PHYSICAL PROPERTIES OF LARGE AND SMALL GRANULES IN SOLAR QUIET REGIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu Daren; Xie Zongxia; Hu Qinghua
The normal mode observations of seven quiet regions obtained by the Hinode spacecraft are analyzed to study the physical properties of granules. An artificial intelligence technique is introduced to automatically find the spatial distribution of granules in feature spaces. In this work, we investigate the dependence of granular continuum intensity, mean Doppler velocity, and magnetic fields on granular diameter. We recognized 71,538 granules by an automatic segmentation technique and then extracted five properties: diameter, continuum intensity, Doppler velocity, and longitudinal and transverse magnetic flux density to describe the granules. To automatically explore the intrinsic structures of the granules in themore » five-dimensional parameter space, the X-means clustering algorithm and one-rule classifier are introduced to define the rules for classifying the granules. It is found that diameter is a dominating parameter in classifying the granules and two families of granules are derived: small granules with diameters smaller than 1.''44, and large granules with diameters larger than 1.''44. Based on statistical analysis of the detected granules, the following results are derived: (1) the averages of diameter, continuum intensity, and Doppler velocity in the upward direction of large granules are larger than those of small granules; (2) the averages of absolute longitudinal, transverse, and unsigned flux density of large granules are smaller than those of small granules; (3) for small granules, the average of continuum intensity increases with their diameters, while the averages of Doppler velocity, transverse, absolute longitudinal, and unsigned magnetic flux density decrease with their diameters. However, the mean properties of large granules are stable; (4) the intensity distributions of all granules and small granules do not satisfy Gaussian distribution, while that of large granules almost agrees with normal distribution with a peak at 1.04 I{sub 0}.« less
Gaussian theory for spatially distributed self-propelled particles
NASA Astrophysics Data System (ADS)
Seyed-Allaei, Hamid; Schimansky-Geier, Lutz; Ejtehadi, Mohammad Reza
2016-12-01
Obtaining a reduced description with particle and momentum flux densities outgoing from the microscopic equations of motion of the particles requires approximations. The usual method, we refer to as truncation method, is to zero Fourier modes of the orientation distribution starting from a given number. Here we propose another method to derive continuum equations for interacting self-propelled particles. The derivation is based on a Gaussian approximation (GA) of the distribution of the direction of particles. First, by means of simulation of the microscopic model, we justify that the distribution of individual directions fits well to a wrapped Gaussian distribution. Second, we numerically integrate the continuum equations derived in the GA in order to compare with results of simulations. We obtain that the global polarization in the GA exhibits a hysteresis in dependence on the noise intensity. It shows qualitatively the same behavior as we find in particles simulations. Moreover, both global polarizations agree perfectly for low noise intensities. The spatiotemporal structures of the GA are also in agreement with simulations. We conclude that the GA shows qualitative agreement for a wide range of noise intensities. In particular, for low noise intensities the agreement with simulations is better as other approximations, making the GA to an acceptable candidates of describing spatially distributed self-propelled particles.
Voice-onset time and buzz-onset time identification: A ROC analysis
NASA Astrophysics Data System (ADS)
Lopez-Bascuas, Luis E.; Rosner, Burton S.; Garcia-Albea, Jose E.
2004-05-01
Previous studies have employed signal detection theory to analyze data from speech and nonspeech experiments. Typically, signal distributions were assumed to be Gaussian. Schouten and van Hessen [J. Acoust. Soc. Am. 104, 2980-2990 (1998)] explicitly tested this assumption for an intensity continuum and a speech continuum. They measured response distributions directly and, assuming an interval scale, concluded that the Gaussian assumption held for both continua. However, Pastore and Macmillan [J. Acoust. Soc. Am. 111, 2432 (2002)] applied ROC analysis to Schouten and van Hessen's data, assuming only an ordinal scale. Their ROC curves suppported the Gaussian assumption for the nonspeech signals only. Previously, Lopez-Bascuas [Proc. Audit. Bas. Speech Percept., 158-161 (1997)] found evidence with a rating scale procedure that the Gaussian model was inadequate for a voice-onset time continuum but not for a noise-buzz continuum. Both continua contained ten stimuli with asynchronies ranging from -35 ms to +55 ms. ROC curves (double-probability plots) are now reported for each pair of adjacent stimuli on the two continua. Both speech and nonspeech ROCs often appeared nonlinear, indicating non-Gaussian signal distributions under the usual zero-variance assumption for response criteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keck, R.L.
1985-06-01
Measurements have been made of the x-ray continuum produced by plasmas irradiated with 0.35 and 1.05 ..mu..m laser light over an intensity range of 5 x 10/sup 13/ to 2 x 10/sup 15/ W/cm/sup 2/. From the x-ray continuum, which was measured over a range of 1.5 to 300 keV, both the temperature of and fractional energy in any supra-thermal electron distributions can be obtained. The measurements show the presence of a very high temperature (20 to 60 keV) electron distribution with either 0.35 or 1.05 ..mu..m irradiation. This component, which is attributed to the presence of the two-plasmon decaymore » instability, is observed above an intensity of approximately 10/sup 14/ W/cm/sup 2/ at 1.05 ..mu..m and contains less than 0.1% of the incident laser energy. With 0.35 ..mu..m irradiation, the intensity at which this component is observed is approximately a factor of 3 higher. At 1.05 ..mu..m, this very high temperature component appears in addition to a third, 2 to 7 keV, component attributed to resonance absorption. 38 refs., 37 figs., 6 tabs.« less
STATCONT: A statistical continuum level determination method for line-rich sources
NASA Astrophysics Data System (ADS)
Sánchez-Monge, Á.; Schilke, P.; Ginsburg, A.; Cesaroni, R.; Schmiedeke, A.
2018-01-01
STATCONT is a python-based tool designed to determine the continuum emission level in spectral data, in particular for sources with a line-rich spectrum. The tool inspects the intensity distribution of a given spectrum and automatically determines the continuum level by using different statistical approaches. The different methods included in STATCONT are tested against synthetic data. We conclude that the sigma-clipping algorithm provides the most accurate continuum level determination, together with information on the uncertainty in its determination. This uncertainty can be used to correct the final continuum emission level, resulting in the here called `corrected sigma-clipping method' or c-SCM. The c-SCM has been tested against more than 750 different synthetic spectra reproducing typical conditions found towards astronomical sources. The continuum level is determined with a discrepancy of less than 1% in 50% of the cases, and less than 5% in 90% of the cases, provided at least 10% of the channels are line free. The main products of STATCONT are the continuum emission level, together with a conservative value of its uncertainty, and datacubes containing only spectral line emission, i.e., continuum-subtracted datacubes. STATCONT also includes the option to estimate the spectral index, when different files covering different frequency ranges are provided.
The ionizing radiation of Seyfert 2 galactic nuclei
NASA Technical Reports Server (NTRS)
Ho, Luis C.; Shields, Joseph C.; Filippenko, Alexei V.
1993-01-01
We report the discovery of a nonrandom trend in the dispersion of emission-line intensity ratios for Seyfert 2 galaxies. The sense of this pattern suggests the influence of a single physical parameter, the hardness of the ionizing continuum, which controls the heating energy per ionizing photon. We compare the observed line ratios with new photoionization calculations and find that the observed distributions can be reproduced if the ionizing continuum is parametrized by a power law. Our results also suggest an inverse correlation between luminosity and continuum hardness for Seyfert 2 nuclei; if true, this trend extends a similar pattern known in quasars and Seyfert 1 galaxies to active galactic nuclei of lower luminosity. Samples of Seyfert 2 nuclei with improved selection uniformity are desirable for elaboration of these findings.
Remeasurement of the H I Gunn-Peterson Effect toward QSO PKS 1937-101 with Keck Observations
NASA Astrophysics Data System (ADS)
Fang, Yihu; Fan, Xiaoming; Tytler, David; Crotts, Arlin P. S.
1998-04-01
We present the first measurement of the H I Gunn-Peterson effect using the Keck 10 m telescope, observing the high-redshift QSO PKS 1937-101 (z = 3.787). The high-resolution echelle (HIRES) spectra, with FWHM ~15 km s-1 and a signal-to-noise ratio (S/N) ~50 per spectral resolution element, allows us to resolve many weak lines down to NH I = 1012 cm-2, thus reducing the line-blanketing problem compared with previous data. Based on intensity-distribution analysis, we find that a maximum likelihood best fit yields a Gunn-Peterson type of opacity τGP = 0.113 +/- 0.020 in addition to a power-law Lyα absorption-line population with β of 1.7 down to NH I = 1012 cm-2. There remains systematic uncertainty in this result because of problems extrapolating the spectral continuum from the red side of the Lyα emission line. This is consistent with the previous study of the same QSO in low S/N data using weighted intensity function analysis (Fang & Crotts 1995). It indicates that this previous method succeeds in measuring the Lyα forest continuum level at low S/N, which is essential in extending the technique to possible fainter QSOs with minimum emission-line contamination for reliable continuum extrapolation. We further discuss problems of severe line blanketing, even in Keck spectra for QSOs at z >= 4.5, and show the effectiveness of the weighted intensity function method in measuring continuum levels in extremely crowded Lyα absorption spectra for redshifts as high as z > 5.
Density functional theory calculations of continuum lowering in strongly coupled plasmas.
Vinko, S M; Ciricosta, O; Wark, J S
2014-03-24
An accurate description of the ionization potential depression of ions in plasmas due to their interaction with the environment is a fundamental problem in plasma physics, playing a key role in determining the ionization balance, charge state distribution, opacity and plasma equation of state. Here we present a method to study the structure and position of the continuum of highly ionized dense plasmas using finite-temperature density functional theory in combination with excited-state projector augmented-wave potentials. The method is applied to aluminium plasmas created by intense X-ray irradiation, and shows excellent agreement with recently obtained experimental results. We find that the continuum lowering for ions in dense plasmas at intermediate temperatures is larger than predicted by standard plasma models and explain this effect through the electronic structure of the valence states in these strong-coupling conditions.
Hurwitz, M; Bowyer, S; Martin, C
1991-05-01
We have determined the scattering parameters of dust in the interstellar medium at far-ultraviolet (FUV) wavelengths (1415-1835 angstroms). Our results are based on spectra of the diffuse background taken with the Berkeley UVX spectrometer. The unique design of this instrument makes possible for the first time accurate determination of the background both at high Galactic latitude, where the signal is intrinsically faint, and at low Galactic latitude, where direct starlight has heretofore compromised measurements of the diffuse emission. Because the data are spectroscopic, the continuum can be distinguished from the atomic and molecular transition features which also contribute to the background. We find the continuum intensity to be well correlated with the Galactic neutral hydrogen column density until saturation at about 1200 photons cm-2 s-1 sr-1 angstrom-1 is reached where tau FUV approximately 1. Our measurement of the intensity where tau FUV > or = 1 is crucial to the determination of the scattering properties of the grains. We interpret the data with a detailed radiative transfer model and conclude that the FUV albedo of the grains is low (<25%) and that the grains scatter fairly isotropically. We evaluate models of dust composition and grain-size distribution and compare their predictions with these new results. We present evidence that, as the Galactic neutral hydrogen column density approaches zero, the FUV continuum background arises primarily from scattering by dust, which implies that dust may be present in virtually all view directions. A non-dust-scattering continuum component has also been identified, with an intensity (external to the foreground Galactic dust) of about 115 photons cm-2 s-1 angstrom-1. With about half this intensity accounted for by two-photon emission from Galactic ionized gas, we identify roughly 50 photons cm-2 s-1 sr-1 angstrom-1 as a true extragalactic component.
On Maximal Hard-Core Thinnings of Stationary Particle Processes
NASA Astrophysics Data System (ADS)
Hirsch, Christian; Last, Günter
2018-02-01
The present paper studies existence and distributional uniqueness of subclasses of stationary hard-core particle systems arising as thinnings of stationary particle processes. These subclasses are defined by natural maximality criteria. We investigate two specific criteria, one related to the intensity of the hard-core particle process, the other one being a local optimality criterion on the level of realizations. In fact, the criteria are equivalent under suitable moment conditions. We show that stationary hard-core thinnings satisfying such criteria exist and are frequently distributionally unique. More precisely, distributional uniqueness holds in subcritical and barely supercritical regimes of continuum percolation. Additionally, based on the analysis of a specific example, we argue that fluctuations in grain sizes can play an important role for establishing distributional uniqueness at high intensities. Finally, we provide a family of algorithmically constructible approximations whose volume fractions are arbitrarily close to the maximum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gitlin, M. S., E-mail: gitlin@appl.sci-nnov.ru
The first part of the review is presented which is dedicated to the time-resolved method of imaging and measuring the spatial distribution of the intensity of millimeter waves by using visible continuum (VC) emitted by the positive column (PC) of a dc discharge in a mixture of cesium vapor with xenon. The review focuses on the operating principles, fundamentals, and applications of this new technique. The design of the discharge tube and experimental setup used to create a wide homogeneous plasma slab with the help of the Cs–Xe discharge at a gas pressure of 45 Torr are described. The millimeter-wavemore » effects on the plasma slab are studied experimentally. The mechanism of microwave-induced variations in the VC brightness and the causes of violation of the local relation between the VC brightness and the intensity of millimeter waves are discussed. Experiments on the imaging of the field patterns of horn antennas and quasi-optical beams demonstrate that this technique can be used for good-quality imaging of millimeter-wave beams in the entire millimeter-wavelength band. The method has a microsecond temporal resolution and a spatial resolution of about 2 mm. Energy sensitivities of about 10 μJ/cm{sup 2} in the Ka-band and about 200 μJ/cm{sup 2} in the D-band have been demonstrated.« less
Scalable Automated Model Search
2014-05-20
ma- chines. Categories and Subject Descriptors Big Data [Distributed Computing]: Large scale optimization 1. INTRODUCTION Modern scientific and...from Continuum Analytics[1], and Apache Spark 0.8.1. Additionally, we made use of Hadoop 1.0.4 configured on local disks as our data store for the large...Borkar et al. Hyracks: A flexible and extensible foundation for data -intensive computing. In ICDE, 2011. [16] J. Canny and H. Zhao. Big data
Detection of Heating Processes in Coronal Loops by Soft X-ray Spectroscopy
NASA Astrophysics Data System (ADS)
Kawate, Tomoko; Narukage, Noriyuki; Ishikawa, Shin-nosuke; Imada, Shinsuke
2017-08-01
Imaging and Spectroscopic observations in the soft X-ray band will open a new window of the heating/acceleration/transport processes in the solar corona. The soft X-ray spectrum between 0.5 and 10 keV consists of the electron thermal free-free continuum and hot coronal lines such as O VIII, Fe XVII, Mg XI, Si XVII. Intensity of free-free continuum emission is not affected by the population of ions, whereas line intensities especially from highly ionized species have a sensitivity of the timescale of ionization/recombination processes. Thus, spectroscopic observations of both continuum and line intensities have a capability of diagnostics of heating/cooling timescales. We perform a 1D hydrodynamic simulation coupled with the time-dependent ionization, and calculate continuum and line intensities under different heat input conditions in a coronal loop. We also examine the differential emission measure of the coronal loop from the time-integrated soft x-ray spectra. As a result, line intensity shows a departure from the ionization equilibrium and shows different responses depending on the frequency of the heat input. Solar soft X-ray spectroscopic imager will be mounted in the sounding rocket experiment of the Focusing Optics X-ray Solar Imager (FOXSI). This observation will deepen our understanding of heating processes to solve the “coronal heating problem”.
Resolving the Cygnus X-3 iron K line
NASA Technical Reports Server (NTRS)
Kitamoto, Shunji; Kawashima, Kenji; Negoro, Hitoshi; Miyamoto, Sigenori; White, N. E.; Nagase, Fumiaki
1994-01-01
An Advanced Satellite for Cosmology and Astrophysics (ASCA) observation of Cygnus X-3 on 1993 June 11, in its X-ray high intensity state, has for the first time resolved the broad iron K line emission into three components: a He-like line at 6.67 +/- 0.01 keV, a H-like line at 6.96 +/- 0.02 keV, and a neutral line at 6.37 +/- 0.03 keV. The line intensities of the 6.67 keV and 6.96 keV lines are modulated with the 4.8 hr orbital period and are maximum when the continuum intensity is minimum. There is a sharp minimum of the line intensity on the rising phase of the continuum intensity. An iron absorption edge is observed at 7.19 +/- 0.02 keV. The optical depth of the absorption edge varies from 0.3 to 0.5 and is in anti-phase with the overall X-ray continuum modulation. The observed complexity of the iron K line region is greater than that had been assumed in previous spectral modeling based on observations with lower resolution detectors.
NASA Astrophysics Data System (ADS)
Borka Jovanović, V.; Jovanović, P.; Borka, D.
2017-04-01
We use radio-continuum all-sky surveys at 1420 and 408 MHz with the aim to investigate properties of the Galactic radio source Lupus Loop. The survey data at 1435 MHz, with the linear polarization of the southern sky, are also used. We calculate properties of this supernova remnant: the brightness temperature, surface brightness and radio spectral index. To determine its borders and to calculate its properties, we use the method we have developed. The non-thermal nature of its radiation is confirmed. The distribution of spectral index over its area is also given. A significant correlation between the radio spectral index distribution and the corresponding polarized intensity distribution inside the loop borders is found, indicating that the polarization maps could provide us information about the distribution of the interstellar medium, and thus could represent one additional way to search for new Galactic loops.
The innermost corona observed at the 1973 June 30 eclipse
NASA Astrophysics Data System (ADS)
Hanaoka, Yoichiro; Kanno, Mitsuo; Kurokawa, Hiroki; Tsubaki, Tokio
1986-07-01
Slitless flash spectrograms in heights below 8000 km above the solar limb were obtained by the University of Kyoto expedition at Atar, Mauritania. The integrated intensities of Fe XIV, Fe X, Fe XI, and the continuum are measured as a function of height above the solar limb at 11 points around the third contact point. It is found that a significant amount of the emission in Fe X originates in chromospheric levels well below 8000 km. This implies that the interspicular region of the chromosphere is occupied by coronal material. The average values of the electron temperature (0.9-1.1 million K) and the electron density in the interspicular region are derived from the Fe X and the Fe XI intensities (0.9-1 billion/cu cm) on the assumption of spherical symmetry. The intensity variations of the coronal lines and the continuum with position angle are also studied. Strong correlations between Fe XIV and the continuum and between Fe X and Fe XI are found. The Fe X intensities indicate a density fluctuation in the innermost corona by at least a factor of two.
Distribution of hot stars and hydrogen in the Large Magellanic Cloud
NASA Technical Reports Server (NTRS)
Page, T.; Carruthers, G. R.
1981-01-01
Imagery of the Large Magellanic Cloud (LMC), in the wavelength ranges 1050 to 1600 A and 1250 to 1600 A, was obtained by the S201 far ultraviolet camera during the Apollo 16 mission. These images were reduced to absolute far-UV intensity distributions over the area of the LMC, with 3 to 5 arc min angular resolution. Comparison of these far-UV measurements in the LMC with H sub alpha and 21 cm surveys reveals that interstellar hydrogen in the LMC is often concentrated in 100 pc clouds within 500 pc clouds. Furthermore, at least 25 associations of O-B stars in the LMC are outside the interstellar hydrogen clouds; four of them appear to be on the far side. Far-UV and mid-UV spectra were obtained of stars in 12 of these associations, using the International Ultraviolet Explorer. Equivalent widths of L alpha and six other lines, and relative intensities of the continuum at seven wavelength from 1300 A to 2900 A, were measured. These spectra are also discussed.
An advanced kinetic theory for morphing continuum with inner structures
NASA Astrophysics Data System (ADS)
Chen, James
2017-12-01
Advanced kinetic theory with the Boltzmann-Curtiss equation provides a promising tool for polyatomic gas flows, especially for fluid flows containing inner structures, such as turbulence, polyatomic gas flows and others. Although a Hamiltonian-based distribution function was proposed for diatomic gas flow, a general distribution function for the generalized Boltzmann-Curtiss equations and polyatomic gas flow is still out of reach. With assistance from Boltzmann's entropy principle, a generalized Boltzmann-Curtiss distribution for polyatomic gas flow is introduced. The corresponding governing equations at equilibrium state are derived and compared with Eringen's morphing (micropolar) continuum theory derived under the framework of rational continuum thermomechanics. Although rational continuum thermomechanics has the advantages of mathematical rigor and simplicity, the presented statistical kinetic theory approach provides a clear physical picture for what the governing equations represent.
On the Nature of Orion Source I
NASA Astrophysics Data System (ADS)
Báez-Rubio, A.; Jiménez-Serra, I.; Martín-Pintado, J.; Zhang, Q.; Curiel, S.
2018-01-01
The Kleinmann–Low nebula in Orion, the closest region of massive star formation, harbors Source I, whose nature is under debate. Knowledge of this source may have profound implications for our understanding of the energetics of the hot core in Orion KL since it might be the main heating source in the region. The spectral energy distribution of this source in the radio is characterized by a positive spectral index close to 2, which is consistent with (i) thermal bremsstrahlung emission of ionized hydrogen gas produced by a central massive protostar, or (ii) photospheric bremsstrahlung emission produced by electrons when deflected by the interaction with neutral and molecular hydrogen like Mira-like variable stars. If ionized hydrogen gas were responsible for the observed continuum emission, its modeling would predict detectable emission from hydrogen radio recombination lines (RRLs). However, our SMA observations were obtained with a high enough sensitivity to rule out that the radio continuum emission arises from a dense hypercompact H II region because the H26α line would have been detected, in contrast with our observations. To explain the observational constraints, we investigate further the nature of the radio continuum emission from source I. We have compared available radio continuum data with the predictions from our upgraded non-LTE 3D radiative transfer model, MOdel for REcombination LInes, to show that radio continuum fluxes and sizes can only be reproduced by assuming both dust and bremsstrahlung emission from neutral gas. The dust emission contribution is significant at ν ≥ 43 GHz. In addition, our RRL peak intensity predictions for the ionized metals case are consistent with the nondetection of Na and K RRLs at millimeter and submillimeter wavelengths.
SWIFT Observations of a Far UV Luminosity Component in SS433
NASA Technical Reports Server (NTRS)
Cannizzo, J. K.; Boyd, P. T.; Dolan, J. F.
2007-01-01
SS433 is a binary system showing relativistic Doppler shifts in its two sets of emission lines. The origin of its UV continuum is not well established. We observed SS433 to determine the emission mechanism responsible for its far UV spectrum. The source was observed at several different phases of both its 13 d orbital period and 162.5 d precession period using the UVOT and XRT detector systems on Swift. The far UV spectrum down to 1880 Angstrom lies significantly above the spectral flux distribution predicted by extrapolating the reddened blackbody continuum that fits the spectrum above 3500 Angstroms. The intensity of the far UV flux varies over a period of days and the variability is correlated with the variability of the soft X-ray flux from the source. An emission mechanism in addition to those previously detected in the optical and X-ray regions must exist in the far UV spectrum of SS433.
NASA Astrophysics Data System (ADS)
Druett, M. K.; Zharkova, V. V.
2018-03-01
Aim. Sharp rises of hard X-ray (HXR) emission accompanied by Hα line profiles with strong red-shifts up to 4 Å from the central wavelength, often observed at the onset of flares with the Specola Solare Ticinese Telescope (STT) and the Swedish Solar Telescope (SST), are not fully explained by existing radiative models. Moreover, observations of white light (WL) and Balmer continuum emission with the Interface Region Imaging Spectrograph (IRISH) reveal strong co-temporal enhancements and are often nearly co-spatial with HXR emission. These effects indicate a fast effective source of excitation and ionisation of hydrogen atoms in flaring atmospheres associated with HXR emission. In this paper, we investigate electron beams as the agents accounting for the observed hydrogen line and continuum emission. Methods: Flaring atmospheres are considered to be produced by a 1D hydrodynamic response to the injection of an electron beam defining their kinetic temperatures, densities, and macro velocities. We simulated a radiative response in these atmospheres using a fully non-local thermodynamic equilibrium (NLTE) approach for a 5-level plus continuum hydrogen atom model, considering its excitation and ionisation by spontaneous, external, and internal diffusive radiation and by inelastic collisions with thermal and beam electrons. Simultaneous steady-state and integral radiative transfer equations in all optically thick transitions (Lyman and Balmer series) were solved iteratively for all the transitions to define their source functions with the relative accuracy of 10-5. The solutions of the radiative transfer equations were found using the L2 approximation. Resulting intensities of hydrogen line and continuum emission were also calculated for Balmer and Paschen series. Results: We find that inelastic collisions with beam electrons strongly increase excitation and ionisation of hydrogen atoms from the chromosphere to photosphere. This leads to an increase in Lyman continuum radiation, which has high optical thickness, and after the beam is off it governs hydrogen ionisation and leads to the long lasting orders of magnitude enhancement of emission in Balmer and Paschen continua. The ratio of Balmer-to-other-continuum head intensities are found to be correlated with the initial flux of the beam. The height distribution of contribution functions for Paschen continuum emission indicate a close correlation with the observations of heights of WL and HXR emission reported for limb flares. This process also leads to a strong increase of wing emission (Stark's wings) in Balmer and Paschen lines, which is superimposed on large red-shifted enhancements of Hα-Hγ line emission resulting from a downward motion by hydrodynamic shocks. The simulated line profiles are shown to fit closely the observations for various flaring events.
The Impact of Service Sector Growth on Changing Patterns of Stratification among Communities.
ERIC Educational Resources Information Center
Kassab, Cathy
This paper examines the impact of increasing service sector employment and decreasing manufacturing employment on the distribution of income across communities on the urban-rural continuum. Changes in the differential distribution of industries and family income across this continuum have important consequences for local services, including…
Observations of CO in the Magellanic irregular galaxy NGC 55
NASA Technical Reports Server (NTRS)
Heithausen, Andreas; Dettmar, Ralf-Juergen
1990-01-01
The content of molecular gas in galaxies, mainly H2, is one of the key observations necessary for the understanding of star formation processes and history. As the CO molecule is the most widely distributed molecule after H2 and has easily observable mm lines, it is used as a tracer for the molecular gas. CO was detected towards the direction where the H alpha and 6 cm radio continuum emission is strongest (Hummel et al. 1986). Here, researchers present the Gaussian line parameters in tabular form. The distribution of CO corresponds well with the intense HI cloud near the bar of NGC 55. The extent of the CO cloud is about 975 pc perpendicular to the major axis. As the radio continuum and the H alpha emission also peaks in this region, it is most probably associated with the star forming region in NGC 55. Assuming that the molecular gas is in virial equilibrium, researchers derive a mass of about 8 times 10(exp 7) solar magnitude. The molecular mass found indicates that the conversion factor for the molecular mass in Irr galaxies as inferred from CO line emission is indeed higher by up to a factor of 20 compared to the canonical value for the Galaxy.
Dynamical photoionization observables of the CS molecule: The role of electron correlation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponzi, Aurora; Coriani, Sonia; Decleva, Piero
2014-05-28
Highly correlated calculations are performed on the primary ionic states and the prominent satellite present in the outer valence photoelectron spectrum of carbon monosulfide (CS). Dyson orbitals are coupled to accurate one particle continuum orbitals to provide a correlated description of energy dependent cross sections, asymmetry parameters, branching ratios, and molecular frame photoelectron angular distributions. The comparison with results obtained at the Hartree-Fock and Density Functional Theory level shows the strong sensitivity of these observables to details of the correlation in the bound states. The behaviour of the well characterized satellite state is analyzed in detail, and shows differences frommore » the relevant primary states, revealing the limitations of a simple intensity borrowing mechanism. The results resolve the intensity disagreement with experiment obtained at the level of the sudden approximation.« less
High-Energy Spectral and Temporal Characteristics of GRO J1008-57
NASA Astrophysics Data System (ADS)
Shrader, C. R.; Sutaria, F. K.; Singh, K. P.; Macomb, D. J.
1999-02-01
A transient X-ray source, GRO J1008-57, was discovered by the Burst and Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory (CGRO) in 1993 July. It reached a maximum intensity of about 1.4 times that of the Crab, in the 20-60 keV energy band. Pulsations in the X-ray intensity were detected at a period of 93.5 s. It has subsequently been determined to be a member of the Be star subclass of X-ray transients. In addition to BATSE, GRO J1008-57 was observed during its outburst by several pointed high-energy experiments: ROSAT, ASCA, and CGRO/OSSE. These nonsimultaneous but contemporaneous observations took place near and shortly after the peak of the outburst light curve. We report for the first time on a combined analysis of the CGRO and ASCA data sets. We have attempted to model the broadband high-energy continuum distribution and phase-resolved spectra. The broadband, phase-averaged continuum is well approximated by a power law with an exponential cutoff. Evidence for 6.4 keV line emission due to Fe is presented based on our spectral analysis. The energy dependence of the pulse profiles is examined in order to determine the energy at which the low-energy double-peaked profile detected by ASCA evolves into single-peaked pulse profile detected by BATSE. We discuss the implications of this pulse profile for the magnetic field and beam distribution for GRO J1008-57. Analysis of the BATSE and Rossi X-Ray Timing Explorer/ASM flux histories suggests that Porbital~135 days. We further suggest that a transient disk is likely to form during episodes of outbursts.
Solar radio continuum storms and a breathing magnetic field model
NASA Technical Reports Server (NTRS)
1975-01-01
Radio noise continuum emissions observed in metric and decametric wave frequencies are, in general, associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. These continuum emission sources, often called type I storm sources, are often associated with type III burst storm activity from metric to hectometric wave frequencies. This storm activity is, therefore, closely connected with the development of these continuum emission sources. It is shown that the S-component emission in microwave frequencies generally precedes, by several days, the emission of these noise continuum storms of lower frequencies. In order for these storms to develop, the growth of sunspot groups into complex types is very important in addition to the increase of the average magnetic field intensity and area of these groups. After giving a review on the theory of these noise continuum storm emissions, a model is briefly considered to explain the relation of the emissions to the storms.
A continuum theory for multicomponent chromatography modeling.
Pfister, David; Morbidelli, Massimo; Nicoud, Roger-Marc
2016-05-13
A continuum theory is proposed for modeling multicomponent chromatographic systems under linear conditions. The model is based on the description of complex mixtures, possibly involving tens or hundreds of solutes, by a continuum. The present approach is shown to be very efficient when dealing with a large number of similar components presenting close elution behaviors and whose individual analytical characterization is impossible. Moreover, approximating complex mixtures by continuous distributions of solutes reduces the required number of model parameters to the few ones specific to the characterization of the selected continuous distributions. Therefore, in the frame of the continuum theory, the simulation of large multicomponent systems gets simplified and the computational effectiveness of the chromatographic model is thus dramatically improved. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems
NASA Technical Reports Server (NTRS)
Marks, Virginia B. (Compiler); Keckler, Claude R. (Compiler)
1994-01-01
Although significant advances have been made in modeling and controlling flexible systems, there remains a need for improvements in model accuracy and in control performance. The finite element models of flexible systems are unduly complex and are almost intractable to optimum parameter estimation for refinement using experimental data. Distributed parameter or continuum modeling offers some advantages and some challenges in both modeling and control. Continuum models often result in a significantly reduced number of model parameters, thereby enabling optimum parameter estimation. The dynamic equations of motion of continuum models provide the advantage of allowing the embedding of the control system dynamics, thus forming a complete set of system dynamics. There is also increased insight provided by the continuum model approach.
Erasing the Milky Way: new cleaning technique applied to GBT intensity mapping data
NASA Astrophysics Data System (ADS)
Wolz, L.; Blake, C.; Abdalla, F. B.; Anderson, C. J.; Chang, T.-C.; Li, Y.-C.; Masui, K. W.; Switzer, E.; Pen, U.-L.; Voytek, T. C.; Yadav, J.
2017-02-01
We present the first application of a new foreground removal pipeline to the current leading H I intensity mapping data set, obtained by the Green Bank Telescope (GBT). We study the 15- and 1-h-field data of the GBT observations previously presented in Mausui et al. and Switzer et al., covering about 41 deg2 at 0.6 < z < 1.0, for which cross-correlations may be measured with the galaxy distribution of the WiggleZ Dark Energy Survey. In the presented pipeline, we subtract the Galactic foreground continuum and the point-source contamination using an independent component analysis technique (FASTICA), and develop a Fourier-based optimal estimator to compute the temperature power spectrum of the intensity maps and cross-correlation with the galaxy survey data. We show that FASTICA is a reliable tool to subtract diffuse and point-source emission through the non-Gaussian nature of their probability distributions. The temperature power spectra of the intensity maps are dominated by instrumental noise on small scales which FASTICA, as a conservative subtraction technique of non-Gaussian signals, cannot mitigate. However, we determine similar GBT-WiggleZ cross-correlation measurements to those obtained by the singular value decomposition (SVD) method, and confirm that foreground subtraction with FASTICA is robust against 21 cm signal loss, as seen by the converged amplitude of these cross-correlation measurements. We conclude that SVD and FASTICA are complementary methods to investigate the foregrounds and noise systematics present in intensity mapping data sets.
Radial decoupling of small and large dust grains in the transitional disk RX J1615.3-3255
NASA Technical Reports Server (NTRS)
Kooistra, Robin; Kamp, Inga; Fukagawa, Misato; Menard, Francois; Momose, Munetake; Tsukagoshi, Takashi; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu;
2017-01-01
We present H-band (1.6 micron) scattered light observations of the transitional disk RX J1615.3-3255, located in the approx. 1 Myr old Lupus association. From a polarized intensity image, taken with the HiCIAO instrument of the Subaru Telescope, we deduce the position angle and the inclination angle of the disk. The disk is found to extend out to 68 +/- 12 AU in scattered light and no clear structure is observed. Our inner working angle of 24 AU does not allow us to detect a central decrease in intensity similar to that seen at 30 AU in the 880 m continuum observations. We compare the observations with multiple disk models based on the spectral energy distribution (SED) and submm interferometry and find that an inner rim of the outer disk at 30 AU containing small silicate grains produces a polarized intensity signal which is an order of magnitude larger than observed. We show that a model in which the small dust grains extend smoothly into the cavity found for large grains is closer to the actual H-band observations. A comparison of models with different dust size distributions suggests that the dust in the disk might have undergone significant processing compared to the interstellar medium.
Radial decoupling of small and large dust grains in the transitional disk RX J1615.3-3255
NASA Astrophysics Data System (ADS)
Kooistra, Robin; Kamp, Inga; Fukagawa, Misato; Ménard, François; Momose, Munetake; Tsukagoshi, Takashi; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Egner, Sebastian E.; Feldt, Markus; Goto, Miwa; Grady, Carol A.; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kuzuhara, Masayuki; Kwon, Jungmi; Matsuo, Taro; McElwain, Michael W.; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H.; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L.; Watanabe, Makoto; Wisniewski, John; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide; Currie, Thayne; Akiyama, Eiji; Mayama, Satoshi; Follette, Katherine B.; Nakagawa, Takao
2017-01-01
We present H-band (1.6 μm) scattered light observations of the transitional disk RX J1615.3-3255, located in the 1 Myr old Lupus association. From a polarized intensity image, taken with the HiCIAO instrument of the Subaru Telescope, we deduce the position angle and the inclination angle of the disk. The disk is found to extend out to 68 ± 12 AU in scattered light and no clear structure is observed. Our inner working angle of 24 AU does not allow us to detect a central decrease in intensity similar to that seen at 30 AU in the 880 μm continuum observations. We compare the observations with multiple disk models based on the spectral energy distribution (SED) and submm interferometry and find that an inner rim of the outer disk at 30 AU containing small silicate grains produces a polarized intensity signal which is an order of magnitude larger than observed. We show that a model in which the small dust grains extend smoothly into the cavity found for large grains is closer to the actual H-band observations. A comparison of models with different dust size distributions suggests that the dust in the disk might have undergone significant processing compared to the interstellar medium.
Studies of coronal lines with electronic cameras during the eclipse of 7 march 1970.
Fort, B
1970-12-01
The experimental design described here allows us to study with 2-A. bandpass filters the brightness distribution of the green coronal line, the two infrared lines of Fe XIII, and the neighboring coronal continuum. For the first time, in an eclipse expedition, electrostatic cameras derived from the Lallemand type are used; full advantage was taken of their speed, especially in the near infrared spectral range, and their good photometric qualities. They permit the measurement of intensity and polarization of the lines in the corona to a height of 1.25 solar radii above the limb of the sun, with a spatial resolution >/= (10")(2).
Ash Dispersal in Planetary Atmospheres: Continuum vs. Non-continuum Effects
NASA Astrophysics Data System (ADS)
Fagents, S. A.; Baloga, S. M.; Glaze, L. S.
2013-12-01
The dispersal of ash from a volcanic vent on any given planet is dictated by particle properties (density, shape, and size distribution), the intensity of the eruptive source, and the characteristics of the planetary environment (atmospheric structure, wind field, and gravity) into which the ash is erupted. Relating observations of potential pyroclastic deposits to source locations and eruption conditions requires a detailed quantitative understanding of the settling rates of individual particles under changing ambient conditions. For atmospheres that are well described by continuum mechanics, the conventional Newtonian description of particle motion allows particle settling velocities to be related to particle characteristics via a drag coefficient. However, under rarefied atmospheric conditions (i.e., on Mars and at high altitude on Earth), non-continuum effects become important for ash-sized particles, and an equation of motion based on statistical mechanics is required for calculating particle motion. We have developed a rigorous new treatment of particle settling under variable atmospheric conditions and applied it to Earth and Mars. When non-continuum effects are important (as dictated by the mean free path of atmospheric gas relative to the particle size), fall velocities are greater than those calculated by continuum mechanics. When continuum conditions (i.e., higher atmospheric densities) are reached during descent, our model switches to a conventional formulation that determines the appropriate drag coefficient as the particle transits varying atmospheric properties. The variation of settling velocity with altitude allows computation of particle trajectories, fall durations and downwind dispersal. Our theoretical and numerical analyses show that several key, competing factors strongly influence the downwind trajectories of ash particles and the extents of the resulting deposits. These factors include: the shape of the particles (non-spherical particles fall more slowly than spherical particle shapes commonly adopted in settling models); the formation of particle aggregates, which enhances settling rates; and the lagging of particle motion behind the ambient wind field, which results in less widely dispersed deposits. Above all, any particles experiencing non-continuum effects settle faster and are less widely dispersed than particles falling in an entirely continuum regime. Our model results demonstrate the complex interplay of these factors in the Martian environment, and our approach provides a basis for relating deposits observed in planetary datasets to candidate volcanic sources and eruption conditions. This allows for a critical reassessment of the potential for explosive volcanism to contribute to extremely widespread, fine-grained, layered deposits such as the Medusae Fossae Formation.
Dynamics in the solar chromosphere as a function of the magnetic field topology
NASA Astrophysics Data System (ADS)
Karlsen, N.; Carlsson, M.
2002-06-01
We have looked at the coupling between the magnetic field and chromospheric dynamics. Observations with the SUMER spectrograph of the continuum radiation at 1319 Å have been correlated with simultaneous MDI magnetograms and dopplergrams in high resolution mode. We have used 7 different observing runs for our analysis, all from 1996. The absolute value of the magnetic field crossing the SUMER slit lies in the range 0-100 gauss. We observe a correlation between continuum intensity and magnetic field strength all the way to the sensitivity limit of MDI (about 2 G as 3σ in the mean value). Relative intensity fluctuations at frequencies corresponding to propagating acoustic waves (>4.5 mHz) have smaller amplitudes with increasing radiation temperature (or magnetic field strength). The absolute intensity fluctuations show an increase with increasing radiation temperature. These findings are consistent with a picture where a basic intensity level is set by a magnetic heating process even in the darkest internetwork areas with superimposed intensity variations caused by acoustic waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabbian, D.; Moreno-Insertis, F., E-mail: damian@iac.es, E-mail: fmi@iac.es
2015-04-01
The importance of magnetic fields in three-dimensional (3D) magnetoconvection models of the Sun’s photosphere is investigated in terms of their influence on the continuum intensity at different viewing inclination angles and on the intensity profile of two [O i] spectral lines. We use the RH numerical radiative transfer code to perform a posteriori spectral synthesis on the same time series of magnetoconvection models used in our publications on the effect of magnetic fields on abundance determination. We obtain a good match of the synthetic disk-center continuum intensity to the absolute continuum values from the Fourier Transform Spectrometer (FTS) observational spectrum; the matchmore » of the center-to-limb variation synthetic data to observations is also good, thanks, in part, to the 3D radiation transfer capabilities of the RH code. The different levels of magnetic flux in the numerical time series do not modify the quality of the match. Concerning the targeted [O i] spectral lines, we find, instead, that magnetic fields lead to nonnegligible changes in the synthetic spectrum, with larger average magnetic flux causing both of the lines to become noticeably weaker. The photospheric oxygen abundance that one would derive if instead using nonmagnetic numerical models would thus be lower by a few to several centidex. The inclusion of magnetic fields is confirmed to be important for improving the current modeling of the Sun, here in particular in terms of spectral line formation and of deriving consistent chemical abundances. These results may shed further light on the still controversial issue regarding the precise value of the solar oxygen abundance.« less
Nebular Continuum and Line Emission in Stellar Population Synthesis Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byler, Nell; Dalcanton, Julianne J.; Conroy, Charlie
Accounting for nebular emission when modeling galaxy spectral energy distributions (SEDs) is important, as both line and continuum emissions can contribute significantly to the total observed flux. In this work, we present a new nebular emission model integrated within the Flexible Stellar Population Synthesis code that computes the line and continuum emission for complex stellar populations using the photoionization code Cloudy. The self-consistent coupling of the nebular emission to the matched ionizing spectrum produces emission line intensities that correctly scale with the stellar population as a function of age and metallicity. This more complete model of galaxy SEDs will improvemore » estimates of global gas properties derived with diagnostic diagrams, star formation rates based on H α , and physical properties derived from broadband photometry. Our models agree well with results from other photoionization models and are able to reproduce observed emission from H ii regions and star-forming galaxies. Our models show improved agreement with the observed H ii regions in the Ne iii/O ii plane and show satisfactory agreement with He ii emission from z = 2 galaxies, when including rotating stellar models. Models including post-asymptotic giant branch stars are able to reproduce line ratios consistent with low-ionization emission regions. The models are integrated into current versions of FSPS and include self-consistent nebular emission predictions for MIST and Padova+Geneva evolutionary tracks.« less
Stonefly (Plecoptera) Feeding Modes: Variation Along a California River Continuum
Richard L. Bottorff; Allen W. Knight
1989-01-01
The distribution of Plecoptera along a California river was used to test several predictions of the River Continuum Concept about how functional feeding groups should change along a stream's length. Stoneflies were collected from stream orders 1-6 (123 km) of the Cosumnes River continuum in the central Sierra Nevada. The 69 stonefly species collected were...
ERIC Educational Resources Information Center
Trinidad, Dennis R.; Xie, Bin; Fagan, Pebbles; Pulvers, Kim; Romero, Devan R.; Blanco, Lyzette; Sakuma, Kari-Lyn K.
2015-01-01
Purpose: To examine disparities and changes over time in the population-level distribution of smokers along a cigarette quitting continuum among African American smokers compared with non-Hispanic Whites. Methods: Secondary data analyses of the 1999, 2002, 2005, and 2008 California Tobacco Surveys (CTS). The CTS are large, random-digit-dialed,…
IUE observations of two late-type stars Bx Mon (M + pec) and TV Gem (M1 Iab)
NASA Technical Reports Server (NTRS)
Michalitsianos, A. G.; Hobbs, R. W.; Kafatos, M.
1981-01-01
The IUE observations of two late type stars BX Mon and TV Gem that reveal the emission properties in the ultraviolet of subluminous companions are discussed. Analysis of the continuum emission observed from BX Mon suggests the companion, is a middle A III star. High excitation emission lines observed between 1200 A and 2000 A that generally do not typify emission observed in either late M type variables or A type stars are also detected. It is suggested that these strong high excitation lines arise in a large volume of gas heated by nonradiation processes that could be the result of tidal interaction and mass exchange in the binary system. In contrast to stars such as BX Mon, the luminous M1 supergiant TV Gem shows unexpected intense UV continuum throughout the sensitivity range of IUE. The UV spectrum of TV Gem is characterized by intense continuum with broad absorption features detected in the short wavelength range. The analysis shows that the companion could be a B9 or A1 III-IV star. Alternate suggestions are presented for explaining the UV continuum in terms of an accretion disk in association with TV Gem.
Porter-Thomas distribution in unstable many-body systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volya, Alexander
We use the continuum shell model approach to explore the resonance width distribution in unstable many-body systems. The single-particle nature of a decay, the few-body character of the interaction Hamiltonian, and the collectivity that emerges in nonstationary systems due to the coupling to the continuum of reaction states are discussed. Correlations between the structures of the parent and daughter nuclear systems in the common Fock space are found to result in deviations of decay width statistics from the Porter-Thomas distribution.
Investigation of Nuclear Structure and Quasi-Discrete Features in 150,152Sm via the (p,t) Reaction
NASA Astrophysics Data System (ADS)
Humby, Peter James Charnall
The (p,t) reaction was used to identify new levels and gamma-ray transitions in 150,152Sm utilising the particle-gamma and particle-gamma-gamma coincidence techniques. The experiment was performed using the STARLiTeR array located at the Cyclotron Institute of Texas A&M University. The relative partial cross sections for the observed levels, angle averaged between 34 and 58 degrees, were measured. A narrow peak-like structure was observed between 2.3-3.0 MeV excitation energy, in between the region of strongly populated discrete states at low energy and the high energy continuum region. In 150Sm, 39(4)% of the strength of the peak-like structure could be accounted for by the observed discrete states, which compares to a value of 93(15)% for 152Sm. The orbital angular-momentum transfer was probed by comparison of the experimental angular distributions to those calculated using the DWBA theory. The experimental angular distributions for the population of the peak-like structures are very similar in the two reactions, and significantly different to both the angular distribution of the background under the structures, and to the distribution obtained from the nearby continuum region at higher excitation energy. Post irradiation, the half-lives of isomeric states in 152Eu, populated in the 154Sm(p,3n) reaction, were obtained by measuring the decrease in intensity of the gamma rays emitted in the decay of these long lived levels. The half-life of the Jpi = 8- isomer 152m2Eu was measured to be 95.8(4) min, which is a factor of 2.5 reduction in uncertainty compared to the previous literature value of 96(1) min.
NASA Astrophysics Data System (ADS)
Kim, Jungha; Lee, Jeong-Eun; Choi, Minho; Bourke, Tyler L.; Evans, Neal J., II; Di Francesco, James; Cieza, Lucas A.; Dunham, Michael M.; Kang, Miju
2015-05-01
We present a multi-wavelength observational study of a low-mass star-forming region, L1251-C, with observational results at wavelengths from the near-infrared to the millimeter. Spitzer Space Telescope observations confirmed that IRAS 22343+7501 is a small group of protostellar objects. The extended emission in the east-west direction with its intensity peak at the center of L1251A has been detected at 350 and 850 μm with the Caltech Submillimeter Observatory and James Clerk Maxwell telescopes, tracing dense envelope material around L1251A. The single-dish data from the Korean VLBI Network and TRAO telescopes show inconsistencies between the intensity peaks of several molecular emission lines and that of the continuum emission, suggesting complex distributions of molecular abundances around L1251A. The Submillimeter Array interferometer data, however, show intensity peaks of CO 2-1 and 13CO 2-1 located at the position of IRS 1, which is both the brightest source in the Infrared Array Camera image and the weakest source in the 1.3 mm dust-continuum map. IRS 1 is the strongest candidate for the driving source of the newly detected compact CO 2-1 outflow. Over the entire region (14‧ × 14‧) of L125l-C, 3 Class I and 16 Class II sources have been detected, including three young stellar objects (YSOs) in L1251A. A comparison between the average projected distance among the 19 YSOs in L1251-C and that among the 3 YSOs in L1251A suggests that L1251-C is an example of low-mass cluster formation where protostellar objects form in a small group.
Erasing the Milky Way: New Cleaning Technique Applied to GBT Intensity Mapping Data
NASA Technical Reports Server (NTRS)
Wolz, L.; Blake, C.; Abdalla, F. B.; Anderson, C. J.; Chang, T.-C.; Li, Y.-C.; Masi, K.W.; Switzer, E.; Pen, U.-L.; Voytek, T. C.;
2016-01-01
We present the first application of a new foreground removal pipeline to the current leading HI intensity mapping dataset, obtained by the Green Bank Telescope (GBT). We study the 15- and 1-h field data of the GBT observations previously presented in Masui et al. (2013) and Switzer et al. (2013), covering about 41 square degrees at 0.6 less than z is less than 1.0, for which cross-correlations may be measured with the galaxy distribution of the WiggleZ Dark Energy Survey. In the presented pipeline, we subtract the Galactic foreground continuum and the point source contamination using an independent component analysis technique (fastica), and develop a Fourier-based optimal estimator to compute the temperature power spectrum of the intensity maps and cross-correlation with the galaxy survey data. We show that fastica is a reliable tool to subtract diffuse and point-source emission through the non-Gaussian nature of their probability distributions. The temperature power spectra of the intensity maps is dominated by instrumental noise on small scales which fastica, as a conservative sub-traction technique of non-Gaussian signals, can not mitigate. However, we determine similar GBT-WiggleZ cross-correlation measurements to those obtained by the Singular Value Decomposition (SVD) method, and confirm that foreground subtraction with fastica is robust against 21cm signal loss, as seen by the converged amplitude of these cross-correlation measurements. We conclude that SVD and fastica are complementary methods to investigate the foregrounds and noise systematics present in intensity mapping datasets.
ERIC Educational Resources Information Center
Lewis, Timothy J.
2016-01-01
The challenges of educating children and youth with intensive social, emotional, and academic needs have been well documented. Students with emotional/ behavioral disorders (EBD) present a range of daily challenges from low intensity, high frequency chronic behaviors such as poor school attendance, disrespect addressed to adults and peers,…
Perturbative matching of continuum and lattice quasi-distributions
NASA Astrophysics Data System (ADS)
Ishikawa, Tomomi
2018-03-01
Matching of the quasi parton distribution functions between continuum and lattice is addressed using lattice perturbation theory specifically withWilson-type fermions. The matching is done for nonlocal quark bilinear operators with a straightWilson line in a spatial direction. We also investigate operator mixing in the renormalization and possible O(a) operators for the nonlocal operators based on a symmetry argument on lattice.
Radiation of partially ionized atomic hydrogen
NASA Technical Reports Server (NTRS)
Soon, W. H.; Kunc, J. A.
1990-01-01
A nonlinear collisional-radiative model for determination of production of electrons, positive and negative ions, excited atoms, and spectral and continuum line intensities in stationary partially ionized atomic hydrogen is presented. Transport of radiation is included by coupling the rate equations for production of the electrons, ions, and excited atoms with the radiation escape factors, which are not constant but depend on plasma conditions. It is found that the contribution of the negative ion emission to the total continuum emission can be important. Comparison of the calculated total continuum emission coefficient, including the negative ion emission, is in good agreement with experimental results.
Galactic supernova remnant candidates discovered by THOR
NASA Astrophysics Data System (ADS)
Anderson, L. D.; Wang, Y.; Bihr, S.; Rugel, M.; Beuther, H.; Bigiel, F.; Churchwell, E.; Glover, S. C. O.; Goodman, A. A.; Henning, Th.; Heyer, M.; Klessen, R. S.; Linz, H.; Longmore, S. N.; Menten, K. M.; Ott, J.; Roy, N.; Soler, J. D.; Stil, J. M.; Urquhart, J. S.
2017-09-01
Context. There is a considerable deficiency in the number of known supernova remnants (SNRs) in the Galaxy compared to that expected. This deficiency is thought to be caused by a lack of sensitive radio continuum data. Searches for extended low-surface brightness radio sources may find new Galactic SNRs, but confusion with the much larger population of H II regions makes identifying such features challenging. SNRs can, however, be separated from H II regions using their significantly lower mid-infrared (MIR) to radio continuum intensity ratios. Aims: Our goal is to find missing SNR candidates in the Galactic disk by locating extended radio continuum sources that lack MIR counterparts. Methods: We use the combination of high-resolution 1-2 GHz continuum data from The HI, OH, Recombination line survey of the Milky Way (THOR) and lower-resolution VLA 1.4 GHz Galactic Plane Survey (VGPS) continuum data, together with MIR data from the Spitzer GLIMPSE, Spitzer MIPSGAL, and WISE surveys to identify SNR candidates. To ensure that the candidates are not being confused with H II regions, we exclude radio continuum sources from the WISE Catalog of Galactic H II Regions, which contains all known and candidate H II regions in the Galaxy. Results: We locate 76 new Galactic SNR candidates in the THOR and VGPS combined survey area of 67.4° > ℓ > 17.5°, | b | ≤ 1.25° and measure the radio flux density for 52 previously-known SNRs. The candidate SNRs have a similar spatial distribution to the known SNRs, although we note a large number of new candidates near ℓ ≃ 30°, the tangent point of the Scutum spiral arm. The candidates are on average smaller in angle compared to the known regions, 6.4' ± 4.7' versus 11.0' ± 7.8', and have lower integrated flux densities. Conclusions: The THOR survey shows that sensitive radio continuum data can discover a large number of SNR candidates, and that these candidates can be efficiently identified using the combination of radio and MIR data. If the 76 candidates are confirmed as true SNRs, for example using radio polarization measurements or by deriving radio spectral indices, this would more than double the number of known Galactic SNRs in the survey area. This large increase would still, however, leave a discrepancy between the known and expected SNR populations of about a factor of two.
Spectroscopic observations of southern nearby galaxies. I. NGC 2442
NASA Astrophysics Data System (ADS)
Bajaja, E.; Agüero, E.; Paolantonio, S.
1999-04-01
The galaxy NGC 2442 was observed with a REOSC spectrograph, installed in the 2.15 m CASLEO telescope, in order to derive galactic parameters from the observed optical lines and to compare them with the results of radioastronomical observations made in the continuum, at 843 MHz, with the MOST and in the CO lines with the SEST telescope. Recent publications allowed us to extend the comparison to results from interferometric observations of Hα and H I 21 cm lines and of the continuum at 1415 MHz. The long slit observations were made placing the 5farcm 8 slit at six different positions on the optical image of the galaxy. The emission line intensity ratios at the nuclear region indicate that NGC 2442 is a LINER. The electron temperature and volume density are Te ~ 14 000 K and Ne ~ 530 cm(-3) , respectively. In contrast, a spectrum of a region 87arcsec to the NE shows the typical characteristics of a H Ii region. In this case Te ~ 6,500 K and Ne ~ 10 cm(-3) . Good correlations between the distributions of intensities, velocity fields and rotation curves have been found for the optical and radio lines. It is shown that the three intensity peaks along the line at PA = 40degr were not resolved by the observations at radio frequencies. The steep central rotation curve seen in CO has been confirmed and improved showing the existence of a disc or a ring, with a radius of 12.5 arcsec, rotating at 216/sin(i) km s(-1). Two velocity components in three optical spectra obtained in the nuclear region, have been related to two small Hα regions close to the nucleus and to the central ring. Asymmetries in the distributions of the emitting sources and irregularities in their velocity fields indicate the need of modelling the galaxy before any dynamical study is attempted. Based on observations made in the Complejo Astronomico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Cientificas y Tecnicas de la Republica Argentina and the National Universities of La Plata, Cordoba and San Juan.
The secrets of T Pyxidis. I. UV observations
NASA Astrophysics Data System (ADS)
Gilmozzi, R.; Selvelli, P.
2007-01-01
Aims:We study the UV spectral behavior of the recurrent nova T Pyx during 16 years of
Frederick C. Meinzer; David R. Woodruff; Danielle E. Marias; Duncan D. Smith; Katherine A. McCulloh; Ava R. Howard; Alicia L. Magedman; Josep Penuelas
2016-01-01
The concept of iso- vs. anisohydry has been used to describe the stringency of stomatal regulation of plant water potential (Ï). However, metrics that accurately and consistently quantify speciesâ operating ranges along a continuum of iso- to anisohydry have been elusive. Additionally, most approaches to quantifying iso/anisohydry require labour-intensive measurements...
Properties of the smallest solar magnetic elements. I - Facular contrast near sun center
NASA Technical Reports Server (NTRS)
Topka, K. P.; Tarbell, T. D.; Title, A. M.
1992-01-01
Measurements are presented which indicate that the continuum intensity of facular areas in solar active regions, outside sunspots and pores, is less than that of the quiet sun very near disk center. It is shown that the observed continuum intensity of faculae at disk center near 5000 A is nearly 3 percent less than that of the quiet sun. The continuum contrast increases rapidly away from disk center, reaching +2 percent at 45 deg. The zero-crossing point, where the contrast changes sign, occurs at 20-degree heliocentric angle. This is contrary to many earlier observations. The constraint these observations place on the size of flux tubes depends upon the value of the zero-crossing point. It is proposed that most of the flux tubes in solar faculae may be very small, in the range 50-100 km in diameter, and that inclination from local vertical of about 10 deg at the photosphere is common on the sun. Footpoints of opposite polarity tend to tilt toward one another.
Optical and near-IR imaging observations of comet Austin 1989c1
NASA Technical Reports Server (NTRS)
Watanabe, J.; Hiromoto, N.; Takami, H.; Aoki, TE.; Nakamura, T.; Takagishi, K.; Hatsukade, I.; Isobe, S.; Sasaki, G.; Sugai, H.
1990-01-01
Near-nucleus imaging observations of comet Austin (1989c1) were carried out by the Japanese CCD imaging team. Six telescopes were used to monitor the time variation of the near-nucleus images in C2, CN, H2O, and Na continuum in the optical region, and in J, H, and K bands in the near-IR region. A featureless, round shape of the comet was revealed in all images. Although some of the jet features are recognized by using an image enhancement technique, the azimuthal difference of the intensity distribution is about 10 percent. The images in the H2O band show complex ion structures near the nucleus.
Ngoko Djiokap, J M; Manakov, N L; Meremianin, A V; Hu, S X; Madsen, L B; Starace, Anthony F
2014-11-28
Control of double ionization of He by means of the polarization and carrier-envelope phase (CEP) of an intense, few-cycle extreme ultraviolet (XUV) pulse is demonstrated numerically by solving the six-dimensional two-electron, time-dependent Schrödinger equation for He interacting with an elliptically polarized XUV pulse. Guided by perturbation theory (PT), we predict the existence of a nonlinear dichroic effect (∝I^{3/2}) that is sensitive to the CEP, ellipticity, peak intensity I, and temporal duration of the pulse. This dichroic effect (i.e., the difference of the two-electron angular distributions for opposite helicities of the ionizing XUV pulse) originates from interference of first- and second-order PT amplitudes, allowing one to probe and control S- and D-wave channels of the two-electron continuum. We show that the back-to-back in-plane geometry with unequal energy sharing is an ideal one for observing this dichroic effect that occurs only for an elliptically polarized, few-cycle attosecond pulse.
Ionized carbon in the Large Magellanic Cloud
NASA Technical Reports Server (NTRS)
Boreiko, R. T.; Betz, A. L.
1991-01-01
The 158 micron 2P3/2-2P1/2 fine-structure transition of C(+) at selected locations in the LMC. The C II emission is most intense toward far-infrared continuum peaks and generally is not seen in positions exhibiting strong CO J = 2-1 radiation. Where both C II and CO emission are detected, the V(LSR) centroids are similar but the C II line is wider. The differences in spatial distribution and spectral shape suggest a more pronounced physical separation between the predominantly neutral atomic and molecular gas regions than is the case in the Galaxy. In the LMC, the intense and extended C II emission near 30 Dor implies a total amount of C(+) several times greater than that of Galactic molecular cloud complexes. An attempt was made to detect the 289 micron J = 9-8 transition of (C-12)O in a few locations. The observed upper intensity limit for N159 implies that moderate density molecular gas fills less than 5 percent of the beam and that most of the low J CO emission comes from lower density gas.
Massicotte, Philippe; Asmala, Eero; Stedmon, Colin; Markager, Stiig
2017-12-31
Based on an extensive literature survey containing more than 12,000 paired measurements of dissolved organic carbon (DOC) concentrations and absorption of chromophoric dissolved organic matter (CDOM) distributed over four continents and seven oceans, we described the global distribution and transformation of dissolved organic matter (DOM) along the aquatic continuum across rivers and lakes to oceans. A strong log-linear relationship (R 2 =0.92) between DOC concentration and CDOM absorption at 350nm was observed at a global scale, but was found to be ecosystem-dependent at local and regional scales. Our results reveal that as DOM is transported towards the oceans, the robustness of the observed relation decreases rapidly (R 2 from 0.94 to 0.44) indicating a gradual decoupling between DOC and CDOM. This likely reflects the decreased connectivity between the landscape and DOM along the aquatic continuum. To support this hypothesis, we used the DOC-specific UV absorbance (SUVA) to characterize the reactivity of the DOM pool which decreased from 4.9 to 1.7m 2 × gC -1 along the aquatic continuum. Across the continuum, a piecewise linear regression showed that the observed decrease of SUVA occurred more rapidly in freshwater ecosystems compared to marine water ecosystems, suggesting that the different degradation processes act preferentially on CDOM rather than carbon content. The observed change in the DOM characteristics along the aquatic continuum also suggests that the terrestrial DOM pool is gradually becoming less reactive, which has profound consequences on cycling of organic carbon in aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Adler, David S.; Lo, K. Y.; Allen, Ronald J.
1991-01-01
The relationship between the velocity-integrated CO emission and the nonthermal radio continuum brightness in the disks of normal spiral galaxies is examined on a variety of length scales. On a global scale, the total CO intensity correlates strongly with the total radio continuum flux density for a sample of 31 galaxies. On scales of about 2 kpc or more in the disk of individual galaxies, it is found that the ratio I(CO)/T(20) remains fairly constant over the entire disk as well as from galaxy to galaxy. For the eight spirals in the sample, the disk-averaged values of I(CO)/T(20) range from 0.6-2.4, with the average over all eight galaxies being 1.3 +/- 0.6. It is concluded that what these various length scales actually trace are differences in the primary heating mechanism of the gas in the beam. The observed relationship between CO and nonthermal radio continuum emission can be explained by assuming that molecular gas in galactic disks is heated primarily by cosmic rays. The observed relationship is used to show that the brightness of synchrotron emission is proportional to n(cr) exp 0.4 - 0.9 in galactic disks.
NASA Technical Reports Server (NTRS)
Peterson, B. M.; Berlind, P.; Bertram, R.; Bischoff, K.; Bochkarev, N. G.; Burenkov, A. N.; Calkins, M.; Carrasco, L.; Chavushyan, V. H.
2002-01-01
We present the final installment of an intensive 13 year study of variations of the optical continuum and broad H beta emission line in the Seyfert 1 galaxy NGC 5548. The database consists of 1530 optical continuum measurements and 1248 H beta measurements. The H beta variations follow the continuum variations closely, with a typical time delay of about 20 days. However, a year-by-year analysis shows that the magnitude of emission-line time delay is correlated with the mean continuum flux. We argue that the data are consistent with the simple model prediction between the size of the broad-line region and the ionizing luminosity, r is proportional to L(sup 1/2)(sub ion). Moreover, the apparently linear nature of the correlation between the H beta response time and the nonstellar optical continuum F(sub opt) arises as a consequence of the changing shape of the continuum as it varies, specifically F(sub opt) is proportional to F(sup 0.56)(sub UV).
Models of Uranium continuum radio emission
NASA Technical Reports Server (NTRS)
Romig, Joseph H.; Evans, David R.; Sawyer, Constance B.; Schweitzer, Andrea E.; Warwick, James W.
1987-01-01
Uranium continuum radio emission detected by the Voyager 2 Planetary Radio Astronomy experiment during the January 1986 encounter is considered. The continuum emissions comprised four components (equatorial emissions, anomaly emissions, strong nightside emissions, and weak nightside emissions) associated with different sources. The equatorial emissions appeared most prominently during the days before closest approach and extended from 40 kHz or below to about 120 kHz. The anomaly emissions were seen about 12 hours before closest approach and extended to about 250 kHz. The agreement found between Miranda's phase and strong radio emission at 20.4 kHz, just after closest approach, suggests intense dynamic activity on the Miranda L shell.
NASA Astrophysics Data System (ADS)
Mitani, Takeshi; Nakashima, Shin-ichi; Kojima, Kazutoshi; Kato, Tomohisa; Okumura, Hajime
2012-08-01
For n-type 4H-SiC crystals with carrier concentrations between 2 × 1017 and 2.5 × 1020 cm-3, Fano interference of the folded transverse acoustic (FTA) doublet modes was observed. The Fano line-shape parameters were shown to vary with carrier concentration. It is proposed that the peak shifts in the FTA modes resulting from interference with an electronic continuum state can be used to measure carrier concentration for n-type 4H-SiC up to 1020 cm-3. In addition, the relative intensity of the FTA doublet modes varies markedly with carrier concentrations above 5 × 1018 cm-3. This suggests that mode coupling occurs between the FTA doublet components. The variation in the intensity ratio is attributed to the intensity transfer between the FTA doublet components. This mode coupling arises from a phonon-phonon interaction via electronic continuum state-phonon interactions.
Incorporation of the TIP4P water model into a continuum solvent for computing solvation free energy
NASA Astrophysics Data System (ADS)
Yang, Pei-Kun
2014-10-01
The continuum solvent model is one of the commonly used strategies to compute solvation free energy especially for large-scale conformational transitions such as protein folding or to calculate the binding affinity of protein-protein/ligand interactions. However, the dielectric polarization for computing solvation free energy from the continuum solvent is different than that obtained from molecular dynamic simulations. To mimic the dielectric polarization surrounding a solute in molecular dynamic simulations, the first-shell water molecules was modeled using a charge distribution of TIP4P in a hard sphere; the time-averaged charge distribution from the first-shell water molecules were estimated based on the coordination number of the solute, and the orientation distribution of the first-shell waters and the intermediate water molecules were treated as that of a bulk solvent. Based on this strategy, an equation describing the solvation free energy of ions was derived.
Connolly, Bronwen; O'Neill, Brenda; Salisbury, Lisa; McDowell, Kathryn; Blackwood, Bronagh
2015-09-29
Patients admitted to the intensive care unit with critical illness often experience significant physical impairments, which typically persist for many years following resolution of the original illness. Physical rehabilitation interventions that enhance restoration of physical function have been evaluated across the continuum of recovery following critical illness including within the intensive care unit, following discharge to the ward and beyond hospital discharge. Multiple systematic reviews have been published appraising the expanding evidence investigating these physical rehabilitation interventions, although there appears to be variability in review methodology and quality. We aim to conduct an overview of existing systematic reviews of physical rehabilitation interventions for adult intensive care patients across the continuum of recovery. This protocol has been developed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocol (PRISMA-P) guidelines. We will search the Cochrane Systematic Review Database, Database of Abstracts of Reviews of Effectiveness, Cochrane Central Register of Controlled Trials, MEDLINE, Excerpta Medica Database and Cumulative Index to Nursing and Allied Health Literature databases. We will include systematic reviews of randomised controlled trials of adult patients, admitted to the intensive care unit and who have received physical rehabilitation interventions at any time point during their recovery. Data extraction will include systematic review aims and rationale, study types, populations, interventions, comparators, outcomes and quality appraisal method. Primary outcomes of interest will focus on findings reflecting recovery of physical function. Quality of reporting and methodological quality will be appraised using the PRISMA checklist and the Assessment of Multiple Systematic Reviews tool. We anticipate the findings from this novel overview of systematic reviews will contribute to the synthesis and interpretation of existing evidence regarding physical rehabilitation interventions and physical recovery in post-critical illness patients across the continuum of recovery. PROSPERO CRD42015001068.
Furlan, Violeta; Pochettino, María L; Hilgert, Norma I
2017-01-01
Home gardens are considered germplasm repositories and places for experimentation, thus they are key sites for the domestication of plants. Domestication is considered a constant process that occurs along a continuum from wild to managed to domesticated populations. Management may lead to the modification of populations and in other cases to their distribution, changing population structure in a landscape. Our objective is focused on the management received in home gardens by perennial species of fruits. For this, the management practices applied to native and exotic perennial fruits species by a group of 20 women in the periurban zone of Iguazú, Argentina, were analyzed. In-depth interviews were conducted, as well as guided tours for the recognition and collection of specimens of species and ethnovarieties. Sixty-six fruit species managed in the home gardens were recorded. The predominant families are Rutaceae, Myrtaceae, and Rosaceae. The fruit species with the highest number of associated management practices are pitanga ( Eugenia uniflora ) and pindó ( Syagrus rommanzoffiana ). The 10 species with the highest management intensity are (in decreasing order of intensity) banana ( Musa x paradisiaca ), palta ( Persea americana ), pitanga ( E. uniflora ), mango ( Mangifera indica ), cocú ( Allophylus edulis ), mamón ( Carica papaya ), guayaba ( Psidium guajava ), limón mandarina ( Citrus x taitensis ), güembé ( Philodendron bipinnatifidum ), and mandarina ( Citrus reticulata ). Among the families with the greatest modifications in their distribution, abundance and presence of ethnovarieties in domestic gardens, are the native Myrtaceae and the exotic Rutaceae. The main management practices involved are cultivation, tolerance, transplant and enhancement in decreasing order. It can be concluded that in Iguazú, fruit species management shows both in plant germplasm as in environment a continuum that through tolerance, transplant and cultivation latu sensu has derived in a mosaic of species in different management situations, which in turn are representative of an anthropogenic landscape in constant domestication and change.
Furlan, Violeta; Pochettino, María L.; Hilgert, Norma I.
2017-01-01
Home gardens are considered germplasm repositories and places for experimentation, thus they are key sites for the domestication of plants. Domestication is considered a constant process that occurs along a continuum from wild to managed to domesticated populations. Management may lead to the modification of populations and in other cases to their distribution, changing population structure in a landscape. Our objective is focused on the management received in home gardens by perennial species of fruits. For this, the management practices applied to native and exotic perennial fruits species by a group of 20 women in the periurban zone of Iguazú, Argentina, were analyzed. In-depth interviews were conducted, as well as guided tours for the recognition and collection of specimens of species and ethnovarieties. Sixty-six fruit species managed in the home gardens were recorded. The predominant families are Rutaceae, Myrtaceae, and Rosaceae. The fruit species with the highest number of associated management practices are pitanga (Eugenia uniflora) and pindó (Syagrus rommanzoffiana). The 10 species with the highest management intensity are (in decreasing order of intensity) banana (Musa x paradisiaca), palta (Persea americana), pitanga (E. uniflora), mango (Mangifera indica), cocú (Allophylus edulis), mamón (Carica papaya), guayaba (Psidium guajava), limón mandarina (Citrus x taitensis), güembé (Philodendron bipinnatifidum), and mandarina (Citrus reticulata). Among the families with the greatest modifications in their distribution, abundance and presence of ethnovarieties in domestic gardens, are the native Myrtaceae and the exotic Rutaceae. The main management practices involved are cultivation, tolerance, transplant and enhancement in decreasing order. It can be concluded that in Iguazú, fruit species management shows both in plant germplasm as in environment a continuum that through tolerance, transplant and cultivation latu sensu has derived in a mosaic of species in different management situations, which in turn are representative of an anthropogenic landscape in constant domestication and change. PMID:29033964
Inferring giant planets from ALMA millimeter continuum and line observations in (transition) disks
NASA Astrophysics Data System (ADS)
Facchini, S.; Pinilla, P.; van Dishoeck, E. F.; de Juan Ovelar, M.
2018-05-01
Context. Radial gaps or cavities in the continuum emission in the IR-mm wavelength range are potential signatures of protoplanets embedded in their natal protoplanetary disk are. Hitherto, models have relied on the combination of mm continuum observations and near-infrared scattered light images to put constraints on the properties of embedded planets. Atacama Large Millimeter/submillimeter Array (ALMA) observations are now probing spatially resolved rotational line emission of CO and other chemical species. These observations can provide complementary information on the mechanism carving the gaps in dust and additional constraints on the purported planet mass. Aims: We investigate whether the combination of ALMA continuum and CO line observations can constrain the presence and mass of planets embedded in protoplanetary disks. Methods: We post-processed azimuthally averaged 2D hydrodynamical simulations of planet-disk models, in which the dust densities and grain size distributions are computed with a dust evolution code that considers radial drift, fragmentation, and growth. The simulations explored various planet masses (1 MJ ≤ Mp ≤ 15 MJ) and turbulent parameters (10-4 ≤ α ≤ 10-3). The outputs were then post-processed with the thermochemical code DALI, accounting for the radially and vertically varying dust properties. We obtained the gas and dust temperature structures, chemical abundances, and synthetic emission maps of both thermal continuum and CO rotational lines. This is the first study combining hydrodynamical simulations, dust evolution, full radiative transfer, and chemistry to predict gas emission of disks hosting massive planets. Results: All radial intensity profiles of 12CO, 13CO, and C18O show a gap at the planet location. The ratio between the location of the gap as seen in CO and the peak in the mm continuum at the pressure maximum outside the orbit of the planet shows a clear dependence on planet mass and is independent of disk viscosity for the parameters explored in this paper. Because of the low dust density in the gaps, the dust and gas components can become thermally decoupled and the gas becomes colder than the dust. The gaps seen in CO are due to a combination of gas temperature dropping at the location of the planet and of the underlying surface density profile. Both effects need to be taken into account and disentangled when inferring gas surface densities from observed CO intensity profiles; otherwise, the gas surface density drop at the planet location can easily be overestimated. CO line ratios across the gap are able to quantify the gas temperature drop in the gaps in observed systems. Finally, a CO cavity not observed in any of the models, only CO gaps, indicating that one single massive planet is not able to explain the CO cavities observed in transition disks, at least without additional physical or chemical mechanisms.
The correlation between far-IR and radio continuum emission from spiral galaxies
NASA Technical Reports Server (NTRS)
Dickey, John M.; Garwood, Robert W.; Helou, George
1987-01-01
A sample of 30 galaxies selected for their intense IRAS flux at 60 and 100 micron using the Arecibo telescope at 21 cm to measure the continuum and HI line luminosities were observed. The centimeter wave continuum correlates very well with the far-infrared flux, with a correlation coefficient as high as that found for other samples, and the same ratio between FIR and radio luminosities. Weaker correlations are seen between the FIR and optical luminosity and between the FIR and radio continuum. There is very little correlation between the FIR and the HI mass deduced from the integral of the 21 cm line. The strength of the radio continuum correlation suggests that there is little contribution to either the radio and FIR from physical processes not affecting both. If they each reflect time integrals of the star formation rate then the time constants must be similar, or the star formation rate must change slowly in these galaxies.
Fluctuations of the intergalactic ionization field at redshift z ~ 2
NASA Astrophysics Data System (ADS)
Agafonova, I. I.; Levshakov, S. A.; Reimers, D.; Hagen, H.-J.; Tytler, D.
2013-04-01
Aims: To probe the spectral energy distribution (SED) of the ionizing background radiation at z ≲ 2 and to specify the sources contributing to the intergalactic radiation field. Methods: The spectrum of a bright quasar HS 1103+6416 (zem = 2.19) contains five successive metal-line absorption systems at zabs = 1.1923, 1.7193, 1.8873, 1.8916, and 1.9410. The systems are optically thin and reveal multiple lines of different metal ions with the ionization potentials lying in the extreme ultraviolet (EUV) range (~1 Ryd to ~0.2 keV). For each system, the EUV SED of the underlying ionization field is reconstructed by means of a special technique developed for solving the inverse problem in spectroscopy. For the zabs = 1.8916 system, the analysis also involves the He I resonance lines of the Lyman series and the He iλ504 Å continuum, which are seen for the first time in any cosmic object except the Sun. Results: From one system to another, the SED of the ionizing continuum changes significantly, indicating that the intergalactic ionization field at z ≲ 2 fluctuates at the scale of at least Δz ~ 0.004. This is consistent with Δz ≲ 0.01 estimated from He II and H I Lyman-α forest measurements between the redshifts 2 and 3. A radiation intensity break by approximately an order of magnitude at E = 4 Ryd in SEDs restored for the zabs = 1.1923, 1.8873, 1.8916, and 1.9410 systems points to quasars as the main sources of the ionizing radiation. The SED variability is mostly caused by a small number of objects contributing at any given redshift to the ionizing background; at scales Δz ≳ 0.05, the influence of local radiation sources becomes significant. A remarkable SED restored for the zabs = 1.7193 system, with a sharp break shifted to E ~ 3.5 Ryd and a subsequent intensity decrease by ~1.5 dex, indicates a source with comparable inputs of both hard (active galactic nuclei, AGN) and soft (stellar) radiation components. Such a continuum can be emitted by (ultra) luminous infrared galaxies, many of which reveal both a strong AGN activity and intense star formation in the circumnuclear regions.
Zhang, Zhi-Yu; Papadopoulos, Padelis P; Ivison, R J; Galametz, Maud; Smith, M W L; Xilouris, Emmanuel M
2016-06-01
Images of dust continuum and carbon monoxide (CO) line emission are powerful tools for deducing structural characteristics of galaxies, such as disc sizes, H2 gas velocity fields and enclosed H2 and dynamical masses. We report on a fundamental constraint set by the cosmic microwave background (CMB) on the observed structural and dynamical characteristics of galaxies, as deduced from dust continuum and CO-line imaging at high redshifts. As the CMB temperature rises in the distant Universe, the ensuing thermal equilibrium between the CMB and the cold dust and H2 gas progressively erases all spatial and spectral contrasts between their brightness distributions and the CMB. For high-redshift galaxies, this strongly biases the recoverable H2 gas and dust mass distributions, scale lengths, gas velocity fields and dynamical mass estimates. This limitation is unique to millimetre/submillimetre wavelengths and unlike its known effect on the global dust continuum and molecular line emission of galaxies, it cannot be addressed simply. We nevertheless identify a unique signature of CMB-affected continuum brightness distributions, namely an increasing rather than diminishing contrast between such brightness distributions and the CMB when the cold dust in distant galaxies is imaged at frequencies beyond the Raleigh-Jeans limit. For the molecular gas tracers, the same effect makes the atomic carbon lines maintain a larger contrast than the CO lines against the CMB.
Comet P/Halley 1910, 1986: An objective-prism study
NASA Technical Reports Server (NTRS)
Carsenty, U.; Bus, E. S.; Wyckoff, S.; Lutz, B.
1986-01-01
V. M. Slipher of the Lowell Obs. collected a large amount of spectroscopic data during the 1910 apparition of Halley's comet. Three of his post perihelion objective-prism plates were selected, digitized, and subjected to modern digital data reduction procedures. Some of the important steps in the analysis where: (1) Density to intensity conversion for which was used 1910 slit spectra of Fe-arc lamp on similar plates (Sigma) and derived an average characteristic curve; (2) Flux calibration using the fact that during the period June 2 to 7 1910 P/Halley was very close (angular distance) to the bright star Alpha Sex (A0III, V-4.49), and the spectra of both star and comet were recorded on the same plates. The flux distribution of Alpha Sex was assumed to be similar to that of the standard star 58 Aql and derived a sensitivity curve for the system; (3) Atmospheric extinction using the standard curve for the Lowell Obs.; (4) Solar continuum subtraction using the standard solar spectrum binned to the spectral resolution. An example of a flux-calibrated spectrum of the coma (integrated over 87,000km) before the subtraction of solar continuum is presented.
NASA Technical Reports Server (NTRS)
Gu, M. F.; Beiersdorfer, P.; Brown, G. V.; Graf, A.; Kelley, R. I.; Kilbourne, C. A.; Porter, F. S.; Kahn, S. M,
2012-01-01
We present laboratory spectra of dielectronic recombination (DR) satellite transitions attached to the He-like and H-like iron resonance lines obtained with the NASA Goddard Space Flight Center X-ray calorimeter and produced by a thermal plasma simu1ation technique on the EBIT-I electron beam ion trap at the Lawrence Livermore National Laboratory. We demonstrate that the calorimeter has sufficient spectral resolution in the 6-9 keV range to provide reliable measurements not only of standard DR satellite to resonance line intensities but also of DR satellite to DR satellite ratios that can be used to diagnose nonthermal electron distributions. Electron temperatures derived from the measured line intensities are consistent with the temperature of the simulated plasma. Temperature measurements based on DR satellite transitions have significant advantages over those based on collisional ionization equilibrium or continuum shape. Thus, successful demonstration of this method with the X-ray calorimeter is an important step fur its application in X-ray astronomy.
NASA Technical Reports Server (NTRS)
Fichtel, C. E.; Simpson, G. A.; Thompson, D. J.
1977-01-01
An examination of the intensity, energy spectrum, and spatial distribution of the diffuse gamma-radiation observed by SAS-2 satellite away from the galactic plane in the energy range above 35 MeV has shown that it consists of two components. One component is generally correlated with galactic latitudes, the atomic hydrogen column density was deduced from 21 cm measurements, and the continuum radio emission, believed to be synchrotron emission. It has an energy spectrum similar to that in the plane and joins smoothly to the intense radiation from the plane. It is therefore presumed to be of galactic origin. The other component is apparently isotropic, at least on a coarse scale, and has a steep energy spectrum. No evidence is found for a cosmic ray halo surrounding the galaxy in the shape of a sphere or oblate spheroid with galactic dimensions. Constraints for a halo model with significantly larger dimensions are set on the basis of an upper limit to the gamma-ray anisotropy.
A study of acoustic halos in active region NOAA 11330 using multi-height SDO observations
NASA Astrophysics Data System (ADS)
Tripathy, S. C.; Jain, K.; Kholikov, S.; Hill, F.; Rajaguru, S. P.; Cally, P. S.
2018-01-01
We analyze data from the Helioseismic Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA) instruments on board the Solar Dynamics Observatory (SDO) to characterize the spatio-temporal acoustic power distribution in active regions as a function of the height in the solar atmosphere. For this, we use Doppler velocity and continuum intensity observed using the magnetically sensitive line at 6173 Å as well as intensity at 1600 Å and 1700 Å. We focus on the power enhancements seen around AR 11330 as a function of wave frequency, magnetic field strength, field inclination and observation height. We find that acoustic halos occur above the acoustic cutoff frequency and extends up to 10 mHz in HMI Doppler and AIA 1700 Å observations. Halos are also found to be strong functions of magnetic field and their inclination angle. We further calculate and examine the spatially averaged relative phases and cross-coherence spectra and find different wave characteristics at different heights.
NASA Astrophysics Data System (ADS)
Juvela, Mika J.
The relationship between physical conditions of an interstellar cloud and the observed radiation is defined by the radiative transfer problem. Radiative transfer calculations are needed if, e.g., one wants to disentangle abundance variations from excitation effects or wants to model variations of dust properties inside an interstellar cloud. New observational facilities (e.g., ALMA and Herschel) will bring improved accuracy both in terms of intensity and spatial resolution. This will enable detailed studies of the densest sub-structures of interstellar clouds and star forming regions. Such observations must be interpreted with accurate radiative transfer methods and realistic source models. In many cases this will mean modelling in three dimensions. High optical depths and observed wide range of linear scales are, however, challenging for radiative transfer modelling. A large range of linear scales can be accessed only with hierarchical models. Figure 1 shows an example of the use of a hierarchical grid for radiative transfer calculations when the original model cloud (L=10 pc,
Crack Tip Dislocation Nucleation in FCC Solids
NASA Astrophysics Data System (ADS)
Knap, J.; Sieradzki, K.
1999-02-01
We present results of molecular dynamic simulations aimed at examining crack tip dislocation emission in fcc solids. The results are analyzed in terms of recent continuum formulations of this problem. In mode II, Au, Pd, and Pt displayed a new unanticipated mechanism of crack tip dislocation emission involving the creation of a pair of Shockley partials on a slip plane one plane below the crack plane. In mode I, for all the materials examined, Rice's continuum formulation [J. Mech. Phys. Solids 40, 239 (1992)] underestimated the stress intensity for dislocation emission by almost a factor of 2. Surface stress corrections to the emission criterion brought the agreement between continuum predictions and simulations to within 20%.
Realistic Solar Surface Convection Simulations
NASA Technical Reports Server (NTRS)
Stein, Robert F.; Nordlund, Ake
2000-01-01
We perform essentially parameter free simulations with realistic physics of convection near the solar surface. We summarize the physics that is included and compare the simulation results with observations. Excellent agreement is obtained for the depth of the convection zone, the p-mode frequencies, the p-mode excitation rate, the distribution of the emergent continuum intensity, and the profiles of weak photospheric lines. We describe how solar convection is nonlocal. It is driven from a thin surface thermal boundary layer where radiative cooling produces low entropy gas which forms the cores of the downdrafts in which most of the buoyancy work occurs. We show that turbulence and vorticity are mostly confined to the intergranular lanes and underlying downdrafts. Finally, we illustrate our current work on magneto-convection.
Message Control Intensity: Rationale and Preliminary Findings.
ERIC Educational Resources Information Center
Rogers, L. Edna; And Others
The discussions of four family-related topics by 85 married couples were recorded and analyzed to test the validity of an expanded version of the relational communication coding system developed by L. Edna Rogers and Richard V. Farace. The expanded version of the system is based on the implicit intensity continuum that underlies the communication…
NASA Astrophysics Data System (ADS)
Gitlin, M. S.; Glyavin, M. Yu.; Fedotov, A. E.; Tsvetkov, A. I.
2017-07-01
The paper presents the second part of the review on a high-sensitive technique for time-resolved imaging and measurements of the 2D intensity profiles of millimeter-wave radiation by means of Visible Continuum Radiation emitted by the positive column of a medium-pressure Cs-Xe DC Discharge (VCRD method). The first part of the review was focused on the operating principles and fundamentals of this new technique [Plasma Phys. Rep. 43, 253 (2017)]. The second part of the review focuses on experiments demonstrating application of this imaging technique to measure the parameters of radiation at the output of moderate-power millimeter-wave sources. In particular, the output waveguide mode of a moderate-power W-band gyrotron with a pulsed magnetic field was identified and the relative powers of some spurious modes at the outputs of this gyrotron and a pulsed D-band orotron were evaluated. The paper also reviews applications of the VCRD technique for real-time imaging and nondestructive testing with a frame rate of higher than 10 fps by using millimeter waves. Shadow projection images of objects opaque and transparent for millimeter waves have been obtained using pulsed watt-scale millimeter waves for object illumination. Near video frame rate millimeter-wave shadowgraphy has been demonstrated. It is shown that this technique can be used for single-shot screening (including detection of concealed objects) and time-resolved imaging of time-dependent processes.
High-order continuum kinetic method for modeling plasma dynamics in phase space
Vogman, G. V.; Colella, P.; Shumlak, U.
2014-12-15
Continuum methods offer a high-fidelity means of simulating plasma kinetics. While computationally intensive, these methods are advantageous because they can be cast in conservation-law form, are not susceptible to noise, and can be implemented using high-order numerical methods. Advances in continuum method capabilities for modeling kinetic phenomena in plasmas require the development of validation tools in higher dimensional phase space and an ability to handle non-cartesian geometries. To that end, a new benchmark for validating Vlasov-Poisson simulations in 3D (x,v x,v y) is presented. The benchmark is based on the Dory-Guest-Harris instability and is successfully used to validate a continuummore » finite volume algorithm. To address challenges associated with non-cartesian geometries, unique features of cylindrical phase space coordinates are described. Preliminary results of continuum kinetic simulations in 4D (r,z,v r,v z) phase space are presented.« less
High-resolution pattern of mangrove species distribution is controlled by surface elevation
NASA Astrophysics Data System (ADS)
Leong, Rick C.; Friess, Daniel A.; Crase, Beth; Lee, Wei Kit; Webb, Edward L.
2018-03-01
Mangrove vegetation species respond to multiple environmental gradients, and an enhanced understanding of how mangrove species are distributed across these gradients will facilitate conservation and management. Many environmental gradients correlate with tidal inundation; however small-scale inundation patterns resulting from microtopographical changes are difficult to capture empirically. In contrast, surface elevation is often a suitable, measurable and cost-effective proxy for inundation. This study investigated the relationships between species distribution and surface elevation in a mangrove forest in northwest Singapore. Through high-resolution land surveying, we developed a digital elevation model (DEM) and conducted a comprehensive survey of 4380 trees with a stem diameter ≥ 5 cm. A total of 15 species were encountered, and elevation envelopes were generated for 12. Species envelopes were distributed along an elevation continuum, with most species overlapping within the continuum. Spatial autocorrelation (SAC) was present for nine of the 15 species, and when taken into account, species ordering was modified across the elevation continuum. The presence of SAC strongly reinforces the need for research to control for SAC: classical spatial description of mangrove species distribution should be revised to account for ecological factors. This study suggests that (1) surface elevation applies strong controls on species distribution and (2) most mangroves at our study site have similar physiological tolerances.
NASA Astrophysics Data System (ADS)
Zamanov, A. D.
2001-09-01
A problem on the forced vibrations of a rectangular composite plate with locally curved structures is formulated using the exact three-dimensional equations of continuum mechanics and continuum theory. A technique for numerical solution of the problem is developed based on the semianalytic finite-element method. Numerical results are given for the stress distribution in the plate under forced vibrations. The results obtained are analyzed to study the effect of the curvature in the structure of the plate on the distribution of stress amplitudes. It is shown that the curvatures change significantly the stress pattern under either static or dynamic loading
Two-dimensional quasistatic stationary short range surface plasmons in flat nanoprisms.
Nelayah, J; Kociak, M; Stéphan, O; Geuquet, N; Henrard, L; García de Abajo, F J; Pastoriza-Santos, I; Liz-Marzán, L M; Colliex, C
2010-03-10
We report on the nanometer scale spectral imaging of surface plasmons within individual silver triangular nanoprisms by electron energy loss spectroscopy and on related discrete dipole approximation simulations. A dependence of the energy and intensity of the three detected modes as function of the edge length is clearly identified both experimentally and with simulations. We show that for experimentally available prisms (edge lengths ca. 70 to 300 nm) the energies and intensities of the different modes show a monotonic dependence as function of the aspect ratio of the prisms. For shorter or longer prisms, deviations to this behavior are identified thanks to simulations. These modes have symmetric charge distribution and result from the strong coupling of the upper and lower triangular surfaces. They also form a standing wave in the in-plane direction and are identified as quasistatic short range surface plasmons of different orders as emphasized within a continuum dielectric model. This model explains in simple terms the measured and simulated energy and intensity changes as function of geometric parameters. By providing a unified vision of surface plasmons in platelets, such a model should be useful for engineering of the optical properties of metallic nanoplatelets.
Zhang, Zhi-Yu; Smith, M. W. L.; Xilouris, Emmanuel M.
2016-01-01
Images of dust continuum and carbon monoxide (CO) line emission are powerful tools for deducing structural characteristics of galaxies, such as disc sizes, H2 gas velocity fields and enclosed H2 and dynamical masses. We report on a fundamental constraint set by the cosmic microwave background (CMB) on the observed structural and dynamical characteristics of galaxies, as deduced from dust continuum and CO-line imaging at high redshifts. As the CMB temperature rises in the distant Universe, the ensuing thermal equilibrium between the CMB and the cold dust and H2 gas progressively erases all spatial and spectral contrasts between their brightness distributions and the CMB. For high-redshift galaxies, this strongly biases the recoverable H2 gas and dust mass distributions, scale lengths, gas velocity fields and dynamical mass estimates. This limitation is unique to millimetre/submillimetre wavelengths and unlike its known effect on the global dust continuum and molecular line emission of galaxies, it cannot be addressed simply. We nevertheless identify a unique signature of CMB-affected continuum brightness distributions, namely an increasing rather than diminishing contrast between such brightness distributions and the CMB when the cold dust in distant galaxies is imaged at frequencies beyond the Raleigh–Jeans limit. For the molecular gas tracers, the same effect makes the atomic carbon lines maintain a larger contrast than the CO lines against the CMB. PMID:27429763
Galactic Supernova Remnant Candidates Discovered by THOR
NASA Astrophysics Data System (ADS)
Anderson, Loren; Wang, Yuan; Bihr, Simon; Rugel, Michael; Beuther, Henrik; THOR Team
2018-01-01
There is a considerable deficiency in the number of known supernova remnants (SNRs) in the Galaxy compared to that expected. Searches for extended low-surface brightness radio sources may find new Galactic SNRs, but confusion with the much larger population of HII regions makes identifying such features challenging. SNRs can, however, be separated from HII regions using their significantly lower mid-infrared (MIR) to radio continuum intensity ratios. We use the combination of high-resolution 1-2 GHz continuum data from The HI, OH, Recombination line survey of the Milky Way (THOR) and lower-resolution VLA 1.4 GHz Galactic Plane Survey (VGPS) continuum data, together with MIR data from the Spitzer GLIMPSE, Spitzer MIPSGAL, and WISE surveys to identify SNR candidates. To ensure that the candidates are not being confused with HII regions, we exclude radio continuum sources from the WISE Catalog of Galactic HII Regions, which contains all known and candidate H II regions in the Galaxy. We locate 76 new Galactic SNR candidates in the THOR and VGPS combined survey area of 67.4deg>l>17.5deg, |b|<1.25deg and measure the radio flux density for 52 previously-known SNRs. The candidate SNRs have a similar spatial distribution to the known SNRs, although we note a large number of new candidates near l=30deg, the tangent point of the Scutum spiral arm. The candidates are on average smaller in angle compared to the known regions, 6.4'+/-4.7' versus 11.0'+/-7.8', and have lower integrated flux densities. If the 76 candidates are confirmed as true SNRs, for example using radio polarization measurements or by deriving radio spectral indices, this would more than double the number of known Galactic SNRs in the survey area. This large increase would still, however, leave a discrepancy between the known and expected SNR populations of about a factor of two.
Spectral structure and stability studies on microstructure-fiber continuum
NASA Astrophysics Data System (ADS)
Gu, Xun; Kimmel, Mark; Zeek, Erik; Shreenath, Aparna P.; Trebino, Rick P.; Windeler, Robert S.
2003-07-01
Although previous direct measurements of the microstructure-fiber continuum have all showed a smooth and stable spectrum, our cross-correlation frequency-resolved optical gating (XFROG) full-intensity-and-phase characterization of the continuum pulse, utilizing sum-frequency-generation with a pre-characterized reference pulse and the angle-dithered-crystal technique, indicates that fine-scale spectral structure exists on a single-shot basis, contrary to previous observations. In particular, deep and fine oscillations are found in the retrieved spectrum, and the retrieved trace contains a "measles" pattern, whereas the measured trace and the independently-measured spectrum are rather smooth. The discrepancy is shown to be the result of unstable single-shot spectral structure. Although the XFROG measurement is not able to directly measure the single-shot fine structure in the trace, the redundancy of information in FROG traces enables the retrieval algorithm to correctly recognize the existence of the spectral fine structure, and restore the structure in the retrieved trace and spectrum. Numerical simulations have supported our hypothesis, and we directly observed the fine spectral structure in single-shot measurements of the continuum spectrum and the structure was seen to be highly unstable, the continuum spectrum appearing smooth only when many shots are averaged. Despite the structure and instability in the continuum spectrum, coherence experiments also reveal that the spectral phase is rather stable, being able to produce well-defined spectral fringes across the entire continuum bandwidth.
Angular distribution and polarization of atomic radiative emission in electric and magnetic fields
NASA Astrophysics Data System (ADS)
Jacobs, V. L.; Filuk, A. B.
1999-09-01
A density-matrix approach has been developed for the angular distribution and polarization of radiative emission during single-photon atomic transitions for a general set of steady-state excitation processes in an arbitrary arrangement of static (or quasistatic) electric and magnetic fields. Particular attention has been directed at spectroscopic observations in the intense fields of the high-power ion diodes on the Particle Beam Fusion Accelerator II (PBFA II) and SABRE devices at Sandia National Laboratories and at magnetic-field measurements in tokamak plasmas. The field-dependent atomic eigenstates are represented as expansions in a complete basis set of field-free bound and continuum eigenstates. Particular emphasis has been given to directed-electron collisional excitations, which may be produced by an anisotropic incident-electron velocity distribution. We have allowed for the possibility of the coherent excitation of the nearly degenerate field-dependent atomic substates, which can give rise to a complex spectral pattern of overlapping Stark-Zeeman components. Coherent excitations may be produced by a beam of electrons that are spin-polarized at an angle with respect to the propagation direction or by nonparallel electric and magnetic fields. Our main result is a general expression for the matrix elements of the photon-polarization density operator representing the total intensity, angular distribution, and polarization of the atomic radiative emission. For the observation of radiative emission in the direction of the magnetic field, the detection of linearly polarized emission, in addition to the usual circularly polarized radiation, can reveal the presence of a perpendicular electric field or a coherent excitation mechanism.
Angular distribution and polarization of atomic radiative emission in electric and magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, V.L.; Filuk, A.B.
A density-matrix approach has been developed for the angular distribution and polarization of radiative emission during single-photon atomic transitions for a general set of steady-state excitation processes in an arbitrary arrangement of static (or quasistatic) electric and magnetic fields. Particular attention has been directed at spectroscopic observations in the intense fields of the high-power ion diodes on the Particle Beam Fusion Accelerator II (PBFA II) and SABRE devices at Sandia National Laboratories and at magnetic-field measurements in tokamak plasmas. The field-dependent atomic eigenstates are represented as expansions in a complete basis set of field-free bound and continuum eigenstates. Particular emphasismore » has been given to directed-electron collisional excitations, which may be produced by an anisotropic incident-electron velocity distribution. We have allowed for the possibility of the coherent excitation of the nearly degenerate field-dependent atomic substates, which can give rise to a complex spectral pattern of overlapping Stark-Zeeman components. Coherent excitations may be produced by a beam of electrons that are spin-polarized at an angle with respect to the propagation direction or by nonparallel electric and magnetic fields. Our main result is a general expression for the matrix elements of the photon-polarization density operator representing the total intensity, angular distribution, and polarization of the atomic radiative emission. For the observation of radiative emission in the direction of the magnetic field, the detection of linearly polarized emission, in addition to the usual circularly polarized radiation, can reveal the presence of a perpendicular electric field or a coherent excitation mechanism.« less
O'Malley, Maureen A
2008-09-01
Recent discoveries of geographical patterns in microbial distribution are undermining microbiology's exclusively ecological explanations of biogeography and their fundamental assumption that 'everything is everywhere: but the environment selects'. This statement was generally promulgated by Dutch microbiologist Martinus Wilhelm Beijerinck early in the twentieth century and specifically articulated in 1934 by his compatriot, Lourens G. M. Baas Becking. The persistence of this precept throughout twentieth-century microbiology raises a number of issues in relation to its formulation and widespread acceptance. This paper will trace the conceptual history of Beijerinck's claim that 'everything is everywhere' in relation to a more general account of its theoretical, experimental and institutional context. His principle also needs to be situated in relationship to plant and animal biogeography, which, this paper will argue, forms a continuum of thought with microbial biogeography. Finally, a brief overview of the contemporary microbiological research challenging 'everything is everywhere' reveals that philosophical issues from Beijerinck's era of microbiology still provoke intense discussion in twenty-first century investigations of microbial biogeography.
Observations of southern emission-line stars
NASA Technical Reports Server (NTRS)
Henize, K. G.
1976-01-01
A catalog of 1929 stars showing H-alpha emission on photographic plates is presented which covers the entire southern sky south of declination -25 deg to a red limiting magnitude of about 11.0. The catalog provides previous designations of known emission-line stars equatorial (1900) and galactic coordinates, visual and photographic magnitudes, H-alpha emission parameters, spectral types, and notes on unusual spectral features. The objects listed include 16 M stars, 25 S stars, 37 carbon stars, 20 symbiotic stars, 40 confirmed or suspected T Tauri stars, 16 novae, 14 planetary nebulae, 11 P Cygni stars, 9 Bep stars, 87 confirmed or suspected Wolf-Rayet stars, and 26 'peculiar' stars. Two new T associations are discovered, one in Lupus and one in Chamaeleon. Objects with variations in continuum or H-alpha intensity are noted, and the distribution by spectral type is analyzed. It is found that the sky distribution of these emission-line stars shows significant concentrations in the region of the small Sagittarius cloud and in the Carina region.
Exploring the Full Range of Properties of Quasar Spectral Distribution
NASA Technical Reports Server (NTRS)
Wilkes, B.
1999-01-01
The aim of this work is to obtain multi-wavelength supporting data for the sample of quasars and active galaxies observed in the far-infrared (IR) by ISO as part of our Key Project on quasars and active galaxies. This dataset then provides complete spectral energy distributions (radio-X-ray) of the ISO sample in order to fully delineate the continuum shapes and to allow detailed modeling of that continuum. The report is made up of a short project summary, and a bibliography of published papers, proceedings and presentations.
NASA Astrophysics Data System (ADS)
Selakovic, S.; Cozzoli, F.; Leuven, J.; Van Braeckel, A.; Speybroeck, J.; Kleinhans, M. G.; Bouma, T.
2017-12-01
Interactions between organisms and landscape forming processes play an important role in evolution of coastal landscapes. In particular, biota has a strong potential to interact with important geomorphological processes such as sediment dynamics. Although many studies worked towards quantifying the impact of different species groups on sediment dynamics, information has been gathered on an ad hoc base. Depending on species' traits and distribution, functional groups of ecoengineering species may have differential effects on sediment deposition and erosion. We hypothesize that the spatial distributions of sediment-stabilizing and destabilizing species across the channel and along the whole salinity gradient of an estuary partly determine the planform shape and channel-shoal morphology of estuaries. To test this hypothesis, we analyze vegetation and macrobenthic data taking the Scheldt river-estuarine continuum as model ecosystem. We identify species traits with important effects on sediment dynamics and use them to form functional groups. By using linearized mixed modelling, we are able to accurately describe the distributions of the different functional groups. We observe a clear distinction of dominant ecosystem engineering functional groups and their potential effects on the sediment in the river-estuarine continuum. The first results of longitudinal cross section show the highest effects of stabilizing plant species in riverine and sediment bioturbators in weak polyhaline part of continuum. The distribution of functional groups in transverse cross sections shows dominant stabilizing effect in supratidal zone compared to dominant destabilizing effect in the lower intertidal zone. This analysis offers a new and more general conceptualization of distributions of sediment stabilizing and destabilizing functional groups and their potential impacts on sediment dynamics, shoal patterns, and planform shapes in river-estuarine continuum. We intend to test this in future modelling and experiments.
Spectroscopic limits to an extragalactic far-ultraviolet background.
Martin, C; Hurwitz, M; Bowyer, S
1991-10-01
We use a spectrum of the lowest intensity diffuse far-ultraviolet background obtained from a series of observations in a number of celestial view directions to constrain the properties of the extragalactic FUV background. The mean continuum level, IEG = 280 +/- 35 photons cm-2 s-1 angstrom-1 sr-1, was obtained in a direction with very low H I column density, and this represents a firm upper limit to any extragalactic background in the 1400-1900 angstroms band. Previous work has demonstrated that the far-ultraviolet background includes (depending on a view direction) contributions from dust-scattered Galactic light, high-ionization emission lines, two-photon emission from H II, H2 fluorescence, and the integrated light of spiral galaxies. We find no evidence in the spectrum of line or continuum features that would signify additional extragalactic components. Motivated by the observation of steep BJ and U number count distributions, we have made a detailed comparison of galaxy evolution models to optical and UV data. We find that the observations are difficult to reconcile with a dominant contribution from unclustered, starburst galaxies at low redshifts. Our measurement rules out large ionizing fluxes at z = 0, but cannot strongly constrain the QSO background light, which is expected to be 0.5%-4% of IEG. We present improved limits on radiative lifetimes of massive neutrinos. We demonstrated with a simple model that IGM radiation is unlikely to make a significant contribution to IEG. Since dust scattering could produce a significant part of the continuum in this lowest intensity spectrum, we carried out a series of tests to evaluate this possibility. We find that the spectrum of a nearby target with higher NH I, when corrected for H2 fluorescence, is very similar to the spectrum obtained in the low H I view direction. This is evidence that the majority of the continuum observed at low NH I is also dust reflection, indicating either the existence of a hitherto unidentified dust component, or of a large enhancement in dust scattering efficiency in low-density gas. We also review the effects of an additional dust component on the far-infrared background and on extragalactic FUV observations. We conclude that dust reflection, combined with modest contributions from H II two-photon emission and from the integrated light of late-type galaxies, may account for virtually all of the FUV background in low H I column density directions.
Continuum radiation in planetary magnetospheres
NASA Technical Reports Server (NTRS)
Kurth, W. S.
1991-01-01
With the completion of the Voyager tour of the outer planets, radio and plasma wave instruments have executed the first survey of the wave spectra of Earth, Jupiter, Saturn, Uranus, and Neptune. One of the most notable conclusions of this survey is that there is a great deal of qualitative similarity in both the plasma wave and radio wave spectra from one magnetosphere to the next. In particular, in spite of detailed differences, most of the radio emissions at each of the planets have been tentatively classified into two primary categories. First, the most intense emissions are generally associated with the cyclotron maser instability. Second, a class of weaker emissions can be found at each of the magnetospheres which appears to be the result of conversion from intense electrostatic emissions at the upper hybrid resonance frequency into (primarily) ordinary mode radio emission. It is this second category, often referred to as nonthermal continuum radiation, which we will discuss in this review. We review the characteristics of the continuum spectrum at each of the planets, discuss the source region and direct observations of the generation of the emissions where available, and briefly describe the theories for the generation of the emissions. Over the past few years evidence has increased that the linear mode conversion of electrostatic waves into the ordinary mode can account for at least some of the continuum radiation observed. There is no definitive evidence which precludes the possibility that a nonlinear mechanism may also be important.
Solar gamma rays. [in solar flares
NASA Technical Reports Server (NTRS)
Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.
1974-01-01
The theory of gamma ray production in solar flares is treated in detail. Both lines and continuum are produced. Results show that the strongest line predicted at 2.225 MeV with a width of less than 100 eV and detected at 2.24 + or - 2.02 MeV, is due to neutron capture by protons in the photosphere. Its intensity is dependent on the photospheric He-3 abundance. The neutrons are produced in nuclear reactions of flare accelerated particles which also produce positrons and prompt nuclear deexcitation lines. The strongest prompt lines are at 4.43 MeV from c-12 and at approximately 6.2 from 0-16 and N-15. The gamma ray continuum, produced by electron bremsstrahlung, allows the determination of the spectrum and number of accelerated electrons in the MeV region. From the comparison of the line and continuum intensities a proton-to-electron ratio of about 10 to 100 at the same energy for the 1972, August 4 flare. For the same flare the protons above 2.5 MeV which are responsible for the gamma ray emission produce a few percent of the heat generated by the electrons which make the hard X rays above 20 keV.
NASA Astrophysics Data System (ADS)
Paraficz, D.; Rybak, M.; McKean, J. P.; Vegetti, S.; Sluse, D.; Courbin, F.; Stacey, H. R.; Suyu, S. H.; Dessauges-Zavadsky, M.; Fassnacht, C. D.; Koopmans, L. V. E.
2018-05-01
We present ALMA 2-mm continuum and CO (2-1) spectral line imaging of the gravitationally lensed z = 0.654 star-forming/quasar composite RX J1131-1231 at 240-400 mas angular resolution. The continuum emission is found to be compact and coincident with the optical emission, whereas the molecular gas forms a complete Einstein ring, which shows strong differential magnification. The de-lensed source structure is determined on 400-parsec-scales resolution using a Bayesian pixelated visibility-fitting lens modelling technique. The reconstructed molecular gas velocity-field is consistent with a large rotating disk with a major-axis FWHM 9.4 kpc at an inclination angle of i = 54° and with a maximum rotational velocity of 280 km s-1. From dynamical model fitting we find an enclosed mass within 5 kpc of M(r < 5 kpc) = (1.46 ± 0.31) × 1011 M⊙. The molecular gas distribution is highly structured, with clumps that are co-incident with higher gas velocity dispersion regions (40-50 km s-1) and with the intensity peaks in the optical emission, which are associated with sites of on-going turbulent star-formation. The peak in the CO (2-1) distribution is not co-incident with the AGN, where there is a paucity of molecular gas emission, possibly due to radiative feedback from the central engine. The intrinsic molecular gas luminosity is L'CO = 1.2 ± 0.3 × 1010 K km s-1 pc2 and the inferred gas mass is MH2 = 8.3 ± 3.0 × 1010 M⊙, which given the dynamical mass of the system is consistent with a CO-H2 conversion factor of α = 5.5 ± 2.0 M⊙ (K km s-1 pc2)-1. This suggests that the star-formation efficiency is dependent on the host galaxy morphology as opposed to the nature of the AGN. The far-infrared continuum spectral energy distribution shows evidence for heated dust, equivalent to an obscured star-formation rate of SFR = 69-25+41 × (7.3/μIR) M⊙ yr-1, which demonstrates the composite star-forming and AGN nature of this system.
Spatiotemporal stick-slip phenomena in a coupled continuum-granular system
NASA Astrophysics Data System (ADS)
Ecke, Robert
In sheared granular media, stick-slip behavior is ubiquitous, especially at very small shear rates and weak drive coupling. The resulting slips are characteristic of natural phenomena such as earthquakes and well as being a delicate probe of the collective dynamics of the granular system. In that spirit, we developed a laboratory experiment consisting of sheared elastic plates separated by a narrow gap filled with quasi-two-dimensional granular material (bi-dispersed nylon rods) . We directly determine the spatial and temporal distributions of strain displacements of the elastic continuum over 200 spatial points located adjacent to the gap. Slip events can be divided into large system-spanning events and spatially distributed smaller events. The small events have a probability distribution of event moment consistent with an M - 3 / 2 power law scaling and a Poisson distributed recurrence time distribution. Large events have a broad, log-normal moment distribution and a mean repetition time. As the applied normal force increases, there are fractionally more (less) large (small) events, and the large-event moment distribution broadens. The magnitude of the slip motion of the plates is well correlated with the root-mean-square displacements of the granular matter. Our results are consistent with mean field descriptions of statistical models of earthquakes and avalanches. We further explore the high-speed dynamics of system events and also discuss the effective granular friction of the sheared layer. We find that large events result from stored elastic energy in the plates in this coupled granular-continuum system.
A continuum model for pressure-flow relationship in human pulmonary circulation.
Huang, Wei; Zhou, Qinlian; Gao, Jian; Yen, R T
2011-06-01
A continuum model was introduced to analyze the pressure-flow relationship for steady flow in human pulmonary circulation. The continuum approach was based on the principles of continuum mechanics in conjunction with detailed measurement of vascular geometry, vascular elasticity and blood rheology. The pulmonary arteries and veins were considered as elastic tubes and the "fifth-power law" was used to describe the pressure-flow relationship. For pulmonary capillaries, the "sheet-flow" theory was employed and the pressure-flow relationship was represented by the "fourth-power law". In this paper, the pressure-flow relationship for the whole pulmonary circulation and the longitudinal pressure distribution along the streamlines were studied. Our computed data showed general agreement with the experimental data for the normal subjects and the patients with mitral stenosis and chronic bronchitis in the literature. In conclusion, our continuum model can be used to predict the changes of steady flow in human pulmonary circulation.
NASA Astrophysics Data System (ADS)
Fausnaugh, Michael; Agn Storm Team
2015-01-01
The AGN STORM collaboration recently completed an extensive reverberation mapping campaign, targeting NGC 5548 with observations spanning the hard X-rays to mid-infrared. This campaign represents a massive collaborative effort, with far UV continuum spectrophotometry obtained through an intensive HST COS program, and near-UV/optical broad band photometry obtained from Swift and over 25 ground-based telescopes (in BVR and griz). The campaign spanned the entire 2014 observing season with virtually daily cadence, which allows us to compare with unprecedented accuracy the detailed structure of the observed UV and optical continuum emission signals in this archetypal AGN. We find statistically significant time delays between lightcurves from different wavebands, and this result has implications for the temperature, ionization, and geometric configuration of the AGN's sub-parsec scale environment. We will present the UV/optical continuum lightcurves from this campaign, as well as an analysis of the wavelength-dependent structure of the time delays.
NASA Technical Reports Server (NTRS)
Korista, K.; Alloin, D.; Barr, P.; Clavel, J.; Cohen, R. D.; Crenshaw, D. M.; Evans, I. N.; Horne, K.; Koratkar, A. P.; Kriss, G. A.
1994-01-01
We present the data and initial results from a combined HST/IUE/ground-based spectroscopic monitoring campaign on the Seyfert 1 galaxy NGC 5548 that was undertaken in order to address questions that require both higher temporal resolution and higher signal-to-noise ratios than were obtained in our previous multiwavelength monitoring of this galaxy in 1988-89. IUE spectra were obtained once every two days for a period of 74 days beginning on 14 March 1993. During the last 39 days of this campaign, spectroscopic observations were also made with the HST Faint Object Spectrograph (FOS) on a daily basis. Ground-based observations, consisting of 165 optical spectra and 77 photometric observations (both CCD imaging and aperture photometry), are reported for the period 1992 October to 1993 September, although much of the data are concentrated around the time of the satellite-based program. These data constitute a fifth year of intensive optical monitoring of this galaxy. In this contribution, we describe the acquisition and reduction of all of the satellite and ground-based data obtained in this program. We describe in detail various photometric problems with the FOS and explain how we identified and corrected for various anomalies. During the HST portion of the monitoring campaign, the 1350 A continuum flux is found to have varied by nearly a factor of two. In other wavebands, the continuum shows nearly identical behavior, except that the amplitude of variability is larger at shorter wavelengths, and the continuum light curves appear to show more short time-scale variability at shorter wavelengths. The broad emission lines also vary in flux, with amplitudes that are slightly smaller than the UV continuum variations and with a small time delay relative to the UV continuum. On the basis of simple time-series analysis of the UV and optical continuum and emission line light curves, we find (1) that the ultraviolet and optical continuum variations are virtually simultaneous, with any lag between the 1350 A continuum and the 5100 A continuum amounting to less than about one day; (2) that the variations in the highest ionization lines observed, He II lambda 1640 and N V lambda 1240, lag behind the continuum variations by somewhat less than 2 days, and (3) that the velocity field of the C IV-emitting region is not dominated by radial motion. The results on the C IV velocity field are preliminary and quite uncertain, but there are some weak indications that the emission-line (wings absolute value of Delta upsilon is greater than or equal to 3000 km/s) respond to continuum variations slightly more rapidly than does the core. The optical observations show that the variations in the broad H beta line flux follow the continuum variations with a time lag of around two weeks, about twice the lag for Ly alpha and C IV, as in our previous monitoring campaign on this same galaxy. However, the lags measured for Ly alpha, C IV, and H Beta are each slightly smaller than previously determined. We confirm two trends reported earlier, namely (1) that the UV/optical continuum becomes 'harder' as it gets brighter, and (2) that the highest ionization emission lines have the shortest lags, thus indicating radial ionization stratificatin of a broad-line region that spans over an order of magnitude range in radius.
1-J white-light continuum from 100-TW laser pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petit, Yannick; Henin, Stefano; Bejot, Pierre
2011-01-15
We experimentally measured the supercontinuum generation using 3-J, 30-fs laser pulses and measured white-light generation at the level of 1 J. Such high energy is allowed by a strong contribution to the continuum by the photon bath, as compared to the self-guided filaments. This contribution due to the recently observed congestion of the filament number density in the beam profile at very high intensity also results in a wider broadening for positively chirped pulses rather than for negatively chirped ones, similar to broadening in hollow-core fibers.
Frequency distributions from birth, death, and creation processes.
Bartley, David L; Ogden, Trevor; Song, Ruiguang
2002-01-01
The time-dependent frequency distribution of groups of individuals versus group size was investigated within a continuum approximation, assuming a simplified individual growth, death and creation model. The analogy of the system to a physical fluid exhibiting both convection and diffusion was exploited in obtaining various solutions to the distribution equation. A general solution was approximated through the application of a Green's function. More specific exact solutions were also found to be useful. The solutions were continually checked against the continuum approximation through extensive simulation of the discrete system. Over limited ranges of group size, the frequency distributions were shown to closely exhibit a power-law dependence on group size, as found in many realizations of this type of system, ranging from colonies of mutated bacteria to the distribution of surnames in a given population. As an example, the modeled distributions were successfully fit to the distribution of surnames in several countries by adjusting the parameters specifying growth, death and creation rates.
Atmospheric absorption of terahertz radiation and water vapor continuum effects
NASA Astrophysics Data System (ADS)
Slocum, David M.; Slingerland, Elizabeth J.; Giles, Robert H.; Goyette, Thomas M.
2013-09-01
The water vapor continuum absorption spectrum was investigated using Fourier Transform Spectroscopy. The transmission of broadband terahertz radiation from 0.300 to 1.500 THz was recorded for multiple path lengths and relative humidity levels. The absorption coefficient as a function of frequency was determined and compared with theoretical predictions and available water vapor absorption data. The prediction code is able to separately model the different parts of atmospheric absorption for a range of experimental conditions. A variety of conditions were accurately modeled using this code including both self and foreign gas broadening for low and high water vapor pressures for many different measurement techniques. The intensity and location of the observed absorption lines were also in good agreement with spectral databases. However, there was a discrepancy between the resonant line spectrum simulation and the observed absorption spectrum in the atmospheric transmission windows caused by the continuum absorption. A small discrepancy remained even after using the best available data from the literature to account for the continuum absorption. From the experimental and resonant line simulation spectra the air-broadening continuum parameter was calculated and compared with values available in the literature.
Analysis of He I 1083 nm Imaging Spectroscopy Using a Spectral Standard
NASA Technical Reports Server (NTRS)
Malanushenko, Elena V.; Jones, Harrison P.
2004-01-01
We develop a technique. for the analysis of He I 1083 nanometer spectra which addresses several difficulties through determination of a continuum background by comparison with a well calibrated standard and through removal of nearby solar and telluric blends by differential comparison to an average spectrum. The method is compared with earlier analysis of imaging spectroscopy obtained at the National Solar Observatory/Kitt Peak Vacuum Telescope (NSO/KPVT) with the NASA/NSO Spectromagnetograph (SPM). We examine distributions of Doppler velocity and line width as a function of central intensity for an active region, filament, quiet Sun, and coronal hole. For our example, we find that line widths and central intensity are oppositely correlated in a coronal hole and quiet Sun. Line widths are comparable to the quiet sun in the active region, are systematically lower in the filament, and extend to higher values in the coronal hole. Outward velocities of approximately equal to 2 to 4 kilometers per second are typically observed in the coronal hole. The sensitivity of these results to analysis technique is discussed.
Temperature distribution in a stellar atmosphere diagnostic basis
NASA Technical Reports Server (NTRS)
Jefferies, J. T.; Morrison, N. D.
1973-01-01
A stellar chromosphere is considered a region where the temperature increases outward and where the temperature structure of the gas controls the shape of the spectral lines. It is shown that lines which have collision-dominated source sink terms, like the Ca(+) and Mg(+) H and K lines, can be used to obtain the distribution of temperature with height from observed line profiles. Intrinsic emission lines and geometrical emission lines are found in spectral regions where the continuum is depressed. In visual regions, where the continuum is not depressed, emission core in absorption lines are attributed to reflections of intrinsic emission lines.
Physical Properties of Umbral Dots Observed in Sunspots: A Hinode Observation
NASA Astrophysics Data System (ADS)
Yadav, Rahul; Mathew, Shibu K.
2018-04-01
Umbral dots (UDs) are small-scale bright features observed in the umbral part of sunspots and pores. It is well established that they are manifestations of magnetoconvection phenomena inside umbrae. We study the physical properties of UDs in different sunspots and their dependence on decay rate and filling factor. We have selected high-resolution, G-band continuum filtergrams of seven sunspots from Hinode to study their physical properties. We have also used Michelson Doppler Imager (MDI) continuum images to estimate the decay rate of selected sunspots. An identification and tracking algorithm was developed to identify the UDs in time sequences. The statistical analysis of UDs exhibits an averaged maximum intensity and effective diameter of 0.26 I_{QS} and 270 km. Furthermore, the lifetime, horizontal speed, trajectory length, and displacement length (birth-death distance) of UDs are 8.19 minutes, 0.5 km s-1, 284 km, and 155 km, respectively. We also find a positive correlation between intensity-diameter, intensity-lifetime, and diameter-lifetime of UDs. However, UD properties do not show any significant relation with the decay rate or filling factor.
Terahertz atmospheric attenuation and continuum effects
NASA Astrophysics Data System (ADS)
Slocum, David M.; Goyette, Thomas M.; Slingerland, Elizabeth J.; Giles, Robert H.; Nixon, William E.
2013-05-01
Remote sensing over long path lengths has become of greater interest in the terahertz frequency region. Applications such as pollution monitoring and detection of energetic chemicals are of particular interest. Although there has been much attention to atmospheric effects over narrow frequency windows, accurate measurements across a wide spectrum is lacking. The water vapor continuum absorption spectrum was investigated using Fourier Transform Spectroscopy. The continuum effect gives rise to an excess absorption that is unaccounted for in just a resonant line spectrum simulation. The transmission of broadband terahertz radiation from 0.300THz - 1.5THz through air with varying relative humidity levels was recorded for multiple path lengths. From these data, the absorption coefficient as a function of frequency was determined and compared with model calculations. The intensity and location of the strong absorption lines were in good agreement with spectral databases such as the 2008 HITRAN database and the JPL database. However, a noticeable continuum effect was observed particularly in the atmospheric transmission windows. A small discrepancy still remained even after accounting for continuum absorption using the best available data from the literature. This discrepancy, when projected over a one kilometer path length, typical of distances used in remote sensing, can cause a 30dB difference between calculated and observed attenuation. From the experimental and resonant line simulation spectra the air-broadening continuum parameter was calculated and compared with values available in the literature.
NASA Technical Reports Server (NTRS)
Ko, William L.; Jackson, Raymond H.
1989-01-01
A composite test specimen in the shape of a semicircular curved bar subjected to bending offers an excellent stress field for studying the open-mode delamination behavior of laminated composite materials. This is because the open-mode delamination nucleates at the midspan of the curved bar. The classical anisotropic elasticity theory was used to construct a 'multilayer' theory for the calculations of the stress and deformation fields induced in the multilayered composite semicircular curved bar subjected to end forces and end moments. The radial location and intensity of the open-mode delamination stress were calculated and were compared with the results obtained from the anisotropic continuum theory and from the finite element method. The multilayer theory gave more accurate predictions of the location and the intensity of the open-mode delamination stress than those calculated from the anisotropic continuum theory.
NASA Technical Reports Server (NTRS)
Ko, William L.; Jackson, Raymond H.
1989-01-01
A composite test specimen in the shape of a semicircular curved bar subjected to bending offers an excellent stress field for studying the open-mode delamination behavior of laminated composite materials. This is because the open-mode delamination nucleates at the midspan of the curved bar. The classical anisotropic elasticity theory was used to construct a multilayer theory for the calculations of the stress and deformation fields induced in the multilayered composite semicircular curved bar subjected to end forces and end moments. The radial location and intensity of the open-mode delamination stress were calculated and were compared with the results obtained from the anisotropic continuum theory and from the finite element method. The multilayer theory gave more accurate predictions of the location and the intensity of the open-mode delamination stress than those calculated from the anisotropic continuum theory.
The P K-near edge absorption spectra of phosphates
NASA Astrophysics Data System (ADS)
Franke, R.; Hormes, J.
1995-12-01
The X-ray absorption near edge structure (XANES) at the P K-edge in several orthophosphates with various cations, in condensed, and in substituted sodium phosphates have been measured using synchrotron radiation from the ELSA storage ring at the University of Bonn. The measured spectra demonstrate that chemical changes beyond the PO 4- tetrahedra are reflected by energy shifts of the pre-edge and continuum resonances, by the presence of characteristic shoulders and new peaks and by differences in the intensity of the white line. We discuss the energy differences between the white line positions and the corresponding P ls binding energies as a measure of half of the energy gap. The corresponding values correlate with the valence of the cations and the intensity of the white lines. The energy positions of the continuum resonances are discussed on the basis of an empirical bond-length correlation supporting a 1/ r2 - dependence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Ruilin; Yuan, Chengxun, E-mail: yuancx@hit.edu.cn, E-mail: zhouzx@hit.edu.cn; Jia, Jieshu
2016-08-15
This paper reports a novel coaxial gridded hollow discharge during operation at low pressure (20 Pa–80 Pa) in an argon atmosphere. A homogeneous hollow discharge was observed under different conditions, and the excitation mechanism and the discharge parameters for the hollow cathode plasma were examined at length. An optical emission spectrometry (OES) method, with a special focus on absolute continuum intensity method, was employed to measure the plasma parameters. The Langmuir probe measurement (LPM) was used to verify the OES results. Both provided electron density values (n{sub e}) in the order of 10{sup 16} m{sup −3} for different plasma settings. Taken together, themore » results show that the OES method is an effective approach to diagnosing the similar plasma, especially when the LPM is hardly operated.« less
On the Nature of Off-limb Flare Continuum Sources Detected by SDO /HMI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinzel, P.; Kašparová, J.; Kleint, L.
The Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory has provided unique observations of off-limb flare emission. White-light continuum enhancements were detected in the “continuum” channel of the Fe 6173 Å line during the impulsive phase of the observed flares. In this paper we aim to determine which radiation mechanism is responsible for such enhancement being seen above the limb, at chromospheric heights around or below 1000 km. Using a simple analytical approach, we compare two candidate mechanisms, the hydrogen recombination continuum (Paschen) and the Thomson continuum due to scattering of disk radiation on flare electrons. Both mechanismsmore » depend on the electron density, which is typically enhanced during the impulsive phase of a flare as the result of collisional ionization (both thermal and also non-thermal due to electron beams). We conclude that for electron densities higher than 10{sup 12} cm{sup −3}, the Paschen recombination continuum significantly dominates the Thomson scattering continuum and there is some contribution from the hydrogen free–free emission. This is further supported by detailed radiation-hydrodynamical (RHD) simulations of the flare chromosphere heated by the electron beams. We use the RHD code FLARIX to compute the temporal evolution of the flare-heating in a semi-circular loop. The synthesized continuum structure above the limb resembles the off-limb flare structures detected by HMI, namely their height above the limb, as well as the radiation intensity. These results are consistent with recent findings related to hydrogen Balmer continuum enhancements, which were clearly detected in disk flares by the IRIS near-ultraviolet spectrometer.« less
SPECTRAL LINE DE-CONFUSION IN AN INTENSITY MAPPING SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Yun-Ting; Bock, James; Bradford, C. Matt
2016-12-01
Spectral line intensity mapping (LIM) has been proposed as a promising tool to efficiently probe the cosmic reionization and the large-scale structure. Without detecting individual sources, LIM makes use of all available photons and measures the integrated light in the source confusion limit to efficiently map the three-dimensional matter distribution on large scales as traced by a given emission line. One particular challenge is the separation of desired signals from astrophysical continuum foregrounds and line interlopers. Here we present a technique to extract large-scale structure information traced by emission lines from different redshifts, embedded in a three-dimensional intensity mapping data cube.more » The line redshifts are distinguished by the anisotropic shape of the power spectra when projected onto a common coordinate frame. We consider the case where high-redshift [C ii] lines are confused with multiple low-redshift CO rotational lines. We present a semi-analytic model for [C ii] and CO line estimates based on the cosmic infrared background measurements, and show that with a modest instrumental noise level and survey geometry, the large-scale [C ii] and CO power spectrum amplitudes can be successfully extracted from a confusion-limited data set, without external information. We discuss the implications and limits of this technique for possible LIM experiments.« less
NASA Astrophysics Data System (ADS)
Seo, Jeong Hyun; Jeong, Heui Seob; Lee, Joo Yul; Yoon, Cha Keun; Kim, Joong Kyun; Whang, Ki-Woong
2000-08-01
We measured the time integrated vacuum ultraviolet (VUV) emission spectra of He-Ne-Xe gas mixture from a surface type alternating current (ac) plasma display panel cell. The measured emission lines are the resonance line (147 nm) from Xe*(1s4), the first continuum (150 nm) and the second continuum (173 nm) from Xe dimer excited states. The relative intensities of VUV spectral lines from Xe* and Xe2* are dependent on the He/Ne mixing ratio as well as the Xe partial and total pressure. The intensity of 147 nm VUV increases with the Ne content increase and Xe2* molecular emission increases with the He content increase. Infrared (IR) spectra and the time variation of VUV were measured to explain the reaction pathway and the effect of the mixing ratio of He/Ne on the spectral intensity. A detailed study for the decay time shows that the decay time of 147 nm has two time constants and the radiation of 150 and 173 nm results mainly from Xe*(1s5). The IR spectra shows that the contribution from Xe**(>6 s) to Xe*(1s5) and Xe*(1s4) in He-Xe is different from that of Ne-Xe. The change of IR intensity explains the spectral intensity variations of He-Xe and Ne-Xe discharge.
NASA Astrophysics Data System (ADS)
Oki, Kensuke; Ma, Bei; Ishitani, Yoshihiro
2017-11-01
Population distributions and transition fluxes of the A exciton in bulk GaN are theoretically analyzed using rate equations of states of the principal quantum number n up to 5 and the continuum. These rate equations consist of the terms of radiative, electron-collisional, and phononic processes. The dependence of the rate coefficients on temperature is revealed on the basis of the collisional-radiative model of hydrogen plasma for the electron-collisional processes and theoretical formulation using Fermi's "golden rule" for the phononic processes. The respective effects of the variations in electron, exciton, and lattice temperatures are exhibited. This analysis is a base of the discussion on nonthermal equilibrium states of carrier-exciton-phonon dynamics. It is found that the exciton dissociation is enhanced even below 150 K mainly by the increase in the lattice temperature. When the thermal-equilibrium temperature increases, the population fluxes between the states of n >1 and the continuum become more dominant. Below 20 K, the severe deviation from the Saha-Boltzmann distribution occurs owing to the interband excitation flux being higher than the excitation flux from the 1 S state. The population decay time of the 1 S state at 300 K is more than ten times longer than the recombination lifetime of excitons with kinetic energy but without the upper levels (n >1 and the continuum). This phenomenon is caused by a shift of population distribution to the upper levels. This phonon-exciton-radiation model gives insights into the limitations of conventional analyses such as the ABC model, the Arrhenius plot, the two-level model (n =1 and the continuum), and the neglect of the upper levels.
NASA Astrophysics Data System (ADS)
Kostogryz, N. M.; Milic, I.; Berdyugina, S. V.; Hauschildt, P. H.
2016-02-01
Aims: One of the necessary parameters needed for the interpretation of the light curves of transiting exoplanets or eclipsing binary stars (as well as interferometric measurements of a star or microlensing events) is how the intensity and polarization of light changes from the center to the limb of a star. Scattering and absorption processes in the stellar atmosphere affect both the center-to-limb variation of intensity (CLVI) and polarization (CLVP). In this paper, we present a study of the CLVI and CLVP in continuum spectra, taking into consideration the different contributions of scattering and absorption opacity for a variety of spectral type stars with spherical atmospheres. Methods: We solve the radiative transfer equation for polarized light in the presence of a continuum scattering, taking into consideration the spherical model of a stellar atmosphere. To cross-check our results, we developed two independent codes that are based on Feautrier and short characteristics methods, respectively, Results: We calculate the center-to-limb variation of intensity (CLVI) and polarization (CLVP) in continuum for the Phoenix grid of spherical stellar model atmospheres for a range of effective temperatures (4000-7000 K), gravities (log g = 1.0-5.5), and wavelengths (4000-7000 Å), which are tabulated and available at the CDS. In addition, we present several tests of our codes and compare our calculations for the solar atmosphere with published photometric and polarimetric measurements. We also show that our two codes provide similar results in all considered cases. Conclusions: For sub-giant and dwarf stars (log g = 3.0-4.5), the lower gravity and lower effective temperature of a star lead to higher limb polarization of the star. For giant and supergiant stars (log g = 1.0-2.5), the highest effective temperature yields the largest polarization. By decreasing the effective temperature of a star down to 4500-5500 K (depending on log g), the limb polarization decreases and reaches a local minimum. It increases again with a corresponding decrease in temperature down to 4000 K. For the most compact dwarf stars (log g = 5.0-5.5), the limb polarization degree shows a maximum for models with effective temperatures in the range 4200-4600 K (depending on log g) and decreases toward higher and lower temperatures. The intensity and polarization profiles are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A87
Calculation of photoionization differential cross sections using complex Gauss-type orbitals.
Matsuzaki, Rei; Yabushita, Satoshi
2017-09-05
Accurate theoretical calculation of photoelectron angular distributions for general molecules is becoming an important tool to image various chemical reactions in real time. We show in this article that not only photoionization total cross sections but also photoelectron angular distributions can be accurately calculated using complex Gauss-type orbital (cGTO) basis functions. Our method can be easily combined with existing quantum chemistry techniques including electron correlation effects, and applied to various molecules. The so-called two-potential formula is applied to represent the transition dipole moment from an initial bound state to a final continuum state in the molecular coordinate frame. The two required continuum functions, the zeroth-order final continuum state and the first-order wave function induced by the photon field, have been variationally obtained using the complex basis function method with a mixture of appropriate cGTOs and conventional real Gauss-type orbitals (GTOs) to represent the continuum orbitals as well as the remaining bound orbitals. The complex orbital exponents of the cGTOs are optimized by fitting to the outgoing Coulomb functions. The efficiency of the current method is demonstrated through the calculations of the asymmetry parameters and molecular-frame photoelectron angular distributions of H2+ and H2 . In the calculations of H2 , the static exchange and random phase approximations are employed, and the dependence of the results on the basis functions is discussed. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
IRIS Ultraviolet Spectral Properties of a Sample of X-Class Solar Flares
NASA Astrophysics Data System (ADS)
Butler, Elizabeth; Kowalski, Adam; Cauzzi, Gianna; Allred, Joel C.; Daw, Adrian N.
2018-06-01
The white-light (near-ultraviolet (NUV) and optical) continuum emission comprises the majority of the radiated energy in solar flares. However, there are nearly as many explanations for the origin of the white-light continuum radiation as there are white-light flares that have been studied in detail with spectra. Furthermore, there are rarely robust constraints on the time-resolved dynamics in the white-light emitting flare layers. We are conducting a statistical study of the properties of Fe II lines, Mg II lines, and NUV continuum intensity in bright flare kernels observed by the Interface Region Imaging Spectrograph (IRIS), in order to provide comprehensive constraints for radiative-hydrodynamic flare models. Here we present a new technique for identifying bright flare kernels and preliminary relationships among IRIS spectral properties for a sample of X-class solar flares.
NASA Technical Reports Server (NTRS)
Crannell, C. J.; Crannell, H.; Ramaty, R.
1977-01-01
The flux of 15.11 MeV gamma rays relative to the flux 4.44 MeV gamma rays was calculated from measured cross sections for excitation of the corresponding states of C-12 and from experimental determinations of the branching ratios for direct de-excitation of these states to the ground state. Because of the difference in threshold energies for excitation of these two levels, the relative intensities in the two lines are particularly sensitive to the spectral distribution of energetic particles which excite the corresponding nuclear levels. For both solar and cosmic emission, the observability of the 15.11 MeV line is expected to be enhances by low source-background continuum in this energy range.
Attosecond time-energy structure of X-ray free-electron laser pulses
NASA Astrophysics Data System (ADS)
Hartmann, N.; Hartmann, G.; Heider, R.; Wagner, M. S.; Ilchen, M.; Buck, J.; Lindahl, A. O.; Benko, C.; Grünert, J.; Krzywinski, J.; Liu, J.; Lutman, A. A.; Marinelli, A.; Maxwell, T.; Miahnahri, A. A.; Moeller, S. P.; Planas, M.; Robinson, J.; Kazansky, A. K.; Kabachnik, N. M.; Viefhaus, J.; Feurer, T.; Kienberger, R.; Coffee, R. N.; Helml, W.
2018-04-01
The time-energy information of ultrashort X-ray free-electron laser pulses generated by the Linac Coherent Light Source is measured with attosecond resolution via angular streaking of neon 1s photoelectrons. The X-ray pulses promote electrons from the neon core level into an ionization continuum, where they are dressed with the electric field of a circularly polarized infrared laser. This induces characteristic modulations of the resulting photoelectron energy and angular distribution. From these modulations we recover the single-shot attosecond intensity structure and chirp of arbitrary X-ray pulses based on self-amplified spontaneous emission, which have eluded direct measurement so far. We characterize individual attosecond pulses, including their instantaneous frequency, and identify double pulses with well-defined delays and spectral properties, thus paving the way for X-ray pump/X-ray probe attosecond free-electron laser science.
NASA Technical Reports Server (NTRS)
Stirpe, G. M.; Winge, C.; Altieri, B.; Alloin, D.; Aguero, E. L.; Anupama, G. C.; Ashley, R.; Bertram, R.; Calderon, J. H.; Catchpole, R. M.
1994-01-01
The Seyfert 1 galaxy NGC 3783 was intensely monitored in several bands between 1991 December and 1992 August. This paper presents the results from the ground-based observations in the optical and near-IR bands, which complement the data set formed by the International Ultraviolet Explorer (IUE) spectra, discussed elsewhere. Spectroscopic and photometric data from several observatories were combined in order to obtain well-sampled light curves of the continuum and of H(beta). During the campaign the source underwent significant variability. The light curves of the optical continuum and of H(beta) display strong similarities to those obtained with the IUE. The near-IR flux did not vary significantly except for a slight increase at the end of the campaign. The cross-correlation analysis shows that the variations of the optical continuum have a lag of 1 day or less with respect to those of the UV continuum, with an uncertainty of is less than or equal to 4 days. The integrated flux of H(beta) varies with a delay of about 8 days. These results confirm that (1) the continuum variations occur simultaneously or with a very small lag across the entire UV-optical range, as in the Seyfert galaxy NGC 5548; and (2) the emission lines of NGC 3783 respond to ionizing continuum variations with less delay than those of NGC 5548. As observed in NGC 5548, the lag of H(beta) with respect to the continuum is greater than those of the high-ionization lines.
Effects of laser acupuncture on blood perfusion rate
NASA Astrophysics Data System (ADS)
Wang, Xian-ju; Zeng, Chang-chun; Liu, Han-ping; Liu, Song-hao; Liu, Liang-gang
2006-09-01
Based on Pennes equation, the influences of the intensity and the impulse frequency of laser acupuncture on the point tissues' blood flow perfusion rate are discussed. We find that the blood perfusion rate of point tissue increases with the intensity of laser acupuncture increasing. After impulse laser acupuncture the point tissue blood perfusion rate increase little, but after continuum laser acupuncture the point tissues blood perfusion rate increase much.
FAR-ULTRAVIOLET OBSERVATION OF THE AQUILA RIFT WITH FIMS/SPEAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, S.-J.; Min, K.-W.; Seon, K.-I.
2012-07-20
We present the results of far ultraviolet (FUV) observations of the broad region around the Aquila Rift including the Galactic plane. As compared with various wavelength data sets, dust scattering is found to be the major origin of the diffuse FUV continuum in this region. The FUV intensity clearly correlates with the dust extinction level for E(B - V) < 0.2, while this correlation disappears for E(B - V) > 0.2 due to heavy dust extinction combined with the effect of nonuniform interstellar radiation fields. The FUV intensity also correlates well with H{alpha} intensity, implying that at least some fractionmore » of the observed H{alpha} emission could be the dust-scattered light of H{alpha} photons originating elsewhere in the Galaxy. Most of the Aquila Rift region is seen devoid of diffuse FUV continuum due to heavy extinction while strong emission is observed in the surrounding regions. Molecular hydrogen fluorescent emission lines are clearly seen in the spectrum of 'Aquila-Serpens', while 'Aquila-East' does not show any apparent line features. CO emission intensity is also found to be higher in the 'Aquila-Serpens' region than in the 'Aquila-East' region. In this regard, we note that regions of star formation have been found in 'Aquila-Serpens' but not in 'Aquila-East'.« less
Ion concentrations and velocity profiles in nanochannel electroosmotic flows
NASA Astrophysics Data System (ADS)
Qiao, R.; Aluru, N. R.
2003-03-01
Ion distributions and velocity profiles for electroosmotic flow in nanochannels of different widths are studied in this paper using molecular dynamics and continuum theory. For the various channel widths studied in this paper, the ion distribution near the channel wall is strongly influenced by the finite size of the ions and the discreteness of the solvent molecules. The classical Poisson-Boltzmann equation fails to predict the ion distribution near the channel wall as it does not account for the molecular aspects of the ion-wall and ion-solvent interactions. A modified Poisson-Boltzmann equation based on electrochemical potential correction is introduced to account for ion-wall and ion-solvent interactions. The electrochemical potential correction term is extracted from the ion distribution in a smaller channel using molecular dynamics. Using the electrochemical potential correction term extracted from molecular dynamics (MD) simulation of electroosmotic flow in a 2.22 nm channel, the modified Poisson-Boltzmann equation predicts the ion distribution in larger channel widths (e.g., 3.49 and 10.00 nm) with good accuracy. Detailed studies on the velocity profile in electro-osmotic flow indicate that the continuum flow theory can be used to predict bulk fluid flow in channels as small as 2.22 nm provided that the viscosity variation near the channel wall is taken into account. We propose a technique to embed the velocity near the channel wall obtained from MD simulation of electroosmotic flow in a narrow channel (e.g., 2.22 nm wide channel) into simulation of electroosmotic flow in larger channels. Simulation results indicate that such an approach can predict the velocity profile in larger channels (e.g., 3.49 and 10.00 nm) very well. Finally, simulation of electroosmotic flow in a 0.95 nm channel indicates that viscosity cannot be described by a local, linear constitutive relationship that the continuum flow theory is built upon and thus the continuum flow theory is not applicable for electroosmotic flow in such small channels.
Z-scan measurements using femtosecond continuum generation
NASA Astrophysics Data System (ADS)
de Boni, Leonardo; Andrade, Acácio A.; Misoguti, Lino; Mendonça, Cléber R.; Zilio, Sérgio Carlos
2004-08-01
We present a single beam Z-scan technique using an intense, broadband, white-light continuum (WLC) beam for the direct measurement of nonlinear absorption spectra. In order to demonstrate the validity of our technique, we compared the results of tetraaniline and Sudan 3 solutions obtained with WLC and conventional single wavelength light sources. Both approaches lead to the same nonlinear spectrum, indicating that the association of the Z-scan technique and the WLC source results in an useful method for the measurement of nonlinear spectra of both absorbing (saturable absorption or reverse saturable absorption) and transparent (two-photon absorption) samples.
Landmark lecture on cardiac intensive care and anaesthesia: continuum and conundrums.
Laussen, Peter C
2017-12-01
Cardiac anesthesia and critical care provide an important continuum of care for patients with congenital heart disease. Clinicians in both areas work in complex environments in which the interactions between humans and technology is critical. Understanding our contributions to outcomes (modifiable risk) and our ability to perceive and predict an evolving clinical state (low failure-to-predict rate) are important performance metrics. Improved methods for capturing continuous physiologic signals will allow for new and interactive approaches to data visualization, and for sophisticated and iterative data modeling that will help define a patient's phenotype and response to treatment (precision physiology).
NASA Technical Reports Server (NTRS)
La Dous, Constanze
1991-01-01
IUE observations of dwarf novae at maximum at quiescence and novalike objects at the high brightness state are analyzed for effects of the inclination angle on the emitted continuum and line radiation. A clear pattern in the continuum flux distribution is exhibited only by dwarf novae at maximum where some 80 percent of the non-double-eclipsing systems show essentially identical distributions. This result is not in disagreement with theoretical expectations. All classes of objects exhibit a clear, but in each case different, dependence of the line radiation on the inclination angle.
International Ultraviolet Explorer (IUE)
NASA Technical Reports Server (NTRS)
Boehm, Karl-Heinz
1992-01-01
The observation, data reduction, and interpretation of ultraviolet spectra (obtained with the International Ultraviolet Explorer) of Herbig-Haro objects, stellar jets, and (in a few cases) reflection nebulae in star-forming regions is discussed. Intermediate results have been reported in the required semi-annual reports. The observations for this research were obtained in 23 (US1) IUE shifts. The spectra were taken in the low resolution mode with the large aperture. The following topics were investigated: (1) detection of UV spectra of high excitation Herbig-Haro (HH) objects, identification of emission lines, and a preliminary study of the energy distribution of the ultraviolet continuum; (2) details of the continuum energy distribution of these spectra and their possible interpretation; (3) the properties of the reddening (extinction) of HH objects; (4) the possible time variation of strong emission lines in high excitation HH objects; (5) the ultraviolet emission of low excitation HH objects, especially in the fluorescent lines of the H2 molecule; (6) the ultraviolet emission in the peculiar object HH24; (7) the spatial emission distribution of different lines and different parts of the continuum in different HH objects; and (8) some properties of reflection nebula, in the environment of Herbig-Haro objects. Each topic is discussed.
Inference of the electron temperature in ICF implosions from the hard X-ray spectral continuum
NASA Astrophysics Data System (ADS)
Kagan, Grigory; Landen, O. L.; Svyatsky, D.; Sio, H.; Kabadi, N. V.; Simpson, R. A.; Gatu Johnson, M.; Frenje, J. A.; Petrasso, R. D.; Shah, R. C.; Joshi, T. R.; Hakel, P.; Weber, T. E.; Rinderknecht, H. G.; Thorn, D.; Schneider, M.; Bradley, D.; Kilkenny, J.
2017-10-01
The NIF Continuum Spectrometer, scheduled to be first deployed in Fall of 2017, will infer the imploded core electron temperature from the free-free continuum self-emission spectra of photons with energies of 20 to 30 keV. However, this hard X-ray radiation is emitted by the tail of the electron distribution, which likely deviates from Maxwellian and thus obscures interpretation of the data. We investigate resulting modifications to the X-ray spectra. The logarithmic slope of the spectrum from the more realistic, non-thermal tail of the electron distribution is found to decrease more rapidly at higher photon energies, as compared to the perfectly Maxwellian case. Interpreting the spectrum with assumption of Maxwellian electrons enforced is shown to give an electron temperature that is lower than the actual one. Conversely, due to its connection with the non-thermal features in the electron distribution, hard X-ray emission can provide unprecedented information about kinetic processes in the hot DT core. This work was performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396.
Cook, J L; Rio, E; Purdam, C R; Docking, S I
2016-01-01
The pathogenesis of tendinopathy and the primary biological change in the tendon that precipitates pathology have generated several pathoaetiological models in the literature. The continuum model of tendon pathology, proposed in 2009, synthesised clinical and laboratory-based research to guide treatment choices for the clinical presentations of tendinopathy. While the continuum has been cited extensively in the literature, its clinical utility has yet to be fully elucidated. The continuum model proposed a model for staging tendinopathy based on the changes and distribution of disorganisation within the tendon. However, classifying tendinopathy based on structure in what is primarily a pain condition has been challenged. The interplay between structure, pain and function is not yet fully understood, which has partly contributed to the complex clinical picture of tendinopathy. Here we revisit and assess the merit of the continuum model in the context of new evidence. We (1) summarise new evidence in tendinopathy research in the context of the continuum, (2) discuss tendon pain and the relevance of a model based on structure and (3) describe relevant clinical elements (pain, function and structure) to begin to build a better understanding of the condition. Our goal is that the continuum model may help guide targeted treatments and improved patient outcomes. PMID:27127294
THE BINARY BLACK HOLE MODEL FOR MRK 231 BITES THE DUST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leighly, Karen M.; Terndrup, Donald M.; Gallagher, Sarah C.
2016-09-20
Mrk 231 is a nearby quasar with an unusually red near-UV-to-optical continuum, generally explained as heavy reddening by dust. Yan et al. proposed that Mrk 231 is a milliparsec black hole binary with little intrinsic reddening. We show that if the observed FUV continuum is intrinsic, as assumed by Yan et al., it fails by a factor of about 100 in powering the observed strength of the near-infrared emission lines and the thermal near and mid-infrared continuum. In contrast, the line and continuum strengths are typical for a reddened AGN spectral energy distribution (SED). We find that the He i*/Pmore » β ratio is sensitive to the SED for a one-zone model. If this sensitivity is maintained in general broadline region models, then this ratio may prove a useful diagnostic for heavily reddened quasars. Analysis of archival Hubble Space Telescope STIS and Faint Object Camera data revealed evidence that the far-UV continuum emission is resolved on size scales of ∼40 pc. The lack of broad absorption lines in the far-UV continuum might be explained if it were not coincident with the central engine. One possibility is that it is the central engine continuum reflected from the receding wind on the far side of the quasar.« less
Continuum-kinetic approach to sheath simulations
NASA Astrophysics Data System (ADS)
Cagas, Petr; Hakim, Ammar; Srinivasan, Bhuvana
2016-10-01
Simulations of sheaths are performed using a novel continuum-kinetic model with collisions including ionization/recombination. A discontinuous Galerkin method is used to directly solve the Boltzmann-Poisson system to obtain a particle distribution function. Direct discretization of the distribution function has advantages of being noise-free compared to particle-in-cell methods. The distribution function, which is available at each node of the configuration space, can be readily used to calculate the collision integrals in order to get ionization and recombination operators. Analytical models are used to obtain the cross-sections as a function of energy. Results will be presented incorporating surface physics with a classical sheath in Hall thruster-relevant geometry. This work was sponsored by the Air Force Office of Scientific Research under Grant Number FA9550-15-1-0193.
Additive manufacturing of patient-specific tubular continuum manipulators
NASA Astrophysics Data System (ADS)
Amanov, Ernar; Nguyen, Thien-Dang; Burgner-Kahrs, Jessica
2015-03-01
Tubular continuum robots, which are composed of multiple concentric, precurved, elastic tubes, provide more dexterity than traditional surgical instruments at the same diameter. The tubes can be precurved such that the resulting manipulator fulfills surgical task requirements. Up to now the only material used for the component tubes of those manipulators is NiTi, a super-elastic shape-memory alloy of nickel and titan. NiTi is a cost-intensive material and fabrication processes are complex, requiring (proprietary) technology, e.g. for shape setting. In this paper, we evaluate component tubes made of 3 different thermoplastic materials (PLA, PCL and nylon) using fused filament fabrication technology (3D printing). This enables quick and cost-effective production of custom, patient-specific continuum manipulators, produced on site on demand. Stress-strain and deformation characteristics are evaluated experimentally for 16 fabricated tubes of each thermoplastic with diameters and shapes equivalent to those of NiTi tubes. Tubes made of PCL and nylon exhibit properties comparable to those made of NiTi. We further demonstrate a tubular continuum manipulator composed of 3 nylon tubes in a transnasal, transsphenoidal skull base surgery scenario in vitro.
Ionized absorbers, ionized emitters, and the X-ray spectrum of active galactic nuclei
NASA Technical Reports Server (NTRS)
Netzer, Hagai
1993-01-01
Broad absorption features are common in the X-ray spectrum of low-luminosity AGNs. The features have been modeled by leaky neutral absorbers or by highly ionized gas that completely occult the continuum source. Such models are incomplete since they do not take into account all the physical processes in the gas. In particular, no previous model included the X-ray emission by the ionized absorbing gas and the reflection of the continuum source radiation. The present work discusses the emission, absorption, and reflection properties of photoionized gases with emphasis on conditions thought to prevail in AGNs. It shows that such gas is likely to produce intense X-ray line and continuum radiation and to reflect a sizable fraction of the nonstellar continuum at all energies. If such gas is indeed responsible for the observed X-ray absorption, then absorption edges are much weaker than commonly assumed, and some residual X-ray continuum is likely to be observed even if the line of sight is completely blocked. Moreover, X-ray emission features may show up in sources not showing X-ray absorption. This has immense consequences for medium-resolution X-ray missions, such as BBXRT and Astro-D, and for the planned high-resolution experiments on board XMM and AXAF.
GBT CHANG-ES: Enhancing Radio Halos in Edge-on Galaxies Through Short-Spacing Corrections
NASA Astrophysics Data System (ADS)
Trent Braun, Timothy; Kepley, Amanda; Rand, Richard J.; Mason, Brian Scott; CHANG-ES
2018-01-01
We present L- and C-band continuum Stokes I data from the Green Bank Telescope (GBT) of 35 edge-on spiral galaxies that are part of the Continuum Halos in Nearby Galaxies, an EVLA Survey (CHANG-ES). CHANG-ES is an Expanded Very Large Array (EVLA) large program to measure radio continuum emission from the halos of 35 edge-on spiral galaxies in order to address a wide variety of science goals, including constraining the structure of magnetic fields, understanding the origins of radio halos, and probing both cosmic ray transport and cosmic ray driven winds. These goals can be reached by studying radio halo scale heights, spectral index variations with height, and the distribution of intensity and position angle of polarized emission. In particular, we are interested in modeling non-thermal presssure gradients in the gaseous halos of nearby galaxies to predict how they contribute to the decrease in the rotation of extraplanar gas with increasing height off of the galactic midplanes (lagging halos). Ultimately, the study of lagging halos will help us probe the efficacy of gas cycling between the disk and the halo in nearby galaxies. Crucial to this and the rest of the CHANG-ES analysis is the combination of the VLA data (B,C,D configurations in L-band and C,D configurations in C-band) with the GBT data in order to fill in the missing short-spacings in the u-v plane, which increases our sensitivity to large-scale emission and allows us to recover the total flux density. We present preliminary results from two methods of combining single-dish and interferometic data, namely the use of GBT data cubes as a model for the CASA task tclean and combining the Fourier transforms of the images as weighted sums in the u-v plane (feathering). Lastly, we detail our new data reduction pipeline for our wideband GBT continuum data, with an emphasis on the application of a least-squares basket-weaving technique used to remove striping image artifacts that notoriously plague single-dish maps.
A comparative study of turbulence decay using Navier-Stokes and a discrete particle simulation
NASA Technical Reports Server (NTRS)
Goswami, A.; Baganoff, D.; Lele, S.; Feiereisen, W.
1993-01-01
A comparative study of the two dimensional temporal decay of an initial turbulent state of flow is presented using a direct Navier-Stokes simulation and a particle method, ranging from the near continuum to more rarefied regimes. Various topics related to matching the initial conditions between the two simulations are considered. The determination of the initial velocity distribution function in the particle method was found to play an important role in the comparison. This distribution was first developed by matching the initial Navier-Stokes state of stress, but was found to be inadequate beyond the near continuum regime. An alternative approach of using the Lees two-sided Maxwellian to match the initial strain-rate is discussed. Results of the comparison of the temporal decay of mean kinetic energy are presented for a range of Knudsen numbers. As expected, good agreement was observed for the near continuum regime, but the differences found for the more rarefied conditions were unexpectedly small.
Soft X-ray spectrometer design for warm dense plasma measurements on DARHT Axis-I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramey, Nicholas Bryan; Perry, John Oliver; Coleman, Joshua Eugene
2017-07-11
A preliminary design study is being performed on a soft X-ray spectrometer to measure K-shell spectra emitted by a warm dense plasma generated on Axis-I of the Dual-Axis Radiographic Hydrodynamic Testing (DARHT) facility at Los Alamos National Laboratory. The 100-ns-long intense, relativistic electron pulse with a beam current of 1.7 kA and energy of 19.8 MeV deposits energy into a thin metal foil heating it to a warm dense plasma. The collisional ionization of the target by the electron beam produces an anisotropic angular distribution of K-shell radiation and a continuum of both scattered electrons and Bremsstrahlung up to themore » beam energy of 19.8 MeV. The principal goal of this project is to characterize these angular distributions to determine the optimal location to deploy the soft X-ray spectrometer. In addition, a proof-of-principle design will be presented. The ultimate goal of the spectrometer is to obtain measurements of the plasma temperature and density to benchmark equation-of-state models of the warm dense matter regime.« less
ALMA BAND 8 CONTINUUM EMISSION FROM ORION SOURCE I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirota, Tomoya; Matsumoto, Naoko; Machida, Masahiro N.
2016-12-20
We have measured continuum flux densities of a high-mass protostar candidate, a radio source I in the Orion KL region (Orion Source I) using the Atacama Large Millimeter/Submillimeter Array (ALMA) at band 8 with an angular resolution of 0.″1. The continuum emission at 430, 460, and 490 GHz associated with Source I shows an elongated structure along the northwest–southeast direction perpendicular to the so-called low-velocity bipolar outflow. The deconvolved size of the continuum source, 90 au × 20 au, is consistent with those reported previously at other millimeter/submillimeter wavelengths. The flux density can be well fitted to the optically thick blackbody spectral energy distribution, and the brightness temperaturemore » is evaluated to be 700–800 K. It is much lower than that in the case of proton–electron or H{sup −} free–free radiations. Our data are consistent with the latest ALMA results by Plambeck and Wright, in which the continuum emission was proposed to arise from the edge-on circumstellar disk via thermal dust emission, unless the continuum source consists of an unresolved structure with a smaller beam filling factor.« less
Reducing Actuator Requirements in Continuum Robots Through Optimized Cable Routing.
Case, Jennifer C; White, Edward L; SunSpiral, Vytas; Kramer-Bottiglio, Rebecca
2018-02-01
Continuum manipulators offer many advantages compared to their rigid-linked counterparts, such as increased degrees of freedom and workspace volume. Inspired by biological systems, such as elephant trunks and octopus tentacles, many continuum manipulators are made of multiple segments that allow large-scale deformations to be distributed throughout the body. Most continuum manipulators currently control each segment individually. For example, a planar cable-driven system is typically controlled by a pair of cables for each segment, which implies two actuators per segment. In this article, we demonstrate how highly coupled crossing cable configurations can reduce both actuator count and actuator torque requirements in a planar continuum manipulator, while maintaining workspace reachability and manipulability. We achieve highly coupled actuation by allowing cables to cross through the manipulator to create new cable configurations. We further derive an analytical model to predict the underactuated manipulator workspace and experimentally verify the model accuracy with a physical system. We use this model to compare crossing cable configurations to the traditional cable configuration using workspace performance metrics. Our work here focuses on a simplified planar robot, both in simulation and in hardware, with the goal of extending this to spiraling-cable configurations on full 3D continuum robots in future work.
Delamination Analysis Of Composite Curved Bars
NASA Technical Reports Server (NTRS)
Ko, William L.; Jackson, Raymond H.
1990-01-01
Classical anisotropic elasticity theory used to construct "multilayer" composite semicircular curved bar subjected to end forces and end moments. Radial location and intensity of open-mode delamination stress calculated and compared with results obtained from anisotropic continuum theory and from finite element method. Multilayer theory gave more accurate predictions of location and intensity of open-mode delamination stress. Currently being applied to predict open-mode delamination stress concentrations in horse-shoe-shaped composite test coupons.
NASA Astrophysics Data System (ADS)
Dey, Soumyodeep; Bongu, Sudhakara Reddy; Bisht, Prem Ballabh
2017-03-01
We study the nonlinear optical response of a standard dye IR26 using the Z-scan technique, but with the white light continuum. The continuum source of wavelength from 450 nm to 1650 nm has been generated from the photonic crystal fiber on pumping with 772 nm of Ti:Sapphire oscillator. The use of broadband incident pulse enables us to probe saturable absorption (SA) and reverse saturable absorption (RSA) over the large spectral range with a single Z-scan measurement. The system shows SA in the resonant region while it turns to RSA in the non-resonant regions. The low saturation intensity of the dye can be explained based on the simultaneous excitation from ground states to various higher energy levels with the help of composite energy level diagram. The cumulative effects of excited state absorption and thermal induced nonlinear optical effects are responsible for the observed RSA.
NASA Technical Reports Server (NTRS)
Salama, F.; Allamandola, L. J.
1992-01-01
The properties of the cation of the PAH naphthalene (C10H8(+)) isolated in inert gas matrices under conditions relevant to astrophysical environments are described. The band at 6741 A is the strongest and falls close to the weak 6742 A diffuse interstellar bands (DIBs). Five other weaker bands also fall remarkably close to the positions of known DIBs. A very intense and broad continuum extended from the UV to the visible, which seems to be associated with the ion, is reported. The molar absorption coefficient at the peak of the continuum is 2.0 x 10 exp 6 cu dm/mol cm. If a continuum is a general property of PAH cations, this characteristic will have a strong impact on the understanding of how PAHs convert interstellar UV and visible radiation into IR radiation.
Continuous and line spectra of granules and intergranular lanes
NASA Astrophysics Data System (ADS)
Suemoto, Z.; Hiei, E.; Nakagomi, Y.
1990-05-01
Temperature and velocity structures above granules and intergranular lanes were studied on spectrograms covering Ca II H and K lines. In agreement with earlier results, it was confirmed more quantitatively that there appear two kinds of bright continua, one in the outer wings (granular continuum) and the other in the inner wings (temporarily called K0-continuum) of Ca II H and K lines, and that these two kinds of bright continua are located more or less in a complementary fashion. Further, it was found that the bright K0-continuum is well associated with higher central residual intensity of absorption lines. These facts suggest that, in the upper photosphere, there are high temperature regions in the intergranular lanes. Motions above granular regions are essentially upwards, whereas those of intergranular regions are predominantly downwards, and in the uppermost photosphere the motions become more random.
Punishment insensitivity in early childhood: A developmental, dimensional approach
Nichols, Sara R.; Briggs-Gowan, Margaret; Estabrook, Ryne; Burns, James; Kestler, Jacqueline; Berman, Grace; Henry, David; Wakschlag, Lauren
2014-01-01
Impairment in learning from punishment ("punishment insensitivity") is an established feature of severe antisocial behavior in adults and youth but it has not been well studied as a developmental phenomenon. In early childhood, differentiating a normal:abnormal spectrum of punishment insensitivity is key for distinguishing normative misbehavior from atypical manifestations. This study employed a novel measure, the Multidimensional Assessment Profile of Disruptive Behavior (MAPDB), to examine the distribution, dimensionality, and external validity of punishment insensitivity in a large, demographically diverse community sample of preschoolers (three-five years) recruited from pediatric clinics (N=1,855). Caregivers completed surveys from which a seven-item Punishment Insensitivity scale was derived. Findings indicated that Punishment Insensitivity behaviors are relatively common in young children, with at least 50% of preschoolers exhibiting them sometimes. Item response theory analyses revealed a Punishment Insensitivity spectrum. Items varied along a severity continuum: most items needed to occur "Often" in order to be severe and behaviors that were qualitatively atypical or intense were more severe. Although there were item-level differences across sociodemographic groups, these were small. Construct, convergent, and divergent validity were demonstrated via association to low concern for others and noncompliance, motivational regulation, and a disruptive family context. Incremental clinical utility was demonstrated in relation to impairment. Early childhood punishment insensitivity varies along a severity continuum and is atypical when it predominates. Implications for understanding the phenomenology of emergent disruptive behavior are discussed. PMID:25425187
NASA Astrophysics Data System (ADS)
Hales, Christopher A.; Chiles Con Pol Collaboration
2014-04-01
We recently started a 1000 hour campaign to observe 0.2 square degrees of the COSMOS field in full polarization continuum at 1.4 GHz with the Jansky VLA, as part of a joint program with the spectral line COSMOS HI Large Extragalactic Survey (CHILES). When complete, we expect our CHILES Continuum Polarization (CHILES Con Pol) survey to reach an unprecedented SKA-era sensitivity of 0.7 uJy per 4 arcsecond FWHM beam. Here we present the key goals of CHILES Con Pol, which are to (i) produce a source catalog of legacy value to the astronomical community, (ii) measure differential source counts in total intensity, linear polarization, and circular polarization in order to constrain the redshift and luminosity distributions of source populations, (iii) perform a novel weak lensing study using radio polarization as an indicator of intrinsic alignment to better study dark energy and dark matter, and (iv) probe the unknown origin of cosmic magnetism by measuring the strength and structure of intergalactic magnetic fields in the filaments of large scale structure. The CHILES Con Pol source catalog will be a useful resource for upcoming wide-field surveys by acting as a training set for machine learning algorithms, which can then be used to identify and classify radio sources in regions lacking deep multiwavelength coverage.
Red Fluorescent Line Emission from Hydrogen Molecules in Diffuse Molecular Clouds
NASA Technical Reports Server (NTRS)
Neufeld, David A.; Spaans, Marco
1996-01-01
We have modeled the fluorescent pumping of electronic and vibrational emissions of molecular hydrogen (H2) within diffuse molecular clouds that are illuminated by ultraviolet continuum radiation. Fluorescent line intensities are predicted for transitions at ultraviolet, infrared, and red visible wavelengths as functions of the gas density, the visual extinction through the cloud, and the intensity of the incident UV continuum radiation. The observed intensity in each fluorescent transition is roughly proportional to the integrated rate of H2 photodissociation along the line of sight. Although the most luminous fluorescent emissions detectable from ground-based observatories lie at near-infrared wavelengths, we argue that the lower sky brightness at visible wavelengths makes the red fluorescent transitions a particularly sensitive probe. Fabry-Perot spectrographs of the type that have been designed to observe very faint diffuse Ha emissions are soon expected to yield sensitivities that will be adequate to detect H2 vibrational emissions from molecular clouds that are exposed to ultraviolet radiation no stronger than the mean radiation field within the Galaxy. Observations of red H2 fluorescent emission together with cospatial 21 cm H I observations could serve as a valuable probe of the gas density in diffuse molecular clouds.
The continuum spectral characteristics of gamma-ray bursts observed by BATSE
NASA Technical Reports Server (NTRS)
Pendleton, Geoffrey N.; Paciesas, William S.; Briggs, Michael S.; Mallozzi, Robert S.; Koshut, Tom M.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Harmon, Alan B.; Kouveliotou, Chryssa
1994-01-01
Distributions of the continuum spectral characteristics of 260 bursts in the first Burst And Transient Source Experiement (BATSE) catalog are presented. The data are derived from flux calculated from BATSE Large Area Detector (LAD) four-channel discriminator data. The data are converted from counts to protons using a direct spectral inversion technique to remove the effects of atmospheric scattering and the energy dependence of the detector angular response. Although there are intriguing clusters of bursts in the spectral hardness ratio distributions, no evidence for the presence of distinct burst classes based in spectral hardness ratios alone is found. All subsets of bursts selected for their spectral characteristics in this analysis exhibit spatial distributions consistent with isotropy. The spectral diversity of the burst population appears to be caused largely by the highly variable nature of the burst production mechanisms themselves.
NASA Astrophysics Data System (ADS)
Zamanov, A. D.
2002-01-01
Based on the exact three-dimensional equations of continuum mechanics and the Akbarov-Guz' continuum theory, the problem on forced vibrations of a rectangular plate made of a composite material with a periodically curved structure is formulated. The plate is rigidly fixed along the Ox 1 axis. Using the semi-analytic method of finite elements, a numerical procedure is elaborated for investigating this problem. The numerical results on the effect of structural curvings on the stress distribution in the plate under forced vibrations are analyzed. It is shown that the disturbances of the stress σ22 in a hinge-supported plate are greater than in a rigidly fixed one. Also, it is found that the structural curvings considerably affect the stress distribution in plates both under static and dynamic loading.
Self-consistent continuum solvation for optical absorption of complex molecular systems in solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timrov, Iurii; Biancardi, Alessandro; Andreussi, Oliviero
2015-01-21
We introduce a new method to compute the optical absorption spectra of complex molecular systems in solution, based on the Liouville approach to time-dependent density-functional perturbation theory and the revised self-consistent continuum solvation model. The former allows one to obtain the absorption spectrum over a whole wide frequency range, using a recently proposed Lanczos-based technique, or selected excitation energies, using the Casida equation, without having to ever compute any unoccupied molecular orbitals. The latter is conceptually similar to the polarizable continuum model and offers the further advantages of allowing an easy computation of atomic forces via the Hellmann-Feynman theorem andmore » a ready implementation in periodic-boundary conditions. The new method has been implemented using pseudopotentials and plane-wave basis sets, benchmarked against polarizable continuum model calculations on 4-aminophthalimide, alizarin, and cyanin and made available through the QUANTUM ESPRESSO distribution of open-source codes.« less
The wind geometry of the Wolf-Rayet star HD 191765
NASA Technical Reports Server (NTRS)
Schulte-Ladbeck, R. F.; Nordsieck, K. H.; Taylor, M.; Bjorkman, K. S.; Magalhaes, A. M.; Wolff, M. J.
1992-01-01
A time-dependent spectropolarimetric data set of HD 191765 in the wavelength range 3159-7593 A is presented. At all epochs the present observations display a large and strongly wavelength-dependent continuum polarization and reduced levels of polarization across the emission lines. The data imply a significant intrinsic continuum polarization which requires a general deviation of the electron distribution from spherical symmetry. The global shape is quite stable as a function of time; small fluctuations may arise from localized density/temperature changes. The line polarizations are consistent with an axisymmetric wind geometry and ionization stratification. A qualitative model for polarization in a Wolf-Rayet atmosphere is developed. It is argued that the blueward rise of the continuum polarization in HD 191765 can be explained if the density in the wind is high, resulting in a competition of thermal and electron-scattering continuum opacity in the vertical.
Molecular continua for polymeric liquids in large-amplitude oscillatory shear flow
NASA Astrophysics Data System (ADS)
Giacomin, A. Jeffrey; Saengow, Chaimongkol
2018-05-01
In this paper, we connect a molecular description of the rheology of a polymeric liquid to a continuum description, and then test this connection for large-amplitude oscillatory shear (LAOS) flow. Specifically, for the continuum description, we use the 6-constant Oldroyd framework, and for the molecular, we use the simplest relevant molecular model, the suspension of rigid dumbbells. By relevant, we mean predicting at least higher harmonics in the shear stress response in LAOS. We call this connection a molecular continuum, and we examine two ways of arriving at this connection. The first goes through the retarded motion expansion, and the second expands each of a set of specific material functions (complex, steady shear, and steady uniaxial extensional viscosities). Both ways involve in comparing the coefficients of expansions and then solve for the six constants of the continuum framework in terms of the two constants of the rigid dumbbell suspension. The purpose of a molecular continuum is that many well-known results for rigid dumbbell suspensions in other flow fields can also be easily obtained, without having to firstly find the orientation distribution function. In this paper, we focus on the recent result for the rigid dumbbell suspension in LAOS. We compare the accuracies of the retarded motion molecular continuum (RMMC) with the material function molecular continuum (MFMC). We find the RMMC to be the most accurate for LAOS.
Breakdown and Limit of Continuum Diffusion Velocity for Binary Gas Mixtures from Direct Simulation
NASA Astrophysics Data System (ADS)
Martin, Robert Scott; Najmabadi, Farrokh
2011-05-01
This work investigates the breakdown of the continuum relations for diffusion velocity in inert binary gas mixtures. Values of the relative diffusion velocities for components of a gas mixture may be calculated using of Chapman-Enskog theory and occur not only due to concentration gradients, but also pressure and temperature gradients in the flow as described by Hirschfelder. Because Chapman-Enskog theory employs a linear perturbation around equilibrium, it is expected to break down when the velocity distribution deviates significantly from equilibrium. This breakdown of the overall flow has long been an area of interest in rarefied gas dynamics. By comparing the continuum values to results from Bird's DS2V Monte Carlo code, we propose a new limit on the continuum approach specific to binary gases. To remove the confounding influence of an inconsistent molecular model, we also present the application of the variable hard sphere (VSS) model used in DS2V to the continuum diffusion velocity calculation. Fitting sample asymptotic curves to the breakdown, a limit, Vmax, that is a fraction of an analytically derived limit resulting from the kinetic temperature of the mixture is proposed. With an expected deviation of only 2% between the physical values and continuum calculations within ±Vmax/4, we suggest this as a conservative estimate on the range of applicability for the continuum theory.
1.4 GHz continuum sources in the Cancer cluster
NASA Technical Reports Server (NTRS)
Salpeter, E. E.; Dickey, J. M.
1987-01-01
Results of 1.4-GHz continuum observations are presented for 11 VLA fields, using the D-configuration, which contain the A group of the Cnc cluster (CC). Sixteen Zwicky spiral galaxies in the CC were detected, but no ellipticals, confirming the finding that spiral galaxies with close companions tend to have enhanced radio emission. Over 200 continuum sources beyond the CC are tabulated. The spectral index (relative to 610 MHz) is given for many of the sources, including some of the Zwicky galaxies. There is a suggestion for a nonuniform number surface-density distribution of the sources, not correlated with the CC. Possible predictions of such nonuniformities, from assumptions on 'super-superclusters', are discussed.
UV spectroscopy of Z Chamaeleontis. II - The 1988 January normal outburst
NASA Technical Reports Server (NTRS)
Harlaftis, E. T.; Naylor, T.; Hassall, B. J. M.; Charles, P. A.; Sonneborn, G.; Bailey, J.
1992-01-01
IUE observations taken during the 1988 January normal outburst of Z Cha are presented and a detailed comparison with the 1987 April superoutburst is made. The most important difference from the superoutburst is that the normal outburst continuum flux shows less than 10 percent orbital variation away from the eclipse, implying that there is no 'cool' bulge on the disk to occult the brighter inner disk periodically. The implications for the outburst mechanism in the types of outburst are discussed. The evolution of the continuum flux distribution and emission-line fluxes, the modulation of the continuum and line fluxes with orbital phase, and the behavior of the mideclipse spectral during normal outburst are investigated.
A Submillimeter Survey of Dust Continuum Emission in Local Dust-Obscured Galaxies
NASA Astrophysics Data System (ADS)
Lee, Jong Chul; Hwang, Ho Seong; Lee, Gwang-Ho
2015-08-01
Dusty star-forming galaxies are responsible for the bulk of cosmic star formation at 1
Multiscale Simulations of Reactive Transport
NASA Astrophysics Data System (ADS)
Tartakovsky, D. M.; Bakarji, J.
2014-12-01
Discrete, particle-based simulations offer distinct advantages when modeling solute transport and chemical reactions. For example, Brownian motion is often used to model diffusion in complex pore networks, and Gillespie-type algorithms allow one to handle multicomponent chemical reactions with uncertain reaction pathways. Yet such models can be computationally more intensive than their continuum-scale counterparts, e.g., advection-dispersion-reaction equations. Combining the discrete and continuum models has a potential to resolve the quantity of interest with a required degree of physicochemical granularity at acceptable computational cost. We present computational examples of such "hybrid models" and discuss the challenges associated with coupling these two levels of description.
Modeling stock price dynamics by continuum percolation system and relevant complex systems analysis
NASA Astrophysics Data System (ADS)
Xiao, Di; Wang, Jun
2012-10-01
The continuum percolation system is developed to model a random stock price process in this work. Recent empirical research has demonstrated various statistical features of stock price changes, the financial model aiming at understanding price fluctuations needs to define a mechanism for the formation of the price, in an attempt to reproduce and explain this set of empirical facts. The continuum percolation model is usually referred to as a random coverage process or a Boolean model, the local interaction or influence among traders is constructed by the continuum percolation, and a cluster of continuum percolation is applied to define the cluster of traders sharing the same opinion about the market. We investigate and analyze the statistical behaviors of normalized returns of the price model by some analysis methods, including power-law tail distribution analysis, chaotic behavior analysis and Zipf analysis. Moreover, we consider the daily returns of Shanghai Stock Exchange Composite Index from January 1997 to July 2011, and the comparisons of return behaviors between the actual data and the simulation data are exhibited.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, B.; Menten, K. M.; Wu, Y.
We conducted Very Large Array C-configuration observations to measure positions and luminosities of Galactic Class II 6.7 GHz methanol masers and their associated ultra-compact H ii regions. The spectral resolution was 3.90625 kHz and the continuum sensitivity reached 45 μ Jy beam{sup −1}. We mapped 372 methanol masers with peak flux densities of more than 2 Jy selected from the literature. Absolute positions have nominal uncertainties of 0.″3. In this first paper on the data analysis, we present three catalogs; the first gives information on the strongest feature of 367 methanol maser sources, and the second provides information on allmore » detected maser spots. The third catalog presents derived data of the 127 radio continuum counterparts associated with maser sources. Our detection rate of radio continuum counterparts toward methanol masers is approximately one-third. Our catalogs list properties including distance, flux density, luminosity, and the distribution in the Galactic plane. We found no significant relationship between luminosities of masers and their associated radio continuum counterparts, however, the detection rate of radio continuum emission toward maser sources increases statistically with the maser luminosities.« less
Getting the lead out: understanding risks in the distribution system
This presentation discusses the importance of the water distribution system as a component of the source-to-tap continuum in public health protection. Issues covered include: understanding source water quality changes and their impacts throughout the system; use of mitigation me...
Ultraviolet continuum absorption /less than about 1000 A/ above the quiet sun transition region
NASA Technical Reports Server (NTRS)
Doschek, G. A.; Feldman, U.
1982-01-01
Lyman continuum absorption shortward of 912 A in the quiet sun solar transition region is investigated by combining spectra obtained from the Apollo Telescope Mount experiments on Skylab. The most recent atomic data are used to compute line intensities for lines that fall on both sides of the Lyman limit. Lines of O III, O IV, O V, and S IV are considered. The computed intensity ratios of most lines from O IV, O V, and S IV agree with the experimental ratios to within a factor of 2. However, the discrepancies show no apparent wavelength dependence. From this fact, it is concluded that at least part of the discrepancy between theory and observation for lines of these ions can be accounted for by uncertainties in instrumental calibration and atomic data. However, difficulties remain in reconciling observation and theory, particularly for lines of O III, and one line of S IV. The other recent results of Schmahl and Orrall (1979) are also discussed in terms of newer atomic data.
Space shuttle ram glow: Implication of NO2 recombination continuum
NASA Technical Reports Server (NTRS)
Swenson, G. R.; Mende, S. B.; Clifton, S.
1985-01-01
The ram glow data gathered to data from imaging experiments on space shuttle suggest the glow is a continuum (within 34 angstrom resolution); the continuum shape is such that the peak is near 7000 angstroms decreasing to the blue and red, and the average molecular travel leading to emission after leaving the surface is 20 cm (assuming isotropic scattering from the surface). Emission continuum is rare in molecular systems but the measured spectrum does resemble the laboratory spectrum of NO2 (B) recombination continuum. The thickness of the observed emission is consistent with the NO2 hypothesis given an exit velocity of approx. 2.5 km/sec (1.3 eV) which leaves approx. 3.7 eV of ramming OI energy available for unbonding the recombined NO2 from the surface. The NO2 is formed in a 3-body recombination of OI + NO + m = NO2 + m where OI originates from the atmosphere and NO is chemically formed on the surface from atmospheric NI and OI. The spacecraft surface then acts as the n for the reaction: Evidence exists from orbital mass spectrometer data that the NO and NO2 chemistry described in this process does occur on surfaces of spectrometer orifices in orbit. Surface temperature effects are likely a factor in the NO sticking efficiency and, therefore, glow intensities.
Space shuttle Ram glow: Implication of NO2 recombination continuum
NASA Astrophysics Data System (ADS)
Swenson, G. R.; Mende, S. B.; Clifton, S.
1985-09-01
The ram glow data gathered to data from imaging experiments on space shuttle suggest the glow is a continuum (within 34 angstrom resolution); the continuum shape is such that the peak is near 7000 angstroms decreasing to the blue and red, and the average molecular travel leading to emission after leaving the surface is 20 cm (assuming isotropic scattering from the surface). Emission continuum is rare in molecular systems but the measured spectrum does resemble the laboratory spectrum of NO2 (B) recombination continuum. The thickness of the observed emission is consistent with the NO2 hypothesis given an exit velocity of approx. 2.5 km/sec (1.3 eV) which leaves approx. 3.7 eV of ramming OI energy available for unbonding the recombined NO2 from the surface. The NO2 is formed in a 3-body recombination of OI + NO + m = NO2 + m where OI originates from the atmosphere and NO is chemically formed on the surface from atmospheric NI and OI. The spacecraft surface then acts as the n for the reaction: Evidence exists from orbital mass spectrometer data that the NO and NO2 chemistry described in this process does occur on surfaces of spectrometer orifices in orbit. Surface temperature effects are likely a factor in the NO sticking efficiency and, therefore, glow intensities.
Three Radial Gaps in the Disk of TW Hydrae Imaged with SPHERE
NASA Astrophysics Data System (ADS)
van Boekel, R.; Henning, Th.; Menu, J.; de Boer, J.; Langlois, M.; Müller, A.; Avenhaus, H.; Boccaletti, A.; Schmid, H. M.; Thalmann, Ch.; Benisty, M.; Dominik, C.; Ginski, Ch.; Girard, J. H.; Gisler, D.; Lobo Gomes, A.; Menard, F.; Min, M.; Pavlov, A.; Pohl, A.; Quanz, S. P.; Rabou, P.; Roelfsema, R.; Sauvage, J.-F.; Teague, R.; Wildi, F.; Zurlo, A.
2017-03-01
We present scattered light images of the TW Hya disk performed with the Spectro-Polarimetric High-contrast Exoplanet REsearch instrument in Polarimetric Differential Imaging mode at 0.63, 0.79, 1.24, and 1.62 μm. We also present H2/H3-band angular differential imaging (ADI) observations. Three distinct radial depressions in the polarized intensity distribution are seen, around ≈85, ≈21, and ≲6 au.21 The overall intensity distribution has a high degree of azimuthal symmetry; the disk is somewhat brighter than average toward the south and darker toward the north-west. The ADI observations yielded no signifiant detection of point sources in the disk. Our observations have a linear spatial resolution of 1-2 au, similar to that of recent ALMA dust continuum observations. The sub-micron-sized dust grains that dominate the light scattering in the disk surface are strongly coupled to the gas. We created a radiative transfer disk model with self-consistent temperature and vertical structure iteration and including grain size-dependent dust settling. This method may provide independent constraints on the gas distribution at higher spatial resolution than is feasible with ALMA gas line observations. We find that the gas surface density in the “gaps” is reduced by ≈50% to ≈80% relative to an unperturbed model. Should embedded planets be responsible for carving the gaps then their masses are at most a few 10 {{{M}}}\\oplus . The observed gaps are wider, with shallower flanks, than expected for planet-disk interaction with such low-mass planets. If forming planetary bodies have undergone collapse and are in the “detached phase,” then they may be directly observable with future facilities such as the Mid-Infrared E-ELT Imager and Spectrograph at the E-ELT.
Geometry of the Gene Expression Space of Individual Cells
Korem, Yael; Szekely, Pablo; Hart, Yuval; Sheftel, Hila; Hausser, Jean; Mayo, Avi; Rothenberg, Michael E.; Kalisky, Tomer; Alon, Uri
2015-01-01
There is a revolution in the ability to analyze gene expression of single cells in a tissue. To understand this data we must comprehend how cells are distributed in a high-dimensional gene expression space. One open question is whether cell types form discrete clusters or whether gene expression forms a continuum of states. If such a continuum exists, what is its geometry? Recent theory on evolutionary trade-offs suggests that cells that need to perform multiple tasks are arranged in a polygon or polyhedron (line, triangle, tetrahedron and so on, generally called polytopes) in gene expression space, whose vertices are the expression profiles optimal for each task. Here, we analyze single-cell data from human and mouse tissues profiled using a variety of single-cell technologies. We fit the data to shapes with different numbers of vertices, compute their statistical significance, and infer their tasks. We find cases in which single cells fill out a continuum of expression states within a polyhedron. This occurs in intestinal progenitor cells, which fill out a tetrahedron in gene expression space. The four vertices of this tetrahedron are each enriched with genes for a specific task related to stemness and early differentiation. A polyhedral continuum of states is also found in spleen dendritic cells, known to perform multiple immune tasks: cells fill out a tetrahedron whose vertices correspond to key tasks related to maturation, pathogen sensing and communication with lymphocytes. A mixture of continuum-like distributions and discrete clusters is found in other cell types, including bone marrow and differentiated intestinal crypt cells. This approach can be used to understand the geometry and biological tasks of a wide range of single-cell datasets. The present results suggest that the concept of cell type may be expanded. In addition to discreet clusters in gene-expression space, we suggest a new possibility: a continuum of states within a polyhedron, in which the vertices represent specialists at key tasks. PMID:26161936
NASA Astrophysics Data System (ADS)
Malkin, B. Z.; Abishev, N. M.; Baibekov, E. I.; Pytalev, D. S.; Boldyrev, K. N.; Popova, M. N.; Bettinelli, M.
2017-07-01
We construct a distribution function of the strain-tensor components induced by point defects in an elastically anisotropic continuum, which can be used to account quantitatively for many effects observed in different branches of condensed matter physics. Parameters of the derived six-dimensional generalized Lorentz distribution are expressed through the integrals computed over the array of strains. The distribution functions for the cubic diamond and elpasolite crystals and tetragonal crystals with the zircon and scheelite structures are presented. Our theoretical approach is supported by a successful modeling of specific line shapes of singlet-doublet transitions of the T m3 + ions doped into AB O4 (A =Y , Lu; B =P , V) crystals with zircon structure, observed in high-resolution optical spectra. The values of the defect strengths of impurity T m3 + ions in the oxygen surroundings, obtained as a result of this modeling, can be used in future studies of random strains in different rare-earth oxides.
ERIC Educational Resources Information Center
Mills, Connie
2011-01-01
Youth Villages is a private nonprofit organization, headquartered in Memphis, Tennessee. Originally providing residential services, it now also offers a full continuum including intensive in-home services, foster care, adoption, and transitional living services for young people who age out of foster care. Each of the programs has its own…
Literature and Composition in the Two-Year College: Love Affair or One-Night Stand?
ERIC Educational Resources Information Center
Lederman, Marie Jean
1985-01-01
Argues that after a decade of intense concentration on the theory and practice of writing, it is now important for literature to reenter the composition classroom and to become part of a course that teaches "language skills" as a continuum. (FL)
Angular resolution and range of dipole-dipole correlations in water
NASA Astrophysics Data System (ADS)
Mathias, Gerald; Tavan, Paul
2004-03-01
We investigate the dipolar correlations in liquid water at angular resolution by molecular-dynamics simulations of a large periodic simulation system containing about 40 000 molecules. Because we are particularly interested in the long-range ordering, we use a simple three-point model for these molecules. The electrostatics is treated both by Ewald summation and by minimum image truncation combined with a reaction field approach. To gain insight into the angular dependence of the simulated dipolar ordering we introduce a suitable expansion of the molecular pair distribution function into a set of two-dimensional correlation functions. We show that these functions enable detailed insights into the shell structure of the dipolar ordering around a given water molecule. For these functions we derive analytical expressions in the particular case in which liquid water is conceived as a dielectric continuum. Comparisons of these continuum models with the correlation functions derived from the simulations yield the key result that liquid water behaves like a continuum dielectric beyond distances of about 15 Å from a given water molecule. We argue that this should be a generic property of water independent of our modeling. By comparison of the results of the two different electrostatics treatments with the continuum description we show that the boundary artifacts occurring in both methods are isotropically distributed and are locally small in the respective boundary regions.
The spectral energy distribution of powerful starburst galaxies - I. Modelling the radio continuum
NASA Astrophysics Data System (ADS)
Galvin, T. J.; Seymour, N.; Marvil, J.; Filipović, M. D.; Tothill, N. F. H.; McDermid, R. M.; Hurley-Walker, N.; Hancock, P. J.; Callingham, J. R.; Cook, R. H.; Norris, R. P.; Bell, M. E.; Dwarakanath, K. S.; For, B.; Gaensler, B. M.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Lenc, E.; McKinley, B.; Morgan, J.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.
2018-02-01
We have acquired radio-continuum data between 70 MHz and 48 GHz for a sample of 19 southern starburst galaxies at moderate redshifts (0.067 < z < 0.227) with the aim of separating synchrotron and free-free emission components. Using a Bayesian framework, we find the radio continuum is rarely characterized well by a single power law, instead often exhibiting low-frequency turnovers below 500 MHz, steepening at mid to high frequencies, and a flattening at high frequencies where free-free emission begins to dominate over the synchrotron emission. These higher order curvature components may be attributed to free-free absorption across multiple regions of star formation with varying optical depths. The decomposed synchrotron and free-free emission components in our sample of galaxies form strong correlations with the total-infrared bolometric luminosities. Finally, we find that without accounting for free-free absorption with turnovers between 90 and 500 MHz the radio continuum at low frequency (ν < 200 MHz) could be overestimated by upwards of a factor of 12 if a simple power-law extrapolation is used from higher frequencies. The mean synchrotron spectral index of our sample is constrained to be α = -1.06, which is steeper than the canonical value of -0.8 for normal galaxies. We suggest this may be caused by an intrinsically steeper cosmic ray distribution.
Trinidad, Dennis R; Xie, Bin; Fagan, Pebbles; Pulvers, Kim; Romero, Devan R; Blanco, Lyzette; Sakuma, Kari-Lyn K
2015-12-01
To examine disparities and changes over time in the population-level distribution of smokers along a cigarette quitting continuum among African American smokers compared with non-Hispanic Whites. Secondary data analyses of the 1999, 2002, 2005, and 2008 California Tobacco Surveys (CTS). The CTS are large, random-digit-dialed, population-based surveys designed to assess changes in tobacco use in California. The number of survey respondents ranged from n = 6,744 to n = 12,876 across CTS years. Current smoking behavior (daily or nondaily smoking), number of cigarettes smoked per day, intention to quit in the next 6 months, length of most recent quit attempt among current smokers, and total length of time quit among former smokers were assessed and used to recreate the quitting continuum model. While current smoking rates were significantly higher among African Americans compared with non-Hispanic Whites across all years, cigarette consumption rates were lower among African Americans in all years. There were significant increases in the proportion of former smokers who had been quit for at least 12 months from 1999 (African Americans, 26.8% ± 5.5%; non-Hispanic Whites, 36.8% ± 1.6%) to 2008 (African Americans, 43.6% ± 4.1%; non-Hispanic Whites, 57.4% ± 2.9%). The proportion of African American former smokers in each CTS year was significantly lower than that of non-Hispanic Whites. Despite positive progression along the quitting continuum for both African American and non-Hispanic White smokers, the overall distribution was less favorable for African Americans. The lower smoking consumption levels among African Americans, combined with the lower rates of successful smoking cessation, suggest that cigarette addiction and the quitting process may be different for African American smokers. © 2015 Society for Public Health Education.
NASA Astrophysics Data System (ADS)
Gong, Yongmei; Zwinger, Thomas; Åström, Jan; Gladstone, Rupert; Schellenberger, Thomas; Altena, Bas; Moore, John
2017-04-01
The outlet glacier at Basin 3, Austfonna ice-cap entered its active surge phase in autumn 2012. We assess the evolution of the basal friction during the surge through inverse modelling of basal friction coefficients using recent velocity observation from 2012 to 2014 in a continuum ice dynamic model Elmer/ice. The obtained basal friction coefficient distributions at different time instances are further used as a boundary condition in a discrete element model (HiDEM) that is capable of computing fracturing of ice. The inverted basal friction coefficient evolution shows a gradual 'unplugging' of the stagnant frontal area and northwards and inland expansion of the fast flowing region in the southern basin. The validation between the modeled crevasses distribution and the satellite observation in August 2013 shows a good agreement in shear zones inland and at the frontal area. Crevasse distributions of the summer before and after the glacier reached its maximum velocity in January 2013 (August 2012 and August 2014, respectively) are also evaluated. Previous studies suggest the triggering and development of the surge are linked to surface melt water penetrating through ice to form an efficient basal hydrology system thereby triggering a hydro- thermodynamic feedback. This preliminary offline coupling between a continuum ice dynamic model and a discrete element model will give a hint on future model development of linking supra-glacial to sub-glacial hydrology system.
Getting the lead out: understanding risks in the distribution ...
This presentation discusses the importance of the water distribution system as a component of the source-to-tap continuum in public health protection. Issues covered include: understanding source water quality changes and their impacts throughout the system; use of mitigation measures such as filters); and holistic approaches and/or strategies that could be used to avoid unintended consequences of decisions from source to tap. Invited presentation on topics indicated as of interest. With exposure to lead as the context, this presentation discusses the importance of the water distribution system as a component of the source-to-tap continuum in public health protection. Issues covered include: understanding source water quality changes and their impacts throughout the system; use of mitigation measures such as filters); and holistic approaches and/or strategies that could be used to avoid unintended consequences of decisions from source to tap.
The continuum spectral characteristics of gamma ray bursts observed by BATSE
NASA Technical Reports Server (NTRS)
Pendleton, Geoffrey N.; Paciesas, William S.; Briggs, Michael S.; Mallozzi, Robert S.; Koshut, Tom M.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Harmon, Alan B.; Kouveliotou, Chryssa
1994-01-01
Distributions of the continuum spectral characteristics of 260 bursts in the first Burst and Transient Source Experiment (BATSE) catalog are presented. The data are derived from flux ratios calculated from the BATSE Large Area Detector (LAD) four channel discriminator data. The data are converted from counts to photons using a direct spectral inversion technique to remove the effects of atmospheric scattering and the energy dependence of the detector angular response. Although there are intriguing clusterings of bursts in the spectral hardness ratio distributions, no evidence for the presence of distinct burst classes based on spectral hardness ratios alone is found. All subsets of bursts selected for their spectral characteristics in this analysis exhibit spatial distributions consistent with isotropy. The spectral diversity of the burst population appears to be caused largely by the highly variable nature of the burst production mechanisms themselves.
DOE R&D Accomplishments Database
Lamb, W. E. Jr.
1981-12-01
This final report describes research on the theory of isotope separation produced by the illumination of polyatomic molecules by intense infrared laser radiation. This process is investigated by treating the molecule, sulfur hexafluoride, as a system of seven classical particles that obey the Newtonian equations of motion. A minicomputer is used to integrate these differential equations. The particles are acted on by interatomic forces, and by the time-dependent electric field of the laser. We have a very satisfactory expression for the interaction of the laser and the molecule which is compatible with infrared absorption and spectroscopic data. The interatomic potential is capable of improvement, and progress on this problem is still being made. We have made several computer runs of the dynamical behavior of the molecule using a reasonably good model for the interatomic force law. For the laser parameters chosen, we find that typically the molecule passes quickly through the resonance region into the quasi-continuum and even well into the real continuum before dissociation actually occurs. When viewed on a display terminal, the motions are exceedingly complex. As an aid to the visualization of the process, we have made a number of 16 mm movies depicting a three-dimensional representation of the motion of the seven particles. These show even more clearly the enormous complexity of the motions, and make clear the desirability of finding ways of characterizing the motion in simple ways without giving all of the numerical detail. One of the ways to do this is to introduce statistical parameters such as a temperature associated with the distribution of kinetic energies of the single particle. We have made such an analysis of our data runs, and have found favorable indications that such methods will prove useful in keeping track of the dynamical histories.
Breakdown parameter for kinetic modeling of multiscale gas flows.
Meng, Jianping; Dongari, Nishanth; Reese, Jason M; Zhang, Yonghao
2014-06-01
Multiscale methods built purely on the kinetic theory of gases provide information about the molecular velocity distribution function. It is therefore both important and feasible to establish new breakdown parameters for assessing the appropriateness of a fluid description at the continuum level by utilizing kinetic information rather than macroscopic flow quantities alone. We propose a new kinetic criterion to indirectly assess the errors introduced by a continuum-level description of the gas flow. The analysis, which includes numerical demonstrations, focuses on the validity of the Navier-Stokes-Fourier equations and corresponding kinetic models and reveals that the new criterion can consistently indicate the validity of continuum-level modeling in both low-speed and high-speed flows at different Knudsen numbers.
Extension of a hybrid particle-continuum method for a mixture of chemical species
NASA Astrophysics Data System (ADS)
Verhoff, Ashley M.; Boyd, Iain D.
2012-11-01
Due to the physical accuracy and numerical efficiency achieved by analyzing transitional, hypersonic flow fields with hybrid particle-continuum methods, this paper describes a Modular Particle-Continuum (MPC) method and its extension to include multiple chemical species. Considerations that are specific to a hybrid approach for simulating gas mixtures are addressed, including a discussion of the Chapman-Enskog velocity distribution function (VDF) for near-equilibrium flows, and consistent viscosity models for the individual CFD and DSMC modules of the MPC method. Representative results for a hypersonic blunt-body flow are then presented, where the flow field properties, surface properties, and computational performance are compared for simulations employing full CFD, full DSMC, and the MPC method.
Variable Weight Fractional Collisions for Multiple Species Mixtures
2017-08-28
DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #17517 6 / 21 VARIABLE WEIGHTS FOR DYNAMIC RANGE Continuum to Discrete ...Representation: Many Particles →̃ Continuous Distribution Discretized VDF Yields Vlasov But Collision Integral Still a Problem Particle Methods VDF to Delta...Function Set Collisions between Discrete Velocities But Poorly Resolved Tail (Tail Critical to Inelastic Collisions) Variable Weights Permit Extra DOF in
Continuum electromechanical modeling of protein-membrane interactions
NASA Astrophysics Data System (ADS)
Zhou, Y. C.; Lu, Benzhuo; Gorfe, Alemayehu A.
2010-10-01
A continuum electromechanical model is proposed to describe the membrane curvature induced by electrostatic interactions in a solvated protein-membrane system. The model couples the macroscopic strain energy of membrane and the electrostatic solvation energy of the system, and equilibrium membrane deformation is obtained by minimizing the electroelastic energy functional with respect to the dielectric interface. The model is illustrated with the systems with increasing geometry complexity and captures the sensitivity of membrane curvature to the permanent and mobile charge distributions.
2017-07-01
Directorate 3550 Aberdeen Avenue SE Kirtland AFB, NM 87117-5776 AFRL /RVBYE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) AFRL -RV-PS-TR-2017-0152 12. DISTRIBUTION...Belvoir, VA 22060-6218 AFRL /RVIL Kirtland AFB, NM 87117-5776 Official Record Copy AFRL /RVBYE/Dr. Raymond Bemish 1 cy Approved for public release... AFRL -RV-PS- TR-2017-0152 AFRL -RV-PS- TR-2017-0152 CONSISTENT CONTINUUM-PARTICLE MODELING OF HYPERSONIC FLOWS AND DEVELOPMENT OF HYBRID
Z mode radiation in Jupiter's magnetosphere - The source of Jovian continuum radiation
NASA Technical Reports Server (NTRS)
Barbosa, D. D.; Kurth, W. S.; Moses, S. L.; Scarf, F. L.
1990-01-01
Observations of Z-mode waves in Jupiter's magnetosphere are analyzed. The assumption that the frequency of the intensity minimum, which isolates the signal, corresponds to the electron plasma frequency provides a consistent interpretation of all spectral features in terms of plasma resonances and cutoffs. It is shown that the continuum radiation is composed of both left-hand and right-hand polarized waves with distinct cutoffs observed at the plasma frequency and right-hand cutoff frequency, respectively. It is found that the Z-mode peak frequency lies close to the left-hand cutoff frequency, suggesting that the observed characteristics of the emission are the result of wave reflection at the cutoff layer. Another distinct emission occurring near the upper hybrid resonance frequency is detected simultaneously with the Z mode. The entire set of observations gives strong support to the linear mode theory of the conversion of upper hybrid waves to continuum radiation mediated by the Z mode via the Budden radio window mechanism.
NASA Technical Reports Server (NTRS)
Coats, Timothy William
1994-01-01
Progressive failure is a crucial concern when using laminated composites in structural design. Therefore the ability to model damage and predict the life of laminated composites is vital. The purpose of this research was to experimentally verify the application of the continuum damage model, a progressive failure theory utilizing continuum damage mechanics, to a toughened material system. Damage due to tension-tension fatigue was documented for the IM7/5260 composite laminates. Crack density and delamination surface area were used to calculate matrix cracking and delamination internal state variables, respectively, to predict stiffness loss. A damage dependent finite element code qualitatively predicted trends in transverse matrix cracking, axial splits and local stress-strain distributions for notched quasi-isotropic laminates. The predictions were similar to the experimental data and it was concluded that the continuum damage model provided a good prediction of stiffness loss while qualitatively predicting damage growth in notched laminates.
Probing the Cold Dust Emission in the AB Aur Disk: A Dust Trap in a Decaying Vortex?
Fuente, Asunción; Baruteau, Clément; Neri, Roberto; Carmona, Andrés; Agúndez, Marcelino; Goicoechea, Javier R; Bachiller, Rafael; Cernicharo, José; Berné, Olivier
2017-09-01
One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0".58×0".78 ≈ 80×110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthal variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets.
Punishment Insensitivity in Early Childhood: A Developmental, Dimensional Approach.
Nichols, Sara R; Briggs-Gowan, Margaret J; Estabrook, Ryne; Burns, James L; Kestler, Jacqueline; Berman, Grace; Henry, David B; Wakschlag, Lauren S
2015-08-01
Impairment in learning from punishment ("punishment insensitivity") is an established feature of severe antisocial behavior in adults and youth but it has not been well studied as a developmental phenomenon. In early childhood, differentiating a normal: abnormal spectrum of punishment insensitivity is key for distinguishing normative misbehavior from atypical manifestations. This study employed a novel measure, the Multidimensional Assessment Profile of Disruptive Behavior (MAP-DB), to examine the distribution, dimensionality, and external validity of punishment insensitivity in a large, demographically diverse community sample of preschoolers (3-5 years) recruited from pediatric clinics (N = 1,855). Caregivers completed surveys from which a seven-item Punishment Insensitivity scale was derived. Findings indicated that Punishment Insensitivity behaviors are relatively common in young children, with at least 50 % of preschoolers exhibiting them sometimes. Item response theory analyses revealed a Punishment Insensitivity spectrum. Items varied along a severity continuum: most items needed to occur "Often" in order to be severe and behaviors that were qualitatively atypical or intense were more severe. Although there were item-level differences across sociodemographic groups, these were small. Construct, convergent, and divergent validity were demonstrated via association to low concern for others and noncompliance, motivational regulation, and a disruptive family context. Incremental clinical utility was demonstrated in relation to impairment. Early childhood punishment insensitivity varies along a severity continuum and is atypical when it predominates. Implications for understanding the phenomenology of emergent disruptive behavior are discussed.
Hedenstierna, Sofia; Halldin, Peter
2008-04-15
A finite element (FE) model of the human neck with incorporated continuum or discrete muscles was used to simulate experimental impacts in rear, frontal, and lateral directions. The aim of this study was to determine how a continuum muscle model influences the impact behavior of a FE human neck model compared with a discrete muscle model. Most FE neck models used for impact analysis today include a spring element musculature and are limited to discrete geometries and nodal output results. A solid-element muscle model was thought to improve the behavior of the model by adding properties such as tissue inertia and compressive stiffness and by improving the geometry. It would also predict the strain distribution within the continuum elements. A passive continuum muscle model with nonlinear viscoelastic materials was incorporated into the KTH neck model together with active spring muscles and used in impact simulations. The resulting head and vertebral kinematics was compared with the results from a discrete muscle model as well as volunteer corridors. The muscle strain prediction was compared between the 2 muscle models. The head and vertebral kinematics were within the volunteer corridors for both models when activated. The continuum model behaved more stiffly than the discrete model and needed less active force to fit the experimental results. The largest difference was seen in the rear impact. The strain predicted by the continuum model was lower than for the discrete model. The continuum muscle model stiffened the response of the KTH neck model compared with a discrete model, and the strain prediction in the muscles was improved.
NASA Astrophysics Data System (ADS)
Mondelain, D.; Vasilchenko, S.; Čermák, P.; Kassi, S.; Campargue, A.
2017-01-01
The CO2 absorption continuum near 2.3 μm is determined for a series of sub atmospheric pressures (250-750 Torr) by high sensitivity Cavity Ring Down Spectroscopy. An experimental procedure consisting in injecting successively a gas flow of CO2 and synthetic air, keeping constant the gas pressure in the CRDS cell, has been developed. This procedure insures a high stability of the spectra baseline by avoiding changes of the optical alignment due to pressure changes. The CO2 continuum was obtained as the difference between the CO2 absorption coefficient and a local lines simulation using a Voigt profile truncated at ±25 cm-1. Following the results of the preceding analysis of the CO2 rovibrational lines (Vasilchenko S et al. J Quant Spectrosc Radiat Transfer 10.1016/j.jqsrt.2016.07.002, a CO2 line list with intensities obtained by variational calculations and empirical line positions was preferred to the HITRAN line list. A quadratic pressure dependence of the absorption continuum is observed, with an average binary absorption coefficient increasing from 2 to 4×10-8 cm-1 amagat-2 between 4320 and 4380 cm-1. The obtained continuum is found in good agreement with a previous measurement using much higher densities (20 amagat) and a low resolution grating spectrograph and is consistent with values currently used in the analysis of Venus spectra.
Atomic hydrogen bridge fueling NGC 4418 with gas from VV 655
NASA Astrophysics Data System (ADS)
Varenius, E.; Costagliola, F.; Klöckner, H.-R.; Aalto, S.; Spoon, H.; Martí-Vidal, I.; Conway, J. E.; Privon, G. C.; König, S.
2017-11-01
Context. The galaxy NGC 4418 harbours a compact (<20 pc) core with a very high bolometric luminosity ( 1011L⊙). As most of the galaxy energy output comes from this small region, it is of interest to determine what fuels this intense activity. An interaction with the nearby blue irregular galaxy VV 655 has been proposed, where gas acquired by NGC 4418 could trigger intense star formation and/or black hole accretion in the centre. Aims: We aim to constrain the interaction hypothesis by studying neutral hydrogen structures that could reveal tails and debris connecting NGC 4418 to the nearby galaxy VV 655. Methods: We present observations at 1.4 GHz with the Very Large Array (VLA) of the radio continuum as well as emission and absorption from atomic hydrogen. Gaussian distributions are fitted to observed HI emission and absorption spectra. We estimate the star formation rates (SFRs) of NGC 4418 and VV 655 from the 1.4 GHz radio emission and compare them with estimates from archival 70 μm Herschel observations. Results: An atomic HI bridge is seen in emission, connecting NGC 4418 to the nearby galaxy VV 655. An HI tail is also seen extending south-west from VV 655. While NGC 4418 is bright in continuum emission and seen in HI absorption, VV 655 is barely detected in the continuum, but shows bright HI emission (MHI 109 M⊙). We estimate SFRs from the 1.4 GHz continuum of 3.2 M⊙ yr-1 and 0.13 M⊙ yr-1 for NGC 4418 and VV 655, respectively. Systemic HI velocities of 2202 ± 20 km s-1 (emission) and 2105.4 ± 10 km s-1 (absorption) are measured for VV 655 and NGC 4418, respectively. Redshifted HI absorption is seen (vc = 2194.0 ± 4.4 km s-1) towards NGC 4418, suggesting gas infall. North-west of NGC 4418, we detect HI in emission, blueshifted (vc = 2061.9 ± 5.1 km s-1) with respect to NGC 4418, consistent with an outflow perpendicular to the galaxy disk. We derive a deprojected outflow speed of 178 km s-1, which, assuming a simple cylindrical model, gives an order-of-magnitude estimate of the HI mass outflow rate of 2.5 M⊙ yr-1. Conclusions: The morphology and velocity structure seen in HI is consistent with an interaction scenario where gas was transferred from VV 655 to NGC 4418. We argue that the galaxies have passed each other once, about 190 Myr ago, and that this interaction has caused the tidal HI bridge and HI tail seen today. Some gas is falling towards NGC 4418, and may fuel the activity in the centre. We interpret blueshifted HI-emission north-west of NGC 4418 as a continuation of the outflow previously reported on smaller scales, powered by star formation and/or black hole accretion in the centre. The movie associated to Fig. 4 is available at http://www.aanda.orgThe radio continuum image and the spectral cube presented in Fig. 1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A43
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zackrisson, Erik; Binggeli, Christian; Finlator, Kristian
In this study, using four different suites of cosmological simulations, we generate synthetic spectra for galaxies with different Lyman-continuum escape fractions (f (esc)) at redshiftsmore » $$z\\approx 7$$–9, in the rest-frame wavelength range relevant for the James Webb Space Telescope ( JWST) NIRSpec instrument. By investigating the effects of realistic star formation histories and metallicity distributions on the EW(Hβ)–β diagram (previously proposed as a tool for identifying galaxies with very high f (esc)), we find that neither of these effects are likely to jeopardize the identification of galaxies with extreme Lyman-continuum leakage. Based on our models, we expect that essentially all $$z\\approx 7\\mbox{–}9$$ galaxies that exhibit rest-frame $$\\mathrm{EW}({\\rm{H}}\\beta )\\lesssim 30$$ Å to have $${f}_{\\mathrm{esc}}\\gt 0.5$$. Incorrect assumptions concerning the ionizing fluxes of stellar populations or the dust properties of $$z\\gt 6$$ galaxies can in principle bias the selection, but substantial model deficiencies of this type should at the same time be evident from offsets in the observed distribution of $$z\\gt 6$$ galaxies in the EW(Hβ)–β diagram compared to the simulated distribution. Such offsets would thereby allow JWST/NIRSpec measurements of these observables to serve as input for further model refinement.« less
Zackrisson, Erik; Binggeli, Christian; Finlator, Kristian; ...
2017-02-09
In this study, using four different suites of cosmological simulations, we generate synthetic spectra for galaxies with different Lyman-continuum escape fractions (f (esc)) at redshiftsmore » $$z\\approx 7$$–9, in the rest-frame wavelength range relevant for the James Webb Space Telescope ( JWST) NIRSpec instrument. By investigating the effects of realistic star formation histories and metallicity distributions on the EW(Hβ)–β diagram (previously proposed as a tool for identifying galaxies with very high f (esc)), we find that neither of these effects are likely to jeopardize the identification of galaxies with extreme Lyman-continuum leakage. Based on our models, we expect that essentially all $$z\\approx 7\\mbox{–}9$$ galaxies that exhibit rest-frame $$\\mathrm{EW}({\\rm{H}}\\beta )\\lesssim 30$$ Å to have $${f}_{\\mathrm{esc}}\\gt 0.5$$. Incorrect assumptions concerning the ionizing fluxes of stellar populations or the dust properties of $$z\\gt 6$$ galaxies can in principle bias the selection, but substantial model deficiencies of this type should at the same time be evident from offsets in the observed distribution of $$z\\gt 6$$ galaxies in the EW(Hβ)–β diagram compared to the simulated distribution. Such offsets would thereby allow JWST/NIRSpec measurements of these observables to serve as input for further model refinement.« less
Comparison of interphase models for a crack in fiber reinforced composite
NASA Astrophysics Data System (ADS)
Kaw, A. K.; Selvarathinam, A. S.; Besterfield, G. H.
1992-07-01
The influence of a nonhomogeneous interphase on fracture mechanics of a fiber reinforced composite is studied. The stress intensity factor at the crack tips, maximum interfacial shear and normal stresses, maximum cleavage stress in the matrix and load diffusion along the length of the fiber are studied as a function of the fiber width, the interphase thickness, and the relative stiffness properties of the fiber, the matrix and the interphase. The normal stresses at the interface, which represents the possibility of debonding of the interface, is lowest for interphase thicknesses of the order of one-tenth of the fiber-diameter, when the crack is in the stiffer material. These normal stresses are highest at such interphase thicknesses if the crack is in the less stiffer material. The results obtained by using the nonhomogeneous interphase model are also compared with five other interphase models used in the literature for the interphase, namely the perfect, the homogeneous, the distributed uncoupled shear and normal springs, and the distributed shear springs. It is found that the trends of the above parameters as a function of interphase thickness are different for the spring and continuum models, if the crack is in a stiffer material.
There is Diversity in Disorder-"In all Chaos there is a Cosmos, in all Disorder a Secret Order".
Nielsen, Jakob T; Mulder, Frans A A
2016-01-01
The protein universe consists of a continuum of structures ranging from full order to complete disorder. As the structured part of the proteome has been intensively studied, stably folded proteins are increasingly well documented and understood. However, proteins that are fully, or in large part, disordered are much less well characterized. Here we collected NMR chemical shifts in a small database for 117 protein sequences that are known to contain disorder. We demonstrate that NMR chemical shift data can be brought to bear as an exquisite judge of protein disorder at the residue level, and help in validation. With the help of secondary chemical shift analysis we demonstrate that the proteins in the database span the full spectrum of disorder, but still, largely segregate into two classes; disordered with small segments of order scattered along the sequence, and structured with small segments of disorder inserted between the different structured regions. A detailed analysis reveals that the distribution of order/disorder along the sequence shows a complex and asymmetric distribution, that is highly protein-dependent. Access to ratified training data further suggests an avenue to improving prediction of disorder from sequence.
Cignarella, Andrea; Tedesco, Serena; Cappellari, Roberta; Fadini, Gian Paolo
2018-03-30
The monocyte-macrophage cell lineage represents a major player in innate immunity, and is involved in many physiologic and pathologic conditions. Particularly, monocyte-macrophages play a very important role in atherosclerosis and cardiovascular disease. Monocyte heterogeneity is well recognized but the biologic and clinical meaning of the various monocyte subtypes is not entirely understood. Traditionally, monocytes can be divided in classical, intermediate, and nonclassical based on expression of the surface antigens CD14 and CD16. While macrophage diversity is now well recognized to organize as a continuum, monocyte subsets have long been considered as separated entities. However, mounting evidence obtained by tracking the ontology of human monocytes help clarifying that monocytes mature from classical to nonclassical ones, through an intermediate phenotype. This concept is therefore best depicted as a continuum, whereas the subdivision into discrete CD14/CD16 subsets appears an oversimplification. In this review, we discuss the evidence supporting the existence of a monocyte continuum along with the technical challenges of monocyte characterization. In particular, we describe the advantage of considering monocytes along a continuous distribution for the evaluation of cardiovascular risk. We make the point that small transition along the monocyte continuum better reflects cardiovascular risk than a simplified analysis of discrete monocyte subsets. Recognizing the monocyte continuum can be helpful to model other pathophysiologic conditions where these cells are involved. ©2018 Society for Leukocyte Biology.
A multiscale model for charge inversion in electric double layers
NASA Astrophysics Data System (ADS)
Mashayak, S. Y.; Aluru, N. R.
2018-06-01
Charge inversion is a widely observed phenomenon. It is a result of the rich statistical mechanics of the molecular interactions between ions, solvent, and charged surfaces near electric double layers (EDLs). Electrostatic correlations between ions and hydration interactions between ions and water molecules play a dominant role in determining the distribution of ions in EDLs. Due to highly polar nature of water, near a surface, an inhomogeneous and anisotropic arrangement of water molecules gives rise to pronounced variations in the electrostatic and hydration energies of ions. Classical continuum theories fail to accurately describe electrostatic correlations and molecular effects of water in EDLs. In this work, we present an empirical potential based quasi-continuum theory (EQT) to accurately predict the molecular-level properties of aqueous electrolytes. In EQT, we employ rigorous statistical mechanics tools to incorporate interatomic interactions, long-range electrostatics, correlations, and orientation polarization effects at a continuum-level. Explicit consideration of atomic interactions of water molecules is both theoretically and numerically challenging. We develop a systematic coarse-graining approach to coarse-grain interactions of water molecules and electrolyte ions from a high-resolution atomistic scale to the continuum scale. To demonstrate the ability of EQT to incorporate the water orientation polarization, ion hydration, and electrostatic correlations effects, we simulate confined KCl aqueous electrolyte and show that EQT can accurately predict the distribution of ions in a thin EDL and also predict the complex phenomenon of charge inversion.
Bonthuis, Douwe Jan; Netz, Roland R
2013-10-03
Standard continuum theory fails to predict several key experimental results of electrostatic and electrokinetic measurements at aqueous electrolyte interfaces. In order to extend the continuum theory to include the effects of molecular solvent structure, we generalize the equations for electrokinetic transport to incorporate a space dependent dielectric profile, viscosity profile, and non-electrostatic interaction potential. All necessary profiles are extracted from atomistic molecular dynamics (MD) simulations. We show that the MD results for the ion-specific distribution of counterions at charged hydrophilic and hydrophobic interfaces are accurately reproduced using the dielectric profile of pure water and a non-electrostatic repulsion in an extended Poisson-Boltzmann equation. The distributions of Na(+) at both surface types and Cl(-) at hydrophilic surfaces can be modeled using linear dielectric response theory, whereas for Cl(-) at hydrophobic surfaces it is necessary to apply nonlinear response theory. The extended Poisson-Boltzmann equation reproduces the experimental values of the double-layer capacitance for many different carbon-based surfaces. In conjunction with a generalized hydrodynamic theory that accounts for a space dependent viscosity, the model captures the experimentally observed saturation of the electrokinetic mobility as a function of the bare surface charge density and the so-called anomalous double-layer conductivity. The two-scale approach employed here-MD simulations and continuum theory-constitutes a successful modeling scheme, providing basic insight into the molecular origins of the static and kinetic properties of charged surfaces, and allowing quantitative modeling at low computational cost.
A Continuum Poisson-Boltzmann Model for Membrane Channel Proteins
Xiao, Li; Diao, Jianxiong; Greene, D'Artagnan; Wang, Junmei; Luo, Ray
2017-01-01
Membrane proteins constitute a large portion of the human proteome and perform a variety of important functions as membrane receptors, transport proteins, enzymes, signaling proteins, and more. Computational studies of membrane proteins are usually much more complicated than those of globular proteins. Here we propose a new continuum model for Poisson-Boltzmann calculations of membrane channel proteins. Major improvements over the existing continuum slab model are as follows:1) The location and thickness of the slab model are fine-tuned based on explicit-solvent MD simulations. 2) The highly different accessibility in the membrane and water regions are addressed with a two-step, two-probe grid labeling procedure, and 3) The water pores/channels are automatically identified. The new continuum membrane model is optimized (by adjusting the membrane probe, as well as the slab thickness and center) to best reproduce the distributions of buried water molecules in the membrane region as sampled in explicit water simulations. Our optimization also shows that the widely adopted water probe of 1.4 Å for globular proteins is a very reasonable default value for membrane protein simulations. It gives the best compromise in reproducing the explicit water distributions in membrane channel proteins, at least in the water accessible pore/channel regions that we focus on. Finally, we validate the new membrane model by carrying out binding affinity calculations for a potassium channel, and we observe a good agreement with experiment results. PMID:28564540
Wind asymmetry imprint in the UV light curves of the symbiotic binary SY Mus
NASA Astrophysics Data System (ADS)
Shagatova, N.; Skopal, A.
2017-06-01
Context. Light curves (LCs) of some symbiotic stars show a different slope of the ascending and descending branch of their minimum profile. The origin of this asymmetry is not well understood. Aims: We explain this effect in the ultraviolet LCs of the symbiotic binary SY Mus. Methods: We model the continuum fluxes in the spectra obtained by the International Ultraviolet Explorer at ten wavelengths, from 1280 to 3080 Å. We consider that the white dwarf radiation is attenuated by H0 atoms, H- ions, and free electrons in the red giant wind. Variation in the nebular component is approximated by a sine wave along the orbit as suggested by spectral energy distribution models. The model includes asymmetric wind velocity distribution and the corresponding ionization structure of the binary. Results: We determined distribution of the H0 and H+, as well as upper limits of H- and H0 column densities in the neutral and ionized region at the selected wavelengths as functions of the orbital phase. Corresponding models of the LCs match well the observed continuum fluxes. In this way, we suggested the main UV continuum absorbing (scattering) processes in the circumbinary environment of S-type symbiotic stars. Conclusions: The asymmetric profile of the ultraviolet LCs of SY Mus is caused by the asymmetric distribution of the circumstellar matter at the near-orbital-plane area. Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A71
Exploring the Full Range of Properties of Quasar Spectral Distributions
NASA Technical Reports Server (NTRS)
Wilkes, B.
1998-01-01
The aim of this work is to support our ISO, far-infrared (IR) observing program of quasars and active galaxies. We have obtained, as far as possible, complete spectral energy distributions (radio-X-ray) of the ISO sample in order to fully delineate the continuum shapes and to allow detailed modelling of that continuum. This includes: ground-based optical, near-IR and mm data, the spectral ranges closest to the ISO data, within 1-2 years of the ISO observations themselves. ISO was launched in Nov 1995 and is currently observing routinely. It has an estimated lifetime is 2 years. All near-IR and optical imaging and spectroscopy are now in hand and in the process of being reduced, mm data collection and proposal writing continues.
Oi, Manabu; Fujino, Hiroshi; Tsukidate, Naotake; Kamio, Yoko; Yoshimura, Yuko; Kikuchi, Mitsuru; Hasegawa, Chiaki; Gondou, Keiko; Matsui, Tomoko
2017-10-01
The Japanese version of the Children's Communication Checklist-2 (CCC-2) was rated by caregivers in a large national population sample of 22,871 children aged 3-15 years. The General Communication Composite (GCC) of the CCC-2 exhibited a distribution with a single-factor structure. The GCC distribution between autism spectrum disorders (ASD) and language impairment (LI) groups in the general population fit inside a bell curve with significant overlap with the general population, and a continuum was evident between groups. No evidence of a natural cutoff that would differentiate categorically affected from unaffected children was seen. The Social Interaction Deviance Composite (SIDC) supported the notion that ASD and LI are on the opposite endpoints of a SIDC continuum of communication impairment.
Externalities and the Coase Theorem: A Diagrammatic Presentation
ERIC Educational Resources Information Center
Halteman, James
2005-01-01
In intermediate microeconomic textbooks the reciprocal nature of externalities is presented using numerical examples of costs and benefits. This treatment of the Coase theorem obscures the fact that externality costs and benefits are best understood as being on a continuum where costs vary with the degree of intensity of the externality. When…
Autonomy, Eating Disorders and Elite Gymnastics: Ethical and Conceptual Issues
ERIC Educational Resources Information Center
Bloodworth, Andrew; McNamee, Mike; Tan, Jacinta
2017-01-01
Participation in elite sport, and in particular those sports with special demands in terms of weight and shape, is associated with a higher risk for eating disorders such as anorexia nervosa [Sundgot-Borgen, J., & Torstveit, M. K. (2010). Aspects of disordered eating continuum in elite high intensity sports. "Scandinavian Journal of…
The Best Mental Health Programs Start with All Students
ERIC Educational Resources Information Center
Desrochers, John E.
2015-01-01
The most efficient and effective framework for organizing mental health services in schools is through a multitiered system of support. This framework typically features three increasingly intense tiers intervention providing a continuum of care for all students in the school, not simply those identified as having a disability. Tier 1 universal…
Singular unlocking transition in the Winfree model of coupled oscillators.
Quinn, D Dane; Rand, Richard H; Strogatz, Steven H
2007-03-01
The Winfree model consists of a population of globally coupled phase oscillators with randomly distributed natural frequencies. As the coupling strength and the spread of natural frequencies are varied, the various stable states of the model can undergo bifurcations, nearly all of which have been characterized previously. The one exception is the unlocking transition, in which the frequency-locked state disappears abruptly as the spread of natural frequencies exceeds a critical width. Viewed as a function of the coupling strength, this critical width defines a bifurcation curve in parameter space. For the special case where the frequency distribution is uniform, earlier work had uncovered a puzzling singularity in this bifurcation curve. Here we seek to understand what causes the singularity. Using the Poincaré-Lindstedt method of perturbation theory, we analyze the locked state and its associated unlocking transition, first for an arbitrary distribution of natural frequencies, and then for discrete systems of N oscillators. We confirm that the bifurcation curve becomes singular for a continuum uniform distribution, yet find that it remains well behaved for any finite N , suggesting that the continuum limit is responsible for the singularity.
ALMA sub-mm maser and dust distribution of VY Canis Majoris
NASA Astrophysics Data System (ADS)
Richards, A. M. S.; Impellizzeri, C. M. V.; Humphreys, E. M.; Vlahakis, C.; Vlemmings, W.; Baudry, A.; De Beck, E.; Decin, L.; Etoka, S.; Gray, M. D.; Harper, G. M.; Hunter, T. R.; Kervella, P.; Kerschbaum, F.; McDonald, I.; Melnick, G.; Muller, S.; Neufeld, D.; O'Gorman, E.; Parfenov, S. Yu.; Peck, A. B.; Shinnaga, H.; Sobolev, A. M.; Testi, L.; Uscanga, L.; Wootten, A.; Yates, J. A.; Zijlstra, A.
2014-12-01
Aims: Cool, evolved stars have copious, enriched winds. Observations have so far not fully constrained models for the shaping and acceleration of these winds. We need to understand the dynamics better, from the pulsating stellar surface to ~10 stellar radii, where radiation pressure on dust is fully effective. Asymmetric nebulae around some red supergiants imply the action of additional forces. Methods: We retrieved ALMA Science Verification data providing images of sub-mm line and continuum emission from VY CMa. This enables us to locate water masers with milli-arcsec accuracy and to resolve the dusty continuum. Results: The 658, 321, and 325 GHz masers lie in irregular, thick shells at increasing distances from the centre of expansion. For the first time this is confirmed as the stellar position, coinciding with a compact peak offset to the NW of the brightest continuum emission. The maser shells overlap but avoid each other on scales of up to 10 au. Their distribution is broadly consistent with excitation models but the conditions and kinematics are complicated by wind collisions, clumping, and asymmetries. Appendices are available in electronic form at http://www.aanda.org
Lipner, Hildy S; Huron, Randye F
2018-02-01
Practices in the neonatal intensive care unit (NICU) that reduce infant stress and respond to behavioral cues positively influence developmental outcomes. Proactive developmental surveillance and timely introduction of early intervention services improve outcomes for premature infants. A model that emphasizes infant development and a continuum of care beginning in the NICU with transition to outpatient monitoring and provision of early intervention services is hypothesized to support the most optimal outcomes for premature infants. Copyright © 2017 Elsevier Inc. All rights reserved.
Thermal and Nonthermal Contributions to the Solar Flare X-Ray Flux
NASA Technical Reports Server (NTRS)
Dennis, Brian R.; Phillips, K. J. H.; Sylwester, Janusz; Sylwester, Barbara; Schwartz, Richard A.; Tolbert, A. Kimberley
2004-01-01
The relative thermal and nonthermal contributions to the total energy budget of a solar flare are being determined through analysis of RHESSI X-ray imaging and spectral observations in the energy range from approx. 5 to approx. 50 keV. The classic ways of differentiating between the thermal and nonthermal components - exponential vs. sources - can now be combined for individual flares. In addition, RHESSI's sensitivity down to approx. 4 keV and energy resolution of approx. 1 keV FWHM allow the intensities and equivalent widths of the complex of highly ionized iron lines at approx. 6.7 keV and the complex of highly ionized iron and nickel lines at approx. 8 keV to be measured as a function of time. Using the spectral line and continuum intensities from the Chianti (version 4.2) atomic code, the thermal component of the total flare emission can be more reliably separated from the nonthermal component in the measured X-ray spectrum. The abundance of iron can also be determined from RHESSI line-to-continuum measurements as a function of time during larger flares. Results will be shown of the intensity and equivalent widths of these line complexes for several flares and the temperatures, emission measures, and iron abundances derived from them. Comparisons will be made with 6.7-keV Fe-line fluxes measured with the RESIK bent crystal spectrometer on the Coronas-F spacecraft operating in third order during the peak times of three flares (2002 May 31 at 00:12 UT, 2002 December 2 at 19:26 UT, and 2003 April 26 at 03:OO UT). During the rise and decay of these flares, RESIK was operating in first order allowing the continuum flux to be measured between 2.9 and 3.7 keV for comparison with RHESSI fluxes at its low-energy end.
Improving Precision, Maintaining Accuracy, and Reducing Acquisition Time for Trace Elements in EPMA
NASA Astrophysics Data System (ADS)
Donovan, J.; Singer, J.; Armstrong, J. T.
2016-12-01
Trace element precision in electron probe micro analysis (EPMA) is limited by intrinsic random variation in the x-ray continuum. Traditionally we characterize background intensity by measuring on either side of the emission line and interpolating the intensity underneath the peak to obtain the net intensity. Alternatively, we can measure the background intensity at the on-peak spectrometer position using a number of standard materials that do not contain the element of interest. This so-called mean atomic number (MAN) background calibration (Donovan, et al., 2016) uses a set of standard measurements, covering an appropriate range of average atomic number, to iteratively estimate the continuum intensity for the unknown composition (and hence average atomic number). We will demonstrate that, at least for materials with a relatively simple matrix such as SiO2, TiO2, ZrSiO4, etc. where one may obtain a matrix matched standard for use in the so called "blank correction", we can obtain trace element accuracy comparable to traditional off-peak methods, and with improved precision, in about half the time. Donovan, Singer and Armstrong, A New EPMA Method for Fast Trace Element Analysis in Simple Matrices ", American Mineralogist, v101, p1839-1853, 2016 Figure 1. Uranium concentration line profiles from quantitative x-ray maps (20 keV, 100 nA, 5 um beam size and 4000 msec per pixel), for both off-peak and MAN background methods without (a), and with (b), the blank correction applied. We see precision significantly improved compared with traditional off-peak measurements while, in this case, the blank correction provides a small but discernable improvement in accuracy.
Particle Size Distributions in Atmospheric Clouds
NASA Technical Reports Server (NTRS)
Paoli, Roberto; Shariff, Karim
2003-01-01
In this note, we derive a transport equation for a spatially integrated distribution function of particles size that is suitable for sparse particle systems, such as in atmospheric clouds. This is done by integrating a Boltzmann equation for a (local) distribution function over an arbitrary but finite volume. A methodology for evolving the moments of the integrated distribution is presented. These moments can be either tracked for a finite number of discrete populations ('clusters') or treated as continuum variables.
Numerical simulation of asphalt mixtures fracture using continuum models
NASA Astrophysics Data System (ADS)
Szydłowski, Cezary; Górski, Jarosław; Stienss, Marcin; Smakosz, Łukasz
2018-01-01
The paper considers numerical models of fracture processes of semi-circular asphalt mixture specimens subjected to three-point bending. Parameter calibration of the asphalt mixture constitutive models requires advanced, complex experimental test procedures. The highly non-homogeneous material is numerically modelled by a quasi-continuum model. The computational parameters are averaged data of the components, i.e. asphalt, aggregate and the air voids composing the material. The model directly captures random nature of material parameters and aggregate distribution in specimens. Initial results of the analysis are presented here.
Semiclassical multi-phonon theory for atom-surface scattering: Application to the Cu(111) system
NASA Astrophysics Data System (ADS)
Daon, Shauli; Pollak, Eli
2015-05-01
The semiclassical perturbation theory of Hubbard and Miller [J. Chem. Phys. 80, 5827 (1984)] is further developed to include the full multi-phonon transitions in atom-surface scattering. A practically applicable expression is developed for the angular scattering distribution by utilising a discretized bath of oscillators, instead of the continuum limit. At sufficiently low surface temperature good agreement is found between the present multi-phonon theory and the previous one-, and two-phonon theory derived in the continuum limit in our previous study [Daon, Pollak, and Miret-Artés, J. Chem. Phys. 137, 201103 (2012)]. The theory is applied to the measured angular distributions of Ne, Ar, and Kr scattered from a Cu(111) surface. We find that the present multi-phonon theory substantially improves the agreement between experiment and theory, especially at the higher surface temperatures. This provides evidence for the importance of multi-phonon transitions in determining the angular distribution as the surface temperature is increased.
NASA Astrophysics Data System (ADS)
Abdurakhmanov, I. B.; Bailey, J. J.; Kadyrov, A. S.; Bray, I.
2018-03-01
In this work, we develop a wave-packet continuum-discretization approach to ion-atom collisions that includes rearrangement processes. The total scattering wave function is expanded using a two-center basis built from wave-packet pseudostates. The exact three-body Schrödinger equation is converted into coupled-channel differential equations for time-dependent expansion coefficients. In the asymptotic region these time-dependent coefficients represent transition amplitudes for all processes including elastic scattering, excitation, ionization, and electron capture. The wave-packet continuum-discretization approach is ideal for differential ionization studies as it allows one to generate pseudostates with arbitrary energies and distribution. The approach is used to calculate the double differential cross section for ionization in proton collisions with atomic hydrogen. Overall good agreement with experiment is obtained for all considered cases.
Comparison between Smoluchowski and Boltzmann approaches for self-propelled rods.
Bertin, Eric; Baskaran, Aparna; Chaté, Hugues; Marchetti, M Cristina
2015-10-01
Considering systems of self-propelled polar particles with nematic interactions ("rods"), we compare the continuum equations describing the evolution of polar and nematic order parameters, derived either from Smoluchowski or Boltzmann equations. Our main goal is to understand the discrepancies between the continuum equations obtained so far in both frameworks. We first show that, in the simple case of point-like particles with only alignment interactions, the continuum equations obtained have the same structure in both cases. We further study, in the Smoluchowski framework, the case where an interaction force is added on top of the aligning torque. This clarifies the origin of the additional terms obtained in previous works. Our observations lead us to emphasize the need for a more involved closure scheme than the standard normal form of the distribution when dealing with active systems.
ACTIVITY-BRIGHTNESS CORRELATIONS FOR THE SUN AND SUN-LIKE STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preminger, D. G.; Chapman, G. A.; Cookson, A. M.
2011-10-01
We analyze the effect of solar features on the variability of the solar irradiance in three different spectral ranges. Our study is based on two solar-cycles' worth of full-disk photometric images from the San Fernando Observatory, obtained with red, blue, and Ca II K-line filters. For each image we measure the photometric sum, {Sigma}, which is the relative contribution of solar features to the disk-integrated intensity of the image. The photometric sums in the red and blue continuum, {Sigma}{sub r} and {Sigma}{sub b}, exhibit similar temporal patterns: they are negatively correlated with solar activity, with strong short-term variability, and weakmore » solar-cycle variability. However, the Ca II K-line photometric sum, {Sigma}{sub K}, is positively correlated with solar activity and has strong variations on solar-cycle timescales. We show that we can model the variability of the Sun's bolometric flux as a linear combination of {Sigma}{sub r} and {Sigma}{sub K}. We infer that, over solar-cycle timescales, the variability of the Sun's bolometric irradiance is directly correlated with spectral line variability, but inversely correlated with continuum variability. Our blue and red continuum filters are quite similar to the Stroemgren b and y filters used to measure stellar photometric variability. We conclude that active stars whose visible continuum brightness varies inversely with activity, as measured by the Ca HK index, are displaying a pattern that is similar to that of the Sun, i.e., radiative variability in the visible continuum that is spot-dominated.« less
Finding New Ways to Foster Clean Energy Partnerships - Continuum Magazine
market impact of the research conducted at DOE's national laboratories by doubling the intensity of . Many of these achievements stem from internal process improvements that have enhanced NREL's ability to " that factors in elements of each innovation's patentability, commercial impact, and licensing
2009-06-12
Phasing Model ......................................................................................................9 Figure 2. The Continuum of...the communist periphery. In a high-intensity conflict, doctrine at the time called for conventional forces to fight the traditional, linear fight...operations and proximity of cross component forces in a non- linear battlespace – Rigid business rules, translator applications, or manual workarounds to
NREL's Energy Systems Integration Supporting Facilities - Continuum
Integration Facility opened in December, 2012. Photo by Dennis Schroeder, NREL NREL's Energy Systems capabilities. Photo by Dennis Schroeder, NREL This research electrical distribution bus (REDB) works as a power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhdankin, Vladimir; Boldyrev, Stanislav; Perez, Jean Carlos
We investigate the intermittency of energy dissipation in magnetohydrodynamic (MHD) turbulence by identifying dissipative structures and measuring their characteristic scales. We find that the probability distribution of energy dissipation rates exhibits a power-law tail with an index very close to the critical value of –2.0, which indicates that structures of all intensities contribute equally to energy dissipation. We find that energy dissipation is uniformly spread among coherent structures with lengths and widths in the inertial range. At the same time, these structures have thicknesses deep within the dissipative regime. As the Reynolds number is increased, structures become thinner and moremore » numerous, while the energy dissipation continues to occur mainly in large-scale coherent structures. This implies that in the limit of high Reynolds number, energy dissipation occurs in thin, tightly packed current sheets which nevertheless span a continuum of scales up to the system size, exhibiting features of both coherent structures and nanoflares previously conjectured as a coronal heating mechanism.« less
Polarized radio emission from the edge-on spiral galaxies NGC 891 and NGC 4565
NASA Technical Reports Server (NTRS)
Sukumar, S.; Allen, R. J.
1991-01-01
Results are presented, at a resolution of 20 arcsec, of observations of the distribution of radio continuum intensity and linear polarization with the VLA in two nearby edge-on spiral galaxies, NGC 891 and NGC 4565, at 6 and 20 cm, respectively. A unified model is presented to account for the main features of the radio polarization in these two galaxies. The model geometry is determined from recent observations of face-on galaxies where the polarized emission is found to be strongest in the dark inter-arm and outer parts of the disks. A substantial Z-thickness is ascribed to this polarized emission. It is shown that the exceptionally strong wavelength dependence of this type of Faraday depolarization can result in edge-on galaxies becoming rapidly 'Faraday thick' at decimeter wavelengths, thereby obliterating the polarization from regions on the dark side of the disk. The degree of polarization observed in both galaxies increases strongly with increasing Z-distance from the plane.
The Mg II h and k lines. II - Comparison with synthesized profiles and Ca II K. [solar spectra
NASA Technical Reports Server (NTRS)
Ayres, T. R.; Linsky, J. L.
1976-01-01
Measured high-dispersion center and limb profiles of the solar Mg II h and k resonance lines are compared with synthetic spectra computed with a partial-redistribution formalism and based on several upper-photosphere and lower-chromosphere temperature distributions. Profiles of the analogously formed Ca II K resonance line are also synthesized for the same atmospheric models. The spectrum-synthesis approach is outlined, and the collisional and fixed radiative rates appropriate to the adopted model atoms and solar atmosphere are discussed. It is found that the HSRA and VAL models predict systematically lower intensities in the h, k, and K inner wings than observed and that models with a somewhat higher minimum temperature (about 4450 K) can reproduce the measured inner wings and limb darkening. A 'Ca II' solar model with a minimum temperature of 4450 K is proposed as an alternative to the class of models based on continuum observations.
Analytic quantum-interference conditions in Coulomb corrected photoelectron holography
NASA Astrophysics Data System (ADS)
Maxwell, A. S.; Al-Jawahiry, A.; Lai, X. Y.; Figueira de Morisson Faria, C.
2018-02-01
We provide approximate analytic expressions for above-threshold ionization (ATI) transition probabilities and photoelectron angular distributions. These analytic expressions are more general than those existing in the literature and include the residual binding potential in the electron continuum propagation. They successfully reproduce the ATI side lobes and specific holographic structures such as the near-threshold fan-shaped pattern and the spider-like structure that extends up to relatively high photoelectron energies. We compare such expressions with the Coulomb quantum orbit strong-field approximation (CQSFA) and the full solution of the time-dependent Schrödinger equation for different driving-field frequencies and intensities, and provide an in-depth analysis of the physical mechanisms behind specific holographic structures. Our results shed additional light on what aspects of the CQSFA must be prioritized in order to obtain the key holographic features, and highlight the importance of forward scattered trajectories. Furthermore, we find that the holographic patterns change considerably for different field parameters, even if the Keldysh parameter is kept roughly the same.
NASA Astrophysics Data System (ADS)
Schorghofer, Norbert
2015-05-01
On the Moon, water molecules and other volatiles are thought to migrate along ballistic trajectories. Here, this migration process is described in terms of a two-dimensional partial differential equation for the surface concentration, based on the probability distribution of thermal ballistic hops. A random-walk model, a corresponding diffusion coefficient, and a continuum description are provided. In other words, a surface-bounded exosphere is described purely in terms of quantities on the surface, which can provide computational and conceptual advantages. The derived continuum equation can be used to calculate the steady-state distribution of the surface concentration of volatile water molecules. An analytic steady-state solution is obtained for an equatorial ring; it reveals the width and mass of the pileup of molecules at the morning terminator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Yunhee; Lee, Jeong-Eun; Bourke, Tyler L.
We present observations and analyses of the low-mass star-forming region, Taurus Molecular Cloud-1 (TMC-1). CS ( J = 2–1)/N{sub 2}H{sup +} ( J = 1–0) and C{sup 17}O ( J = 2–1)/C{sup 18}O ( J = 2–1) were observed with the Five College Radio Astronomy Observatory and the Seoul Radio Astronomy Observatory, respectively. In addition, Spitzer infrared data and 1.2 mm continuum data observed with Max-Planck Millimetre Bolometer are used. We also perform chemical modeling to investigate the relative molecular distributions of the TMC-1 filament. Based on Spitzer observations, there is no young stellar object along the TMC-1 filament, while five Classmore » II and one Class I young stellar objects are identified outside the filament. The comparison between column densities calculated from dust continuum and C{sup 17}O 2–1 line emission shows that CO is depleted much more significantly in the ammonia peak than in the cyanopolyyne peak, while the column densities calculated from the dust continuum are similar at the two peaks. N{sub 2}H{sup +} is not depleted much in either peak. According to our chemical calculation, the differential chemical distribution in the two peaks can be explained by different timescales required to reach the same density, i.e., by different dynamical processes.« less
Understanding the HMI Pseudocontinuum in White-light Solar Flares
NASA Astrophysics Data System (ADS)
Švanda, Michal; Jurčák, Jan; Kašparová, Jana; Kleint, Lucia
2018-06-01
We analyze observations of the X9.3 solar flare (SOL2017-09-06T11:53) observed by SDO/HMI and Hinode/Solar Optical Telescope. Our aim is to learn about the nature of the HMI pseudocontinuum I c used as a proxy for the white-light continuum. From model atmospheres retrieved by an inversion code applied to the Stokes profiles observed by the Hinode satellite, we synthesize profiles of the Fe I 617.3 nm line and compare them to HMI observations. Based on a pixel-by-pixel comparison, we show that the value of I c represents the continuum level well in quiet-Sun regions only. In magnetized regions, it suffers from a simplistic algorithm that is applied to a complex line shape. During this flare, both instruments also registered emission profiles in the flare ribbons. Such emission profiles are poorly represented by the six spectral points of HMI and the MDI-like algorithm does not account for emission profiles in general; thus, the derived pseudocontinuum intensity does not approximate the continuum value properly.
Smith, Ronald J; Jennings, Jerry L; Cimino, Anthony
2010-01-01
This study presents the long-term outcomes of a continuum of care program for co-occurring psychiatric disabilities and chemical dependency that has been recognized as a best practice model by the American Psychological Association's Committee for the Advancement of Professional Practice's Task Force on Serious Mental Illness and Severe Emotional Disturbance (APA/CAPP, 2007). Since publication of the initial positive outcomes for 18 men in 2002, this innovative recovery program continued to successfully reintegrate a total of 91 men and women with severe co-occurring disabilities who had been acquitted of violent crimes by reason of insanity (NGRI). This follow-up study showed continued positive outcomes for an additional 73 program graduates in terms of non-reoffending, psychiatric stability, substance abuse abstinence, stable housing and meaningful activity. In contrast to other studies that have applied Assertive Community Treatment and Intensive Case Management to populations with forensic issues and failed to reduce criminal recidivism, this continuum of care recovery model had strong results in preventing criminal recidivism in addition to achieving improved mental health, abstinence and quality of life.
Neurologic continuum of care: Evidence-based model of a post-hospital system of care.
Lewis, Frank D; Horn, Gordon J
2015-01-01
There is increasing need for a well-organized continuum of post-hospital rehabilitative care to reduce long term disability resulting from acquired brain injury. This study examined the effectiveness of four levels of post-hospital care (active neurorehabilitation, neurobehavioral intensive, day treatment, and supported living) and the functional variables most important to their success. Participants were 1276 adults with acquired brain injury who were being treated in one of the four program levels. A Repeated Measures MANOVA was used to evaluate change from admission to discharge on the Mayo Portland Adaptability Inventory-4 T-scores. Regression analyses were used to identify predictors of outcome. Statistical improvement on the MPAI-4 was observed at each program level. Self-care and Initiation were the strongest predictors of outcome. The results support the effectiveness of a continuum of care for acquired brain injury individuals beyond hospitalization and acute in-hospital rehabilitation. It is particularly noteworthy that reduction in disability was achieved for all levels of programming even with participants whose onset to admission exceeded 7 years post-injury.
NASA Astrophysics Data System (ADS)
Challis, R. E.; Tebbutt, J. S.; Holmes, A. K.
1998-12-01
The aim of this paper is to present a unified approach to the calculation of the complex wavenumber for a randomly distributed ensemble of homogeneous isotropic spheres suspended in a homogeneous isotropic continuum. Three classical formulations of the diffraction problem for a compression wave incident on a single particle are reviewed; the first is for liquid particles in a liquid continuum (Epstein and Carhart), the second for solid or liquid particles in a liquid continuum (Allegra and Hawley), and the third for solid particles in a solid continuum (Ying and Truell). Equivalences between these formulations are demonstrated and it is shown that the Allegra and Hawley formulation can be adapted to provide a basis for calculation in all three regimes. The complex wavenumber that results from an ensemble of such scatterers is treated using the formulations of Foldy (simple forward scattering), Waterman and Truell, and Lloyd and Berry (multiple scattering). The analysis is extended to provide an approximation for the case of a distribution of particle sizes in the mixture. A number of experimental measurements using a broadband spectrometric technique (reported elsewhere) to obtain the attenuation coefficient and phase velocity as functions of frequency are presented for various mixtures of differing contrasts in physical properties between phases in order to provide a comparison with theory. The materials used were aqueous suspensions of polystyrene spheres, silica spheres, iron spheres, 0022-3727/31/24/012/img1 pigment (AHR), droplets of 1-bromohexadecane, and a suspension of talc particles in a cured epoxy resin.
Global Infrared–Radio Spectral Energy Distributions of Galactic Massive Star-Forming Regions
NASA Astrophysics Data System (ADS)
Povich, Matthew Samuel; Binder, Breanna Arlene
2018-01-01
We present a multiwavelength study of 30 Galactic massive star-forming regions. We fit multicomponent dust, blackbody, and power-law continuum models to 3.6 µm through 10 mm spectral energy distributions obtained from Spitzer, MSX, IRAS, Herschel, and Planck archival survey data. Averaged across our sample, ~20% of Lyman continuum photons emitted by massive stars are absorbed by dust before contributing to the ionization of H II regions, while ~50% of the stellar bolometric luminosity is absorbed and reprocessed by dust in the H II regions and surrounding photodissociation regions. The most luminous, infrared-bright regions that fully sample the upper stellar initial mass function (ionizing photon rates NC ≥ 1050 s–1 and total infrared luminosity LTIR ≥ 106.8 L⊙) have higher percentages of absorbed Lyman continuum photons (~40%) and dust-reprocessed starlight (~80%). The monochromatic 70-µm luminosity L70 is linearly correlated with LTIR, and on average L70/LTIR = 50%, in good agreement with extragalactic studies. Calibrated against the known massive stellar content in our sampled H II regions, we find that star formation rates based on L70 are in reasonably good agreement with extragalactic calibrations, when corrected for the smaller physical sizes of the Galactic regions. We caution that absorption of Lyman continuum photons prior to contributing to the observed ionizing photon rate may reduce the attenuation-corrected Hα emission, systematically biasing extragalactic calibrations toward lower star formation rates when applied to spatially-resolved studies of obscured star formation.This work was supported by the National Science Foundation under award CAREER-1454333.
TEMPORAL EVOLUTION AND SPATIAL DISTRIBUTION OF WHITE-LIGHT FLARE KERNELS IN A SOLAR FLARE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawate, T.; Ishii, T. T.; Nakatani, Y.
2016-12-10
On 2011 September 6, we observed an X2.1-class flare in continuum and H α with a frame rate of about 30 Hz. After processing images of the event by using a speckle-masking image reconstruction, we identified white-light (WL) flare ribbons on opposite sides of the magnetic neutral line. We derive the light curve decay times of the WL flare kernels at each resolution element by assuming that the kernels consist of one or two components that decay exponentially, starting from the peak time. As a result, 42% of the pixels have two decay-time components with average decay times of 15.6 andmore » 587 s, whereas the average decay time is 254 s for WL kernels with only one decay-time component. The peak intensities of the shorter decay-time component exhibit good spatial correlation with the WL intensity, whereas the peak intensities of the long decay-time components tend to be larger in the early phase of the flare at the inner part of the flare ribbons, close to the magnetic neutral line. The average intensity of the longer decay-time components is 1.78 times higher than that of the shorter decay-time components. If the shorter decay time is determined by either the chromospheric cooling time or the nonthermal ionization timescale and the longer decay time is attributed to the coronal cooling time, this result suggests that WL sources from both regions appear in 42% of the WL kernels and that WL emission of the coronal origin is sometimes stronger than that of chromospheric origin.« less
Probing the Cold Dust Emission in the AB Aur Disk: A Dust Trap in a Decaying Vortex?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuente, Asunción; Bachiller, Rafael; Baruteau, Clément
One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0.″58 × 0.″78 ≈ 80 × 110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthalmore » variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets.« less
An Azimuthal Asymmetry in the LkHα 330 Disk
NASA Astrophysics Data System (ADS)
Isella, Andrea; Pérez, Laura M.; Carpenter, John M.; Ricci, Luca; Andrews, Sean; Rosenfeld, Katherine
2013-09-01
Theory predicts that giant planets and low mass stellar companions shape circumstellar disks by opening annular gaps in the gas and dust spatial distribution. For more than a decade it has been debated whether this is the dominant process that leads to the formation of transitional disks. In this paper, we present millimeter-wave interferometric observations of the transitional disk around the young intermediate mass star LkHα 330. These observations reveal a lopsided ring in the 1.3 mm dust thermal emission characterized by a radius of about 100 AU and an azimuthal intensity variation of a factor of two. By comparing the observations with a Gaussian parametric model, we find that the observed asymmetry is consistent with a circular arc, that extends azimuthally by about 90° and emits about 1/3 of the total continuum flux at 1.3 mm. Hydrodynamic simulations show that this structure is similar to the azimuthal asymmetries in the disk surface density that might be produced by the dynamical interaction with unseen low mass companions orbiting within 70 AU from the central star. We argue that such asymmetries might lead to azimuthal variations in the millimeter-wave dust opacity and in the dust temperature, which will also affect the millimeter-wave continuum emission. Alternative explanations for the observed asymmetry that do not require the presence of companions cannot be ruled out with the existing data. Further observations of both the dust and molecular gas emission are required to derive firm conclusions on the origin of the asymmetry observed in the LkHα 330 disk.
Metal line blanketing and opacity in the ultraviolet of alpha 2 Canum Venaticorum
NASA Technical Reports Server (NTRS)
Molnar, M. R.
1972-01-01
Ultraviolet photometry by OAO-2 was made of alpha 2 CVn covering the entire 5.5d period of this magnetic Ap variable. The light curves ranging from 1330 A to 3320 A indicate the dominant role of rare-earth line-blanketing in redistributing flux. In a broad depression of the continuum covering 2300-2600 A, scanner observations possibly identify strong lines of Eu III as major contributors to this feature. At maximum intensity of the rare-earth lines, the ultraviolet continuum shortward of 2900 A is greatly diminished while the longer wavelength regions into the visual become brighter. In addition, there is evidence that the hydrogen line opacity is variable and the photoionization edge of Si I at 1680 A is identified.
Measurements of the structure of an ionizing shock wave in a hydrogen-helium mixture
NASA Technical Reports Server (NTRS)
Leibowitz, L. P.
1972-01-01
Shock structure during ionization of a hydrogen-helium mixture was studied using hydrogen line and continuum emission measurements. A reaction scheme is proposed which includes hydrogen dissociation and a two-step excitation-ionization mechanism for hydrogen ionization by atom-atom and atom-electron collisions. Agreement was achieved between numerical calculations and measurements of emission intensity as a function of time for shock velocities from 13 to 20 km/sec in a 0.208 H2 - 0.792 He mixture. The electron temperature was found to be significantly different from the heavy particle temperature during much of the ionization process. Similar time histories for H beta and continuum emission indicate upper level populations of hydrogen in equilibrium with the electron concentration during the relaxation process.
Measurements of the structure of an ionizing shock wave in a hydrogen-helium mixture.
NASA Technical Reports Server (NTRS)
Leibowitz, L. P.
1973-01-01
Shock structure during ionization of a hydrogen-helium mixture has been followed using hydrogen line and continuum emission measurements. A reaction scheme is proposed which includes hydrogen dissociation and a two-step excitation-ionization mechanism for hydrogen ionization by atom-atom and atom-electron collisions. Agreement has been achieved between numerical calculations and measurements of emission intensity as a function of time for shock velocities from 13 to 20 km/sec in a 0.208 H2-0.792 He mixture. The electron temperature was found to be significantly different from the heavy particle temperature during much of the ionization process. Similar time histories for H beta and continuum emission indicate upper level populations of hydrogen in equilibrium with the electron concentration during the relaxation process.
An analysis of scattered light in low dispersion IUE spectra
NASA Technical Reports Server (NTRS)
Basri, G.; Clarke, J. T.; Haisch, B. M.
1985-01-01
A detailed numerical simulation of light scattering from the low-resolution grating in the short wavelength spectrograph of the IUE Observatory was developed, in order to quantitatively analyze the effects of scattering on both continuum and line emission spectra. It is found that: (1) the redistribution of light by grating scattering did not appreciably alter either the shape or the absolute flux level of continuum spectra for A-F stars; (2) late-type stellar continua showed a tendency to flatten when observed in scattered light toward the shorter wavelengths; and (3) the effect of grating scattering on emission lines is to decrease measured line intensities by an increasing percentage toward the shorter wavelengths. The spectra obtained from scattering experiments for solar-type and late type stars are reproduced in graphic form.
Energy transfer by radiation in non-grey atomic gases in isothermal and non-isothermal slabs
NASA Technical Reports Server (NTRS)
Poon, P. T. Y.
1975-01-01
A multiband model for the absorption coefficient of atomic hydrogen-helium plasmas is constructed which includes continuum and line contributions. Emission from 28 stronger lines of 106 that have been screened is considered, of which 21 are from hydrogen and 7 belong to helium, with reabsorption due to line-line, line-continuum overlap accurately accounted for. The model is utilized in the computation of intensities and fluxes from shock-heated slabs of 85% H2-15% He mixtures for slab thicknesses from 1 to 30 cm, temperature from 10,000 to 20,000 K, and for different densities. In conjunction with the multiband model, simple numerical schemes have been devised which provide a quick and comprehensive way of computing radiative energy transfer in nonisothermal and nongrey gases.
Collisional-radiative nonequilibrium in partially ionized atomic nitrogen
NASA Technical Reports Server (NTRS)
Kunc, J. A.; Soon, W. H.
1989-01-01
A nonlinear collisional-radiative model for determination of nonequilibrium production of electrons, excited atoms, and bound-bound, dielectronic and continuum line intensities in stationary partially ionized atomic nitrogen is presented. Populations of 14 atomic levels and line intensities are calculated in plasma with T(e) = 8000-15,000 K and N(t) = 10 to the 12th - 10 to the 18th/cu cm. Transport of radiation is included by coupling the rate equations of production of the electrons and excited atoms with the radiation escape factors, which are not constant but depend on plasma conditions.
Initial Results from Fitting Resolved Modes using HMI Intensity Observations
NASA Astrophysics Data System (ADS)
Korzennik, Sylvain G.
2017-08-01
The HMI project recently started processing the continuum intensity images following global helioseismology procedures similar to those used to process the velocity images. The spatial decomposition of these images has produced time series of spherical harmonic coefficients for degrees up to l=300, using a different apodization than the one used for velocity observations. The first 360 days of observations were processed and made available. I present initial results from fitting these time series using my state of the art fitting methodology and compare the derived mode characteristics to those estimated using co-eval velocity observations.
1.0 Mm Maps and Radial Density Distributions of Southern Hii/molecular Cloud Complexes
NASA Technical Reports Server (NTRS)
Cheung, L. H.; Frogel, J. A.; Gezar, D. Y.; Hauser, M. G.
1980-01-01
Several 1.0 continuum mapping observations were made of seven southern hemisphere h12/molecular cloud complexes with 65 arcsec resolution. The radial density distribution of the clouds with central luminosity sources was determined observationally. Strong similarities in morphology and general physical conditions were found to exist among all of the southern clouds in the sample.
DAVE CURRIE; JOSEPH M. WUNDERLE JR.; DAVID N. EWERT; ANCILLENO DAVIS; ZEKO MCKENZIE
2005-01-01
We studied winter avian distribution and relative abundance in six common terrestrial broadleaf habitats, selected on a continuum of disturbance from recently disturbed (abandoned plantation) to mature vegetation (tall coppice), on the island of Eleuthera, The Bahamas. During 158-point counts conducted 22 Januaryâ10 March 2003, 1357 individuals were detected,...
Predicted continuum spectra of type II supernovae - LTE results
NASA Technical Reports Server (NTRS)
Shaviv, G.; Wehrse, R.; Wagoner, R. V.
1985-01-01
The continuum spectral energy distribution of the flux emerging from type II supernovae is calculated from quasi-static radiative transfer through a power-law density gradient, assuming radiative equilibrium and LTE. It is found that the Balmer jump disappears at high effective temperatures and low densities, while the spectrum resembles that of a dilute blackbody but is flatter with a sharper cutoff at the short-wavelength end. A significant UV excess is found in all models calculated. The calculation should be considered exploratory because of significant effects which are anticipated to arise from departure from LTE.
NASA Astrophysics Data System (ADS)
Zhang, G. L.; Zhang, G. X.; Lin, C. J.; Lubian, J.; Rangel, J.; Paes, B.; Ferreira, J. L.; Zhang, H. Q.; Qu, W. W.; Jia, H. M.; Yang, L.; Ma, N. R.; Sun, L. J.; Wang, D. X.; Zheng, L.; Liu, X. X.; Chu, X. T.; Yang, J. C.; Wang, J. S.; Xu, S. W.; Ma, P.; Ma, J. B.; Jin, S. L.; Bai, Z.; Huang, M. R.; Zang, H. L.; Yang, B.; Liu, Y.
2018-04-01
The elastic scattering angular distributions were measured for 50- and 59-MeV 17F radioactive ion beam on a 89Y target. The aim of this work is to study the effect of the breakup of the proton halo projectile on the elastic scattering angular distribution. The experimental data were analyzed by means of the optical model with the double-folding São Paulo potential for both real and imaginary parts. The theoretical calculations reproduced the experimental data reasonably well. It is shown that the method of the data analysis is correct. In order to clarify the difference observed at large angles for the 59-MeV incident energy data, Continuum-Discretized Coupled-Channels (CDCC) calculations were performed to consider the breakup coupling effect. It is found that the experimental data show the Coulomb rainbow peak and that the effect of the coupling to the continuum states is not very significant, producing only a small hindrance of the Coulomb rainbow peak and a very small enhancement of the elastic scattering angular distribution at backward angles, suggesting that the multipole response of the neutron halo projectiles is stronger than that of the proton halo systems.
Convergence of the Bouguer-Beer law for radiation extinction in particulate media
NASA Astrophysics Data System (ADS)
Frankel, A.; Iaccarino, G.; Mani, A.
2016-10-01
Radiation transport in particulate media is a common physical phenomenon in natural and industrial processes. Developing predictive models of these processes requires a detailed model of the interaction between the radiation and the particles. Resolving the interaction between the radiation and the individual particles in a very large system is impractical, whereas continuum-based representations of the particle field lend themselves to efficient numerical techniques based on the solution of the radiative transfer equation. We investigate radiation transport through discrete and continuum-based representations of a particle field. Exact solutions for radiation extinction are developed using a Monte Carlo model in different particle distributions. The particle distributions are then projected onto a concentration field with varying grid sizes, and the Bouguer-Beer law is applied by marching across the grid. We show that the continuum-based solution approaches the Monte Carlo solution under grid refinement, but quickly diverges as the grid size approaches the particle diameter. This divergence is attributed to the homogenization error of an individual particle across a whole grid cell. We remark that the concentration energy spectrum of a point-particle field does not approach zero, and thus the concentration variance must also diverge under infinite grid refinement, meaning that no grid-converged solution of the radiation transport is possible.
Universal characteristics of fractal fluctuations in prime number distribution
NASA Astrophysics Data System (ADS)
Selvam, A. M.
2014-11-01
The frequency of occurrence of prime numbers at unit number spacing intervals exhibits self-similar fractal fluctuations concomitant with inverse power law form for power spectrum generic to dynamical systems in nature such as fluid flows, stock market fluctuations and population dynamics. The physics of long-range correlations exhibited by fractals is not yet identified. A recently developed general systems theory visualizes the eddy continuum underlying fractals to result from the growth of large eddies as the integrated mean of enclosed small scale eddies, thereby generating a hierarchy of eddy circulations or an inter-connected network with associated long-range correlations. The model predictions are as follows: (1) The probability distribution and power spectrum of fractals follow the same inverse power law which is a function of the golden mean. The predicted inverse power law distribution is very close to the statistical normal distribution for fluctuations within two standard deviations from the mean of the distribution. (2) Fractals signify quantum-like chaos since variance spectrum represents probability density distribution, a characteristic of quantum systems such as electron or photon. (3) Fractal fluctuations of frequency distribution of prime numbers signify spontaneous organization of underlying continuum number field into the ordered pattern of the quasiperiodic Penrose tiling pattern. The model predictions are in agreement with the probability distributions and power spectra for different sets of frequency of occurrence of prime numbers at unit number interval for successive 1000 numbers. Prime numbers in the first 10 million numbers were used for the study.
Constitutive Modeling of Nanotube/Polymer Composites with Various Nanotube Orientations
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Gates, Thomas S.
2002-01-01
In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT) with various orientations with respect to the bulk material coordinates. A nanotube, the local polymer adjacent to the nanotube, and the nanotube/polymer interface have been modeled as an equivalent-continuum fiber by using an equivalent-continuum modeling method. The equivalent-continuum fiber accounts for the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composite. As an example, the proposed approach is used for the constitutive modeling of a SWNT/LaRC-SI (with a PmPV interface) composite system, with aligned nanotubes, three-dimensionally randomly oriented nanotubes, and nanotubes oriented with varying degrees of axisymmetry. It is shown that the Young s modulus is highly dependent on the SWNT orientation distribution.
Measurements of hydrogen-helium radiation at shock-layer temperatures appropriate for Jupiter entry.
NASA Technical Reports Server (NTRS)
Cooper, D. M.; Borucki, W. J.
1973-01-01
Shock waves traveling at approximately 16 km/sec into a gas mixture of 7% H2 and 93% He were used to simulate the shock-layer conditions for a representative shallow entry into the Jovian atmosphere. The absolute intensities of line and continuum radiation were measured and the radiative cooling of the shock-heated gas is shown.
Deep echelle spectrophotometry of S 311, a Galactic HII region located outside the solar circle
NASA Astrophysics Data System (ADS)
García-Rojas, J.; Esteban, C.; Peimbert, A.; Peimbert, M.; Rodríguez, M.; Ruiz, M. T.
2005-09-01
We present echelle spectrophotometry of the Galactic HII region S 311. The data have been taken with the Very Large Telescope Ultraviolet-Visual Echelle Spectrograph in the 3100-10400 Årange. We have measured the intensities of 263 emission lines; 178 are permitted lines of H0, D0 (deuterium), He0, C0, C+, N0, N+, O0, O+, S+, Si0, Si+, Ar0 and Fe0; some of them are produced by recombination and others mainly by fluorescence. Physical conditions have been derived using different continuum- and line-intensity ratios. We have derived He+, C++ and O++ ionic abundances from pure recombination lines as well as abundances from collisionally excited lines for a large number of ions of different elements. We have obtained consistent estimations of t2 applying different methods. We have found that the temperature fluctuations paradigm is consistent with the Te(HeI) versus Te(HI) relation for HII regions, in contrast with what has been found for planetary nebulae. We report the detection of deuterium Balmer lines up to Dδ in the blue wings of the hydrogen lines, whose excitation mechanism seems to be continuum fluorescence.
The Circumstellar Disk HD 169142: Gas, Dust, and Planets Acting in Concert?
NASA Astrophysics Data System (ADS)
Pohl, A.; Benisty, M.; Pinilla, P.; Ginski, C.; de Boer, J.; Avenhaus, H.; Henning, Th.; Zurlo, A.; Boccaletti, A.; Augereau, J.-C.; Birnstiel, T.; Dominik, C.; Facchini, S.; Fedele, D.; Janson, M.; Keppler, M.; Kral, Q.; Langlois, M.; Ligi, R.; Maire, A.-L.; Ménard, F.; Meyer, M.; Pinte, C.; Quanz, S. P.; Sauvage, J.-F.; Sezestre, É.; Stolker, T.; Szulágyi, J.; van Boekel, R.; van der Plas, G.; Villenave, M.; Baruffolo, A.; Baudoz, P.; Le Mignant, D.; Maurel, D.; Ramos, J.; Weber, L.
2017-11-01
HD 169142 is an excellent target for investigating signs of planet-disk interaction due to previous evidence of gap structures. We perform J-band (˜1.2 μm) polarized intensity imaging of HD 169142 with VLT/SPHERE. We observe polarized scattered light down to 0.″16 (˜19 au) and find an inner gap with a significantly reduced scattered-light flux. We confirm the previously detected double-ring structure peaking at 0.″18 (˜21 au) and 0.″56 (˜66 au) and marginally detect a faint third gap at 0.″70-0.″73 (˜82-85 au). We explore dust evolution models in a disk perturbed by two giant planets, as well as models with a parameterized dust size distribution. The dust evolution model is able to reproduce the ring locations and gap widths in polarized intensity but fails to reproduce their depths. However, it gives a good match with the ALMA dust continuum image at 1.3 mm. Models with a parameterized dust size distribution better reproduce the gap depth in scattered light, suggesting that dust filtration at the outer edges of the gaps is less effective. The pileup of millimeter grains in a dust trap and the continuous distribution of small grains throughout the gap likely require more efficient dust fragmentation and dust diffusion in the dust trap. Alternatively, turbulence or charging effects might lead to a reservoir of small grains at the surface layer that is not affected by the dust growth and fragmentation cycle dominating the dense disk midplane. The exploration of models shows that extracting planet properties such as mass from observed gap profiles is highly degenerate. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO program 095.C-0273.
Online Spectral Fit Tool for Analyzing Reflectance Spectra
NASA Astrophysics Data System (ADS)
Penttilä, A.; Kohout, T.
2015-11-01
The Online Spectral Fit Tool is developed for analyzing Vis-NIR spectral behavior of asteroids and meteorites. Implementation is done using JavaScript/HTML. Fitted spectra consist of spline continuum and gamma distributions for absorption bands.
A Biomonitoring Framework to Support Exposure and Risk Assessments
Background - Biomonitoring is used in exposure and risk assessments to reduce uncertainties along the source-to-outcome continuum. Specifically, biomarkers can help identify exposure sources, routes, and distributions, and reflect kinetic and dynamic processes following exposure ...
Properties of R136a as derived from its optical light distribution
NASA Technical Reports Server (NTRS)
Chu, Y.-H.; Wolfire, M. G.; Cassinelli, J. P.
1984-01-01
Short exposure 4 m prime focus plates taken with interference filters centered on blue continuum 4765 A, He II 4686 line, red continuum 6485 A, and H-alpha line have been used to study the light distribution within R136a. R136a contains a bright component and several fainter components superposed on an extended background. The brightest component, unresolved under sub-arcsec seeing condition, contributes about 37 percent of the total light from a 3 in. diameter aperture. Combining the optical and UV information, it is found that this brightest component R136a1 may be a single star with a mass of approximately 750 solar masses with a brightness of six HD 93129A or 20 O3 V stars, or it could be a cluster of such stars. In either case, R136a1 supplies no more than one-half of the ionization of the 30 Doradus nebula.
Properties of R136a as derived from its optical light distribution
NASA Astrophysics Data System (ADS)
Chu, Y. H.; Cassinelli, J. P.; Wolfire, M. G.
1984-08-01
Short exposure 4 m prime focus plates taken with interference filters centered on blue continuum 4765 A, He II 4686 line, red continuum 6485 A, and H-alpha line have been used to study the light distribution within R136a. R136a contains a bright component and several fainter components superposed on an extended background. The brightest component, unresolved under sub-arcsec seeing condition, contributes about 37 percent of the total light from a 3 in. diameter aperture. Combining the optical and UV information, it is found that this brightest component R136a1 may be a single star with a mass of approximately 750 solar masses with a brightness of six HD 93129A or 20 O3 V stars, or it could be a cluster of such stars. In either case, R136a1 supplies no more than one-half of the ionization of the 30 Doradus nebula.
Photoionization of hydrogen in a strong static electric field
NASA Astrophysics Data System (ADS)
Ohgoda, Shun; Tolstikhin, Oleg I.; Morishita, Toru
2017-04-01
We analyze photoionization of hydrogen in the presence of a strong static electric field F ˜0.1 a.u. Such a field essentially modifies the spectrum of the unperturbed atom. Even the ground n =1 state acquires a non-negligible width, while the higher field-free bound states become overlapping resonances. At the same time, static-field-induced states (SFISs) found recently [A. V. Gets and O. I. Tolstikhin, Phys. Rev. A 87, 013419 (2013), 10.1103/PhysRevA.87.013419] emerge in the field-free continuum. We formulate the theory of photoionization from a decaying initial state and define appropriate observables—the reduced photoionization rate and transverse momentum distribution of photoelectrons. These observables are calculated for the four initial states with n =1 and 2 in the different polarization cases. The SFISs are shown to manifest themselves as distinct peaks in the observables. Remarkably, even broad SFISs can be seen as narrow well-pronounced peaks at fields where their widths are comparable to that of the initial state. Such a resonance enhancement of the manifestations of SFISs is the main finding of this paper. This finding suggests that SFISs should manifest themselves also in photoelectron momentum distributions produced by photoionization in the presence of a quasistatic field of intense low-frequency laser pulses currently used in strong-field physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peck, C. L.; Rast, M. P.
2015-08-01
Solar irradiance variations over solar rotational timescales are largely determined by the passage of magnetic structures across the visible solar disk. Variations on solar cycle timescales are thought to be similarly due to changes in surface magnetism with activity. Understanding the contribution of magnetic structures to total solar irradiance and solar spectral irradiance requires assessing their contributions as a function of disk position. Since only relative photometry is possible from the ground, the contrasts of image pixels are measured with respect to a center-to-limb intensity profile. Using nine years of full-disk red and blue continuum images from the Precision Solarmore » Photometric Telescope at the Mauna Loa Solar Observatory, we examine the sensitivity of continuum contrast measurements to the center-to-limb profile definition. Profiles which differ only by the amount of magnetic activity allowed in the pixels used to determine them yield oppositely signed solar cycle length continuum contrast trends, either agreeing with previous results and showing negative correlation with solar cycle or disagreeing and showing positive correlation with solar cycle. Changes in the center-to-limb profile shape over the solar cycle are responsible for the contradictory contrast results, and we demonstrate that the lowest contrast structures, internetwork and network, are most sensitive to these. Thus the strengths of the full-disk, internetwork, and network photometric trends depend critically on the magnetic flux density used in the quiet-Sun definition. We conclude that the contributions of low contrast magnetic structures to variations in the solar continuum output, particularly to long-term variations, are difficult, if not impossible, to determine without the use of radiometric imaging.« less
Parameterizations of Chromospheric Condensations in dG and dMe Model Flare Atmospheres
NASA Astrophysics Data System (ADS)
Kowalski, Adam F.; Allred, Joel C.
2018-01-01
The origin of the near-ultraviolet and optical continuum radiation in flares is critical for understanding particle acceleration and impulsive heating in stellar atmospheres. Radiative-hydrodynamic (RHD) simulations in 1D have shown that high energy deposition rates from electron beams produce two flaring layers at T ∼ 104 K that develop in the chromosphere: a cooling condensation (downflowing compression) and heated non-moving (stationary) flare layers just below the condensation. These atmospheres reproduce several observed phenomena in flare spectra, such as the red-wing asymmetry of the emission lines in solar flares and a small Balmer jump ratio in M dwarf flares. The high beam flux simulations are computationally expensive in 1D, and the (human) timescales for completing NLTE models with adaptive grids in 3D will likely be unwieldy for some time to come. We have developed a prescription for predicting the approximate evolved states, continuum optical depth, and emergent continuum flux spectra of RHD model flare atmospheres. These approximate prescriptions are based on an important atmospheric parameter: the column mass ({m}{ref}) at which hydrogen becomes nearly completely ionized at the depths that are approximately in steady state with the electron beam heating. Using this new modeling approach, we find that high energy flux density (>F11) electron beams are needed to reproduce the brightest observed continuum intensity in IRIS data of the 2014 March 29 X1 solar flare, and that variation in {m}{ref} from 0.001 to 0.02 g cm‑2 reproduces most of the observed range of the optical continuum flux ratios at the peak of M dwarf flares.
Structural analysis of a reflux pool-boiler solar receiver
NASA Astrophysics Data System (ADS)
Hoffman, E. L.; Stone, C. M.
1991-06-01
Coupled thermal-structural finite element calculations of a reflux pool-boiler solar receiver were performed to characterize the operating stresses and to address issues affecting the service life of the receiver. Analyses performed using shell elements provided information for receiver material selection and design optimization. Calculations based on linear elastic fracture mechanics principles were performed using continuum elements to assess the vulnerability of a seam-weld to fatigue crack growth. All calculations were performed using ABAQUS, a general purpose finite element code, and elements specifically formulated for coupled thermal-structural analysis. Two materials were evaluated: 316L SS and Haynes 230 alloys. The receiver response was simulated for a combination of structural and thermal loads that represent the startup and operating conditions of the receiver. For both materials, maximum stresses in the receiver developed shortly after startup due to uneven temperature distribution across the receiver surface. The largest effective stress was near yield in the 316L SS receiver and below 39 percent of yield in the Haynes 230 receiver. The calculations demonstrated that stress reductions of over 25 percent could be obtained by reducing the aft dome thickness to one closer to the absorber. The fatigue calculations demonstrated that the stress distribution near the seam-weld notch depends primarily on the structural load created by internal pressurization of the receiver rather than the thermal, indicating that the thermal loads can be neglected when assessing the stress intensity near the seam-weld notch. The stress intensity factor, computed using the J-integral method and crack opening-displacement field equations, was significantly below the fatigue threshold for most steels. The calculations indicated that the weld notch was always loaded in compression, a condition which is not conducive to fatigue crack growth.
NASA Astrophysics Data System (ADS)
Goudfrooij, P.; Hansen, L.; Jorgensen, H. E.; Norgaard-Nielsen, H. U.
1994-06-01
We present results of deep optical CCD imaging for a complete, optical magnitude-limited sample of 56 elliptical galaxies from the RSA catalog. For each galaxy we have obtained broad-band images (in B, V, and I) and narrow-band images using interference filters isolating the Hα+[NII] emission lines to derive the amount and morphology of dust and ionized gas. Detailed consideration of systematic errors due to effects of sky background subtraction and removal of stellar continuum light from the narrow-band images is described. The flux calibration of the narrow-band images is performed by deconvolving actually measured spectral energy distributions with the filter transmission curves. We also present optical long-slit spectroscopy to determine the [NII]/Hα intensity ratio of the ionized gas. Dust lanes and/or patches have been detected in 23 galaxies (41%) from this sample using both colour-index images and division by purely elliptical model images. We achieved a detection limit for dust absorption of A_B_~0.02. Accounting for selection effects, the true fraction of elliptical galaxies containing dust is estimated to be of order 80%. This detection rate is comparable to that of the IRAS satellite, and significantly larger than results of previous optical studies. Ionized gas has been detected in 32 galaxies (57%). The spectroscopic data confirm the presence and distribution of ionized gas as seen in the direct imaging. All elliptical galaxies in our sample in which a number of emission lines is detected show very similar emission-line intensity ratios, which are typical of LINER nuclei. The amounts of detectable dust and ionized gas are generally small--of order 10^4^-10^5^Msun_ of dust and 10^3^-10^4^Msun_ of ionized gas. The dust and ionized gas show a wide variety of distributions-extended along either the apparent major axis, or the minor axis, or a skewed axis, indicating that triaxiality is in general required as a galaxy figure. In some cases (NGC 1275, NGC 2325, NGC 3136, NGC 3962, NGC 4696, NGC 5018, NGC 5044, NGC 5813, IC 1459) the interstellar matter has a patchy or filamentary distribution, suggestive of a recent interaction event. The distributions of dust and ionized gas are consistent with being physically associated with each other.
Bulbous head formation in bidisperse shallow granular flows over inclined planes
NASA Astrophysics Data System (ADS)
Denissen, I.; Thornton, A.; Weinhart, T.; Luding, S.
2017-12-01
Predicting the behaviour of hazardous natural granular flows (e.g. debris-flows and pyroclastic flows) is vital for an accurate assessment of the risks posed by such events. In these situations, an inversely graded vertical particle-size distribution develops, with larger particles on top of smaller particles. As the surface velocity of such flows is larger than the mean velocity, the larger material is then transported to the flow front. This creates a downstream size-segregation structure, resulting in a flow front composed purely of large particles, that are generally more frictional in geophysical flows. Thus, this segregation process reduces the mobility of the flow front, resulting in the formation of, a so-called, bulbous head. One of the main challenges of simulating these hazardous natural granular flows is the enormous number of particles they contain, which makes discrete particle simulations too computationally expensive to be practically useful. Continuum methods are able to simulate the bulk flow- and segregation behaviour of such flows, but have to make averaging approximations that reduce the huge number of degrees of freedom to a few continuum fields. Small-scale periodic discrete particle simulations can be used to determine the material parameters needed for the continuum model. In this presentation, we use a depth-averaged model to predict the flow profile for particulate chute flows, based on flow height, depth-averaged velocity and particle-size distribution [1], and show that the bulbous head structure naturally emerges from this model. The long-time behaviour of this solution of the depth-averaged continuum model converges to a novel travelling wave solution [2]. Furthermore, we validate this framework against computationally expensive 3D particle simulations, where we see surprisingly good agreement between both approaches, considering the approximations made in the continuum model. We conclude by showing that the travelling distance and height of a bidisperse granular avalanche can be well predicted by our continuum model. REFERENCES [1] M. J. Woodhouse, A. R. Thornton, C. G. Johnson, B. P. Kokelaar, J. M. N. T. Gray, J. Fluid Mech., 709, 543-580 (2012) [2] I.F.C. Denissen, T. Weinhart, A. Te Voortwis, S. Luding, J. M. N. T. Gray, A. R. Thornton, under review with J. Fluid Mech. (2017)
NASA Astrophysics Data System (ADS)
Yun, Min S.; Aretxaga, I.; Gurwell, M. A.; Hughes, D. H.; Montaña, A.; Narayanan, G.; Rosa-González, D.; Sánchez-Argüelles, D.; Schloerb, F. P.; Snell, R. L.; Vega, O.; Wilson, G. W.; Zeballos, M.; Chavez, M.; Cybulski, R.; Díaz-Santos, T.; De La Luz, V.; Erickson, N.; Ferrusca, D.; Gim, H. B.; Heyer, M. H.; Iono, D.; Pope, A.; Rogstad, S. M.; Scott, K. S.; Souccar, K.; Terlevich, E.; Terlevich, R.; Wilner, D.; Zavala, J. A.
2015-12-01
Measuring redshifted CO line emission is an unambiguous method for obtaining an accurate redshift and total cold gas content of optically faint, dusty starburst systems. Here, we report the first successful spectroscopic redshift determination of AzTEC J095942.9+022938 (`COSMOS AzTEC-1'), the brightest 1.1 mm continuum source found in the AzTEC/James Clerk Maxwell Telescope survey (Scott et al.), through a clear detection of the redshifted CO (4-3) and CO (5-4) lines using the Redshift Search Receiver on the Large Millimeter Telescope. The CO redshift of z = 4.3420 ± 0.0004 is confirmed by the detection of the redshifted 158 μm [C II] line using the Submillimeter Array. The new redshift and Herschel photometry yield LFIR = (1.1 ± 0.1) × 1013 L⊙ and SFR ≈ 1300 M⊙ yr-1. Its molecular gas mass derived using the ultraluminous infrared galaxy conversion factor is 1.4 ± 0.2 × 1011M⊙ while the total interstellar medium mass derived from the 1.1 mm dust continuum is 3.7 ± 0.7 × 1011M⊙ assuming Td = 35 K. Our dynamical mass analysis suggests that the compact gas disc (r ≈ 1.1 kpc, inferred from dust continuum and spectral energy distribution analysis) has to be nearly face-on, providing a natural explanation for the uncommonly bright, compact stellar light seen by the HST. The [C II] line luminosity L_[C II]= 7.8± 1.1 × 10^9 L_{⊙} is remarkably high, but it is only 0.04 per cent of the total IR luminosity. AzTEC COSMOS-1 and other high redshift sources with a spatially resolved size extend the tight trend seen between [C II]/FIR ratio and ΣFIR among IR-bright galaxies reported by Díaz-Santos et al. by more than an order of magnitude, supporting the explanation that the higher intensity of the IR radiation field is responsible for the `[C II] deficiency' seen among luminous starburst galaxies.
The Coupled Physical Structure of Gas and Dust in the IM Lup Protoplanetary Disk
NASA Astrophysics Data System (ADS)
Cleeves, L. Ilsedore; Öberg, Karin I.; Wilner, David J.; Huang, Jane; Loomis, Ryan A.; Andrews, Sean M.; Czekala, Ian
2016-12-01
The spatial distribution of gas and solids in protoplanetary disks determines the composition and formation efficiency of planetary systems. A number of disks show starkly different distributions for the gas and small grains compared to millimeter-centimeter-sized dust. We present new Atacama Large Millimeter/Submillimeter Array observations of the dust continuum, CO, 13CO, and C18O in the IM Lup protoplanetary disk, one of the first systems where this dust-gas dichotomy was clearly seen. The 12CO is detected out to a radius of 970 au, while the millimeter continuum emission is truncated at just 313 au. Based upon these data, we have built a comprehensive physical and chemical model for the disk structure, which takes into account the complex, coupled nature of the gas and dust and the interplay between the local and external environment. We constrain the distributions of gas and dust, the gas temperatures, the CO abundances, the CO optical depths, and the incident external radiation field. We find that the reduction/removal of dust from the outer disk exposes this region to higher stellar and external radiation and decreases the rate of freeze-out, allowing CO to remain in the gas out to large radial distances. We estimate a gas-phase CO abundance of 5% of the interstellar medium value and a low external radiation field (G 0 ≲ 4). The latter is consistent with that expected from the local stellar population. We additionally find tentative evidence for ring-like continuum substructure, suggestions of isotope-selective photodissociation, and a diffuse gas halo.
Miller, Joseph T; Hui, Cang; Thornhill, Andrew; Gallien, Laure; Le Roux, Johannes J; Richardson, David M
2016-12-30
For a plant species to become invasive it has to progress along the introduction-naturalization-invasion (INI) continuum which reflects the joint direction of niche breadth. Identification of traits that correlate with and drive species invasiveness along the continuum is a major focus of invasion biology. If invasiveness is underlain by heritable traits, and if such traits are phylogenetically conserved, then we would expect non-native species with different introduction status (i.e. position along the INI continuum) to show phylogenetic signal. This study uses two clades that contain a large number of invasive tree species from the genera Acacia and Eucalyptus to test whether geographic distribution and a novel phylogenetic conservation method can predict which species have been introduced, became naturalized, and invasive. Our results suggest that no underlying phylogenetic signal underlie the introduction status for both groups of trees, except for introduced acacias. The more invasive acacia clade contains invasive species that have smoother geographic distributions and are more marginal in the phylogenetic network. The less invasive eucalyptus group contains invasive species that are more clustered geographically, more centrally located in the phylogenetic network and have phylogenetic distances between invasive and non-invasive species that are trending toward the mean pairwise distance. This suggests that highly invasive groups may be identified because they have invasive species with smoother and faster expanding native distributions and are located more to the edges of phylogenetic networks than less invasive groups. Published by Oxford University Press on behalf of the Annals of Botany Company.
Saturn's equatorial jet structure from Cassini/ISS
NASA Astrophysics Data System (ADS)
García-Melendo, Enrique; Legarreta, Jon; Sánchez-Lavega, Agustín.; Pérez-Hoyos, Santiago; Hueso, Ricardo
2010-05-01
Detailed wind observations of the equatorial regions of the gaseous giant planets, Jupiter and Saturn, are crucial for understanding the basic problem of the global circulation and obtaining new detailed information on atmospheric phenomena. In this work we present high resolution data of Saturn's equatorial region wind profile from Cassini/ISS images. To retrieve wind measurements we applied an automatic cross correlator to image pairs taken by Cassini/ISS with the MT1, MT2, MT3 filters centred at the respective three methane absorbing bands of 619nm, 727nm, and 889nm, and with the adjacent continuum CB1, CB2, and CB3 filters. We obtained a complete high resolution coverage of Saturn's wind profile in the equatorial region. The equatorial jet displays an overall symmetric structure similar to that shown the by same region in Jupiter. This result suggests that, in accordance to some of the latest compressible atmosphere computer models, probably global winds in gaseous giants are deeply rooted in the molecular hydrogen layer. Wind profiles in the methane absorbing bands show the effect of strong vertical shear, ~40m/s per scale height, confirming previous results and an important decay in the wind intensity since the Voyager era (~100 m/s in the continuum and ~200 m/s in the methane absorbing band). We also report the discovery of a new feature, a very strong and narrow jet on the equator, about only 5 degrees wide, that despite the vertical shear maintains its intensity (~420 m/s) in both, the continuum and methane absorbing band filters. Acknowledgements: Work supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07.
NASA Astrophysics Data System (ADS)
Eilers, Anna-Christina; Hennawi, Joseph F.; Lee, Khee-Gan
2017-08-01
We present a new Bayesian algorithm making use of Markov Chain Monte Carlo sampling that allows us to simultaneously estimate the unknown continuum level of each quasar in an ensemble of high-resolution spectra, as well as their common probability distribution function (PDF) for the transmitted Lyα forest flux. This fully automated PDF regulated continuum fitting method models the unknown quasar continuum with a linear principal component analysis (PCA) basis, with the PCA coefficients treated as nuisance parameters. The method allows one to estimate parameters governing the thermal state of the intergalactic medium (IGM), such as the slope of the temperature-density relation γ -1, while marginalizing out continuum uncertainties in a fully Bayesian way. Using realistic mock quasar spectra created from a simplified semi-numerical model of the IGM, we show that this method recovers the underlying quasar continua to a precision of ≃ 7 % and ≃ 10 % at z = 3 and z = 5, respectively. Given the number of principal component spectra, this is comparable to the underlying accuracy of the PCA model itself. Most importantly, we show that we can achieve a nearly unbiased estimate of the slope γ -1 of the IGM temperature-density relation with a precision of +/- 8.6 % at z = 3 and +/- 6.1 % at z = 5, for an ensemble of ten mock high-resolution quasar spectra. Applying this method to real quasar spectra and comparing to a more realistic IGM model from hydrodynamical simulations would enable precise measurements of the thermal and cosmological parameters governing the IGM, albeit with somewhat larger uncertainties, given the increased flexibility of the model.
Multiscale modeling of lithium ion batteries: thermal aspects
Zausch, Jochen
2015-01-01
Summary The thermal behavior of lithium ion batteries has a huge impact on their lifetime and the initiation of degradation processes. The development of hot spots or large local overpotentials leading, e.g., to lithium metal deposition depends on material properties as well as on the nano- und microstructure of the electrodes. In recent years a theoretical structure emerges, which opens the possibility to establish a systematic modeling strategy from atomistic to continuum scale to capture and couple the relevant phenomena on each scale. We outline the building blocks for such a systematic approach and discuss in detail a rigorous approach for the continuum scale based on rational thermodynamics and homogenization theories. Our focus is on the development of a systematic thermodynamically consistent theory for thermal phenomena in batteries at the microstructure scale and at the cell scale. We discuss the importance of carefully defining the continuum fields for being able to compare seemingly different phenomenological theories and for obtaining rules to determine unknown parameters of the theory by experiments or lower-scale theories. The resulting continuum models for the microscopic and the cell scale are numerically solved in full 3D resolution. The complex very localized distributions of heat sources in a microstructure of a battery and the problems of mapping these localized sources on an averaged porous electrode model are discussed by comparing the detailed 3D microstructure-resolved simulations of the heat distribution with the result of the upscaled porous electrode model. It is shown, that not all heat sources that exist on the microstructure scale are represented in the averaged theory due to subtle cancellation effects of interface and bulk heat sources. Nevertheless, we find that in special cases the averaged thermal behavior can be captured very well by porous electrode theory. PMID:25977870
The New BeppoSAX Observation of the Brightest X-Ray Quasar at Redshift
NASA Technical Reports Server (NTRS)
Nicastro, Fabrizio; Oliversen, Ronald J. (Technical Monitor)
2001-01-01
This grant was to support the reduction and analysis of our approved SAX observation of the high redshift (z=3.2) blazar PKS 2126-158. This is the brightest quasar at z greater than 3 and has been intensively studied in X-ray, since the first Einstein detection. In 1994 Elvis et al., discovered a strong low energy cutoff in this object, which could imply either quasar frame photoelectric absorption by a column of 0.8-2.7 x 1e22 cm-2 cold gas, or a lower column of cold gas at z=0. Subsequent ASCA observations of this object, could not definitely address this issue, nor could establish whether the curvature of the low energy portion of the spectrum was due to pure photoelectric absorption (considerably exceeding the Galactic value along the line of sight) or to an intrinsic continuum curvature. We proposed to observe PKS 2126-158 with BeppoSAX, to try to solve this puzzle (thanks to the broadband of BeppoSAX: 0.1-250 keV). PKS 2126 was observed by BeppoSAX on May 1999, with a MECS exposure of 100 ks. We have reduced and analyzed the BeppoSAX data, and compared them with a Chandra ACIS observation of the same object, taken only 6 months apart (Nov. 1999). We have recently finished to write a paper on the BeppoSAX data only, that concentrate on the properties of the X-ray absorber, which is highly requested by our SAX data, independently on the continuum model adopted. The paper (P.I.F. Fiore) will be submitted to APJ in the next few days. A second paper on the combined BeppoSAX and Chandra data, and based on the broad band spectral energy distribution of this quasar, is currently in preparation. Our main results, on the X-ray absorber, are: (a) the presence of an X-ray absorber is confirmed, indipendently on the continuum adopted (simple power law, or curved continuum); (b) if the absorber is not significantly ionized, then the BeppoSAX data do prefer a low redshift absorber; (c) if the gas is ionized, then it can be located in the quasar environment, but its metal abundances must be lower than 0.2 times solar (because of the absence of a strong FeK absorption edges that would follow at approx. 2 keV, where the MECS response is the highest).
ERIC Educational Resources Information Center
Plank, Frans
1992-01-01
A discussion of possessives, determiners, and modifiers covers the following topics: nonuniformity of nouns, distributional differences between demonstratives and definitive articles, and German possessives and the determiner-modifier continuum. (Contains eight references.) (LB)
Remarkable Low Temperature Emission of the 4 November 2003 Limb Flare
NASA Astrophysics Data System (ADS)
Leibacher, J. W.; Harvey, J. W.; Kopp, G.; Hudson, H.; GONG Team
2004-05-01
Strong (> 1.5 times normal intensity) continuum and photospheric line emission of the 4 November 2003 X28 flare was recorded simultaneously by three widely separated GONG instruments. Emission was seen from on the disk to > 20" above the limb for nearly one hour, likely making this event the longest duration white light flare observed to date. GONG observations are one-minute duration integrations of intensity averaged across a Lyot filter bandpass of about 90 pm FWHM centered on the Ni I line at 676.8 nm with 2.5" instrument pixel size. Spatial resolution is limited by diffraction and seeing to greater than 5". Additional measurements include the Doppler shift and strength of the spectrum line. These latter measurements indicate that continuum and line emission contributed about equally to the observed intensity signal. Light curves and images of the flare show a notable two-kernel disk event starting at about 19:33 UTC followed by a much stronger event that peaked at about 19:44. Rare, white-light prominences were visible above the limb after 19:34. Comparison of total solar irradiance measurements from the TIM instrument on board the SORCE spacecraft with full-disk integrated GONG intensities shows the global five-minute oscillation and the white light flare. The latter is much weaker in the GONG data, suggesting that most of the TIM flare signal arises from other, most likely shorter, wavelengths. This work utilizes data obtained by the Global Oscillation Network Group (GONG) Program, managed by the National Solar Observatory, which is operated by AURA, Inc. under a cooperative agreement with the National Science Foundation. SORCE is supported by NASA NAS5-97045
The limits of the nuclear landscape explored by the relativistic continuum Hartree-Bogoliubov theory
NASA Astrophysics Data System (ADS)
Xia, X. W.; Lim, Y.; Zhao, P. W.; Liang, H. Z.; Qu, X. Y.; Chen, Y.; Liu, H.; Zhang, L. F.; Zhang, S. Q.; Kim, Y.; Meng, J.
2018-05-01
The ground-state properties of nuclei with 8 ⩽ Z ⩽ 120 from the proton drip line to the neutron drip line have been investigated using the spherical relativistic continuum Hartree-Bogoliubov (RCHB) theory with the relativistic density functional PC-PK1. With the effects of the continuum included, there are totally 9035 nuclei predicted to be bound, which largely extends the existing nuclear landscapes predicted with other methods. The calculated binding energies, separation energies, neutron and proton Fermi surfaces, root-mean-square (rms) radii of neutron, proton, matter, and charge distributions, ground-state spins and parities are tabulated. The extension of the nuclear landscape obtained with RCHB is discussed in detail, in particular for the neutron-rich side, in comparison with the relativistic mean field calculations without pairing correlations and also other predicted landscapes. It is found that the coupling between the bound states and the continuum due to the pairing correlations plays an essential role in extending the nuclear landscape. The systematics of the separation energies, radii, densities, potentials and pairing energies of the RCHB calculations are also discussed. In addition, the α-decay energies and proton emitters based on the RCHB calculations are investigated.
IUTAM Symposium on Statistical Energy Analysis, 8-11 July 1997, Programme
1997-01-01
distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (Maximum200 words) This was the first international scientific gathering devoted...energy flow, continuum dynamics, vibrational energy, statistical energy analysis (SEA) 15. NUMBER OF PAGES 16. PRICE CODE INSECURITY... correlation v=V(ɘ ’• • determination of the correlation n^, =11^, (<?). When harmonic motion and time-average are considered, the following I
Inferring the evolutionary stages of the internal structures of NGC 7538 S and IRS1 from chemistry
NASA Astrophysics Data System (ADS)
Feng, S.; Beuther, H.; Semenov, D.; Henning, Th.; Linz, H.; Mills, E. A. C.; Teague, R.
2016-09-01
Context. Radiative feedback of young (proto)stars and gas dynamics including gravitational collapse and outflows are important in high-mass star-forming regions (HMSFRs), for the reason that they may leave footprints on the gas density and temperature distributions, the velocity profile, and the chemical abundances. Aims: We unambiguously diagnose the detailed physical mechanisms and the evolutionary status of HMSFRs. Methods: We performed 0.4'' (~1000 AU) resolution observations at 1.37 mm towards two HMSFRs, NGC 7538 S and IRS1, using the Plateau de Bure Interferometre (PdBI). The observations covered abundant molecular lines, including tracers of gas column density, hot molecular cores, shocks, and complex organic molecules. We present a joint analysis of the 1.37 mm continuum emission and the line intensity of 15 molecular species (including 22 isotopologues). Assuming local thermal equilibrium (LTE), we derived molecular column densities and molecular abundances for each internal gas substructure that is spatially resolved. These derived quantities are compared with a suite of 1D gas-grain models. Results: NGC 7538 S is resolved into at least three dense gas condensations. Despite the comparable continuum intensity of these condensations, their differing molecular line emission is suggestive of an overall chemical evolutionary trend from the northeast to the southwest. Line emission from MM1 is consistent with a chemically evolved hot molecular core (HMC), whereas MM3 remains a prestellar candidate that only exhibits emission of lower-excitation lines. The condensation MM2, located between MM1 and MM3, shows an intermediate chemical evolutionary status. Since these three condensations are embedded within the same parent gas core, their differing chemical properties are most likely due to the different warm-up histories, rather than the different dynamic timescales. Despite remaining spatially unresolved, in IRS1 we detect abundant complex organic molecules (e.g. NH2CHO, CH3OH, HCOOCH3, CH3OCH3), indicating that IRS1 is the most chemically evolved HMC presented here. We observe a continuum that is dominated by absorption features with at least three strong emission lines, potentially from CH3OH. The CH3OH lines which are purely in emission have higher excitation than the ones being purely in absorption. Potential reasons for this difference are discussed. Conclusions: This is the first comprehensive comparison of observations of the two high-mass cores NGC 7538 S and IRS1 and a chemical model. We have found that different chemical evolutionary stages can coexist in the same natal gas core. Our achievement illustrates the strength of chemical analysis for understanding HMSFRs.
Social justice issues related to uneven distribution of resources.
Ervin, Naomi E; Bell, Sue Ellen
2004-01-01
This article examines the social justice issues resulting from the uneven distribution of resources. In this article, justice theories are discussed in relation to two of these issues: lack of adequate food and shelter and inequitable access to an appropriate continuum of health care. Public health nurses have the obligation to deal with the results of poverty and the uneven distribution of resources, which pose a threat to the common good in the United States and throughout the global community.
Shells in the C2 coma of Comet P/Halley
NASA Technical Reports Server (NTRS)
Schulz, Rita; A'Hearn, Michael F.
1995-01-01
We reanalyzed the CN images of Comet P/Halley, in which jets have been discovered for the first time, in search of shell structures. Shells were actually detected at the outer edges of the frames on those dates for which shells with radii small enough to be covered by the limited field of view of the CCD were predicted. The C2 images of the same data set were subjected to an analogous investigation which led to the discovery of shell structures in C2 as well. The morphology of the CN and the C2 shells is essentially equal on the same observational date. They have the same radii and show almost identical asymmetries which suggests that CN and C2 in the shells originate from the same general source. The comparison of the jets in both species before and after a two-dimensional continuum subtraction supports this supposition. The similar morphology of the jets indicates that both species are produced from the same bulk of precursor material which has been ejected in the form of jets from the same active area. However, similarly located and oriented jets in CN and C2 do not show similar relative intensities in most cases. These differences in the intensity distribution imply that the production rates of CN and C2 follow different laws.
Does the continuum theory of dynamic fracture work?
NASA Astrophysics Data System (ADS)
Kessler, David A.; Levine, Herbert
2003-09-01
We investigate the validity of the linear elastic fracture mechanics approach to dynamic fracture. We first test the predictions in a lattice simulation, using a formula of Eshelby for the time-dependent stress intensity factor. Excellent agreement with the theory is found. We then use the same method to analyze the experiment of Sharon and Fineberg. The data here are not consistent with the theoretical expectation.
2011-08-16
Wolf, Phys. Rev. Lett. 104, 103903 (2010). 6. M. Aközbek, M. Scalora , C. Bowden, and S. L. Chin, Opt. Commun. 191, 353 (2001). 7. A. Couairon, Phys...Aközbek, M. Scalora , C. Bowden, and S. L. Chin, “White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in
Silicon X-ray line emission from solar flares and active regions
NASA Technical Reports Server (NTRS)
Parkinson, J. H.; Wolff, R. S.; Kestenbaum, H. L.; Ku, W. H.-M.; Lemen, J. R.; Long, K. S.; Novick, R.; Suozzo, R. J.; Weisskopf, M. C.
1978-01-01
New observations of solar flare and active region X-ray spectra obtained with the Columbia University instrument on OSO-8 are presented and discussed. The high sensitivity of the graphite crystal panel has allowed both line and continuum spectra to be served with moderate spectral resolution. Observations with higher spectral resolution have been made with a panel of pentaerythritol crystals. Twenty-nine lines between 1.5 and 7.0 A have been resolved and identified, including several dielectronic recombination satellite lines to Si XIV and Si XIII lines which have been observed for the first time. It has been found that thermal continuum models specified by single values of temperature and emission measure have fitted the data adequately, there being good agreement with the values of these parameters derived from line intensity ratios.
β decay of He 6 into the α + d continuum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfutzner, M.; Dominik, W.; Janas, Z.
2015-07-23
Here, the rare β-decay channel of 6He into the α+d continuum was investigated at the REX-ISOLDE facility. Bunches of postaccelerated 6He ions were implanted into the optical time projection chamber (OTPC), where the decays with emission of charged particles were recorded. This novel technique allowed us to extend the low-energy end of the spectrum down to 150 keV in α+d center of mass, corresponding to a deuteron energy of 100 keV. The branching ratio for this process amounts to [2.78±0.07(stat)±0.17(sys)]×10 –6. The shape of the spectrum is found to be in a good agreement with a three-body model, while themore » total intensity is about 20% larger than the predicted one.« less
Spin-isotropic continuum of spin excitations in antiferromagnetically ordered Fe1.07Te
NASA Astrophysics Data System (ADS)
Song, Yu; Lu, Xingye; Regnault, L.-P.; Su, Yixi; Lai, Hsin-Hua; Hu, Wen-Jun; Si, Qimiao; Dai, Pengcheng
2018-02-01
Unconventional superconductivity typically emerges in the presence of quasidegenerate ground states, and the associated intense fluctuations are likely responsible for generating the superconducting state. Here we use polarized neutron scattering to study the spin space anisotropy of spin excitations in Fe1.07Te exhibiting bicollinear antiferromagnetic (AF) order, the parent compound of FeTe1 -xSex superconductors. We confirm that the low-energy spin excitations are transverse spin waves, consistent with a local-moment origin of the bicollinear AF order. While the ordered moments lie in the a b plane in Fe1.07Te , it takes less energy for them to fluctuate out of plane, similar to BaFe2As2 and NaFeAs. At energies above E ≳20 meV, we find magnetic scattering to be dominated by an isotropic continuum that persists up to at least 50 meV. Although the isotropic spin excitations cannot be ascribed to spin waves from a long-range-ordered local-moment antiferromagnet, the continuum can result from the bicollinear magnetic order ground state of Fe1.07Te being quasidegenerate with plaquette magnetic order.
Kilometric Continuum Radiation
NASA Technical Reports Server (NTRS)
Green, James L.; Boardsen, Scott
2006-01-01
Kilometric continuum (KC) is the high frequency component (approximately 100 kHz to approximately 800 kHz) of nonthermal continuum (NTC). Unlike the lower frequency portion of NTC (approximately 5 kHz to approximately 100 kHz) whose source is around the dawn sector, the source of KC occurs at all magnetic local times. The latitudinal beaming of KC as observed by GEOTAIL is, for most events, restricted to plus or minus 15 degrees magnetic latitude. KC has been observed during periods of both low and strong geomagnetic activity, with no significant correlation of wave intensity with K(sub p), index. However statistically the maximum observed frequency of KC emission tends to increase with K(sub p) index, the effect is more pronounced around solar maximum, but is also detected near solar minimum. There is strong evidence that the source region of KC is from the equatorial plasmapause during periods when a portion of the plasmapause moves significantly inwards from its nominal position. Case studies have shown that KC emissions are nearly always associated with plasmaspheric notches, shoulders, and tails. There is a recent focus on trying to understand the banded frequency structure of this emission and its relationship to plasmaspheric density ducts and irregularities in the source region.
NASA Astrophysics Data System (ADS)
Kittell, D. E.; Yarrington, C. D.; Lechman, J. B.; Baer, M. R.
2018-05-01
A new paradigm is introduced for modeling reactive shock waves in heterogeneous solids at the continuum level. Inspired by the probability density function methods from turbulent reactive flows, it is hypothesized that the unreacted material microstructures lead to a distribution of heat release rates from chemical reaction. Fluctuations in heat release, rather than velocity, are coupled to the reactive Euler equations which are then solved via the Riemann problem. A numerically efficient, one-dimensional hydrocode is used to demonstrate this new approach, and simulation results of a representative impact calculation (inert flyer into explosive target) are discussed.
Echo Mapping of Active Galactic Nuclei
NASA Technical Reports Server (NTRS)
Peterson, B. M.; Horne, K.
2004-01-01
Echo mapping makes use of the intrinsic variability of the continuum source in active galactic nuclei to map out the distribution and kinematics of line-emitting gas from its light travel time-delayed response to continuum changes. Echo mapping experiments have yielded sizes for the broad line-emitting region in about three dozen AGNs. The dynamics of the line-emitting gas seem to be dominated by the gravity of the central black hole, enabling measurement of the black-hole masses in AGNs. We discuss requirements for future echo-mapping experiments that will yield the high quality velocity-delay maps of the broad-line region that are needed to determine its physical nature.
DIFFUSE Ly{alpha} EMITTING HALOS: A GENERIC PROPERTY OF HIGH-REDSHIFT STAR-FORMING GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steidel, Charles C.; Bogosavljevic, Milan; Shapley, Alice E.
2011-08-01
Using a sample of 92 UV continuum-selected, spectroscopically identified galaxies with (z) = 2.65, all of which have been imaged in the Ly{alpha} line with extremely deep narrow-band imaging, we examine galaxy Ly{alpha} emission profiles to very faint surface brightness limits. The galaxy sample is representative of spectroscopic samples of Lyman break galaxies (LBGs) at similar redshifts in terms of apparent magnitude, UV luminosity, inferred extinction, and star formation rate and was assembled without regard to Ly{alpha} emission properties. Approximately 45% (55%) of the galaxy spectra have Ly{alpha} appearing in net absorption (emission), with {approx_equal} 20% satisfying commonly used criteriamore » for the identification of 'Ly{alpha} emitters' (LAEs; W{sub 0}(Ly{alpha}) {>=} 20 A). We use extremely deep stacks of rest-UV continuum and continuum-subtracted Ly{alpha} images to show that all sub-samples exhibit diffuse Ly{alpha} emission to radii of at least 10'' ({approx}80 physical kpc). The characteristic exponential scale lengths for Ly{alpha} line emission exceed that of the {lambda}{sub 0} = 1220 A UV continuum light by factors of {approx}5-10. The surface brightness profiles of Ly{alpha} emission are strongly suppressed relative to the UV continuum light in the inner few kpc, by amounts that are tightly correlated with the galaxies' observed spectral morphology; however, all galaxy sub-subsamples, including that of galaxies for which Ly{alpha} appears in net absorption in the spectra, exhibit qualitatively similar diffuse Ly{alpha} emission halos. Accounting for the extended Ly{alpha} emission halos, which generally would not be detected in the slit spectra of individual objects or with typical narrow-band Ly{alpha} imaging, increases the total Ly{alpha} flux (and rest equivalent width W{sub 0}(Ly{alpha})) by an average factor of {approx}5, and by a much larger factor for the 80% of LBGs not classified as LAEs. We argue that most, if not all, of the observed Ly{alpha} emission in the diffuse halos originates in the galaxy H II regions but is scattered in our direction by H I gas in the galaxy's circum-galactic medium. The overall intensity of Ly{alpha} halos, but not the surface brightness distribution, is strongly correlated with the emission observed in the central {approx}1''-more luminous halos are observed for galaxies with stronger central Ly{alpha} emission. We show that whether or not a galaxy is classified as a giant 'Ly{alpha} blob' (LAB) depends sensitively on the Ly{alpha} surface brightness threshold reached by an observation. Accounting for diffuse Ly{alpha} halos, all LBGs would be LABs if surveys were sensitive to 10 times lower Ly{alpha} surface brightness thresholds; similarly, essentially all LBGs would qualify as LAEs.« less
Theory of molecular rate processes in the presence of intense laser radiation
NASA Technical Reports Server (NTRS)
George, T. F.; Zimmerman, I. H.; Devries, P. L.; Yuan, J.-M.; Lam, K.-S.; Bellum, J. C.; Lee, H.-W.; Slutsky, M. S.; Lin, J.-T.
1979-01-01
The present paper deals with the influence of intense laser radiation on gas-phase molecular rate processes. Representations of the radiation field, the particle system, and the interaction involving these two entities are discussed from a general rather than abstract point of view. The theoretical methods applied are outlined, and the formalism employed is illustrated by application to a variety of specific processes. Quantum mechanical and semiclassical treatments of representative atom-atom and atom-diatom collision processes in the presence of a field are examined, and examples of bound-continuum processes and heterogeneous catalysis are discussed within the framework of both quantum-mechanical and semiclassical theories.
Blast induced mild traumatic brain injury/concussion: A physical analysis
NASA Astrophysics Data System (ADS)
Kucherov, Yan; Hubler, Graham K.; DePalma, Ralph G.
2012-11-01
Currently, a consensus exists that low intensity non-impact blast wave exposure leads to mild traumatic brain injury (mTBI). Considerable interest in this "invisible injury" has developed in the past few years but a disconnect remains between the biomedical outcomes and possible physical mechanisms causing mTBI. Here, we show that a shock wave travelling through the brain excites a phonon continuum that decays into specific acoustic waves with intensity exceeding brain tissue strength. Damage may occur within the period of the phonon wave, measured in tens to hundreds of nanometers, which makes the damage difficult to detect using conventional modalities.
NASA Technical Reports Server (NTRS)
Stern, Robert A.; Lemen, James R.; Schmitt, Jurgen H. M. M.; Pye, John P.
1995-01-01
We report results from the first extreme ultraviolet spectrum of the prototypical eclipsing binary Algol (beta Per), obtained with the spectrometers on the Extreme Ultraviolet Explorer (EUVE). The Algol spectrum in the 80-350 A range is dominated by emission lines of Fe XVI-XXIV, and the He II 304 A line. The Fe emission is characteristic of high-temperature plasma at temperatures up to at least log T approximately 7.3 K. We have successfully modeled the observed quiescent spectrum using a continuous emission measure distribution with the bulk of the emitting material at log T greater than 6.5. We are able to adequately fit both the coronal lines and continuum data with a cosmic abundance plasma, but only if Algol's quiescent corona is dominated by material at log T greater than 7.5, which is physically ruled out by prior X-ray observations of the quiescent Algol spectrum. Since the coronal (Fe/H) abundance is the principal determinant of the line-to-continuum ratio in the EUV, allowing the abundance to be a free parameter results in models with a range of best-fit abundances approximately = 15%-40% of solar photospheric (Fe/H). Since Algol's photospheric (Fe/H) appears to be near-solar, the anomalous EUV line-to-continuum ratio could either be the result of element segregation in the coronal formation process, or other, less likely mechanisms that may enhance the continuum with respect to the lines.
Liu, Jundi; Hou, Jie; Chen, Huimin; Pei, Keliang; Li, Yi; He, Xin-Qiang
2017-01-01
The change of pectin epitopes during procambium–cambium continuum development was investigated by immunolocalization in poplar. The monoclonal antibody JIM5 labels homogalacturonan (HGA) with a low degree of esterification, and the monoclonal antibody JIM7 labels HGA with a high degree of methyl-esterification. Arabinan, rather than galactan, and HGA with low degree of esterification were located in the cell walls of procambial, while HGA with a low degree of esterification was located in the tangential walls, and galactan was located in both the tangential and radial walls of procambial, yet nearly no arabinan was located in the tangential walls of the cambial cells. The changes in pectin distribution took place when periclinal divisions appeared within a procambial trace. The distribution difference of pectin epitopes was also present in procambium–cambium derivatives. The arabinan existed in all cell walls of primary xylem, but was absent from the tangential walls of secondary xylem cells. The galactan existed only in mature primary phloem. Furthermore, 19 pectin methylesterases (PMEs) genes were identified by RNA sequencing, six genes presented highly differentially and were supposed to be involved in the cell wall esterification process. The results provide direct evidence of the dynamic changes of pectin epitopes during the development of the procambium–cambium continuum in poplar. PMID:28783076
2012-09-01
Feasibility (MT Modeling ) a. Continuum of mixture distributions interpolated b. Mixture infeasibilities calculated for each pixel c. Valid detections...Visible/Infrared Imaging Spectrometer BRDF Bidirectional Reflectance Distribution Function CASI Compact Airborne Spectrographic Imager CCD...filtering (MTMF), and was designed by Healey and Slater (1999) to use “a physical model to generate the set of sensor spectra for a target that will be
Can the Lyman Continuum Leaked Out of H II Regions Explain Diffuse Ionized Gas?
NASA Astrophysics Data System (ADS)
Seon, Kwang-Il
2009-09-01
We present an attempt to explain the diffuse Hα emission of a face-on galaxy M 51 with the "standard" photoionization model, in which the Lyman continuum (Lyc) escaping from H II regions propagates large distances into the diffuse interstellar medium (ISM). The diffuse Hα emission of M 51 is analyzed using thin slab models and exponential disk models in the context of the "on-the-spot" approximation. The scale height of the ionized gas needed to explain the diffuse Hα emission with the scenario is found to be of the order of ~1-2 kpc, consistent with those of our Galaxy and edge-on galaxies. The model also provides a vertical profile, when the galaxy is viewed edge-on, consisting of two-exponential components. However, it is found that an incredibly low absorption coefficient of κ0 ≈ 0.4-0.8 kpc-1 at the galactic plane, or, equivalently, an effective cross section as low as σeff ~ 10-5 of the photoionization cross section at 912 Å is required to allow the stellar Lyc photons to travel through the H I disk. Such a low absorption coefficient is out of accord with the properties of the ISM. Furthermore, we found that even the model that has the diffuse ionized gas (DIG) phase only and no H I gas phase shows highly concentrated Hα emissions around H II regions, and can account for only lsim26% of the Hα luminosity of the DIG. This result places a strong constraint on the ionizing source of the DIG. We also report that the Hα intensity distribution functions not only of the DIG, but also of H II regions in M 51, appear to be lognormal.
NGC 3503 and its molecular environment
NASA Astrophysics Data System (ADS)
Duronea, N. U.; Vasquez, J.; Cappa, C. E.; Corti, M.; Arnal, E. M.
2012-01-01
Aims: We present a study of the molecular gas and interstellar dust distribution in the environs of the Hii region NGC 3503 associated with the open cluster Pis 17 with the aim of investigating the spatial distribution of the molecular gas linked to the nebula and achieving a better understanding of the interaction of the nebula and Pis 17 with their molecular environment. Methods: We based our study on 12CO(1-0) observations of a region of ~0.6° in size obtained with the 4-m NANTEN telescope, unpublished radio continuum data at 4800 and 8640 MHz obtained with the ATCA telescope, radio continuum data at 843 MHz obtained from SUMSS, and available IRAS, MSX, IRAC-GLIMPSE, and MIPSGAL images. Results: We found a molecular cloud (Component 1) having a mean velocity of -24.7 km s-1 ,compatible with the velocity of the ionized gas, which is associated with the nebula and its surroundings. Adopting a distance of 2.9 ± 0.4 kpc, the total molecular mass yields (7.6 ± 2.1) × 103M⊙ and density yields 400 ± 240 cm-3. The radio continuum data confirm the existence of an electron density gradient in NGC 3503. The IR emission shows a PDR bordering the higher density regions of the nebula. The spatial distribution of the CO emission shows that the nebula coincides with a molecular clump, and the strongest CO emission peak is located close to the higher electron density region. The more negative velocities of the molecular gas (about -27 km s-1), are coincident with NGC 3503. Candidate young stellar objects (YSOs) were detected toward the Hii region, suggesting that embedded star formation may be occurring in the neighborhood of the nebula. The clear electron density gradient, along with the spatial distribution of the molecular gas and PAHs in the region indicates that NGC 3503 is a blister-type Hii region that has probably undergone a champagne phase.
The Cygnus OB2 Star Forming Complex
NASA Astrophysics Data System (ADS)
Rybarczyk, Daniel R.; Bania, Thomas
2018-01-01
Almost all astrophysical systems—from planets to stars to supernovae to entire galaxies—are impacted by the process of star formation. The brightest, most massive stars (OB stars) form in hot young clusters called OB associations. Cygnus OB2 is an OB association containing over 160 OB stars, making it one of the largest in the Milky Way Galaxy. At a distance of less than 1.5 kpc, its proximity to the Sun makes it optimal for assessing the process of Galactic star formation and its implications for stellar evolution, Galactic structure, and Galactic chemical evolution. Using existing data sets, we derive comprehensive maps of the distribution of thermal continuum, atomic, and molecular emission from the interstellar gas in Cyg OB2. The thermal continuum emission stems from the plasma ionized by OB stars. The atomic gas is probed by emission from atomic hydrogen, HI, at 21 cm wavelength. The molecular gas is traced by emission from the CO molecule which is a proxy for molecular hydrogen, H2. We combine these atomic and molecular data to derive a map of the total proton column density distribution in Cyg OB2. We also analyze the velocity fields of the OB stars, the atomic and molecular hydrogen gas, and the HII regions' radio recombination emission. As expected, we find HII regions to be spatially coincident with zones of higher cloud density. Surrounding the greatest concentration of OB stars is a cavity in the radio continuum and CO emission. This results from shock waves produced by the combined action of the high HII region pressure and winds from the OB stars. Such a distribution implies that Cyg OB2 is old enough to have evolved to this state.
NASA Astrophysics Data System (ADS)
Díaz-Luis, J. J.; García-Hernández, D. A.; Manchado, A.; García-Lario, P.; Villaver, E.; García-Segura, G.
2018-03-01
We present seeing-limited narrow-band mid-IR GTC/CanariCam images of the spatially extended fullerene-containing planetary nebula (PN) IC 418. The narrow-band images cover the C60 fullerene band at 17.4 μm, the polycyclic aromatic hydrocarbon like (PAH-like) feature at 11.3 μm, the broad 9–13 μm feature, and their adjacent continua at 9.8 and 20.5 μm. We study the relative spatial distribution of these complex species, all detected in the Spitzer and Infrared Space Observatory spectra of IC 418, with the aim of getting observational constraints to the formation process of fullerenes in H-rich circumstellar environments. A similar ring-like extended structure is seen in all narrow-band filters, except in the dust continuum emission at 9.8 μm, which peaks closer to the central star. The continuum-subtracted images display a clear ring-like extended structure for the carrier of the broad 9–13 μm emission, while the spatial distribution of the (PAH-like) 11.3 μm emission is not so well defined. Interestingly, a residual C60 17.4 μm emission (at about 4σ from the sky background) is seen when subtracting the dust continuum emission at 20.5 μm. This residual C60 emission, if real, might have several interpretations, the most exciting being perhaps that other fullerene-based species like hydrogenated fullerenes with very low H-content may contribute to the observed 17.4 μm emission. We conclude that higher sensitivity mid-IR images and spatially resolved spectroscopic observations (especially in the Q-band) are necessary to get some clues about fullerene formation in PNe.
THE COUPLED PHYSICAL STRUCTURE OF GAS AND DUST IN THE IM Lup PROTOPLANETARY DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleeves, L. Ilsedore; Öberg, Karin I.; Wilner, David J.
The spatial distribution of gas and solids in protoplanetary disks determines the composition and formation efficiency of planetary systems. A number of disks show starkly different distributions for the gas and small grains compared to millimeter–centimeter-sized dust. We present new Atacama Large Millimeter/Submillimeter Array observations of the dust continuum, CO, {sup 13}CO, and C{sup 18}O in the IM Lup protoplanetary disk, one of the first systems where this dust–gas dichotomy was clearly seen. The {sup 12}CO is detected out to a radius of 970 au, while the millimeter continuum emission is truncated at just 313 au. Based upon these data,more » we have built a comprehensive physical and chemical model for the disk structure, which takes into account the complex, coupled nature of the gas and dust and the interplay between the local and external environment. We constrain the distributions of gas and dust, the gas temperatures, the CO abundances, the CO optical depths, and the incident external radiation field. We find that the reduction/removal of dust from the outer disk exposes this region to higher stellar and external radiation and decreases the rate of freeze-out, allowing CO to remain in the gas out to large radial distances. We estimate a gas-phase CO abundance of 5% of the interstellar medium value and a low external radiation field ( G {sub 0} ≲ 4). The latter is consistent with that expected from the local stellar population. We additionally find tentative evidence for ring-like continuum substructure, suggestions of isotope-selective photodissociation, and a diffuse gas halo.« less
Application of a Modular Particle-Continuum Method to Partially Rarefied, Hypersonic Flow
NASA Astrophysics Data System (ADS)
Deschenes, Timothy R.; Boyd, Iain D.
2011-05-01
The Modular Particle-Continuum (MPC) method is used to simulate partially-rarefied, hypersonic flow over a sting-mounted planetary probe configuration. This hybrid method uses computational fluid dynamics (CFD) to solve the Navier-Stokes equations in regions that are continuum, while using direct simulation Monte Carlo (DSMC) in portions of the flow that are rarefied. The MPC method uses state-based coupling to pass information between the two flow solvers and decouples both time-step and mesh densities required by each solver. It is parallelized for distributed memory systems using dynamic domain decomposition and internal energy modes can be consistently modeled to be out of equilibrium with the translational mode in both solvers. The MPC results are compared to both full DSMC and CFD predictions and available experimental measurements. By using DSMC in only regions where the flow is nonequilibrium, the MPC method is able to reproduce full DSMC results down to the level of velocity and rotational energy probability density functions while requiring a fraction of the computational time.
An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snider, D.M.; O`Rourke, P.J.; Andrews, M.J.
1997-06-01
A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles,more » with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.« less
Aspects of disordered eating continuum in elite high-intensity sports.
Sundgot-Borgen, J; Torstveit, M K
2010-10-01
Dieting is an important risk factor for disordered eating and eating disorders. Disordered eating occurs on a continuum from dieting and restrictive eating, abnormal eating behavior, and finally clinical eating disorders. The prevalence of eating disorders is increased in elite athletes and for this group the cause of starting to diet is related to (a) perception of the paradigm of appearance in the specific sport, (b) perceived performance improvements, and (c) sociocultural pressures for thinness or an "ideal" body. Athletes most at risk for disordered eating are those involved in sports emphasizing a thin body size/shape, a high power-to-weight ratio, and/or sports utilizing weight categories, such as in some high-intensity sports. In addition to dieting, personality factors, pressure to lose weight, frequent weight cycling, early start of sport-specific training, overtraining, injuries, and unfortunate coaching behavior, are important risk factors. To prevent disordered eating and eating disorders, the athletes have to practice healthy eating, and the medical staff of teams and parents must be able to recognize symptoms indicating risk for eating disorders. Coaches and leaders must accept that disordered eating can be a problem in the athletic community and that openness regarding this challenge is important. © 2010 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Karatzas, N. E.; Georges, A. T.
2006-11-01
Calculations are presented for the first four (odd and even) harmonics of an 800 nm laser from a gold surface, with pulse widths ranging from 100 down to 14 fs. For peak laser intensities above 1 GW/cm 2 the harmonics are enhanced because of a partial depletion of the initial electron states. At 10 11 W/cm 2 of peak laser intensity the calculated conversion efficiency for 2nd-harmonic generation is 3 × 10 -9, while for the 5th-harmonic it is 10 -10. The generated harmonic pulses are broadened and delayed relative to the laser pulse because of the finite relaxation times of the excited electronic states. The finite electron relaxation times cause also the broadening of the autocorrelations of the laser pulses obtained from surface harmonic generation by two time-delayed identical pulses. Comparison with recent experimental results shows that the response time of an autocorrelator using nonlinear optical processes in a gold surface is shorter than the electron relaxation times. This seems to indicate that for laser pulses shorter than ˜30 fs, the fast nonresonant channel for multiphoton excitation via continuum-continuum transitions in metals becomes important as the resonant channel becomes slow (relative to the laser pulse) and less efficient.
Rabi oscillations in the dissociative continuum: Rotation and alignment effects
NASA Astrophysics Data System (ADS)
Granucci, Giovanni; Magnier, Sylvie; Persico, Maurizio
2002-01-01
We have simulated a set of experiments in which Rabi oscillations are induced in bound-free and free-free transitions of a diatomic molecule. Dissociative vibrational states belonging to different electronic terms are involved. We show analytically and confirm computationally that a simple relationship exists between the one-dimensional dynamics of a molecule with fixed orientation with respect to the polarization of the radiation field and the three-dimensional dynamics of a rotating system. It is demonstrated that sufficiently short laser pulses can induce oscillations in the probabilities of two coupled electronic states, and in the yields of the respective dissociation products, as functions of the radiation intensity. As a result of molecular rotation the oscillations are damped but not washed out. The initial thermal distribution on several rotational levels has a negligible effect on the photodissociation yields and other experimentally relevant quantities. Since the molecule undergoes a strong alignment along the polarization axis of the laser field, the ejection of atoms and ions is anisotropic. We have chosen the well known diatomic ion Na2+ as a convenient example.
Soft X-ray Spectrometer for Characterization of Electron Beam Driven WDM
NASA Astrophysics Data System (ADS)
Ramey, Nicholas; Coleman, Joshua; Perry, John
2017-10-01
A preliminary design study is being performed on a soft X-ray spectrometer to measure K-shell spectra emitted by a warm dense plasma generated by an intense, relativistic electron beam interacting with a thin, low-Z metal foil. A 100-ns-long electron pulse with a beam current of 1.7 kA and energy of 19.8 MeV deposits energy into the thin metal foil heating it to a warm dense plasma. The collisional ionization of the target by the electron beam produces an anisotropic angular distribution of K-shell radiation and a continuum of both scattered electrons and Bremsstrahlung up to the beam energy of 19.8 MeV. A proof-of-principle Bragg-type spectrometer has been built to measure the Ti K- α and K- β lines. The goal of the spectrometer is to measure the temperature and density of this warm dense plasma for the first time with this heating technique. This work was supported by the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396.
Mirkin, B M; Naumova, L G
2015-01-01
L.G. Ramensky (1884-1953) was an outstanding Soviet geobotanist of the first part of XX century. Considered is his theoretical legacy and its contribution to modern vegetation science. L.G. Ramensky formulated the principle of vegetation continuum based on which the modern paradigm of vegetation science has been put into shape. The scientist made a contribution to the development of such important theoretical conceptions as types of plant strategy, coenosis and coenobiosis (coexistence of species), patterns of interannual variability in plant communities, ecological successions. The unique ecological scales were established by L.G. Ramensky that characterize the distribution of 1400 species over the gradients of soil moistening, richness, and salinization as well as moistening variability, pastoral digression, and alluvial intensity. He came out against mechanistic notions by V.N. Sukachev on a biogeocoenosis structure. The scientist did not offer his own method of plant communities classification but his well-reasoned criticism of dominant classification played a great role in adoption of floristical classification principles (Braun-Blanquet approach) by phytocenology in our country.
NASA Technical Reports Server (NTRS)
Fontenla, J. M.; Avrett, E. H.; Loeser, R.
1990-01-01
The energy balance in the lower transition region is analyzed by constructing theoretical models which satisfy the energy balance constraint. The energy balance is achieved by balancing the radiative losses and the energy flowing downward from the corona. This energy flow is mainly in two forms: conductive heat flow and hydrogen ionization energy flow due to ambipolar diffusion. Hydrostatic equilibrium is assumed, and, in a first calculation, local mechanical heating and Joule heating are ignored. In a second model, some mechanical heating compatible with chromospheric energy-balance calculations is introduced. The models are computed for a partial non-LTE approach in which radiation departs strongly from LTE but particles depart from Maxwellian distributions only to first order. The results, which apply to cases where the magnetic field is either absent, or uniform and vertical, are compared with the observed Lyman lines and continuum from the average quiet sun. The approximate agreement suggests that this type of model can roughly explain the observed intensities in a physically meaningful way, assuming only a few free parameters specified as chromospheric boundary conditions.
An asymptotic Reissner-Mindlin plate model
NASA Astrophysics Data System (ADS)
Licht, Christian; Weller, Thibaut
2018-06-01
A mathematical study via variational convergence of a periodic distribution of classical linearly elastic thin plates softly abutted together shows that it is not necessary to use a different continuum model nor to make constitutive symmetry hypothesis as starting points to deduce the Reissner-Mindlin plate model.
The limits of the nuclear landscape explored by the relativistic continuum Hartree–Bogoliubov theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, X. W.; Lim, Y.; Zhao, P. W.
The ground-state properties of nuclei with 8more » $$\\leqslant$$ Z $$\\leqslant$$ 120 from the proton drip line to the neutron drip line have been investigated using the relativistic continuum Hartree-Bogoliubov (RCHB) theory with the relativistic density functional PC-PK1. With the effects of the continuum included, there are totally 9035 nuclei predicted to be bound, which largely extends the existing nuclear landscapes predicted with other methods. The calculated binding energies, separation energies, neutron and proton Fermi surfaces, root-mean-square (rms) radii of neutron, proton, matter, and charge distributions, ground-state spins and parities are tabulated. The extension of the nuclear landscape obtained with RCHB is discussed in detail, in particular for the neutron-rich side, in comparison with the relativistic mean field calculations without pairing correlations and also other predicted landscapes. Here, it is found that the coupling between the bound states and the continuum due to the pairing correlations plays an essential role in extending the nuclear landscape. The systematics of the separation energies, radii, densities, potentials and pairing energies of the RCHB calculations are also discussed. In addition, the α-decay energies and proton emitters based on the RCHB calculations are investigated.« less
NASA Astrophysics Data System (ADS)
Jalali, Payman; Hyppänen, Timo
2017-06-01
In loose or moderately-dense particle mixtures, the contact forces between particles due to successive collisions create average volumetric solid-solid drag force between different granular phases (of different particle sizes). The derivation of the mathematical formula for this drag force is based on the homogeneity of mixture within the calculational control volume. This assumption especially fails when the size ratio of particles grows to a large value of 10 or greater. The size-driven inhomogeneity is responsible to the deviation of intergranular force from the continuum formula. In this paper, we have implemented discrete element method (DEM) simulations to obtain the volumetric mean force exchanged between the granular phases with the size ratios greater than 10. First, the force is calculated directly from DEM averaged over a proper time window. Second, the continuum formula is applied to calculate the drag forces using the DEM quantities. We have shown the two volumetric forces are in good agreement as long as the homogeneity condition is maintained. However, the relative motion of larger particles in a cloud of finer particles imposes the inhomogeneous distribution of finer particles around the larger ones. We have presented correction factors to the volumetric force from continuum formula.
The limits of the nuclear landscape explored by the relativistic continuum Hartree–Bogoliubov theory
Xia, X. W.; Lim, Y.; Zhao, P. W.; ...
2017-11-01
The ground-state properties of nuclei with 8more » $$\\leqslant$$ Z $$\\leqslant$$ 120 from the proton drip line to the neutron drip line have been investigated using the relativistic continuum Hartree-Bogoliubov (RCHB) theory with the relativistic density functional PC-PK1. With the effects of the continuum included, there are totally 9035 nuclei predicted to be bound, which largely extends the existing nuclear landscapes predicted with other methods. The calculated binding energies, separation energies, neutron and proton Fermi surfaces, root-mean-square (rms) radii of neutron, proton, matter, and charge distributions, ground-state spins and parities are tabulated. The extension of the nuclear landscape obtained with RCHB is discussed in detail, in particular for the neutron-rich side, in comparison with the relativistic mean field calculations without pairing correlations and also other predicted landscapes. Here, it is found that the coupling between the bound states and the continuum due to the pairing correlations plays an essential role in extending the nuclear landscape. The systematics of the separation energies, radii, densities, potentials and pairing energies of the RCHB calculations are also discussed. In addition, the α-decay energies and proton emitters based on the RCHB calculations are investigated.« less
Sproule, Michael K. J.
2017-01-01
Neural heterogeneities are seen ubiquitously within the brain and greatly complicate classification efforts. Here we tested whether the responses of an anatomically well-characterized sensory neuron population to natural stimuli could be used for functional classification. To do so, we recorded from pyramidal cells within the electrosensory lateral line lobe (ELL) of the weakly electric fish Apteronotus leptorhynchus in response to natural electro-communication stimuli as these cells can be anatomically classified into six different types. We then used two independent methodologies to functionally classify responses: one relies of reducing the dimensionality of a feature space while the other directly compares the responses themselves. Both methodologies gave rise to qualitatively similar results: while ON and OFF-type cells could easily be distinguished from one another, ELL pyramidal neuron responses are actually distributed along a continuum rather than forming distinct clusters due to heterogeneities. We discuss the implications of our results for neural coding and highlight some potential advantages. PMID:28384244
A Study of the Radio Continuum Far Infrared Correlation at Small Scales in the Galaxy
NASA Astrophysics Data System (ADS)
Rodriguez-Martinez, Monica I.; Allen, R. J.; Wiklind, T.; Loinard, L.
2006-12-01
We present a study of the behavior of the Radio Continuum (RC) Far Infrared (FIR) correlation on scales corresponding to the size of small molecular clouds. This was done by comparing the spatial distribution of RC emission and FIR emission from a sample of several regions, distributed within the range 79∘ ≤ l ≤ 174∘ in the Galaxy. We have examined the 408 and 1420 MHz mosaic images of the sample, from the Canadian Galactic Plane Survey (CGPS), which later were compared with images at 60 and 100 μm. Preliminary results suggest that the RC -FIR correlation still holds at small scales, since a good qualitative correlation between RC and FIR emission is found. The physical process involved that may cause such correlation will be discussed as well as the nature of the RC emission. This research makes use of data from the Canadian Galactic Plane Survey.
Laser-based volumetric flow visualization by digital color imaging of a spectrally coded volume.
McGregor, T J; Spence, D J; Coutts, D W
2008-01-01
We present the framework for volumetric laser-based flow visualization instrumentation using a spectrally coded volume to achieve three-component three-dimensional particle velocimetry. By delivering light from a frequency doubled Nd:YAG laser with an optical fiber, we exploit stimulated Raman scattering within the fiber to generate a continuum spanning the visible spectrum from 500 to 850 nm. We shape and disperse the continuum light to illuminate a measurement volume of 20 x 10 x 4 mm(3), in which light sheets of differing spectral properties overlap to form an unambiguous color variation along the depth direction. Using a digital color camera we obtain images of particle fields in this volume. We extract the full spatial distribution of particles with depth inferred from particle color. This paper provides a proof of principle of this instrument, examining the spatial distribution of a static field and a spray field of water droplets ejected by the nozzle of an airbrush.
The electron-cyclotron maser instability as a source of plasma radiation. [Solar radio bursts
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Dulk, G. A.
1986-01-01
The generation of continuum bursts from the sun at dm and m wavelengths (in particular, type IV bursts) via the electron-cyclotron-maser instability is examined. The maser instability can be driven by an electron distribution with either a loss-cone anisotropy or a peak at large pitch angles. For omega(p)/Omega(e) much greater than 1, the maser emission is produced by electrons interacting through a harmonic (cyclotron) resonance and is electrostatic, being in the upper hybrid mode at frequencies approximately equal to omega(p). Coalescence processes are required to convert the electrostatic waves into transverse radiation which can escape from the source region. Whether the resultant spectrum is nearly a smooth continuum or has a zebra-stripe pattern (both of which occur in type IV bursts) depends on the form of the electron distribution, inhomogeneities in the density and magnetic field, and whether the maser reaches saturation. For at least the case of some type IV dm bursts with fine structure, comparison with observations seems to indicate that the electrons producing the emission are more likely to have a loss-cone distribution, and that the maser instability is not at saturation.
Electro-osmotic flow of a model electrolyte
NASA Astrophysics Data System (ADS)
Zhu, Wei; Singer, Sherwin J.; Zheng, Zhi; Conlisk, A. T.
2005-04-01
Electro-osmotic flow is studied by nonequilibrium molecular dynamics simulations in a model system chosen to elucidate various factors affecting the velocity profile and facilitate comparison with existing continuum theories. The model system consists of spherical ions and solvent, with stationary, uniformly charged walls that make a channel with a height of 20 particle diameters. We find that hydrodynamic theory adequately describes simple pressure-driven (Poiseuille) flow in this model. However, Poisson-Boltzmann theory fails to describe the ion distribution in important situations, and therefore continuum fluid dynamics based on the Poisson-Boltzmann ion distribution disagrees with simulation results in those situations. The failure of Poisson-Boltzmann theory is traced to the exclusion of ions near the channel walls resulting from reduced solvation of the ions in that region. When a corrected ion distribution is used as input for hydrodynamic theory, agreement with numerical simulations is restored. An analytic theory is presented that demonstrates that repulsion of the ions from the channel walls increases the flow rate, and attraction to the walls has the opposite effect. A recent numerical study of electro-osmotic flow is reanalyzed in the light of our findings, and the results conform well to our conclusions for the model system.
NuSTAR monitoring of the Galactic center diffuse emission
NASA Astrophysics Data System (ADS)
Clavel, Maïca; Krivonos, Roman; Mori, Kaya; Tomsick, John; Zhang, Shuo
2017-08-01
Over the past two decades, the intense X-ray monitoring of the Molecular clouds in the inner region of our Galaxy has revealed a large number of reflection features, characterized by both a strong iron line at 6.4keV and associated non-thermal continuum emission. The correlated variations of these structures observed within the whole central molecular zone, along with their surface brightness, are strong evidence that a significant fraction of this diffuse emission is created by past outbursts from the supermassive black hole at the Galactic center, Sagittarius A*. The variability and the intensity of the fluorescent iron line derived from XMM-Newton and Chandra campaigns have demonstrated that the past events were short (few-year duration) but intense (more than 1039 erg/s in luminosity). However, reconstructing the detailed properties of these past events is not straightforward since it also depends on the density and the line of sight distances of the reflecting clouds, which are poorly known. By better constraining the diffuse continuum emission up to several tens of keV, NuSTAR now provides spectral information needed to better understand both the spectral shape of the emission produced during these past events and the geometry of the reflecting clouds. I will present the up-to-date NuSTAR results on the past activity of Sgr A*, including a detailed comparison of the latest 2016 deep observation with the original 2012 survey of the Galactic center and a complete spectral analysis of the Arches cloud and of an other key cloud which has been brightening.
SUBMILLIMETER POLARIZATION OBSERVATION OF THE PROTOPLANETARY DISK AROUND HD 142527
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kataoka, Akimasa; Dullemond, Cornelis P.; Pohl, Adriana
We present the polarization observations toward the circumstellar disk around HD 142527 by using Atacama Large Millimeter/submillimeter Array at the frequency of 343 GHz. The beam size is 0.″51 × 0.″44, which corresponds to the spatial resolution of ∼71 × 62 au. The polarized intensity displays a ring-like structure with a peak located on the east side with a polarization fraction of P = 3.26 ± 0.02%, which is different from the peak of the continuum emission from the northeast region. The polarized intensity is significantly weaker at the peak of the continuum where P = 0.220 ± 0.010%. Themore » polarization vectors are in the radial direction in the main ring of the polarized intensity, while there are two regions outside at the northwest and northeast areas where the vectors are in the azimuthal direction. If the polarization vectors represent the magnetic field morphology, the polarization vectors indicate the toroidal magnetic field configuration on the main ring and the poloidal fields outside. On the other hand, the flip of the polarization vectors is predicted by the self-scattering of thermal dust emission due to the change of the direction of thermal radiation flux. Therefore, we conclude that self-scattering of thermal dust emission plays a major role in producing polarization at millimeter wavelengths in this protoplanetary disk. Also, this puts a constraint on the maximum grain size to be approximately 150 μ m if we assume compact spherical dust grains.« less
Ellipticity of near-threshold harmonics from stretched molecules.
Li, Weiyan; Dong, Fulong; Yu, Shujuan; Wang, Shang; Yang, Shiping; Chen, Yanjun
2015-11-30
We study the ellipticity of near-threshold harmonics (NTH) from aligned molecules with large internuclear distances numerically and analytically. The calculated harmonic spectra show a broad plateau for NTH which is several orders of magnitude higher than that for high-order harmonics. In particular, the NTH plateau shows high ellipticity at small and intermediate orientation angles. Our analyses reveal that the main contributions to the NTH plateau come from the transition of the electron from continuum states to these two lowest bound states of the system, which are strongly coupled together by the laser field. Besides continuum states, higher excited states also play a role in the NTH plateau, resulting in a large phase difference between parallel and perpendicular harmonics and accordingly high ellipticity of the NTH plateau. The NTH plateau with high intensity and large ellipticity provides a promising manner for generating strong elliptically-polarized extreme-ultraviolet (EUV) pulses.
Boisvert, Stéphanie; Poulin, François
2016-05-01
The present study identifies and describes romantic relationship patterns from adolescence to adulthood and examines their associations with family and peer experiences in early adolescence. In a 13-year longitudinal study, 281 youth (58 % girls) identified all their romantic partners each year from the ages of 16-24. Dimensions of family relationships (family cohesion, parent-child conflict) and peer relationships (peer likeability, social withdrawal, close friendships, other-sex friendships) were assessed at age 12. Latent class analyses brought out five distinct romantic relationship patterns and significant associations were found with family and peer relationships in early adolescence. These five romantic relationship patterns appeared to follow a continuum of romantic involvement, with romantic relationship patterns situated a both ends of this continuum (later involvement pattern and intense involvement pattern) being associated with more interpersonal experiences in early adolescence.
NASA Astrophysics Data System (ADS)
Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro
2017-08-01
This third part extends the theory of Generalized Poisson-Kac (GPK) processes to nonlinear stochastic models and to a continuum of states. Nonlinearity is treated in two ways: (i) as a dependence of the parameters (intensity of the stochastic velocity, transition rates) of the stochastic perturbation on the state variable, similarly to the case of nonlinear Langevin equations, and (ii) as the dependence of the stochastic microdynamic equations of motion on the statistical description of the process itself (nonlinear Fokker-Planck-Kac models). Several numerical and physical examples illustrate the theory. Gathering nonlinearity and a continuum of states, GPK theory provides a stochastic derivation of the nonlinear Boltzmann equation, furnishing a positive answer to the Kac’s program in kinetic theory. The transition from stochastic microdynamics to transport theory within the framework of the GPK paradigm is also addressed.
Huang, Mao Dong; Becker-Ross, Helmut; Florek, Stefan; Heitmann, Uwe; Okruss, Michael
2005-08-01
Determination of sulfur in wine is an important analytical task, particularly with regard to food safety legislation, wine trade, and oenology. Hitherto existing methods for sulfur determination all have specific drawbacks, for example high cost and time consumption, poor precision or selectivity, or matrix effects. In this paper a new method, with low running costs, is introduced for direct, reliable, rapid, and accurate determination of the total sulfur content of wine samples. The method is based on measurement of the molecular absorption of carbon monosulfide (CS) in an ordinary air-acetylene flame by using a high-resolution continuum-source atomic-absorption spectrometer including a novel high-intensity short-arc xenon lamp. First results for total sulfur concentrations in different wine samples were compared with data from comparative ICP-MS measurements. Very good agreement within a few percent was obtained.
INDIRECT EVIDENCE FOR ESCAPING IONIZING PHOTONS IN LOCAL LYMAN BREAK GALAXY ANALOGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexandroff, Rachael M.; Heckman, Timothy M.; Borthakur, Sanchayeeta
2015-09-10
A population of early star-forming galaxies is the leading candidate for the re-ionization of the universe. It is still unclear, however, what conditions and physical processes would enable a significant fraction of the ionizing (Lyman continuum) photons to escape from these gas-rich galaxies. In this paper we present the results of the analysis of Hubble Space Telescope Cosmic Origins Spectrograph far-UV (FUV) spectroscopy plus ancillary multi-waveband data of a sample of 22 low-redshift galaxies that are good analogs to typical star-forming galaxies at high redshift. We measure three parameters that provide indirect evidence of the escape of ionizing radiation (leakiness):more » (1) the residual intensity in the cores of saturated interstellar low-ionization absorption lines, which indicates incomplete covering by that gas in the galaxy; (2) the relative amount of blueshifted Lyα line emission, which can indicate the existence of holes in the neutral hydrogen on the front-side of the galaxy outflow, and (3) the relative weakness of the [S ii] optical emission lines that trace matter-bounded H ii regions. We show that our residual intensity measures are only negligibly affected by infilling from resonance emission lines. We find all three diagnostics agree well with one another. We use these diagnostics to rank-order our sample in terms of likely leakiness, noting that a direct measure of escaping Lyman continuum has recently been made for one of the leakiest members of our sample. We then examine the correlations between our ranking and other proposed diagnostics of leakiness. We find a good correlation with the equivalent width of the Lyα emission line, but no significant correlations with either the flux ratio of the [O iii]/[O ii] emission lines or the ratio of star-formation rates derived from the (dust-corrected) FUV and Hα luminosities. Turning to galaxy properties, we find the strongest correlations with leakiness are with the compactness of the star-forming region (Star formation rate/area) and the speed of the galactic outflow. This suggests that extreme feedback—a high intensity of ionizing radiation and strong pressure from both radiation and a hot galactic wind—combines to create significant holes in the neutral gas. These results not only shed new light on the physical mechanisms that can allow ionizing radiation to escape from intensely star-forming galaxies, they also provide indirect observational indicators that can be used at high redshift where direct measurements of escaping Lyman continuum radiation are impossible.« less
X-ray Reverberation Mapping of Ci Cam
NASA Astrophysics Data System (ADS)
Bartlett, Elizabeth; Garcia, M.
2009-01-01
We have analyzed the X-ray lightcurve of the star CI Cam, the optical counterpart of the X-ray transient XTE J0421+56 using data from XMM-Newton. Our motivation is based on evidence from ground based optical interferometry from the Keck and IOTA observatories which suggests that the dust surrounding CI CAM has a taurus morphology rather than a spherical distribution as previously hypothesized. By using a technique known as reverberation mapping we have constrained the time delay between the continuum of CI Cam and the Fe-K fluorescence line, corresponding to the reflection of the continuum off the dusty taurus. The time delay yields information on the size of the taurus.
Spectrophotometry of 2 complete samples of flat radio spectrum quasars
NASA Technical Reports Server (NTRS)
Wampler, E. J.; Gaskell, C. M.; Burke, W. L.; Baldwin, J. A.
1983-01-01
Spectrophotometry of two complete samples of flat-spectrum radio quasars show that for these objects there is a strong correlation between the equivalent width of the CIV wavelength 1550 emission line and the luminosity of the underlying continuum. Assuming Friedmann cosmologies, the scatter in this correlation is a minimum for q (sub o) is approximately 1. Alternatively, luminosity evolution can be invoked to give compact distributions for q (sub o) is approximately 0 models. A sample of Seyfert galaxies observed with IUE shows that despite some dispersion the average equivalent width of CIV wavelength 1550 in Seyfert galaxies is independent of the underlying continuum luminosity. New redshifts for 4 quasars are given.
NASA Astrophysics Data System (ADS)
Kohno, Mikito; Torii, Kazufumi; Tachihara, Kengo; Umemoto, Tomofumi; Minamidani, Tetsuhiro; Nishimura, Atsushi; Fujita, Shinji; Matsuo, Mitsuhiro; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Ohama, Akio; Hattori, Yusuke; Sano, Hidetoshi; Yamamoto, Hiroaki; Fukui, Yasuo
2018-05-01
We observed molecular clouds in the W 33 high-mass star-forming region associated with compact and extended H II regions using the NANTEN2 telescope as well as the Nobeyama 45 m telescope in the J = 1-0 transitions of 12CO, 13CO, and C18O as part of the FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN) legacy survey. We detected three velocity components at 35 km s-1, 45 km s-1, and 58 km s-1. The 35 km s-1 and 58 km s-1 clouds are likely to be physically associated with W 33 because of the enhanced 12CO J = 3-2 to J = 1-0 intensity ratio as R_3-2/1-0 > 1.0 due to the ultraviolet irradiation by OB stars, and morphological correspondence between the distributions of molecular gas and the infrared and radio continuum emissions excited by high-mass stars. The two clouds show complementary distributions around W 33. The velocity separation is too large to be gravitationally bound, and yet not explained by expanding motion by stellar feedback. Therefore, we discuss whether a cloud-cloud collision scenario likely explains the high-mass star formation in W 33.
NASA Astrophysics Data System (ADS)
Ojha, Akash; Samantaray, Mihir; Nath Thatoi, Dhirendra; Sahoo, Seshadev
2018-03-01
Direct Metal Laser Sintering (DMLS) process is a laser based additive manufacturing process, which built complex structures from powder materials. Using high intensity laser beam, the process melts and fuse the powder particles makes dense structures. In this process, the laser beam in terms of heat flux strikes the powder bed and instantaneously melts and joins the powder particles. The partial solidification and temperature distribution on the powder bed endows a high cooling rate and rapid solidification which affects the microstructure of the build part. During the interaction of the laser beam with the powder bed, multiple modes of heat transfer takes place in this process, that make the process very complex. In the present research, a comprehensive heat transfer and solidification model of AlSi10Mg in direct metal laser sintering process has been developed on ANSYS 17.1.0 platform. The model helps to understand the flow phenomena, temperature distribution and densification mechanism on the powder bed. The numerical model takes into account the flow, heat transfer and solidification phenomena. Simulations were carried out for sintering of AlSi10Mg powders in the powder bed having dimension 3 mm × 1 mm × 0.08 mm. The solidification phenomena are incorporated by using enthalpy-porosity approach. The simulation results give the fundamental understanding of the densification of powder particles in DMLS process.
NASA Astrophysics Data System (ADS)
Kohno, Mikito; Torii, Kazufumi; Tachihara, Kengo; Umemoto, Tomofumi; Minamidani, Tetsuhiro; Nishimura, Atsushi; Fujita, Shinji; Matsuo, Mitsuhiro; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Ohama, Akio; Hattori, Yusuke; Sano, Hidetoshi; Yamamoto, Hiroaki; Fukui, Yasuo
2018-01-01
We observed molecular clouds in the W 33 high-mass star-forming region associated with compact and extended H II regions using the NANTEN2 telescope as well as the Nobeyama 45 m telescope in the J = 1-0 transitions of 12CO, 13CO, and C18O as part of the FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN) legacy survey. We detected three velocity components at 35 km s-1, 45 km s-1, and 58 km s-1. The 35 km s-1 and 58 km s-1 clouds are likely to be physically associated with W 33 because of the enhanced 12CO J = 3-2 to J = 1-0 intensity ratio as R3-2/1-0 > 1.0 due to the ultraviolet irradiation by OB stars, and morphological correspondence between the distributions of molecular gas and the infrared and radio continuum emissions excited by high-mass stars. The two clouds show complementary distributions around W 33. The velocity separation is too large to be gravitationally bound, and yet not explained by expanding motion by stellar feedback. Therefore, we discuss whether a cloud-cloud collision scenario likely explains the high-mass star formation in W 33.
NASA Astrophysics Data System (ADS)
Kohno, Mikito; Torii, Kazufumi; Tachihara, Kengo; Umemoto, Tomofumi; Minamidani, Tetsuhiro; Nishimura, Atsushi; Fujita, Shinji; Matsuo, Mitsuhiro; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Ohama, Akio; Hattori, Yusuke; Sano, Hidetoshi; Yamamoto, Hiroaki; Fukui, Yasuo
2018-05-01
We observed molecular clouds in the W 33 high-mass star-forming region associated with compact and extended H II regions using the NANTEN2 telescope as well as the Nobeyama 45 m telescope in the J = 1-0 transitions of 12CO, 13CO, and C18O as part of the FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN) legacy survey. We detected three velocity components at 35 km s-1, 45 km s-1, and 58 km s-1. The 35 km s-1 and 58 km s-1 clouds are likely to be physically associated with W 33 because of the enhanced 12CO J = 3-2 to J = 1-0 intensity ratio as R_3-2/1-0} > 1.0 due to the ultraviolet irradiation by OB stars, and morphological correspondence between the distributions of molecular gas and the infrared and radio continuum emissions excited by high-mass stars. The two clouds show complementary distributions around W 33. The velocity separation is too large to be gravitationally bound, and yet not explained by expanding motion by stellar feedback. Therefore, we discuss whether a cloud-cloud collision scenario likely explains the high-mass star formation in W 33.
RADIO IMAGING OF THE NGC 2024 FIR 5/6 REGION: A HYPERCOMPACT H II REGION CANDIDATE IN ORION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Minho; Kang, Miju; Lee, Jeong-Eun, E-mail: minho@kasi.re.kr
The NGC 2024 FIR 5/6 region was observed in the 6.9 mm continuum with an angular resolution of about 1.5 arcsec. The 6.9 mm continuum map shows four compact sources, FIR 5w, 5e, 6c, and 6n, as well as an extended structure of the ionization front associated with the optical nebulosity. FIR 6c has a source size of about 0.4 arcsec or 150 AU. The spectral energy distribution (SED) of FIR 6c is peculiar: rising steeply around 6.9 mm and flat around 1 mm. The possibility of a hypercompact H II region is explored. If the millimeter flux of FIRmore » 6c comes from hot ionized gas heated by a single object at the center, the central object may be a B1 star of about 5800 solar luminosities and about 13 solar masses. The 6.9 mm continuum of FIR 6n may be a mixture of free-free emission and dust continuum emission. Archival data show that both FIR 6n and 6c exhibit water maser activity, suggesting the existence of shocked gas around them. The 6.9 mm continuum emission from FIR 5w has a size of about 1.8 arcsec or 760 AU. The SEDs suggest that the 6.9 mm emission of FIR 5w and 5e comes from dust, and the masses of the dense molecular gas are about 0.6 and 0.5 solar masses, respectively.« less
NASA Astrophysics Data System (ADS)
Hu, Q.; Joshi, R. P.
2017-07-01
Electric pulse driven membrane poration finds applications in the fields of biomedical engineering and drug/gene delivery. Here we focus on nanosecond, high-intensity electroporation and probe the role of pulse shape (e.g., monopolar-vs-bipolar), multiple electrode scenarios, and serial-versus-simultaneous pulsing, based on a three-dimensional time-dependent continuum model in a systematic fashion. Our results indicate that monopolar pulsing always leads to higher and stronger cellular uptake. This prediction is in agreement with experimental reports and observations. It is also demonstrated that multi-pronged electrode configurations influence and increase the degree of cellular uptake.
Tilting-filter measurements in dayglow rocket photometry.
Schaeffer, R C; Fastie, W G
1972-10-01
A rocket-borne photometer containing two tilting-filter channels for the measurement of the [OI] lambdalambda6300-A and 5577A emission lines in the day airglow is described. The results of one flight substantiate the employment of tilting filters to determine accurate corrections for background continuum and provide reliable height profiles of emission intensity down to approximately 90 km. Discussions on the calibration of the instrument and its baffling against sunlight are also presented.
Isabell von Rein; Arthur Gessler; Katrin Premke; Claudia Keitel; Andreas Ulrich; Zachary E. Kayler
2016-01-01
Drought duration and intensity are expected to increase with global climate change. How changes in water availability and temperature affect the combined plantâsoilâmicroorganism response remains uncertain. We excavated soil monoliths from a beech (Fagus sylvatica L.) forest, thus keeping the understory plantâmicrobe communities intact, imposed an...
Sousa, Sérgio Filipe; Fernandes, Pedro Alexandrino; Ramos, Maria João
2009-12-31
Gas-phase optimization of single biological molecules and of small active-site biological models has become a standard approach in first principles computational enzymology. The important role played by the surrounding environment (solvent, enzyme, both) is normally only accounted for through higher-level single point energy calculations performed using a polarizable continuum model (PCM) and an appropriate dielectric constant with the gas-phase-optimized geometries. In this study we analyze this widely used approximation, by comparing gas-phase-optimized geometries with geometries optimized with different PCM approaches (and considering different dielectric constants) for a representative data set of 20 very important biological molecules--the 20 natural amino acids. A total of 323 chemical bonds and 469 angles present in standard amino acid residues were evaluated. The results show that the use of gas-phase-optimized geometries can in fact be quite a reasonable alternative to the use of the more computationally intensive continuum optimizations, providing a good description of bond lengths and angles for typical biological molecules, even for charged amino acids, such as Asp, Glu, Lys, and Arg. This approximation is particularly successful if the protonation state of the biological molecule could be reasonably described in vacuum, a requirement that was already necessary in first principles computational enzymology.
Ciftci, Harun; Er, Cigdem
2013-03-01
In the present study, a separation/preconcentration procedure for determination of aluminum in water samples has been developed by using a new atomic absorption spectrometer concept with a high-intensity xenon short-arc lamp as continuum radiation source, a high-resolution double-echelle monochromator, and a charge-coupled device array detector. Sample solution pH, sample volume, flow rate of sample solution, volume, and concentration of eluent for solid-phase extraction of Al chelates with 4-[(dicyanomethyl)diazenyl] benzoic acid on polymeric resin (Duolite XAD-761) have been investigated. The adsorbed aluminum on resin was eluted with 5 mL of 2 mol L(-1) HNO(3) and its concentration was determined by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Under the optimal conditions, limit of detection obtained with HR-CS FAAS and Line Source FAAS (LS-FAAS) were 0.49 μg L(-1) and 3.91 μg L(-1), respectively. The accuracy of the procedure was confirmed by analyzing certified materials (NIST SRM 1643e, Trace elements in water) and spiked real samples. The developed procedure was successfully applied to water samples.
The high velocity symbiotic star AG Draconis after its 1980 outburst
NASA Technical Reports Server (NTRS)
Viotti, R.; Altamore, A.; Baratta, G. B.; Cassatella, A.; Friedjung, M.; Giangrande, A.; Ponz, D.; Ricciardi, O.
1982-01-01
High and low resolution spectra of AG Dra taken in 1981 are analyzed. The UV spectrum of AG Dra is characterized by prominent high ionization emission lines superimposed on a strong continuum. At high resolution, several intense absorption lines of interstellar origin are seen, in spite of the low interstellar extinction. A similar situation is displayed by the high galactic latitude sd0 stars. The radial velocity difference between the emission lines and the i.s. lines is about -105 Km/sec in agreement with the optical observations. The He II 1640 A line appears much stronger than in other symbiotic stars and suggests the presence of a hot source which is variable according to the activity of the star. The line also exhibits broad emission wings which could be formed in a rotating disk. The NV resonance doublet displays a P Cygni profile and is probably formed in a warm wind. Two components in the UV continuum are identified: a steep component dominating the far UV probably associated with the hot source, and a flatter continuum in the near UV which cannot be accounted for by f-f and f-b emission alone, but which is probably emitted by an optically thick region or disk.
NASA Astrophysics Data System (ADS)
Xu, Zexuan; Hu, Bill
2016-04-01
Dual-permeability karst aquifers of porous media and conduit networks with significant different hydrological characteristics are widely distributed in the world. Discrete-continuum numerical models, such as MODFLOW-CFP and CFPv2, have been verified as appropriate approaches to simulate groundwater flow and solute transport in numerical modeling of karst hydrogeology. On the other hand, seawater intrusion associated with fresh groundwater resources contamination has been observed and investigated in numbers of coastal aquifers, especially under conditions of sea level rise. Density-dependent numerical models including SEAWAT are able to quantitatively evaluate the seawater/freshwater interaction processes. A numerical model of variable-density flow and solute transport - conduit flow process (VDFST-CFP) is developed to provide a better description of seawater intrusion and submarine groundwater discharge in a coastal karst aquifer with conduits. The coupling discrete-continuum VDFST-CFP model applies Darcy-Weisbach equation to simulate non-laminar groundwater flow in the conduit system in which is conceptualized and discretized as pipes, while Darcy equation is still used in continuum porous media. Density-dependent groundwater flow and solute transport equations with appropriate density terms in both conduit and porous media systems are derived and numerically solved using standard finite difference method with an implicit iteration procedure. Synthetic horizontal and vertical benchmarks are created to validate the newly developed VDFST-CFP model by comparing with other numerical models such as variable density SEAWAT, couplings of constant density groundwater flow and solute transport MODFLOW/MT3DMS and discrete-continuum CFPv2/UMT3D models. VDFST-CFP model improves the simulation of density dependent seawater/freshwater mixing processes and exchanges between conduit and matrix. Continuum numerical models greatly overestimated the flow rate under turbulent flow condition but discrete-continuum models provide more accurate results. Parameters sensitivities analysis indicates that conduit diameter and friction factor, matrix hydraulic conductivity and porosity are important parameters that significantly affect variable-density flow and solute transport simulation. The pros and cons of model assumptions, conceptual simplifications and numerical techniques in VDFST-CFP are discussed. In general, the development of VDFST-CFP model is an innovation in numerical modeling methodology and could be applied to quantitatively evaluate the seawater/freshwater interaction in coastal karst aquifers. Keywords: Discrete-continuum numerical model; Variable density flow and transport; Coastal karst aquifer; Non-laminar flow
The Reddening law outside the local group galaxies: The case of NGC 7552 and NGC 5236
NASA Technical Reports Server (NTRS)
Kinney, Anne L.; Calzetti, Daniela; Bica, Eduardo; Storchi-Bergmann, Thaisa
1994-01-01
The dust reddening law from the UV to the near-IR for the extended regions of galaxies is here derived from the spectral distributions of the starburst spiral galaxies NGC 7552 and NGC 5236. The centers of these galaxies have similar absorption and emission line spectra, differing only if the strength of their interstellar lines and in the continuum distribution, with NGC 7552 appearing more reddened than NGC 5236. The disk of NGC 7552 is more inclined, and there is evidence that its center is observed through additional foreground dust and gas clouds, as compared to the center of NGC 5236. While the galaxies can be expected to have similar dust content, they are known to have different dust path lengths to our line of sight. Therefore, differences in the shape of the spectra can be attributed mainly to the effects of dust, allowing us to probe for the first time the properties of the reddening law outside the local group of galaxies. We derive the reddening law based on the optical depth of the emission line of H Alpha and H Beta and also based on the continuum distribtuion. We find that the optical depth from the emission line regions are about twice the optical depth of the continuum regions. Thus, dereddening a starburst galaxy by scaling the Milky Way reddening laws to optical depths obtained from the H Alpha/H Beta line ratio overcompensates for the effect of dust.
NASA Astrophysics Data System (ADS)
Juno, J.; Hakim, A.; TenBarge, J.; Dorland, W.
2015-12-01
We present for the first time results for the turbulence dissipation challenge, with specific focus on the linear wave portion of the challenge, using a variety of continuum kinetic models: hybrid Vlasov-Maxwell, gyrokinetic, and full Vlasov-Maxwell. As one of the goals of the wave problem as it is outlined is to identify how well various models capture linear physics, we compare our results to linear Vlasov and gyrokinetic theory. Preliminary gyrokinetic results match linear theory extremely well due to the geometry of the problem, which eliminates the dominant nonlinearity. With the non-reduced models, we explore how the subdominant nonlinearities manifest and affect the evolution of the turbulence and the energy budget. We also take advantage of employing continuum methods to study the dynamics of the distribution function, with particular emphasis on the full Vlasov results where a basic collision operator has been implemented. As the community prepares for the next stage of the turbulence dissipation challenge, where we hope to do large 3D simulations to inform the next generation of observational missions such as THOR (Turbulence Heating ObserveR), we argue for the consideration of hybrid Vlasov and full Vlasov as candidate models for these critical simulations. With the use of modern numerical algorithms, we demonstrate the competitiveness of our code with traditional particle-in-cell algorithms, with a clear plan for continued improvements and optimizations to further strengthen the code's viability as an option for the next stage of the challenge.
Schutyser, M A I; Briels, W J; Boom, R M; Rinzema, A
2004-05-20
The development of mathematical models facilitates industrial (large-scale) application of solid-state fermentation (SSF). In this study, a two-phase model of a drum fermentor is developed that consists of a discrete particle model (solid phase) and a continuum model (gas phase). The continuum model describes the distribution of air in the bed injected via an aeration pipe. The discrete particle model describes the solid phase. In previous work, mixing during SSF was predicted with the discrete particle model, although mixing simulations were not carried out in the current work. Heat and mass transfer between the two phases and biomass growth were implemented in the two-phase model. Validation experiments were conducted in a 28-dm3 drum fermentor. In this fermentor, sufficient aeration was provided to control the temperatures near the optimum value for growth during the first 45-50 hours. Several simulations were also conducted for different fermentor scales. Forced aeration via a single pipe in the drum fermentors did not provide homogeneous cooling in the substrate bed. Due to large temperature gradients, biomass yield decreased severely with increasing size of the fermentor. Improvement of air distribution would be required to avoid the need for frequent mixing events, during which growth is hampered. From these results, it was concluded that the two-phase model developed is a powerful tool to investigate design and scale-up of aerated (mixed) SSF fermentors. Copyright 2004 Wiley Periodicals, Inc.
KWIC: A Widefield Mid-Infrared Array Camera/Spectrometer for the KAO
NASA Technical Reports Server (NTRS)
Stacey, Gordon J.
1999-01-01
This grant covered a one year data analysis period for the data we obtained with the Kuiper Widefield Infrared Camera (KWIC) on the KAO during CY94 and CY95. A fairly complete list of scientific papers produced, or soon to be produced under this award is contained at the end of this report. Below we summarize some of the highlights of the work we did under this grant. KWIC Imaging of the Orion Nebula. KWIC was successfully developed under the KAO grants program (NASA grant NAG2-800). First funding arrived in November of 1992, and we flew our first two flights in February of 1994 -just 15 months later. These flights were very successful. We imaged the Orion Nebula in the 37.7 micron continuum and [SiII] 35 micron line and imaged M82 and Arp299 in the 37.7 micron continuum. Our Orion image demonstrates that the 37.7 micron continuum arises in the warm dust associated with the photodissociated surfaces (photodissociation regions, or PDRs) of molecular clouds. We use the brightness and color temperature distribution to ascertain the morphology of the Orion PDR. The [SiII] image of Orion encompassed the entire Orion A HII region and its enveloping PDR. Most of the emission in the PDR regions of the map appears to coincide very well with our 37.7 micron continuum map indicating a PDR origin for the [SiII] in agreement with theoretical predictions. The [SiII] line emission is very clumpy in the PDR directly imaging the clump spectrum indirectly ascertained by examining the distribution and flux ratios of [CII] and [0I] far-IR fine structure line, and high J CO emission. We also detected very strong [SiII] line emission from the embedded BN-KL star formation region tracing the morphology and physical conditions of the high velocity shock from these very young stars.
Numerical Simulation of Transitional, Hypersonic Flows using a Hybrid Particle-Continuum Method
NASA Astrophysics Data System (ADS)
Verhoff, Ashley Marie
Analysis of hypersonic flows requires consideration of multiscale phenomena due to the range of flight regimes encountered, from rarefied conditions in the upper atmosphere to fully continuum flow at low altitudes. At transitional Knudsen numbers there are likely to be localized regions of strong thermodynamic nonequilibrium effects that invalidate the continuum assumptions of the Navier-Stokes equations. Accurate simulation of these regions, which include shock waves, boundary and shear layers, and low-density wakes, requires a kinetic theory-based approach where no prior assumptions are made regarding the molecular distribution function. Because of the nature of these types of flows, there is much to be gained in terms of both numerical efficiency and physical accuracy by developing hybrid particle-continuum simulation approaches. The focus of the present research effort is the continued development of the Modular Particle-Continuum (MPC) method, where the Navier-Stokes equations are solved numerically using computational fluid dynamics (CFD) techniques in regions of the flow field where continuum assumptions are valid, and the direct simulation Monte Carlo (DSMC) method is used where strong thermodynamic nonequilibrium effects are present. Numerical solutions of transitional, hypersonic flows are thus obtained with increased physical accuracy relative to CFD alone, and improved numerical efficiency is achieved in comparison to DSMC alone because this more computationally expensive method is restricted to those regions of the flow field where it is necessary to maintain physical accuracy. In this dissertation, a comprehensive assessment of the physical accuracy of the MPC method is performed, leading to the implementation of a non-vacuum supersonic outflow boundary condition in particle domains, and more consistent initialization of DSMC simulator particles along hybrid interfaces. The relative errors between MPC and full DSMC results are greatly reduced as a direct result of these improvements. Next, a new parameter for detecting rotational nonequilibrium effects is proposed and shown to offer advantages over other continuum breakdown parameters, achieving further accuracy gains. Lastly, the capabilities of the MPC method are extended to accommodate multiple chemical species in rotational nonequilibrium, each of which is allowed to equilibrate independently, enabling application of the MPC method to more realistic atmospheric flows.
Ultraviolet to optical spectral distributions of northern star-forming galaxies
NASA Technical Reports Server (NTRS)
Mcquade, Kerry; Calzetti, Daniela; Kinney, Anne L.
1995-01-01
We report spectral energy distribution from the UV to the optical for a sample of 31 northern star-forming galaxies. We also present measurements for emission-line fluxes, continuum levels, and equivalent widths of absorption features for each individual spectrum as well as averages for the eight galactic activity classes, including normal, starburst, Seyfert 2, blue compact dwarf, blue compact, Low-Inonization Nuclear Emission Regions (LINER), H II, and combination LINER-H II galaxies.
NASA Astrophysics Data System (ADS)
Chen, Xiao-jun; Dong, Li-zhi; Wang, Shuai; Yang, Ping; Xu, Bing
2017-11-01
In quadri-wave lateral shearing interferometry (QWLSI), when the intensity distribution of the incident light wave is non-uniform, part of the information of the intensity distribution will couple with the wavefront derivatives to cause wavefront reconstruction errors. In this paper, we propose two algorithms to reduce the influence of a non-uniform intensity distribution on wavefront reconstruction. Our simulation results demonstrate that the reconstructed amplitude distribution (RAD) algorithm can effectively reduce the influence of the intensity distribution on the wavefront reconstruction and that the collected amplitude distribution (CAD) algorithm can almost eliminate it.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurence, Ted A., E-mail: laurence2@llnl.gov; Bude, Jeff D.; Shen, Nan
2014-02-28
We previously reported a novel photoluminescence (PL) with a distribution of fast decay times in fused silica surface flaws that is correlated with damage propensity by high fluence lasers. The source of the PL was not attributable to any known silica point defect. Due to its broad spectral and temporal features, we here give this PL the name quasi-continuum PL (QC-PL) and describe the features of QC-PL in more detail. The primary features of QC-PL include broad excitation and emission spectra, a broad distribution of PL lifetimes from 20 ps to 5 ns, continuous shifts in PL lifetime distributions with respectmore » to emission wavelength, and a propensity to photo-bleach and photo-brighten. We found similar PL characteristics in surface flaws of other optical materials, including CaF{sub 2}, DKDP, and quartz. Based on the commonality of the features in different optical materials and the proximity of QC-PL to surfaces, we suggest that these properties arise from interactions associated with high densities of defects, rather than a distribution over a large number of types of defects and is likely found in a wide variety of structures from nano-scale composites to bulk structures as well as in both broad and narrow band materials from dielectrics to semiconductors.« less
ERIC Educational Resources Information Center
Acker, Stephen R.
2008-01-01
With faculty changing instructional practices to take advantage of customizable, focused content (and digital delivery of that content), many people assume that digital distribution is the answer to bringing the costs of course content delivery in line. But the picture just isn't that simple. A wide continuum of options is available to faculty and…
Teaching Social Welfare History and Social Welfare Policy from a Conflict Perspective
ERIC Educational Resources Information Center
Reisch, Michael; Staller, Karen M.
2011-01-01
In schools of social work, policy courses are frequently taught assuming debates occur along a liberal-conservative ideological continuum in which liberals favor equitable distribution of societal benefits and burdens, whereas conservatives emphasize individual political and property rights and personal responsibility. This dichotomous approach…
Macrobend optical sensing for pose measurement in soft robot arms
NASA Astrophysics Data System (ADS)
Sareh, Sina; Noh, Yohan; Li, Min; Ranzani, Tommaso; Liu, Hongbin; Althoefer, Kaspar
2015-12-01
This paper introduces a pose-sensing system for soft robot arms integrating a set of macrobend stretch sensors. The macrobend sensory design in this study consists of optical fibres and is based on the notion that bending an optical fibre modulates the intensity of the light transmitted through the fibre. This sensing method is capable of measuring bending, elongation and compression in soft continuum robots and is also applicable to wearable sensing technologies, e.g. pose sensing in the wrist joint of a human hand. In our arrangement, applied to a cylindrical soft robot arm, the optical fibres for macrobend sensing originate from the base, extend to the tip of the arm, and then loop back to the base. The connectors that link the fibres to the necessary opto-electronics are all placed at the base of the arm, resulting in a simplified overall design. The ability of this custom macrobend stretch sensor to flexibly adapt its configuration allows preserving the inherent softness and compliance of the robot which it is installed on. The macrobend sensing system is immune to electrical noise and magnetic fields, is safe (because no electricity is needed at the sensing site), and is suitable for modular implementation in multi-link soft continuum robotic arms. The measurable light outputs of the proposed stretch sensor vary due to bend-induced light attenuation (macrobend loss), which is a function of the fibre bend radius as well as the number of repeated turns. The experimental study conducted as part of this research revealed that the chosen bend radius has a far greater impact on the measured light intensity values than the number of turns (if greater than five). Taking into account that the bend radius is the only significantly influencing design parameter, the macrobend stretch sensors were developed to create a practical solution to the pose sensing in soft continuum robot arms. Henceforward, the proposed sensing design was benchmarked against an electromagnetic tracking system (NDI Aurora) for validation.
NASA Astrophysics Data System (ADS)
Pongrác, Branislav; Šimek, Milan; Člupek, Martin; Babický, Václav; Lukeš, Petr
2018-03-01
Basic emission fingerprints of nanosecond discharges produced in deionized water by fast rise-time positive high-voltage pulses (duration of 6 ns and amplitude of +100 kV) in a point-to-plane electrode geometry were investigated by means of time-resolved intensified charge-coupled device (ICCD) spectroscopy. Time-resolved emission spectra were measured via ICCD kinetic series during the discharge ignition and later phases over the 350-850 nm spectral range with fixed, either 3 ns or 30 ns, acquisition time and with 3 ns or 30 ns time resolution, respectively. The luminous phase of the initial discharge expansion and its subsequent collapse was characterized by a broadband vis-NIR continuum emission evolving during the first few nanoseconds which shifted more toward the UV with further increase of time. After ~30 ns from the discharge onset, the continuum gradually disappeared followed by the emission of H α and OI atomic lines. The electron densities calculated from the H α profile fit were estimated to be of the order of 1018-1019 cm-3. It is unknown if the H α and OI atomic lines are generated even in earlier times (before ~30 ns) because such signals were not detectable due to the superposition with the strong continuum. However, subsequent events caused by the reflected HV pulses were observed to have significant effects on the emission spectra profiles of the nanosecond discharge. By varying the time delay of the reflected pulse from 45 to 90 ns after the primary pulse, the intensities of the H α /OI atomic lines in the emission spectra of the secondary discharges were clearly visible and their intensities were greater with shorter time delay between primary and reflected pulses. These results indicate that the discharges generated due to the reflected pulses were very likely generated in the non-relaxed environment.
Allison, Amanda L; Ishihara-Wong, Debra D M; Domingo, Jermy B; Nishioka, Jocelyn; Wilburn, Andrea; Tsark, JoAnn U; Braun, Kathryn L
2013-04-01
Research suggests that cancer patient navigation improves care, but few reports describe the variety of patients managed by a hospital-based navigation program. Differences in navigated patients by the intensity (low, medium, or high) of navigation services they received were examined. The 835 clients seen by the navigators in a hospital-based cancer center were first stratified by quarter and by four ethnic groups. Randomized selection from each group assured there would be equal representation for analysis of Hawaiians, Filipinos, Japanese, and Whites and even numbers over all time intervals. Five professionals extracted data from these case records on demographics, type/stage of cancer, diagnosis and treatment dates, barriers, and navigator actions. Clients had breast (30.0%), lung (15.8%), esophageal (6.7%), colon (5.8%), ovarian (4.2%), prostate (3.3%), and other cancers (34.2%). The median number of actions taken on behalf of a client was 4 (range 1-83), and the median number of days a case was open was 14 (range 1-216). High intensity cases (those receiving more assistance over longer periods of time) were more likely than low-intensity cases to need help with education and reassurance, transportation, care coordination, and covering costs. Although there were no demographic differences across intensity groups, Neighbor Island patients from Hawai'i, Maui, Moloka'i, Lana'i and Kaua'i were more likely to need help with arranging travel, care coordination, and costs associated with getting treatment (all at P=.05), and patients on public insurance were more likely to have stage 4 cancer (P=.001) and to need help with costs (P=.006). Findings suggest that this hospital-based navigation program is filling a real need of patients across the cancer care continuum. A triage protocol and an integrated data capture system could help improve the targeting and documentation of cancer patient navigation services.
Understanding Measurements Returned by the Helioseismic and Magnetic Imager
NASA Astrophysics Data System (ADS)
Cohen, Daniel Parke; Criscuoli, Serena
2014-06-01
The Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO) observes the Sun at the FeI 6173 Å line and returns full disk maps of line-of-sight observables including the magnetic field flux, FeI line width, line depth, and continuum intensity. To properly interpret such data it is important to understand any issues with the HMI and the pipeline that produces these observables. At this aim, HMI data were analyzed at both daily intervals for a span of 3 years at disk center in the quiet Sun and hourly intervals for a span of 200 hours around an active region. Systematic effects attributed to issues with instrument adjustments and re-calibrations, variations in the transmission filters and the orbital velocities of the SDO were found while the actual physical evolutions of such observables were difficult to determine. Velocities and magnetic flux measurements are less affected, as the aforementioned effects are partially compensated for by the HMI algorithm; the other observables are instead affected by larger uncertainties. In order to model these uncertainties, the HMI pipeline was tested with synthetic spectra generated through various 1D atmosphere models with radiative transfer code (the RH code). It was found that HMI estimates of line width, line depth, and continuum intensity are highly dependent on the shape of the line, and therefore highly dependent on the line-of-sight angle and the magnetic field associated to the model. The best estimates are found for Quiet regions at disk center, for which the relative differences between theoretical and HMI algorithm values are 6-8% for line width, 10-15% for line depth, and 0.1-0.2% for continuum intensity. In general, the relative difference between theoretical values and HMI estimates increases toward the limb and with the increase of the field; the HMI algorithm seems to fail in regions with fields larger than ~2000 G. This work is carried out through the National Solar Observatory Research Experiences for Undergraduate (REU) site program, which is co-funded by the Department of Defense in partnership with the NSF REU Program. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.
Fast Variations In Spectrum of Comet Halley
NASA Astrophysics Data System (ADS)
Borysenko, S. A.
The goal of this work is to research fast variations of spectral lines intensities in spectra of comet Halley. The present research was made on the basis of more then 500 high- resolution spectrogram obtained by L.M. Shulman and H.K. Nazarchuk in November- December, 1985 at the 6-m telescope (SAO, Russia). Some fast variations with different quasiperiods were detected in all the spectrograms. Quasiperiods of these variations were from 15 - 40 min to 1.5 - 2 hours. As data from spacecraft "Vega-2" show, more fast variations with quasiperiods 5 - 10 min are obviously present in cometary time variations. Only the most important lines so as C2, C3, CN, CH and NH2 were analyzed. False periods were checked by comparison of the power spectra of the variations with the computed spectral window of the data. Only false periods about 400 sec (the avarage period of exposition) were detected. An algorithm for analysis of locally Poisson's time series was proposed. Two types of fast variations are detected: 1)high amplitude variations with more long quasiperiods (1.5 - 2 hours) and the coefficient of crosscorrelations between line intensities about 0.9 - 0.95; 2)low amplitude variations with short periods (15 - 40 min), which look like white noise and have the coefficient of crosscorrelations about 0.1 - 0.3. This difference may be caused by nature of variations. The first type variations may be an effect of both active processes in cometary nucleus and streams of solar protons. Analysis of solar proton flux variation with energies >1 MeV in November - Decem- ber 1985 confirms the above-mentioned version. In the second case it may by only inner processes in the nucleus that generate the observed variations. For determination of general parameters of cometary atmosphere, such as the produc- tion rates of radicals C2, C3, CN, CH, and NH2 it was necessary to estimate the contri- bution of dust grains luminiscence into the continuum of the comet. Space and wave- length distribution of the lumminescent continuum was calculated. A simple model of a comet atmosphere (the Haser's model) was taken to make synthetic photomet- rical data and to calibrate the spectra by comparison the synthetic photometry with the data of the absolute photometry from the IHW archive. This way the gas obtained production rates and numbers of basic molecules in the cometary atmosphere.
Multicomponent lattice Boltzmann model from continuum kinetic theory.
Shan, Xiaowen
2010-04-01
We derive from the continuum kinetic theory a multicomponent lattice Boltzmann model with intermolecular interaction. The resulting model is found to be consistent with the model previously derived from a lattice-gas cellular automaton [X. Shan and H. Chen, Phys. Rev. E 47, 1815 (1993)] but applies in a much broader domain. A number of important insights are gained from the kinetic theory perspective. First, it is shown that even in the isothermal case, the energy equipartition principle dictates the form of the equilibrium distribution function. Second, thermal diffusion is shown to exist and the corresponding diffusivities are given in terms of macroscopic parameters. Third, the ordinary diffusion is shown to satisfy the Maxwell-Stefan equation at the ideal-gas limit.
Electrons and Phonons in Semiconductor Multilayers
NASA Astrophysics Data System (ADS)
Ridley, B. K.
1996-11-01
This book provides a detailed description of the quantum confinement of electrons and phonons in semiconductor wells, superlattices and quantum wires, and shows how this affects their mutual interactions. It discusses the transition from microscopic to continuum models, emphasizing the use of quasi-continuum theory to describe the confinement of optical phonons and electrons. The hybridization of optical phonons and their interactions with electrons are treated, as are other electron scattering mechanisms. The book concludes with an account of the electron distribution function in three-, two- and one-dimensional systems, in the presence of electrical or optical excitation. This text will be of great use to graduate students and researchers investigating low-dimensional semiconductor structures, as well as to those developing new devices based on these systems.
NASA Astrophysics Data System (ADS)
Shibata, Katsunori M.; Chung, Hyung-Soo; Kameno, Seiji; Roh, Duk-Gyoo; Umemoto, Tomofumi; Kim, Kwang-Dong; Asada, Keiichi; Han, Seog-Tae; Mochizuki, Nanako; Cho, Se-Hyung; Sawada-Satoh, Satoko; Kim, Hyun-Goo; Bushimata, Takeshi; Minh, Young Chol; Miyaji, Takeshi; Kuno, Nario; Mikoshiba, Hiroshi; Sunada, Kazuyoshi; Inoue, Makoto; Kobayashi, Hideyuki
2004-06-01
We have made VLBI observations at 86GHz using a 1000-km baseline between Korea and Japan with successful detections of SiO v = 1, J = 2 - 1 maser emissions from VY CMa and Orion KL in 2001 June. This was the first VLBI result for this baseline and the first astronomical VLBI observation for the Korean telescope. Since then, we observed SiO v = 1, J = 2 - 1 maser emission in VY CMa in 2002 January and 2003 February and derived the distributions of the maser emissions. Our results show that the maser emissions extend over 2-4 stellar radii, and were within the inner radius of the dust shell. We observed other SiO maser sources and continuum sources, and 86-GHz continuum emissions were detected from three continuum sources. It was verified that this baseline has a performance comparable to the most sensitive baseline in the VLBA and the CMVA, and is capable of investigating the proper motions of maser features in circumstellar envelopes using monitoring observations.
Mitigation of Alfvenic activity by 3D magnetic perturbations on NSTX
Kramer, G. J.; Bortolon, A.; Ferraro, N. M.; ...
2016-07-05
Observations on the National Spherical Torus eXperiment (NSTX) indicate that externally applied non-axisymmetric magnetic perturbations (MP) can reduce the amplitude of Toroidal Alfven Eigenmodes (TAE) and Global Alfven Eigenmodes (GAE) in response to pulsed n=3 non-resonant fields. From full-orbit following Monte Carlo simulations with the 1- and 2-fluid resistive MHD plasma response to the magnetic perturbation included, it was found that in response to MP pulses the fast-ion losses increased and the fast-ion drive for the GAEs was reduced. The MP did not affect the fast-ion drive for the TAEs significantly but the Alfven continuum at the plasma edge wasmore » found to be altered due to the toroidal symmetry breaking which leads to coupling of different toroidal harmonics. The TAE gap was reduced at the edge creating enhanced continuum damping of the global TAEs, which is consistent with the observations. Furthermore, the results suggest that optimized non-axisymmetric MP might be exploited to control and mitigate Alfven instabilities by tailoring the fast-ion distribution function and/or continuum structure.« less
NASA Technical Reports Server (NTRS)
Steyn, J. J.; Born, U.
1970-01-01
A FORTRAN code was developed for the Univac 1108 digital computer to unfold lithium-drifted germanium semiconductor spectrometers, polyenergetic gamma photon experimental distributions. It was designed to analyze the combination continuous and monoenergetic gamma radiation field of radioisotope volumetric sources. The code generates the detector system response matrix function and applies it to monoenergetic spectral components discretely and to the continuum iteratively. It corrects for system drift, source decay, background, and detection efficiency. Results are presented in digital form for differential and integrated photon number and energy distributions, and for exposure dose.
White Light Generation in Human Saliva
NASA Astrophysics Data System (ADS)
Santhosh, C.; Dharmadhikari, A. K.; Dharmadhikari, J. A.; Alti, K.; Mathur, D.
2011-07-01
Interaction of intense, femto-second pulses of infrared light (800 nm) with water generates white light supercontinuum due to nonlinear optical effects. This supercontinuum was found to be suppressed by the addition of alpha amylase, a major protein in the human saliva. We have studied the suppression of supper continuum by human saliva, collected from healthy subjects with and without smoking habits. Suppression of the blue-sided components was observed significantly in non-smokers saliva than chain smokers.
Zero photon dissociation of CS2+ in intense ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Severt, Travis; Betsch, K. J.; Zohrabi, M.; Ablikim, U.; Jochim, Bethany; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.
2013-05-01
We measured the dissociation of a CS2+ molecular ion beam in intense laser pulses (<50 fs, <1015 W/cm2), focusing on the zero photon dissociation (ZPD) and above threshold dissociation (ATD) mechanisms. The ZPD mechanism leads to dissociation with the net absorption of zero photons in a strong field. The present work extends the idea of ZPD to more complex molecules than the H2+ discussed in literature. Preliminary data suggests that ZPD is larger than ATD for CS2+ --> C+ + S+. We speculate that a pump-dump process occurs whereby the vibrational wavepacket in the electronic ground state of CS2+ is pumped into the electronic first excited state's continuum by a single photon during the laser pulse. Once this continuum vibrational wavepacket passes the potential barrier in the ground electronic potential, the emission of a second photon is stimulated by the same laser pulse, most likely when the wavepacket moves through the internuclear distance where the two electronic states are in resonance with the driving field. A comparison is made to ZPD and ATD in the isovalent CO2+ species. Curiously, ATD is the favored mechanism in CO2+. The underlying molecular structure and dynamics determining this preference will be discussed. Supported by Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.
NASA Astrophysics Data System (ADS)
Carney, M. T.; Fedele, D.; Hogerheijde, M. R.; Favre, C.; Walsh, C.; Bruderer, S.; Miotello, A.; Murillo, N. M.; Klaassen, P. D.; Henning, Th.; van Dishoeck, E. F.
2018-06-01
Context. Physical and chemical processes in protoplanetary disks affect the disk structure and the midplane environment within which planets form. The simple deuterated molecular cation DCO+ has been proposed to act as a tracer of the disk midplane conditions. Aims: This work aims to understand which midplane conditions are probed by the DCO+ emission in the disk around the Herbig Ae star HD 169142. We explore the sensitivity of the DCO+ formation pathways to gas temperature and CO abundance. Methods: The DCO+ J = 3-2 transition was observed with Atacama Large Millimeter/submillimeter Array at a spatial resolution of 0.3'' (35 AU at 117 pc). We modeled the DCO+ emission in HD 169142 with a physical disk structure adapted from the literature, and employed a simple deuterium chemical network to investigate the formation of DCO+ through the cold deuterium fractionation pathway via H2D+. Parameterized models are used to modify the gas temperature and CO abundance structure of the disk midplane to test their effect on DCO+ production. Contributions from the warm deuterium fractionation pathway via CH2D+ are approximated using a constant abundance in the intermediate disk layers. Results: The DCO+ line is detected in the HD 169142 disk with a total integrated line flux of 730 ± 73 mJy km s-1. The radial intensity profile reveals a warm, inner component of the DCO+ emission at radii ≲30 AU and a broad, ring-like structure from 50-230 AU with a peak at 100 AU just beyond the edge of the millimeter grain distribution. Parameterized models show that alterations to the midplane gas temperature and CO abundance are both needed to recover the observed DCO+ radial intensity profile. The alterations are relative to the fiducial physical structure of the literature model constrained by dust and CO observations. The best-fit model contains a shadowed, cold midplane in the region z/r < 0.1 with an 8 K decrease in Tgas and a factor of five CO depletion just beyond the millimeter grains (r = 83 AU), and a 2 K decrease in Tgas for r > 120 AU. The warm deuterium fractionation pathway is implemented as a constant DCO+ abundance of 2.0 × 10-12 between 30-70 K and contributes >85% to the DCO+ emission at r < 83 AU in the best-fit model. Conclusions: The DCO+ emission probes a reservoir of cold material in the HD 169142 outer disk that is not probed by the millimeter continuum, the spectral energy distribution, nor the emission from the 12 CO, 13 CO, or C18O J = 2-1 lines. The DCO+ emission is a sensitive probe of gas temperature and CO abundance near the disk midplane and provides information about the outer disk beyond the millimeter continuum distribution that is largely absent in abundant gaseous tracers such as CO isotopologues. The reduced datacubes (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A106
Haro 11: Where is the Lyman Continuum Source?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keenan, Ryan P.; Oey, M. S.; Jaskot, Anne E.
2017-10-10
Identifying the mechanism by which high-energy Lyman continuum (LyC) photons escaped from early galaxies is one of the most pressing questions in cosmic evolution. Haro 11 is the best known local LyC-leaking galaxy, providing an important opportunity to test our understanding of LyC escape. The observed LyC emission in this galaxy presumably originates from one of the three bright, photoionizing knots known as A, B, and C. It is known that Knot C has strong Ly α emission, and Knot B hosts an unusually bright ultraluminous X-ray source, which may be a low-luminosity active galactic nucleus. To clarify the LyCmore » source, we carry out ionization-parameter mapping (IPM) by obtaining narrow-band imaging from the Hubble Space Telescope WFC3 and ACS cameras to construct spatially resolved ratio maps of [O iii]/[O ii] emission from the galaxy. IPM traces the ionization structure of the interstellar medium and allows us to identify optically thin regions. To optimize the continuum subtraction, we introduce a new method for determining the best continuum scale factor derived from the mode of the continuum-subtracted, image flux distribution. We find no conclusive evidence of LyC escape from Knots B or C, but instead we identify a high-ionization region extending over at least 1 kpc from Knot A. This knot shows evidence of an extremely young age (≲1 Myr), perhaps containing very massive stars (>100 M {sub ⊙}). It is weak in Ly α , so if it is confirmed as the LyC source, our results imply that LyC emission may be independent of Ly α emission.« less
NASA Technical Reports Server (NTRS)
Howard, Christian; Sandell, Goeran; Vacca, William D.; Duchene, Gaspard; Matthews, Geoffrey; Augereau, Jean-Charles; Barbado, David; Dent, William R. F.; Eiroa, Carlos; Grady, Carol;
2013-01-01
The Herschel Space Observatory was used to observe approx. 120 pre-main-sequence stars in Taurus as part of the GASPS Open Time Key project. Photodetector Array Camera and Spectrometer was used to measure the continuum as well as several gas tracers such as [O I] 63 micron, [O I] 145 micron, [C II] 158, micron OH, H2O, and CO. The strongest line seen is [O I] at 63 micron. We find a clear correlation between the strength of the [O I] 63 micron line and the 63 micron continuum for disk sources. In outflow sources, the line emission can be up to 20 times stronger than in disk sources, suggesting that the line emission is dominated by the outflow. The tight correlation seen for disk sources suggests that the emission arises from the inner disk (<50 AU) and lower surface layers of the disk where the gas and dust are coupled. The [O I] 63 micron is fainter in transitional stars than in normal Class II disks. Simple spectral energy distribution models indicate that the dust responsible for the continuum emission is colder in these disks, leading to weaker line emission. [C II] 158 micron emission is only detected in strong outflow sources. The observed line ratios of [O I] 63 micron to [O I] 145 micron are in the regime where we are insensitive to the gas-to-dust ratio, neither can we discriminate between shock or photodissociation region emission. We detect no Class III object in [O I] 63 micron and only three in continuum, at least one of which is a candidate debris disk.
Wademan, Dillon T; Reynolds, Lindsey J
2016-01-01
South Africa currently sustains the largest antiretroviral treatment (ART) programme in the world. The number of people on ART is set to grow even more in the coming years as incidence remains stable, people on ART stay healthy, and guidelines for initiation become increasingly inclusive. The South African public health sector has increasingly relied on community- and home-based lay and professional "carers" to carry out the everyday tasks of rolling out the ART programme. Drawing on ethnographic research in one locality in the Western Cape, the paper explores the care practices of two such groups of carers implementing a 'Universal Test and Treat' (UTT) approach. The UTT approach being evlauated in this place is based on one model of the HIV treatment cascade, or care continuum, which focuses on the steps necessary to identify and link HIV-positive individuals to care and retain them in lifelong HIV treatment. In this context, community-based care workers are responsible for carrying out several discrete steps in the HIV care continuum, including testing people for HIV, linking HIV-positive individuals to care, and supporting adherence. In order to retain clients within the continuum, however, carers also perform other forms of labour that stretch their care work beyond more bounded notions of a stepwise progression of care. These broader forms of care, which can be material, emotional, social or physical in nature, appear alongside the more structured technical and biomedical tasks formally expected of carers. We argue that understanding the dynamics of these more distributed and relational forms of care is essential for the effective implementation of the care continuum, and of the UTT approach, in diverse contexts.
Hough, Susan E.
2013-01-01
Recent parallel development of improved quantitative methods to analyze intensity distributions for historical earthquakes and of web‐based systems for collecting intensity data for modern earthquakes provides an opportunity to reconsider not only important individual historical earthquakes but also the overall characterization of intensity distributions for historical events. The focus of this study is a comparison between intensity distributions of historical earthquakes with those from modern earthquakes for which intensities have been determined by the U.S. Geological Survey “Did You Feel It?” (DYFI) website (see Data and Resources). As an example of a historical earthquake, I focus initially on the 1843 Marked Tree, Arkansas, event. Its magnitude has been previously estimated as 6.0–6.2. I first reevaluate the macroseismic effects of this earthquake, assigning intensities using a traditional approach, and estimate a preferred magnitude of 5.4. Modified Mercalli intensity (MMI) values for the Marked Tree earthquake are higher, on average, than those from the 2011 >Mw 5.8 Mineral, Virginia, earthquake for distances ≤500 km but comparable or lower on average at larger distances, with a smaller overall felt extent. Intensity distributions for other moderate historical earthquakes reveal similar discrepancies; the discrepancy is also even more pronounced using earlier published intensities for the 1843 earthquake. I discuss several hypotheses to explain the discrepancies, including the possibility that intensity values associated with historical earthquakes are commonly inflated due to reporting/sampling biases. A detailed consideration of the DYFI intensity distribution for the Mineral earthquake illustrates how reporting and sampling biases can account for historical earthquake intensity biases as high as two intensity units and for the qualitative difference in intensity distance decays for modern versus historical events. Thus, intensity maps for historical earthquakes tend to imply more widespread damage patterns than are revealed by intensity distributions of modern earthquakes of comparable magnitude. However, intensity accounts of historical earthquakes often include fragmentary accounts suggesting long‐period shaking effects that will likely not be captured fully in historical intensity distributions.
Determining Dynamical Path Distributions usingMaximum Relative Entropy
2015-05-31
entropy to a one-dimensional continuum labeled by a parameter η. The resulting η-entropies are equivalent to those proposed by Renyi [12] or by Tsallis [13...1995). [12] A. Renyi , “On measures of entropy and information,”Proc. 4th Berkeley Simposium on Mathematical Statistics and Probability, Vol 1, p. 547-461
Consequences of Pool Habitat Isolation on Stream Fishes
David G. Lonzarich; Melvin L. Warren; Mary E. Lonzarich
2004-01-01
Abstract - For fishes, stream habitat units (i.e., pools and riffles) often exist as relatively discrete patches of varying quality that are distributed in a mosaic along the stream continuum. Under these conditions, the possibility exists that the spacing of suitable patches within a stream reach may affect interhabitat movements of fishes and their...
Mechanics of shear rupture applied to earthquake zones
NASA Technical Reports Server (NTRS)
Li, Victor C.
1986-01-01
The mechanics of shear slippage and rupture in rock masses are reviewed. The essential ideas in fracture mechanics are summarized emphasizing the interpretation and relation among the fracture parameters in shear cracks. The slip-weakening model is described. The general formulation of the problem of nonuniform slip distribution in a continuum is covered.
Are Autistic Traits in the General Population Related to Global and Regional Brain Differences?
ERIC Educational Resources Information Center
Koolschijn, P. Cédric M. P.; Geurts, Hilde M.; van der Leij, Andries R.; Scholte, H. Steven
2015-01-01
There is accumulating evidence that autistic-related traits in the general population lie on a continuum, with autism spectrum disorders representing the extreme end of this distribution. Here, we tested the hypothesis of a possible relationship between autistic traits and brain morphometry in the general population. Participants completed the…
NASA Astrophysics Data System (ADS)
Cheng, W. T.; Kukk, E.; Cubaynes, D.; Chang, J.-C.; Snell, G.; Bozek, J. D.; Wuilleumier, F. J.; Berrah, N.
2000-12-01
Lithium 1s photoelectron spectra are reported in high electron and photon energy resolution, with resolved LS term structure of the Li+ 1snl satellite transitions up to n=6. Branching ratios and anisotropy parameters of individual lines, determined over the 85-130 eV photon energy range, are compared with R-matrix calculations and with previous works. The high-angular-momentum satellite lines (L>=2) are found to contribute significantly to the 1snl satellite cross sections for n=3 and 4, and to become the dominant terms for n>=5. The high-angular-momentum lines exhibit the same photon-energy-dependence as the P-lines, providing experimental evidence that the continuum-continuum state coupling (equivalent to virtual electron collision processes) is responsible for the L>=1 terms in the satellite spectrum, in contrast to the electron relaxation (shake-up) mechanism responsible for the S-terms. The angular distribution of the lines in the Li+ 1snl, n=2-6 groups, determined at 110 eV photon energy, is in good agreement with calculations, showing more isotropic distributions for high-angular-momentum lines.
HM Sagittae - Symbiotic cousin of the RS CVn stars
NASA Technical Reports Server (NTRS)
Blair, W. P.; Stencel, R. E.; Feibelman, W. A.; Shaviv, G.
1981-01-01
In the brief time since its brightening in 1975, the optical spectrum of HM Sagittae has shown considerable variation in both its general characteristics and relative line intensity ratios. The observations place HM Sagittae in a small class of objects which are thought to be proto-planetary nebulae, of which V 1016 Cygni is the prototype. Attention is given to derived density and temperature, helium abundance and nebular mass, and an evolutionary scenario. The considered observations show a decrease in the intensity of the continuum and a continuation of the trend toward higher excitation in the spectrum of HM Sagittae. Parallels are seen in the development of this object and V 1016 Cygni, with the implication that the trend toward higher excitation is expected to continue.
NASA Astrophysics Data System (ADS)
Lylova, A. N.; Sheldakova, Yu. V.; Kudryashov, A. V.; Samarkin, V. V.
2018-01-01
We consider the methods for modelling doughnut and super-Gaussian intensity distributions in the far field by means of deformable bimorph mirrors. A method for the rapid formation of a specified intensity distribution using a Shack - Hartmann sensor is proposed, and the results of the modelling of doughnut and super-Gaussian intensity distributions are presented.
INTEGRAL/SPI γ-ray line spectroscopy. Response and background characteristics
NASA Astrophysics Data System (ADS)
Diehl, Roland; Siegert, Thomas; Greiner, Jochen; Krause, Martin; Kretschmer, Karsten; Lang, Michael; Pleintinger, Moritz; Strong, Andrew W.; Weinberger, Christoph; Zhang, Xiaoling
2018-03-01
Context. The space based γ-ray observatory INTEGRAL of the European Space Agency (ESA) includes the spectrometer instrument "SPI". This is a coded mask telescope featuring a 19-element Germanium detector array for high-resolution γ-ray spectroscopy, encapsulated in a scintillation detector assembly that provides a veto for background from charged particles. In space, cosmic rays irradiate spacecraft and instruments, which, in spite of the vetoing detectors, results in a large instrumental background from activation of those materials, and leads to deterioration of the charge collection properties of the Ge detectors. Aim. We aim to determine the measurement characteristics of our detectors and their evolution with time, that is, their spectral response and instrumental background. These incur systematic variations in the SPI signal from celestial photons, hence their determination from a broad empirical database enables a reduction of underlying systematics in data analysis. For this, we explore compromises balancing temporal and spectral resolution within statistical limitations. Our goal is to enable modelling of background applicable to spectroscopic studies of the sky, accounting separately for changes of the spectral response and of instrumental background. Methods: We use 13.5 years of INTEGRAL/SPI data, which consist of spectra for each detector and for each pointing of the satellite. Spectral fits to each such spectrum, with independent but coherent treatment of continuum and line backgrounds, provides us with details about separated background components. From the strongest background lines, we first determine how the spectral response changes with time. Applying symmetry and long-term stability tests, we eliminate degeneracies and reduce statistical fluctuations of background parameters, with the aim of providing a self-consistent description of the spectral response for each individual detector. Accounting for this, we then determine how the instrumental background components change in intensities and other characteristics, most-importantly their relative distribution among detectors. Results: Spectral resolution of Ge detectors in space degrades with time, up to 15% within half a year, consistently for all detectors, and across the SPI energy range. Semi-annual annealing operations recover these losses, yet there is a small long-term degradation. The intensity of instrumental background varies anti-correlated to solar activity, in general. There are significant differences among different lines and with respect to continuum. Background lines are found to have a characteristic, well-defined and long-term consistent intensity ratio among detectors. We use this to categorise lines in groups of similar behaviour. The dataset of spectral-response and background parameters as fitted across the INTEGRAL mission allows studies of SPI spectral response and background behaviour in a broad perspective, and efficiently supports precision modelling of instrumental background.
NASA Astrophysics Data System (ADS)
Azadegan, B.
2013-03-01
The presented Mathematica code is an efficient tool for simulation of planar channeling radiation spectra of relativistic electrons channeled along major crystallographic planes of a diamond-structure single crystal. The program is based on the quantum theory of channeling radiation which has been successfully applied to study planar channeling at electron energies between 10 and 100 MeV. Continuum potentials for different planes of diamond, silicon and germanium single crystals are calculated using the Doyle-Turner approximation to the atomic scattering factor and taking thermal vibrations of the crystal atoms into account. Numerical methods are applied to solve the one-dimensional Schrödinger equation. The code is designed to calculate the electron wave functions, transverse electron states in the planar continuum potential, transition energies, line widths of channeling radiation and depth dependencies of the population of quantum states. Finally the spectral distribution of spontaneously emitted channeling radiation is obtained. The simulation of radiation spectra considerably facilitates the interpretation of experimental data. Catalog identifier: AEOH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 446 No. of bytes in distributed program, including test data, etc.: 209805 Distribution format: tar.gz Programming language: Mathematica. Computer: Platforms on which Mathematica is available. Operating system: Operating systems on which Mathematica is available. RAM: 1 MB Classification: 7.10. Nature of problem: Planar channeling radiation is emitted by relativistic charged particles during traversing a single crystal in direction parallel to a crystallographic plane. Channeling is modeled as the motion of charged particles in a continuous planar potential which is formed by the spatially and thermally averaged action of the individual electrostatic potentials of the crystal atoms of the corresponding plane. Classically, the motion of channeled particles through the crystal resembles transverse oscillations being the source of radiation emission. For electrons of energy less than 100 MeV considered here, planar channeling has to be treated quantum mechanically by a one-dimensional Schrödinger equation for the transverse motion. Hence, this motion of the channeled electrons is restricted to a number of discrete (bound) channeling states in the planar continuum potential, and the emission of channeling radiation is caused by spontaneous electron transitions between these eigenstates. Due to relativistic and Doppler effects, the energy of the emitted photons directed into a narrow forward cone is typically shifted up by about three to five orders of magnitude. Consequently, the observed energy spectrum of channeling radiation is characterized by a number of radiation lines in the energy domain of hard X-rays. Channeling radiation may, therefore, be applied as an intense, tunable, quasi-monochromatic X-ray source. Solution method: The problem consists in finding the electron wave function for the planar continuum potential. Both the wave functions and corresponding energies of channeling states solve the Schrödinger equation of transverse electron motion. In the framework of the so-called many-beam formalism, solving the Schrödinger equation reduces to a eigenvector-eigenvalue problem of a Hermitian matrix. For that the program employs the mathematical tools allocated in the commercial computation software Mathematica. The electric field of the atomic planes in the crystal forces dipole oscillations of the channeled charged particles. In the quantum mechanical approach, the dipole approximation is also valid for spontaneous transitions between bound states. The transition strength for dedicated states depends on the magnitude of the corresponding dipole matrix element. The photon energy correlates with the particle energy, and the spectral width of radiation lines is a function of the life times of the channeling states. Running time: The program has been tested on a PC AMD Athlon X2 245 processor 2.9 GHz with 2 GB RAM. Depending on electron energy and crystal thickness, the running time of the program amounts to 5-10 min.
NASA Astrophysics Data System (ADS)
Aguilar-Perera, Alfonso; Appeldoorn, Richard S.
2008-01-01
Despite an extensive study of the fish community off southwestern Puerto Rico, little information is available on the fish spatial distribution along an inshore-offshore, cross-shelf gradient containing a continuum of mangrove-seagrass-coral reefs. We investigated the spatial distribution of reef-associated fish species using a stratified sampling procedure. A total of 52,138 fishes were recorded, representing 102 species belonging to 32 families. Significant differences in mean fish density were evident among strata. Mean densities at shallow fore reefs and deep fore reefs (Romero key) were significantly higher compared to the rest of strata along the gradient. Mean densities of fishes in mangroves and seagrass (Montalva Bay) were comparable to those at shallow back reefs and deep fore reefs offshore (Turrumote), but lower to those inshore (Romero); the lowest fish densities were found in mangroves and seagrass (Montalva Bay) and seagrass (Romero and Corral). At least 17 species, in 7 families, were among the most common in terms of relative abundance representing 76% of the total individuals sampled. A detrended correspondence analysis (DCA) applied to more abundant fish species showed a spatial pattern in density distribution. Three major groupings were evident corresponding to mangroves and seagrass (Montalva Bay), shallow and deep reefs (Romero), and shallow and deep reefs (Corral and Turrumote). A cluster analysis on mean fish densities of the more abundant species revealed a consistent spatial distribution according to biotope by separating the ichthyofauna associated with mangroves, seagrass and that of shallow (back and fore) reefs, and deep fore reefs.
14 CFR 23.1389 - Position light distribution and intensities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Equipment Lights § 23.1389 Position light distribution and intensities. (a) General. The intensities prescribed in this section must be provided by new equipment with each light cover and color filter in place... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Position light distribution and intensities...
14 CFR 23.1389 - Position light distribution and intensities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Equipment Lights § 23.1389 Position light distribution and intensities. (a) General. The intensities prescribed in this section must be provided by new equipment with each light cover and color filter in place... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Position light distribution and intensities...
14 CFR 23.1389 - Position light distribution and intensities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Equipment Lights § 23.1389 Position light distribution and intensities. (a) General. The intensities prescribed in this section must be provided by new equipment with each light cover and color filter in place... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Position light distribution and intensities...
Breakage mechanics—Part I: Theory
NASA Astrophysics Data System (ADS)
Einav, Itai
2007-06-01
Different measures have been suggested for quantifying the amount of fragmentation in randomly compacted crushable aggregates. A most effective and popular measure is to adopt variants of Hardin's [1985. Crushing of soil particles. J. Geotech. Eng. ASCE 111(10), 1177-1192] definition of relative breakage ' Br'. In this paper we further develop the concept of breakage to formulate a new continuum mechanics theory for crushable granular materials based on statistical and thermomechanical principles. Analogous to the damage internal variable ' D' which is used in continuum damage mechanics (CDM), here the breakage internal variable ' B' is adopted. This internal variable represents a particular form of the relative breakage ' Br' and measures the relative distance of the current grain size distribution from the initial and ultimate distributions. Similar to ' D', ' B' varies from zero to one and describes processes of micro-fractures and the growth of surface area. However, unlike damage that is most suitable to tensioned solid-like materials, the breakage is aimed towards compressed granular matter. While damage effectively represents the opening of micro-cavities and cracks, breakage represents comminution of particles. We term the new theory continuum breakage mechanics (CBM), reflecting the analogy with CDM. A focus is given to developing fundamental concepts and postulates, and identifying the physical meaning of the various variables. In this part of the paper we limit the study to describe an ideal dissipative process that includes breakage without plasticity. Plastic strains are essential, however, in representing aspects that relate to frictional dissipation, and this is covered in Part II of this paper together with model examples.
IUE observations of Centaurus X-4 during the 1979 May outburst
NASA Technical Reports Server (NTRS)
Blair, W. P.; Raymond, J. C.; Dupree, A. K.; Wu, C.-C.; Holm, A. V.; Swank, J. H.
1984-01-01
Ultraviolet spectrophotometry of the X-ray transient/burst source Centaurus X-4 at several intervals during the peak and decay of the May 1979 X-ray transient event was obtained. The spectrum was characterized by a blue continuum with alpha = 0.0 + or - 0.3 (F/nu/ varies as nu to the alpha power) and strong emission lines of N V lambda 1240, C IV lambda 1550, and Si IV lambda 1398. The relative intensities of the emission lines and the ratio of line to continuum strengths remained nearly constant during the decline. The emission lines may have arisen from a 'disk chromosphere', from X-ray heating of the K4 V companion star, or both. The ultraviolet data are combined with previously published optical and X-ray data to determine some of the physical characteristics of the system and to show that X-ray reprocessing plays an important role in producing the optical and ultraviolet continua.
Resolving the Wind Structure of Eta Carinae
NASA Technical Reports Server (NTRS)
Gull, T.; Hillier, J.; Ishibashi, K.; Davidson, K.
2000-01-01
Space Telescope Imaging Spectrograph (STIS) spectral observations of Eta Carinae have resolved the wind structure of the star(s) from the central point source. These observations were done with a 52 x 0.1" aperture, resolving power of about 5000 and complete spectral coverage from 1640A to 10400A. Various broad stellar Lines are seen to change within the central 0.511 of the nebular region. The Balmer lines, relative to the continuum, drop in strength while some Fe II lines scale with the continuum. Other Fe II lines increase in intensity while still others decrease. The structure to the southeast of the central source shows considerable variation in the stellar line strengths. To the Northwest, the emission is dominated by the very bright nebular knots, Weigelt blobs B and D. Three sets of observations have been done: March 1998, February 1999 and March 2000 to monitor the spectral variations. The stellar, wind and nebular emission changes considerably during this two year period. This work was done under the STIS GTO and HST GO funding.
Research at the Bedside: It Makes A Difference.
Bridges, Elizabeth J
2015-07-01
Research at the bedside makes a difference for our patients, and also for our nurses. However, it is now time to broaden our focus from research on interventions or events at a narrow point in time to research that addresses care across the continuum. This continuum may start at the point of injury, such as the battlefield through en route care delivered during the 8000-mile journey home for our wounded warriors, or for critically ill patients as they move between the emergency department, operating room, and intensive care unit. This focus also requires researchers to consider "care within context," that is, research- and evidence-based practice tailored to the unique conditions of the care environment. Beyond conducting research and developing new knowledge is the challenge of translating evidence into practice. A culture of inquiry is a critical element in the successful translation of evidence into practice. In a culture of inquiry, nurses are encouraged to question and evaluate their practice, provide evidence-based care, and actively participate in and lead clinical inquiry. This article draws from a program of applied clinical research reflecting care across the continuum within both military and civilian health care settings and discusses how the application of these research findings and the advancement of a culture of inquiry make a difference for both patients and nurses. ©2015 American Association of Critical-Care Nurses.
Calculation of hypersonic shock structure using flux-split algorithms
NASA Technical Reports Server (NTRS)
Eppard, W. M.; Grossman, B.
1991-01-01
There exists an altitude regime in the atmosphere that is within the continuum domain, but wherein the conventional Navier-Stokes equations cease to be accurate. The altitude limits for this so called continuum transition regime depend on vehicle size and speed. Within this regime the thickness of the bow shock wave is no longer negligible when compared to the shock stand-off distance and the peak radiation intensity occurs within the shock wave structure itself. For this reason it is no longer valid to treat the shock wave as a discontinuous jump and it becomes necessary to compute through the shock wave itself. To accurately calculate hypersonic flowfields, the governing equations must be capable of yielding realistic profiles of flow variables throughout the structure of a hypersonic shock wave. The conventional form of the Navier-Stokes equations is restricted to flows with only small departures from translational equilibrium; it is for this reason they do not provide the capability to accurately predict hypersonic shock structure. Calculations in the continuum transition regime, therefore, require the use of governing equations other than Navier-Stokes. Several alternatives to Navier-Stokes are discussed; first for the case of a monatomic gas and then for the case of a diatomic gas where rotational energy must be included. Results are presented for normal shock calculations with argon and nitrogen.
Virioplankton Assemblage Structure in the Lower River and Ocean Continuum of the Amazon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Bruno S. de O.; Coutinho, Felipe H.; Gregoracci, Gustavo B.
ABSTRACT The Amazon River watershed and its associated plume comprise a vast continental and oceanic area. The microbial activities along this continuum contribute substantially to global carbon and nutrient cycling, and yet there is a dearth of information on the diversity, abundance, and possible roles of viruses in this globally important river. The aim of this study was to elucidate the diversity and structure of virus assemblages of the Amazon River-ocean continuum. Environmental viral DNA sequences were obtained for 12 locations along the river’s lower reach (n= 5) and plume (n= 7). Sequence assembly yielded 29,358 scaffolds, encoding 82,546 viralmore » proteins, with 15 new complete viral genomes. Despite the spatial connectivity mediated by the river, virome analyses and physical-chemical water parameters clearly distinguished river and plume ecosystems. Bacteriophages were ubiquitous in the continuum and were more abundant in the transition region. Eukaryotic viruses occurred mostly in the river, while the plume had more viruses of autotrophic organisms (Prochlorococcus,Synechococcus) and heterotrophic bacteria (Pelagibacter). The viral familiesMicroviridaeandMyoviridaewere the most abundant and occurred throughout the continuum. The major functions of the genes in the continuum involved viral structures and life cycles, and viruses from plume locations and Tapajós River showed the highest levels of functional diversity. The distribution patterns of the viral assemblages were defined not only by the occurrence of possible hosts but also by water physical and chemical parameters, especially salinity. The findings presented here help to improve understanding of the possible roles of viruses in the organic matter cycle along the river-ocean continuum. IMPORTANCEThe Amazon River forms a vast plume in the Atlantic Ocean that can extend for more than 1,000 km. Microbial communities promote a globally relevant carbon sink system in the plume. Despite the importance of viruses for the global carbon cycle, the diversity and the possible roles of viruses in the Amazon are poorly understood. The present work assesses, for the first time, the abundance and diversity of viruses simultaneously in the river and ocean in order to elucidate their possible roles. DNA sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes from the 12 river and ocean locations. Viral diversity was clearly distinguished by river and ocean. Bacteriophages were the most abundant and occurred throughout the continuum. Viruses that infect eukaryotes were more abundant in the river, whereas phages appeared to have strong control over the host prokaryotic populations in the plume.« less
Virioplankton Assemblage Structure in the Lower River and Ocean Continuum of the Amazon.
Silva, Bruno S de O; Coutinho, Felipe H; Gregoracci, Gustavo B; Leomil, Luciana; de Oliveira, Louisi S; Fróes, Adriana; Tschoeke, Diogo; Soares, Ana Carolina; Cabral, Anderson S; Ward, Nicholas D; Richey, Jeffrey E; Krusche, Alex V; Yager, Patricia L; de Rezende, Carlos Eduardo; Thompson, Cristiane C; Thompson, Fabiano L
2017-01-01
The Amazon River watershed and its associated plume comprise a vast continental and oceanic area. The microbial activities along this continuum contribute substantially to global carbon and nutrient cycling, and yet there is a dearth of information on the diversity, abundance, and possible roles of viruses in this globally important river. The aim of this study was to elucidate the diversity and structure of virus assemblages of the Amazon River-ocean continuum. Environmental viral DNA sequences were obtained for 12 locations along the river's lower reach ( n = 5) and plume ( n = 7). Sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes. Despite the spatial connectivity mediated by the river, virome analyses and physical-chemical water parameters clearly distinguished river and plume ecosystems. Bacteriophages were ubiquitous in the continuum and were more abundant in the transition region. Eukaryotic viruses occurred mostly in the river, while the plume had more viruses of autotrophic organisms ( Prochlorococcus , Synechococcus ) and heterotrophic bacteria ( Pelagibacter ). The viral families Microviridae and Myoviridae were the most abundant and occurred throughout the continuum. The major functions of the genes in the continuum involved viral structures and life cycles, and viruses from plume locations and Tapajós River showed the highest levels of functional diversity. The distribution patterns of the viral assemblages were defined not only by the occurrence of possible hosts but also by water physical and chemical parameters, especially salinity. The findings presented here help to improve understanding of the possible roles of viruses in the organic matter cycle along the river-ocean continuum. IMPORTANCE The Amazon River forms a vast plume in the Atlantic Ocean that can extend for more than 1,000 km. Microbial communities promote a globally relevant carbon sink system in the plume. Despite the importance of viruses for the global carbon cycle, the diversity and the possible roles of viruses in the Amazon are poorly understood. The present work assesses, for the first time, the abundance and diversity of viruses simultaneously in the river and ocean in order to elucidate their possible roles. DNA sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes from the 12 river and ocean locations. Viral diversity was clearly distinguished by river and ocean. Bacteriophages were the most abundant and occurred throughout the continuum. Viruses that infect eukaryotes were more abundant in the river, whereas phages appeared to have strong control over the host prokaryotic populations in the plume.
Virioplankton Assemblage Structure in the Lower River and Ocean Continuum of the Amazon
Silva, Bruno S. de O.; Coutinho, Felipe H.; Gregoracci, Gustavo B.; Leomil, Luciana; de Oliveira, Louisi S.; Fróes, Adriana; Tschoeke, Diogo; Soares, Ana Carolina; Cabral, Anderson S.; Ward, Nicholas D.; Richey, Jeffrey E.; Krusche, Alex V.; Yager, Patricia L.; de Rezende, Carlos Eduardo; Thompson, Cristiane C.
2017-01-01
ABSTRACT The Amazon River watershed and its associated plume comprise a vast continental and oceanic area. The microbial activities along this continuum contribute substantially to global carbon and nutrient cycling, and yet there is a dearth of information on the diversity, abundance, and possible roles of viruses in this globally important river. The aim of this study was to elucidate the diversity and structure of virus assemblages of the Amazon River-ocean continuum. Environmental viral DNA sequences were obtained for 12 locations along the river’s lower reach (n = 5) and plume (n = 7). Sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes. Despite the spatial connectivity mediated by the river, virome analyses and physical-chemical water parameters clearly distinguished river and plume ecosystems. Bacteriophages were ubiquitous in the continuum and were more abundant in the transition region. Eukaryotic viruses occurred mostly in the river, while the plume had more viruses of autotrophic organisms (Prochlorococcus, Synechococcus) and heterotrophic bacteria (Pelagibacter). The viral families Microviridae and Myoviridae were the most abundant and occurred throughout the continuum. The major functions of the genes in the continuum involved viral structures and life cycles, and viruses from plume locations and Tapajós River showed the highest levels of functional diversity. The distribution patterns of the viral assemblages were defined not only by the occurrence of possible hosts but also by water physical and chemical parameters, especially salinity. The findings presented here help to improve understanding of the possible roles of viruses in the organic matter cycle along the river-ocean continuum. IMPORTANCE The Amazon River forms a vast plume in the Atlantic Ocean that can extend for more than 1,000 km. Microbial communities promote a globally relevant carbon sink system in the plume. Despite the importance of viruses for the global carbon cycle, the diversity and the possible roles of viruses in the Amazon are poorly understood. The present work assesses, for the first time, the abundance and diversity of viruses simultaneously in the river and ocean in order to elucidate their possible roles. DNA sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes from the 12 river and ocean locations. Viral diversity was clearly distinguished by river and ocean. Bacteriophages were the most abundant and occurred throughout the continuum. Viruses that infect eukaryotes were more abundant in the river, whereas phages appeared to have strong control over the host prokaryotic populations in the plume. PMID:28989970
Spectrum and variation of gamma-ray emission from the galactic center region
NASA Technical Reports Server (NTRS)
Riegler, G. R.; Ling, J. C.; Mahoney, W. A.; Wheaton, W. A.; Jacobson, A. S.
1982-01-01
Continuum emission at 60-300 keV from the galactic center region was observed to decrease in intensity by 45 percent and to show a spectrum steepening between fall 1979 and spring 1980. At the same time 511 keV positron annihilation radiation decreased by a comparable fraction. No variations over shorter time scales were detected. The observations are consistent with a model where positrons and hard X-rays are produced in an electromagnetic cascade near a massive black hole.
Astronomical observations with the University College London balloon borne telescope
NASA Technical Reports Server (NTRS)
Jennings, R. E.
1974-01-01
The characteristics of a telescope system which was developed for high altitude balloon astronomy are discussed. A drawing of the optical system of the telescope is provided. A sample of the signals recorded during one of the flights is included. The correlation between the infrared flux and the radio continuum flux is analyzed. A far infrared map of the radio and infrared peaks of selected stars is developed. The spectrum of the planet Saturn is plotted to show intensity as compared with wavenumber.
Effect of wrinkles on the surface area of graphene: toward the design of nanoelectronics.
Qin, Zhao; Taylor, Michael; Hwang, Mary; Bertoldi, Katia; Buehler, Markus J
2014-11-12
Graphene has attracted intense attention to the use in extreme applications. However, its small thickness facilitates wrinkle formation, and it is not clear how such structural change affects its area-specific capacitance. Herein, we combine molecular dynamics and continuum mechanics-based simulations to study the changes in surface area induced by wrinkles. We find that the high specific surface area of graphene can only be affected up to 2% regardless of loading conditions, geometry, and defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janowiecki, Steven; Salzer, John J.; Zee, Liese van
We discuss and test possible evolutionary connections between blue compact dwarf galaxies (BCDs) and other types of dwarf galaxies. BCDs provide ideal laboratories to study intense star formation episodes in low-mass dwarf galaxies, and have sometimes been considered a short-lived evolutionary stage between types of dwarf galaxies. To test these connections, we consider a sample of BCDs as well as a comparison sample of nearby galaxies from the Local Volume Legacy (LVL) survey for context. We fit the multi-wavelength spectral energy distributions (SED, far-ultra-violet to far-infrared) of each galaxy with a grid of theoretical models to determine their stellar massesmore » and star formation properties. We compare our results for BCDs with the LVL galaxies to put BCDs in the context of normal galaxy evolution. The SED fits demonstrate that the star formation events currently underway in BCDs are at the extreme of the continuum of normal dwarf galaxies, both in terms of the relative mass involved and in the relative increase over previous star formation rates. Today’s BCDs are distinctive objects in a state of extreme star formation that is rapidly transforming them. This study also suggests ways to identify former BCDs whose star formation episodes have since faded.« less
Numerical Modeling of Fluorescence Emission Energy Dispersion in Luminescent Solar Concentrator
NASA Astrophysics Data System (ADS)
Li, Lanfang; Sheng, Xing; Rogers, John; Nuzzo, Ralph
2013-03-01
We present a numerical modeling method and the corresponding experimental results, to address fluorescence emission dispersion for applications such as luminescent solar concentrator and light emitting diode color correction. Previously established modeling methods utilized a statistic-thermodynamic theory (Kenard-Stepnov etc.) that required a thorough understanding of the free energy landscape of the fluorophores. Some more recent work used an empirical approximation of the measured emission energy dispersion profile without considering anti-Stokes shifting during absorption and emission. In this work we present a technique for modeling fluorescence absorption and emission that utilizes the experimentally measured spectrum and approximates the observable Frank-Condon vibronic states as a continuum and takes into account thermodynamic energy relaxation by allowing thermal fluctuations. This new approximation method relaxes the requirement for knowledge of the fluorophore system and reduces demand on computing resources while still capturing the essence of physical process. We present simulation results of the energy distribution of emitted photons and compare them with experimental results with good agreement in terms of peak red-shift and intensity attenuation in a luminescent solar concentrator. This work is supported by the DOE `Light-Material Interactions in Energy Conversion' Energy Frontier Research Center under grant DE-SC0001293.
Evolution of Lyman-α Emitters, Lyman-break Galaxies and Elliptical Galaxies
NASA Astrophysics Data System (ADS)
Mori, M.; Umemura, M.
2008-10-01
High redshift Lyman-α emitters (LAEs) and Lyman-break galaxies (LBGs) possibly provide a significant key for the embryology of galaxies. LBGs have been argued as candidate progenitors of present-day elliptical galaxies in terms of their observed properties. But, what evolutionary stages LBGs correspond to and how they are related to LAEs are still under debate. Here, we present an ultra-high-resolution hydrodynamic simulation of galaxy formation. We show that, at the earliest stages of less than 3×10^8 years, continual supernova explosions produce multitudinous hot bubbles and cooled HI shells in between. The HI shells radiate intense Lyman-α emission like LAEs. We found that the bubbly structures produced are quite similar to the observed features in the Lyman-α surface brightness distribution of the extended LAEs. After 10^9 years, the galaxy emission is dominated by stellar continuum, exhibiting an LBG-like spectrum. Also, we find that, as a result of purely dynamical evolution over 13 billion years, the properties of this galaxy match those of present-day elliptical galaxies well. It is implied that the major episode of star formation and chemical enrichment in elliptical galaxies is almost completed in the evolutionary path from LAEs to LBGs.
Locally smeared operator product expansions in scalar field theory
Monahan, Christopher; Orginos, Kostas
2015-04-01
We propose a new locally smeared operator product expansion to decompose non-local operators in terms of a basis of smeared operators. The smeared operator product expansion formally connects nonperturbative matrix elements determined numerically using lattice field theory to matrix elements of non-local operators in the continuum. These nonperturbative matrix elements do not suffer from power-divergent mixing on the lattice, which significantly complicates calculations of quantities such as the moments of parton distribution functions, provided the smearing scale is kept fixed in the continuum limit. The presence of this smearing scale complicates the connection to the Wilson coefficients of the standardmore » operator product expansion and requires the construction of a suitable formalism. We demonstrate the feasibility of our approach with examples in real scalar field theory.« less
A coupled/uncoupled deformation and fatigue damage algorithm utilizing the finite element method
NASA Technical Reports Server (NTRS)
Wilt, Thomas E.; Arnold, Steven M.
1994-01-01
A fatigue damage computational algorithm utilizing a multiaxial, isothermal, continuum based fatigue damage model for unidirectional metal matrix composites has been implemented into the commercial finite element code MARC using MARC user subroutines. Damage is introduced into the finite element solution through the concept of effective stress which fully couples the fatigue damage calculations with the finite element deformation solution. An axisymmetric stress analysis was performed on a circumferentially reinforced ring, wherein both the matrix cladding and the composite core were assumed to behave elastic-perfectly plastic. The composite core behavior was represented using Hill's anisotropic continuum based plasticity model, and similarly, the matrix cladding was represented by an isotropic plasticity model. Results are presented in the form of S-N curves and damage distribution plots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, J.; Stevens, C. E.; Zhang, H.
We have performed two-dimensional Fourier transform spectroscopy on intrinsic and modulation doped quantum wells in external magnetic fields up to 10 T. In the undoped sample, the strong Coulomb interactions and the increasing separations of the electron and hole charge distributions with increasing magnetic fields lead to a nontrivial in-plane dispersion of the magneto-excitons. Thus, the discrete and degenerate Landau levels are coupled to a continuum. The signature of this continuum is the emergence of elongated spectral line shapes at the Landau level energies, which are exposed by the multidimensional nature of our technique. Surprisingly, the elongation of the peaksmore » is completely absent in the lowest Landau level spectra obtained from the modulation doped quantum well at high fields.« less
Paul, J.; Stevens, C. E.; Zhang, H.; ...
2017-06-28
We have performed two-dimensional Fourier transform spectroscopy on intrinsic and modulation doped quantum wells in external magnetic fields up to 10 T. In the undoped sample, the strong Coulomb interactions and the increasing separations of the electron and hole charge distributions with increasing magnetic fields lead to a nontrivial in-plane dispersion of the magneto-excitons. Thus, the discrete and degenerate Landau levels are coupled to a continuum. The signature of this continuum is the emergence of elongated spectral line shapes at the Landau level energies, which are exposed by the multidimensional nature of our technique. Surprisingly, the elongation of the peaksmore » is completely absent in the lowest Landau level spectra obtained from the modulation doped quantum well at high fields.« less
NASA Astrophysics Data System (ADS)
Paul, J.; Stevens, C. E.; Zhang, H.; Dey, P.; McGinty, D.; McGill, S. A.; Smith, R. P.; Reno, J. L.; Turkowski, V.; Perakis, I. E.; Hilton, D. J.; Karaiskaj, D.
2017-06-01
We have performed two-dimensional Fourier transform spectroscopy on intrinsic and modulation doped quantum wells in external magnetic fields up to 10 T. In the undoped sample, the strong Coulomb interactions and the increasing separations of the electron and hole charge distributions with increasing magnetic fields lead to a nontrivial in-plane dispersion of the magneto-excitons. Thus, the discrete and degenerate Landau levels are coupled to a continuum. The signature of this continuum is the emergence of elongated spectral line shapes at the Landau level energies, which are exposed by the multidimensional nature of our technique. Surprisingly, the elongation of the peaks is completely absent in the lowest Landau level spectra obtained from the modulation doped quantum well at high fields.
Scattering linear polarization of late-type active stars
NASA Astrophysics Data System (ADS)
Yakobchuk, T. M.; Berdyugina, S. V.
2018-05-01
Context. Many active stars are covered in spots, much more so than the Sun, as indicated by spectroscopic and photometric observations. It has been predicted that star spots induce non-zero intrinsic linear polarization by breaking the visible stellar disk symmetry. Although small, this effect might be useful for star spot studies, and it is particularly significant for a future polarimetric atmosphere characterization of exoplanets orbiting active host stars. Aims: Using models for a center-to-limb variation of the intensity and polarization in presence of continuum scattering and adopting a simplified two-temperature photosphere model, we aim to estimate the intrinsic linear polarization for late-type stars of different gravity, effective temperature, and spottedness. Methods: We developed a code that simulates various spot configurations or uses arbitrary surface maps, performs numerical disk integration, and builds Stokes parameter phase curves for a star over a rotation period for a selected wavelength. It allows estimating minimum and maximum polarization values for a given set of stellar parameters and spot coverages. Results: Based on assumptions about photosphere-to-spot temperature contrasts and spot size distributions, we calculate the linear polarization for late-type stars with Teff = 3500 K-6000 K, log g = 1.0-5.0, using the plane-parallel and spherical atmosphere models. Employing random spot surface distribution, we analyze the relation between spot coverage and polarization and determine the influence of different input parameters on results. Furthermore, we consider spot configurations with polar spots and active latitudes and longitudes.
COMPACT DUST CONCENTRATION IN THE MWC 758 PROTOPLANETARY DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marino, S.; Casassus, S.; Perez, S.
2015-11-01
The formation of planetesimals requires that primordial dust grains grow from micron- to kilometer-sized bodies. Dust traps caused by gas pressure maxima have been proposed as regions where grains can concentrate and grow fast enough to form planetesimals, before radially migrating onto the star. We report new VLA Ka and Ku observations of the protoplanetary disk around the Herbig Ae/Be star MWC 758. The Ka image shows a compact emission region in the outer disk, indicating a strong concentration of big dust grains. Tracing smaller grains, archival ALMA data in band 7 continuum shows extended disk emission with an intensitymore » maximum to the northwest of the central star, which matches the VLA clump position. The compactness of the Ka emission is expected in the context of dust trapping, as big grains are trapped more easily than smaller grains in gas pressure maxima. We develop a nonaxisymmetric parametric model inspired by a steady-state vortex solution with parameters adequately selected to reproduce the observations, including the spectral energy distribution. Finally, we compare the radio continuum with SPHERE scattered light data. The ALMA continuum spatially coincides with a spiral-like feature seen in scattered light, while the VLA clump is offset from the scattered light maximum. Moreover, the ALMA map shows a decrement that matches a region devoid of scattered polarized emission. Continuum observations at a different wavelength are necessary to conclude whether the VLA-ALMA difference is an opacity or a real dust segregation.« less
IRAS observations of radio-quiet and radio-loud quasars
NASA Technical Reports Server (NTRS)
Neugebauer, G.; Soifer, B. T.; Miley, G.; Habing, H. J.; Young, E.; Low, F. J.; Beichman, C. A.; Clegg, P. E.; Harris, S.; Rowan-Robinson, M.
1984-01-01
Observations from 12 to 100 microns are presented of two radio-quiet and three radio-loud quasars. Over this wavelength range, all five have grossly similar continuum energy distributions. The continua of the radio-loud quasars are consistent with synchrotron radiation. There is an indication, however, of excess 100 micron emission in the two radio-quiet quasars.
NASA Astrophysics Data System (ADS)
Marsh, K. A.; Whitworth, A. P.; Lomax, O.
2015-12-01
We present point process mapping (
NASA Astrophysics Data System (ADS)
Aurière, M.; López Ariste, A.; Mathias, P.; Lèbre, A.; Josselin, E.; Montargès, M.; Petit, P.; Chiavassa, A.; Paletou, F.; Fabas, N.; Konstantinova-Antova, R.; Donati, J.-F.; Grunhut, J. H.; Wade, G. A.; Herpin, F.; Kervella, P.; Perrin, G.; Tessore, B.
2016-06-01
Context. Betelgeuse is an M supergiant that harbors spots and giant granules at its surface and presents linear polarization of its continuum. Aims: We have previously discovered linear polarization signatures associated with individual lines in the spectra of cool and evolved stars. Here, we investigate whether a similar linearly polarized spectrum exists for Betelgeuse. Methods: We used the spectropolarimeter Narval, combining multiple polarimetric sequences to obtain high signal-to-noise ratio spectra of individual lines, as well as the least-squares deconvolution (LSD) approach, to investigate the presence of an averaged linearly polarized profile for the photospheric lines. Results: We have discovered the existence of a linearly polarized spectrum for Betelgeuse, detecting a rather strong signal (at a few times 10-4 of the continuum intensity level), both in individual lines and in the LSD profiles. Studying its properties and the signal observed for the resonant Na I D lines, we conclude that we are mainly observing depolarization of the continuum by the absorption lines. The linear polarization of the Betelgeuse continuum is due to the anisotropy of the radiation field induced by brightness spots at the surface and Rayleigh scattering in the atmosphere. We have developed a geometrical model to interpret the observed polarization, from which we infer the presence of two brightness spots and their positions on the surface of Betelgeuse. We show that applying the model to each velocity bin along the Stokes Q and U profiles allows the derivation of a map of the bright spots. We use the Narval linear polarization observations of Betelgeuse obtained over a period of 1.4 yr to study the evolution of the spots and of the atmosphere. Conclusions: Our study of the linearly polarized spectrum of Betelgeuse provides a novel method for studying the evolution of brightness spots at its surface and complements quasi-simultaneous observations obtained with PIONIER at the VLTI. Based on observations obtained at the Télescope Bernard Lyot (TBL) at Observatoire du Pic du Midi, CNRS/INSU and Université de Toulouse, France.
NASA Astrophysics Data System (ADS)
Campos-García, Manuel; Granados-Agustín, Fermín.; Cornejo-Rodríguez, Alejandro; Estrada-Molina, Amilcar; Avendaño-Alejo, Maximino; Moreno-Oliva, Víctor Iván.
2013-11-01
In order to obtain a clearer interpretation of the Intensity Transport Equation (ITE), in this work, we propose an algorithm to solve it for some particular wavefronts and its corresponding intensity distributions. By simulating intensity distributions in some planes, the ITE is turns into a Poisson equation with Neumann boundary conditions. The Poisson equation is solved by means of the iterative algorithm SOR (Simultaneous Over-Relaxation).
Successful model of suicide prevention in the Ukraine military environment.
Rozanov, Vsevolod A; Mokhovikov, Alexander N; Stiliha, Richard
2002-01-01
The article deals with the problem of suicidal behavior in the Ukraine military environment and gives an example of the successful prevention approach. The model of prevention is based on (1) education of the responsible officers, (2) training of the representatives of the most vulnerable risk groups, and (3) follow-up procedures based on distribution of pocket books for soldiers, educational booklets, and sets of helpful materials for officers. One of the main conclusions is that the prevention activity must be organized as a continuum of actions, seminars, consultations, and materials distribution.
A continuum theory of grain size evolution and damage
NASA Astrophysics Data System (ADS)
Ricard, Y.; Bercovici, D.
2009-01-01
Lithospheric shear localization, as occurs in the formation of tectonic plate boundaries, is often associated with diminished grain size (e.g., mylonites). Grain size reduction is typically attributed to dynamic recrystallization; however, theoretical models of shear localization arising from this hypothesis are problematic because (1) they require the simultaneous action of two creep mechanisms (diffusion and dislocation creep) that occur in different deformation regimes (i.e., in grain size stress space) and (2) the grain growth ("healing") laws employed by these models are derived from normal grain growth or coarsening theory, which are valid in the absence of deformation, although the shear localization setting itself requires deformation. Here we present a new first principles grained-continuum theory, which accounts for both coarsening and damage-induced grain size reduction in a monomineralic assemblage undergoing irrecoverable deformation. Damage per se is the generic process for generation of microcracks, defects, dislocations (including recrystallization), subgrains, nuclei, and cataclastic breakdown of grains. The theory contains coupled macroscopic continuum mechanical and grain-scale statistical components. The continuum level of the theory considers standard mass, momentum, and energy conservation, as well as entropy production, on a statistically averaged grained continuum. The grain-scale element of the theory describes both the evolution of the grain size distribution and mechanisms for both continuous grain growth and discontinuous grain fracture and coalescence. The continuous and discontinuous processes of grain size variation are prescribed by nonequilibrium thermodynamics (in particular, the treatment of entropy production provides the phenomenological laws for grain growth and reduction); grain size evolution thus incorporates the free energy differences between grains, including both grain boundary surface energy (which controls coarsening) and the contribution of deformational work to these free energies (which controls damage). In the absence of deformation, only two mechanisms that increase the average grain size are allowed by the second law of thermodynamics. One mechanism, involving continuous diffusive mass transport from small to large grains, captures the essential components of normal grain growth theories of Lifshitz-Slyosov and Hillert. The second mechanism involves the aggregation of grains and is described using a Smoluchovski formalism. With the inclusion of deformational work and damage, the theory predicts two mechanisms for which the thermodynamic requirement of entropy positivity always forces large grains to shrink and small ones to grow. The first such damage-driven mechanism involving continuous mass transfer from large to small grains tends to homogenize the distribution of grain size toward its initial mean grain size. The second damage mechanism favors the creation of small grains by discontinuous division of larger grains and reduces the mean grain size with time. When considered separately, most of these mechanisms allow for self-similar grain size distributions whose scales (i.e., statistical moments such as the mean, variance, and skewness) can all be described by a single grain scale, such as the mean or maximum. However, the combination of mechanisms, e.g., one that captures the competition between continuous coarsening and mean grain size reduction by breakage, does not generally permit a self-similar solution for the grain size distribution, which contradicts the classic assumption that grain growth laws allowing for both coarsening and recrystallization can be treated with a single grain scale such as the mean size.
Implications of long tails in the distribution of mutant effects
NASA Astrophysics Data System (ADS)
Waxman, D.; Feng, J.
2005-07-01
Long-tailed distributions possess an infinite variance, yet a finite sample that is drawn from such a distribution has a finite variance. In this work we consider a model of a population subject to mutation, selection and drift. We investigate the implications of a long-tailed distribution of mutant allelic effects on the distribution of genotypic effects in a model with a continuum of allelic effects. While the analysis is confined to asexual populations, it does also have implications for sexual populations. We obtain analytical results for a selectively neutral population as well as one subject to selection. We supplement these analytical results with numerical simulations, to take into account genetic drift. We find that a long-tailed distribution of mutant effects may affect both the equilibrium and the evolutionary adaptive behaviour of a population.
Stick-slip behavior in a continuum-granular experiment.
Geller, Drew A; Ecke, Robert E; Dahmen, Karin A; Backhaus, Scott
2015-12-01
We report moment distribution results from a laboratory experiment, similar in character to an isolated strike-slip earthquake fault, consisting of sheared elastic plates separated by a narrow gap filled with a two-dimensional granular medium. Local measurement of strain displacements of the plates at 203 spatial points located adjacent to the gap allows direct determination of the event moments and their spatial and temporal distributions. We show that events consist of spatially coherent, larger motions and spatially extended (noncoherent), smaller events. The noncoherent events have a probability distribution of event moment consistent with an M(-3/2) power law scaling with Poisson-distributed recurrence times. Coherent events have a log-normal moment distribution and mean temporal recurrence. As the applied normal pressure increases, there are more coherent events and their log-normal distribution broadens and shifts to larger average moment.
NASA Astrophysics Data System (ADS)
Motevaselian, Mohammad Hossein; Mashayak, Sikandar Y.; Aluru, Narayana R.
2015-11-01
We present an empirical potential-based quasi-continuum theory (EQT) that seamlessly integrates the interatomic potentials into a continuum framework such as the Nernst-Planck equation. EQT is a simple and fast approach, which provides accurate predictions of potential of mean force (PMF) and density distribution of confined fluids at multiple length-scales, ranging from few Angstroms to macro meters. The EQT potentials can be used to construct the excess free energy functional in the classical density functional theory (cDFT). The combination of EQT and cDFT (EQT-cDFT), allows one to predict the thermodynamic properties of confined fluids. Recently, the EQT-cDFT framework was developed for single component LJ fluids confined in slit-like graphene channels. In this work, we extend the framework to confined LJ fluid mixtures and demonstrate it by simulating a mixture of methane and hydrogen molecules inside slit-like graphene channels. We show that the EQT-cDFT predictions for the structure of the confined fluid mixture compare well with the MD simulations. In addition, our results show that graphene nanochannels exhibit a selective adsorption of methane over hydrogen.
Photodissociation of ultracold diatomic strontium molecules with quantum state control.
McDonald, M; McGuyer, B H; Apfelbeck, F; Lee, C-H; Majewska, I; Moszynski, R; Zelevinsky, T
2016-07-07
Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold (88)Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunnelling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics.
Linearized lattice Boltzmann method for micro- and nanoscale flow and heat transfer.
Shi, Yong; Yap, Ying Wan; Sader, John E
2015-07-01
Ability to characterize the heat transfer in flowing gases is important for a wide range of applications involving micro- and nanoscale devices. Gas flows away from the continuum limit can be captured using the Boltzmann equation, whose analytical solution poses a formidable challenge. An efficient and accurate numerical simulation of the Boltzmann equation is thus highly desirable. In this article, the linearized Boltzmann Bhatnagar-Gross-Krook equation is used to develop a hierarchy of thermal lattice Boltzmann (LB) models based on half-space Gaussian-Hermite (GH) quadrature ranging from low to high algebraic precision, using double distribution functions. Simplified versions of the LB models in the continuum limit are also derived, and are shown to be consistent with existing thermal LB models for noncontinuum heat transfer reported in the literature. Accuracy of the proposed LB hierarchy is assessed by simulating thermal Couette flows for a wide range of Knudsen numbers. Effects of the underlying quadrature schemes (half-space GH vs full-space GH) and continuum-limit simplifications on computational accuracy are also elaborated. The numerical findings in this article provide direct evidence of improved computational capability of the proposed LB models for modeling noncontinuum flows and heat transfer at small length scales.
The PAH Emission Characteristics of the Reflection Nebula NGC 2023
NASA Astrophysics Data System (ADS)
Peeters, Els; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; Tielens, Alexander G. G. M.; Ricca, Alessandra; Wolfire, Mark G.
2017-02-01
We present 5-20 μm spectral maps of the reflection nebula NGC 2023 obtained with the Infrared Spectrograph SL and SH modes on board the Spitzer Space Telescope, which reveal emission from polycyclic aromatic hydrocarbons (PAHs), C60, and H2 superposed on a dust continuum. We show that several PAH emission bands correlate with each other and exhibit distinct spatial distributions that reveal a spatial sequence with distance from the illuminating star. We explore the distinct morphology of the 6.2, 7.7, and 8.6 μm PAH bands and find that at least two spatially distinct components contribute to the 7-9 μm PAH emission in NGC 2023. We report that the PAH features behave independently of the underlying plateaus. We present spectra of compact, oval PAHs ranging in size from C66 to C210, determined computationally using density functional theory, and we investigate trends in the band positions and relative intensities as a function of PAH size, charge, and geometry. Based on the NASA Ames PAH database, we discuss the 7-9 μm components in terms of band assignments and relative intensities. We assign the plateau emission to very small grains with possible contributions from PAH clusters and identify components in the 7-9 μm emission that likely originate in these structures. Based on the assignments and the observed spatial sequence, we discuss the photochemical evolution of the interstellar PAH family as the PAHs are more and more exposed to the radiation field of the central star in the evaporative flows associated with the Photo-Dissociation Regions in NGC 2023.
NASA Astrophysics Data System (ADS)
Fedele, D.; Carney, M.; Hogerheijde, M. R.; Walsh, C.; Miotello, A.; Klaassen, P.; Bruderer, S.; Henning, Th.; van Dishoeck, E. F.
2017-04-01
The protoplanetary system HD 169142 is one of the few cases where a potential candidate protoplanet has recently been detected by direct imaging in the near-infrared. To study the interaction between the protoplanet and the disk itself, observations of the gas and dust surface density structure are needed. This paper reports new ALMA observations of the dust continuum at 1.3 mm, 12CO, 13CO, and C18O J = 2-1 emission from the system HD 169142 (which is observed almost face-on) at an angular resolution of 0.3 arcsec × 0.2 arcsec ( 35 × 20 au). The dust continuum emission reveals a double-ring structure with an inner ring between 0.17 arcsec{-0.28 arcsec} ( 20-35 au) and an outer ring between 0.48 arcsec{-0.64 arcsec} ( 56-83 au). The size and position of the inner ring is in good agreement with previous polarimetric observations in the near-infrared and is consistent with dust trapping by a massive planet. No dust emission is detected inside the inner dust cavity (R ≲ 20 au) or within the dust gap ( 35-56 au) down to the noise level. In contrast, the channel maps of the J = 2-1 line of the three CO isotopologs reveal gas inside the dust cavity and dust gap. The gaseous disk is also much larger than the compact dust emission; it extends to 1.5 arcsec ( 180 au) in radius. This difference and the sharp drop of the continuum emission at large radii point to radial drift of large dust grains (>μm size). Using the thermo-chemical disk code dali, we modeled the continuum and the CO isotopolog emission to quantitatively measure the gas and dust surface densities. The resulting gas surface density is reduced by a factor of 30-40 inward of the dust gap. The gas and dust distribution indicate that two giant planets shape the disk structure through dynamical clearing (dust cavity and gap) and dust trapping (double-ring dust distribution).
An Image-based Micro-continuum Pore-scale Model for Gas Transport in Organic-rich Shale
NASA Astrophysics Data System (ADS)
Guo, B.; Tchelepi, H.
2017-12-01
Gas production from unconventional source rocks, such as ultra-tight shales, has increased significantly over the past decade. However, due to the extremely small pores ( 1-100 nm) and the strong material heterogeneity, gas flow in shale is still not well understood and poses challenges for predictive field-scale simulations. In recent years, digital rock analysis has been applied to understand shale gas transport at the pore-scale. An issue with rock images (e.g. FIB-SEM, nano-/micro-CT images) is the so-called "cutoff length", i.e., pores and heterogeneities below the resolution cannot be resolved, which leads to two length scales (resolved features and unresolved sub-resolution features) that are challenging for flow simulations. Here we develop a micro-continuum model, modified from the classic Darcy-Brinkman-Stokes framework, that can naturally couple the resolved pores and the unresolved nano-porous regions. In the resolved pores, gas flow is modeled with Stokes equation. In the unresolved regions where the pore sizes are below the image resolution, we develop an apparent permeability model considering non-Darcy flow at the nanoscale including slip flow, Knudsen diffusion, adsorption/desorption, surface diffusion, and real gas effect. The end result is a micro-continuum pore-scale model that can simulate gas transport in 3D reconstructed shale images. The model has been implemented in the open-source simulation platform OpenFOAM. In this paper, we present case studies to demonstrate the applicability of the model, where we use 3D segmented FIB-SEM and nano-CT shale images that include four material constituents: organic matter, clay, granular mineral, and pore. In addition to the pore structure and the distribution of the material constituents, we populate the model with experimental measurements (e.g. size distribution of the sub-resolution pores from nitrogen adsorption) and parameters from the literature and identify the relative importance of different physics on gas production. Overall, the micro-continuum model provides a novel tool for digital rock analysis of organic-rich shale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Xianming; Johnson, Paul V.; Malone, Charles P.
Dissociative excitation of molecular hydrogen plays an important role in the heating of outer planet upper thermospheres. This paper addresses the role of one of the triplet states involved in the process. H{sub 2} excited to the a {sup 3}{Sigma}{sup +} {sub g} state, or higher triplet-ungerade states, is dissociated via the a {sup 3}{Sigma}{sup +} {sub g}-b {sup 3}{Sigma}{sup +} {sub u} continuum. The kinetic energy distribution of H(1s) produced from direct X {sup 1}{Sigma}{sup +} {sub g}-a {sup 3}{Sigma}{sup +} {sub g}(v, J) excitation by electrons is investigated by an accurate theoretical evaluation of spontaneous transition probabilities ofmore » the a {sup 3}{Sigma}{sup +} {sub g}(v, J)-b {sup 3}{Sigma}{sup +} {sub u} continuum transition. It is shown that the X {sup 1}{Sigma}{sup +} {sub g}(0)-a {sup 3}{Sigma}{sup +} {sub g}(v, J) excitation primarily produces H(1s) atoms with kinetic energies lower than 2 eV. In addition to the continuum a {sup 3}{Sigma}{sup +} {sub g}(v, J)-b {sup 3}{Sigma}{sup +} {sub u} transition probabilities, spontaneous emission lifetimes of the a {sup 3}{Sigma}{sup +} {sub g}(v, J) (v = 0-20, J {<=} 14) levels have been calculated by considering both the a {sup 3}{Sigma}{sup +} {sub g}-b {sup 3}{Sigma}{sup +} {sub u} and a {sup 3}{Sigma}{sup +} {sub g}-c {sup 3}{Pi} {sub u} transitions. The calculated lifetimes show a moderately strong rotational dependence, and the lifetimes for the J = 0 rotational level of the low v levels agree well with previous calculations and experimental measurements. Calculations of the a {sup 3}{Sigma}{sup +} {sub g}-b {sup 3}{Sigma}{sup +} {sub u} continuum emission spectra from electron impact X {sup 1}{Sigma}{sup +} {sub g}-a {sup 3}{Sigma}{sup +} {sub g} excitation are included.« less
An XMM-Newton Monitoring Campaign of the Accretion Flow in IGRJ16318-4848
NASA Technical Reports Server (NTRS)
Mushotzky, Richard (Technical Monitor); Nicastro, Fabrizio
2005-01-01
This grant is associated to a successful XMM-Newton-AO3 observational proposal to monitor the spectrum of the X-ray loud component of the recently discovered binary system IGR J16138-4848, to study the conditions of the accretion flows (and their evolution) in binary system. All four EPIC-PN and MOS observations of the target have now been performed (the last one of the 4, only 3 months ago). The four observations were logarithmically spaced, so to cover timescales from days to months. Data from all four pointings have now been reduced, using the XMM-Newton data reduction pipeline, and spectra and lightcurves from the target have been extracted. For the first three observations we have already performed the observation-by-observation data analysis, by fitting the single EPIC spectra with spectral models that include an intrinsic continuum power law (reduced at low energy by neutral absorption), a 6.4 keV iron emission line (detected in all spectra with varying intensity) and a Compton-reflection component. A Compton reflection component is also detected in all spectra, although at lower significance. The analysis of the fourth and last observation of our monitoring campaign has just recently begun. Next, we will (1) stack together the four observations of IGR J16138-4848, to obtain high-accuracy estimates of the average spectral parameters of this object; and then (2) proceed to the time-evolving analysis, of the three spectral parameters: (a) Gamma (the slope of the intrinsic continuum), (b) W(FeK), the equivalent width of the 6.4 keV Iron emission line, and (c) R, the relative amount of Compton reflection. Through this time-resolved spectroscopic analysis we hope to constrain (a) the physical state of the accreting matter and its relation with the X-ray output, and (b) the evolution of the accretion flow geometry, distribution and covering factor.
Ringed Structures of the HD 163296 Protoplanetary Disk Revealed by ALMA
NASA Astrophysics Data System (ADS)
Isella, Andrea; Guidi, Greta; Testi, Leonardo; Liu, Shangfei; Li, Hui; Li, Shengtai; Weaver, Erik; Boehler, Yann; Carperter, John M.; De Gregorio-Monsalvo, Itziar; Manara, Carlo F.; Natta, Antonella; Pérez, Laura M.; Ricci, Luca; Sargent, Anneila; Tazzari, Marco; Turner, Neal
2016-12-01
We present Atacama Large Millimeter and Submillimeter Array observations of the protoplanetary disk around the Herbig Ae star HD 163296 that trace the spatial distribution of millimeter-sized particles and cold molecular gas on spatial scales as small as 25 astronomical units (A.U.). The image of the disk recorded in the 1.3 mm continuum emission reveals three dark concentric rings that indicate the presence of dust depleted gaps at about 60, 100, and 160 A.U. from the central star. The maps of the 12CO, 13CO, and C 18O J =2 -1 emission do not show such structures but reveal a change in the slope of the radial intensity profile across the positions of the dark rings in the continuum image. By comparing the observations with theoretical models for the disk emission, we find that the density of CO molecules is reduced inside the middle and outer dust gaps. However, in the inner ring there is no evidence of CO depletion. From the measurements of the dust and gas densities, we deduce that the gas-to-dust ratio varies across the disk and, in particular, it increases by at least a factor 5 within the inner dust gap compared to adjacent regions of the disk. The depletion of both dust and gas suggests that the middle and outer rings could be due to the gravitational torque exerted by two Saturn-mass planets orbiting at 100 and 160 A.U. from the star. On the other hand, the inner dust gap could result from dust accumulation at the edge of a magnetorotational instability dead zone, or from dust opacity variations at the edge of the CO frost line. Observations of the dust emission at higher angular resolution and of molecules that probe dense gas are required to establish more precisely the origins of the dark rings observed in the HD 163296 disk.
Ringed Structures of the HD 163296 Protoplanetary Disk Revealed by ALMA.
Isella, Andrea; Guidi, Greta; Testi, Leonardo; Liu, Shangfei; Li, Hui; Li, Shengtai; Weaver, Erik; Boehler, Yann; Carperter, John M; De Gregorio-Monsalvo, Itziar; Manara, Carlo F; Natta, Antonella; Pérez, Laura M; Ricci, Luca; Sargent, Anneila; Tazzari, Marco; Turner, Neal
2016-12-16
We present Atacama Large Millimeter and Submillimeter Array observations of the protoplanetary disk around the Herbig Ae star HD 163296 that trace the spatial distribution of millimeter-sized particles and cold molecular gas on spatial scales as small as 25 astronomical units (A.U.). The image of the disk recorded in the 1.3 mm continuum emission reveals three dark concentric rings that indicate the presence of dust depleted gaps at about 60, 100, and 160 A.U. from the central star. The maps of the ^{12}CO, ^{13}CO, and C^{18}O J=2-1 emission do not show such structures but reveal a change in the slope of the radial intensity profile across the positions of the dark rings in the continuum image. By comparing the observations with theoretical models for the disk emission, we find that the density of CO molecules is reduced inside the middle and outer dust gaps. However, in the inner ring there is no evidence of CO depletion. From the measurements of the dust and gas densities, we deduce that the gas-to-dust ratio varies across the disk and, in particular, it increases by at least a factor 5 within the inner dust gap compared to adjacent regions of the disk. The depletion of both dust and gas suggests that the middle and outer rings could be due to the gravitational torque exerted by two Saturn-mass planets orbiting at 100 and 160 A.U. from the star. On the other hand, the inner dust gap could result from dust accumulation at the edge of a magnetorotational instability dead zone, or from dust opacity variations at the edge of the CO frost line. Observations of the dust emission at higher angular resolution and of molecules that probe dense gas are required to establish more precisely the origins of the dark rings observed in the HD 163296 disk.
Rare-gas-cluster explosions under irradiation by intense short XUV pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffmann, K.; Murphy, B.; Kandadai, N.
High-intensity, extreme-ultraviolet (XUV) femtosecond interactions with large rare-gas clusters of xenon and argon have been studied at a wavelength of 38 nm. Pulses of XUV radiation with nJ energy are produced by high-order harmonic conversion from a 35-fs, near-infrared, terawatt laser. Mass resolved ion spectra show charge states up to Xe{sup 8+} and Ar{sup 4+}. Kinetic-energy measurements of ions and electrons indicate that a nanoplasma is formed and a hydrodynamic cluster explosion ensues after heating by the short wavelength pulse. It appears that the observed charge states and electron temperatures are consistent with sequential, single-photon ionization and collisional ionization ofmore » ions that have had their ionization potential depressed by plasma continuum lowering in the cluster nanoplasma.« less
Ab initio non-adiabatic study of the 4pσ B'' 1Σ+u state of H2
NASA Astrophysics Data System (ADS)
Glass-Maujean, M.; Schmoranzer, H.
2018-05-01
Fully ab initio non-adiabatic multichannel quantum defect calculations of the 4pσ B'' 1∑u+ energy levels, line intensities and widths, based on the latest quantum-chemical clamped-nuclei calculations of Wolniewicz and collaborators are presented for H2. The B″ state corresponds to the inner well of the ? state. The B'' v ≥ 1 levels are rapidly predissociated through vibrational coupling with the 3pσ B' 1Σ+u continuum so that coupled-equation calculations become unstable. Multichannel quantum defect theory, on the other hand, is demonstrated to be particularly suited to this situation. Experimental data as level energies, line intensities and dissociation widths were revisited and corrected. Reinvestigating previously published spectra, several new lines were assigned.
Emergence of low-energy monopole strength in the neutron-rich calcium isotopes
NASA Astrophysics Data System (ADS)
Piekarewicz, J.
2017-10-01
Background: The isoscalar monopole response of neutron-rich nuclei is sensitive to both the incompressibility coefficient of symmetric nuclear matter and the density dependence of the symmetry energy. For exotic nuclei with a large neutron excess, a low-energy component emerges that is driven by transitions into the continuum. Purpose: While understanding the scaling of the giant monopole resonance with mass number is central to this work, the main goal of this paper is to explore the emergence, evolution, and origin of low-energy monopole strength along the even-even calcium isotopes: from 40Ca to 60Ca. Methods: The distribution of isoscalar monopole strength is computed in a relativistic random phase approximation (RPA) using three effective interactions that have been calibrated to the properties of finite nuclei and neutron stars. A nonspectral approach is adopted that allows for an exact treatment of the continuum without any reliance on discretization. This is particularly critical in the case of weakly bound nuclei with single-particle orbits near the continuum. The discretization of the continuum is neither required nor admitted. Results: For the stable calcium isotopes, no evidence of low-energy monopole strength is observed, even as the 1 f7 /2 neutron orbital is being filled and the neutron-skin thickness progressively grows. Further, in contrast to experimental findings, a mild softening of the monopole response with increasing mass number is predicted. Beyond 48Ca, a significant amount of low-energy monopole strength emerges as soon as the weak-binding neutron orbitals (2 p and 1 f5 /2 ) become populated. The emergence and evolution of low-energy strength is identified with transitions from these weakly bound states into the continuum—which is treated exactly in the RPA approach. Moreover, given that models with a soft symmetry energy tend to reach the neutron-drip line earlier than their stiffer counterparts, an inverse correlation is identified between the neutron-skin thickness and the inverse energy weighted sum. Conclusions: Despite experimental claims to the contrary, a mild softening of the giant monopole resonance is observed in going from 40Ca to 48Ca. Measurements for other stable calcium isotopes may be critical in elucidating the nature of the discrepancy. Moreover, given the early success in measuring the distribution of isoscalar monopole strength in the unstable 68Ni nucleus, new measurements along the unstable neutron-rich calcium isotopes are advocated in order to explore the critical role of the continuum in the development of a soft monopole mode.
Plasma waves near the magnetopause
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, R.R.; Haravey, C.C.; Hoppe, M.M.
1982-04-01
Plasma waves associated with the magnetopause, from the magnetosheath to the outer magnetosphere, are examined with an emphasis on high time resolution data and the comparison between measurements by using different antenna systems. An early ISEE crossing of the magnetopause region, including passage through two well-defined flux transfer events, the magentopause current layer, and boundary plasma, is studied in detail. The waves in these regions are compared and contrasted with the waves in the adjoining magnetosheath and outer magnetosphere. Four types of plamsa wave emissions are characteristic of the nominal magnetosheat: (1) a very low frequency continuum, (2) short wavelengthmore » spikes, (3) 'festoon-shaped' emissions below about 2 kHz, and (4) 'lion roars'. The latter two emissions are well correlated with ultra-low frequency magnetic field fluctuations. The dominant plasma wave features during flux transfer events are (1) an intense low-frequency continuum, which includes a substantial electromagnetic component, (2) a dramatic increase in the frequency of occurrence of the spikes, (3) quasi-periodic electron cyclotron harmonics correlated with approx.1-Hz magnetic field fluctuations, and (4) enhanced electron plasma oscillations. The plasma wave characteristics in the current layer and in the boundary layer are quite similar to the features in the flux transfer events. Upon entry into the outer magnetosphere, the plasma wave spectra are dominated by intense electromagnetic chorus bursts and electrosatic (n+1/2)f/sup -//sub g/ emissions. Wavelength determinations made by comparing the various antenna responses and polarization measurements for the different waves are also presented.« less
Fabric and connectivity as field descriptors for deformations in granular media
NASA Astrophysics Data System (ADS)
Wan, Richard; Pouragha, Mehdi
2015-01-01
Granular materials involve microphysics across the various scales giving rise to distinct behaviours of geomaterials, such as steady states, plastic limit states, non-associativity of plastic and yield flow, as well as instability of homogeneous deformations through strain localization. Incorporating such micro-scale characteristics is one of the biggest challenges in the constitutive modelling of granular materials, especially when micro-variables may be interdependent. With this motivation, we use two micro-variables such as coordination number and fabric anisotropy computed from tessellation of the granular material to describe its state at the macroscopic level. In order to capture functional dependencies between micro-variables, the correlation between coordination number and fabric anisotropy limits is herein formulated at the particle level rather than on an average sense. This is the essence of the proposed work which investigates the evolutions of coordination number distribution (connectivity) and anisotropy (contact normal) distribution curves with deformation history and their inter-dependencies through discrete element modelling in two dimensions. These results enter as probability distribution functions into homogenization expressions during upscaling to a continuum constitutive model using tessellation as an abstract representation of the granular system. The end product is a micro-mechanically inspired continuum model with both coordination number and fabric anisotropy as underlying micro-variables incorporated into a plasticity flow rule. The derived plastic potential bears striking resemblance to cam-clay or stress-dilatancy-type yield surfaces used in soil mechanics.
The 2.3 GHz continuum survey of the GEM project
NASA Astrophysics Data System (ADS)
Tello, C.; Villela, T.; Torres, S.; Bersanelli, M.; Smoot, G. F.; Ferreira, I. S.; Cingoz, A.; Lamb, J.; Barbosa, D.; Perez-Becker, D.; Ricciardi, S.; Currivan, J. A.; Platania, P.; Maino, D.
2013-08-01
Context. Determining the spectral and spatial characteristics of the radio continuum of our Galaxy is an experimentally challenging endeavour for improving our understanding of the astrophysics of the interstellar medium. This knowledge has also become of paramount significance for cosmology, since Galactic emission is the main source of astrophysical contamination in measurements of the cosmic microwave background (CMB) radiation on large angular scales. Aims: We present a partial-sky survey of the radio continuum at 2.3GHz within the scope of the Galactic Emission Mapping (GEM) project, an observational program conceived and developed to reveal the large-scale properties of Galactic synchrotron radiation through a set of self-consistent surveys of the radio continuum between 408MHz and 10GHz. Methods: The GEM experiment uses a portable and double-shielded 5.5-m radiotelescope in altazimuthal configuration to map 60-degree-wide declination bands from different observational sites by circularly scanning the sky at zenithal angles of 30° from a constantly rotating platform. The observations were accomplished with a total power receiver, whose front-end high electron mobility transistor (HEMT) amplifier was matched directly to a cylindrical horn at the prime focus of the parabolic reflector. The Moon was used to calibrate the antenna temperature scale and the preparation of the map required direct subtraction and destriping algorithms to remove ground contamination as the most significant source of systematic error. Results: We used 484 h of total intensity observations from two locations in Colombia and Brazil to yield 66% sky coverage from to . The observations in Colombia were obtained with a horizontal HPBW of and a vertical HPBW of . The pointing accuracy was and the RMS sensitivity was 11.42 mK. The observations in Brazil were obtained with a horizontal HPBW of and a vertical HPBW of . The pointing accuracy was and the RMS sensitivity was 8.24 mK. The zero-level uncertainty of the combined survey is 103mK with a temperature scale error of 5% after direct correlation with the Rhodes/HartRAO survey at 2326MHz on a T-T plot. Conclusions: The sky brightness distribution into regions of low and high emission in the GEM survey is consistent with the appearance of a transition region as seen in the Haslam 408MHz and WMAP K-band surveys. Preliminary results also show that the temperature spectral index between 408MHz and the 2.3GHz band of the GEM survey has a weak spatial correlation with these regions; but it steepens significantly from high to low emission regions with respect to the WMAP K-band survey. The survey is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/556/A1
Hedenstierna, Sofia; Halldin, Peter; Siegmund, Gunter P
2009-11-15
A finite element (FE) model of the human neck was used to study the distribution of neck muscle loads during multidirectional impacts. The computed load distributions were compared to experimental electromyography (EMG) recordings. To quantify passive muscle loads in nonactive cervical muscles during impacts of varying direction and energy, using a three-dimensional (3D) continuum FE muscle model. Experimental and numerical studies have confirmed the importance of muscles in the impact response of the neck. Although EMG has been used to measure the relative activity levels in neck muscles during impact tests, this technique has not been able to measure all neck muscles and cannot directly quantify the force distribution between the muscles. A numerical model can give additional insight into muscle loading during impact. An FE model with solid element musculature was used to simulate frontal, lateral, and rear-end vehicle impacts at 4 peak accelerations. The peak cross-sectional forces, internal energies, and effective strains were calculated for each muscle and impact configuration. The computed load distribution was compared with experimental EMG data. The load distribution in the cervical muscles varied with load direction. Peak sectional forces, internal energies, and strains increased in most muscles with increasing impact acceleration. The dominant muscles identified by the model for each direction were splenius capitis, levator scapulae, and sternocleidomastoid in lateral impacts, splenius capitis, and trapezoid in frontal impacts, and sternocleidomastoid, rectus capitis posterior minor, and hyoids in rear-end impacts. This corresponded with the most active muscles identified by EMG recordings, although within these muscles the distribution of forces and EMG levels were not the same. The passive muscle forces, strains, and energies computed using a continuum FE model of the cervical musculature distinguished between impact directions and peak accelerations, and on the basis of prior studies, isolated the most important muscles for each direction.
ON HIGHLY CLUMPED MAGNETIC WIND MODELS FOR COOL EVOLVED STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harper, G. M.
2010-09-10
Recently, it has been proposed that the winds of non-pulsating and non-dusty K and M giants and supergiants may be driven by some form of magnetic pressure acting on highly clumped wind material. While many researchers believe that magnetic processes are responsible for cool evolved stellar winds, existing MHD and Alfven wave-driven wind models have magnetic fields that are essentially radial and tied to the photosphere. The clumped magnetic wind scenario is quite different in that the magnetic flux is also being carried away from the star with the wind. We test this clumped wind hypothesis by computing continuum radiomore » fluxes from the {zeta} Aur semiempirical model of Baade et al., which is based on wind-scattered line profiles. The radio continuum opacity is proportional to the electron density squared, while the line scattering opacity is proportional to the gas density. This difference in proportionality provides a test for the presence of large clumping factors. We derive the radial distribution of clump factors (CFs) for {zeta} Aur by comparing the nonthermal pressures required to produce the semiempirical velocity distribution with the expected thermal pressures. The CFs are {approx}5 throughout the sub-sonic inner wind region and then decline outward. These implied clumping factors lead to excess radio emission at 2.0 cm, while at 6.2 cm it improves agreement with the smooth unclumped model. Smaller clumping factors of {approx}2 lead to better overall agreement but also increase the discrepancy at 2 cm. These results do not support the magnetic clumped wind hypothesis and instead suggest that inherent uncertainties in the underlying semiempirical model probably dominate uncertainties in predicted radio fluxes. However, new ultraviolet line and radio continuum observations are needed to test the new generations of inhomogeneous magnetohydrodynamic wind models.« less
Anomolous Fatigue Crack Growth Phenomena in High-Strength Steel
NASA Technical Reports Server (NTRS)
Forth, Scott C.; James, Mark A.; Johnston, William M., Jr.; Newman, James C., Jr.
2004-01-01
The growth of a fatigue crack through a material is the result of a complex interaction between the applied loading, component geometry, three-dimensional constraint, load history, environment, material microstructure and several other factors. Previous studies have developed experimental and computational methods to relate the fatigue crack growth rate to many of the above conditions, with the intent of discovering some fundamental material response, i.e. crack growth rate as a function of something. Currently, the technical community uses the stress intensity factor solution as a simplistic means to relate fatigue crack growth rate to loading, geometry and all other variables. The stress intensity factor solution is a very simple linear-elastic representation of the continuum mechanics portion of crack growth. In this paper, the authors present fatigue crack growth rate data for two different high strength steel alloys generated using standard methods. The steels exhibit behaviour that appears unexplainable, compared to an aluminium alloy presented as a baseline for comparison, using the stress intensity factor solution.
XUV generation from the interaction of pico- and nanosecond laser pulses with nanostructured targets
NASA Astrophysics Data System (ADS)
Barte, Ellie Floyd; Lokasani, Ragava; Proska, Jan; Stolcova, Lucie; Maguire, Oisin; Kos, Domagoj; Sheridan, Paul; O'Reilly, Fergal; Sokell, Emma; McCormack, Tom; O'Sullivan, Gerry; Dunne, Padraig; Limpouch, Jiri
2017-05-01
Laser-produced plasmas are intense sources of XUV radiation that can be suitable for different applications such as extreme ultraviolet lithography, beyond extreme ultraviolet lithography and water window imaging. In particular, much work has focused on the use of tin plasmas for extreme ultraviolet lithography at 13.5 nm. We have investigated the spectral behavior of the laser produced plasmas formed on closely packed polystyrene microspheres and porous alumina targets covered by a thin tin layer in the spectral region from 2.5 to 16 nm. Nd:YAG lasers delivering pulses of 170 ps (Ekspla SL312P )and 7 ns (Continuum Surelite) duration were focused onto the nanostructured targets coated with tin. The intensity dependence of the recorded spectra was studied; the conversion efficiency (CE) of laser energy into the emission in the 13.5 nm spectral region was estimated. We have observed an increase in CE using high intensity 170 ps Nd:YAG laser pulses as compared with a 7 ns pulse.
Radiation Source Mapping with Bayesian Inverse Methods
Hykes, Joshua M.; Azmy, Yousry Y.
2017-03-22
In this work, we present a method to map the spectral and spatial distributions of radioactive sources using a limited number of detectors. Locating and identifying radioactive materials is important for border monitoring, in accounting for special nuclear material in processing facilities, and in cleanup operations following a radioactive material spill. Most methods to analyze these types of problems make restrictive assumptions about the distribution of the source. In contrast, the source mapping method presented here allows an arbitrary three-dimensional distribution in space and a gamma peak distribution in energy. To apply the method, the problem is cast as anmore » inverse problem where the system’s geometry and material composition are known and fixed, while the radiation source distribution is sought. A probabilistic Bayesian approach is used to solve the resulting inverse problem since the system of equations is ill-posed. The posterior is maximized with a Newton optimization method. The probabilistic approach also provides estimates of the confidence in the final source map prediction. A set of adjoint, discrete ordinates flux solutions, obtained in this work by the Denovo code, is required to efficiently compute detector responses from a candidate source distribution. These adjoint fluxes form the linear mapping from the state space to the response space. The test of the method’s success is simultaneously locating a set of 137Cs and 60Co gamma sources in a room. This test problem is solved using experimental measurements that we collected for this purpose. Because of the weak sources available for use in the experiment, some of the expected photopeaks were not distinguishable from the Compton continuum. However, by supplanting 14 flawed measurements (out of a total of 69) with synthetic responses computed by MCNP, the proof-of-principle source mapping was successful. The locations of the sources were predicted within 25 cm for two of the sources and 90 cm for the third, in a room with an ~4-x 4-m floor plan. Finally, the predicted source intensities were within a factor of ten of their true value.« less
NASA Astrophysics Data System (ADS)
Iveson, Simon M.
2003-06-01
Pietruszczak and coworkers (Internat. J. Numer. Anal. Methods Geomech. 1994; 18(2):93-105; Comput. Geotech. 1991; 12( ):55-71) have presented a continuum-based model for predicting the dynamic mechanical response of partially saturated granular media with viscous interstitial liquids. In their model they assume that the gas phase is distributed uniformly throughout the medium as discrete spherical air bubbles occupying the voids between the particles. However, their derivation of the air pressure inside these gas bubbles is inconsistent with their stated assumptions. In addition the resultant dependence of gas pressure on liquid saturation lies outside of the plausible range of possible values for discrete air bubbles. This results in an over-prediction of the average bulk modulus of the void phase. Corrected equations are presented.
11Li Breakup on 208 at energies around the Coulomb barrier.
Fernández-García, J P; Cubero, M; Rodríguez-Gallardo, M; Acosta, L; Alcorta, M; Alvarez, M A G; Borge, M J G; Buchmann, L; Diget, C A; Falou, H A; Fulton, B R; Fynbo, H O U; Galaviz, D; Gómez-Camacho, J; Kanungo, R; Lay, J A; Madurga, M; Martel, I; Moro, A M; Mukha, I; Nilsson, T; Sánchez-Benítez, A M; Shotter, A; Tengblad, O; Walden, P
2013-04-05
The inclusive breakup for the (11)Li + (208)Pb reaction at energies around the Coulomb barrier has been measured for the first time. A sizable yield of (9)Li following the (11)Li dissociation has been observed, even at energies well below the Coulomb barrier. Using the first-order semiclassical perturbation theory of Coulomb excitation it is shown that the breakup probability data measured at small angles can be used to extract effective breakup energy as well as the slope of B(E1) distribution close to the threshold. Four-body continuum-discretized coupled-channels calculations, including both nuclear and Coulomb couplings between the target and projectile to all orders, reproduce the measured inclusive breakup cross sections and support the presence of a dipole resonance in the (11)Li continuum at low excitation energy.
ERIC Educational Resources Information Center
Harjunen, Elina
2012-01-01
In this theoretical paper the role of power in classroom interactions is examined in terms of a dominance continuum to advance a theoretical framework justifying the emergence of three ways of distributing power when it comes to dealing with the control over the teaching-studying-learning (TSL) "pattern of teacher domination," "pattern of…
Deposition on disordered substrates with precursor layer diffusion
NASA Astrophysics Data System (ADS)
Filipe, J. A. N.; Rodgers, G. J.; Tavassoli, Z.
1998-09-01
Recently we introduced a one-dimensional accelerated random sequential adsorption process as a model for chemisorption with precursor layer diffusion. In this paper we consider this deposition process on disordered or impure substrates. The problem is solved exactly on both the lattice and continuum and for various impurity distributions. The results are compared with those from the standard random sequential adsorption model.
NASA Astrophysics Data System (ADS)
Tang, Yuping; Wang, Daniel; Wilson, Grant; Gutermuth, Robert; Heyer, Mark
2018-01-01
We present the AzTEC/LMT survey of dust continuum at 1.1mm on the central ˜ 200pc (CMZ) of our Galaxy. A joint SED analysis of all existing dust continuum surveys on the CMZ is performed, from 160µm to 1.1mm. Our analysis follows a MCMC sampling strategy incorporating the knowledge of PSFs in different maps, which provides unprecedented spacial resolution on distributions of dust temperature, column density and emissivity index. The dense clumps in the CMZ typically show low dust temperature ( 20K), with no significant sign of buried star formation, and a weak evolution of higher emissivity index toward dense peak. A new model is proposed, allowing for varying dust temperature inside a cloud and self-shielding of dust emission, which leads to similar conclusions on dust temperature and grain properties. We further apply a hierarchical Bayesian analysis to infer the column density probability distribution function (N-PDF), while simultaneously removing the Galactic foreground and background emission. The N-PDF shows a steep power-law profile with α > 3, indicating that formation of dense structures are suppressed.
NASA Astrophysics Data System (ADS)
Wang, C.; Peifang, W.; Wang, X.; Hou, J.; Miao, L.
2017-12-01
Lotic river system plays an important part in water-vapor transfer and biogenic substances migration and transformation. Anthropogenic activities, including wastewater discharging and river damming, have altered river ecosystem and continuum. However, as the longest alpine river in China and suffered from increasing anthropogenic activities, the Yarlung Tsangpo River has been rarely studied. Recently, more attention has also been paid to the bacteria in river sediment as they make vital contributions to the biogeochemical nutrient cycling. Here, the distribution of biogenic substances, including nitrogen, phosphorus, silicon and carbon, was explored in both water and sediment of the Yarlung Tsangpo River. By using the next generation 16S rRNA sequencing, the bacterial diversity and structure in river sediment were presented. The results indicated that the nutrient concentrations increased in densely populated sites, revealing that biogenic substance distribution corresponded with the intensity of anthropogenic activity along the river. Nitrogen, phosphorus, silicon and carbon in water and sediment were all retained by the Zangmu Dam which is the only dam in the mainstream of the river. Moreover, the river damming decreased the biomass and diversity of bacteria in sediment, but no significant alteration of community structure was observed upstream and downstream of the dam. The most dominant bacteria all along the river was Proteobacteria. Meanwhile, Verrucomicrobia and Firmicutes also dominated the community composition in upstream and downstream of the river, respectively. In addition, total organic carbon (TOC) was proved to be the most important environmental factor shaping the bacterial community in river sediment. Our study offered the preliminary insights into the biogenic substance distribution and bacterial community in sediment along an alpine river which was affected by anthropogenic activities. In the future, more studies are needed to reveal the relationship between anthropogenic activity, biogenic substance cycling and bacterial community, especially along the alpine rivers.
Spiral Structure and Differential Dust Size Distribution in the LkH(alpha) 330 Disk
NASA Technical Reports Server (NTRS)
Akiyama, Eiji; Hashimoto, Jun; Liu, Hauyu Baobabu; Li, Jennifer I-hsiu; Bonnefoy, Michael; Dong, Ruobing; Hasegawa, Yasuhiro; Henning, Thomas; Sitko, Michael L.; Janson, Markus;
2016-01-01
Dust trapping accelerates the coagulation of dust particles, and, thus, it represents an initial step toward the formation of planetesimals. We report H-band (1.6 microns) linear polarimetric observations and 0.87 mm interferometric continuum observations toward a transitional disk around LkH(alpha) 330. As a result, a pair of spiral arms were detected in the H-band emission, and an asymmetric (potentially arm-like) structure was detected in the 0.87 mm continuum emission. We discuss the origin of the spiral arm and the asymmetric structure and suggest that a massive unseen planet is the most plausible explanation. The possibility of dust trapping and grain growth causing the asymmetric structure was also investigated through the opacity index (beta) by plotting the observed spectral energy distribution slope between 0.87 mm from our Submillimeter Array observation and1.3 mm from literature. The results imply that grains are indistinguishable from interstellar medium-like dust in the east side (beta = 2.0 +/- 0.5) but are much smaller in the west side beta = 0.7+0.5 -0.4, indicating differential dust size distribution between the two sides of the disk. Combining the results of near-infrared and submillimeter observations, we conjecture that the spiral arms exist at the upper surface and an asymmetric structure resides in the disk interior. Future observations at centimeter wavelengths and differential polarization imaging in other bands (Y-K) with extreme AO imagers are required to understand how large dust grains form and to further explore the dust distribution in the disk.
A Radio Continuum and Polarization Study of SNR G57.2+0.8 Associated with Magnetar SGR 1935+2154
NASA Astrophysics Data System (ADS)
Kothes, R.; Sun, X.; Gaensler, B.; Reich, W.
2018-01-01
We present a radio continuum and linear polarization study of the Galactic supernova remnant (SNR) G57.2+0.8, which may host the recently discovered magnetar SGR 1935+2154. The radio SNR shows the typical radio continuum spectrum of a mature supernova remnant with a spectral index of α =-0.55+/- 0.02 and moderate polarized intensity. Magnetic field vectors indicate a tangential magnetic field, expected for an evolved SNR, in one part of the SNR, and a radial magnetic field in the other. The latter can be explained by an overlapping arc-like feature, perhaps a pulsar wind nebula, emanating from the magnetar. The presence of a pulsar wind nebula is supported by the low average braking index of 1.2, which we extrapolated for the magnetar, and the detection of diffuse X-ray emission around it. We found a distance of 12.5 kpc for the SNR, which identifies G57.2+0.8 as a resident of the Outer spiral arm of the Milky Way. The SNR has a radius of about 20 pc and could be as old as 41,000 yr. The SNR has already entered the radiative or pressure-driven snowplow phase of its evolution. We compare independently determined characteristics like age and distance for both the SNR and the soft gamma repeater SGR 1935+2154, and conclude that they are physically related.
On the theory of intensity distributions of tornadoes and other low pressure systems
NASA Astrophysics Data System (ADS)
Schielicke, Lisa; Névir, Peter
Approaching from a theoretical point of view, this work presents a theory which unifies intensity distributions of different low pressure systems, based on an energy of displacement. Resulting from a generalized Boltzmann distribution, the expression of this energy of displacement is obtained by radial integration over the forces which are in balance with the pressure gradient force in the horizontal equation of motion. A scale analysis helps to find out which balance of forces prevail. According to the prevailing balances, the expression of the energy of displacement differs for various depressions. Investigating the system at the moment of maximum intensity, the energy of displacement can be interpreted as the work that has to be done to generate and finally eliminate the pressure anomaly, respectively. By choosing the appropriate balance of forces, number-intensity (energy of displacement) distributions show exponential behavior with the same decay rate β for tornadoes and cyclones, if tropical and extra-tropical cyclones are investigated together. The decay rate is related to a characteristic (universal) scale of the energy of displacement which has approximately the value Eu = β- 1 ≈ 1000 m 2s - 2 . In consequence, while the different balances of forces cause the scales of velocity, the energy of displacement scale seems to be universal for all low pressure systems. Additionally, if intensity is expressed as lifetime minimum pressure, the number-intensity (pressure) distributions should be power law distributed. Moreover, this work points out that the choice of the physical quantity which represents the intensity is important concerning the behavior of intensity distributions. Various expressions of the intensity like velocity, kinetic energy, energy of displacement and pressure are possible, but lead to different behavior of the distributions.
Dignam, Jade; Copland, David; McKinnon, Eril; Burfein, Penni; O'Brien, Kate; Farrell, Anna; Rodriguez, Amy D
2015-08-01
Most studies comparing different levels of aphasia treatment intensity have not controlled the dosage of therapy provided. Consequently, the true effect of treatment intensity in aphasia rehabilitation remains unknown. Aphasia Language Impairment and Functioning Therapy is an intensive, comprehensive aphasia program. We investigated the efficacy of a dosage-controlled trial of Aphasia Language Impairment and Functioning Therapy, when delivered in an intensive versus distributed therapy schedule, on communication outcomes in participants with chronic aphasia. Thirty-four adults with chronic, poststroke aphasia were recruited to participate in an intensive (n=16; 16 hours per week; 3 weeks) versus distributed (n=18; 6 hours per week; 8 weeks) therapy program. Treatment included 48 hours of impairment, functional, computer, and group-based aphasia therapy. Distributed therapy resulted in significantly greater improvements on the Boston Naming Test when compared with intensive therapy immediately post therapy (P=0.04) and at 1-month follow-up (P=0.002). We found comparable gains on measures of participants' communicative effectiveness, communication confidence, and communication-related quality of life for the intensive and distributed treatment conditions at post-therapy and 1-month follow-up. Aphasia Language Impairment and Functioning Therapy resulted in superior clinical outcomes on measures of language impairment when delivered in a distributed versus intensive schedule. The therapy progam had a positive effect on participants' functional communication and communication-related quality of life, regardless of treatment intensity. These findings contribute to our understanding of the effect of treatment intensity in aphasia rehabilitation and have important clinical implications for service delivery models. © 2015 American Heart Association, Inc.
Model Reduction in Biomechanics
NASA Astrophysics Data System (ADS)
Feng, Yan
The mechanical characteristic of the cell is primarily performed by the cytoskeleton. Microtubules, actin, and intermediate filaments are the three main cytoskeletal polymers. Of these, microtubules are the stiffest and have multiple functions within a cell that include: providing tracks for intracellular transport, transmitting the mechanical force necessary for cell division during mitosis, and providing sufficient stiffness for propulsion in flagella and cilia. Microtubule mechanics has been studied by a variety of methods: detailed molecular dynamics (MD), coarse-grained models, engineering type models, and elastic continuum models. In principle, atomistic MD simulations should be able to predict all desired mechanical properties of a single molecule, however, in practice the large computational resources are required to carry out a simulation of larger biomolecular system. Due to the limited accessibility using even the most ambitious all-atom models and the demand for the multiscale molecular modeling and simulation, the emergence of the reduced models is critically important to provide the capability for investigating the biomolecular dynamics that are critical to many biological processes. Then the coarse-grained models, such as elastic network models and anisotropic network models, have been shown to bequite accurate in predicting microtubule mechanical response, but still requires significant computational resources. On the other hand, the microtubule is treated as comprising materials with certain continuum material properties. Such continuum models, especially Euler-Bernoulli beam models, are often used to extract mechanical parameters from experimental results. The microtubule is treated as comprising materials with certain continuum material properties. Such continuum models, especially Euler-Bernoulli beam models in which the biomolecular system is assumed as homogeneous isotropic materials with solid cross-sections, are often used to extract mechanical parameters from experimental results. However, in real biological world, these homogeneous and isotropic assumptions are usually invalidate. Thus, instead of using hypothesized model, a specific continuum model at mesoscopic scale can be introduced based upon data reduction of the results from molecular simulations at atomistic level. Once a continuum model is established, it can provide details on the distribution of stresses and strains induced within the biomolecular system which is useful in determining the distribution and transmission of these forces to the cytoskeletal and sub-cellular components, and help us gain a better understanding in cell mechanics. A data-driven model reduction approach to the problem of microtubule mechanics as an application is present, a beam element is constructed for microtubules based upon data reduction of the results from molecular simulation of the carbon backbone chain of alphabeta-tubulin dimers. The data base of mechanical responses to various types of loads from molecular simulation is reduced to dominant modes. The dominant modes are subsequently used to construct the stiffness matrix of a beam element that captures the anisotropic behavior and deformation mode coupling that arises from a microtubule's spiral structure. In contrast to standard Euler-Bernoulli or Timoshenko beam elements, the link between forces and node displacements results not from hypothesized deformation behavior, but directly from the data obtained by molecular scale simulation. Differences between the resulting microtubule data-driven beam model (MTDDBM) and standard beam elements are presented, with a focus on coupling of bending, stretch, shear deformations. The MTDDBM is just as economical to use as a standard beam element, and allows accurate reconstruction of the mechanical behavior of structures within a cell as exemplified in a simple model of a component element of the mitotic spindle.
Characterization of double continuum formulations of transport through pore-scale information
NASA Astrophysics Data System (ADS)
Porta, G.; Ceriotti, G.; Bijeljic, B.
2016-12-01
Information on pore-scale characteristics is becoming increasingly available at unprecedented levels of detail from modern visualization/data-acquisition techniques. These advancements are not completely matched by corresponding developments of operational procedures according to which we can engineer theoretical findings aiming at improving our ability to reduce the uncertainty associated with the outputs of continuum-scale models to be employed at large scales. We present here a modeling approach which rests on pore-scale information to achieve a complete characterization of a double continuum model of transport and fluid-fluid reactive processes. Our model makes full use of pore-scale velocity distributions to identify mobile and immobile regions. We do so on the basis of a pointwise (in the pore space) evaluation of the relative strength of advection and diffusion time scales, as rendered by spatially variable values of local Péclet numbers. After mobile and immobile regions are demarcated, we build a simplified unit cell which is employed as a representative proxy of the real porous domain. This model geometry is then employed to simplify the computation of the effective parameters embedded in the double continuum transport model, while retaining relevant information from the pore-scale characterization of the geometry and velocity field. We document results which illustrate the applicability of the methodology to predict transport of a passive tracer within two- and three-dimensional media upon comparison with direct pore-scale numerical simulation of transport in the same geometrical settings. We also show preliminary results about the extension of this model to fluid-fluid reactive transport processes. In this context, we focus on results obtained in two-dimensional porous systems. We discuss the impact of critical quantities required as input to our modeling approach to obtain continuum-scale outputs. We identify the key limitations of the proposed methodology and discuss its capability also in comparison with alternative approaches grounded, e.g., on nonlocal and particle-based approximations.
NASA Astrophysics Data System (ADS)
Takahashi, Takuya; Sugiura, Junnnosuke; Nagayama, Kuniaki
2002-05-01
To investigate the role hydration plays in the electrostatic interactions of proteins, the time-averaged electrostatic potential of the B1 domain of protein G in an aqueous solution was calculated with full atomic molecular dynamics simulations that explicitly considers every atom (i.e., an all atom model). This all atom calculated potential was compared with the potential obtained from an electrostatic continuum model calculation. In both cases, the charge-screening effect was fairly well formulated with an effective relative dielectric constant which increased linearly with increasing charge-charge distance. This simulated linear dependence agrees with the experimentally determined linear relation proposed by Pickersgill. Cut-off approximations for Coulomb interactions failed to reproduce this linear relation. Correlation between the all atom model and the continuum models was found to be better than the respective correlation calculated for linear fitting to the two models. This confirms that the continuum model is better at treating the complicated shapes of protein conformations than the simple linear fitting empirical model. We have tried a sigmoid fitting empirical model in addition to the linear one. When weights of all data were treated equally, the sigmoid model, which requires two fitting parameters, fits results of both the all atom and the continuum models less accurately than the linear model which requires only one fitting parameter. When potential values are chosen as weighting factors, the fitting error of the sigmoid model became smaller, and the slope of both linear fitting curves became smaller. This suggests the screening effect of an aqueous medium within a short range, where potential values are relatively large, is smaller than that expected from the linear fitting curve whose slope is almost 4. To investigate the linear increase of the effective relative dielectric constant, the Poisson equation of a low-dielectric sphere in a high-dielectric medium was solved and charges distributed near the molecular surface were indicated as leading to the apparent linearity.
Cosmic-ray electrons and galactic radio emission - A conflict
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Daniel, R. R.; Stephens, S. A.
1977-01-01
An analysis which takes into account the observed energy spectrum of cosmic-ray electrons above 5 GeV and calculated mean magnetic field data shows that the observed spectral index of the radio continuum in the Galaxy is in conflict with some of the cosmic-ray electron measurements. It is found that the absolute intensities of cosmic-ray electrons measured by some of the experimenters are so low that they cannot be reconciled either with the interstellar magnetic field limits or with the extent of the galactic disk toward the anticenter.
Effects of Chemistry and Processing on the Fracture Related Properties of P/M Alloy CT91.
1985-08-01
Paris- Erdogan equation [151]. da/dN = AAk’ (8) where A and m are material constants. Stage II is generally characterized by a continuum mechanism...1. Paris and Erdogan [151] da/dN = CAKm (15) where da/dN = crack growth per cycle C, m = material constants AK = stress intensity parameter range The...extensometer was placed on two strips of masking tape to avoid notching the specimen and was carefully attached by two springs. A plastic bag was placed
Kalita, Dhruba J; Rao, Akshay; Rajvanshi, Ishir; Gupta, Ashish K
2011-06-14
We have applied parametric equations of motion (PEM) to study photodissociation dynamics of H(2)(+). The resonances are extracted using smooth exterior scaling method. This is the first application of PEM to non-Hermitian Hamiltonian that includes resonances and the continuum. Here, we have studied how the different resonance states behave with respect to the change in field amplitude. The advantage of this method is that one can easily trace the different states that are changing as the field parameter changes.
The application of infrared speckle interferometry to the imaging of remote galaxies and AGN
NASA Technical Reports Server (NTRS)
Olivares, Robert O.
1995-01-01
A 1.5 meter reflector, used for both infrared and optical astronomy, is also being used for infrared speckle interferometry and CCD imaging. The application of these imaging techniques to remote galaxies and active galactic nuclei are discussed. A simple model for the origin of speckle in coherent imaging systems is presented. Very careful photometry of the continuum of the galaxy M31 is underway using CCD images. It involves extremely intensive data reduction because the object itself is very large and has low surface brightness.
CO and Dust Properties in the TW Hya Disk from High-resolution ALMA Observations
NASA Astrophysics Data System (ADS)
Huang, Jane; Andrews, Sean M.; Cleeves, L. Ilsedore; Öberg, Karin I.; Wilner, David J.; Bai, Xuening; Birnstiel, Til; Carpenter, John; Hughes, A. Meredith; Isella, Andrea; Pérez, Laura M.; Ricci, Luca; Zhu, Zhaohuan
2018-01-01
We analyze high angular resolution ALMA observations of the TW Hya disk to place constraints on the CO and dust properties. We present new, sensitive observations of the 12CO J = 3 ‑ 2 line at a spatial resolution of 8 au (0.″14). The CO emission exhibits a bright inner core, a shoulder at r ≈ 70 au, and a prominent break in slope at r ≈ 90 au. Radiative transfer modeling is used to demonstrate that the emission morphology can be reasonably reproduced with a 12CO column density profile featuring a steep decrease at r ≈ 15 au and a secondary bump peaking at r ≈ 70 au. Similar features have been identified in observations of rarer CO isotopologues, which trace heights closer to the midplane. Substructure in the underlying gas distribution or radially varying CO depletion that affects much of the disk’s vertical extent may explain the shared emission features of the main CO isotopologues. We also combine archival 1.3 mm and 870 μm continuum observations to produce a spectral index map at a spatial resolution of 2 au. The spectral index rises sharply at the continuum emission gaps at radii of 25, 41, and 47 au. This behavior suggests that the grains within the gaps are no larger than a few millimeters. Outside the continuum gaps, the low spectral index values of α ≈ 2 indicate either that grains up to centimeter size are present or that the bright continuum rings are marginally optically thick at millimeter wavelengths.
RADIO OBSERVATIONS OF THE STAR FORMATION ACTIVITIES IN THE NGC 2024 FIR 4 REGION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Minho; Kang, Miju; Lee, Jeong-Eun, E-mail: minho@kasi.re.kr
Star formation activities in the NGC 2024 FIR 4 region were studied by imaging centimeter continuum sources and water maser sources using several archival data sets from the Very Large Array. The continuum source VLA 9 is elongated in the northwest–southeast direction, consistent with the FIR 4 bipolar outflow axis, and has a flat spectrum in the 6.2–3.6 cm interval. The three water maser spots associated with FIR 4 are also distributed along the outflow axis. One of the spots is located close to VLA 9, and another one is close to an X-ray source. Examinations of the positions ofmore » compact objects in this region suggest that the FIR 4 cloud core contains a single low-mass protostar. VLA 9 is the best indicator of the protostellar position. VLA 9 may be a radio thermal jet driven by this protostar, and it is unlikely that FIR 4 contains a high-mass young stellar object (YSO). A methanol 6.7 GHz maser source is located close to VLA 9, at a distance of about 100 AU. The FIR 4 protostar must be responsible for the methanol maser action, which suggests that methanol class II masers are not necessarily excited by high-mass YSOs. Also discussed are properties of other centimeter continuum sources in the field of view and the water masers associated with FIR 6n. Some of the continuum sources are radio thermal jets, and some are magnetically active young stars.« less
77 FR 45367 - Continuum of Care Homeless Assistance Grant Application; Continuum of Care Application
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-31
... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5603-N-53] Continuum of Care Homeless Assistance Grant Application; Continuum of Care Application AGENCY: Office of the Chief Information Officer..., called Continuums of Care (CoC), will complete the Exhibit 1 of the Continuum of Care Homeless Assistance...
Influence of pitting defects on quality of high power laser light field
NASA Astrophysics Data System (ADS)
Ren, Huan; Zhang, Lin; Yang, Yi; Shi, Zhendong; Ma, Hua; Jiang, Hongzhen; Chen, Bo; Yang, XiaoYu; Zheng, Wanguo; Zhu, Rihong
2018-01-01
With the split-step-Fourier-transform method for solving the nonlinear paraxial wave equation, the intensity distribution of the light field when the pits diameter or depth change is obtained by using numerical simulation, include the intensity distribution inside optical element, the beam near-field, the different distances behind the element and the beam far-field. Results show that with the increase of pits diameter or depth, the light field peak intensity and the contrast inside of element corresponding enhancement. The contrast of the intensity distribution of the rear surface of the element will increase slightly. The peak intensity produced by a specific location element downstream of thermal effect will continue to increase, the damage probability in optics placed here is greatly increased. For the intensity distribution of the far-field, increase the pitting diameter or depth will cause the focal spot intensity distribution changes, and the energy of the spectrum center region increase constantly. This work provide a basis for quantitative design and inspection for pitting defects, which provides a reference for the design of optical path arrangement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mentuch, Erin; Abraham, Roberto G.; Zibetti, Stefano
2010-12-20
We have measured the near-infrared colors and the fluxes of individual pixels in 68 galaxies common to the Spitzer Infrared Nearby Galaxies Survey and the Large Galaxy Atlas Survey. Pixels from each galaxy are grouped into regions of increasingly red near-infrared colors. As expected, the majority of pixels are shown to have relatively constant NIR flux ratios (log{sub 10} I{sub 3.6}/I{sub 1.25} = -0.30 {+-} 0.07 and log{sub 10} I{sub 4.5}/I{sub 3.6} = -0.19 {+-} 0.02), representing the blackbody continuum emission of main sequence stars. However, pixels with red NIR colors correspond to pixels with higher H{sub {alpha}} emission andmore » dust extinction. We show that the NIR colors are correlated to both quantities, with the strongest correlation to the intrinsic H{sub {alpha}} emission. In addition, in regions of high star formation, the average intensity of pixels in red-excess regions (at 1.25 {mu}m, 3.6 {mu}m, 4.5 {mu}m, 5.6 {mu}m, 8.0 {mu}m and 24 {mu}m) scales linearly with the intrinsic intensity of H{alpha} emission, and thus with the star formation rate (SFR) within the pixel. This suggests that most NIR-excess regions are not red because their light is being depleted by absorption. Instead, they are red because additional infrared light is being contributed by a process linked to star formation. This is surprising because the shorter wavelength bands in our study (1.25 {mu}m-5.6 {mu}m) do not probe emission from cold (10-20 K) and warm (50-100 K) dust associated with star formation in molecular clouds. However, emission from hot dust (700-1000 K) and/or polycyclic aromatic hydrocarbon (PAH) molecules can explain the additional emission seen at the shorter wavelengths in our study. The contribution from hot dust and/or PAH emission at 2 {mu}m-5 {mu}m and PAH emission at 5.6 {mu}m and 8.0 {mu}m scales linearly with warm dust emission at 24 {mu}m and the intrinsic H{alpha} emission. Since both are tied to the SFR, our analysis shows that the NIR excess continuum emission and PAH emission at {approx}1-8 {mu}m can be added to spectral energy distribution models in a very straightforward way, by simply adding an additional component to the models that scales linearly with SFR.« less
Covariant extension of the GPD overlap representation at low Fock states
Chouika, N.; Mezrag, C.; Moutarde, H.; ...
2017-12-26
Here, we present a novel approach to compute generalized parton distributions within the lightfront wave function overlap framework. We show how to systematically extend generalized parton distributions computed within the DGLAP region to the ERBL one, fulfilling at the same time both the polynomiality and positivity conditions. We exemplify our method using pion lightfront wave functions inspired by recent results of non-perturbative continuum techniques and algebraic nucleon lightfront wave functions. We also test the robustness of our algorithm on reggeized phenomenological parameterizations. This approach paves the way to a better understanding of the nucleon structure from non-perturbative techniques and tomore » a unification of generalized parton distributions and transverse momentum dependent parton distribution functions phenomenology through lightfront wave functions.« less
Segmentation and intensity estimation of microarray images using a gamma-t mixture model.
Baek, Jangsun; Son, Young Sook; McLachlan, Geoffrey J
2007-02-15
We present a new approach to the analysis of images for complementary DNA microarray experiments. The image segmentation and intensity estimation are performed simultaneously by adopting a two-component mixture model. One component of this mixture corresponds to the distribution of the background intensity, while the other corresponds to the distribution of the foreground intensity. The intensity measurement is a bivariate vector consisting of red and green intensities. The background intensity component is modeled by the bivariate gamma distribution, whose marginal densities for the red and green intensities are independent three-parameter gamma distributions with different parameters. The foreground intensity component is taken to be the bivariate t distribution, with the constraint that the mean of the foreground is greater than that of the background for each of the two colors. The degrees of freedom of this t distribution are inferred from the data but they could be specified in advance to reduce the computation time. Also, the covariance matrix is not restricted to being diagonal and so it allows for nonzero correlation between R and G foreground intensities. This gamma-t mixture model is fitted by maximum likelihood via the EM algorithm. A final step is executed whereby nonparametric (kernel) smoothing is undertaken of the posterior probabilities of component membership. The main advantages of this approach are: (1) it enjoys the well-known strengths of a mixture model, namely flexibility and adaptability to the data; (2) it considers the segmentation and intensity simultaneously and not separately as in commonly used existing software, and it also works with the red and green intensities in a bivariate framework as opposed to their separate estimation via univariate methods; (3) the use of the three-parameter gamma distribution for the background red and green intensities provides a much better fit than the normal (log normal) or t distributions; (4) the use of the bivariate t distribution for the foreground intensity provides a model that is less sensitive to extreme observations; (5) as a consequence of the aforementioned properties, it allows segmentation to be undertaken for a wide range of spot shapes, including doughnut, sickle shape and artifacts. We apply our method for gridding, segmentation and estimation to cDNA microarray real images and artificial data. Our method provides better segmentation results in spot shapes as well as intensity estimation than Spot and spotSegmentation R language softwares. It detected blank spots as well as bright artifact for the real data, and estimated spot intensities with high-accuracy for the synthetic data. The algorithms were implemented in Matlab. The Matlab codes implementing both the gridding and segmentation/estimation are available upon request. Supplementary material is available at Bioinformatics online.
Sivec, Harry J; Montesano, Vicki L; Skubby, David; Knepp, Kristen A; Munetz, Mark R
2017-02-01
This exploratory case comparison examines the influence of case management activities on engagement and progress in psychotherapy for clients with schizophrenia. Six clients were recruited to participate in ten sessions of Cognitive Behavioral Therapy for psychosis (CBT-p). Three clients who had received Cognitive Behavioral techniques for psychosis (CBt-p, a low-intensity case management intervention) prior to receiving therapy were selected from referrals. A comparison group of three clients who had received standard case management services was selected from referrals. Cases within and across groups were compared on outcome measures and observations from case review were offered to inform future research. Delivering CBT-p services on a continuum from low- to high-intensity is discussed.
Detection of Vortex Tubes in Solar Granulation from Observations SUNRISE
NASA Astrophysics Data System (ADS)
Steiner, O.; Franz, M.; González, N. B.; Nutto, C.; Rezaei, R.; Pillet, V. M.; Bonet, J. A.; Iniesta, J. C. d. T.; Domingo, V.; Solanki, S. K.; Knölker, M.; Schmidt, W.; Barthol, P.; Gandorfer, A.
2012-05-01
We investigated a time series of continuum intensity maps and Dopplergrams of granulation in a very quiet solar region at the disk center, recorded with the Imaging Magnetograph eXperiment (IMaX) on board the balloon-borne solar observatory SUNRISE. We find that granules frequently show substructure in the form of lanes composed of a leading bright rim and a trailing dark edge, which move together from the boundary of a granule into the granule itself. We find strikingly similar events in synthesized intensity maps from an ab initio numerical simulation of solar surface convection. We conclude that these granular lanes are the visible signature of (horizontally oriented) vortex tubes. The characteristic optical appearance of vortex tubes at the solar surface is explained. This paper is a summary and update of the results previously presented in Steiner et al. (2010).
2018-01-01
Toxic planktonic cyanobacterial blooms are a pressing environmental and human health problem. Blooms are expanding globally and threatening sustainability of our aquatic resources. Anthropogenic nutrient enrichment and hydrological modifications, including water diversions and reservoir construction, are major drivers of bloom expansion. Climatic change, i.e., warming, more extreme rainfall events, and droughts, act synergistically with human drivers to exacerbate the problem. Bloom mitigation steps, which are the focus of this review, must consider these dynamic interactive factors in order to be successful in the short- and long-term. Furthermore, these steps must be applicable along the freshwater to marine continuum connecting streams, lakes, rivers, estuarine, and coastal waters. There is an array of physical, chemical, and biological approaches, including flushing, mixing, dredging, application of algaecides, precipitating phosphorus, and selective grazing, that may arrest and reduce bloom intensities in the short-term. However, to ensure long term, sustainable success, targeting reductions of both nitrogen and phosphorus inputs should accompany these approaches along the continuum. Lastly, these strategies should accommodate climatic variability and change, which will likely modulate and alter nutrient-bloom thresholds. PMID:29419777
Donovan, Dennis M; Knox, Patricia C; Skytta, Jenny A F; Blayney, Jessica A; DiCenzo, Jessica
2013-04-01
Absence of successful transition to post-detoxification treatment leads to high rates of relapse among detoxified heroin users. The present study evaluated a pilot buprenorphine treatment program (BTP). Heroin dependent individuals were inducted onto buprenorphine/naloxone in detox, maintained while transitioning through an intensive inpatient program (IIP), and gradually tapered off medication over 5 months of outpatient (OP) treatment. Compared to programmatic indicators of treatment engagement in the year prior to BTP implementation, referrals from detox to IIP, entry into and completion of IIP and subsequent OP, and days in OP treatment increased substantially. BTP completers, compared to non-completers, viewed abstinence as more difficult and as requiring more assistance to achieve, were less likely to be current cocaine and alcohol users or to have relapsed during the course of treatment. Although preliminary and in need of replication, initial adjunctive use of buprenorphine in an abstinence-based continuum of care may improve post-detoxification treatment entry, engagement, and completion. Copyright © 2013 Elsevier Inc. All rights reserved.
Continuum and Line Emission Simulation of Star-Forming Galaxies and Development of a New Sub-mm Inte
NASA Astrophysics Data System (ADS)
Lagache, Guilaine
2018-01-01
Nowadays, most of the constraints on the dusty star formation at high z comes from deep continuum surveys. We developed a new simulation of the dusty extragalactic sky with a realistic clustering. The comparison between single-dish and interferometric data showed that the clustering inside the beam of a single-dish instrument can seriously bias their measurements. Fortunately, these simulations also show that the beam of a >30-meter dish in the mm should not be affected by serious multiplicity effects. We will give predictions for important characteristics of future AtLAST surveys (as confusion limit, number of detections, properties of detected galaxies). These simulations can also include line emission to prepare a future sub-mm low-resolution spectroscopic survey at high z with AtLAST. Such a survey could be built on the legacy of the CONCERTO survey, that will map the fluctuations of the CII line intensity in the reionisation and post-reionisation epoch. A "super-CONCERTO" instrument on AtLAST would be a perfect first-light instrument to unveil the gigantic potential of this telescope.
Nonlinear Fano interferences in open quantum systems: An exactly solvable model
NASA Astrophysics Data System (ADS)
Finkelstein-Shapiro, Daniel; Calatayud, Monica; Atabek, Osman; Mujica, Vladimiro; Keller, Arne
2016-06-01
We obtain an explicit solution for the stationary-state populations of a dissipative Fano model, where a discrete excited state is coupled to a continuum set of states; both excited sets of states are reachable by photoexcitation from the ground state. The dissipative dynamic is described by a Liouville equation in Lindblad form and the field intensity can take arbitrary values within the model. We show that the population of the continuum states as a function of laser frequency can always be expressed as a Fano profile plus a Lorentzian function with effective parameters whose explicit expressions are given in the case of a closed system coupled to a bath as well as for the original Fano scattering framework. Although the solution is intricate, it can be elegantly expressed as a linear transformation of the kernel of a 4 ×4 matrix which has the meaning of an effective Liouvillian. We unveil key notable processes related to the optical nonlinearity and which had not been reported to date: electromagnetic-induced transparency, population inversions, power narrowing and broadening, as well as an effective reduction of the Fano asymmetry parameter.
Fly's eye condenser based on chirped microlens arrays
NASA Astrophysics Data System (ADS)
Wippermann, Frank C.; Zeitner, Uwe-D.; Dannberg, Peter; Bräuer, Andreas; Sinzinger, Stefan
2007-09-01
Lens array arrangements are commonly used for the beam shaping of almost arbitrary input intensity distributions into a top-hat. The setup usually consists of a Fourier lens and two identical regular microlens arrays - often referred to as tandem lens array - where the second one is placed in the focal plane of the first microlenses. Due to the periodic structure of regular arrays the output intensity distribution is modulated by equidistant sharp intensity peaks which are disturbing the homogeneity. The equidistantly located intensity peaks can be suppressed when using a chirped and therefore non-periodic microlens array. A far field speckle pattern with more densely and irregularly located intensity peaks results leading to an improved homogeneity of the intensity distribution. In contrast to stochastic arrays, chirped arrays consist of individually shaped lenses defined by a parametric description of the cells optical function which can be derived completely from analytical functions. This gives the opportunity to build up tandem array setups enabling to achieve far field intensity distribution with an envelope of a top-hat. We propose a new concept for fly's eye condensers incorporating a chirped tandem microlens array for the generation of a top-hat far field intensity distribution with improved homogenization under coherent illumination. The setup is compliant to reflow of photoresist as fabrication technique since plane substrates accommodating the arrays are used. Considerations for the design of the chirped microlens arrays, design rules, wave optical simulations and measurements of the far field intensity distributions are presented.
Ring structure of a neutral gas cloud studied in a one-dimensional expansion into space
NASA Technical Reports Server (NTRS)
Davidson, R. E.
1972-01-01
A one dimensional treatment of the expansion of a gas cloud of uncharged particles into vacuum is discussed. It is determined that the whole cloud does not change from continuum to free molecular flow at the same time. Some regions of the cloud make the transition sooner than others. An explanation of the ring structure observed during barium cloud experiments is presented using this conclusion. An analysis of the velocity distributions for the two kinds of flow yields a velocity distribution for the whole cloud that exhibits ring structure.
Multi-scale kinetic description of granular clusters: invariance, balance, and temperature
NASA Astrophysics Data System (ADS)
Capriz, Gianfranco; Mariano, Paolo Maria
2017-12-01
We discuss a multi-scale continuum representation of bodies made of several mass particles flowing independently each other. From an invariance procedure and a nonstandard balance of inertial actions, we derive the balance equations introduced in earlier work directly in pointwise form, essentially on the basis of physical plausibility. In this way, we analyze their foundations. Then, we propose a Boltzmann-type equation for the distribution of kinetic energies within control volumes in space and indicate how such a distribution allows us to propose a definition of (granular) temperature along processes far from equilibrium.
Continuum Model for River Networks
NASA Astrophysics Data System (ADS)
Giacometti, Achille; Maritan, Amos; Banavar, Jayanth R.
1995-07-01
The effects of erosion, avalanching, and random precipitation are captured in a simple stochastic partial differential equation for modeling the evolution of river networks. Our model leads to a self-organized structured landscape and to abstraction and piracy of the smaller tributaries as the evolution proceeds. An algebraic distribution of the average basin areas and a power law relationship between the drainage basin area and the river length are found.
Combating Stability Concerns and Promoting Development Through Literacy and Education
2016-06-10
Leavenworth, Kansas 2016 Approved for public release; distribution is unlimited. United States Fair Use determination or copyright permission...has been obtained for the use of pictures, maps, graphics, and any other works incorporated into the manuscript. This author may be protected by more...compute using printed and written materials associated with varying contexts. Literacy involves a continuum of learning in enabling individuals to
Rapid variation in the circumstellar 10 micron emission of Alpha Orionis
NASA Technical Reports Server (NTRS)
Bloemhof, E. E.; Danchi, W. C.; Townes, C. H.
1985-01-01
The spatial distribution of 10 micron continuum flux around the supergiant star Alpha Orionis was measured on two occasions separated by an interval of 1 yr. A significant change in the infrared radiation pattern on the subarcsecond scale was observed. This change cannot be explained plausibly by macroscopic motion but may be due to a change in the physical properties of the circumstellar dust.
NASA Astrophysics Data System (ADS)
Koshinchanov, Georgy; Dimitrov, Dobri
2008-11-01
The characteristics of rainfall intensity are important for many purposes, including design of sewage and drainage systems, tuning flood warning procedures, etc. Those estimates are usually statistical estimates of the intensity of precipitation realized for certain period of time (e.g. 5, 10 min., etc) with different return period (e.g. 20, 100 years, etc). The traditional approach in evaluating the mentioned precipitation intensities is to process the pluviometer's records and fit probability distribution to samples of intensities valid for certain locations ore regions. Those estimates further become part of the state regulations to be used for various economic activities. Two problems occur using the mentioned approach: 1. Due to various factors the climate conditions are changed and the precipitation intensity estimates need regular update; 2. As far as the extremes of the probability distribution are of particular importance for the practice, the methodology of the distribution fitting needs specific attention to those parts of the distribution. The aim of this paper is to make review of the existing methodologies for processing the intensive rainfalls and to refresh some of the statistical estimates for the studied areas. The methodologies used in Bulgaria for analyzing the intensive rainfalls and produce relevant statistical estimates: The method of the maximum intensity, used in the National Institute of Meteorology and Hydrology to process and decode the pluviometer's records, followed by distribution fitting for each precipitation duration period; As the above, but with separate modeling of probability distribution for the middle and high probability quantiles. Method is similar to the first one, but with a threshold of 0,36 mm/min of intensity; Another method proposed by the Russian hydrologist G. A. Aleksiev for regionalization of estimates over some territory, improved and adapted by S. Gerasimov for Bulgaria; Next method is considering only the intensive rainfalls (if any) during the day with the maximal annual daily precipitation total for a given year; Conclusions are drown on the relevance and adequacy of the applied methods.
NASA Technical Reports Server (NTRS)
Chartas, G.; Flanagan, K.; Hughes, J. P.; Kellogg, E. M.; Nguyen, D.; Zombek, M.; Joy, M.; Kolodziejezak, J.
1993-01-01
The VETA-I mirror was calibrated with the use of a collimated soft X-ray source produced by electron bombardment of various anode materials. The FWHM, effective area and encircled energy were measured with the use of proportional counters that were scanned with a set of circular apertures. The pulsers from the proportional counters were sent through a multichannel analyzer that produced a pulse height spectrum. In order to characterize the properties of the mirror at different discrete photon energies one desires to extract from the pulse height distribution only those photons that originated from the characteristic line emission of the X-ray target source. We have developed a code that fits a modeled spectrum to the observed X-ray data, extracts the counts that originated from the line emission, and estimates the error in these counts. The function that is fitted to the X-ray spectra includes a Prescott function for the resolution of the detector a second Prescott function for a pileup peak and a X-ray continuum function. The continuum component is determined by calculating the absorption of the target Bremsstrahlung through various filters, correcting for the reflectivity of the mirror and convolving with the detector response.
NASA Technical Reports Server (NTRS)
Chartas, G.; Flanagan, Kathy; Hughes, John P.; Kellogg, Edwin M.; Nguyen, D.; Zombeck, M.; Joy, M.; Kolodziejezak, J.
1992-01-01
The VETA-I mirror was calibrated with the use of a collimated soft X-ray source produced by electron bombardment of various anode materials. The FWHM, effective area and encircled energy were measured with the use of proportional counters that were scanned with a set of circular apertures. The pulsers from the proportional counters were sent through a multichannel analyzer that produced a pulse height spectrum. In order to characterize the properties of the mirror at different discrete photon energies one desires to extract from the pulse height distribution only those photons that originated from the characteristic line emission of the X-ray target source. We have developed a code that fits a modeled spectrum to the observed X-ray data, extracts the counts that originated from the line emission, and estimates the error in these counts. The function that is fitted to the X-ray spectra includes a Prescott function for the resolution of the detector a second Prescott function for a pileup peak and a X-ray continuum function. The continuum component is determined by calculating the absorption of the target Bremsstrahlung through various filters correcting for the reflectivity of the mirror and convolving with the detector response.
Morphing Continuum Theory: A First Order Approximation to the Balance Laws
NASA Astrophysics Data System (ADS)
Wonnell, Louis; Cheikh, Mohamad Ibrahim; Chen, James
2017-11-01
Morphing Continuum Theory is constructed under the framework of Rational Continuum Mechanics (RCM) for fluid flows with inner structure. This multiscale theory has been successfully emplyed to model turbulent flows. The framework of RCM ensures the mathematical rigor of MCT, but contains new material constants related to the inner structure. The physical meanings of these material constants have yet to be determined. Here, a linear deviation from the zeroth-order Boltzmann-Curtiss distribution function is derived. When applied to the Boltzmann-Curtiss equation, a first-order approximation of the MCT governing equations is obtained. The integral equations are then related to the appropriate material constants found in the heat flux, Cauchy stress, and moment stress terms in the governing equations. These new material properties associated with the inner structure of the fluid are compared with the corresponding integrals, and a clearer physical interpretation of these coefficients emerges. The physical meanings of these material properties is determined by analyzing previous results obtained from numerical simulations of MCT for compressible and incompressible flows. The implications for the physics underlying the MCT governing equations will also be discussed. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-17-1-0154.
NASA Astrophysics Data System (ADS)
Hérisson, Benjamin; Challamel, Noël; Picandet, Vincent; Perrot, Arnaud
2016-09-01
The static behavior of the Fermi-Pasta-Ulam (FPU) axial chain under distributed loading is examined. The FPU system examined in the paper is a nonlinear elastic lattice with linear and quadratic spring interaction. A dimensionless parameter controls the possible loss of convexity of the associated quadratic and cubic energy. Exact analytical solutions based on Hurwitz zeta functions are developed in presence of linear static loading. It is shown that this nonlinear lattice possesses scale effects and possible localization properties in the absence of energy convexity. A continuous approach is then developed to capture the main phenomena observed regarding the discrete axial problem. The associated continuum is built from a continualization procedure that is mainly based on the asymptotic expansion of the difference operators involved in the lattice problem. This associated continuum is an enriched gradient-based or nonlocal axial medium. A Taylor-based and a rational differential method are both considered in the continualization procedures to approximate the FPU lattice response. The Padé approximant used in the continualization procedure fits the response of the discrete system efficiently, even in the vicinity of the limit load when the non-convex FPU energy is examined. It is concluded that the FPU lattice system behaves as a nonlocal axial system in dynamic but also static loading.
Simulations of large acoustic scintillations in the straits of Florida.
Tang, Xin; Tappert, F D; Creamer, Dennis B
2006-12-01
Using a full-wave acoustic model, Monte Carlo numerical studies of intensity fluctuations in a realistic shallow water environment that simulates the Straits of Florida, including internal wave fluctuations and bottom roughness, have been performed. Results show that the sound intensity at distant receivers scintillates dramatically. The acoustic scintillation index SI increases rapidly with propagation range and is significantly greater than unity at ranges beyond about 10 km. This result supports a theoretical prediction by one of the authors. Statistical analyses show that the distribution of intensity of the random wave field saturates to the expected Rayleigh distribution with SI= 1 at short range due to multipath interference effects, and then SI continues to increase to large values. This effect, which is denoted supersaturation, is universal at long ranges in waveguides having lossy boundaries (where there is differential mode attenuation). The intensity distribution approaches a log-normal distribution to an excellent approximation; it may not be a universal distribution and comparison is also made to a K distribution. The long tails of the log-normal distribution cause "acoustic intermittency" in which very high, but rare, intensities occur.
RAINIER: A simulation tool for distributions of excited nuclear states and cascade fluctuations
NASA Astrophysics Data System (ADS)
Kirsch, L. E.; Bernstein, L. A.
2018-06-01
A new code has been developed named RAINIER that simulates the γ-ray decay of discrete and quasi-continuum nuclear levels for a user-specified range of energy, angular momentum, and parity including a realistic treatment of level spacing and transition width fluctuations. A similar program, DICEBOX, uses the Monte Carlo method to simulate level and width fluctuations but is restricted in its initial level population algorithm. On the other hand, modern reaction codes such as TALYS and EMPIRE populate a wide range of states in the residual nucleus prior to γ-ray decay, but do not go beyond the use of deterministic functions and therefore neglect cascade fluctuations. This combination of capabilities allows RAINIER to be used to determine quasi-continuum properties through comparison with experimental data. Several examples are given that demonstrate how cascade fluctuations influence experimental high-resolution γ-ray spectra from reactions that populate a wide range of initial states.
Pelletier, L G; Tuson, K M; Haddad, N K
1997-04-01
The purpose of this study was to examine the psychometric properties of a new measure of client motivation for therapy, the Client Motivation for Therapy Scale. This scale is designed to measure client's Intrinsic Motivation, four forms of regulation for Extrinsic Motivation (integrated, identified, introjected, and external regulation), and Amotivation for therapy. These subscales correspond to different forms of motivation identified by Deci and Ryan (1985) and fall along a self-determination continuum. An experimental version of the scale, along with related scales, was distributed to a total sample of 138 clients involved in therapy. The results supported the factor structure of the scale and revealed a satisfactory level of internal consistency. Correlations among the subscales revealed a simplex pattern that, in general, provides support for the self-determination continuum and the construct validity of the scale. Implications for research on client motivation for therapy are discussed.
NASA Technical Reports Server (NTRS)
Szkody, Paula
1987-01-01
IUE time-resolved spectra of the high-inclination cataclysmic variables IP Peg, PG 1030+590, and V1315 Aql are analyzed in order to determine the characteristics of the disk, hotspots, and white dwarfs. The UV continuum flux distributions are generally flatter than systems of low inclination and high mass-transfer rate, and the white dwarfs/inner disk appear to be relatively cool (15,000-19,000 K) for their orbital periods, possibly because the boundary layers are blocked from view. The continuum fluxes increase at spot phases, with the spot providing the dominant flux in IP Peg. The spot temperatures range from hot (20,000 K) in IP Peg, and perhaps in PG 1030+590, to cool (11,000 K) in V1315 Aql. The C IV emission lines show slightly larger decreases at spot phases than during eclipse, which implies an extended stream area.
On the entropy function in sociotechnical systems
Montroll, Elliott W.
1981-01-01
The entropy function H = -Σpj log pj (pj being the probability of a system being in state j) and its continuum analogue H = ∫p(x) log p(x) dx are fundamental in Shannon's theory of information transfer in communication systems. It is here shown that the discrete form of H also appears naturally in single-lane traffic flow theory. In merchandising, goods flow from a whole-saler through a retailer to a customer. Certain features of the process may be deduced from price distribution functions derived from Sears Roebuck and Company catalogues. It is found that the dispersion in logarithm of catalogue prices of a given year has remained about constant, independently of the year, for over 75 years. From this it may be inferred that the continuum entropy function for the variable logarithm of price had inadvertently, through Sears Roebuck policies, been maximized for that firm subject to the observed dispersion. PMID:16593136
On the entropy function in sociotechnical systems.
Montroll, E W
1981-12-01
The entropy function H = -Sigmap(j) log p(j) (p(j) being the probability of a system being in state j) and its continuum analogue H = integralp(x) log p(x) dx are fundamental in Shannon's theory of information transfer in communication systems. It is here shown that the discrete form of H also appears naturally in single-lane traffic flow theory. In merchandising, goods flow from a whole-saler through a retailer to a customer. Certain features of the process may be deduced from price distribution functions derived from Sears Roebuck and Company catalogues. It is found that the dispersion in logarithm of catalogue prices of a given year has remained about constant, independently of the year, for over 75 years. From this it may be inferred that the continuum entropy function for the variable logarithm of price had inadvertently, through Sears Roebuck policies, been maximized for that firm subject to the observed dispersion.
The SMM Model as a Boundary Value Problem Using the Discrete Diffusion Equation
NASA Technical Reports Server (NTRS)
Campbell, Joel
2007-01-01
A generalized single step stepwise mutation model (SMM) is developed that takes into account an arbitrary initial state to a certain partial difference equation. This is solved in both the approximate continuum limit and the more exact discrete form. A time evolution model is developed for Y DNA or mtDNA that takes into account the reflective boundary modeling minimum microsatellite length and the original difference equation. A comparison is made between the more widely known continuum Gaussian model and a discrete model, which is based on modified Bessel functions of the first kind. A correction is made to the SMM model for the probability that two individuals are related that takes into account a reflecting boundary modeling minimum microsatellite length. This method is generalized to take into account the general n-step model and exact solutions are found. A new model is proposed for the step distribution.
NASA Astrophysics Data System (ADS)
Kerbstadt, S.; Pengel, D.; Englert, L.; Bayer, T.; Wollenhaupt, M.
2018-06-01
We report on bichromatic multiphoton ionization of xenon atoms (Xe) to demonstrate carrier-envelope-phase (CEP) control of lateral asymmetries in the photoelectron momentum distribution. In the experiments, we employ a 4 f polarization pulse shaper to sculpture bichromatic fields with commensurable center frequencies ω1:ω2=7 :8 from an over-octave-spanning CEP-stable white light supercontinuum by spectral amplitude and phase modulation. The bichromatic fields are spectrally tailored to induce controlled interferences of 7- vs 8-photon quantum pathways in the 5 P3 /2 ionization continuum of Xe. The CEP sensitivity of the asymmetric final-state wave function arises from coherent superposition of continuum states with opposite parity. Our results demonstrate that shaper-generated bichromatic fields with tailored center frequency ratio are a suitable tool to localize CEP-sensitive asymmetries in a specific photoelectron kinetic-energy window.
An Anomaly in the Inglis-Teller Limits of the C VI Lyman and Balmer Series in Laser-Produced Plasmas
NASA Astrophysics Data System (ADS)
Elton, R.; Iglesias, E.; Griem, H.; Weaver, J.; Pien, G.; Mancini, R.
2002-11-01
Soft x-ray spectra from thin carbon layers heated by the OMEGA and NIKE lasers have been obtained with both spherical and planar targets, respectively, using a flat-field grazing incidence spectrograph equipped with a gated microchannel plate for temporal resolution. In both experiments, late-time (recombining) hydrogenic C VI spectra show an n-to-1 Lyman spectral series blending with the continuum at n=4, contrary to n=9 in the n-to-2 Balmer series. It appears unlikely that plasma inhomogeneities are the sole cause of this anomaly, given the difference in the experimental configurations. Other explanations for the line-to-continuum merging (other than the usual Stark-broadened Inglis-Teller effect) under consideration include non-thermal Doppler broadening, deviations from statistical sublevel population distributions, and opacity effects. Collisional-radiative and hydrodynamic modeling, including cascades, is employed to further understand this phenomenon.
Continuum mechanical model for cross-linked actin networks with contractile bundles
NASA Astrophysics Data System (ADS)
Ferreira, J. P. S.; Parente, M. P. L.; Natal Jorge, R. M.
2018-01-01
In the context of a mechanical approach to cell biology, there is a close relationship between cellular function and mechanical properties. In recent years, an increasing amount of attention has been given to the coupling between biochemical and mechanical signals by means of constitutive models. In particular, on the active contractility of the actin cytoskeleton. Given the importance of the actin contraction on the physiological functions, this study propose a constitutive model to describe how the filamentous network controls its mechanics actively. Embedded in a soft isotropic ground substance, the network behaves as a viscous mechanical continuum, comprised of isotropically distributed cross-linked actin filaments and actomyosin bundles. Trough virtual rheometry experiments, the present model relates the dynamics of the myosin motors with the network stiffness, which is to a large extent governed by the time-scale of the applied deformations/forces.
Oxygen, Neon, and Iron X-Ray Absorption in the Local Interstellar Medium
NASA Technical Reports Server (NTRS)
Gatuzz, Efrain; Garcia, Javier; Kallman, Timothy R.; Mendoza, Claudio
2016-01-01
We present a detailed study of X-ray absorption in the local interstellar medium by analyzing the X-ray spectra of 24 galactic sources obtained with the Chandra High Energy Transmission Grating Spectrometer and the XMM-Newton Reflection Grating Spectrometer. Methods. By modeling the continuum with a simple broken power-law and by implementing the new ISMabs X-ray absorption model, we have estimated the total H, O, Ne, and Fe column densities towards the observed sources. Results. We have determined the absorbing material distribution as a function of source distance and galactic latitude longitude. Conclusions. Direct estimates of the fractions of neutrally, singly, and doubly ionized species of O, Ne, and Fe reveal the dominance of the cold component, thus indicating an overall low degree of ionization. Our results are expected to be sensitive to the model used to describe the continuum in all sources.
The SMM model as a boundary value problem using the discrete diffusion equation.
Campbell, Joel
2007-12-01
A generalized single-step stepwise mutation model (SMM) is developed that takes into account an arbitrary initial state to a certain partial difference equation. This is solved in both the approximate continuum limit and the more exact discrete form. A time evolution model is developed for Y DNA or mtDNA that takes into account the reflective boundary modeling minimum microsatellite length and the original difference equation. A comparison is made between the more widely known continuum Gaussian model and a discrete model, which is based on modified Bessel functions of the first kind. A correction is made to the SMM model for the probability that two individuals are related that takes into account a reflecting boundary modeling minimum microsatellite length. This method is generalized to take into account the general n-step model and exact solutions are found. A new model is proposed for the step distribution.
Organizing Safe Transitions from Intensive Care
Häggström, Marie; Bäckström, Britt
2014-01-01
Background. Organizing and performing patient transfers in the continuum of care is part of the work of nurses and other staff of a multiprofessional healthcare team. An understanding of discharge practices is needed in order to ultimate patients' transfers from high technological intensive care units (ICU) to general wards. Aim. To describe, as experienced by intensive care and general ward staff, what strategies could be used when organizing patient's care before, during, and after transfer from intensive care. Method. Interviews of 15 participants were conducted, audio-taped, transcribed verbatim, and analyzed using qualitative content analysis. Results. The results showed that the categories secure, encourage, and collaborate are strategies used in the three phases of the ICU transitional care process. The main category; a safe, interactive rehabilitation process, illustrated how all strategies were characterized by an intention to create and maintain safety during the process. A three-way interaction was described: between staff and patient/families, between team members and involved units, and between patient/family and environment. Discussion/Conclusions. The findings highlight that ICU transitional care implies critical care rehabilitation. Discharge procedures need to be safe and structured and involve collaboration, encouraging support, optimal timing, early mobilization, and a multidiscipline approach. PMID:24782924
Center-to-limb polarization in continuum spectra of F, G, K stars
NASA Astrophysics Data System (ADS)
Kostogryz, N. M.; Berdyugina, S. V.
2015-03-01
Context. Scattering and absorption processes in stellar atmosphere affect the center-to-limb variations of the intensity (CLVI) and the linear polarization (CLVP) of stellar radiation. Aims: There are several theoretical and observational studies of CLVI using different stellar models, however, most studies of CLVP have concentrated on the solar atmosphere and have not considered the CLVP in cooler non-gray stellar atmospheres at all. In this paper, we present a theoretical study of the CLV of the intensity and the linear polarization in continuum spectra of different spectral type stars. Methods: We solve the radiative transfer equations for polarized light iteratively assuming no magnetic field and considering a plane-parallel model atmospheres and various opacities. Results: We calculate the CLVI and the CLVP for Phoenix stellar model atmospheres for the range of effective temperatures (4500 K-6900 K), gravities (log g = 3.0-5.0), and wavelengths (4000-7000 Å), which are tabulated and available at the CDS. In addition, we present several tests of our code and compare our results with measurements and calculations of CLVI and the CLVP for the Sun. The resulting CLVI are fitted with polynomials and their coefficients are presented in this paper. Conclusions: For the stellar model atmospheres with lower gravity and effective temperature the CLVP is larger. Full Tables 1 and 2, and coefficients of polynomials are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A89
Rings and gaps in the disc around Elias 24 revealed by ALMA
NASA Astrophysics Data System (ADS)
Dipierro, G.; Ricci, L.; Pérez, L.; Lodato, G.; Alexander, R. D.; Laibe, G.; Andrews, S.; Carpenter, J. M.; Chandler, C. J.; Greaves, J. A.; Hall, C.; Henning, T.; Kwon, W.; Linz, H.; Mundy, L.; Sargent, A.; Tazzari, M.; Testi, L.; Wilner, D.
2018-04-01
We present Atacama Large Millimeter/sub-millimeter Array (ALMA) Cycle 2 observations of the 1.3-mm dust continuum emission of the protoplanetary disc surrounding the T Tauri star Elias 24 with an angular resolution of ˜0.2 arcsec (˜28 au). The dust continuum emission map reveals a dark ring at a radial distance of 0.47 arcsec (˜65 au) from the central star, surrounded by a bright ring at 0.58 arcsec (˜81 au). In the outer disc, the radial intensity profile shows two inflection points at 0.71 and 0.87 arcsec (˜99 and 121 au, respectively). We perform global three-dimensional smoothed particle hydrodynamic gas/dust simulations of discs hosting a migrating and accreting planet. Combining the dust density maps of small and large grains with three-dimensional radiative transfer calculations, we produce synthetic ALMA observations of a variety of disc models in order to reproduce the gap- and ring-like features observed in Elias 24. We find that the dust emission across the disc is consistent with the presence of an embedded planet with a mass of ˜0.7 MJ at an orbital radius of ˜ 60 au. Our model suggests that the two inflection points in the radial intensity profile are due to the inward radial motion of large dust grains from the outer disc. The surface brightness map of our disc model provides a reasonable match to the gap- and ring-like structures observed in Elias 24, with an average discrepancy of ˜5 per cent of the observed fluxes around the gap region.
Optical fiber sources and transmission controls for multi-Tb/s systems
NASA Astrophysics Data System (ADS)
Nowak, George Adelbert
The accelerating demand for bandwidth capacity in backbone links of terrestrial communications systems is projected to exceed 1Tb/s by 2002. Lightwave carrier frequencies and fused-silica optical fibers provide the natural combination of high passband frequencies and low- loss medium to satisfy this evolving demand for bandwidth capacity. This thesis addresses three key technologies for enabling multi-Tb/s optical fiber communication systems. The first technology is a broadband source based on supercontinuum generation in optical fiber. Using a single modelocked laser with output pulsewidths of 0.5psec pulses, we generate in ~2m of dispersion-shifted fiber more that 200nm of spectral continuum in the vicinity of 1550nm that is flat to better than +/- 0.5 dB over more than 60nm. The short fiber length prevents degradation of timing jitter of the seed pulses and preserves coherence of the continuum by inhibiting environmental perturbations and mapping of random noise from the vicinity of the input pulse across the continuum. Through experiments and simulations, we find that the continuum characteristics result from 3rd order dispersion effects on higher-order soliton compression. We determine optimal fiber properties to provide desired continuum broadness and flatness for given input pulsewidth and energy conditions. The second technology is a novel delay-shifted nonlinear optical loop mirror (DS-NOLM) that performs a transmission control function by serving as an intensity filter and frequency compensator for <5psec soliton transmission systems. A theoretical and experimental study of the DS-NOLM as a transmission control element in a periodically amplified soliton transmission system is presented. We show that DS-NOLMs enable 4ps soliton transmission over 75km of standard dispersion fiber, with 25km spacing between amplifiers, by filtering the dispersive waves and compensating for Raman-induced soliton self-frequency shift. The third technology is all-fiber wavelength conversion employing induced modulational instability. We obtain wavelength conversion over 40nm with a peak conversion efficiency of 28dB using 600mW pump pulses in 720m of high-nonlinearity optical fiber. We show that the high- nonlinearity fiber enhances the phase-matching bandwidth as well as reducing the required fiber lengths and pump powers.
Continuum modeling of large lattice structures: Status and projections
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Mikulas, Martin M., Jr.
1988-01-01
The status and some recent developments of continuum modeling for large repetitive lattice structures are summarized. Discussion focuses on a number of aspects including definition of an effective substitute continuum; characterization of the continuum model; and the different approaches for generating the properties of the continuum, namely, the constitutive matrix, the matrix of mass densities, and the matrix of thermal coefficients. Also, a simple approach is presented for generating the continuum properties. The approach can be used to generate analytic and/or numerical values of the continuum properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ota, Kazuaki; Walter, Fabian; Da Cunha, Elisabete
We present ALMA observations of the [C II] line and far-infrared (FIR) continuum of a normally star-forming galaxy in the reionization epoch, the z = 6.96 Lyα emitter (LAE) IOK-1. Probing to sensitivities of σ{sub line} = 240 μJy beam{sup –1} (40 km s{sup –1} channel) and σ{sub cont} = 21 μJy beam{sup –1}, we found the galaxy undetected in both [C II] and continuum. Comparison of ultraviolet (UV)-FIR spectral energy distribution (SED) of IOK-1, including our ALMA limit, with those of several types of local galaxies (including the effects of the cosmic microwave background, CMB, on the FIR continuum)more » suggests that IOK-1 is similar to local dwarf/irregular galaxies in SED shape rather than highly dusty/obscured galaxies. Moreover, our 3σ FIR continuum limit, corrected for CMB effects, implies intrinsic dust mass M {sub dust} < 6.4 × 10{sup 7} M {sub ☉}, FIR luminosity L {sub FIR} < 3.7 × 10{sup 10} L {sub ☉} (42.5-122.5 μm), total IR luminosity L {sub IR} < 5.7 × 10{sup 10} L {sub ☉} (8-1000 μm), and dust-obscured star formation rate (SFR) < 10 M {sub ☉} yr{sup –1}, if we assume that IOK-1 has a dust temperature and emissivity index typical of local dwarf galaxies. This SFR is 2.4 times lower than one estimated from the UV continuum, suggesting that <29% of the star formation is obscured by dust. Meanwhile, our 3σ [C II] flux limit translates into [C II] luminosity, L {sub [C} {sub II]} < 3.4 × 10{sup 7} L {sub ☉}. Locations of IOK-1 and previously observed LAEs on the L {sub [C} {sub II]} versus SFR and L {sub [C} {sub II]}/L {sub FIR} versus L {sub FIR} diagrams imply that LAEs in the reionization epoch have significantly lower gas and dust enrichment than AGN-powered systems and starbursts at similar/lower redshifts, as well as local star-forming galaxies.« less
NASA Astrophysics Data System (ADS)
Jiang, Cong; Yu, Zong-Wen; Wang, Xiang-Bin
2018-04-01
We present an analysis for measurement-device-independent quantum key distribution with correlated source-light-intensity errors. Numerical results show that the results here can greatly improve the key rate especially with large intensity fluctuations and channel attenuation compared with prior results if the intensity fluctuations of different sources are correlated.
Broad-Band Continuum and Line Emission of the gamma-Ray Blazar PKS 0537-441
NASA Technical Reports Server (NTRS)
Pian, E.; Falomo, R.; Hartman, R. C.; Maraschi, L.; Tavecchio, F.; Tornikoski, M.; Treves, A.; Urry, C. M.; Ballo, L.; Mukherjee, R.;
2002-01-01
PKS 0537-441, a bright gamma ray emitting blazar was observed at radio, optical, UV and X-ray frequencies during various EGRET paintings, often quasi-simultaneously. In 1995 the object was found in an intense emission state at all wavelengths. BeppoSAX observations made in 1998, non-simultaneously with exposures at other frequencies, allow us to characterize precisely the spectral shape of the high energy blazer component, which we attribute to inverse Compton scatter in The optical-to-gamma-ray spectral energy distributions at the different epochs show that the gamma-ray luminosity dominates the barometric output. This, together with the presence of optical and UV line emission, suggests that, besides the synchrotron self-Compton mechanism, the Compton upscattering of photons external to the jet (e.g., in the broad line region) may have a significant role for high energy radiation. The multiwavelength variability can be reproduced by changes of the plasma bulk Lorentz factor. The spectrum secured by ICE in 1995 appears to be partially absorbed shortward of approximately 1700 Angstroms. However, this signature is not detected in the HST spectrum taker during a lower state of the source. The presence of intervening absorbers is not supported by optical imaging and spectroscopy of the field.
NASA Astrophysics Data System (ADS)
Bobra, M. G.; Sun, X.; Hoeksema, J. T.; Turmon, M.; Liu, Y.; Hayashi, K.; Barnes, G.; Leka, K. D.
2014-09-01
A new data product from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) called Space-weather HMI Active Region Patches ( SHARPs) is now available. SDO/HMI is the first space-based instrument to map the full-disk photospheric vector magnetic field with high cadence and continuity. The SHARP data series provide maps in patches that encompass automatically tracked magnetic concentrations for their entire lifetime; map quantities include the photospheric vector magnetic field and its uncertainty, along with Doppler velocity, continuum intensity, and line-of-sight magnetic field. Furthermore, keywords in the SHARP data series provide several parameters that concisely characterize the magnetic-field distribution and its deviation from a potential-field configuration. These indices may be useful for active-region event forecasting and for identifying regions of interest. The indices are calculated per patch and are available on a twelve-minute cadence. Quick-look data are available within approximately three hours of observation; definitive science products are produced approximately five weeks later. SHARP data are available at jsoc.stanford.edu and maps are available in either of two different coordinate systems. This article describes the SHARP data products and presents examples of SHARP data and parameters.
Density profile of strongly correlated spherical Yukawa plasmas
NASA Astrophysics Data System (ADS)
Bonitz, M.; Henning, C.; Ludwig, P.; Golubnychiy, V.; Baumgartner, H.; Piel, A.; Block, D.
2006-10-01
Recently the discovery of 3D-dust crystals [1] excited intensive experimental and theoretical activities [2-4]. Details of the shell structure of these crystals has been very well explained theoretically by a simple model involving an isotropic Yukawa-type pair repulsion and an external harmonic confinement potential [4]. On the other hand, it has remained an open question how the average radial density profile, looks like. We show that screening has a dramatic effect on the density profile, which we derive analytically for the ground state. Interestingly, the result applies not only to a continuous plasma distribution but also to simulation data for the Coulomb crystals exhibiting the above mentioned shell structure. Furthermore, excellent agreement between the continuum model and shell models is found [5]. [1] O. Arp, D. Block, A. Piel, and A. Melzer, Phys. Rev. Lett. 93, 165004 (2004). [2] H. Totsuji, C. Totsuji, T. Ogawa, and K. Tsuruta, Phys. Rev. E 71, 045401 (2005) [3] P. Ludwig, S. Kosse, and M. Bonitz, Phys. Rev. E 71, 046403 (2005) [4] M. Bonitz, D. Block, O. Arp, V. Golubnychiy, H. Baumgartner, P. Ludwig, A. Piel, and A. Filinov, Phys. Rev. Lett. 96, 075001 (2006) [5] C. Henning, M. Bonitz, A. Piel, P. Ludwig, H. Baumgartner, V. Golubnichiy, and D. Block, submitted to Phys. Rev. E
NASA Astrophysics Data System (ADS)
Zia, Asim; Bomblies, Arne; Schroth, Andrew W.; Koliba, Christopher; Isles, Peter D. F.; Tsai, Yushiou; Mohammed, Ibrahim N.; Bucini, Gabriela; Clemins, Patrick J.; Turnbull, Scott; Rodgers, Morgan; Hamed, Ahmed; Beckage, Brian; Winter, Jonathan; Adair, Carol; Galford, Gillian L.; Rizzo, Donna; Van Houten, Judith
2016-11-01
Global climate change (GCC) is projected to bring higher-intensity precipitation and higher-variability temperature regimes to the Northeastern United States. The interactive effects of GCC with anthropogenic land use and land cover changes (LULCCs) are unknown for watershed level hydrological dynamics and nutrient fluxes to freshwater lakes. Increased nutrient fluxes can promote harmful algal blooms, also exacerbated by warmer water temperatures due to GCC. To address the complex interactions of climate, land and humans, we developed a cascading integrated assessment model to test the impacts of GCC and LULCC on the hydrological regime, water temperature, water quality, bloom duration and severity through 2040 in transnational Lake Champlain’s Missisquoi Bay. Temperature and precipitation inputs were statistically downscaled from four global circulation models (GCMs) for three Representative Concentration Pathways. An agent-based model was used to generate four LULCC scenarios. Combined climate and LULCC scenarios drove a distributed hydrological model to estimate river discharge and nutrient input to the lake. Lake nutrient dynamics were simulated with a 3D hydrodynamic-biogeochemical model. We find accelerated GCC could drastically limit land management options to maintain water quality, but the nature and severity of this impact varies dramatically by GCM and GCC scenario.
Interferometric observations of M42 at 1. 3 cm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohashi, N.; Mizuno, A.; Tatematsu, K.
1989-02-01
New interferometric observations of the central 4.5 deg of M42 have been made at 1.3 cm with the NRO Millimeter-Wave Array. Distribution of the radio source consists of two known components. One is centered on the Trapezium stars, and the other corresponds to the bright bar. The present map is compared with the distribution of the CS molecular gas (Hayashi et al., 1989), and it is found that the boundary of the ionized gas is well delineated by the CS ridge. This indicates that the ionized gas is distributed in a cavity of the molecular gas, as suggested by Sugitanimore » et al. (1986). A comparison of the map with a 6-cm radio-continuum map (Johnston et al., 1983) indicates that the 6 cm distribution is more extended than the 1.3 cm distribution, except in the southern part of the bright bar. 9 references.« less
Passing waves from atomistic to continuum
NASA Astrophysics Data System (ADS)
Chen, Xiang; Diaz, Adrian; Xiong, Liming; McDowell, David L.; Chen, Youping
2018-02-01
Progress in the development of coupled atomistic-continuum methods for simulations of critical dynamic material behavior has been hampered by a spurious wave reflection problem at the atomistic-continuum interface. This problem is mainly caused by the difference in material descriptions between the atomistic and continuum models, which results in a mismatch in phonon dispersion relations. In this work, we introduce a new method based on atomistic dynamics of lattice coupled with a concurrent atomistic-continuum method to enable a full phonon representation in the continuum description. This permits the passage of short-wavelength, high-frequency phonon waves from the atomistic to continuum regions. The benchmark examples presented in this work demonstrate that the new scheme enables the passage of all allowable phonons through the atomistic-continuum interface; it also preserves the wave coherency and energy conservation after phonons transport across multiple atomistic-continuum interfaces. This work is the first step towards developing a concurrent atomistic-continuum simulation tool for non-equilibrium phonon-mediated thermal transport in materials with microstructural complexity.
The spatial variation of the infrared-to-radio ratio in spiral galaxies
NASA Technical Reports Server (NTRS)
Marsh, K. A.; Helou, G.
1995-01-01
We have produced two-dimensional maps of the intensity ratio, Q(sub 60), of 60 micron infrared to 20 cm radio continuum emission, for a set of 25 nearby galaxies, mostly spirals. The ratio maps were obtained from infrared images made using IRAS data with the maximum correlation method, and radio images made using VLA data. Before taking the ratio, the radio images were processed so as to have the same resolution properties as the infrared images; the final spatial resolution in all cases is approximately 1 min, corresponding to 1 - 2 kpc for most galaxies. This resolution represents a significant improvement over previous studies. Our new high-resolution maps confirm the slow decrease of Q(sub 60) with increasing radial distance from the nucleus, but show additional structure which is probably associated with separate sites of active star formation in the spiral arms. The maps show Q(sub 60) to be more closely related to infrared surface brightness than to the radial distance r in the galaxy disk. We note also that the Q(sub 60) gradients are absent (or at least reduced) for the edge-on galaxies, a property which can be attributed to the dilution of contrast due to the averaging of the additional structure along the line of sight. The results are all in qualitative agreement with the suggestion that the radio image represents a smeared version of the infrared image, as would be expected on the basis of current models in which the infrared-radio correlation is driven by the formation of massive stars, and the intensity distribution of radio emission is smeared as a result of the propagation of energetic electrons accelerated during the supernova phase.
The PAH Emission Characteristics of the Reflection Nebula NGC 2023
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peeters, Els; Bauschlicher, Charles W. Jr.; Allamandola, Louis J.
We present 5–20 μ m spectral maps of the reflection nebula NGC 2023 obtained with the Infrared Spectrograph SL and SH modes on board the Spitzer Space Telescope, which reveal emission from polycyclic aromatic hydrocarbons (PAHs), C{sub 60}, and H{sub 2} superposed on a dust continuum. We show that several PAH emission bands correlate with each other and exhibit distinct spatial distributions that reveal a spatial sequence with distance from the illuminating star. We explore the distinct morphology of the 6.2, 7.7, and 8.6 μ m PAH bands and find that at least two spatially distinct components contribute to themore » 7–9 μ m PAH emission in NGC 2023. We report that the PAH features behave independently of the underlying plateaus. We present spectra of compact, oval PAHs ranging in size from C{sub 66} to C{sub 210}, determined computationally using density functional theory, and we investigate trends in the band positions and relative intensities as a function of PAH size, charge, and geometry. Based on the NASA Ames PAH database, we discuss the 7–9 μ m components in terms of band assignments and relative intensities. We assign the plateau emission to very small grains with possible contributions from PAH clusters and identify components in the 7–9 μ m emission that likely originate in these structures. Based on the assignments and the observed spatial sequence, we discuss the photochemical evolution of the interstellar PAH family as the PAHs are more and more exposed to the radiation field of the central star in the evaporative flows associated with the Photo-Dissociation Regions in NGC 2023.« less
Zamora, William J; Curutchet, Carles; Campanera, Josep M; Luque, F Javier
2017-10-26
Hydrophobicity is a key physicochemical descriptor used to understand the biological profile of (bio)organic compounds as well as a broad variety of biochemical, pharmacological, and toxicological processes. This property is estimated from the partition coefficient between aqueous and nonaqueous environments for neutral compounds (P N ) and corrected for the pH-dependence of ionizable compounds as the distribution coefficient (D). Here, we have extended the parametrization of the Miertus-Scrocco-Tomasi continuum solvation model in n-octanol to nitrogen-containing heterocyclic compounds, as they are present in many biologically relevant molecules (e.g., purines and pyrimidines bases, amino acids, and drugs), to obtain accurate log P N values for these molecules. This refinement also includes solvation calculations for ionic species in n-octanol with the aim of reproducing the experimental partition of ionic compounds (P I ). Finally, the suitability of different formalisms to estimate the distribution coefficient for a wide range of pH values has been examined for a set of small acidic and basic compounds. The results indicate that in general the simple pH-dependence model of the ionizable compound in water suffices to predict the partitioning at or around physiological pH. However, at extreme pH values, where ionic species are predominant, more elaborate models provide a better prediction of the n-octanol/water distribution coefficient, especially for amino acid analogues. Finally, the results also show that these formalisms are better suited to reproduce the experimental pH-dependent distribution curves of log D for both acidic and basic compounds as well as for amino acid analogues.
Effects of cell geometry on reversible vesicular transport
NASA Astrophysics Data System (ADS)
Karamched, Bhargav R.; Bressloff, Paul C.
2017-02-01
A major question in cell biology concerns the biophysical mechanism underlying delivery of newly synthesized macromolecules to specific targets within a cell. A recent modeling paper investigated this phenomenon in the context of vesicular delivery to en passant synapses in neurons (Bressloff and Levien 2015 Phys. Rev. Lett.). It was shown how reversibility in vesicular delivery to synapses could play a crucial role in achieving uniformity in the distribution of resources throughout an axon, which is consistent with experimental observations in C. elegans and Drosophila. In this work we generalize the previous model by investigating steady-state vesicular distributions on a Cayley tree, a disk, and a sphere. We show that for irreversible transport on a tree, branching increases the rate of decay of the steady-state distribution of vesicles. On the other hand, the steady-state profiles for reversible transport are similar to the 1D case. In the case of higher-dimensional geometries, we consider two distinct types of radially-symmetric microtubular network: (i) a continuum and (ii) a discrete set. In the continuum case, we model the motor-cargo dynamics using a phenomenologically-based advection-diffusion equation in polar (2D) and spherical (3D) coordinates. On the other-hand, in the discrete case, we derive the population model from a stochastic model of a single motor switching between ballistic motion and diffusion. For all of the geometries we find that reversibility in vesicular delivery to target sites allows for a more uniform distribution of vesicles, provided that cargo-carrying motors are not significantly slowed by their cargo. In each case we characterize the loss of uniformity as a function of the dispersion in velocities.
The mass distribution of clumps within infrared dark clouds. A Large APEX Bolometer Camera study
NASA Astrophysics Data System (ADS)
Gómez, L.; Wyrowski, F.; Schuller, F.; Menten, K. M.; Ballesteros-Paredes, J.
2014-01-01
Aims: We present an analysis of the dust continuum emission at 870 μm in order to investigate the mass distribution of clumps within infrared dark clouds (IRDCs). Methods: We map six IRDCs with the Large APEX BOlometer CAmera (LABOCA) at APEX, reaching an rms noise level of σrms = 28-44 mJy beam-1. The dust continuum emission coming from these IRDCs was decomposed by using two automated algorithms, Gaussclumps and Clumpfind. Moreover, we carried out single-pointing observations of the N2H+ (3-2) line toward selected positions to obtain kinematic information. Results: The mapped IRDCs are located in the range of kinematic distances of 2.7-3.2 kpc. We identify 510 and 352 sources with Gaussclumps and Clumpfind, respectively, and estimate masses and other physical properties assuming a uniform dust temperature. The mass ranges are 6-2692 M⊙ (Gaussclumps) and 7-4254 M⊙ (Clumpfind), and the ranges in effective radius are ~0.10-0.74 pc (Gaussclumps) and 0.16-0.99 pc (Clumpfind). The mass distribution, independent of the decomposition method used, is fitted by a power law, dN/dM ∝ Mα, with an index (α) of -1.60 ± 0.06, consistent with the CO mass distribution and other high-mass star-forming regions. Based on data acquired with the Atacama Pathfinder Experiment (APEX). APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory.Full Tables 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/561/A148
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-05
... Information Collection for Public Comment; Continuum of Care Homeless Assistance Grant Application--Continuum of Care Application AGENCY: Office of Assistant Secretary for Community Planning and Development... collection for public comment entitled Continuum of Care of Homeless Assistance Grant Application- Continuum...
Structure and chemistry in the northwestern condensation of the Serpens molecular cloud core
NASA Technical Reports Server (NTRS)
Mcmullin, Joseph P.; Mundy, Lee G.; Wilking, Bruce A.; Hezel, T.; Blake, Geoff A.
1994-01-01
We present single-dish and interferometric observations of gas and dust in the core of the Serpens molecular cloud, focusing on the northwestern condensation. Single-dish molecular line observations are used to probe the structure and chemistry of the condensation while high-resolution images of CS and CH30H are combined with continuum observations from lambda = 1.3 mm to lambda = 3.5 cm to study the subcondensations and overall distribution of dust. For the northwestern condensation, we derive a characteristic density of 3 x 10(exp 5)/ cu cm and an estimated total mass of approximately 70 solar mass. We find compact molecular emission associated with the far-infrared source S68 FIRS 1, and with a newly detected subcondensation named S68 N. Comparison of the large-and small-scale emission reveals that most of the material in the northwest condensation is not directly associated with these compact sources, suggesting a youthful age for this region. CO J = 1 approaches 0 observations indicate widespread outflow activity. However, no unique association of embedded objects with outflows is possible with our observations. The SiO emission is found to be extended with the overall emission centered about S68 FIRS 1; the offset of the peak emission from all of the known continuum sources and the coincidence between the blueshifted SiO emission and blueshifted high-velocity gas traced by CO and CS is consistent with formation of SiO in shocks. Derived abundances of CO and HCO(+) are consistent with quiescent and other star-forming regions while CS, HCN, and H2CO abundances indicate mild depletions within the condensation. Spectral energy distribution fits to S68 FIRS 1 indicate a modest luminosity (50-60 solar luminosity), implying that it is a low-mass (0.5-3 solar mass) young stellar object. Radio continuum observations of the triple source toward S68 FIRS 1 indicate that the lobe emission is varying on timescales less than or equal to 1 yr while the central component is relatively constant over approximately 14 yr. The nature of a newly detected compact emission region, S68 N, is less certain due to the absence of firm continuum detections; based on its low luminosity (less than 5 solar luminosity) and strong molecular emission, S68 N may be prestellar subcondensation of gas and dust.
Evolution of Cold Circumstellar Dust around Solar-type Stars
NASA Astrophysics Data System (ADS)
Carpenter, John M.; Wolf, Sebastian; Schreyer, Katharina; Launhardt, Ralf; Henning, Thomas
2005-02-01
We present submillimeter (Caltech Submillimeter Observatory 350 μm) and millimeter (Swedish-ESO Submillimetre Telescope [SEST] 1.2 mm, Owens Valley Radio Observatory [OVRO] 3 mm) photometry for 127 solar-type stars from the Formation and Evolution of Planetary Systems Spitzer Legacy program that have masses between ~0.5 and 2.0 Msolar and ages from ~3 Myr to 3 Gyr. Continuum emission was detected toward four stars with a signal-to-noise ratio>=3: the classical T Tauri stars RX J1842.9-3532, RX J1852.3-3700, and PDS 66 with SEST, and the debris-disk system HD 107146 with OVRO. RX J1842.9-3532 and RX J1852.3-3700 are located in projection near the R CrA molecular cloud, with estimated ages of ~10 Myr (Neuhäuser et al.), whereas PDS 66 is a probable member of the ~20 Myr old Lower Centaurus-Crux subgroup of the Scorpius-Centaurus OB association (Mamajek et al.). The continuum emission toward these three sources is unresolved at the 24" SEST resolution and likely originates from circumstellar accretion disks, each with estimated dust masses of ~5×10-5 Msolar. Analysis of the visibility data toward HD 107146 (age~80-200 Myr) indicates that the 3 mm continuum emission is centered on the star within the astrometric uncertainties and resolved with a Gaussian-fit FWHM size of (6.5"+/-1.4")×(4.2"+/-1.3"), or 185AU×120 AU. The results from our continuum survey are combined with published observations to quantify the evolution of dust mass with time by comparing the mass distributions for samples with different stellar ages. The frequency distribution of circumstellar dust masses around solar-type stars in the Taurus molecular cloud (age~2 Myr) is distinguished from that around 3-10 Myr and 10-30 Myr old stars at a significance level of ~1.5 and ~3 σ, respectively. These results suggest a decrease in the mass of dust contained in small dust grains and/or changes in the grain properties by stellar ages of 10-30 Myr, consistent with previous conclusions. Further observations are needed to determine if the evolution in the amount of cold dust occurs on even shorter timescales.
NASA Astrophysics Data System (ADS)
Hogerheijde, Michiel R.; Sandell, Göran
2000-05-01
Theoretical models of star formation make predictions about the density and velocity structure of the envelopes surrounding isolated, low-mass young stars. This paper tests such models through high-quality submillimeter continuum imaging of four embedded young stellar objects in Taurus and previously obtained molecular-line data. Observations carried out with the Submillimeter Continuum Bolometer Array on the James Clerk Maxwell Telescope at 850 and 450 μm of L1489 IRS, L1535 IRS, L1527 IRS, and TMC 1 reveal ~2000 AU elongated structures embedded in extended envelopes. The density distribution in these envelopes is equally well fitted by a radial power-law of index p=1.0-2.0 or with a collapse model such as that of Shu. This inside-out collapse model predicts 13CO, C18O, HCO+, and H13CO+ line profiles that closely match observed spectra toward three of our four sources. This shows that the inside-out collapse model offers a good description of YSO envelopes, but also that reliable constraints on its parameters require independent measurements of the density and the velocity structure, e.g., through continuum and line observations. For the remaining source, L1489 IRS, we find that a model consisting of a 2000 AU radius, rotating, disklike structure better describes the data. Possibly, this source is in transition between the embedded class I and the optically revealed T Tauri phases. The spectral index of the dust emissivity decreases from β=1.5-2.0 in the extended envelope to 1.0+/-0.2 in the central peaks, indicating grain growth or high optical depth on small scales. The observations of L1527 IRS reveal warm (>~30 K) material outlining, and presumably heated by, its bipolar outflow. This material comprises <~0.2 Msolar, comparable to the amount of swept-up CO but only 10% of the total envelope mass. Two apparently starless cores are found at ~10,000 AU from L1489 IRS and L1535 IRS. They are cold, 10-15 K, contain 0.5-3.0 Msolar, and have flat density distributions characterized by a Gaussian of ~10,000 AU FWHM. The proximity of these cores shows that star formation in truly isolated cores is rare even in Taurus.
Gaussian statistics for palaeomagnetic vectors
Love, J.J.; Constable, C.G.
2003-01-01
With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimoda) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to formulate the inverse problem, and how to estimate the mean and variance of the magnetic vector field, even when the data consist of mixed combinations of directions and intensities. We examine palaeomagnetic secular-variation data from Hawaii and Re??union, and although these two sites are on almost opposite latitudes, we find significant differences in the mean vector and differences in the local vectorial variances, with the Hawaiian data being particularly anisotropic. These observations are inconsistent with a description of the mean field as being a simple geocentric axial dipole and with secular variation being statistically symmetrical with respect to reflection through the equatorial plane. Finally, our analysis of palaeomagnetic acquisition data from the 1960 Kilauea flow in Hawaii and the Holocene Xitle flow in Mexico, is consistent with the widely held suspicion that directional data are more accurate than intensity data.
Gaussian statistics for palaeomagnetic vectors
NASA Astrophysics Data System (ADS)
Love, J. J.; Constable, C. G.
2003-03-01
With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimodal) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to formulate the inverse problem, and how to estimate the mean and variance of the magnetic vector field, even when the data consist of mixed combinations of directions and intensities. We examine palaeomagnetic secular-variation data from Hawaii and Réunion, and although these two sites are on almost opposite latitudes, we find significant differences in the mean vector and differences in the local vectorial variances, with the Hawaiian data being particularly anisotropic. These observations are inconsistent with a description of the mean field as being a simple geocentric axial dipole and with secular variation being statistically symmetrical with respect to reflection through the equatorial plane. Finally, our analysis of palaeomagnetic acquisition data from the 1960 Kilauea flow in Hawaii and the Holocene Xitle flow in Mexico, is consistent with the widely held suspicion that directional data are more accurate than intensity data.
Psychophysical and Neural Correlates of Auditory Attraction and Aversion
NASA Astrophysics Data System (ADS)
Patten, Kristopher Jakob
This study explores the psychophysical and neural processes associated with the perception of sounds as either pleasant or aversive. The underlying psychophysical theory is based on auditory scene analysis, the process through which listeners parse auditory signals into individual acoustic sources. The first experiment tests and confirms that a self-rated pleasantness continuum reliably exists for 20 various stimuli (r = .48). In addition, the pleasantness continuum correlated with the physical acoustic characteristics of consonance/dissonance (r = .78), which can facilitate auditory parsing processes. The second experiment uses an fMRI block design to test blood oxygen level dependent (BOLD) changes elicited by a subset of 5 exemplar stimuli chosen from Experiment 1 that are evenly distributed over the pleasantness continuum. Specifically, it tests and confirms that the pleasantness continuum produces systematic changes in brain activity for unpleasant acoustic stimuli beyond what occurs with pleasant auditory stimuli. Results revealed that the combination of two positively and two negatively valenced experimental sounds compared to one neutral baseline control elicited BOLD increases in the primary auditory cortex, specifically the bilateral superior temporal gyrus, and left dorsomedial prefrontal cortex; the latter being consistent with a frontal decision-making process common in identification tasks. The negatively-valenced stimuli yielded additional BOLD increases in the left insula, which typically indicates processing of visceral emotions. The positively-valenced stimuli did not yield any significant BOLD activation, consistent with consonant, harmonic stimuli being the prototypical acoustic pattern of auditory objects that is optimal for auditory scene analysis. Both the psychophysical findings of Experiment 1 and the neural processing findings of Experiment 2 support that consonance is an important dimension of sound that is processed in a manner that aids auditory parsing and functional representation of acoustic objects and was found to be a principal feature of pleasing auditory stimuli.
SMA Continuum Survey of Circumstellar Disks in Serpens
NASA Astrophysics Data System (ADS)
Law, Charles; Ricci, Luca; Andrews, Sean M.; Wilner, David J.; Qi, Chunhua
2017-06-01
The lifetime of disks surrounding pre-main-sequence stars is closely linked to planet formation and provides information on disk dispersal mechanisms and dissipation timescales. The potential for these optically thick, gas-rich disks to form planets is critically dependent on how much dust is available to be converted into terrestrial planets and rocky cores of giant planets. For this reason, an understanding of how dust mass varies with key properties such as stellar mass, age, and environment is critical for understanding planet formation. Millimeter wavelength observations, in which the dust emission is optically thin, are required to study the colder dust residing in the disk’s outer regions and to measure disk dust masses. Hence, we have obtained SMA 1.3 mm continuum observations of 62 Class II sources with suspected circumstellar disks in the Serpens star-forming region (SFR). Relative to the well-studied Taurus SFR, Serpens allows us to probe the distribution of dust masses for disks in a much denser and more clustered environment. Only 13 disks were detected in the continuum with the SMA. We calculate the total dust masses of these disks and compare their masses to those of disks in Taurus, Lupus, and Upper Scorpius. We do not find evidence of diminished dust masses in Serpens disks relative to those in Taurus despite the fact that disks in denser clusters may be expected to contain less dust mass due to stronger and more frequent tidal interactions that can disrupt the outer regions of disks. However, considering the low detection fraction, we likely detected only bright continuum sources and a more sensitive survey of Serpens would help clarify these results.
ALMA Survey of Lupus Protoplanetary Disks. II. Gas Disk Radii
NASA Astrophysics Data System (ADS)
Ansdell, M.; Williams, J. P.; Trapman, L.; van Terwisga, S. E.; Facchini, S.; Manara, C. F.; van der Marel, N.; Miotello, A.; Tazzari, M.; Hogerheijde, M.; Guidi, G.; Testi, L.; van Dishoeck, E. F.
2018-05-01
We present Atacama Large Millimeter/Sub-Millimeter Array (ALMA) Band 6 observations of a complete sample of protoplanetary disks in the young (∼1–3 Myr) Lupus star-forming region, covering the 1.33 mm continuum and the 12CO, 13CO, and C18O J = 2–1 lines. The spatial resolution is ∼0.″25 with a medium 3σ continuum sensitivity of 0.30 mJy, corresponding to M dust ∼ 0.2 M ⊕. We apply Keplerian masking to enhance the signal-to-noise ratios of our 12CO zero-moment maps, enabling measurements of gas disk radii for 22 Lupus disks; we find that gas disks are universally larger than millimeter dust disks by a factor of two on average, likely due to a combination of the optically thick gas emission and the growth and inward drift of the dust. Using the gas disk radii, we calculate the dimensionless viscosity parameter, α visc, finding a broad distribution and no correlations with other disk or stellar parameters, suggesting that viscous processes have not yet established quasi-steady states in Lupus disks. By combining our 1.33 mm continuum fluxes with our previous 890 μm continuum observations, we also calculate the millimeter spectral index, α mm, for 70 Lupus disks; we find an anticorrelation between α mm and millimeter flux for low-mass disks (M dust ≲ 5), followed by a flattening as disks approach α mm ≈ 2, which could indicate faster grain growth in higher-mass disks, but may also reflect their larger optically thick components. In sum, this work demonstrates the continuous stream of new insights into disk evolution and planet formation that can be gleaned from unbiased ALMA disk surveys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabidoux, Katie; Pisano, D. J.; Kepley, Amanda A.
2014-01-01
We observed radio continuum emission in 27 local (D < 70 Mpc) star-forming galaxies with the Robert C. Byrd Green Bank Telescope between 26 GHz and 40 GHz using the Caltech Continuum Backend. We obtained detections for 22 of these galaxies at all four sub-bands and four more marginal detections by taking the average flux across the entire bandwidth. This is the first detection (full or marginal) at these frequencies for 22 of these galaxies. We fit spectral energy distributions (SEDs) for all of the four sub-band detections. For 14 of the galaxies, SEDs were best fit by a combinationmore » of thermal free-free and nonthermal synchrotron components. Eight galaxies with four sub-band detections had steep spectra that were only fit by a single nonthermal component. Using these fits, we calculated supernova rates, total number of equivalent O stars, and star formation rates within each ∼23'' beam. For unresolved galaxies, these physical properties characterize the galaxies' recent star formation on a global scale. We confirm that the radio-far-infrared correlation holds for the unresolved galaxies' total 33 GHz flux regardless of their thermal fractions, though the scatter on this correlation is larger than that at 1.4 GHz. In addition, we found that for the unresolved galaxies, there is an inverse relationship between the ratio of 33 GHz flux to total far-infrared flux and the steepness of the galaxy's spectral index between 1.4 GHz and 33 GHz. This relationship could be an indicator of the timescale of the observed episode of star formation.« less
PACCE: Perl Algorithm to Compute Continuum and Equivalent Widths
NASA Astrophysics Data System (ADS)
Riffel, Rogério; Borges Vale, Tibério
2011-05-01
PACCE (Perl Algorithm to Compute continuum and Equivalent Widths) computes continuum and equivalent widths. PACCE is able to determine mean continuum and continuum at line center values, which are helpful in stellar population studies, and is also able to compute the uncertainties in the equivalent widths using photon statistics.
Analysis of Compton continuum measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gold, R.; Olson, I. K.
1970-01-01
Five computer programs: COMPSCAT, FEND, GABCO, DOSE, and COMPLOT, have been developed and used for the analysis and subsequent reduction of measured energy distributions of Compton recoil electrons to continuous gamma spectra. In addition to detailed descriptions of these computer programs, the relationship amongst these codes is stressed. The manner in which these programs function is illustrated by tracing a sample measurement through a complete cycle of the data-reduction process.
ERIC Educational Resources Information Center
Kalmijn, Wim
2013-01-01
Happiness is often measured in surveys using responses to a single question with a limited number of response options, such as "very happy", "fairly happy" and "not too happy". There is much variety in the wording and number of response options used, which limits comparability across surveys. To solve this problem, descriptive statistics of the…
Traumatic Brain Injury (TBI) Studies at Grady Memorial Hospital
2010-09-01
communication among clinicians and along the care continuum during the treatment of a patient’s emergent conditions. Ancillary reports are distributed...data necessary to improve the treatment of traumatic brain injury and compare treatment and outcomes by injury type. Specific Aims: 1. Develop and...Our research will utilize both of these tests to assess patients during treatment in the Emergency Department at GMH for mild traumatic brain
Submillimeter wave survey of the galactic plane. Ph.D. Thesis - Maryland Univ.
NASA Technical Reports Server (NTRS)
Cheung, L. H.
1980-01-01
The survey measured, over virtually the entire galactic plane, the distribution and basic physical conditions of the coolest dust component of the interstellar medium. The instrument designed for observations of extended, low surface brightness continuum emission consisted of a balloon borne, gyro stablized, 1.2 m Cassegrain telescope and a liquid cooled photometer. The design, integration, tests, and flight operation of the survey are presented.
Willink, Beatriz; Brenes-Mora, Esteban; Bolaños, Federico; Pröhl, Heike
2013-10-01
Aposematism and crypsis are often viewed as two extremes of a continuum of visual conspicuousness to predators. Theory predicts that behavioral and coloration conspicuousness should vary in tandem along the conspicuousness spectrum for antipredator strategies to be effective. Here we used visual modeling of contrast and behavioral observations to examine the conspicuousness of four populations of the granular poison frog, Oophaga granulifera, which exhibits almost continuous variation in dorsal color. The patterns of geographic variation in color, visual contrast, and behavior support a gradient of overall conspicuousness along the distribution of O. granulifera. Red and green populations, at the extremes of the color distribution, differ in all elements of color, contrast, and behavior, strongly reflecting aposematic and cryptic strategies. However, there is no smooth cline in any elements of behavior or coloration between the two extremes. Instead populations of intermediate colors attain intermediate conspicuousness by displaying different combinations of aposematic and cryptic traits. We argue that coloration divergence among populations may be linked to the evolution of a gradient of strategies to balance the costs of detection by predators and the benefits of learned aversion. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.