likely to produce an absorption Balmer line profile, if the total energy flux remains relatively low. On the other hand a detectable rise of HMI continuum (617 nm) lays a lower limit on the beam flux. Proton beam-driven models with equivalent fluxes indicate a greater penetration depth, while the Balmer lines reveal significantly weaker emission. Atmospheric temperature profiles show that for higher values of low energy cut-off the energy of the beam is deposited lower in chromosphere or even in temperature minimum region. This finding suggests, that suppressed hydrogen emission can indicate a formation of white-light continuum below chromosphere.

  20. Seasonal and inter-annual dynamics in the stable oxygen isotope compositions of water pools in a temperate humid grassland ecosystem: results from MIBA sampling and MuSICA modelling

    NASA Astrophysics Data System (ADS)

    Hirl, Regina; Schnyder, Hans; Auerswald, Karl; Vetter, Sylvia; Ostler, Ulrike; Schleip, Inga; Wingate, Lisa; Ogée, Jérôme

    2015-04-01

    The oxygen isotope composition (δ18O) of water in terrestrial ecosystems usually shows strong and dynamic variations within and between the various compartments. These variations originate from changes in the δ18O of water inputs (e.g. rain or water vapour) and from 18O fractionation phenomena in the soil-plant-atmosphere continuum. Investigations of δ18O in ecosystem water pools and of their main drivers can help us understand water relations at plant, canopy or ecosystem scale and interpret δ18O signals in plant and animal tissues as paleo-climate proxies. During the vegetation periods of 2006 to 2012, soil, leaf and stem water as well as atmospheric humidity, rain water and groundwater were sampled at bi-weekly intervals in a temperate humid pasture of the Grünschwaige Grassland Research Station near Munich (Germany). The sampling was performed following standardised MIBA (Moisture Isotopes in the Biosphere and Atmosphere) protocols. Leaf water samples were prepared from a mixture of co-dominant species in the plant community in order to obtain a canopy-scale leaf water δ18O signal. All samples were then analysed for their δ18O compositions. The measured δ18O of leaf, stem and soil water were then compared with the δ18O signatures simulated by the process-based isotope-enabled ecosystem model MuSICA (Multi-layer Simulator of the Interactions between a vegetation Canopy and the Atmosphere). MuSICA integrates current mechanistic understanding of processes in the soil-plant-atmosphere continuum. Hence, the comparison of modelled and measured data allows the identification of gaps in current knowledge and of questions to be tackled in the future. Soil and plant characteristics for model parameterisation were derived from investigations at the experimental site and supplemented by values from the literature. Eddy-covariance measurements of ecosystem CO2 (GPP, NEE) and energy (H, LE) fluxes and soil temperature data were used for model evaluation. The comparison of measured and predicted ecosystem fluxes showed that the model captured the main features of the diurnal cycles of GPP, NEE, LE and H, as well as the soil temperature dynamics. In this presentation I will present the main results of this model-data comparison, as well as results from a model sensitivity analysis performed over a range of soil, plant and meteorological parameters to evaluate the relative importance of each parameter on the δ18O signatures of the various water pools.

  1. Modeling of Water Flow Processes in the Soil-Plant-Atmosphere System: The Soil-Tree-Atmosphere Continuum Model

    NASA Astrophysics Data System (ADS)

    Massoud, E. C.; Vrugt, J. A.

    2015-12-01

    Trees and forests play a key role in controlling the water and energy balance at the land-air surface. This study reports on the calibration of an integrated soil-tree-atmosphere continuum (STAC) model using Bayesian inference with the DREAM algorithm and temporal observations of soil moisture content, matric head, sap flux, and leaf water potential from the King's River Experimental Watershed (KREW) in the southern Sierra Nevada mountain range in California. Water flow through the coupled system is described using the Richards' equation with both the soil and tree modeled as a porous medium with nonlinear soil and tree water relationships. Most of the model parameters appear to be reasonably well defined by calibration against the observed data. The posterior mean simulation reproduces the observed soil and tree data quite accurately, but a systematic mismatch is observed between early afternoon measured and simulated sap fluxes. We will show how this points to a structural error in the STAC-model and suggest and test an alternative hypothesis for root water uptake that alleviates this problem.

  2. Simultaneous Ultraviolet Line and Continuum Variability Studies in Seyfert 1 Galaxies and Quasars

    NASA Astrophysics Data System (ADS)

    Honnappa, Vijayakumar; Prabhakar, Vedavvathi

    Simultaneous Ultraviolet Line and Continuum Variability Studies in Seyfert 1 Galaxies and Quasars Vijayakumar H. Doddamani*and P. Vedavathi Department of Physics, Bangalore University, Bangalore-560056, *Corresponding author:drvkdmani@gmail.com, Abstract The line and continuum flux variability is a hallmark phenomenon of Seyfert 1 galaxies and quasars. Large amplitude luminosity variability is observed in AGNs from x-rays through radio waves over a wide-ranging timescales from minutes to years. The combinations of high luminosity and short variability time scales suggests, that the power of AGN is produced by a phenomena more efficient in terms of energy release per unit mass than ordinary stellar processes. The basic structure of AGNs thus developed based on the variability studies consists of a central super massive black hole surrounded by an accretion disk or more generally optically thick plasma radiating brightly at UV and soft X-ray wavelengths. The variability studies have been important tools of understanding the physics of the central regions of AGNs, which in general cannot be resolved with the existing or planned ground and space telescopes. Therefore, we have undertaken a study of the simultaneous ultraviolet line and continuum flux variability studies in MRK501, ESOB113-IG45 (also called as Fairall 9), MRK1506, MRK1095 V*GQCOM, PG1211+143, MRK205, PG1226+023 (also known as 3C273), PG1351+640, MRK 1383, MRK876 and QSO2251-178 as these objects have been repeatedly observed by IUE satellite over several years.. It is observed that Fairall 9, MRK 1095 and 3C273 exhibit the large amplitude variability (» 30 times) over the observed timescale, which spans several years. The remaining nine objects exhibit small amplitude (» 5 times) variability over the long time scale of observations. The highest amplitude variability is observed in Lya with a least in the MgII line. The amplitude of variability decreases in the order of Lya, CIV and Mg II, lines. These results suggest that the BLR is spatially stratified into different regions from the central compact nuclear engine. Keywords: Active galaxies, Seyfert galaxies, Quasars, Line and continuum, Variability, Supermassive black hole

  3. Airborne and satellite remote sensing of the mid-infrared water vapour continuum.

    PubMed

    Newman, Stuart M; Green, Paul D; Ptashnik, Igor V; Gardiner, Tom D; Coleman, Marc D; McPheat, Robert A; Smith, Kevin M

    2012-06-13

    Remote sensing of the atmosphere from space plays an increasingly important role in weather forecasting. Exploiting observations from the latest generation of weather satellites relies on an accurate knowledge of fundamental spectroscopy, including the water vapour continuum absorption. Field campaigns involving the Facility for Airborne Atmospheric Measurements research aircraft have collected a comprehensive dataset, comprising remotely sensed infrared radiance observations collocated with accurate measurements of the temperature and humidity structure of the atmosphere. These field measurements have been used to validate the strength of the infrared water vapour continuum in comparison with the latest laboratory measurements. The recent substantial changes to self-continuum coefficients in the widely used MT_CKD (Mlawer-Tobin-Clough-Kneizys-Davies) model between 2400 and 3200 cm(-1) are shown to be appropriate and in agreement with field measurements. Results for the foreign continuum in the 1300-2000 cm(-1) band suggest a weak temperature dependence that is not currently included in atmospheric models. A one-dimensional variational retrieval experiment is performed that shows a small positive benefit from using new laboratory-derived continuum coefficients for humidity retrievals.

  4. VERTICAL, LONGITUDINAL, AND TEMPORAL VARIATION IN THE MACROBENTHOS OF AN APPALACHIAN HEADWATER STREAM SYSTEM

    EPA Science Inventory

    We examined vertical, longitudinal, and season variation in the abundance, diversity, variability, and assemblage composition of the epibenthic and hyporheic macrobenthos at Elklick Run, a first-through fourth-order stream continuum in the central Appalachian Mountains in West Vi...

  5. GHRS observations of cool, low-gravity stars. 1: The far-ultraviolet spectrum of alpha Orionis (M2 Iab)

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Robinson, Richard D.; Wahlgren, Glenn M.; Linsky, Jeffrey L.; Brown, Alexander

    1994-01-01

    We present far-UV (1200-1930 A) observations of the prototypical red supergiant star alpha Ori, obtained with the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope (HST). The observations, obtained in both low- (G140L) and medium- (G160/200M) resolution modes, unamibiguously confirm that the UV 'continuum' tentatively seen with (IUE) is in fact a true continuum and is not due to a blend of numerous faint emission features or scattering inside the IUE spectrograph. This continuum appears to originate in the chromospheric of the star at temperatures ranging from 3000-5000 K, and we argue that it is not related to previously reported putative companions or to bright spots on the stellar disk. Its stellar origin is further confirmed by overlying atomic and molecular absorptions from the chromosphere and circumstellar shell. The dominant structure in this spectral region is due to nine strong, broad absorption bands of the fourth-positive A-X system of CO, superposed on this continuum in the 1300-1600 A region. Modeling of this CO absorption indicates that it originates in the circumstellar shell in material characterized by T = 500 K, N(CO) = 1.0 x 10(exp 18) per sq cm, and V(sub turb) = 5.0 km per sec. The numerous chromospheric emission features are attributed mostly to fluorescent lines of Fe II and Cr II (both pumped by Lyman Alpha) and S I lines, plus a few lines of O I, C I, and Si II. The O I and C I UV 2 multiplets are very deficient in flux, compared to both the flux observed in lines originating from common upper levels but with markedly weaker intrinsic strength (i.e., O I UV 146 and C I UV 32) and to the UV 2 line fluxes seen in other cool, less luminous stars. This deficiency appears to be caused by strong self-absorption of these resonance lines in the circumstellar shell and/or upper chromosphere of alpha Ori. Atomic absorption features, primarily due to C I and Fe II are clearly seen in the G160M spectrum centered near 1655 A. These Fe II features are formed at temperatures that can occur only in the chromosphere of the star and are clearly not photospheric or circumstellar in origin.

  6. Continuum in the X-Z---Y weak bonds: Z= main group elements.

    PubMed

    Joy, Jyothish; Jose, Anex; Jemmis, Eluvathingal D

    2016-01-15

    The Continuum in the variation of the X-Z bond length change from blue-shifting to red-shifting through zero- shifting in the X-Z---Y complex is inevitable. This has been analyzed by ab-initio molecular orbital calculations using Z= Hydrogen, Halogens, Chalcogens, and Pnicogens as prototypical examples. Our analysis revealed that, the competition between negative hyperconjugation within the donor (X-Z) molecule and Charge Transfer (CT) from the acceptor (Y) molecule is the primary reason for the X-Z bond length change. Here, we report that, the proper tuning of X- and Y-group for a particular Z- can change the blue-shifting nature of X-Z bond to zero-shifting and further to red-shifting. This observation led to the proposal of a continuum in the variation of the X-Z bond length during the formation of X-Z---Y complex. The varying number of orbitals and electrons available around the Z-atom differentiates various classes of weak interactions and leads to interactions dramatically different from the H-Bond. Our explanations based on the model of anti-bonding orbitals can be transferred from one class of weak interactions to another. We further take the idea of continuum to the nature of chemical bonding in general. © 2015 Wiley Periodicals, Inc.

  7. Can Flare Loops Contribute to the White-light Emission of Stellar Superflares?

    NASA Astrophysics Data System (ADS)

    Heinzel, P.; Shibata, K.

    2018-06-01

    Since the discovery of stellar superflares by the Kepler satellite, these extremely energetic events have been studied in analogy to solar flares. Their white-light (WL) continuum emission has been interpreted as being produced by heated ribbons. In this paper, we compute the WL emission from overlying flare loops depending on their density and temperature and show that, under conditions expected during superflares, the continuum brightening due to extended loop arcades can significantly contribute to stellar flux detected by Kepler. This requires electron densities in the loops of 1012‑1013 cm‑3 or higher. We show that such densities, exceeding those typically present in solar-flare loops, can be reached on M-dwarf and solar-type superflare stars with large starspots and much stronger magnetic fields. Quite importantly, the WL radiation of loops is not very sensitive to their temperature and thus both cool as well as hot loops may contribute. We show that the WL intensity emergent from optically thin loops is lower than the blackbody radiation from flare ribbons, but the contribution of loops to total stellar flux can be quite important due to their significant emitting areas. This new scenario for interpreting superflare emission suggests that the observed WL flux is due to a mixture of the ribbon and loop radiation and can be even loop-dominated during the gradual phase of superflares.

  8. Broadband Photometric Reverberation Mapping Analysis on SDSS-RM and Stripe 82 Quasars

    NASA Astrophysics Data System (ADS)

    Zhang, Haowen; Yang, Qian; Wu, Xuebing; Shen, Yue

    2018-01-01

    We extended the broadband photometric reverberation mapping (PRM) code, JAVELIN and test the availability to get broad line region (BLR) time delays that are consistent with spectroscopic reverberation mapping (SRM) projects. Broadband light curves of SDSS-RM quasars produced by convolution with system transmission curve were used in the test. We find that under similar sampling conditions (evenly and frequently sampled), the key factor determining whether the broadband PRM code can yield lags consistent with spectroscopic projects is the flux ratio of line to the reference continuum, which is in line with the findings in Zu et al. (2016). We further find a crucial line-to-continuum flux ratio, above which the mean of the ratios between the lags from PRM and SRM becomes closer to unity, and the scatter is pronouncedly reduced. Based on this flux ratio criteria, we selected some of the quasars from Hernitschek et al. (2015) and carry out broadband PRM on this subset. The performance of damped random walking (DRW) model and power-law (PL) structure function model on broadband PRM are compared using mock light curves with high, even cadences and low, uneven ones, respectively. We find that DRW model performs better in carrying out broadband PRM than PL model both for high and low cadence light curves with other data qualities similar to SDSS-RM quasars.

  9. Continuum limit of electrostatic gyrokinetic absolute equilibrium

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Zhou

    2012-06-01

    Electrostatic gyrokinetic absolute equilibria with continuum velocity field are obtained through the partition function and through the Green function of the functional integral. The new results justify and explain the prescription for quantization/discretization or taking the continuum limit of velocity. The mistakes in the Appendix D of our earlier work [J.-Z. Zhu and G. W. Hammett, Phys. Plasmas 17, 122307 (2010)] are explained and corrected. If the lattice spacing for discretizing velocity is big enough, all the invariants could concentrate at the lowest Fourier modes in a negative-temperature state, which might indicate a possible variation of the dual cascade picture in 2D plasma turbulence.

  10. Continuum kinetic and multi-fluid simulations of classical sheaths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cagas, P.; Hakim, A.; Juno, J.

    The kinetic study of plasma sheaths is critical, among other things, to understand the deposition of heat on walls, the effect of sputtering, and contamination of the plasma with detrimental impurities. The plasma sheath also provides a boundary condition and can often have a significant global impact on the bulk plasma. In this paper, kinetic studies of classical sheaths are performed with the continuum kinetic code, Gkeyll, which directly solves the Vlasov-Maxwell equations. The code uses a novel version of the finite-element discontinuous Galerkin scheme that conserves energy in the continuous-time limit. The fields are computed using Maxwell equations. Ionizationmore » and scattering collisions are included; however, surface effects are neglected. The aim of this work is to introduce the continuum kinetic method and compare its results with those obtained from an already established finite-volume multi-fluid model also implemented in Gkeyll. Novel boundary conditions on the fluids allow the sheath to form without specifying wall fluxes, so the fluids and fields adjust self-consistently at the wall. Our work demonstrates that the kinetic and fluid results are in agreement for the momentum flux, showing that in certain regimes, a multifluid model can be a useful approximation for simulating the plasma boundary. There are differences in the electrostatic potential between the fluid and kinetic results. Further, the direct solutions of the distribution function presented here highlight the non-Maxwellian distribution of electrons in the sheath, emphasizing the need for a kinetic model. The densities, velocities, and the potential show a good agreement between the kinetic and fluid results. But, kinetic physics is highlighted through higher moments such as parallel and perpendicular temperatures which provide significant differences from the fluid results in which the temperature is assumed to be isotropic. Besides decompression cooling, the heat flux is shown to play a role in the temperature differences that are observed, especially inside the collisionless sheath. Published by AIP Publishing.« less

  11. Continuum kinetic and multi-fluid simulations of classical sheaths

    DOE PAGES

    Cagas, P.; Hakim, A.; Juno, J.; ...

    2017-02-21

    The kinetic study of plasma sheaths is critical, among other things, to understand the deposition of heat on walls, the effect of sputtering, and contamination of the plasma with detrimental impurities. The plasma sheath also provides a boundary condition and can often have a significant global impact on the bulk plasma. In this paper, kinetic studies of classical sheaths are performed with the continuum kinetic code, Gkeyll, which directly solves the Vlasov-Maxwell equations. The code uses a novel version of the finite-element discontinuous Galerkin scheme that conserves energy in the continuous-time limit. The fields are computed using Maxwell equations. Ionizationmore » and scattering collisions are included; however, surface effects are neglected. The aim of this work is to introduce the continuum kinetic method and compare its results with those obtained from an already established finite-volume multi-fluid model also implemented in Gkeyll. Novel boundary conditions on the fluids allow the sheath to form without specifying wall fluxes, so the fluids and fields adjust self-consistently at the wall. Our work demonstrates that the kinetic and fluid results are in agreement for the momentum flux, showing that in certain regimes, a multifluid model can be a useful approximation for simulating the plasma boundary. There are differences in the electrostatic potential between the fluid and kinetic results. Further, the direct solutions of the distribution function presented here highlight the non-Maxwellian distribution of electrons in the sheath, emphasizing the need for a kinetic model. The densities, velocities, and the potential show a good agreement between the kinetic and fluid results. But, kinetic physics is highlighted through higher moments such as parallel and perpendicular temperatures which provide significant differences from the fluid results in which the temperature is assumed to be isotropic. Besides decompression cooling, the heat flux is shown to play a role in the temperature differences that are observed, especially inside the collisionless sheath. Published by AIP Publishing.« less

  12. Ultraviolet Broad Absorption Features and the Spectral Energy Distribution of the QSO PG 1351+64. 3.1

    NASA Technical Reports Server (NTRS)

    Zheng, W.; Kriss, G. A.; Wang, J. X.; Brotherton, M.; Oegerle, W. R.; Blair, W. P.; Davidsen, A. F.; Green, R. F.; Hutchings, J. B.; Kaiser, M. E.; hide

    2001-01-01

    We present a moderate-resolution (approximately 20 km s(exp -1) spectrum of the mini broad absorption line QSO PG 1351+64 between 915-1180 A, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). Additional low-resolution spectra at longer wavelengths were also obtained with the Hubble Space Telescope (HST) and ground-based telescopes. Broad absorption is present on the blue wings of C III (lambda)977, Ly(beta), O VI (lambda)(lambda)1032,1038, Ly(alpha), N V (lambda)(lambda)1238,1242, Si IV (lambda)(lambda)1393,1402, and C IV (lambda)(lambda)1548,1450. The absorption profile can be fitted with five components at velocities of approximately -780, -1049, -1629, -1833, and -3054 km s(exp -1) with respect to the emission-line redshift of z = 0.088. All the absorption components cover a large fraction of the continuum source as well as the broad-line region. The O VI emission feature is very weak, and the O VI/Ly(alpha) flux ratio is 0.08, one of the lowest among low-redshift active galaxies and QSOs. The UV (ultraviolet) continuum shows a significant change in slope near 1050 A in the restframe. The steeper continuum shortward of the Lyman limit extrapolates well to the observed weak X-ray flux level. The absorbers' properties are similar to those of high-redshift broad absorption-line QSOs. The derived total column density of the UV absorbers is on the order of 10(exp 21) cm(exp -2), unlikely to produce significant opacity above 1 keV in the X-ray. Unless there is a separate, high-ionization X-ray absorber, the QSO's weak X-ray flux may be intrinsic. The ionization level of the absorbing components is comparable to that anticipated in the broad-line region, therefore the absorbers may be related to broad-line clouds along the line of sight.

  13. Ultraviolet Broad Absorption Features and the Spectral Energy Distribution of the QSO PG 1351+641. 2.5

    NASA Technical Reports Server (NTRS)

    Zheng, W.; Kriss, G. A.; Wang, J. X.; Brotherton, M.; Oegerle, W. R.; Blair, W. P.; Davidsen, A. F.; Green, R. F.; Hutchings, J. B.; Kaiser, M. E.; hide

    2001-01-01

    We present a moderate-resolution (approximately 20 km/s) spectrum of the broad-absorption line QSO PG 1351+64 between 915-1180 angstroms, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). Additional low-resolution spectra at longer wavelengths were also obtained with the Hubble Space Telescope (HST) and ground-based telescopes. Broad absorption is present on the blue wings of C III lambda977, Ly-beta, O VI lambda-lambda-1032,1038, Ly-alpha, N V lambda-lambda-1238,1242, Si IV lambda-lambda-1393,1402, and C IV lambda-lambda-1548,1450. The absorption profile can be fitted with five components at velocities of approximately -780, -1049, -1629, -1833, and -3054 km/s with respect to the emission-line redshift of z = 0.088. All the absorption components cover a large fraction of the continuum source as well as the broad-line region. The O VI emission feature is very weak, and the O VI/Ly-alpha flux ratio is 0.08, one of the lowest among low-redshift active galaxies and QSOs. The ultraviolet continuum shows a significant change in slope near 1050 angstroms in the restframe. The steeper continuum shortward of the Lyman limit extrapolates well to the observed weak X-ray flux level. The absorbers' properties are similar to those of high-redshift broad absorption-line QSOs. The derived total column density of the UV absorbers is on the order of 10(exp 21)/s, unlikely to produce significant opacity above 1 keV in the X-ray. Unless there is a separate, high-ionization X-ray absorber, the QSO's weak X-ray flux may be intrinsic. The ionization level of the absorbing components is comparable to that anticipated in the broad-line region, therefore the absorbers may be related to broad-line clouds along the line of sight.

  14. The JCMT Transient Survey: Data Reduction and Calibration Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mairs, Steve; Lane, James; Johnstone, Doug

    Though there has been a significant amount of work investigating the early stages of low-mass star formation in recent years, the evolution of the mass assembly rate onto the central protostar remains largely unconstrained. Examining in depth the variation in this rate is critical to understanding the physics of star formation. Instabilities in the outer and inner circumstellar disk can lead to episodic outbursts. Observing these brightness variations at infrared or submillimeter wavelengths constrains the current accretion models. The JCMT Transient Survey is a three-year project dedicated to studying the continuum variability of deeply embedded protostars in eight nearby star-formingmore » regions at a one-month cadence. We use the SCUBA-2 instrument to simultaneously observe these regions at wavelengths of 450 and 850 μ m. In this paper, we present the data reduction techniques, image alignment procedures, and relative flux calibration methods for 850 μ m data. We compare the properties and locations of bright, compact emission sources fitted with Gaussians over time. Doing so, we achieve a spatial alignment of better than 1″ between the repeated observations and an uncertainty of 2%–3% in the relative peak brightness of significant, localized emission. This combination of imaging performance is unprecedented in ground-based, single-dish submillimeter observations. Finally, we identify a few sources that show possible and confirmed brightness variations. These sources will be closely monitored and presented in further detail in additional studies throughout the duration of the survey.« less

  15. Is the ground state of Yang-Mills theory Coulombic?

    NASA Astrophysics Data System (ADS)

    Heinzl, T.; Ilderton, A.; Langfeld, K.; Lavelle, M.; Lutz, W.; McMullan, D.

    2008-08-01

    We study trial states modelling the heavy quark-antiquark ground state in SU(2) Yang-Mills theory. A state describing the flux tube between quarks as a thin string of glue is found to be a poor description of the continuum ground state; the infinitesimal thickness of the string leads to UV artifacts which suppress the overlap with the ground state. Contrastingly, a state which surrounds the quarks with non-Abelian Coulomb fields is found to have a good overlap with the ground state for all charge separations. In fact, the overlap increases as the lattice regulator is removed. This opens up the possibility that the Coulomb state is the true ground state in the continuum limit.

  16. Using Models for How Energetic Electrons Heat the Atmosphere During Flares

    NASA Technical Reports Server (NTRS)

    Allred, Joel

    2011-01-01

    Using models for how energetic electrons heat the atmosphere during flares, we simulate the radiative-hydrodynamic response of the lower solar atmosphere to flare heating. The simulations account for much of the non-LTE, optically thick radiative transfer that occurs in the chromosphere. Our models predict an increase in white light continuum during the flare on the order of 20%, but this is highly sensitive to the electron beam flux used in the simulation. We find that a majority of the white light continuum originates in the chromosphere as a result of Balmer and Paschen recombinations, but a significant portion also forms in the photosphere which has been heated by radiative backwarming.

  17. A study of high-temperature heat pipes with multiple heat sources and sinks. I - Experimental methodology and frozen startup profiles. II - Analysis of continuum transient and steady-state experimental data with numerical predictions

    NASA Technical Reports Server (NTRS)

    Faghri, A.; Cao, Y.; Buchko, M.

    1991-01-01

    Experimental profiles for heat pipe startup from the frozen state were obtained, using a high-temperature sodium/stainless steel pipe with multiple heat sources and sinks to investigate the startup behavior of the heat pipe for various heat loads and input locations, with both low and high heat rejection rates at the condensor. The experimental results of the performance characteristics for the continuum transient and steady-state operation of the heat pipe were analyzed, and the performance limits for operation with varying heat fluxes and location are determined.

  18. Estimation of surface temperature variations due to changes in sky and solar flux with elevation.

    USGS Publications Warehouse

    Hummer-Miller, S.

    1981-01-01

    Sky and solar radiance are of major importance in determining the ground temperature. Knowledge of their behavior is a fundamental part of surface temperature models. These 2 fluxes vary with elevation and this variation produces temperature changes. Therefore, when using thermal-property differences to discriminate geologic materials, these flux variations with elevation need to be considered. -from Author

  19. Transition energies and polarizabilities of hydrogen like ions in plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Madhusmita

    2012-09-15

    Effect of plasma screening on various properties like transition energy, polarizability (dipole and quadrupole), etc. of hydrogen like ions is studied. The bound and free state wave functions and transition matrix elements are obtained by numerically integrating the radial Schrodinger equation for appropriate plasma potential. We have used adaptive step size controlled Runge-Kutta method to perform the numerical integration. Debye-Huckel potential is used to investigate the variation in transition lines and polarizabilities (dipole and quadrupole) with increasing plasma screening. For a strongly coupled plasma, ion sphere potential is used to show the variation in excitation energy with decreasing ion spheremore » radius. It is observed that plasma screening sets in phenomena like continuum lowering and pressure ionization, which are unique to ions in plasma. Of particular interest is the blue (red) shift in transitions conserving (non-conserving) principal quantum number. The plasma environment also affects the dipole and quadrupole polarizability of ions in a significant manner. The bound state contribution to polarizabilities decreases with increase in plasma density whereas the continuum contribution is significantly enhanced. This is a result of variation in the behavior of bound and continuum state wave functions in the presence of plasma. We have compared the results with existing theoretical and experimental data wherever present.« less

  20. A Non-parametric Approach to Constrain the Transfer Function in Reverberation Mapping

    NASA Astrophysics Data System (ADS)

    Li, Yan-Rong; Wang, Jian-Min; Bai, Jin-Ming

    2016-11-01

    Broad emission lines of active galactic nuclei stem from a spatially extended region (broad-line region, BLR) that is composed of discrete clouds and photoionized by the central ionizing continuum. The temporal behaviors of these emission lines are blurred echoes of continuum variations (I.e., reverberation mapping, RM) and directly reflect the structures and kinematic information of BLRs through the so-called transfer function (also known as the velocity-delay map). Based on the previous works of Rybicki and Press and Zu et al., we develop an extended, non-parametric approach to determine the transfer function for RM data, in which the transfer function is expressed as a sum of a family of relatively displaced Gaussian response functions. Therefore, arbitrary shapes of transfer functions associated with complicated BLR geometry can be seamlessly included, enabling us to relax the presumption of a specified transfer function frequently adopted in previous studies and to let it be determined by observation data. We formulate our approach in a previously well-established framework that incorporates the statistical modeling of continuum variations as a damped random walk process and takes into account long-term secular variations which are irrelevant to RM signals. The application to RM data shows the fidelity of our approach.

  1. Discrete-to-continuum modelling of weakly interacting incommensurate two-dimensional lattices.

    PubMed

    Español, Malena I; Golovaty, Dmitry; Wilber, J Patrick

    2018-01-01

    In this paper, we derive a continuum variational model for a two-dimensional deformable lattice of atoms interacting with a two-dimensional rigid lattice. The starting point is a discrete atomistic model for the two lattices which are assumed to have slightly different lattice parameters and, possibly, a small relative rotation. This is a prototypical example of a three-dimensional system consisting of a graphene sheet suspended over a substrate. We use a discrete-to-continuum procedure to obtain the continuum model which recovers both qualitatively and quantitatively the behaviour observed in the corresponding discrete model. The continuum model predicts that the deformable lattice develops a network of domain walls characterized by large shearing, stretching and bending deformation that accommodates the misalignment and/or mismatch between the deformable and rigid lattices. Two integer-valued parameters, which can be identified with the components of a Burgers vector, describe the mismatch between the lattices and determine the geometry and the details of the deformation associated with the domain walls.

  2. Selection of trilateral continuums of life history strategies under food web interactions.

    PubMed

    Fujiwara, Masami

    2018-03-14

    The study of life history strategies has a long history in ecology and evolution, but determining the underlying mechanisms driving the evolution of life history variation and its consequences for population regulation remains a major challenge. In this study, a food web model with constant environmental conditions was used to demonstrate how multi-species consumer-resource interactions (food-web interactions) can create variation in the duration of the adult stage, age of maturation, and fecundity among species. The model included three key ecological processes: size-dependent species interactions, energetics, and transition among developmental stages. Resultant patterns of life history variation were consistent with previous empirical observations of the life history strategies of aquatic organisms referred to as periodic, equilibrium, and opportunistic strategies (trilateral continuums of life history strategies). Results from the simulation model suggest that these three life history strategies can emerge from food web interactions even when abiotic environmental conditions are held constant.

  3. Long-term persistence of solar activity

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, Alexander; Feynman, Joan; Robinson, Paul

    1994-01-01

    We examine the question of whether or not the non-periodic variations in solar activity are caused by a white-noise, random process. The Hurst exponent, which characterizes the persistence of a time series, is evaluated for the series of C-14 data for the time interval from about 6000 BC to 1950 AD. We find a constant Hurst exponent, suggesting that solar activity in the frequency range from 100 to 3000 years includes an important continuum component in addition to the well-known periodic variations. The value we calculate, H approximately 0.8, is significantly larger than the value of 0.5 that would correspond to variations produced by a white-noise process. This value is in good agreement with the results for the monthly sunspot data reported elsewhere, indicating that the physics that produces the continuum is a correlated random process and that it is the same type of process over a wide range of time interval lengths.

  4. Detection of radio continuum emission from Herbig-Haro objects 1 and 2 and from their central exciting source

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Rodriguez, L. F.; Curiel, S.; Canto, J.; Torrelles, J. M.; Becker, R. H.; Sellgren, K.

    1985-01-01

    The region in Orion containing HH 1 and HH 2 was observed with the VLA at 20, 6, and 2 cm on several occasions from 1981 to 1984. At lower resolution, four continuum sources were detected. Two of these sources coincide positionally with HH 1 and HH 2. At 6 cm and higher resolution, HH 1 is resolved into at least two components. The emission is probably bremsstrahlung originating in the same region where the visible line emission is produced. This is the first detection of radio continuum from classic Herbig-Haro objects. At a position closely centered between HH 1 and HH 2, an object that can be interpreted as the energy source of the system was detected. The central source spectrum is S(nu) of about nu to the alpha power, where alpha = 0.4 + or - 0.2, suggesting a stellar wind. Finally, the fourth radio continuum source coincides positionally with an H2O maser and is probably excited by an independent star. There is evidence of time variability in its radio flux. No emission was detected from the Cohen-Schwartz (1979) star at the 0.1 mJy level.

  5. Solar radio continuum storms

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Radio noise continuum emission observed in metric and decametric wave frequencies is discussed. The radio noise is associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. It is shown that the S-component emission in microwave frequencies generally occurs several days before the emission of the noise continuum storms of lower frequencies. It is likely that energetic electrons, 10 to 100 Kev, accelerated in association with the variation of sunspot magnetic fields, are the sources of the radio emissions. A model is considered to explain the relation of burst storms on radio noise. An analysis of the role of energetic electrons on the emissions of both noise continuum and type III burst storms is presented. It is shown that instabilities associated with the electrons and their relation to their own stabilizing effects are important in interpreting both of these storms.

  6. Powerless fluxes and forces, and change of scale in irreversible thermodynamics

    NASA Astrophysics Data System (ADS)

    Ostoja-Starzewski, M.; Zubelewicz, A.

    2011-08-01

    We show that the dissipation function of linear processes in continuum thermomechanics may be treated as the average of the statistically fluctuating dissipation rate on either coarse or small spatial scales. The first case involves thermodynamic orthogonality due to Ziegler, while the second one involves powerless forces in a general solution of the Clausius-Duhem inequality according to Poincaré and Edelen. This formulation is demonstrated using the example of parabolic versus hyperbolic heat conduction. The existence of macroscopic powerless heat fluxes is traced here to the hidden dissipative processes at lower temporal and spatial scales.

  7. On magnetohydrodynamic thermal instabilities in magnetic flux tubes. [in plane parallel stellar atmosphere in LTE and hydrostatic equilibrium

    NASA Technical Reports Server (NTRS)

    Massaglia, S.; Ferrari, A.; Bodo, G.; Kalkofen, W.; Rosner, R.

    1985-01-01

    The stability of current-driven filamentary modes in magnetic flux tubes embedded in a plane-parallel atmosphere in LTE and in hydrostatic equilibrium is discussed. Within the tube, energy transport by radiation only is considered. The dominant contribution to the opacity is due to H- ions and H atoms (in the Paschen continuum). A region in the parameter space of the equilibrium configuration in which the instability is effective is delimited, and the relevance of this process for the formation of structured coronae in late-type stars and accretion disks is discussed.

  8. Spectral flux from low-density photospheres - Numerical results

    NASA Technical Reports Server (NTRS)

    Hershkowitz, S.; Linder, E.; Wagoner, R. V.

    1986-01-01

    Radiative transfer through sharp, quasi-static atmospheres whose opacity is dominated by hydrogen is considered at densities low enough that scattering usually dominates absorption and radiative excitations usually dominate collisional excitations. Numerical results for the continuum spectral flux are obtained for effective temperatures T(e) = 6000-16,000 K and scale heights Delta-R = 10 to the 10th - 10 to the 14th cm. Spectra are significantly different than if LTE level populations were assumed. Comparison with observations of the Type II supernova 1980k tends to increase the value of the Hubble constant previously obtained by the Baade (1926) method.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Yao, E-mail: Yao.Fu@colorado.edu; Song, Jeong-Hoon, E-mail: JH.Song@colorado.edu

    Heat flux expressions are derived for multibody potential systems by extending the original Hardy's methodology and modifying Admal & Tadmor's formulas. The continuum thermomechanical quantities obtained from these two approaches are easy to compute from molecular dynamics (MD) results, and have been tested for a constant heat flux model in two distinctive systems: crystalline iron and polyethylene (PE) polymer. The convergence criteria and affecting parameters, i.e. spatial and temporal window size, and specific forms of localization function are found to be different between the two systems. The conservation of mass, momentum, and energy are discussed and validated within this atomistic–continuummore » bridging.« less

  10. Tracing the sources of organic carbon in freshwater systems

    NASA Astrophysics Data System (ADS)

    Glendell, Miriam; Meersmans, Jeroen; Barclay, Rachel; Yvon-Durocher, Gabriel; Barker, Sam; Jones, Richard; Hartley, Iain; Dungait, Jennifer; Quine, Timothy

    2016-04-01

    Quantifying the lateral fluxes of carbon from land to inland waters is critical for the understanding of the global carbon cycle and climate change mitigation. However, the crucial role of rivers in receiving, transporting and processing the equivalent of terrestrial net primary production in their watersheds has only recently been recognised. In addition, the fluxes of carbon from land to ocean, and the impact of anthropogenic perturbation, are poorly quantified. Therefore, a mechanistic understanding of the processes involved in the loss and preservation of C along the terrestrial-aquatic continuum is required to predict the present and future contribution of aquatic C fluxes to the global C budget. This pilot study examines the effect of land use on the fate of organic matter within two headwater catchments in Cornwall (UK) in order to develop a methodological framework for investigating C-cycling across the entire terrestrial-aquatic continuum. To this end, we aim to characterise the spatial heterogeneity of soil erosion driven lateral fluxes of SOC to identify areas of erosion and deposition using 137Cs radio-isotope and trace the terrestrial versus aquatic origin of C along the river reaches and in lake sediments at the catchment outlet. The 3D spatial distribution of SOC has been investigated by sampling three depth increments (i.e. 0-15cm, 15-30cm and 30-50cm) along 14 hillslope transects within two sub-catchments of ˜km2 each. In total, 80 terrestrial sites were monitored and analysed for total C and N, and bulk stable 13C/15N isotope values, while 137Cs was used to obtain a detailed understanding of the spatial - temporal variability in erosion driven lateral fluxes of SOC within the catchments. The relative contribution of terrestrial and aquatic C was examined along the river reaches as well as in lake sediments at the catchment outlet by considering n-alkane signatures. By linking the C accumulation rates in lake sediments over decadal timescales from both terrestrial and aquatic sources as recorded in lake sediments to the measured rates of soil erosion and terrestrial & aquatic CO2 respiration rates, this study has paved a way towards a novel and cross-disciplinary approach to investigate and further improve current status of knowledge as regards C-cycling across the entire terrestrial-aquatic continuum. 137Cs was found to be useful to understand the dynamics and spatial pattern of lateral fluxes of sediment & C at the catchment scale, while tracing chemical composition of C using n-alkanes and stable isotopes (δ13C, δ15N) allowed distinguishing between the terrestrial vs. aquatic origin of C and determining main sources of particulate organic carbon in the aquatic environment within the two study catchments.

  11. Quantum dynamics in continuum for proton transport II: Variational solvent-solute interface.

    PubMed

    Chen, Duan; Chen, Zhan; Wei, Guo-Wei

    2012-01-01

    Proton transport plays an important role in biological energy transduction and sensory systems. Therefore, it has attracted much attention in biological science and biomedical engineering in the past few decades. The present work proposes a multiscale/multiphysics model for the understanding of the molecular mechanism of proton transport in transmembrane proteins involving continuum, atomic, and quantum descriptions, assisted with the evolution, formation, and visualization of membrane channel surfaces. We describe proton dynamics quantum mechanically via a new density functional theory based on the Boltzmann statistics, while implicitly model numerous solvent molecules as a dielectric continuum to reduce the number of degrees of freedom. The density of all other ions in the solvent is assumed to obey the Boltzmann distribution in a dynamic manner. The impact of protein molecular structure and its charge polarization on the proton transport is considered explicitly at the atomic scale. A variational solute-solvent interface is designed to separate the explicit molecule and implicit solvent regions. We formulate a total free-energy functional to put proton kinetic and potential energies, the free energy of all other ions, and the polar and nonpolar energies of the whole system on an equal footing. The variational principle is employed to derive coupled governing equations for the proton transport system. Generalized Laplace-Beltrami equation, generalized Poisson-Boltzmann equation, and generalized Kohn-Sham equation are obtained from the present variational framework. The variational solvent-solute interface is generated and visualized to facilitate the multiscale discrete/continuum/quantum descriptions. Theoretical formulations for the proton density and conductance are constructed based on fundamental laws of physics. A number of mathematical algorithms, including the Dirichlet-to-Neumann mapping, matched interface and boundary method, Gummel iteration, and Krylov space techniques are utilized to implement the proposed model in a computationally efficient manner. The gramicidin A channel is used to validate the performance of the proposed proton transport model and demonstrate the efficiency of the proposed mathematical algorithms. The proton channel conductances are studied over a number of applied voltages and reference concentrations. A comparison with experimental data verifies the present model predictions and confirms the proposed model. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Significance of groundwater flux on contaminant concentration and mass discharge in the nonaqueous phase liquid (NAPL) contaminated zone.

    PubMed

    Zhu, Jianting; Sun, Dongmin

    2016-09-01

    Groundwater flowing through residual nonaqueous phase liquid (NAPL) source zone will cause NAPL dissolution and generate large contaminant plume. The use of contaminant mass discharge (CMD) measurements in addition to NAPL aqueous phase concentration to characterize site conditions and assess remediation performance is becoming popular. In this study, we developed new and generic numerical models to investigate the significance of groundwater flux temporal variations on the NAPL source dynamics. The developed models can accommodate any temporal variations of groundwater flux in the source zone. We examined the various features of groundwater flux using a few selected functional forms of linear increase/decrease, gradual smooth increase/decrease, and periodic fluctuations with a general trend. Groundwater flux temporal variations have more pronounced effects on the contaminant mass discharge dynamics than the aqueous concentration. If the groundwater flux initially increases, then the reduction in contaminant mass discharge (CMDR) vs. NAPL mass reduction (MR) relationship is mainly downward concave. If the groundwater flux initially decreases, then CMDR vs. MR relationship is mainly upward convex. If the groundwater flux variations are periodic, the CMDR vs. MR relationship tends to also have periodic variations ranging from upward convex to downward concave. Eventually, however, the CMDR vs. MR relationship approaches 1:1 when majority of the NAPL mass becomes depleted. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Assessing diel variation of CH4 flux from rice paddies through temperature patterns

    NASA Astrophysics Data System (ADS)

    Centeno, Caesar Arloo R.; Alberto, Ma Carmelita R.; Wassmann, Reiner; Sander, Bjoern Ole

    2017-10-01

    The diel variation in methane (CH4) flux from irrigated rice was characterized during the dry and wet cropping seasons in 2013 and 2014 using the eddy covariance (EC) technique. The EC technique has the advantage of obtaining measurements of fluxes at an extremely high temporal resolution (10Hz), meaning it records 36,000 measurements per hour. The EC measurements can very well capture the temporal variations of the diel (both diurnal and nocturnal) fluxes of CH4 and the environmental factors (temperature, surface energy flux, and gross ecosystem photosynthesis) at 30-min intervals. The information generated by this technique is important to enhance our mechanistic understanding of the different factors affecting the landscape scale diel CH4 flux. Distinct diel patterns of CH4 flux were observed when the data were partitioned into different cropping periods (pre-planting, growth, and fallow). The temporal variations of the diel CH4 flux during the dry seasons were more pronounced than during the wet seasons because the latter had so much climatic disturbance from heavy monsoon rains and occasional typhoons. Pearson correlation analysis and Granger causality test were used to confirm if the environmental factors evaluated were not only correlated with but also Granger-causing the diel CH4 flux. Soil temperature at 2.5 cm depth (Ts 2.5 cm) can be used as simple proxy for predicting diel variations of CH4 fluxes in rice paddies using simple linear regression during both the dry and wet seasons. This simple site-specific temperature response function can be used for gap-filling CH4 flux data for improving the estimates of CH4 source strength from irrigated rice production.

  14. Predictive models for radial sap flux variation in coniferous, diffuse-porous and ring-porous temperate trees.

    PubMed

    Berdanier, Aaron B; Miniat, Chelcy F; Clark, James S

    2016-08-01

    Accurately scaling sap flux observations to tree or stand levels requires accounting for variation in sap flux between wood types and by depth into the tree. However, existing models for radial variation in axial sap flux are rarely used because they are difficult to implement, there is uncertainty about their predictive ability and calibration measurements are often unavailable. Here we compare different models with a diverse sap flux data set to test the hypotheses that radial profiles differ by wood type and tree size. We show that radial variation in sap flux is dependent on wood type but independent of tree size for a range of temperate trees. The best-fitting model predicted out-of-sample sap flux observations and independent estimates of sapwood area with small errors, suggesting robustness in the new settings. We develop a method for predicting whole-tree water use with this model and include computer code for simple implementation in other studies. Published by Oxford University Press 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  15. [Methane fluxes of Cyperus malaccensis tidal wetland in Minjiang River estuary].

    PubMed

    Zeng, Cong-Sheng; Wang, Wei-Qi; Zhang, Lin-Hai; Lin, Lu-Ying; Ai, Jin-Quan; Zhang, Wen-Long

    2010-02-01

    By using enclosed static chamber-gas chromatograph techniques, this paper measured the methane fluxes of Cyperus malaccensis tidal wetland in Minjiang River estuary. The diurnal variation of the methane fluxes in summer and winter were in the range of 1.29-2.93 mg x m(-2) x h(-1) and 0.06-0.22 mg x m(-2) x h(-1), respectively. The methane fluxes before flooding, in the process of flooding and ebbing, and after ebbing were 0.11-1.52 mg x m(-2) x h(-1), 0.10-1.05 mg x m(-2) x h(-1), and 0.05-1.70 mg x m(-2) x h(-1), and the monthly averaged fluxes were 0.73, 0.47, and 0.72 mg x m(-2) x h(-1), respectively. The methane fluxes peaked in September and reached the lowest in March, and were significantly lower in the process of flooding and ebbing than before flooding and after ebbing (P < 0.05). The seasonal variation of the methane fluxes was in the order of summer > autumn > spring > winter. Tide was the key factor affecting the diurnal variation of the methane fluxes, while plant growth stage and temperature were the key factors determining the monthly or seasonal variation of the methane fluxes.

  16. Linking lowermost mantle structure, core-mantle boundary heat flux and mantle plume formation

    NASA Astrophysics Data System (ADS)

    Li, Mingming; Zhong, Shijie; Olson, Peter

    2018-04-01

    The dynamics of Earth's lowermost mantle exert significant control on the formation of mantle plumes and the core-mantle boundary (CMB) heat flux. However, it is not clear if and how the variation of CMB heat flux and mantle plume activity are related. Here, we perform geodynamic model experiments that show how temporal variations in CMB heat flux and pulses of mantle plumes are related to morphologic changes of the thermochemical piles of large-scale compositional heterogeneities in Earth's lowermost mantle, represented by the large low shear velocity provinces (LLSVPs). We find good correlation between the morphologic changes of the thermochemical piles and the time variation of CMB heat flux. The morphology of the thermochemical piles is significantly altered during the initiation and ascent of strong mantle plumes, and the changes in pile morphology cause variations in the local and the total CMB heat flux. Our modeling results indicate that plume-induced episodic variations of CMB heat flux link geomagnetic superchrons to pulses of surface volcanism, although the relative timing of these two phenomena remains problematic. We also find that the density distribution in thermochemical piles is heterogeneous, and that the piles are denser on average than the surrounding mantle when both thermal and chemical effects are included.

  17. Carbon and energy fluxes from China's largest freshwater lake

    NASA Astrophysics Data System (ADS)

    Gan, G.; LIU, Y.

    2017-12-01

    Carbon and energy fluxes between lakes and the atmosphere are important aspects of hydrology, limnology, and ecology studies. China's largest freshwater lake, the Poyang lake experiences tremendous water-land transitions periodically throughout the year, which provides natural experimental settings for the study of carbon and energy fluxes. In this study, we use the eddy covariance technique to explore the seasonal and diurnal variation patterns of sensible and latent heat fluxes of Poyang lake during its high-water and low-water periods, when the lake is covered by water and mudflat, respectively. We also determine the annual NEE of Poyang lake and the variations of NEE's components: Gross Primary Productivity (GPP) and Ecosystem Respiration (Re). Controlling factors of seasonal and diurnal variations of carbon and energy fluxes are analyzed, and land cover impacts on the variation patterns are also studied. Finally, the coupling between the carbon and energy fluxes are analyzed under different atmospheric, boundary stability and land cover conditions.

  18. Constraining the size of the dusty torus in Active Galactic Nuclei: An Optical/Infrared Reverberation Lag Study

    NASA Astrophysics Data System (ADS)

    Vazquez, Billy

    The dusty torus is the key component in the Active Galactic Nuclei (AGN) Unification Scheme that explains the spectroscopic differences between Seyfert galaxies of types 1 and 2. The torus dust is heated by the nuclear source and emits the absorbed energy in the infrared (IR); but because of light travel times, the torus IR emission responds to variations of the nuclear ultraviolet/optical continuum with a delay that corresponds to the size of the emitting region. The results from a mid-infrared (MIR) monitoring campaign using the Spitzer Space Telescope and optical ground-based telescopes (B and V band imaging), which spanned over 2 years and covered a sample of 12 Seyfert galaxies, are presented. The aim was to constrain the distances from the nucleus to the regions in the torus emitting at wavelengths of 3.6 microm and 4.5 microm. MIR light curves showing the variability characteristics of these AGN are presented and the effects of photometric uncertainties on the time-series analysis of the light curves are discussed. Significant variability was observed in the IR light curves of 10 of 12 objects, with relative amplitudes ranging from ˜10% to ˜100% from their mean flux. The "reverberation lags" between the 3.6 microm and 4.5 microm IR bands were determined for the entire sample and between the optical and MIR bands for NGC6418. In NGC6418, the 3.6 microm and 4.5 microm fluxes lagged behind those of the optical continuum by 47.5+2.0-1.9) days and 62.5+2.5-2.9 days, respectively. This is consistent with the inferred lower limit to the sublimation radius for pure graphite grains at T=1800 K but smaller by a factor of 2 than the lower limit for dust grains with a "standard" interstellar medium (ISM) composition. There is evidence that the lags increased following approximately by a factor of 2 increase in luminosity, consistent with an increase in the sublimation radius.

  19. Increases in mean annual temperature do not alter soil bacterial community structure in tropical montane wet forests

    Treesearch

    Paul C. Selmants; Karen L. Adair; Creighton M. Litton; Christian P. Giardina; Egbert Schwartz

    2016-01-01

    Soil bacteria play a key role in regulating terrestrial biogeochemical cycling and greenhouse gas fluxes across the soil-atmosphere continuum. Despite their importance to ecosystem functioning, we lack a general understanding of how bacterial communities respond to climate change, especially in relatively understudied ecosystems like tropical montane wet...

  20. Hypersonic shock structure with Burnett terms in the viscous stress and heat flux

    NASA Technical Reports Server (NTRS)

    Chapman, Dean R.; Fiscko, Kurt A.

    1988-01-01

    The continuum Navier-Stokes and Burnett equations are solved for one-dimensional shock structure in various monatomic gases. A new numerical method is employed which utilizes the complete time-dependent continuum equations and obtains the steady-state shock structure by allowing the system to relax from arbitrary initial conditions. Included is discussion of numerical difficulties encountered when solving the Burnett equations. Continuum solutions are compared to those obtained utilizing the Direct Simulation Monte Carlo method. Shock solutions are obtained for a hard sphere gas and for argon from Mach 1.3 to Mach 50. Solutions for a Maxwellian gas are obtained from Mach 1.3 to Mach 3.8. It is shown that the Burnett equations yield shock structure solutions in much closer agreement to both Monte Carlo and experimental results than do the Navier-Stokes equations. Shock density thickness, density asymmetry, and density-temperature separation are all more accurately predicted by the Burnett equations than by the Navier-Stokes equations.

  1. The integrated radio continuum spectrum of M33 - Evidence for free-free absorption by cool ionized gas

    NASA Technical Reports Server (NTRS)

    Israel, F. P.; Mahoney, M. J.; Howarth, N.

    1992-01-01

    We present measurements of the integrated radio continuum flux density of M33 at frequencies between 22 and 610 MHz and discuss the radio continuum spectrum of M33 between 22 MHz and 10 GHz. This spectrum has a turnover between 500 and 900 MHz, depending on the steepness of the high frequency radio spectrum of M33. Below 500 MHz the spectrum is relatively flat. We discuss possible mechanisms to explain this spectral shape and consider efficient free-free absorption of nonthermal emission by a cool (not greater than 1000 K) ionized gas to be a very likely possibility. The surface filling factor of both the nonthermal and the thermal material appears to be small (of order 0.001), which could be explained by magnetic field/density fluctuations in the M 33 interstellar medium. We briefly speculate on the possible presence of a nuclear radio source with a steep spectrum.

  2. The Glymphatic-Lymphatic Continuum: Opportunities for Osteopathic Manipulative Medicine.

    PubMed

    Hitscherich, Kyle; Smith, Kyle; Cuoco, Joshua A; Ruvolo, Kathryn E; Mancini, Jayme D; Leheste, Joerg R; Torres, German

    2016-03-01

    The brain has long been thought to lack a lymphatic drainage system. Recent studies, however, show the presence of a brain-wide paravascular system appropriately named the glymphatic system based on its similarity to the lymphatic system in function and its dependence on astroglial water flux. Besides the clearance of cerebrospinal fluid and interstitial fluid, the glymphatic system also facilitates the clearance of interstitial solutes such as amyloid-β and tau from the brain. As cerebrospinal fluid and interstitial fluid are cleared through the glymphatic system, eventually draining into the lymphatic vessels of the neck, this continuous fluid circuit offers a paradigm shift in osteopathic manipulative medicine. For instance, manipulation of the glymphatic-lymphatic continuum could be used to promote experimental initiatives for nonpharmacologic, noninvasive management of neurologic disorders. In the present review, the authors describe what is known about the glymphatic system and identify several osteopathic experimental strategies rooted in a mechanistic understanding of the glymphatic-lymphatic continuum.

  3. Galactic Supernova Remnant Candidates Discovered by THOR

    NASA Astrophysics Data System (ADS)

    Anderson, Loren; Wang, Yuan; Bihr, Simon; Rugel, Michael; Beuther, Henrik; THOR Team

    2018-01-01

    There is a considerable deficiency in the number of known supernova remnants (SNRs) in the Galaxy compared to that expected. Searches for extended low-surface brightness radio sources may find new Galactic SNRs, but confusion with the much larger population of HII regions makes identifying such features challenging. SNRs can, however, be separated from HII regions using their significantly lower mid-infrared (MIR) to radio continuum intensity ratios. We use the combination of high-resolution 1-2 GHz continuum data from The HI, OH, Recombination line survey of the Milky Way (THOR) and lower-resolution VLA 1.4 GHz Galactic Plane Survey (VGPS) continuum data, together with MIR data from the Spitzer GLIMPSE, Spitzer MIPSGAL, and WISE surveys to identify SNR candidates. To ensure that the candidates are not being confused with HII regions, we exclude radio continuum sources from the WISE Catalog of Galactic HII Regions, which contains all known and candidate H II regions in the Galaxy. We locate 76 new Galactic SNR candidates in the THOR and VGPS combined survey area of 67.4deg>l>17.5deg, |b|<1.25deg and measure the radio flux density for 52 previously-known SNRs. The candidate SNRs have a similar spatial distribution to the known SNRs, although we note a large number of new candidates near l=30deg, the tangent point of the Scutum spiral arm. The candidates are on average smaller in angle compared to the known regions, 6.4'+/-4.7' versus 11.0'+/-7.8', and have lower integrated flux densities. If the 76 candidates are confirmed as true SNRs, for example using radio polarization measurements or by deriving radio spectral indices, this would more than double the number of known Galactic SNRs in the survey area. This large increase would still, however, leave a discrepancy between the known and expected SNR populations of about a factor of two.

  4. The Optical Variability of SDSS Quasars from Multi-epoch Spectroscopy. III. A Sudden UV Cutoff in Quasar SDSS J2317+0005

    NASA Astrophysics Data System (ADS)

    Guo, Hengxiao; Malkan, Matthew A.; Gu, Minfeng; Li, Linlin; Prochaska, J. Xavier; Ma, Jingzhe; You, Bei; Zafar, Tayyaba; Liao, Mai

    2016-08-01

    We have collected near-infrared to X-ray data of 20 multi-epoch heavily reddened SDSS quasars to investigate the physical mechanism of reddening. Of these, J2317+0005 is found to be a UV cutoff quasar. Its continuum, which usually appears normal, decreases by a factor 3.5 at 3000 Å, compared to its more typical bright state during an interval of 23 days. During this sudden continuum cut-off the broad emission line fluxes do not change, perhaps due to the large size of the broad-line region (BLR), r \\gt 23/(1+z) days. The UV continuum may have suffered a dramatic drop out. However, there are some difficulties with this explanation. Another possibility is that the intrinsic continuum did not change but was temporarily blocked out, at least toward our line of sight. As indicated by X-ray observations, the continuum rapidly recovers after 42 days. A comparison of the bright state and dim states would imply an eclipse by a dusty cloud with a reddening curve having a remarkably sharp rise shortward of 3500 Å. Under the assumption of being eclipsed by a Keplerian dusty cloud, we characterized the cloud size with our observations, however, which is a little smaller than the 3000 Å continuum-emitting size inferred from accretion disk models. Therefore, we speculate that this is due to a rapid outflow or inflow with a dusty cloud passing through our line of sight to the center.

  5. A Day in the Life of the Suwannee River: Lagrangian Sampling of Process Rates Along the River Continuum

    NASA Astrophysics Data System (ADS)

    Cohen, M. J.; Hensley, R. T.; Spangler, M.; Gooseff, M. N.

    2017-12-01

    A key organizing idea in stream ecology is the river continuum concept (RCC) which makes testable predictions about network-scale variation in metabolic and community attributes. Using high resolution (ca. 0.1 Hz) Lagrangian sampling of a wide suite of solutes - including nitrate, fDOM, dissolved oyxgen and specific conductance, we sampled the river continuum from headwaters to the sea in the Suwannee River (Florida, USA). We specifically sought to test two predictions that follow from the RCC: first, that changes in metabolism and hydraulics lead to progressive reduction in total N retention but greater diel variation with increasing stream order; and second, that variation in metabolic and nutrient processing rates is larger across stream orders than between low order streams. In addition to providing a novel test of theory, these measurements enabled new insights into the evolution of water quality through a complex landscape, in part because main-stem profiles were obtained for both high and historically low flow conditions. We observed strong evidence of metabolism and nutrient retention at low flow. Both the rate of uptake velocity and the mass retention per unit area declined with increasing stream order, and declined dramatically at high flow. Clear evidence for time varying retention (i.e., diel variation) was observed at low flow, but was masked or absent at high flow. In this geologically complex river - with alluvial, spring-fed, and blackwater headwater streams - variation across low-order streams was large, suggesting the presence of many river continuua across the network. This application of longitudinal sampling and inference underscores the utility of changing reference frames to draw new insights, but also highlights some of the challenges that need to be considered and, where possible, controlled.

  6. Interannual variation of carbon fluxes from three contrasting evergreen forests: the role of forest dynamics and climate.

    PubMed

    Sierra, Carlos A; Loescher, Henry W; Harmon, Mark E; Richardson, Andrew D; Hollinger, David Y; Perakis, Steven S

    2009-10-01

    Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed approximately 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results also show that the variation of annual carbon fluxes poses an important challenge in our ability to determine whether an ecosystem is a source, a sink, or is neutral in regard to CO2 at longer timescales. In simulations where climate change negatively affected ecosystem carbon stores, there was a 20% chance of committing Type II error, even with 20 years of sequential data.

  7. Interrogating Seyferts with NebulaBayes: Spatially Probing the Narrow-line Region Radiation Fields and Chemical Abundances

    NASA Astrophysics Data System (ADS)

    Thomas, Adam D.; Dopita, Michael A.; Kewley, Lisa J.; Groves, Brent A.; Sutherland, Ralph S.; Hopkins, Andrew M.; Blanc, Guillermo A.

    2018-04-01

    NebulaBayes is a new Bayesian code that implements a general method of comparing observed emission-line fluxes to photoionization model grids. The code enables us to extract robust, spatially resolved measurements of abundances in the extended narrow-line regions (ENLRs) produced by Active Galactic Nuclei (AGN). We observe near-constant ionization parameters but steeply radially declining pressures, which together imply that radiation pressure regulates the ENLR density structure on large scales. Our sample includes four “pure Seyfert” galaxies from the S7 survey that have extensive ENLRs. NGC 2992 shows steep metallicity gradients from the nucleus into the ionization cones. An inverse metallicity gradient is observed in ESO 138-G01, which we attribute to a recent gas inflow or minor merger. A uniformly high metallicity and hard ionizing continuum are inferred across the ENLR of Mrk 573. Our analysis of IC 5063 is likely affected by contamination from shock excitation, which appears to soften the inferred ionizing spectrum. The peak of the ionizing continuum E peak is determined by the nuclear spectrum and the absorbing column between the nucleus and the ionized nebula. We cannot separate variation in this intrinsic E peak from the effects of shock or H II region contamination, but E peak measurements nevertheless give insights into ENLR excitation. We demonstrate the general applicability of NebulaBayes by analyzing a nuclear spectrum from the non-active galaxy NGC 4691 using a H II region grid. The NLR and H II region model grids are provided with NebulaBayes for use by the astronomical community.

  8. Observations of Herbig Ae/Be Stars with Herschel/PACS: The Atomic and Molecular Contents of Their Protoplanetary Discs

    NASA Technical Reports Server (NTRS)

    Meeus, G.; Montesinos, B.; Mendigutia, I.; Kamp, I.; Thi, W. F.; Eiroa, C.; Grady, C. A.; Mathews, G.; Sandell, G.; Martin-Zaidi, C.; hide

    2012-01-01

    We observed a sample of 20 representative Herbig Ae/Be stars and 5 A-type debris discs with PACS onboard Herschel, as part of the GAS in Protoplanetary Systems (GASPS) project. The observations were done in spectroscopic mode, and cover the far-infrared lines of [OI], [CII], CO, CH+, H20, and OH. We have a [OI]63 micro/ detection rate of 100% for the Herbig Ae/Be and 0% for the debris discs. The [OI] 145 micron line is only detected in 25% and CO J = 18-17 in 45% (and fewer cases for higher J transitions) of the Herbig Ae/Be stars, while for [CII] 157 micron, we often find spatially variable background contamination. We show the first detection of water in a Herbig Ae disc, HD 163296, which has a settled disc. Hydroxyl is detected as well in this disc. First seen in HD 100546, CH+ emission is now detected for the second time in a Herbig Ae star, HD 97048. We report fluxes for each line and use the observations as line diagnostics of the gas properties. Furthermore, we look for correlations between the strength of the emission lines and either the stellar or disc parameters, such as stellar luminosity, ultraviolet and X-ray flux. accretion rate, polycyclic aromatic hydrocarbon (PAH) band strength, and flaring. We find that the stellar ultraviolet flux is the dominant excitation mechanism of [OI] 63 micron, with the highest line fluxes being found in objects with a large amount of flaring and among the largest PAH strengths. Neither the amount of accretion nor the X-ray luminosity has an influence on the line strength. We find correlations between the line flux of [OI]63 micron and [OI] 145 micron, CO J = IS-17 and [OI] 6300 A, and between the continuum flux at 63 micron and at 1.3 mm, while we find weak correlations between the line flux. of [OI] 63 micron and the PAH luminosity, the line flux of CO J = 3-2, the continuum flux at 63 pm, the stellar effective temperature, and the Br-gamma luminosity. Finally, we use a combination of the [OI] 63 micron and C(12)O J = 2-1 line fluxes to obtain order of magnitude estimates of the disc gas masses, in agreement with the values that we find from detailed modelling of two Herbig Ae/Be stars, HD 163296 and HD 169142.

  9. Determination of the hypersonic-continuum/rarefied-flow drag coefficient of the Viking lander capsule 1 aeroshell from flight data

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Walberg, G. D.

    1980-01-01

    Results of an investigation to determine the full scale drag coefficient in the high speed, low density regime of the Viking lander capsule 1 entry vehicle are presented. The principal flight data used in the study were from onboard pressure, mass spectrometer, and accelerometer instrumentation. The hypersonic continuum flow drag coefficient was unambiguously obtained from pressure and accelerometer data; the free molecule flow drag coefficient was indirectly estimated from accelerometer and mass spectrometer data; the slip flow drag coefficient variation was obtained from an appropriate scaling of existing experimental sphere data. Comparison of the flight derived drag hypersonic continuum flow regime except for Reynolds numbers from 1000 to 100,000, for which an unaccountable difference between flight and ground test data of about 8% existed. The flight derived drag coefficients in the free molecule flow regime were considerably larger than those previously calculated with classical theory. The general character of the previously determined temperature profile was not changed appreciably by the results of this investigation; however, a slightly more symmetrical temperature variation at the highest altitudes was obtained.

  10. Study of the Many Fluorescent Lines and the Absorption Variability in GX 301-2 with XMM-Newton

    NASA Technical Reports Server (NTRS)

    Fuerst, F.; Suchy, S.; Kreykenbohm, I.; Barragan, L.; Wilms, J.; Pottschmidt, K.; Caballero, I.; Kretschmar, P.; Ferrigno, C.; Rothschild, R. E.

    2011-01-01

    We present an in-depth study of the High Mass X-ray Binary (HMXB) GX 301-2 during its pre-periastron flare using data from the XMM-Newton satellite. The energy spectrum shows a power law continuum absorbed by a large equivalent hydrogen column on the order of 10(exp 24)/ sq cm and a prominent Fe K-alpha fluorescent emission line. Besides the Fe K-alpha line, evidence for Fe K-Beta, Ni K-alpha, Ni K-Beta, S K-alpha, Ar K-alpha, Ca K-alpha, and Cr K-alpha fluorescent lines is found. The observed line strengths are consistent with fluorescence in a cold absorber. This is the first time that Cr K-alpha is seen in emission in the X-ray spectrum of a HMXB. In addition to the modulation by the strong pulse period of approx 685 sec the source is highly variable and shows different states of activity. We perform time-resolved as well as pulse-to-pulse resolved spectroscopy to investigate differences between these states of activity. We find that fluorescent line fluxes are strongly variable and generally follow the overall flux. The N-H value is variable by a factor of 2, but not correlated to continuum normalization. We find an interval of low flux in the light curve in which the pulsations cease almost completely, without any indication of an increasing absorption column. We investigate this dip in detail and argue that it is most likely that during the dip the accretion ceased and the afterglow of the fluorescent iron accounted for the main portion of the X-ray flux. A similar dip was found earlier in RXTE data, and we compare our findings to these results.

  11. INVERSE COMPTON X-RAY EMISSION FROM TeV BLAZAR MRK 421 DURING A HISTORICAL LOW-FLUX STATE OBSERVED WITH NuSTAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kataoka, Jun; Stawarz, Łukasz, E-mail: kataoka.jun@waseda.jp

    2016-08-10

    We report on the detection of excess hard X-ray emission from the TeV BL Lac object Mrk 421 during the historical low-flux state of the source in 2013 January. Nuclear Spectroscopic Telescope Array observations were conducted four times between MJD 56294 and MJD 56312 with a total exposure of 80.9 ks. The source flux in the 3–40 keV range was nearly constant, except for MJD 56307 when the average flux level increased by a factor of three. Throughout the exposure, the X-ray spectra of Mrk 421 were well represented by a steep power-law model with a photon index of Γmore » ≃ 3.1, although a significant excess was noted above 20 keV in the MJD 56302 data when the source was in its faintest state. Moreover, Mrk 421 was detected at more than the 4 σ level in the 40–79 keV count maps for both MJD 56307 and MJD 56302 but not during the remaining two observations. The detected excess hard X-ray emission connects smoothly with the extrapolation of the high-energy γ -ray continuum of the blazar constrained by Fermi -LAT during source quiescence. These findings indicate that while the overall X-ray spectrum of Mrk 421 is dominated by the highest-energy tail of the synchrotron continuum, the variable excess hard X-ray emission above 20 keV (on the timescale of a week) is related to the inverse Compton emission component. We discuss the resulting constraints on the variability and spectral properties of the low-energy segment of the electron energy distribution in the source.« less

  12. Short-term X-ray spectral variability of the quasar PDS 456 observed in a low-flux state

    NASA Astrophysics Data System (ADS)

    Matzeu, G. A.; Reeves, J. N.; Nardini, E.; Braito, V.; Costa, M. T.; Tombesi, F.; Gofford, J.

    2016-05-01

    We present a detailed analysis of a recent, 2013 Suzaku campaign on the nearby (z = 0.184) luminous (Lbol ˜ 1047 erg s-1) quasar PDS 456. This consisted of three observations, covering a total duration of ˜1 Ms and a net exposure of 455 ks. During these observations, the X-ray flux was unusually low, suppressed by a factor of >10 in the soft X-ray band when compared to previous observations. We investigated the broad-band continuum by constructing a spectral energy distribution (SED), making use of the optical/UV photometry and hard X-ray spectra from the later simultaneous XMM-Newton and NuSTAR campaign in 2014. The high-energy part of this low-flux SED cannot be accounted for by physically self-consistent accretion disc and corona models without attenuation by absorbing gas, which partially covers a substantial fraction of the line of sight towards the X-ray continuum. At least two layers of absorbing gas are required, of column density log (NH,low/cm-2) = 22.3 ± 0.1 and log (NH,high/cm-2) = 23.2 ± 0.1, with average line-of-sight covering factors of ˜80 per cent (with typical ˜5 per cent variations) and 60 per cent (±10-15 per cent), respectively. During these observations PDS 456 displays significant short-term X-ray spectral variability, on time-scales of ˜100 ks, which can be accounted for by variable covering of the absorbing gas along the line of sight. The partial covering absorber prefers an outflow velocity of v_pc = 0.25^{+0.01}_{-0.05} c at the >99.9 per cent confidence level over the case where vpc = 0. This is consistent with the velocity of the highly ionized outflow responsible for the blueshifted iron K absorption profile. We therefore suggest that the partial covering clouds could be the denser, or clumpy part of an inhomogeneous accretion disc wind. Finally estimates are placed upon the size-scale of the X-ray emission region from the source variability. The radial extent of the X-ray emitter is found to be of the order ˜15-20Rg, although the hard X-ray (>2 keV) emission may originate from a more compact or patchy corona of hot electrons, which is typically ˜6-8Rg in size.

  13. XMM-Newton X-ray spectroscopy of the high-mass X-ray binary 4U 1700-37 at low flux

    NASA Astrophysics Data System (ADS)

    van der Meer, A.; Kaper, L.; di Salvo, T.; Méndez, M.; van der Klis, M.; Barr, P.; Trams, N. R.

    2005-03-01

    We present results of a monitoring campaign of the high-mass X-ray binary system 4U 1700-37/HD 153919, carried out with XMM-Newton in February 2001. The system was observed at four orbital phase intervals, covering 37% of one 3.41-day orbit. The lightcurve includes strong flares, commonly observed in this source. We focus on three epochs in which the data are not affected by photon pile up: the eclipse, the eclipse egress and a low-flux interval in the lightcurve around orbital phase φ ˜ 0.25. The high-energy part of the continuum is modelled as a direct plus a scattered component, each represented by a power law with identical photon index (α ˜ 1.4), but with different absorption columns. We show that during the low-flux interval the continuum is strongly reduced, probably due to a reduction of the accretion rate onto the compact object. A soft excess is detected in all spectra, consistent with either another continuum component originating in the outskirts of the system or a blend of emission lines. Many fluorescence emission lines from near-neutral species and discrete recombination lines from He- and H-like species are detected during eclipse and egress. The fluorescence Fe Kα line at 6.4 keV is very prominent; a second Kα line is detected at slightly higher energies (up to 6.7 keV) and a Kβ line at 7.1 keV. In the low-flux interval the Fe Kα line at 6.4 keV is strongly (factor ˜ 30) reduced in strength. In eclipse, the Fe Kβ/Kα ratio is consistent with a value of 0.13. In egress we initially measure a higher ratio, which can be explained by a shift in energy of the Fe K-edge to ~ 7.15 keV, which is consistent with moderately ionised iron, rather than neutral iron, as expected for the stellar wind medium. The detection of recombination lines during eclipse indicates the presence of an extended ionised region surrounding the compact object. The observed increase in strength of some emission lines corresponding to higher values of the ionisation parameter ξ further substantiates this conclusion.

  14. A DEEP HUBBLE SPACE TELESCOPE SEARCH FOR ESCAPING LYMAN CONTINUUM FLUX AT z {approx} 1.3: EVIDENCE FOR AN EVOLVING IONIZING EMISSIVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siana, Brian; Bridge, Carrie R.; Teplitz, Harry I.

    We have obtained deep Hubble Space Telescope far-UV images of 15 starburst galaxies at z {approx} 1.3 in the GOODS fields to search for escaping Lyman continuum (LyC) photons. These are the deepest far-UV images (m{sub AB} = 28.7, 3{sigma}, 1'' diameter) over this large an area (4.83 arcmin{sup 2}) and provide some of the best escape fraction constraints for any galaxies at any redshift. We do not detect any individual galaxies, with 3{sigma} limits to the LyC ({approx}700 A) flux 50-149 times fainter (in f{sub {nu}}) than the rest-frame UV (1500 A) continuum fluxes. Correcting for the mean intergalacticmore » medium (IGM) attenuation (factor {approx}2), as well as an intrinsic stellar Lyman break (factor {approx}3), these limits translate to relative escape fraction limits of f{sub esc,rel} < [0.03, 0.21]. The stacked limit is f{sub esc,rel}(3{sigma}) < 0.02. We use a Monte Carlo simulation to properly account for the expected distribution of line-of-sight IGM opacities. When including constraints from previous surveys at z {approx} 1.3 we find that, at the 95% confidence level, no more than 8% of star-forming galaxies at z {approx} 1.3 can have relative escape fractions greater than 0.50. Alternatively, if the majority of galaxies have low, but non-zero, escaping LyC, the escape fraction cannot be more than 0.04. In light of some evidence for strong LyC emission from UV-faint regions of Lyman break galaxies (LBGs) at z {approx} 3, we also stack sub-regions of our galaxies with different surface brightnesses and detect no significant LyC flux at the f{sub esc,rel} < 0.03 level. Both the stacked limits and the limits from the Monte Carlo simulation suggest that the average ionizing emissivity (relative to non-ionizing UV emissivity) at z {approx} 1.3 is significantly lower than has been observed in LBGs at z {approx} 3. If the ionizing emissivity of star-forming galaxies is in fact increasing with redshift, it would help to explain the high photoionization rates seen in the IGM at z>4 and reionization of the IGM at z>6.« less

  15. IUEAGN: A database of ultraviolet spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Pike, G.; Edelson, R.; Shull, J. M.; Saken, J.

    1993-01-01

    In 13 years of operation, IUE has gathered approximately 5000 spectra of almost 600 Active Galactic Nuclei (AGN). In order to undertake AGN studies which require large amounts of data, we are consistently reducing this entire archive and creating a homogeneous, easy-to-use database. First, the spectra are extracted using the Optimal extraction algorithm. Continuum fluxes are then measured across predefined bands, and line fluxes are measured with a multi-component fit. These results, along with source information such as redshifts and positions, are placed in the IUEAGN relational database. Analysis algorithms, statistical tests, and plotting packages run within the structure, and this flexible database can accommodate future data when they are released. This archival approach has already been used to survey line and continuum variability in six bright Seyfert 1s and rapid continuum variability in 14 blazars. Among the results that could only be obtained using a large archival study is evidence that blazars show a positive correlation between degree of variability and apparent luminosity, while Seyfert 1s show an anti-correlation. This suggests that beaming dominates the ultraviolet properties for blazars, while thermal emission from an accretion disk dominates for Seyfert 1s. Our future plans include a survey of line ratios in Seyfert 1s, to be fitted with photoionization models to test the models and determine the range of temperatures, densities and ionization parameters. We will also include data from IRAS, Einstein, EXOSAT, and ground-based telescopes to measure multi-wavelength correlations and broadband spectral energy distributions.

  16. X-ray versus Optical Variations in the Seyfert 1 Nucleus NGC 3516: A Puzzling Disconnectedness

    NASA Technical Reports Server (NTRS)

    Maoz, Dan; Markowitz, Alex; Edelson, Rick; Nandra, Kirpal; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present optical broadband (B and R) observations of the Seyfert 1 nucleus NGC 3516, obtained at Wise Observatory from March 1997 to March 2002, contemporaneously with X-ray 2-10 keV measurements with RXTE. With these data we increase the temporal baseline of this dataset to 5 years, more than triple to the coverage we have previously presented for this object. Analysis of the new data does not confirm the 100-day lag of X-ray behind optical variations, tentatively reported in our previous work. Indeed, excluding the first year's data, which drive the previous result, there is no significant correlation at any Lag between the X-ray and optical bands. We also find no correlation at any lag between optical flux and various X-ray hardness ratios. We conclude that the close relation observed between the bands during the first year of our program was either a fluke, or perhaps the result of the exceptionally bright state of NGC 3516 in 1997, to which it has yet to return. Reviewing the results of published joint X-ray and UV/optical Seyfert monitoring programs, we speculate that there are at least two components or mechanisms contributing to the X-ray continuum emission up to 10 key: a soft component that is correlated with UV/optical variations on timescales approx. greater than 1 day, and whose presence can be detected when the source is observed at low enough energies (approx. 1 keV), is unabsorbed, or is in a sufficiently bright phase; and a hard component whose variations are uncorrelated with the UV/optical.

  17. Seasonal variation of pteropods from the Western Arabian Sea sediment trap

    NASA Astrophysics Data System (ADS)

    Mohan, R.; Verma, K.; Mergulhao, L. P.; Sinha, D. K.; Shanvas, S.; Guptha, M. V. S.

    2006-11-01

    Sediment trap samples collected from the Western Arabian Sea yielded a rich assemblage of intact and non-living (opaque white) pteropod tests from a water depth of 919 m during January to September 1993. Nine species of pteropods were recorded, all (except one) displaying distinct seasonality in abundance, suggesting their response to changing hydrographical conditions influenced by the summer/winter monsoon cycle. Pteropod fluxes increased during the April-May peak of the intermonsoon, and reached maximum levels in the late phase of the southwest summer monsoon, probably due to the shallowing of the mixed layer depth. This shallowing, coupled with enhanced nutrient availability, provides ideal conditions for pteropod growth, also reflected in corresponding fluctuations in the flux of the foraminifer Globigerina bulloides. Pteropod/planktic foraminifer ratios displayed marked seasonal variations, the values increasing during the warmer months of April and May when planktic foraminiferal fluxes declined. The variation in fluxes of calcium carbonate, organic carbon and biogenic opal show positive correlations with fluxes of pteropods and planktic foraminifers. Calcium carbonate was the main contributor to the total particulate flux, especially during the SW monsoon. In the study area, pteropod flux variations are similar to the other flux patterns, indicating that they, too could be used as a potential tool for palaeoclimatic reconstruction of the recent past.

  18. Side-wall gas 'creep' and 'thermal stress convection' in microgravity experiments on film growth by vapor transport

    NASA Technical Reports Server (NTRS)

    Rosner, Daniel E.

    1989-01-01

    While 'no-slip' boundary conditions and the Navier-Stokes equations of continuum fluid mechanics have served the vapor transport community well until now, it is pointed out that transport conditions within highly nonisothermal ampoules are such that the nonisothermal side walls 'drive' the dominant convective flow, and the familiar Stokes-Fourier-Fick laws governing the molecular fluxes of momentum, energy, and (species) mass in the 'continuum' field equations will often prove to be inadequate, even at Knudsen numbers as small as 0.001. The implications of these interesting gas kinetic phenomena under microgravity conditions, and even under 'earth-bound' experimental conditions, are outlined here, along with a tractable approach to their systematic treatment.

  19. Investigation on a coupled CFD/DSMC method for continuum-rarefied flows

    NASA Astrophysics Data System (ADS)

    Tang, Zhenyu; He, Bijiao; Cai, Guobiao

    2012-11-01

    The purpose of the present work is to investigate the coupled CFD/DSMC method using the existing CFD and DSMC codes developed by the authors. The interface between the continuum and particle regions is determined by the gradient-length local Knudsen number. A coupling scheme combining both state-based and flux-based coupling methods is proposed in the current study. Overlapping grids are established between the different grid systems of CFD and DSMC codes. A hypersonic flow over a 2D cylinder has been simulated using the present coupled method. Comparison has been made between the results obtained from both methods, which shows that the coupled CFD/DSMC method can achieve the same precision as the pure DSMC method and obtain higher computational efficiency.

  20. Scriptwriting as a Tool for Learning Stylistic Variation

    ERIC Educational Resources Information Center

    Saugera, Valerie

    2011-01-01

    A film script is a useful tool for allowing students to experiment with language variation. Scripts of love stories comprise a range of language contexts, each triggering a different style on a formal-neutral-informal linguistic continuum: (1) technical cinematographic language in camera directions; (2) narrative language in exposition of scenes,…

  1. NIMBUS-7 SBUV (Solar Backscatter Ultraviolet) observations of solar UV spectral irradiance variations caused by solar rotation and active-region evolution for the period November 7, 1978 - November 1, 1980

    NASA Technical Reports Server (NTRS)

    Heath, D. F.; Repoff, T. P.; Donnelly, R. F.

    1984-01-01

    Observations of temporal variations of the solar UV spectral irradiance over several days to a few weeks in the 160-400 nm wavelength range are presented. Larger 28-day variations and a second episode of 13-day variations occurred during the second year of measurements. The thirteen day periodicity is not a harmonic of the 28-day periodicity. The 13-day periodicity dominates certain episodes of solar activity while others are dominated by 28-day periods accompanied by a week 14-day harmonic. Techniques for removing noise and long-term trends are described. Time series analysis results are presented for the Si II lines near 182 nm, the Al I continuum in the 190 nm to 205 nm range, the Mg I continuum in the 210 nm to 250 nm range, the MgII H & K lines at 280 nm, the Mg I line at 285 nm, and the Ca II K & H lines at 393 and 397 nm.

  2. Jet outflow and gamma-ray emission correlations in S5 0716+714

    DOE PAGES

    Rani, B.; Krichbaum, T. P.; Marscher, A. P.; ...

    2014-11-06

    Here, using millimeter very long baseline interferometry (VLBI) observations of the BL Lac object S5 0716+714 from August 2008 to September 2013, we investigate variations in the core flux density and orientation of the sub-parsec scale jet, i.e. position angle. The γ-ray data obtained by the Fermi Large Area Telescope are used to investigate the high-energy flux variations over the same time period. For the first time in any blazar, we report a significant correlation between the γ-ray flux variations and the position angle variations in the VLBI jet. The cross-correlation analysis also indicates a positive correlation such that themore » mm-VLBI core flux density variations are delayed with respect to the γ-ray flux by 82±32 days. This suggests that the high-energy emission is coming from a region located ≥(3.8±1.9) parsecs upstream of the mm-VLBI core (closer to the central black hole). Lastly, these results imply that the observed inner jet morphology has a strong connection with the observed γ-ray flares.« less

  3. Jet outflow and gamma-ray emission correlations in S5 0716+714

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, B.; Krichbaum, T. P.; Marscher, A. P.

    Here, using millimeter very long baseline interferometry (VLBI) observations of the BL Lac object S5 0716+714 from August 2008 to September 2013, we investigate variations in the core flux density and orientation of the sub-parsec scale jet, i.e. position angle. The γ-ray data obtained by the Fermi Large Area Telescope are used to investigate the high-energy flux variations over the same time period. For the first time in any blazar, we report a significant correlation between the γ-ray flux variations and the position angle variations in the VLBI jet. The cross-correlation analysis also indicates a positive correlation such that themore » mm-VLBI core flux density variations are delayed with respect to the γ-ray flux by 82±32 days. This suggests that the high-energy emission is coming from a region located ≥(3.8±1.9) parsecs upstream of the mm-VLBI core (closer to the central black hole). Lastly, these results imply that the observed inner jet morphology has a strong connection with the observed γ-ray flares.« less

  4. Environmental controls of temporal and spatial variability in CO2 and CH4 fluxes in a neotropical peatland.

    PubMed

    Wright, Emma L; Black, Colin R; Turner, Benjamin L; Sjögersten, Sofie

    2013-12-01

    Tropical peatlands play an important role in the global storage and cycling of carbon (C) but information on carbon dioxide (CO2) and methane (CH4) fluxes from these systems is sparse, particularly in the Neotropics. We quantified short and long-term temporal and small scale spatial variation in CO2 and CH4 fluxes from three contrasting vegetation communities in a domed ombrotrophic peatland in Panama. There was significant variation in CO2 fluxes among vegetation communities in the order Campnosperma panamensis > Raphia taedigera > Cyperus. There was no consistent variation among sites and no discernible seasonal pattern of CH4 flux despite the considerable range of values recorded (e.g. -1.0 to 12.6 mg m(-2) h(-1) in 2007). CO2 fluxes varied seasonally in 2007, being greatest in drier periods (300-400 mg m(-2) h(-1)) and lowest during the wet period (60-132 mg m(-2) h(-1)) while very high emissions were found during the 2009 wet period, suggesting that peak CO2 fluxes may occur following both low and high rainfall. In contrast, only weak relationships between CH4 flux and rainfall (positive at the C. panamensis site) and solar radiation (negative at the C. panamensis and Cyperus sites) was found. CO2 fluxes showed a diurnal pattern across sites and at the Cyperus sp. site CO2 and CH4 fluxes were positively correlated. The amount of dissolved carbon and nutrients were strong predictors of small scale within-site variability in gas release but the effect was site-specific. We conclude that (i) temporal variability in CO2 was greater than variation among vegetation communities; (ii) rainfall may be a good predictor of CO2 emissions from tropical peatlands but temporal variation in CH4 does not follow seasonal rainfall patterns; and (iii) diurnal variation in CO2 fluxes across different vegetation communities can be described by a Fourier model. © 2013 John Wiley & Sons Ltd.

  5. Plasma waves near the magnetopause

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R.R.; Haravey, C.C.; Hoppe, M.M.

    1982-04-01

    Plasma waves associated with the magnetopause, from the magnetosheath to the outer magnetosphere, are examined with an emphasis on high time resolution data and the comparison between measurements by using different antenna systems. An early ISEE crossing of the magnetopause region, including passage through two well-defined flux transfer events, the magentopause current layer, and boundary plasma, is studied in detail. The waves in these regions are compared and contrasted with the waves in the adjoining magnetosheath and outer magnetosphere. Four types of plamsa wave emissions are characteristic of the nominal magnetosheat: (1) a very low frequency continuum, (2) short wavelengthmore » spikes, (3) 'festoon-shaped' emissions below about 2 kHz, and (4) 'lion roars'. The latter two emissions are well correlated with ultra-low frequency magnetic field fluctuations. The dominant plasma wave features during flux transfer events are (1) an intense low-frequency continuum, which includes a substantial electromagnetic component, (2) a dramatic increase in the frequency of occurrence of the spikes, (3) quasi-periodic electron cyclotron harmonics correlated with approx.1-Hz magnetic field fluctuations, and (4) enhanced electron plasma oscillations. The plasma wave characteristics in the current layer and in the boundary layer are quite similar to the features in the flux transfer events. Upon entry into the outer magnetosphere, the plasma wave spectra are dominated by intense electromagnetic chorus bursts and electrosatic (n+1/2)f/sup -//sub g/ emissions. Wavelength determinations made by comparing the various antenna responses and polarization measurements for the different waves are also presented.« less

  6. Microscopic molecular dynamics characterization of the second-order non-Navier-Fourier constitutive laws in the Poiseuille gas flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, A.; Ravichandran, R.; Park, J. H.

    The second-order non-Navier-Fourier constitutive laws, expressed in a compact algebraic mathematical form, were validated for the force-driven Poiseuille gas flow by the deterministic atomic-level microscopic molecular dynamics (MD). Emphasis is placed on how completely different methods (a second-order continuum macroscopic theory based on the kinetic Boltzmann equation, the probabilistic mesoscopic direct simulation Monte Carlo, and, in particular, the deterministic microscopic MD) describe the non-classical physics, and whether the second-order non-Navier-Fourier constitutive laws derived from the continuum theory can be validated using MD solutions for the viscous stress and heat flux calculated directly from the molecular data using the statistical method.more » Peculiar behaviors (non-uniform tangent pressure profile and exotic instantaneous heat conduction from cold to hot [R. S. Myong, “A full analytical solution for the force-driven compressible Poiseuille gas flow based on a nonlinear coupled constitutive relation,” Phys. Fluids 23(1), 012002 (2011)]) were re-examined using atomic-level MD results. It was shown that all three results were in strong qualitative agreement with each other, implying that the second-order non-Navier-Fourier laws are indeed physically legitimate in the transition regime. Furthermore, it was shown that the non-Navier-Fourier constitutive laws are essential for describing non-zero normal stress and tangential heat flux, while the classical and non-classical laws remain similar for shear stress and normal heat flux.« less

  7. An Explanation of the Very Low Radio Flux of Young Planet-mass Companions

    NASA Astrophysics Data System (ADS)

    Wu, Ya-Lin; Close, Laird M.; Eisner, Josh A.; Sheehan, Patrick D.

    2017-12-01

    We report Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm continuum upper limits for five planetary-mass companions DH Tau B, CT Cha B, GSC 6214-210 B, 1RXS 1609 B, and GQ Lup B. Our survey, together with other ALMA studies, have yielded null results for disks around young planet-mass companions and placed stringent dust mass upper limits, typically less than 0.1 M ⊕, when assuming dust continuum is optically thin. Such low-mass gas/dust content can lead to a disk lifetime estimate (from accretion rates) much shorter than the age of the system. To alleviate this timescale discrepancy, we suggest that disks around wide companions might be very compact and optically thick in order to sustain a few Myr of accretion, yet have very weak (sub)millimeter flux so as to still be elusive to ALMA. Our order-of-magnitude estimate shows that compact optically thick disks might be smaller than 1000 R Jup and only emit ∼μJy of flux in the (sub)millimeter, but their average temperature can be higher than that of circumstellar disks. The high disk temperature could impede satellite formation, but it also suggests that mid- to far-infrared might be more favorable than radio wavelengths to characterize disk properties. Finally, the compact disk size might imply that dynamical encounters between the companion and the star, or any other scatterers in the system, play a role in the formation of planetary-mass companions.

  8. The Man behind the Curtain: X-Rays Drive the UV through NIR Variability in the 2013 Active Galactic Nucleus Outburst in NGC 2617

    NASA Astrophysics Data System (ADS)

    Shappee, B. J.; Prieto, J. L.; Grupe, D.; Kochanek, C. S.; Stanek, K. Z.; De Rosa, G.; Mathur, S.; Zu, Y.; Peterson, B. M.; Pogge, R. W.; Komossa, S.; Im, M.; Jencson, J.; Holoien, T. W.-S.; Basu, U.; Beacom, J. F.; Szczygieł, D. M.; Brimacombe, J.; Adams, S.; Campillay, A.; Choi, C.; Contreras, C.; Dietrich, M.; Dubberley, M.; Elphick, M.; Foale, S.; Giustini, M.; Gonzalez, C.; Hawkins, E.; Howell, D. A.; Hsiao, E. Y.; Koss, M.; Leighly, K. M.; Morrell, N.; Mudd, D.; Mullins, D.; Nugent, J. M.; Parrent, J.; Phillips, M. M.; Pojmanski, G.; Rosing, W.; Ross, R.; Sand, D.; Terndrup, D. M.; Valenti, S.; Walker, Z.; Yoon, Y.

    2014-06-01

    After the All-Sky Automated Survey for SuperNovae discovered a significant brightening of the inner region of NGC 2617, we began a ~70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuum blue bump. Such "changing look active galactic nuclei (AGNs)" are rare and provide us with important insights about AGN physics. Based on the Hβ line width and the radius-luminosity relation, we estimate the mass of central black hole (BH) to be (4 ± 1) × 107 M ⊙. When we cross-correlate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2-3 days) to the NIR (6-9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained by a simple model of a thermally emitting thin disk around a BH of the estimated mass that is illuminated by the observed, variable X-ray fluxes.

  9. Generation of sub-two-cycle millijoule infrared pulses in an optical parametric chirped-pulse amplifier and their application to soft x-ray absorption spectroscopy with high-flux high harmonics

    NASA Astrophysics Data System (ADS)

    Ishii, Nobuhisa; Kaneshima, Keisuke; Kanai, Teruto; Watanabe, Shuntaro; Itatani, Jiro

    2018-01-01

    An optical parametric chirped-pulse amplifier (OPCPA) based on bismuth triborate (BiB3O6, BIBO) crystals has been developed to deliver 1.5 mJ, 10.1 fs optical pulses around 1.6 μm with a repetition rate of 1 kHz and a stable carrier-envelope phase. The seed and pump pulses of the BIBO-based OPCPA are provided from two Ti:sapphire chirped-pulse amplification (CPA) systems. In both CPA systems, transmission gratings are used in the stretchers and compressors that result in a high throughput and robust operation without causing any thermal problem and optical damage. The seed pulses of the OPCPA are generated by intrapulse frequency mixing of a spectrally broadened continuum, temporally stretched to approximately 5 ps then, and amplified to more than 1.5 mJ. The amplified pulses are compressed in a fused silica block down to 10.1 fs. This BIBO-based OPCPA has been applied to high-flux high harmonic generation beyond the carbon K edge at 284 eV. The high-flux soft-x-ray continuum allows measuring the x-ray absorption near-edge structure of the carbon K edge within 2 min, which is shorter than a typical measurement time using synchrotron-based light sources. This laser-based table-top soft-x-ray source is a promising candidate for ultrafast soft x-ray spectroscopy with femtosecond to attosecond time resolution.

  10. The physiological basis of the migration continuum in brown trout (Salmo trutta).

    PubMed

    Boel, Mikkel; Aarestrup, Kim; Baktoft, Henrik; Larsen, Torben; Søndergaard Madsen, Steffen; Malte, Hans; Skov, Christian; Svendsen, Jon C; Koed, Anders

    2014-01-01

    Partial migration is common in many animal taxa; however, the physiological variation underpinning migration strategies remains poorly understood. Among salmonid fishes, brown trout (Salmo trutta) is one of the species that exhibits the most complex variation in sympatric migration strategies, expressed as a migration continuum, ranging from residency to anadromy. In looking at brown trout, our objective with this study was to test the hypothesis that variation in migration strategies is underpinned by physiological variation. Prior to migration, physiological samples were taken from fish in the stream and then released at the capture site. Using telemetry, we subsequently classified fish as resident, short-distance migrants (potamodromous), or long-distance migrants (potentially anadromous). Our results revealed that fish belonging to the resident strategy differed from those exhibiting any of the two migratory strategies. Gill Na,K-ATPase activity, condition factor, and indicators of nutritional status suggested that trout from the two migratory strategies were smoltified and energetically depleted before leaving the stream, compared to those in the resident strategy. The trout belonging to the two migratory strategies were generally similar; however, lower triacylglycerides levels in the short-distance migrants indicated that they were more lipid depleted prior to migration compared with the long-distance migrants. In the context of migration cost, we suggest that additional lipid depletion makes migrants more inclined to terminate migration at the first given feeding opportunity, whereas individuals that are less lipid depleted will migrate farther. Collectively, our data suggest that the energetic state of individual fish provides a possible mechanism underpinning the migration continuum in brown trout.

  11. Ensuring the Continuum of Learning: The Role of Assessment for Lifelong Learning

    ERIC Educational Resources Information Center

    Su, Yahui

    2015-01-01

    This article explores how assessment plays a role in helping learners to learn on a continuous, sustainable basis. It begins by exploring the paradigm of lifelong learning, which implies a shift in the way we think about learning and knowledge. Based on knowledge formation rooted in a flux of learning, lifelong learning assessment is not so much…

  12. Augmenting the Thermal Flux Experiment: A Mixed Reality Approach with the HoloLens

    ERIC Educational Resources Information Center

    Strzys, M. P.; Kapp, S.; Thees, M.; Kuhn, J.; Lukowicz, P.; Knierim, P.; Schmidt, A.

    2017-01-01

    In the field of Virtual Reality (VR) and Augmented Reality (AR), technologies have made huge progress during the last years and also reached the field of education. The virtuality continuum, ranging from pure virtuality on one side to the real world on the other, has been successfully covered by the use of immersive technologies like head-mounted…

  13. A spectrum of an extrasolar planet.

    PubMed

    Richardson, L Jeremy; Deming, Drake; Horning, Karen; Seager, Sara; Harrington, Joseph

    2007-02-22

    Of the over 200 known extrasolar planets, 14 exhibit transits in front of their parent stars as seen from Earth. Spectroscopic observations of the transiting planets can probe the physical conditions of their atmospheres. One such technique can be used to derive the planetary spectrum by subtracting the stellar spectrum measured during eclipse (planet hidden behind star) from the combined-light spectrum measured outside eclipse (star + planet). Although several attempts have been made from Earth-based observatories, no spectrum has yet been measured for any of the established extrasolar planets. Here we report a measurement of the infrared spectrum (7.5-13.2 microm) of the transiting extrasolar planet HD 209458b. Our observations reveal a hot thermal continuum for the planetary spectrum, with an approximately constant ratio to the stellar flux over this wavelength range. Superposed on this continuum is a broad emission peak centred near 9.65 microm that we attribute to emission by silicate clouds. We also find a narrow, unidentified emission feature at 7.78 microm. Models of these 'hot Jupiter' planets predict a flux peak near 10 microm, where thermal emission from the deep atmosphere emerges relatively unimpeded by water absorption, but models dominated by water fit the observed spectrum poorly.

  14. Resolving the Large Scale Spectral Variability of the Luminous Seyfert 1 Galaxy 1H 0419-577: Evidence for a New Emission Component and Absorption by Cold Dense Matter

    NASA Technical Reports Server (NTRS)

    Pounds, K. A.; Reeves, J. N.; Page, K. L.; OBrien, P. T.

    2004-01-01

    An XMM-Newton observation of the luminous Seyfert 1 galaxy 1H 0419-577 in September 2002, when the source was in an extreme low-flux state, found a very hard X-ray spectrum at 1-10 keV with a strong soft excess below -1 keV. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was X-ray bright indicated the dominant spectral variability was due to a steep power law or cool Comptonised thermal emission. Four further XMM-Newton observations, with 1H 0419-577 in intermediate flux states, now support that conclusion, while we also find the variable emission component in intermediate state difference spectra to be strongly modified by absorption in low ionisation matter. The variable soft excess then appears to be an artefact of absorption of the underlying continuum while the core soft emission can be attributed to re- combination in an extended region of more highly ionised gas. We note the wider implications of finding substantial cold dense matter overlying (or embedded in) the X-ray continuum source in a luminous Seyfert 1 galaxy.

  15. Variation in sulfur dioxide emissions related to earth tides, Halemaumau crater, Kilauea volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    Connor, Charles B.; Stoiber, Richard E.; Malinconico, Lawrence L., Jr.

    1988-01-01

    Variation in SO2 emissions from Halemaumau crater, Kilauea volcano, Hawaii is analyzed using a set of techniques known as exploratory data analysis. SO2 flux was monitored using a correlation spectrometer. A total of 302 measurements were made on 73 days over a 90-day period. The mean flux was 171 t/d with a standard deviation of 52 t/d. A significant increase in flux occurs during increased seismic activity beneath the caldera. SO2 flux prior to this change varies in a systematic way and may be related to variation in the tidal modulation envelope.

  16. ARTIP: Automated Radio Telescope Image Processing Pipeline

    NASA Astrophysics Data System (ADS)

    Sharma, Ravi; Gyanchandani, Dolly; Kulkarni, Sarang; Gupta, Neeraj; Pathak, Vineet; Pande, Arti; Joshi, Unmesh

    2018-02-01

    The Automated Radio Telescope Image Processing Pipeline (ARTIP) automates the entire process of flagging, calibrating, and imaging for radio-interferometric data. ARTIP starts with raw data, i.e. a measurement set and goes through multiple stages, such as flux calibration, bandpass calibration, phase calibration, and imaging to generate continuum and spectral line images. Each stage can also be run independently. The pipeline provides continuous feedback to the user through various messages, charts and logs. It is written using standard python libraries and the CASA package. The pipeline can deal with datasets with multiple spectral windows and also multiple target sources which may have arbitrary combinations of flux/bandpass/phase calibrators.

  17. Spectrum of atmospheric gamma rays to 10 MeV at lambda = 40 deg. [as function of altitude

    NASA Technical Reports Server (NTRS)

    Peterson, L. E.; Schwartz, D. A.; Ling, J. C.

    1973-01-01

    Results of measurements of the differential counting rate spectra due to atmospheric gamma rays as a function of altitude to 3.6 g/sq cm over Texas. Two gain settings and a 128-channel pulse height analyzer were used to cover the range from 0.2 to 10 MeV. The detector was a 7.6 x 7.6 cm NaI crystal, which was surrounded on five sides by a 2-cm-thick plastic anticoincidence shield for charged particle rejection. The system had a nearly isotropic response to photons above 0.2 MeV. The spectrum at ceiling appeared as a steep continuum with a power-law index of about 1.4. The only obvious feature was the 0.51-MeV positron annihilation line. The spectral shape was independent for depths less than 20 g/sq cm, the absolute intensity varying in proportion to the intensity of the cosmic ray secondary charged particles. Also, at depths less than 30 g/sq cm the observed flux variation with altitude can be described in terms of an empirical depth-dependent source function.

  18. Final Technical Report: Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power (CSP) Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lattanzi, Aaron; Hrenya, Christine

    In today’s industrial economy, energy consumption has never been higher. Over the last 15 years the US alone has consumed an average of nearly 100 quadrillion BTUs per year [21]. A need for clean and renewable energy sources has become quite apparent. The SunShot Initiative is an ambitious effort taken on by the United States Department of Energy that targets the development of solar energy that is cost-competitive with other methods for generating electricity. Specifically, this work is concerned with the development of concentrating solar power plants (CSPs) with granular media as the heat transfer fluid (HTF) from the solarmore » receiver. Unfortunately, the prediction of heat transfer in multiphase flows is not well understood. For this reason, our aim is to fundamentally advance the understanding of multiphase heat transfer, particularly in gas-solid flows, while providing quantitative input for the design of a near black body receiver (NBB) that uses solid grains (like sand) as the HTF. Over the course of this three-year project, a wide variety of contributions have been made to advance the state-of-the art description for non-radiative heat transfer in dense, gas-solid systems. Comparisons between a state-of-the-art continuum heat transfer model and discrete element method (DEM) simulations have been drawn. The results of these comparisons brought to light the limitations of the continuum model due to inherent assumptions in its derivation. A new continuum model was then developed for heat transfer at a solid boundary by rigorously accounting for the most dominant non-radiative heat transfer mechanism (particle-fluid-wall conduction). The new model is shown to be in excellent agreement with DEM data and captures the dependence of heat transfer on particle size, a dependency that previous continuum models were not capable of. DEM and the new continuum model were then employed to model heat transfer in a variety of receiver geometries. The results provided crucial feedback on the efficiency and feasibility of various designs. Namely, a prototype design consisting of an array of heated hexagonal tubes was later supplanted by a vertical conduit with internal baffles. Due to low solids heat transfer on the bottom faces of the hexagonal tubes in the prototype, the predicted wall temperature gradients exceeded the design limitations. By contrast, the vertical conduit can be constructed to continually force particle-wall contacts, and thus, result in more desirable solids heat transfer and wall temperature gradients. Finally, a new heat flux boundary condition was developed for DEM simulations to assess the aforementioned wall temperature gradients. The new boundary condition advances current state-of-the-art techniques by allowing the heat fluxes to each phase to vary with space and time while the total flux remains constant. Simulations with the new boundary condition show that the total boundary heat flux is in good agreement with the imposed total boundary heat flux. While the methods we have utilized here are primarily numerical and fundamental by nature, they offer some key advantages of: (i) being robust and valid over a large range of conditions, (ii) able to quickly explore large parameter spaces, and (iii) aid in the construction of experiments. We have ultimately leveraged our computational capabilities to provide feedback on the design of a CSP which possesses great potential to become a cost effective source of clean and renewable electricity. Overall, ensuring that future energy demands are met in a responsible and efficient manner has far reaching impacts that span both ecologic and economic concerns. Regarding logistics, the project was successfully re-negotiated after the go/no-decisions of Years 1 and 2. All milestones were successfully completed.« less

  19. Functional genomics of physiological plasticity and local adaptation in killifish.

    PubMed

    Whitehead, Andrew; Galvez, Fernando; Zhang, Shujun; Williams, Larissa M; Oleksiak, Marjorie F

    2011-01-01

    Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation.

  20. Functional Genomics of Physiological Plasticity and Local Adaptation in Killifish

    PubMed Central

    Galvez, Fernando; Zhang, Shujun; Williams, Larissa M.; Oleksiak, Marjorie F.

    2011-01-01

    Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation. PMID:20581107

  1. Numerical Study of Rarefied Hypersonic Flow Interacting with a Continuum Jet. Degree awarded by Pennsylvania State Univ., Aug. 1999

    NASA Technical Reports Server (NTRS)

    Glass, Christopher E.

    2000-01-01

    An uncoupled Computational Fluid Dynamics-Direct Simulation Monte Carlo (CFD-DSMC) technique is developed and applied to provide solutions for continuum jets interacting with rarefied external flows. The technique is based on a correlation of the appropriate Bird breakdown parameter for a transitional-rarefied condition that defines a surface within which the continuum solution is unaffected by the external flow-jet interaction. The method is applied to two problems to assess and demonstrate its validity; one of a jet interaction in the transitional-rarefied flow regime and the other in the moderately rarefied regime. Results show that the appropriate Bird breakdown surface for uncoupling the continuum and non-continuum solutions is a function of a non-dimensional parameter relating the momentum flux and collisionality between the two interacting flows. The correlation is exploited for the simulation of a jet interaction modeled for an experimental condition in the transitional-rarefied flow regime and the validity of the correlation is demonstrated. The uncoupled technique is also applied to an aerobraking flight condition for the Mars Global Surveyor spacecraft with attitude control system jet interaction. Aerodynamic yawing moment coefficients for cases without and with jet interaction at various angles-of-attack were predicted, and results from the present method compare well with values published previously. The flow field and surface properties are analyzed in some detail to describe the mechanism by which the jet interaction affects the aerodynamics.

  2. The relationship between the carbon monoxide intensity and the radio continuum emission in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Adler, David S.; Lo, K. Y.; Allen, Ronald J.

    1991-01-01

    The relationship between the velocity-integrated CO emission and the nonthermal radio continuum brightness in the disks of normal spiral galaxies is examined on a variety of length scales. On a global scale, the total CO intensity correlates strongly with the total radio continuum flux density for a sample of 31 galaxies. On scales of about 2 kpc or more in the disk of individual galaxies, it is found that the ratio I(CO)/T(20) remains fairly constant over the entire disk as well as from galaxy to galaxy. For the eight spirals in the sample, the disk-averaged values of I(CO)/T(20) range from 0.6-2.4, with the average over all eight galaxies being 1.3 +/- 0.6. It is concluded that what these various length scales actually trace are differences in the primary heating mechanism of the gas in the beam. The observed relationship between CO and nonthermal radio continuum emission can be explained by assuming that molecular gas in galactic disks is heated primarily by cosmic rays. The observed relationship is used to show that the brightness of synchrotron emission is proportional to n(cr) exp 0.4 - 0.9 in galactic disks.

  3. RADIO MONITORING OF THE PERIODICALLY VARIABLE IR SOURCE LRLL 54361: NO DIRECT CORRELATION BETWEEN THE RADIO AND IR EMISSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forbrich, Jan, E-mail: jan.forbrich@univie.ac.at; Rodríguez, Luis F.; Palau, Aina

    2015-11-20

    LRLL 54361 is an infrared source located in the star-forming region IC 348 SW. Remarkably, its infrared luminosity increases by a factor of 10 over roughly one week every 25.34 days. To understand the origin of these remarkable periodic variations, we obtained sensitive 3.3 cm JVLA radio continuum observations of LRLL 54361 and its surroundings in six different epochs: three of them during the IR-on state and three during the IR-off state. The radio source associated with LRLL 54361 remained steady and did not show a correlation with the IR variations. We suggest that the IR is tracing the resultsmore » of fast (with a timescale of days) pulsed accretion from an unseen binary companion, while the radio traces an ionized outflow with an extent of ∼100 AU that smooths out the variability over a period of the order of a year. The average flux density measured in these 2014 observations, 27 ± 5 μJy, is about a factor of two less than that measured about 1.5 years before, 53 ± 11 μJy, suggesting that variability in the radio is present, but over larger timescales than in the IR. We discuss other sources in the field, in particular two infrared/X-ray stars that show rapidly varying gyrosynchrotron emission.« less

  4. Understanding the variation in the millimeter-wave emission of Venus

    NASA Technical Reports Server (NTRS)

    Fahd, Antoine K.; Steffes, Paul G.

    1992-01-01

    Recent observations of the millimeter-wave emission from Venus at 112 GHz (2.6 mm) have shown significant variations in the continuum flux emission that may be attributed to the variability in the abundances of absorbing constituents in the Venus atmosphere. Such constituents include gaseous H2SO4, SO2, and liquid sulfuric acid (cloud condensates). Recently, Fahd and Steffes have shown that the effects of liquid H, SO4, and gaseous SO2 cannot completely account for this measured variability in the millimeter-wave emission of Venus. Thus, it is necessary to study the effect of gaseous H2SO4 on the millimeter-wave emission of Venus. This requires knowledge of the millimeter-wavelength (MMW) opacity of gaseous H2SO4, which unfortunately has never been determined for Venus-like conditions. We have measured the opacity of gaseous H2SO4 in a CO2 atmosphere at 550, 570, and 590 K, at 1 and 2 atm total pressure, and at a frequency of 94.1 GHz. Our results, in addition to previous centimeter-wavelength results are used to verify a modeling formalism for calculating the expected opacity of this gaseous mixture at other frequencies. This formalism is incorporated into a radiative transfer model to study the effect of gaseous H2SO4 on the MMW emission of Venus.

  5. Continuum Limit of Total Variation on Point Clouds

    NASA Astrophysics Data System (ADS)

    García Trillos, Nicolás; Slepčev, Dejan

    2016-04-01

    We consider point clouds obtained as random samples of a measure on a Euclidean domain. A graph representing the point cloud is obtained by assigning weights to edges based on the distance between the points they connect. Our goal is to develop mathematical tools needed to study the consistency, as the number of available data points increases, of graph-based machine learning algorithms for tasks such as clustering. In particular, we study when the cut capacity, and more generally total variation, on these graphs is a good approximation of the perimeter (total variation) in the continuum setting. We address this question in the setting of Γ-convergence. We obtain almost optimal conditions on the scaling, as the number of points increases, of the size of the neighborhood over which the points are connected by an edge for the Γ-convergence to hold. Taking of the limit is enabled by a transportation based metric which allows us to suitably compare functionals defined on different point clouds.

  6. DSSPcont: continuous secondary structure assignments for proteins

    PubMed Central

    Carter, Phil; Andersen, Claus A. F.; Rost, Burkhard

    2003-01-01

    The DSSP program automatically assigns the secondary structure for each residue from the three-dimensional co-ordinates of a protein structure to one of eight states. However, discrete assignments are incomplete in that they cannot capture the continuum of thermal fluctuations. Therefore, DSSPcont (http://cubic.bioc.columbia.edu/services/DSSPcont) introduces a continuous assignment of secondary structure that replaces ‘static’ by ‘dynamic’ states. Technically, the continuum results from calculating weighted averages over 10 discrete DSSP assignments with different hydrogen bond thresholds. A DSSPcont assignment for a particular residue is a percentage likelihood of eight secondary structure states, derived from a weighted average of the ten DSSP assignments. The continuous assignments have two important features: (i) they reflect the structural variations due to thermal fluctuations as detected by NMR spectroscopy; and (ii) they reproduce the structural variation between many NMR models from one single model. Therefore, functionally important variation can be extracted from a single X-ray structure using the continuous assignment procedure. PMID:12824310

  7. Interannual variation of carbon fluxes from three contrasting evergreen forests: The role of forest dynamics and climate

    USGS Publications Warehouse

    Sierra, C.A.; Loescher, H.W.; Harmon, M.E.; Richardson, A.D.; Hollinger, D.Y.; Perakis, S.S.

    2009-01-01

    Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed ?? 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results also show that the variation of annual carbon fluxes poses an important challenge in our ability to determine whether an ecosystem is a source, a sink, or is neutral in regard to CO2 at longer timescales. In simulations where climate change negatively affected ecosystem carbon stores, there was a 20% chance of committing Type II error, even with 20 years of sequential data. ?? 2009 by the Ecological Society of America.

  8. Signs of lateral transport of CO2 and CH4 in freshwater systems in boreal zone

    NASA Astrophysics Data System (ADS)

    Ojala, A.; Pumpanen, J. S.

    2013-12-01

    The numerous waterbodies and their riparian zones in the boreal zone are important to lateral carbon transport of terrestrial origin. These freshwater systems are also significant for carbon cycling on the landscape level. However, the lateral signals of carbon gases can be difficult to detect and thus, we used here different approaches to verify the phenomenon. We installed continuous measurement systems with CO2 probes in the riparian zone soil matrix around a small pristine headwater lake, in the lake, and in the outflowing stream and followed up the seasonal variation in CO2 concentration and in rain event-driven changes. We also used the probes in a second-order stream discharging a catchment of managed forest. The conventional weekly sampling protocol on water column CO2 and CH4 concentrations as well as gas fluxes was applied in three lakes surrounded by managed forests and some crop land but having different size and water quality. In two of the lakes most drastic changes in gas fluxes occurred not in spring but during or just after the summer rains when the clear water lake changed from a small carbon sink to carbon source and in the humic lake almost half of the CO2 and CH4 fluxes occurred during or just after the rainy period. Gas concentrations in the water columns revealed that the high surface water concentrations resulting in peak fluxes were not due to transport from hypolimnia rich in gases, but were due to soil processes and export from the flooded catchments. In the third lake, seasonal peak fluxes took place just after ice out, but again this was not a result of carbon gases accumulated under the ice, but gases originated from the surrounding catchment. In this lake, ca. 30 % of the annual CO2 flux occurred in May and 13 % of CH4 was emitted during one single week in May. In general, CH4 appeared as a good tracer for lateral transport. In the soil-lake-stream continuum, seasonal variation in CO2 was greatest and concentrations highest deep in the soil and in the lake itself, but also in the stream, especially further down from the lake. In the stream, the influence of the riparian zone superseded that of the lake at less than 150 m distance, which resulted in wider variation and higher concentrations of CO2. After a spell of heavy rain, the CO2 concentration in the soil increased and supposedly, a considerable amount of CO2 of terrestrial origin entered the lake annually. However, since the rain event was combined with exceptionally high winds mixing the water column, the riparian CO2 load was diluted and could not be properly tracked down. The second-order stream draining a small lake had an unresponsive catchment with high base flow contribution and the low flow was important for the total annual CO2 export. In general, CO2 export was controlled by runoff. There was no concentration-discharge relationship which was different from four other catchments in Canada, UK and Sweden. The only exception was snowmelt event in spring when CO2 concentrations were high. This high concentration could be tracked down in the downstream lake. The studies thus revealed the importance of hydrological events such as high spring discharge after snowmelt and extreme rain events in summer for lateral carbon gas transport.

  9. Magnetic Local Time Dependant Low Energy Electron Flux Models at Geostationary Earth Orbit

    NASA Astrophysics Data System (ADS)

    Boynton, R.; Balikhin, M. A.; Walker, S. N.

    2017-12-01

    The low energy electron fluxes in the outer radiation belts at Geostationary Earth Orbit (GEO) can vary widely in Magnetic Local Time (MLT). This spatial variation is due to the convective and substorm-associated electric fields and can take place on short time scales. This makes it difficult to deduce a data based model of the low energy electrons. For higher energies, where there is negligible spatial variation at a particular L-star, data based models employ averaged fluxes over the orbit. This removes the diurnal variation as GEO passes through various L-star due to the structure of Earth's magnetic field. This study develops a number of models for the low energy electron fluxes measured by GOES 13 and 15 for different MLT to capture the dynamics of the spatial variations.

  10. Horizontal flow fields in and around a small active region. The transition period between flux emergence and decay

    NASA Astrophysics Data System (ADS)

    Verma, M.; Denker, C.; Balthasar, H.; Kuckein, C.; González Manrique, S. J.; Sobotka, M.; Bello González, N.; Hoch, S.; Diercke, A.; Kummerow, P.; Berkefeld, T.; Collados, M.; Feller, A.; Hofmann, A.; Kneer, F.; Lagg, A.; Löhner-Böttcher, J.; Nicklas, H.; Pastor Yabar, A.; Schlichenmaier, R.; Schmidt, D.; Schmidt, W.; Schubert, M.; Sigwarth, M.; Solanki, S. K.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Volkmer, R.; von der Lühe, O.; Waldmann, T.

    2016-11-01

    Context. The solar magnetic field is responsible for all aspects of solar activity. Thus, emergence of magnetic flux at the surface is the first manifestation of the ensuing solar activity. Aims: Combining high-resolution and synoptic observations aims to provide a comprehensive description of flux emergence at photospheric level and of the growth process that eventually leads to a mature active region. Methods: The small active region NOAA 12118 emerged on 2014 July 17 and was observed one day later with the 1.5-m GREGOR solar telescope on 2014 July 18. High-resolution time-series of blue continuum and G-band images acquired in the blue imaging channel (BIC) of the GREGOR Fabry-Pérot Interferometer (GFPI) were complemented by synoptic line-of-sight magnetograms and continuum images obtained with the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). Horizontal proper motions and horizontal plasma velocities were computed with local correlation tracking (LCT) and the differential affine velocity estimator (DAVE), respectively. Morphological image processing was employed to measure the photometric and magnetic area, magnetic flux, and the separation profile of the emerging flux region during its evolution. Results: The computed growth rates for photometric area, magnetic area, and magnetic flux are about twice as high as the respective decay rates. The space-time diagram using HMI magnetograms of five days provides a comprehensive view of growth and decay. It traces a leaf-like structure, which is determined by the initial separation of the two polarities, a rapid expansion phase, a time when the spread stalls, and a period when the region slowly shrinks again. The separation rate of 0.26 km s-1 is highest in the initial stage, and it decreases when the separation comes to a halt. Horizontal plasma velocities computed at four evolutionary stages indicate a changing pattern of inflows. In LCT maps we find persistent flow patterns such as outward motions in the outer part of the two major pores, a diverging feature near the trailing pore marking the site of upwelling plasma and flux emergence, and low velocities in the interior of dark pores. We detected many elongated rapidly expanding granules between the two major polarities, with dimensions twice as large as the normal granules.

  11. GHRS Observations of Cool, Low-Gravity Stars. 5; The Outer Atmosphere and Wind of the Nearby K Supergiant Lambda Velorum

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Robinson, Richard D.; Harper, Graham M.; Bennett, Philip D.; Brown, Alexander; Mullan, Dermott J.

    1999-01-01

    UV spectra of lambda Velorum taken with the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope are used to probe the structure of the outer atmospheric layers and wind and to estimate the mass-loss rate from this K5 lb-II supergiant. VLA radio observations at lambda = 3.6 cm are used to obtain an independent check on the wind velocity and mass-loss rate inferred from the UV observations, Parameters of the chromospheric structure are estimated from measurements of UV line widths, positions, and fluxes and from the UV continuum flux distribution. The ratios of optically thin C II] emission lines indicate a mean chromospheric electron density of log N(sub e) approximately equal 8.9 +/- 0.2 /cc. The profiles of these lines indicate a chromospheric turbulence (v(sub 0) approximately equal 25-36 km/s), which greatly exceeds that seen in either the photosphere or wind. The centroids of optically thin emission lines of Fe II and of the emission wings of self-reversed Fe II lines indicate that they are formed in plasma approximately at rest with respect to the photosphere of the star. This suggests that the acceleration of the wind occurs above the chromospheric regions in which these emission line photons are created. The UV continuum detected by the GHRS clearly traces the mean flux-formation temperature as it increases with height in the chromosphere from a well-defined temperature minimum of 3200 K up to about 4600 K. Emission seen in lines of C III] and Si III] provides evidence of material at higher than chromospheric temperatures in the outer atmosphere of this noncoronal star. The photon-scattering wind produces self-reversals in the strong chromospheric emission lines, which allow us to probe the velocity field of the wind. The velocities to which these self-absorptions extend increase with intrinsic line strength, and thus height in the wind, and therefore directly map the wind acceleration. The width and shape of these self-absorptions reflect a wind turbulence of approximately equal 9-21 km/s. We further characterize the wind by comparing the observations with synthetic profiles generated with the Lamers et al. Sobolev with Exact Integration (SEI) radiative transfer code, assuming simple models of the outer atmospheric structure. These comparisons indicate that the wind in 1994 can be described by a model with a wind acceleration parameter beta approximately 0.9, a terminal velocity of 29-33 km/s, and a mass-loss rate approximately 3 x 10(exp -9) solar M/yr. Modeling of the 3.6 cm radio flux observed in 1997 suggests a more slowly accelerating wind (higher beta) and/or a higher mass-loss rate than inferred from the UV line profiles. These differences may be due to temporal variations in the wind or from limitations in one or both of the models. The discrepancy is currently under investigation.

  12. Water and sediment temperature dynamics in shallow tidal environments: The role of the heat flux at the sediment-water interface

    NASA Astrophysics Data System (ADS)

    Pivato, M.; Carniello, L.; Gardner, J.; Silvestri, S.; Marani, M.

    2018-03-01

    In the present study, we investigate the energy flux at the sediment-water interface and the relevance of the heat exchanged between water and sediment for the water temperature dynamics in shallow coastal environments. Water and sediment temperature data collected in the Venice lagoon show that, in shallow, temperate lagoons, temperature is uniform within the water column, and enabled us to estimate the net heat flux at the sediment-water interface. We modeled this flux as the sum of a conductive component and of the solar radiation reaching the bottom, finding the latter being negligible. We developed a "point" model to describe the temperature dynamics of the sediment-water continuum driven by vertical energy transfer. We applied the model considering conditions characterized by negligible advection, obtaining satisfactory results. We found that the heat exchange between water and sediment is crucial for describing sediment temperature but plays a minor role on the water temperature.

  13. VizieR Online Data Catalog: MHOs toward 22 regions with H2 fluxes (Wolf-Chase+, 2017)

    NASA Astrophysics Data System (ADS)

    Wolf-Chase, G.; Arvidsson, K.; Smutko, M.

    2018-03-01

    We obtained H2 2.12um, H2 2.25um, and H2 continuum) images of 26 regions thought to contain massive YSOs, using the Near-infrared Camera and Fabry-Perot Spectrometer (NICFPS) on the Astrophysical Research Consortium (ARC) 3.5m telescope at the Apache Point Observatory (APO) in Sunspot, NM. (3 data files).

  14. ORCHILEAK (revision 3875): a new model branch to simulate carbon transfers along the terrestrial-aquatic continuum of the Amazon basin

    NASA Astrophysics Data System (ADS)

    Lauerwald, Ronny; Regnier, Pierre; Camino-Serrano, Marta; Guenet, Bertrand; Guimberteau, Matthieu; Ducharne, Agnès; Polcher, Jan; Ciais, Philippe

    2017-10-01

    Lateral transfer of carbon (C) from terrestrial ecosystems into the inland water network is an important component of the global C cycle, which sustains a large aquatic CO2 evasion flux fuelled by the decomposition of allochthonous C inputs. Globally, estimates of the total C exports through the terrestrial-aquatic interface range from 1.5 to 2.7 Pg C yr-1 (Cole et al., 2007; Battin et al., 2009; Tranvik et al., 2009), i.e. of the order of 2-5 % of the terrestrial NPP. Earth system models (ESMs) of the climate system ignore these lateral transfers of C, and thus likely overestimate the terrestrial C sink. In this study, we present the implementation of fluvial transport of dissolved organic carbon (DOC) and CO2 into ORCHIDEE (Organising Carbon and Hydrology in Dynamic Ecosystems), the land surface scheme of the Institut Pierre-Simon Laplace ESM. This new model branch, called ORCHILEAK, represents DOC production from canopy and soils, DOC and CO2 leaching from soils to streams, DOC decomposition, and CO2 evasion to the atmosphere during its lateral transport in rivers, as well as exchange with the soil carbon and litter stocks on floodplains and in swamps. We parameterized and validated ORCHILEAK for the Amazon basin, the world's largest river system with regard to discharge and one of the most productive ecosystems in the world. With ORCHILEAK, we are able to reproduce observed terrestrial and aquatic fluxes of DOC and CO2 in the Amazon basin, both in terms of mean values and seasonality. In addition, we are able to resolve the spatio-temporal variability in C fluxes along the canopy-soil-water continuum at high resolution (1°, daily) and to quantify the different terrestrial contributions to the aquatic C fluxes. We simulate that more than two-thirds of the Amazon's fluvial DOC export are contributed by the decomposition of submerged litter. Throughfall DOC fluxes from canopy to ground are about as high as the total DOC inputs to inland waters. The latter, however, are mainly sustained by litter decomposition. Decomposition of DOC and submerged plant litter contributes slightly more than half of the CO2 evasion from the water surface, while the remainder is contributed by soil respiration. Total CO2 evasion from the water surface equals about 5 % of the terrestrial NPP. Our results highlight that ORCHILEAK is well suited to simulate carbon transfers along the terrestrial-aquatic continuum of tropical forests. It also opens the perspective that provided parameterization, calibration and validation is performed for other biomes, the new model branch could improve the quantification of the global terrestrial C sink and help better constrain carbon cycle-climate feedbacks in future projections.

  15. Metal line blanketing and opacity in the ultraviolet of alpha 2 Canum Venaticorum

    NASA Technical Reports Server (NTRS)

    Molnar, M. R.

    1972-01-01

    Ultraviolet photometry by OAO-2 was made of alpha 2 CVn covering the entire 5.5d period of this magnetic Ap variable. The light curves ranging from 1330 A to 3320 A indicate the dominant role of rare-earth line-blanketing in redistributing flux. In a broad depression of the continuum covering 2300-2600 A, scanner observations possibly identify strong lines of Eu III as major contributors to this feature. At maximum intensity of the rare-earth lines, the ultraviolet continuum shortward of 2900 A is greatly diminished while the longer wavelength regions into the visual become brighter. In addition, there is evidence that the hydrogen line opacity is variable and the photoionization edge of Si I at 1680 A is identified.

  16. An analysis of scattered light in low dispersion IUE spectra

    NASA Technical Reports Server (NTRS)

    Basri, G.; Clarke, J. T.; Haisch, B. M.

    1985-01-01

    A detailed numerical simulation of light scattering from the low-resolution grating in the short wavelength spectrograph of the IUE Observatory was developed, in order to quantitatively analyze the effects of scattering on both continuum and line emission spectra. It is found that: (1) the redistribution of light by grating scattering did not appreciably alter either the shape or the absolute flux level of continuum spectra for A-F stars; (2) late-type stellar continua showed a tendency to flatten when observed in scattered light toward the shorter wavelengths; and (3) the effect of grating scattering on emission lines is to decrease measured line intensities by an increasing percentage toward the shorter wavelengths. The spectra obtained from scattering experiments for solar-type and late type stars are reproduced in graphic form.

  17. Energy transfer by radiation in non-grey atomic gases in isothermal and non-isothermal slabs

    NASA Technical Reports Server (NTRS)

    Poon, P. T. Y.

    1975-01-01

    A multiband model for the absorption coefficient of atomic hydrogen-helium plasmas is constructed which includes continuum and line contributions. Emission from 28 stronger lines of 106 that have been screened is considered, of which 21 are from hydrogen and 7 belong to helium, with reabsorption due to line-line, line-continuum overlap accurately accounted for. The model is utilized in the computation of intensities and fluxes from shock-heated slabs of 85% H2-15% He mixtures for slab thicknesses from 1 to 30 cm, temperature from 10,000 to 20,000 K, and for different densities. In conjunction with the multiband model, simple numerical schemes have been devised which provide a quick and comprehensive way of computing radiative energy transfer in nonisothermal and nongrey gases.

  18. Solid-Liquid Interface Thermal Resistance Affects the Evaporation Rate of Droplets from a Surface: A Study of Perfluorohexane on Chromium Using Molecular Dynamics and Continuum Theory.

    PubMed

    Han, Haoxue; Schlawitschek, Christiane; Katyal, Naman; Stephan, Peter; Gambaryan-Roisman, Tatiana; Leroy, Frédéric; Müller-Plathe, Florian

    2017-05-30

    We study the role of solid-liquid interface thermal resistance (Kapitza resistance) on the evaporation rate of droplets on a heated surface by using a multiscale combination of molecular dynamics (MD) simulations and analytical continuum theory. We parametrize the nonbonded interaction potential between perfluorohexane (C 6 F 14 ) and a face-centered-cubic solid surface to reproduce the experimental wetting behavior of C 6 F 14 on black chromium through the solid-liquid work of adhesion (quantity directly related to the wetting angle). The thermal conductances between C 6 F 14 and (100) and (111) solid substrates are evaluated by a nonequilibrium molecular dynamics approach for a liquid pressure lower than 2 MPa. Finally, we examine the influence of the Kapitza resistance on evaporation of droplets in the vicinity of a three-phase contact line with continuum theory, where the thermal resistance of liquid layer is comparable with the Kapitza resistance. We determine the thermodynamic conditions under which the Kapitza resistance plays an important role in correctly predicting the evaporation heat flux.

  19. Uncovering the Protostars in Serpens South with ALMA: Continuum Sources and Their Outflow Activity

    NASA Astrophysics Data System (ADS)

    Plunkett, Adele; Arce, H.; Corder, S.; Dunham, M.

    2017-06-01

    Serpens South is an appealing protostellar cluster to study due the combination of several factors: (1) a high protostar fraction that shows evidence for very recent and ongoing star formation; (2) iconic clustered star formation along a filamentary structure; (3) its relative proximity within a few hundred parsecs. An effective study requires the sensitivity, angular and spectral resolution, and mapping capabilities recently provided with ALMA. Here we present a multi-faceted data set acquired from Cycles 1 through 3 with ALMA, including maps of continuum sources and molecular outflows throughout the region, as well as a more focused kinematical study of the protostar that is the strongest continuum source at the cluster center. Together these data span spatial scales over several orders of magnitude, allowing us to investigate the outflow-driving sources and the impact of the outflows on the cluster environment. Currently, we focus on the census of protostars in the cluster center, numbering about 20, including low-flux, low-mass sources never before detected in mm-wavelengths and evidence for multiplicity that was previously unresolved.

  20. Overset grid implementation of the complex Kohn variational method for electron-polyatomic molecule scattering

    NASA Astrophysics Data System (ADS)

    McCurdy, C. William; Lucchese, Robert L.; Greenman, Loren

    2017-04-01

    The complex Kohn variational method, which represents the continuum wave function in each channel using a combination of Gaussians and Bessel or Coulomb functions, has been successful in numerous applications to electron-polyatomic molecule scattering and molecular photoionization. The hybrid basis representation limits it to relatively low energies (< 50 eV) , requires an approximation to exchange matrix elements involving continuum functions, and hampers its coupling to modern electronic structure codes for the description of correlated target states. We describe a successful implementation of the method using completely adaptive overset grids to describe continuum functions, in which spherical subgrids are placed on every atomic center to complement a spherical master grid that describes the behavior at large distances. An accurate method for applying the free-particle Green's function on the grid eliminates the need to operate explicitly with the kinetic energy, enabling a rapidly convergent Arnoldi algorithm for solving linear equations on the grid, and no approximations to exchange operators are made. Results for electron scattering from several polyatomic molecules will be presented. Army Research Office, MURI, WN911NF-14-1-0383 and U. S. DOE DE-SC0012198 (at Texas A&M).

  1. Heat flux variations over sea-ice observed at the coastal area of the Sejong Station, Antarctica

    NASA Astrophysics Data System (ADS)

    Park, S.; Choi, T.; Kim, S.

    2012-12-01

    This study presents variations of sensible heat flux and latent heat flux over sea-ice observed in 2011 from the 10-m flux tower located at the coast of the Sejong Station on King George Island, Antarctica. A period from June to November was divided into three parts: "Freezing", "Frozen", and "Melting" periods based on daily monitoring of sea state and hourly photos looking at the Marian Cove in front of the Sejong Station. The division of periods enabled us to look into the heat flux variations depending on the sea-ice conditions. Over freezing sea surface during the freezing period of late June, daily mean sensible heat flux was -11.9 Wm-2 and daily mean latent heat flux was +16.3 Wm-2. Over the frozen sea-ice, daily mean sensible heat flux was -10.4 Wm-2 while daily mean latent heat flux was +2.4 Wm-2. During the melting period of mid-October to early November, magnitudes of sensible heat flux increased to -14.2 Wm-2 and latent heat flux also increased to +13.5 Wm-2. In short, latent heat flux was usually upward over sea-ice most of the time while sensible heat flux was downward from atmosphere to sea-ice. Magnitudes of the fluxes were small but increased when freezing or melting of sea-ice was occurring. Especially, latent heat flux increased five to six times compared to that of "frozen" period implying that early melting of sea-ice may cause five to six times larger supply of moisture to the atmosphere.

  2. Analysis of Voyager Observed High-Energy Electron Fluxes in the Heliosheath Using MHD Simulations

    NASA Technical Reports Server (NTRS)

    Washimi, Haruichi; Webber, W. R.; Zank, Gary P.; Hu, Qiang; Florinski, Vladimir; Adams, James; Kubo, Yuki

    2011-01-01

    The Voyager spacecraft (V1 and V2) observed electrons of 6-14 MeV in the heliosheath which showed several incidences of flux variation relative to a background of gradually increasing flux with distance from the Sun. The increasing flux of background electrons is thought to result from inward radial diffusion. We compare the temporal electron flux variation with dynamical phenomena in the heliosheath that are obtained from our MHD simulations. Because our simulation is based on V2 observed plasma data before V2 crossed the termination shock, this analysis is effective up to late 2008, i.e., about a year after the V2-crossing, during which disturbances, driven prior to the crossing time, survived in the heliosheath. Several electron flux variations correspond to times directly associated with interplanetary shock events. One noteworthy example corresponds to various times associated with the March 2006 interplanetary shock, these being the collision with the termination shock, the passage past the V1 spacecraft, and the collision with the region near the heliopause, as identified by W.R. Webber et al. for proton/helium of 7-200 MeV. Our simulations indicate that all other electron flux variations, except one, correspond well to the times when a shock-driven magneto-sonic pulse and its reflection in the heliosheath either passed across V1/V2, or collided with the termination shock or with the plasma sheet near the heliopause. This result suggests that variation in the electron flux should be due to either direct or indirect effects of magnetosonic pulses in the heliosheath driven by interplanetary shocks

  3. Termite mound emissions of CH4 and CO2 are primarily determined by seasonal changes in termite biomass and behaviour.

    PubMed

    Jamali, Hizbullah; Livesley, Stephen J; Dawes, Tracy Z; Hutley, Lindsay B; Arndt, Stefan K

    2011-10-01

    Termites are a highly uncertain component in the global source budgets of CH(4) and CO(2). Large seasonal variations in termite mound fluxes of CH(4) and CO(2) have been reported in tropical savannas but the reason for this is largely unknown. This paper investigated the processes that govern these seasonal variations in CH(4) and CO(2) fluxes from the mounds of Microcerotermes nervosus Hill (Termitidae), a common termite species in Australian tropical savannas. Fluxes of CH(4) and CO(2) of termite mounds were 3.5-fold greater in the wet season as compared to the dry season and were a direct function of termite biomass. Termite biomass in mound samples was tenfold greater in the wet season compared to the dry season. When expressed per unit termite biomass, termite fluxes were only 1.2 (CH(4)) and 1.4 (CO(2))-fold greater in the wet season as compared to the dry season and could not explain the large seasonal variations in mound fluxes of CH(4) and CO(2). Seasonal variation in both gas diffusivity through mound walls and CH(4) oxidation by mound material was negligible. These results highlight for the first time that seasonal termite population dynamics are the main driver for the observed seasonal differences in mound fluxes of CH(4) and CO(2). These findings highlight the need to combine measurements of gas fluxes from termite mounds with detailed studies of termite population dynamics to reduce the uncertainty in quantifying seasonal variations in termite mound fluxes of CH(4) and CO(2).

  4. THE YOUNG SOLAR ANALOGS PROJECT. I. SPECTROSCOPIC AND PHOTOMETRIC METHODS AND MULTI-YEAR TIMESCALE SPECTROSCOPIC RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, R. O.; Briley, M. M.; Lambert, R. A.

    2015-12-15

    This is the first in a series of papers presenting methods and results from the Young Solar Analogs Project, which began in 2007. This project monitors both spectroscopically and photometrically a set of 31 young (300–1500 Myr) solar-type stars with the goal of gaining insight into the space environment of the Earth during the period when life first appeared. From our spectroscopic observations we derive the Mount Wilson S chromospheric activity index (S{sub MW}), and describe the method we use to transform our instrumental indices to S{sub MW} without the need for a color term. We introduce three photospheric indicesmore » based on strong absorption features in the blue-violet spectrum—the G-band, the Ca i resonance line, and the Hydrogen-γ line—with the expectation that these indices might prove to be useful in detecting variations in the surface temperatures of active solar-type stars. We also describe our photometric program, and in particular our “Superstar technique” for differential photometry which, instead of relying on a handful of comparison stars, uses the photon flux in the entire star field in the CCD image to derive the program star magnitude. This enables photometric errors on the order of 0.005–0.007 magnitude. We present time series plots of our spectroscopic data for all four indices, and carry out extensive statistical tests on those time series demonstrating the reality of variations on timescales of years in all four indices. We also statistically test for and discover correlations and anti-correlations between the four indices. We discuss the physical basis of those correlations. As it turns out, the “photospheric” indices appear to be most strongly affected by emission in the Paschen continuum. We thus anticipate that these indices may prove to be useful proxies for monitoring emission in the ultraviolet Balmer continuum. Future papers in this series will discuss variability of the program stars on medium (days–months) and short (minutes to hours) timescales.« less

  5. Methane fluxes from the mound-building termite species of North Australian savannas

    NASA Astrophysics Data System (ADS)

    Jamali, H.; Livesely, S. J.; Arndt, S. K.; Dawes-Gromadzki, T.; Cook, G. D.; Hutley, L.

    2009-04-01

    Termites are estimated to contribute 3-19% to the global methane emissions. These estimates have large uncertainties because of the limited number of field-based studies and species studied, as well as issues of diel and seasonal variation. We measured methane fluxes from four common mound-building termite species (Microcerotermes nervosus, n=26; M. serratus, n=4; Tumulitermes pastinator, n=5; and Amitermes darwini, n=4) in tropical savannas near Darwin in the Northern Territory, Australia. Methane fluxes from replicated termite mounds were measured in the field using manual chambers with fluxes reported on a mound volume basis. Methane flux was measured in both wet and dry seasons and diel variation was investigated by measuring methane flux every 4 hours over a 24 hour period. Mound temperature was measured concurrently with flux to examine this relationship. In addition, five M. nervosus mounds removed from the field and incubated under controlled temperature conditions over a 24 hour period to remove the effect of varying temperature. During the observation campaigns, mean monthly minimum and maximum temperatures for February (wet season) were 24.7 and 30.8°C, respectively, and were 20.1 to 31.4 °C in June (dry season). Annual rainfall in 2008 for Darwin was 1970.1 mm, with a maximum of 670 mm falling in February and no rain in May and June. Methane fluxes were greatest in the wet season for all species, ranging from 265.1±101.1 (T. pastinator) to 2256.6±757.1 (M. serratus) µg CH4-C/m3/h. In the dry season, methane fluxes were at their lowest, ranging from 10.0±5.5 (T. pastinator) to 338.0±165.9 (M. serratus) µg CH4-C/m3/h. On a diel basis, methane fluxes were smallest at the coolest time of the day (~0700 hrs) and greatest at the warmest (~1400 hrs) for all species, and for both wet and dry seasons. Typical diel variation in flux from M. serratus dominated mounds ranged from 902.6±261.9 to 1392.1±408.1 µg CH4-C/m3/h in wet season and 99.6±57.4 to 556.2±254.9 µg CH4-C/m3/h in dry season. While mounds of M. nervosus had diel variations in methane fluxes in the field, no diel variation was observed when incubated under constant laboratory temperature for 24 hours. This demonstrates that diel variation was not due to the movement of termites in and out of the mounds, but was due to temperature variation. Methane flux varied significantly according to termite species and at seasonal and diel time scales which, if not accounted for, could result in large under- or over-estimation of methane emissions from termites when flux data are extrapolated to landscape scales.

  6. Observations of Herbig Ae/Be stars with Herschel/PACS. The atomic and molecular contents of their protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Meeus, G.; Montesinos, B.; Mendigutía, I.; Kamp, I.; Thi, W. F.; Eiroa, C.; Grady, C. A.; Mathews, G.; Sandell, G.; Martin-Zaïdi, C.; Brittain, S.; Dent, W. R. F.; Howard, C.; Ménard, F.; Pinte, C.; Roberge, A.; Vandenbussche, B.; Williams, J. P.

    2012-08-01

    We observed a sample of 20 representative Herbig Ae/Be stars and 5 A-type debris discs with PACS onboard Herschel, as part of the GAS in Protoplanetary Systems (GASPS) project. The observations were done in spectroscopic mode, and cover the far-infrared lines of [O i], [C ii], CO, CH+, H2O, and OH. We have a [O i] 63 μm detection rate of 100% for the Herbig Ae/Be and 0% for the debris discs. The [O i] 145 μm line is only detected in 25% and CO J = 18-17 in 45% (and fewer cases for higher J transitions) of the Herbig Ae/Be stars, while for [C ii] 157 μm, we often find spatially variable background contamination. We show the first detection of water in a Herbig Ae disc, HD 163296, which has a settled disc. Hydroxyl is detected as well in this disc. First seen in HD 100546, CH+ emission is now detected for the second time in a Herbig Ae star, HD 97048. We report fluxes for each line and use the observations as line diagnostics of the gas properties. Furthermore, we look for correlations between the strength of the emission lines and either the stellar or disc parameters, such as stellar luminosity, ultraviolet and X-ray flux, accretion rate, polycyclic aromatic hydrocarbon (PAH) band strength, and flaring. We find that the stellar ultraviolet flux is the dominant excitation mechanism of [O i] 63 μm, with the highest line fluxes being found in objects with a large amount of flaring and among the largest PAH strengths. Neither the amount of accretion nor the X-ray luminosity has an influence on the line strength. We find correlations between the line flux of [O i] 63 μm and [O i] 145 μm, CO J = 18-17 and [O i] 6300 Å, and between the continuum flux at 63 μm and at 1.3 mm, while we find weak correlations between the line flux of [O i] 63 μm and the PAH luminosity, the line flux of CO J = 3-2, the continuum flux at 63 μm, the stellar effective temperature, and the Brγ luminosity. Finally, we use a combination of the[O i] 63 μm and 12CO J = 2-1 line fluxes to obtain order of magnitude estimates of the disc gas masses, in agreement with the values that we find from detailed modelling of two Herbig Ae/Be stars, HD 163296 and HD 169142. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  7. Complex X-ray Absorption and the Fe K(alpha) Profile in NGC 3516

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Kraemer, S. B.; George, I. M.; Reeves, J. N.; Botorff, M. C.

    2004-01-01

    We present data from simultaneous Chandra, XMM-Newton and BeppoSAX observations of the Seyfert 1 galaxy NGC 3516, taken during 2001 April and November. We have investigated the nature of the very flat observed X-ray spectrum. Chandra grating data show the presence of X-ray absorption lines, revealing two distinct components of the absorbing gas, one which is consistent with our previous model of the UV/X-ray absorber while the other, which is outflowing at a velocity of approximately 1100 kilometers per second, has a larger column density and is much more highly ionized. The broad-band spectral characteristics of the X-ray continuum observed with XMM during 2001 April, reveal the presence of a third layer of absorption consisting of a very large column (approximately 2.5 x 10(exp 23) per square centimeter) of highly ionized gas with a covering fraction approximately 50%. This low covering fraction suggests that the absorber lies within a few 1t-days of the X-ray source and/or is filamentary in structure. Interestingly, these absorbers are not in thermal equilibrium with one another. The two new components are too highly ionized to be radiatively accelerated, which we suggest is evidence for a hydromagnetic origin for the outflow. Applying our model to the November dataset, we can account for the spectral variability primarily by a drop in the ionization states of the absorbers, as expected by the change in the continuum flux. When this complex absorption is accounted for we find the underlying continuum to be typical of Seyfert 1 galaxies. The spectral curvature attributed to the high column absorber, in turn, reduces estimates of the flux and extent of any broad Fe emission line from the accretion disk.

  8. Hard X-Ray Emission of the Luminous Infrared Galaxy NGC 6240 as Observed by Nustar

    NASA Technical Reports Server (NTRS)

    Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.; hide

    2016-01-01

    We present a broadband (approx.0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by approx.1.5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (tau approx. = 1.2, NH approx. 1.5×10(exp 24)/sq cm. We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at approx..30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH < or = 2×10(exp 23)/sq cm over long (approx.3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.

  9. Hard X-ray emission of the luminous infrared galaxy NGC 6240 as observed by NuSTAR

    NASA Astrophysics Data System (ADS)

    Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.; Annuar, A.; Arévalo, P.; Baloković, M.; Boggs, S. E.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Gandhi, P.; Hailey, C. J.; Koss, M. J.; La Massa, S.; Marinucci, A.; Ricci, C.; Walton, D. J.; Zappacosta, L.; Zhang, W.

    2016-01-01

    We present a broadband (~0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by ~1.̋5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (τ ≃ 1.2, NH ~ 1.5 × 1024 cm-2). We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at ~30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH ≤ 2 × 1023 cm-2 over long (~3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.

  10. ALMA IMAGING OF THE CO (6-5) LINE EMISSION IN NGC 7130

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yinghe; Lu, Nanyao; Xu, C. Kevin

    2016-04-01

    In this paper, we report our high-resolution (0.″20 × 0.″14 or ∼70 × 49 pc) observations of the CO(6-5) line emission, which probes warm and dense molecular gas, and the 434 μm dust continuum in the nuclear region of NGC 7130, obtained with the Atacama Large Millimeter Array (ALMA). The CO line and dust continuum fluxes detected in our ALMA observations are 1230 ± 74 Jy km s{sup −1} and 814 ± 52 mJy, respectively, which account for 100% and 51% of their total fluxes. We find that the CO(6-5) and dust emissions are generally spatially correlated, but their brightest peaks show an offset of ∼70 pc, suggestingmore » that the gas and dust emissions may start decoupling at this physical scale. The brightest peak of the CO(6-5) emission does not spatially correspond to the radio continuum peak, which is likely dominated by an active galactic nucleus (AGN). This, together with our additional quantitative analysis, suggests that the heating contribution of the AGN to the CO(6-5) emission in NGC 7130 is negligible. The CO(6-5) and the extinction-corrected Pa-α maps display striking differences, suggestive of either a breakdown of the correlation between warm dense gas and star formation at linear scales of <100 pc or a large uncertainty in our extinction correction to the observed Pa-α image. Over a larger scale of ∼2.1 kpc, the double-lobed structure found in the CO(6-5) emission agrees well with the dust lanes in the optical/near-infrared images.« less

  11. The wetland continuum: a conceptual framework for interpreting biological studies

    USGS Publications Warehouse

    Euliss, N.H.; LaBaugh, J.W.; Fredrickson, L.H.; Mushet, D.M.; Swanson, G.A.; Winter, T.C.; Rosenberry, D.O.; Nelson, R.D.

    2004-01-01

    We describe a conceptual model, the wetland continuum, which allows wetland managers, scientists, and ecologists to consider simultaneously the influence of climate and hydrologic setting on wetland biological communities. Although multidimensional, the wetland continuum is most easily represented as a two-dimensional gradient, with ground water and atmospheric water constituting the horizontal and vertical axis, respectively. By locating the position of a wetland on both axes of the continuum, the potential biological expression of the wetland can be predicted at any point in time. The model provides a framework useful in the organization and interpretation of biological data from wetlands by incorporating the dynamic changes these systems undergo as a result of normal climatic variation rather than placing them into static categories common to many wetland classification systems. While we developed this model from the literature available for depressional wetlands in the prairie pothole region of North America, we believe the concept has application to wetlands in many other geographic locations.

  12. Hard X rays and low-energy gamma rays from the Moon: Dependence of the continuum on the regolith composition and the solar activity

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Gasnault, O.

    2008-07-01

    The primary aim of the high-energy X-ray spectrometer (HEX) experiment on the Chandrayaan-1 mission to the Moon is to characterize the movement of volatiles on the lunar surface through the detection of the 46.5 keV line from 210Pb, a decay product of 222Rn. An important consideration for design and operation of HEX is to estimate the continuum background signal expected from the lunar surface, as well as its dependence on solar activity and lunar composition. We have developed a Monte Carlo code utilizing Geant4 for simulating the interaction of cosmic rays in the lunar regolith, and we estimated the variation in the continuum background in the energy region of interest for various lunar compositions. Dependence of the continuum background on solar activity was also evaluated considering ferroan anorthositic (FAN) composition. Our results suggest the viability of inferring lithologic characteristics of planetary surfaces based on a study of low-energy gamma ray emission.

  13. Periodicities observed on solar flux index (F10.7) during geomagnetic disturbances

    NASA Astrophysics Data System (ADS)

    Adhikari, B.; Narayan, C.; Chhatkuli, D. N.

    2017-12-01

    Solar activities change within the period of 11 years. Sometimes the greatest event occurs in the period of solar maxima and the lowest activity occurs in the period of solar minimum. During the time period of solar activity sunspots number will vary. A 10.7 cm solar flux measurement is a determination of the strength of solar radio emission. The solar flux index is more often used for the prediction and monitoring of the solar activity. This study mainly focused on the variation on solar flux index and amount of electromagnetic wave in the atmosphere. Both seasonal and yearly variation on solar F10.7 index. We also analyzed the dataset obatained from riometer.Both instruments show seasonal and yearly variations. We also observed the solar cycle dependence on solar flux index and found a strong dependence on solar activity. Results also show that solar intensities higher during the rising phase of solar cycle. We also observed periodicities on solar flux index using wavelet analysis. Through this analysis, it was found that the power intensities of solar flux index show a high spectral variability.

  14. Effects of variations of stage and flux at different frequencies on the estimates using river stage tomography

    NASA Astrophysics Data System (ADS)

    Wang, Y. L.; Yeh, T. C. J.; Wen, J. C.

    2017-12-01

    This study is to investigate the ability of river stage tomography to estimate the spatial distribution of hydraulic transmissivity (T), storage coefficient (S), and diffusivity (D) in groundwater basins using information of groundwater level variations induced by periodic variations of stream stage, and infiltrated flux from the stream boundary. In order to accomplish this objective, the sensitivity and correlation of groundwater heads with respect to the hydraulic properties is first conducted to investigate the spatial characteristics of groundwater level in response to the stream variations at different frequencies. Results of the analysis show that the spatial distributions of the sensitivity of heads at an observation well in response to periodic river stage variations are highly correlated despite different frequencies. On the other hand, the spatial patterns of the sensitivity of the observed head to river flux boundaries at different frequencies are different. Specifically, the observed head is highly correlated with T at the region between the stream and observation well when the high-frequency periodic flux is considered. On the other hand, it is highly correlated with T at the region between monitoring well and the boundary opposite to the stream when the low-frequency periodic flux is prescribed to the stream. We also find that the spatial distributions of the sensitivity of observed head to S variation are highly correlated with all frequencies in spite of heads or fluxes stream boundary. Subsequently, the differences of the spatial correlations of the observed heads to the hydraulic properties under the head and flux boundary conditions are further investigated by an inverse model (i.e., successive stochastic linear estimator). This investigation uses noise-free groundwater and stream data of a synthetic aquifer, where aquifer heterogeneity is known exactly. The ability of river stage tomography is then tested with these synthetic data sets to estimate T, S, and D distribution. The results reveal that boundary flux variations with different frequencies contain different information about the aquifer characteristics while the head boundary does not.

  15. Broad absorption-line time variability in the QSO CSO 203

    NASA Technical Reports Server (NTRS)

    Barlow, Thomas A.; Junkkarinen, Vesa T.; Burbidge, E. M.; Weymann, Ray J.; Morris, Simon L.; Korista, Kirk T.

    1992-01-01

    We present spectroscopy of the BALQSO CSO 203 during four epochs over a 17-month time span. These data show three distinct levels in the broad absorption lines (BALs) of Si IV 1397A and C IV 1549A. We also note possible variations in the N V 1240A and Al III 1857A absorption troughs. A broad-band monitoring effort during this period shows that the continuum level remained constant to within 10 percent. We argue that the triggering mechanism for the absorption-line changes is most likely synchronous with the continuum source photons; however, no correlation with the central source has yet been found. The observed variations are consistent with changes in the ionization level in the broad absorption-line region (BALR). We discuss possible mechanisms for these changes and the implications for the structure of the BALR.

  16. UV Chromospheric Activity in Cool, Short-Period Contact Binaries

    NASA Technical Reports Server (NTRS)

    Hrivnak, Bruce J.

    2000-01-01

    We have completed our analysis of the IUE spectra of the short-period contact binary OO Aql. OO Aql is a rare W UMa-type eclipsing binary in which the two solar-type stars may have only recently evolved into contact. The binary has an unusually high mass ratio (0.84), and a relatively long orbital period (0.506 d) for its spectral type (mid-G). Twelve ultraviolet spectra of OO Aql were obtained in 1988 with the IUE satellite, including a series of consecutive observations that cover nearly a complete orbital cycle. Chromospheric activity is studied by means of the Mg II h+k emission at 2800 A. The Mg II emission is found to vary, even when the emission is normalized to the adjacent continuum flux. This variation may be correlated with orbital phase in the 1988 observations. It also appears that the normalized Mg H emission varies with time, as seen in spectra obtained at two different epochs in 1988 and when compared with two spectra obtained several years earlier. The level of chromospheric activity in OO Aql is less than that of other W UMa-type binaries of similar colors, but this is attributed to its early stage of contact binary evolution. Ultraviolet light curves were composed from measurements of the ultraviolet continuum in the spectra. These were analyzed along with visible light curves of OO Aql to determine the system parameters. The large wavelength range in the light curves enabled a well-constrained fit to a cool spot in the system. A paper on these results is scheduled for publication in the February 2001 issue of the Astronomical Journal.

  17. Revealing structure and evolution within the corona of the Seyfert galaxy I Zw 1

    NASA Astrophysics Data System (ADS)

    Wilkins, D. R.; Gallo, L. C.; Silva, C. V.; Costantini, E.; Brandt, W. N.; Kriss, G. A.

    2017-11-01

    X-ray spectral timing analysis is presented of XMM-Newton observations of the narrow-line Seyfert 1 galaxy I Zwicky 1 taken in 2015 January. After exploring the effect of background flaring on timing analyses, X-ray time lags between the reflection-dominated 0.3-1.0 keV energy and continuum-dominated 1.0-4.0 keV band are measured, indicative of reverberation off the inner accretion disc. The reverberation lag time is seen to vary as a step function in frequency; across lower frequency components of the variability, 3 × 10-4-1.2 × 10-3 Hz a lag of 160 s is measured, but the lag shortens to (59 ± 4) s above 1.2 × 10-3 Hz. The lag-energy spectrum reveals differing profiles between these ranges with a change in the dip showing the earliest arriving photons. The low-frequency signal indicates reverberation of X-rays emitted from a corona extended at low height over the disc, while at high frequencies, variability is generated in a collimated core of the corona through which luminosity fluctuations propagate upwards. Principal component analysis of the variability supports this interpretation, showing uncorrelated variation in the spectral slope of two power-law continuum components. The distinct evolution of the two components of the corona is seen as a flare passes inwards from the extended to the collimated portion. An increase in variability in the extended corona was found preceding the initial increase in X-ray flux. Variability from the extended corona was seen to die away as the flare passed into the collimated core leading to a second sharper increase in the X-ray count rate.

  18. Psychosocial, Organizational and Cultural Aspects of Terrorism (Aspects Psychosociaux, Organisationnels et Culturels du Terrorisme)

    DTIC Science & Technology

    2011-11-01

    influence by many co- variates and that exists on a continuum of adaptability. To be resilient an individual or society must in the face of a challenge...narratives that carry no credibility [5],[6]. Typically, conspiracy theories consist of variations on the themes of false evidence (e.g., the...migrants are mainly concentrated in the four major big cities of Amsterdam, Rotterdam, Utrecht and The Hague. Although there are variations among the

  19. The imprint of surface fluxes and transport on variations in total column carbon dioxide

    NASA Astrophysics Data System (ADS)

    Keppel-Aleks, G.; Wennberg, P. O.; Washenfelder, R. A.; Wunch, D.; Schneider, T.; Toon, G. C.; Andres, R. J.; Blavier, J.-F.; Connor, B.; Davis, K. J.; Desai, A. R.; Messerschmidt, J.; Notholt, J.; Roehl, C. M.; Sherlock, V.; Stephens, B. B.; Vay, S. A.; Wofsy, S. C.

    2012-03-01

    New observations of the vertically integrated CO2 mixing ratio, ⟨CO2⟩, from ground-based remote sensing show that variations in CO2⟩ are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large-scale and local fluxes. Observations of both ⟨CO2⟩ and CO2 concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in ⟨CO2⟩ in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO2, these synoptic-scale variations provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in ⟨CO2⟩ from covariations in ⟨CO2⟩ and potential temperature, θ, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that simulations using Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the ⟨CO2⟩ seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes and the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better fit the observations. Our simulations suggest that climatological mean CASA fluxes underestimate boreal growing season NEE (between 45-65° N) by ~40%. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.

  20. Characteristics of the Surface Turbulent Flux and the Components of Radiation Balance over the Grasslands in the Southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, H.; Xiao, Z.; Wei, J.

    2016-12-01

    Characteristics of the Surface Turbulent Flux and the Components of Radiation Balance over the Grasslands in the Southeastern Tibetan PlateauHongyi Li 1, Ziniu Xiao 2 and Junhong Wei31 China Meteorological Administration Training Centre, Beijing, China2 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China 3Theory of Atmospheric Dynamics and Climate, Institute for Atmospheric and Environmental Sciences, Goethe University of Frankfurt, Campus Riedberg, GermanyAbstract:Based on the field observation data over the grasslands in the southeastern Tibetan Plateau and the observational datasets in Nyingchi weather station for the period from May 20 to July 9, 2013, the variation characteristics of the basic meteorological elements in Nyingchi weather station, the surface turbulent fluxes and the components of radiation balance over the grasslands, as well as their relationships, are analyzed in this paper. The results show that in Nyingchi weather station, the daily variations of relative humidity and average total cloud cover are consistent with that of precipitation, but that those of daily average air temperature, daily average ground temperature, daily average wind speed and daily sunshine duration have an opposite change to that of precipitation. During the observation period, latent heat exchange is greater than sensible heat exchange, and latent heat flux is significantly higher when there is rainfall, but sensible heat flux and soil heat flux are lower. The daily variation of the total solar radiation (DR) is synchronous with that of sensible heat flux, and the daily variations of reflective solar radiation (UR), long wave radiation by earth (ULR), net radiation (Rn) and surface albedo are consistent with DR, but that of the long wave radiation by atmosphere (DLR) has an opposite change. The diurnal variations of sensible heat flux, latent heat flux, soil heat flux and the components of surface radiation balance over the grasslands are characterized by higher values at noon and lower values in the morning and evening. Keywords: surface turbulent flux, components of radiation balance, grasslands, southeastern Tibetan Plateau

  1. Variations of the Electron Fluxes in the Terrestrial Radiation Belts Due To the Impact of Corotating Interaction Regions and Interplanetary Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Benacquista, R.; Boscher, D.; Rochel, S.; Maget, V.

    2018-02-01

    In this paper, we study the variations of the radiation belts electron fluxes induced by the interaction of two types of solar wind structures with the Earth magnetosphere: the corotating interaction regions and the interplanetary coronal mass ejections. We use a statistical method based on the comparison of the preevent and postevent fluxes. Applied to the National Oceanic and Atmospheric Administration-Polar Operational Environmental Satellites data, this gives us the opportunity to extend previous studies focused on relativistic electrons at geosynchronous orbit. We enlighten how corotating interaction regions and Interplanetary Coronal Mass Ejections can impact differently the electron belts depending on the energy and the L shell. In addition, we provide a new insight concerning these variations by considering their amplitude. Finally, we show strong relations between the intensity of the magnetic storms related to the events and the variation of the flux. These relations concern both the capacity of the events to increase the flux and the deepness of these increases.

  2. Long-term variations of fluxes of solar protons and helium isotopes

    NASA Astrophysics Data System (ADS)

    Anufriev, G. S.

    2012-11-01

    The fluxes of hydrogen and helium isotopes in the solar wind are reconstructed over a long time scale since the present time up to 600 million years back. Abundances of helium isotopes, obtained in the helium isotopic analysis made for 8 lunar soil samples, were used as initial data in the reconstruction procedure. Samples were taken off from various levels of the 1.6-m core of lunar soil delivered by the automatic Luna-24 station in 1976. The data on modern hydrogen and helium fluxes were used as well. The developed reconstruction procedure allowed one to select various solar wind components in a "gross" composition. Proton flux variations over the interval of 600 million years do not exceed a value of 40 %. Helium flux variations reach a value of 1.5-2 relative to the average value. Most likely, this circumstance is caused by considerable variations of a number of coronal mass ejections ( CME) enriched by helium. The arguments in favor of solar activity polycyclicity on a long time scale are discussed.

  3. The 1.5 Ms Observing Campaign on IRAS 13224-3809: X-ray Spectral Analysis I.

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Parker, M. L.; Fabian, A. C.; Alston, W. N.; Buisson, D. J. K.; Cackett, E. M.; Chiang, C.-Y.; Dauser, T.; Gallo, L. C.; García, J. A.; Harrison, F. A.; Lohfink, A. M.; De Marco, B.; Kara, E.; Miller, J. M.; Miniutti, G.; Pinto, C.; Walton, D. J.; Wilkins, D. R.

    2018-03-01

    We present a detailed spectral analysis of the recent 1.5 Ms XMM-Newton observing campaign on the narrow line Seyfert 1 galaxy IRAS 13224-3809, taken simultaneously with 500 ks of NuSTAR data. The X-ray lightcurve shows three flux peaks, registering at about 100 times the minimum flux seen during the campaign, and rapid variability with a time scale of kiloseconds. The spectra are well fit with a primary powerlaw continuum, two relativistic-blurred reflection components from the inner accretion disk with very high iron abundance, and a simple blackbody-shaped model for the remaining soft excess. The spectral variability is dominated by the power law continuum from a corona region within a few gravitational radii from the black hole. Additionally, blueshifted Ne X, Mg XII, Si XIV and S XVI absorption lines are identified in the stacked low-flux spectrum, confirming the presence of a highly ionized outflow with velocity up to v = 0.263 and 0.229 c. We fit the absorption features with xstar models and find a relatively constant velocity outflow through the whole observation. Finally, we replace the bbody and supersolar abundance reflection models by fitting the soft excess successfully with the extended reflection model relxillD, which allows for higher densities than the standard relxill model. This returns a disk electron density ne > 1018.7 cm-3 and lowers the iron abundance from Z_Fe=24^{+3}_{-4}Z_⊙ with ne ≡ 1015 cm-3 to Z_Fe=6.6^{+0.8}_{-2.1}Z_⊙.

  4. X-ray flaring in PDS 456 observed in a high-flux state

    NASA Astrophysics Data System (ADS)

    Matzeu, G. A.; Reeves, J. N.; Nardini, E.; Braito, V.; Turner, T. J.; Costa, M. T.

    2017-03-01

    We present an analysis of a 190 ks (net exposure) Suzaku observation, carried out in 2007, of the nearby (z = 0.184) luminous (Lbol ˜ 1047 erg s-1) quasar PDS 456. In this observation, the intrinsically steep bare continuum is revealed compared to subsequent observations, carried out in 2011 and 2013, where the source is fainter, harder and more absorbed. We detected two pairs of prominent hard and soft flares, restricted to the first and second halves of the observation, respectively. The flares occur on time-scales of the order of ˜50 ks, which is equivalent to a light-crossing distance of ˜10 Rg in PDS 456. From the spectral variability observed during the flares, we find that the continuum changes appear to be dominated by two components: (I) a variable soft component (<2 keV), which may be related to the Comptonized tail of the disc emission, and (II) a variable hard power-law component (>2 keV). The photon index of the latter power-law component appears to respond to changes in the soft band flux, increasing during the soft X-ray flares. Here, the softening of the spectra, observed during the flares, may be due to Compton cooling of the disc corona induced by the increased soft X-ray photon seed flux. In contrast, we rule out partial covering absorption as the physical mechanism behind the observed short time-scale spectral variability, as the time-scales are likely too short to be accounted for by absorption variability.

  5. The 1.5 Ms observing campaign on IRAS 13224-3809 - I. X-ray spectral analysis

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Parker, M. L.; Fabian, A. C.; Alston, W. N.; Buisson, D. J. K.; Cackett, E. M.; Chiang, C.-Y.; Dauser, T.; Gallo, L. C.; García, J. A.; Harrison, F. A.; Lohfink, A. M.; De Marco, B.; Kara, E.; Miller, J. M.; Miniutti, G.; Pinto, C.; Walton, D. J.; Wilkins, D. R.

    2018-07-01

    We present a detailed spectral analysis of the recent 1.5 Ms XMM-Newton observing campaign on the narrow-line Seyfert 1 galaxy IRAS 13224-3809, taken simultaneously with 500 ks of NuSTAR data. The X-ray light curve shows three flux peaks, registering at about 100 times the minimum flux seen during the campaign, and rapid variability with a time-scale of kiloseconds. The spectra are well fit with a primary power-law continuum, two relativistic-blurred reflection components from the inner accretion disc with very high iron abundance, and a simple blackbody-shaped model for the remaining soft excess. The spectral variability is dominated by the power-law continuum from a corona region within a few gravitational radii from the black hole. Additionally, blueshifted Ne X, Mg XII, Si XIV, and S XVI absorption lines are identified in the stacked low-flux spectrum, confirming the presence of a highly ionized outflow with velocity up to v = 0.267 and 0.225 c. We fit the absorption features with xstar models and find a relatively constant velocity outflow through the whole observation. Finally, we replace the bbody and supersolar abundance reflection models by fitting the soft excess successfully with the extended reflection model relxillD, which allows for higher densities than the standard relxill model. This returns a disc electron density ne > 1018.7 cm-3 and lowers the iron abundance from Z_Fe = 24^{+3}_{-4} Z_{⊙} with ne ≡ 1015 cm-3 to Z_Fe = 6.6^{+0.8}_{-2.1} Z_{⊙}.

  6. Radio synchrotron spectra of star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Klein, U.; Lisenfeld, U.; Verley, S.

    2018-03-01

    We investigated the radio continuum spectra of 14 star-forming galaxies by fitting nonthermal (synchrotron) and thermal (free-free) radiation laws. The underlying radio continuum measurements cover a frequency range of 325 MHz to 24.5 GHz (32 GHz in case of M 82). It turns out that most of these synchrotron spectra are not simple power-laws, but are best represented by a low-frequency spectrum with a mean slope αnth = 0.59 ± 0.20 (Sν ∝ ν-α), and by a break or an exponential decline in the frequency range of 1-12 GHz. Simple power-laws or mildly curved synchrotron spectra lead to unrealistically low thermal flux densities, and/or to strong deviations from the expected optically thin free-free spectra with slope αth = 0.10 in the fits. The break or cutoff energies are in the range of 1.5-7 GeV. We briefly discuss the possible origin of such a cutoff or break. If the low-frequency spectra obtained here reflect the injection spectrum of cosmic-ray electrons, they comply with the mean spectral index of Galactic supernova remnants. A comparison of the fitted thermal flux densities with the (foreground-corrected) Hα fluxes yields the extinction, which increases with metallicity. The fraction of thermal emission is higher than believed hitherto, especially at high frequencies, and is highest in the dwarf galaxies of our sample, which we interpret in terms of a lack of containment in these low-mass systems, or a time effect caused by a very young starburst.

  7. Spectroscopic monitoring of active Galactic nuclei from CTIO. 1: NGC 3227

    NASA Technical Reports Server (NTRS)

    Winge, Claudia; Peterson, Bradley M.; Horne, Keith; Pogge, Richard W.; Pastoriza, Miriani G.; Storchi-Bergmann, Thaisa

    1995-01-01

    The results of a five-month monitoring campaign on the Seyfert 1.5 galaxy NGC 3227 are presented. Variability was detected in the continuum and in the broad emission lines. Cross correlations of the 4200 A continuum light curve with the H beta and He II wavelength 4686 emission-line light curves indicate delays of 18 +/- 5 and 16 +/- 2 days, respectively, between the continuum variations and the response of the lines. We apply a maximum entropy method to solve for the transfer function that relates the H beta and He II wavelength 4686 lines and 4200 A continuum variability and the result of this analysis suggests that there is a deficit of emission-line response due to gas along the line of sight to the continuum source for both lines. Using a composite off-nuclear spectrum, we synthesize the bulge stellar population, which is found to be mainly old (77% with age greater than 10 Gyr) with a metallicity twice the solar value. The synthesis also yields an internal color excess E(B - V) approximately equal 0.04. The mean contribution of the stellar population to the inner 5 sec x 10 sec spectra during the campaign was approximately equal 40%.

  8. Two UV colours of the central part of M 31

    NASA Technical Reports Server (NTRS)

    Deharveng, J. M.; Laget, M.; Monnet, G.; Vuillemin, A.

    1976-01-01

    Two photographs of the galaxy M 31 have been obtained in the far UV with a Faust rocket experiment and in the near UV with the S 183 experiment aboard Skylab. Only the central part of the galaxy is detected. Reductions provide both the energy received and the angular area over M 31 from which it is emitted. The UV flux is brighter than expected from extrapolation of the visible spectrum. The distribution below 300 A is rather flat and different from previous OAO-2 observations. These results, combined with Lyman continuum flux evaluation, are used to discuss the temperature and the age of the stars which may be responsible for this anomalous UV distribution.

  9. A Spectroscopic Search for Leaking Lyman Continuum at Zeta Approximately 0.7

    NASA Technical Reports Server (NTRS)

    Bridge, Carrie R.; Teplitz, Harry I.; Siana, Brian; Scarlata, Claudia; Rudie, Gwen C.; Colbert, James; Ferguson, Henry C.; Brown, Thomas M.; Conselice, Christopher J.; Armus, Lee; hide

    2010-01-01

    We present the results of rest-frame, UV slitless spectroscopic observations of a sample of 32 z approx. 0.7 Lyman Break Galaxy (LBG) analogs in the COSMOS field. The spectroscopic search was performed with the Solar Blind Channel (SBC) on HST. While we find no direct detections of the Lyman Continuum we achieve individual limits (3sigma) of the observed non-ionizing UV to Lyman continuum flux density ratios, f(sub nu)(1500A)/f(sub nu)(830A) of 20 to 204 (median of 73.5) and 378.7 for the stack. Assuming an intrinsic Lyman Break of 3.4 and an optical depth of Lyman continuum photons along the line of sight to the galaxy of 85% we report an upper limit for the relative escape fraction in individual galaxies of 0.02 - 0.19 and a stacked 3sigma upper limit of 0.01. We find no indication of a relative escape fraction near unity as seen in some LBGs at z approx. 3. Our UV spectra achieve the deepest limits to date at any redshift on the escape fraction in individual sources. The contrast between these z approx. 0.7 low escape fraction LBG analogs with z approx. 3 LBGs suggests that either the processes conducive to high f(sub esc) are not being selected for in the z less than or approx.1 samples or the average escape fraction is decreasing from z approx. 3 to z approx. 1. We discuss possible mechanisms which could affect the escape of Lyman continuum photons

  10. RADIO IMAGING OF THE NGC 2024 FIR 5/6 REGION: A HYPERCOMPACT H II REGION CANDIDATE IN ORION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Minho; Kang, Miju; Lee, Jeong-Eun, E-mail: minho@kasi.re.kr

    The NGC 2024 FIR 5/6 region was observed in the 6.9 mm continuum with an angular resolution of about 1.5 arcsec. The 6.9 mm continuum map shows four compact sources, FIR 5w, 5e, 6c, and 6n, as well as an extended structure of the ionization front associated with the optical nebulosity. FIR 6c has a source size of about 0.4 arcsec or 150 AU. The spectral energy distribution (SED) of FIR 6c is peculiar: rising steeply around 6.9 mm and flat around 1 mm. The possibility of a hypercompact H II region is explored. If the millimeter flux of FIRmore » 6c comes from hot ionized gas heated by a single object at the center, the central object may be a B1 star of about 5800 solar luminosities and about 13 solar masses. The 6.9 mm continuum of FIR 6n may be a mixture of free-free emission and dust continuum emission. Archival data show that both FIR 6n and 6c exhibit water maser activity, suggesting the existence of shocked gas around them. The 6.9 mm continuum emission from FIR 5w has a size of about 1.8 arcsec or 760 AU. The SEDs suggest that the 6.9 mm emission of FIR 5w and 5e comes from dust, and the masses of the dense molecular gas are about 0.6 and 0.5 solar masses, respectively.« less

  11. Climatic Versus Biotic Constraints on Carbon and Water Fluxes in Seasonally Drought-affected Ponderosa Pine Ecosystems. Chapter 2

    NASA Technical Reports Server (NTRS)

    Schwarz, P. A.; Law, B. E.; Williams, M.; Irvine, J.; Kurpius, M.; Moore, D.

    2005-01-01

    We investigated the relative importance of climatic versus biotic controls on gross primary production (GPP) and water vapor fluxes in seasonally drought-affected ponderosa pine forests. The study was conducted in young (YS), mature (MS), and old stands (OS) over 4 years at the AmeriFlux Metolius sites. Model simulations showed that interannual variation of GPP did not follow the same trends as precipitation, and effects of climatic variation were smallest at the OS (50%), and intermediate at the YS (<20%). In the young, developing stand, interannual variation in leaf area has larger effects on fluxes than climate, although leaf area is a function of climate in that climate can interact with age-related shifts in carbon allocation and affect whole-tree hydraulic conductance. Older forests, with well-established root systems, appear to be better buffered from effects of seasonal drought and interannual climatic variation. Interannual variation of net ecosystem exchange (NEE) was also lowest at the OS, where NEE is controlled more by interannual variation of ecosystem respiration, 70% of which is from soil, than by the variation of GPP, whereas variation in GPP is the primary reason for interannual changes in NEE at the YS and MS. Across spatially heterogeneous landscapes with high frequency of younger stands resulting from natural and anthropogenic disturbances, interannual climatic variation and change in leaf area are likely to result in large interannual variation in GPP and NEE.

  12. Mass flows in a prominence spine as observed in EUV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucera, T. A.; Gilbert, H. R.; Karpen, J. T.

    2014-07-20

    We analyze a quiescent prominence observed by the Solar Dynamics Observatory's Atmospheric Imaging Assembly (AIA) with a focus on mass and energy flux in the spine, measured using Lyman continuum absorption. This is the first time this type of analysis has been applied with an emphasis on individual features and fluxes in a quiescent prominence. The prominence, observed on 2010 September 28, is detectable in most AIA wavebands in absorption and/or emission. Flows along the spine exhibit horizontal bands 5''-10'' wide and kinetic energy fluxes on the order of a few times 10{sup 5} erg s{sup –1}cm{sup –2}, consistent withmore » quiet sun coronal heating estimates. For a discrete moving feature we estimate a mass of a few times 10{sup 11} g. We discuss the implications of our derived properties for a model of prominence dynamics, the thermal non-equilibrium model.« less

  13. The ISO View of Star Forming Galaxies

    NASA Technical Reports Server (NTRS)

    Helou, George

    1999-01-01

    ISO studies of normal galaxies in the local Universe have revealed basic new properties whose significant implications for the star formation process and cosmology are only starting to be understood. This review will touch on the general results of a statistical nature, and provide a quick summary of the profusion of exciting results on individual objects. In the mid-infrared, PHT-S has established that the spectra of star forming galaxies between 6 and-13microns are dominated by the Aromatic Features in Emission (AFE), and show little variation as a function of the heating intensity. The Carriers of the AFE (CAFE) are thus a universal component of dust with standard properties, and contribute between 10 and 25% of the total dust luminosity. In addition to AFE, the spectra show a low-level continuum detectable at wavelengths longer than 3.5microns whose origin is still under investigation. The mid-infrared colors formed as the ratio of flux densities in the 6.75micron and the 15micron bands of ISO-CAM remain essentially constant and near unity for quiescent and mildly active galaxies. As dust heating increases further, the 15micron flux increases steeply compared to 6.75microns, indicating that dust heated to 100K

  14. Interstellar molecules. [detection from Copernicus satellite UV absorption data

    NASA Technical Reports Server (NTRS)

    Drake, J. F.

    1974-01-01

    The Princeton equipment on the Copernicus satellite provides the means to study interstellar molecules between the satellite and stars from 20 to 1000 pc distant. The study is limited to stars relatively unobscured by dust which strongly attenuates the ultraviolet continuum flux used as a source to probe the interstellar medium. Of the 14 molecules searched for only three have been detected including molecular hydrogen, molecular HD, and carbon monoxide.

  15. Mid-infrared Flux Variability in an Awakening AGN

    NASA Astrophysics Data System (ADS)

    Yeh, Sherry

    We propose FORCAST spectroscopic observations between 8 um to 40 um near the nucleus of NGC 660. NGC 660 underwent an AGN outburst 6 years ago, which is an ideal case for studying AGN astrophysics in a rather quiecent system. However, this rare event has not yet been monitored. Our immidiate goal is to verify the MIR spectroscipic variabilitiy in NGC 660, and to study the AGN effects on dust destruction and ISM. We will compare the FORCAST spectra with the Spitzer IRS spectra (taken before the AGN outburst), including dust continuum, PAH emission, and high- and low-ionization emission lines. FORCAST's slit width is a close match to the IRS slit width, allowing a direct comparison of the spectra between FORCAST and IRS. Our single-slit Subaru COMICS spectrum taken after the outburst shows significantly weakened PAH emission and dust continuum, suggesting dust destruction. However, it is difficult to draw robust intepretations due to systematic uncertainties in the Subaru data. If dust destruction is confirmed in the post-outburst FORCAST observaitons, we will evaluate the energy budget using the MIR line ratio diagnostics, with archival X-ray and radio data. We will then propose cadence observations of MGC 660's nucleus to monitor the MIR flux variability, and employ the reverberation mapping technique to study NGC 660's AGN.

  16. Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mathur, S.; Gupta, A.; Page, K.; Pogge, R. W.; Krongold, Y.; Goad, M. R.; Adams, S. M.; Anderson, M. D.; Arévalo, P.; Barth, A. J.; Bazhaw, C.; Beatty, T. G.; Bentz, M. C.; Bigley, A.; Bisogni, S.; Borman, G. A.; Boroson, T. A.; Bottorff, M. C.; Brandt, W. N.; Breeveld, A. A.; Brown, J. E.; Brown, J. S.; Cackett, E. M.; Canalizo, G.; Carini, M. T.; Clubb, K. I.; Comerford, J. M.; Coker, C. T.; Corsini, E. M.; Crenshaw, D. M.; Croft, S.; Croxall, K. V.; Dalla Bontà, E.; Deason, A. J.; Denney, K. D.; De Lorenzo-Cáceres, A.; De Rosa, G.; Dietrich, M.; Edelson, R.; Ely, J.; Eracleous, M.; Evans, P. A.; Fausnaugh, M. M.; Ferland, G. J.; Filippenko, A. V.; Flatland, K.; Fox, O. D.; Gates, E. L.; Gehrels, N.; Geier, S.; Gelbord, J. M.; Gorjian, V.; Greene, J. E.; Grier, C. J.; Grupe, D.; Hall, P. B.; Henderson, C. B.; Hicks, S.; Holmbeck, E.; Holoien, T. W.-S.; Horenstein, D.; Horne, Keith; Hutchison, T.; Im, M.; Jensen, J. J.; Johnson, C. A.; Joner, M. D.; Jones, J.; Kaastra, J.; Kaspi, S.; Kelly, B. C.; Kelly, P. L.; Kennea, J. A.; Kim, M.; Kim, S.; Kim, S. C.; King, A.; Klimanov, S. A.; Kochanek, C. S.; Korista, K. T.; Kriss, G. A.; Lau, M. W.; Lee, J. C.; Leonard, D. C.; Li, M.; Lira, P.; Ma, Z.; MacInnis, F.; Manne-Nicholas, E. R.; Malkan, M. A.; Mauerhan, J. C.; McGurk, R.; McHardy, I. M.; Montouri, C.; Morelli, L.; Mosquera, A.; Mudd, D.; Muller-Sanchez, F.; Musso, R.; Nazarov, S. V.; Netzer, H.; Nguyen, M. L.; Norris, R. P.; Nousek, J. A.; Ochner, P.; Okhmat, D. N.; Ou-Yang, B.; Pancoast, A.; Papadakis, I.; Parks, J. R.; Pei, L.; Peterson, B. M.; Pizzella, A.; Poleski, R.; Pott, J.-U.; Rafter, S. E.; Rix, H.-W.; Runnoe, J.; Saylor, D. A.; Schimoia, J. S.; Schnülle, K.; Sergeev, S. G.; Shappee, B. J.; Shivvers, I.; Siegel, M.; Simonian, G. V.; Siviero, A.; Skielboe, A.; Somers, G.; Spencer, M.; Starkey, D.; Stevens, D. J.; Sung, H.-I.; Tayar, J.; Tejos, N.; Turner, C. S.; Uttley, P.; Van Saders, J.; Vestergaard, M.; Vican, L.; Villanueva, S., Jr.; Villforth, C.; Weiss, Y.; Woo, J.-H.; Yan, H.; Young, S.; Yuk, H.; Zheng, W.; Zhu, W.; Zu, Y.

    2017-09-01

    During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.

  17. Numerical investigation of rarefaction effects in the vicinity of a sharp leading edge

    NASA Astrophysics Data System (ADS)

    Pan, Shaowu; Gao, Zhenxun; Lee, Chunhian

    2014-12-01

    This paper presents a study of rarefaction effect on hypersonic flow over a sharp leading edge. Both continuum approach and kinetic method: a widely spread commercial Computational Fluid Dynamics-Navior-Stokes-Fourier (CFD-NSF) software - Fluent together with a direct simulation Monte Carlo (DSMC) code developed by the authors are employed for simulation of transition regime with Knudsen number ranging from 0.005 to 0.2. It is found that Fluent can predict the wall fluxes in the case of hypersonic argon flow over the sharp leading edge for the lowest Kn case (Kn = 0.005) in current paper while for other cases it also has a good agreement with DSMC except at the location near the sharp leading edge. Among all of the wall fluxes, it is found that coefficient of pressure is the most sensitive to rarefaction while heat transfer is the least one. A parameter based on translational nonequilibrium and a cut-off value of 0.34 is proposed for continuum breakdown in this paper. The structure of entropy and velocity profile in boundary layer is analyzed. Also, it is found that the ratio of heat transfer coefficient to skin friction coefficient remains uniform along the surface for the four cases in this paper.

  18. Effect of ship locking on sediment oxygen uptake in impounded rivers

    NASA Astrophysics Data System (ADS)

    Lorke, A.; McGinnis, D. F.; Maeck, A.; Fischer, H.

    2012-12-01

    In the majority of large river systems, flow is regulated and/or otherwise affected by operational and management activities, such as ship locking. The effect of lock operation on sediment-water oxygen fluxes was studied within a 12.9 km long impoundment at the Saar River (Germany) using eddy-correlation flux measurements. The continuous observations cover a time period of nearly 5 days and 39 individual locking events. Ship locking is associated with the generation of surges propagating back and forth through the impoundment which causes strong variations of near-bed current velocity and turbulence. These wave-induced flow variations cause variations in sediment-water oxygen fluxes. While the mean flux during time periods without lock operation was 0.5 ± 0.1 g m-2 d-1, it increased by about a factor of 2 to 1.0 ± 0.5 g m-2 d-1within time periods with ship locking. Following the daily schedule of lock operations, fluxes are predominantly enhanced during daytime and follow a pronounced diurnal rhythm. The driving force for the increased flux is the enhancement of diffusive transport across the sediment-water interface by bottom-boundary layer turbulence and perhaps resuspension. Additional means by which the oxygen budget of the impoundment is affected by lock-induced flow variations are discussed.

  19. Monitoring the HIV continuum of care in key populations across Europe and Central Asia.

    PubMed

    Brown, A E; Attawell, K; Hales, D; Rice, B D; Pharris, A; Supervie, V; Van Beckhoven, D; Delpech, V C; An der Heiden, M; Marcus, U; Maly, M; Noori, T

    2018-05-08

    The aim of the study was to measure and compare national continuum of HIV care estimates in Europe and Central Asia in three key subpopulations: men who have sex with men (MSM), people who inject drugs (PWID) and migrants. Responses to a 2016 European Centre for Disease Prevention and Control (ECDC) survey of 55 European and Central Asian countries were used to describe continuums of HIV care for the subpopulations. Data were analysed using three frameworks: Joint United Nations Programme on HIV/AIDS (UNAIDS) 90-90-90 targets; breakpoint analysis identifying reductions between adjacent continuum stages; quadrant analysis categorizing countries using 90% cut-offs for continuum stages. Overall, 29 of 48 countries reported national data for all HIV continuum stages (numbers living with HIV, diagnosed, receiving treatment and virally suppressed). Six countries reported all stages for MSM, seven for PWID and two for migrants. Thirty-one countries did not report data for MSM (34 for PWID and 41 for migrants). In countries that provided key-population data, overall, 63%, 40% and 41% of MSM, PWID and migrants living with HIV were virally suppressed, respectively (compared with 68%, 65% and 68% nationally, for countries reporting key-population data). Variation was observed between countries, with higher outcomes in subpopulations in Western Europe compared with Eastern Europe and Central Asia. Few reporting countries can produce the continuum of HIV care for the three key populations. Where data are available, differences exist in outcomes between the general and key populations. While MSM broadly mirror national outcomes (in the West), PWID and migrants experience poorer treatment and viral suppression. Countries must develop continuum measures for key populations to identify and address inequalities. © 2018 British HIV Association.

  20. The Ionized Nuclear Environment in NGC 985 as seen by Chandra and BeppoSAX

    NASA Astrophysics Data System (ADS)

    Krongold, Y.; Nicastro, F.; Elvis, M.; Brickhouse, N. S.; Mathur, S.; Zezas, A.

    2005-02-01

    We investigate the ionized environment of the Seyfert 1 galaxy NGC 985 with a new Chandra HETGS observation and an archival BeppoSAX observation. Both spectra exhibit strong residuals to a single-power-law model, indicating the presence of an ionized absorber and a soft excess. A detailed model over the Chandra data shows that the 0.6-8 keV intrinsic continuum can be well represented by a power law (Γ~1.6) plus a blackbody component (kT=0.1 keV). Two absorption components are clearly required to fit the absorption features observed in the Chandra spectrum. The components have a difference of 29 in ionization parameter and 3 in column density. The presence of the low-ionization component is evidenced by an Fe M-shell unresolved transition array produced by charge states VII-XIII. The high-ionization phase is required by the presence of broad absorption features arising from several blends of Fe L-shell transitions (Fe XVII-XXII). A third highly ionized component might also be present, but the data do not allow us to constrain its properties. Although poorly constrained, the outflow velocities of the components (581+/-206 km s-1 for the high-ionization phase and 197+/-184 km s-1 for the low-ionization one) are consistent with each other and with the outflow velocities of the absorption components observed in the UV. In addition, the low-ionization component produces significant amounts of O VI, N V, and C IV, which suggests that a single outflow produces the UV and X-ray features. The broadband (0.1-100 keV) continuum in the BeppoSAX data can be parameterized by a power law (Γ~1.4), a blackbody (kT=0.1 keV), and a high-energy cutoff (Ec~70 keV). An X-ray luminosity variation by a factor of 2.3 is observed between the BeppoSAX and Chandra observations (separated by almost 3 yr). Variability in the opacity of the absorbers is detected in response to the continuum variation, but while the colder component is consistent with a simple picture of photoionization equilibrium, the ionization state of the hotter component seems to increase, while the continuum flux drops. The most striking result in our analysis is that during both the Chandra and the BeppoSAX observations, the two absorbing components appear to have the same pressure. Thus, we suggest that the absorption arises from a multiphase wind. Such a scenario can explain the change in the opacity of both absorption components during the observations, but it requires that a third, hotter component be pressure-confining the two phases. Hence, our analysis points to a three-phase medium similar to the wind found in NGC 3783, and it further suggests that such a wind might be a common characteristic in active galactic nuclei. The pressure-confining scenario requires fragmentation of the confined phases into a large number of clouds.

  1. Thorium and uranium variations in Apollo 17 basalts, and K-U systematics

    NASA Technical Reports Server (NTRS)

    Laul, J. C.; Fruchter, J. S.

    1976-01-01

    It is found that Apollo 11 low-K and in particular Apollo 17 mare basalts show a wide range of Th/U ratios unlike other rocks; such variations cannot be explained by near surface crystal fractionation. A two-stage fractional crystallization-partial melting model involving a clinopyroxene cumulate as the major phase can explain the variations in Th/U ratios. Due to the Sm-Nd systematics constraint, several source cumulates are invoked to explain the observed Th/U continuum.

  2. Density variations of meteor flux along the Earth's orbit

    NASA Technical Reports Server (NTRS)

    Svetashkova, N. T.

    1987-01-01

    No model of distribution of meteor substance is known to explain the observed diurnal and annual variations of meteor rates, if that distribution is assumed to be constant during the year. Differences between the results of observations and the prediction of diurnal variation rates leads to the conclusion that the density of the orbits of meteor bodies changes with the motion of the Earth along its orbit. The distributions of the flux density over the celestial sphere are obtained by the method described previously by Svetashkova, 1984. The results indicate that the known seasonal and latitudinal variations of atmospheric conditions does not appear to significantly affect the value of the mean flux density of meteor bodies and the matter influx onto the Earth.

  3. Anthropogenic phosphorus (P) inputs to a river basin and their impacts on P fluxes along its upstream-downstream continuum

    NASA Astrophysics Data System (ADS)

    Zhang, Wangshou; Swaney, Dennis; Hong, Bongghi; Howarth, Robert

    2017-04-01

    Phosphorus (P) originating from anthropogenic sources as a pollutant of surface waters has been an environmental issue for decades because of the well-known role of P in eutrophication. Human activities, such as food production and rapid urbanization, have been linked to increased P inputs which are often accompanied by corresponding increases in riverine P export. However, uneven distributions of anthropogenic P inputs along watersheds from the headwaters to downstream reaches can result in significantly different contributions to the riverine P fluxes of a receiving water body. So far, there is still very little scientific understanding of anthropogenic P inputs and their impacts on riverine flux in river reaches along the upstream to downstream continuum. Here, we investigated P budgets in a series of nested watersheds draining into Hongze Lake of China, and developed a simple empirical function to describe the relationship between anthropogenic inputs and riverine TP fluxes. The results indicated that an average of 1.1% of anthropogenic P inputs are exported into rivers, with most of the remainder retained in the watershed landscape over the period studied. Fertilizer application was the main contributor of P loading to the lake (55% of total loads), followed by legacy P stock (30%), food and feed P inputs (12%) and non-food P inputs (4%). From 60% to 89% of the riverine TP loads generated from various locations within this basin were ultimately transported into the receiving lake of the downstream, with an average rate of 1.86 tons P km-1 retaining in the main stem of the inflowing river annually. Our results highlight that in-stream processes can significantly buffer the riverine P loading to the downstream receiving lake. An integrated P management strategy considering the influence of anthropogenic inputs and hydrological interactions is required to assess and optimize P management for protecting fresh waters.

  4. Eddington-limited X-Ray Bursts as Distance Indicators. I. Systematic Trends and Spherical Symmetry in Bursts from 4U 1728-34

    NASA Astrophysics Data System (ADS)

    Galloway, Duncan K.; Psaltis, Dimitrios; Chakrabarty, Deepto; Muno, Michael P.

    2003-06-01

    We investigate the limitations of thermonuclear X-ray bursts as a distance indicator for the weakly magnetized accreting neutron star 4U 1728-34. We measured the unabsorbed peak flux of 81 bursts in public data from the Rossi X-Ray Timing Explorer (RXTE). The distribution of peak fluxes was bimodal: 66 bursts exhibited photospheric radius expansion (presumably reaching the local Eddington limit) and were distributed about a mean bolometric flux of 9.2×10-8ergscm-2s-1, while the remaining (non-radius expansion) bursts reached 4.5×10-8ergscm-2s-1, on average. The peak fluxes of the radius expansion bursts were not constant, exhibiting a standard deviation of 9.4% and a total variation of 46%. These bursts showed significant correlations between their peak flux and the X-ray colors of the persistent emission immediately prior to the burst. We also found evidence for quasi-periodic variation of the peak fluxes of radius expansion bursts, with a timescale of ~=40 days. The persistent flux observed with RXTE/ASM over 5.8 yr exhibited quasi-periodic variability on a similar timescale. We suggest that these variations may have a common origin in reflection from a warped accretion disk. Once the systematic variation of the peak burst fluxes is subtracted, the residual scatter is only ~=3%, roughly consistent with the measurement uncertainties. The narrowness of this distribution strongly suggests that (1) the radiation from the neutron star atmosphere during radius expansion episodes is nearly spherically symmetric and (2) the radius expansion bursts reach a common peak flux that may be interpreted as a standard candle intensity. Adopting the minimum peak flux for the radius expansion bursts as the Eddington flux limit, we derive a distance for the source of 4.4-4.8 kpc (assuming RNS=10 km), with the uncertainty arising from the probable range of the neutron star mass MNS=1.4-2 Msolar.

  5. Constraining Lyman continuum escape using Machine Learning

    NASA Astrophysics Data System (ADS)

    Giri, Sambit K.; Zackrisson, Erik; Binggeli, Christian; Pelckmans, Kristiaan; Cubo, Rubén; Mellema, Garrelt

    2018-05-01

    The James Webb Space Telescope (JWST) will observe the rest-frame ultraviolet/optical spectra of galaxies from the epoch of reionization (EoR) in unprecedented detail. While escaping into the intergalactic medium, hydrogen-ionizing (Lyman continuum; LyC) photons from the galaxies will contribute to the bluer end of the UV slope and make nebular emission lines less prominent. We present a method to constrain leakage of the LyC photons using the spectra of high redshift (z >~ 6) galaxies. We simulate JWST/NIRSpec observations of galaxies at z =6-9 by matching the fluxes of galaxies observed in the Frontier Fields observations of galaxy cluster MACS-J0416. Our method predicts the escape fraction fesc with a mean absolute error Δfesc ~ 0.14. The method also predicts the redshifts of the galaxies with an error .

  6. The continuum spectral characteristics of gamma-ray bursts observed by BATSE

    NASA Technical Reports Server (NTRS)

    Pendleton, Geoffrey N.; Paciesas, William S.; Briggs, Michael S.; Mallozzi, Robert S.; Koshut, Tom M.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Harmon, Alan B.; Kouveliotou, Chryssa

    1994-01-01

    Distributions of the continuum spectral characteristics of 260 bursts in the first Burst And Transient Source Experiement (BATSE) catalog are presented. The data are derived from flux calculated from BATSE Large Area Detector (LAD) four-channel discriminator data. The data are converted from counts to protons using a direct spectral inversion technique to remove the effects of atmospheric scattering and the energy dependence of the detector angular response. Although there are intriguing clusters of bursts in the spectral hardness ratio distributions, no evidence for the presence of distinct burst classes based in spectral hardness ratios alone is found. All subsets of bursts selected for their spectral characteristics in this analysis exhibit spatial distributions consistent with isotropy. The spectral diversity of the burst population appears to be caused largely by the highly variable nature of the burst production mechanisms themselves.

  7. 2.0 to 2.4 micron spectroscopy of T Tauri stars

    NASA Astrophysics Data System (ADS)

    Hamann, F.; Simon, M.; Ridgway, S. T.

    1988-03-01

    Velocity-resolved 2.0-2.5-micron observations of the T Tau stars T, DF, DG, DK, HL, and RY Tau, SU Aur, and GW Ori are presented. For each of these stars except SU Aur, the Brackett gamma line was detected in emission with line widths inthe range of about 130-230 km/s. The Brackett gamma line profile of SU Aur is complex, having components of both emission and absorption. The first measurement of CO band-head emission in DG Tau is reported, and it is shown that published radio continuum fluxes of young stars far exceed what could be produced in an envelope ionized by only the stellar photospheric Lyman continuum. The excess of radio emission is found to be much greater in low-luminosity sources (e.g., the T Tau stars).

  8. Ultraviolet and optical spectrophotometry of the Seyfert 1.8 galaxy Markarian 609

    NASA Technical Reports Server (NTRS)

    Rudy, Richard J.; Cohen, Ross D.; Ake, T. B.

    1988-01-01

    Ultraviolet and optical observations of the Seyfert 1.8 galaxy Mrk 609 were collected simultaneously. The observations reveal strong line and continuum emission in the UV, an increase in the flux of H-beta and He I 5876, and a decrease in the H-alpha/H-beta value since the measurements by Osterbrock (1978, 1981), as well as an extended population of early-type stars, which is considered to be the source powering the larger part of the far-IR emission. Special attention is given to the origin of steep broad-line Balmer decrement measured by Osterbrock, since the strong UV continuum and the emission lines of Mrk 609 observed rule out reddening as the cause of the Balmer decrement. It is suggested that smaller-than-normal optical depths are likely to be the cause of the decrement.

  9. The investigation of short-term variations of Jupiter's Synchrotron Radiation with the large radio interferometer GMRT

    NASA Astrophysics Data System (ADS)

    Imai, Kota; Misawa, Hiroaki; Bhardwaj, Anil; Tsuchiya, Fuminori; Doi, Akihiro; Kondo, Tetsuro; Morioka, Akira

    The goal of this research is to investigate physical processes of short term variations of Jupiter's Synchrotron Radiation (JSR) which is important for revealing the origin of relativistic electrons at Jupiter's Radiation Belt (JRB). JSR has been frequently observed by radio interferometers and single dish radio telescopes to understand characteristics of the spatial distribution and variations inferring dynamics and energetics of the relativistic electrons. Observations with radio interferometers have showed JSR source structure (Dunn et al., 2003, etc), and contributed to modeling of JRB (Garrett et al., 2005, etc). On the other hand, observations of total intensity of JSR with a single dish radio telescope have revealed characteristics of time variable phenomena. The time variations are indispensable parameters giving clues to understand particle source and/or loss processes which characterize the formation of JRB. Recently, Miyoshi et al. (1999) and Bolton et al. (2002) confirmed the existence of short term (days to weeks) variations in JSR. The detection of short term variations makes a great impact on the study on JRB because it has been believed for a long time that the strong internal magnetic field and rapidly rotating magnetosphere of Jupiter protect the JRB region from solar wind variations and magnetospheric disturbances as theoretically suggested by de Pater and Goertz (1994). So far we have made the JSR observations to investigate the short term variations of mainly several hundreds MHz JSR which is emitted by low energy particles (< 10MeV) and has been observed systematically only few times (Miyoshi et al., 1999, Misawa et al., 2005, etc). The latter observation suggested that the short term variation is a general feature at low frequencies. Therefore, it is essential to study its detailed characteristics and the causalities. Theoretically expected physical processes which are responsible for the short term variation are enhanced radial diffusion initiated by solar UV flux enhancement and scattering of the JRB particles toward the polar region by whistler-mode wave, although it is still not known whether solar UV flux or whistler-mode wave is a dominant initiator. In order to investigate physical processes of short term variations, we observed JSR with the Giant Metrewave Radio Telescope (GMRT) from 23rd May 2007 to 27th June 2007. Bhardwaj et al. (2005) first made JSR observations with the GMRT for about a week in 2003 and suggested that JSR flux increased with Solar 10.7cm radio flux (F10.7), which is correlated to solar UV flux. On the other hand, the initial results of GMRT observation in 2007 show that the total flux of JSR varies in several days but is not strongly correlated to F10.7. Then, when the total flux of JSR increased, the peak position of JSR moved outward, and the flux of JSR increased in the outer emitting region. It is implied that the other acceleration processes cause these variations except the enhanced radial diffusion, because enhanced radial diffusion increases the flux of JSR and the peak position of JSR moves toward Jupiter. In this presentation, we will discuss the variations of JSR spatial distribution shown in the 2007 GMRT observation results. Acknowledgement: We would like to appreciate helpful support of Ishwara Chandra C. H. And, we thank the staff of the GMRT who have made these observations possible. GMRT is run by the National Centre for Radio Astrophysics of the Tata Institute of Fundamental Research.

  10. The Narrow-Line Region of Narrow-Line Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ardila, A.; Binette, Luc; Pastoriza, Miriani G.; Donzelli, Carlos J.

    2000-08-01

    This work studies the optical emission-line properties and physical conditions of the narrow-line region (NLR) of seven narrow-line Seyfert 1 galaxies (NLS1's) for which high signal-to-noise ratio spectroscopic observations were available. The resolution is 340 km s-1 (at Hα) over the wavelength interval 3700-9500 Å, enabling us to separate the broad and narrow components of the permitted emission lines. Our results show that the flux carried out by the narrow component of Hβ is, on average, 50% of the total line flux. As a result, the [O III] λ5007/Hβ ratio emitted in the NLR varies from 1 to 5, instead of the universally adopted value of 10. This has strong implications for the required spectral energy distribution that ionizes the NLR gas. Photoionization models that consider a NLR composed of a combination of matter-bounded and ionization-bounded clouds are successful at explaining the low [O III] λ5007/Hβ ratio and the weakness of low-ionization lines of NLS1's. Variation of the relative proportion of these two type of clouds nicely reproduces the dispersion of narrow-line ratios found among the NLS1 sample. Assuming similar physical model parameters of both NLS1's and the normal Seyfert 1 galaxy NGC 5548, we show that the observed differences of emission-line ratios between these two groups of galaxies can be explained, to a first approximation, in terms of the shape of the input ionizing continuum. Narrow emission-line ratios of NLS1's are better reproduced by a steep power-law continuum in the EUV-soft X-ray region, with spectral index α~-2. Flatter spectral indices (α~-1.5) match the observed line ratios of NGC 5548 but are unable to provide a good match to the NLS1 ratios. This result is consistent with ROSAT observations of NLS1's, which show that these objects are characterized by steeper power-law indices than those of Seyfert 1 galaxies with strong broad optical lines. Based on observations made at CASLEO. Complejo Astronómico El Leoncito (CASLEO) is operated under agreement between the Consejo Nacional de Investigaciones Científicas y técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juán.

  11. Diel and seasonal nitrous oxide fluxes determined by floating chamber and gas transfer equation methods in agricultural irrigation watersheds in southeast China.

    PubMed

    Wu, Shuang; Chen, Jie; Li, Chen; Kong, Delei; Yu, Kai; Liu, Shuwei; Zou, Jianwen

    2018-02-07

    Agricultural nitrate leaching and runoff incurs high nitrogen loads in agricultural irrigation watersheds, constituting one of important sources of atmospheric nitrous oxide (N 2 O). Two independent sampling campaigns of N 2 O flux measurement over diel cycles and N 2 O flux measurements once a week over annual cycles were carried out in an agricultural irrigation watershed in southeast China using floating chamber (chamber-based) and gas transfer equation (model-based) methods. The diel and seasonal patterns of N 2 O fluxes did not differ between the two measurement methods. The diel variation in N 2 O fluxes was characterized by the pattern that N 2 O fluxes were greater during nighttime than daytime periods with a single flux peak at midnight. The diel variation in N 2 O fluxes was closely associated with water environment and chemistry. The time interval of 9:00-11:00 a.m. was identified to be the sampling time best representing daily N 2 O flux measurements in agricultural irrigation watersheds. Seasonal N 2 O fluxes showed large variation, with some flux peaks corresponding to agricultural irrigation and drainage episodes and heavy rainfall during the crop-growing period of May to November. On average, N 2 O fluxes calculated by model-based methods were 27% lower than those determined by the chamber-based techniques over diel or annual cycles. Overall, more measurement campaigns are highly needed to assess regional agricultural N 2 O budget with low uncertainties.

  12. The imprint of surface fluxes and transport on variations in total column carbon dioxide

    NASA Astrophysics Data System (ADS)

    Keppel-Aleks, G.; Wennberg, P. O.; Washenfelder, R. A.; Wunch, D.; Schneider, T.; Toon, G. C.; Andres, R. J.; Blavier, J.-F.; Connor, B.; Davis, K. J.; Desai, A. R.; Messerschmidt, J.; Notholt, J.; Roehl, C. M.; Sherlock, V.; Stephens, B. B.; Vay, S. A.; Wofsy, S. C.

    2011-07-01

    New observations of the vertically integrated CO2 mixing ratio, ⟨CO2⟩, from ground-based remote sensing show that variations in ⟨CO2⟩ are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large scale and local fluxes. Observations of both ⟨CO2⟩ and CO2 concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in ⟨CO2⟩ in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO2, these synoptic-scale variations provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in ⟨CO2⟩ from covariations in ⟨CO2⟩ and potential temperature, θ, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the ⟨CO2⟩ seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes as well as the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better reflect the observations. Our simulations suggest that boreal growing season NEE (between 45-65° N) is underestimated by ~40 % in CASA. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.

  13. Effects of Solar Irradiance on Ion Fluxes at Mars. MARS EXPRESS and MAVEN Observations

    NASA Astrophysics Data System (ADS)

    Dubinin, E.; Fraenz, M.; McFadden, J. P.; Eparvier, F. G.; Brain, D. A.; Jakosky, B. M.; Andrews, D. J.; Barbash, S.

    2016-12-01

    Recent observations by Mars Express and MAVEN spacecraft have shown that the Martian atmosphere/ionosphere is exposed to the impact of solar wind which results in losses of volatiles from Mars. This erosion is an important factor for the evolution of the Martian atmosphere and its water inventory. To estimate the escape forced by the solar wind during the early Solar system conditions we need to know how the ionosphere of Mars and escape fluxes depend on variations in the strength of the external drivers, in particularly, of solar wind and solar EUV flux. We present multi-instrument observations of the influence of the solar irradiance on the Martian ionosphere and escape fluxes. We use data obtained by the ASPERA-3 and MARSIS experiments on Mars Express and by the STATIC instrument and EUV monitor on MAVEN. Observations by Mars Express supplemented by the EUV monitoring at Earth orbit and translated to Mars orbit provide us information about this dependence over more than 10 years whereas the measurements made by MAVEN provide us for the first time the opportunity to study these processes with simultaneous monitoring of the ionospheric variations, planetary ion fluxes and solar irradiance. We can show that fluxes of planetary ions through different escape channels (trans-terminator fluxes, ion plume, plasma sheet) respond differently on the EUV variations. The most significant effect on the ion scavenging with increase of the solar irradiance is observed for low energy ions extracted from the ionosphere while the ion fluxes in the plume are almost insensitive to the EUV variations.

  14. Rotational modulation of hydrogen Lyman alpha flux from 44ii Bootis

    NASA Technical Reports Server (NTRS)

    Vilhu, O.; Neff, J. E.; Rahunen, T.

    1988-01-01

    Observations with IUE that cover the entire 6.4 hr orbital cycle of the late-type contact binary 44i Bootis are presented. Intrinsic stellar hydrogen Lyman alpha emission flux was determined from low-resolution IUE spectra, compensating for geocoronal emission and for interstellar absorption. The variation of the stellar Lyman alpha emission flux correlates well with the variation of the C II and C IV emission fluxes, and shows orbital modulation in phase with the visual light curve. The ratio of Lyman alpha to CII flux (15 to 20) is similar to that observed in solar active regions. Hydrogen Lyman alpha emission is thus one of the most important cooling channels in the outer atmosphere of 44i Boo. A high-resolution spectrum of the Lyman alpha line was obtained between orbital phases 0.0 and 0.6. The integrated flux in the observed high-resolution Lyman alpha profile is consistent with the fluxes determined using low-resolution spectra, and the composite profile indicates that both components of this binary have equally active chromospheres and transition regions. The uncertainty in the interstellar hydrogen column density cannot mimic the observed variation in the integrated Lyman alpha flux, because the stellar line is very much broader than the interstellar absorption.

  15. Rotational modulation of hydrogen Lyman alpha flux from 44i Bootis

    NASA Technical Reports Server (NTRS)

    Vilhu, O.; Neff, J. E.; Rahunen, T.

    1989-01-01

    Observations with IUE that cover the entire 6.4 hr orbital cycle of the late-type contact binary 44i Bootis are presented. Intrinsic stellar hydrogen Lyman alpha emission flux was determined from low-resolution IUE spectra, compensating for geocoronal emission and for interstellar absorption. The variation of the stellar Lyman alpha emission flux correlates well with the variation of the CII and CIV emission fluxes, and shows orbital modulation in phase with the visual light curve. The ratio of Lyman alpha to CII flux (15 to 20) is similar to that observed in solar active regions. Hydrogen Lyman alpha emission is thus one of the most important cooling channels in the outer atmosphere of 44i Boo. A high-resolution spectrum of the Lyman alpha line was obtained between orbital phases 0.0 and 0.6. The integrated flux in the observed high-resolution Lyman alpha profile is consistent with the fluxes determined using low-resolution spectra, and the composite profile indicates that both components of this binary have equally active chromospheres and transition regions. The uncertainty in the interstellar hydrogen column density cannot mimic the observed variation in the integrated Lyman alpha flux, because the stellar line is very much broader than the interstellar absorption.

  16. Altitude and latitude variations in avionics SEU and atmospheric neutron flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Normand, E.; Baker, T.J.

    1993-12-01

    The direct cause of single event upsets in SRAMs at aircraft altitudes by the atmospheric neutrons has previously been documented. The variation of the in-flight SEU rate with latitude is demonstrated by new data over a wide range of geographical locations. New measurements and models of the atmospheric neutron flux are also evaluated to characterize its variation with altitude, latitude and solar activity.

  17. Variations in Temperature at the Base of the Lithosphere Beneath the Archean Superior Province, Canada

    NASA Astrophysics Data System (ADS)

    Mareschal, J.; Jaupart, C. P.

    2013-12-01

    Most of the variations in surface heat flux in stable continents are caused by variations in crustal heat production, with an almost uniform heat flux at the base of the crust ( 15+/-3 mW/m2). Such relatively small differences in Moho heat flux cannot be resolved by heat flow data alone, but they lead to important lateral variations in lithospheric temperatures and thicknesses. In order to better constrain temperatures in the lower lithosphere, we have combined surface heat flow and heat production data from the southern Superior Province in Canada with vertical shear wave velocity profiles obtained from surface wave inversion. We use the Monte-Carlo method to generate lithospheric temperature profiles from which shear wave velocity can be calculated for a given mantle composition. We eliminate thermal models which yield lithospheric and sub-lithospheric velocities that do not fit the shear wave velocity profile. Surface heat flux being constrained, the free parameters of the thermal model are: the mantle heat flux, the mantle heat production, the crustal differentiation index (ratio of surface to bulk crustal heat production) and the temperature of the mantle isentrope. Two conclusions emerge from this study. One is that, for some profiles, the vertical variations in shear wave velocities cannot be accounted for by temperature alone but also require compositional changes within the lithosphere. The second is that there are long wavelength horizontal variations in mantle temperatures (~80-100K) at the base of the lithosphere and in the mantle below

  18. The evolution of organic matter along the lower Amazon River continuum - Óbidos to the ocean

    NASA Astrophysics Data System (ADS)

    Ward, N. D.; Keil, R. G.; Medeiros, P. M.; Brito, D.; Cunha, A.; Sawakuchi, H. O.; Moura, J. S.; Yager, P. L.; Krusche, A. V.; Richey, J. E.

    2013-12-01

    The influence of the Amazon River on global hydrologic and biogeochemical cycling is well recognized. The Amazon River provides roughly 16% of the global freshwater supply to the ocean and is a significant source of CO2 to the atmosphere, outgassing 0.5 Pg C y-1 to the atmosphere--a flux roughly equivalent to the amount of carbon 'sequestered' by the Amazon rainforest (Field et al, 1998; Richey et al., 2002; Malhi et al., 2008). However, much of our understanding of the flux of matter from the Amazon River into the Atlantic Ocean (and atmosphere) is limited to measurements made at and upstream of Óbidos, 900 km upstream from the actual river mouth. Further, there are few to no observations documenting the transformation of organic matter in a parcel of water as it travels downstream of Óbidos into the ocean. Here we explore the hydrological and biogeochemical evolution of the lower Amazon River continuum, from Óbidos to the Atlantic Ocean. A suite of dissolved and particulate organic matter (OM) parameters were measured during a series of five river expeditions with stations at Óbidos, the Tapajós tributary, the mouth of the Lago Grande de Curuai floodplain lake, both the north and south channels of the Amazon River mouth near Macapá, and the confluence of the Amazon and Tocantins Rivers near Belém. In addition to bulk carbon isotopic signatures, a suite of biomarkers including dissolved and particulate lignin-derived phenols were measured to trace the sources and degradation history of terrestrial vascular plant derived OM throughout the continuum. Dissolved and particulate lignin phenol concentrations both correlated positively with river discharge in the Amazon River mainstem, with variable export patterns from the tributaries and floodplains. As organic matter travels along the continuum it is degraded by microbial composition, fuelling gross respiration and CO2 outgassing. The flux of organic carbon to the ocean is chemically recalcitrant as a result of the constant biological processing of labile OM throughout the lower river. We estimate that 40% of the vascular plant-derived organic carbon sequestered by the terrestrial biosphere is degraded within soils, 55% is degraded along the river continuum, and less than 5% is delivered to the ocean (Ward et al., 2013) References Cited Field, C., M. Behrenfeld, J. Randerson, and P. Falkowski. 1998. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281, 237-240. Malhi, Y., Roberts, J.T., Betts, R.A., Killeen, T.J., Li, W., Nobre, C.A. 2008. Climate change, deforestation, and the fate of the Amazon. Science 319, 169-172. Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M. & Hess, L. L. 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416, 617-620. Ward, N.D.; Keil, R.G.; Medeiros, P.M.; Brito, D.C.; Cunha, A.C.; Dittmar, T.; Yager, P.L.; Krusche, A.V.; Richey, J.E. 2013. Degradation of terrestrially derived macromolecules in the Amazon River. Nature Geoscience. doi: 10.1038/ngeo1817

  19. Sensible Heat Flux Related to Variations in Atmospheric Turbulence Kinetic Energy on a Sandy Beach

    DTIC Science & Technology

    2017-06-01

    FLUX RELATED TO VARIATIONS IN ATMOSPHERIC TURBULENCE KINETIC ENERGY ON A SANDY BEACH by Jessica S. Koscinski June 2017 Thesis Advisor...KINETIC ENERGY ON A SANDY BEACH 5. FUNDING NUMBERS 6. AUTHOR(S) Jessica S. Koscinski 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval...Sensible heat flux, turbulence kinetic energy , surf zone 15. NUMBER OF PAGES 57 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT

  20. A unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chang, E-mail: cliuaa@ust.hk; Xu, Kun, E-mail: makxu@ust.hk; Sun, Quanhua, E-mail: qsun@imech.ac.cn

    Fluid dynamic equations are valid in their respective modeling scales, such as the particle mean free path scale of the Boltzmann equation and the hydrodynamic scale of the Navier–Stokes (NS) equations. With a variation of the modeling scales, theoretically there should have a continuous spectrum of fluid dynamic equations. Even though the Boltzmann equation is claimed to be valid in all scales, many Boltzmann solvers, including direct simulation Monte Carlo method, require the cell resolution to the order of particle mean free path scale. Therefore, they are still single scale methods. In order to study multiscale flow evolution efficiently, themore » dynamics in the computational fluid has to be changed with the scales. A direct modeling of flow physics with a changeable scale may become an appropriate approach. The unified gas-kinetic scheme (UGKS) is a direct modeling method in the mesh size scale, and its underlying flow physics depends on the resolution of the cell size relative to the particle mean free path. The cell size of UGKS is not limited by the particle mean free path. With the variation of the ratio between the numerical cell size and local particle mean free path, the UGKS recovers the flow dynamics from the particle transport and collision in the kinetic scale to the wave propagation in the hydrodynamic scale. The previous UGKS is mostly constructed from the evolution solution of kinetic model equations. Even though the UGKS is very accurate and effective in the low transition and continuum flow regimes with the time step being much larger than the particle mean free time, it still has space to develop more accurate flow solver in the region, where the time step is comparable with the local particle mean free time. In such a scale, there is dynamic difference from the full Boltzmann collision term and the model equations. This work is about the further development of the UGKS with the implementation of the full Boltzmann collision term in the region where it is needed. The central ingredient of the UGKS is the coupled treatment of particle transport and collision in the flux evaluation across a cell interface, where a continuous flow dynamics from kinetic to hydrodynamic scales is modeled. The newly developed UGKS has the asymptotic preserving (AP) property of recovering the NS solutions in the continuum flow regime, and the full Boltzmann solution in the rarefied regime. In the mostly unexplored transition regime, the UGKS itself provides a valuable tool for the non-equilibrium flow study. The mathematical properties of the scheme, such as stability, accuracy, and the asymptotic preserving, will be analyzed in this paper as well.« less

  1. Complex UV/X-ray variability of 1H 0707-495

    NASA Astrophysics Data System (ADS)

    Pawar, P. K.; Dewangan, G. C.; Papadakis, I. E.; Patil, M. K.; Pal, Main; Kembhavi, A. K.

    2017-12-01

    We study the relationship between the UV and X-ray variability of the narrow-line Seyfert 1 galaxy 1H 0707-495. Using a year-long Swift monitoring and four long XMM-Newton observations, we perform cross-correlation analyses of the UV and X-ray light curves, on both long and short time-scales. We also perform time-resolved X-ray spectroscopy on 1-2 ks scale, and study the relationship between the UV emission and the X-ray spectral components - soft X-ray excess and a power law. We find that the UV and X-ray variations anticorrelate on short, and possibly on long time-scales as well. Our results rule out reprocessing as the dominant mechanism for the UV variability, as well as the inward propagating fluctuations in the accretion rate. Absence of a positive correlation between the photon index and the UV flux suggests that the observed UV emission is unlikely to be the seed photons for the thermal Comptonization. We find a strong correlation between the continuum flux and the soft-excess temperature which implies that the soft excess is most likely the reprocessed X-ray emission in the inner accretion disc. Strong X-ray heating of the innermost regions in the disc, due to gravitational light bending, appears to be an important effect in 1H 0707-495, giving rise to a significant fraction of the soft excess as reprocessed thermal emission. We also find indications for a non-static, dynamic X-ray corona, where either the size or height (or both) vary with time.

  2. Is There Such a Thing as Quiet Sun?

    NASA Astrophysics Data System (ADS)

    Rast, M. P.

    2010-06-01

    The Cycle 23-Cycle 24 minimum was deep and prolonged, similar to minima of the late 19th and early 20th centuries but quite different from those between the overlapping cycles of the early space age. This provides a unique opportunity to study the Sun at very low levels of magnetic activity. Here we examine the quiet Sun, defining it to be those portions of the Sun for which continuum intensity variations are dominated by thermal perturbations as opposed to opacity fluctuations due to the presence of magnetic fields. We briefly present evidence that: (1) The expected thermal signature of the solar supergranulation can not be separated from magnetic contributions without masking the contribution of at least 95% of the pixels. By this measure, at most 5% of the Sun is truly quiet. (2) There was a rapid decay of active network magnetic fields entering this solar minimum, a consequent increase in the internetwork area, but a nearly constant fractional area covered by network fields. This suggests the continuous fragmentation and decay of active region fields into weaker field components, but also, possibly, an underlying continuous flux concentration mechanism maintaining the network field. (3) One of the first flux emergence episodes of Cycle 24 did not occur as a coherent active region, but instead in the form of disorganized spatially-dispersed small-scale magnetic elements. Under the paradigm of a deep-rooted dynamo, this suggests an episode of incoherent field loss from the generation region or a failed/shredded omega loop rise through the convection zone.

  3. Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets. 1: Method and sensitivity to input data uncertainties

    NASA Technical Reports Server (NTRS)

    Zhang, Y.-C.; Rossow, W. B.; Lacis, A. A.

    1995-01-01

    The largest uncertainty in upwelling shortwave (SW) fluxes (approximately equal 10-15 W/m(exp 2), regional daily mean) is caused by uncertainties in land surface albedo, whereas the largest uncertainty in downwelling SW at the surface (approximately equal 5-10 W/m(exp 2), regional daily mean) is related to cloud detection errors. The uncertainty of upwelling longwave (LW) fluxes (approximately 10-20 W/m(exp 2), regional daily mean) depends on the accuracy of the surface temperature for the surface LW fluxes and the atmospheric temperature for the top of atmosphere LW fluxes. The dominant source of uncertainty is downwelling LW fluxes at the surface (approximately equal 10-15 W/m(exp 2)) is uncertainty in atmospheric temperature and, secondarily, atmospheric humidity; clouds play little role except in the polar regions. The uncertainties of the individual flux components and the total net fluxes are largest over land (15-20 W/m(exp 2)) because of uncertainties in surface albedo (especially its spectral dependence) and surface temperature and emissivity (including its spectral dependence). Clouds are the most important modulator of the SW fluxes, but over land areas, uncertainties in net SW at the surface depend almost as much on uncertainties in surface albedo. Although atmospheric and surface temperature variations cause larger LW flux variations, the most notable feature of the net LW fluxes is the changing relative importance of clouds and water vapor with latitude. Uncertainty in individual flux values is dominated by sampling effects because of large natrual variations, but uncertainty in monthly mean fluxes is dominated by bias errors in the input quantities.

  4. Diurnal patterns of methane flux from a seasonal wetland: mechanisms and methodology

    USGS Publications Warehouse

    Bansal, Sheel; Tangen, Brian; Finocchiaro, Raymond

    2018-01-01

    Methane emissions from wetlands are temporally dynamic. Few chamber-based studies have explored diurnal variation in methane flux with high temporal replication. Using an automated sampling system, we measured methane flux every 2.5 to 4 h for 205 diel cycles during three growing seasons (2013–2015) from a seasonal wetland in the Prairie Pothole Region of North America. During ponded conditions, fluxes were generally positive (i.e., methanogenesis dominant, 10.1 ± 0.8 mg m−2 h−1), had extreme range of variation (from −1 to 70 mg m−2 h−1), and were highest during late day. In contrast, during dry conditions fluxes were very low and primarily negative (i.e., oxidation dominant, −0.05 ± 0.002 mg m−2 h−1), with the highest (least negative) fluxes occurring at pre-dawn. During semi-saturated conditions, methane fluxes also were very low, oscillated between positive and negative values (i.e., balanced between methanogenesis and methane oxidation), and exhibited no diel pattern. Methane flux was positively correlated with air temperature during ponded conditions (r = 0.57) and negatively during dry conditions (r = −0.42). Multiple regression analyses showed that temperature, light and water-filled pore space explained 72% of variation in methane flux. Methane fluxes are highly temporally dynamic and follow contrasting diel patterns that are dependent on dominant microbial processes influenced by saturation state.

  5. UNVEILING THE PHYSICS OF LOW-LUMINOSITY AGNs THROUGH X-RAY VARIABILITY: LINER VERSUS SEYFERT 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernández-García, L.; Masegosa, J.; Márquez, I.

    X-ray variability is very common in active galactic nuclei (AGNs), but these variations may not occur similarly in different families of AGNs. We aim to disentangle the structure of low-ionization nuclear emission-line regions (LINERs) compared to Seyfert 2s by the study of their spectral properties and X-ray variations. We assembled the X-ray spectral parameters and variability patterns, which were obtained from simultaneous spectral fittings. Major differences are observed in the X-ray luminosities and the Eddington ratios, which are higher in Seyfert 2s. Short-term X-ray variations were not detected, while long-term changes are common in LINERs and Seyfert 2s. Compton-thick sourcesmore » generally do not show variations, most probably because the AGN is not accesible in the 0.5–10 keV energy band. The changes are mostly related to variations in the nuclear continuum, but other patterns of variability show that variations in the absorbers and at soft energies can be present in a few cases. We conclude that the X-ray variations may occur similarly in LINERs and Seyfert 2s, i.e., they are related to the nuclear continuum, although they might have different accretion mechanisms. Variations at UV frequencies are detected in LINER nuclei but not in Seyfert 2s. This is suggestive of at least some LINERs having an unobstructed view of the inner disk where the UV emission might take place, with UV variations being common in them. This result might be compatible with the disappeareance of the torus and/or the broad-line region in at least some LINERs.« less

  6. Time variation of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Evenson, Paul

    1988-01-01

    Time variations in the flux of galactic cosmic rays are the result of changing conditions in the solar wind. Maximum cosmic ray fluxes, which occur when solar activity is at a minimum, are well defined. Reductions from this maximum level are typically systematic and predictable but on occasion are rapid and unexpected. Models relating the flux level at lower energy to that at neutron monitor energy are typically accurate to 20 percent of the total excursion at that energy. Other models, relating flux to observables such as sunspot number, flare frequency, and current sheet tilt are phenomenological but nevertheless can be quite accurate.

  7. On the variability of LSI+61 deg 303 (identical with GT 0236)

    NASA Technical Reports Server (NTRS)

    Tanzi, E. G.; Bignami, G. F.; Caraveo, P. A.; Maraschi, L.; Sormani, F.; Treves, A.

    1982-01-01

    Out of six long and six short wavelength observations, one spectrum exhibits a significant photometric variation: or approximately 20%. Interpreting the continuum as due to superposition of an early B main sequence star plus a gaseous component contributing at lambda 2000 A, the wavelength dependence of the variation suggests that it derives from the latter component. The data indicate that if the observed variation is phase dependent, a minimum should occur between phases 0.8 and 0.2. However, since the variation is observed in only one spectrum, it may well be erratic.

  8. Seasonal variation, flux estimation, and source analysis of dissolved emerging organic contaminants in the Yangtze Estuary, China.

    PubMed

    Zhao, Heng; Cao, Zhen; Liu, Xue; Zhan, Yi; Zhang, Jing; Xiao, Xi; Yang, Yi; Zhou, Junliang; Xu, Jiang

    2017-12-15

    The occurrence and seasonal variation of 24 dissolved emerging organic contaminants in the Yangtze Estuary were studied, including 12 non-antibiotic pharmaceuticals, seven sulfonamides, two macrolides and three chloramphenicols. Sulfadiazine, erythromycin, thiamphenicol and paracetamol were the primary contaminants in sulfonamides, macrolides, chloramphenicols and non-antibiotic pharmaceutical groups, respectively. Compared to the concentrations at Datong, chloramphenicols at Xuliujing were significantly higher in autumn and winter, while macrolides were lower in spring. Based on the flux estimation, approximately 37.1 tons of sulfonamides, 17.4 tons of macrolides, 79.2 tons of chloramphenicols and 14.1 tons of non-antibiotic pharmaceuticals were discharged into the Yangtze Estuary from June 2013 to May 2014. However, the total flux from the Huangpu River only represented 5% of the total. The pharmaceutical sources were speculated on by analyzing the seasonal variations in pharmaceutical concentrations and fluxes at various sites. Both environmental and social factors might affect the fluxes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. SAMPEX/PET model of the low altitude trapped proton environment

    NASA Astrophysics Data System (ADS)

    Heynderickx, D.; Looper, M. D.; Blake, J. B.

    The low-altitude trapped proton population exhibits strong time variations related to geomagnetic secular variation and neutral atmosphere conditions. The flux measurements of the Proton Electron Telescope (PET) onboard the polar satellite SAMPEX constitute an adequate data set to distinguish different time scales and to characterise the respective variations. As a first step towards building a dynamic model of the low altitude proton environment we binned the 1995-1996 PET data into a model map with functional dependencies of the proton fluxes on the F10.7 solar radio flux and on the time of year to represent variations on the time scale of the solar cycle and seasonal variations. Now, a full solar cycle of SAMPEX/PET data is available, so that the preliminary model could be extended. The secular variation of the geomagnetic field is included in the model, as it is constructed using Kaufmann's K=I √{B} instead of McIlwain's L as a map coordinate.

  10. Radio astronomy aspects of the NASA SETI Sky Survey

    NASA Technical Reports Server (NTRS)

    Klein, Michael J.

    1986-01-01

    The application of SETI data to radio astronomy is studied. The number of continuum radio sources in the 1-10 GHz region to be counted and cataloged is predicted. The radio luminosity functions for steep and flat spectrum sources at 2, 8, and 22 GHz are derived using the model of Peacock and Gull (1981). The relation between source number and flux density is analyzed and the sensitivity of the system is evaluated.

  11. Mid-IR Spectra Herbig Ae/Be Stars

    NASA Technical Reports Server (NTRS)

    Wooden, Diane; Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    Herbig Ae/Be stars are intermediate mass pre-main sequence stars, the higher mass analogues to the T Tauri stars. Because of their higher mass, they are expected form more rapidly than the T Tauri stars. Whether the Herbig Ae/Be stars accrete only from collapsing infalling envelopes or whether accrete through geometrically flattened viscous accretion disks is of current debate. When the Herbig Ae/Be stars reach the main sequence they form a class called Vega-like stars which are known from their IR excesses to have debris disks, such as the famous beta Pictoris. The evolutionary scenario between the pre-main sequence Herbig Ae/Be stars and the main sequence Vega-like stars is not yet revealed and it bears on the possibility of the presence of Habitable Zone planets around the A stars. Photometric studies of Herbig Ae/Be stars have revealed that most are variable in the optical, and a subset of stars show non-periodic drops of about 2 magnitudes. These drops in visible light are accompanied by changes in their colors: at first the starlight becomes reddened, and then it becomes bluer, the polarization goes from less than 0.1 % to roughly 1% during these minima. The theory postulated by V. Grinnin is that large cometary bodies on highly eccentric orbits occult the star on their way to being sublimed, for systems that are viewed edge-on. This theory is one of several controversial theories about the nature of Herbig Ae/Be stars. A 5 year mid-IR spectrophotometric monitoring campaign was begun by Wooden and Butner in 1992 to look for correlations between the variations in visible photometry and mid-IR dust emission features. Generally the approximately 20 stars that have been observed by the NASA Ames HIFOGS spectrometer have been steady at 10 microns. There are a handful, however, that have shown variable mid-IR spectra, with 2 showing variations in both the continuum and features anti-correlated with visual photometry, and 3 showing variations in the emission features only while the continuum level remained unchanged. The first 2 stars mentioned probably have reprocessing envelopes. The other 3 stars gives important clues to the controversy over the geometry of the gas and dust around these pre-main sequence stars: the steady underlying 10 microns continuum and variable features indicates that an optically thick continuum probably arising from an accretion disk is decoupled from the optically thin emission features which may arise in a disk atmosphere. Bernadette Rodgers has joined this monitoring campaign in the near-IR using GRIMII with the goal of detecting variations in the hot dust continuum and the gas density in the dense accretion region close to these stars.

  12. Seasonal and Interannual Variations of Heat Fluxes in the Barents Sea Region

    NASA Astrophysics Data System (ADS)

    Bashmachnikov, I. L.; Yurova, A. Yu.; Bobylev, L. P.; Vesman, A. V.

    2018-03-01

    Seasonal and interannual variations in adjective heat fluxes in the ocean ( dQ oc) and the convergence of advective heat fluxes in the atmosphere ( dQ atm) in the Barents Sea region have been investigated over the period of 1993-2012 using the results of the MIT regional eddy-permitting model and ERA-Interim atmospheric reanalysis. Wavelet analysis and singular spectrum analysis are used to reveal concealed periodicities. Seasonal 2- to 4- and 5- to 8-year cycles are revealed in the dQ oc and dQ atm data. It is also found that seasonal variations in dQ oc are primarily determined by the integrated volume fluxes through the western boundary of the Barents Sea, whereas the 20-year trend is determined by the temperature variation of the transported water. A cross-wavelet analysis of dQ oc and dQ atm in the Barents Sea region shows that the seasonal variations in dQ oc and dQ atm are nearly in-phase, while their interannual variations are out-of-phase. It is concluded that the basin of the Barents Sea plays an important role in maintaining the feedback mechanism (the Bjerknes compensation) of the ocean-atmosphere system in the Arctic region.

  13. Point and Compact Hα Sources in the Interior of M33

    NASA Astrophysics Data System (ADS)

    Moody, J. Ward; Hintz, Eric G.; Joner, Michael D.; Roming, Peter W. A.; Hintz, Maureen L.

    2017-12-01

    A variety of interesting objects such as Wolf-Rayet stars, tight OB associations, planetary nebulae, X-ray binaries, etc., can be discovered as point or compact sources in Hα surveys. How these objects distribute through a galaxy sheds light on the galaxy star formation rate and history, mass distribution, and dynamics. The nearby galaxy M33 is an excellent place to study the distribution of Hα-bright point sources in a flocculant spiral galaxy. We have reprocessed an archived WIYN continuum-subtracted Hα image of the inner 6.‧5 × 6.‧5 of M33 and, employing both eye and machine searches, have tabulated sources with a flux greater than approximately 10-15 erg cm-2s-1. We have effectively recovered previously mapped H II regions and have identified 152 unresolved point sources and 122 marginally resolved compact sources, of which 39 have not been previously identified in any archive. An additional 99 Hα sources were found to have sufficient archival flux values to generate a Spectral Energy Distribution. Using the SED, flux values, Hα flux value, and compactness, we classified 67 of these sources.

  14. RXTE Observations of Cas A

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.; Lingenfelter, R. E.; Heindl, W. A.; Blanco, P. R.; Pelling, M. R.; Gruber, D. E.; Allen, G. E.; Jahoda, K.; Swank, J. H.; Woosley, S. E.; hide

    1997-01-01

    The exciting detection by the COMPTEL instrument of the 1157 keV Ti-44 line from the supernova remnant Cas A sets important new constraints on supernova dynamics and nucleosynthesis. The Ti-44 decay also produces x-ray lines at 68 and 78 keV, whose flux should be essentially the same as that of the gamma ray line. The revised COMPTEL flux of 4 x l0(exp -5) cm(exp -2)s(exp -1) is very near the sensitivity limit for line detection by the HEXTE instrument on RXTE. We report on the results from two RXTE observations - 20 ks during In Orbit Checkout in January 1996 and 200 ks in April 1996. We also find a strong continuum emission suggesting cosmic ray electron acceleration in the remnant.

  15. Discrete Calculus as a Bridge between Scales

    NASA Astrophysics Data System (ADS)

    Degiuli, Eric; McElwaine, Jim

    2012-02-01

    Understanding how continuum descriptions of disordered media emerge from the microscopic scale is a fundamental challenge in condensed matter physics. In many systems, it is necessary to coarse-grain balance equations at the microscopic scale to obtain macroscopic equations. We report development of an exact, discrete calculus, which allows identification of discrete microscopic equations with their continuum equivalent [1]. This allows the application of powerful techniques of calculus, such as the Helmholtz decomposition, the Divergence Theorem, and Stokes' Theorem. We illustrate our results with granular materials. In particular, we show how Newton's laws for a single grain reproduce their continuum equivalent in the calculus. This allows introduction of a discrete Airy stress function, exactly as in the continuum. As an application of the formalism, we show how these results give the natural mean-field variation of discrete quantities, in agreement with numerical simulations. The discrete calculus thus acts as a bridge between discrete microscale quantities and continuous macroscale quantities. [4pt] [1] E. DeGiuli & J. McElwaine, PRE 2011. doi: 10.1103/PhysRevE.84.041310

  16. Low-Density Nozzle Flow by the Direct Simulation Monte Carlo and Continuum Methods

    NASA Technical Reports Server (NTRS)

    Chung, Chang-Hong; Kim, Sku C.; Stubbs, Robert M.; Dewitt, Kenneth J.

    1994-01-01

    Two different approaches, the direct simulation Monte Carlo (DSMC) method based on molecular gasdynamics, and a finite-volume approximation of the Navier-Stokes equations, which are based on continuum gasdynamics, are employed in the analysis of a low-density gas flow in a small converging-diverging nozzle. The fluid experiences various kinds of flow regimes including continuum, slip, transition, and free-molecular. Results from the two numerical methods are compared with Rothe's experimental data, in which density and rotational temperature variations along the centerline and at various locations inside a low-density nozzle were measured by the electron-beam fluorescence technique. The continuum approach showed good agreement with the experimental data as far as density is concerned. The results from the DSMC method showed good agreement with the experimental data, both in the density and the rotational temperature. It is also shown that the simulation parameters, such as the gas/surface interaction model, the energy exchange model between rotational and translational modes, and the viscosity-temperature exponent, have substantial effects on the results of the DSMC method.

  17. Sensitivity of the Properties of Ruthenium “Blue Dimer” to Method, Basis Set, and Continuum Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozkanlar, Abdullah; Clark, Aurora E.

    2012-05-23

    The ruthenium “blue dimer” [(bpy)2RuIIIOH2]2O4+ is best known as the first well-defined molecular catalyst for water oxidation. It has been subject to numerous computational studies primarily employing density functional theory. However, those studies have been limited in the functionals, basis sets, and continuum models employed. The controversy in the calculated electronic structure and the reaction energetics of this catalyst highlights the necessity of benchmark calculations that explore the role of density functionals, basis sets, and continuum models upon the essential features of blue-dimer reactivity. In this paper, we report Kohn-Sham complete basis set (KS-CBS) limit extrapolations of the electronic structuremore » of “blue dimer” using GGA (BPW91 and BP86), hybrid-GGA (B3LYP), and meta-GGA (M06-L) density functionals. The dependence of solvation free energy corrections on the different cavity types (UFF, UA0, UAHF, UAKS, Bondi, and Pauling) within polarizable and conductor-like polarizable continuum model has also been investigated. The most common basis sets of double-zeta quality are shown to yield results close to the KS-CBS limit; however, large variations are observed in the reaction energetics as a function of density functional and continuum cavity model employed.« less

  18. APPARENT CROSS-FIELD SUPERSLOW PROPAGATION OF MAGNETOHYDRODYNAMIC WAVES IN SOLAR PLASMAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, T.; Yokoyama, T.; Goossens, M.

    2015-10-20

    In this paper we show that the phase-mixing of continuum Alfvén waves and/or continuum slow waves in the magnetic structures of the solar atmosphere as, e.g., coronal arcades, can create the illusion of wave propagation across the magnetic field. This phenomenon could be erroneously interpreted as fast magnetosonic waves. The cross-field propagation due to the phase-mixing of continuum waves is apparent because there is no real propagation of energy across the magnetic surfaces. We investigate the continuous Alfvén and slow spectra in two-dimensional (2D) Cartesian equilibrium models with a purely poloidal magnetic field. We show that apparent superslow propagation acrossmore » the magnetic surfaces in solar coronal structures is a consequence of the existence of continuum Alfvén waves and continuum slow waves that naturally live on those structures and phase-mix as time evolves. The apparent cross-field phase velocity is related to the spatial variation of the local Alfvén/slow frequency across the magnetic surfaces and is slower than the Alfvén/sound velocities for typical coronal conditions. Understanding the nature of the apparent cross-field propagation is important for the correct analysis of numerical simulations and the correct interpretation of observations.« less

  19. Modal kinematics for multisection continuum arms.

    PubMed

    Godage, Isuru S; Medrano-Cerda, Gustavo A; Branson, David T; Guglielmino, Emanuele; Caldwell, Darwin G

    2015-05-13

    This paper presents a novel spatial kinematic model for multisection continuum arms based on mode shape functions (MSF). Modal methods have been used in many disciplines from finite element methods to structural analysis to approximate complex and nonlinear parametric variations with simple mathematical functions. Given certain constraints and required accuracy, this helps to simplify complex phenomena with numerically efficient implementations leading to fast computations. A successful application of the modal approximation techniques to develop a new modal kinematic model for general variable length multisection continuum arms is discussed. The proposed method solves the limitations associated with previous models and introduces a new approach for readily deriving exact, singularity-free and unique MSF's that simplifies the approach and avoids mode switching. The model is able to simulate spatial bending as well as straight arm motions (i.e., pure elongation/contraction), and introduces inverse position and orientation kinematics for multisection continuum arms. A kinematic decoupling feature, splitting position and orientation inverse kinematics is introduced. This type of decoupling has not been presented for these types of robotic arms before. The model also carefully accounts for physical constraints in the joint space to provide enhanced insight into practical mechanics and impose actuator mechanical limitations onto the kinematics thus generating fully realizable results. The proposed method is easily applicable to a broad spectrum of continuum arm designs.

  20. Three-dimensional variations of atmospheric CO2: aircraft measurements and multi-transport model simulations

    NASA Astrophysics Data System (ADS)

    Niwa, Y.; Patra, P. K.; Sawa, Y.; Machida, T.; Matsueda, H.; Belikov, D.; Maki, T.; Ikegami, M.; Imasu, R.; Maksyutov, S.; Oda, T.; Satoh, M.; Takigawa, M.

    2011-12-01

    Numerical simulation and validation of three-dimensional structure of atmospheric carbon dioxide (CO2) is necessary for quantification of transport model uncertainty and its role on surface flux estimation by inverse modeling. Simulations of atmospheric CO2 were performed using four transport models and two sets of surface fluxes compared with an aircraft measurement dataset of Comprehensive Observation Network for Trace gases by AIrLiner (CONTRAIL), covering various latitudes, longitudes, and heights. Under this transport model intercomparison project, spatiotemporal variations of CO2 concentration for 2006-2007 were analyzed with a three-dimensional perspective. Results show that the models reasonably simulated vertical profiles and seasonal variations not only over northern latitude areas but also over the tropics and southern latitudes. From CONTRAIL measurements and model simulations, intrusion of northern CO2 in to the Southern Hemisphere, through the upper troposphere, was confirmed. Furthermore, models well simulated the vertical propagation of seasonal variation in the northern free troposphere. However, significant model-observation discrepancies were found in Asian regions, which are attributable to uncertainty of the surface CO2 flux data. In summer season, differences in latitudinal gradients by the fluxes are comparable to or greater than model-model differences even in the free troposphere. This result suggests that active summer vertical transport sufficiently ventilates flux signals up to the free troposphere and the models could use those for inferring surface CO2 fluxes.

  1. Unusual solar energetic proton fluxes at 1 AU within an interplanetary CME

    NASA Astrophysics Data System (ADS)

    Mulligan, T.; Blake, J. B.; Mewaldt, R. A.

    In mid December 2006 several flares on the Sun occurred in rapid succession, spawning several CMEs and bathing the Earth in multiple solar energetic particle (SEP) events. One such SEP occurring on December 15th was observed at the Earth just as an interplanetary CME (ICME) from a previous flare on December 13th was transiting the Earth. Although solar wind observations during this time show typical energetic proton fluxes from the prior SEP and IP shock driven ahead of the ICME, as the ICME passes the Earth unusual energetic particle signatures are observed. Measurements from ACE, Wind, and STEREO show unusual proton flux variations at energies ranging from ~3 MeV up to greater than 70 MeV. Within the Earth’s magnetosphere Polar HIST also sees unusual proton flux variations at energies greater than 10 MeV while crossing open field lines in the southern polar cap. However, no such variation in the energetic proton flux is observed at the GOES 10 or GOES 11 spacecraft in geosynchronous orbit. Differential fluxes observed at GOES 12 in the 15-40 MeV energy range show some variation. However, the overall energetic particle signature within the ICME at GEO orbits remains unclear. This event illustrates the need for caution when using GEO data in statistical studies of SEP events and in interplanetary models of energetic particle transport to 1 AU.

  2. Propagating bound states in the continuum in dielectric gratings

    NASA Astrophysics Data System (ADS)

    Bulgakov, E. N.; Maksimov, D. N.; Semina, P. N.; Skorobogatov, S. A.

    2018-06-01

    We consider propagating bound states in the continuum in dielectric gratings. The gratings consist of a slab with ridges periodically arranged ether on top or on the both sides of the slab. Based on the Fourier modal approach we recover the leaky zones above the line of light to identify the geometries of the gratings supporting Bloch bound states propagating in the direction perpendicular to the ridges. Most importantly, it is demonstrated that if a two-side grating possesses either mirror or glide symmetry the Bloch bound states are stable to variation of parameters as far as the above symmetries are preserved.

  3. Haro 11: Where is the Lyman Continuum Source?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keenan, Ryan P.; Oey, M. S.; Jaskot, Anne E.

    2017-10-10

    Identifying the mechanism by which high-energy Lyman continuum (LyC) photons escaped from early galaxies is one of the most pressing questions in cosmic evolution. Haro 11 is the best known local LyC-leaking galaxy, providing an important opportunity to test our understanding of LyC escape. The observed LyC emission in this galaxy presumably originates from one of the three bright, photoionizing knots known as A, B, and C. It is known that Knot C has strong Ly α emission, and Knot B hosts an unusually bright ultraluminous X-ray source, which may be a low-luminosity active galactic nucleus. To clarify the LyCmore » source, we carry out ionization-parameter mapping (IPM) by obtaining narrow-band imaging from the Hubble Space Telescope WFC3 and ACS cameras to construct spatially resolved ratio maps of [O iii]/[O ii] emission from the galaxy. IPM traces the ionization structure of the interstellar medium and allows us to identify optically thin regions. To optimize the continuum subtraction, we introduce a new method for determining the best continuum scale factor derived from the mode of the continuum-subtracted, image flux distribution. We find no conclusive evidence of LyC escape from Knots B or C, but instead we identify a high-ionization region extending over at least 1 kpc from Knot A. This knot shows evidence of an extremely young age (≲1 Myr), perhaps containing very massive stars (>100 M {sub ⊙}). It is weak in Ly α , so if it is confirmed as the LyC source, our results imply that LyC emission may be independent of Ly α emission.« less

  4. On the Nature of Orion Source I

    NASA Astrophysics Data System (ADS)

    Báez-Rubio, A.; Jiménez-Serra, I.; Martín-Pintado, J.; Zhang, Q.; Curiel, S.

    2018-01-01

    The Kleinmann–Low nebula in Orion, the closest region of massive star formation, harbors Source I, whose nature is under debate. Knowledge of this source may have profound implications for our understanding of the energetics of the hot core in Orion KL since it might be the main heating source in the region. The spectral energy distribution of this source in the radio is characterized by a positive spectral index close to 2, which is consistent with (i) thermal bremsstrahlung emission of ionized hydrogen gas produced by a central massive protostar, or (ii) photospheric bremsstrahlung emission produced by electrons when deflected by the interaction with neutral and molecular hydrogen like Mira-like variable stars. If ionized hydrogen gas were responsible for the observed continuum emission, its modeling would predict detectable emission from hydrogen radio recombination lines (RRLs). However, our SMA observations were obtained with a high enough sensitivity to rule out that the radio continuum emission arises from a dense hypercompact H II region because the H26α line would have been detected, in contrast with our observations. To explain the observational constraints, we investigate further the nature of the radio continuum emission from source I. We have compared available radio continuum data with the predictions from our upgraded non-LTE 3D radiative transfer model, MOdel for REcombination LInes, to show that radio continuum fluxes and sizes can only be reproduced by assuming both dust and bremsstrahlung emission from neutral gas. The dust emission contribution is significant at ν ≥ 43 GHz. In addition, our RRL peak intensity predictions for the ionized metals case are consistent with the nondetection of Na and K RRLs at millimeter and submillimeter wavelengths.

  5. Near-zero methane emission from an abandoned boreal peatland pasture based on eddy covariance measurements

    PubMed Central

    Wang, Mei; Luan, Junwei; Lafleur, Peter; Chen, Huai; Zhu, Xinbiao

    2017-01-01

    Although estimates of the annual methane (CH4) flux from agriculturally managed peatlands exist, knowledge of controls over the variation of CH4 at different time-scales is limited due to the lack of high temporal-resolution data. Here we present CH4 fluxes measured from May 2014 to April 2016 using the eddy covariance technique at an abandoned peatland pasture in western Newfoundland, Canada. The goals of the study were to identify the controls on the seasonal variations in CH4 flux and to quantify the annual CH4 flux. The seasonal variation in daily CH4 flux was not strong in the two study years, however a few periods of pronounced emissions occurred in the late growing season. The daily average CH4 flux was small relative to other studies, ranging from -4.1 to 9.9 nmol m-2 s-1 in 2014–15 and from -7.1 to 12.1 nmol m-2 s-1 in 2015–16. Stepwise multiple regression was used to investigate controls on CH4 flux and this analysis found shifting controls on CH4 flux at different periods of the growing season. During the early growing season CH4 flux was closely related to carbon dioxide fixation rates, suggesting substrate availability was the main control. The peak growing season CH4 flux was principally controlled by the CH4 oxidation in 2014, where the CH4 flux decreased and increased with soil temperature at 50 cm and soil water content at 10 cm, but a contrasting temperature-CH4 relation was found in 2015. The late growing season CH4 flux was found to be regulated by the variation in water table level and air temperature in 2014. The annual CH4 emission was near zero in both study years (0.36 ± 0.30 g CH4 m-2 yr-1 in 2014–15 and 0.13 ± 0.38 g CH4 m-2 yr-1 in 2015–16), but fell within the range of CH4 emissions reported for agriculturally managed peatlands elsewhere. PMID:29252998

  6. Near-zero methane emission from an abandoned boreal peatland pasture based on eddy covariance measurements.

    PubMed

    Wang, Mei; Wu, Jianghua; Luan, Junwei; Lafleur, Peter; Chen, Huai; Zhu, Xinbiao

    2017-01-01

    Although estimates of the annual methane (CH4) flux from agriculturally managed peatlands exist, knowledge of controls over the variation of CH4 at different time-scales is limited due to the lack of high temporal-resolution data. Here we present CH4 fluxes measured from May 2014 to April 2016 using the eddy covariance technique at an abandoned peatland pasture in western Newfoundland, Canada. The goals of the study were to identify the controls on the seasonal variations in CH4 flux and to quantify the annual CH4 flux. The seasonal variation in daily CH4 flux was not strong in the two study years, however a few periods of pronounced emissions occurred in the late growing season. The daily average CH4 flux was small relative to other studies, ranging from -4.1 to 9.9 nmol m-2 s-1 in 2014-15 and from -7.1 to 12.1 nmol m-2 s-1 in 2015-16. Stepwise multiple regression was used to investigate controls on CH4 flux and this analysis found shifting controls on CH4 flux at different periods of the growing season. During the early growing season CH4 flux was closely related to carbon dioxide fixation rates, suggesting substrate availability was the main control. The peak growing season CH4 flux was principally controlled by the CH4 oxidation in 2014, where the CH4 flux decreased and increased with soil temperature at 50 cm and soil water content at 10 cm, but a contrasting temperature-CH4 relation was found in 2015. The late growing season CH4 flux was found to be regulated by the variation in water table level and air temperature in 2014. The annual CH4 emission was near zero in both study years (0.36 ± 0.30 g CH4 m-2 yr-1 in 2014-15 and 0.13 ± 0.38 g CH4 m-2 yr-1 in 2015-16), but fell within the range of CH4 emissions reported for agriculturally managed peatlands elsewhere.

  7. Modeling Bimolecular Reactive Transport With Mixing-Limitation: Theory and Application to Column Experiments

    NASA Astrophysics Data System (ADS)

    Ginn, T. R.

    2018-01-01

    The challenge of determining mixing extent of solutions undergoing advective-dispersive-diffusive transport is well known. In particular, reaction extent between displacing and displaced solutes depends on mixing at the pore scale, that is, generally smaller than continuum scale quantification that relies on dispersive fluxes. Here a novel mobile-mobile mass transfer approach is developed to distinguish diffusive mixing from dispersive spreading in one-dimensional transport involving small-scale velocity variations with some correlation, such as occurs in hydrodynamic dispersion, in which short-range ballistic transports give rise to dispersed but not mixed segregation zones, termed here ballisticules. When considering transport of a single solution, this approach distinguishes self-diffusive mixing from spreading, and in the case of displacement of one solution by another, each containing a participant reactant of an irreversible bimolecular reaction, this results in time-delayed diffusive mixing of reactants. The approach generates models for both kinetically controlled and equilibrium irreversible reaction cases, while honoring independently measured reaction rates and dispersivities. The mathematical solution for the equilibrium case is a simple analytical expression. The approach is applied to published experimental data on bimolecular reactions for homogeneous porous media under postasymptotic dispersive conditions with good results.

  8. Knudsen paradox in granular gases and the roles of thermal and athermal walls

    NASA Astrophysics Data System (ADS)

    Gupta, Ronak; Alam, Meheboob

    2017-11-01

    The well-known `Knudsen-paradox' (which refers to the decrease of the mass-flow rate of a gas with increasing Knudsen number Kn , reaching a minimum at Kn O(1) and increasing logarithmically with Kn as Kn -> ∞) is revisited using direct simulation Monte Carlo (DSMC) method. It is shown that the `Knudsen-paradox' survives in the acceleration-driven Poiseuille flow of a granular gas in contact with thermal-walls. This result is in contradiction with recent molecular dynamics simulations (Alam et al., J. Fluid Mech., vol. 782, 2015, pp. 99-126) that revealed the absence of the Knudsen-minimum in granular Poiseuille flow. The above conundrum is resolved by distinguishing between `thermal' and `athermal' walls, and it is shown that, for both molecular and granular gases, the momentum-transfer to athermal-walls is much lower than that to thermal-walls which is directly responsible for the ``anomalous'' flow-rate-variation with Kn . In the continuum limit of Kn -> 0 , the athermal walls are found to be closely related to `non-flux/adiabatic' walls. The underlying mechanistic arguments lead to Maxwell's slip-boundary condition and a possible characterization of athermal walls in terms of an effective specularity coefficient is discussed.

  9. NUSTAR and Suzaku x-ray spectroscopy of NGC 4151: Evidence for reflection from the inner accretion disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.

    We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spinmore » $$a\\gt 0.9$$ accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. We discuss various physical scenarios for the IDR model and we find that a compact corona is consistent with the observed features.« less

  10. NuSTAR and Suzaku X-ray Spectroscopy of NGC 4151: Evidence for Reflection from the Inner Accretion Disk

    NASA Astrophysics Data System (ADS)

    Keck, M. L.; Brenneman, L. W.; Ballantyne, D. R.; Bauer, F.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Dauser, T.; Elvis, M.; Fabian, A. C.; Fuerst, F.; García, J.; Grefenstette, B. W.; Hailey, C. J.; Harrison, F. A.; Madejski, G.; Marinucci, A.; Matt, G.; Reynolds, C. S.; Stern, D.; Walton, D. J.; Zoghbi, A.

    2015-06-01

    We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption, and reflection properties of the active galactic nucleus (AGN) by applying inner accretion disk reflection and absorption-dominated models. With a time-averaged spectral analysis, we find strong evidence for relativistic reflection from the inner accretion disk. We find that relativistic emission arises from a highly ionized inner accretion disk with a steep emissivity profile, which suggests an intense, compact illuminating source. We find a preliminary, near-maximal black hole spin a\\gt 0.9 accounting for statistical and systematic modeling errors. We find a relatively moderate reflection fraction with respect to predictions for the lamp post geometry, in which the illuminating corona is modeled as a point source. Through a time-resolved spectral analysis, we find that modest coronal and inner disk reflection (IDR) flux variation drives the spectral variability during the observations. We discuss various physical scenarios for the IDR model and we find that a compact corona is consistent with the observed features.

  11. EUCLIA—Exploring the UV/Optical Continuum Lag in Active Galactic Nuclei. I. A Model without Light Echoing

    NASA Astrophysics Data System (ADS)

    Cai, Zhen-Yi; Wang, Jun-Xian; Zhu, Fei-Fan; Sun, Mou-Yuan; Gu, Wei-Min; Cao, Xin-Wu; Yuan, Feng

    2018-03-01

    The tight interband correlation and the lag–wavelength relation among UV/optical continua of active galactic nuclei have been firmly established. They are usually understood within the widespread reprocessing scenario; however, the implied interband lags are generally too small. Furthermore, it is challenged by new evidence, such as that the X-ray reprocessing yields too much high-frequency UV/optical variation and that it fails to reproduce the observed timescale-dependent color variations among the Swift light curves of NGC 5548. In a different manner, we demonstrate that an upgraded inhomogeneous accretion disk model, whose local independent temperature fluctuations are subject to a speculated common large-scale temperature fluctuation, can intrinsically generate the tight interband correlation and lag across the UV/optical and be in nice agreement with several observational properties of NGC 5548, including the timescale-dependent color variation. The emergent lag is a result of the differential regression capability of local temperature fluctuations when responding to the large-scale fluctuation. An average speed of propagations as large as ≳15% of the speed of light may be required by this common fluctuation. Several potential physical mechanisms for such propagations are discussed. Our interesting phenomenological scenario may shed new light on comprehending the UV/optical continuum variations of active galactic nuclei.

  12. Cosmic ray modulation by high-speed solar wind fluxes

    NASA Technical Reports Server (NTRS)

    Dorman, L. I.; Kaminer, N. S.; Kuzmicheva, A. E.; Mymrina, N. V.

    1985-01-01

    Cosmic ray intensity variations connected with recurrent high-speed fluxes (HSF) of solar wind are investigated. The increase of intensity before the Earth gets into a HSF, north-south anisotropy and diurnal variation of cosmic rays inside a HSF as well as the characteristics of Forbush decreases are considered.

  13. Chromatic microlensing in HE0047-1756 and SDSS1155+6346

    NASA Astrophysics Data System (ADS)

    Rojas, K.; Motta, V.; Mediavilla, E.; Falco, E.; Muñoz, J. A.

    2014-10-01

    The gravitational lens effect occurs when the light is deflected in the presence of a gravitational field, generating multiple images or arcs. Microlensing happens when a compact object, in the lens galaxy halo, passes across a quasar lensed image. We analyzed two double systems: HE0047-1756 and SDSS1155+6346. We used spectra obtained with Magellan/IMACS (2007) and MMT/Blue-Channel (2008). The flux of emission line cores was separated from the continuum flux under them and integrated using DIPSO software. Comparing the magnitude differences in the emission line cores with the magnitude differences in the continuum under the lines (Motta et. al 2012), we found evidence of chromatic microlensing in HE0047-1756 and SDSS1155+6346. Emission line core fluxes are used to model the systems with lensmodel. SIS + γ are the best models in both cases, which are in agreement with literature. SDSS1155+6346 model shows a large shear, due to the presence of MaxBCG J178.81693+63.83446 cluster. We follow Mediavilla et al. 2011, modeling the accretion disk as a Gaussian intensity profile I(R) ∝ exp(-R^{2}/2r_{s}^{2}), with r_s(λ) ∝ λ^{p}, where r_{s} is the accretion disk size and p is the power law related to the temperature of the disk p = 1/β. We estimate the probability of r_{s} and p using the measured microlensing magnification with linear and logarithmic priors on r_{s}. We found within 1σ of uncertainty, sizes between 3 and 15 light days and temperature profiles values between 1 and 1.2. These values are in agreement with the literature and Shakura & Sunyaev (1973) prediction. We acknowledge to FONDECYT 1120741 and Centro de Astrofísica, Universidad de Valparaíso.

  14. Solar UV Radiation and the Origin of Life on Earth

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Hubeny, Ivan; Lanz, Thierry; Gaidos, Eric; Kasting, James; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    We have started a comprehensive, interdisciplinary study of the influence of solar ultraviolet radiation on the atmosphere of of the early Earth. We plan to model the chemistry of the Earth atmosphere during its evolution, using observed UV flux distributions of early solar analogs as boundary conditions in photochemical models of the Earth's atmosphere. The study has four distinct but interlinked parts: (1) Establishing the radiation of the early Sun; (2) Determining the photochemistry of the early Earth's atmosphere; (3) Estimating the rates of H2 loss from the atmosphere; and (4) Ascertaining how sensitive is the photochemistry to the metallicity of the Sun. We are currently using STIS and EUVE to obtain high-quality far-UV and extreme-UV observations of three early-solar analogs. We will perform a detailed non-LTE study of each stars, and construct theoretical model photosphere, and an empirical model chromospheres, which can be used to extrapolate the continuum to the Lyman continuum region. Given a realistic flux distribution of the early Sun, we will perform photochemical modeling of weakly reducing primitive atmospheres to determine the lifetime and photochemistry of CH4. In particular, we will make estimates of the amount of CH4 present in the prebiotic atmosphere, and estimate the atmospheric CH4 concentration during the Late Archean (2.5-3.0 b.y. ago) and determine whether it would have been sufficiently abundant to help offset reduced solar luminosity at that time. Having obtained a photochemical model, we will solve for the concentrations of greenhouse gasses and important pre-biotic molecules, and perform a detailed radiative transfer calculations to compute the UV flux reaching the surface.

  15. Unusual broad-line Mg II emitters among luminous galaxies in the baryon oscillation spectroscopic survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roig, Benjamin; Blanton, Michael R.; Ross, Nicholas P.

    2014-02-01

    Many classes of active galactic nuclei (AGNs) have been observed and recorded since the discovery of Seyfert galaxies. In this paper, we examine the sample of luminous galaxies in the Baryon Oscillation Spectroscopic Survey. We find a potentially new observational class of AGNs, one with strong and broad Mg II λ2799 line emission, but very weak emission in other normal indicators of AGN activity, such as the broad-line Hα, Hβ, and the near-ultraviolet AGN continuum, leading to an extreme ratio of broad Hα/Mg II flux relative to normal quasars. Meanwhile, these objects' narrow-line flux ratios reveal AGN narrow-line regions withmore » levels of activity consistent with the Mg II fluxes and in agreement with that of normal quasars. These AGN may represent an extreme case of the Baldwin effect, with very low continuum and high equivalent width relative to typical quasars, but their ratio of broad Mg II to broad Balmer emission remains very unusual. They may also be representative of a class of AGN where the central engine is observed indirectly with scattered light. These galaxies represent a small fraction of the total population of luminous galaxies (≅ 0.1%), but are more likely (about 3.5 times) to have AGN-like nuclear line emission properties than other luminous galaxies. Because Mg II is usually inaccessible for the population of nearby galaxies, there may exist a related population of broad-line Mg II emitters in the local universe which is currently classified as narrow-line emitters (Seyfert 2 galaxies) or low ionization nuclear emission-line regions.« less

  16. Variability of sea surface height and circulation in the North Atlantic: Forcing mechanisms and linkages

    NASA Astrophysics Data System (ADS)

    Wang, Zeliang; Lu, Youyu; Dupont, Frederic; W. Loder, John; Hannah, Charles; G. Wright, Daniel

    2015-03-01

    Simulations with a coarse-resolution global ocean model during 1958-2004 are analyzed to understand the inter-annual and decadal variability of the North Atlantic. Analyses of Empirical Orthogonal Functions (EOFs) suggest relationships among basin-scale variations of sea surface height (SSH) and depth-integrated circulation, and the winter North Atlantic Oscillation (NAO) or the East Atlantic Pattern (EAP) indices. The linkages between the atmospheric indices and ocean variables are shown to be related to the different roles played by surface momentum and heat fluxes in driving ocean variability. In the subpolar region, variations of the gyre strength, SSH in the central Labrador Sea and the NAO index are highly correlated. Surface heat flux is important in driving variations of SSH and circulation in the upper ocean and decadal variations of the Atlantic Meridional Overturning Circulation (AMOC). Surface momentum flux drives a significant barotropic component of flow and makes a noticeable contribution to the AMOC. In the subtropical region, momentum flux plays a dominant role in driving variations of the gyre circulation and AMOC; there is a strong correlation between gyre strength and SSH at Bermuda.

  17. A multi-wavelength study of pre-main sequence stars in the Taurus-Auriga star-forming region

    NASA Astrophysics Data System (ADS)

    Guenther, E. W.; Stelzer, B.; Neuhäuser, R.; Hillwig, T. C.; Durisen, R. H.; Menten, K. M.; Greimel, R.; Barwig, H.; Englhauser, J.; Robb, R. M.

    2000-05-01

    Although many lowmass pre-main sequence stars are strong X-ray sources, the origin of the X-ray emission is not well known. Since these objects are variable at all frequencies, simultaneous observations in X-rays and in other wavelengths are able to constrain the properties of the X-ray emitting regions. In this paper, we report quasi-simultaneous observations in X-rays, the optical, and the radio regime for classical and weak-line T Tauri stars from the Taurus-Auriga star-forming region. We find that all detected T Tauri stars show significant night-to-night variations of the X-ray emission. For three of the stars, FM Tau and CW Tau, both classical T Tauri stars, and V773 Tau, a weak-line T Tauri star, the variations are especially large. From observations taken simultaneously, we also find that there is some correspondence between the strength of Hα and the X-ray brightness in V773 Tau. The lack of a strong correlation leads us to conclude that the X-ray emission of V773 Tau is not a superposition of flares. However, we suggest that a weak correlation occurs because chromospherically active regions and regions of strong X-ray emission are generally related. V773 Tau was detected at 8.46 GHz as a weakly circularly polarised but highly variable source. We also find that the X-ray emission and the equivalent width of Hα remained unchanged, while large variations of the flux density in the radio regime were observed. This clearly indicates that the emitting regions are different. Using optical spectroscopy we detected a flare in Hα and event which showed a flare-like light-curve of the continuum brightness in FM Tau. However, ROSAT did not observe the field at the times of these flares. Nevertheless, an interesting X-ray event was observed in V773 Tau, during which the flux increased for about 8 hours and then decreased back to the same level in 5 hours. We interpret this as a long-duration event similar to those seen on the sun and other active stars. In the course of the observations, we discovered a new weak-line T Tauri star, GSC-1839-5674. Results are also presented for several other stars in the ROSAT field.

  18. Synergy of the SimSphere land surface process model with ASTER imagery for the retrieval of spatially distributed estimates of surface turbulent heat fluxes and soil moisture content

    NASA Astrophysics Data System (ADS)

    Petropoulos, George; Wooster, Martin J.; Carlson, Toby N.; Drake, Nick

    2010-05-01

    Accurate information on spatially explicit distributed estimates of key land-atmosphere fluxes and related land surface parameters is of key importance in a range of disciplines including hydrology, meteorology, agriculture and ecology. Estimation of those parameters from remote sensing frequently employs the integration of such data with mathematical representations of the transfers of energy, mass and radiation between soil, vegetation and atmosphere continuum, known as Soil Vegetation Atmosphere Transfer (SVAT) models. The ability of one such inversion modelling scheme to resolve for key surface energy fluxes and of soil surface moisture content is examined here using data from a multispectral high spatial resolution imaging instrument, the Advanced Spaceborne Thermal Emission and Reflection Scanning Radiometer (ASTER) and SimSphere one-dimensional SVAT model. Accuracy of the investigated methodology, so-called as the "triangle" method, is verified using validated ground observations obtained from selected days collected from nine CARBOEUROPE IP sites representing a variety of climatic, topographic and environmental conditions. Subsequently, a new framework is suggested for the retrieval of two additional parameters by the investigated method, namely the Evaporative (EF) and the Non-Evaporative (NEF) Fractions. Results indicated a close agreement between the inverted surface fluxes and surface moisture availability maps as well as of the EF and NEF parameters with the observations both spatially and temporally with accuracies comparable to those obtained in similar experiments with high spatial resolution data. Inspection of the inverted surface fluxes maps regionally, showed an explainable distribution in the range of the inverted parameters in relation with the surface heterogeneity. Overall performance of the "triangle" inversion methodology was found to be affected predominantly by the SVAT model "correct" initialisation representative of the test site environment, most importantly the atmospheric conditions required in the SVAT model initial conditions. This study represents the first comprehensive evaluation of the performance of this particular methodological implementation at a European setting using the SimSphere SVAT with the ASTER data. The present work is also very timely in that, a variation of this specific inversion methodology has been proposed for the operational retrieval of the soil surface moisture content by National Polar-orbiting Operational Environmental Satellite System (NPOESS), in a series of satellite platforms that are due to be launched in the next 12 years starting from 2012. KEYWORDS: micrometeorology, surface heat fluxes, soil moisture content, ASTER, triangle method, SimSphere, CarboEurope IP

  19. Multiwavelength monitoring of the BL Lacertae object PKS 2155-304. 3: Ground-based observations in 1991 November

    NASA Technical Reports Server (NTRS)

    Courvoisier, T. J.-L.; Blecha, A.; Bouchet, P.; Bratschi, P.; Carini, M. T.; Donahue, M.; Edelson, R.; Feigelson, E. D.; Filippenko, A. V.; Glass, I. S.

    1995-01-01

    We present ground-based observations of the BL Lac object PKS 2155-304 during 1991 November. These data were obtained as part of a large international campaign of observations spanning the electro-magnetic spectrum from the radio waves to the X-rays. The data presented here include radio and UBVRI fluxes, as well as optical polarimetry. The U to I data show the same behavior in all bands and that only upper limits to any lag can be deduced from the cross-correlation of the light curves. The spectral slope in the U-I domain remained constant on all epochs but 2. There is no correlation between changes in the spectral slope and large variations in the total or polarized flux. The radio flux variations did not follow the same pattern of variability as the optical and infrared fluxes. The polarized flux varied by a larger factor than the total flux. The variations of the polarized flux are poorly correlated with those of the total flux in the optical (and hence UV domain; see the accompanying paper by Edelson et al.) nor with those of the soft X-rays. We conclude that the variability of PKS 2155-304 in the optical and near-infrared spectral domains are easier to understand in the context of variable geometry or bulk Lorentz factor than of variable electron acceleration and cooling rates.

  20. The Impact of Trends in the Large Scale Atmospheric Circulation on Mediterranean Surface Turbulent Heat Fluxes

    NASA Technical Reports Server (NTRS)

    Romanski, Joy; Hameed, Sultan

    2015-01-01

    Interannual variations of latent heat fluxes (LHF) and sensible heat fluxes (SHF) over the Mediterranean for the boreal winter season (DJF) show positive trends during 1958-2011. Using reanalysis and satellite-based products, the variability and trends in the heat fluxes are compared with variations in three atmospheric teleconnection patterns: the North Atlantic Oscillation (NAO), the pressure and position of the Azores High (AH), and the East Atlantic-West Russia teleconnection pattern (EAWR). Comparison of correlations between the heat fluxes and teleconnections, along with analysis of composites of surface temperature, humidity, and wind fields for different teleconnection states, demonstrates that the AH explains the heat flux changes more successfully than NAO and EAWR. Trends in pressure and longitude of the Azores High show a strengthening and an eastward shift. Variations of the Azores High occur along an axis defined by lower pressure and westward location at one extreme and higher pressure and eastward location at the other extreme. The shift of the AH from predominance of the low/west state to the high/east state induces trends in Mediterranean Sea surface winds, temperature, and moisture. These, combined with sea surface warming trends, produce trends in wintertime sensible and latent heat fluxes.

  1. Fast time variations of supernova neutrino signals from 3-dimensional models

    DOE PAGES

    Lund, Tina; Wongwathanarat, Annop; Janka, Hans -Thomas; ...

    2012-11-19

    Here, we study supernova neutrino flux variations in the IceCube detector, using 3D models based on a simplified neutrino transport scheme. The hemispherically integrated neutrino emission shows significantly smaller variations compared with our previous study of 2D models, largely because of the reduced activity of the standing accretion shock instability in this set of 3D models which we interpret as a pessimistic extreme. For the studied cases, intrinsic flux variations up to about 100 Hz frequencies could still be detected in a supernova closer than about 2 kpc.

  2. Characteristics of GHG flux from water-air interface along a reclaimed water intake area of the Chaobai River in Shunyi, Beijing

    NASA Astrophysics Data System (ADS)

    He, Baonan; He, Jiangtao; Wang, Jian; Li, Jie; Wang, Fei

    2018-01-01

    To understand greenhouse gas (GHG) flux in reclaimed water intake area impact on urban climate, 'static chamber' method was used to investigate the spatio-diurnal variations and the influence factors of GHG fluxes at water-air interface from Jian River to Chaobai River. Results showed that the average fluxes of CO2 from the Jian River and the Chaobai River were 73.46 mg(m2·h)-1 and -64.75 mg(m2·h)-1, respectively. CO2 was emitted the most in the Jian River, but it was absorbed from the atmosphere in the Chaobai River. Unary linear regression analyses demonstrated that Chlorophyll a (Chl a) and pH variation controlled the carbon source and sink from the Jian River to the Chaobai River. The diurnal variation of CO2 fluxes was higher at night than in the daytime in the Jian River, and it was the inverse in the Chaobai River, which highly correlated with dissociative CO2 and HCO3- transformation to CO32-. The average fluxes of CH4 from the Jian River and Chaobai River were 0.973 mg(m2·h)-1 and 5.556 mg(m2·h)-1, respectively, which increased along the water flow direction. Unary and multiple linear regression analyses demonstrated that Chl a and total organic carbon (TOC) controlled the increase of CH4 along the flow direction. The diurnal variation of CH4 fluxes was slightly higher in the daytime than at night due to the effect of water temperature.

  3. A continuum model of transcriptional bursting

    PubMed Central

    Corrigan, Adam M; Tunnacliffe, Edward; Cannon, Danielle; Chubb, Jonathan R

    2016-01-01

    Transcription occurs in stochastic bursts. Early models based upon RNA hybridisation studies suggest bursting dynamics arise from alternating inactive and permissive states. Here we investigate bursting mechanism in live cells by quantitative imaging of actin gene transcription, combined with molecular genetics, stochastic simulation and probabilistic modelling. In contrast to early models, our data indicate a continuum of transcriptional states, with a slowly fluctuating initiation rate converting the gene between different levels of activity, interspersed with extended periods of inactivity. We place an upper limit of 40 s on the lifetime of fluctuations in elongation rate, with initiation rate variations persisting an order of magnitude longer. TATA mutations reduce the accessibility of high activity states, leaving the lifetime of on- and off-states unchanged. A continuum or spectrum of gene states potentially enables a wide dynamic range for cell responses to stimuli. DOI: http://dx.doi.org/10.7554/eLife.13051.001 PMID:26896676

  4. The sunward continuum feature of Comet 45P/Honda-Mrkos-Pajdušáková

    NASA Astrophysics Data System (ADS)

    Mueller, Beatrice E. A.; Samarasinha, Nalin H.; Harris, Walter M.; Springmann, Alessondra; Lejoly, Cassandra; Bodnarik, Julia; Howell, Ellen S.; Ryan, Erin L.; Kikwaya Eluo, Jean-Baptiste; Ryleigh Fitzpatrick, M.; Watson, Zachary Tyler; Maciel, Ricardo; Macieira Mitchell, Adriana; Scotti, James Vernon

    2017-10-01

    We will present results of our investigation of the sunward continuum feature of comet 45P/Honda-Mrkos-Pajdušáková (HMP). HMP was observed in 2017 at the University of Arizona’s Kuiper 61’’ telescope on Mount Bigelow on February 8, 9, 10, 16, and March 7 with the Mont4K camera, and at the Bok 2.3m telescope on Kitt Peak on February 16 and 17 with the 90Prime imager. The heliocentric distance of HMP varied from 0.94 au to 1.32 au, the geocentric distance from 0.08 au to 0.34 au, and the solar phase angle from 15 deg to 119 deg during that time period. The sunward continuum feature is present in all our images. Position angle variations and radial spatial profiles of the feature, as well as deduced physical parameters will be discussed.

  5. Broad-band properties of the CfA Seyfert galaxies. III - Ultraviolet variability

    NASA Technical Reports Server (NTRS)

    Edelson, R. A.; Pike, G. F.; Krolik, J. H.

    1990-01-01

    A total of 657 archived IUE spectra are used to study the UV variability properties of six members of the CfA Seyfert I galaxy sample. All show strong evidence for continuum and line variations and a tendency for less luminous objects to be more strongly variable. Most objects show a clear correlation at zero lag between UV spectral index and luminosity, evidence that the variable component is an accretion disk around a black hole which is systematically smaller in less luminous sources. No correlation is seen between the continuum luminosity and equivalent width of the C IV, Mg II, and semiforbidden C III emission lines when the entire sample is examined, but a clear anticorrelation is present when only repeated observations of individual objects are considered. This is due to a combination of light-travel time effects in the broad-line region and the nonlinear responses of lines to continuum fluctuations.

  6. Polymer Fluid Dynamics: Continuum and Molecular Approaches.

    PubMed

    Bird, R B; Giacomin, A J

    2016-06-07

    To solve problems in polymer fluid dynamics, one needs the equations of continuity, motion, and energy. The last two equations contain the stress tensor and the heat-flux vector for the material. There are two ways to formulate the stress tensor: (a) One can write a continuum expression for the stress tensor in terms of kinematic tensors, or (b) one can select a molecular model that represents the polymer molecule and then develop an expression for the stress tensor from kinetic theory. The advantage of the kinetic theory approach is that one gets information about the relation between the molecular structure of the polymers and the rheological properties. We restrict the discussion primarily to the simplest stress tensor expressions or constitutive equations containing from two to four adjustable parameters, although we do indicate how these formulations may be extended to give more complicated expressions. We also explore how these simplest expressions are recovered as special cases of a more general framework, the Oldroyd 8-constant model. Studying the simplest models allows us to discover which types of empiricisms or molecular models seem to be worth investigating further. We also explore equivalences between continuum and molecular approaches. We restrict the discussion to several types of simple flows, such as shearing flows and extensional flows, which are of greatest importance in industrial operations. Furthermore, if these simple flows cannot be well described by continuum or molecular models, then it is not necessary to lavish time and energy to apply them to more complex flow problems.

  7. The continuum spectral characteristics of gamma ray bursts observed by BATSE

    NASA Technical Reports Server (NTRS)

    Pendleton, Geoffrey N.; Paciesas, William S.; Briggs, Michael S.; Mallozzi, Robert S.; Koshut, Tom M.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Harmon, Alan B.; Kouveliotou, Chryssa

    1994-01-01

    Distributions of the continuum spectral characteristics of 260 bursts in the first Burst and Transient Source Experiment (BATSE) catalog are presented. The data are derived from flux ratios calculated from the BATSE Large Area Detector (LAD) four channel discriminator data. The data are converted from counts to photons using a direct spectral inversion technique to remove the effects of atmospheric scattering and the energy dependence of the detector angular response. Although there are intriguing clusterings of bursts in the spectral hardness ratio distributions, no evidence for the presence of distinct burst classes based on spectral hardness ratios alone is found. All subsets of bursts selected for their spectral characteristics in this analysis exhibit spatial distributions consistent with isotropy. The spectral diversity of the burst population appears to be caused largely by the highly variable nature of the burst production mechanisms themselves.

  8. The infrared spectrum of M8 E - Evidence for circumstellar CO

    NASA Technical Reports Server (NTRS)

    Larson, H. P.; Fink, U.; Hofmann, R.

    1986-01-01

    High-resolution spectroscopic observations of the compact infrared source M8 E are reported in the region from 3 to 5 microns. Very prominent CO absorption lines are observed in the v = 1-0 band at 4.7 microns. The velocity width and rotational temperature suggest that this CO absorption occurs in a highly excited region. The high background continuum flux level and the prominent appearance of the CO features suggest that the CO line-forming region must be in front of the dust emission region. A blister model for M8 E, which places most of the dust continuum emission behind the source, satisfies this requirement. According to this picture, the observed circumstellar CO spectrum shows a high rotational temperature and a large velocity dispersion because of the combined effects of the strong stellar wind and possible shock heating near the dust zone as the wind encounters the ambient molecular cloud.

  9. The Global Implications of the Hard X-ray Excess in Type 1 AGN

    NASA Astrophysics Data System (ADS)

    Tatum, Malachi; Turner, T. J.; Miller, L.; Reeves, J. N.

    2012-09-01

    Suzaku observations of 1H 0419-577 and PDS 456 revealed a marked 'hard excess' of flux above 10 keV, likely due to the presence of a Compton-thick absorber covering a large fraction of the continuum source. The discovery is intriguing, given the clear view to the optical BLR in type 1 objects. These results motivated an exploratory study of the hard excess phenomenon in the local type 1 AGN population, using the Swift Burst Alert Telescope (BAT). We selected radio quiet type 1-1.9 AGN from the 58-month BAT catalog. The hardness of the X-ray spectrum, combined with measurements of the equivalent width of Fe Ka emission suggest that type 1 X-ray spectra are shaped by an ensemble of Compton-thick clouds, partially covering the continuum. I discuss our methodology, the observational findings & possible location of the Compton-thick gas.

  10. A short review of relativistic iron lines from stellar-mass black holes

    NASA Astrophysics Data System (ADS)

    Miller, J. M.

    2006-12-01

    % In this contribution, I briefly review recent progress in detecting and measuring the properties of relativistic iron lines observed in stellar-mass black hole systems, and the aspects of these lines that are most relevant to studies of similar lines in Seyfert-1 AGN. In particular, the lines observed in stellar-mass black holes are not complicated by complex low-energy absorption or partial-covering of the central engine, and strong lines are largely independent of the model used to fit the underlying broad-band continuum flux. Indeed, relativistic iron lines are the most robust diagnostic of black hole spin that is presently available to observers, with specific advantages over the systematics-plagued disk continuum. If accretion onto stellar-mass black holes simply scales with mass, then the widespread nature of lines in stellar-mass black holes may indicate that lines should be common in Seyfert-1 AGN, though perhaps harder to detect.

  11. Four-year measurement of methane flux over a temperate forest with a relaxed eddy accumulation method

    NASA Astrophysics Data System (ADS)

    Sakabe, A.; Kosugi, Y.; Ueyama, M.; Hamotani, K.; Takahashi, K.; Iwata, H.; Itoh, M.

    2013-12-01

    Forests are generally assumed to be an atmospheric methane (CH4) sink (Le Mer and Roger, 2001). However, under Asian monsoon climate, forests are subject to wide spatiotemporal range in soil water status, where forest soils often became water-saturated condition heterogeneously. In such warm and humid conditions, forests may act as a CH4 source and/or sink with considerable spatiotemporal variations. Micrometeorological methods such as eddy covariance (EC) method continuously measure spatially-representative flux at a canopy scale without artificial disturbance. In this study, we measured CH4 fluxes over a temperate forest during four-year period using a CH4 analyzer based on tunable diode laser spectroscopy detection with a relaxed eddy accumulation (REA) method (Hamotani et al., 1996, 2001). We revealed the amplitude and seasonal variations of canopy-scale CH4 fluxes. The REA method is the attractive alternative to the EC method to measure trace-gas flux because it allows the use of analyzers with an optimal integration time. We also conducted continuous chamber measurements on forest floor to reveal spatial variations in soil CH4 fluxes and its controlling processes. The observations were made in an evergreen coniferous forest in central Japan. The site has a warm temperate monsoon climate with wet summer. Some wetlands were located in riparian zones along streams within the flux footprint area. For the REA method, the sonic anemometer (SAT-550, Kaijo) was mounted on top of the 29-m-tall tower and air was sampled from just below the sonic anemometer to reservoirs according to the direction of vertical wind velocity (w). After accumulating air for 30 minutes, the air in the reservoirs was pulled into a CO2/H2O gas analyzer (LI-840, Li-Cor) and a CH4 analyzer (FMA-200, Los Gatos Research). Before entering the analyzers, the sampled air was dried using a gas dryer (PD-50 T-48; Perma Pure Inc.). The REA flux is obtained from the difference in the mean concentrations of the reservoirs. In the chamber method, automated dynamic-closed chambers were located at three points of water-unsaturated forest floor. Soil CO2 and CH4 fluxes were measured using the same analyzers with the REA method. CH4 fluxes showed seasonal variations at both canopy and plot scales. Based on the chamber measurements, water-unsaturated forest floor mostly consumed CH4 throughout a year. In contrast, canopy-scale CH4 fluxes by the REA method seasonally fluctuated between emission and absorption. The seasonal variation of canopy-scale CH4 fluxes varied at years to years. Every year, no notable emission nor absorption was observed during winter when daily average air temperature was less than about 10°C. In this forest, the canopy-scale CH4 fluxes could be determined by a balance between sources by methanogens and sinks by methanotrophs. Since these two processes were influenced by soil conditions (e.g., soil temperature and soil moisture), canopy-scale CH4 fluxes were influenced by CH4 fluxes from wetlands within the forest, because magnitude of wetland emission was a few order larger than those of absorption. We will discuss the factors of interannual variation of the canopy- and plot-scale CH4 fluxes in terms of precipitation patterns.

  12. The role of spring and autumn phenological switches on spatiotemporal variation in temperate and boreal forest C balance: A FLUXNET synthesis

    NASA Astrophysics Data System (ADS)

    Richardson, A. D.; Reichstein, M.; Piao, S.; Ciais, P.; Luyssaert, S.; Stockli, R.; Friedl, M.; Gobron, N.; Fluxnet Site Pis, 21

    2009-04-01

    In temperate and boreal ecosystems, phenological transitions (particularly the timing of spring onset and autumn senescence) are thought to represent a major control on spatial and temporal variation in forest carbon sequestration. To investigate these patterns, we analyzed 153 site-years of data from the FLUXNET ‘La Thuile' database. Eddy covariance measurements of surface-atmosphere exchanges of carbon and water from 21 research sites at latitudes from 36°N to 67°N were used in the synthesis. We defined a range of phenological indicators based on the first (spring) and last (autumn) dates of (1) C source/sink transitions (‘carbon uptake period'); (2) measurable photosynthetic uptake (‘physiologically active period'); (3) relative thresholds for latent heat (evapotranspiration) flux; (4) phenological thresholds derived from a range of remote sensing products (JRC fAPAR, MOD12Q2, and the PROGNOSTIC model with MODIS data assimilation); and (5) a climatological metric based on the date where soil temperature equals mean annual air temperature. We then tested whether site-level flux anomalies were significantly correlated with phenological anomalies across these metrics, and whether the slopes of these relationships (representing the sensitivity to phenological variation) differed between deciduous broadleaf (DBF) and evergreen needleleaf (ENF) forests. Within sites, interannual variation in most phenological metrics was about 5-10 d, compared to 10-30 d across sites. Both spatial and temporal phenological variation were consistently larger at ENF, compared to DBF, sites. Averaged across metrics, phenological variability was roughly comparable in spring and autumn, both across (17 d) and within (9 d) sites. However, patterns of interannual variation in fluxes were less well explained by the derived phenological metrics than were patterns of spatial variation in fluxes. Also, the observed pattern strongly depended on the metric used, with flux-derived metrics generally explaining more, and remote sensing-derived metrics generally explaining less, of the variation in flux anomalies. We found that GPP (gross primary productivity) was consistently more sensitive (both in terms of magnitude and statistical significance; ≈3 g C m-2 d-1 for DBF and ≈2 g C m-2 d-1 for ENF) to phenology than was Reco (ecosystem respiration), which meant that NEP (net ecosystem productivity) tended to be increased both by earlier springs and later autumns. Without exception, when the difference between DBF and ENF in the sensitivity to phenological anomalies was statistically significant, DBF sensitivity was always larger in absolute magnitude than ENF sensitivity. Phenology explained a much larger fraction of the variation in fluxes across sites compared to within sites. Across sites, the rate of increase in GPP with an "exta" day in spring (≈10 g C m-2 d-1) was much larger than in autumn (≈3 g C m-2 d-1). Furthermore, a one-day increase in growing season length across sites increased annual NEP by just ≈2 g C m-2 d-1; this resulted from an increase in GPP of ≈6 g C m-2 d-1 being offset by an increase in RE of ≈4 g C m-2 d-1. In general, there was no statistically significant difference between DBF and ENF in the sensitivity to spatial variation in phenology for either NEP or the component fluxes GPP and Reco. In relation to both within- and across-site variation in phenology and fluxes, the results obtained tended to depend on the phenological metric used, i.e. definition of "start" and "end" of growing season, emphasizing the need for improved understanding of the relationships between these different metrics and ecosystem processes. Furthermore, the differences in flux-phenology relationships in the context of spatial and temporal variation in phenology raise questions about using results from either short-term or space-for-time studies to anticipate responses to future climate change.

  13. The Variations of Neutron Component of Lunar Radiation Background from LEND LRO Observations

    NASA Technical Reports Server (NTRS)

    Litvak, M. L.; Mitrofanov, I. G.; Sanin, A. B.; Bakhtin, B. N.; Bodnarik, J. G.; Bodnarik, W. V.; Chin, G.; Evans, L.G.; Harshman, K.; Livengood, T. A.; hide

    2016-01-01

    Lunar neutron flux data measured by the Lunar Exploration Neutron Detector (LEND) on board NASA's Lunar Reconnaissance Orbiter (LRO) were analyzed for the period 2009-2014.We have re-evaluated the instrument's collimation capability and re-estimated the neutron counting rate measured in the Field of View (FOV) of the LEND collimated detectors, and found it to be 1.070.1counts per second. We derived the spectral density of the neutron flux for various lunar regions using our comprehensive numerical model of orbital measurements. This model takes into account the location of the LEND instrument onboard LRO to calculate the surface leakage neutron flux and its propagation to the instrument detectors. Based on this we have determined the lunar neutron flux at the surface to be approx. 2 neutrons/ [sq cm/ sec] in the epithermal energy range, 0.4e V to 1keV. We have also found variations of the lunar neutron leakage flux with amplitude as large as a factor of two, by using multi-year observations to explore variations in the Galactic Cosmic Ray (GCR) flux during the 23rd-24th solar cycles.

  14. Genotypic variation in traits controlling carbon flux responses to precipitation in switchgrass

    USDA-ARS?s Scientific Manuscript database

    Background/Questions/Methods Fluxes of carbon in terrestrial ecosystems are key indicators of their productivity and carbon storage potential. Ecosystem fluxes will be impacted by climate change, especially changes in rainfall amount. Fluxes may also be affected by plant traits, including abovegr...

  15. Unusual Observations during the December 2006 Solar Energetic Particle Events within an Interplanetary Coronal Mass Ejection at 1 AU

    NASA Astrophysics Data System (ADS)

    Mulligan, T.; Blake, J. B.; Mewaldt, R. A.; Leske, R. A.

    2008-08-01

    In mid December 2006 several flares on the Sun occurred in rapid succession, spawning several CMEs and bathing the Earth in multiple solar energetic particle (SEP) events. One such SEP event occurring on December 14 was observed at the Earth just as an interplanetary CME (ICME) from a previous flare on December 13 was transiting the Earth. Although solar wind observations during this time show typical energetic proton fluxes from the prior SEP event and IP shock driven ahead of the ICME, as the ICME passes the Earth unusual energetic particle signatures are observed. Measurements from ACE, Wind, and STEREO show proton flux variations at energies ranging from ~3 MeV up to greater than 70 MeV. Energetic electron signatures from ACE show similar variations. Within the Earth's magnetosphere Polar HIST also sees these proton flux variations at energies greater than 10 MeV while crossing open field lines in the southern polar cap. Although no such variation in the energetic proton flux is observed at the GOES 11 spacecraft in geosynchronous orbit near the subsolar region, differential fluxes observed at GOES 11 and GOES 12 in the 15-40 MeV energy range do show some variability, indicating the signature is observable near dawn and dusk.

  16. Ultraviolet to optical spectral distributions of northern star-forming galaxies

    NASA Technical Reports Server (NTRS)

    Mcquade, Kerry; Calzetti, Daniela; Kinney, Anne L.

    1995-01-01

    We report spectral energy distribution from the UV to the optical for a sample of 31 northern star-forming galaxies. We also present measurements for emission-line fluxes, continuum levels, and equivalent widths of absorption features for each individual spectrum as well as averages for the eight galactic activity classes, including normal, starburst, Seyfert 2, blue compact dwarf, blue compact, Low-Inonization Nuclear Emission Regions (LINER), H II, and combination LINER-H II galaxies.

  17. Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathur, S.; Gupta, A.; Page, K.

    During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide themore » Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. In conclusion, this model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.« less

  18. ALMA Maps of Dust and Warm Dense Gas Emission in the Starburst Galaxy IC 5179

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Yinghe; Lu, Nanyao; Xu, C. Kevin

    We present our high-resolution (0.″15 × 0.″13, ∼34 pc) observations of the CO (6−5) line emission, which probes the warm and dense molecular gas, and the 434 μ m dust continuum emission in the nuclear region of the starburst galaxy IC 5179, conducted with the Atacama Large Millimeter Array (ALMA). The CO (6−5) emission is spatially distributed in filamentary structures with many dense cores and shows a velocity field that is characteristic of a circumnuclear rotating gas disk, with 90% of the rotation speed arising within a radius of ≲150 pc. At the scale of our spatial resolution, the COmore » (6−5) and dust emission peaks do not always coincide, with their surface brightness ratio varying by a factor of ∼10. This result suggests that their excitation mechanisms are likely different, as further evidenced by the southwest to northeast spatial gradient of both CO-to-dust continuum ratio and Pa- α equivalent width. Within the nuclear region (radius ∼ 300 pc) and with a resolution of ∼34 pc, the CO line flux (dust flux density) detected in our ALMA observations is 180 ± 18 Jy km s{sup −1} (71 ± 7 mJy), which accounts for 22% (2.4%) of the total value measured by Herschel .« less

  19. High resolution radio and optical observations of the central starburst in the low-metallicity dwarf galaxy II Zw 40

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kepley, Amanda A.; Reines, Amy E.; Johnson, Kelsey E.

    2014-02-01

    The extent to which star formation varies in galaxies with low masses, low metallicities, and high star formation rate surface densities is not well constrained. To gain insight into star formation under these physical conditions, this paper estimates the ionizing photon fluxes, masses, and ages for young massive clusters in the central region of II Zw 40—the prototypical low-metallicity dwarf starburst galaxy—from radio continuum and optical observations. Discrete, cluster-sized sources only account for half the total radio continuum emission; the remainder is diffuse. The young (≲ 5 Myr) central burst has a star formation rate surface density that significantly exceedsmore » that of the Milky Way. Three of the 13 sources have ionizing photon fluxes (and thus masses) greater than R136 in 30 Doradus. Although isolating the effects of galaxy mass and metallicity is difficult, the H II region luminosity function and the internal extinction in the center of II Zw 40 appear to be primarily driven by a merger-related starburst. The relatively flat H II region luminosity function may be the result of an increase in interstellar medium pressure during the merger and the internal extinction is similar to that generated by the clumpy and porous dust in other starburst galaxies.« less

  20. Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy

    DOE PAGES

    Mathur, S.; Gupta, A.; Page, K.; ...

    2017-08-31

    During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide themore » Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. In conclusion, this model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.« less

  1. Broadband Photometric Reverberation Mapping Analysis on SDSS-RM and Stripe 82 Quasars

    NASA Astrophysics Data System (ADS)

    Zhang, Haowen; Yang, Qian; Wu, Xue-Bing

    2018-02-01

    We modified the broadband photometric reverberation mapping (PRM) code, JAVELIN, and tested the availability to get broad-line region time delays that are consistent with the spectroscopic reverberation mapping (SRM) project SDSS-RM. The broadband light curves of SDSS-RM quasars produced by convolution with the system transmission curves were used in the test. We found that under similar sampling conditions (evenly and frequently sampled), the key factor determining whether the broadband PRM code can yield lags consistent with the SRM project is the flux ratio of the broad emission line to the reference continuum, which is in line with the previous findings. We further found a critical line-to-continuum flux ratio, about 6%, above which the mean of the ratios between the lags from PRM and SRM becomes closer to unity, and the scatter is pronouncedly reduced. We also tested our code on a subset of SDSS Stripe 82 quasars, and found that our program tends to give biased lag estimations due to the observation gaps when the R-L relation prior in Markov Chain Monte Carlo is discarded. The performance of the damped random walk (DRW) model and the power-law (PL) structure function model on broadband PRM were compared. We found that given both SDSS-RM-like or Stripe 82-like light curves, the DRW model performs better in carrying out broadband PRM than the PL model.

  2. Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathur, S.; Pogge, R. W.; Adams, S. M.

    During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide themore » Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.« less

  3. A Faint Flux-limited Ly α Emitter Sample at z ∼ 0.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wold, Isak G. B.; Finkelstein, Steven L.; Barger, Amy J.

    2017-10-20

    We present a flux-limited sample of z ∼ 0.3 Ly α emitters (LAEs) from Galaxy Evolution Explorer ( GALEX ) grism spectroscopic data. The published GALEX z ∼ 0.3 LAE sample is pre-selected from continuum-bright objects and thus is biased against high equivalent width (EW) LAEs. We remove this continuum pre-selection and compute the EW distribution and the luminosity function of the Ly α emission line directly from our sample. We examine the evolution of these quantities from z ∼ 0.3 to 2.2 and find that the EW distribution shows little evidence for evolution over this redshift range. As shownmore » by previous studies, the Ly α luminosity density from star-forming (SF) galaxies declines rapidly with declining redshift. However, we find that the decline in Ly α luminosity density from z = 2.2 to z = 0.3 may simply mirror the decline seen in the H α luminosity density from z = 2.2 to z = 0.4, implying little change in the volumetric Ly α escape fraction. Finally, we show that the observed Ly α luminosity density from AGNs is comparable to the observed Ly α luminosity density from SF galaxies at z = 0.3. We suggest that this significant contribution from AGNs to the total observed Ly α luminosity density persists out to z ∼ 2.2.« less

  4. A Suzaku, NuSTAR and XMMNewton} view on variable absorption and relativistic reflection in NGC 4151

    NASA Astrophysics Data System (ADS)

    Beuchert, T.; Markowitz, A.; Dauser, T.; Garcia, J.; Keck, M.; Wilms, J.; Kadler, M.; Brenneman, L.; Zdziarski, A.

    2017-10-01

    We disentangle X-ray disk reflection from complex line-of-sight absorption in NGC 4151 using Suzaku, NuSTAR, and XMMNewton}. Extending upon Keck et al. (2015), we develop a physically-motivated baseline model using the latest lamp-post reflection code relxillCp_lp, which includes a Comptonization continuum. We identify two components at heights of 1.2 and 15.0 gravitational radii using a long-look simultaneous Suzaku/NuSTAR observation but argue for a vertically extended corona as opposed to distinct primary sources. We also find two neutral absorbers (one full-covering and one partial-covering), an ionized absorber (log ξ=2.8), and a highly-ionized ultra-fast outflow, all reported previously. All analyzed spectra are well described by this baseline model. The bulk of the spectral variability on time-scales from days to years can be attributed to changes of both neutral absorbers, which are inversely correlated with the hard X-ray continuum flux. The observed evolution is either consistent with changes in the absorber structure (clumpy absorber in the outer BLR or a dusty radiatively driven wind) or a geometrically stable neutral absorber that becomes increasingly ionized at a rising flux level. The soft X-rays below 1 keV are dominated by photoionized emission from extended gas, which may act as a warm mirror for the nuclear radiation.

  5. The role of climate on inter-annual variation in stream nitrate fluxes and concentrations.

    PubMed

    Gascuel-Odoux, Chantal; Aurousseau, Pierre; Durand, Patrick; Ruiz, Laurent; Molenat, Jérôme

    2010-11-01

    In recent decades, temporal variations in nitrate fluxes and concentrations in temperate rivers have resulted from the interaction of anthropogenic and climatic factors. The effect of climatic drivers remains unclear, while the relative importance of the drivers seems to be highly site dependent. This paper focuses on 2-6 year variations called meso-scale variations, and analyses the climatic drivers of these variations in a study site characterized by high N inputs from intensive animal farming systems and shallow aquifers with impervious bedrock in a temperate climate. Three approaches are developed: 1) an analysis of long-term records of nitrate fluxes and nitrate concentrations in 30 coastal rivers of Western France, which were well-marked by meso-scale cycles in the fluxes and concentration with a slight hysteresis; 2) a test of the climatic control using a lumped two-box model, which demonstrates that hydrological assumptions are sufficient to explain these meso-scale cycles; and 3) a model of nitrate fluxes and concentrations in two contrasted catchments subjected to recent mitigation measures, which analyses nitrate fluxes and concentrations in relation to N stored in groundwater. In coastal rivers, hydrological drivers (i.e., effective rainfall), and particularly the dynamics of the water table and rather stable nitrate concentration, explain the meso-scale cyclic patterns. In the headwater catchment, agricultural and hydrological drivers can interact according to their settings. The requirements to better distinguish the effect of climate and human changes in integrated water management are addressed: long-term monitoring, coupling the analysis and the modelling of large sets of catchments incorporating different sizes, land uses and environmental factors. Copyright © 2009 Elsevier B.V. All rights reserved.

  6. Latitudinal variation of speed and mass flux in the acceleration region of the solar wind inferred from spectral broadening measurements

    NASA Technical Reports Server (NTRS)

    Woo, Richard; Goldstein, Richard M.

    1994-01-01

    Spectral broadening measurements conducted at S-band (13-cm wavelength) during solar minimum conditions in the heliocentric distance range of 3-8 R(sub O) by Mariner 4, Pioneer 10, Mariner 10, Helios 1, Helios 2, and Viking have been combined to reveal a factor of 2.6 reduction in bandwidth from equator to pole. Since spectral broadening bandwidth depends on electron density fluctuation and solar wind speed, and latitudinal variation of the former is available from coherence bandwidth measurements, the remote sensing spectral broadening measurements provide the first determination of the latitudinal variation of solar wind speed in the acceleration region. When combined with electron density measurements deduced from white-light coronagraphs, this result also leads to the first determination of the latitudinal variation of mass flux in the acceleration region. From equator to pole, solar wind speed increases by a factor of 2.2, while mass flux decreases by a factor of 2.3. These results are consistent with measurements of solar wind speed by multi-station intensity scintillation measurements, as well as measurements of mass flux inferred from Lyman alpha observations, both of which pertain to the solar wind beyond 0.5 AU. The spectral broadening observations, therefore, strengthen earlier conclusions about the latitudinal variation of solar wind speed and mass flux, and reinforce current solar coronal models and their implications for solar wind acceleration and solar wind modeling.

  7. Genotypic variation in traits controlling carbon flux responses to precipitation in switchgrass

    USDA-ARS?s Scientific Manuscript database

    Fluxes of carbon in terrestrial ecosystems are key indicators of their productivity and carbon storage potential. Ecosystem fluxes will be impacted by climate change, especially changes in rainfall amount. Fluxes are also related to plant traits, including leaf photosynthesis (ACO2), leaf area ind...

  8. Electrophoretic Analysis of Diversity and Phylogeny of Pinus brutia and Closely Related Taxa

    Treesearch

    M. T. Conkle; G. Schiller; C. Grunwald

    1988-01-01

    Rangewide samples from mature natural stands of Pinus brutia Ten. subsp. brutia, subsp. stankewiczii (Sukaczew) Nahal, subsp. pithyusa (Stevenson) Nahal, and subsp. eldarica (Medw.) Nahal from throughout the eastern Mediterranean display a continuum of allozyme variation for...

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wuebbles, D.J.; Kinnison, D.E.; Lean, J.L.

    Over the past decade, knowledge of the magnitude and temporal structure of the variations in the sun's ultraviolet irradiance has increased steadily. A number of theoretical modeling studies have shown that changes in the solar ultraviolet flux during the 11-year solar cycle can have a significant effect on stratospheric ozone concentrations. With the exception of Brasseur et al., who examined a very broad range of solar flux variations, all of these studies assumed much larger changes in the ultraviolet flux than measurements now indicate. These studies either calculated the steady-state effect at solar maximum and solar minimum or assumed sinusoidalmore » variations in the solar flux changes with time. It is now possible to narrow the uncertainty range of the expected effects on upper stratospheric ozone and temperature resulting from the 11-year solar cycle. A more accurate representation of the solar flux changes with time is used in this analysis, as compared to previous published studies. This study also evaluates the relative roles of solar flux variations and increasing concentrations of long-lived trace gases in determining the observed trends in upper stratospheric ozone and temperature. The LLNL two-dimensional chemical-radiative-transport model of the global atmosphere is used to evaluate the combined effects on the stratosphere from changes in solar ultraviolet irradiances and trace gas concentrations over the last several decades. Derived trends in upper stratospheric ozone concentrations and temperature are then compared with available analyses of ground-based and satellite measurements over this time period.« less

  10. VLTI-GRAVITY measurements of cool evolved stars

    NASA Astrophysics Data System (ADS)

    Wittkowski, M.; Rau, G.; Chiavassa, A.; Höfner, S.; Scholz, M.; Wood, P. R.; de Wit, W. J.; Eisenhauer, F.; Haubois, X.; Paumard, T.

    2018-06-01

    Context. Dynamic model atmospheres of Mira stars predict variabilities in the photospheric radius and in atmospheric molecular layers which are not yet strongly constrained by observations. Aims: Here we measure the variability of the oxygen-rich Mira star R Peg in near-continuum and molecular bands. Methods: We used near-infrared K-band spectro-interferometry with a spectral resolution of about 4000 obtained at four epochs between post-maximum and minimum visual phases employing the newly available GRAVITY beam combiner at the Very Large Telescope Interferometer (VLTI). Results: Our observations show a continuum radius that is anti-correlated with the visual lightcurve. Uniform disc (UD) angular diameters at a near-continuum wavelength of 2.25 μm are steadily increasing with values of 8.7 ± 0.1 mas, 9.4 ± 0.1 mas, 9.8 ± 0.1 mas, and 9.9 ± 0.1 mas at visual phases of 0.15, 0.36, 0,45, 0.53, respectively. UD diameters at a bandpass around 2.05 μm, dominated by water vapour, follow the near-continuum variability at larger UD diameters between 10.7 mas and 11.7 mas. UD diameters at the CO 2-0 bandhead, instead, are correlated with the visual lightcurve and anti-correlated with the near-continuum UD diameters, with values between 12.3 mas and 11.7 mas. Conclusions: The observed anti-correlation between continuum radius and visual lightcurve is consistent with an earlier study of the oxygen-rich Mira S Lac, and with recent 1D CODEX dynamic model atmosphere predictions. The amplitude of the variation is comparable to the earlier observations of S Lac, and smaller than predicted by CODEX models. The wavelength-dependent visibility variations at our epochs can be reproduced by a set of CODEX models at model phases between 0.3 and 0.6. The anti-correlation of water vapour and CO contributions at our epochs suggests that these molecules undergo different processes in the extended atmosphere along the stellar cycle. The newly available GRAVITY instrument is suited to conducting longer time series observations, which are needed to provide strong constraints on the model-predicted intra- and inter-cycle variability. Based on observations made with the VLT Interferometer at Paranal Observatory under programme IDs 60.A-9176 and 098.D-0647.

  11. Statistical intensity variation analysis for rapid volumetric imaging of capillary network flux

    PubMed Central

    Lee, Jonghwan; Jiang, James Y.; Wu, Weicheng; Lesage, Frederic; Boas, David A.

    2014-01-01

    We present a novel optical coherence tomography (OCT)-based technique for rapid volumetric imaging of red blood cell (RBC) flux in capillary networks. Previously we reported that OCT can capture individual RBC passage within a capillary, where the OCT intensity signal at a voxel fluctuates when an RBC passes the voxel. Based on this finding, we defined a metric of statistical intensity variation (SIV) and validated that the mean SIV is proportional to the RBC flux [RBC/s] through simulations and measurements. From rapidly scanned volume data, we used Hessian matrix analysis to vectorize a segment path of each capillary and estimate its flux from the mean of the SIVs gathered along the path. Repeating this process led to a 3D flux map of the capillary network. The present technique enabled us to trace the RBC flux changes over hundreds of capillaries with a temporal resolution of ~1 s during functional activation. PMID:24761298

  12. Roles of climate, vegetation and soil in regulating the spatial variations in ecosystem carbon dioxide fluxes in the Northern Hemisphere.

    PubMed

    Chen, Zhi; Yu, Guirui; Ge, Jianping; Wang, Qiufeng; Zhu, Xianjin; Xu, Zhiwei

    2015-01-01

    Climate, vegetation, and soil characteristics play important roles in regulating the spatial variation in carbon dioxide fluxes, but their relative influence is still uncertain. In this study, we compiled data from 241 eddy covariance flux sites in the Northern Hemisphere and used Classification and Regression Trees and Redundancy Analysis to assess how climate, vegetation, and soil affect the spatial variations in three carbon dioxide fluxes (annual gross primary production (AGPP), annual ecosystem respiration (ARE), and annual net ecosystem production (ANEP)). Our results showed that the spatial variations in AGPP, ARE, and ANEP were significantly related to the climate and vegetation factors (correlation coefficients, R = 0.22 to 0.69, P < 0.01) while they were not related to the soil factors (R = -0.11 to 0.14, P > 0.05) in the Northern Hemisphere. The climate and vegetation together explained 60% and 58% of the spatial variations in AGPP and ARE, respectively. Climate factors (mean annual temperature and precipitation) could account for 45-47% of the spatial variations in AGPP and ARE, but the climate constraint on the vegetation index explained approximately 75%. Our findings suggest that climate factors affect the spatial variations in AGPP and ARE mainly by regulating vegetation properties, while soil factors exert a minor effect. To more accurately assess global carbon balance and predict ecosystem responses to climate change, these discrepant roles of climate, vegetation, and soil are required to be fully considered in the future land surface models. Moreover, our results showed that climate and vegetation factors failed to capture the spatial variation in ANEP and suggest that to reveal the underlying mechanism for variation in ANEP, taking into account the effects of other factors (such as climate change and disturbances) is necessary.

  13. Roles of Climate, Vegetation and Soil in Regulating the Spatial Variations in Ecosystem Carbon Dioxide Fluxes in the Northern Hemisphere

    PubMed Central

    Chen, Zhi; Yu, Guirui; Ge, Jianping; Wang, Qiufeng; Zhu, Xianjin; Xu, Zhiwei

    2015-01-01

    Climate, vegetation, and soil characteristics play important roles in regulating the spatial variation in carbon dioxide fluxes, but their relative influence is still uncertain. In this study, we compiled data from 241 eddy covariance flux sites in the Northern Hemisphere and used Classification and Regression Trees and Redundancy Analysis to assess how climate, vegetation, and soil affect the spatial variations in three carbon dioxide fluxes (annual gross primary production (AGPP), annual ecosystem respiration (ARE), and annual net ecosystem production (ANEP)). Our results showed that the spatial variations in AGPP, ARE, and ANEP were significantly related to the climate and vegetation factors (correlation coefficients, R = 0.22 to 0.69, P < 0.01) while they were not related to the soil factors (R = -0.11 to 0.14, P > 0.05) in the Northern Hemisphere. The climate and vegetation together explained 60 % and 58 % of the spatial variations in AGPP and ARE, respectively. Climate factors (mean annual temperature and precipitation) could account for 45 - 47 % of the spatial variations in AGPP and ARE, but the climate constraint on the vegetation index explained approximately 75 %. Our findings suggest that climate factors affect the spatial variations in AGPP and ARE mainly by regulating vegetation properties, while soil factors exert a minor effect. To more accurately assess global carbon balance and predict ecosystem responses to climate change, these discrepant roles of climate, vegetation, and soil are required to be fully considered in the future land surface models. Moreover, our results showed that climate and vegetation factors failed to capture the spatial variation in ANEP and suggest that to reveal the underlying mechanism for variation in ANEP, taking into account the effects of other factors (such as climate change and disturbances) is necessary. PMID:25928452

  14. Relationship between Relativistic Electron Flux in the Inner Magnetosphere and ULF Pulsation on the Ground Associated with Long-term Variations of Solar Wind

    NASA Astrophysics Data System (ADS)

    Kitamura, K.; Nagatsuma, T.; Troshichev, O. A.; Obara, T.; Koshiishi, H.; Saita, S.; Yoshikawa, A.; Yumoto, K.

    2014-12-01

    In the present study the relativistic electron flux (0.59-1.18MeV) measured by Standard Dose Monitor (SDOM) onboard DRTS (KODAMA) satellite at the Geostationary Earth Orbit (GEO) is analyzed to investigate the long term (from 2002 to 2014) variations of the electron flux enhancement (REF) during the passage of Corotating Interaction Regions (CIRs) and/or Coronal Mass Ejection (CMEs). The long term variations of the REF clearly shows the 27-days period associated with the high speed solar wind velocity caused by the CIRs, whereas it is very few that the enhancement of REF lasts for several days after passage of CMEs. The 27-days period enhancement of REF represents the quite strong peak in 2003 when the high speed stream of the solar wind were quit active. We also conducted the same analysis for the Pc5 pulsations observed on the ground. The ground magnetic variations data globally observed by National Institute of Information and Communications Technology (NICT) and International Center for Space Weather Science and Education (ICSWSE) Kyushu University are used to investigate the long term variations of Pc5 power. The same signature in the REF variations is shown in the time variability of the Pc5 power on the ground. These results indicate that the solar wind condition strongly affects the acceleration process of the relativistic electron flux by the ULF wave. In particular the dependence of the REF and Pc5 variations on the sector structures and their seasonal variations strongly suggest that the relationship between Pc5 and REF variations could be controlled by the Russell-McPherron effect.

  15. Tunable Multifunctional Thermal Metamaterials: Manipulation of Local Heat Flux via Assembly of Unit-Cell Thermal Shifters

    PubMed Central

    Park, Gwanwoo; Kang, Sunggu; Lee, Howon; Choi, Wonjoon

    2017-01-01

    Thermal metamaterials, designed by transformation thermodynamics are artificial structures that can actively control heat flux at a continuum scale. However, fabrication of them is very challenging because it requires a continuous change of thermal properties in materials, for one specific function. Herein, we introduce tunable thermal metamaterials that use the assembly of unit-cell thermal shifters for a remarkable enhancement in multifunctionality as well as manufacturability. Similar to the digitization of a two-dimensional image, designed thermal metamaterials by transformation thermodynamics are disassembled as unit-cells thermal shifters in tiny areas, representing discretized heat flux lines in local spots. The programmed-reassembly of thermal shifters inspired by LEGO enable the four significant functions of thermal metamaterials—shield, concentrator, diffuser, and rotator—in both simulation and experimental verification using finite element method and fabricated structures made from copper and PDMS. This work paves the way for overcoming the structural and functional limitations of thermal metamaterials. PMID:28106156

  16. Implicit continuum mechanics approach to heat conduction in granular materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massoudi, M.; Mehrabadi, M.

    In this paper, we derive a properly frame-invariant implicit constitutive relationship for the heat flux vector for a granular medium (or a density-gradient-type fluid). The heat flux vector is commonly modeled by Fourier’s law of heat conduction, and for complex materials such as nonlinear fluids, porous media, or granular materials, the coefficient of thermal conductivity is generalized by assuming that it would depend on a host of material and kinematic parameters such as temperature, shear rate, porosity, concentration, etc. In this paper, we extend the approach of Massoudi [Massoudi, M. Math. Methods Appl. Sci. 2006, 29, 1585; Massoudi, M. Math.more » Methods Appl. Sci. 2006, 29, 1599], who provided explicit constitutive relations for the heat flux vector for flowing granular materials; in order to do so, we use the implicit scheme suggested by Fox [Fox, N. Int. J. Eng. Sci. 1969, 7, 437], who obtained implicit relations in thermoelasticity.« less

  17. Photoionization models for the wind from TW Vir

    NASA Technical Reports Server (NTRS)

    Kallman, T.

    1985-01-01

    Line profiles are examined for the resonance doublets of the ions C IV, Si IV, and N V in the spectrum of the dwarf nova TW Virginis as observed by Cordova and Mason (1982). Line strengths depend on the abundances of the scattering ions and hence on the physical characteristics in the stellar wind. Results of the study show that the observed UV line ratios from TW Vir cannot be produced by photoionization by either an unattenuated single bremsstrahlung or by a single blackbody spectrum. Satisfactory values of the abundance ratios can be produced by bremsstrahlung spectra extending into the X-ray region which have low-energy cutoffs near the N IV threshold energy at 77 eV and have fluxes corresponding to an ionization parameter xi-sub-br of about 10. A finding that the flux in the soft X-ray bremsstrahlung component must exceed the EUV blackbody flux by at least an order of magnitude has implications for theories of the continuum emission from cataclysmic variables.

  18. Tunable Multifunctional Thermal Metamaterials: Manipulation of Local Heat Flux via Assembly of Unit-Cell Thermal Shifters

    NASA Astrophysics Data System (ADS)

    Park, Gwanwoo; Kang, Sunggu; Lee, Howon; Choi, Wonjoon

    2017-01-01

    Thermal metamaterials, designed by transformation thermodynamics are artificial structures that can actively control heat flux at a continuum scale. However, fabrication of them is very challenging because it requires a continuous change of thermal properties in materials, for one specific function. Herein, we introduce tunable thermal metamaterials that use the assembly of unit-cell thermal shifters for a remarkable enhancement in multifunctionality as well as manufacturability. Similar to the digitization of a two-dimensional image, designed thermal metamaterials by transformation thermodynamics are disassembled as unit-cells thermal shifters in tiny areas, representing discretized heat flux lines in local spots. The programmed-reassembly of thermal shifters inspired by LEGO enable the four significant functions of thermal metamaterials—shield, concentrator, diffuser, and rotator—in both simulation and experimental verification using finite element method and fabricated structures made from copper and PDMS. This work paves the way for overcoming the structural and functional limitations of thermal metamaterials.

  19. The Statistical Sobolev-Rosseland Mean and the Effects of Frequency Redistribution on Wolf-Rayet Wind Driving

    NASA Astrophysics Data System (ADS)

    Onifer, A. J.; Gayley, K. G.

    2003-06-01

    The optically thick character of Wolf-Rayet winds implies that stellar continuum photons are multiply scattered, as a result of both free electron opacity and overlapping wind-broadened spectral lines. This allows the wind to accumulate a substantial excess in momentum flux relative to the driving radiation field, as is observationally required. Nevertheless, sustaining such a high degree of multiple scattering requires not only a large optical depth spatially but also substantial spectral blanketing. The latter is difficult to maintain when redistribution during scattering allows radiative flux to shift preferentially into spectral regions with fewer lines, since then the channels carrying much of the flux are also the least well blanketed. This paper parameterizes the potential severity of this effect in simple terms, using a generalization of the Rosseland mean treated in the Sobolev approximation. We show that our approach provides an informative starting point for characterizing and conceptualizing nongray effects in optically thick supersonic flows.

  20. The Correlated Variations of {\\rm{C}}\\,{\\rm{IV}} Narrow Absorption Lines and Quasar Continuum

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Fu; Pang, Ting-Ting; He, Bing; Huang, Yong

    2018-06-01

    We assemble 207 variable quasars from the Sloan Digital Sky Survey, all with at least 3 observations, to analyze C IV narrow absorption doublets, and obtain 328 C IV narrow absorption line systems. We find that 19 out of 328 C IV narrow absorption line systems were changed by | {{Δ }}{W}rλ 1548| ≥slant 3{σ }{{Δ }{W}rλ 1548} on timescales from 15.9 to 1477 days at rest-frame. Among the 19 obviously variable C IV systems, we find that (1) 14 systems have relative velocities {\\upsilon }r> 0.01c and 4 systems have {\\upsilon }r> 0.1c, where c is the speed of light; (2) 13 systems are accompanied by other variable C IV systems; (3) 9 systems were changed continuously during multiple observations; and (4) 1 system with {\\upsilon }r = 16,862 km s‑1 was enhanced by {{Δ }}{W}rλ 1548=2.7{σ }{{Δ }{W}rλ 1548} in 0.67 day at rest-frame. The variations of absorption lines are inversely correlated with the changes in the ionizing continuum. We also find that large variations of C IV narrow absorption lines are form differently over a short timescale.

  1. Meteor Shower Forecasting for Spacecraft Operations

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea V.; Cooke, William J.; Campbell-Brown, Margaret D.

    2017-01-01

    Although sporadic meteoroids generally pose a much greater hazard to spacecraft than shower meteoroids, meteor showers can significantly increase the risk of damage over short time periods. Because showers are brief, it is sometimes possible to mitigate the risk operationally, which requires accurate predictions of shower activity. NASA's Meteoroid Environment Office (MEO) generates an annual meteor shower forecast that describes the variations in the near-Earth meteoroid flux produced by meteor showers, and presents the shower flux both in absolute terms and relative to the sporadic flux. The shower forecast incorporates model predictions of annual variations in shower activity and quotes fluxes to several limiting particle kinetic energies. In this work, we describe our forecasting methods and present recent improvements to the temporal profiles based on flux measurements from the Canadian Meteor Orbit Radar (CMOR).

  2. Divergence with gene flow across a speciation continuum of Heliconius butterflies.

    PubMed

    Supple, Megan A; Papa, Riccardo; Hines, Heather M; McMillan, W Owen; Counterman, Brian A

    2015-09-24

    A key to understanding the origins of species is determining the evolutionary processes that drive the patterns of genomic divergence during speciation. New genomic technologies enable the study of high-resolution genomic patterns of divergence across natural speciation continua, where taxa pairs with different levels of reproductive isolation can be used as proxies for different stages of speciation. Empirical studies of these speciation continua can provide valuable insights into how genomes diverge during speciation. We examine variation across a handful of genomic regions in parapatric and allopatric populations of Heliconius butterflies with varying levels of reproductive isolation. Genome sequences were mapped to 2.2-Mb of the H. erato genome, including 1-Mb across the red color pattern locus and multiple regions unlinked to color pattern variation. Phylogenetic analyses reveal a speciation continuum of pairs of hybridizing races and incipient species in the Heliconius erato clade. Comparisons of hybridizing pairs of divergently colored races and incipient species reveal that genomic divergence increases with ecological and reproductive isolation, not only across the locus responsible for adaptive variation in red wing coloration, but also at genomic regions unlinked to color pattern. We observe high levels of divergence between the incipient species H. erato and H. himera, suggesting that divergence may accumulate early in the speciation process. Comparisons of genomic divergence between the incipient species and allopatric races suggest that limited gene flow cannot account for the observed high levels of divergence between the incipient species. Our results provide a reconstruction of the speciation continuum across the H. erato clade and provide insights into the processes that drive genomic divergence during speciation, establishing the H. erato clade as a powerful framework for the study of speciation.

  3. Temperature Dependence of Molecular Line Strengths and Fei 1565 nm Zeeman Splitting in a Sunspot

    NASA Astrophysics Data System (ADS)

    Penn, M. J.; Walton, S.; Chapman, G.; Ceja, J.; Plick, W.

    2003-03-01

    Spectroscopic observations at 1565 nm were made in the eastern half of the main umbra of NOAA 9885 on 1 April 2002 using the National Solar Observatory McMath-Pierce Telescope at Kitt Peak with a tip-tilt image stabilization system and the California State University Northridge-National Solar Observatory infrared camera. The line depth of the OH blend at 1565.1 nm varies with the observed continuum temperature; the variation fits previous observations except that the continuum temperature is lower by 600 K. The equivalent width of the OH absorption line at 1565.2 nm shows a temperature dependence similar to previously published umbral molecular observations at 640 nm. A simple model of expected OH abundance based upon an ionization analogy to molecular dissociation is produced and agrees well with the temperature variation of the line equivalent width. A CN absorption line at 1564.6 nm shows a very different temperature dependence, likely due to complicated formation and destruction processes. Nonetheless a numerical fit of the temperature variation of the CN equivalent width is presented. Finally a comparison of the Zeeman splitting of the Fei 1564.8 nm line with the sunspot temperature derived from the continuum intensity shows an umbra somewhat cooler for a given magnetic field strength than previous comparisons using this infrared 1564.8 nm line, but consistent with these previous infrared measurements the umbra is hotter for a given magnetic field strength than magnetic and temperature measurements at 630.2 nm would suggest. Differences between the 630.2 nm and 1564.8 nm umbral temperature and magnetic field relations are explained with the different heights of formation of the lines and continua at these wavelengths.

  4. ALMA [N ii] 205 μ m Imaging Spectroscopy of the Interacting Galaxy System BRI 1202-0725 at Redshift 4.7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Nanyao; Xu, C. Kevin; Zhu, Lei

    We present the results from Atacama Large Millimeter/submillimeter Array imaging in the [N ii] 205 μ m fine-structure line (hereafter [N ii]) and the underlying continuum of BRI 1202-0725, an interacting galaxy system at z = 4.7, consisting of a quasi-stellar object (QSO), a submillimeter galaxy (SMG), and two Ly α emitters, all within ∼25 kpc of the QSO. We detect the QSO and SMG in both [N ii] and continuum. At the ∼1″ (or 6.6 kpc) resolution, both the QSO and SMG are resolved in [N ii], with the de-convolved major axes of ∼9 and ∼14 kpc, respectively. Inmore » contrast, their continuum emissions are much more compact and unresolved even at an enhanced resolution of ∼0.″7. The ratio of the [N ii] flux to the existing CO(7−6) flux is used to constrain the dust temperature ( T {sub dust}) for a more accurate determination of the FIR luminosity L {sub FIR}. Our best estimated T {sub dust} equals 43 (±2) K for both galaxies (assuming an emissivity index β = 1.8). The resulting L {sub CO(7−6)}/ L {sub FIR} ratios are statistically consistent with that of local luminous infrared galaxies, confirming that L {sub CO(7−6)} traces the star formation (SF) rate (SFR) in these galaxies. We estimate that the ongoing SF of the QSO (SMG) has an SFR of 5.1 (6.9) × 10{sup 3} M {sub ⊙} yr{sup −1} (±30%) assuming Chabrier initial mass function, takes place within a diameter (at half maximum) of 1.3 (1.5) kpc, and will consume the existing 5 (5) × 10{sup 11} M {sub ⊙} of molecular gas in 10 (7) × 10{sup 7} years.« less

  5. Long-term persistence of solar activity. [Abstract only

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, Alexander; Feynman, Joan; Robinson, Paul

    1994-01-01

    The solar irradiance has been found to change by 0.1% over the recent solar cycle. A change of irradiance of about 0.5% is required to effect the Earth's climate. How frequently can a variation of this size be expected? We examine the question of the persistence of non-periodic variations in solar activity. The Huerst exponent, which characterizes the persistence of a time series (Mandelbrot and Wallis, 1969), is evaluated for the series of C-14 data for the time interval from about 6000 BC to 1950 AD (Stuiver and Pearson, 1986). We find a constant Huerst exponent, suggesting that solar activity in the frequency range of from 100 to 3000 years includes an important continuum component in addition to the well-known periodic variations. The value we calculate, H approximately equal to 0.8, is significantly larger than the value of 0.5 that would correspond to variations produced by a white-noise process. This value is in good agreement with the results for the monthly sunspot data reported elsewhere, indicating that the physics that produces the continuum is a correlated random process (Ruzmaikin et al., 1992), and that is is the same type of process over a wide range of time interval lengths. We conclude that the time period over which an irradiance change of 0.5% can be expected to occur is significantly shorter than that which would be expected for variations produced by a white-noise process.

  6. Variation of Evaporation Across a Corn-Soybean Production Region in Central Iowa

    NASA Astrophysics Data System (ADS)

    Prueger, J. H.; Hatfield, J. L.; Kustas, W. P.

    2003-12-01

    Evaporation from production corn-soybean surfaces is often assumed to be uniform across a regional extent such as the Upper Midwest in the U.S.; however, there are few direct measurements of the spatial and temporal variation of evaporation to support this assumption. During a soil moisture remote sensing study in the summer of 2002 (SMEX02), fourteen energy balance stations complete with net radiometers, soil heat flux plates, a three-dimensional sonic anemometer, and fast response CO2-H2O sensors (eddy covariance) were deployed across an 25-kilometer corn-soybean production watershed in central Iowa south of Ames, Iowa. Data were collected beginning in mid-May through August and summarized into half-hourly and daily intervals. Two intercomparisons of all eddy covariance systems were conducted, one prior to the SMEX02 study (May 2002) over an alfalfa field and one after the study over a grass surface in August (2002). The coefficient of variation among the eddy covariance instruments was less than 7%. Latent heat flux values among corn and soybean fields that were greater than 7% were considered to be real differences in evaporation among fields. Diurnal differences in net radiation and latent heat fluxes were evident among both corn and soybean fields and when seasonal totals were evaluated the differences persisted. Variation in latent heat flux among corn and soybeans was attributed to soil type, water availability and spatial variation of precipitation across the watershed. The results from fourteen eddy covariance stations provide a measure of the spatial variation in latent heat flux across a region that is considered to be relatively homogenous. This information will aid in evaluating regional evaporation models.

  7. The imprint of surface fluxes and transport on variations in total column carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keppel-Aleks, G; Wennberg, PO; Washenfelder, RA

    2012-01-01

    New observations of the vertically integrated CO{sub 2} mixing ratio, , from ground-based remote sensing show that variations in are primarily determined by large-scale flux patterns. They therefore provide fundamentally different information than observations made within the boundary layer, which reflect the combined influence of large-scale and local fluxes. Observations of both and CO{sub 2} concentrations in the free troposphere show that large-scale spatial gradients induce synoptic-scale temporal variations in in the Northern Hemisphere midlatitudes through horizontal advection. Rather than obscure the signature of surface fluxes on atmospheric CO{sub 2}, these synoptic-scale variationsmore » provide useful information that can be used to reveal the meridional flux distribution. We estimate the meridional gradient in from covariations in and potential temperature, {theta}, a dynamical tracer, on synoptic timescales to evaluate surface flux estimates commonly used in carbon cycle models. We find that simulations using Carnegie Ames Stanford Approach (CASA) biospheric fluxes underestimate both the seasonal cycle amplitude throughout the Northern Hemisphere midlatitudes and the meridional gradient during the growing season. Simulations using CASA net ecosystem exchange (NEE) with increased and phase-shifted boreal fluxes better fit the observations. Our simulations suggest that climatological mean CASA fluxes underestimate boreal growing season NEE (between 45-65{sup o} N) by {approx}40%. We describe the implications for this large seasonal exchange on inference of the net Northern Hemisphere terrestrial carbon sink.« less

  8. Discrete but variable structure of animal societies leads to the false perception of a social continuum

    PubMed Central

    Rubenstein, Dustin R.; Botero, Carlos A.; Lacey, Eileen A.

    2016-01-01

    Animal societies are typically divided into those in which reproduction within a group is monopolized by a single female versus those in which it is shared among multiple females. It remains controversial, however, whether these two forms of social structure represent distinct evolutionary outcomes or endpoints along a continuum of reproductive options. To address this issue and to determine whether vertebrates and insects exhibit the same patterns of variation in social structure, we examined the demographic and reproductive structures of 293 species of wasps, ants, birds and mammals. Using phylogenetically informed comparative analyses, we found strong evidence indicating that not all reproductive arrangements within social groups are viable in nature and that in societies with multiple reproductives, selection favours instead taxon-specific patterns of decrease in the proportion of breeders as a function of group size. These outcomes suggest that the selective routes to sociality differ depending upon whether monopolization of reproduction by one individual is possible and that variation within and among taxonomic groups may lead to the false perception of a continuum of social structures. Thus, the occurrence of very large societies may require either complete reproductive monopolization (monogyny/singular breeding) or the maintenance of a taxon-specific range of values for the proportional decrease in the number of breeders within a group (polygyny/plural breeding), both of which may reduce reproductive conflict among females. PMID:27293796

  9. Discrete but variable structure of animal societies leads to the false perception of a social continuum.

    PubMed

    Rubenstein, Dustin R; Botero, Carlos A; Lacey, Eileen A

    2016-05-01

    Animal societies are typically divided into those in which reproduction within a group is monopolized by a single female versus those in which it is shared among multiple females. It remains controversial, however, whether these two forms of social structure represent distinct evolutionary outcomes or endpoints along a continuum of reproductive options. To address this issue and to determine whether vertebrates and insects exhibit the same patterns of variation in social structure, we examined the demographic and reproductive structures of 293 species of wasps, ants, birds and mammals. Using phylogenetically informed comparative analyses, we found strong evidence indicating that not all reproductive arrangements within social groups are viable in nature and that in societies with multiple reproductives, selection favours instead taxon-specific patterns of decrease in the proportion of breeders as a function of group size. These outcomes suggest that the selective routes to sociality differ depending upon whether monopolization of reproduction by one individual is possible and that variation within and among taxonomic groups may lead to the false perception of a continuum of social structures. Thus, the occurrence of very large societies may require either complete reproductive monopolization (monogyny/singular breeding) or the maintenance of a taxon-specific range of values for the proportional decrease in the number of breeders within a group (polygyny/plural breeding), both of which may reduce reproductive conflict among females.

  10. A possible signature of annihilating dark matter

    NASA Astrophysics Data System (ADS)

    Chan, Man Ho

    2018-02-01

    In this article, we report a new signature of dark matter annihilation based on the radio continuum data of NGC 1569 galaxy detected in the past few decades. After eliminating the thermal contribution of the radio signal, an abrupt change in the spectral index is shown in the radio spectrum. Previously, this signature was interpreted as an evidence of convective outflow of cosmic ray. However, we show that the cosmic ray contribution is not enough to account for the observed radio flux. We then discover that if dark matter annihilates via the 4-e channel with the thermal relic cross-section, the electrons and positrons produced would emit a strong radio flux which can provide an excellent agreement with the observed signature. The best-fitting dark matter mass is 25 GeV.

  11. Stagnation point properties for non-continuum gaseous jet impinging at a flat plate surface from a planar exit

    NASA Astrophysics Data System (ADS)

    Cai, Chunpei

    2013-10-01

    In this paper, we investigate highly rarefied gaseous jet flows out of a planar exit and impinging at a normally set flat plate. Especially, we concentrate on the plate center stagnation point pressure and heat flux coefficients. For a specular reflective plate, the stagnation point pressure coefficient can be represented using two non-dimensional factors: the characteristic gas exit speed ratio S0 and the geometry ratio of H/L, where H is the planar exit semi-height and L is the center-to-center distance from the exit to the plate. For a diffuse reflective plate, the stagnation point pressure and heat flux coefficients involve an extra factor of T0/Tw, i.e., the ratio of exit gas temperature to the plate wall temperature. These results allow us to develop four diagrams, from which we can conveniently obtain the pressure and heat flux coefficients for the stagnation impingement point, at the collisionless flow limit. After normalization with these maximum coefficients, the pressure and heat flux coefficient distributions along the surface essentially degenerate to almost identical curves. As a result, with known plate surface pressure coefficient distributions and these diagrams, we can conveniently construct the heat flux coefficient distributions along the plate surface, and vice versa.

  12. Continuum kinetic modeling of the tokamak plasma edge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorf, M. A.; Dorr, M. R.; Hittinger, J. A.

    2016-05-15

    The first 4D (axisymmetric) high-order continuum gyrokinetic transport simulations that span the magnetic separatrix of a tokamak are presented. The modeling is performed with the COGENT code, which is distinguished by fourth-order finite-volume discretization combined with mapped multiblock grid technology to handle the strong anisotropy of plasma transport and the complex X-point divertor geometry with high accuracy. The calculations take into account the effects of fully nonlinear Fokker-Plank collisions, electrostatic potential variations, and anomalous radial transport. Topics discussed include: (a) ion orbit loss and the associated toroidal rotation and (b) edge plasma relaxation in the presence of anomalous radial transport.

  13. Hypersonic rarefied-flow aerodynamics inferred from Shuttle Orbiter acceleration measurements

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Hinson, E. W.

    1989-01-01

    Data obtained from multiple flights of sensitive accelerometers on the Space Shuttle Orbiter during reentry have been used to develop an improved aerodynamic model for the Orbiter normal- and axial-force coefficients in hypersonic rarefied flow. The lack of simultaneous atmospheric density measurements was overcome in part by using the ratio of normal-to-axial acceleration, in which density cancels, as a constraint. Differences between the preflight model and the flight-acceleration-derived model in the continuum regime are attributed primarily to real gas effects. New insights are gained into the variation of the force coefficients in the transition between the continuum regime and free molecule flow.

  14. Flux and spectral variation characteristics of 3C 454.3 at the GeV band

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Ming; Zhang, Jin; Lu, Rui-Jing; Yi, Ting-Feng; Huang, Xiao-Li; Liang, En-Wei

    2018-04-01

    We analyze the long-term lightcurve of 3C 454.3 observed with Fermi/LAT and investigate its relation to flux in the radio, optical and X-ray bands. By fitting the 1-day binned GeV lightcurve with multiple Gaussian functions (MGF), we propose that the typical variability timescale in the GeV band is 1–10 d. The GeV flux variation is accompanied by the spectral variation characterized as flux-tracking, i.e., “harder when brighter.” The GeV flux is correlated with the optical and X-ray fluxes, and a weak correlation between γ-ray flux and radio flux is also observed. The γ-ray flux is not correlated with the optical linear polarization degree for the global lightcurves, but they show a correlation for the lightcurves before MJD 56000. The power density spectrum of the global lightcurve shows an obvious turnover at ∼ 7.7 d, which may indicate a typical variability timescale of 3C 454.3 in the γ-ray band. This is also consistent with the derived timescales by fitting the global lightcurve with MGF. The spectral evolution and an increase in the optical linear polarization degree along with the increase in γ-ray flux may indicate that the radiation particles are accelerated and the magnetic field is ordered by the shock processes during the outbursts. In addition, the nature of 3C 454.3 may be consistent with a self-organized criticality system, similar to Sagittarius A*, and thus the outbursts could be from plasmoid ejections driven by magnetic reconnection. This may further support the idea that the jet radiation regions are magnetized.

  15. Spatial and temporal variation in vertical migration of dissolved 137Cs passed through the litter layer in Fukushima forests.

    PubMed

    Kurihara, Momo; Onda, Yuichi; Suzuki, Hiroyuki; Iwasaki, Yuichi; Yasutaka, Tetsuo

    2018-05-26

    We examined spatial variation in vertical 137 Cs flux from the litter layer using lysimeters combined with copper-substituted Prussian blue in two forests (deciduous broad-leaved and Japanese cedar (Cryptomeria japonica)), approximately 40 km northwest of the Fukushima Daiichi Nuclear power plant. The study ran from August 2016 to February 2017 in three periods; summer (10 Aug-4 Oct), autumn (5 Oct-30 Nov) and winter (1 Dec-27 Feb). Twenty-five and 15 lysimeters were installed in the deciduous broad-leaved and the Japanese cedar sites within 400 and 300 m 2 areas with 3-5 m intervals, respectively. The geometric means of the flux in the deciduous broad-leaved site were 0.51, 0.085 and 0.060 kBq/m 2 /month in summer, autumn and winter periods, respectively. In the Japanese cedar site, the mean fluxes were 0.45, 0.036 and 0.023 kBq/m 2 /month. The ratio of 137 Cs flux during the survey period to litter 137 Cs inventory was 6% and 1% on average in the deciduous broad-leaved and Japanese cedar sites, respectively. The 137 Cs flux in the summer period was much larger than those in other periods, resulting from higher precipitation in the summer. Our fine scale observation with 5 m interval showed very large spatial variation in the 137 Cs flux and the differences between maximum and minimum range from 8 to 104 times, but were mostly 20-25 times. The spatial variations in the 137 Cs flux were affected positively by those in the litter 137 Cs inventory and negatively by canopy openness. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Conformational Modeling of Continuum Structures in Robotics and Structural Biology: A Review

    PubMed Central

    Chirikjian, G. S.

    2016-01-01

    Hyper-redundant (or snakelike) manipulators have many more degrees of freedom than are required to position and orient an object in space. They have been employed in a variety of applications ranging from search-and-rescue to minimally invasive surgical procedures, and recently they even have been proposed as solutions to problems in maintaining civil infrastructure and the repair of satellites. The kinematic and dynamic properties of snakelike robots are captured naturally using a continuum backbone curve equipped with a naturally evolving set of reference frames, stiffness properties, and mass density. When the snakelike robot has a continuum architecture, the backbone curve corresponds with the physical device itself. Interestingly, these same modeling ideas can be used to describe conformational shapes of DNA molecules and filamentous protein structures in solution and in cells. This paper reviews several classes of snakelike robots: (1) hyper-redundant manipulators guided by backbone curves; (2) flexible steerable needles; and (3) concentric tube continuum robots. It is then shown how the same mathematical modeling methods used in these robotics contexts can be used to model molecules such as DNA. All of these problems are treated in the context of a common mathematical framework based on the differential geometry of curves, continuum mechanics, and variational calculus. Both coordinate-dependent Euler-Lagrange formulations and coordinate-free Euler-Poincaré approaches are reviewed. PMID:27030786

  17. Conformational Modeling of Continuum Structures in Robotics and Structural Biology: A Review.

    PubMed

    Chirikjian, G S

    Hyper-redundant (or snakelike) manipulators have many more degrees of freedom than are required to position and orient an object in space. They have been employed in a variety of applications ranging from search-and-rescue to minimally invasive surgical procedures, and recently they even have been proposed as solutions to problems in maintaining civil infrastructure and the repair of satellites. The kinematic and dynamic properties of snakelike robots are captured naturally using a continuum backbone curve equipped with a naturally evolving set of reference frames, stiffness properties, and mass density. When the snakelike robot has a continuum architecture, the backbone curve corresponds with the physical device itself. Interestingly, these same modeling ideas can be used to describe conformational shapes of DNA molecules and filamentous protein structures in solution and in cells. This paper reviews several classes of snakelike robots: (1) hyper-redundant manipulators guided by backbone curves; (2) flexible steerable needles; and (3) concentric tube continuum robots. It is then shown how the same mathematical modeling methods used in these robotics contexts can be used to model molecules such as DNA. All of these problems are treated in the context of a common mathematical framework based on the differential geometry of curves, continuum mechanics, and variational calculus. Both coordinate-dependent Euler-Lagrange formulations and coordinate-free Euler-Poincaré approaches are reviewed.

  18. Stratospheric O3 changes during 2001-2010: The small role of solar flux variations in a CTM

    NASA Astrophysics Data System (ADS)

    Dhomse, Sandip; Chipperfield, Martyn; Feng, Wuhu; Ball, William; Unruh, Yvonne; Haigh, Joanna; Krivova, Natalie; Solanki, Sami

    2013-04-01

    Solar spectral fluxes (or irradiance) measured by the SOlar Radiation and Climate Experiment (SORCE) shows different variability at ultraviolet (UV) wavelengths compared to other irradiance measurements and models (e.g. NRL, SATIRE-S). Some modelling studies have suggested that stratospheric O3 changes during solar cycle 23 (1996-2008) can only be reproduced if SORCE solar fluxes are used. We have used a 3-D chemical transport model (CTM), forced by meteorology from the European Centre for Medium-Range Weather Forecasts (ECMWF), to simulate stratospheric O3 using 3 different solar flux datasets (SORCE, NRL-SSI and SATIRE-S). Simulated O3 changes are compared with Microwave Limb Sounder (MLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite data. Modelled O3 anomalies using all solar flux datasets show good agreement with the observations, despite the different flux variations. A notable feature during this period is a robust positive solar signal in the tropical middle stratosphere. The CTM reproduces these changes through dynamical information contained in the analyses. Changes in the upper stratosphere cannot be used to discriminate between solar flux datasets due to large uncertainties in the O3 observations. Overall this study suggests that the UV variations detected by SORCE are not necessary to reproduce observed stratospheric O3 changes during 2001-2010.

  19. Effects of different drivers on ion fluxes at Mars. MARS EXPRESS and MAVEN observations

    NASA Astrophysics Data System (ADS)

    Dubinin, Eduard; Fraenz, Markus; McFadden, James; Halekas, Jasper; Epavier, Frank; Connerney, Jack; Brain, David; Jakosky, Bruce; Andrews, David; Barabash, Stas

    2017-04-01

    Recent observations by Mars Express and MAVEN spacecraft have shown that the Martian atmosphere/ionosphere is exposed to the impact of solar wind which results in losses of volatiles from Mars. This erosion is an important factor for the evolution of the Martian atmosphere and its water inventory. To estimate the escape forced by the solar wind during the early Solar System conditions we need to know how the ionosphere of Mars and escape fluxes depend on variations in the strength of the external drivers, in particularly, of solar wind and solar EUV flux. We present multi-instrument observations of the influence of the solar wind and solar irradiance on the Martian ionosphere and escape fluxes. We use data obtained by the ASPERA-3 and MARSIS experiments on Mars Express and by the STATIC, SWIA, MAG and EUV monitor on MAVEN. Observations by Mars Express supplemented by the EUV monitoring at Earth orbit and translated to Mars orbit provide us information about this dependence over more than 10 years whereas the measurements made by MAVEN provide us for the first time the opportunity to study these processes with simultaneous monitoring of the solar wind and ionospheric variations, planetary ion fluxes and solar irradiance. It will be shown that that fluxes of planetary ions through different escape channels (trans-terminator fluxes, ion plume, plasma sheet) respond differently on the variations of the different drivers.

  20. Interplanetary magnetic flux - Measurement and balance

    NASA Technical Reports Server (NTRS)

    Mccomas, D. J.; Gosling, J. T.; Phillips, J. L.

    1992-01-01

    A new method for determining the approximate amount of magnetic flux in various solar wind structures in the ecliptic (and solar rotation) plane is developed using single-spacecraft measurements in interplanetary space and making certain simplifying assumptions. The method removes the effect of solar wind velocity variations and can be applied to specific, limited-extent solar wind structures as well as to long-term variations. Over the 18-month interval studied, the ecliptic plane flux of coronal mass ejections was determined to be about 4 times greater than that of HFDs.

  1. CONTROL SYSTEM FOR NEUTRONIC REACTORS

    DOEpatents

    Crever, F.E.

    1962-05-01

    BS>A slow-acting shim rod for control of major variations in reactor neutron flux and a fast-acting control rod to correct minor flux variations are employed to provide a sensitive, accurate control system. The fast-acting rod is responsive to an error signal which is produced by changes in the neutron flux from a predetermined optimum level. When the fast rod is thus actuated in a given direction, means is provided to actuate the slow-moving rod in that direction to return the fast rod to a position near the midpoint of its control range. (AEC)

  2. Models of collective cell spreading with variable cell aspect ratio: a motivation for degenerate diffusion models.

    PubMed

    Simpson, Matthew J; Baker, Ruth E; McCue, Scott W

    2011-02-01

    Continuum diffusion models are often used to represent the collective motion of cell populations. Most previous studies have simply used linear diffusion to represent collective cell spreading, while others found that degenerate nonlinear diffusion provides a better match to experimental cell density profiles. In the cell modeling literature there is no guidance available with regard to which approach is more appropriate for representing the spreading of cell populations. Furthermore, there is no knowledge of particular experimental measurements that can be made to distinguish between situations where these two models are appropriate. Here we provide a link between individual-based and continuum models using a multiscale approach in which we analyze the collective motion of a population of interacting agents in a generalized lattice-based exclusion process. For round agents that occupy a single lattice site, we find that the relevant continuum description of the system is a linear diffusion equation, whereas for elongated rod-shaped agents that occupy L adjacent lattice sites we find that the relevant continuum description is connected to the porous media equation (PME). The exponent in the nonlinear diffusivity function is related to the aspect ratio of the agents. Our work provides a physical connection between modeling collective cell spreading and the use of either the linear diffusion equation or the PME to represent cell density profiles. Results suggest that when using continuum models to represent cell population spreading, we should take care to account for variations in the cell aspect ratio because different aspect ratios lead to different continuum models.

  3. An asymptotic Reissner-Mindlin plate model

    NASA Astrophysics Data System (ADS)

    Licht, Christian; Weller, Thibaut

    2018-06-01

    A mathematical study via variational convergence of a periodic distribution of classical linearly elastic thin plates softly abutted together shows that it is not necessary to use a different continuum model nor to make constitutive symmetry hypothesis as starting points to deduce the Reissner-Mindlin plate model.

  4. Ultraviolet continuum variability and visual flickering in the peculiar object MWC 560

    NASA Technical Reports Server (NTRS)

    Michalitsianos, A. G.; Perez, M.; Shore, S. N.; Maran, S. P.; Karovska, M.; Sonneborn, G.; Webb, J. R.; Barnes, Thomas G., III; Frueh, Marian L.; Oliversen, R. J.

    1993-01-01

    High-speed U-band photometry of the peculiar emission object MWC 560 obtained with the ground-based instrumentation, and V-band photometry obtained with the International Ultraviolet Explorer-Fine Error Sensor indicates irregular brightness variations are quasi-periodic. Multiple peaks of relative brightness power indicate statistically significant quasi periods existing in a range of 3-35 minutes, that are superposed on slower hourly varying components. We present a preliminary model that explains the minute and hourly time-scale variations in MWC 560 in terms of a velocity-shear instability that arises because a white dwarf magnetosphere impinges on an accretion disk. We also find evidence for Fe II multiplet pseudocontinuum absorption opacity in far-UV spectra of CH Cygni which is also present in MWC 560. Both CH Cyg and MWC 560 may be in an evolutionary stage that is characterized by strong UV continuum opacity which changes significantly during outburst, occurring before they permanently enter the symbiotic nebular emission phase.

  5. Resolving the Wind Structure of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Gull, T.; Hillier, J.; Ishibashi, K.; Davidson, K.

    2000-01-01

    Space Telescope Imaging Spectrograph (STIS) spectral observations of Eta Carinae have resolved the wind structure of the star(s) from the central point source. These observations were done with a 52 x 0.1" aperture, resolving power of about 5000 and complete spectral coverage from 1640A to 10400A. Various broad stellar Lines are seen to change within the central 0.511 of the nebular region. The Balmer lines, relative to the continuum, drop in strength while some Fe II lines scale with the continuum. Other Fe II lines increase in intensity while still others decrease. The structure to the southeast of the central source shows considerable variation in the stellar line strengths. To the Northwest, the emission is dominated by the very bright nebular knots, Weigelt blobs B and D. Three sets of observations have been done: March 1998, February 1999 and March 2000 to monitor the spectral variations. The stellar, wind and nebular emission changes considerably during this two year period. This work was done under the STIS GTO and HST GO funding.

  6. Line-profile and continuum variations of the contact binary SV Centauri

    NASA Technical Reports Server (NTRS)

    Rahe, J.; Drechsel, H.; Wargau, W.

    1982-01-01

    A total of five high and ten low dispersion UV spectra of the interacting contact binary SV Centauri obtained between 1979 and 1982 are analyzed. The low resolution observations cover the whole phase range, while a few selected phases were observed in high dispersion. The UV data were complemented with optical photometric and spectroscopic observations, in order to determine the tructure and absolute dimensions of the system. The profiles of prominent UV resonance and metastable lines undergo drastic changes with phase angle and time. Their overall appearance indicates relatively strong mass loss from the system, exhibiting pronounced variations of the stellar wind. The far UV continuum distribution suggests the presence of a luminous hot radiation source with maximum emission in the soft X-ray range, which is most apparently seen during the first quadrature phase, while it is weakest close to primary minimum. The case exchange and mass loss process as well as the evolutionary stage of SV Centauri are discussed.

  7. Modeling aeolian dune and dune field evolution

    NASA Astrophysics Data System (ADS)

    Diniega, Serina

    Aeolian sand dune morphologies and sizes are strongly connected to the environmental context and physical processes active since dune formation. As such, the patterns and measurable features found within dunes and dune fields can be interpreted as records of environmental conditions. Using mathematical models of dune and dune field evolution, it should be possible to quantitatively predict dune field dynamics from current conditions or to determine past field conditions based on present-day observations. In this dissertation, we focus on the construction and quantitative analysis of a continuum dune evolution model. We then apply this model towards interpretation of the formative history of terrestrial and martian dunes and dune fields. Our first aim is to identify the controls for the characteristic lengthscales seen in patterned dune fields. Variations in sand flux, binary dune interactions, and topography are evaluated with respect to evolution of individual dunes. Through the use of both quantitative and qualitative multiscale models, these results are then extended to determine the role such processes may play in (de)stabilization of the dune field. We find that sand flux variations and topography generally destabilize dune fields, while dune collisions can yield more similarly-sized dunes. We construct and apply a phenomenological macroscale dune evolution model to then quantitatively demonstrate how dune collisions cause a dune field to evolve into a set of uniformly-sized dunes. Our second goal is to investigate the influence of reversing winds and polar processes in relation to dune slope and morphology. Using numerical experiments, we investigate possible causes of distinctive morphologies seen in Antarctic and martian polar dunes. Finally, we discuss possible model extensions and needed observations that will enable the inclusion of more realistic physical environments in the dune and dune field evolution models. By elucidating the qualitative and quantitative connections between environmental conditions, physical processes, and resultant dune and dune field morphologies, this research furthers our ability to interpret spacecraft images of dune fields, and to use present-day observations to improve our understanding of past terrestrial and martian environments.

  8. Black hole masses in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Denney, Kelly D.

    2010-11-01

    We present the complete results from two, high sampling-rate, multi-month, spectrophotometric reverberation mapping campaigns undertaken to obtain either new or improved Hbeta reverberation lag measurements for several relatively low-luminosity active galactic nuclei (AGNs). We have reliably measured the time delay between variations in the continuum and Hbeta emission line in seven local Seyfert 1 galaxies. These measurements are used to calculate the mass of the supermassive black hole at the center of each of these AGNs. We place our results in context to the most current calibration of the broad-line region (BLR) RBLR-L relationship, where our results remove many outliers and significantly reduce the scatter at the low-luminosity end of this relationship. A detailed analysis of the data from our high sampling rate, multi-month reverberation mapping campaign in 2007 reveals that the Hbeta emission region within the BLRs of several nearby AGNs exhibit a variety of kinematic behaviors. Through a velocity-resolved reverberation analysis of the broad Hbeta emission-line flux variations in our sample, we reconstruct velocity-resolved kinematic signals for our entire sample and clearly see evidence for outflowing, infalling, and virialized BLR gas motions in NGC 3227, NGC 3516, and NGC 5548, respectively. Finally, we explore the nature of systematic errors that can arise in measurements of black hole masses from single-epoch spectra of AGNs by utilizing the many epochs available for NGC 5548 and PG1229+204 from reverberation mapping databases. In particular, we examine systematics due to AGN variability, contamination due to constant spectral components (i.e., narrow lines and host galaxy flux), data quality (i.e., signal-to-noise ratio, S/N), and blending of spectral features. We investigate the effect that each of these systematics has on the precision and accuracy of single-epoch masses calculated from two commonly-used line-width measures by comparing these results to recent reverberation mapping studies. We then present an error budget which summarizes the minimum observable uncertainties as well as the amount of additional scatter and/or systematic offset that can be expected from the individual sources of error investigated.

  9. Short term variations in Jupiter's synchrotron radiation derived from VLA data analysis

    NASA Astrophysics Data System (ADS)

    Kita, H.; Misawa, H.; Tsuchiya, F.; Morioka, A.

    2011-12-01

    Jupiter's synchrotron radiation (JSR) is the emission from relativistic electrons in the strong magnetic field of the inner magnetosphere, and it is the most effective prove for remote sensing of Jupiter's radiation belt from the Earth. Although JSR has been thought to be stable for a long time, intensive observations for JSR have made after the collisions of comet P/SL9 to Jupiter in 1994, and these observations revealed short term variations of JSR on time scale of days to weeks. However, the mechanisms which cause the short term variations of total flux density and brightness distribution have not been revealed well. In order to reveal the mechanism of short term variations of JSR more precisely, we have made radio image analysis using the NRAO (National Radio Astronomy Observatory) archived data of the VLA [*]. Brice and McDonough [1973, Icarus] proposed a scenario for the short term variations: i.e, the solar UV/EUV heating for Jupiter's upper atmosphere drives neutral wind perturbations and then the induced dynamo electric field leads to enhancement of radial diffusion. It is also suggested that induced dynamo electric field produce dawn-dusk electric potential difference, which cause dawn-dusk asymmetry in electron spatial distribution and emission distribution. So far the following results have been indicated for the short term variations. Miyoshi et al. [1999, GRL] showed that a short term variation event at 2.3GHz is well correlate to solar UV/EUV flux variations. Tsuchiya et al. [2010, Adv. Geosci.] showed that JSR at 325MHz and 785MHz have short term variations. These JSR observations confirmed the existence of the short term variation which is caused by solar UV/EUV. However, the effect of solar UV/EUV heating on the spatial distribution of JSR has never been confirmed, so this study is the first attempt to confirm the solar UV/EUV effect on spatial distribution of JSR. We have selected the data observed from 28th Jan. to 5th Feb. 2000 at 327MHz. During the period, solar UV/EUV flux expected on Jupiter showed almost monotonic increase. It is expected from the analysis for the period that the enhancement of radial diffusion caused by solar UV/EUV heating produces total flux enhancement and dawn-dusk asymmetry of the emission distribution of the JSR. We can therefore examine the scenario by measuring total flux density and dawn-dusk peak emission ratio of JSR, and their relationships to the variation of solar UV/EUV activity. A preliminary result shows that total flux density variations occurred corresponding to the solar UV/EUV variations, but we couldn't find variations in the dawn-dusk asymmetry above the one rms level calculated from the background image. *The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  10. VizieR Online Data Catalog: ALMA survey of protoplanetary disks in sigma Ori (Ansdell+, 2017)

    NASA Astrophysics Data System (ADS)

    Ansdell, M.; Williams, J. P.; Manara, C. F.; Miotello, A.; Facchini, S.; van der Marel, N.; Testi, L.; van Dishoeck, E. F.

    2017-08-01

    Our sample consists of the 92 Young Stellar Objects (YSOs) in σ Orionis with infrared excesses consistent with the presence of a protoplanetary disk. hese sources are identified by cross-matching the Class II and transition disk (TD) candidates from the Spitzer survey of Hernandez et al. 2007 (Cat. J/ApJ/662/1067) with the Mayrit catalog (Caballero 2008, Cat. J/A+A/478/667). Both catalogs are expected to be complete down to the brown dwarf limit. Disk classifications are based on the Spitzer/Infrared Array Camera (IRAC) Spectral Energy Distribution (SED) slope, as described in Hernandez et al. 2007 (Cat. J/ApJ/662/1067). We also include in our sample a Class I disk (source 1153), as it is located near the Spitzer/IRAC color cutoff for Class II disks. Our Band 6 Atacama Large Millimeter/sub-millimeter Array (ALMA) observations were obtained on 2016 July 30 and 31 during Cycle 3 (Project ID: 2015.1.00089.S; PI: Williams). The array configuration used 36 and 37 12m antennas on July 30 and 31, respectively, with baselines of 15-1124m on both runs. The correlator setup included two broadband continuum windows centered on 234.293 and 216.484GHz with bandwidths of 2.000 and 1.875GHz and channel widths of 15.625 and 0.976MHz, respectively. The bandwidth-weighted mean continuum frequency was 225.676GHz (1.33mm). The spectral windows covered the 12CO (230.538GHz), 13CO (220.399GHz), and C18O (219.560GHz) J=2-1 transitions at velocity resolutions of 0.16-0.17km/s. These spectral windows were centered on 230.531, 220.392, and 219.554GHz with bandwidths of 11.719MHz and channel widths of 0.122MHz. On-source integration times were 1.2 minutes per object for an average continuum rms of 0.15mJy/beam (Table1). This sensitivity was based on the James Clerk Maxwell Telescope (JCMT)/Submillimeter Common User Bolometer Array (SCUBA)-2 survey of σ Orionis disks by Williams et al. 2013 (Cat. J/MNRAS/435/1671), who found that stacking their individual non-detections revealed a mean 850μm continuum signal of 1.3mJy at 4σ significance. The sensitivity of our ALMA survey was therefore chosen to provide ~3-4σ detections of such disks at 1.3mm, based on an extrapolation of the 850μm mean signal using a spectral slope of α=2-3. Table1 presents the 1.33mm continuum flux densities and associated uncertainties (F1.33mm). Table2 gives our integrated line fluxes or upper limits. (2 data files).

  11. The Inheritance of Metabolic Flux: Expressions for the within-Sibship Mean and Variance Given the Parental Genotypes

    PubMed Central

    Ward, P. J.

    1990-01-01

    Recent developments have related quantitative trait expression to metabolic flux. The present paper investigates some implications of this for statistical aspects of polygenic inheritance. Expressions are derived for the within-sibship genetic mean and genetic variance of metabolic flux given a pair of parental, diploid, n-locus genotypes. These are exact and hold for arbitrary numbers of gene loci, arbitrary allelic values at each locus, and for arbitrary recombination fractions between adjacent gene loci. The within-sibship, genetic variance is seen to be simply a measure of parental heterozygosity plus a measure of the degree of linkage coupling within the parental genotypes. Approximations are given for the within-sibship phenotypic mean and variance of metabolic flux. These results are applied to the problem of attaining adequate statistical power in a test of association between allozymic variation and inter-individual variation in metabolic flux. Simulations indicate that statistical power can be greatly increased by augmenting the data with predictions and observations on progeny statistics in relation to parental allozyme genotypes. Adequate power may thus be attainable at small sample sizes, and when allozymic variation is scored at a only small fraction of the total set of loci whose catalytic products determine the flux. PMID:2379825

  12. 22 GHz VLBI Survey: Status Report and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Moellenbrock, G.; Fujisawa, K.; Preston, R.; Gurvits, L.; Dewey, R.; Hirabayashi, H.; Inoue, M.; Jauncey, D.; Migenes, V.; Roberts, D.; hide

    1994-01-01

    A ground-based VLBI survey to measure the visibilities and correlated flux densities in continuum at 22 GHz of more than 140 extragalactic radio sources has been conducted with baselines up to approximately 11 000 km. The project has been designed to help in preparation of target lists for VSOP and Radioastron Space VLBI missions as well as providing observational data for statistical study of structural properties at 22 GHz on sub-milliarcsecond scales for this large sample of extragalactic sources.

  13. Measurements of Cyclotron Features and Pulse Periods in the High-Mass X-Ray Binaries 4U 1538-522 and 4U 1907+09 with the International Gamma-Ray Astrophysics Laboratory

    NASA Technical Reports Server (NTRS)

    Hemphill, Paul B.; Rothschild, Richard E.; Caballero, Isabel; Pottschmidt, Katja; Kuhnel, Matthias; Furst, Felix; Wilms, Jorn

    2013-01-01

    We present a spectral and timing analysis of International Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of two high-mass X-ray binaries, 4U 1538-522 and 4U 1907+09. Our timing measurements for 4U 1538-522 find the pulse period to have exhibited a spin-up trend until approximately 2009, after which there is evidence for a torque reversal, with the source beginning to spin down to the most recently measured period of 525.407 plus or minus 0.001 seconds. The most recent INTEGRAL observations of 4U 1907+09 are not found to yield statistically significant pulse periods due to the significantly lower flux from the source compared with 4U 1538-522. A spectral model consisting of a power-law continuum with an exponential cutoff and modified by two cyclotron resonance scattering features is found to fit both sources well, with the cyclotron scattering features detected at approximately 22 and approximately 49 kiloelectronvolts for 4U 1538-522 and at approximately 18 and approximately 36 kiloelectronvolts for 4U 1907+09. The spectral parameters of 4U 1538-522 are generally not found to vary significantly with flux and there is little to no variation across the torque reversal. Examining our results in conjunction with previous work, we find no evidence for a correlation between cyclotron line energy and luminosity for 4U 1538-522. 4U 1907+09 shows evidence for a positive correlation between cyclotron line energy and luminosity, which would make it the fourth, and lowest luminosity, cyclotron line source to exhibit this relationship.

  14. MEASUREMENTS OF CYCLOTRON FEATURES AND PULSE PERIODS IN THE HIGH-MASS X-RAY BINARIES 4U 1538–522 AND 4U 1907+09 WITH THE INTERNATIONAL GAMMA-RAY ASTROPHYSICS LABORATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemphill, Paul B.; Rothschild, Richard E.; Caballero, Isabel

    We present a spectral and timing analysis of International Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of two high-mass X-ray binaries, 4U 1538–522 and 4U 1907+09. Our timing measurements for 4U 1538–522 find the pulse period to have exhibited a spin-up trend until approximately 2009, after which there is evidence for a torque reversal, with the source beginning to spin down to the most recently measured period of 525.407 ± 0.001 s. The most recent INTEGRAL observations of 4U 1907+09 are not found to yield statistically significant pulse periods due to the significantly lower flux from the source compared with 4U 1538–522.more » A spectral model consisting of a power-law continuum with an exponential cutoff and modified by two cyclotron resonance scattering features is found to fit both sources well, with the cyclotron scattering features detected at ∼22 and ∼49 keV for 4U 1538–522 and at ∼18 and ∼36 keV for 4U 1907+09. The spectral parameters of 4U 1538–522 are generally not found to vary significantly with flux and there is little to no variation across the torque reversal. Examining our results in conjunction with previous work, we find no evidence for a correlation between cyclotron line energy and luminosity for 4U 1538–522. 4U 1907+09 shows evidence for a positive correlation between cyclotron line energy and luminosity, which would make it the fourth, and lowest luminosity, cyclotron line source to exhibit this relationship.« less

  15. Sensitivity of Gravity Wave Fluxes to Interannual Variations in Tropical Convection and Zonal Wind.

    PubMed

    Alexander, M Joan; Ortland, David A; Grimsdell, Alison W; Kim, Ji-Eun

    2017-09-01

    Using an idealized model framework with high-frequency tropical latent heating variability derived from global satellite observations of precipitation and clouds, the authors examine the properties and effects of gravity waves in the lower stratosphere, contrasting conditions in an El Niño year and a La Niña year. The model generates a broad spectrum of tropical waves including planetary-scale waves through mesoscale gravity waves. The authors compare modeled monthly mean regional variations in wind and temperature with reanalyses and validate the modeled gravity waves using satellite- and balloon-based estimates of gravity wave momentum flux. Some interesting changes in the gravity spectrum of momentum flux are found in the model, which are discussed in terms of the interannual variations in clouds, precipitation, and large-scale winds. While regional variations in clouds, precipitation, and winds are dramatic, the mean gravity wave zonal momentum fluxes entering the stratosphere differ by only 11%. The modeled intermittency in gravity wave momentum flux is shown to be very realistic compared to observations, and the largest-amplitude waves are related to significant gravity wave drag forces in the lowermost stratosphere. This strong intermittency is generally absent or weak in climate models because of deficiencies in parameterizations of gravity wave intermittency. These results suggest a way forward to improve model representations of the lowermost stratospheric quasi-biennial oscillation winds and teleconnections.

  16. Magnetar Giant Flares in Multipolar Magnetic Fields. III. Multipolar Magnetic Field Structure Variations

    NASA Astrophysics Data System (ADS)

    Yao, Guang-Rui; Huang, Lei; Yu, Cong; Shen, Zhi-Qiang

    2018-02-01

    We have analyzed the multipolar magnetic field structure variation at neutron star surface by means of the catastrophic eruption model and find that the variation of the geometry of multipolar fields on the magnetar surface could result in the catastrophic rearrangement of the magnetosphere, which provides certain physical mechanism for the outburst of giant flares. The magnetospheric model we adopted consists of two assumptions: (1) a helically twisted flux rope is suspended in an ideal force-free magnetosphere around the magnetar, and (2) a current sheet emerges during the flux rope evolution. Magnetic energy accumulates during the flux rope’s gradual evolution along with the variation of magnetar surface magnetic structure before the eruption. The two typical behaviors, either state transition or catastrophic escape, would take place once the flux rope loses equilibrium; thus, tremendous accumulated energy is radiated. We have investigated the equilibrium state of the flux rope and the energy release affected by different multipolar structures and find structures that could trigger violent eruption and provide the radiation approximately 0.5% of the total magnetic energy during the giant flare outburst. Our results provide certain multipolar structures of the neutron star’s magnetic field with an energy release percentage 0.42% in the state transition and 0.51% in the catastrophic escape case, which are sufficient for the previously reported energy release from SGR 1806–20 giant flares.

  17. Development of a two-dimensional zonally averaged statistical-dynamical model. III - The parameterization of the eddy fluxes of heat and moisture

    NASA Technical Reports Server (NTRS)

    Stone, Peter H.; Yao, Mao-Sung

    1990-01-01

    A number of perpetual January simulations are carried out with a two-dimensional zonally averaged model employing various parameterizations of the eddy fluxes of heat (potential temperature) and moisture. The parameterizations are evaluated by comparing these results with the eddy fluxes calculated in a parallel simulation using a three-dimensional general circulation model with zonally symmetric forcing. The three-dimensional model's performance in turn is evaluated by comparing its results using realistic (nonsymmetric) boundary conditions with observations. Branscome's parameterization of the meridional eddy flux of heat and Leovy's parameterization of the meridional eddy flux of moisture simulate the seasonal and latitudinal variations of these fluxes reasonably well, while somewhat underestimating their magnitudes. New parameterizations of the vertical eddy fluxes are developed that take into account the enhancement of the eddy mixing slope in a growing baroclinic wave due to condensation, and also the effect of eddy fluctuations in relative humidity. The new parameterizations, when tested in the two-dimensional model, simulate the seasonal, latitudinal, and vertical variations of the vertical eddy fluxes quite well, when compared with the three-dimensional model, and only underestimate the magnitude of the fluxes by 10 to 20 percent.

  18. Developing an Earth system Inverse model for the Earth's energy and water budgets.

    NASA Astrophysics Data System (ADS)

    Haines, K.; Thomas, C.; Liu, C.; Allan, R. P.; Carneiro, D. M.

    2017-12-01

    The CONCEPT-Heat project aims at developing a consistent energy budget for the Earth system in order to better understand and quantify global change. We advocate a variational "Earth system inverse" solution as the best methodology to bring the necessary expertise from different disciplines together. L'Ecuyer et al (2015) and Rodell et al (2015) first used a variational approach to adjust multiple satellite data products for air-sea-land vertical fluxes of heat and freshwater, achieving closed budgets on a regional and global scale. However their treatment of horizontal energy and water redistribution and its uncertainties was limited. Following the recent work of Liu et al (2015, 2017) which used atmospheric reanalysis convergences to derive a new total surface heat flux product from top of atmosphere fluxes, we have revisited the variational budget approach introducing a more extensive analysis of the role of horizontal transports of heat and freshwater, using multiple atmospheric and ocean reanalysis products. We find considerable improvements in fluxes in regions such as the North Atlantic and Arctic, for example requiring higher atmospheric heat and water convergences over the Arctic than given by ERA-Interim, thereby allowing lower and more realistic oceanic transports. We explore using the variational uncertainty analysis to produce lower resolution corrections to higher resolution flux products and test these against in situ flux data. We also explore the covariance errors implied between component fluxes that are imposed by the regional budget constraints. Finally we propose this as a valuable methodology for developing consistent observational constraints on the energy and water budgets in climate models. We take a first look at the same regional budget quantities in CMIP5 models and consider the implications of the differences for the processes and biases active in the models. Many further avenues of investigation are possible focused on better valuing the uncertainties in observational flux products and setting requirement targets for future observation programs.

  19. Ambient neutrons of natural origin

    NASA Astrophysics Data System (ADS)

    Gusev, Anatoly; Martin, Inacio; Shkevov, Rumen; Alves, Mauro

    2016-07-01

    The laboratory of environmental radiation of ITA (São José dos Campos, 23°11'11″S, 45°52'43″W, 650 MAMSL) performs simultaneous monitoring of a natural radiation background and meteorological parameters. Neutron flux in the energy range of 0.02 eV - 10 MeV is registered with two sets of proportional ^{3}He tubes placed into cylindrical paraffin thermalizers: an {bf outdoor detector }of 250 cm² area and {bf indoor detector }of 70 cm² area located on the second floor of a concrete building. The counter efficiency for thermal neutrons is 80%. The characteristics of the observed flux variation are quite different from those inherent to the neutrons of the cosmic ray origin. {bf Four types of the outdoor flux variations }are observed: 1) {bf seasonal }with a maxima in wet seasons; 2) {bf diurnal }with maximum at about 6 h local time and an amplitude up to several dozens; 3) {bf abrupt transient} ( 1 min) increases with magnitudes up to two orders higher than the mean daily flux; 4) short (several days) {bf quasi-periodic enhancements }with amplitudes up to several times higher than the mean daily flux. A large variation of the outdoor flux and its phase synchronism with that of the radon decay products means with a high probability their common origin. An apparent source of the neutrons observed is nuclear reactions of decay α-particles with the ground matter. In this case the dynamics of the outdoor flux variations of the first two types is controlled by those of the meteorological parameters in the locality. The third type events correlate with lightning strokes in the vicinity (<200 m) of the detector. The more rare fourth type correlate neither with geomagnetic disturbances nor with meteorological phenomena and are probably a result of natural radon release from the Earth's crust triggered by minor seismological activity. The indoor flux is quite stable with a possible weak maximum at16 h not exceeding 0.1.

  20. Advances in stellarator gyrokinetics

    NASA Astrophysics Data System (ADS)

    Helander, P.; Bird, T.; Jenko, F.; Kleiber, R.; Plunk, G. G.; Proll, J. H. E.; Riemann, J.; Xanthopoulos, P.

    2015-05-01

    Recent progress in the gyrokinetic theory of stellarator microinstabilities and turbulence simulations is summarized. The simulations have been carried out using two different gyrokinetic codes, the global particle-in-cell code EUTERPE and the continuum code GENE, which operates in the geometry of a flux tube or a flux surface but is local in the radial direction. Ion-temperature-gradient (ITG) and trapped-electron modes are studied and compared with their counterparts in axisymmetric tokamak geometry. Several interesting differences emerge. Because of the more complicated structure of the magnetic field, the fluctuations are much less evenly distributed over each flux surface in stellarators than in tokamaks. Instead of covering the entire outboard side of the torus, ITG turbulence is localized to narrow bands along the magnetic field in regions of unfavourable curvature, and the resulting transport depends on the normalized gyroradius ρ* even in radially local simulations. Trapped-electron modes can be significantly more stable than in typical tokamaks, because of the spatial separation of regions with trapped particles from those with bad magnetic curvature. Preliminary non-linear simulations in flux-tube geometry suggest differences in the turbulence levels in Wendelstein 7-X and a typical tokamak.

Top