SEACAS Theory Manuals: Part II. Nonlinear Continuum Mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attaway, S.W.; Laursen, T.A.; Zadoks, R.I.
1998-09-01
This report summarizes the key continuum mechanics concepts required for the systematic prescription and numerical solution of finite deformation solid mechanics problems. Topics surveyed include measures of deformation appropriate for media undergoing large deformations, stress measures appropriate for such problems, balance laws and their role in nonlinear continuum mechanics, the role of frame indifference in description of large deformation response, and the extension of these theories to encompass two dimensional idealizations, structural idealizations, and rigid body behavior. There are three companion reports that describe the problem formulation, constitutive modeling, and finite element technology for nonlinear continuum mechanics systems.
Mechanosensitive Channels: Insights from Continuum-Based Simulations
Tang, Yuye; Yoo, Jejoong; Yethiraj, Arun; Cui, Qiang; Chen, Xi
2009-01-01
Mechanotransduction plays an important role in regulating cell functions and it is an active topic of research in biophysics. Despite recent advances in experimental and numerical techniques, the intrinsic multiscale nature imposes tremendous challenges for revealing the working mechanisms of mechanosensitive channels. Recently, a continuum-mechanics based hierarchical modeling and simulation framework has been established and applied to study the mechanical responses and gating behaviors of a prototypical mechanosensitive channel, the mechanosensitive channel of large conductance (MscL) in bacteria Escherichia coli (E. coli), from which several putative gating mechanisms have been tested and new insights deduced. This article reviews these latest findings using the continuum mechanics framework and suggests possible improvements for future simulation studies. This computationally efficient and versatile continuum-mechanics based protocol is poised to make contributions to the study of a variety of mechanobiology problems. PMID:18787764
Peridynamics with LAMMPS : a user guide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehoucq, Richard B.; Silling, Stewart Andrew; Seleson, Pablo
Peridynamics is a nonlocal extension of classical continuum mechanics. The discrete peridynamic model has the same computational structure as a molecular dynamics model. This document provides a brief overview of the peridynamic model of a continuum, then discusses how the peridynamic model is discretized within LAMMPS. An example problem is also included.
NASA Technical Reports Server (NTRS)
Harik, V. M.
2001-01-01
Limitations in the validity of the continuum beam model for carbon nanotubes (NTs) and nanorods are examined. Applicability of all assumptions used in the model is restricted by the two criteria for geometric parameters that characterize the structure of NTs. The key non-dimensional parameters that control the NT buckling behavior are derived via dimensional analysis of the nanomechanical problem. A mechanical law of geometric similitude for NT buckling is extended from continuum mechanics for different molecular structures. A model applicability map, where two classes of beam-like NTs are identified, is constructed for distinct ranges of non-dimensional parameters. Expressions for the critical buckling loads and strains are tailored for two classes of NTs and compared with the data provided by the molecular dynamics simulations. copyright 2001 Elsevier Science Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, Alexander E., E-mail: mayer@csu.ru, E-mail: mayer.al.evg@gmail.com; Mayer, Polina N.
2015-07-21
A continuum model of the metal melt fracture is formulated on the basis of the continuum mechanics and theory of metastable liquid. A character of temperature and strain rate dependences of the tensile strength that is predicted by the continuum model is verified, and parameters of the model are fitted with the use of the results of the molecular dynamics simulations for ultra-high strain rates (≥1–10/ns). A comparison with experimental data from literature is also presented for Al and Ni melts. Using the continuum model, the dynamic tensile strength of initially uniform melts of Al, Cu, Ni, Fe, Ti, andmore » Pb within a wide range of strain rates (from 1–10/ms to 100/ns) and temperatures (from melting temperature up to 70–80% of critical temperature) is calculated. The model is applied to numerical investigation of a problem of the high-current electron irradiation of Al, Cu, and Fe targets.« less
Peridynamics with LAMMPS : a user guide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehoucq, Richard B.; Silling, Stewart Andrew; Plimpton, Steven James
2008-01-01
Peridynamics is a nonlocal formulation of continuum mechanics. The discrete peridynamic model has the same computational structure as a molecular dynamic model. This document details the implementation of a discrete peridynamic model within the LAMMPS molecular dynamic code. This document provides a brief overview of the peridynamic model of a continuum, then discusses how the peridynamic model is discretized, and overviews the LAMMPS implementation. A nontrivial example problem is also included.
Mechanics of shear rupture applied to earthquake zones
NASA Technical Reports Server (NTRS)
Li, Victor C.
1986-01-01
The mechanics of shear slippage and rupture in rock masses are reviewed. The essential ideas in fracture mechanics are summarized emphasizing the interpretation and relation among the fracture parameters in shear cracks. The slip-weakening model is described. The general formulation of the problem of nonuniform slip distribution in a continuum is covered.
NASA Astrophysics Data System (ADS)
Zamanov, A. D.
2001-09-01
A problem on the forced vibrations of a rectangular composite plate with locally curved structures is formulated using the exact three-dimensional equations of continuum mechanics and continuum theory. A technique for numerical solution of the problem is developed based on the semianalytic finite-element method. Numerical results are given for the stress distribution in the plate under forced vibrations. The results obtained are analyzed to study the effect of the curvature in the structure of the plate on the distribution of stress amplitudes. It is shown that the curvatures change significantly the stress pattern under either static or dynamic loading
Continuum Thermodynamics - Part II: Applications and Examples
NASA Astrophysics Data System (ADS)
Albers, Bettina; Wilmanski, Krzysztof
The intention by writing Part II of the book on continuum thermodynamics was the deepening of some issues covered in Part I as well as a development of certain skills in dealing with practical problems of oscopic processes. However, the main motivation for this part is the presentation of main facets of thermodynamics which appear when interdisciplinary problems are considered. There are many monographs on the subjects of solid mechanics and thermomechanics, on fluid mechanics and on coupled fields but most of them cover only special problems in great details which are characteristic for the chosen field. It is rather seldom that relations between these fields are discussed. This concerns, for instance, large deformations of the skeleton of porous materials with diffusion (e.g. lungs), couplings of deformable particles with the fluid motion in suspensions, couplings of adsorption processes and chemical reactions in immiscible mixtures with diffusion, various multi-component aspects of the motion, e.g. of avalanches, such as segregation processes, etc...
Application of micropolar plasticity to post failure analysis in geomechanics
NASA Astrophysics Data System (ADS)
Manzari, Majid T.
2004-08-01
A micropolar elastoplastic model for soils is formulated and a series of finite element analyses are employed to demonstrate the use of a micropolar continuum in overcoming the numerical difficulties encountered in application of finite element method in standard Cauchy-Boltzmann continuum. Three examples of failure analysis involving a deep excavation, shallow foundation, and a retaining wall are presented. In all these cases, it is observed that the length scale introduced in the polar continuum regularizes the incremental boundary value problem and allows the numerical simulation to be continued until a clear collapse mechanism is achieved. The issue of grain size effect is also discussed. Copyright
NASA Astrophysics Data System (ADS)
Sander, Oliver; Schiela, Anton
2014-12-01
We formulate the static mechanical coupling of a geometrically exact Cosserat rod to a nonlinearly elastic continuum. In this setting, appropriate coupling conditions have to connect a one-dimensional model with director variables to a three-dimensional model without directors. Two alternative coupling conditions are proposed, which correspond to two different configuration trace spaces. For both, we show existence of solutions of the coupled problems, using the direct method of the calculus of variations. From the first-order optimality conditions, we also derive the corresponding conditions for the dual variables. These are then interpreted in mechanical terms.
Continuum-Kinetic Models and Numerical Methods for Multiphase Applications
NASA Astrophysics Data System (ADS)
Nault, Isaac Michael
This thesis presents a continuum-kinetic approach for modeling general problems in multiphase solid mechanics. In this context, a continuum model refers to any model, typically on the macro-scale, in which continuous state variables are used to capture the most important physics: conservation of mass, momentum, and energy. A kinetic model refers to any model, typically on the meso-scale, which captures the statistical motion and evolution of microscopic entitites. Multiphase phenomena usually involve non-negligible micro or meso-scopic effects at the interfaces between phases. The approach developed in the thesis attempts to combine the computational performance benefits of a continuum model with the physical accuracy of a kinetic model when applied to a multiphase problem. The approach is applied to modeling a single particle impact in Cold Spray, an engineering process that intimately involves the interaction of crystal grains with high-magnitude elastic waves. Such a situation could be classified a multiphase application due to the discrete nature of grains on the spatial scale of the problem. For this application, a hyper elasto-plastic model is solved by a finite volume method with approximate Riemann solver. The results of this model are compared for two types of plastic closure: a phenomenological macro-scale constitutive law, and a physics-based meso-scale Crystal Plasticity model.
NASA Astrophysics Data System (ADS)
Gruber, Ralph; Periaux, Jaques; Shaw, Richard Paul
Recent advances in computational mechanics are discussed in reviews and reports. Topics addressed include spectral superpositions on finite elements for shear banding problems, strain-based finite plasticity, numerical simulation of hypersonic viscous continuum flow, constitutive laws in solid mechanics, dynamics problems, fracture mechanics and damage tolerance, composite plates and shells, contact and friction, metal forming and solidification, coupling problems, and adaptive FEMs. Consideration is given to chemical flows, convection problems, free boundaries and artificial boundary conditions, domain-decomposition and multigrid methods, combustion and thermal analysis, wave propagation, mixed and hybrid FEMs, integral-equation methods, optimization, software engineering, and vector and parallel computing.
A continuum damage model for delaminations in laminated composites
NASA Astrophysics Data System (ADS)
Zou, Z.; Reid, S. R.; Li, S.
2003-02-01
Delamination, a typical mode of interfacial damage in laminated composites, has been considered in the context of continuum damage mechanics in this paper. Interfaces where delaminations could occur are introduced between the constituent layers. A simple but appropriate continuum damage representation is proposed. A single scalar damage parameter is employed and the degradation of the interface stiffness is established. Use has been made of the concept of a damage surface to derive the damage evolution law. The damage surface is constructed so that it combines the conventional stress-based and fracture-mechanics-based failure criteria which take account of mode interaction in mixed-mode delamination problems. The damage surface shrinks as damage develops and leads to a softening interfacial constitutive law. By adjusting the shrinkage rate of the damage surface, various interfacial constitutive laws found in the literature can be reproduced. An incremental interfacial constitutive law is also derived for use in damage analysis of laminated composites, which is a non-linear problem in nature. Numerical predictions for problems involving a DCB specimen under pure mode I delamination and mixed-mode delamination in a split beam are in good agreement with available experimental data or analytical solutions. The model has also been applied to the prediction of the failure strength of overlap ply-blocking specimens. The results have been compared with available experimental and alternative theoretical ones and discussed fully.
Evolution of plastic anisotropy for high-strain-rate computations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiferl, S.K.; Maudlin, P.J.
1994-12-01
A model for anisotropic material strength, and for changes in the anisotropy due to plastic strain, is described. This model has been developed for use in high-rate, explicit, Lagrangian multidimensional continuum-mechanics codes. The model handles anisotropies in single-phase materials, in particular the anisotropies due to crystallographic texture--preferred orientations of the single-crystal grains. Textural anisotropies, and the changes in these anisotropies, depend overwhelmingly no the crystal structure of the material and on the deformation history. The changes, particularly for a complex deformations, are not amenable to simple analytical forms. To handle this problem, the material model described here includes a texturemore » code, or micromechanical calculation, coupled to a continuum code. The texture code updates grain orientations as a function of tensor plastic strain, and calculates the yield strength in different directions. A yield function is fitted to these yield points. For each computational cell in the continuum simulation, the texture code tracks a particular set of grain orientations. The orientations will change due to the tensor strain history, and the yield function will change accordingly. Hence, the continuum code supplies a tensor strain to the texture code, and the texture code supplies an updated yield function to the continuum code. Since significant texture changes require relatively large strains--typically, a few percent or more--the texture code is not called very often, and the increase in computer time is not excessive. The model was implemented, using a finite-element continuum code and a texture code specialized for hexagonal-close-packed crystal structures. The results for several uniaxial stress problems and an explosive-forming problem are shown.« less
Crack Tip Dislocation Nucleation in FCC Solids
NASA Astrophysics Data System (ADS)
Knap, J.; Sieradzki, K.
1999-02-01
We present results of molecular dynamic simulations aimed at examining crack tip dislocation emission in fcc solids. The results are analyzed in terms of recent continuum formulations of this problem. In mode II, Au, Pd, and Pt displayed a new unanticipated mechanism of crack tip dislocation emission involving the creation of a pair of Shockley partials on a slip plane one plane below the crack plane. In mode I, for all the materials examined, Rice's continuum formulation [J. Mech. Phys. Solids 40, 239 (1992)] underestimated the stress intensity for dislocation emission by almost a factor of 2. Surface stress corrections to the emission criterion brought the agreement between continuum predictions and simulations to within 20%.
Mechanism of the Cassie-Wenzel transition via the atomistic and continuum string methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giacomello, Alberto, E-mail: alberto.giacomello@uniroma1.it; Casciola, Carlo Massimo; Meloni, Simone, E-mail: simone.meloni@epfl.ch
2015-03-14
The string method is a general and flexible strategy to compute the most probable transition path for an activated process (rare event). We apply here the atomistic string method in the density field to the Cassie-Wenzel transition, a central problem in the field of superhydrophobicity. We discuss in detail the mechanism of wetting of a submerged hydrophobic cavity of nanometer size and its dependence on the geometry of the cavity. Furthermore, we analyze the algorithmic analogies between the continuum “interface” string method and CREaM [Giacomello et al., Phys. Rev. Lett. 109, 226102 (2012)], a method inspired by the string thatmore » allows for a faster and simpler computation of the mechanism and of the free-energy profiles of the wetting process.« less
Finsler-Geometric Continuum Mechanics
2016-05-01
gravitation and astrophysical applications. Physical Review D. 1977;16:1643–1663. 50. Ozakin A, Yavari A. A geometric theory of thermal stresses...to physical problems of tensile fracture, shear localization, and cavitation in solid bodies. The pseudo-Finsler approach is demonstrated to be more...Weyl-type transformation of the fundamental tensor, analytical and numerical solutions of representative example problems offer new physical insight
SEACAS Theory Manuals: Part 1. Problem Formulation in Nonlinear Solid Mechancis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attaway, S.W.; Laursen, T.A.; Zadoks, R.I.
1998-08-01
This report gives an introduction to the basic concepts and principles involved in the formulation of nonlinear problems in solid mechanics. By way of motivation, the discussion begins with a survey of some of the important sources of nonlinearity in solid mechanics applications, using wherever possible simple one dimensional idealizations to demonstrate the physical concepts. This discussion is then generalized by presenting generic statements of initial/boundary value problems in solid mechanics, using linear elasticity as a template and encompassing such ideas as strong and weak forms of boundary value problems, boundary and initial conditions, and dynamic and quasistatic idealizations. Themore » notational framework used for the linearized problem is then extended to account for finite deformation of possibly inelastic solids, providing the context for the descriptions of nonlinear continuum mechanics, constitutive modeling, and finite element technology given in three companion reports.« less
Conformational Modeling of Continuum Structures in Robotics and Structural Biology: A Review
Chirikjian, G. S.
2016-01-01
Hyper-redundant (or snakelike) manipulators have many more degrees of freedom than are required to position and orient an object in space. They have been employed in a variety of applications ranging from search-and-rescue to minimally invasive surgical procedures, and recently they even have been proposed as solutions to problems in maintaining civil infrastructure and the repair of satellites. The kinematic and dynamic properties of snakelike robots are captured naturally using a continuum backbone curve equipped with a naturally evolving set of reference frames, stiffness properties, and mass density. When the snakelike robot has a continuum architecture, the backbone curve corresponds with the physical device itself. Interestingly, these same modeling ideas can be used to describe conformational shapes of DNA molecules and filamentous protein structures in solution and in cells. This paper reviews several classes of snakelike robots: (1) hyper-redundant manipulators guided by backbone curves; (2) flexible steerable needles; and (3) concentric tube continuum robots. It is then shown how the same mathematical modeling methods used in these robotics contexts can be used to model molecules such as DNA. All of these problems are treated in the context of a common mathematical framework based on the differential geometry of curves, continuum mechanics, and variational calculus. Both coordinate-dependent Euler-Lagrange formulations and coordinate-free Euler-Poincaré approaches are reviewed. PMID:27030786
Conformational Modeling of Continuum Structures in Robotics and Structural Biology: A Review.
Chirikjian, G S
Hyper-redundant (or snakelike) manipulators have many more degrees of freedom than are required to position and orient an object in space. They have been employed in a variety of applications ranging from search-and-rescue to minimally invasive surgical procedures, and recently they even have been proposed as solutions to problems in maintaining civil infrastructure and the repair of satellites. The kinematic and dynamic properties of snakelike robots are captured naturally using a continuum backbone curve equipped with a naturally evolving set of reference frames, stiffness properties, and mass density. When the snakelike robot has a continuum architecture, the backbone curve corresponds with the physical device itself. Interestingly, these same modeling ideas can be used to describe conformational shapes of DNA molecules and filamentous protein structures in solution and in cells. This paper reviews several classes of snakelike robots: (1) hyper-redundant manipulators guided by backbone curves; (2) flexible steerable needles; and (3) concentric tube continuum robots. It is then shown how the same mathematical modeling methods used in these robotics contexts can be used to model molecules such as DNA. All of these problems are treated in the context of a common mathematical framework based on the differential geometry of curves, continuum mechanics, and variational calculus. Both coordinate-dependent Euler-Lagrange formulations and coordinate-free Euler-Poincaré approaches are reviewed.
Mécanique de Nonéquilibre à la Californienne
NASA Astrophysics Data System (ADS)
Hoover, Wm. G.
1997-02-01
Academic freedom, combined with generous travel grants and tax-supported computing, made possible my 35 years' study of many-body problems. Here I first review some of the many high points of those years. I then describe recent work - with Harald Posch, Oyeon Kum, my wife Carol, Siegfried Hess, and Vic Castillo - which links together particle and continuum mechanics through “SPAM”, Smooth Particle Applied Mechanics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, D.H.; Helms, K.L.E.; Hurtado, L.D.
1999-04-06
A model is developed herein for predicting the mechanical response of inelastic crystalline solids. Particular emphasis is given to the development of microstructural damage along grain boundaries, and the interaction of this damage with intragranular inelasticity caused by dislocation dissipation mechanisms. The model is developed within the concepts of continuum mechanics, with special emphasis on the development of internal boundaries in the continuum by utilizing a cohesive zone model based on fracture mechanics. In addition, the crystalline grains are assumed to be characterized by nonlinear viscoplastic mechanical material behavior in order to account for dislocation generation and migration. Due tomore » the nonlinearities introduced by the crack growth and viscoplastic constitution, a numerical algorithm is utilized to solve representative problems. Implementation of the model to a finite element computational algorithm is therefore briefly described. Finally, sample calculations are presented for a polycrystalline titanium alloy with particular focus on effects of scale on the predicted response.« less
Computerized symbolic manipulation in structural mechanics Progress and potential
NASA Technical Reports Server (NTRS)
Noor, A. K.; Andersen, C. M.
1978-01-01
Status and recent applications of computerized symbolic manipulation to structural mechanics problems are summarized. The applications discussed include; (1) generation of characteristic arrays of finite elements; (2) evaluation of effective stiffness and mass coefficients of continuum models for repetitive lattice structures; and (3) application of Rayleigh-Ritz technique to free vibration analysis of laminated composite elliptic plates. The major advantages of using computerized symbolic manipulation in each of these applications are outlined. A number of problem areas which limit the realization of the full potential of computerized symbolic manipulation in structural mechanics are examined and some of the means of alleviating them are discussed.
An Optimization-based Atomistic-to-Continuum Coupling Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, Derek; Bochev, Pavel B.; Luskin, Mitchell
2014-08-21
In this paper, we present a new optimization-based method for atomistic-to-continuum (AtC) coupling. The main idea is to cast the latter as a constrained optimization problem with virtual Dirichlet controls on the interfaces between the atomistic and continuum subdomains. The optimization objective is to minimize the error between the atomistic and continuum solutions on the overlap between the two subdomains, while the atomistic and continuum force balance equations provide the constraints. Separation, rather then blending of the atomistic and continuum problems, and their subsequent use as constraints in the optimization problem distinguishes our approach from the existing AtC formulations. Finally,more » we present and analyze the method in the context of a one-dimensional chain of atoms modeled using a linearized two-body potential with next-nearest neighbor interactions.« less
Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations
NASA Astrophysics Data System (ADS)
Peshkov, Ilya; Pavelka, Michal; Romenski, Evgeniy; Grmela, Miroslav
2018-01-01
Continuum mechanics with dislocations, with the Cattaneo-type heat conduction, with mass transfer, and with electromagnetic fields is put into the Hamiltonian form and into the form of the Godunov-type system of the first-order, symmetric hyperbolic partial differential equations (SHTC equations). The compatibility with thermodynamics of the time reversible part of the governing equations is mathematically expressed in the former formulation as degeneracy of the Hamiltonian structure and in the latter formulation as the existence of a companion conservation law. In both formulations the time irreversible part represents gradient dynamics. The Godunov-type formulation brings the mathematical rigor (the local well posedness of the Cauchy initial value problem) and the possibility to discretize while keeping the physical content of the governing equations (the Godunov finite volume discretization).
Teaching Continuum Mechanics in a Mechanical Engineering Program
ERIC Educational Resources Information Center
Liu, Yucheng
2011-01-01
This paper introduces a graduate course, continuum mechanics, which is designed for and taught to graduate students in a Mechanical Engineering (ME) program. The significance of continuum mechanics in engineering education is demonstrated and the course structure is described. Methods used in teaching this course such as topics, class…
NASA Technical Reports Server (NTRS)
Avis, L. M.
1976-01-01
Tensor methods are used to express the continuum equations of motion in general curvilinear, moving, and deforming coordinate systems. The space-time tensor formulation is applicable to situations in which, for example, the boundaries move and deform. Placing a coordinate surface on such a boundary simplifies the boundary condition treatment. The space-time tensor formulation is also applicable to coordinate systems with coordinate surfaces defined as surfaces of constant pressure, density, temperature, or any other scalar continuum field function. The vanishing of the function gradient components along the coordinate surfaces may simplify the set of governing equations. In numerical integration of the equations of motion, the freedom of motion of the coordinate surfaces provides a potential for enhanced resolution of the continuum field function. An example problem of an incompressible, inviscid fluid with a top free surface is considered, where the surfaces of constant pressure (including the top free surface) are coordinate surfaces.
Application of an enriched FEM technique in thermo-mechanical contact problems
NASA Astrophysics Data System (ADS)
Khoei, A. R.; Bahmani, B.
2018-02-01
In this paper, an enriched FEM technique is employed for thermo-mechanical contact problem based on the extended finite element method. A fully coupled thermo-mechanical contact formulation is presented in the framework of X-FEM technique that takes into account the deformable continuum mechanics and the transient heat transfer analysis. The Coulomb frictional law is applied for the mechanical contact problem and a pressure dependent thermal contact model is employed through an explicit formulation in the weak form of X-FEM method. The equilibrium equations are discretized by the Newmark time splitting method and the final set of non-linear equations are solved based on the Newton-Raphson method using a staggered algorithm. Finally, in order to illustrate the capability of the proposed computational model several numerical examples are solved and the results are compared with those reported in literature.
NASA Astrophysics Data System (ADS)
Zamanov, A. D.
2002-01-01
Based on the exact three-dimensional equations of continuum mechanics and the Akbarov-Guz' continuum theory, the problem on forced vibrations of a rectangular plate made of a composite material with a periodically curved structure is formulated. The plate is rigidly fixed along the Ox 1 axis. Using the semi-analytic method of finite elements, a numerical procedure is elaborated for investigating this problem. The numerical results on the effect of structural curvings on the stress distribution in the plate under forced vibrations are analyzed. It is shown that the disturbances of the stress σ22 in a hinge-supported plate are greater than in a rigidly fixed one. Also, it is found that the structural curvings considerably affect the stress distribution in plates both under static and dynamic loading.
Numerical modelling of bifurcation and localisation in cohesive-frictional materials
NASA Astrophysics Data System (ADS)
de Borst, René
1991-12-01
Methods are reviewed for analysing highly localised failure and bifurcation modes in discretised mechanical systems as typically arise in numerical simulations of failure in soils, rocks, metals and concrete. By the example of a plane-strain biaxial test it is shown that strain softening and lack of normality in elasto-plastic constitutive equations and the ensuing loss of ellipticity of the governing field equations cause a pathological mesh dependence of numerical solutions for such problems, thus rendering the results effectively meaningless. The need for introduction of higher-order continuum models is emphasised to remedy this shortcoming of the conventional approach. For one such a continuum model, namely the unconstrained Cosserat continuum, it is demonstrated that meaningful and convergent solutions (in the sense that a finite width of the localisation zone is computed upon mesh refinement) can be obtained.
NASA Technical Reports Server (NTRS)
Kapania, Rakesh K.; Liu, Youhua
1998-01-01
The use of continuum models for the analysis of discrete built-up complex aerospace structures is an attractive idea especially at the conceptual and preliminary design stages. But the diversity of available continuum models and hard-to-use qualities of these models have prevented them from finding wide applications. In this regard, Artificial Neural Networks (ANN or NN) may have a great potential as these networks are universal approximators that can realize any continuous mapping, and can provide general mechanisms for building models from data whose input-output relationship can be highly nonlinear. The ultimate aim of the present work is to be able to build high fidelity continuum models for complex aerospace structures using the ANN. As a first step, the concepts and features of ANN are familiarized through the MATLAB NN Toolbox by simulating some representative mapping examples, including some problems in structural engineering. Then some further aspects and lessons learned about the NN training are discussed, including the performances of Feed-Forward and Radial Basis Function NN when dealing with noise-polluted data and the technique of cross-validation. Finally, as an example of using NN in continuum models, a lattice structure with repeating cells is represented by a continuum beam whose properties are provided by neural networks.
Passing waves from atomistic to continuum
NASA Astrophysics Data System (ADS)
Chen, Xiang; Diaz, Adrian; Xiong, Liming; McDowell, David L.; Chen, Youping
2018-02-01
Progress in the development of coupled atomistic-continuum methods for simulations of critical dynamic material behavior has been hampered by a spurious wave reflection problem at the atomistic-continuum interface. This problem is mainly caused by the difference in material descriptions between the atomistic and continuum models, which results in a mismatch in phonon dispersion relations. In this work, we introduce a new method based on atomistic dynamics of lattice coupled with a concurrent atomistic-continuum method to enable a full phonon representation in the continuum description. This permits the passage of short-wavelength, high-frequency phonon waves from the atomistic to continuum regions. The benchmark examples presented in this work demonstrate that the new scheme enables the passage of all allowable phonons through the atomistic-continuum interface; it also preserves the wave coherency and energy conservation after phonons transport across multiple atomistic-continuum interfaces. This work is the first step towards developing a concurrent atomistic-continuum simulation tool for non-equilibrium phonon-mediated thermal transport in materials with microstructural complexity.
Computational performance of Free Mesh Method applied to continuum mechanics problems
YAGAWA, Genki
2011-01-01
The free mesh method (FMM) is a kind of the meshless methods intended for particle-like finite element analysis of problems that are difficult to handle using global mesh generation, or a node-based finite element method that employs a local mesh generation technique and a node-by-node algorithm. The aim of the present paper is to review some unique numerical solutions of fluid and solid mechanics by employing FMM as well as the Enriched Free Mesh Method (EFMM), which is a new version of FMM, including compressible flow and sounding mechanism in air-reed instruments as applications to fluid mechanics, and automatic remeshing for slow crack growth, dynamic behavior of solid as well as large-scale Eigen-frequency of engine block as applications to solid mechanics. PMID:21558753
Numerical simulation of a flow-like landslide using the particle finite element method
NASA Astrophysics Data System (ADS)
Zhang, Xue; Krabbenhoft, Kristian; Sheng, Daichao; Li, Weichao
2015-01-01
In this paper, an actual landslide process that occurred in Southern China is simulated by a continuum approach, the particle finite element method (PFEM). The PFEM attempts to solve the boundary-value problems in the framework of solid mechanics, satisfying the governing equations including momentum conservation, displacement-strain relation, constitutive relation as well as the frictional contact between the sliding mass and the slip surface. To warrant the convergence behaviour of solutions, the problem is formulated as a mathematical programming problem, while the particle finite element procedure is employed to tackle the issues of mesh distortion and free-surface evolution. The whole procedure of the landslide, from initiation, sliding to deposition, is successfully reproduced by the continuum approach. It is shown that the density of the mass has little influence on the sliding process in the current landslide, whereas both the geometry and the roughness of the slip surface play important roles. Comparative studies are also conducted where a satisfactory agreement is obtained.
Receptivity and Bypass Dynamics
NASA Technical Reports Server (NTRS)
Lasseigne, D. G.; Criminale, W. O.; Joslin, R. D.; Jackson, T. L.
1999-01-01
Problems concerning laminar-turbulent transition are addressed by solving a series of initial value problems. Solutions to the temporal, initial-value problem .with an inhomogeneous forcing term imposed upon the flow are sought. It is shown that: (1) A transient disturbance lying located outside of the boundary layer can lead to the growth of an unstable Tollmein-Schlicting wave; (2) A resonance with the continuous spectrum may provide a mechanism for bypass transition; and (3) The continuum modes of a disturbance feed directly into the Tollmein-Schlicting wave downstream through non-parallel effects.
PowderSim: Lagrangian Discrete and Mesh-Free Continuum Simulation Code for Cohesive Soils
NASA Technical Reports Server (NTRS)
Johnson, Scott; Walton, Otis; Settgast, Randolph
2013-01-01
PowderSim is a calculation tool that combines a discrete-element method (DEM) module, including calibrated interparticle-interaction relationships, with a mesh-free, continuum, SPH (smoothed-particle hydrodynamics) based module that utilizes enhanced, calibrated, constitutive models capable of mimicking both large deformations and the flow behavior of regolith simulants and lunar regolith under conditions anticipated during in situ resource utilization (ISRU) operations. The major innovation introduced in PowderSim is to use a mesh-free method (SPH-based) with a calibrated and slightly modified critical-state soil mechanics constitutive model to extend the ability of the simulation tool to also address full-scale engineering systems in the continuum sense. The PowderSim software maintains the ability to address particle-scale problems, like size segregation, in selected regions with a traditional DEM module, which has improved contact physics and electrostatic interaction models.
SEACAS Theory Manuals: Part III. Finite Element Analysis in Nonlinear Solid Mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laursen, T.A.; Attaway, S.W.; Zadoks, R.I.
1999-03-01
This report outlines the application of finite element methodology to large deformation solid mechanics problems, detailing also some of the key technological issues that effective finite element formulations must address. The presentation is organized into three major portions: first, a discussion of finite element discretization from the global point of view, emphasizing the relationship between a virtual work principle and the associated fully discrete system, second, a discussion of finite element technology, emphasizing the important theoretical and practical features associated with an individual finite element; and third, detailed description of specific elements that enjoy widespread use, providing some examples ofmore » the theoretical ideas already described. Descriptions of problem formulation in nonlinear solid mechanics, nonlinear continuum mechanics, and constitutive modeling are given in three companion reports.« less
Temperature Dependences of Mechanisms Responsible for the Water-Vapor Continuum Absorption
NASA Technical Reports Server (NTRS)
Ma, Qiancheng
2014-01-01
The water-vapor continuum absorption plays an important role in the radiative balance in the Earth's atmosphere. It has been experimentally shown that for ambient atmospheric conditions, the continuum absorption scales quadratically with the H2O number density and has a strong, negative temperature dependence (T dependence). Over the years, there have been three different theoretical mechanisms postulated: far-wings of allowed transition lines, water dimers, and collision-induced absorption. The first mechanism proposed was the accumulation of absorptions from the far-wings of the strong allowed transition lines. Later, absorption by water dimers was proposed, and this mechanism provides a qualitative explanation for the continuum characters mentioned above. Despite the improvements in experimental data, at present there is no consensus on which mechanism is primarily responsible for the continuum absorption.
Relativistic viscoelastic fluid mechanics.
Fukuma, Masafumi; Sakatani, Yuho
2011-08-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Relativistic viscoelastic fluid mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuma, Masafumi; Sakatani, Yuho
2011-08-15
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for themore » propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.« less
NASA Technical Reports Server (NTRS)
Hofmann, R.
1980-01-01
The STEALTH code system, which solves large strain, nonlinear continuum mechanics problems, was rigorously structured in both overall design and programming standards. The design is based on the theoretical elements of analysis while the programming standards attempt to establish a parallelism between physical theory, programming structure, and documentation. These features have made it easy to maintain, modify, and transport the codes. It has also guaranteed users a high level of quality control and quality assurance.
Buckling of graded coatings: A continuum model
NASA Astrophysics Data System (ADS)
Chiu, Tz-Cheng
2000-12-01
Requirements for the protection of hot section components in many high temperature applications such as earth-to-orbit winged planes and advanced turbine systems have led to the application of thermal barrier coatings (TBCs) that utilize ceramic coatings on metal substrates. An alternative concept to homogeneous ceramic coatings is the functionally graded materials (FGM) in which the composition of the coating is intentionally graded to improve the bonding strength and to reduce the magnitude of the residual and thermal stresses. A widely observed failure mode in such layered systems is known to be interface cracking that leads to spallation fracture. In most cases, the final stage of the failure process for a thin coating appears to be due to buckling instability under thermally or mechanically induced compressive stress. The objective of this study is to develop a solution to the buckling instability problem by using continuum elasticity rather than a structural mechanics approach. The emphasis in the solution will be on the investigation of the effect of material inhomogeneity in graded coatings on the instability load, the postbuckling behavior, and fracture mechanics parameters such as the stress intensity factors and strain energy release rate. In this analysis, a nonlinear continuum theory is employed to examine the interface crack problem. The analytical solution of the instability problem permits the study of the effect of material inhomogeneity upon the inception of buckling and establishes benchmark results for the numerical solutions of related problems. To study the postbuckling behavior and to calculate the stress intensity factors and strain energy release rate a geometrically nonlinear finite element procedure with enriched crack-tip element is developed. Both plane strain and axisymmetric interface crack problems in TBCs with either homogeneous or graded coating are then considered by using the finite element procedure. It is assumed that the applied load is a uniform temperature drop. Comparison of the results with that obtained from the plate approximation shows that because of the higher constraints the plate theory predicts greater instability strains and lower strain energy release rates. It is also observed that compared with a homogeneous coating the graded coating gives lower strain energy release rate because of the lower thermal residual stress and higher bending stiffness. (Abstract shortened by UMI.)
Continuum modeling of twinning, amorphization, and fracture: theory and numerical simulations
NASA Astrophysics Data System (ADS)
Clayton, J. D.; Knap, J.
2018-03-01
A continuum mechanical theory is used to model physical mechanisms of twinning, solid-solid phase transformations, and failure by cavitation and shear fracture. Such a sequence of mechanisms has been observed in atomic simulations and/or experiments on the ceramic boron carbide. In the present modeling approach, geometric quantities such as the metric tensor and connection coefficients can depend on one or more director vectors, also called internal state vectors. After development of the general nonlinear theory, a first problem class considers simple shear deformation of a single crystal of this material. For homogeneous fields or stress-free states, algebraic systems or ordinary differential equations are obtained that can be solved by numerical iteration. Results are in general agreement with atomic simulation, without introduction of fitted parameters. The second class of problems addresses the more complex mechanics of heterogeneous deformation and stress states involved in deformation and failure of polycrystals. Finite element calculations, in which individual grains in a three-dimensional polycrystal are fully resolved, invoke a partially linearized version of the theory. Results provide new insight into effects of crystal morphology, activity or inactivity of different inelasticity mechanisms, and imposed deformation histories on strength and failure of the aggregate under compression and shear. The importance of incorporation of inelastic shear deformation in realistic models of amorphization of boron carbide is noted, as is a greater reduction in overall strength of polycrystals containing one or a few dominant flaws rather than many diffusely distributed microcracks.
When push comes to shove: Exclusion processes with nonlocal consequences
NASA Astrophysics Data System (ADS)
Almet, Axel A.; Pan, Michael; Hughes, Barry D.; Landman, Kerry A.
2015-11-01
Stochastic agent-based models are useful for modelling collective movement of biological cells. Lattice-based random walk models of interacting agents where each site can be occupied by at most one agent are called simple exclusion processes. An alternative motility mechanism to simple exclusion is formulated, in which agents are granted more freedom to move under the compromise that interactions are no longer necessarily local. This mechanism is termed shoving. A nonlinear diffusion equation is derived for a single population of shoving agents using mean-field continuum approximations. A continuum model is also derived for a multispecies problem with interacting subpopulations, which either obey the shoving rules or the simple exclusion rules. Numerical solutions of the derived partial differential equations compare well with averaged simulation results for both the single species and multispecies processes in two dimensions, while some issues arise in one dimension for the multispecies case.
Bottom-up modeling of damage in heterogeneous quasi-brittle solids
NASA Astrophysics Data System (ADS)
Rinaldi, Antonio
2013-03-01
The theoretical modeling of multisite cracking in quasi-brittle materials is a complex damage problem, hard to model with traditional methods of fracture mechanics due to its multiscale nature and to strain localization induced by microcracks interaction. Macroscale "effective" elastic models can be conveniently applied if a suitable Helmholtz free energy function is identified for a given material scenario. Del Piero and Truskinovsky (Continuum Mech Thermodyn 21:141-171, 2009), among other authors, investigated macroscale continuum solutions capable of matching—in a top-down view—the phenomenology of the damage process for quasi-brittle materials regardless of the microstructure. On the contrary, this paper features a physically based solution method that starts from the direct consideration of the microscale properties and, in a bottom-up view, recovers a continuum elastic description. This procedure is illustrated for a simple one-dimensional problem of this type, a bar modeled stretched by an axial displacement, where the bar is modeled as a 2D random lattice of decohesive spring elements of finite strength. The (microscale) data from simulations are used to identify the "exact" (macro-) damage parameter and to build up the (macro-) Helmholtz function for the equivalent elastic model, bridging the macroscale approach by Del Piero and Truskinovsky. The elastic approach, coupled with microstructural knowledge, becomes a more powerful tool to reproduce a broad class of macroscopic material responses by changing the convexity-concavity of the Helmholtz energy. The analysis points out that mean-field statistics are appropriate prior to damage localization but max-field statistics are better suited in the softening regime up to failure, where microstrain fluctuation needs to be incorporated in the continuum model. This observation is of consequence to revise mean-field damage models from literature and to calibrate Nth gradient continuum models.
Sierra/Solid Mechanics 4.48 User's Guide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merewether, Mark Thomas; Crane, Nathan K; de Frias, Gabriel Jose
Sierra/SolidMechanics (Sierra/SM) is a Lagrangian, three-dimensional code for finite element analysis of solids and structures. It provides capabilities for explicit dynamic, implicit quasistatic and dynamic analyses. The explicit dynamics capabilities allow for the efficient and robust solution of models with extensive contact subjected to large, suddenly applied loads. For implicit problems, Sierra/SM uses a multi-level iterative solver, which enables it to effectively solve problems with large deformations, nonlinear material behavior, and contact. Sierra/SM has a versatile library of continuum and structural elements, and a large library of material models. The code is written for parallel computing environments enabling scalable solutionsmore » of extremely large problems for both implicit and explicit analyses. It is built on the SIERRA Framework, which facilitates coupling with other SIERRA mechanics codes. This document describes the functionality and input syntax for Sierra/SM.« less
A Geometrically Nonlinear Phase Field Theory of Brittle Fracture
2014-10-01
of crack propagation. Philos Mag 91:75–95 Sun X, Khaleel M (2004) Modeling of glass fracture damage using continuum damage mechanics -static spherical...elastic fracture mechanics ). Engineering finite element (FE) simula- tions often invoke continuum damage mechanics the- ories, wherein the tangent...stiffness of a material ele- ment degrades as “damage” accumulates.Conventional continuum damage mechanics theories (Clayton and McDowell 2003, 2004; Sun and
Mizuno, Yuko; Purcell, David W.; Knowlton, Amy R.; Wilkinson, James D.; Gourevitch, Marc N.; Knight, Kelly R.
2015-01-01
Limited investigations have been conducted on syndemics and HIV continuum of care outcomes. Using baseline data from a multi-site, randomized controlled study of HIV-positive injection drug users (n=1052), we examined whether psychosocial factors co-occurred, and whether these factors were additively associated with behavioral and HIV continuum of care outcomes. Experiencing one type of psychosocial problem was significantly (p<0.05) associated with an increased odds of experiencing another type of problem. Persons with 3 or more psychosocial problems were significantly more likely to report sexual and injection risk behaviors and were less likely to be adherent to HIV medications. Persons with 4 or more problems were less likely to be virally suppressed. Reporting any problems was associated with not currently taking HIV medications. Our findings highlight the association of syndemics not only with risk behaviors, but also with outcomes related to the continuum of care for HIV-positive persons. PMID:25249392
Model Reduction in Biomechanics
NASA Astrophysics Data System (ADS)
Feng, Yan
The mechanical characteristic of the cell is primarily performed by the cytoskeleton. Microtubules, actin, and intermediate filaments are the three main cytoskeletal polymers. Of these, microtubules are the stiffest and have multiple functions within a cell that include: providing tracks for intracellular transport, transmitting the mechanical force necessary for cell division during mitosis, and providing sufficient stiffness for propulsion in flagella and cilia. Microtubule mechanics has been studied by a variety of methods: detailed molecular dynamics (MD), coarse-grained models, engineering type models, and elastic continuum models. In principle, atomistic MD simulations should be able to predict all desired mechanical properties of a single molecule, however, in practice the large computational resources are required to carry out a simulation of larger biomolecular system. Due to the limited accessibility using even the most ambitious all-atom models and the demand for the multiscale molecular modeling and simulation, the emergence of the reduced models is critically important to provide the capability for investigating the biomolecular dynamics that are critical to many biological processes. Then the coarse-grained models, such as elastic network models and anisotropic network models, have been shown to bequite accurate in predicting microtubule mechanical response, but still requires significant computational resources. On the other hand, the microtubule is treated as comprising materials with certain continuum material properties. Such continuum models, especially Euler-Bernoulli beam models, are often used to extract mechanical parameters from experimental results. The microtubule is treated as comprising materials with certain continuum material properties. Such continuum models, especially Euler-Bernoulli beam models in which the biomolecular system is assumed as homogeneous isotropic materials with solid cross-sections, are often used to extract mechanical parameters from experimental results. However, in real biological world, these homogeneous and isotropic assumptions are usually invalidate. Thus, instead of using hypothesized model, a specific continuum model at mesoscopic scale can be introduced based upon data reduction of the results from molecular simulations at atomistic level. Once a continuum model is established, it can provide details on the distribution of stresses and strains induced within the biomolecular system which is useful in determining the distribution and transmission of these forces to the cytoskeletal and sub-cellular components, and help us gain a better understanding in cell mechanics. A data-driven model reduction approach to the problem of microtubule mechanics as an application is present, a beam element is constructed for microtubules based upon data reduction of the results from molecular simulation of the carbon backbone chain of alphabeta-tubulin dimers. The data base of mechanical responses to various types of loads from molecular simulation is reduced to dominant modes. The dominant modes are subsequently used to construct the stiffness matrix of a beam element that captures the anisotropic behavior and deformation mode coupling that arises from a microtubule's spiral structure. In contrast to standard Euler-Bernoulli or Timoshenko beam elements, the link between forces and node displacements results not from hypothesized deformation behavior, but directly from the data obtained by molecular scale simulation. Differences between the resulting microtubule data-driven beam model (MTDDBM) and standard beam elements are presented, with a focus on coupling of bending, stretch, shear deformations. The MTDDBM is just as economical to use as a standard beam element, and allows accurate reconstruction of the mechanical behavior of structures within a cell as exemplified in a simple model of a component element of the mitotic spindle.
Topology and layout optimization of discrete and continuum structures
NASA Technical Reports Server (NTRS)
Bendsoe, Martin P.; Kikuchi, Noboru
1993-01-01
The basic features of the ground structure method for truss structure an continuum problems are described. Problems with a large number of potential structural elements are considered using the compliance of the structure as the objective function. The design problem is the minimization of compliance for a given structural weight, and the design variables for truss problems are the cross-sectional areas of the individual truss members, while for continuum problems they are the variable densities of material in each of the elements of the FEM discretization. It is shown how homogenization theory can be applied to provide a relation between material density and the effective material properties of a periodic medium with a known microstructure of material and voids.
Applicability of the Continuum-Shell Theories to the Mechanics of Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Harik, V. M.; Gates, T. S.; Nemeth, M. P.
2002-01-01
Validity of the assumptions relating the applicability of continuum shell theories to the global mechanical behavior of carbon nanotubes is examined. The present study focuses on providing a basis that can be used to qualitatively assess the appropriateness of continuum-shell models for nanotubes. To address the effect of nanotube structure on their deformation, all nanotube geometries are divided into four major classes that require distinct models. Criteria for the applicability of continuum models are presented. The key parameters that control the buckling strains and deformation modes of these classes of nanotubes are determined. In an analogy with continuum mechanics, mechanical laws of geometric similitude are presented. A parametric map is constructed for a variety of nanotube geometries as a guide for the applicability of different models. The continuum assumptions made in representing a nanotube as a homogeneous thin shell are analyzed to identify possible limitations of applying shell theories and using their bifurcation-buckling equations at the nano-scale.
NASA Astrophysics Data System (ADS)
Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott
2017-12-01
Hybrid molecular-continuum simulation techniques afford a number of advantages for problems in the rapidly burgeoning area of nanoscale engineering and technology, though they are typically quite complex to implement and limited to single-component fluid systems. We describe an approach for modeling multicomponent hydrodynamic problems spanning multiple length scales when using particle-based descriptions for both the finely resolved (e.g., molecular dynamics) and coarse-grained (e.g., continuum) subregions within an overall simulation domain. This technique is based on the multiscale methodology previously developed for mesoscale binary fluids [N. D. Petsev, L. G. Leal, and M. S. Shell, J. Chem. Phys. 144, 084115 (2016)], simulated using a particle-based continuum method known as smoothed dissipative particle dynamics. An important application of this approach is the ability to perform coupled molecular dynamics (MD) and continuum modeling of molecularly miscible binary mixtures. In order to validate this technique, we investigate multicomponent hybrid MD-continuum simulations at equilibrium, as well as non-equilibrium cases featuring concentration gradients.
Microfluidics: Science and Engineering at the Edge of the Continuum
NASA Astrophysics Data System (ADS)
Breuer, Kenny
2002-11-01
The widespread growth of microengineering and the development of a new generation of micron- and nanometer scale diagnostic techniques has focussed much recent attention on the mechanics of fluids at the micron and sub-micron scale. Challenges with both scientific and engineering relevance have been raised by this activity, ranging from the prediction of viscous damping and lubrication effects in MEMS to the design of microengines to the understanding of bacterial propulsion. Identifying and addressing these challenges form the basis of this talk. >From a scientific perspective, a question that refuses to die is that of the applicability of the continuum hypothesis, and the possible existence of new physical phenomena only observable in small systems. To be brief, the reports of the demise of the Navier-Stokes equations are greatly exaggerated and to illustrate this we will review the more recent work on near-continuum fluid mechanics in micron and sub-micron scale devices with an emphasis on our own experiments on the breakdown of the continuum description in both gaseous and liquid flows. From an engineering perspective, the tight coupling between fluids, structures and manufacturing result in flows characterized by unfamiliar parameter regimes and unconventional geometries. We will look at several examples of such microfluidic engineering, drawn from MEMS (inertial instruments, microengines) and biology (bacterial propulsion) that illustrate the the unique design challenges that we encounter in microfluidic devices and the solutions (and lack of solutions) to these problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Benjamin Whiting; Crane, Nathan K.; Heinstein, Martin W.
2011-03-01
Adagio is a Lagrangian, three-dimensional, implicit code for the analysis of solids and structures. It uses a multi-level iterative solver, which enables it to solve problems with large deformations, nonlinear material behavior, and contact. It also has a versatile library of continuum and structural elements, and an extensive library of material models. Adagio is written for parallel computing environments, and its solvers allow for scalable solutions of very large problems. Adagio uses the SIERRA Framework, which allows for coupling with other SIERRA mechanics codes. This document describes the functionality and input structure for Adagio.
NASA Astrophysics Data System (ADS)
Lollino, Piernicola; Andriani, Gioacchino Francesco
2017-07-01
The strength decay that occurs in the post-peak stage, under low confinement stress, represents a key factor of the stress-strain behaviour of rocks. However, for soft rocks this issue is generally underestimated or even neglected in the solution of boundary value problems, as for example those concerning the stability of underground cavities or rocky cliffs. In these cases, the constitutive models frequently used in limit equilibrium analyses or more sophisticated numerical calculations are, respectively, rigid-plastic or elastic-perfectly plastic. In particular, most of commercial continuum-based numerical codes propose a variety of constitutive models, including elasticity, elasto-plasticity, strain-softening and elasto-viscoplasticity, which are not exhaustive in simulating the progressive failure mechanisms affecting brittle rock materials, these being characterized by material detachment and crack opening and propagation. As a consequence, a numerical coupling with mechanical joint propagation is needed to cope with fracture mechanics. Therefore, continuum-based applications that treat the simulation of the failure processes of intact rock masses at low stress levels may need the adoption of numerical techniques capable of implementing fracture mechanics and rock brittleness concepts, as it is shown in this paper. This work is aimed at highlighting, for some applications of rock mechanics, the essential role of post-peak brittleness of soft rocks by means of the application of a hybrid finite-discrete element method. This method allows for a proper simulation of the brittle rock behaviour and the related mechanism of fracture propagation. In particular, the paper presents two ideal problems, represented by a shallow underground cave and a vertical cliff, for which the evolution of the stability conditions is investigated by comparing the solutions obtained implementing different brittle material responses with those resulting from the assumption of perfectly plastic behaviour. To this purpose, a series of petrophysical and mechanical tests were conducted on samples of soft calcarenite belonging to the Calcarenite di Gravina Fm. (Apulia, Southern Italy), focusing specific attention on the post-peak behaviour of the material under three types of loading (compression, indirect tension and shear). Typical geometrical features representative of real rock engineering problems observed in Southern Italy were assumed in the problems examined. The numerical results indicate the impact of soft rock brittleness in the assessment of stability and highlight the need for the adoption of innovative numerical techniques to analyse these types of problems properly.
Perspectives on biological growth and remodeling
Ambrosi, D.; Ateshian, G. A.; Arruda, E. M.; Cowin, S. C.; Dumais, J.; Goriely, A.; Holzapfel, G. A.; Humphrey, J. D.; Kemkemer, R.; Kuhl, E.; Olberding, J. E.; Taber, L. A.; Garikipati, K.
2011-01-01
The continuum mechanical treatment of biological growth and remodeling has attracted considerable attention over the past fifteen years. Many aspects of these problems are now well-understood, yet there remain areas in need of significant development from the standpoint of experiments, theory, and computation. In this perspective paper we review the state of the field and highlight open questions, challenges, and avenues for further development. PMID:21532929
Analysis of an optimization-based atomistic-to-continuum coupling method for point defects
Olson, Derek; Shapeev, Alexander V.; Bochev, Pavel B.; ...
2015-11-16
Here, we formulate and analyze an optimization-based Atomistic-to-Continuum (AtC) coupling method for problems with point defects. Application of a potential-based atomistic model near the defect core enables accurate simulation of the defect. Away from the core, where site energies become nearly independent of the lattice position, the method switches to a more efficient continuum model. The two models are merged by minimizing the mismatch of their states on an overlap region, subject to the atomistic and continuum force balance equations acting independently in their domains. We prove that the optimization problem is well-posed and establish error estimates.
NASA Technical Reports Server (NTRS)
Hashin, Z. (Editor); Herakovich, C. T. (Editor)
1983-01-01
The present conference on the mechanics of composites discusses microstructure's influence on particulate and short fiber composites' thermoelastic and transport properties, the elastoplastic deformation of composites, constitutive equations for viscoplastic composites, the plasticity and fatigue of metal matrix composites, laminate damping mechanisms, the micromechanical modeling of Kevlar/epoxy composites' time-dependent failure, the variational characterization of waves in composites, and computational methods for eigenvalue problems in composite design. Also discussed are the elastic response of laminates, elastic coupling nonlinear effects in unsymmetrical laminates, elasticity solutions for laminate problems having stress singularities, the mechanics of bimodular composite structures, the optimization of laminated plates and shells, NDE for laminates, the role of matrix cracking in the continuum constitutive behavior of a damaged composite ply, and the energy release rates of various microcracks in short fiber composites.
Petsev, Nikolai Dimitrov; Leal, L. Gary; Shell, M. Scott
2017-12-21
Hybrid molecular-continuum simulation techniques afford a number of advantages for problems in the rapidly burgeoning area of nanoscale engineering and technology, though they are typically quite complex to implement and limited to single-component fluid systems. We describe an approach for modeling multicomponent hydrodynamic problems spanning multiple length scales when using particle-based descriptions for both the finely-resolved (e.g. molecular dynamics) and coarse-grained (e.g. continuum) subregions within an overall simulation domain. This technique is based on the multiscale methodology previously developed for mesoscale binary fluids [N. D. Petsev, L. G. Leal, and M. S. Shell, J. Chem. Phys. 144, 84115 (2016)], simulatedmore » using a particle-based continuum method known as smoothed dissipative particle dynamics (SDPD). An important application of this approach is the ability to perform coupled molecular dynamics (MD) and continuum modeling of molecularly miscible binary mixtures. In order to validate this technique, we investigate multicomponent hybrid MD-continuum simulations at equilibrium, as well as non-equilibrium cases featuring concentration gradients.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petsev, Nikolai Dimitrov; Leal, L. Gary; Shell, M. Scott
Hybrid molecular-continuum simulation techniques afford a number of advantages for problems in the rapidly burgeoning area of nanoscale engineering and technology, though they are typically quite complex to implement and limited to single-component fluid systems. We describe an approach for modeling multicomponent hydrodynamic problems spanning multiple length scales when using particle-based descriptions for both the finely-resolved (e.g. molecular dynamics) and coarse-grained (e.g. continuum) subregions within an overall simulation domain. This technique is based on the multiscale methodology previously developed for mesoscale binary fluids [N. D. Petsev, L. G. Leal, and M. S. Shell, J. Chem. Phys. 144, 84115 (2016)], simulatedmore » using a particle-based continuum method known as smoothed dissipative particle dynamics (SDPD). An important application of this approach is the ability to perform coupled molecular dynamics (MD) and continuum modeling of molecularly miscible binary mixtures. In order to validate this technique, we investigate multicomponent hybrid MD-continuum simulations at equilibrium, as well as non-equilibrium cases featuring concentration gradients.« less
Atomization simulations using an Eulerian-VOF-Lagrangian method
NASA Technical Reports Server (NTRS)
Chen, Yen-Sen; Shang, Huan-Min; Liaw, Paul; Chen, C. P.
1994-01-01
This paper summarizes the technical development and validation of a multiphase computational fluid dynamics (CFD) numerical method using the volume-of-fluid (VOF) model and a Lagrangian tracking model which can be employed to analyze general multiphase flow problems with free surface mechanism. The gas-liquid interface mass, momentum and energy conservations are modeled by continuum surface mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed flow regimes. The objectives of the present study are to develop and verify the fractional volume-of-fluid cell partitioning approach into a predictor-corrector algorithm and to demonstrate the effectiveness of the present innovative approach by simulating benchmark problems including the coaxial jet atomization.
The application of continuum damage mechanics to solve problems in geodynamics
NASA Astrophysics Data System (ADS)
Manaker, David Martin
Deformation within the Earth's lithosphere is largely controlled by the rheology of the rock. Ductile behavior in rocks is often associated with plasticity due to dislocation motion or diffusion under high pressures and temperatures. However, ductile behavior can also occur in brittle materials. An example would be cataclastic flow associated with folding at shallow crustal levels, steep subduction zones, and large-scale deformation at plate boundaries. Engineers utilize damage mechanics to model the continuum deformation of brittle materials. We utilize a modified form of damage mechanics where damage represents a reduction in frictional strength and includes a yield stress. We use this empirical approach to simulate the bending of the lithosphere. We use numerical simulations to obtain elastostatic solutions for plate bending and where the stress exceeds a yield stress, we apply damage to reduce the elastic moduli. Damage is calculated at each time step by a power-law relationship of the ratio of the yield stress to stress and the yield strain to the strain. To test our method, we apply our damage rheology to a plate deforming under applied shear, a constant bending moment, and a constant load. We simulate a wide range of behaviors from slow relaxation to instantaneous failure, over timescales that span six orders of magnitude. Stress relaxation produces elastic-perfectly plastic behavior in cases where failure does not occur. For cases of failure, we observe a rapid increase in damage leading to failure. The changes in the rate of damage accumulation in failure cases are similar to the changes in b-values of acoustic emissions observed in triaxial compression tests of fractured rock and b-value changes prior to some large earthquakes. Thus continuum damage mechanics can simulate ductile behavior due to brittle mechanisms as well as observations of laboratory experiments and seismicity.
Preventing Severe Problem Behavior in Young Children: The Behavior Education Program
ERIC Educational Resources Information Center
Hawken, Leanne S.; Johnston, Susan S.
2007-01-01
Best practice in preventing severe problem behavior in schools involves implementing a continuum of effective behavior support. This continuum includes primary prevention strategies implemented with all students, secondary prevention strategies for students at-risk, and tertiary interventions for students who engage in the most severe problem…
Yan, Zhi; Jiang, Liying
2017-01-01
Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented. PMID:28336861
Yan, Zhi; Jiang, Liying
2017-01-26
Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented.
Multiresolution molecular mechanics: Implementation and efficiency
NASA Astrophysics Data System (ADS)
Biyikli, Emre; To, Albert C.
2017-01-01
Atomistic/continuum coupling methods combine accurate atomistic methods and efficient continuum methods to simulate the behavior of highly ordered crystalline systems. Coupled methods utilize the advantages of both approaches to simulate systems at a lower computational cost, while retaining the accuracy associated with atomistic methods. Many concurrent atomistic/continuum coupling methods have been proposed in the past; however, their true computational efficiency has not been demonstrated. The present work presents an efficient implementation of a concurrent coupling method called the Multiresolution Molecular Mechanics (MMM) for serial, parallel, and adaptive analysis. First, we present the features of the software implemented along with the associated technologies. The scalability of the software implementation is demonstrated, and the competing effects of multiscale modeling and parallelization are discussed. Then, the algorithms contributing to the efficiency of the software are presented. These include algorithms for eliminating latent ghost atoms from calculations and measurement-based dynamic balancing of parallel workload. The efficiency improvements made by these algorithms are demonstrated by benchmark tests. The efficiency of the software is found to be on par with LAMMPS, a state-of-the-art Molecular Dynamics (MD) simulation code, when performing full atomistic simulations. Speed-up of the MMM method is shown to be directly proportional to the reduction of the number of the atoms visited in force computation. Finally, an adaptive MMM analysis on a nanoindentation problem, containing over a million atoms, is performed, yielding an improvement of 6.3-8.5 times in efficiency, over the full atomistic MD method. For the first time, the efficiency of a concurrent atomistic/continuum coupling method is comprehensively investigated and demonstrated.
NASA Technical Reports Server (NTRS)
Rybicki, G. B.; Hummer, D. G.
1991-01-01
A method is presented for solving multilevel transfer problems when nonoverlapping lines and background continuum are present and active continuum transfer is absent. An approximate lambda operator is employed to derive linear, 'preconditioned', statistical-equilibrium equations. A method is described for finding the diagonal elements of the 'true' numerical lambda operator, and therefore for obtaining the coefficients of the equations. Iterations of the preconditioned equations, in conjunction with the transfer equation's formal solution, are used to solve linear equations. Some multilevel problems are considered, including an eleven-level neutral helium atom. Diagonal and tridiagonal approximate lambda operators are utilized in the problems to examine the convergence properties of the method, and it is found to be effective for the line transfer problems.
Completed Beltrami-Michell Formulation in Polar Coordinates
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Hopkins, Dale A.
2005-01-01
A set of conditions had not been formulated on the boundary of an elastic continuum since the time of Saint-Venant. This limitation prevented the formulation of a direct stress calculation method in elasticity for a continuum with a displacement boundary condition. The missed condition, referred to as the boundary compatibility condition, is now formulated in polar coordinates. The augmentation of the new condition completes the Beltrami-Michell formulation in polar coordinates. The completed formulation that includes equilibrium equations and a compatibility condition in the field as well as the traction and boundary compatibility condition is derived from the stationary condition of the variational functional of the integrated force method. The new method is illustrated by solving an example of a mixed boundary value problem for mechanical as well as thermal loads.
NASA Astrophysics Data System (ADS)
Dumbser, Michael; Peshkov, Ilya; Romenski, Evgeniy; Zanotti, Olindo
2017-11-01
In this paper, we propose a new unified first order hyperbolic model of Newtonian continuum mechanics coupled with electro-dynamics. The model is able to describe the behavior of moving elasto-plastic dielectric solids as well as viscous and inviscid fluids in the presence of electro-magnetic fields. It is actually a very peculiar feature of the proposed PDE system that viscous fluids are treated just as a special case of elasto-plastic solids. This is achieved by introducing a strain relaxation mechanism in the evolution equations of the distortion matrix A, which in the case of purely elastic solids maps the current configuration to the reference configuration. The model also contains a hyperbolic formulation of heat conduction as well as a dissipative source term in the evolution equations for the electric field given by Ohm's law. Via formal asymptotic analysis we show that in the stiff limit, the governing first order hyperbolic PDE system with relaxation source terms tends asymptotically to the well-known viscous and resistive magnetohydrodynamics (MHD) equations. Furthermore, a rigorous derivation of the model from variational principles is presented, together with the transformation of the Euler-Lagrange differential equations associated with the underlying variational problem from Lagrangian coordinates to Eulerian coordinates in a fixed laboratory frame. The present paper hence extends the unified first order hyperbolic model of Newtonian continuum mechanics recently proposed in [110,42] to the more general case where the continuum is coupled with electro-magnetic fields. The governing PDE system is symmetric hyperbolic and satisfies the first and second principle of thermodynamics, hence it belongs to the so-called class of symmetric hyperbolic thermodynamically compatible systems (SHTC), which have been studied for the first time by Godunov in 1961 [61] and later in a series of papers by Godunov and Romenski [67,69,119]. An important feature of the proposed model is that the propagation speeds of all physical processes, including dissipative processes, are finite. The model is discretized using high order accurate ADER discontinuous Galerkin (DG) finite element schemes with a posteriori subcell finite volume limiter and using high order ADER-WENO finite volume schemes. We show numerical test problems that explore a rather large parameter space of the model ranging from ideal MHD, viscous and resistive MHD over pure electro-dynamics to moving dielectric elastic solids in a magnetic field.
Fundamentals of continuum mechanics – classical approaches and new trends
NASA Astrophysics Data System (ADS)
Altenbach, H.
2018-04-01
Continuum mechanics is a branch of mechanics that deals with the analysis of the mechanical behavior of materials modeled as a continuous manifold. Continuum mechanics models begin mostly by introducing of three-dimensional Euclidean space. The points within this region are defined as material points with prescribed properties. Each material point is characterized by a position vector which is continuous in time. Thus, the body changes in a way which is realistic, globally invertible at all times and orientation-preserving, so that the body cannot intersect itself and as transformations which produce mirror reflections are not possible in nature. For the mathematical formulation of the model it is also assumed to be twice continuously differentiable, so that differential equations describing the motion may be formulated. Finally, the kinematical relations, the balance equations, the constitutive and evolution equations and the boundary and/or initial conditions should be defined. If the physical fields are non-smooth jump conditions must be taken into account. The basic equations of continuum mechanics are presented following a short introduction. Additionally, some examples of solid deformable continua will be discussed within the presentation. Finally, advanced models of continuum mechanics will be introduced. The paper is dedicated to Alexander Manzhirov’s 60th birthday.
A continuum of sociotechnical requirements for patient-centered problem lists.
Collins, Sarah; Tsivkin, Kira; Hongsermeier, Tonya; Dubois, David; Nandigam, Hari Krishna; Rocha, Roberto A
2013-01-01
Specific requirements for patient-centered health information technology remain ill-defined. To create operational definitions of patient-centered problem lists, we propose a continuum of sociotechnical requirements with five stages: 1) Intradisciplinary Care Planning: Viewing and searching for problems by discipline; 2) Multi-disciplinary Care Planning: Categorizing problem states to meet discipline-specific needs; 3) Interdisciplinary Care Planning: Sharing and linking problems between disciplines; 4) Integrated and Coordinated Care Planning: Associating problems with assessments, tasks, interventions and outcomes across disciplines for coordination, knowledge development, and reporting; and 5) Patient-Centered Care Planning: Engaging patients in identification of problems and maintenance of their problem list.
[Continuity and discontinuity of the geomerida: the bionomic and biotic aspects].
Kafanov, A I
2005-01-01
The view of the spatial structure of the geomerida (Earth's life cover) as a continuum that prevails in modern phytocoenology is mostly determined by a physiognomic (landscape-bionomic) discrimination of vegetation components. In this connection, geography of life forms appears as subject of the landscapebionomic biogeography. In zoocoenology there is a tendency of synthesis of alternative concepts based on the assumption that there are no absolute continuum and absolute discontinuum in the organic nature. The problem of continuum and discontinuum of living cover being problem of scale aries from fractal structure of geomerida. This problem arises from fractal nature of the spatial structure of geomerida. The continuum mainly belongs to regularities of topological order. At regional and subregional scale the continuum of biochores is rather rare. The objective evidences of relative discontinuity of the living cover are determined by significant alterations of species diversity at the regional, subregional and even topological scale Alternatively to conventionally discriminated units in physionomically continuous vegetation, the same biotic complexes, represented as operational units of biogeographical and biocenological zoning, are distinguished repeatedly and independently by different researchers. An area occupied by certain flora (fauna, biota) could be considered as elementary unit of biotic diversity (elementary biotic complex).
Numerical modeling of spray combustion with an advanced VOF method
NASA Technical Reports Server (NTRS)
Chen, Yen-Sen; Shang, Huan-Min; Shih, Ming-Hsin; Liaw, Paul
1995-01-01
This paper summarizes the technical development and validation of a multiphase computational fluid dynamics (CFD) numerical method using the volume-of-fluid (VOF) model and a Lagrangian tracking model which can be employed to analyze general multiphase flow problems with free surface mechanism. The gas-liquid interface mass, momentum and energy conservation relationships are modeled by continuum surface mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed flow regimes. The objectives of the present study are to develop and verify the fractional volume-of-fluid cell partitioning approach into a predictor-corrector algorithm and to demonstrate the effectiveness of the present approach by simulating benchmark problems including laminar impinging jets, shear coaxial jet atomization and shear coaxial spray combustion flows.
NASA Technical Reports Server (NTRS)
Glass, Christopher E.
2000-01-01
An uncoupled Computational Fluid Dynamics-Direct Simulation Monte Carlo (CFD-DSMC) technique is developed and applied to provide solutions for continuum jets interacting with rarefied external flows. The technique is based on a correlation of the appropriate Bird breakdown parameter for a transitional-rarefied condition that defines a surface within which the continuum solution is unaffected by the external flow-jet interaction. The method is applied to two problems to assess and demonstrate its validity; one of a jet interaction in the transitional-rarefied flow regime and the other in the moderately rarefied regime. Results show that the appropriate Bird breakdown surface for uncoupling the continuum and non-continuum solutions is a function of a non-dimensional parameter relating the momentum flux and collisionality between the two interacting flows. The correlation is exploited for the simulation of a jet interaction modeled for an experimental condition in the transitional-rarefied flow regime and the validity of the correlation is demonstrated. The uncoupled technique is also applied to an aerobraking flight condition for the Mars Global Surveyor spacecraft with attitude control system jet interaction. Aerodynamic yawing moment coefficients for cases without and with jet interaction at various angles-of-attack were predicted, and results from the present method compare well with values published previously. The flow field and surface properties are analyzed in some detail to describe the mechanism by which the jet interaction affects the aerodynamics.
Across the Continuum of Attention Skills: A Twin Study of the SWAN ADHD Rating Scale
ERIC Educational Resources Information Center
Polderman, Tinca J. C.; Derks, Eske M.; Hudziak, Jim J.; Verhulst, Frank C.; Posthuma, Danielle; Boomsma, Dorret I.
2007-01-01
Introduction: Most behavior checklists for attention problems or attention deficit/hyperactivity disorder (ADHD) such as the Child Behavior Checklist (CBCL) have a narrow range of scores, focusing on the extent to which problems are present. It has been proposed that measuring attention on a continuum, from positive attention skills to attention…
NASA Astrophysics Data System (ADS)
Balankin, Alexander S.; Bory-Reyes, Juan; Shapiro, Michael
2016-02-01
One way to deal with physical problems on nowhere differentiable fractals is the mapping of these problems into the corresponding problems for continuum with a proper fractal metric. On this way different definitions of the fractal metric were suggested to account for the essential fractal features. In this work we develop the metric differential vector calculus in a three-dimensional continuum with a non-Euclidean metric. The metric differential forms and Laplacian are introduced, fundamental identities for metric differential operators are established and integral theorems are proved by employing the metric version of the quaternionic analysis for the Moisil-Teodoresco operator, which has been introduced and partially developed in this paper. The relations between the metric and conventional operators are revealed. It should be emphasized that the metric vector calculus developed in this work provides a comprehensive mathematical formalism for the continuum with any suitable definition of fractal metric. This offers a novel tool to study physics on fractals.
Steady-state shear flows via nonequilibrium molecular dynamics and smooth-particle applied mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Posch, H.A.; Hoover, W.G.; Kum, O.
1995-08-01
We simulate both microscopic and macroscopic shear flows in two space dimensions using nonequilibrium molecular dynamics and smooth-particle applied mechanics. The time-reversible {ital microscopic} equations of motion are isomorphic to the smooth-particle description of inviscid {ital macroscopic} continuum mechanics. The corresponding microscopic particle interactions are relatively weak and long ranged. Though conventional Green-Kubo theory suggests instability or divergence in two-dimensional flows, we successfully define and measure a finite shear viscosity coefficient by simulating stationary plane Couette flow. The special nature of the weak long-ranged smooth-particle functions corresponds to an unusual kind of microscopic transport. This microscopic analog is mainly kinetic,more » even at high density. For the soft Lucy potential which we use in the present work, nearly all the system energy is potential, but the resulting shear viscosity is nearly all kinetic. We show that the measured shear viscosities can be understood, in terms of a simple weak-scattering model, and that this understanding is useful in assessing the usefulness of continuum simulations using the smooth-particle method. We apply that method to the Rayleigh-Benard problem of thermally driven convection in a gravitational field.« less
Stress, deformation, conservation, and rheology: a survey of key concepts in continuum mechanics
Major, J.J.
2013-01-01
This chapter provides a brief survey of key concepts in continuum mechanics. It focuses on the fundamental physical concepts that underlie derivations of the mathematical formulations of stress, strain, hydraulic head, pore-fluid pressure, and conservation equations. It then shows how stresses are linked to strain and rates of distortion through some special cases of idealized material behaviors. The goal is to equip the reader with a physical understanding of key mathematical formulations that anchor continuum mechanics in order to better understand theoretical studies published in geomorphology.
Prediction of Size Effects in Notched Laminates Using Continuum Damage Mechanics
NASA Technical Reports Server (NTRS)
Camanho, D. P.; Maimi, P.; Davila, C. G.
2007-01-01
This paper examines the use of a continuum damage model to predict strength and size effects in notched carbon-epoxy laminates. The effects of size and the development of a fracture process zone before final failure are identified in an experimental program. The continuum damage model is described and the resulting predictions of size effects are compared with alternative approaches: the point stress and the inherent flaw models, the Linear-Elastic Fracture Mechanics approach, and the strength of materials approach. The results indicate that the continuum damage model is the most accurate technique to predict size effects in composites. Furthermore, the continuum damage model does not require any calibration and it is applicable to general geometries and boundary conditions.
Thellamurege, Nandun M; Cui, Fengchao; Li, Hui
2013-08-28
A combined quantum mechanical/molecular mechanical/continuum (QM/MMpol/C) style method is developed for time-dependent density functional theory (TDDFT, including long-range corrected TDDFT) method, induced dipole polarizable force field, and induced surface charge continuum model. Induced dipoles and induced charges are included in the TDDFT equations to solve for the transition energies, relaxed density, and transition density. Analytic gradient is derived and implemented for geometry optimization and molecular dynamics simulation. QM/MMpol/C style DFT and TDDFT methods are used to study the hydrogen bonding of the photoactive yellow protein chromopore in ground state and excited state.
Valentin, J; Sprenger, M; Pflüger, D; Röhrle, O
2018-05-01
Investigating the interplay between muscular activity and motion is the basis to improve our understanding of healthy or diseased musculoskeletal systems. To be able to analyze the musculoskeletal systems, computational models are used. Albeit some severe modeling assumptions, almost all existing musculoskeletal system simulations appeal to multibody simulation frameworks. Although continuum-mechanical musculoskeletal system models can compensate for some of these limitations, they are essentially not considered because of their computational complexity and cost. The proposed framework is the first activation-driven musculoskeletal system model, in which the exerted skeletal muscle forces are computed using 3-dimensional, continuum-mechanical skeletal muscle models and in which muscle activations are determined based on a constraint optimization problem. Numerical feasibility is achieved by computing sparse grid surrogates with hierarchical B-splines, and adaptive sparse grid refinement further reduces the computational effort. The choice of B-splines allows the use of all existing gradient-based optimization techniques without further numerical approximation. This paper demonstrates that the resulting surrogates have low relative errors (less than 0.76%) and can be used within forward simulations that are subject to constraint optimization. To demonstrate this, we set up several different test scenarios in which an upper limb model consisting of the elbow joint, the biceps and triceps brachii, and an external load is subjected to different optimization criteria. Even though this novel method has only been demonstrated for a 2-muscle system, it can easily be extended to musculoskeletal systems with 3 or more muscles. Copyright © 2018 John Wiley & Sons, Ltd.
On deformation of complex continuum immersed in a plane space
NASA Astrophysics Data System (ADS)
Kovalev, V. A.; Murashkin, E. V.; Radayev, Y. N.
2018-05-01
The present paper is devoted to mathematical modelling of complex continua deformations considered as immersed in an external plane space. The complex continuum is defined as a differential manifold supplied with metrics induced by the external space. A systematic derivation of strain tensors by notion of isometric immersion of the complex continuum into a plane space of a higher dimension is proposed. Problem of establishing complete systems of irreducible objective strain and extrastrain tensors for complex continuum immersed in an external plane space is resolved. The solution to the problem is obtained by methods of the field theory and the theory of rational algebraic invariants. Strain tensors of the complex continuum are derived as irreducible algebraic invariants of contravariant vectors of the external space emerging as functional arguments in the complex continuum action density. Present analysis is restricted to rational algebraic invariants. Completeness of the considered systems of rational algebraic invariants is established for micropolar elastic continua. Rational syzygies for non-quadratic invariants are discussed. Objective strain tensors (indifferent to frame rotations in the external plane space) for micropolar continuum are alternatively obtained by properly combining multipliers of polar decompositions of deformation and extra-deformation gradients. The latter is realized only for continua immersed in a plane space of the equal mathematical dimension.
Towards Understanding the Mechanism of Receptivity and Bypass Dynamics in Laminar Boundary Layers
NASA Technical Reports Server (NTRS)
Lasseigne, D. G.; Criminale, W. O.; Joslin, R. D.; Jackson, T. L.
1999-01-01
Three problems concerning laminar-turbulent transition are addressed by solving a series of initial value problems. The first problem is the calculation of resonance within the continuous spectrum of the Blasius boundary layer. The second is calculation of the growth of Tollmien-Schlichting waves that are a direct result of disturbances that only lie outside of the boundary layer. And, the third problem is the calculation of non-parallel effects. Together, these problems represent a unified approach to the study of freestream disturbance effects that could lead to transition. Solutions to the temporal, initial-value problem with an inhomogeneous forcing term imposed upon the flow is sought. By solving a series of problems, it is shown that: A transient disturbance lying completely outside of the boundary layer can lead to the growth of an unstable Tollmien-Schlichting wave. A resonance with the continuous spectrum leads to strong amplification that may provide a mechanism for bypass transition once nonlinear effects are considered. A disturbance with a very weak unstable Tollmien-Schlichting wave can lead to a much stronger Tollmien-Schlichting wave downstream, if the original disturbance has a significant portion of its energy in the continuum modes.
Enabling fast, stable and accurate peridynamic computations using multi-time-step integration
Lindsay, P.; Parks, M. L.; Prakash, A.
2016-04-13
Peridynamics is a nonlocal extension of classical continuum mechanics that is well-suited for solving problems with discontinuities such as cracks. This paper extends the peridynamic formulation to decompose a problem domain into a number of smaller overlapping subdomains and to enable the use of different time steps in different subdomains. This approach allows regions of interest to be isolated and solved at a small time step for increased accuracy while the rest of the problem domain can be solved at a larger time step for greater computational efficiency. Lastly, performance of the proposed method in terms of stability, accuracy, andmore » computational cost is examined and several numerical examples are presented to corroborate the findings.« less
Using geologic structures to constrain constitutive laws not accessible in the laboratory
Nevitt, Johanna; Warren, Jessica M.; Kumamoto, Kathryn M.; Pollard, David D.
2018-01-01
In this essay, we explore a central problem of structural geology today, and in the foreseeable future, which is the determination of constitutive laws governing rock deformation to produce geologic structures. Although laboratory experiments provide much needed data and insights about constitutive laws, these experiments cannot cover the range of conditions and compositions relevant to the formation of geologic structures. We advocate that structural geologists address this limitation by interpreting natural experiments, documented with field and microstructural data, using continuum mechanical models that enable the deduction of constitutive laws. To put this procedure into a historical context, we review the founding of structural geology by James Hutton in the late 18th century, and the seminal contributions to continuum mechanics from Newton to Cauchy that provide the tools to model geologic structures. The procedure is illustrated with two examples drawn from recent and on-going field investigations of crustal and mantle lithologies. We conclude by pointing to future research opportunities that will engage structural geologists in the pursuit of constitutive laws during the 21st century.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slaby, Christoph; Könies, Axel; Kleiber, Ralf
2016-09-15
The resonant interaction of shear Alfvén waves with energetic particles is investigated numerically in tokamak and stellarator geometry using a non-perturbative MHD-kinetic hybrid approach. The focus lies on toroidicity-induced Alfvén eigenmodes (TAEs), which are most easily destabilized by a fast-particle population in fusion plasmas. While the background plasma is treated within the framework of an ideal-MHD theory, the drive of the fast particles, as well as Landau damping of the background plasma, is modelled using the drift-kinetic Vlasov equation without collisions. Building on analytical theory, a fast numerical tool, STAE-K, has been developed to solve the resulting eigenvalue problem usingmore » a Riccati shooting method. The code, which can be used for parameter scans, is applied to tokamaks and the stellarator Wendelstein 7-X. High energetic-ion pressure leads to large growth rates of the TAEs and to their conversion into kinetically modified TAEs and kinetic Alfvén waves via continuum interaction. To better understand the physics of this conversion mechanism, the connections between TAEs and the shear Alfvén wave continuum are examined. It is shown that, when energetic particles are present, the continuum deforms substantially and the TAE frequency can leave the continuum gap. The interaction of the TAE with the continuum leads to singularities in the eigenfunctions. To further advance the physical model and also to eliminate the MHD continuum together with the singularities in the eigenfunctions, a fourth-order term connected to radiative damping has been included. The radiative damping term is connected to non-ideal effects of the bulk plasma and introduces higher-order derivatives to the model. Thus, it has the potential to substantially change the nature of the solution. For the first time, the fast-particle drive, Landau damping, continuum damping, and radiative damping have been modelled together in tokamak- as well as in stellarator geometry.« less
A continuum dislocation dynamics framework for plasticity of polycrystalline materials
NASA Astrophysics Data System (ADS)
Askari, Hesam Aldin
The objective of this research is to investigate the mechanical response of polycrystals in different settings to identify the mechanisms that give rise to specific response observed in the deformation process. Particularly the large deformation of magnesium alloys and yield properties of copper in small scales are investigated. We develop a continuum dislocation dynamics framework based on dislocation mechanisms and interaction laws and implement this formulation in a viscoplastic self-consistent scheme to obtain the mechanical response in a polycrystalline system. The versatility of this method allows various applications in the study of problems involving large deformation, study of microstructure and its evolution, superplasticity, study of size effect in polycrystals and stochastic plasticity. The findings from the numerical solution are compared to the experimental results to validate the simulation results. We apply this framework to study the deformation mechanisms in magnesium alloys at moderate to fast strain rates and room temperature to 450 °C. Experiments for the same range of strain rates and temperatures were carried out to obtain the mechanical and material properties, and to compare with the numerical results. The numerical approach for magnesium is divided into four main steps; 1) room temperature unidirectional loading 2) high temperature deformation without grain boundary sliding 3) high temperature with grain boundary sliding mechanism 4) room temperature cyclic loading. We demonstrate the capability of our modeling approach in prediction of mechanical properties and texture evolution and discuss the improvement obtained by using the continuum dislocation dynamics method. The framework was also applied to nano-sized copper polycrystals to study the yield properties at small scales and address the observed yield scatter. By combining our developed method with a Monte Carlo simulation approach, the stochastic plasticity at small length scales was studied and the sources of the uncertainty in the polycrystalline structure are discussed. Our results suggest that the stochastic response is mainly because of a) stochastic plasticity due to dislocation substructure inside crystals and b) the microstructure of the polycrystalline material. The extent of the uncertainty is correlated to the "effective cell length" in the sampling procedure whether using simulations and experimental approach.
A Micro-Mechanism-Based Continuum Corrosion Fatigue Damage Model for Steels
NASA Astrophysics Data System (ADS)
Sun, Bin; Li, Zhaoxia
2018-05-01
A micro-mechanism-based corrosion fatigue damage model is developed for studying the high-cycle corrosion fatigue of steel from multi-scale viewpoint. The developed physical corrosion fatigue damage model establishes micro-macro relationships between macroscopic continuum damage evolution and collective evolution behavior of microscopic pits and cracks, which can be used to describe the multi-scale corrosion fatigue process of steel. As a case study, the model is used to predict continuum damage evolution and number density of the corrosion pit and short crack of steel component in 5% NaCl water under constant stress amplitude at 20 kHz, and the numerical results are compared with experimental results. It shows that the model is effective and can be used to evaluate the continuum macroscopic corrosion fatigue damage and study microscopic corrosion fatigue mechanisms of steel.
A Micro-Mechanism-Based Continuum Corrosion Fatigue Damage Model for Steels
NASA Astrophysics Data System (ADS)
Sun, Bin; Li, Zhaoxia
2018-04-01
A micro-mechanism-based corrosion fatigue damage model is developed for studying the high-cycle corrosion fatigue of steel from multi-scale viewpoint. The developed physical corrosion fatigue damage model establishes micro-macro relationships between macroscopic continuum damage evolution and collective evolution behavior of microscopic pits and cracks, which can be used to describe the multi-scale corrosion fatigue process of steel. As a case study, the model is used to predict continuum damage evolution and number density of the corrosion pit and short crack of steel component in 5% NaCl water under constant stress amplitude at 20 kHz, and the numerical results are compared with experimental results. It shows that the model is effective and can be used to evaluate the continuum macroscopic corrosion fatigue damage and study microscopic corrosion fatigue mechanisms of steel.
NASA Astrophysics Data System (ADS)
Serov, E. A.; Odintsova, T. A.; Tretyakov, M. Yu.; Semenov, V. E.
2017-05-01
Analysis of the continuum absorption in water vapor at room temperature within the purely rotational and fundamental ro-vibrational bands shows that a significant part (up to a half) of the observed absorption cannot be explained within the framework of the existing concepts of the continuum. Neither of the two most prominent mechanisms of continuum originating, namely, the far wings of monomer lines and the dimers, cannot reproduce the currently available experimental data adequately. We propose a new approach to developing a physically based model of the continuum. It is demonstrated that water dimers and wings of monomer lines may contribute equally to the continuum within the bands, and their contribution should be taken into account in the continuum model. We propose a physical mechanism giving missing justification for the super-Lorentzian behavior of the intermediate line wing. The qualitative validation of the proposed approach is given on the basis of a simple empirical model. The obtained results are directly indicative of the necessity to reconsider the existing line wing theory and can guide this consideration.
The effects of strain heating in lithospheric stretching models
NASA Technical Reports Server (NTRS)
Stanton, M.; Hodge, D.; Cozzarelli, F.
1985-01-01
The deformation by stretching of a continental type lithosphere has been formulated so that the problem can be solved by a continuum mechanical approach. The deformation, stress state, and temperature distribution are constrained to satisfy the physical laws of conservation of mass, energy, momentum, and an experimentally defined rheological response. The conservation of energy equation including a term of strain energy dissipation is given. The continental lithosphere is assumed to have the rheology of an isotropic, incompressible, nonlinear viscous, two layered solid.
Influence of Reservoirs on Pressure Driven Gas Flow in a Microchannel
NASA Astrophysics Data System (ADS)
Shterev, K. S.; Stefanov, S. K.
2011-11-01
Rapidly emerging micro-electro-mechanical devices create new potential microfluidic applications. A simulation of an internal and external gas flows with accurate boundary conditions for these devices is important for their design. In this paper we study influence of reservoirs used at the microchannel inlet and outlet on the characteristics of the gas flow in the microchannel. The problem is solved by using finite volume method SIMPLE-TS (continuum approach), which is validated using Direct Simulation Monte Carlo (molecular approach). We investigate two cases: a microchannels with reservoirs and without reservoirs. We compare the microchannels with different aspect ratios A = Lch/Hch = 10,15,20,30,40 and 50, where Lch is the channel length, Hch is the channel height. Comparisons of results obtained by using continuum approach for pressure driven flow in a microchannel with and without reservoirs at the channel ends are presented.
NASA Astrophysics Data System (ADS)
Shi, Jin-Xing; Ohmura, Keiichiro; Shimoda, Masatoshi; Lei, Xiao-Wen
2018-07-01
In recent years, shape design of graphene sheets (GSs) by introducing topological defects for enhancing their mechanical behaviors has attracted the attention of scholars. In the present work, we propose a consistent methodology for optimal shape design of GSs using a combination of the molecular mechanics (MM) method, the non-parametric shape optimization method, the phase field crystal (PFC) method, Voronoi tessellation, and molecular dynamics (MD) simulation to maximize their fundamental frequencies. At first, we model GSs as continuum frame models using a link between the MM method and continuum mechanics. Then, we carry out optimal shape design of GSs in fundamental frequency maximization problem based on a developed shape optimization method for frames. However, the obtained optimal shapes of GSs only consisting of hexagonal carbon rings are unstable that do not satisfy the principle of least action, so we relocate carbon atoms on the optimal shapes by introducing topological defects using the PFC method and Voronoi tessellation. At last, we perform the structural relaxation through MD simulation to determine the final optimal shapes of GSs. We design two examples of GSs and the optimal results show that the fundamental frequencies of GSs can be significantly enhanced according to the optimal shape design methodology.
On the continuum mechanics approach for the analysis of single walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Chaudhry, M. S.; Czekanski, A.
2016-04-01
Today carbon nanotubes have found various applications in structural, thermal and almost every field of engineering. Carbon nanotubes provide great strength, stiffness resilience properties. Evaluating the structural behavior of nanoscale materials is an important task. In order to understand the materialistic behavior of nanotubes, atomistic models provide a basis for continuum mechanics modelling. Although the properties of bulk materials are consistent with the size and depends mainly on the material but the properties when we are in Nano-range, continuously change with the size. Such models start from the modelling of interatomic interaction. Modelling and simulation has advantage of cost saving when compared with the experiments. So in this project our aim is to use a continuum mechanics model of carbon nanotubes from atomistic perspective and analyses some structural behaviors of nanotubes. It is generally recognized that mechanical properties of nanotubes are dependent upon their structural details. The properties of nanotubes vary with the varying with the interatomic distance, angular orientation, radius of the tube and many such parameters. Based on such models one can analyses the variation of young's modulus, strength, deformation behavior, vibration behavior and thermal behavior. In this study some of the structural behaviors of the nanotubes are analyzed with the help of continuum mechanics models. Using the properties derived from the molecular mechanics model a Finite Element Analysis of carbon nanotubes is performed and results are verified. This study provides the insight on continuum mechanics modelling of nanotubes and hence the scope to study the effect of various parameters on some structural behavior of nanotubes.
The continuum fusion theory of signal detection applied to a bi-modal fusion problem
NASA Astrophysics Data System (ADS)
Schaum, A.
2011-05-01
A new formalism has been developed that produces detection algorithms for model-based problems, in which one or more parameter values is unknown. Continuum Fusion can be used to generate different flavors of algorithm for any composite hypothesis testing problem. The methodology is defined by a fusion logic that can be translated into max/min conditions. Here it is applied to a simple sensor fusion model, but one for which the generalized likelihood ratio test is intractable. By contrast, a fusion-based response to the same problem can be devised that is solvable in closed form and represents a good approximation to the GLR test.
Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum.
Sridhar, A; Kouznetsova, V G; Geers, M G D
This contribution presents a novel homogenization technique for modeling heterogeneous materials with micro-inertia effects such as locally resonant acoustic metamaterials. Linear elastodynamics is used to model the micro and macro scale problems and an extended first order Computational Homogenization framework is used to establish the coupling. Craig Bampton Mode Synthesis is then applied to solve and eliminate the microscale problem, resulting in a compact closed form description of the microdynamics that accurately captures the Local Resonance phenomena. The resulting equations represent an enriched continuum in which additional kinematic degrees of freedom emerge to account for Local Resonance effects which would otherwise be absent in a classical continuum. Such an approach retains the accuracy and robustness offered by a standard Computational Homogenization implementation, whereby the problem and the computational time are reduced to the on-line solution of one scale only.
Space-Time Conservation Element and Solution Element Method Being Developed
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung; Himansu, Ananda; Jorgenson, Philip C. E.; Loh, Ching-Yuen; Wang, Xiao-Yen; Yu, Sheng-Tao
1999-01-01
The engineering research and design requirements of today pose great computer-simulation challenges to engineers and scientists who are called on to analyze phenomena in continuum mechanics. The future will bring even more daunting challenges, when increasingly complex phenomena must be analyzed with increased accuracy. Traditionally used numerical simulation methods have evolved to their present state by repeated incremental extensions to broaden their scope. They are reaching the limits of their applicability and will need to be radically revised, at the very least, to meet future simulation challenges. At the NASA Lewis Research Center, researchers have been developing a new numerical framework for solving conservation laws in continuum mechanics, namely, the Space-Time Conservation Element and Solution Element Method, or the CE/SE method. This method has been built from fundamentals and is not a modification of any previously existing method. It has been designed with generality, simplicity, robustness, and accuracy as cornerstones. The CE/SE method has thus far been applied in the fields of computational fluid dynamics, computational aeroacoustics, and computational electromagnetics. Computer programs based on the CE/SE method have been developed for calculating flows in one, two, and three spatial dimensions. Results have been obtained for numerous problems and phenomena, including various shock-tube problems, ZND detonation waves, an implosion and explosion problem, shocks over a forward-facing step, a blast wave discharging from a nozzle, various acoustic waves, and shock/acoustic-wave interactions. The method can clearly resolve shock/acoustic-wave interactions, wherein the difference of the magnitude between the acoustic wave and shock could be up to six orders. In two-dimensional flows, the reflected shock is as crisp as the leading shock. CE/SE schemes are currently being used for advanced applications to jet and fan noise prediction and to chemically reacting flows.
Mechanical and hydraulic properties of rocks related to induced seismicity
Witherspoon, P.A.; Gale, J.E.
1977-01-01
Witherspoon, P.A. and Gale, J.E., 1977. Mechanical and hydraulic properties of rocks related to induced seismicity. Eng. Geol., 11(1): 23-55. The mechanical and hydraulic properties of fractured rocks are considered with regard to the role they play in induced seismicity. In many cases, the mechanical properties of fractures determine the stability of a rock mass. The problems of sampling and testing these rock discontinuities and interpreting their non-linear behavior are reviewed. Stick slip has been proposed as the failure mechanism in earthquake events. Because of the complex interactions that are inherent in the mechanical behavior of fractured rocks, there seems to be no simple way to combine the deformation characteristics of several sets of fractures when there are significant perturbations of existing conditions. Thus, the more important fractures must be treated as individual components in the rock mass. In considering the hydraulic properties, it has been customary to treat a fracture as a parallel-plate conduit and a number of mathematical models of fracture systems have adopted this approach. Non-steady flow in fractured systems has usually been based on a two-porosity model, which assumes the primary (intergranular) porosity contributes only to storage and the secondary (fracture) porosity contributes only to the overall conductivity. Using such a model, it has been found that the time required to achieve quasi-steady state flow in a fractured reservoir is one or two orders of magnitude greater than it is in a homogeneous system. In essentially all of this work, the assumption has generally been made that the fractures are rigid. However, it is clear from a review of the mechanical and hydraulic properties that not only are fractures easily deformed but they constitute the main flow paths in many rock masses. This means that one must consider the interaction of mechanical and hydraulic effects. A considerable amount of laboratory and field data is now available that clearly demonstrates this stress-flow behavior. Two approaches have been used in attempting to numerically model such behavior: (1) continuum models, and (2) discrete models. The continuum approach only needs information as to average values of fracture spacing and material properties. But because of the inherent complexity of fractured rock masses and the corresponding decrease in symmetry, it is difficult to develop an equivalent continuum that will simulate the behavior of the entire system. The discrete approach, on the other hand, requires details of the fracture geometry and material properties of both fractures and rock matrix. The difficulty in obtaining such information has been considered a serious limitation of discrete models, but improved borehole techniques can enable one to obtain the necessary data, at least in shallow systems. The possibility of extending these methods to deeper fracture systems needs more investigation. Such data must be considered when deciding whether to use a continuum or discrete model to represent the interaction of rock and fluid forces in a fractured rock system, especially with regard to the problem of induced seismicity. When one is attempting to alter the pressure distribution in a fault zone by injection or withdrawal of fluids, the extent to which this can be achieved will be controlled in large measure by the behavior of the fractures that communicate with the borehole. Since this is essentially a point phenomenon, i.e., the changes will propagate from a relatively small region around the borehole, the use of a discrete model would appear to be preferable. ?? 1977.
Thellamurege, Nandun M; Si, Dejun; Cui, Fengchao; Li, Hui
2014-05-07
A combined quantum mechanical/molecular mechanical/continuum (QM/MM/C) style second order Møller-Plesset perturbation theory (MP2) method that incorporates induced dipole polarizable force field and induced surface charge continuum solvation model is established. The Z-vector method is modified to include induced dipoles and induced surface charges to determine the MP2 response density matrix, which can be used to evaluate MP2 properties. In particular, analytic nuclear gradient is derived and implemented for this method. Using the Assisted Model Building with Energy Refinement induced dipole polarizable protein force field, the QM/MM/C style MP2 method is used to study the hydrogen bonding distances and strengths of the photoactive yellow protein chromopore in the wild type and the Glu46Gln mutant.
Acoustic field of a pulsating cylinder in a rarefied gas: Thermoviscous and curvature effects
NASA Astrophysics Data System (ADS)
Ben Ami, Y.; Manela, A.
2017-09-01
We study the acoustic field of a circular cylinder immersed in a rarefied gas and subject to harmonic small-amplitude normal-to-wall displacement and heat-flux excitations. The problem is analyzed in the entire range of gas rarefaction rates and excitation frequencies, considering both single cylinder and coaxial cylinders setups. Numerical calculations are carried out via the direct simulation Monte Carlo method, applying a noniterative algorithm to impose the boundary heat-flux condition. Analytical predictions are obtained in the limits of ballistic- and continuum-flow conditions. Comparing with a reference inviscid continuum solution, the results illustrate the specific impacts of gas rarefaction and boundary curvature on the acoustic source efficiency. Inspecting the far-field properties of the generated disturbance, the continuum-limit solution exhibits an exponential decay of the signal with the distance from the source, reflecting thermoviscous effects, and accompanied by an inverse square-root decay, characteristic of the inviscid problem. Stronger attenuation is observed in the ballistic limit, where boundary curvature results in "geometric reduction" of the molecular layer affected by the source, and the signal vanishes at a distance of few acoustic wavelengths from the cylinder. The combined effects of mechanical and thermal excitations are studied to seek for optimal conditions to monitor the vibroacoustic signal. The impact of boundary curvature becomes significant in the ballistic-flow regime, where the optimal heat-flux amplitude required for sound reduction decreases with the distance from the source and is essentially a function of the acoustic-wavelength-scaled distance only.
Self-Assessment Exercises in Continuum Mechanics with Autonomous Learning
ERIC Educational Resources Information Center
Marcé-Nogué, Jordi; Gil, LLuís; Pérez, Marco A.; Sánchez, Montserrat
2013-01-01
The main objective of this work is to generate a set of exercises to improve the autonomous learning in "Continuum Mechanics" through a virtual platform. Students will have to resolve four exercises autonomously related to the subject developed in class and they will post the solutions on the virtual platform within a deadline. Students…
NASA Technical Reports Server (NTRS)
Herraez, Miguel; Bergan, Andrew C.; Gonzalez, Carlos; Lopes, Claudio S.
2017-01-01
In this work, the fiber kinking phenomenon, which is known as the failure mechanism that takes place when a fiber reinforced polymer is loaded under longitudinal compression, is studied. A computational micromechanics model is employed to interrogate the assumptions of a recently developed mesoscale continuum damage mechanics (CDM) model for fiber kinking based on the deformation gradient decomposition (DGD) and the LaRC04 failure criteria.
From Discrete Space-Time to Minkowski Space: Basic Mechanisms, Methods and Perspectives
NASA Astrophysics Data System (ADS)
Finster, Felix
This survey article reviews recent results on fermion systems in discrete space-time and corresponding systems in Minkowski space. After a basic introduction to the discrete setting, we explain a mechanism of spontaneous symmetry breaking which leads to the emergence of a discrete causal structure. As methods to study the transition between discrete space-time and Minkowski space, we describe a lattice model for a static and isotropic space-time, outline the analysis of regularization tails of vacuum Dirac sea configurations, and introduce a Lorentz invariant action for the masses of the Dirac seas. We mention the method of the continuum limit, which allows to analyze interacting systems. Open problems are discussed.
Continuum absorption in the vicinity of the toroidicity-induced Alfvén gap
Li, M.; Breizman, B. N.; Zheng, L. J.; ...
2015-12-04
Excitation of Alfvén modes is commonly viewed as a concern for energetic particle confinement in burning plasmas. The 3.5 MeValpha particles produced by fusion may be affected as well as other fast ions in both present and future devices. Continuum damping of such modes is one of the key factors that determine their excitation thresholds and saturation levels. This work examines the resonant dissipative response of the Alfvén continuum to an oscillating driving current when the driving frequency is slightly outside the edges of the toroidicity-induced spectral gap. The problem is largely motivated by the need to describe the continuummore » absorption in the frequency sweeping events. Akey element of this problem is the negative interference of the two closely spaced continuum crossing points.Weexplain why the lower and upper edges of the gap can have very different continuum absorption features. Lastly, the difference is associated with an eigenmode whose frequency can be arbitrarily close to the upper edge of the gap whereas the lower edge of the gap is always a finite distance away from the closest eigenmode.« less
Lehoucq, R B; Sears, Mark P
2011-09-01
The purpose of this paper is to derive the energy and momentum conservation laws of the peridynamic nonlocal continuum theory using the principles of classical statistical mechanics. The peridynamic laws allow the consideration of discontinuous motion, or deformation, by relying on integral operators. These operators sum forces and power expenditures separated by a finite distance and so represent nonlocal interaction. The integral operators replace the differential divergence operators conventionally used, thereby obviating special treatment at points of discontinuity. The derivation presented employs a general multibody interatomic potential, avoiding the standard assumption of a pairwise decomposition. The integral operators are also expressed in terms of a stress tensor and heat flux vector under the assumption that these fields are differentiable, demonstrating that the classical continuum energy and momentum conservation laws are consequences of the more general peridynamic laws. An important conclusion is that nonlocal interaction is intrinsic to continuum conservation laws when derived using the principles of statistical mechanics.
Effect of microstructural damage on ply stresses in laminated composites
NASA Technical Reports Server (NTRS)
Allen, D. H.; Nottorf, E. W.; Harris, C. E.
1988-01-01
The mechanisms involved in damage and failure of laminated orthotropic composites are investigated theoretically. The continuum model developed accounts for both matrix cracks and interply delamination using second-order tensor-valued internal-state variables based on the locally averaged microcrack dynamics. The derivation of the model is given in detail, and numerical results for sample problems are presented in extensive graphs and tables. The model is shown to be effective in predicting stresses at the ply level, and significant damage-induced decreases in laminate stress states are found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thellamurege, Nandun M.; Si, Dejun; Cui, Fengchao
A combined quantum mechanical/molecular mechanical/continuum (QM/MM/C) style second order Møller-Plesset perturbation theory (MP2) method that incorporates induced dipole polarizable force field and induced surface charge continuum solvation model is established. The Z-vector method is modified to include induced dipoles and induced surface charges to determine the MP2 response density matrix, which can be used to evaluate MP2 properties. In particular, analytic nuclear gradient is derived and implemented for this method. Using the Assisted Model Building with Energy Refinement induced dipole polarizable protein force field, the QM/MM/C style MP2 method is used to study the hydrogen bonding distances and strengths ofmore » the photoactive yellow protein chromopore in the wild type and the Glu46Gln mutant.« less
A continuum-based structural modeling approach for cellulose nanocrystals (CNCs)
Mehdi Shishehbor; Fernando L. Dri; Robert J. Moon; Pablo D. Zavattieri
2018-01-01
We present a continuum-based structural model to study the mechanical behavior of cel- lulose nanocrystals (CNCs), and analyze the effect of bonded and non-bonded interactions on the mechanical properties under various loading conditions. In particular, this model assumes the uncoupling between the bonded and non-bonded interactions and their be- havior is obtained...
NASA Technical Reports Server (NTRS)
Harik, Vasyl Michael; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
Ranges of validity for the continuum-beam model, the length-scale effects and continuum assumptions are analyzed in the framework of scaling analysis of NT structure. Two coupled criteria for the applicability of the continuum model are presented. Scaling analysis of NT buckling and geometric parameters (e.g., diameter and length) is carried out to determine the key non-dimensional parameters that control the buckling strains and modes of NT buckling. A model applicability map, which represents two classes of NTs, is constructed in the space of non-dimensional parameters. In an analogy with continuum mechanics, a mechanical law of geometric similitude is presented for two classes of beam-like NTs having different geometries. Expressions for the critical buckling loads and strains are tailored for the distinct groups of NTs and compared with the data provided by the molecular dynamics simulations. Implications for molecular dynamics simulations and the NT-based scanning probes are discussed.
NASA Astrophysics Data System (ADS)
Corni, Federico; Fuchs, Hans U.; Savino, Giovanni
2018-02-01
This is a description of the conceptual foundations used for designing a novel learning environment for mechanics implemented as an Industrial Educational Laboratory - called Fisica in Moto (FiM) - at the Ducati Foundation in Bologna. In this paper, we will describe the motivation for and design of the conceptual approach to mechanics used in the lab - as such, the paper is theoretical in nature. The goal of FiM is to provide an approach to the teaching of mechanics based upon imaginative structures found in continuum physics suitable to engineering and science. We show how continuum physics creates models of mechanical phenomena by using momentum and angular momentum as primitive quantities. We analyse this approach in terms of cognitive linguistic concepts such as conceptual metaphor and narrative framing of macroscopic physical phenomena. The model discussed here has been used in the didactical design of the actual lab and raises questions for an investigation of student learning of mechanics in a narrative setting.
NASA Astrophysics Data System (ADS)
Jones, R. E.; Criscenti, L. J.; Rimsza, J.
2016-12-01
Predicting fracture initiation and propagation in low-permeability geomaterials is a critical yet un- solved problem crucial to assessing shale caprocks at carbon dioxide sequestration sites, and controlling fracturing for gas and oil extraction. Experiments indicate that chemical reactions at fluid-geomaterial interfaces play a major role in subcritical crack growth by weakening the material and altering crack nu- cleation and growth rates. Engineering the subsurface fracture environment, however, has been hindered by a lack of understanding of the mechanisms relating chemical environment to mechanical outcome, and a lack of capability directly linking atomistic insight to macroscale observables. We have developed a fundamental atomic-level understanding of the chemical-mechanical mecha- nisms that control subcritical cracks through coarse-graining data from reactive molecular simulations. Previous studies of fracture at the atomic level have typically been limited to producing stress-strain curves, quantifying either the system-level stress or energy at which fracture propagation occurs. As such, these curves are neither characteristic of nor insightful regarding fracture features local to the crack tip. In contrast, configurational forces, such as the J-integral, are specific to the crack in that they measure the energy available to move the crack and truly quantify fracture resistance. By development and use of field estimators consistent with the continuum conservation properties we are able to connect the data produced by atomistic simulation to the continuum-level theory of fracture mechanics and thus inform engineering decisions. In order to trust this connection we have performed theoretical consistency tests and validation with experimental data. Although we have targeted geomaterials, this capability can have direct impact on other unsolved technological problems such as predicting the corrosion and embrittlement of metals and ceramics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corpo- ration, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
ERIC Educational Resources Information Center
Hawken, Leanne S.
2006-01-01
School psychologists are excellent candidates to support school administrations interested in implementing a continuum of effective behavior support. To prevent severe problem behavior, best practice suggests implementing a continuum of effective behavior support which includes primary level prevention procedures, secondary level targeted…
Continuum modeling of the mechanical and thermal behavior of discrete large structures
NASA Technical Reports Server (NTRS)
Nayfeh, A. H.; Hefzy, M. S.
1980-01-01
In the present paper we introduce a rather straightforward construction procedure in order to derive continuum equivalence of discrete truss-like repetitive structures. Once the actual structure is specified, the construction procedure can be outlined by the following three steps: (a) all sets of parallel members are identified, (b) unidirectional 'effective continuum' properties are derived for each of these sets and (c) orthogonal transformations are finally used to determine the contribution of each set to the 'overall effective continuum' properties of the structure. Here the properties includes mechanical (stiffnesses), thermal (coefficients of thermal expansions) and material densities. Once expanded descriptions of the steps (b) and (c) are done, the construction procedure will be applied to a wide variety of discrete structures and the results will be compared with those of other existing methods.
A Continuum Mechanical Approach to Geodesics in Shape Space
2010-01-01
the space of shapes, where shapes are implicitly described as boundary contours of objects. The proposed shape metric is derived from a ...investigate the close link between abstract geometry on the infinite -dimen- sional space of shapes and the continuum mechanical view of shapes as boundary...are texture-coded in the bottom row. of multiple components of volumetric objects. The
Physically based multiscale-viscoplastic model for metals and steel alloys: Theory and computation
NASA Astrophysics Data System (ADS)
Abed, Farid H.
The main requirement of large deformation problems such as high-speed machining, impact, and various primarily metal forming, is to develop constitutive relations which are widely applicable and capable of accounting for complex paths of deformation. Achieving such desirable goals for material like metals and steel alloys involves a comprehensive study of their microstructures and experimental observations under different loading conditions. In general, metal structures display a strong rate- and temperature-dependence when deformed non-uniformly into the inelastic range. This effect has important implications for an increasing number of applications in structural and engineering mechanics. The mechanical behavior of these applications cannot be characterized by classical (rate-independent) continuum theories because they incorporate no 'material length scales'. It is therefore necessary to develop a rate-dependent (viscoplasticity) continuum theory bridging the gap between the classical continuum theories and the microstructure simulations. Physically based vicoplasticity models for different types of metals (body centered cubic, face centered cubic and hexagonal close-packed) and steel alloys are derived in this work for this purpose. We adopt a multi-scale, hierarchical thermodynamic consistent framework to construct the material constitutive relations for the rate-dependent behavior. The concept of thermal activation energy, dislocations interactions mechanisms and the role of dislocations dynamics in crystals are used in the derivation process taking into consideration the contribution of the plastic strain evolution of dislocation density to the flow stress of polycrystalline metals. Material length scales are implicitly introduced into the governing equations through material rate-dependency (viscosity). The proposed framework is implemented into the commercially well-known finite element software ABAQUS. The finite element simulations of material instability problems converge to meaningful results upon further refinement of the finite element mesh due to the successful incorporation of the material length scale in the model formulations. It is shown that the model predicted results compare very well with different experimental data over a wide range of temperatures (77K°-1000K°) and strain rates (10-3-10 4s-1). It is also concluded from this dissertation that the width of localization zone (shear band) exhibits tremendous changes with different initial temperatures (i.e., different initial viscosities and accordingly different length scales).
NASA Astrophysics Data System (ADS)
Peng, Ao-Ping; Li, Zhi-Hui; Wu, Jun-Lin; Jiang, Xin-Yu
2016-12-01
Based on the previous researches of the Gas-Kinetic Unified Algorithm (GKUA) for flows from highly rarefied free-molecule transition to continuum, a new implicit scheme of cell-centered finite volume method is presented for directly solving the unified Boltzmann model equation covering various flow regimes. In view of the difficulty in generating the single-block grid system with high quality for complex irregular bodies, a multi-block docking grid generation method is designed on the basis of data transmission between blocks, and the data structure is constructed for processing arbitrary connection relations between blocks with high efficiency and reliability. As a result, the gas-kinetic unified algorithm with the implicit scheme and multi-block docking grid has been firstly established and used to solve the reentry flow problems around the multi-bodies covering all flow regimes with the whole range of Knudsen numbers from 10 to 3.7E-6. The implicit and explicit schemes are applied to computing and analyzing the supersonic flows in near-continuum and continuum regimes around a circular cylinder with careful comparison each other. It is shown that the present algorithm and modelling possess much higher computational efficiency and faster converging properties. The flow problems including two and three side-by-side cylinders are simulated from highly rarefied to near-continuum flow regimes, and the present computed results are found in good agreement with the related DSMC simulation and theoretical analysis solutions, which verify the good accuracy and reliability of the present method. It is observed that the spacing of the multi-body is smaller, the cylindrical throat obstruction is greater with the flow field of single-body asymmetrical more obviously and the normal force coefficient bigger. While in the near-continuum transitional flow regime of near-space flying surroundings, the spacing of the multi-body increases to six times of the diameter of the single-body, the interference effects of the multi-bodies tend to be negligible. The computing practice has confirmed that it is feasible for the present method to compute the aerodynamics and reveal flow mechanism around complex multi-body vehicles covering all flow regimes from the gas-kinetic point of view of solving the unified Boltzmann model velocity distribution function equation.
NASA Astrophysics Data System (ADS)
Bogdanov, Alexander; Khramushin, Vasily
2016-02-01
The architecture of a digital computing system determines the technical foundation of a unified mathematical language for exact arithmetic-logical description of phenomena and laws of continuum mechanics for applications in fluid mechanics and theoretical physics. The deep parallelization of the computing processes results in functional programming at a new technological level, providing traceability of the computing processes with automatic application of multiscale hybrid circuits and adaptive mathematical models for the true reproduction of the fundamental laws of physics and continuum mechanics.
Chen, Xi; Cui, Qiang; Tang, Yuye; Yoo, Jejoong; Yethiraj, Arun
2008-01-01
A hierarchical simulation framework that integrates information from molecular dynamics (MD) simulations into a continuum model is established to study the mechanical response of mechanosensitive channel of large-conductance (MscL) using the finite element method (FEM). The proposed MD-decorated FEM (MDeFEM) approach is used to explore the detailed gating mechanisms of the MscL in Escherichia coli embedded in a palmitoyloleoylphosphatidylethanolamine lipid bilayer. In Part I of this study, the framework of MDeFEM is established. The transmembrane and cytoplasmic helices are taken to be elastic rods, the loops are modeled as springs, and the lipid bilayer is approximated by a three-layer sheet. The mechanical properties of the continuum components, as well as their interactions, are derived from molecular simulations based on atomic force fields. In addition, analytical closed-form continuum model and elastic network model are established to complement the MDeFEM approach and to capture the most essential features of gating. In Part II of this study, the detailed gating mechanisms of E. coli-MscL under various types of loading are presented and compared with experiments, structural model, and all-atom simulations, as well as the analytical models established in Part I. It is envisioned that such a hierarchical multiscale framework will find great value in the study of a variety of biological processes involving complex mechanical deformations such as muscle contraction and mechanotransduction. PMID:18390626
Multigrid treatment of implicit continuum diffusion
NASA Astrophysics Data System (ADS)
Francisquez, Manaure; Zhu, Ben; Rogers, Barrett
2017-10-01
Implicit treatment of diffusive terms of various differential orders common in continuum mechanics modeling, such as computational fluid dynamics, is investigated with spectral and multigrid algorithms in non-periodic 2D domains. In doubly periodic time dependent problems these terms can be efficiently and implicitly handled by spectral methods, but in non-periodic systems solved with distributed memory parallel computing and 2D domain decomposition, this efficiency is lost for large numbers of processors. We built and present here a multigrid algorithm for these types of problems which outperforms a spectral solution that employs the highly optimized FFTW library. This multigrid algorithm is not only suitable for high performance computing but may also be able to efficiently treat implicit diffusion of arbitrary order by introducing auxiliary equations of lower order. We test these solvers for fourth and sixth order diffusion with idealized harmonic test functions as well as a turbulent 2D magnetohydrodynamic simulation. It is also shown that an anisotropic operator without cross-terms can improve model accuracy and speed, and we examine the impact that the various diffusion operators have on the energy, the enstrophy, and the qualitative aspect of a simulation. This work was supported by DOE-SC-0010508. This research used resources of the National Energy Research Scientific Computing Center (NERSC).
Comparison of solar hard X-ray and UV line and continuum bursts with high time resolution
NASA Technical Reports Server (NTRS)
Orwig, L. E.; Woodgate, B. E.
1986-01-01
A comparison of data sets from the UV Spectrometer and Polarimeter and Hard X-ray Burst Spectrometer instruments on SMM has established the close relationship of the impulsive phase hard X-ray and UV continuum and OV line emissions, lending support to the notion that they have a similar origin low in the solar atmosphere. These results severely constrain models that attempt to explain impulsive phase hard X-rays and UV emission; alternative processes of impulsive-phase UV continuum production should accordingly be considered. Attention is given to an electron beam 'hole boring' mechanism and a photoionization radiation transport mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biyikli, Emre; To, Albert C., E-mail: albertto@pitt.edu
Atomistic/continuum coupling methods combine accurate atomistic methods and efficient continuum methods to simulate the behavior of highly ordered crystalline systems. Coupled methods utilize the advantages of both approaches to simulate systems at a lower computational cost, while retaining the accuracy associated with atomistic methods. Many concurrent atomistic/continuum coupling methods have been proposed in the past; however, their true computational efficiency has not been demonstrated. The present work presents an efficient implementation of a concurrent coupling method called the Multiresolution Molecular Mechanics (MMM) for serial, parallel, and adaptive analysis. First, we present the features of the software implemented along with themore » associated technologies. The scalability of the software implementation is demonstrated, and the competing effects of multiscale modeling and parallelization are discussed. Then, the algorithms contributing to the efficiency of the software are presented. These include algorithms for eliminating latent ghost atoms from calculations and measurement-based dynamic balancing of parallel workload. The efficiency improvements made by these algorithms are demonstrated by benchmark tests. The efficiency of the software is found to be on par with LAMMPS, a state-of-the-art Molecular Dynamics (MD) simulation code, when performing full atomistic simulations. Speed-up of the MMM method is shown to be directly proportional to the reduction of the number of the atoms visited in force computation. Finally, an adaptive MMM analysis on a nanoindentation problem, containing over a million atoms, is performed, yielding an improvement of 6.3–8.5 times in efficiency, over the full atomistic MD method. For the first time, the efficiency of a concurrent atomistic/continuum coupling method is comprehensively investigated and demonstrated.« less
2014-07-01
to use the two-point microrheology technique 88 to measure the complex compressibility of biopolymers and cell components such as F-actin and...loads [23, 115]. Several works have used a continuum-mechanics level of description to model self- organization [64, 2] and rheology [79, 12, 33] of...morphogenesis [94]. Several works have used a continuum-mechanics level of description to model self- organization [64, 2] and rheology [79, 12, 33] of
Custers, Eugène J F M
2013-08-01
Recently, human reasoning, problem solving, and decision making have been viewed as products of two separate systems: "System 1," the unconscious, intuitive, or nonanalytic system, and "System 2," the conscious, analytic, or reflective system. This view has penetrated the medical education literature, yet the idea of two independent dichotomous cognitive systems is not entirely without problems.This article outlines the difficulties of this "two-system view" and presents an alternative, developed by K.R. Hammond and colleagues, called cognitive continuum theory (CCT). CCT is featured by three key assumptions. First, human reasoning, problem solving, and decision making can be arranged on a cognitive continuum, with pure intuition at one end, pure analysis at the other, and a large middle ground called "quasirationality." Second, the nature and requirements of the cognitive task, as perceived by the person performing the task, determine to a large extent whether a task will be approached more intuitively or more analytically. Third, for optimal task performance, this approach needs to match the cognitive properties and requirements of the task. Finally, the author makes a case that CCT is better able than a two-system view to describe medical problem solving and clinical reasoning and that it provides clear clues for how to organize training in clinical reasoning.
Generalized continuum modeling of scale-dependent crystalline plasticity
NASA Astrophysics Data System (ADS)
Mayeur, Jason R.
The use of metallic material systems (e.g. pure metals, alloys, metal matrix composites) in a wide range of engineering applications from medical devices to electronic components to automobiles continues to motivate the development of improved constitutive models to meet increased performance demands while minimizing cost. Emerging technologies often incorporate materials in which the dominant microstructural features have characteristic dimensions reaching into the submicron and nanometer regime. Metals comprised of such fine microstructures often exhibit unique and size-dependent mechanical response, and classical approaches to constitutive model development at engineering (continuum) scales, being local in nature, are inadequate for describing such behavior. Therefore, traditional modeling frameworks must be augmented and/or reformulated to account for such phenomena. Crystal plasticity constitutive models have proven quite capable of capturing first-order microstructural effects such as grain orientation (elastic/plastic anisotropy), grain morphology, phase distribution, etc. on the deformation behavior of both single and polycrystals, yet suffer from the same limitations as other local continuum theories with regard to capturing scale-dependent mechanical response. This research is focused on the development, numerical implementation, and application of a generalized (nonlocal) theory of single crystal plasticity capable of describing the scale-dependent mechanical response of both single and polycrystalline metals that arises as a result of heterogeneous deformation. This research developed a dislocation-based theory of micropolar single crystal plasticity. The majority of nonlocal crystal plasticity theories are predicated on the connection between gradients of slip and geometrically necessary dislocations. Due to the diversity of existing nonlocal crystal plasticity theories, a review, summary, and comparison of representative model classes is presented in Chapter 2 from a unified dislocation-based perspective. The discussion of the continuum crystal plasticity theories is prefaced by a brief review of discrete dislocation plasticity, which facilitates the comparison of certain model aspects and also serves as a reference for latter segments of the research which make connection to this constitutive description. Chapter 2 has utility not only as a literature review, but also as a synthesis and analysis of competing and alternative nonlocal crystal plasticity modeling strategies from a common viewpoint. The micropolar theory of single crystal plasticity is presented in Chapter 3. Two different types of flow criteria are considered - the so-called single and multicriterion theories, and several variations of the dislocation-based strength models appropriate for each theory are presented and discussed. The numerical implementation of the two-dimensional version of the constitutive theory is given in Chapter 4. A user element subroutine for the implicit commercial finite element code Abaqus/Standard is developed and validated through the solution of initial-boundary value problems with closed-form solutions. Convergent behavior of the subroutine is also demonstrated for an initial-boundary value problem exhibiting strain localization. In Chapter 5, the models are employed to solve several standard initial-boundary value problems for heterogeneously deforming single crystals including simple shearing of a semi-infinite constrained thin film, pure bending of thin films, and simple shearing of a metal matrix composite with elastic inclusions. The simulation results are compared to those obtained from the solution of equivalent boundary value problems using discrete dislocation dynamics and alternative generalized crystal plasticity theories. Comparison and calibration with respect to the former provides guidance in the specification of non-traditional material parameters that arise in the model formulation and demonstrates its effectiveness at capturing the heterogeneous deformation fields and size-dependent mechanical behavior predicted by a finer scale constitutive description. Finally, in Chapter 6, the models are applied to simulate the deformation behavior of small polycrystalline ensembles. Several grain boundary constitutive descriptions are explored and the response characteristics are analyzed with respect to experimental observations as well as results obtained from discrete dislocation dynamics and alternative nonlocal crystal plasticity theories. Particular attention is focused on how the various grain boundary descriptions serve to either locally concentrate or diffuse deformation heterogeneity as a function of grain size.
Discrete and continuum modelling of soil cutting
NASA Astrophysics Data System (ADS)
Coetzee, C. J.
2014-12-01
Both continuum and discrete methods are used to investigate the soil cutting process. The Discrete Element Method ( dem) is used for the discrete modelling and the Material-Point Method ( mpm) is used for continuum modelling. M pmis a so-called particle method or meshless finite element method. Standard finite element methods have difficulty in modelling the entire cutting process due to large displacements and deformation of the mesh. The use of meshless methods overcomes this problem. M pm can model large deformations, frictional contact at the soil-tool interface, and dynamic effects (inertia forces). In granular materials the discreteness of the system is often important and rotational degrees of freedom are active, which might require enhanced theoretical approaches like polar continua. In polar continuum theories, the material points are considered to possess orientations. A material point has three degrees-of-freedom for rigid rotations, in addition to the three classic translational degrees-of-freedom. The Cosserat continuum is the most transparent and straightforward extension of the nonpolar (classic) continuum. Two-dimensional dem and mpm (polar and nonpolar) simulations of the cutting problem are compared to experiments. The drag force and flow patterns are compared using cohesionless corn grains as material. The corn macro (continuum) and micro ( dem) properties were obtained from shear and oedometer tests. Results show that the dilatancy angle plays a significant role in the flow of material but has less of an influence on the draft force. Nonpolar mpm is the most accurate in predicting blade forces, blade-soil interface stresses and the position and orientation of shear bands. Polar mpm fails in predicting the orientation of the shear band, but is less sensitive to mesh size and mesh orientation compared to nonpolar mpm. dem simulations show less material dilation than observed during experiments.
Computational mechanics of viral capsids.
Gibbons, Melissa M; Perotti, Luigi E; Klug, William S
2015-01-01
Viral capsids undergo significant mechanical deformations during their assembly, maturation, and infective life-span. In order to characterize the mechanics of viral capsids, their response to applied external forces is analyzed in several experimental studies using, for instance, Atomic Force Microscope (AFM) indentation experiments. In recent years, a broader approach to study the mechanics of viral capsids has leveraged the theoretical tools proper of continuum mechanics. Even though the theory of continuum elasticity is most commonly used to study deformable bodies at larger macroscopic length scales, it has been shown that this very rich theoretical field can still offer useful insights into the mechanics of viral structures at the nanometer scale. Here we show the construction of viral capsid continuum mechanics models starting from different forms of experimental data. We will discuss the kinematics assumptions, the issue of the reference configuration, the material constitutive laws, and the numerical discretization necessary to construct a complete Finite Element capsid mechanical model. Some examples in the second part of the chapter will show the predictive capabilities of the constructed models and underline useful practical aspects related to efficiency and accuracy. We conclude each example by collecting several key findings discovered by simulating AFM indentation experiments using the constructed numerical models.
Choe, Seungho; Hecht, Karen A.; Grabe, Michael
2008-01-01
Continuum electrostatic approaches have been extremely successful at describing the charged nature of soluble proteins and how they interact with binding partners. However, it is unclear whether continuum methods can be used to quantitatively understand the energetics of membrane protein insertion and stability. Recent translation experiments suggest that the energy required to insert charged peptides into membranes is much smaller than predicted by present continuum theories. Atomistic simulations have pointed to bilayer inhomogeneity and membrane deformation around buried charged groups as two critical features that are neglected in simpler models. Here, we develop a fully continuum method that circumvents both of these shortcomings by using elasticity theory to determine the shape of the deformed membrane and then subsequently uses this shape to carry out continuum electrostatics calculations. Our method does an excellent job of quantitatively matching results from detailed molecular dynamics simulations at a tiny fraction of the computational cost. We expect that this method will be ideal for studying large membrane protein complexes. PMID:18474636
Smoothed-particle hydrodynamics and nonequilibrium molecular dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoover, W. G.; Hoover, C. G.
1993-08-01
Gingold, Lucy, and Monaghan invented a grid-free version of continuum mechanics ``smoothed-particle hydrodynamics,`` in 1977. It is a likely contributor to ``hybrid`` simulations combining atomistic and continuum simulations. We describe applications of this particle-based continuum technique from the closely-related standpoint of nonequilibrium molecular dynamics. We compare chaotic Lyapunov spectra for atomistic solids and fluids with those which characterize a two-dimensional smoothed-particle fluid system.
Peeling off an elastica from a smooth attractive substrate
NASA Astrophysics Data System (ADS)
Oyharcabal, Xabier; Frisch, Thomas
2005-03-01
Using continuum mechanics, we study theoretically the unbinding of an inextensible rod with free ends attracted by a smooth substrate and submitted to a vertical force. We use the elastica model in a medium-range van der Waals potential. We numerically solve a nonlinear boundary value problem and obtain the force-stretching relation at zero temperature. We obtain the critical force for which the rod unbinds from the substrate as a function of three dimensionless parameters, and we find two different regimes of adhesion. We study analytically the contact potential case as the van der Waals radius goes to zero.
Continuum mathematical modelling of pathological growth of blood vessels
NASA Astrophysics Data System (ADS)
Stadnik, N. E.; Dats, E. P.
2018-04-01
The present study is devoted to the mathematical modelling of a human blood vessel pathological growth. The vessels are simulated as the thin-walled circular tube. The boundary value problem of the surface growth of an elastic thin-walled cylinder is solved. The analytical solution is obtained in terms of velocities of stress strain state parameters. The condition of thinness allows us to study finite displacements of cylinder surfaces by means of infinitesimal deformations. The stress-strain state characteristics, which depend on the mechanical parameters of the biological processes, are numerically computed and graphically analysed.
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.; Gyekenyesi, John P.
1989-01-01
Presently there are many opportunities for the application of ceramic materials at elevated temperatures. In the near future ceramic materials are expected to supplant high temperature metal alloys in a number of applications. It thus becomes essential to develop a capability to predict the time-dependent response of these materials. The creep rupture phenomenon is discussed, and a time-dependent reliability model is outlined that integrates continuum damage mechanics principles and Weibull analysis. Several features of the model are presented in a qualitative fashion, including predictions of both reliability and hazard rate. In addition, a comparison of the continuum and the microstructural kinetic equations highlights a strong resemblance in the two approaches.
NASA Technical Reports Server (NTRS)
Noor, A. K.
1983-01-01
Advances in continuum modeling, progress in reduction methods, and analysis and modeling needs for large space structures are covered with specific attention given to repetitive lattice trusses. As far as continuum modeling is concerned, an effective and verified analysis capability exists for linear thermoelastic stress, birfurcation buckling, and free vibration problems of repetitive lattices. However, application of continuum modeling to nonlinear analysis needs more development. Reduction methods are very effective for bifurcation buckling and static (steady-state) nonlinear analysis. However, more work is needed to realize their full potential for nonlinear dynamic and time-dependent problems. As far as analysis and modeling needs are concerned, three areas are identified: loads determination, modeling and nonclassical behavior characteristics, and computational algorithms. The impact of new advances in computer hardware, software, integrated analysis, CAD/CAM stems, and materials technology is also discussed.
Heating mechanism(s) for transition layers in giants
NASA Technical Reports Server (NTRS)
Bohm-Vitense, Erika; Mena-Werth, Jose
1991-01-01
The emission-line fluxes of lines originating in the lower parts of the transition layers between stellar chromospheres and coronas are studied. Simon and Drake (1989) suspect different heating mechanisms for 'hot' and cool stars. Changes in the flux ratios for the C IV to C II emission lines support this suspicion. Large C IV/C II line flux ratios appear to be indicative of magnetically controlled heating. A correlation between excess continuum flux around 1950 A and C II emission-line fluxes are confirmed for the cooler giants (late F and cooler). Excess continuum flux correlates positively with large C IV/C II line flux ratio. The excess continuum flux corresponds to an increase in temperature by several hundred degrees in layers with a mean optical depth of about 0.03. For chromospherically active stars these layers experience a mechanical flux deposition of the order of 1 percent of the total radiative flux. This flux is tentatively identified as an MHD wave flux similar to Alfven waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerman, Jonathan A.; Jones, Reese E.; Templeton, Jeremy Alan
Materials with characteristic structures at nanoscale sizes exhibit significantly different mechani-cal responses from those predicted by conventional, macroscopic continuum theory. For example,nanocrystalline metals display an inverse Hall-Petch effect whereby the strength of the materialdecreases with decreasing grain size. The origin of this effect is believed to be a change in defor-mation mechanisms from dislocation motion across grains and pileup at grain boundaries at mi-croscopic grain sizes to rotation of grains and deformation within grain boundary interface regionsfor nanostructured materials. These rotational defects are represented by the mathematical conceptof disclinations. The ability to capture these effects within continuum theory, thereby connectingnanoscalemore » materials phenomena and macroscale behavior, has eluded the research community.The goal of our project was to develop a consistent theory to model both the evolution ofdisclinations and their kinetics. Additionally, we sought to develop approaches to extract contin-uum mechanical information from nanoscale structure to verify any developed continuum theorythat includes dislocation and disclination behavior. These approaches yield engineering-scale ex-pressions to quantify elastic and inelastic deformation in all varieties of materials, even those thatpossess highly directional bonding within their molecular structures such as liquid crystals, cova-lent ceramics, polymers and biological materials. This level of accuracy is critical for engineeringdesign and thermo-mechanical analysis is performed in micro- and nanosystems. The researchproposed here innovates on how these nanoscale deformation mechanisms should be incorporatedinto a continuum mechanical formulation, and provides the foundation upon which to develop ameans for predicting the performance of advanced engineering materials.4 AcknowledgmentThe authors acknowledge helpful discussions with Farid F. Abraham, Youping Chen, Terry J.Delph, Remi Dingreville, James W. Foulk III, Robert J. Hardy, Richard Lehoucq, Alejandro Mota,Gregory J. Wagner, Edmund B. Webb III and Xiaowang Zhou. Support for this project was pro-vided by the Enabling Predictive Simulation Investment Area of Sandia's Laboratory DirectedResearch and Development (LDRD) program.5« less
On the Nature of Off-limb Flare Continuum Sources Detected by SDO /HMI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinzel, P.; Kašparová, J.; Kleint, L.
The Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory has provided unique observations of off-limb flare emission. White-light continuum enhancements were detected in the “continuum” channel of the Fe 6173 Å line during the impulsive phase of the observed flares. In this paper we aim to determine which radiation mechanism is responsible for such enhancement being seen above the limb, at chromospheric heights around or below 1000 km. Using a simple analytical approach, we compare two candidate mechanisms, the hydrogen recombination continuum (Paschen) and the Thomson continuum due to scattering of disk radiation on flare electrons. Both mechanismsmore » depend on the electron density, which is typically enhanced during the impulsive phase of a flare as the result of collisional ionization (both thermal and also non-thermal due to electron beams). We conclude that for electron densities higher than 10{sup 12} cm{sup −3}, the Paschen recombination continuum significantly dominates the Thomson scattering continuum and there is some contribution from the hydrogen free–free emission. This is further supported by detailed radiation-hydrodynamical (RHD) simulations of the flare chromosphere heated by the electron beams. We use the RHD code FLARIX to compute the temporal evolution of the flare-heating in a semi-circular loop. The synthesized continuum structure above the limb resembles the off-limb flare structures detected by HMI, namely their height above the limb, as well as the radiation intensity. These results are consistent with recent findings related to hydrogen Balmer continuum enhancements, which were clearly detected in disk flares by the IRIS near-ultraviolet spectrometer.« less
Discrete and continuum links to a nonlinear coupled transport problem of interacting populations
NASA Astrophysics Data System (ADS)
Duong, M. H.; Muntean, A.; Richardson, O. M.
2017-07-01
We are interested in exploring interacting particle systems that can be seen as microscopic models for a particular structure of coupled transport flux arising when different populations are jointly evolving. The scenarios we have in mind are inspired by the dynamics of pedestrian flows in open spaces and are intimately connected to cross-diffusion and thermo-diffusion problems holding a variational structure. The tools we use include a suitable structure of the relative entropy controlling TV-norms, the construction of Lyapunov functionals and particular closed-form solutions to nonlinear transport equations, a hydrodynamics limiting procedure due to Philipowski, as well as the construction of numerical approximates to both the continuum limit problem in 2D and to the original interacting particle systems.
NASA Astrophysics Data System (ADS)
Jin, Wang; Penington, Catherine J.; McCue, Scott W.; Simpson, Matthew J.
2016-10-01
Two-dimensional collective cell migration assays are used to study cancer and tissue repair. These assays involve combined cell migration and cell proliferation processes, both of which are modulated by cell-to-cell crowding. Previous discrete models of collective cell migration assays involve a nearest-neighbour proliferation mechanism where crowding effects are incorporated by aborting potential proliferation events if the randomly chosen target site is occupied. There are two limitations of this traditional approach: (i) it seems unreasonable to abort a potential proliferation event based on the occupancy of a single, randomly chosen target site; and, (ii) the continuum limit description of this mechanism leads to the standard logistic growth function, but some experimental evidence suggests that cells do not always proliferate logistically. Motivated by these observations, we introduce a generalised proliferation mechanism which allows non-nearest neighbour proliferation events to take place over a template of r≥slant 1 concentric rings of lattice sites. Further, the decision to abort potential proliferation events is made using a crowding function, f(C), which accounts for the density of agents within a group of sites rather than dealing with the occupancy of a single randomly chosen site. Analysing the continuum limit description of the stochastic model shows that the standard logistic source term, λ C(1-C), where λ is the proliferation rate, is generalised to a universal growth function, λ C f(C). Comparing the solution of the continuum description with averaged simulation data indicates that the continuum model performs well for many choices of f(C) and r. For nonlinear f(C), the quality of the continuum-discrete match increases with r.
Jin, Wang; Penington, Catherine J; McCue, Scott W; Simpson, Matthew J
2016-10-07
Two-dimensional collective cell migration assays are used to study cancer and tissue repair. These assays involve combined cell migration and cell proliferation processes, both of which are modulated by cell-to-cell crowding. Previous discrete models of collective cell migration assays involve a nearest-neighbour proliferation mechanism where crowding effects are incorporated by aborting potential proliferation events if the randomly chosen target site is occupied. There are two limitations of this traditional approach: (i) it seems unreasonable to abort a potential proliferation event based on the occupancy of a single, randomly chosen target site; and, (ii) the continuum limit description of this mechanism leads to the standard logistic growth function, but some experimental evidence suggests that cells do not always proliferate logistically. Motivated by these observations, we introduce a generalised proliferation mechanism which allows non-nearest neighbour proliferation events to take place over a template of [Formula: see text] concentric rings of lattice sites. Further, the decision to abort potential proliferation events is made using a crowding function, f(C), which accounts for the density of agents within a group of sites rather than dealing with the occupancy of a single randomly chosen site. Analysing the continuum limit description of the stochastic model shows that the standard logistic source term, [Formula: see text], where λ is the proliferation rate, is generalised to a universal growth function, [Formula: see text]. Comparing the solution of the continuum description with averaged simulation data indicates that the continuum model performs well for many choices of f(C) and r. For nonlinear f(C), the quality of the continuum-discrete match increases with r.
Mechanics of couple-stress fluid coatings
NASA Technical Reports Server (NTRS)
Waxman, A. M.
1982-01-01
The formal development of a theory of viscoelastic surface fluids with bending resistance - their kinematics, dynamics, and rheology are discussed. It is relevant to the mechanics of fluid drops and jets coated by a thin layer of immiscible fluid with rather general rheology. This approach unifies the hydrodynamics of two-dimensional fluids with the mechanics of an elastic shell in the spirit of a Cosserat continuum. There are three distinct facets to the formulation of surface continuum mechanics. Outlined are the important ideas and results associated with each: the kinematics of evolving surface geometries, the conservation laws governing the mechanics of surface continua, and the rheological equations of state governing the surface stress and moment tensors.
NASA Astrophysics Data System (ADS)
Suleymanov, Michael; Horwitz, Lawrence; Yahalom, Asher
2017-06-01
A relativistic 4D string is described in the framework of the covariant quantum theory first introduced by Stueckelberg [ Helv. Phys. Acta 14, 588 (1941)], and further developed by Horwitz and Piron [ Helv. Phys. Acta 46, 316 (1973)], and discussed at length in the book of Horwitz [Relativistic Quantum Mechanics, Springer (2015)]. We describe the space-time string using the solutions of relativistic harmonic oscillator [ J. Math. Phys. 30, 66 (1989)]. We first study the problem of the discrete string, both classically and quantum mechanically, and then turn to a study of the continuum limit, which contains a basically new formalism for the quantization of an extended system. The mass and energy spectrum are derived. Some comparison is made with known string models.
General topology meets model theory, on and
Malliaris, Maryanthe; Shelah, Saharon
2013-01-01
Cantor proved in 1874 [Cantor G (1874) J Reine Angew Math 77:258–262] that the continuum is uncountable, and Hilbert’s first problem asks whether it is the smallest uncountable cardinal. A program arose to study cardinal invariants of the continuum, which measure the size of the continuum in various ways. By Gödel [Gödel K (1939) Proc Natl Acad Sci USA 25(4):220–224] and Cohen [Cohen P (1963) Proc Natl Acad Sci USA 50(6):1143–1148], Hilbert’s first problem is independent of ZFC (Zermelo-Fraenkel set theory with the axiom of choice). Much work both before and since has been done on inequalities between these cardinal invariants, but some basic questions have remained open despite Cohen’s introduction of forcing. The oldest and perhaps most famous of these is whether “,” which was proved in a special case by Rothberger [Rothberger F (1948) Fund Math 35:29–46], building on Hausdorff [Hausdorff (1936) Fund Math 26:241–255]. In this paper we explain how our work on the structure of Keisler’s order, a large-scale classification problem in model theory, led to the solution of this problem in ZFC as well as of an a priori unrelated open question in model theory. PMID:23836659
A Long-Term Space Astrophysics Research Program: The Evolution of the Quasar Continuum
NASA Technical Reports Server (NTRS)
Elvis, M.; Oliversen, Ronald K. (Technical Monitor)
2002-01-01
Four papers have been written. One reports on the major study funded by this grant: a pan-chromatic study of the quasar continuum at redshift 3. Two others make use of the quasar continuum shapes to find the minimum total accretion luminosity of the Universe, and hence the efficiency and spin of supermassive black holes; the second shows that the reemission of absorbed quasar radiation alleviates a major problem with galaxy formation and the FIR background. The last paper recognizes the role quasars may play in the initial formation of dust in the early Universe.
From cells to tissue: A continuum model of epithelial mechanics
NASA Astrophysics Data System (ADS)
Ishihara, Shuji; Marcq, Philippe; Sugimura, Kaoru
2017-08-01
A two-dimensional continuum model of epithelial tissue mechanics was formulated using cellular-level mechanical ingredients and cell morphogenetic processes, including cellular shape changes and cellular rearrangements. This model incorporates stress and deformation tensors, which can be compared with experimental data. Focusing on the interplay between cell shape changes and cell rearrangements, we elucidated dynamical behavior underlying passive relaxation, active contraction-elongation, and tissue shear flow, including a mechanism for contraction-elongation, whereby tissue flows perpendicularly to the axis of cell elongation. This study provides an integrated scheme for the understanding of the orchestration of morphogenetic processes in individual cells to achieve epithelial tissue morphogenesis.
Resolution of differences between collision number definitions in particle and continuum simulations
NASA Technical Reports Server (NTRS)
Lumpkin, Forrest E., III; Haas, Brian L.; Boyd, Iain D.
1991-01-01
The use of the same symbol, Z, representing a 'collision number' for thermal relaxation, has led to confusion regarding its definition in the context of both continuum and particle simulations. Examination of the relaxation mechanics employed in particle simulations demonstrates that these definitions differ by a numerical factor that depends upon the intermolecular potential. Particle and continuum simulations employing appropriate definitions of Z lead to identical results during isothermal and adiabatic stationary relaxation.
A nonlinear generalized continuum approach for electro-elasticity including scale effects
NASA Astrophysics Data System (ADS)
Skatulla, S.; Arockiarajan, A.; Sansour, C.
2009-01-01
Materials characterized by an electro-mechanically coupled behaviour fall into the category of so-called smart materials. In particular, electro-active polymers (EAP) recently attracted much interest, because, upon electrical loading, EAP exhibit a large amount of deformation while sustaining large forces. This property can be utilized for actuators in electro-mechanical systems, artificial muscles and so forth. When it comes to smaller structures, it is a well-known fact that the mechanical response deviates from the prediction of classical mechanics theory. These scale effects are due to the fact that the size of the microscopic material constituents of such structures cannot be considered to be negligible small anymore compared to the structure's overall dimensions. In this context so-called generalized continuum formulations have been proven to account for the micro-structural influence to the macroscopic material response. Here, we want to adopt a strain gradient approach based on a generalized continuum framework [Sansour, C., 1998. A unified concept of elastic-viscoplastic Cosserat and micromorphic continua. J. Phys. IV Proc. 8, 341-348; Sansour, C., Skatulla, S., 2007. A higher gradient formulation and meshfree-based computation for elastic rock. Geomech. Geoeng. 2, 3-15] and extend it to also encompass the electro-mechanically coupled behaviour of EAP. The approach introduces new strain and stress measures which lead to the formulation of a corresponding generalized variational principle. The theory is completed by Dirichlet boundary conditions for the displacement field and its derivatives normal to the boundary as well as the electric potential. The basic idea behind this generalized continuum theory is the consideration of a micro- and a macro-space which together span the generalized space. As all quantities are defined in this generalized space, also the constitutive law, which is in this work conventional electro-mechanically coupled nonlinear hyperelasticity, is embedded in the generalized continuum. In this way material information of the micro-space, which are here only the geometrical specifications of the micro-continuum, can naturally enter the constitutive law. Several applications with moving least square-based approximations (MLS) demonstrate the potential of the proposed method. This particular meshfree method is chosen, as it has been proven to be highly flexible with regard to continuity and consistency required by this generalized approach.
Grain transport mechanics in shallow flow
USDA-ARS?s Scientific Manuscript database
A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flows. The two-phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a dispe...
Grain transport mechanics in shallow overland flow
USDA-ARS?s Scientific Manuscript database
A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flow. The two phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a disper...
Li, Hui
2009-11-14
Linear response and variational treatment are formulated for Hartree-Fock (HF) and Kohn-Sham density functional theory (DFT) methods and combined discrete-continuum solvation models that incorporate self-consistently induced dipoles and charges. Due to the variational treatment, analytic nuclear gradients can be evaluated efficiently for these discrete and continuum solvation models. The forces and torques on the induced point dipoles and point charges can be evaluated using simple electrostatic formulas as for permanent point dipoles and point charges, in accordance with the electrostatic nature of these methods. Implementation and tests using the effective fragment potential (EFP, a polarizable force field) method and the conductorlike polarizable continuum model (CPCM) show that the nuclear gradients are as accurate as those in the gas phase HF and DFT methods. Using B3LYP/EFP/CPCM and time-dependent-B3LYP/EFP/CPCM methods, acetone S(0)-->S(1) excitation in aqueous solution is studied. The results are close to those from full B3LYP/CPCM calculations.
NASA Technical Reports Server (NTRS)
Coats, Timothy William
1994-01-01
Progressive failure is a crucial concern when using laminated composites in structural design. Therefore the ability to model damage and predict the life of laminated composites is vital. The purpose of this research was to experimentally verify the application of the continuum damage model, a progressive failure theory utilizing continuum damage mechanics, to a toughened material system. Damage due to tension-tension fatigue was documented for the IM7/5260 composite laminates. Crack density and delamination surface area were used to calculate matrix cracking and delamination internal state variables, respectively, to predict stiffness loss. A damage dependent finite element code qualitatively predicted trends in transverse matrix cracking, axial splits and local stress-strain distributions for notched quasi-isotropic laminates. The predictions were similar to the experimental data and it was concluded that the continuum damage model provided a good prediction of stiffness loss while qualitatively predicting damage growth in notched laminates.
Resilience Among Patients Across the Cancer Continuum: Diverse Perspectives
Molina, Yamile; Yi, Jean C.; Martinez-Gutierrez, Javiera; Reding, Kerryn W.; Yi-Frazier, Joyce P.; Rosenberg, Abby R.
2014-01-01
Each phase of the cancer experience profoundly affects patients’ lives. Much of the literature has focused on negative consequences of cancer; however, the study of resilience may enable providers to promote more positive psychosocial outcomes before, during, and after the cancer experience. The current review describes the ways in which elements of resilience have been defined and studied at each phase of the cancer continuum. Extensive literature searches were conducted to find studies assessing resilience during one or more stages of the adult cancer continuum. For all phases of the cancer continuum, resilience descriptions included preexisting or baseline characteristics, such as demographics and personal attributes (e.g., optimism, social support), mechanisms of adaptation, such as coping and medical experiences (e.g., positive provider communication), as well as psychosocial outcomes, such as growth and quality of life. Promoting resilience is a critical element of patient psychosocial care. Nurses may enable resilience by recognizing and promoting certain baseline characteristics and optimizing mechanisms of adaptation. PMID:24476731
The archetype-genome exemplar in molecular dynamics and continuum mechanics
NASA Astrophysics Data System (ADS)
Greene, M. Steven; Li, Ying; Chen, Wei; Liu, Wing Kam
2014-04-01
We argue that mechanics and physics of solids rely on a fundamental exemplar: the apparent properties of a system depend on the building blocks that comprise it. Building blocks are referred to as archetypes and apparent system properties as the system genome. Three entities are of importance: the archetype properties, the conformation of archetypes, and the properties of interactions activated by that conformation. The combination of these entities into the system genome is called assembly. To show the utility of the archetype-genome exemplar, this work presents the mathematical ingredients and computational implementation of theories in solid mechanics that are (1) molecular and (2) continuum manifestations of the assembly process. Both coarse-grained molecular dynamics (CGMD) and the archetype-blending continuum (ABC) theories are formulated then applied to polymer nanocomposites (PNCs) to demonstrate the impact the components of the assembly triplet have on a material genome. CGMD simulations demonstrate the sensitivity of nanocomposite viscosities and diffusion coefficients to polymer chain types (archetype), polymer-nanoparticle interaction potentials (interaction), and the structural configuration (conformation) of dispersed nanoparticles. ABC simulations show the contributions of bulk polymer (archetype) properties, occluded region of bound rubber (interaction) properties, and microstructural binary images (conformation) to predictions of linear damping properties, the Payne effect, and localization/size effects in the same class of PNC material. The paper is light on mathematics. Instead, the focus is on the usefulness of the archetype-genome exemplar to predict system behavior inaccessible to classical theories by transitioning mechanics away from heuristic laws to mechanism-based ones. There are two core contributions of this research: (1) presentation of a fundamental axiom—the archetype-genome exemplar—to guide theory development in computational mechanics, and (2) demonstrations of its utility in modern theoretical realms: CGMD, and generalized continuum mechanics.
Equivalent-Continuum Modeling of Nano-Structured Materials
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.
2001-01-01
A method has been developed for modeling structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with an equivalent-continuum model. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As an important example with direct application to the development and characterization of single-walled carbon nanotubes, the model has been applied to determine the effective continuum geometry of a graphene sheet. A representative volume element of the equivalent-continuum model has been developed with an effective thickness. This effective thickness has been shown to be similar to, but slightly smaller than, the interatomic spacing of graphite.
Yoo, Jejoong; Jackson, Meyer B.; Cui, Qiang
2013-01-01
To establish the validity of continuum mechanics models quantitatively for the analysis of membrane remodeling processes, we compare the shape and energies of the membrane fusion pore predicted by coarse-grained (MARTINI) and continuum mechanics models. The results at these distinct levels of resolution give surprisingly consistent descriptions for the shape of the fusion pore, and the deviation between the continuum and coarse-grained models becomes notable only when the radius of curvature approaches the thickness of a monolayer. Although slow relaxation beyond microseconds is observed in different perturbative simulations, the key structural features (e.g., dimension and shape of the fusion pore near the pore center) are consistent among independent simulations. These observations provide solid support for the use of coarse-grained and continuum models in the analysis of membrane remodeling. The combined coarse-grained and continuum analysis confirms the recent prediction of continuum models that the fusion pore is a metastable structure and that its optimal shape is neither toroidal nor catenoidal. Moreover, our results help reveal a new, to our knowledge, bowing feature in which the bilayers close to the pore axis separate more from one another than those at greater distances from the pore axis; bowing helps reduce the curvature and therefore stabilizes the fusion pore structure. The spread of the bilayer deformations over distances of hundreds of nanometers and the substantial reduction in energy of fusion pore formation provided by this spread indicate that membrane fusion can be enhanced by allowing a larger area of membrane to participate and be deformed. PMID:23442963
Discrete differential geometry: The nonplanar quadrilateral mesh
NASA Astrophysics Data System (ADS)
Twining, Carole J.; Marsland, Stephen
2012-06-01
We consider the problem of constructing a discrete differential geometry defined on nonplanar quadrilateral meshes. Physical models on discrete nonflat spaces are of inherent interest, as well as being used in applications such as computation for electromagnetism, fluid mechanics, and image analysis. However, the majority of analysis has focused on triangulated meshes. We consider two approaches: discretizing the tensor calculus, and a discrete mesh version of differential forms. While these two approaches are equivalent in the continuum, we show that this is not true in the discrete case. Nevertheless, we show that it is possible to construct mesh versions of the Levi-Civita connection (and hence the tensorial covariant derivative and the associated covariant exterior derivative), the torsion, and the curvature. We show how discrete analogs of the usual vector integral theorems are constructed in such a way that the appropriate conservation laws hold exactly on the mesh, rather than only as approximations to the continuum limit. We demonstrate the success of our method by constructing a mesh version of classical electromagnetism and discuss how our formalism could be used to deal with other physical models, such as fluids.
Mechanics and Physics of Solids, Uncertainy, and the Archetype-Genome Exemplar
NASA Astrophysics Data System (ADS)
Greene, M. Steven
This dissertation argues that the mechanics and physics of solids rely on a fundamental exemplar: the apparent properties of a system depend on the building blocks that comprise it. Building blocks are referred to as archetypes and apparent system properties as the system genome. Three entities are of importance: the archetype properties, the conformation of archetypes, and the properties of interactions activated by that conformation. The combination of these entities into the system genome is called assembly. To show the utility of the archetype-genome exemplar, the dissertation presents the mathematical construction and computational implementation of a new theory for solid mechanics that is a continuum manifestation of the assembly process. The so-called archetype-blending continuum theory aligns the form of globally valid balance laws with physics evolving in a material's composite constitutive response so that, by rethinking conventional micromechanics, the theory accounts naturally for each piece of the genome assembly triplet: archetypes, interactions, and their conformation. With the pieces of the triplet isolated in the theory, materials genome design concepts that separately control microstructure and property may be gleaned from exploration of the constitutive parameter space. A suite of simulations that apply the new theory to polymer nanocomposite materials demonstrate the ability of the theory to predict a robust material genome that includes damping properties, modulus weakening, local strain amplification, and size effects. The dissertation also presents a theoretical assessment of the importance of uncertainty propagation in the archetype-genome exemplar. The findings from a set of computational experiments on instances of a general class of microstructured materials suggest that when overlap occurs between the size of the system geometry and the features of the conformation, material genomes become less certain. Increasing nonuniformity of boundary conditions and the size of random field correlation lengths exacerbate this conclusion. These criteria are combined into a scalar metric used to assess the impact of archetype-level uncertainties on the material genome for general scenarios in solid mechanics. Exemplary benchmark problems include bending in elastoplasticity and instability-induced pattern transition in porous elastomer. The contributions of this dissertation are threefold: (1) the mathematical construction of a new continuum theory for mechanics and physics of solids, (2) implementation of the theory, and (3) theoretical assessment of the scenarios in which material genomes deviate from determinism.
A Size-Luminosity Relationship for Protoplanetary Disks in Lupus
NASA Astrophysics Data System (ADS)
Terrell, Marie; Andrews, Sean
2018-01-01
The sizes of the 340 GHz continuum emission from 56 protoplanetary disks in the Lupus star-forming region were measured by modeling their ALMA visibility profiles. We describe the mechanism for these measurements and some preliminary results regarding the correlation between the continuum luminosities and sizes.
Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray
2014-11-25
A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design.
Siddaway, Andy P; Wood, Alex M; Taylor, Peter J
2017-04-15
Two core but untested predictions of Positive Clinical Psychology (PCP) are that (1) Many psychiatric problems can be understood as one end of bipolar continua with well-being, and (2) that reducing psychiatric symptoms will provide an equal (near linear) decrease in risk for several other psychiatric variables, irrespective of position on continua. We test these predictions in relation to a purported well-being/depression continuum, as measured by the Center for Epidemiologic Studies-Depression (CES-D), a popular measure of depressive experiences in research and clinical practice. A large (N=4138), diverse sample completed the CES-D, which contains a mixture of negatively worded and positively worded items (e.g., "I felt sad," "I enjoyed life"). The latter are conventionally reverse scored to compute a total score. We first examined whether purportedly separate well-being and depression CES-D factors can be reconceptualised as a bipolar well-being/depression continuum. We then characterised the (linear or nonlinear) form of the relationship between this continuum and other psychiatric variables. Both predictions were supported. When controlling for shared method bias amongst positively worded items, a single factor well-being/depression continuum underlies the CES-D. Baseline levels on this continuum are found to have near linear relationships with changes in anxiety symptoms, aggression, and substance misuse over time, demonstrating that moving from depression to well-being on the CES-D provides an equal decrease in risk for several other psychological problems irrespective of position on the continuum. The CES-D does not measure well-being as comprehensively as established scales of well-being. Results support calls for mental health services to jointly focus on increasing well-being and reducing distress, and point to the value of early intervention and instilling resilience in order to prevent people moving away from high levels of well-being. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
The History of the Planar Elastica: Insights into Mechanics and Scientific Method
NASA Astrophysics Data System (ADS)
Goss, Victor Geoffrey Alan
2009-08-01
Euler’s formula for the buckling of an elastic column is widely used in engineering design. However, only a handful of engineers will be familiar with Euler’s classic paper De Curvis Elasticis in which the formula is derived. In addition to the Euler Buckling Formula, De Curvis Elasticis classifies all the bent configurations of elastic rod—a landmark in the development of a rational theory of continuum mechanics. As a historical case study, Euler’s work on elastic rods offers an insight into some important concepts which underlie mechanics. It sheds light on the search for unifying principles of mechanics and the role of analysis. The connection between results obtained from theory and those obtained from experiments on rods, highlights two different approaches to scientific discovery, which can be traced back to Bacon, Descartes and Galileo. The bent rod also has an analogy in dynamics, with a pendulum, which highlights the crucial distinctions between initial value and boundary value problems and between linear and nonlinear differential equations. In addition to benefiting from the overview which a historical study provides, the particular problem of the elastica offers students of science and engineering a clear elucidation of the connection between mathematics and real-world engineering, issues which still have relevance today.
Reading as Seduction: The Censorship Problem and the Educational Value of Literature.
ERIC Educational Resources Information Center
Bogdan, Deanne
1992-01-01
Uses examples from mass culture to show the relationship of the continuum theory and the gap theory to the connection between the censorship problem and the educational value of literary reading. (SR)
The pulsating orb: solving the wave equation outside a ball
2016-01-01
Transient acoustic waves are generated by the oscillations of an object or are scattered by the object. This leads to initial-boundary value problems (IBVPs) for the wave equation. Basic properties of this equation are reviewed, with emphasis on characteristics, wavefronts and compatibility conditions. IBVPs are formulated and their properties reviewed, with emphasis on weak solutions and the constraints imposed by the underlying continuum mechanics. The use of the Laplace transform to treat the IBVPs is also reviewed, with emphasis on situations where the solution is discontinuous across wavefronts. All these notions are made explicit by solving simple IBVPs for a sphere in some detail. PMID:27279773
NASA Astrophysics Data System (ADS)
Babaz, Mathieu; Jezequel, Louis; Lamarque, Claude-Henri; Perrard, Patrick
2016-02-01
A new approach of cables' dynamics is presented in this paper. It is based on the exact expression of tension coming from continuum mechanics, while the previous elastic models of cables in open literature consider an approximation of small strain which reduces the cable to a linear spring. The equations of a mass suspended to a massless cable are derived on the basis of this new formulation. The problem is studied and numerically calculated for one and two degrees of freedom. A comparison with the classical approach and a nonlinear analysis are presented.
Vibration analysis of nanorings using nonlocal continuum mechanics and shear deformable ring theory
NASA Astrophysics Data System (ADS)
Moosavi, H.; Mohammadi, M.; Farajpour, A.; Shahidi, S. H.
2011-10-01
In this article, we use shear deformable ring theory (SDRT) for the analysis of free in-plane vibration of nanorings based on nonlocal elasticity theory. The equations of motion of the nanoring are derived for the aforementioned problem by considering the small scale effect. Analytical solutions for the natural frequencies of the nanorings are presented. It is shown that the nonlocal effects play an important role in the vibration of nanorings and cannot be neglected. The effects of the small scale on the natural frequencies considering various parameters such as the radius of the nanoring, the thickness of the nanoring and mode numbers are investigated.
High-resolution continuum observations of the Sun
NASA Technical Reports Server (NTRS)
Zirin, Harold
1987-01-01
The aim of the PFI or photometric filtergraph instrument is to observe the Sun in the continuum with as high resolution as possible and utilizing the widest range of wavelengths. Because of financial and political problems the CCD was eliminated so that the highest photometric accuracy is only obtainable by comparison with the CFS images. Presently there is a limitation to wavelengths above 2200 A due to the lack of sensitivity of untreated film below 2200 A. Therefore the experiment at present consists of a film camera with 1000 feet of film and 12 filters. The PFI experiments are outlined using only two cameras. Some further problems of the experiment are addressed.
Adaptive unified continuum FEM modeling of a 3D FSI benchmark problem.
Jansson, Johan; Degirmenci, Niyazi Cem; Hoffman, Johan
2017-09-01
In this paper, we address a 3D fluid-structure interaction benchmark problem that represents important characteristics of biomedical modeling. We present a goal-oriented adaptive finite element methodology for incompressible fluid-structure interaction based on a streamline diffusion-type stabilization of the balance equations for mass and momentum for the entire continuum in the domain, which is implemented in the Unicorn/FEniCS software framework. A phase marker function and its corresponding transport equation are introduced to select the constitutive law, where the mesh tracks the discontinuous fluid-structure interface. This results in a unified simulation method for fluids and structures. We present detailed results for the benchmark problem compared with experiments, together with a mesh convergence study. Copyright © 2016 John Wiley & Sons, Ltd.
Maternal Ratings of Attention Problems in ADHD: Evidence for the Existence of a Continuum
ERIC Educational Resources Information Center
Lubke, Gitta H.; Hudziak, James J.; Derks, Eske M.; van Bijsterveldt, Toos C. E. M.; Boomsma, Dorret I.
2009-01-01
Objective: To investigate whether items assessing attention problems provide evidence of quantitative differences or categorically distinct subtypes of attention problems (APs) and to investigate the relation of empirically derived latent classes to "DSM-IV" diagnoses of subtypes of attention-deficit/hyperactivity disorder (ADHD), for…
Lattice Strain Due to an Atomic Vacancy
Li, Shidong; Sellers, Michael S.; Basaran, Cemal; Schultz, Andrew J.; Kofke, David A.
2009-01-01
Volumetric strain can be divided into two parts: strain due to bond distance change and strain due to vacancy sources and sinks. In this paper, efforts are focused on studying the atomic lattice strain due to a vacancy in an FCC metal lattice with molecular dynamics simulation (MDS). The result has been compared with that from a continuum mechanics method. It is shown that using a continuum mechanics approach yields constitutive results similar to the ones obtained based purely on molecular dynamics considerations. PMID:19582230
Modeling of Pedestrian Flows Using Hybrid Models of Euler Equations and Dynamical Systems
NASA Astrophysics Data System (ADS)
Bärwolff, Günter; Slawig, Thomas; Schwandt, Hartmut
2007-09-01
In the last years various systems have been developed for controlling, planning and predicting the traffic of persons and vehicles, in particular under security aspects. Going beyond pure counting and statistical models, approaches were found to be very adequate and accurate which are based on well-known concepts originally developed in very different research areas, namely continuum mechanics and computer science. In the present paper, we outline a continuum mechanical approach for the description of pedestrain flow.
Waste IPSC : Thermal-Hydrologic-Chemical-Mechanical (THCM) modeling and simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeze, Geoffrey A.; Wang, Yifeng; Arguello, Jose Guadalupe, Jr.
2010-10-01
Waste IPSC Objective is to develop an integrated suite of high performance computing capabilities to simulate radionuclide movement through the engineered components and geosphere of a radioactive waste storage or disposal system: (1) with robust thermal-hydrologic-chemical-mechanical (THCM) coupling; (2) for a range of disposal system alternatives (concepts, waste form types, engineered designs, geologic settings); (3) for long time scales and associated large uncertainties; (4) at multiple model fidelities (sub-continuum, high-fidelity continuum, PA); and (5) in accordance with V&V and software quality requirements. THCM Modeling collaborates with: (1) Other Waste IPSC activities: Sub-Continuum Processes (and FMM), Frameworks and Infrastructure (and VU,more » ECT, and CT); (2) Waste Form Campaign; (3) Used Fuel Disposition (UFD) Campaign; and (4) ASCEM.« less
Modeling granular material flows: The angle of repose, fluidization and the cliff collapse problem
NASA Astrophysics Data System (ADS)
Holsapple, Keith A.
2013-07-01
I discuss theories of granular material flows, with application to granular flows on the earth and planets. There are two goals. First, there is a lingering belief of some that the standard continuum plasticity Mohr-Coulomb and/or Drucker-Prager models are not adequate for many large-scale granular flow problems. The stated reason for those beliefs is the fact that the final slopes of the run-outs in collapse, landslide problems, and large-scale cratering are well below the angle of repose of the material. That observation, combined with the supposition that in those models flow cannot occur with slopes less than the angle of repose, has led to a number of researchers suggesting a need for lubrication or fluidization mechanisms and modeling. That issue is investigated in detail and shown to be false. A complete analysis of slope failures according to the Mohr-Coulomb model is presented, with special attention to the relations between the angle of repose and slope failures. It is shown that slope failure can occur for slope angles both larger than and smaller than the angle of repose. Second, to study the details of landslide run-outs, finite-difference continuum code simulations of the prototypical cliff collapse problem, using the classical plasticity models, are presented, analyzed and compared to experiments. Although devoid of any additional fluidization models, those simulations match experiments in the literature extremely well. The dynamics of this problem introduces additional important features relating to the run-out and final slope angles. The vertical free surface begins to fall at the initial 90° and flow continues to a final slope less than 10°. The detail in the calculation is examined to show why flow persists at slope angles that appear to be less than the angle of repose. The motions include regions of solid-like, fluid-like, and gas-like flows without invoking any additional models.
Electromagnetic-continuum-induced nonlinearity
NASA Astrophysics Data System (ADS)
Matsko, Andrey B.; Vyatchanin, Sergey P.
2018-05-01
A nonrelativistic Hamiltonian describing interaction between a mechanical degree of freedom and radiation pressure is commonly used as an ultimate tool for studying system behavior in optomechanics. This Hamiltonian is derived from the equation of motion of a mechanical degree of freedom and the optical wave equation with time-varying boundary conditions. We show that this approach is deficient for studying higher-order nonlinear effects in an open resonant optomechanical system. Optomechanical interaction induces a large mechanical nonlinearity resulting from a strong dependence of the power of the light confined in the optical cavity on the mechanical degrees of freedom of the cavity due to coupling with electromagnetic continuum. This dissipative nonlinearity cannot be inferred from the standard Hamiltonian formalism.
Latent profile analysis of sixth graders based on teacher ratings: Association with school dropout.
Orpinas, Pamela; Raczynski, Katherine; Peters, Jaclyn Wetherington; Colman, Laura; Bandalos, Deborah
2015-12-01
The goal of this study was to identify meaningful groups of sixth graders with common characteristics based on teacher ratings of assets and maladaptive behaviors, describe dropout rates for each group, and examine the validity of these groups using students' self-reports. The sample consisted of racially diverse students (n = 675) attending sixth grade in public schools in Northeast Georgia. The majority of the sample was randomly selected; a smaller group was identified by teachers as high risk for aggression. Based on teacher ratings of externalizing behaviors, internalizing problems, academic skills, leadership, and social assets, latent profile analysis yielded 7 classes that can be displayed along a continuum: Well-Adapted, Average, Average-Social Skills Deficit, Internalizing, Externalizing, Disruptive Behavior with School Problems, and Severe Problems. Dropout rate was lowest for the Well-adapted class (4%) and highest for the Severe Problems class (58%). However, students in the Average-Social Skills Deficit class did not follow the continuum, with a large proportion of students who abandoned high school (29%). The proportion of students identified by teachers as high in aggression consistently increased across the continuum from none in the Well-Adapted class to 84% in the Severe Problems class. Students' self-reports were generally consistent with the latent profile classes. Students in the Well-Adapted class reported low aggression, drug use, and delinquency, and high life satisfaction; self-reports went in the opposite direction for the Disruptive Behaviors with School Problems class. Results highlight the importance of early interventions to improve academic performance, reduce externalizing behaviors, and enhance social assets. (c) 2015 APA, all rights reserved).
Automatic prediction of tongue muscle activations using a finite element model.
Stavness, Ian; Lloyd, John E; Fels, Sidney
2012-11-15
Computational modeling has improved our understanding of how muscle forces are coordinated to generate movement in musculoskeletal systems. Muscular-hydrostat systems, such as the human tongue, involve very different biomechanics than musculoskeletal systems, and modeling efforts to date have been limited by the high computational complexity of representing continuum-mechanics. In this study, we developed a computationally efficient tracking-based algorithm for prediction of muscle activations during dynamic 3D finite element simulations. The formulation uses a local quadratic-programming problem at each simulation time-step to find a set of muscle activations that generated target deformations and movements in finite element muscular-hydrostat models. We applied the technique to a 3D finite element tongue model for protrusive and bending movements. Predicted muscle activations were consistent with experimental recordings of tongue strain and electromyography. Upward tongue bending was achieved by recruitment of the superior longitudinal sheath muscle, which is consistent with muscular-hydrostat theory. Lateral tongue bending, however, required recruitment of contralateral transverse and vertical muscles in addition to the ipsilateral margins of the superior longitudinal muscle, which is a new proposition for tongue muscle coordination. Our simulation framework provides a new computational tool for systematic analysis of muscle forces in continuum-mechanics models that is complementary to experimental data and shows promise for eliciting a deeper understanding of human tongue function. Copyright © 2012 Elsevier Ltd. All rights reserved.
An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snider, D.M.; O`Rourke, P.J.; Andrews, M.J.
1997-06-01
A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles,more » with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.« less
NASA Astrophysics Data System (ADS)
Misini Ignjatović, Majda; Caldararu, Octav; Dong, Geng; Muñoz-Gutierrez, Camila; Adasme-Carreño, Francisco; Ryde, Ulf
2016-09-01
We have estimated the binding affinity of three sets of ligands of the heat-shock protein 90 in the D3R grand challenge blind test competition. We have employed four different methods, based on five different crystal structures: first, we docked the ligands to the proteins with induced-fit docking with the Glide software and calculated binding affinities with three energy functions. Second, the docked structures were minimised in a continuum solvent and binding affinities were calculated with the MM/GBSA method (molecular mechanics combined with generalised Born and solvent-accessible surface area solvation). Third, the docked structures were re-optimised by combined quantum mechanics and molecular mechanics (QM/MM) calculations. Then, interaction energies were calculated with quantum mechanical calculations employing 970-1160 atoms in a continuum solvent, combined with energy corrections for dispersion, zero-point energy and entropy, ligand distortion, ligand solvation, and an increase of the basis set to quadruple-zeta quality. Fourth, relative binding affinities were estimated by free-energy simulations, using the multi-state Bennett acceptance-ratio approach. Unfortunately, the results were varying and rather poor, with only one calculation giving a correlation to the experimental affinities larger than 0.7, and with no consistent difference in the quality of the predictions from the various methods. For one set of ligands, the results could be strongly improved (after experimental data were revealed) if it was recognised that one of the ligands displaced one or two water molecules. For the other two sets, the problem is probably that the ligands bind in different modes than in the crystal structures employed or that the conformation of the ligand-binding site or the whole protein changes.
Misini Ignjatović, Majda; Caldararu, Octav; Dong, Geng; Muñoz-Gutierrez, Camila; Adasme-Carreño, Francisco; Ryde, Ulf
2016-09-01
We have estimated the binding affinity of three sets of ligands of the heat-shock protein 90 in the D3R grand challenge blind test competition. We have employed four different methods, based on five different crystal structures: first, we docked the ligands to the proteins with induced-fit docking with the Glide software and calculated binding affinities with three energy functions. Second, the docked structures were minimised in a continuum solvent and binding affinities were calculated with the MM/GBSA method (molecular mechanics combined with generalised Born and solvent-accessible surface area solvation). Third, the docked structures were re-optimised by combined quantum mechanics and molecular mechanics (QM/MM) calculations. Then, interaction energies were calculated with quantum mechanical calculations employing 970-1160 atoms in a continuum solvent, combined with energy corrections for dispersion, zero-point energy and entropy, ligand distortion, ligand solvation, and an increase of the basis set to quadruple-zeta quality. Fourth, relative binding affinities were estimated by free-energy simulations, using the multi-state Bennett acceptance-ratio approach. Unfortunately, the results were varying and rather poor, with only one calculation giving a correlation to the experimental affinities larger than 0.7, and with no consistent difference in the quality of the predictions from the various methods. For one set of ligands, the results could be strongly improved (after experimental data were revealed) if it was recognised that one of the ligands displaced one or two water molecules. For the other two sets, the problem is probably that the ligands bind in different modes than in the crystal structures employed or that the conformation of the ligand-binding site or the whole protein changes.
Nanoindentation of virus capsids in a molecular model
NASA Astrophysics Data System (ADS)
Cieplak, Marek; Robbins, Mark O.
2010-01-01
A molecular-level model is used to study the mechanical response of empty cowpea chlorotic mottle virus (CCMV) and cowpea mosaic virus (CPMV) capsids. The model is based on the native structure of the proteins that constitute the capsids and is described in terms of the Cα atoms. Nanoindentation by a large tip is modeled as compression between parallel plates. Plots of the compressive force versus plate separation for CCMV are qualitatively consistent with continuum models and experiments, showing an elastic region followed by an irreversible drop in force. The mechanical response of CPMV has not been studied, but the molecular model predicts an order of magnitude higher stiffness and a much shorter elastic region than for CCMV. These large changes result from small structural changes that increase the number of bonds by only 30% and would be difficult to capture in continuum models. Direct comparison of local deformations in continuum and molecular models of CCMV shows that the molecular model undergoes a gradual symmetry breaking rotation and accommodates more strain near the walls than the continuum model. The irreversible drop in force at small separations is associated with rupturing nearly all of the bonds between capsid proteins in the molecular model, while a buckling transition is observed in continuum models.
Modal kinematics for multisection continuum arms.
Godage, Isuru S; Medrano-Cerda, Gustavo A; Branson, David T; Guglielmino, Emanuele; Caldwell, Darwin G
2015-05-13
This paper presents a novel spatial kinematic model for multisection continuum arms based on mode shape functions (MSF). Modal methods have been used in many disciplines from finite element methods to structural analysis to approximate complex and nonlinear parametric variations with simple mathematical functions. Given certain constraints and required accuracy, this helps to simplify complex phenomena with numerically efficient implementations leading to fast computations. A successful application of the modal approximation techniques to develop a new modal kinematic model for general variable length multisection continuum arms is discussed. The proposed method solves the limitations associated with previous models and introduces a new approach for readily deriving exact, singularity-free and unique MSF's that simplifies the approach and avoids mode switching. The model is able to simulate spatial bending as well as straight arm motions (i.e., pure elongation/contraction), and introduces inverse position and orientation kinematics for multisection continuum arms. A kinematic decoupling feature, splitting position and orientation inverse kinematics is introduced. This type of decoupling has not been presented for these types of robotic arms before. The model also carefully accounts for physical constraints in the joint space to provide enhanced insight into practical mechanics and impose actuator mechanical limitations onto the kinematics thus generating fully realizable results. The proposed method is easily applicable to a broad spectrum of continuum arm designs.
Reproducing the nonlinear dynamic behavior of a structured beam with a generalized continuum model
NASA Astrophysics Data System (ADS)
Vila, J.; Fernández-Sáez, J.; Zaera, R.
2018-04-01
In this paper we study the coupled axial-transverse nonlinear vibrations of a kind of one dimensional structured solids by application of the so called Inertia Gradient Nonlinear continuum model. To show the accuracy of this axiomatic model, previously proposed by the authors, its predictions are compared with numeric results from a previously defined finite discrete chain of lumped masses and springs, for several number of particles. A continualization of the discrete model equations based on Taylor series allowed us to set equivalent values of the mechanical properties in both discrete and axiomatic continuum models. Contrary to the classical continuum model, the inertia gradient nonlinear continuum model used herein is able to capture scale effects, which arise for modes in which the wavelength is comparable to the characteristic distance of the structured solid. The main conclusion of the work is that the proposed generalized continuum model captures the scale effects in both linear and nonlinear regimes, reproducing the behavior of the 1D nonlinear discrete model adequately.
A coupled electro-thermal Discontinuous Galerkin method
NASA Astrophysics Data System (ADS)
Homsi, L.; Geuzaine, C.; Noels, L.
2017-11-01
This paper presents a Discontinuous Galerkin scheme in order to solve the nonlinear elliptic partial differential equations of coupled electro-thermal problems. In this paper we discuss the fundamental equations for the transport of electricity and heat, in terms of macroscopic variables such as temperature and electric potential. A fully coupled nonlinear weak formulation for electro-thermal problems is developed based on continuum mechanics equations expressed in terms of energetically conjugated pair of fluxes and fields gradients. The weak form can thus be formulated as a Discontinuous Galerkin method. The existence and uniqueness of the weak form solution are proved. The numerical properties of the nonlinear elliptic problems i.e., consistency and stability, are demonstrated under specific conditions, i.e. use of high enough stabilization parameter and at least quadratic polynomial approximations. Moreover the prior error estimates in the H1-norm and in the L2-norm are shown to be optimal in the mesh size with the polynomial approximation degree.
Constitutive Modeling of Nanotube-Reinforced Polymer Composites
NASA Technical Reports Server (NTRS)
Odegard, G. M.; Gates, T. S.; Wise, K. E.; Park, C.; Siochi, E. J.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube lengths, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyimide composite systems.
Ash Dispersal in Planetary Atmospheres: Continuum vs. Non-continuum Effects
NASA Astrophysics Data System (ADS)
Fagents, S. A.; Baloga, S. M.; Glaze, L. S.
2013-12-01
The dispersal of ash from a volcanic vent on any given planet is dictated by particle properties (density, shape, and size distribution), the intensity of the eruptive source, and the characteristics of the planetary environment (atmospheric structure, wind field, and gravity) into which the ash is erupted. Relating observations of potential pyroclastic deposits to source locations and eruption conditions requires a detailed quantitative understanding of the settling rates of individual particles under changing ambient conditions. For atmospheres that are well described by continuum mechanics, the conventional Newtonian description of particle motion allows particle settling velocities to be related to particle characteristics via a drag coefficient. However, under rarefied atmospheric conditions (i.e., on Mars and at high altitude on Earth), non-continuum effects become important for ash-sized particles, and an equation of motion based on statistical mechanics is required for calculating particle motion. We have developed a rigorous new treatment of particle settling under variable atmospheric conditions and applied it to Earth and Mars. When non-continuum effects are important (as dictated by the mean free path of atmospheric gas relative to the particle size), fall velocities are greater than those calculated by continuum mechanics. When continuum conditions (i.e., higher atmospheric densities) are reached during descent, our model switches to a conventional formulation that determines the appropriate drag coefficient as the particle transits varying atmospheric properties. The variation of settling velocity with altitude allows computation of particle trajectories, fall durations and downwind dispersal. Our theoretical and numerical analyses show that several key, competing factors strongly influence the downwind trajectories of ash particles and the extents of the resulting deposits. These factors include: the shape of the particles (non-spherical particles fall more slowly than spherical particle shapes commonly adopted in settling models); the formation of particle aggregates, which enhances settling rates; and the lagging of particle motion behind the ambient wind field, which results in less widely dispersed deposits. Above all, any particles experiencing non-continuum effects settle faster and are less widely dispersed than particles falling in an entirely continuum regime. Our model results demonstrate the complex interplay of these factors in the Martian environment, and our approach provides a basis for relating deposits observed in planetary datasets to candidate volcanic sources and eruption conditions. This allows for a critical reassessment of the potential for explosive volcanism to contribute to extremely widespread, fine-grained, layered deposits such as the Medusae Fossae Formation.
Finite Element Method-Based Kinematics and Closed-Loop Control of Soft, Continuum Manipulators.
Bieze, Thor Morales; Largilliere, Frederick; Kruszewski, Alexandre; Zhang, Zhongkai; Merzouki, Rochdi; Duriez, Christian
2018-06-01
This article presents a modeling methodology and experimental validation for soft manipulators to obtain forward kinematic model (FKM) and inverse kinematic model (IKM) under quasi-static conditions (in the literature, these manipulators are usually classified as continuum robots. However, their main characteristic of interest in this article is that they create motion by deformation, as opposed to the classical use of articulations). It offers a way to obtain the kinematic characteristics of this type of soft robots that is suitable for offline path planning and position control. The modeling methodology presented relies on continuum mechanics, which does not provide analytic solutions in the general case. Our approach proposes a real-time numerical integration strategy based on finite element method with a numerical optimization based on Lagrange multipliers to obtain FKM and IKM. To reduce the dimension of the problem, at each step, a projection of the model to the constraint space (gathering actuators, sensors, and end-effector) is performed to obtain the smallest number possible of mathematical equations to be solved. This methodology is applied to obtain the kinematics of two different manipulators with complex structural geometry. An experimental comparison is also performed in one of the robots, between two other geometric approaches and the approach that is showcased in this article. A closed-loop controller based on a state estimator is proposed. The controller is experimentally validated and its robustness is evaluated using Lypunov stability method.
Remeasurement of the H I Gunn-Peterson Effect toward QSO PKS 1937-101 with Keck Observations
NASA Astrophysics Data System (ADS)
Fang, Yihu; Fan, Xiaoming; Tytler, David; Crotts, Arlin P. S.
1998-04-01
We present the first measurement of the H I Gunn-Peterson effect using the Keck 10 m telescope, observing the high-redshift QSO PKS 1937-101 (z = 3.787). The high-resolution echelle (HIRES) spectra, with FWHM ~15 km s-1 and a signal-to-noise ratio (S/N) ~50 per spectral resolution element, allows us to resolve many weak lines down to NH I = 1012 cm-2, thus reducing the line-blanketing problem compared with previous data. Based on intensity-distribution analysis, we find that a maximum likelihood best fit yields a Gunn-Peterson type of opacity τGP = 0.113 +/- 0.020 in addition to a power-law Lyα absorption-line population with β of 1.7 down to NH I = 1012 cm-2. There remains systematic uncertainty in this result because of problems extrapolating the spectral continuum from the red side of the Lyα emission line. This is consistent with the previous study of the same QSO in low S/N data using weighted intensity function analysis (Fang & Crotts 1995). It indicates that this previous method succeeds in measuring the Lyα forest continuum level at low S/N, which is essential in extending the technique to possible fainter QSOs with minimum emission-line contamination for reliable continuum extrapolation. We further discuss problems of severe line blanketing, even in Keck spectra for QSOs at z >= 4.5, and show the effectiveness of the weighted intensity function method in measuring continuum levels in extremely crowded Lyα absorption spectra for redshifts as high as z > 5.
The geometry of discombinations and its applications to semi-inverse problems in anelasticity
Yavari, Arash; Goriely, Alain
2014-01-01
The geometrical formulation of continuum mechanics provides us with a powerful approach to understand and solve problems in anelasticity where an elastic deformation is combined with a non-elastic component arising from defects, thermal stresses, growth effects or other effects leading to residual stresses. The central idea is to assume that the material manifold, prescribing the reference configuration for a body, has an intrinsic, non-Euclidean, geometrical structure. Residual stresses then naturally arise when this configuration is mapped into Euclidean space. Here, we consider the problem of discombinations (a new term that we introduce in this paper), that is, a combined distribution of fields of dislocations, disclinations and point defects. Given a discombination, we compute the geometrical characteristics of the material manifold (curvature, torsion, non-metricity), its Cartan's moving frames and structural equations. This identification provides a powerful algorithm to solve semi-inverse problems with non-elastic components. As an example, we calculate the residual stress field of a cylindrically symmetric distribution of discombinations in an infinite circular cylindrical bar made of an incompressible hyperelastic isotropic elastic solid. PMID:25197257
Possibilities of the particle finite element method for fluid-soil-structure interaction problems
NASA Astrophysics Data System (ADS)
Oñate, Eugenio; Celigueta, Miguel Angel; Idelsohn, Sergio R.; Salazar, Fernando; Suárez, Benjamín
2011-09-01
We present some developments in the particle finite element method (PFEM) for analysis of complex coupled problems in mechanics involving fluid-soil-structure interaction (FSSI). The PFEM uses an updated Lagrangian description to model the motion of nodes (particles) in both the fluid and the solid domains (the later including soil/rock and structures). A mesh connects the particles (nodes) defining the discretized domain where the governing equations for each of the constituent materials are solved as in the standard FEM. The stabilization for dealing with an incompressibility continuum is introduced via the finite calculus method. An incremental iterative scheme for the solution of the non linear transient coupled FSSI problem is described. The procedure to model frictional contact conditions and material erosion at fluid-solid and solid-solid interfaces is described. We present several examples of application of the PFEM to solve FSSI problems such as the motion of rocks by water streams, the erosion of a river bed adjacent to a bridge foundation, the stability of breakwaters and constructions sea waves and the study of landslides.
From the Nano- to the Macroscale - Bridging Scales for the Moving Contact Line Problem
NASA Astrophysics Data System (ADS)
Nold, Andreas; Sibley, David; Goddard, Benjamin; Kalliadasis, Serafim; Complex Multiscale Systems Team
2016-11-01
The moving contact line problem remains an unsolved fundamental problem in fluid mechanics. At the heart of the problem is its multiscale nature: a nanoscale region close to the solid boundary where the continuum hypothesis breaks down, must be resolved before effective macroscale parameters such as contact line friction and slip can be obtained. To capture nanoscale properties very close to the contact line and to establish a link to the macroscale behaviour, we employ classical density-functional theory (DFT), in combination with extended Navier-Stokes-like equations. Using simple models for viscosity and slip at the wall, we compare our computations with the Molecular Kinetic Theory, by extracting the contact line friction, depending on the imposed temperature of the fluid. A key fluid property captured by DFT is the fluid layering at the wall-fluid interface, which has a large effect on the shearing properties of a fluid. To capture this crucial property, we propose an anisotropic model for the viscosity, which also allows us to scrutinize the effect of fluid layering on contact line friction.
Nonlinear instabilities of multi-site breathers in Klein-Gordon lattices
Cuevas-Maraver, Jesus; Kevrekidis, Panayotis G.; Pelinovsky, Dmitry E.
2016-08-01
Here, we explore the possibility of multi-site breather states in a nonlinear Klein–Gordon lattice to become nonlinearly unstable, even if they are found to be spectrally stable. The mechanism for this nonlinear instability is through the resonance with the wave continuum of a multiple of an internal mode eigenfrequency in the linearization of excited breather states. For the nonlinear instability, the internal mode must have its Krein signature opposite to that of the wave continuum. This mechanism is not only theoretically proposed, but also numerically corroborated through two concrete examples of the Klein–Gordon lattice with a soft (Morse) and amore » hard (Φ 4) potential. Compared to the case of the nonlinear Schrödinger lattice, the Krein signature of the internal mode relative to that of the wave continuum may change depending on the period of the multi-site breather state. For the periods for which the Krein signatures of the internal mode and the wave continuum coincide, multi-site breather states are observed to be nonlinearly stable.« less
Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray
2014-01-01
A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design. PMID:25404761
A continuum model for pressure-flow relationship in human pulmonary circulation.
Huang, Wei; Zhou, Qinlian; Gao, Jian; Yen, R T
2011-06-01
A continuum model was introduced to analyze the pressure-flow relationship for steady flow in human pulmonary circulation. The continuum approach was based on the principles of continuum mechanics in conjunction with detailed measurement of vascular geometry, vascular elasticity and blood rheology. The pulmonary arteries and veins were considered as elastic tubes and the "fifth-power law" was used to describe the pressure-flow relationship. For pulmonary capillaries, the "sheet-flow" theory was employed and the pressure-flow relationship was represented by the "fourth-power law". In this paper, the pressure-flow relationship for the whole pulmonary circulation and the longitudinal pressure distribution along the streamlines were studied. Our computed data showed general agreement with the experimental data for the normal subjects and the patients with mitral stenosis and chronic bronchitis in the literature. In conclusion, our continuum model can be used to predict the changes of steady flow in human pulmonary circulation.
NASA Astrophysics Data System (ADS)
Mofrad, Mohammad R. K.; Kamm, Roger D.
2011-08-01
1. Introduction and the biological basis for cell mechanics Mohammad R. K. Mofrad and Roger Kamm; 2. Experimental measurements of intracellular mechanics Paul Janmey and Christoph Schmidt; 3. The cytoskeleton as a soft glassy material Jeffrey Fredberg and Ben Fabry; 4. Continuum elastic or viscoelastic models for the cell Mohammad R. K. Mofrad, Helene Karcher and Roger Kamm; 5. Multiphasic models of cell mechanics Farshid Guuilak, Mansoor A. Haider, Lori A. Setton, Tod A. Laursen and Frank P. T. Baaijens; 6. Models of cytoskeletal mechanics based on tensegrity Dimitrije Stamenovic; 7. Cells, gels and mechanics Gerald H. Pollack; 8. Polymer-based models of cytoskeletal networks F. C. MacKintosh; 9. Cell dynamics and the actin cytoskeleton James L. McGrath and C. Forbes Dewey, Jr; 10. Active cellular motion: continuum theories and models Marc Herant and Micah Dembo; 11. Summary Mohammad R. K. Mofrad and Roger Kamm.
Equivalent-Continuum Modeling With Application to Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.
2002-01-01
A method has been proposed for developing structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with equivalent-continuum models. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As important examples with direct application to the development and characterization of single-walled carbon nanotubes and the design of nanotube-based devices, the modeling technique has been applied to determine the effective-continuum geometry and bending rigidity of a graphene sheet. A representative volume element of the chemical structure of graphene has been substituted with equivalent-truss and equivalent continuum models. As a result, an effective thickness of the continuum model has been determined. This effective thickness has been shown to be significantly larger than the interatomic spacing of graphite. The effective thickness has been shown to be significantly larger than the inter-planar spacing of graphite. The effective bending rigidity of the equivalent-continuum model of a graphene sheet was determined by equating the vibrational potential energy of the molecular model of a graphene sheet subjected to cylindrical bending with the strain energy of an equivalent continuum plate subjected to cylindrical bending.
A unified analysis of solidification in Bridgman crystal growth
NASA Astrophysics Data System (ADS)
Lu, Ming-Fang
2012-04-01
The simulation of multiphase solidification process can be handled by combining the VOF (Volume of Fluid) transport equation, in which the continuum mechanics model is used to simulate the melt/solid interface and the conservation of mass, momentum, and energy. Because the melt phase, the solid phase, and the melt/solid interface are controlled by a single control equation; if the enthalpy model based on porosity concept represents the processing of the phase transformation range, it is possible to solve the problem of phase transformation in the same way as solving the single-phase problem. Once the energy field of enthalpy for each step in time is resolved, the position of the interface can be precisely calculated with the use of VOF equation. This type of novel VOF method can be applied to find out the conditions of vertical Bridgman crystal growing located on the earth or under microgravity.
A unified analysis of solidification in Bridgman crystal growth
NASA Astrophysics Data System (ADS)
Lu, Ming-Fang
2011-11-01
The simulation of multiphase solidification process can be handled by combining the VOF (Volume of Fluid) transport equation, in which the continuum mechanics model is used to simulate the melt/solid interface and the conservation of mass, momentum, and energy. Because the melt phase, the solid phase, and the melt/solid interface are controlled by a single control equation; if the enthalpy model based on porosity concept represents the processing of the phase transformation range, it is possible to solve the problem of phase transformation in the same way as solving the single-phase problem. Once the energy field of enthalpy for each step in time is resolved, the position of the interface can be precisely calculated with the use of VOF equation. This type of novel VOF method can be applied to find out the conditions of vertical Bridgman crystal growing located on the earth or under microgravity.
Progressive failure methodologies for predicting residual strength and life of laminated composites
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Allen, David H.; Obrien, T. Kevin
1991-01-01
Two progressive failure methodologies currently under development by the Mechanics of Materials Branch at NASA Langley Research Center are discussed. The damage tolerance/fail safety methodology developed by O'Brien is an engineering approach to ensuring adequate durability and damage tolerance by treating only delamination onset and the subsequent delamination accumulation through the laminate thickness. The continuum damage model developed by Allen and Harris employs continuum damage laws to predict laminate strength and life. The philosophy, mechanics framework, and current implementation status of each methodology are presented.
Multiscale modeling and simulation for nano/micro materials
NASA Astrophysics Data System (ADS)
Wang, Xianqiao
Continuum description and atomic description used to be two distinct methods in the community of modeling and simulations. Science and technology have become so advanced that our understanding of many physical phenomena involves the concepts of both. So our goal now is to build a bridge to make atoms and continua communicate with each other. Micromorphic theory (MMT) envisions a material body as a continuous collection of deformable particles; each possesses finite size and inner structure. It is considered as the most successful top-down formulation of a two-level continuum model to bridge the gap between the micro level and macro level. Therefore MMT can be expected to unveil many new classes of physical phenomena that fall beyond classical field theories. In this work, the constitutive equations for generalized Micromorphic thermoviscoelastic solid and generalized Micromorphic fluid have been formulated. To enlarge the domain of applicability of MMT, from nano, micro to macro, we take a bottom-up approach to re-derive the generalized atomistic field theory (AFT) comprehensively and completely and establish the relationship between AFT and MMT. Finite element (FE) method is then implemented to pursue the numerical solutions of the governing equations derived in AFT. When the finest mesh is used, i.e., the size of FE mesh is equal to the lattice constant of the material, the computational model becomes identical to molecular dynamics simulation. When a coarse mesh is used, the resulting model is a coarse-grained model, the majority of the degrees of freedom are eliminated and the computational cost is largely reduced. When the coarse mesh and finest mesh exist concurrently, i.e., the finest mesh is used in the critical regions and the coarser mesh is used in the far field, it leads naturally to a concurrent atomistic/continuum model. Atomic scale, coarse-grained scale and concurrent atomistic/continuum simulations have demonstrated the potential capability of AFT to simulate most grand challenging problems in nano/micro physics, and shown that AFT has the advantages of both atomic model and MMT. Therefore, AFT has accomplished the mission to bridge the gap between continuum mechanics and atomic physics.
NASA Astrophysics Data System (ADS)
Clayton, J. D.
2017-02-01
A theory of deformation of continuous media based on concepts from Finsler differential geometry is presented. The general theory accounts for finite deformations, nonlinear elasticity, and changes in internal state of the material, the latter represented by elements of a state vector of generalized Finsler space whose entries consist of one or more order parameter(s). Two descriptive representations of the deformation gradient are considered. The first invokes an additive decomposition and is applied to problems involving localized inelastic deformation mechanisms such as fracture. The second invokes a multiplicative decomposition and is applied to problems involving distributed deformation mechanisms such as phase transformations or twinning. Appropriate free energy functions are posited for each case, and Euler-Lagrange equations of equilibrium are derived. Solutions are obtained for specific problems of tensile fracture of an elastic cylinder and for amorphization of a crystal under spherical and uniaxial compression. The Finsler-based approach is demonstrated to be more general and potentially more physically descriptive than existing hyperelasticity models couched in Riemannian geometry or Euclidean space, without incorporation of supplementary ad hoc equations or spurious fitting parameters. Predictions for single crystals of boron carbide ceramic agree qualitatively, and in many instances quantitatively, with results from physical experiments and atomic simulations involving structural collapse and failure of the crystal along its c-axis.
A general multiscale framework for the emergent effective elastodynamics of metamaterials
NASA Astrophysics Data System (ADS)
Sridhar, A.; Kouznetsova, V. G.; Geers, M. G. D.
2018-02-01
This paper presents a general multiscale framework towards the computation of the emergent effective elastodynamics of heterogeneous materials, to be applied for the analysis of acoustic metamaterials and phononic crystals. The generality of the framework is exemplified by two key characteristics. First, the underlying formalism relies on the Floquet-Bloch theorem to derive a robust definition of scales and scale separation. Second, unlike most homogenization approaches that rely on a classical volume average, a generalized homogenization operator is defined with respect to a family of particular projection functions. This yields a generalized macro-scale continuum, instead of the classical Cauchy continuum. This enables (in a micromorphic sense) to homogenize the rich dispersive behavior resulting from both Bragg scattering and local resonance. For an arbitrary unit cell, the homogenization projection functions are constructed using the Floquet-Bloch eigenvectors obtained in the desired frequency regime at select high symmetry points, which effectively resolves the emergent phenomena dominating that regime. Furthermore, a generalized Hill-Mandel condition is proposed that ensures power consistency between the homogenized and full-scale model. A high-order spatio-temporal gradient expansion is used to localize the multiscale problem leading to a series of recursive unit cell problems giving the appropriate micro-mechanical corrections. The developed multiscale method is validated against standard numerical Bloch analysis of the dispersion spectra of example unit cells encompassing multiple high-order branches generated by local resonance and/or Bragg scattering.
NASA Technical Reports Server (NTRS)
Song, Kyonchan; Li, Yingyong; Rose, Cheryl A.
2011-01-01
The performance of a state-of-the-art continuum damage mechanics model for interlaminar damage, coupled with a cohesive zone model for delamination is examined for failure prediction of quasi-isotropic open-hole tension laminates. Limitations of continuum representations of intra-ply damage and the effect of mesh orientation on the analysis predictions are discussed. It is shown that accurate prediction of matrix crack paths and stress redistribution after cracking requires a mesh aligned with the fiber orientation. Based on these results, an aligned mesh is proposed for analysis of the open-hole tension specimens consisting of different meshes within the individual plies, such that the element edges are aligned with the ply fiber direction. The modeling approach is assessed by comparison of analysis predictions to experimental data for specimen configurations in which failure is dominated by complex interactions between matrix cracks and delaminations. It is shown that the different failure mechanisms observed in the tests are well predicted. In addition, the modeling approach is demonstrated to predict proper trends in the effect of scaling on strength and failure mechanisms of quasi-isotropic open-hole tension laminates.
An integrative neuroscience model of "significance" processing.
Williams, Leanne M
2006-03-01
The Gordon [37-40] framework of Integrative Neuroscience is used to develop a continuum model for understanding the central role of motivationally-determined "significance" in organizing human information processing. Significance is defined as the property which gives a stimulus relevance to our core motivation to minimize danger and maximize pleasure. Within this framework, the areas of cognition and emotion, theories of motivational arousal and orienting, and the current understanding of neural systems are brought together. The basis of integration is a temporal continuum in which significance processing extends from the most rapid millisecond time scale of automatic, nonconscious mechanisms to the time scale of seconds, in which memory is shaped, to the controlled and conscious mechanisms unfolding over minutes. Over this continuum, significant stimuli are associated with a spectrum of defensive (or consumptive) behaviors through to volitional regulatory behaviors for danger (versus pleasure) and associated brainstem, limbic, medial forebrain bundle and prefrontal circuits, all of which reflect a balance of excitatory (predominant at rapid time scales) to inhibitory mechanisms. Across the lifespan, the negative and positive outcomes of significance processing, coupled with constitutional and genetic factors, will contribute to plasticity, shaping individual adaptations and maladaptions in the balance of excitatory-inhibitory mechanisms.
Hayenga, Heather N; Thorne, Bryan C; Peirce, Shayn M; Humphrey, Jay D
2011-11-01
There is a need to develop multiscale models of vascular adaptations to understand tissue-level manifestations of cellular level mechanisms. Continuum-based biomechanical models are well suited for relating blood pressures and flows to stress-mediated changes in geometry and properties, but less so for describing underlying mechanobiological processes. Discrete stochastic agent-based models are well suited for representing biological processes at a cellular level, but not for describing tissue-level mechanical changes. We present here a conceptually new approach to facilitate the coupling of continuum and agent-based models. Because of ubiquitous limitations in both the tissue- and cell-level data from which one derives constitutive relations for continuum models and rule-sets for agent-based models, we suggest that model verification should enforce congruency across scales. That is, multiscale model parameters initially determined from data sets representing different scales should be refined, when possible, to ensure that common outputs are consistent. Potential advantages of this approach are illustrated by comparing simulated aortic responses to a sustained increase in blood pressure predicted by continuum and agent-based models both before and after instituting a genetic algorithm to refine 16 objectively bounded model parameters. We show that congruency-based parameter refinement not only yielded increased consistency across scales, it also yielded predictions that are closer to in vivo observations.
Dissipation consistent fabric tensor definition from DEM to continuum for granular media
NASA Astrophysics Data System (ADS)
Li, X. S.; Dafalias, Y. F.
2015-05-01
In elastoplastic soil models aimed at capturing the impact of fabric anisotropy, a necessary ingredient is a measure of anisotropic fabric in the form of an evolving tensor. While it is possible to formulate such a fabric tensor based on indirect phenomenological observations at the continuum level, it is more effective and insightful to have the tensor defined first based on direct particle level microstructural observations and subsequently deduce a corresponding continuum definition. A practical means able to provide such observations, at least in the context of fabric evolution mechanisms, is the discrete element method (DEM). Some DEM defined fabric tensors such as the one based on the statistics of interparticle contact normals have already gained widespread acceptance as a quantitative measure of fabric anisotropy among researchers of granular material behavior. On the other hand, a fabric tensor in continuum elastoplastic modeling has been treated as a tensor-valued internal variable whose evolution must be properly linked to physical dissipation. Accordingly, the adaptation of a DEM fabric tensor definition to a continuum constitutive modeling theory must be thermodynamically consistent in regards to dissipation mechanisms. The present paper addresses this issue in detail, brings up possible pitfalls if such consistency is violated and proposes remedies and guidelines for such adaptation within a recently developed Anisotropic Critical State Theory (ACST) for granular materials.
El Nady, K; Ganghoffer, J F
2016-05-01
The asymptotic homogenization technique is involved to derive the effective elastic response of biological membranes viewed as repetitive beam networks. Thereby, a systematic methodology is established, allowing the prediction of the overall mechanical properties of biological membranes in the nonlinear regime, reflecting the influence of the geometrical and mechanical micro-parameters of the network structure on the overall response of the equivalent continuum. Biomembranes networks are classified based on nodal connectivity, so that we analyze in this work 3, 4 and 6-connectivity networks, which are representative of most biological networks. The individual filaments of the network are described as undulated beams prone to entropic elasticity, with tensile moduli determined from their persistence length. The effective micropolar continuum evaluated as a continuum substitute of the biological network has a kinematics reflecting the discrete network deformation modes, involving a nodal displacement and a microrotation. The statics involves the classical Cauchy stress and internal moments encapsulated into couple stresses, which develop internal work in duality to microcurvatures reflecting local network undulations. The relative ratio of the characteristic bending length of the effective micropolar continuum to the unit cell size determines the relevant choice of the equivalent medium. In most cases, the Cauchy continuum is sufficient to model biomembranes. The peptidoglycan network may exhibit a re-entrant hexagonal configuration due to thermal or pressure fluctuations, for which micropolar effects become important. The homogenized responses are in good agreement with FE simulations performed over the whole network. The predictive nature of the employed homogenization technique allows the identification of a strain energy density of a hyperelastic model, for the purpose of performing structural calculations of the shape evolutions of biomembranes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Constraints on Stress Components at the Internal Singular Point of an Elastic Compound Structure
NASA Astrophysics Data System (ADS)
Pestrenin, V. M.; Pestrenina, I. V.
2017-03-01
The classical analytical and numerical methods for investigating the stress-strain state (SSS) in the vicinity of a singular point consider the point as a mathematical one (having no linear dimensions). The reliability of the solution obtained by such methods is valid only outside a small vicinity of the singular point, because the macroscopic equations become incorrect and microscopic ones have to be used to describe the SSS in this vicinity. Also, it is impossible to set constraint or to formulate solutions in stress-strain terms for a mathematical point. These problems do not arise if the singular point is identified with the representative volume of material of the structure studied. In authors' opinion, this approach is consistent with the postulates of continuum mechanics. In this case, the formulation of constraints at a singular point and their investigation becomes an independent problem of mechanics for bodies with singularities. This method was used to explore constraints at an internal singular point (representative volume) of a compound wedge and a compound rib. It is shown that, in addition to the constraints given in the classical approach, there are also constraints depending on the macroscopic parameters of constituent materials. These constraints turn the problems of deformable bodies with an internal singular point into nonclassical ones. Combinations of material parameters determine the number of additional constraints and the critical stress state at the singular point. Results of this research can be used in the mechanics of composite materials and fracture mechanics and in studying stress concentrations in composite structural elements.
The Heat and Mass Transfer Processes at the Cooling of Strong Heated Sphere in a Cold Liquid
NASA Astrophysics Data System (ADS)
Puzina, Yu Yu
2017-10-01
Some new experimental results of continuum mechanics problems in two-phase systems are described. The processes of heat and mass transfer during cooling of strong heated sphere in the subcooled liquid are studied. Due to high level of heater temperature the stable vapor film is formed on the sphere surface. Calculation of steady-state transport processes at vapor - water interface is carried out using methods of molecular-kinetic theory. Heat transfer in vapor by thermal conductivity and natural convection in liquid are considered. Pressure balance is provided by hydrostatic pressure and non-equilibrium boundary condition. The results of the calculations are analyzed by comparison with previous data and experimental results.
Imaging in lung transplants: Checklist for the radiologist.
Madan, Rachna; Chansakul, Thanissara; Goldberg, Hilary J
2014-10-01
Post lung transplant complications can have overlapping clinical and imaging features, and hence, the time point at which they occur is a key distinguisher. Complications of lung transplantation may occur along a continuum in the immediate or longer postoperative period, including surgical and mechanical problems due to size mismatch and vascular as well as airway anastomotic complication, injuries from ischemia and reperfusion, acute and chronic rejection, pulmonary infections, and post-transplantation lymphoproliferative disorder. Life expectancy after lung transplantation has been limited primarily by chronic rejection and infection. Multiple detector computed tomography (MDCT) is critical for evaluation and early diagnosis of complications to enable selection of effective therapy and decrease morbidity and mortality among lung transplant recipients.
Thermodynamics and combustion modeling
NASA Technical Reports Server (NTRS)
Zeleznik, Frank J.
1986-01-01
Modeling fluid phase phenomena blends the conservation equations of continuum mechanics with the property equations of thermodynamics. The thermodynamic contribution becomes especially important when the phenomena involve chemical reactions as they do in combustion systems. The successful study of combustion processes requires (1) the availability of accurate thermodynamic properties for both the reactants and the products of reaction and (2) the computational capabilities to use the properties. A discussion is given of some aspects of the problem of estimating accurate thermodynamic properties both for reactants and products of reaction. Also, some examples of the use of thermodynamic properties for modeling chemically reacting systems are presented. These examples include one-dimensional flow systems and the internal combustion engine.
Quasistatic elastoplasticity via Peridynamics: existence and localization
NASA Astrophysics Data System (ADS)
Kružík, Martin; Mora-Corral, Carlos; Stefanelli, Ulisse
2018-04-01
Peridynamics is a nonlocal continuum mechanical theory based on minimal regularity on the deformations. Its key trait is that of replacing local constitutive relations featuring spacial differential operators with integrals over differences of displacement fields over a suitable positive interaction range. The advantage of such perspective is that of directly including nonregular situations, in which discontinuities in the displacement field may occur. In the linearized elastic setting, the mechanical foundation of the theory and its mathematical amenability have been thoroughly analyzed in the last years. We present here the extension of Peridynamics to linearized elastoplasticity. This calls for considering the time evolution of elastic and plastic variables, as the effect of a combination of elastic energy storage and plastic energy dissipation mechanisms. The quasistatic evolution problem is variationally reformulated and solved by time discretization. In addition, by a rigorous evolutive Γ -convergence argument we prove that the nonlocal peridynamic model converges to classic local elastoplasticity as the interaction range goes to zero.
ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.
Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan
2017-07-20
Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.
NASA Technical Reports Server (NTRS)
Speziale, Charles G.
1988-01-01
The invariance of constitutive equations in continuum mechanics is examined from a basic theoretical standpoint. It is demonstrated the constitutive equations which are not form invariant under arbitrary translational accelerations of the reference frame are in violation of the Einstein equivalane principle. Furthermore, by making use of an analysis based on statistical mechanics, it is argued that any frame-dependent terms in constitutive equations must arise from the intrinsic spin tensor and are negligible provided that the ratio of microscopic to macroscopic time scales is extremely small. The consistency of these results with existing constitutive theories is discussed in detail along with possible avenues of future research.
Fracture-Based Mesh Size Requirements for Matrix Cracks in Continuum Damage Mechanics Models
NASA Technical Reports Server (NTRS)
Leone, Frank A.; Davila, Carlos G.; Mabson, Gerald E.; Ramnath, Madhavadas; Hyder, Imran
2017-01-01
This paper evaluates the ability of progressive damage analysis (PDA) finite element (FE) models to predict transverse matrix cracks in unidirectional composites. The results of the analyses are compared to closed-form linear elastic fracture mechanics (LEFM) solutions. Matrix cracks in fiber-reinforced composite materials subjected to mode I and mode II loading are studied using continuum damage mechanics and zero-thickness cohesive zone modeling approaches. The FE models used in this study are built parametrically so as to investigate several model input variables and the limits associated with matching the upper-bound LEFM solutions. Specifically, the sensitivity of the PDA FE model results to changes in strength and element size are investigated.
Continuum mechanical model for cross-linked actin networks with contractile bundles
NASA Astrophysics Data System (ADS)
Ferreira, J. P. S.; Parente, M. P. L.; Natal Jorge, R. M.
2018-01-01
In the context of a mechanical approach to cell biology, there is a close relationship between cellular function and mechanical properties. In recent years, an increasing amount of attention has been given to the coupling between biochemical and mechanical signals by means of constitutive models. In particular, on the active contractility of the actin cytoskeleton. Given the importance of the actin contraction on the physiological functions, this study propose a constitutive model to describe how the filamentous network controls its mechanics actively. Embedded in a soft isotropic ground substance, the network behaves as a viscous mechanical continuum, comprised of isotropically distributed cross-linked actin filaments and actomyosin bundles. Trough virtual rheometry experiments, the present model relates the dynamics of the myosin motors with the network stiffness, which is to a large extent governed by the time-scale of the applied deformations/forces.
Gilbert, Louisa; Raj, Anita; Hien, Denise; Stockman, Jamila; Terlikbayeva, Assel; Wyatt, Gail
2015-06-01
Multiple pathways link gender-based violence (GBV) to HIV and other sexually transmitted infections among women and girls who use or inject drugs. The aim of this article is to synthesize global literature that examines associations among the synergistic epidemics of substance abuse, violence, and HIV/AIDS, known as the SAVA syndemic. It also aims to identify a continuum of multilevel integrated interventions that target key SAVA syndemic mechanisms. We conducted a selective search strategy, prioritizing use of meta-analytic epidemiological and intervention studies that address different aspects of the SAVA syndemic among women and girls who use drugs worldwide from 2000 to 2015 using PubMed, MEDLINE, and Google Scholar. Robust evidence from different countries suggests that GBV significantly increases the risk of HIV and other sexually transmitted infections among women and girls who use drugs. Multiple structural, biological, and behavioral mechanisms link GBV and HIV among women and girls. Emerging research has identified a continuum of brief and extended multilevel GBV prevention and treatment interventions that may be integrated into a continuum of HIV prevention, testing, and treatment interventions to target key SAVA syndemic mechanisms among women and girls who use drugs. There remain significant methodological and geographical gaps in epidemiological and intervention research on the SAVA syndemic, particularly in low- and middle-income countries. This global review underscores the need to advance a continuum of multilevel integrated interventions that target salient mechanisms of the SAVA syndemic, especially for adolescent girls, young women, and transgender women who use drugs.
NASA Astrophysics Data System (ADS)
Hobler, Gerhard
2015-06-01
Many experiments indicate the importance of stress and stress relaxation upon ion implantation. In this paper, a model is proposed that is capable of describing ballistic effects as well as stress relaxation by viscous flow. It combines atomistic binary collision simulation with continuum mechanics. The only parameters that enter the continuum model are the bulk modulus and the radiation-induced viscosity. The shear modulus can also be considered but shows only minor effects. A boundary-fitted grid is proposed that is usable both during the binary collision simulation and for the spatial discretization of the force balance equations. As an application, the milling of a slit into an amorphous silicon membrane with a 30 keV focused Ga beam is studied, which demonstrates the relevance of the new model compared to a more heuristic approach used in previous work.
An archetype hydrogen atmosphere problem
NASA Technical Reports Server (NTRS)
Athay, R. G.; Mihalas, D.; Shine, R. A.
1975-01-01
Populations for the first three bound states and the continuum of hydrogen are determined for an isothermal hydrostatic atmosphere at 20,000 K. The atmosphere is treated as optically thin in the Balmer and Paschen continua and illuminated by continuum radiation at these wavelengths with prescribed radiation temperatures. The atmosphere is optically thick in the 2-1, 3-1, 3-2 and c-1 transitions. Three stages of approximation are treated: (1) radiative detailed balance in the 2-1, 3-1 and 3-2 transitions, (2) radiative detailed balance in the 3-1 and 3-2 transitions, and (3) all transitions out of detailed balance. The solution of this problem is nontrivial and presents sufficient difficulty to have caused the failure of at least one rather standard technique. The problem is thus a good archetype against which new methods or new implementations of old methods may be tested.
Mechanism of asymmetric lineshape broadening in GaAs1-xNx Raman spectra
NASA Astrophysics Data System (ADS)
Mialitsin, Aleksej; Fluegel, Brian; Ptak, Aaron; Mascarenhas, Angelo
2012-07-01
Resonance Raman spectroscopy is used to probe the asymmetric broadening of the LO phonon linewidth in a dilute GaAs1-xNx alloy (x=0.41%). Electronic Raman scattering from a broad continuum is observed that gets enhanced concurrently with the LO phonon linewidth under resonance. The Fano interaction between the LO phonon and the electronic continuum is used to develop a model that satisfactorily explains the origin of the asymmetric LO phonon linewidth broadening in this abnormal alloy as arising due to coupling between the discrete and the continuum configurations.
NASA Technical Reports Server (NTRS)
Yamakov, V.; Saether, E.; Glaessgen, E. H.
2008-01-01
Intergranular fracture is a dominant mode of failure in ultrafine grained materials. In the present study, the atomistic mechanisms of grain-boundary debonding during intergranular fracture in aluminum are modeled using a coupled molecular dynamics finite element simulation. Using a statistical mechanics approach, a cohesive-zone law in the form of a traction-displacement constitutive relationship, characterizing the load transfer across the plane of a growing edge crack, is extracted from atomistic simulations and then recast in a form suitable for inclusion within a continuum finite element model. The cohesive-zone law derived by the presented technique is free of finite size effects and is statistically representative for describing the interfacial debonding of a grain boundary (GB) interface examined at atomic length scales. By incorporating the cohesive-zone law in cohesive-zone finite elements, the debonding of a GB interface can be simulated in a coupled continuum-atomistic model, in which a crack starts in the continuum environment, smoothly penetrates the continuum-atomistic interface, and continues its propagation in the atomistic environment. This study is a step towards relating atomistically derived decohesion laws to macroscopic predictions of fracture and constructing multiscale models for nanocrystalline and ultrafine grained materials.
ERIC Educational Resources Information Center
Brennan, Jewel E.
Alcoholism is a problem of immense proportions. Views about alcoholism range from consideration of the problem as a moral weakness to the disease concept approach. Since the effects of alcoholic intake can be benevolent as well as toxic, the dilemma centers around alcohol usage. Various theories have been formulated, experimented with, and…
Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics
NASA Astrophysics Data System (ADS)
Farajpour, Ali; Danesh, Mohammad; Mohammadi, Moslem
2011-12-01
This paper presents an investigation on the buckling characteristics of nanoscale rectangular plates under bi-axial compression considering non-uniformity in the thickness. Based on the nonlocal continuum mechanics, governing differential equations are derived. Numerical solutions for the buckling loads are obtained using the Galerkin method. The present study shows that the buckling behaviors of single-layered graphene sheets (SLGSs) are strongly sensitive to the nonlocal and non-uniform parameters. The influence of percentage change of thickness on the stability of SLGSs is more significant in the strip-type nonoplates (nanoribbons) than in the square-type nanoplates.
Akintunde, Akinjide; Petculescu, Andi
2014-10-01
This paper presents the results of a pilot study comparing the use of continuum and non-continuum fluid dynamics to predict infrasound attenuation in the rarefied lower thermosphere. The continuum approach is embodied by the Navier-Stokes equations, while the non-continuum method is implemented via the Burnett equations [Proc. London Math. Soc. 39, 385-430 (1935); 40, 382-435 (1936)]. In the Burnett framework, the coupling between stress tensor and heat flux affects the dispersion equation, leading to an attenuation coefficient smaller than its Navier-Stokes counterpart by amounts of order 0.1 dB/km at 0.1 Hz, 10 dB/km at 1 Hz, and 100 dB/km at 10 Hz. It has been observed that many measured thermospheric arrivals are stronger than current predictions based on continuum mechanics. In this context, the consistently smaller Burnett-based absorption is cautiously encouraging.
Seven Special Kids: Employment Problems of Handicapped Youth.
ERIC Educational Resources Information Center
Smith, R. C.
A study of the employment problems facing physically and mentally handicapped youth is reported. To illustrate the main points, results of extensive interviews with seven handicapped youth are juxtaposed with statistics and findings. The study looks at tne continuum of services offered to handicapped individuals, including understanding the…
Relativistic corrections and non-Gaussianity in radio continuum surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maartens, Roy; Zhao, Gong-Bo; Bacon, David
Forthcoming radio continuum surveys will cover large volumes of the observable Universe and will reach to high redshifts, making them potentially powerful probes of dark energy, modified gravity and non-Gaussianity. We consider the continuum surveys with LOFAR, WSRT and ASKAP, and examples of continuum surveys with the SKA. We extend recent work on these surveys by including redshift space distortions and lensing convergence in the radio source auto-correlation. In addition we compute the general relativistic (GR) corrections to the angular power spectrum. These GR corrections to the standard Newtonian analysis of the power spectrum become significant on scales near andmore » beyond the Hubble scale at each redshift. We find that the GR corrections are at most percent-level in LOFAR, WODAN and EMU surveys, but they can produce O(10%) changes for high enough sensitivity SKA continuum surveys. The signal is however dominated by cosmic variance, and multiple-tracer techniques will be needed to overcome this problem. The GR corrections are suppressed in continuum surveys because of the integration over redshift — we expect that GR corrections will be enhanced for future SKA HI surveys in which the source redshifts will be known. We also provide predictions for the angular power spectra in the case where the primordial perturbations have local non-Gaussianity. We find that non-Gaussianity dominates over GR corrections, and rises above cosmic variance when f{sub NL}∼>5 for SKA continuum surveys.« less
2007-04-30
flow and deformation of soils in contact with metallic and/or rubber -like bodies” Proceedings, 13th International Conference of the ISTVS 1, pp 201-208...soil- tyre interaction problem”, Proceedings, First North American Workshop on Modeling the Mechanics of Off-Road Mobility. Paper GL-94-30 U.S
Comparison of a 3-D CFD-DSMC Solution Methodology With a Wind Tunnel Experiment
NASA Technical Reports Server (NTRS)
Glass, Christopher E.; Horvath, Thomas J.
2002-01-01
A solution method for problems that contain both continuum and rarefied flow regions is presented. The methodology is applied to flow about the 3-D Mars Sample Return Orbiter (MSRO) that has a highly compressed forebody flow, a shear layer where the flow separates from a forebody lip, and a low density wake. Because blunt body flow fields contain such disparate regions, employing a single numerical technique to solve the entire 3-D flow field is often impractical, or the technique does not apply. Direct simulation Monte Carlo (DSMC) could be employed to solve the entire flow field; however, the technique requires inordinate computational resources for continuum and near-continuum regions, and is best suited for the wake region. Computational fluid dynamics (CFD) will solve the high-density forebody flow, but continuum assumptions do not apply in the rarefied wake region. The CFD-DSMC approach presented herein may be a suitable way to obtain a higher fidelity solution.
NASA Astrophysics Data System (ADS)
Yip, Shui Cheung
We study the longitudinal motion of a nonlinearly viscoelastic bar with one end fixed and the other end attached to a heavy tip mass. This problem is a precise continuum mechanical analog of the basic discrete mechanical problem of the motion of a mass point on a (massless) spring. This motion is governed by an initial-boundary-value problem for a class of third-order quasilinear parabolic-hyperbolic partial differential equations subject to a nonstandard boundary condition, which is the equation of motion of the tip mass. The ratio of the mass of the bar to that of the tip mass is taken to be a small parameter varepsilon. We prove that this problem has a unique regular solution that admits a valid asymptotic expansion, including an initial-layer expansion, in powers of varepsilon for varepsilon near 0. The fundamental constitutive hypothesis that the tension be a uniformly monotone function of the strain rate plays a critical role in a delicate proof that each term of the initial layer expansion decays exponentially in time. These results depend on new decay estimates for the solution of quasilinear parabolic equations. The constitutive hypothesis that the viscosity become large where the bar nears total compression leads to important uniform bounds for the strain and the strain rate. Higher-order energy estimates support the proof by the Schauder Fixed-Point Theorem of the existence of solutions having a level of regularity appropriate for the asymptotics.
Gilbert, Louisa; Raj, Anita; Hien, Denise; Stockman, Jamila; Terlikbayeva, Assel; Wyatt, Gail
2016-01-01
Objectives Multiple pathways link gender-based violence (GBV) to HIV and other sexually transmitted infections (STIs) among women and girls who use or inject drugs. The aim of this paper is to synthesize global literature that examines associations among the synergistic epidemics of substance abuse, violence and HIV/AIDS, known as the SAVA syndemic. It also aims to identify a continuum of multi-level integrated interventions that target key SAVA syndemic mechanisms. Methods We conducted a selective search strategy, prioritizing use of meta-analytic epidemiological and intervention studies that address different aspects of the SAVA syndemic among women and girls who use drugs worldwide from 2000–2015 using PubMed, MEDLINE, and Google Scholar. Results Robust evidence from different countries suggests that GBV significantly increases the risk of HIV and other STIs among women and girls who use drugs. Multiple structural, biological and behavioral mechanisms link GBV and HIV among women and girls. Emerging research has identified a continuum of brief and extended multi-level GBV prevention and treatment interventions that may be integrated into a continuum of HIV prevention, testing, and treatment interventions to target key SAVA syndemic mechanisms among women and girls who use drugs. Conclusion There remain significant methodological and geographical gaps in epidemiological and intervention research on the SAVA syndemic, particularly in low and middle-income countries. This global review underscores the need to advance a continuum of multi-level integrated interventions that target salient mechanisms of the SAVA syndemic, especially for adolescent girls, young women and transgender women who use drugs. PMID:25978478
Staron, L; Lagrée, P-Y; Popinet, S
2014-01-01
Using a continuum Navier-Stokes solver with the μ(I) flow law implemented to model the viscous behavior, and the discrete Contact Dynamics algorithm, the discharge of granular silos is simulated in two dimensions from the early stages of the discharge until complete release of the material. In both cases, the Beverloo scaling is recovered. We first do not attempt a quantitative comparison, but focus on the qualitative behavior of velocity and pressure at different locations in the flow. A good agreement for the velocity is obtained in the regions of rapid flows, while areas of slow creep are not entirely captured by the continuum model. The pressure field shows a general good agreement, while bulk deformations are found to be similar in both approaches. The influence of the parameters of the μ(I) flow law is systematically investigated, showing the importance of the dependence on the inertial number I to achieve quantitative agreement between continuum and discrete discharge. However, potential problems involving the systems size, the configuration and "non-local" effects, are suggested. Yet the general ability of the continuum model to reproduce qualitatively the granular behavior is found to be very encouraging.
NASA Astrophysics Data System (ADS)
Huber, M.; Keller, F.; Säckel, W.; Hirschler, M.; Kunz, P.; Hassanizadeh, S. M.; Nieken, U.
2016-04-01
The description of wetting phenomena is a challenging problem on every considerable length-scale. The behavior of interfaces and contact lines on the continuum scale is caused by intermolecular interactions like the Van der Waals forces. Therefore, to describe surface tension and the resulting dynamics of interfaces and contact lines on the continuum scale, appropriate formulations must be developed. While the Continuum Surface Force (CSF) model is well-engineered for the description of interfaces, there is still a lack of treatment of contact lines, which are defined by the intersection of an ending fluid interface and a solid boundary surface. In our approach we use a balance equation for the contact line and extend the Navier-Stokes equations in analogy to the extension of a two-phase interface in the CSF model. Since this model depicts a physically motivated approach on the continuum scale, no fitting parameters are introduced and the deterministic description leads to a dynamical evolution of the system. As verification of our theory, we show a Smoothed Particle Hydrodynamics (SPH) model and simulate the evolution of droplet shapes and their corresponding contact angles.
A continuum deformation theory for metal-matrix composites at high temperature
NASA Technical Reports Server (NTRS)
Robinson, D. N.
1987-01-01
A continuum theory is presented for representing the high temperature, time dependent, hereditary deformation behavior of metallic composites that can be idealized as pseudohomogeneous continua with locally definable directional characteristics. Homogenization of textured materials (molecular, granular, fibrous) and applicability of continuum mechanics in structural applications depends on characteristic body dimensions, the severity of gradients (stress, temperature, etc.) in the structure and the relative size of the internal structure (cell size) of the material. The point of view taken here is that the composite is a material in its own right, with its own properties that can be measured and specified for the composite as a whole.
NASA Technical Reports Server (NTRS)
Lakes, R.
1991-01-01
Continuum representations of micromechanical phenomena in structured materials are described, with emphasis on cellular solids. These phenomena are interpreted in light of Cosserat elasticity, a generalized continuum theory which admits degrees of freedom not present in classical elasticity. These are the rotation of points in the material, and a couple per unit area or couple stress. Experimental work in this area is reviewed, and other interpretation schemes are discussed. The applicability of Cosserat elasticity to cellular solids and fibrous composite materials is considered as is the application of related generalized continuum theories. New experimental results are presented for foam materials with negative Poisson's ratios.
Solving the three-body Coulomb breakup problem using exterior complex scaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCurdy, C.W.; Baertschy, M.; Rescigno, T.N.
2004-05-17
Electron-impact ionization of the hydrogen atom is the prototypical three-body Coulomb breakup problem in quantum mechanics. The combination of subtle correlation effects and the difficult boundary conditions required to describe two electrons in the continuum have made this one of the outstanding challenges of atomic physics. A complete solution of this problem in the form of a ''reduction to computation'' of all aspects of the physics is given by the application of exterior complex scaling, a modern variant of the mathematical tool of analytic continuation of the electronic coordinates into the complex plane that was used historically to establish themore » formal analytic properties of the scattering matrix. This review first discusses the essential difficulties of the three-body Coulomb breakup problem in quantum mechanics. It then describes the formal basis of exterior complex scaling of electronic coordinates as well as the details of its numerical implementation using a variety of methods including finite difference, finite elements, discrete variable representations, and B-splines. Given these numerical implementations of exterior complex scaling, the scattering wave function can be generated with arbitrary accuracy on any finite volume in the space of electronic coordinates, but there remains the fundamental problem of extracting the breakup amplitudes from it. Methods are described for evaluating these amplitudes. The question of the volume-dependent overall phase that appears in the formal theory of ionization is resolved. A summary is presented of accurate results that have been obtained for the case of electron-impact ionization of hydrogen as well as a discussion of applications to the double photoionization of helium.« less
A continuum mechanics-based musculo-mechanical model for esophageal transport
NASA Astrophysics Data System (ADS)
Kou, Wenjun; Griffith, Boyce E.; Pandolfino, John E.; Kahrilas, Peter J.; Patankar, Neelesh A.
2017-11-01
In this work, we extend our previous esophageal transport model using an immersed boundary (IB) method with discrete fiber-based structural model, to one using a continuum mechanics-based model that is approximated based on finite elements (IB-FE). To deal with the leakage of flow when the Lagrangian mesh becomes coarser than the fluid mesh, we employ adaptive interaction quadrature points to deal with Lagrangian-Eulerian interaction equations based on a previous work (Griffith and Luo [1]). In particular, we introduce a new anisotropic adaptive interaction quadrature rule. The new rule permits us to vary the interaction quadrature points not only at each time-step and element but also at different orientations per element. This helps to avoid the leakage issue without sacrificing the computational efficiency and accuracy in dealing with the interaction equations. For the material model, we extend our previous fiber-based model to a continuum-based model. We present formulations for general fiber-reinforced material models in the IB-FE framework. The new material model can handle non-linear elasticity and fiber-matrix interactions, and thus permits us to consider more realistic material behavior of biological tissues. To validate our method, we first study a case in which a three-dimensional short tube is dilated. Results on the pressure-displacement relationship and the stress distribution matches very well with those obtained from the implicit FE method. We remark that in our IB-FE case, the three-dimensional tube undergoes a very large deformation and the Lagrangian mesh-size becomes about 6 times of Eulerian mesh-size in the circumferential orientation. To validate the performance of the method in handling fiber-matrix material models, we perform a second study on dilating a long fiber-reinforced tube. Errors are small when we compare numerical solutions with analytical solutions. The technique is then applied to the problem of esophageal transport. We use two fiber-reinforced models for the esophageal tissue: a bi-linear model and an exponential model. We present three cases on esophageal transport that differ in the material model and the muscle fiber architecture. The overall transport features are consistent with those observed from the previous model. We remark that the continuum-based model can handle more realistic and complicated material behavior. This is demonstrated in our third case where a spatially varying fiber architecture is included based on experimental study. We find that this unique muscle fiber architecture could generate a so-called pressure transition zone, which is a luminal pressure pattern that is of clinical interest. This suggests an important role of muscle fiber architecture in esophageal transport.
Signal perception, transduction, and response in gravity resistance. Another graviresponse in plants
NASA Astrophysics Data System (ADS)
Hoson, T.; Saito, Y.; Soga, K.; Wakabayashi, K.
Resistance to the gravitational force is a serious problem that plants have had to solve to survive on land. Mechanical resistance to the pull of gravity is thus a principal graviresponse in plants, comparable to gravitropism. Nevertheless, only limited information has been obtained for this gravity response. We have examined the mechanism of gravity-induced mechanical resistance using hypergravity conditions produced by centrifugation. As a result, we have clarified the outline of the sequence of events leading to the development of mechanical resistance. The gravity signal may be perceived by mechanoreceptors (mechanosensitive ion channels) on the plasma membrane and it appears that amyloplast sedimentation in statocytes is not involved. Transformation and transduction of the perceived signal may be mediated by the structural or physiological continuum of microtubule-cell membrane-cell wall. As the final step in the development of mechanical resistance, plants construct a tough body by increasing cell wall rigidity. The increase in cell wall rigidity is brought about by modification of the metabolism of certain wall constituents and modification of the cell wall environment, especially pH. We need to clarify the details of each step by future space and ground-based experiments.
Phonons around a soliton in a continuum model of t-(CH)x
NASA Astrophysics Data System (ADS)
Ono, Y.; Terai, A.; Wada, Y.
1986-05-01
The eigenvalue problem for phonons around a soliton in a continuum model of trans-polyacetylene t-(CH)x, the so-called TLM model (Takayama et al, 1980), is reinvestigated using a kernel which satisfies the correct boundary condition. The three localized modes are reproduced, two with even parity and one with odd parity. The phase-shift analysis of the extended modes confirms their existence if the one-dimensional version of Levinson's theorem is applicable to the present problem. It is found that the phase shifts of even and odd modes differ from each other in the long-wavelength limit. The conclusion of Ito et al. (1984), that the scattering of phonons by the soliton is reflectionless, has to be modified in this limit, where phonons suffer reflection from the soliton.
What Actually Happens When Granular Materials Deform Under Shear: A Look Within
NASA Astrophysics Data System (ADS)
Viggiani, C.
2012-12-01
We all know that geomaterials (soil and rock) are composed of particles. However, when dealing with them, we often use continuum models, which ignore particles and make use of abstract variables such stress and strain. Continuum mechanics is the classical tool that geotechnical engineers have always used for their everyday calculations: estimating settlements of an embankment, the deformation of a sheet pile wall, the stability of a dam or a foundation, etc. History tells us that, in general, this works fine. While we are happily ignoring particles, they will at times come back to haunt us. This happens when deformation is localized in regions so small that the detail of the soil's (or rock's) particular structure cannot safely be ignored. Failure is the perfect example of this. Researchers in geomechanics (and more generally in solid mechanics) have long since known that all classical continuum models typically break down when trying to model failure. All sorts of numerical troubles ensue - all of them pointing to a fundamental deficiency of the model: the lack of microstructure. N.B.: the term microstructure doesn't prescribe a dimension (e.g., microns), but rather a scale - the scale of the mechanisms responsible for failure. A possible remedy to this deficiency is represented by the so-called "double scale" models, in which the small scale (the microstructure) is explicitly taken into account. Typically, two numerical problems are defined and solved - one at the large (continuum) scale, and the other at the small scale. This sort of approach requires a link between the two scales, to complete the picture. Imagine we are solving at the small scale a simulation of an assembly of a few grains, for example using the Discrete Element Method, whose results are in turn fed back to the large scale Finite Element simulation. The key feature of a double scale model is that one can inject the relevant physics at the appropriate scale. The success of such a model crucially depends on the quality of the physics one injects: ideally, this comes directly from experiments. In Grenoble, this is what we do, combining various advanced experimental techniques. We are able to image, in three dimensions and at small scales, the deformation processes accompanying failure in geomaterials. This allows us to understand these processes and subsequently to define models at a pertinently small scale. I will present a few examples of the kind of experimental results which could inform a micro scale model. X-ray micro tomography imaging is the key measurement tool. This is used during loading, providing complete 3D images of a sand specimen at several stages throughout a triaxial compression test. Images from x-rays are then analyzed either in a continuum sense (using 3D Digital Image Correlation) or looking at the individual particle kinematics (Particle Tracking). I will show some of our most recent results, in which individual sand grains are followed with a technique combining very recent developments in image correlation and particle tracking. These advanced techniques offer us a look at what actually happens when a granular material deforms and eventually fails.
Polymer Fluid Dynamics: Continuum and Molecular Approaches.
Bird, R B; Giacomin, A J
2016-06-07
To solve problems in polymer fluid dynamics, one needs the equations of continuity, motion, and energy. The last two equations contain the stress tensor and the heat-flux vector for the material. There are two ways to formulate the stress tensor: (a) One can write a continuum expression for the stress tensor in terms of kinematic tensors, or (b) one can select a molecular model that represents the polymer molecule and then develop an expression for the stress tensor from kinetic theory. The advantage of the kinetic theory approach is that one gets information about the relation between the molecular structure of the polymers and the rheological properties. We restrict the discussion primarily to the simplest stress tensor expressions or constitutive equations containing from two to four adjustable parameters, although we do indicate how these formulations may be extended to give more complicated expressions. We also explore how these simplest expressions are recovered as special cases of a more general framework, the Oldroyd 8-constant model. Studying the simplest models allows us to discover which types of empiricisms or molecular models seem to be worth investigating further. We also explore equivalences between continuum and molecular approaches. We restrict the discussion to several types of simple flows, such as shearing flows and extensional flows, which are of greatest importance in industrial operations. Furthermore, if these simple flows cannot be well described by continuum or molecular models, then it is not necessary to lavish time and energy to apply them to more complex flow problems.
New Physics Beyond the Standard Model
NASA Astrophysics Data System (ADS)
Cai, Haiying
In this thesis we discuss several extensons of the standard model, with an emphasis on the hierarchy problem. The hierachy problem related to the Higgs boson mass is a strong indication of new physics beyond the Standard Model. In the literature, several mechanisms, e.g. , supersymmetry (SUSY), the little Higgs and extra dimensions, are proposed to explain why the Higgs mass can be stabilized to the electroweak scale. In the Standard Model, the largest quadratically divergent contribution to the Higgs mass-squared comes from the top quark loop. We consider a few novel possibilities on how this contribution is cancelled. In the standard SUSY scenario, the quadratic divergence from the fermion loops is cancelled by the scalar superpartners and the SUSY breaking scale determines the masses of the scalars. We propose a new SUSY model, where the superpartner of the top quark is spin-1 rather than spin-0. In little Higgs theories, the Higgs field is realized as a psudo goldstone boson in a nonlinear sigma model. The smallness of its mass is protected by the global symmetry. As a variation, we put the little Higgs into an extra dimensional model where the quadratically divergent top loop contribution to the Higgs mass is cancelled by an uncolored heavy "top quirk" charged under a different SU(3) gauge group. Finally, we consider a supersymmetric warped extra dimensional model where the superpartners have continuum mass spectra. We use the holographic boundary action to study how a mass gap can arise to separate the zero modes from continuum modes. Such extensions of the Standard Model have novel signatures at the Large Hadron Collider.
Simplifying the complexity of resistance heterogeneity in metastasis
Lavi, Orit; Greene, James M.; Levy, Doron; Gottesman, Michael M.
2014-01-01
The main goal of treatment regimens for metastasis is to control growth rates, not eradicate all cancer cells. Mathematical models offer methodologies that incorporate high-throughput data with dynamic effects on net growth. The ideal approach would simplify, but not over-simplify, a complex problem into meaningful and manageable estimators that predict a patient’s response to specific treatments. Here, we explore three fundamental approaches with different assumptions concerning resistance mechanisms, in which the cells are categorized into either discrete compartments or described by a continuous range of resistance levels. We argue in favor of modeling resistance as a continuum and demonstrate how integrating cellular growth rates, density-dependent versus exponential growth, and intratumoral heterogeneity improves predictions concerning the resistance heterogeneity of metastases. PMID:24491979
Grid-Independent Compressive Imaging and Fourier Phase Retrieval
ERIC Educational Resources Information Center
Liao, Wenjing
2013-01-01
This dissertation is composed of two parts. In the first part techniques of band exclusion(BE) and local optimization(LO) are proposed to solve linear continuum inverse problems independently of the grid spacing. The second part is devoted to the Fourier phase retrieval problem. Many situations in optics, medical imaging and signal processing call…
Solving Discipline Problems: Strategies for Classroom Teachers.
ERIC Educational Resources Information Center
Wolfgang, Charles H.; Glickman, Carl D.
This book provides classroom teachers with a variety of discipline models, techniques, methods, and constructs designed to enable them to move beyond a singular approach in handling classroom behavior problems. The book first discusses the Teacher Behavior Continuum (TBC) which shows the teacher the context of his or her own general behavior with…
DOSE-DEPENDENT TRANSITIONS IN MECHANISMS OF TOXICITY: CASE STUDIES
Experience with dose response and mechanisms of toxicity has shown that multiple mechanisms may exist for a single agent along the continuum of the full dose-response curve. It is highly likely that critical, limiting steps in any given mechanistic pathway may become overwhelmed ...
Echinocyte shapes: bending, stretching, and shear determine spicule shape and spacing.
Mukhopadhyay, Ranjan; Lim H W, Gerald; Wortis, Michael
2002-01-01
We study the shapes of human red blood cells using continuum mechanics. In particular, we model the crenated, echinocytic shapes and show how they may arise from a competition between the bending energy of the plasma membrane and the stretching/shear elastic energies of the membrane skeleton. In contrast to earlier work, we calculate spicule shapes exactly by solving the equations of continuum mechanics subject to appropriate boundary conditions. A simple scaling analysis of this competition reveals an elastic length Lambda(el), which sets the length scale for the spicules and is, thus, related to the number of spicules experimentally observed on the fully developed echinocyte. PMID:11916836
NASA Technical Reports Server (NTRS)
Su-Yuen, Hsu
2011-01-01
Textile composite materials have good potential for constructing composite structures where the effects of three-dimensional stresses are critical or geometric complexity is a manufacturing concern. There is a recent interest in advancing competence within Langley Research Center for modeling the degradation of mechanical properties of textile composites. In an initial effort, two critical areas are identified to pursue: (1) Construction of internal geometry of textile composites, and (2) Rate-independent continuum damage mechanics. This report documents reviews on the two subjects. Various reviewed approaches are categorized, their assumptions, methods, and progress are briefed, and then critiques are presented. Each review ends with recommended research.
NASA Astrophysics Data System (ADS)
Wu, Z. R.; Li, X.; Fang, L.; Song, Y. D.
2018-04-01
A new multiaxial fatigue life prediction model has been proposed in this paper. The concepts of nonlinear continuum damage mechanics and critical plane criteria were incorporated in the proposed model. The shear strain-based damage control parameter was chosen to account for multiaxial fatigue damage under constant amplitude loading. Fatigue tests were conducted on nickel-based superalloy GH4169 tubular specimens at the temperature of 400 °C under proportional and nonproportional loading. The proposed method was checked against the multiaxial fatigue test data of GH4169. Most of prediction results are within a factor of two scatter band of the test results.
Acoustic vibrations of single suspended gold nanostructures
NASA Astrophysics Data System (ADS)
Major, Todd A.
The acoustic vibrations for single gold nanowires and gold plates were studied using time-resolved ultrafast transient absorption. The objective of this work was to remove the contribution of the supporting substrate from the damping of the acoustic vibrations of the metal nano-objects. This was achieved by suspending the nano-objects across trenches created by photolithography and reactive ion etching. Transient absorption measurements for single suspended gold nanowires were initially completed in air and water environments. The acoustic vibrations for gold nanowires over the trench in air last typically for several nanoseconds, whereas gold nanowires in water are damped more quickly. Continuum mechanics models suggest that the acoustic impedance mismatch between air and water dominates the damping rate. Later transient absorption studies on single suspended gold nanowires were completed in glycerol and ethylene glycol environments. However, our continuum mechanical model suggests nearly complete damping in glycerol due to its high viscosity, but similar damping rates are seen between the two liquids. The continuum mechanics model thus incorrectly addresses high viscosity effects on the lifetimes of the acoustic vibrations, and more complicated viscoelastic interactions occur for the higher viscosity liquids. (Abstract shortened by UMI.).
Chen, Yunxia; Cui, Yuxuan; Gong, Wenjun
2017-01-01
Static fatigue behavior is the main failure mode of optical fibers applied in sensors. In this paper, a computational framework based on continuum damage mechanics (CDM) is presented to calculate the crack propagation process and failure time of optical fibers subjected to static bending and tensile loads. For this purpose, the static fatigue crack propagation in the glass core of the optical fiber is studied. Combining a finite element method (FEM), we use the continuum damage mechanics for the glass core to calculate the crack propagation path and corresponding failure time. In addition, three factors including bending radius, tensile force and optical fiber diameter are investigated to find their impacts on the crack propagation process and failure time of the optical fiber under concerned situations. Finally, experiments are conducted and the results verify the correctness of the simulation calculation. It is believed that the proposed method could give a straightforward description of the crack propagation path in the inner glass core. Additionally, the predicted crack propagation time of the optical fiber with different factors can provide effective suggestions for improving the long-term usage of optical fibers. PMID:29140284
Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Harik, Vasyl M.; Wise, Kristopher E.; Gates, Thomas S.
2004-01-01
In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes.
Constitutive Modeling of Nanotube-Reinforced Polymer Composite Systems
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Harik, Vasyl M.; Wise, Kristopher E.; Gates, Thomas S.
2001-01-01
In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Since the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties of the SWNT/polymer composites can no longer be determined through traditional micromechanical approaches that are formulated using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber retains the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube sizes and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyethylene composite systems, one with continuous and aligned SWNT and the other with discontinuous and randomly aligned nanotubes.
Chen, Yunxia; Cui, Yuxuan; Gong, Wenjun
2017-11-15
Static fatigue behavior is the main failure mode of optical fibers applied in sensors. In this paper, a computational framework based on continuum damage mechanics (CDM) is presented to calculate the crack propagation process and failure time of optical fibers subjected to static bending and tensile loads. For this purpose, the static fatigue crack propagation in the glass core of the optical fiber is studied. Combining a finite element method (FEM), we use the continuum damage mechanics for the glass core to calculate the crack propagation path and corresponding failure time. In addition, three factors including bending radius, tensile force and optical fiber diameter are investigated to find their impacts on the crack propagation process and failure time of the optical fiber under concerned situations. Finally, experiments are conducted and the results verify the correctness of the simulation calculation. It is believed that the proposed method could give a straightforward description of the crack propagation path in the inner glass core. Additionally, the predicted crack propagation time of the optical fiber with different factors can provide effective suggestions for improving the long-term usage of optical fibers.
Chilton, Roy; Pires-Yfantouda, Renata
2015-01-01
To develop a conceptual understanding of the process of adapting to the self-management of type 1 diabetes during adolescence. Participants were recruited from a National Health Service paediatric diabetes service within the south-west of England which runs six countywide diabetes clinics. Thirteen interviews were conducted using a social constructivist grounded theory approach. The findings illustrate how self-management can be understood in terms of a continuum-based framework, ranging from difficulties with, to successful self-management. Adaptation within the continuum can further be understood by specific transitional phases and process mechanisms, providing further depth to individuals' experiences of adaptation. This investigation provides a conceptual understanding of the complex issues adolescents encounter while adapting to and integrating a diabetes self-management regime into their lives. It provides an invaluable framework for exploring psychological mechanisms and contextualising them within a self-management continuum. Implications for healthcare professionals are discussed and further research proposes whether the model could be applicable to other chronic illnesses.
Calculation of continuum damping of Alfvén eigenmodes in tokamak and stellarator equilibria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowden, G. W.; Hole, M. J.; Könies, A.
2015-09-15
In an ideal magnetohydrodynamic (MHD) plasma, shear Alfvén eigenmodes may experience dissipationless damping due to resonant interaction with the shear Alfvén continuum. This continuum damping can make a significant contribution to the overall growth/decay rate of shear Alfvén eigenmodes, with consequent implications for fast ion transport. One method for calculating continuum damping is to solve the MHD eigenvalue problem over a suitable contour in the complex plane, thereby satisfying the causality condition. Such an approach can be implemented in three-dimensional ideal MHD codes which use the Galerkin method. Analytic functions can be fitted to numerical data for equilibrium quantities inmore » order to determine the value of these quantities along the complex contour. This approach requires less resolution than the established technique of calculating damping as resistivity vanishes and is thus more computationally efficient. The complex contour method has been applied to the three-dimensional finite element ideal MHD Code for Kinetic Alfvén waves. In this paper, we discuss the application of the complex contour technique to calculate the continuum damping of global modes in tokamak as well as torsatron, W7-X and H-1NF stellarator cases. To the authors' knowledge, these stellarator calculations represent the first calculation of continuum damping for eigenmodes in fully three-dimensional equilibria. The continuum damping of global modes in W7-X and H-1NF stellarator configurations investigated is found to depend sensitively on coupling to numerous poloidal and toroidal harmonics.« less
Dual number algebra method for Green's function derivatives in 3D magneto-electro-elasticity
NASA Astrophysics Data System (ADS)
Dziatkiewicz, Grzegorz
2018-01-01
The Green functions are the basic elements of the boundary element method. To obtain the boundary integral formulation the Green function and its derivative should be known for the considered differential operator. Today the interesting group of materials are electronic composites. The special case of the electronic composite is the magnetoelectroelastic continuum. The mentioned continuum is a model of the piezoelectric-piezomagnetic composites. The anisotropy of their physical properties makes the problem of Green's function determination very difficult. For that reason Green's functions for the magnetoelectroelastic continuum are not known in the closed form and numerical methods should be applied to determine such Green's functions. These means that the problem of the accurate and simply determination of Green's function derivatives is even harder. Therefore in the present work the dual number algebra method is applied to calculate numerically the derivatives of 3D Green's functions for the magnetoelectroelastic materials. The introduced method is independent on the step size and it can be treated as a special case of the automatic differentiation method. Therefore, the dual number algebra method can be applied as a tool for checking the accuracy of the well-known finite difference schemes.
Multiscale volatility duration characteristics on financial multi-continuum percolation dynamics
NASA Astrophysics Data System (ADS)
Wang, Min; Wang, Jun
A random stock price model based on the multi-continuum percolation system is developed to investigate the nonlinear dynamics of stock price volatility duration, in an attempt to explain various statistical facts found in financial data, and have a deeper understanding of mechanisms in the financial market. The continuum percolation system is usually referred to be a random coverage process or a Boolean model, it is a member of a class of statistical physics systems. In this paper, the multi-continuum percolation (with different values of radius) is employed to model and reproduce the dispersal of information among the investors. To testify the rationality of the proposed model, the nonlinear analyses of return volatility duration series are preformed by multifractal detrending moving average analysis and Zipf analysis. The comparison empirical results indicate the similar nonlinear behaviors for the proposed model and the actual Chinese stock market.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onić, D.; Urošević, D.; Leahy, D., E-mail: donic@matf.bg.ac.rs
Recent observations of the microwave sky, by space telescopes such as the Wilkinson Microwave Anisotropy Probe and Planck , have opened a new window into the analysis of continuum emission from supernova remnants (SNRs). In this paper, different emission models that can explain the characteristic shape of currently known integrated radio/microwave continuum spectrum of the Galactic SNR IC 443 are tested and discussed. In particular, the possibility is emphasized that the slight bump in the integrated continuum of this remnant around 20–70 GHz is genuine and that it can be explained by the contribution of an additional emission mechanism suchmore » as spinning dust. We find that adding a spinning dust component to the emission model improves the fit of the integrated spectrum of this SNR while at the same time preserving the physically probable parameter values. Finally, models that include the high-frequency synchrotron bending of the IC 443 radio to microwave continuum are favored.« less
Multiscale Modeling of Mesoscale and Interfacial Phenomena
NASA Astrophysics Data System (ADS)
Petsev, Nikolai Dimitrov
With rapidly emerging technologies that feature interfaces modified at the nanoscale, traditional macroscopic models are pushed to their limits to explain phenomena where molecular processes can play a key role. Often, such problems appear to defy explanation when treated with coarse-grained continuum models alone, yet remain prohibitively expensive from a molecular simulation perspective. A prominent example is surface nanobubbles: nanoscopic gaseous domains typically found on hydrophobic surfaces that have puzzled researchers for over two decades due to their unusually long lifetimes. We show how an entirely macroscopic, non-equilibrium model explains many of their anomalous properties, including their stability and abnormally small gas-side contact angles. From this purely transport perspective, we investigate how factors such as temperature and saturation affect nanobubbles, providing numerous experimentally testable predictions. However, recent work also emphasizes the relevance of molecular-scale phenomena that cannot be described in terms of bulk phases or pristine interfaces. This is true for nanobubbles as well, whose nanoscale heights may require molecular detail to capture the relevant physics, in particular near the bubble three-phase contact line. Therefore, there is a clear need for general ways to link molecular granularity and behavior with large-scale continuum models in the treatment of many interfacial problems. In light of this, we have developed a general set of simulation strategies that couple mesoscale particle-based continuum models to molecular regions simulated through conventional molecular dynamics (MD). In addition, we derived a transport model for binary mixtures that opens the possibility for a wide range of applications in biological and drug delivery problems, and is readily reconciled with our hybrid MD-continuum techniques. Approaches that couple multiple length scales for fluid mixtures are largely absent in the literature, and we provide a novel and general framework for multiscale modeling of systems featuring one or more dissolved species. This makes it possible to retain molecular detail for parts of the problem that require it while using a simple, continuum description for parts where high detail is unnecessary, reducing the number of degrees of freedom (i.e. number of particles) dramatically. This opens the possibility for modeling ion transport in biological processes and biomolecule assembly in ionic solution, as well as electrokinetic phenomena at interfaces such as corrosion. The number of particles in the system is further reduced through an integrated boundary approach, which we apply to colloidal suspensions. In this thesis, we describe this general framework for multiscale modeling single- and multicomponent systems, provide several simple equilibrium and non-equilibrium case studies, and discuss future applications.
Modeling stock price dynamics by continuum percolation system and relevant complex systems analysis
NASA Astrophysics Data System (ADS)
Xiao, Di; Wang, Jun
2012-10-01
The continuum percolation system is developed to model a random stock price process in this work. Recent empirical research has demonstrated various statistical features of stock price changes, the financial model aiming at understanding price fluctuations needs to define a mechanism for the formation of the price, in an attempt to reproduce and explain this set of empirical facts. The continuum percolation model is usually referred to as a random coverage process or a Boolean model, the local interaction or influence among traders is constructed by the continuum percolation, and a cluster of continuum percolation is applied to define the cluster of traders sharing the same opinion about the market. We investigate and analyze the statistical behaviors of normalized returns of the price model by some analysis methods, including power-law tail distribution analysis, chaotic behavior analysis and Zipf analysis. Moreover, we consider the daily returns of Shanghai Stock Exchange Composite Index from January 1997 to July 2011, and the comparisons of return behaviors between the actual data and the simulation data are exhibited.
SPATIALLY RESOLVED HCN J = 4-3 AND CS J = 7-6 EMISSION FROM THE DISK AROUND HD 142527
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van der Plas, G.; Casassus, S.; Perez, S.
2014-09-10
The disk around HD 142527 attracts a great amount of attention compared to others because of its resolved (sub-)millimeter dust continuum that is concentrated into the shape of a horseshoe toward the north of the star. In this Letter we present spatially resolved ALMA detections of the HCN J = 4-3 and CS J = 7-6 emission lines. These lines give us a deeper view into the disk compared to the (optically thicker) CO isotopes. This is the first detection of CS J = 7-6 coming from a protoplanetary disk. Both emission lines are azimuthally asymmetric and are suppressed under the horseshoe-shapedmore » continuum emission peak. A possible mechanism for explaining the decrease under the horseshoe-shaped continuum is the increased opacity coming from the higher dust concentration at the continuum peak. Lower dust and/or gas temperatures and an optically thick radio-continuum reduce line emission by freezing out and shielding emission from the far side of the disk.« less
Elasticity of fractal materials using the continuum model with non-integer dimensional space
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2015-01-01
Using a generalization of vector calculus for space with non-integer dimension, we consider elastic properties of fractal materials. Fractal materials are described by continuum models with non-integer dimensional space. A generalization of elasticity equations for non-integer dimensional space, and its solutions for the equilibrium case of fractal materials are suggested. Elasticity problems for fractal hollow ball and cylindrical fractal elastic pipe with inside and outside pressures, for rotating cylindrical fractal pipe, for gradient elasticity and thermoelasticity of fractal materials are solved.
UV spectroscopy of Z Chamaeleontis. II - The 1988 January normal outburst
NASA Technical Reports Server (NTRS)
Harlaftis, E. T.; Naylor, T.; Hassall, B. J. M.; Charles, P. A.; Sonneborn, G.; Bailey, J.
1992-01-01
IUE observations taken during the 1988 January normal outburst of Z Cha are presented and a detailed comparison with the 1987 April superoutburst is made. The most important difference from the superoutburst is that the normal outburst continuum flux shows less than 10 percent orbital variation away from the eclipse, implying that there is no 'cool' bulge on the disk to occult the brighter inner disk periodically. The implications for the outburst mechanism in the types of outburst are discussed. The evolution of the continuum flux distribution and emission-line fluxes, the modulation of the continuum and line fluxes with orbital phase, and the behavior of the mideclipse spectral during normal outburst are investigated.
Jonkers, Ilse; De Schutter, Joris; De Groote, Friedl
2016-01-01
Experimental studies have shown that a continuum of ankle and hip strategies is used to restore posture following an external perturbation. Postural responses can be modeled by feedback control with feedback gains that optimize a specific objective. On the one hand, feedback gains that minimize effort have been used to predict muscle activity during perturbed standing. On the other hand, hip and ankle strategies have been predicted by minimizing postural instability and deviation from upright posture. It remains unclear, however, whether and how effort minimization influences the selection of a specific postural response. We hypothesize that the relative importance of minimizing mechanical work vs. postural instability influences the strategy used to restore upright posture. This hypothesis was investigated based on experiments and predictive simulations of the postural response following a backward support surface translation. Peak hip flexion angle was significantly correlated with three experimentally determined measures of effort, i.e., mechanical work, mean muscle activity and metabolic energy. Furthermore, a continuum of ankle and hip strategies was predicted in simulation when changing the relative importance of minimizing mechanical work and postural instability, with increased weighting of mechanical work resulting in an ankle strategy. In conclusion, the combination of experimental measurements and predictive simulations of the postural response to a backward support surface translation showed that the trade-off between effort and postural instability minimization can explain the selection of a specific postural response in the continuum of potential ankle and hip strategies. PMID:27489362
Toward unbiased determination of the redshift evolution of Lyman-alpha forest clouds
NASA Technical Reports Server (NTRS)
Lu, Limin; Zuo, Lin
1994-01-01
The possibility of using D(sub A), the mean depression of a quasar spectrum due to Ly-alpha forest absorption, to study the number density evolution of the Ly-alpha forest clouds is examined in some detail. Current D(sub A) measurements are made against a continuum that is a power-law extrapolation from the continuum longward of Ly-alpha emission. Compared to the line-counting approach, the D(sub A)-method has the advantage that the D(sub A) measurements are not affected by line-blending effects. However, we find using low-redshift quasar spectra obtained with the Hubble Space Telescope (HST), where the true continuum in the Ly-alpha forest can be estimated fairly reliably because of the much lower density of the Ly-alpha forest lines, that the extrapolated continuum often deviates systematically from the true continuum in the forest region. Such systematic continuum errors introduce large errors in the D(sub A) measurements. The current D(sub A) measurements may also be significantly biased by the possible presence of the Gunn-Peterson absorption. We propose a modification to the existing D(sub A)-method, namely, to measure D(sub A) against a locally established continuum in the Ly-alpha forest. Under conditions that the quasar spectrum has good resolution and S/N to allow for a reliable estimate of the local continuum in the Ly-alpha forest, the modified D(sub A) measurements should be largely free of the systematic uncertainties suffered by the existing D(sub A) measurements. We also introduce a formalism based on the work of Zuo (1993) to simplify the application of the D(sub A)-method(s) to real data. We discuss the merits and limitations of the modified D(sub A)-method, and conclude that it is a useful alternative. Our findings that the extrapolated continuum from longward of Ly-alpha emission often deviates systematically from the true continuum in the Ly-alpha forest present a major problem in the study of the Gunn-Peterson absorption.
Theoretical derivation of laser-dressed atomic states by using a fractal space
NASA Astrophysics Data System (ADS)
Duchateau, Guillaume
2018-05-01
The derivation of approximate wave functions for an electron submitted to both a Coulomb and a time-dependent laser electric fields, the so-called Coulomb-Volkov (CV) state, is addressed. Despite its derivation for continuum states does not exhibit any particular problem within the framework of the standard theory of quantum mechanics (QM), difficulties arise when considering an initially bound atomic state. Indeed the natural way of translating the unperturbed momentum by the laser vector potential is no longer possible since a bound state does not exhibit a plane wave form explicitly including a momentum. The use of a fractal space permits to naturally define a momentum for a bound wave function. Within this framework, it is shown how the derivation of laser-dressed bound states can be performed. Based on a generalized eikonal approach, a new expression for the laser-dressed states is also derived, fully symmetric relative to the continuum or bound nature of the initial unperturbed wave function. It includes an additional crossed term in the Volkov phase which was not obtained within the standard theory of quantum mechanics. The derivations within this fractal framework have highlighted other possible ways to derive approximate laser-dressed states in QM. After comparing the various obtained wave functions, an application to the prediction of the ionization probability of hydrogen targets by attosecond XUV pulses within the sudden approximation is provided. This approach allows to make predictions in various regimes depending on the laser intensity, going from the non-resonant multiphoton absorption to tunneling and barrier-suppression ionization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajagopal, K.R.
The mechanics of the flowing granular materials such as coal, agricultural products, at deal of attention as it has fertilizers, dry chemicals, metal ores, etc. have received a great deal of attention as it has relevance to several important technological problems. Despite wide interest and more than five decades of experimental and theoretical investigations, most aspects of the behavior of flowing granular materials are still not well understood. So Experiments have to be devised which quantify and describe the non-linear behavior of the modular materials, and theories developed which can explain the experimentally observed facts. As many models have beenmore » suggested for describing the behavior of granular materials, from both continuum and kinetic theory viewpoints, we proposed to investigate the validity and usefulness of representative models from both the continuum and kinetic theory points of view, by determining the prediction of such a theory, in a representative flow, with respect to existence, non-existence, multiplicity and stability of solutions. The continuum model to be investigated is an outgrowth of a model due to Goodman and Cowin (1971, 1972) and the kinetic theory models being those due to Jenkins and Richman (1985) and Boyle and Massoudi (1989). In this report we present detailed results regarding the same. Interestingly, we find that the predictions of all the theories, in certain parameter space associated with these models, are qualitatively similar. This ofcourse depends on the values assumed for various material parameters in the models, which as yet are unknown, as reliable experiments have not been carried out as yet for their determination.« less
Orogen-scale uplift in the central Italian Apennines drives episodic behaviour of earthquake faults
Cowie, P. A.; Phillips, R. J.; Roberts, G. P.; McCaffrey, K.; Zijerveld, L. J. J.; Gregory, L. C.; Faure Walker, J.; Wedmore, L. N. J.; Dunai, T. J.; Binnie, S. A.; Freeman, S. P. H. T.; Wilcken, K.; Shanks, R. P.; Huismans, R. S.; Papanikolaou, I.; Michetti, A. M.; Wilkinson, M.
2017-01-01
Many areas of the Earth’s crust deform by distributed extensional faulting and complex fault interactions are often observed. Geodetic data generally indicate a simpler picture of continuum deformation over decades but relating this behaviour to earthquake occurrence over centuries, given numerous potentially active faults, remains a global problem in hazard assessment. We address this challenge for an array of seismogenic faults in the central Italian Apennines, where crustal extension and devastating earthquakes occur in response to regional surface uplift. We constrain fault slip-rates since ~18 ka using variations in cosmogenic 36Cl measured on bedrock scarps, mapped using LiDAR and ground penetrating radar, and compare these rates to those inferred from geodesy. The 36Cl data reveal that individual faults typically accumulate meters of displacement relatively rapidly over several thousand years, separated by similar length time intervals when slip-rates are much lower, and activity shifts between faults across strike. Our rates agree with continuum deformation rates when averaged over long spatial or temporal scales (104 yr; 102 km) but over shorter timescales most of the deformation may be accommodated by <30% of the across-strike fault array. We attribute the shifts in activity to temporal variations in the mechanical work of faulting. PMID:28322311
Orogen-scale uplift in the central Italian Apennines drives episodic behaviour of earthquake faults.
Cowie, P A; Phillips, R J; Roberts, G P; McCaffrey, K; Zijerveld, L J J; Gregory, L C; Faure Walker, J; Wedmore, L N J; Dunai, T J; Binnie, S A; Freeman, S P H T; Wilcken, K; Shanks, R P; Huismans, R S; Papanikolaou, I; Michetti, A M; Wilkinson, M
2017-03-21
Many areas of the Earth's crust deform by distributed extensional faulting and complex fault interactions are often observed. Geodetic data generally indicate a simpler picture of continuum deformation over decades but relating this behaviour to earthquake occurrence over centuries, given numerous potentially active faults, remains a global problem in hazard assessment. We address this challenge for an array of seismogenic faults in the central Italian Apennines, where crustal extension and devastating earthquakes occur in response to regional surface uplift. We constrain fault slip-rates since ~18 ka using variations in cosmogenic 36 Cl measured on bedrock scarps, mapped using LiDAR and ground penetrating radar, and compare these rates to those inferred from geodesy. The 36 Cl data reveal that individual faults typically accumulate meters of displacement relatively rapidly over several thousand years, separated by similar length time intervals when slip-rates are much lower, and activity shifts between faults across strike. Our rates agree with continuum deformation rates when averaged over long spatial or temporal scales (10 4 yr; 10 2 km) but over shorter timescales most of the deformation may be accommodated by <30% of the across-strike fault array. We attribute the shifts in activity to temporal variations in the mechanical work of faulting.
Menon, Shakti N; Hall, Cameron L; McCue, Scott W; McElwain, D L Sean
2017-10-01
The mechanical behaviour of solid biological tissues has long been described using models based on classical continuum mechanics. However, the classical continuum theories of elasticity and viscoelasticity cannot easily capture the continual remodelling and associated structural changes in biological tissues. Furthermore, models drawn from plasticity theory are difficult to apply and interpret in this context, where there is no equivalent of a yield stress or flow rule. In this work, we describe a novel one-dimensional mathematical model of tissue remodelling based on the multiplicative decomposition of the deformation gradient. We express the mechanical effects of remodelling as an evolution equation for the effective strain, a measure of the difference between the current state and a hypothetical mechanically relaxed state of the tissue. This morphoelastic model combines the simplicity and interpretability of classical viscoelastic models with the versatility of plasticity theory. A novel feature of our model is that while most models describe growth as a continuous quantity, here we begin with discrete cells and develop a continuum representation of lattice remodelling based on an appropriate limit of the behaviour of discrete cells. To demonstrate the utility of our approach, we use this framework to capture qualitative aspects of the continual remodelling observed in fibroblast-populated collagen lattices, in particular its contraction and its subsequent sudden re-expansion when remodelling is interrupted.
A study of dynamical behavior of space environment
NASA Technical Reports Server (NTRS)
Wu, S. T.
1974-01-01
Studies have covered a wide range of problems in the space environment, such as the problems of the dynamical behavior of the thermosphere, hydromagnetic wave propagation in the ionosphere, and interplanetary space environment. The theories used to analyze these problems range from a continuum theory of magnetohydrodynamics to the kinetic theory of free molecular flow. This is because the problems encountered covered the entire range of the Knudsen number (i.e., the ratio of mean free path to the characteristic length). Significant results are summarized.
Continuum definition for Ceres absorption bands at 3.1, 3.4 and 4.0 μm
NASA Astrophysics Data System (ADS)
Galiano, A.; Palomba, E.; Longobardo, A.; Zinzi, A.; De Sanctis, M. C.; Raponi, A.; Carrozzo, F. G.; Ciarniello, M.; Dirri, F.
2017-09-01
The images and hyperspectral data acquired during various Dawn mission phases (e.g. Survey, HAMO and LAMO) allowed identifying regions of different albedo on Ceres surface, where absorption bands located at 3.4 and 4.0 μm can assume different shapes. The 3.1 μm feature is observed on the entire Ceres surface except on Cerealia Facula, the brightest spot located on the dome of Occator crater. To perform a mineralogical investigation, absorption bands in reflectance spectra should be properly isolated by removing spectral continuum; hence, parameters as band centers and band depths must be estimated. The problem in the defining the continuum is in the VIR spectral range, which ends at 5.1 μm even though the reliable data, where the thermal contribution is properly removed, stops at 4.2 μm. Band shoulders located at longer wavelengths cannot be estimated. We defined different continua, with the aim to find the most appropriate to isolate the three spectral bands, whatever the region and the spatial resolution of hyperspectral images. The linear continuum seems to be the most suitable definition for our goals. Then, we performed an error evaluation on band depths and band centers introduced by this continuum definition.
Density functional theory calculations of continuum lowering in strongly coupled plasmas.
Vinko, S M; Ciricosta, O; Wark, J S
2014-03-24
An accurate description of the ionization potential depression of ions in plasmas due to their interaction with the environment is a fundamental problem in plasma physics, playing a key role in determining the ionization balance, charge state distribution, opacity and plasma equation of state. Here we present a method to study the structure and position of the continuum of highly ionized dense plasmas using finite-temperature density functional theory in combination with excited-state projector augmented-wave potentials. The method is applied to aluminium plasmas created by intense X-ray irradiation, and shows excellent agreement with recently obtained experimental results. We find that the continuum lowering for ions in dense plasmas at intermediate temperatures is larger than predicted by standard plasma models and explain this effect through the electronic structure of the valence states in these strong-coupling conditions.
Advances in Quantum Trajectory Approaches to Dynamics
NASA Astrophysics Data System (ADS)
Askar, Attila
2001-03-01
The quantum fluid dynamics (QFD) formulation is based on the separation of the amplitude and phase of the complex wave function in Schrodinger's equation. The approach leads to conservation laws for an equivalent "gas continuum". The Lagrangian [1] representation corresponds to following the particles of the fluid continuum, i. e. calculating "quantum trajectories". The Eulerian [2] representation on the other hand, amounts to observing the dynamics of the gas continuum at the points of a fixed coordinate frame. The combination of several factors leads to a most encouraging computational efficiency. QFD enables the numerical analysis to deal with near monotonic amplitude and phase functions. The Lagrangian description concentrates the computation effort to regions of highest probability as an optimal adaptive grid. The Eulerian representation allows the study of multi-coordinate problems as a set of one-dimensional problems within an alternating direction methodology. An explicit time integrator limits the increase in computational effort with the number of discrete points to linear. Discretization of the space via local finite elements [1,2] and global radial functions [3] will be discussed. Applications include wave packets in four-dimensional quadratic potentials and two coordinate photo-dissociation problems for NOCl and NO2. [1] "Quantum fluid dynamics (QFD) in the Lagrangian representation with applications to photo-dissociation problems", F. Sales, A. Askar and H. A. Rabitz, J. Chem. Phys. 11, 2423 (1999) [2] "Multidimensional wave-packet dynamics within the fluid dynamical formulation of the Schrodinger equation", B. Dey, A. Askar and H. A. Rabitz, J. Chem. Phys. 109, 8770 (1998) [3] "Solution of the quantum fluid dynamics equations with radial basis function interpolation", Xu-Guang Hu, Tak-San Ho, H. A. Rabitz and A. Askar, Phys. Rev. E. 61, 5967 (2000)
Effect of nonlinearity in hybrid kinetic Monte Carlo-continuum models.
Balter, Ariel; Lin, Guang; Tartakovsky, Alexandre M
2012-01-01
Recently there has been interest in developing efficient ways to model heterogeneous surface reactions with hybrid computational models that couple a kinetic Monte Carlo (KMC) model for a surface to a finite-difference model for bulk diffusion in a continuous domain. We consider two representative problems that validate a hybrid method and show that this method captures the combined effects of nonlinearity and stochasticity. We first validate a simple deposition-dissolution model with a linear rate showing that the KMC-continuum hybrid agrees with both a fully deterministic model and its analytical solution. We then study a deposition-dissolution model including competitive adsorption, which leads to a nonlinear rate, and show that in this case the KMC-continuum hybrid and fully deterministic simulations do not agree. However, we are able to identify the difference as a natural result of the stochasticity coming from the KMC surface process. Because KMC captures inherent fluctuations, we consider it to be more realistic than a purely deterministic model. Therefore, we consider the KMC-continuum hybrid to be more representative of a real system.
Effect of Nonlinearity in Hybrid Kinetic Monte Carlo-Continuum Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balter, Ariel I.; Lin, Guang; Tartakovsky, Alexandre M.
2012-04-23
Recently there has been interest in developing efficient ways to model heterogeneous surface reactions with hybrid computational models that couple a KMC model for a surface to a finite difference model for bulk diffusion in a continuous domain. We consider two representative problems that validate a hybrid method and also show that this method captures the combined effects of nonlinearity and stochasticity. We first validate a simple deposition/dissolution model with a linear rate showing that the KMC-continuum hybrid agrees with both a fully deterministic model and its analytical solution. We then study a deposition/dissolution model including competitive adsorption, which leadsmore » to a nonlinear rate, and show that, in this case, the KMC-continuum hybrid and fully deterministic simulations do not agree. However, we are able to identify the difference as a natural result of the stochasticity coming from the KMC surface process. Because KMC captures inherent fluctuations, we consider it to be more realistic than a purely deterministic model. Therefore, we consider the KMC-continuum hybrid to be more representative of a real system.« less
Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing
Etournay, Raphaël; Popović, Marko; Merkel, Matthias; Nandi, Amitabha; Blasse, Corinna; Aigouy, Benoît; Brandl, Holger; Myers, Gene; Salbreux, Guillaume; Jülicher, Frank; Eaton, Suzanne
2015-01-01
How tissue shape emerges from the collective mechanical properties and behavior of individual cells is not understood. We combine experiment and theory to study this problem in the developing wing epithelium of Drosophila. At pupal stages, the wing-hinge contraction contributes to anisotropic tissue flows that reshape the wing blade. Here, we quantitatively account for this wing-blade shape change on the basis of cell divisions, cell rearrangements and cell shape changes. We show that cells both generate and respond to epithelial stresses during this process, and that the nature of this interplay specifies the pattern of junctional network remodeling that changes wing shape. We show that patterned constraints exerted on the tissue by the extracellular matrix are key to force the tissue into the right shape. We present a continuum mechanical model that quantitatively describes the relationship between epithelial stresses and cell dynamics, and how their interplay reshapes the wing. DOI: http://dx.doi.org/10.7554/eLife.07090.001 PMID:26102528
NASA Astrophysics Data System (ADS)
Arju, Nihal; Ma, Tzuhsuan; Khanikaev, Alexander; Purtseladze, David; Shvets, Gennady
2015-06-01
Classical realization of a ubiquitous quantum mechanical phenomenon of double-continuum Fano interference using metasurfaces is experimentally demonstrated by engineering the near-field interaction between two bright and one dark plasmonic modes. The competition between the bright modes, one of them effectively suppressing the Fano interference for the orthogonal light polarization, is discovered. Coherent control of optical energy concentration and light absorption by the ellipticity of the incident light is theoretically predicted.
Hybrid continuum-coarse-grained modeling of erythrocytes
NASA Astrophysics Data System (ADS)
Lyu, Jinming; Chen, Paul G.; Boedec, Gwenn; Leonetti, Marc; Jaeger, Marc
2018-06-01
The red blood cell (RBC) membrane is a composite structure, consisting of a phospholipid bilayer and an underlying membrane-associated cytoskeleton. Both continuum and particle-based coarse-grained RBC models make use of a set of vertices connected by edges to represent the RBC membrane, which can be seen as a triangular surface mesh for the former and a spring network for the latter. Here, we present a modeling approach combining an existing continuum vesicle model with a coarse-grained model for the cytoskeleton. Compared to other two-component approaches, our method relies on only one mesh, representing the cytoskeleton, whose velocity in the tangential direction of the membrane may be different from that of the lipid bilayer. The finitely extensible nonlinear elastic (FENE) spring force law in combination with a repulsive force defined as a power function (POW), called FENE-POW, is used to describe the elastic properties of the RBC membrane. The mechanical interaction between the lipid bilayer and the cytoskeleton is explicitly computed and incorporated into the vesicle model. Our model includes the fundamental mechanical properties of the RBC membrane, namely fluidity and bending rigidity of the lipid bilayer, and shear elasticity of the cytoskeleton while maintaining surface-area and volume conservation constraint. We present three simulation examples to demonstrate the effectiveness of this hybrid continuum-coarse-grained model for the study of RBCs in fluid flows.
NASA Astrophysics Data System (ADS)
Yuan, Xuebo; Wang, Youshan
2017-10-01
The radial deformation of carbon nanotubes (CNTs) adhering to a substrate may prominently affect their mechanical and physical properties. In this study, both classical atomistic simulations and continuum analysis are carried out, to investigate the lateral adhesion of single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) to a silicon substrate. A linear elastic model for analyzing the adhesion of 2D shells to a rigid semi-infinite substrate is constructed in the framework of continuum mechanics. Good agreement is achieved between the cross-section profiles of adhesive CNTs obtained by the continuum model and by the atomistic simulation approach. It is found that the adhesion of a CNT to the silicon substrate is significantly influenced by its initial diameter and the number of walls. CNTs with radius larger than a certain critical radius are deformed radially on the silicon substrate with flat contact regions. With increasing number of walls, the extent of radial deformation of a MWCNT on the substrate decreases dramatically, and the flat contact area reduces—and eventually vanishes—due to increasing equivalent bending stiffness. It is analytically predicted that large-diameter MWCNTs with a large number of walls are likely to ‘stand’ on the silicon substrate. The present work can be useful for understanding the radial deformation of CNTs adhering to a solid planar substrate.
Constitutive Modeling of Nanotube-Reinforced Polymer Composites
NASA Technical Reports Server (NTRS)
Odegard, G. M.; Gates, T. S.; Wise, K. E.
2002-01-01
In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube shapes, sizes, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/LaRC-SI (with a PmPV interface) composite systems, one with aligned SWNTs and the other with three-dimensionally randomly oriented SWNTs. The Young's modulus and shear modulus have been calculated for the two systems for various nanotube lengths and volume fractions.
NASA Astrophysics Data System (ADS)
Eilam, A.; Shapiro, M.
2012-01-01
We present a fully quantum-mechanical theory of the mutual light-matter effects when two laser pulses interact with three discrete states coupled to a (quasi)continuum. Our formulation uses a single set of equations to describe the time dependence of the discrete and continuum populations, as well as pulse propagation in electromagnetically induced transparency (EIT) and stimulated Raman adiabatic passage (STIRAP) situations, for both weak and strong laser pulses. The theory gives a mechanistic picture of the “slowing down of light” and the state of spontaneously emitted photons during this process. Surprising features regarding the time dependence of material and radiative transients as well as limitations on quantum light storage and retrieval are unraveled.
Deformation in Metallic Glass: Connecting Atoms to Continua
NASA Astrophysics Data System (ADS)
Hinkle, Adam R.; Falk, Michael L.; Rycroft, Chris H.; Shields, Michael D.
Metallic glasses like other amorphous solids experience strain localization as the primary mode of failure. However, the development of continuum constitutive laws which provide a quantitative description of disorder and mechanical deformation remains an open challenge. Recent progress has shown the necessity of accurately capturing fluctuations in material structure, in particular the statistical changes in potential energy of the atomic constituents during the non-equilibrium process of applied shear. Here we directly cross-compare molecular dynamics shear simulations of a ZrCu glass with continuum shear transformation zone (STZ) theory representations. We present preliminary results for a methodology to coarse-grain detailed molecular dynamics data with the goal of initializing a continuum representation in the STZ theory. NSF Grants Awards 1107838, 1408685, and 0801471.
Impact induced depolarization of ferroelectric materials
NASA Astrophysics Data System (ADS)
Agrawal, Vinamra; Bhattacharya, Kaushik
2018-06-01
We study the large deformation dynamic behavior and the associated nonlinear electro-thermo-mechanical coupling exhibited by ferroelectric materials in adiabatic environments. This is motivated by a ferroelectric generator which involves pulsed power generation by loading the ferroelectric material with a shock, either by impact or a blast. Upon impact, a shock wave travels through the material inducing a ferroelectric to nonpolar phase transition giving rise to a large voltage difference in an open circuit situation or a large current in a closed circuit situation. In the first part of this paper, we provide a general continuum mechanical treatment of the situation assuming a sharp phase boundary that is possibly charged. We derive the governing laws, as well as the driving force acting on the phase boundary. In the second part, we use the derived equations and a particular constitutive relation that describes the ferroelectric to nonpolar phase transition to study a uniaxial plate impact problem. We develop a numerical method where the phase boundary is tracked but other discontinuities are captured using a finite volume method. We compare our results with experimental observations to find good agreement. Specifically, our model reproduces the observed exponential rise of charge as well as the resistance dependent Hugoniot. We conclude with a parameter study that provides detailed insight into various aspects of the problem.
NASA Astrophysics Data System (ADS)
Gavrus, Adinel
2017-10-01
This scientific paper proposes to prove that the maximum work principle used by theory of continuum media plasticity can be regarded as a consequence of an optimization problem based on constructal theory (prof. Adrian BEJAN). It is known that the thermodynamics define the conservation of energy and the irreversibility of natural systems evolution. From mechanical point of view the first one permits to define the momentum balance equation, respectively the virtual power principle while the second one explains the tendency of all currents to flow from high to low values. According to the constructal law all finite-size system searches to evolve in such configurations that flow more and more easily over time distributing the imperfections in order to maximize entropy and to minimize the losses or dissipations. During a material forming process the application of constructal theory principles leads to the conclusion that under external loads the material flow is that which all dissipated mechanical power (deformation and friction) become minimal. On a mechanical point of view it is then possible to formulate the real state of all mechanical variables (stress, strain, strain rate) as those that minimize the total dissipated power. So between all other virtual non-equilibrium states, the real state minimizes the total dissipated power. It can be then obtained a variational minimization problem and this paper proof in a mathematical sense that starting from this formulation can be finding in a more general form the maximum work principle together with an equivalent form for the friction term. An application in the case of a plane compression of a plastic material shows the feasibility of the proposed minimization problem formulation to find analytical solution for both cases: one without friction influence and a second which take into account Tresca friction law. To valid the proposed formulation, a comparison with a classical analytical analysis based on slices, upper/lower bound methods and numerical Finite Element simulation is also presented.
A concurrent multiscale micromorphic molecular dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shaofan, E-mail: shaofan@berkeley.edu; Tong, Qi
2015-04-21
In this work, we have derived a multiscale micromorphic molecular dynamics (MMMD) from first principle to extend the (Andersen)-Parrinello-Rahman molecular dynamics to mesoscale and continuum scale. The multiscale micromorphic molecular dynamics is a con-current three-scale dynamics that couples a fine scale molecular dynamics, a mesoscale micromorphic dynamics, and a macroscale nonlocal particle dynamics together. By choosing proper statistical closure conditions, we have shown that the original Andersen-Parrinello-Rahman molecular dynamics is the homogeneous and equilibrium case of the proposed multiscale micromorphic molecular dynamics. In specific, we have shown that the Andersen-Parrinello-Rahman molecular dynamics can be rigorously formulated and justified from firstmore » principle, and its general inhomogeneous case, i.e., the three scale con-current multiscale micromorphic molecular dynamics can take into account of macroscale continuum mechanics boundary condition without the limitation of atomistic boundary condition or periodic boundary conditions. The discovered multiscale scale structure and the corresponding multiscale dynamics reveal a seamless transition from atomistic scale to continuum scale and the intrinsic coupling mechanism among them based on first principle formulation.« less
Ransome, Yusuf; Dean, Lorraine T; Crawford, Natalie D; Metzger, David S; Blank, Michael B; Nunn, Amy S
2017-09-01
Place of residence has been associated with HIV transmission risks. Social capital, defined as features of social organization that improve efficiency of society by facilitating coordinated actions, often varies by neighborhood, and hypothesized to have protective effects on HIV care continuum outcomes. We examined whether the association between social capital and 2 HIV care continuum outcomes clustered geographically and whether sociocontextual mechanisms predict differences across clusters. Bivariate Local Moran's I evaluated geographical clustering in the association between social capital (participation in civic and social organizations, 2006, 2008, 2010) and [5-year (2007-2011) prevalence of late HIV diagnosis and linkage to HIV care] across Philadelphia, PA, census tracts (N = 378). Maps documented the clusters and multinomial regression assessed which sociocontextual mechanisms (eg, racial composition) predict differences across clusters. We identified 4 significant clusters (high social capital-high HIV/AIDS, low social capital-low HIV/AIDS, low social capital-high HIV/AIDS, and high social capital-low HIV/AIDS). Moran's I between social capital and late HIV diagnosis was (I = 0.19, z = 9.54, P < 0.001) and linkage to HIV care (I = 0.06, z = 3.274, P = 0.002). In multivariable analysis, median household income predicted differences across clusters, particularly where social capital was lowest and HIV burden the highest, compared with clusters with high social capital and lowest HIV burden. The association between social participation and HIV care continuum outcomes cluster geographically in Philadelphia, PA. HIV prevention interventions should account for this phenomenon. Reducing geographic disparities will require interventions tailored to each continuum step and that address socioeconomic factors such as neighborhood median income.
Theory of fracture mechanics based upon plasticity
NASA Technical Reports Server (NTRS)
Lee, J. D.
1976-01-01
A theory of fracture mechanics is formulated on the foundation of continuum mechanics. Fracture surface is introduced as an unknown quantity and is incorporated into boundary and initial conditions. Surface energy is included in the global form of energy conservation law and the dissipative mechanism is formulated into constitutive equations which indicate the thermodynamic irreversibility and the irreversibility of fracture process as well.
NASA Astrophysics Data System (ADS)
Hérisson, Benjamin; Challamel, Noël; Picandet, Vincent; Perrot, Arnaud
2016-09-01
The static behavior of the Fermi-Pasta-Ulam (FPU) axial chain under distributed loading is examined. The FPU system examined in the paper is a nonlinear elastic lattice with linear and quadratic spring interaction. A dimensionless parameter controls the possible loss of convexity of the associated quadratic and cubic energy. Exact analytical solutions based on Hurwitz zeta functions are developed in presence of linear static loading. It is shown that this nonlinear lattice possesses scale effects and possible localization properties in the absence of energy convexity. A continuous approach is then developed to capture the main phenomena observed regarding the discrete axial problem. The associated continuum is built from a continualization procedure that is mainly based on the asymptotic expansion of the difference operators involved in the lattice problem. This associated continuum is an enriched gradient-based or nonlocal axial medium. A Taylor-based and a rational differential method are both considered in the continualization procedures to approximate the FPU lattice response. The Padé approximant used in the continualization procedure fits the response of the discrete system efficiently, even in the vicinity of the limit load when the non-convex FPU energy is examined. It is concluded that the FPU lattice system behaves as a nonlocal axial system in dynamic but also static loading.
NASA Astrophysics Data System (ADS)
Taib, L. Abdul; Hadi, M. S. Abdul; Umarov, B. A.
2017-12-01
The existence of dark strongly localized modes of binary discrete media with cubic-quintic nonlinearity is numerically demonstrated by solving the relevant discrete nonlinear Schrödinger equations. In the model, the coupling coefficients between adjacent sites are set to be relatively small representing the anti-continuum limit. In addition, approximated analytical solutions for vectorial solitons with various topologies are derived. Stability analysis of the localized states was performed using the standard linearized eigenfrequency problem. The prediction from the stability analysis are furthermore verified by direct numerical integrations.
How to design a cartographic continuum to help users to navigate between two topographic styles?
NASA Astrophysics Data System (ADS)
Ory, Jérémie; Touya, Guillaume; Hoarau, Charlotte; Christophe, Sidonie
2018-05-01
Geoportals and geovisualization tools provide to users various cartographic abstractions that describe differently a geographical space. Our purpose is to be able to design cartographic continuums, i.e. a set of in-between maps allowing users to navigate between two topographic styles. This paper addresses the problem of the interpolation between two topographic abstractions with different styles. We detail our approach in two steps. Firstly, we setup a comparison in order to identify which structural elements of a cartographic abstraction should be interpolated. Secondly, we propose an approach based on two design methods for maps interpolation.
Lattice QCD phase diagram in and away from the strong coupling limit.
de Forcrand, Ph; Langelage, J; Philipsen, O; Unger, W
2014-10-10
We study lattice QCD with four flavors of staggered quarks. In the limit of infinite gauge coupling, "dual" variables can be introduced, which render the finite-density sign problem mild and allow a full determination of the μ-T phase diagram by Monte Carlo simulations, also in the chiral limit. However, the continuum limit coincides with the weak coupling limit. We propose a strong-coupling expansion approach towards the continuum limit. We show first results, including the phase diagram and its chiral critical point, from this expansion truncated at next-to-leading order.
The Need for a Kinetics for Biological Transport
Schindler, A. M.; Iberall, A. S.
1973-01-01
The traditional theory of transport across capillary membranes via a laminar Poiseuille flow is shown to be invalid. It is demonstrated that the random, diffusive nature of the molecular flow and interactions with the “pore” walls play an important role in the transport process. Neither the continuum Navier-Stokes theory nor the equivalent theory of irreversible thermodynamics is adequate to treat the problem. Combination of near-continuum hydrodynamic theory, noncontinuum kinetic theory, and the theory of fluctuations provides a first step toward modeling both liquid processes in general and membrane transport processes as a specific application. PMID:4726880
REVIEWS OF TOPICAL PROBLEMS: Gamma astronomy of the Sun and study of solar cosmic rays
NASA Astrophysics Data System (ADS)
Kuzhevskiĭ, B. M.
1982-06-01
A detailed discussion is given of the various nuclear reactions proceeding in the Sun's atmosphere under the influence of flare-accelerated particles. The role of such reactions in formation of the line spectrum and continuum of gamma-rays from the disturbed and quiet Sun is discussed. The gamma-ray fluxes in individual lines and in the continuum are estimated. The possibility of applying data on gamma-ray emission from the Sun to analysis of particle acceleration in solar flares and the conditions of their ejection into interplanetary space is analyzed.
Functional Techniques for Data Analysis
NASA Technical Reports Server (NTRS)
Tomlinson, John R.
1997-01-01
This dissertation develops a new general method of solving Prony's problem. Two special cases of this new method have been developed previously. They are the Matrix Pencil and the Osculatory Interpolation. The dissertation shows that they are instances of a more general solution type which allows a wide ranging class of linear functional to be used in the solution of the problem. This class provides a continuum of functionals which provide new methods that can be used to solve Prony's problem.
Saha, Tulshi D; Chou, S Patricia; Grant, Bridget F
2006-07-01
Item response theory (IRT) was used to determine whether the DSM-IV diagnostic criteria for alcohol abuse and dependence are arrayed along a continuum of severity. Data came from a large nationally representative sample of the US population, 18 years and older. A two-parameter logistic IRT model was used to determine the severity and discrimination of each DSM-IV criterion. Differential criterion functioning (DCF) was also assessed across subgroups of the population defined by sex, age and race-ethnicity. All DSM-IV alcohol abuse and dependence criteria, except alcohol-related legal problems, formed a continuum of alcohol use disorder severity. Abuse and dependence criteria did not consistently tap the mildest or more severe end of the continuum respectively, and several criteria were identified as potentially redundant. The drinking in larger amounts or for longer than intended dependence criterion had the greatest discrimination and lowest severity than any other criterion. Although several criteria were found to function differentially between subgroups defined in terms of sex and age, there was evidence that the generalizability and validity of the criterion forming the continuum remained intact at the test score level. DSM-IV diagnostic criteria for alcohol abuse and dependence form a continuum of severity, calling into question the abuse-dependence distinction in the DSM-IV and the interpretation of abuse as a milder disorder than dependence. The criteria tapped the more severe end of the alcohol use disorder continuum, highlighting the need to identify other criteria capturing the mild to intermediate range of the severity. The drinking larger amounts or longer than intended dependence criterion may be a bridging criterion between drinking patterns that incur risk of alcohol use disorder at the milder end of the continuum, with tolerance, withdrawal, impaired control and serious social and occupational dysfunction at the more severe end of the alcohol use disorder continuum. Future IRT and other dimensional analyses hold great promise in informing revisions to categorical classifications and constructing new dimensional classifications of alcohol use disorders based on the DSM and the ICD.
NASA Astrophysics Data System (ADS)
Zajaček, Michal; Britzen, Silke; Eckart, Andreas; Shahzamanian, Banafsheh; Busch, Gerold; Karas, Vladimír; Parsa, Marzieh; Peissker, Florian; Dovčiak, Michal; Subroweit, Matthias; Dinnbier, František; Zensus, J. Anton
2017-06-01
Context. The Dusty S-cluster Object (DSO/G2) orbiting the supermassive black hole (Sgr A*) in the Galactic centre has been monitored in both near-infrared continuum and line emission. There has been a dispute about the character and the compactness of the object: it being interpreted as either a gas cloud or a dust-enshrouded star. A recent analysis of polarimetry data in Ks-band (2.2 μm) allows us to put further constraints on the geometry of the DSO. Aims: The purpose of this paper is to constrain the nature and the geometry of the DSO. Methods: We compared 3D radiative transfer models of the DSO with the near-infrared (NIR) continuum data including polarimetry. In the analysis, we used basic dust continuum radiative transfer theory implemented in the 3D Monte Carlo code Hyperion. Moreover, we implemented analytical results of the two-body problem mechanics and the theory of non-thermal processes. Results: We present a composite model of the DSO - a dust-enshrouded star that consists of a stellar source, dusty, optically thick envelope, bipolar cavities, and a bow shock. This scheme can match the NIR total as well as polarized properties of the observed spectral energy distribution (SED). The SED may be also explained in theory by a young pulsar wind nebula that typically exhibits a large linear polarization degree due to magnetospheric synchrotron emission. Conclusions: The analysis of NIR polarimetry data combined with the radiative transfer modelling shows that the DSO is a peculiar source of compact nature in the S cluster (r ≲ 0.04 pc). It is most probably a young stellar object embedded in a non-spherical dusty envelope, whose components include optically thick dusty envelope, bipolar cavities, and a bow shock. Alternatively, the continuum emission could be of a non-thermal origin due to the presence of a young neutron star and its wind nebula. Although there has been so far no detection of X-ray and radio counterparts of the DSO, the analysis of the neutron star model shows that young, energetic neutron stars similar to the Crab pulsar could in principle be detected in the S cluster with current NIR facilities and they appear as apparent reddened, near-infrared-excess sources. The searches for pulsars in the NIR bands can thus complement standard radio searches, which can put further constraints on the unexplored pulsar population in the Galactic centre. Both thermal and non-thermal models are in accordance with the observed compactness, total as well polarized continuum emission of the DSO.
Explicitly Representing the Solvation Shell in Continuum Solvent Calculations
Svendsen, Hallvard F.; Merz, Kenneth M.
2009-01-01
A method is presented to explicitly represent the first solvation shell in continuum solvation calculations. Initial solvation shell geometries were generated with classical molecular dynamics simulations. Clusters consisting of solute and 5 solvent molecules were fully relaxed in quantum mechanical calculations. The free energy of solvation of the solute was calculated from the free energy of formation of the cluster and the solvation free energy of the cluster calculated with continuum solvation models. The method has been implemented with two continuum solvation models, a Poisson-Boltzmann model and the IEF-PCM model. Calculations were carried out for a set of 60 ionic species. Implemented with the Poisson-Boltzmann model the method gave an unsigned average error of 2.1 kcal/mol and a RMSD of 2.6 kcal/mol for anions, for cations the unsigned average error was 2.8 kcal/mol and the RMSD 3.9 kcal/mol. Similar results were obtained with the IEF-PCM model. PMID:19425558
Bipotential continuum models for granular mechanics
NASA Astrophysics Data System (ADS)
Goddard, Joe
2014-03-01
Most currently popular continuum models for granular media are special cases of a generalized Maxwell fluid model, which describes the evolution of stress and internal variables such as granular particle fraction and fabric,in terms of imposed strain rate. It is shown how such models can be obtained from two scalar potentials, a standard elastic free energy and a ``dissipation potential'' given rigorously by the mathematical theory of Edelen. This allows for a relatively easy derivation of properly invariant continuum models for granular media and fluid-particle suspensions within a thermodynamically consistent framework. The resulting continuum models encompass all the prominent regimes of granular flow, ranging from the quasi-static to rapidly sheared, and are readily extended to include higher-gradient or Cosserat effects. Models involving stress diffusion, such as that proposed recently by Kamrin and Koval (PRL 108 178301), provide an alternative approach that is mentioned in passing. This paper provides a brief overview of a forthcoming review articles by the speaker (The Princeton Companion to Applied Mathematics, and Appl. Mech. Rev.,in the press, 2013).
Do trigeminal autonomic cephalalgias represent primary diagnoses or points on a continuum?
Charleston, Larry
2015-06-01
The question of whether the trigeminal autonomic cephalalgias (TACs) represent primary diagnoses or points on a continuum has been debatable for a number of years. Patients with TACs may present with similar clinical characteristics, and occasionally, TACS respond to similar treatments. Prima facie, these disorders may seem to be intimately related. However, due to the current evidence, it would be challenging to accurately conclude whether they represent different primary headache diagnoses or the same primary headache disorder represented by different points on the same continuum. Ultimately, the TACs may utilize similar pathways and activate nociceptive responses that result in similar clinical phenotypes but "original and initiating" etiology may differ, and these disorders may not be points on the same continuum. This paper seeks to provide a brief comparison of TACs via diagnostic criteria, secondary causes, brief overview of pathophysiology, and the use of some key treatments and their mechanism of actions to illustrate the TAC similarities and differences.
Correlation between length and tilt of lipid tails
NASA Astrophysics Data System (ADS)
Kopelevich, Dmitry I.; Nagle, John F.
2015-10-01
It is becoming recognized from simulations, and to a lesser extent from experiment, that the classical Helfrich-Canham membrane continuum mechanics model can be fruitfully enriched by the inclusion of molecular tilt, even in the fluid, chain disordered, biologically relevant phase of lipid bilayers. Enriched continuum theories then add a tilt modulus κθ to accompany the well recognized bending modulus κ. Different enrichment theories largely agree for many properties, but it has been noticed that there is considerable disagreement in one prediction; one theory postulates that the average length of the hydrocarbon chain tails increases strongly with increasing tilt and another predicts no increase. Our analysis of an all-atom simulation favors the latter theory, but it also shows that the overall tail length decreases slightly with increasing tilt. We show that this deviation from continuum theory can be reconciled by consideration of the average shape of the tails, which is a descriptor not obviously includable in continuum theory.
Contact problem for an elastic reinforcement bonded to an elastic plate
NASA Technical Reports Server (NTRS)
Erdogan, F.; Civelek, M. B.
1974-01-01
The contact problem for a thin elastic reinforcement bonded to an elastic plate is considered. The stiffening layer is treated as an elastic membrane and the base plate is assumed to be an elastic continuum. The bonding between the two materials is assumed to be either one of direct adhesion or through a thin adhesive layer which is treated as a shear spring. The solution for the simple case in which both the stiffener and the base plate are treated as membranes is also given. The contact stress is obtained for a series of numerical examples. In the direct adhesion case the contact stress becomes infinite at the stiffener ends with a typical square root singularity for the continuum model and behaving as a delta function for the membrane model. In the case of bonding through an adhesive layer the contact stress becomes finite and continuous along the entire contact area.
Millimeter Continuum Observations Of Disk Solids
NASA Astrophysics Data System (ADS)
Andrews, Sean
2016-07-01
I will offer a condensed overview of some key issues in protoplanetary disk research that makes use interferometric measurements of the millimeter-wavelength continuum emitted by their solid particles. Several lines of evidence now qualitatively support theoretical models for the growth and migration of disk solids, but also advertise a quantitative tension with the traditional efficiency of that evolution. New observations of small-scale substructures in disks might both reconcile the conflict and shift our focus in the mechanics of planet formation.
Adaptive Finite Element Methods for Continuum Damage Modeling
NASA Technical Reports Server (NTRS)
Min, J. B.; Tworzydlo, W. W.; Xiques, K. E.
1995-01-01
The paper presents an application of adaptive finite element methods to the modeling of low-cycle continuum damage and life prediction of high-temperature components. The major objective is to provide automated and accurate modeling of damaged zones through adaptive mesh refinement and adaptive time-stepping methods. The damage modeling methodology is implemented in an usual way by embedding damage evolution in the transient nonlinear solution of elasto-viscoplastic deformation problems. This nonlinear boundary-value problem is discretized by adaptive finite element methods. The automated h-adaptive mesh refinements are driven by error indicators, based on selected principal variables in the problem (stresses, non-elastic strains, damage, etc.). In the time domain, adaptive time-stepping is used, combined with a predictor-corrector time marching algorithm. The time selection is controlled by required time accuracy. In order to take into account strong temperature dependency of material parameters, the nonlinear structural solution a coupled with thermal analyses (one-way coupling). Several test examples illustrate the importance and benefits of adaptive mesh refinements in accurate prediction of damage levels and failure time.
NASA Astrophysics Data System (ADS)
Zamani Kouhpanji, Mohammad Reza; Behzadirad, Mahmoud; Busani, Tito
2017-12-01
We used the stable strain gradient theory including acceleration gradients to investigate the classical and nonclassical mechanical properties of gallium nitride (GaN) nanowires (NWs). We predicted the static length scales, Young's modulus, and shear modulus of the GaN NWs from the experimental data. Combining these results with atomic simulations, we also found the dynamic length scale of the GaN NWs. Young's modulus, shear modulus, static, and dynamic length scales were found to be 318 GPa, 131 GPa, 8 nm, and 8.9 nm, respectively, usable for demonstrating the static and dynamic behaviors of GaN NWs having diameters from a few nm to bulk dimensions. Furthermore, the experimental data were analyzed with classical continuum theory (CCT) and compared with the available literature to illustrate the size-dependency of the mechanical properties of GaN NWs. This practice resolves the previous published discrepancies that happened due to the limitations of CCT used for determining the mechanical properties of GaN NWs and their size-dependency.
Protein Quality Control and the Amyotrophic Lateral Sclerosis/Frontotemporal Dementia Continuum
Shahheydari, Hamideh; Ragagnin, Audrey; Walker, Adam K.; Toth, Reka P.; Vidal, Marta; Jagaraj, Cyril J.; Perri, Emma R.; Konopka, Anna; Sultana, Jessica M.; Atkin, Julie D.
2017-01-01
Protein homeostasis, or proteostasis, has an important regulatory role in cellular function. Protein quality control mechanisms, including protein folding and protein degradation processes, have a crucial function in post-mitotic neurons. Cellular protein quality control relies on multiple strategies, including molecular chaperones, autophagy, the ubiquitin proteasome system, endoplasmic reticulum (ER)-associated degradation (ERAD) and the formation of stress granules (SGs), to regulate proteostasis. Neurodegenerative diseases are characterized by the presence of misfolded protein aggregates, implying that protein quality control mechanisms are dysfunctional in these conditions. Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases that are now recognized to overlap clinically and pathologically, forming a continuous disease spectrum. In this review article, we detail the evidence for dysregulation of protein quality control mechanisms across the whole ALS-FTD continuum, by discussing the major proteins implicated in ALS and/or FTD. We also discuss possible ways in which protein quality mechanisms could be targeted therapeutically in these disorders and highlight promising protein quality control-based therapeutics for clinical trials. PMID:28539871
NASA Technical Reports Server (NTRS)
Chudnovsky, A.
1984-01-01
A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.
NASA Technical Reports Server (NTRS)
Chudnovsky, A.
1987-01-01
A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.
Creep Tests and Modeling Based on Continuum Damage Mechanics for T91 and T92 Steels
NASA Astrophysics Data System (ADS)
Pan, J. P.; Tu, S. H.; Zhu, X. W.; Tan, L. J.; Hu, B.; Wang, Q.
2017-12-01
9-11%Cr ferritic steels play an important role in high-temperature and high-pressure boilers of advanced power plants. In this paper, a continuum damage mechanics (CDM)-based creep model was proposed to study the creep behavior of T91 and T92 steels at high temperatures. Long-time creep tests were performed for both steels under different conditions. The creep rupture data and creep curves obtained from creep tests were captured well by theoretical calculation based on the CDM model over a long creep time. It is shown that the developed model is able to predict creep data for the two ferritic steels accurately up to tens of thousands of hours.
Enhanced verification test suite for physics simulation codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamm, James R.; Brock, Jerry S.; Brandon, Scott T.
2008-09-01
This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations.
The First Interlaced Continuum Robot, Devised to Intrinsically Follow the Leader
Kang, Byungjeon; Kojcev, Risto; Sinibaldi, Edoardo
2016-01-01
Flexible probes that are safely deployed to hard-to-reach targets while avoiding critical structures are strategic in several high-impact application fields, including the biomedical sector and the sector of inspections at large. A critical problem for these tools is the best approach for deploying an entire tool body, not only its tip, on a sought trajectory. A probe that achieves this deployment is considered to follow the leader (or to achieve follow-the-leader deployment) because its body sections follow the track traced by its tip. Follow-the-leader deployment through cavities is complicated due to a lack of external supports. Currently, no definitive implementation for a probe that is intrinsically able to follow the leader, i.e., without relying on external supports, has been achieved. In this paper, we present a completely new device, namely the first interlaced continuum robot, devised to intrinsically follow the leader. We developed the interlaced configuration by pursuing a conceptual approach irrespective of application-specific constraints and assuming two flexible tools with controllable stiffness. We questioned the possibility of solving the previously mentioned deployment problem by harnessing probe symmetry during the design process. This study examines the entire development of the novel interlaced probe: model-based conceptual design, detailed design and prototyping, and preliminary experimental assessment. Our probe can build a track with a radius of curvature that is as small as twice the probe diameter, which enables it to outperform state-of-the-art tools that are aimed at follow-the-leader deployment. Despite the limitations that are inherently associated with its original character, this study provides a prototypical approach to the design of interlaced continuum systems and demonstrates the first interlaced continuum probe, which is intrinsically able to follow the leader. PMID:26914328
The First Interlaced Continuum Robot, Devised to Intrinsically Follow the Leader.
Kang, Byungjeon; Kojcev, Risto; Sinibaldi, Edoardo
2016-01-01
Flexible probes that are safely deployed to hard-to-reach targets while avoiding critical structures are strategic in several high-impact application fields, including the biomedical sector and the sector of inspections at large. A critical problem for these tools is the best approach for deploying an entire tool body, not only its tip, on a sought trajectory. A probe that achieves this deployment is considered to follow the leader (or to achieve follow-the-leader deployment) because its body sections follow the track traced by its tip. Follow-the-leader deployment through cavities is complicated due to a lack of external supports. Currently, no definitive implementation for a probe that is intrinsically able to follow the leader, i.e., without relying on external supports, has been achieved. In this paper, we present a completely new device, namely the first interlaced continuum robot, devised to intrinsically follow the leader. We developed the interlaced configuration by pursuing a conceptual approach irrespective of application-specific constraints and assuming two flexible tools with controllable stiffness. We questioned the possibility of solving the previously mentioned deployment problem by harnessing probe symmetry during the design process. This study examines the entire development of the novel interlaced probe: model-based conceptual design, detailed design and prototyping, and preliminary experimental assessment. Our probe can build a track with a radius of curvature that is as small as twice the probe diameter, which enables it to outperform state-of-the-art tools that are aimed at follow-the-leader deployment. Despite the limitations that are inherently associated with its original character, this study provides a prototypical approach to the design of interlaced continuum systems and demonstrates the first interlaced continuum probe, which is intrinsically able to follow the leader.
Thermal mechanical analysis of sprag clutches
NASA Technical Reports Server (NTRS)
Mullen, Robert L.; Zab, Ronald Joseph; Kurniawan, Antonius S.
1992-01-01
Work done at Case Western Reserve University on the Thermal Mechanical analysis of sprag helicopter clutches is reported. The report is presented in two parts. The first part is a description of a test rig for the measurement of the heat generated by high speed sprag clutch assemblies during cyclic torsional loading. The second part describes a finite element modeling procedure for sliding contact. The test rig provides a cyclic torsional load of 756 inch-pounds at 5000 rpm using a four-square arrangement. The sprag clutch test unit was placed between the high speed pinions of the circulating power loop. The test unit was designed to have replaceable inner ad outer races, which contain the instrumentation to monitor the sprag clutch. The torque loading device was chosen to be a water cooled magnetic clutch, which is controlled either manually or through a computer. In the second part, a Generalized Eulerian-Lagrangian formulation for non-linear dynamic problems is developed for solid materials. This formulation is derived from the basic laws and axioms of continuum mechanics. The novel aspect of this method is that we are able to investigate the physics in the spatial region of interest as material flows through it without having to follow material points. A finite element approximation to the governing equations is developed. Iterative Methods for the solution of the discrete finite element equations are explored. A FORTRAN program to implement this formulation is developed and a number of solutions to problems of sliding contact are presented.
A continuum theory of grain size evolution and damage
NASA Astrophysics Data System (ADS)
Ricard, Y.; Bercovici, D.
2009-01-01
Lithospheric shear localization, as occurs in the formation of tectonic plate boundaries, is often associated with diminished grain size (e.g., mylonites). Grain size reduction is typically attributed to dynamic recrystallization; however, theoretical models of shear localization arising from this hypothesis are problematic because (1) they require the simultaneous action of two creep mechanisms (diffusion and dislocation creep) that occur in different deformation regimes (i.e., in grain size stress space) and (2) the grain growth ("healing") laws employed by these models are derived from normal grain growth or coarsening theory, which are valid in the absence of deformation, although the shear localization setting itself requires deformation. Here we present a new first principles grained-continuum theory, which accounts for both coarsening and damage-induced grain size reduction in a monomineralic assemblage undergoing irrecoverable deformation. Damage per se is the generic process for generation of microcracks, defects, dislocations (including recrystallization), subgrains, nuclei, and cataclastic breakdown of grains. The theory contains coupled macroscopic continuum mechanical and grain-scale statistical components. The continuum level of the theory considers standard mass, momentum, and energy conservation, as well as entropy production, on a statistically averaged grained continuum. The grain-scale element of the theory describes both the evolution of the grain size distribution and mechanisms for both continuous grain growth and discontinuous grain fracture and coalescence. The continuous and discontinuous processes of grain size variation are prescribed by nonequilibrium thermodynamics (in particular, the treatment of entropy production provides the phenomenological laws for grain growth and reduction); grain size evolution thus incorporates the free energy differences between grains, including both grain boundary surface energy (which controls coarsening) and the contribution of deformational work to these free energies (which controls damage). In the absence of deformation, only two mechanisms that increase the average grain size are allowed by the second law of thermodynamics. One mechanism, involving continuous diffusive mass transport from small to large grains, captures the essential components of normal grain growth theories of Lifshitz-Slyosov and Hillert. The second mechanism involves the aggregation of grains and is described using a Smoluchovski formalism. With the inclusion of deformational work and damage, the theory predicts two mechanisms for which the thermodynamic requirement of entropy positivity always forces large grains to shrink and small ones to grow. The first such damage-driven mechanism involving continuous mass transfer from large to small grains tends to homogenize the distribution of grain size toward its initial mean grain size. The second damage mechanism favors the creation of small grains by discontinuous division of larger grains and reduces the mean grain size with time. When considered separately, most of these mechanisms allow for self-similar grain size distributions whose scales (i.e., statistical moments such as the mean, variance, and skewness) can all be described by a single grain scale, such as the mean or maximum. However, the combination of mechanisms, e.g., one that captures the competition between continuous coarsening and mean grain size reduction by breakage, does not generally permit a self-similar solution for the grain size distribution, which contradicts the classic assumption that grain growth laws allowing for both coarsening and recrystallization can be treated with a single grain scale such as the mean size.
Multiscale Modeling of Damage Processes in fcc Aluminum: From Atoms to Grains
NASA Technical Reports Server (NTRS)
Glaessgen, E. H.; Saether, E.; Yamakov, V.
2008-01-01
Molecular dynamics (MD) methods are opening new opportunities for simulating the fundamental processes of material behavior at the atomistic level. However, current analysis is limited to small domains and increasing the size of the MD domain quickly presents intractable computational demands. A preferred approach to surmount this computational limitation has been to combine continuum mechanics-based modeling procedures, such as the finite element method (FEM), with MD analyses thereby reducing the region of atomic scale refinement. Such multiscale modeling strategies can be divided into two broad classifications: concurrent multiscale methods that directly incorporate an atomistic domain within a continuum domain and sequential multiscale methods that extract an averaged response from the atomistic simulation for later use as a constitutive model in a continuum analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siranosian, Antranik Antonio; Schembri, Philip Edward; Luscher, Darby Jon
The Los Alamos National Laboratory's Weapon Systems Engineering division's Advanced Engineering Analysis group employs material constitutive models of composites for use in simulations of components and assemblies of interest. Experimental characterization, modeling and prediction of the macro-scale (i.e. continuum) behaviors of these composite materials is generally difficult because they exhibit nonlinear behaviors on the meso- (e.g. micro-) and macro-scales. Furthermore, it can be difficult to measure and model the mechanical responses of the individual constituents and constituent interactions in the composites of interest. Current efforts to model such composite materials rely on semi-empirical models in which meso-scale properties are inferredmore » from continuum level testing and modeling. The proposed approach involves removing the difficulties of interrogating and characterizing micro-scale behaviors by scaling-up the problem to work with macro-scale composites, with the intention of developing testing and modeling capabilities that will be applicable to the mesoscale. This approach assumes that the physical mechanisms governing the responses of the composites on the meso-scale are reproducible on the macro-scale. Working on the macro-scale simplifies the quantification of composite constituents and constituent interactions so that efforts can be focused on developing material models and the testing techniques needed for calibration and validation. Other benefits to working with macro-scale composites include the ability to engineer and manufacture—potentially using additive manufacturing techniques—composites that will support the application of advanced measurement techniques such as digital volume correlation and three-dimensional computed tomography imaging, which would aid in observing and quantifying complex behaviors that are exhibited in the macro-scale composites of interest. Ultimately, the goal of this new approach is to develop a meso-scale composite modeling framework, applicable to many composite materials, and the corresponding macroscale testing and test data interrogation techniques to support model calibration.« less
NASA Astrophysics Data System (ADS)
Hoson, T.; Saito, Y.; Usui, S.; Soga, K.; Wakabayashi, K.
Resistance to the gravitational force has been a serious problem for plants to survive on land, after they first went ashore more than 400 million years ago. Thus, gravity resistance is the principal graviresponse in plants comparable to gravitropism. Nevertheless, only limited information has been obtained for this second gravity response. We have examined the mechanism of gravity resistance using hypergravity conditions produced by centrifugation. The results led a hypothesis on the mechanism of plant resistance to the gravitational force that the plant constructs a tough body by increasing the cell wall rigidity, which are brought about by modification of the cell wall metabolism and cell wall environment, especially pH. The hypothesis was further supported by space experiments during the Space Shuttle STS-95 mission. On the other hand, we have shown that gravity signal may be perceived by mechanoreceptors (mechanosensitive ion channels) on the plasma membrane and amyloplast sedimentation in statocytes is not involved in gravity resistance. Moreover, hypergravity treatment increased the expression levels of genes encoding alpha-tubulin, a component of microtubules and 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGR), which catalyzes a reaction producing mevalonic acid, a key precursor of terpenoids such as membrane sterols. The expression of HMGR and alpha- and beta-tubulin genes increased within several hours after hypergravity treatment, depending on the magnitude of gravity. The determination of levels of gene products as well as the analysis with knockout mutants of these genes by T-DNA insertions in Arabidopsis supports the involvement of both membrane sterols and microtubules in gravity resistance. These results suggest that structural or physiological continuum of microtubule-cell membrane-cell wall is responsible for plant resistance to the gravitational force.
Role of microstructure and thermal pressurization on the energy budget of an earthquake
NASA Astrophysics Data System (ADS)
Rattez, H.; Stefanou, I.; Sulem, J.
2017-12-01
The common understanding for earthquakes mechanics is that they occur by sudden slippage along a pre-existing fault (Brace and Byerlee, 1966). They are, thus, considered as frictional instabilities and can be explained by a simple spring-slider model. In this model, the stability of the block is determined by the difference between the stiffness of the spring, proxy for the elastic properties of the surrounding rock mass, and the rate of decrease of the frictional resisting force along with sliding. Therefore, it is primordial to correctly capture the softening behavior of the fault. Exhumed samples and outcrops show the presence of a principal slip zone (PSZ) inside the gouge that accommodates most of the slip in the fault. The localization process is associated with a strong weakening of the fault zone. In this study, the gouge is modelled as a saturated infinite sheared layer under thermo-hydro-mechanical couplings with Cosserat continuum. The nonlinear system of equations is integrated numerically using a Finite Element Code to study the softening regime. The use of Cosserat enables to regularizes the problem of localization and obtain a shear band thickness, and thus a softening behavior, that depends only on the constitutive parameters of the model. Cosserat continuum is also particularly interesting as it can explicitly take into account for the grain size of the fault gouge, which is an information accessible from exhumed samples (Sulem et al., 2011). From these simulations, we can estimate the evolution of fracture energy with slip and investigate the influence of the size of the microstructure or the thermal pressurization coefficient on its value. The results are compared with seismological and laboratory estimates of fracture energy under coseismic slip conditions (Viesca and Garagash, 2015).
Comparing a discrete and continuum model of the intestinal crypt
Murray, Philip J.; Walter, Alex; Fletcher, Alex G.; Edwards, Carina M.; Tindall, Marcus J.; Maini, Philip K.
2011-01-01
The integration of processes at different scales is a key problem in the modelling of cell populations. Owing to increased computational resources and the accumulation of data at the cellular and subcellular scales, the use of discrete, cell-level models, which are typically solved using numerical simulations, has become prominent. One of the merits of this approach is that important biological factors, such as cell heterogeneity and noise, can be easily incorporated. However, it can be difficult to efficiently draw generalisations from the simulation results, as, often, many simulation runs are required to investigate model behaviour in typically large parameter spaces. In some cases, discrete cell-level models can be coarse-grained, yielding continuum models whose analysis can lead to the development of insight into the underlying simulations. In this paper we apply such an approach to the case of a discrete model of cell dynamics in the intestinal crypt. An analysis of the resulting continuum model demonstrates that there is a limited region of parameter space within which steady-state (and hence biologically realistic) solutions exist. Continuum model predictions show good agreement with corresponding results from the underlying simulations and experimental data taken from murine intestinal crypts. PMID:21411869
A multiscale model for charge inversion in electric double layers
NASA Astrophysics Data System (ADS)
Mashayak, S. Y.; Aluru, N. R.
2018-06-01
Charge inversion is a widely observed phenomenon. It is a result of the rich statistical mechanics of the molecular interactions between ions, solvent, and charged surfaces near electric double layers (EDLs). Electrostatic correlations between ions and hydration interactions between ions and water molecules play a dominant role in determining the distribution of ions in EDLs. Due to highly polar nature of water, near a surface, an inhomogeneous and anisotropic arrangement of water molecules gives rise to pronounced variations in the electrostatic and hydration energies of ions. Classical continuum theories fail to accurately describe electrostatic correlations and molecular effects of water in EDLs. In this work, we present an empirical potential based quasi-continuum theory (EQT) to accurately predict the molecular-level properties of aqueous electrolytes. In EQT, we employ rigorous statistical mechanics tools to incorporate interatomic interactions, long-range electrostatics, correlations, and orientation polarization effects at a continuum-level. Explicit consideration of atomic interactions of water molecules is both theoretically and numerically challenging. We develop a systematic coarse-graining approach to coarse-grain interactions of water molecules and electrolyte ions from a high-resolution atomistic scale to the continuum scale. To demonstrate the ability of EQT to incorporate the water orientation polarization, ion hydration, and electrostatic correlations effects, we simulate confined KCl aqueous electrolyte and show that EQT can accurately predict the distribution of ions in a thin EDL and also predict the complex phenomenon of charge inversion.
ERIC Educational Resources Information Center
Kelly, Joseph J.; And Others
Presented is a curriculum guide to the readiness level of the child who is hyperactive, a behavior problem, or unable to sustain attention. The following areas are included: language development (including perceptual-motor skills), physical development (following the Frostig Perceptual Program), alphabet and sounds, creative exercises, language…
Peridynamic Multiscale Finite Element Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, Timothy; Bond, Stephen D.; Littlewood, David John
The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic andmore » local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the art of local models with the flexibility and accuracy of the nonlocal peridynamic model. In the mixed locality method this coupling occurs across scales, so that the nonlocal model can be used to communicate material heterogeneity at scales inappropriate to local partial differential equation models. Additionally, the computational burden of the weak form of the peridynamic model is reduced dramatically by only requiring that the model be solved on local patches of the simulation domain which may be computed in parallel, taking advantage of the heterogeneous nature of next generation computing platforms. Addition- ally, we present a novel Galerkin framework, the 'Ambulant Galerkin Method', which represents a first step towards a unified mathematical analysis of local and nonlocal multiscale finite element methods, and whose future extension will allow the analysis of multiscale finite element methods that mix models across scales under certain assumptions of the consistency of those models.« less
Nanotechnology for the forest products industry
Theodore Wegner; Philip Jones
2005-01-01
Nanotechnology is defined as the manipulation of materials measuring 100 nanometers or less in at least one dimension. In addition, nanomaterials must display unique properties and characteristics that are different than their bulk properties. At the 1-nanometer (nm) level, quantum mechanics rules, and at dimensions above 100 nm, classical continuum mechanics, physics...
Elementary Quantum Mechanics in a High-Energy Process
ERIC Educational Resources Information Center
Denville, A.; And Others
1978-01-01
Compares two approaches to strong absorption in elementary quantum mechanics; the black sphere and a model based on the continuum theory of nuclear reactions. Examines the application to proton-antiproton interactions at low momenta and concludes that the second model is the appropriate and simplest to use. (Author/GA)
NASA Technical Reports Server (NTRS)
Chulya, Abhisak; Walker, Kevin P.
1991-01-01
A new scheme to integrate a system of stiff differential equations for both the elasto-plastic creep and the unified viscoplastic theories is presented. The method has high stability, allows large time increments, and is implicit and iterative. It is suitable for use with continuum damage theories. The scheme was incorporated into MARC, a commercial finite element code through a user subroutine called HYPELA. Results from numerical problems under complex loading histories are presented for both small and large scale analysis. To demonstrate the scheme's accuracy and efficiency, comparisons to a self-adaptive forward Euler method are made.
NASA Astrophysics Data System (ADS)
Skinner, Brian
2016-09-01
Same-sex sexual behaviour is ubiquitous in the animal kingdom, but its adaptive origins remain a prominent puzzle. Here, I suggest the possibility that same-sex sexual behaviour arises as a consequence of the competition between an evolutionary drive for a wide diversity in traits, which improves the adaptability of a population, and a drive for sexual dichotomization of traits, which promotes opposite-sex attraction and increases the rate of reproduction. This trade-off is explored via a simple mathematical `toy model'. The model exhibits a number of interesting features and suggests a simple mathematical form for describing the sexual orientation continuum.
Skinner, Brian
2016-09-01
Same-sex sexual behaviour is ubiquitous in the animal kingdom, but its adaptive origins remain a prominent puzzle. Here, I suggest the possibility that same-sex sexual behaviour arises as a consequence of the competition between an evolutionary drive for a wide diversity in traits, which improves the adaptability of a population, and a drive for sexual dichotomization of traits, which promotes opposite-sex attraction and increases the rate of reproduction. This trade-off is explored via a simple mathematical 'toy model'. The model exhibits a number of interesting features and suggests a simple mathematical form for describing the sexual orientation continuum.
A numerical analysis of high-temperature heat pipe startup from the frozen state
NASA Technical Reports Server (NTRS)
Cao, Y.; Faghri, A.
1993-01-01
Continuum and rarefied vapor flows co-exist along the heat pipe length for most of the startup period. A two-region model is proposed in which the vapor flow in the continuum region is modeled by the compressible Navier-Stokes equations, and the vapor flow in the rarefied region is simulated by a self-diffusion model. The two vapor regions are linked with appropriate boundary conditions, and heat pipe wail, wick, and vapor flow are solved as a conjugate problem. The numerical solutions for the entire heat pipe startup process from the frozen state are compared with the corresponding experimental data with good agreement.
NASA Technical Reports Server (NTRS)
Chulya, A.; Walker, K. P.
1989-01-01
A new scheme to integrate a system of stiff differential equations for both the elasto-plastic creep and the unified viscoplastic theories is presented. The method has high stability, allows large time increments, and is implicit and iterative. It is suitable for use with continuum damage theories. The scheme was incorporated into MARC, a commercial finite element code through a user subroutine called HYPELA. Results from numerical problems under complex loading histories are presented for both small and large scale analysis. To demonstrate the scheme's accuracy and efficiency, comparisons to a self-adaptive forward Euler method are made.
Analyze and predict VLTI observations: the Role of 2D/3D dust continuum radiative transfer codes
NASA Astrophysics Data System (ADS)
Pascucci, I.; Henning, Th; Steinacker, J.; Wolf, S.
2003-10-01
Radiative Transfer (RT) codes with image capability are a fundamental tool for preparing interferometric observations and for interpreting visibility data. In view of the upcoming VLTI facilities, we present the first comparison of images/visibilities coming from two 3D codes that use completely different techniques to solve the problem of self-consistent continuum RT. In addition, we focus on the astrophysical case of a disk distorted by tidal interaction with by-passing stars or internal planets and investigate for which parameters the distortion can be best detected in the mid-infrared using the mid-infrared interferometric device MIDI.
2D/3D Dust Continuum Radiative Transfer Codes to Analyze and Predict VLTI Observations
NASA Astrophysics Data System (ADS)
Pascucci, I.; Henning, Th.; Steinacker, J.; Wolf, S.
Radiative Transfer (RT) codes with image capability are a fundamental tool for preparing interferometric observations and for interpreting visibility data. In view of the upcoming VLTI facilities, we present the first comparison of images/visibilities coming from two 3D codes that use completely different techniques to solve the problem of self-consistent continuum RT. In addition, we focus on the astrophysical case of a disk distorted by tidal interaction with by-passing stars or internal planets and investigate for which parameters the distortion can be best detected in the mid-infrared using the mid-infrared interferometric device MIDI.
NASA Astrophysics Data System (ADS)
Kittell, D. E.; Yarrington, C. D.; Lechman, J. B.; Baer, M. R.
2018-05-01
A new paradigm is introduced for modeling reactive shock waves in heterogeneous solids at the continuum level. Inspired by the probability density function methods from turbulent reactive flows, it is hypothesized that the unreacted material microstructures lead to a distribution of heat release rates from chemical reaction. Fluctuations in heat release, rather than velocity, are coupled to the reactive Euler equations which are then solved via the Riemann problem. A numerically efficient, one-dimensional hydrocode is used to demonstrate this new approach, and simulation results of a representative impact calculation (inert flyer into explosive target) are discussed.
Multiwavelength Photometric and Spectropolarimetric Analysis of the FSRQ 3C 279
NASA Astrophysics Data System (ADS)
Patiño-Álvarez, V. M.; Fernandes, S.; Chavushyan, V.; López-Rodríguez, E.; León-Tavares, J.; Schlegel, E. M.; Carrasco, L.; Valdés, J.; Carramiñana, A.
2018-06-01
In this paper, we present light curves for 3C 279 over a time period of six years; from 2008 to 2014. Our multiwavelength data comprise 1 mm to gamma-rays, with additional optical polarimetry. Based on the behaviour of the gamma-ray light curve with respect to other bands, we identified three different activity periods. One of the activity periods shows anomalous behaviour with no gamma-ray counterpart associated with optical and NIR flares. Another anomalous activity period shows a flare in gamma-rays, 1 mm and polarization degree, however, it does not have counterparts in the UV continuum, optical and NIR bands. We find a significant overall correlation of the UV continuum emission, the optical and NIR bands. This correlation suggests that the NIR to UV continuum is co-spatial. We also find a correlation between the UV continuum and the 1 mm data, which implies that the dominant process in producing the UV continuum is synchrotron emission. The gamma-ray spectral index shows statistically significant variability and an anti-correlation with the gamma-ray luminosity. We demonstrate that the dominant gamma-ray emission mechanism in 3C 279 changes over time. Alternatively, the location of the gamma-ray emission zone itself may change depending on the activity state of the central engine.
NASA Astrophysics Data System (ADS)
Reich, Felix A.; Rickert, Wilhelm; Stahn, Oliver; Müller, Wolfgang H.
2017-03-01
Based on the principles of rational continuum mechanics and electrodynamics (see Truesdell and Toupin in Handbuch der Physik, Springer, Berlin, 1960 or Kovetz in Electromagnetic theory, Oxford University Press, Oxford, 2000), we present closed-form solutions for the mechanical displacements and stresses of two different magnets. Both magnets are initially of spherical shape. The first (hard) magnet is uniformly magnetized and deforms due to the field induced by the magnetization. In the second problem of a (soft) linear-magnetic sphere, the deformation is caused by an applied external field, giving rise to magnetization. Both problems can be used for modeling parts of general magnetization processes. We will address the similarities between both settings in context with the solutions for the stresses and displacements. In both problems, the volumetric Lorentz force density vanishes. However, a Lorentz surface traction is present. This traction is determined from the magnetic flux density. Since the obtained displacements and stresses are small in magnitude, we may use Hooke's law with a small-strain approximation, resulting in the Lamé- Navier equations of linear elasticity theory. If gravity is neglected and azimuthal symmetry is assumed, these equations can be solved in terms of a series. This has been done by Hiramatsu and Oka (Int J Rock Mech Min Sci Geomech Abstr 3(2):89-90, 1966) before. We make use of their series solution for the displacements and the stresses and expand the Lorentz tractions of the analyzed problems suitably in order to find the expansion coefficients. The resulting algebraic system yields finite numbers of nonvanishing coefficients. Finally, the resulting stresses, displacements, principal strains and the Lorentz tractions are illustrated and discussed.
Research on Damage Models for Continuous Fiber Composites
1988-07-01
r ~.F (~ Mechanics and Materials Center TEXAS A&M UNIVERSITY College Station, Texas RESEARCH ON DAMAGE MODELS FOR CONTINUOUS FIBER COMPOSITES Final...Washington, DC 20332 11. TITLE (Include Security Clas=fication) Research on Damage Models for Continuous Fiber Composites - Final Technical Report 1...GROUP SUB-GROU ::=, COMPOsites ) continuum mechanics , ~ idamage, internal state variables V experimental mechanics, laminated composites o 19. ABSTRACT
Collective effects in models for interacting molecular motors and motor-microtubule mixtures
NASA Astrophysics Data System (ADS)
Menon, Gautam I.
2006-12-01
Three problems in the statistical mechanics of models for an assembly of molecular motors interacting with cytoskeletal filaments are reviewed. First, a description of the hydrodynamical behaviour of density-density correlations in fluctuating ratchet models for interacting molecular motors is outlined. Numerical evidence indicates that the scaling properties of dynamical behaviour in such models belong to the KPZ universality class. Second, the generalization of such models to include boundary injection and removal of motors is provided. In common with known results for the asymmetric exclusion processes, simulations indicate that such models exhibit sharp boundary driven phase transitions in the thermodynamic limit. In the third part of this paper, recent progress towards a continuum description of pattern formation in mixtures of motors and microtubules is described, and a non-equilibrium “phase-diagram” for such systems discussed.
NASA Technical Reports Server (NTRS)
Chakrapani, B.; Rand, J. L.
1971-01-01
The material strength and strain rate effects associated with the hypervelocity impact problem were considered. A yield criterion involving the second and third invariants of the stress deviator and a strain rate sensitive constitutive equation were developed. The part of total deformation which represents change in shape is attributable to the stress deviator. Constitutive equation is a means for analytically describing the mechanical response of a continuum under study. The accuracy of the yield criterion was verified utilizing the published two and three dimensional experimental data. The constants associated with the constitutive equation were determined from one dimensional quasistatic and dynamic experiments. Hypervelocity impact experiments were conducted on semi-infinite targets of 1100 aluminum, 6061 aluminum alloy, mild steel, and commercially pure lead using spherically shaped and normally incident pyrex projectiles.
The motion of interconnected flexible bodies
NASA Technical Reports Server (NTRS)
Hopkins, A. S.
1975-01-01
The equations of motion for an arbitrarily interconnected collection of substructures are derived. The substructures are elastic bodies which may be idealized as finite element assemblies and are subject to small deformations relative to a nominal state. Interconnections between the elastic substructures permit large relative translations and rotations between substructures, governed by Pfaffian constraints describing the connections. Screw connections (permitting rotation about and translation along a single axis) eliminate constraint forces and incorporate modal coupling. The problem of flexible spacecraft simulation is discussed. Hurty's component mode approach is extended by permitting interconnected elastic substructures large motions relative to each other and relative to inertial space. The hybrid coordinate methods are generalized by permitting all substructures to be flexible (rather than only the terminal members of a topological tree of substructures). The basic relationships of continuum mechanics are developed.
NASA Astrophysics Data System (ADS)
Fedorov, Sergey V.; Selivanov, Victor V.; Veldanov, Vladislav A.
2017-06-01
Accumulation of microdamages as a result of intensive plastic deformation leads to a decrease in the average density of the high-velocity elements that are formed at the explosive collapse of the special shape metal liners. For compaction of such elements in tests of their spacecraft meteoroid protection reliability, the use of magnetic-field action on the produced elements during their movement trajectory before interaction with a target is proposed. On the basis of numerical modeling within the one-dimensional axisymmetric problem of continuum mechanics and electrodynamics, the physical processes occurring in the porous conducting elastoplastic cylinder placed in a magnetic field are investigated. Using this model, the parameters of the magnetic-pulse action necessary for the compaction of the steel and aluminum elements are determined.
Nishawala, Vinesh V.; Ostoja-Starzewski, Martin; Leamy, Michael J.; ...
2015-09-10
Peridynamics is a non-local continuum mechanics formulation that can handle spatial discontinuities as the governing equations are integro-differential equations which do not involve gradients such as strains and deformation rates. This paper employs bond-based peridynamics. Cellular Automata is a local computational method which, in its rectangular variant on interior domains, is mathematically equivalent to the central difference finite difference method. However, cellular automata does not require the derivation of the governing partial differential equations and provides for common boundary conditions based on physical reasoning. Both methodologies are used to solve a half-space subjected to a normal load, known as Lamb’smore » Problem. The results are compared with theoretical solution from classical elasticity and experimental results. Furthermore, this paper is used to validate our implementation of these methods.« less
Integral approximations to classical diffusion and smoothed particle hydrodynamics
Du, Qiang; Lehoucq, R. B.; Tartakovsky, A. M.
2014-12-31
The contribution of the paper is the approximation of a classical diffusion operator by an integral equation with a volume constraint. A particular focus is on classical diffusion problems associated with Neumann boundary conditions. By exploiting this approximation, we can also approximate other quantities such as the flux out of a domain. Our analysis of the model equation on the continuum level is closely related to the recent work on nonlocal diffusion and peridynamic mechanics. In particular, we elucidate the role of a volumetric constraint as an approximation to a classical Neumann boundary condition in the presence of physical boundary.more » The volume-constrained integral equation then provides the basis for accurate and robust discretization methods. As a result, an immediate application is to the understanding and improvement of the Smoothed Particle Hydrodynamics (SPH) method.« less
Fidelity of the Integrated Force Method Solution
NASA Technical Reports Server (NTRS)
Hopkins, Dale; Halford, Gary; Coroneos, Rula; Patnaik, Surya
2002-01-01
The theory of strain compatibility of the solid mechanics discipline was incomplete since St. Venant's 'strain formulation' in 1876. We have addressed the compatibility condition both in the continuum and the discrete system. This has lead to the formulation of the Integrated Force Method. A dual Integrated Force Method with displacement as the primal variable has also been formulated. A modest finite element code (IFM/Analyzers) based on the IFM theory has been developed. For a set of standard test problems the IFM results were compared with the stiffness method solutions and the MSC/Nastran code. For the problems IFM outperformed the existing methods. Superior IFM performance is attributed to simultaneous compliance of equilibrium equation and compatibility condition. MSC/Nastran organization expressed reluctance to accept the high fidelity IFM solutions. This report discusses the solutions to the examples. No inaccuracy was detected in the IFM solutions. A stiffness method code with a small programming effort can be improved to reap the many IFM benefits when implemented with the IFMD elements. Dr. Halford conducted a peer-review on the Integrated Force Method. Reviewers' response is included.
Quantum mechanics problems in observer's mathematics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khots, Boris; Khots, Dmitriy; iMath Consulting LLC, Omaha, Nebraska
2012-11-06
This work considers the ontology, guiding equation, Schrodinger's equation, relation to the Born Rule, the conditional wave function of a subsystem in a setting of arithmetic, algebra and topology provided by Observer's Mathematics (see www.mathrelativity.com). Observer's Mathematics creates new arithmetic, algebra, geometry, topology, analysis and logic which do not contain the concept of continuum, but locally coincide with the standard fields. Certain results and communications pertaining to solutions of these problems are provided. In particular, we prove the following theorems: Theorem I (Two-slit interference). Let {Psi}{sub 1} be a wave from slit 1, {Psi}{sub 2} - from slit 2, andmore » {Psi} = {Psi}{sub 1}+{Psi}{sub 2}. Then the probability of {Psi} being a wave equals to 0.5. Theorem II (k-bodies solution). For W{sub n} from m-observer point of view with m>log{sub 10}((2 Multiplication-Sign 10{sup 2n}-1){sup 2k}+1), the probability of standard expression of Hamiltonian variation is less than 1 and depends on n,m,k.« less
Two-level schemes for the advection equation
NASA Astrophysics Data System (ADS)
Vabishchevich, Petr N.
2018-06-01
The advection equation is the basis for mathematical models of continuum mechanics. In the approximate solution of nonstationary problems it is necessary to inherit main properties of the conservatism and monotonicity of the solution. In this paper, the advection equation is written in the symmetric form, where the advection operator is the half-sum of advection operators in conservative (divergent) and non-conservative (characteristic) forms. The advection operator is skew-symmetric. Standard finite element approximations in space are used. The standard explicit two-level scheme for the advection equation is absolutely unstable. New conditionally stable regularized schemes are constructed, on the basis of the general theory of stability (well-posedness) of operator-difference schemes, the stability conditions of the explicit Lax-Wendroff scheme are established. Unconditionally stable and conservative schemes are implicit schemes of the second (Crank-Nicolson scheme) and fourth order. The conditionally stable implicit Lax-Wendroff scheme is constructed. The accuracy of the investigated explicit and implicit two-level schemes for an approximate solution of the advection equation is illustrated by the numerical results of a model two-dimensional problem.
Gardiner, Bruce S.; Wong, Kelvin K. L.; Joldes, Grand R.; Rich, Addison J.; Tan, Chin Wee; Burgess, Antony W.; Smith, David W.
2015-01-01
This paper presents a framework for modelling biological tissues based on discrete particles. Cell components (e.g. cell membranes, cell cytoskeleton, cell nucleus) and extracellular matrix (e.g. collagen) are represented using collections of particles. Simple particle to particle interaction laws are used to simulate and control complex physical interaction types (e.g. cell-cell adhesion via cadherins, integrin basement membrane attachment, cytoskeletal mechanical properties). Particles may be given the capacity to change their properties and behaviours in response to changes in the cellular microenvironment (e.g., in response to cell-cell signalling or mechanical loadings). Each particle is in effect an ‘agent’, meaning that the agent can sense local environmental information and respond according to pre-determined or stochastic events. The behaviour of the proposed framework is exemplified through several biological problems of ongoing interest. These examples illustrate how the modelling framework allows enormous flexibility for representing the mechanical behaviour of different tissues, and we argue this is a more intuitive approach than perhaps offered by traditional continuum methods. Because of this flexibility, we believe the discrete modelling framework provides an avenue for biologists and bioengineers to explore the behaviour of tissue systems in a computational laboratory. PMID:26452000
Gardiner, Bruce S; Wong, Kelvin K L; Joldes, Grand R; Rich, Addison J; Tan, Chin Wee; Burgess, Antony W; Smith, David W
2015-10-01
This paper presents a framework for modelling biological tissues based on discrete particles. Cell components (e.g. cell membranes, cell cytoskeleton, cell nucleus) and extracellular matrix (e.g. collagen) are represented using collections of particles. Simple particle to particle interaction laws are used to simulate and control complex physical interaction types (e.g. cell-cell adhesion via cadherins, integrin basement membrane attachment, cytoskeletal mechanical properties). Particles may be given the capacity to change their properties and behaviours in response to changes in the cellular microenvironment (e.g., in response to cell-cell signalling or mechanical loadings). Each particle is in effect an 'agent', meaning that the agent can sense local environmental information and respond according to pre-determined or stochastic events. The behaviour of the proposed framework is exemplified through several biological problems of ongoing interest. These examples illustrate how the modelling framework allows enormous flexibility for representing the mechanical behaviour of different tissues, and we argue this is a more intuitive approach than perhaps offered by traditional continuum methods. Because of this flexibility, we believe the discrete modelling framework provides an avenue for biologists and bioengineers to explore the behaviour of tissue systems in a computational laboratory.
Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Xingwei; Hsu, Chia Wei; Zhen, Bo
2016-08-25
We develop a formalism, based on the mode expansion method, to describe the guided resonances and bound states in the continuum (BICs) in photonic crystal slabs with one-dimensional periodicity. This approach provides analytic insights to the formation mechanisms of these states: the guided resonances arise from the transverse Fabry–Pérot condition, and the divergence of the resonance lifetimes at the BICs is explained by a destructive interference of radiation from different propagating components inside the slab. As a result, we show BICs at the center and on the edge of the Brillouin zone protected by symmetry, BICs at generic wave vectorsmore » not protected by symmetry, and the annihilation of BICs at low-symmetry wave vectors.« less
NASA Astrophysics Data System (ADS)
Ulerich, J.; Göktepe, S.; Kuhl, E.
This manuscript presents a continuum approach towards cardiac growth and remodeling that is capable to predict chronic maladaptation of the heart in response to changes in mechanical loading. It is based on the multiplicative decomposition of the deformation gradient into and elastic and a growth part. Motivated by morphological changes in cardiomyocyte geometry, we introduce an anisotropic growth tensor that can capture both hypertrophic wall thickening and ventricular dilation within one generic concept. In agreement with clinical observations, we propose wall thickening to be a stress-driven phenomenon whereas dilation is introduced as a strain-driven process. The features of the proposed approach are illustrated in terms of the adaptation of thin heart slices and in terms overload-induced dilation in a generic bi-ventricular heart model.
Photodissociation of ultracold diatomic strontium molecules with quantum state control.
McDonald, M; McGuyer, B H; Apfelbeck, F; Lee, C-H; Majewska, I; Moszynski, R; Zelevinsky, T
2016-07-07
Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold (88)Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunnelling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics.
NASA Astrophysics Data System (ADS)
Yan, J. W.; Tong, L. H.; Xiang, Ping
2017-12-01
Free vibration behaviors of single-walled boron nitride nanotubes are investigated using a computational mechanics approach. Tersoff-Brenner potential is used to reflect atomic interaction between boron and nitrogen atoms. The higher-order Cauchy-Born rule is employed to establish the constitutive relationship for single-walled boron nitride nanotubes on the basis of higher-order gradient continuum theory. It bridges the gaps between the nanoscale lattice structures with a continuum body. A mesh-free modeling framework is constructed, using the moving Kriging interpolation which automatically satisfies the higher-order continuity, to implement numerical simulation in order to match the higher-order constitutive model. In comparison with conventional atomistic simulation methods, the established atomistic-continuum multi-scale approach possesses advantages in tackling atomic structures with high-accuracy and high-efficiency. Free vibration characteristics of single-walled boron nitride nanotubes with different boundary conditions, tube chiralities, lengths and radii are examined in case studies. In this research, it is pointed out that a critical radius exists for the evaluation of fundamental vibration frequencies of boron nitride nanotubes; opposite trends can be observed prior to and beyond the critical radius. Simulation results are presented and discussed.
Block oscillation model for impact crater collapse
NASA Astrophysics Data System (ADS)
Ivanov, B. A.; Kostuchenko, V. N.
1997-03-01
Previous investigations of the impact crater formation mechanics have shown that the late stage, a transient cavity collapse in a gravity field, may be modeled with a traditional rock mechanics if one ascribes very specific mechanical properties of rock in the vicinity of a crater: an effective strength of rock needed is around 30 bar, and effective angle of internal friction below 5 deg. The rock media with such properties may be supposed 'temporary fluidized'. The nature of this fluidization is now poorly understood; an acoustic (vibration) nature of this fluidization has been suggested. This model now seems to be the best approach to the problem. The open question is how to implement the model (or other possible models) in a hydrocode for numerical simulation of a dynamic crater collapse. We study more relevant models of mechanical behavior of rocks during cratering. The specific of rock deformation is that the rock media deforms not as a plastic metal-like continuum, but as a system of discrete rock blocks. The deep drilling of impact craters revealed the system of rock blocks of 50 m to 200 m in size. We used the model of these block oscillations to formulate the appropriate rheological law for the subcrater flow during the modification stage.
Wang, Xiaoling; Meng, Shuo; Han, Jingshi
2017-10-03
The Bacterial flagellar filament can undergo a polymorphic phase transition in response to both mechanical and chemical variations in vitro and in vivo environments. Under mechanical stimuli, such as viscous flow or forces induced by motor rotation, the filament changes its phase from left-handed normal (N) to right-handed semi-coiled (SC) via phase nucleation and growth. Our detailed mechanical analysis of existing experiments shows that both torque and bending moment contribute to the filament phase transition. In this paper, we establish a non-convex and non-local continuum model based on the Ginzburg-Landau theory to describe main characteristics of the filament phase transition such as new-phase nucleation, growth, propagation and the merging of neighboring interfaces. The finite element method (FEM) is adopted to simulate the phase transition under a displacement-controlled loading condition (rotation angle and bending deflection). We show that new-phase nucleation corresponds to the maximum torque and bending moment at the stuck end of the filament. The hysteresis loop in the loading and unloading curves indicates energy dissipation. When the new phase grows and propagates, torque and bending moment remain static. We also find that there is a drop in load when the two interfaces merge, indicating a concomitant reduction in the interfacial energy. Finally, the interface thickness is governed by the coefficients of the gradient of order parameters in the non-local interface energy. Our continuum theory and the finite element method provide a method to study the mechanical behavior of such biomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chatterjee, Abhijit; Vlachos, Dionisios G
2007-07-21
While recently derived continuum mesoscopic equations successfully bridge the gap between microscopic and macroscopic physics, so far they have been derived only for simple lattice models. In this paper, general deterministic continuum mesoscopic equations are derived rigorously via nonequilibrium statistical mechanics to account for multiple interacting surface species and multiple processes on multiple site types and/or different crystallographic planes. Adsorption, desorption, reaction, and surface diffusion are modeled. It is demonstrated that contrary to conventional phenomenological continuum models, microscopic physics, such as the interaction potential, determines the final form of the mesoscopic equation. Models of single component diffusion and binary diffusion of interacting particles on single-type site lattice and of single component diffusion on complex microporous materials' lattices consisting of two types of sites are derived, as illustrations of the mesoscopic framework. Simplification of the diffusion mesoscopic model illustrates the relation to phenomenological models, such as the Fickian and Maxwell-Stefan transport models. It is demonstrated that the mesoscopic equations are in good agreement with lattice kinetic Monte Carlo simulations for several prototype examples studied.
NASA Astrophysics Data System (ADS)
Charity, R. J.; Brown, K. W.; Okołowicz, J.; Płoszajczak, M.; Elson, J. M.; Reviol, W.; Sobotka, L. G.; Buhro, W. W.; Chajecki, Z.; Lynch, W. G.; Manfredi, J.; Shane, R.; Showalter, R. H.; Tsang, M. B.; Weisshaar, D.; Winkelbauer, J. R.; Bedoor, S.; Wuosmaa, A. H.
2018-05-01
The sequential two-proton decay of the second excited state in 17Ne, produced by inelastic excitation at intermediate energy, is studied. This state is found to be highly spin aligned, providing another example of a recently discovered alignment mechanism. The fortuitous condition that the second decay step is slightly more energetic than the first, permits the lifetime of the one-proton daughter, the ground state of 16F, to be determined from the magnitude of the final-state interactions between the protons. This new method gave a result [Γ =20.6 (57 ) keV] consistent with that obtained by directly measuring the width of the state [Γ =21.3 (51 ) keV]. This width allows one to determine the continuum coupling constant in this mass region. Real-energy continuum-shell-model studies yield a satisfactory description of both spectra and widths of low-energy resonances in 16F and suggest an unusual large ratio of proton-proton to proton-neutron continuum couplings in the vicinity of the proton drip line.
The continuum theory of shear localization in two-dimensional foam.
Weaire, Denis; Barry, Joseph D; Hutzler, Stefan
2010-05-19
We review some recent advances in the rheology of two-dimensional liquid foams, which should have implications for three-dimensional foams, as well as other mechanical systems that have a yield stress. We focus primarily on shear localization under steady shear, an effect first highlighted in an experiment by Debrégeas et al. A continuum theory which incorporates wall drag has reproduced the effect. Its further refinements are successful in matching results of more extensive observations and making interesting predictions regarding experiments for low strain rates and non-steady shear. Despite these successes, puzzles remain, particularly in relation to quasistatic simulations. The continuum model is semi-empirical: the meaning of its parameters may be sought in comparison with more detailed simulations and other experiments. The question of the origin of the Herschel-Bulkley relation is particularly interesting.
Sargeant, J M; Ramsingh, B; Wilkins, A; Travis, R G; Gavrus, D; Snelgrove, J W
2007-01-01
This exploratory qualitative study was conducted to identify constraints to microbial food safety policy in Canada and the USA from the perspective of stakeholder groups along the farm to fork continuum. Thirty-seven stakeholders participated in interviews or a focus group where semi-structured questions were used to facilitate discussion about constraints to policy development and implementation. An emergent grounded theory approach was used to determine themes and concepts that arose from the data (versus fitting the data to a hypothesis or a priori classification). Despite the plurality of stakeholders and the range of content expertise, participant perceptions emerged into five common themes, although, there were often disagreements as to the positive or negative attributes of specific concepts. The five themes included challenges related to measurement and objectives of microbial food safety policy goals, challenges arising from lack of knowledge, or problems with communication of knowledge coupled with current practices, beliefs and traditions; the complexity of the food system and the plurality of stakeholders; the economics of producing safe food and the limited resources to address the problem; and, issues related to decision-making and policy, including ownership of the problem and inappropriate inputs to the decision-making process. Responsibilities for food safety and for food policy failure were attributed to all stakeholders along the farm to fork continuum. While challenges regarding the biology of food safety were identified as constraints, a broader range of policy inputs encompassing social, economic and political considerations were also highlighted as critical to the development and implementation of effective food safety policy. Strategies to address these other inputs may require new, transdisciplinary approaches as an adjunct to the traditional science-based risk assessment model.
O'Brien, Jennifer E; Li, Wen; Snyder, Susan M; Howard, Matthew O
2016-01-01
This mixed methods study explores college students' readiness-to-change and receptivity to treatment for problem Internet overuse behaviors. Focus groups were conducted with 27 college students who self-identified as Internet over-users, and had experienced biopsychosocial problems related to Internet overuse. Participants completed standardized questionnaires assessing their Internet use and sociodemographic forms. Focus groups explored readiness to change problem Internet overuse behaviors and receptivity to treatment. Similar to college students with other addictive behaviors, students with problem Internet overuse fall along a continuum vis-à-vis readiness-to-change their behaviors. Over half of the participants were receptive to treatment for their problem Internet overuse behaviors.
A continuum analysis of chemical nonequilibrium under hypersonic low-density flight conditions
NASA Technical Reports Server (NTRS)
Gupta, R. N.
1986-01-01
Results of employing the continuum model of Navier-Stokes equations under the low-density flight conditions are presented. These results are obtained with chemical nonequilibrium and multicomponent surface slip boundary conditions. The conditions analyzed are those encountered by the nose region of the Space Shuttle Orbiter during reentry. A detailed comparison of the Navier-Stokes (NS) results is made with the viscous shock-layer (VSL) and direct simulation Monte Carlo (DSMC) predictions. With the inclusion of new surface-slip boundary conditions in NS calculations, the surface heat transfer and other flowfield quantities adjacent to the surface are predicted favorably with the DSMC calculations from 75 km to 115 km in altitude. This suggests a much wider practical range for the applicability of Navier-Stokes solutions than previously thought. This is appealing because the continuum (NS and VSL) methods are commonly used to solve the fluid flow problems and are less demanding in terms of computer resource requirements than the noncontinuum (DSMC) methods.
Fujita, Masami; Poudel, Krishna C; Green, Kimberly; Wi, Teodora; Abeyewickreme, Iyanthi; Ghidinelli, Massimo; Kato, Masaya; Vun, Mean Chhi; Sopheap, Seng; San, Khin Ohnmar; Bollen, Phavady; Rai, Krishna Kumar; Dahal, Atul; Bhandari, Durga; Boas, Peniel; Yaipupu, Jessica; Sirinirund, Petchsri; Saonuam, Pairoj; Duong, Bui Duc; Nhan, Do Thi; Thu, Nguyen Thi Minh; Jimba, Masamine
2015-04-24
In the Asia-Pacific region, limited systematic assessment has been conducted on HIV service delivery models. Applying an analytical framework of the continuum of prevention and care, this study aimed to assess HIV service deliveries in six Asia and Pacific countries from the perspective of service availability, linking approaches and performance monitoring for maximizing HIV case detection and retention. Each country formed a review team that provided published and unpublished information from the national HIV program. Four types of continuum were examined: (i) service linkages between key population outreach and HIV diagnosis (vertical-community continuum); (ii) chronic care provision across HIV diagnosis and treatment (chronological continuum); (iii) linkages between HIV and other health services (horizontal continuum); and (iv) comprehensive care sites coordinating care provision (hub and heart of continuum). Regarding the vertical-community continuum, all districts had voluntary counselling and testing (VCT) in all countries except for Myanmar and Vietnam. In these two countries, limited VCT availability was a constraint for referring key populations reached. All countries monitored HIV testing coverage among key populations. Concerning the chronological continuum, the proportion of districts/townships having antiretroviral treatment (ART) was less than 70% except in Thailand, posing a barrier for accessing pre-ART/ART care. Mechanisms for providing chronic care and monitoring retention were less developed for VCT/pre-ART process compared to ART process in all countries. On the horizontal continuum, the availability of HIV testing for tuberculosis patients and pregnant women was limited and there were sub-optimal linkages between tuberculosis, antenatal care and HIV services except for Cambodia and Thailand. These two countries indicated higher HIV testing coverage than other countries. Regarding hub and heart of continuum, all countries had comprehensive care sites with different degrees of community involvement. The analytical framework was useful to identify similarities and considerable variations in service availability and linking approaches across the countries. The study findings would help each country critically adapt and adopt global recommendations on HIV service decentralization, linkages and integration. Especially, the findings would inform cross-fertilization among the countries and national HIV program reviews to determine county-specific measures for maximizing HIV case detection and retention.
Theoretical Calculation and Validation of the Water Vapor Continuum Absorption
NASA Technical Reports Server (NTRS)
Ma, Qiancheng; Tipping, Richard H.
1998-01-01
The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multispectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/sq m, which compared to the 4 W/sq m magnitude of the greenhouse gas forcing and the 1-2 W/sq m estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude tuning, the empirical continuum models over the full spectral range of interest for remote sensing and climate applications. Thus, we propose to further develop and refine our existing, far-wing formalism to provide an improved treatment applicable from the near-infrared through the microwave. Based on the results of this investigation, we will provide to the remote sensing/climate modeling community a practical and accurate tabulation of the continuum absorption covering the near-infrared through the microwave region of the spectrum for the range of temperatures and pressures of interest for atmospheric applications.
Theoretical Calculation and Validation of the Water Vapor Continuum Absorption
NASA Technical Reports Server (NTRS)
Ma, Qiancheng; Tipping, Richard H.
1998-01-01
The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multi-spectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/ml, which compared to the 4 W/m' magnitude of the greenhouse gas forcing and the 1-2 W/m' estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude tuning the empirical continuum models over the full spectral range of interest for remote sensing and climate applications. Thus, we propose to further develop and refine our existing far-wing formalism to provide an improved treatment applicable from the near-infrared through the microwave. Based on the results of this investigation, we will provide to the remote sensing/climate modeling community a practical and accurate tabulation of the continuum absorption covering the near-infrared through the microwave region of the spectrum for the range of temperatures and pressures of interest for atmospheric applications.
Continuum damage modeling and simulation of hierarchical dental enamel
NASA Astrophysics Data System (ADS)
Ma, Songyun; Scheider, Ingo; Bargmann, Swantje
2016-05-01
Dental enamel exhibits high fracture toughness and stiffness due to a complex hierarchical and graded microstructure, optimally organized from nano- to macro-scale. In this study, a 3D representative volume element (RVE) model is adopted to study the deformation and damage behavior of the fibrous microstructure. A continuum damage mechanics model coupled to hyperelasticity is developed for modeling the initiation and evolution of damage in the mineral fibers as well as protein matrix. Moreover, debonding of the interface between mineral fiber and protein is captured by employing a cohesive zone model. The dependence of the failure mechanism on the aspect ratio of the mineral fibers is investigated. In addition, the effect of the interface strength on the damage behavior is studied with respect to geometric features of enamel. Further, the effect of an initial flaw on the overall mechanical properties is analyzed to understand the superior damage tolerance of dental enamel. The simulation results are validated by comparison to experimental data from micro-cantilever beam testing at two hierarchical levels. The transition of the failure mechanism at different hierarchical levels is also well reproduced in the simulations.
A continuum thermo-inelastic model for damage and healing in self-healing glass materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Wei; Sun, Xin; Koeppel, Brian J.
Self-healing glass, a recent advancement in the class of smart sealing materials, has attracted great attention from both research and industrial communities because of its unique capability of repairing itself at elevated temperatures. However, further development and optimization of this material rely on a more fundamental and thorough understanding of its essential thermo-mechanical response characteristics, which is also pivotal in predicting the coupling and interactions between the nonlinear stress and temperature dependent damage and healing behaviors. In the current study, a continuum three-dimensional thermo-inelastic damage-healing constitutive framework has been developed for the compliant self-healing glass material. The important feature ofmore » the present model is that various phenomena governing the mechanical degradation and recovery process, i.e. the nucleation, growth, and healing of the cracks and pores, are described with distinct mechanism-driven kinetics, where the healing constitutive relations are propagated from lower-length scale simulations. The proposed formulations are implemented into finite element analyses and the effects of various loading conditions and material properties on the material’s mechanical resistance are investigated.« less
Workshop Introduction: Systems Biology and Biological Models
As we consider the future of toxicity testing, the importance of applying biological models to this problem is clear. Modeling efforts exist along a continuum with respect to the level of organization (e.g. cell, tissue, organism) linked to the resolution of the model. Generally,...
Hagopian, L P; Frank-Crawford, M A
2017-10-13
Self-injurious behaviour (SIB) is generally considered to be the product of interactions between dysfunction stemming from the primary developmental disability and experiences that occasion and reinforce SIB. As a result of these complex interactions, SIB presents as a heterogeneous problem. Recent research delineating subtypes of SIB that are nonsocially mediated, including one that is amenable to change and one that is highly invariant, enables classification of SIB across a broader continuum of relative environmental-biological influence. Directly examining how the functional classes of SIB differ has the potential to structure research, will improve our understanding this problem, and lead to more targeted behavioural and pharmacological interventions. Recognising that SIB is not a single entity but is composed of distinct functional classes would better align research with conceptual models that view SIB as the product of interactions between environmental and biological variables. © 2017 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.
A trans-phase granular continuum relation and its use in simulation
NASA Astrophysics Data System (ADS)
Kamrin, Ken; Dunatunga, Sachith; Askari, Hesam
The ability to model a large granular system as a continuum would offer tremendous benefits in computation time compared to discrete particle methods. However, two infamous problems arise in the pursuit of this vision: (i) the constitutive relation for granular materials is still unclear and hotly debated, and (ii) a model and corresponding numerical method must wear ``many hats'' as, in general circumstances, it must be able to capture and accurately represent the material as it crosses through its collisional, dense-flowing, and solid-like states. Here we present a minimal trans-phase model, merging an elastic response beneath a fictional yield criterion, a mu(I) rheology for liquid-like flow above the static yield criterion, and a disconnection rule to model separation of the grains into a low-temperature gas. We simulate our model with a meshless method (in high strain/mixing cases) and the finite-element method. It is able to match experimental data in many geometries, including collapsing columns, impact on granular beds, draining silos, and granular drag problems.
Simulating spontaneous aseismic and seismic slip events on evolving faults
NASA Astrophysics Data System (ADS)
Herrendörfer, Robert; van Dinther, Ylona; Pranger, Casper; Gerya, Taras
2017-04-01
Plate motion along tectonic boundaries is accommodated by different slip modes: steady creep, seismic slip and slow slip transients. Due to mainly indirect observations and difficulties to scale results from laboratory experiments to nature, it remains enigmatic which fault conditions favour certain slip modes. Therefore, we are developing a numerical modelling approach that is capable of simulating different slip modes together with the long-term fault evolution in a large-scale tectonic setting. We extend the 2D, continuum mechanics-based, visco-elasto-plastic thermo-mechanical model that was designed to simulate slip transients in large-scale geodynamic simulations (van Dinther et al., JGR, 2013). We improve the numerical approach to accurately treat the non-linear problem of plasticity (see also EGU 2017 abstract by Pranger et al.). To resolve a wide slip rate spectrum on evolving faults, we develop an invariant reformulation of the conventional rate-and-state dependent friction (RSF) and adapt the time step (Lapusta et al., JGR, 2000). A crucial part of this development is a conceptual ductile fault zone model that relates slip rates along discrete planes to the effective macroscopic plastic strain rates in the continuum. We test our implementation first in a simple 2D setup with a single fault zone that has a predefined initial thickness. Results show that deformation localizes in case of steady creep and for very slow slip transients to a bell-shaped strain rate profile across the fault zone, which suggests that a length scale across the fault zone may exist. This continuum length scale would overcome the common mesh-dependency in plasticity simulations and question the conventional treatment of aseismic slip on infinitely thin fault zones. We test the introduction of a diffusion term (similar to the damage description in Lyakhovsky et al., JMPS, 2011) into the state evolution equation and its effect on (de-)localization during faster slip events. We compare the slip spectrum in our simulations to conventional RSF simulations (Liu and Rice, JGR, 2007). We further demonstrate the capability of simulating the evolution of a fault zone and simultaneous occurrence of slip transients. From small random initial distributions of the state variable in an otherwise homogeneous medium, deformation localizes and forms curved zones of reduced states. These spontaneously formed fault zones host slip transients, which in turn contribute to the growth of the fault zone.
Mariani, Laura H; Kretzler, Matthias
2015-06-01
The diagnosis and treatment decisions in glomerular disease are principally based on renal pathology and nonspecific clinical laboratory measurements such as serum creatinine and urine protein. Using these classification approaches, patients have marked variability in rate of progression and response to therapy, exposing a significant number of patients to toxicity without benefit. Additionally, clinical trials are at risk of not being able to detect an efficacious therapy in relevant subgroups as patients with shared clinical-pathologic diagnoses have heterogeneous underlying pathobiology. To change this treatment paradigm, biomarkers that reflect the molecular mechanisms underlying the clinical-pathologic diagnoses are needed. Recent progress to identify such biomarkers has been aided by advances in molecular profiling, large-scale data generation and multi-scalar data integration, including prospectively collected clinical data. This article reviews the evolving success stories in glomerular disease biomarkers across the genotype-phenotype continuum and highlights opportunities to transition to precision medicine in glomerular disease. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
NASA Technical Reports Server (NTRS)
You, J. H.; Liu, D. B.; Chen, W. P.; Chen, L.; Zhang, S. N.
2003-01-01
When thermal relativistic electrons with isotropic distribution of velocities move in a gas region or impinge upon the surface of a cloud that consists of a dense gas or doped dusts, the Cerenkov effect produces peculiar atomic or ionic emission lines, which is known as the Cerenkov line - like radiation. This newly recognized emission mechanism may find wide applications in high-energy astrophysics. In this paper we tentatively adopt this new line emission mechanism to discuss the origin of the iron Kα feature of active galactic nuclei (AGNs). The motivation of this research is to attempt a solution to a problem encountered by the "disk fluorescence line" model, i.e. , the lack of temporal response of the observed iron Kα line flux to the changes of the X-ray continuum flux. If the Cerenkov line emission is indeed responsible significant ly for the iron Kα feature, the conventional scenario around the central supermassive black holes of AGNs would need to be modified to accomodate more energetic, more violent, and much denser environments than previously thought.
Smith, David; Pols, Rene; Lavis, Tiffany; Battersby, Malcolm; Harvey, Peter
2016-12-01
In South Australia (SA) problem gambling is mainly a result of the widespread availability of electronic gaming machines. A key treatment provider in SA offers free cognitive and behavioural therapy (CBT) to help-seeking problem gamblers. The CBT program focuses on the treatment of clients' urge to gamble using exposure therapy (ET) and cognitive therapy (CT) to restructure erroneous gambling beliefs. The aim of this study was to explore treatment specific and non-specific effects for CT alone and ET alone using qualitative interviews. Interviewees were a sub-sample of participants from a randomised trial that investigated the relative efficacy of CT versus ET. Findings revealed that all interviewees gained benefit from their respective therapies and their comments did not appear to favour one therapy over another. Both treatment specific and treatment non-specific effects were well supported as playing a therapeutic role to recovery. Participants' comments in both therapy groups suggested that symptom reduction was experienced on a gambling related urge-cognition continuum. In addition to symptom improvement from therapy-specific mechanisms, ET participants described a general acquisition of "rational thought" from their program of therapy and CT participants had "taken-over" their gambling urges. The findings also highlighted areas for further improvement including therapy drop-out.
Dynamic analysis of space-related linear and non-linear structures
NASA Technical Reports Server (NTRS)
Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.
1990-01-01
In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photo-voltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic control system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.
Dynamic analysis of space-related linear and non-linear structures
NASA Technical Reports Server (NTRS)
Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.
1990-01-01
In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photovoltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic controls system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.
Frontiers of Theoretical Research on Shape Memory Alloys: A General Overview
NASA Astrophysics Data System (ADS)
Chowdhury, Piyas
2018-03-01
In this concise review, general aspects of modeling shape memory alloys (SMAs) are recounted. Different approaches are discussed under four general categories, namely, (a) macro-phenomenological, (b) micromechanical, (c) molecular dynamics, and (d) first principles models. Macro-phenomenological theories, stemming from empirical formulations depicting continuum elastic, plastic, and phase transformation, are primarily of engineering interest, whereby the performance of SMA-made components is investigated. Micromechanical endeavors are generally geared towards understanding microstructural phenomena within continuum mechanics such as the accommodation of straining due to phase change as well as role of precipitates. By contrast, molecular dynamics, being a more recently emerging computational technique, concerns attributes of discrete lattice structures, and thus captures SMA deformation mechanism by means of empirically reconstructing interatomic bonding forces. Finally, ab initio theories utilize quantum mechanical framework to peek into atomistic foundation of deformation, and can pave the way for studying the role of solid-sate effects. With specific examples, this paper provides concise descriptions of each category along with their relative merits and emphases.
Structure, Nanomechanics and Dynamics of Dispersed Surfactant-Free Clay Nanocomposite Films
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Zhao, Jing; Snyder, Chad; Karim, Alamgir; National Institute of Standards; Technology Collaboration
Natural Montmorillonite particles were dispersed as tactoids in thin films of polycaprolactone (PCL) through a flow coating technique assisted by ultra-sonication. Wide angle X-ray scattering (WAXS), Grazing-incidence wide angle X-ray scattering (GI-WAXS), and transmission electron microscopy (TEM) were used to confirm the level of dispersion. These characterization techniques are in conjunction with its nanomechanical properties via strain-induced buckling instability for modulus measurements (SIEBIMM), a high throughput technique to characterize thin film mechanical properties. The linear strengthening trend of the elastic modulus enhancements was fitted with Halpin-Tsai (HT) model, correlating the nanoparticle geometric effects and mechanical behaviors based on continuum theories. The overall aspect ratio of dispersed tactoids obtained through HT model fitting is in reasonable agreement with digital electron microscope image analysis. Moreover, glass transition behaviors of the composites were characterized using broadband dielectric relaxation spectroscopy. The segmental relaxation behaviors indicate that the associated mechanical property changes are due to the continuum filler effect rather than the interfacial confinement effect.
Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment
Mitran, Sorin
2013-01-01
The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough, upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale. PMID:23729842
Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitran, Sorin, E-mail: mitran@unc.edu
2013-07-01
The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough,more » upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale.« less
Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment
NASA Astrophysics Data System (ADS)
Mitran, Sorin
2013-07-01
The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough, upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale.
Gradient Models in Molecular Biophysics: Progress, Challenges, Opportunities
Bardhan, Jaydeep P.
2014-01-01
In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g. molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically always been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding features such as nonlocal dielectric response, and nonlinearities resulting from dielectric saturation. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost forty years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The paper concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics. PMID:25505358
Gradient Models in Molecular Biophysics: Progress, Challenges, Opportunities.
Bardhan, Jaydeep P
2013-12-01
In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g. molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically always been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding features such as nonlocal dielectric response, and nonlinearities resulting from dielectric saturation. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost forty years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The paper concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics.
Gradient models in molecular biophysics: progress, challenges, opportunities
NASA Astrophysics Data System (ADS)
Bardhan, Jaydeep P.
2013-12-01
In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g., molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically always been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding nonlocal dielectric response. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain, and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost 40 years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The review concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics.
NASA Astrophysics Data System (ADS)
Guo, Hengxiao; Malkan, Matthew A.; Gu, Minfeng; Li, Linlin; Prochaska, J. Xavier; Ma, Jingzhe; You, Bei; Zafar, Tayyaba; Liao, Mai
2016-08-01
We have collected near-infrared to X-ray data of 20 multi-epoch heavily reddened SDSS quasars to investigate the physical mechanism of reddening. Of these, J2317+0005 is found to be a UV cutoff quasar. Its continuum, which usually appears normal, decreases by a factor 3.5 at 3000 Å, compared to its more typical bright state during an interval of 23 days. During this sudden continuum cut-off the broad emission line fluxes do not change, perhaps due to the large size of the broad-line region (BLR), r \\gt 23/(1+z) days. The UV continuum may have suffered a dramatic drop out. However, there are some difficulties with this explanation. Another possibility is that the intrinsic continuum did not change but was temporarily blocked out, at least toward our line of sight. As indicated by X-ray observations, the continuum rapidly recovers after 42 days. A comparison of the bright state and dim states would imply an eclipse by a dusty cloud with a reddening curve having a remarkably sharp rise shortward of 3500 Å. Under the assumption of being eclipsed by a Keplerian dusty cloud, we characterized the cloud size with our observations, however, which is a little smaller than the 3000 Å continuum-emitting size inferred from accretion disk models. Therefore, we speculate that this is due to a rapid outflow or inflow with a dusty cloud passing through our line of sight to the center.
Intracellular Fluid Mechanics: Coupling Cytoplasmic Flow with Active Cytoskeletal Gel
NASA Astrophysics Data System (ADS)
Mogilner, Alex; Manhart, Angelika
2018-01-01
The cell is a mechanical machine, and continuum mechanics of the fluid cytoplasm and the viscoelastic deforming cytoskeleton play key roles in cell physiology. We review mathematical models of intracellular fluid mechanics, from cytoplasmic fluid flows, to the flow of a viscous active cytoskeletal gel, to models of two-phase poroviscous flows, to poroelastic models. We discuss application of these models to cell biological phenomena, such as organelle positioning, blebbing, and cell motility. We also discuss challenges of understanding fluid mechanics on the cellular scale.
Fractal electrodynamics via non-integer dimensional space approach
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2015-09-01
Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested.
Harnessing the Interaction Continuum for Subtle Assisted Living
García-Herranz, Manuel; Olivera, Fernando; Haya, Pablo; Alamán, Xavier
2012-01-01
People interact with each other in many levels of attention, intention and meaning. This Interaction Continuum is used daily to deal with different contexts, adapting the interaction to communication needs and available resources. Nevertheless, computer-supported interaction has mainly focused on the most direct, explicit and intrusive types of human to human Interaction such as phone calls, emails, or video conferences. This paper presents the results of exploring and exploiting the potentials of undemanding interaction mechanisms, paying special attention to subtle communication and background interaction. As we argue the benefits of this type of interaction for people with special needs, we present a theoretical framework to define it and propose a proof of concept based on Augmented Objects and a color codification mechanism. Finally, we evaluate and analyze the strengths and limitations of such approach with people with cognitive disabilities. PMID:23012573
Broad absorption-line time variability in the QSO CSO 203
NASA Technical Reports Server (NTRS)
Barlow, Thomas A.; Junkkarinen, Vesa T.; Burbidge, E. M.; Weymann, Ray J.; Morris, Simon L.; Korista, Kirk T.
1992-01-01
We present spectroscopy of the BALQSO CSO 203 during four epochs over a 17-month time span. These data show three distinct levels in the broad absorption lines (BALs) of Si IV 1397A and C IV 1549A. We also note possible variations in the N V 1240A and Al III 1857A absorption troughs. A broad-band monitoring effort during this period shows that the continuum level remained constant to within 10 percent. We argue that the triggering mechanism for the absorption-line changes is most likely synchronous with the continuum source photons; however, no correlation with the central source has yet been found. The observed variations are consistent with changes in the ionization level in the broad absorption-line region (BALR). We discuss possible mechanisms for these changes and the implications for the structure of the BALR.
Numerical simulations of continuum-driven winds of super-Eddington stars
NASA Astrophysics Data System (ADS)
van Marle, A. J.; Owocki, S. P.; Shaviv, N. J.
2008-09-01
We present the results of numerical simulations of continuum-driven winds of stars that exceed the Eddington limit and compare these against predictions from earlier analytical solutions. Our models are based on the assumption that the stellar atmosphere consists of clumped matter, where the individual clumps have a much larger optical thickness than the matter between the clumps. This `porosity' of the stellar atmosphere reduces the coupling between radiation and matter, since photons tend to escape through the more tenuous gas between the clumps. This allows a star that formally exceeds the Eddington limit to remain stable, yet produce a steady outflow from the region where the clumps become optically thin. We have made a parameter study of wind models for a variety of input conditions in order to explore the properties of continuum-driven winds. The results show that the numerical simulations reproduce quite closely the analytical scalings. The mass-loss rates produced in our models are much larger than can be achieved by line driving. This makes continuum driving a good mechanism to explain the large mass-loss and flow speeds of giant outbursts, as observed in η Carinae and other luminous blue variable stars. Continuum driving may also be important in population III stars, since line driving becomes ineffective at low metallicities. We also explore the effect of photon tiring and the limits it places on the wind parameters.
34 CFR 350.5 - What definitions apply?
Code of Federal Regulations, 2010 CFR
2010-07-01
... classified on a continuum from basic to applied: (1) Basic research is research in which the investigator is... immediate application or utility. (2) Applied research is research in which the investigator is primarily... rehabilitation problem or need. Applied research builds on selected findings from basic research. (Authority: Sec...
A continuum model of transcriptional bursting
Corrigan, Adam M; Tunnacliffe, Edward; Cannon, Danielle; Chubb, Jonathan R
2016-01-01
Transcription occurs in stochastic bursts. Early models based upon RNA hybridisation studies suggest bursting dynamics arise from alternating inactive and permissive states. Here we investigate bursting mechanism in live cells by quantitative imaging of actin gene transcription, combined with molecular genetics, stochastic simulation and probabilistic modelling. In contrast to early models, our data indicate a continuum of transcriptional states, with a slowly fluctuating initiation rate converting the gene between different levels of activity, interspersed with extended periods of inactivity. We place an upper limit of 40 s on the lifetime of fluctuations in elongation rate, with initiation rate variations persisting an order of magnitude longer. TATA mutations reduce the accessibility of high activity states, leaving the lifetime of on- and off-states unchanged. A continuum or spectrum of gene states potentially enables a wide dynamic range for cell responses to stimuli. DOI: http://dx.doi.org/10.7554/eLife.13051.001 PMID:26896676
On the role of self-adjointness in the continuum formulation of topological quantum phases
NASA Astrophysics Data System (ADS)
Tanhayi Ahari, Mostafa; Ortiz, Gerardo; Seradjeh, Babak
2016-11-01
Topological quantum phases of matter are characterized by an intimate relationship between the Hamiltonian dynamics away from the edges and the appearance of bound states localized at the edges of the system. Elucidating this correspondence in the continuum formulation of topological phases, even in the simplest case of a one-dimensional system, touches upon fundamental concepts and methods in quantum mechanics that are not commonly discussed in textbooks, in particular the self-adjoint extensions of a Hermitian operator. We show how such topological bound states can be derived in a prototypical one-dimensional system. Along the way, we provide a pedagogical exposition of the self-adjoint extension method as well as the role of symmetries in correctly formulating the continuum, field-theory description of topological matter with boundaries. Moreover, we show that self-adjoint extensions can be characterized generally in terms of a conserved local current associated with the self-adjoint operator.
NASA Astrophysics Data System (ADS)
Attari Moghaddam, Alireza; Prat, Marc; Tsotsas, Evangelos; Kharaghani, Abdolreza
2017-12-01
The classical continuum modeling of evaporation in capillary porous media is revisited from pore network simulations of the evaporation process. The computed moisture diffusivity is characterized by a minimum corresponding to the transition between liquid and vapor transport mechanisms confirming previous interpretations. Also the study suggests an explanation for the scattering generally observed in the moisture diffusivity obtained from experimental data. The pore network simulations indicate a noticeable nonlocal equilibrium effect leading to a new interpretation of the vapor pressure-saturation relationship classically introduced to obtain the one-equation continuum model of evaporation. The latter should not be understood as a desorption isotherm as classically considered but rather as a signature of a nonlocal equilibrium effect. The main outcome of this study is therefore that nonlocal equilibrium two-equation model must be considered for improving the continuum modeling of evaporation.
Constitutive Modeling of Nanotube/Polymer Composites with Various Nanotube Orientations
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Gates, Thomas S.
2002-01-01
In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT) with various orientations with respect to the bulk material coordinates. A nanotube, the local polymer adjacent to the nanotube, and the nanotube/polymer interface have been modeled as an equivalent-continuum fiber by using an equivalent-continuum modeling method. The equivalent-continuum fiber accounts for the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composite. As an example, the proposed approach is used for the constitutive modeling of a SWNT/LaRC-SI (with a PmPV interface) composite system, with aligned nanotubes, three-dimensionally randomly oriented nanotubes, and nanotubes oriented with varying degrees of axisymmetry. It is shown that the Young s modulus is highly dependent on the SWNT orientation distribution.
Development and application of computational aerothermodynamics flowfield computer codes
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj
1993-01-01
Computations are presented for one-dimensional, strong shock waves that are typical of those that form in front of a reentering spacecraft. The fluid mechanics and thermochemistry are modeled using two different approaches. The first employs traditional continuum techniques in solving the Navier-Stokes equations. The second-approach employs a particle simulation technique (the direct simulation Monte Carlo method, DSMC). The thermochemical models employed in these two techniques are quite different. The present investigation presents an evaluation of thermochemical models for nitrogen under hypersonic flow conditions. Four separate cases are considered. The cases are governed, respectively, by the following: vibrational relaxation; weak dissociation; strong dissociation; and weak ionization. In near-continuum, hypersonic flow, the nonequilibrium thermochemical models employed in continuum and particle simulations produce nearly identical solutions. Further, the two approaches are evaluated successfully against available experimental data for weakly and strongly dissociating flows.
The interplay between mechanics and stability of viral cages
NASA Astrophysics Data System (ADS)
Hernando-Pérez, Mercedes; Pascual, Elena; Aznar, María; Ionel, Alina; Castón, José R.; Luque, Antoni; Carrascosa, José L.; Reguera, David; de Pablo, Pedro J.
2014-02-01
The stability and strength of viral nanoparticles are crucial to fulfill the functions required through the viral cycle as well as using capsids for biomedical and nanotechnological applications. The mechanical properties of viral shells obtained through Atomic Force Microscopy (AFM) and continuum elasticity theory, such as stiffness or Young's modulus, have been interpreted very often in terms of stability. However, viruses are normally subjected to chemical rather than to mechanical aggression. Thus, a correct interpretation of mechanics in terms of stability requires an adequate linkage between the ability of viral cages to support chemical and mechanical stresses. Here we study the mechanical fragility and chemical stability of bacteriophage T7 in two different maturation states: the early proheads and the final mature capsids. Using chemical stress experiments we show that proheads are less stable than final mature capsids. Still, both particles present similar anisotropic stiffness, indicating that a continuum elasticity description in terms of Young's modulus is not an adequate measure of viral stability. In combination with a computational coarse-grained model we demonstrate that mechanical anisotropy of T7 emerges out of the discrete nature of the proheads and empty capsids. Even though they present the same stiffness, proheads break earlier and have fractures ten times larger than mature capsids, in agreement with chemical stability, thus demonstrating that fragility rather than stiffness is a better indicator of viral cages' stability.The stability and strength of viral nanoparticles are crucial to fulfill the functions required through the viral cycle as well as using capsids for biomedical and nanotechnological applications. The mechanical properties of viral shells obtained through Atomic Force Microscopy (AFM) and continuum elasticity theory, such as stiffness or Young's modulus, have been interpreted very often in terms of stability. However, viruses are normally subjected to chemical rather than to mechanical aggression. Thus, a correct interpretation of mechanics in terms of stability requires an adequate linkage between the ability of viral cages to support chemical and mechanical stresses. Here we study the mechanical fragility and chemical stability of bacteriophage T7 in two different maturation states: the early proheads and the final mature capsids. Using chemical stress experiments we show that proheads are less stable than final mature capsids. Still, both particles present similar anisotropic stiffness, indicating that a continuum elasticity description in terms of Young's modulus is not an adequate measure of viral stability. In combination with a computational coarse-grained model we demonstrate that mechanical anisotropy of T7 emerges out of the discrete nature of the proheads and empty capsids. Even though they present the same stiffness, proheads break earlier and have fractures ten times larger than mature capsids, in agreement with chemical stability, thus demonstrating that fragility rather than stiffness is a better indicator of viral cages' stability. Electronic supplementary information (ESI) available: Purification of T7 proheads and capsids, coarse-grained simulations of the indentation of T7 empty capsids, Finite Element (FE) simulations, and justification of the anisotropic stiffness based on structural information. See DOI: 10.1039/c3nr05763a
NASA Astrophysics Data System (ADS)
Farrokhabadi, A.; Mokhtari, J.; Koochi, A.; Abadyan, M.
2015-06-01
In this paper, the impact of the Casimir attraction on the electromechanical stability of nanowire-fabricated nanotweezers is investigated using a theoretical continuum mechanics model. The Dirichlet mode is considered and an asymptotic solution, based on path integral approach, is applied to consider the effect of vacuum fluctuations in the model. The Euler-Bernoulli beam theory is employed to derive the nonlinear governing equation of the nanotweezers. The governing equations are solved by three different approaches, i.e. the modified variation iteration method, generalized differential quadrature method and using a lumped parameter model. Various perspectives of the problem, including the comparison with the van der Waals force regime, the variation of instability parameters and effects of geometry are addressed in present paper. The proposed approach is beneficial for the precise determination of the electrostatic response of the nanotweezers in the presence of Casimir force.
Imbedded-Fracture Formulation of THMC Processes in Fractured Media
NASA Astrophysics Data System (ADS)
Yeh, G. T.; Tsai, C. H.; Sung, R.
2016-12-01
Fractured media consist of porous materials and fracture networks. There exist four approaches to mathematically formulating THMC (Thermal-Hydrology-Mechanics-Chemistry) processes models in the system: (1) Equivalent Porous Media, (2) Dual Porosity or Dual Continuum, (3) Heterogeneous Media, and (4) Discrete Fracture Network. The first approach cannot explicitly explore the interactions between porous materials and fracture networks. The second approach introduces too many extra parameters (namely, exchange coefficients) between two media. The third approach may make the problems too stiff because the order of material heterogeneity may be too much. The fourth approach ignore the interaction between porous materials and fracture networks. This talk presents an alternative approach in which fracture networks are modeled with a lower dimension than the surrounding porous materials. Theoretical derivation of mathematical formulations will be given. An example will be illustrated to show the feasibility of this approach.
Analytical and regression models of glass rod drawing process
NASA Astrophysics Data System (ADS)
Alekseeva, L. B.
2018-03-01
The process of drawing glass rods (light guides) is being studied. The parameters of the process affecting the quality of the light guide have been determined. To solve the problem, mathematical models based on general equations of continuum mechanics are used. The conditions for the stable flow of the drawing process have been found, which are determined by the stability of the motion of the glass mass in the formation zone to small uncontrolled perturbations. The sensitivity of the formation zone to perturbations of the drawing speed and viscosity is estimated. Experimental models of the drawing process, based on the regression analysis methods, have been obtained. These models make it possible to customize a specific production process to obtain light guides of the required quality. They allow one to find the optimum combination of process parameters in the chosen area and to determine the required accuracy of maintaining them at a specified level.
Effective constitutive relations for large repetitive frame-like structures
NASA Technical Reports Server (NTRS)
Nayfeh, A. H.; Hefzy, M. S.
1981-01-01
Effective mechanical properties for large repetitive framelike structures are derived using combinations of strength of material and orthogonal transformation techniques. Symmetry considerations are used in order to identify independent property constants. The actual values of these constants are constructed according to a building block format which is carried out in the three consecutive steps: (1) all basic planar lattices are identified; (2) effective continuum properties are derived for each of these planar basic grids using matrix structural analysis methods; and (3) orthogonal transformations are used to determine the contribution of each basic set to the overall effective continuum properties of the structure.
A hybrid computational model to explore the topological characteristics of epithelial tissues.
González-Valverde, Ismael; García-Aznar, José Manuel
2017-11-01
Epithelial tissues show a particular topology where cells resemble a polygon-like shape, but some biological processes can alter this tissue topology. During cell proliferation, mitotic cell dilation deforms the tissue and modifies the tissue topology. Additionally, cells are reorganized in the epithelial layer and these rearrangements also alter the polygon distribution. We present here a computer-based hybrid framework focused on the simulation of epithelial layer dynamics that combines discrete and continuum numerical models. In this framework, we consider topological and mechanical aspects of the epithelial tissue. Individual cells in the tissue are simulated by an off-lattice agent-based model, which keeps the information of each cell. In addition, we model the cell-cell interaction forces and the cell cycle. Otherwise, we simulate the passive mechanical behaviour of the cell monolayer using a material that approximates the mechanical properties of the cell. This continuum approach is solved by the finite element method, which uses a dynamic mesh generated by the triangulation of cell polygons. Forces generated by cell-cell interaction in the agent-based model are also applied on the finite element mesh. Cell movement in the agent-based model is driven by the displacements obtained from the deformed finite element mesh of the continuum mechanical approach. We successfully compare the results of our simulations with some experiments about the topology of proliferating epithelial tissues in Drosophila. Our framework is able to model the emergent behaviour of the cell monolayer that is due to local cell-cell interactions, which have a direct influence on the dynamics of the epithelial tissue. Copyright © 2017 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Corni, Federico; Fuchs, Hans U.; Savino, Giovanni
2018-01-01
This is a description of the conceptual foundations used for designing a novel learning environment for mechanics implemented as an "Industrial Educational Laboratory"--called Fisica in Moto (FiM)--at the Ducati Foundation in Bologna. In this paper, we will describe the motivation for and design of the conceptual approach to mechanics…
Identification of Changes along a Continuum of Speech Intonation is Impaired in Congenital Amusia.
Hutchins, Sean; Gosselin, Nathalie; Peretz, Isabelle
2010-01-01
A small number of individuals have severe musical problems that have neuro-genetic underpinnings. This musical disorder is termed "congenital amusia," an umbrella term for lifelong musical disabilities that cannot be attributed to deafness, lack of exposure, or brain damage after birth. Amusics seem to lack the ability to detect fine pitch differences in tone sequences. However, differences between statements and questions, which vary in final pitch, are well perceived by most congenital amusic individuals. We hypothesized that the origin of this apparent domain-specificity of the disorder lies in the range of pitch variations, which are very coarse in speech as compared to music. Here, we tested this hypothesis by using a continuum of gradually increasing final pitch in both speech and tone sequences. To this aim, nine amusic cases and nine matched controls were presented with statements and questions that varied on a pitch continuum from falling to rising in 11 steps. The sentences were either naturally spoken or were tone sequence versions of these. The task was to categorize the sentences as statements or questions and the tone sequences as falling or rising. In each case, the observation of an S-shaped identification function indicates that amusics can accurately identify unambiguous examples of statements and questions but have problems with fine variations between these endpoints. Thus, the results indicate that a deficient pitch perception might compromise music, not because it is specialized for that domain but because music requirements are more fine-grained.
A Statistical Approach for the Concurrent Coupling of Molecular Dynamics and Finite Element Methods
NASA Technical Reports Server (NTRS)
Saether, E.; Yamakov, V.; Glaessgen, E.
2007-01-01
Molecular dynamics (MD) methods are opening new opportunities for simulating the fundamental processes of material behavior at the atomistic level. However, increasing the size of the MD domain quickly presents intractable computational demands. A robust approach to surmount this computational limitation has been to unite continuum modeling procedures such as the finite element method (FEM) with MD analyses thereby reducing the region of atomic scale refinement. The challenging problem is to seamlessly connect the two inherently different simulation techniques at their interface. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the typical boundary value problem used to define a coupled domain. The method uses statistical averaging of the atomistic MD domain to provide displacement interface boundary conditions to the surrounding continuum FEM region, which, in return, generates interface reaction forces applied as piecewise constant traction boundary conditions to the MD domain. The two systems are computationally disconnected and communicate only through a continuous update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM) as opposed to a direct coupling method where interface atoms and FEM nodes are individually related. The methodology is inherently applicable to three-dimensional domains, avoids discretization of the continuum model down to atomic scales, and permits arbitrary temperatures to be applied.
NASA Astrophysics Data System (ADS)
Juno, J.; Hakim, A.; TenBarge, J.; Dorland, W.
2015-12-01
We present for the first time results for the turbulence dissipation challenge, with specific focus on the linear wave portion of the challenge, using a variety of continuum kinetic models: hybrid Vlasov-Maxwell, gyrokinetic, and full Vlasov-Maxwell. As one of the goals of the wave problem as it is outlined is to identify how well various models capture linear physics, we compare our results to linear Vlasov and gyrokinetic theory. Preliminary gyrokinetic results match linear theory extremely well due to the geometry of the problem, which eliminates the dominant nonlinearity. With the non-reduced models, we explore how the subdominant nonlinearities manifest and affect the evolution of the turbulence and the energy budget. We also take advantage of employing continuum methods to study the dynamics of the distribution function, with particular emphasis on the full Vlasov results where a basic collision operator has been implemented. As the community prepares for the next stage of the turbulence dissipation challenge, where we hope to do large 3D simulations to inform the next generation of observational missions such as THOR (Turbulence Heating ObserveR), we argue for the consideration of hybrid Vlasov and full Vlasov as candidate models for these critical simulations. With the use of modern numerical algorithms, we demonstrate the competitiveness of our code with traditional particle-in-cell algorithms, with a clear plan for continued improvements and optimizations to further strengthen the code's viability as an option for the next stage of the challenge.
Water and energy balances in the soil-plant atmosphere continuum
USDA-ARS?s Scientific Manuscript database
Energy fluxes at soil-atmosphere and plant-atmosphere interfaces can be summed to zero because the surfaces have no capacity for energy storage. The resulting energy balance equations may be written in terms of physical descriptions of these fluxes; and have been the basis for problem casting and so...
A Business Advisor's Guide to Counseling Theories.
ERIC Educational Resources Information Center
Boyd, John A.
For the small business advisor, consulting and counseling are part of the same continuum. Advisors' roles can be aligned hierarchically: (1) advisors may need simply to provide business information or expertise; (2) they may need to facilitate the business process, helping clients identify problems and discover their own solutions; (3) for clients…
Role of Experience and Context in Learning To Diagnose Lyme Disease.
ERIC Educational Resources Information Center
Bakken, Lori L.
2002-01-01
Using grounded theory, the learning processes used by nine physicians to diagnose Lyme Disease were investigated. Repetition and counterexperiences served to frame the problem along a continuum of familiarity. Results suggest ways to prepare case studies that include variety, repetition, and counterexperiences to teach diagnosis. (Contains 28…
Eating Issues in Schools: Detection, Management, and Consultation with Allied Professionals
ERIC Educational Resources Information Center
Carney, Jennifer Maskell; Scott, Heather Lewy
2012-01-01
School counselors play a crucial role in the prevention, assessment, treatment, and overall management of eating-related problems among children and adolescents. This article provides a framework for conceptualizing these difficulties on a continuum of severity and includes recommendations at each level for intervention and consultation.…
Cognitive-Behavioral Therapy for Children with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Rotheram-Fuller, Erin; MacMullen, Laura
2011-01-01
Autism spectrum disorders (ASD) represent a continuum of cognitive and social problems that vary considerably in both impact and presentation for each child affected. Although successful interventions have been developed that target specific skill deficits often exhibited by children with autism, many of those interventions are exclusively…
Panchal, Mitesh B; Upadhyay, Sanjay H
2014-09-01
In this study, the feasibility of single walled boron nitride nanotube (SWBNNT)-based biosensors has been ensured considering the continuum modelling-based simulation approach, for mass-based detection of various bacterium/viruses. Various types of bacterium or viruses have been taken into consideration at the free-end of the cantilevered configuration of the SWBNNT, as a biosensor. Resonant frequency shift-based analysis has been performed with the adsorption of various bacterium/viruses considered as additional mass to the SWBNNT-based sensor system. The continuum mechanics-based analytical approach, considering effective wall thickness has been considered to validate the finite element method (FEM)-based simulation results, based on continuum volume-based modelling of the SWBNNT. As a systematic analysis approach, the FEM-based simulation results are found in excellent agreement with the analytical results, to analyse the SWBNNTs for their wide range of applications such as nanoresonators, biosensors, gas-sensors, transducers and so on. The obtained results suggest that by using the SWBNNT of smaller size the sensitivity of the sensor system can be enhanced and detection of the bacterium/virus having mass of 4.28 × 10⁻²⁴ kg can be effectively performed.
NASA Astrophysics Data System (ADS)
Madsen, J.; Allen, D.; Donham, R.; Fifield, S.; Ford, D.; Shipman, H.; Dagher, Z.
2007-12-01
University of Delaware faculty in the geological sciences, biological sciences, and the physics and astronomy departments have partnered with faculty and researchers from the school of education to form a continuum for K- 8 pre-service teacher preparation in science. The goal of the continuum is to develop integrated understandings of content and pedagogy so that these future teachers can effectively use inquiry-based approaches in teaching science in their classrooms. Throughout the continuum where earth science content appears an earth system science approach, with emphasis on inquiry-based activities, is employed. The continuum for K-8 pre-service teachers includes a gateway content course in the earth, life, or physical sciences taken during the freshman year followed by integrated science content and methods courses taken during the sophomore year. These integrated courses, called the Science Semester, were designed and implemented with funding from the National Science Foundation. During the Science Semester, traditional content and pedagogy subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based science. Students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. They also critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning during the Science Semester. The PBL activities that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in a PBL investigation that focuses on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. Those students seeking secondary certification in science will enroll, as a bridge toward their student teaching experience, in an additional content course within a science discipline that is concurrently taught with a science methods course. Emphasizing inquiry-based activities, these bridge courses also focus on developing integrated understandings of the sciences. The continuum extends beyond the student teaching experience by tracking cohorts of science teachers during their in-service years. With funding from the National Science Foundation's Teacher Professional Continuum program, we are conducting research on this inquiry-based professional development approach for K-8 teachers across this continuum.
Development and application of coarse-grained models for lipids
NASA Astrophysics Data System (ADS)
Cui, Qiang
2013-03-01
I'll discuss a number of topics that represent our efforts in developing reliable molecular models for describing chemical and physical processes involving biomembranes. This is an exciting yet challenging research area because of the multiple length and time scales that are present in the relevant problems. Accordingly, we attempt to (1) understand the value and limitation of popular coarse-grained (CG) models for lipid membranes with either a particle or continuum representation; (2) develop new CG models that are appropriate for the particular problem of interest. As specific examples, I'll discuss (1) a comparison of atomistic, MARTINI (a particle based CG model) and continuum descriptions of a membrane fusion pore; (2) the development of a modified MARTINI model (BMW-MARTINI) that features a reliable description of membrane/water interfacial electrostatics and its application to cell-penetration peptides and membrane-bending proteins. Motivated specifically by the recent studies of Wong and co-workers, we compare the self-assembly behaviors of lipids with cationic peptides that include either Arg residues or a combination of Lys and hydrophobic residues; in particular, we attempt to reveal factors that stabilize the cubic ``double diamond'' Pn3m phase over the inverted hexagonal HII phase. For example, to explicitly test the importance of the bidentate hydrogen-bonding capability of Arg to the stabilization of negative Gaussian curvature, we also compare results using variants of the BMW-MARTINI model that treat the side chain of Arg with different levels of details. Collectively, the results suggest that both the bidentate feature of Arg and the overall electrostatic properties of cationic peptides are important to the self-assembly behavior of these peptides with lipids. The results are expected to have general implications to the mechanism of peptides and proteins that stimulate pore formation in biomembranes. Work in collaboration with Zhe Wu, Leili Zhang and Arun Yethiraj
Normal-mode-based analysis of electron plasma waves with second-order Hermitian formalism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos, J. J.; White, R. L.
The classic problem of the dynamic evolution and Landau damping of linear Langmuir electron waves in a collisionless plasma with Maxwellian background is cast as a second-order, self-adjoint problem with a continuum spectrum of real and positive squared frequencies. The corresponding complete basis of singular normal modes is obtained, along with their orthogonality relation. This yields easily the general expression of the time-reversal-invariant solution for any initial-value problem. Examples are then given for specific initial conditions that illustrate different behaviors of the Landau-damped macroscopic moments of the perturbations.
Normal-mode-based analysis of electron plasma waves with second-order Hermitian formalism
Ramos, J. J.; White, R. L.
2018-03-01
The classic problem of the dynamic evolution and Landau damping of linear Langmuir electron waves in a collisionless plasma with Maxwellian background is cast as a second-order, self-adjoint problem with a continuum spectrum of real and positive squared frequencies. The corresponding complete basis of singular normal modes is obtained, along with their orthogonality relation. This yields easily the general expression of the time-reversal-invariant solution for any initial-value problem. Examples are then given for specific initial conditions that illustrate different behaviors of the Landau-damped macroscopic moments of the perturbations.
2013-01-01
Background Care pathways are widely used in hospitals for a structured and detailed planning of the care process. There is a growing interest in extending care pathways into primary care to improve quality of care by increasing care coordination. Evidence is sparse about the relationship between care pathways and care coordination. The multi-level framework explores care coordination across organizations and states that (inter)organizational mechanisms have an effect on the relationships between healthcare professionals, resulting in quality and efficiency of care. The aim of this study was to assess the extent to which care pathways support or create elements of the multi-level framework necessary to improve care coordination across the primary - hospital care continuum. Methods This study is an in-depth analysis of five existing local community projects located in four different regions in Flanders (Belgium) to determine whether the available empirical evidence supported or refuted the theoretical expectations from the multi-level framework. Data were gathered using mixed methods, including structured face-to-face interviews, participant observations, documentation and a focus group. Multiple cases were analyzed performing a cross case synthesis to strengthen the results. Results The development of a care pathway across the primary-hospital care continuum, supported by a step-by-step scenario, led to the use of existing and newly constructed structures, data monitoring and the development of information tools. The construction and use of these inter-organizational mechanisms had a positive effect on exchanging information, formulating and sharing goals, defining and knowing each other’s roles, expectations and competences and building qualitative relationships. Conclusion Care pathways across the primary-hospital care continuum enhance the components of care coordination. PMID:23919518
Van Houdt, Sabine; Heyrman, Jan; Vanhaecht, Kris; Sermeus, Walter; De Lepeleire, Jan
2013-08-06
Care pathways are widely used in hospitals for a structured and detailed planning of the care process. There is a growing interest in extending care pathways into primary care to improve quality of care by increasing care coordination. Evidence is sparse about the relationship between care pathways and care coordination.The multi-level framework explores care coordination across organizations and states that (inter)organizational mechanisms have an effect on the relationships between healthcare professionals, resulting in quality and efficiency of care.The aim of this study was to assess the extent to which care pathways support or create elements of the multi-level framework necessary to improve care coordination across the primary-hospital care continuum. This study is an in-depth analysis of five existing local community projects located in four different regions in Flanders (Belgium) to determine whether the available empirical evidence supported or refuted the theoretical expectations from the multi-level framework. Data were gathered using mixed methods, including structured face-to-face interviews, participant observations, documentation and a focus group. Multiple cases were analyzed performing a cross case synthesis to strengthen the results. The development of a care pathway across the primary-hospital care continuum, supported by a step-by-step scenario, led to the use of existing and newly constructed structures, data monitoring and the development of information tools. The construction and use of these inter-organizational mechanisms had a positive effect on exchanging information, formulating and sharing goals, defining and knowing each other's roles, expectations and competences and building qualitative relationships. Care pathways across the primary-hospital care continuum enhance the components of care coordination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albo, Asaf, E-mail: asafalbo@gmail.com; Hu, Qing; Reno, John L.
The mechanisms that limit the temperature performance of GaAs/Al{sub 0.15}GaAs-based terahertz quantum cascade lasers (THz-QCLs) have been identified as thermally activated LO-phonon scattering and leakage of charge carriers into the continuum. Consequently, the combination of highly diagonal optical transition and higher barriers should significantly reduce the adverse effects of both mechanisms and lead to improved temperature performance. Here, we study the temperature performance of highly diagonal THz-QCLs with high barriers. Our analysis uncovers an additional leakage channel which is the thermal excitation of carriers into bounded higher energy levels, rather than the escape into the continuum. Based on this understanding,more » we have designed a structure with an increased intersubband spacing between the upper lasing level and excited states in a highly diagonal THz-QCL, which exhibits negative differential resistance even at room temperature. This result is a strong evidence for the effective suppression of the aforementioned leakage channel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albo, Asaf; Hu, Qing; Reno, John L.
The mechanisms that limit the temperature performance of GaAs/Al 0.15GaAs-based terahertz quantum cascade lasers (THz-QCLs) have been identified as thermally activated LO-phonon scattering and leakage of charge carriers into the continuum. Consequently, the combination of highly diagonal optical transition and higher barriers should significantly reduce the adverse effects of both mechanisms and lead to improved temperature performance. Here, we study the temperature performance of highly diagonal THz-QCLs with high barriers. Our analysis uncovers an additional leakage channel which is the thermal excitation of carriers into bounded higher energy levels, rather than the escape into the continuum. Based on this understanding,more » we have designed a structure with an increased intersubband spacing between the upper lasing level and excited states in a highly diagonal THz-QCL, which exhibits negative differential resistance even at room temperature. Furthermore, this result is a strong evidence for the effective suppression of the aforementioned leakage channel.« less
Effect of periodic fluctuation of soil particle rotation resistance on interface shear behaviour
NASA Astrophysics Data System (ADS)
Ebrahimian, Babak; Noorzad, Asadollah
2010-06-01
The interface behaviour between infinite extended narrow granular layer and bounding structure is numerically investigated using finite element method. The micro-polar (Cosserat) continuum approach within the framework of elasto-plasticity is employed to remove the numerical difficulties caused by strain-softening of materials in classical continuum mechanics. Mechanical properties of cohesionless granular soil are described with Lade's model enhanced with polar terms including Cosserat rotations, curvatures and couple stresses via mean grain diameter as the internal length. The main attention of paper is laid on the influence of spatial periodic fluctuation of rotation resistance of soil particles interlocked with the surface of bounding structure on evolution and location of shear band developed inside granular body. The finite element results demonstrate that the location and evolution of shear localization in granular body is strongly affected by prescribed non-uniform micro-polar kinematic boundary conditions along the interface.
NASA Technical Reports Server (NTRS)
Bergan, Andrew C.; Leone, Frank A., Jr.
2016-01-01
A new model is proposed that represents the kinematics of kink-band formation and propagation within the framework of a mesoscale continuum damage mechanics (CDM) model. The model uses the recently proposed deformation gradient decomposition approach to represent a kink band as a displacement jump via a cohesive interface that is embedded in an elastic bulk material. The model is capable of representing the combination of matrix failure in the frame of a misaligned fiber and instability due to shear nonlinearity. In contrast to conventional linear or bilinear strain softening laws used in most mesoscale CDM models for longitudinal compression, the constitutive response of the proposed model includes features predicted by detailed micromechanical models. These features include: 1) the rotational kinematics of the kink band, 2) an instability when the peak load is reached, and 3) a nonzero plateau stress under large strains.
Coarse-grained mechanics of viral shells
NASA Astrophysics Data System (ADS)
Klug, William S.; Gibbons, Melissa M.
2008-03-01
We present an approach for creating three-dimensional finite element models of viral capsids from atomic-level structural data (X-ray or cryo-EM). The models capture heterogeneous geometric features and are used in conjunction with three-dimensional nonlinear continuum elasticity to simulate nanoindentation experiments as performed using atomic force microscopy. The method is extremely flexible; able to capture varying levels of detail in the three-dimensional structure. Nanoindentation simulations are presented for several viruses: Hepatitis B, CCMV, HK97, and φ29. In addition to purely continuum elastic models a multiscale technique is developed that combines finite-element kinematics with MD energetics such that large-scale deformations are facilitated by a reduction in degrees of freedom. Simulations of these capsid deformation experiments provide a testing ground for the techniques, as well as insight into the strength-determining mechanisms of capsid deformation. These methods can be extended as a framework for modeling other proteins and macromolecular structures in cell biology.
NASA Astrophysics Data System (ADS)
Rougier, E.; Knight, E. E.
2015-12-01
The Source Physics Experiments (SPE) is a project funded by the U.S. Department of Energy at the National Nuclear Security Site. The project consists of a series of underground explosive tests designed to gain more insight on the generation and propagation of seismic energy from underground explosions in hard rock media, granite. Until now, four tests (SPE-1, SPE-2, SPE-3 and SPE-4Prime) with yields ranging from 87 kg to 1000 kg have been conducted in the same borehole. The generation and propagation of seismic waves is heavily influenced by the different damage mechanisms occurring at different ranges from the explosive source. These damage mechanisms include pore crushing, compressive (shear) damage, joint damage, spallation and fracture and fragmentation, etc. Understanding these mechanisms and how they interact with each other is essential to the interpretation of the characteristics of close-in seismic observables. Recent observations demonstrate that, for relatively small and shallow chemical explosions in granite, such as SPE-1, -2 and -3, the formation of a cavity around the working point is not the main mechanism responsible for the release of seismic moment. Shear dilatancy (bulking occurring as a consequence of compressive damage) of the medium around the source has been proposed as an alternative damage mechanism that explains the seismic moment release observed in the experiments. In this work, the interaction between cavity formation and bulking is investigated via a series of computer simulations for the SPE-2 event. The simulations are conducted using a newly developed material model, called AZ_Frac. AZ_Frac is a continuum-based-visco-plastic strain-rate-dependent material model. One of its key features is its ability to describe continuum fracture processes, while properly handling anisotropic material characteristics. The implications of the near source numerical results on the close-in seismic quantities, such as reduced displacement potentials and source spectra are presented.
Patterns and determinants of dropout from maternity care continuum in Nigeria.
Akinyemi, Joshua O; Afolabi, Rotimi F; Awolude, Olutosin A
2016-09-27
The maternal, newborn and child health care continuum require that mother/child pair should receive the full package of antenatal, intrapartum and postnatal care in order to derive maximum benefits. Continuity of care is a challenge in sub-Saharan Africa. In this study, we investigate the patterns and factors associated with dropout in the continuum of maternity (antenatal, delivery and postnatal) care in Nigeria. Using women recode file from the 2013 Nigeria Demographic and Health Survey, we analysed data on 20,467 women with an index birth within 5 years prior to data collection. Background characteristics and pattern of dropouts were summarised using descriptive statistics. The outcome variable was dropout which we explored in three stages: antenatal, antenatal-delivery, delivery-6 weeks postnatal visit. Multilevel logistic regression models were fitted to identify independent predictors of dropout at each stage. Measure of effect was expressed as Odds Ratio (OR) with 95 % confidence interval (CI). Overall, 12,392 (60.6 %) of all women received antenatal care among whom 38.1 % dropout and never got skilled delivery assistance. Of those who received skilled delivery care, 50.8 % did not attend postnatal visit. The predictors of dropout between antenatal care and delivery include problem with getting money for treatment (OR = 1.18, CI: 1.04-1.34), distance to health facility (OR = 1.31, CI: 1.13-1.52), lack of formal education, being in poor wealth quintile (OR = 2.22, CI: 1.85-2.67), residing in rural areas (OR = 1.98, CI: 1.63-2.41). Regional differences between North East, North West and South West were significant. Between delivery and postnatal visit, the same factors were also associated with dropout. The rate of dropout from maternity care continuum is high in Nigeria and driven by low or lack of formal education, poverty and healthcare access problems (distance to facility and difficulty with getting money for treatment). Unexpectedly, dropouts are high in South east and South south as well as in the Northern regions. Intervention programs focusing on community outreach about the benefits of continuum of maternal healthcare package should be introduced especially for women in rural areas and lower socio-economic strata.
Li, Bo; Zhao, Yanxiang
2013-01-01
Central in a variational implicit-solvent description of biomolecular solvation is an effective free-energy functional of the solute atomic positions and the solute-solvent interface (i.e., the dielectric boundary). The free-energy functional couples together the solute molecular mechanical interaction energy, the solute-solvent interfacial energy, the solute-solvent van der Waals interaction energy, and the electrostatic energy. In recent years, the sharp-interface version of the variational implicit-solvent model has been developed and used for numerical computations of molecular solvation. In this work, we propose a diffuse-interface version of the variational implicit-solvent model with solute molecular mechanics. We also analyze both the sharp-interface and diffuse-interface models. We prove the existence of free-energy minimizers and obtain their bounds. We also prove the convergence of the diffuse-interface model to the sharp-interface model in the sense of Γ-convergence. We further discuss properties of sharp-interface free-energy minimizers, the boundary conditions and the coupling of the Poisson-Boltzmann equation in the diffuse-interface model, and the convergence of forces from diffuse-interface to sharp-interface descriptions. Our analysis relies on the previous works on the problem of minimizing surface areas and on our observations on the coupling between solute molecular mechanical interactions with the continuum solvent. Our studies justify rigorously the self consistency of the proposed diffuse-interface variational models of implicit solvation.
[Coordination among healthcare levels: systematization of tools and measures].
Terraza Núñez, Rebeca; Vargas Lorenzo, Ingrid; Vázquez Navarrete, María Luisa
2006-01-01
Improving healthcare coordination is a priority in many healthcare systems, particularly in chronic health problems in which a number of professionals and services intervene. There is an abundance of coordination strategies and mechanisms that should be systematized so that they can be used in the most appropriate context. The present article aims to analyse healthcare coordination and its instruments using the organisational theory. Coordination mechanisms can be classified according to two basic processes used to coordinate activities: programming and feedback. The optimal combination of mechanisms will depend on three factors: the degree to which healthcare activities are differentiated, the volume and type of interdependencies, and the level of uncertainty. Historically, healthcare services have based coordination on skills standardization and, most recently, on processes standardization, through clinical guidelines, maps, and plans. Their utilisation is unsatisfactory in chronic diseases involving intervention by several professionals with reciprocal interdependencies, variability in patients' response to medical interventions, and a large volume of information to be processed. In this case, mechanisms based on feedback, such as working groups, linking professionals and vertical information systems, are more effective. To date, evaluation of healthcare coordination has not been conducted systematically, using structure, process and results indicators. The different strategies and instruments have been applied mainly to long-term care and mental health and one of the challenges to healthcare coordination is to extend and evaluate their use throughout the healthcare continuum.
NASA Technical Reports Server (NTRS)
Korista, K.; Alloin, D.; Barr, P.; Clavel, J.; Cohen, R. D.; Crenshaw, D. M.; Evans, I. N.; Horne, K.; Koratkar, A. P.; Kriss, G. A.
1994-01-01
We present the data and initial results from a combined HST/IUE/ground-based spectroscopic monitoring campaign on the Seyfert 1 galaxy NGC 5548 that was undertaken in order to address questions that require both higher temporal resolution and higher signal-to-noise ratios than were obtained in our previous multiwavelength monitoring of this galaxy in 1988-89. IUE spectra were obtained once every two days for a period of 74 days beginning on 14 March 1993. During the last 39 days of this campaign, spectroscopic observations were also made with the HST Faint Object Spectrograph (FOS) on a daily basis. Ground-based observations, consisting of 165 optical spectra and 77 photometric observations (both CCD imaging and aperture photometry), are reported for the period 1992 October to 1993 September, although much of the data are concentrated around the time of the satellite-based program. These data constitute a fifth year of intensive optical monitoring of this galaxy. In this contribution, we describe the acquisition and reduction of all of the satellite and ground-based data obtained in this program. We describe in detail various photometric problems with the FOS and explain how we identified and corrected for various anomalies. During the HST portion of the monitoring campaign, the 1350 A continuum flux is found to have varied by nearly a factor of two. In other wavebands, the continuum shows nearly identical behavior, except that the amplitude of variability is larger at shorter wavelengths, and the continuum light curves appear to show more short time-scale variability at shorter wavelengths. The broad emission lines also vary in flux, with amplitudes that are slightly smaller than the UV continuum variations and with a small time delay relative to the UV continuum. On the basis of simple time-series analysis of the UV and optical continuum and emission line light curves, we find (1) that the ultraviolet and optical continuum variations are virtually simultaneous, with any lag between the 1350 A continuum and the 5100 A continuum amounting to less than about one day; (2) that the variations in the highest ionization lines observed, He II lambda 1640 and N V lambda 1240, lag behind the continuum variations by somewhat less than 2 days, and (3) that the velocity field of the C IV-emitting region is not dominated by radial motion. The results on the C IV velocity field are preliminary and quite uncertain, but there are some weak indications that the emission-line (wings absolute value of Delta upsilon is greater than or equal to 3000 km/s) respond to continuum variations slightly more rapidly than does the core. The optical observations show that the variations in the broad H beta line flux follow the continuum variations with a time lag of around two weeks, about twice the lag for Ly alpha and C IV, as in our previous monitoring campaign on this same galaxy. However, the lags measured for Ly alpha, C IV, and H Beta are each slightly smaller than previously determined. We confirm two trends reported earlier, namely (1) that the UV/optical continuum becomes 'harder' as it gets brighter, and (2) that the highest ionization emission lines have the shortest lags, thus indicating radial ionization stratificatin of a broad-line region that spans over an order of magnitude range in radius.
Harmonic oscillator representation in the theory of scattering and nuclear reactions
NASA Technical Reports Server (NTRS)
Smirnov, Yuri F.; Shirokov, A. M.; Lurie, Yuri, A.; Zaitsev, S. A.
1995-01-01
The following questions, concerning the application of the harmonic oscillator representation (HOR) in the theory of scattering and reactions, are discussed: the formulation of the scattering theory in HOR; exact solutions of the free motion Schroedinger equation in HOR; separable expansion of the short range potentials and the calculation of the phase shifts; 'isolated states' as generalization of the Wigner-von Neumann bound states embedded in continuum; a nuclear coupled channel problem in HOR; and the description of true three body scattering in HOR. As an illustration the soft dipole mode in the (11)Li nucleus is considered in a frame of the (9)Li+n+n cluster model taking into account of three body continuum effects.
A particle-particle hybrid method for kinetic and continuum equations
NASA Astrophysics Data System (ADS)
Tiwari, Sudarshan; Klar, Axel; Hardt, Steffen
2009-10-01
We present a coupling procedure for two different types of particle methods for the Boltzmann and the Navier-Stokes equations. A variant of the DSMC method is applied to simulate the Boltzmann equation, whereas a meshfree Lagrangian particle method, similar to the SPH method, is used for simulations of the Navier-Stokes equations. An automatic domain decomposition approach is used with the help of a continuum breakdown criterion. We apply adaptive spatial and time meshes. The classical Sod's 1D shock tube problem is solved for a large range of Knudsen numbers. Results from Boltzmann, Navier-Stokes and hybrid solvers are compared. The CPU time for the hybrid solver is 3-4 times faster than for the Boltzmann solver.
Modelling Thin Film Microbending: A Comparative Study of Three Different Approaches
NASA Astrophysics Data System (ADS)
Aifantis, Katerina E.; Nikitas, Nikos; Zaiser, Michael
2011-09-01
Constitutive models which describe crystal microplasticity in a continuum framework can be envisaged as average representations of the dynamics of dislocation systems. Thus, their performance needs to be assessed not only by their ability to correctly represent stress-strain characteristics on the specimen scale but also by their ability to correctly represent the evolution of internal stress and strain patterns. In the present comparative study we consider the bending of a free-standing thin film. We compare the results of 3D DDD simulations with those obtained from a simple 1D gradient plasticity model and a more complex dislocation-based continuum model. Both models correctly reproduce the nontrivial strain patterns predicted by DDD for the microbending problem.
Irmen, Friederike; Wehner, Tim; Lemieux, Louis
2015-02-01
Recent changes in the understanding and classification of reflex seizures have fuelled a debate on triggering mechanisms of seizures and their conceptual organization. Previous studies and patient reports have listed extrinsic and intrinsic triggers, albeit their multifactorial and dynamic nature is poorly understood. This paper aims to review literature on extrinsic and intrinsic seizure triggers and to discuss common mechanisms among them. Among self-reported seizure triggers, emotional stress is most frequently named. Reflex seizures are typically associated with extrinsic sensory triggers; however, intrinsic cognitive or proprioceptive triggers have also been assessed. The identification of a trigger underlying a seizure may be more difficult if it is intrinsic and complex, and if triggering mechanisms are multifactorial. Therefore, since observability of triggers varies and triggers are also found in non-reflex seizures, the present concept of reflex seizures may be questioned. We suggest the possibility of a conceptual continuum between reflex and spontaneous seizures rather than a dichotomy and discuss evidence to the notion that to some extent most seizures might be triggered. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Tang, Yuye; Chen, Xi; Yoo, Jejoong; Yethiraj, Arun; Cui, Qiang
2010-01-01
A hierarchical simulation framework that integrates information from all-atom simulations into a finite element model at the continuum level is established to study the mechanical response of a mechanosensitive channel of large conductance (MscL) in bacteria Escherichia Coli (E.coli) embedded in a vesicle formed by the dipalmitoylphosphatidycholine (DPPC) lipid bilayer. Sufficient structural details of the protein are built into the continuum model, with key parameters and material properties derived from molecular mechanics simulations. The multi-scale framework is used to analyze the gating of MscL when the lipid vesicle is subjective to nanoindentation and patch clamp experiments, and the detailed structural transitions of the protein are obtained explicitly as a function of external load; it is currently impossible to derive such information based solely on all-atom simulations. The gating pathways of E.coli-MscL qualitatively agree with results from previous patch clamp experiments. The gating mechanisms under complex indentation-induced deformation are also predicted. This versatile hierarchical multi-scale framework may be further extended to study the mechanical behaviors of cells and biomolecules, as well as to guide and stimulate biomechanics experiments. PMID:21874098
NASA Astrophysics Data System (ADS)
Song, Jie; Dong, Mei; Koltuk, Serdar; Hu, Hui; Zhang, Luqing; Azzam, Rafig
2018-05-01
Construction works associated with the building of reservoirs in mountain areas can damage the stability of adjacent valley slopes. Seepage processes caused by the filling and drawdown operations of reservoirs also affect the stability of the reservoir banks over time. The presented study investigates the stability of a fractured-rock slope subjected to seepage forces in the lower basin of a planned pumped-storage hydropower (PSH) plant in Blaubeuren, Germany. The investigation uses a hydro-mechanically coupled finite-element analyses. For this purpose, an equivalent continuum model is developed by using a representative elementary volume (REV) approach. To determine the minimum required REV size, a large number of discrete fracture networks are generated using Monte Carlo simulations. These analyses give a REV size of 28 × 28 m, which is sufficient to represent the equivalent hydraulic and mechanical properties of the investigated fractured-rock mass. The hydro-mechanically coupled analyses performed using this REV size show that the reservoir operations in the examined PSH plant have negligible effect on the adjacent valley slope.
Investigation of membrane mechanics using spring networks: application to red-blood-cell modelling.
Chen, Mingzhu; Boyle, Fergal J
2014-10-01
In recent years a number of red-blood-cell (RBC) models have been proposed using spring networks to represent the RBC membrane. Some results predicted by these models agree well with experimental measurements. However, the suitability of these membrane models has been questioned. The RBC membrane, like a continuum membrane, is mechanically isotropic throughout its surface, but the mechanical properties of a spring network vary on the network surface and change with deformation. In this work spring-network mechanics are investigated in large deformation for the first time via an assessment of the effect of network parameters, i.e. network mesh, spring type and surface constraint. It is found that a spring network is conditionally equivalent to a continuum membrane. In addition, spring networks are employed for RBC modelling to replicate the optical tweezers test. It is found that a spring network is sufficient for modelling the RBC membrane but strain-hardening springs are required. Moreover, the deformation profile of a spring network is presented for the first time via the degree of shear. It is found that spring-network deformation approaches continuous as the mesh density increases. Copyright © 2014 Elsevier B.V. All rights reserved.
[Continuum, the continuing education platform based on a competency matrix].
Ochoa Sangrador, C; Villaizán Pérez, C; González de Dios, J; Hijano Bandera, F; Málaga Guerrero, S
2016-04-01
Competency-Based Education is a learning method that has changed the traditional teaching-based focus to a learning-based one. Students are the centre of the process, in which they must learn to learn, solve problems, and adapt to changes in their environment. The goal is to provide learning based on knowledge, skills (know-how), attitude and behaviour. These sets of knowledge are called competencies. It is essential to have a reference of the required competencies in order to identify the need for them. Their acquisition is approached through teaching modules, in which one or more skills can be acquired. This teaching strategy has been adopted by Continuum, the distance learning platform of the Spanish Paediatric Association, which has developed a competency matrix based on the Global Paediatric Education Consortium training program. In this article, a review will be presented on the basics of Competency-Based Education and how it is applied in Continuum. Copyright © 2015 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.
Labelling effects and adolescent responses to peers with depression: an experimental investigation.
Dolphin, Louise; Hennessy, Eilis
2017-06-24
The impact of illness labels on the stigma experiences of individuals with mental health problems is a matter of ongoing debate. Some argue that labels have a negative influence on judgments and should be avoided in favour of information emphasising the existence of a continuum of mental health/illness. Others believe that behavioral symptoms are more powerful influencers of stigma than labels. The phenomenon has received little attention in adolescent research, despite the critical importance of the peer group at this developmental stage. This study employs a novel experimental design to examine the impact of the depression label and continuum information on adolescents' responses to peers with depression. Participants were 156 adolescents, 76 male, 80 female (M = 16.25 years; SD = .361), assigned to one of three conditions (Control, Label, Continuum). Participants respond to four audio-visual vignette characters (two clinically depressed) on three occasions. Outcome measures included judgment of the mental health of the vignette characters and emotional responses to them. Neither the provision of a depression label or continuum information influenced perceptions of the mental health of the characters in the audio-visual vignettes or participants' emotional responses to them. The findings have implications for the design of interventions to combat depression stigma with adolescents. Interventions should not necessarily target perceptions of psychiatric labels, but rather perceptions of symptomatic behaviour.
NASA Technical Reports Server (NTRS)
Stern, Robert A.; Lemen, James R.; Schmitt, Jurgen H. M. M.; Pye, John P.
1995-01-01
We report results from the first extreme ultraviolet spectrum of the prototypical eclipsing binary Algol (beta Per), obtained with the spectrometers on the Extreme Ultraviolet Explorer (EUVE). The Algol spectrum in the 80-350 A range is dominated by emission lines of Fe XVI-XXIV, and the He II 304 A line. The Fe emission is characteristic of high-temperature plasma at temperatures up to at least log T approximately 7.3 K. We have successfully modeled the observed quiescent spectrum using a continuous emission measure distribution with the bulk of the emitting material at log T greater than 6.5. We are able to adequately fit both the coronal lines and continuum data with a cosmic abundance plasma, but only if Algol's quiescent corona is dominated by material at log T greater than 7.5, which is physically ruled out by prior X-ray observations of the quiescent Algol spectrum. Since the coronal (Fe/H) abundance is the principal determinant of the line-to-continuum ratio in the EUV, allowing the abundance to be a free parameter results in models with a range of best-fit abundances approximately = 15%-40% of solar photospheric (Fe/H). Since Algol's photospheric (Fe/H) appears to be near-solar, the anomalous EUV line-to-continuum ratio could either be the result of element segregation in the coronal formation process, or other, less likely mechanisms that may enhance the continuum with respect to the lines.
The Quasicontinuum Method: Overview, applications and current directions
NASA Astrophysics Data System (ADS)
Miller, Ronald E.; Tadmor, E. B.
2002-10-01
The Quasicontinuum (QC) Method, originally conceived and developed by Tadmor, Ortiz and Phillips [1] in 1996, has since seen a great deal of development and application by a number of researchers. The idea of the method is a relatively simple one. With the goal of modeling an atomistic system without explicitly treating every atom in the problem, the QC provides a framework whereby degrees of freedom are judiciously eliminated and force/energy calculations are expedited. This is combined with adaptive model refinement to ensure that full atomistic detail is retained in regions of the problem where it is required while continuum assumptions reduce the computational demand elsewhere. This article provides a review of the method, from its original motivations and formulation to recent improvements and developments. A summary of the important mechanics of materials results that have been obtained using the QC approach is presented. Finally, several related modeling techniques from the literature are briefly discussed. As an accompaniment to this paper, a website designed to serve as a clearinghouse for information on the QC method has been established at www.qcmethod.com. The site includes information on QC research, links to researchers, downloadable QC code and documentation.
NASA Astrophysics Data System (ADS)
Murawski, Jens; Kleine, Eckhard
2017-04-01
Sea ice remains one of the frontiers of ocean modelling and is of vital importance for the correct forecasts of the northern oceans. At large scale, it is commonly considered a continuous medium whose dynamics is modelled in terms of continuum mechanics. Its specifics are a matter of constitutive behaviour which may be characterised as rigid-plastic. The new developed sea ice dynamic module bases on general principles and follows a systematic approach to the problem. Both drift field and stress field are modelled by a variational property. Rigidity is treated by Lagrangian relaxation. Thus one is led to a sensible numerical method. Modelling fast ice remains to be a challenge. It is understood that ridging and the formation of grounded ice keels plays a role in the process. The ice dynamic model includes a parameterisation of the stress associated with grounded ice keels. Shear against the grounded bottom contact might lead to plastic deformation and the loss of integrity. The numerical scheme involves a potentially large system of linear equations which is solved by pre-conditioned iteration. The entire algorithm consists of several components which result from decomposing the problem. The algorithm has been implemented and tested in practice.
Meshless Lagrangian SPH method applied to isothermal lid-driven cavity flow at low-Re numbers
NASA Astrophysics Data System (ADS)
Fraga Filho, C. A. D.; Chacaltana, J. T. A.; Pinto, W. J. N.
2018-01-01
SPH is a recent particle method applied in the cavities study, without many results available in the literature. The lid-driven cavity flow is a classic problem of the fluid mechanics, extensively explored in the literature and presenting a considerable complexity. The aim of this paper is to present a solution from the Lagrangian viewpoint for this problem. The discretization of the continuum domain is performed using the Lagrangian particles. The physical laws of mass, momentum and energy conservation are presented by the Navier-Stokes equations. A serial numerical code, written in Fortran programming language, has been used to perform the numerical simulations. The application of the SPH and comparison with the literature (mesh methods and a meshless collocation method) have been done. The positions of the primary vortex centre and the non-dimensional velocity profiles passing through the geometric centre of the cavity have been analysed. The numerical Lagrangian results showed a good agreement when compared to the results found in the literature, specifically for { Re} < 100.00 . Suggestions for improvements in the SPH model presented are listed, in the search for better results for flows with higher Reynolds numbers.
Forms of null Lagrangians in field theories of continuum mechanics
NASA Astrophysics Data System (ADS)
Kovalev, V. A.; Radaev, Yu. N.
2012-02-01
The divergence representation of a null Lagrangian that is regular in a star-shaped domain is used to obtain its general expression containing field gradients of order ≤ 1 in the case of spacetime of arbitrary dimension. It is shown that for a static three-component field in the three-dimensional space, a null Lagrangian can contain up to 15 independent elements in total. The general form of a null Lagrangian in the four-dimensional Minkowski spacetime is obtained (the number of physical field variables is assumed arbitrary). A complete theory of the null Lagrangian for the n-dimensional spacetime manifold (including the four-dimensional Minkowski spacetime as a special case) is given. Null Lagrangians are then used as a basis for solving an important variational problem of an integrating factor. This problem involves searching for factors that depend on the spacetime variables, field variables, and their gradients and, for a given system of partial differential equations, ensure the equality between the scalar product of a vector multiplier by the system vector and some divergence expression for arbitrary field variables and, hence, allow one to formulate a divergence conservation law on solutions to the system.
Bruns, Eric J; Duong, Mylien T; Lyon, Aaron R; Pullmann, Michael D; Cook, Clayton R; Cheney, Douglas; McCauley, Elizabeth
2016-03-01
The education sector offers compelling opportunities to address the shortcomings of traditional mental health delivery systems and to prevent and treat youth mental, emotional, and behavioral (MEB) problems. Recognizing that social and emotional wellness is intrinsically related to academic success, schools are moving to adopt multi-tier frameworks based on the public health model that provide a continuum of services to all children, including services to address both academic and MEB problems. In this article, we review the potential value of multi-tier frameworks in facilitating access to, and increasing the effectiveness of, mental health services in schools, and review the empirical support for school-based mental health interventions by tier. We go on to describe a community-academic partnership between the Seattle Public Schools and the University of Washington School Mental Health Assessment, Research, and Training (SMART) Center that exemplifies how multi-tier educational frameworks, research and evidence, and purposeful collaboration can combine to improve development and implementation of a range of school-based strategies focused on MEB needs of students. Finally, we present a set of 10 recommendations that may help guide other research and practice improvement efforts to address MEB problems in youth through effective school mental health programming. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Dynamic simulations of geologic materials using combined FEM/DEM/SPH analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, J P; Johnson, S M
2008-03-26
An overview of the Lawrence Discrete Element Code (LDEC) is presented, and results from a study investigating the effect of explosive and impact loading on geologic materials using the Livermore Distinct Element Code (LDEC) are detailed. LDEC was initially developed to simulate tunnels and other structures in jointed rock masses using large numbers of polyhedral blocks. Many geophysical applications, such as projectile penetration into rock, concrete targets, and boulder fields, require a combination of continuum and discrete methods in order to predict the formation and interaction of the fragments produced. In an effort to model this class of problems, LDECmore » now includes implementations of Cosserat point theory and cohesive elements. This approach directly simulates the transition from continuum to discontinuum behavior, thereby allowing for dynamic fracture within a combined finite element/discrete element framework. In addition, there are many application involving geologic materials where fluid-structure interaction is important. To facilitate solution of this class of problems a Smooth Particle Hydrodynamics (SPH) capability has been incorporated into LDEC to simulate fully coupled systems involving geologic materials and a saturating fluid. We will present results from a study of a broad range of geomechanical problems that exercise the various components of LDEC in isolation and in tandem.« less
Bruns, Eric J.; Duong, Mylien T.; Lyon, Aaron R.; Pullmann, Michael D.; Cook, Clayton R.; Cheney, Douglas; McCauley, Elizabeth
2015-01-01
The education sector offers compelling opportunities to address the shortcomings of traditional mental health delivery systems and to prevent and treat youth mental, emotional, and behavioral (MEB) problems. Recognizing that social and emotional wellness is intrinsically related to academic success, schools are moving to adopt multi-tier frameworks based on the public health model that provide a continuum of services to all children, including services to address both academic and MEB problems. In this paper, we review the potential value of multi-tier frameworks in facilitating access to, and increasing the effectiveness of, mental health services in schools and review the empirical support for school-based mental health interventions by tier. We go on to describe a community-academic partnership between the Seattle Public Schools and the University of Washington School Mental Health Assessment, Research, and Training (SMART) Center that exemplifies how multi-tier educational frameworks, research and evidence, and purposeful collaboration can combine to improve development and implementation of a range of school-based strategies focused on MEB needs of students. Finally, we present a set of 10 recommendations that may help guide other research and practice improvement efforts to address MEB problems in youth through effective school mental health programming. PMID:26963185
Breakage mechanics—Part I: Theory
NASA Astrophysics Data System (ADS)
Einav, Itai
2007-06-01
Different measures have been suggested for quantifying the amount of fragmentation in randomly compacted crushable aggregates. A most effective and popular measure is to adopt variants of Hardin's [1985. Crushing of soil particles. J. Geotech. Eng. ASCE 111(10), 1177-1192] definition of relative breakage ' Br'. In this paper we further develop the concept of breakage to formulate a new continuum mechanics theory for crushable granular materials based on statistical and thermomechanical principles. Analogous to the damage internal variable ' D' which is used in continuum damage mechanics (CDM), here the breakage internal variable ' B' is adopted. This internal variable represents a particular form of the relative breakage ' Br' and measures the relative distance of the current grain size distribution from the initial and ultimate distributions. Similar to ' D', ' B' varies from zero to one and describes processes of micro-fractures and the growth of surface area. However, unlike damage that is most suitable to tensioned solid-like materials, the breakage is aimed towards compressed granular matter. While damage effectively represents the opening of micro-cavities and cracks, breakage represents comminution of particles. We term the new theory continuum breakage mechanics (CBM), reflecting the analogy with CDM. A focus is given to developing fundamental concepts and postulates, and identifying the physical meaning of the various variables. In this part of the paper we limit the study to describe an ideal dissipative process that includes breakage without plasticity. Plastic strains are essential, however, in representing aspects that relate to frictional dissipation, and this is covered in Part II of this paper together with model examples.
NASA Astrophysics Data System (ADS)
Rattez, Hadrien; Stefanou, Ioannis; Sulem, Jean; Veveakis, Manolis; Poulet, Thomas
2018-06-01
In this paper we study the phenomenon of localization of deformation in fault gouges during seismic slip. This process is of key importance to understand frictional heating and energy budget during an earthquake. A infinite layer of fault gouge is modeled as a Cosserat continuum taking into account Thermo-Hydro-Mechanical (THM) couplings. The theoretical aspects of the problem are presented in the companion paper (Rattez et al., 2017a), together with a linear stability analysis to determine the conditions of localization and estimate the shear band thickness. In this Part II of the study, we investigate the post-bifurcation evolution of the system by integrating numerically the full system of non-linear equations using the method of Finite Elements. The problem is formulated in the framework of Cosserat theory. It enables to introduce information about the microstructure of the material in the constitutive equations and to regularize the mathematical problem in the post-localization regime. We emphasize the influence of the size of the microstructure and of the softening law on the material response and the strain localization process. The weakening effect of pore fluid thermal pressurization induced by shear heating is examined and quantified. It enhances the weakening process and contributes to the narrowing of shear band thickness. Moreover, due to THM couplings an apparent rate-dependency is observed, even for rate-independent material behavior. Finally, comparisons show that when the perturbed field of shear deformation dominates, the estimation of the shear band thickness obtained from linear stability analysis differs from the one obtained from the finite element computations, demonstrating the importance of post-localization numerical simulations.
Velocity Potential in Engineering Hydraulics versus Force Potential in Groundwater Dynamics
NASA Astrophysics Data System (ADS)
Weyer, K.
2013-12-01
Within engineering practice, the calculation of subsurface flow is dominated by the mathematical pseudo-physics of the engineer's adaptation of continuum methods to mechanics. Continuum mechanics rose to prominence in the 19th century in an successful attempt to solve practical engineering problems. To that end were put in place quite a number of simplifications in geometry and the properties of water and other fluids, as well as simplifications of Darcy's equation, in order to find reasonable answers to practical problems by making use of analytical equations. The proof of the correctness of the approach and its usefulness was in the practicability of results obtained. In the 1930s, a diametrically-opposed duality developed in the theoretical derivation of the laws of subsurface fluid flow between Muskat's (1937) velocity potential (engineering hydraulics) and Hubbert's (1940) force potential. The conflict between these authors lasted a lifetime. In the end Hubbert stated on one occasion that Muskat formulates a refined mathematics but does not know what it means in physical terms. In this author's opinion that can still be said about the application of continuum mechanics by engineers to date, as for example to CO2 sequestration, regional groundwater flow, oil sands work, and geothermal studies. To date, engineering hydraulics is best represented by Bear (1972) and de Marsily (1986). In their well-known textbooks, both authors refer to Hubbert's work as the proper way to deal with the physics of compressible fluids. Water is a compressible fluid. The authors then ignore, however, their own insights (de Marsily states so explicitly, Bear does not) and proceed to deal with water as an incompressible fluid. At places both authors assume the pressure gradients to be the main driving force for flow of fluids in the subsurface. That is not, however, the case. Instead the pressure potential forces are caused by compression initiated by unused gravitational energy not required to overcome the resistance to downward flow in penetrated rocks. As one of the consequences, the engineering hydraulics concept of buoyancy forces does not comply with physics. In general the vectorial forces within gravitationally-driven flow systems are ignored when using engineering hydraulics. Scheidegger (1974, p. 79) states, however, verbatim and unequivocally: 'It is thus a force potential and not a velocity potential which governs flow through porous media' (emphasis added). This presentation will outline the proper forces for groundwater flow and their calculations based on Hubbert's force potential and additional physical insights by Weyer (1978). REFERENCES Bear, J. 1972. Dynamics of Fluids in Porous Media. American Elsevier Publishing Company, Inc., New York, NY, USA. de Marsily, G. 1986. Quantitative Hydrogeology: Groundwater Hydrology for Engineers. Academic Press, San Diego, California, USA. Hubbert, M.K. 1940. The theory of groundwater motion. Journal of Geology 48(8): 785-944. Muskat, Morris, 1937. The flow of homogeneous fluids through porous media. McGraw-Hill Book Company Inc., New York, NY, USA Scheidegger. A.E., 1974. The physics of flow through permeable media. Third Edition. University of Toronto Press, Toronto, Ontario, Canada Weyer, K.U., 1978. Hydraulic forces in permeable media. Bulletin du B.R.G.M., Vol. 91, pp. 286-297, Orléans, France.
NASA Astrophysics Data System (ADS)
Rybakin, B.; Bogatencov, P.; Secrieru, G.; Iliuha, N.
2013-10-01
The paper deals with a parallel algorithm for calculations on multiprocessor computers and GPU accelerators. The calculations of shock waves interaction with low-density bubble results and the problem of the gas flow with the forces of gravity are presented. This algorithm combines a possibility to capture a high resolution of shock waves, the second-order accuracy for TVD schemes, and a possibility to observe a low-level diffusion of the advection scheme. Many complex problems of continuum mechanics are numerically solved on structured or unstructured grids. To improve the accuracy of the calculations is necessary to choose a sufficiently small grid (with a small cell size). This leads to the drawback of a substantial increase of computation time. Therefore, for the calculations of complex problems it is reasonable to use the method of Adaptive Mesh Refinement. That is, the grid refinement is performed only in the areas of interest of the structure, where, e.g., the shock waves are generated, or a complex geometry or other such features exist. Thus, the computing time is greatly reduced. In addition, the execution of the application on the resulting sequence of nested, decreasing nets can be parallelized. Proposed algorithm is based on the AMR method. Utilization of AMR method can significantly improve the resolution of the difference grid in areas of high interest, and from other side to accelerate the processes of the multi-dimensional problems calculating. Parallel algorithms of the analyzed difference models realized for the purpose of calculations on graphic processors using the CUDA technology [1].
Structures for Facilitating Student Reflection
ERIC Educational Resources Information Center
Grossman, Robert
2009-01-01
The goal of this article is to describe a continuum of levels of reflection. It briefly focuses on Deanna Kuhn's research into the development of scientific thinking and Robert Kegan's Object-Subject Theory of Development applied to the problems of inspiring students to be able to reflect. Assignments for improving students' ability to reflect are…
Explaining Crossing DIF in Polytomous Items Using Differential Step Functioning Effects
ERIC Educational Resources Information Center
Penfield, Randall D.
2010-01-01
Crossing, or intersecting, differential item functioning (DIF) is a form of nonuniform DIF that exists when the sign of the between-group difference in expected item performance changes across the latent trait continuum. The presence of crossing DIF presents a problem for many statistics developed for evaluating DIF because positive and negative…
Dan Says - Continuum Magazine | NREL
Dan Says Leading Energy Systems Integration A headshot of a man in a suit, smiling. Photo by Dennis U.S. dedicated to solving the complex problems associated with energy systems integration (ESI) on a national scale. Our 185,000-square-foot Energy Systems Integration Facility (ESIF) is designed to provide a
Agriculture and Rurality: Beginning the "Final Separation"?
ERIC Educational Resources Information Center
Friedland, William H.
2002-01-01
When is a farm a farm? When is rural rural? Has the issue of the rural-urban continuum returned? Decades ago rural sociology worked itself into two blind alleys: rural-urban differences and attempts to define the rural-urban fringe. Although these conceptual problems eventually were exhausted, recent developments in California raise the…
Sexual Harassment: An Overview. Monograph. Volume 2, Number 1.
ERIC Educational Resources Information Center
Withers, Nancy A.
Sexual harassment is a problem in high schools, on college campuses, and in the workplace, although unclear definitions and misinterpretations of sexual harassment have led many to believe that the amount of sexual harassment that occurs is minimal. Sexual harassment has been defined as a continuum of behaviors, with physical sexual assault at one…
Military Social Work: Opportunities and Challenges for Social Work Education
ERIC Educational Resources Information Center
Wooten, Nikki R.
2015-01-01
Military social work is a specialized field of practice spanning the micro-macro continuum and requiring advanced social work knowledge and skills. The complex behavioral health problems and service needs of Iraq and Afghanistan veterans highlight the need for highly trained social work professionals who can provide militarily relevant and…
A Shared Service Approach for Children with Behavioral Disorders.
ERIC Educational Resources Information Center
Clark, Isabelle M.
The Saskatoon Region Shared Service was formed by one urban and three adjoining rural school divisions in Saskatchewan (Canada), to serve a small, widespread population base of special needs students. The Shared Service established the Behavior Adjustment Model to develop a continuum of services for children with social and emotional problems. The…
Schröder, Lisa; Seehagen, Sabine; Zmyj, Norbert; Hebebrand, Johannes
2016-01-01
Supporting other human beings is a fundamental aspect of human societies. Such so-called prosocial behavior is expressed in helping others, cooperating and sharing with them. This article gives an overview both of the development of prosocial behavior across childhood and of the relationship between prosociality and externalizing and internalizing problems. Especially externalizing problems are negatively associated with prosocial behavior, whereas the relationships with prosocial behavior are more heterogeneous for internalizing problems. Studies investigating developmental trajectories demonstrate that prosocial behavior and externalizing problems are not opposite ends of a continuum. Rather, they are two independent dimensions that may also co-occur in development. The same applies to internalizing problems, which can co-occur with pronounced prosociality as well as with low prosociality.
2018-01-01
Toxic planktonic cyanobacterial blooms are a pressing environmental and human health problem. Blooms are expanding globally and threatening sustainability of our aquatic resources. Anthropogenic nutrient enrichment and hydrological modifications, including water diversions and reservoir construction, are major drivers of bloom expansion. Climatic change, i.e., warming, more extreme rainfall events, and droughts, act synergistically with human drivers to exacerbate the problem. Bloom mitigation steps, which are the focus of this review, must consider these dynamic interactive factors in order to be successful in the short- and long-term. Furthermore, these steps must be applicable along the freshwater to marine continuum connecting streams, lakes, rivers, estuarine, and coastal waters. There is an array of physical, chemical, and biological approaches, including flushing, mixing, dredging, application of algaecides, precipitating phosphorus, and selective grazing, that may arrest and reduce bloom intensities in the short-term. However, to ensure long term, sustainable success, targeting reductions of both nitrogen and phosphorus inputs should accompany these approaches along the continuum. Lastly, these strategies should accommodate climatic variability and change, which will likely modulate and alter nutrient-bloom thresholds. PMID:29419777
An enhanced version of a bone-remodelling model based on the continuum damage mechanics theory.
Mengoni, M; Ponthot, J P
2015-01-01
The purpose of this work was to propose an enhancement of Doblaré and García's internal bone remodelling model based on the continuum damage mechanics (CDM) theory. In their paper, they stated that the evolution of the internal variables of the bone microstructure, and its incidence on the modification of the elastic constitutive parameters, may be formulated following the principles of CDM, although no actual damage was considered. The resorption and apposition criteria (similar to the damage criterion) were expressed in terms of a mechanical stimulus. However, the resorption criterion is lacking a dimensional consistency with the remodelling rate. We propose here an enhancement to this resorption criterion, insuring the dimensional consistency while retaining the physical properties of the original remodelling model. We then analyse the change in the resorption criterion hypersurface in the stress space for a two-dimensional (2D) analysis. We finally apply the new formulation to analyse the structural evolution of a 2D femur. This analysis gives results consistent with the original model but with a faster and more stable convergence rate.
Romero, Eduardo E; Hernandez, Florencio E
2018-01-03
Herein we present our results on the study of the double proton transfer (DPT) mechanism in the adenine-thymine (AT) and guanine-cytosine (GC) base pairs, both in gas phase and in solution. The latter was modeled using the polarizable continuum method (PCM) in different solvents. According to our DFT calculations, the DPT may occur for both complexes in a stepwise mechanism in condensate phase. In gas phase only the GC base pair exhibits a concerted DPT mechanism. Using the Wigner's tunneling corrections to the transition state theory we demonstrate that such corrections are important for the prediction of the rate constants of both systems in gas and in condensate phase. We also show that (i) as the polarity of the medium decreases the equilibrium constant of the DPT reaction increases in both complexes, and (ii) that the equilibrium constant in the GC complex is four orders of magnitude larger than in AT. This observation suggests that the spontaneous mutations in DNA base pairs are more probable in GC than in AT.
Overview of the observations of symbiotic stars
NASA Technical Reports Server (NTRS)
Viotti, Roberto
1993-01-01
The term Symbiotic stars commonly denotes variable stars whose optical spectra simultaneously present a cool absorption spectrum (typically TiO absorption bands) and emission lines of high ionization energy. This term is now used for the category of variable stars with composite spectrum. The main spectral features of these objects are: (1) the presence of the red continuum typical of a cool star, (2) the rich emission line spectrum, and (3) the UV excess, frequently with the Balmer continuum in emission. In addition to the peculiar spectrum, the very irregular photometric and spectroscopic variability is the major feature of the symbiotic stars. Moreover, the light curve is basic to identify the different phases of activity in a symbiotic star. The physical mechanisms that cause the symbiotic phenomenon and its variety are the focus of this paper. An astronomical phenomenon characterized by a composite stellar spectrum with two apparently conflicting features, and large variability has been observed. Our research set out to find the origin of this behavior and, in particular, to identify and measure the physical mechanism(s) responsible for the observed phenomena.
Hoover, Wm G; Hoover, Carol G
2010-04-01
Guided by molecular dynamics simulations, we generalize the Navier-Stokes-Fourier constitutive equations and the continuum motion equations to include both transverse and longitudinal temperatures. To do so we partition the contributions of the heat transfer, the work done, and the heat flux vector between the longitudinal and transverse temperatures. With shockwave boundary conditions time-dependent solutions of these equations converge to give stationary shockwave profiles. The profiles include anisotropic temperature and can be fitted to molecular dynamics results, demonstrating the utility and simplicity of a two-temperature description of far-from-equilibrium states.
Continuum damage model for ferroelectric materials and its application to multilayer actuators
NASA Astrophysics Data System (ADS)
Gellmann, Roman; Ricoeur, Andreas
2016-05-01
In this paper a micromechanical continuum damage model for ferroelectric materials is presented. As a constitutive law it is implemented into a finite element (FE) code. The model is based on micromechanical considerations of domain switching and its interaction with microcrack growth and coalescence. A FE analysis of a multilayer actuator is performed, showing the initiation of damage zones at the electrode tips during the poling process. Further, the influence of mechanical pre-stressing on damage evolution and actuating properties is investigated. The results provided in this work give useful information on the damage of advanced piezoelectric devices and their optimization.
The application of single particle hydrodynamics in continuum models of multiphase flow
NASA Technical Reports Server (NTRS)
Decker, Rand
1988-01-01
A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.
NASA Astrophysics Data System (ADS)
Fletcher, Raymond C.; Pollard, David D.
1999-08-01
Our answer is `no'. Throughout the 20th century, the majority of structural geologists have worked with a conceptual basis that includes only isolated fragments of continuum mechanics (e.g. strain analysis, constitutive laws, force balance, Mohr's circles, or conservation of volume), and this has resulted in the proliferation of ad hoc models of structural and tectonic processes and their products. Furthermore, at a more abstract level, the possibility that mechanical quantities of interest (e.g. displacement, velocity, stress, or temperature) vary continuously in the spatial coordinates and time is largely ignored. These two conceptual oversights are related: without the mathematical concept of partial differentiation (as in the biharmonic equation of elasticity theory that brings strain compatability, Hooke's law, and stress equilibrium together) these spatial and temporal variations cannot be accounted for explicitly. Thus, the mechanical concept of boundary- and initial-value problems, formulated in terms of partial differential equations, has not been adopted as a necessary tool by most practitioners of structural geology and tectonics. We illustrate our case with two examples: the development of chevron folds and of échelon veins. We show how the ad hoc approach, while successful at one level, lacks predictive capability and possesses a low degree of refutability. Further progress in understanding these (and other) products of structural and tectonic processes can be made through an integrative approach using a complete and self-consistent mechanics.
Polyelectrolyte gels as bending actuators: modeling and numerical simulation
NASA Astrophysics Data System (ADS)
Wallmersperger, Thomas; Keller, Karsten; Attaran, Abdolhamid
2013-04-01
Polyelectrolyte gels are ionic electroactivematerials. They have the ability to react as both, sensors and actuators. As actuators they can be used e.g. as artificial muscles or drug delivery control; as sensors they may be used for measuring e.g. pressure, pH or other ion concentrations in the solution. In this research both, anionic and cationic polyelectrolyte gels placed in aqueous solution with mobile anions and cations are investigated. Due to external stimuli the polyelectrolyte gels can swell or shrink enormously by the uptake or delivery of solvent. In the present research a coupled multi-field problem within a continuum mechanics framework is proposed. The modeling approach introduces a set of equations governing multiple fields of the problem, including the chemical field of the ionic species, the electrical field and the mechanical field. The numerical simulation is performed by using the Finite Element Method. Within the study some test cases will be carried out to validate our model. In the works by Gülch et al., the application of combined anionic-cationic gels as grippers was shown. In the present research for an applied electric field, the change of the concentrations and the electric potential in the complete polymer is simulated by the given formulation. These changes lead to variations in the osmotic pressure resulting in a bending of different polyelectrolyte gels. In the present research it is shown that our model is capable of describing the bending behavior of anionic or cationic gels towards the different electrodes (cathode or anode).
MaMiCo: Transient multi-instance molecular-continuum flow simulation on supercomputers
NASA Astrophysics Data System (ADS)
Neumann, Philipp; Bian, Xin
2017-11-01
We present extensions of the macro-micro-coupling tool MaMiCo, which was designed to couple continuum fluid dynamics solvers with discrete particle dynamics. To enable local extraction of smooth flow field quantities especially on rather short time scales, sampling over an ensemble of molecular dynamics simulations is introduced. We provide details on these extensions including the transient coupling algorithm, open boundary forcing, and multi-instance sampling. Furthermore, we validate the coupling in Couette flow using different particle simulation software packages and particle models, i.e. molecular dynamics and dissipative particle dynamics. Finally, we demonstrate the parallel scalability of the molecular-continuum simulations by using up to 65 536 compute cores of the supercomputer Shaheen II located at KAUST. Program Files doi:http://dx.doi.org/10.17632/w7rgdrhb85.1 Licensing provisions: BSD 3-clause Programming language: C, C++ External routines/libraries: For compiling: SCons, MPI (optional) Subprograms used: ESPResSo, LAMMPS, ls1 mardyn, waLBerla For installation procedures of the MaMiCo interfaces, see the README files in the respective code directories located in coupling/interface/impl. Journal reference of previous version: P. Neumann, H. Flohr, R. Arora, P. Jarmatz, N. Tchipev, H.-J. Bungartz. MaMiCo: Software design for parallel molecular-continuum flow simulations, Computer Physics Communications 200: 324-335, 2016 Does the new version supersede the previous version?: Yes. The functionality of the previous version is completely retained in the new version. Nature of problem: Coupled molecular-continuum simulation for multi-resolution fluid dynamics: parts of the domain are resolved by molecular dynamics or another particle-based solver whereas large parts are covered by a mesh-based CFD solver, e.g. a lattice Boltzmann automaton. Solution method: We couple existing MD and CFD solvers via MaMiCo (macro-micro coupling tool). Data exchange and coupling algorithmics are abstracted and incorporated in MaMiCo. Once an algorithm is set up in MaMiCo, it can be used and extended, even if other solvers are used (as soon as the respective interfaces are implemented/available). Reasons for the new version: We have incorporated a new algorithm to simulate transient molecular-continuum systems and to automatically sample data over multiple MD runs that can be executed simultaneously (on, e.g., a compute cluster). MaMiCo has further been extended by an interface to incorporate boundary forcing to account for open molecular dynamics boundaries. Besides support for coupling with various MD and CFD frameworks, the new version contains a test case that allows to run molecular-continuum Couette flow simulations out-of-the-box. No external tools or simulation codes are required anymore. However, the user is free to switch from the included MD simulation package to LAMMPS. For details on how to run the transient Couette problem, see the file README in the folder coupling/tests, Remark on MaMiCo V1.1. Summary of revisions: Open boundary forcing; Multi-instance MD sampling; support for transient molecular-continuum systems Restrictions: Currently, only single-centered systems are supported. For access to the LAMMPS-based implementation of DPD boundary forcing, please contact Xin Bian, xin.bian@tum.de. Additional comments: Please see file license_mamico.txt for further details regarding distribution and advertising of this software.
Neglected transport equations: extended Rankine-Hugoniot conditions and J -integrals for fracture
NASA Astrophysics Data System (ADS)
Davey, K.; Darvizeh, R.
2016-09-01
Transport equations in integral form are well established for analysis in continuum fluid dynamics but less so for solid mechanics. Four classical continuum mechanics transport equations exist, which describe the transport of mass, momentum, energy and entropy and thus describe the behaviour of density, velocity, temperature and disorder, respectively. However, one transport equation absent from the list is particularly pertinent to solid mechanics and that is a transport equation for movement, from which displacement is described. This paper introduces the fifth transport equation along with a transport equation for mechanical energy and explores some of the corollaries resulting from the existence of these equations. The general applicability of transport equations to discontinuous physics is discussed with particular focus on fracture mechanics. It is well established that bulk properties can be determined from transport equations by application of a control volume methodology. A control volume can be selected to be moving, stationary, mass tracking, part of, or enclosing the whole system domain. The flexibility of transport equations arises from their ability to tolerate discontinuities. It is insightful thus to explore the benefits derived from the displacement and mechanical energy transport equations, which are shown to be beneficial for capturing the physics of fracture arising from a displacement discontinuity. Extended forms of the Rankine-Hugoniot conditions for fracture are established along with extended forms of J -integrals.
Double diffusivity model under stochastic forcing
NASA Astrophysics Data System (ADS)
Chattopadhyay, Amit K.; Aifantis, Elias C.
2017-05-01
The "double diffusivity" model was proposed in the late 1970s, and reworked in the early 1980s, as a continuum counterpart to existing discrete models of diffusion corresponding to high diffusivity paths, such as grain boundaries and dislocation lines. It was later rejuvenated in the 1990s to interpret experimental results on diffusion in polycrystalline and nanocrystalline specimens where grain boundaries and triple grain boundary junctions act as high diffusivity paths. Technically, the model pans out as a system of coupled Fick-type diffusion equations to represent "regular" and "high" diffusivity paths with "source terms" accounting for the mass exchange between the two paths. The model remit was extended by analogy to describe flow in porous media with double porosity, as well as to model heat conduction in media with two nonequilibrium local temperature baths, e.g., ion and electron baths. Uncoupling of the two partial differential equations leads to a higher-ordered diffusion equation, solutions of which could be obtained in terms of classical diffusion equation solutions. Similar equations could also be derived within an "internal length" gradient (ILG) mechanics formulation applied to diffusion problems, i.e., by introducing nonlocal effects, together with inertia and viscosity, in a mechanics based formulation of diffusion theory. While being remarkably successful in studies related to various aspects of transport in inhomogeneous media with deterministic microstructures and nanostructures, its implications in the presence of stochasticity have not yet been considered. This issue becomes particularly important in the case of diffusion in nanopolycrystals whose deterministic ILG-based theoretical calculations predict a relaxation time that is only about one-tenth of the actual experimentally verified time scale. This article provides the "missing link" in this estimation by adding a vital element in the ILG structure, that of stochasticity, that takes into account all boundary layer fluctuations. Our stochastic-ILG diffusion calculation confirms rapprochement between theory and experiment, thereby benchmarking a new generation of gradient-based continuum models that conform closer to real-life fluctuating environments.
Seleson, Pablo; Du, Qiang; Parks, Michael L.
2016-08-16
The peridynamic theory of solid mechanics is a nonlocal reformulation of the classical continuum mechanics theory. At the continuum level, it has been demonstrated that classical (local) elasticity is a special case of peridynamics. Such a connection between these theories has not been extensively explored at the discrete level. This paper investigates the consistency between nearest-neighbor discretizations of linear elastic peridynamic models and finite difference discretizations of the Navier–Cauchy equation of classical elasticity. While nearest-neighbor discretizations in peridynamics have been numerically observed to present grid-dependent crack paths or spurious microcracks, this paper focuses on a different, analytical aspect of suchmore » discretizations. We demonstrate that, even in the absence of cracks, such discretizations may be problematic unless a proper selection of weights is used. Specifically, we demonstrate that using the standard meshfree approach in peridynamics, nearest-neighbor discretizations do not reduce, in general, to discretizations of corresponding classical models. We study nodal-based quadratures for the discretization of peridynamic models, and we derive quadrature weights that result in consistency between nearest-neighbor discretizations of peridynamic models and discretized classical models. The quadrature weights that lead to such consistency are, however, model-/discretization-dependent. We motivate the choice of those quadrature weights through a quadratic approximation of displacement fields. The stability of nearest-neighbor peridynamic schemes is demonstrated through a Fourier mode analysis. Finally, an approach based on a normalization of peridynamic constitutive constants at the discrete level is explored. This approach results in the desired consistency for one-dimensional models, but does not work in higher dimensions. The results of the work presented in this paper suggest that even though nearest-neighbor discretizations should be avoided in peridynamic simulations involving cracks, such discretizations are viable, for example for verification or validation purposes, in problems characterized by smooth deformations. Furthermore, we demonstrate that better quadrature rules in peridynamics can be obtained based on the functional form of solutions.« less
Z mode radiation in Jupiter's magnetosphere - The source of Jovian continuum radiation
NASA Technical Reports Server (NTRS)
Barbosa, D. D.; Kurth, W. S.; Moses, S. L.; Scarf, F. L.
1990-01-01
Observations of Z-mode waves in Jupiter's magnetosphere are analyzed. The assumption that the frequency of the intensity minimum, which isolates the signal, corresponds to the electron plasma frequency provides a consistent interpretation of all spectral features in terms of plasma resonances and cutoffs. It is shown that the continuum radiation is composed of both left-hand and right-hand polarized waves with distinct cutoffs observed at the plasma frequency and right-hand cutoff frequency, respectively. It is found that the Z-mode peak frequency lies close to the left-hand cutoff frequency, suggesting that the observed characteristics of the emission are the result of wave reflection at the cutoff layer. Another distinct emission occurring near the upper hybrid resonance frequency is detected simultaneously with the Z mode. The entire set of observations gives strong support to the linear mode theory of the conversion of upper hybrid waves to continuum radiation mediated by the Z mode via the Budden radio window mechanism.
Saturation of a toroidal Alfvén eigenmode due to enhanced damping of nonlinear sidebands
NASA Astrophysics Data System (ADS)
Todo, Y.; Berk, H. L.; Breizman, B. N.
2012-09-01
This paper examines nonlinear magneto-hydrodynamic effects on the energetic particle driven toroidal Alfvén eigenmode (TAE) for lower dissipation coefficients and with higher numerical resolution than in the previous simulations (Todo et al 2010 Nucl. Fusion 50 084016). The investigation is focused on a TAE mode with toroidal mode number n = 4. It is demonstrated that the mechanism of mode saturation involves generation of zonal (n = 0) and higher-n (n ⩾ 8) sidebands, and that the sidebands effectively increase the mode damping rate via continuum damping. The n = 0 sideband includes the zonal flow peaks at the TAE gap locations. It is also found that the n = 0 poloidal flow represents a balance between the nonlinear driving force from the n = 4 components and the equilibrium plasma response to the n = 0 fluctuations. The spatial profile of the n = 8 sideband peaks at the n = 8 Alfvén continuum, indicating enhanced dissipation due to continuum damping.
NASA Technical Reports Server (NTRS)
Israel, F. P.; Mahoney, M. J.; Howarth, N.
1992-01-01
We present measurements of the integrated radio continuum flux density of M33 at frequencies between 22 and 610 MHz and discuss the radio continuum spectrum of M33 between 22 MHz and 10 GHz. This spectrum has a turnover between 500 and 900 MHz, depending on the steepness of the high frequency radio spectrum of M33. Below 500 MHz the spectrum is relatively flat. We discuss possible mechanisms to explain this spectral shape and consider efficient free-free absorption of nonthermal emission by a cool (not greater than 1000 K) ionized gas to be a very likely possibility. The surface filling factor of both the nonthermal and the thermal material appears to be small (of order 0.001), which could be explained by magnetic field/density fluctuations in the M 33 interstellar medium. We briefly speculate on the possible presence of a nuclear radio source with a steep spectrum.
Dyess, Susan MacLeod; Opalinski, Andra; Saiswick, Kim; Fox, Valerie
2016-01-01
As health reform continues to advance, there is a need for nurse leaders to broaden their perspective related to possible nursing practice models and potential community partners in order to successfully address caring, accomplish the triple aim mandate, and achieve suitable metrics for maximum reimbursement. Intentional efforts must be made by nurse leaders to maximize caring and ensure that professional nurses are responding to the key drivers shifting health care delivery in the 21st century. Academic-practice collaboration (APC) and community-based participatory action research (CBPAR) align well. Together, they provide an ideal mechanism to pursue endeavors that extend evidence for caring services across the health care continuum. One APC/CBPAR model for community outreach that can maximize individual and population health outcomes is highlighted in this article. Furthermore, useful action steps are offered that could be taken by a nurse leader to develop and maintain any form of APC/CBPAR in order to manifest values through caring action across the health care continuum.
A Close Look At The Relationship Between WMAP (ILC) Small-Scale Features And Galactic HI Structure
NASA Astrophysics Data System (ADS)
Verschuur, Gerrit L.
2012-05-01
Galactic HI emission profiles surrounding two pairs of features located where large-scale filaments at very different velocities overlap were decomposed into Gaussian components. Families of components defined by similarity of center velocities and line widths were identified and found to be spatially related. Each of the two pairs of HI peaks straddle a high-frequency continuum source revealed in the WMAP survey data. It is suggested that where filamentary HI features are directly interacting high-frequency continuum radiation is being produced. The previously hypothesized mechanism for producing high-frequency continuum radiation involving free-free emission from electrons in the interstellar medium, in this case created where HI filaments interact to produce fractional ionizations of order 5 to 15%, fit the data very closely. The results confirm that WMAP data on small-scale structures believed to be cosmological in origin are in fact compromised by the presence of intervening galactic sources of interstellar electrons clumped on scales typical of interstellar HI structure.
Multiscale synchrony behaviors of paired financial time series by 3D multi-continuum percolation
NASA Astrophysics Data System (ADS)
Wang, M.; Wang, J.; Wang, B. T.
2018-02-01
Multiscale synchrony behaviors and nonlinear dynamics of paired financial time series are investigated, in an attempt to study the cross correlation relationships between two stock markets. A random stock price model is developed by a new system called three-dimensional (3D) multi-continuum percolation system, which is utilized to imitate the formation mechanism of price dynamics and explain the nonlinear behaviors found in financial time series. We assume that the price fluctuations are caused by the spread of investment information. The cluster of 3D multi-continuum percolation represents the cluster of investors who share the same investment attitude. In this paper, we focus on the paired return series, the paired volatility series, and the paired intrinsic mode functions which are decomposed by empirical mode decomposition. A new cross recurrence quantification analysis is put forward, combining with multiscale cross-sample entropy, to investigate the multiscale synchrony of these paired series from the proposed model. The corresponding research is also carried out for two China stock markets as comparison.
Small-scale plasticity critically needs a new mechanics description
NASA Astrophysics Data System (ADS)
Ngan, Alfonso H. W.
2013-06-01
Continuum constitutive laws describe the plastic deformation of materials as a smooth, continuously differentiable process. However, provided that the measurement is done with a fine enough resolution, the plastic deformation of real materials is often found to comprise discrete events usually nanometric in size. For bulk-sized specimens, such nanoscale events are minute compared with the specimen size, and so their associated strain changes are negligibly small, and this is why the continuum laws work well. However, when the specimen size is in the micrometer scale or smaller, the strain changes due to the discrete events could be significant, and the continuum description would be highly unsatisfactory. Yet, because of the advent of microtechnology and nanotechnolgy, small-sized materials will be increasingly used, and so there is a strong need to develop suitable replacement descriptions for plasticity of small materials. As the occurrence of the discrete plastic events is also strongly stochastic, their satisfactory description should also be one of a probabilistic, rather than deterministic, nature.
Model of fracture of metal melts and the strength of melts under dynamic conditions
NASA Astrophysics Data System (ADS)
Mayer, P. N.; Mayer, A. E.
2015-07-01
The development of a continuum model of deformation and fracture of melts is needed for the description of the behavior of metals in extreme states, in particular, under high-current electron and ultrashort laser irradiation. The model proposed includes the equations of mechanics of a two-phase continuum and the equations of the kinetics of phase transitions. The change (exchange) of the volumes of dispersed and carrier phases and of the number of dispersed particles is described, and the energy and mass exchange between the phases due to phase transitions is taken into account. Molecular dynamic (MD) calculations are carried out with the use of the LAMMPS program. The continuum model is verified by MD, computational, and experimental data. The strength of aluminum, copper, and nickel is determined at various temperatures and strain rates. It is shown that an increase in the strain rate leads to an increase in the strength of a liquid metal, while an increase in temperature leads to a decrease in its strength.
An analytically solvable three-body break-up model problem in hyperspherical coordinates
NASA Astrophysics Data System (ADS)
Ancarani, L. U.; Gasaneo, G.; Mitnik, D. M.
2012-10-01
An analytically solvable S-wave model for three particles break-up processes is presented. The scattering process is represented by a non-homogeneous Coulombic Schrödinger equation where the driven term is given by a Coulomb-like interaction multiplied by the product of a continuum wave function and a bound state in the particles coordinates. The closed form solution is derived in hyperspherical coordinates leading to an analytic expression for the associated scattering transition amplitude. The proposed scattering model contains most of the difficulties encountered in real three-body scattering problem, e.g., non-separability in the electrons' spherical coordinates and Coulombic asymptotic behavior. Since the coordinates' coupling is completely different, the model provides an alternative test to that given by the Temkin-Poet model. The knowledge of the analytic solution provides an interesting benchmark to test numerical methods dealing with the double continuum, in particular in the asymptotic regions. An hyperspherical Sturmian approach recently developed for three-body collisional problems is used to reproduce to high accuracy the analytical results. In addition to this, we generalized the model generating an approximate wave function possessing the correct radial asymptotic behavior corresponding to an S-wave three-body Coulomb problem. The model allows us to explore the typical structure of the solution of a three-body driven equation, to identify three regions (the driven, the Coulombic and the asymptotic), and to analyze how far one has to go to extract the transition amplitude.
Effects of Crimped Fiber Paths on Mixed Mode Delamination Behaviors in Woven Fabric Composites
2016-09-01
continuum finite - element models. Three variations of a plain-woven fabric architecture—each of which had different crimped fiber paths—were considered... Finite - Element Analysis Fracture Mechanics Fracture Toughness Mixed Modes Strain Energy Release Rate 16. SECURITY...polymer FB Fully balanced laminate FEA Finite - element analysis FTCM Fracture toughness conversion mechanism G Shear modulus GI, GII, GIII Mode
Modeling property evolution of container materials used in nuclear waste storage
NASA Astrophysics Data System (ADS)
Li, Dongsheng; Garmestani, Hamid; Khaleel, Moe; Sun, Xin
2010-03-01
Container materials under irradiation for a long time will raise high energy in the structure to generate critical structural damage. This study investigated what kind of mesoscale microstructure will be more resistant to radiation damage. Mechanical properties evolution during irradiation was modeled using statistical continuum mechanics. Preliminary results also showed how to achieve the desired microstructure with higher resistance to radiation.
Dhole, Sumit; Stern, Caitlin A; Servedio, Maria R
2018-04-01
The evolution of mating displays as indicators of male quality has been the subject of extensive theoretical and empirical research for over four decades. Research has also addressed the evolution of female mate choice favoring such indicators. Yet, much debate still exists about whether displays can evolve through the indirect benefits of female mate choice. Here, we use a population genetic model to investigate how the extent to which females can directly detect male quality influences the evolution of female choosiness and male displays. We use a continuum framework that incorporates indicator mechanisms that are traditionally modeled separately. Counter to intuition, we find that intermediate levels of direct detection of male quality can facilitate, rather than impede, the evolution of female choosiness and male displays in broad regions of this continuum. We examine how this evolution is driven by selective forces on genetic quality and on the display, and find that direct detection of male quality results in stronger indirect selection favoring female choosiness. Our results imply that displays maybe more likely to evolve when female choosiness has already evolved to discriminate perceptible forms of male quality. They also highlight the importance of considering general female choosiness, as well as preference, in studies of "good genes." © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
Continuum radiation from active galactic nuclei: A statistical study
NASA Technical Reports Server (NTRS)
Isobe, T.; Feigelson, E. D.; Singh, K. P.; Kembhavi, A.
1986-01-01
The physics of the continuum spectrum of active galactic nuclei (AGNs) was examined using a large data set and rigorous statistical methods. A data base was constructed for 469 objects which include radio selected quasars, optically selected quasars, X-ray selected AGNs, BL Lac objects, and optically unidentified compact radio sources. Each object has measurements of its radio, optical, X-ray core continuum luminosity, though many of them are upper limits. Since many radio sources have extended components, the core component were carefully selected out from the total radio luminosity. With survival analysis statistical methods, which can treat upper limits correctly, these data can yield better statistical results than those previously obtained. A variety of statistical tests are performed, such as the comparison of the luminosity functions in different subsamples, and linear regressions of luminosities in different bands. Interpretation of the results leads to the following tentative conclusions: the main emission mechanism of optically selected quasars and X-ray selected AGNs is thermal, while that of BL Lac objects is synchrotron; radio selected quasars may have two different emission mechanisms in the X-ray band; BL Lac objects appear to be special cases of the radio selected quasars; some compact radio sources show the possibility of synchrotron self-Compton (SSC) in the optical band; and the spectral index between the optical and the X-ray bands depends on the optical luminosity.
NASA Technical Reports Server (NTRS)
Adler, David S.; Lo, K. Y.; Allen, Ronald J.
1991-01-01
The relationship between the velocity-integrated CO emission and the nonthermal radio continuum brightness in the disks of normal spiral galaxies is examined on a variety of length scales. On a global scale, the total CO intensity correlates strongly with the total radio continuum flux density for a sample of 31 galaxies. On scales of about 2 kpc or more in the disk of individual galaxies, it is found that the ratio I(CO)/T(20) remains fairly constant over the entire disk as well as from galaxy to galaxy. For the eight spirals in the sample, the disk-averaged values of I(CO)/T(20) range from 0.6-2.4, with the average over all eight galaxies being 1.3 +/- 0.6. It is concluded that what these various length scales actually trace are differences in the primary heating mechanism of the gas in the beam. The observed relationship between CO and nonthermal radio continuum emission can be explained by assuming that molecular gas in galactic disks is heated primarily by cosmic rays. The observed relationship is used to show that the brightness of synchrotron emission is proportional to n(cr) exp 0.4 - 0.9 in galactic disks.
David, Aaron S; Thapa-Magar, Khum B; Afkhami, Michelle E
2018-03-01
A key challenge to understanding microbiomes and their role in ecological processes is contextualizing their effects on host organisms, particularly when faced with environmental stress. One influential theory, the Stress Gradient Hypothesis, might predict that the frequency of positive interactions increases with stressful conditions such that microbial taxa would mitigate harmful effects on host performance. Yet, equally plausible is that microbial taxa could exacerbate these effects. Here, we introduce the Mitigation-Exacerbation Continuum as a novel framework to conceptualize microbial mediation of stress. We (1) use this continuum to quantify microbial mediation of stress for six plant species and (2) test the association between these continuum values and natural species' abundance. We factorially manipulated a common stress (allelopathy) and the presence of soil microbes to quantify microbial effects in benign and stressed environments for two critical early life-history metrics, seed germination and seedling biomass. Although we found evidence of both mitigation and exacerbation among the six species, exacerbation was more common. Across species, the degree of microbial-mediated effects on germination explained >80% of the variation of natural field abundances. Our results suggest a critical role of soil microbes in mediating plant stress responses, and a potential microbial mechanism underlying species abundance. © 2018 by the Ecological Society of America.
Micromechanical modelling of polyethylene
NASA Astrophysics Data System (ADS)
Alvarado Contreras, Jose Andres
2008-10-01
The increasing use of polyethylene in diverse applications motivates the need for understanding how its molecular properties relate to the overall behaviour of the material. Although microstructure and mechanical properties of polymers have been the subject of several studies, the irreversible microstructural rearrangements occurring at large deformations are not completely understood. The purpose of this thesis is to describe how the concepts of Continuum Damage Mechanics can be applied to modelling of polyethylene materials under different loading conditions. The first part of the thesis consists of the theoretical formulation and numerical implementation of a three-dimensional micromechanical model for crystalline polyethylene. Based on the theory of shear slip on crystallographic planes, the proposed model is expressed in the framework of viscoplasticity coupled with degradation at large deformations. Earlier models aid in the interpretation of the mechanical behaviour of crystalline polyethylene under different loading conditions; however, they cannot predict the microstructural damage caused by deformation. The model, originally due to Parks and Ahzi (199o), was further developed in the light of the concept of Continuum Damage Mechanics to consider the original microstructure, the particular irreversible rearrangements, and the deformation mechanisms. Damage mechanics has been a matter of intensive research by many authors, yet it has not been introduced to the micromodelling of semicrystalline polymeric materials such as polyethylene. Regarding the material representation, the microstructure is simplified as an aggregate of randomly oriented and perfectly bonded crystals. To simulate large deformations, the new constitutive model attempts to take into account existence of intracrystalline microcracks. The second part of the work presents the theoretical formulation and numerical implementation of a three-dimensional constitutive model for the mechanical behaviour of semicrystalline polyethylene. The model proposed herein attempts to describe the deformation and degradation process in semicrystalline polyethylene following the approach of damage mechanics. Structural degradation, an important phenomenon at large deformations, has not received sufficient attention in the literature. The modifications to the constitutive equations consist essentially of introducing the concept of Continuum Damage Mechanics to describe the rupture of the intermolecular (van der Waals) bonds that hold crystals as coherent structures. In order to model the mechanical behaviour, the material morphology is simplified as a collection of inclusions comprising the crystalline and amorphous phases with their characteristic average volume fractions. In the spatial arrangement, each inclusion consists of crystalline material lying in a thin lamella attached to an amorphous layer. To consider microstructural damage, two different approaches are analyzed. The first approach assumes damage occurs only in the crystalline phase, i.e., degradation of the amorphous phase is ignored. The second approach considers the effect of damage on the mechanical behaviour of both the amorphous and crystalline phases. To illustrate the proposed constitutive formulations, the models were used to predict the responses of crystalline and semicrystalline polyethylene under uniaxial tension and simple shear. The numerical simulations were compared with experimental data previously obtained by Bartczak et al. (1994), G'Sell and Jonas (1981), G'Sell et al. (1983), Hillmansen et al. (2000), and Li et al. (2001). Our model's predictions show a consistently good agreement with the experimental results and a significant improvement with respect to the ones obtained by Parks and Ahzi (1990), Schoenfeld et al. (1995), Yang and Chen (2001), Lee et al. (i993b), Lee et al. (1993a), and Nikolov et al. (2006). The newly proposed formulations demonstrate that these types of constitutive models based on Continuum Damage Mechanics are appropriate for predicting large deformations and failure in polyethylene materials.
On the mechanics of elastic lines in thin shells
NASA Astrophysics Data System (ADS)
Benet, Eduard; Vernerey, Franck
The deformation of soft shells in nature and engineering is often conditioned by the presence of lines whose mechanical properties are different from the shell. For instance, the deformation of tree leaves is conditioned by the presence of harder stems, and cell mitosis is driven by a stiffening line along its membrane. From an experimental standpoint, many groups have taken advantage of this feature to develop self-actuated shells with prescribed deformations. Examples include the polymerization of gels along certain lines, or the inclusion of stiffer lines via 3D printing. However, there is not yet a general continuum theory that accounts for this type of discontinuity within the membrane. Hence, we extend the general shell theory to account for the inclusion of a line that potentially induces jumps in stresses, couple stresses and moments, across its thickness. This is achieved via coupling the rod and the membrane deformations, and ensuring continuity of displacements. The model is then applied to three important problems: a constriction disc inside a shell of revolution, the induced twisting of a shell via the torsion of an embedded line, and the effect of an helicoidal line on the uni-axial deformation of a cylindrical shell. National Science Foundation CAREER award 1350090.
Yu, Xue-Fang; Yamazaki, Shohei; Taketsugu, Tetsuya
2017-08-30
Solvent effects on the excited-state double proton transfer (ESDPT) mechanism in the 7-azaindole (7AI) dimer were investigated using the time-dependent density functional theory (TDDFT) method. Excited-state potential energy profiles along the reaction paths in a locally excited (LE) state and a charge transfer (CT) state were calculated using the polarizable continuum model (PCM) to include the solvent effect. A series of non-polar and polar solvents with different dielectric constants were used to examine the polarity effect on the ESDPT mechanism. The present results suggest that in a non-polar solvent and a polar solvent with a small dielectric constant, ESDPT follows a concerted mechanism, similar to the case in the gas phase. In a polar solvent with a relatively large dielectric constant, however, ESDPT is likely to follow a stepwise mechanism via a stable zwitterionic intermediate in the LE state on the adiabatic potential energy surface, although inclusion of zero-point vibrational energy (ZPE) corrections again suggests the concerted mechanism. In the meantime, the stepwise reaction path involving the CT state with neutral intermediates is also examined, and is found to be less competitive than the concerted or stepwise path in the LE state in both non-polar and polar solvents. The present study provides a new insight into the experimental controversy of the ESDPT mechanism of the 7AI dimer in a solution.
NASA Astrophysics Data System (ADS)
D'Adda, Alessandro; Kawamoto, Noboru; Saito, Jun
2018-03-01
We propose a lattice field theory formulation which overcomes some fundamental diffculties in realizing exact supersymmetry on the lattice. The Leibniz rule for the difference operator can be recovered by defining a new product on the lattice, the star product, and the chiral fermion species doublers degrees of freedom can be avoided consistently. This framework is general enough to formulate non-supersymmetric lattice field theory without chiral fermion problem. This lattice formulation has a nonlocal nature and is essentially equivalent to the corresponding continuum theory. We can show that the locality of the star product is recovered exponentially in the continuum limit. Possible regularization procedures are proposed.The associativity of the product and the lattice translational invariance of the formulation will be discussed.
Coulomb bound states of strongly interacting photons
Maghrebi, M. F.; Gullans, Michael J.; Bienias, P.; ...
2015-09-16
We show that two photons coupled to Rydberg states via electromagnetically induced transparency (EIT) can interact via an effective Coulomb potential. The interaction then gives rise to a continuum of two-body bound states. Within the continuum, metastable bound states are distinguished in analogy with quasi-bound states tunneling through a potential barrier. We find multiple branches of metastable bound states whose energy spectrum is governed by the Coulomb problem, thus obtaining a photonic analogue of the hydrogen atom. These states propagate with a negative group velocity in the medium, which allows for a simple preparation and detection scheme, before they slowlymore » decay to pairs of bound Rydberg atoms. As a result, we verify the metastability and backward propagation of these Coulomb bound states with exact numerical simulations.« less
Extracontextuality and extravalence in quantum mechanics.
Auffèves, Alexia; Grangier, Philippe
2018-07-13
We develop the point of view where quantum mechanics results from the interplay between the quantized number of 'modalities' accessible to a quantum system, and the continuum of 'contexts' that are required to define these modalities. We point out the specific roles of 'extracontextuality' and 'extravalence' of modalities, and relate them to the Kochen-Specker and Gleason theorems.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).
A Spectroscopic Search for Leaking Lyman Continuum at Zeta Approximately 0.7
NASA Technical Reports Server (NTRS)
Bridge, Carrie R.; Teplitz, Harry I.; Siana, Brian; Scarlata, Claudia; Rudie, Gwen C.; Colbert, James; Ferguson, Henry C.; Brown, Thomas M.; Conselice, Christopher J.; Armus, Lee;
2010-01-01
We present the results of rest-frame, UV slitless spectroscopic observations of a sample of 32 z approx. 0.7 Lyman Break Galaxy (LBG) analogs in the COSMOS field. The spectroscopic search was performed with the Solar Blind Channel (SBC) on HST. While we find no direct detections of the Lyman Continuum we achieve individual limits (3sigma) of the observed non-ionizing UV to Lyman continuum flux density ratios, f(sub nu)(1500A)/f(sub nu)(830A) of 20 to 204 (median of 73.5) and 378.7 for the stack. Assuming an intrinsic Lyman Break of 3.4 and an optical depth of Lyman continuum photons along the line of sight to the galaxy of 85% we report an upper limit for the relative escape fraction in individual galaxies of 0.02 - 0.19 and a stacked 3sigma upper limit of 0.01. We find no indication of a relative escape fraction near unity as seen in some LBGs at z approx. 3. Our UV spectra achieve the deepest limits to date at any redshift on the escape fraction in individual sources. The contrast between these z approx. 0.7 low escape fraction LBG analogs with z approx. 3 LBGs suggests that either the processes conducive to high f(sub esc) are not being selected for in the z less than or approx.1 samples or the average escape fraction is decreasing from z approx. 3 to z approx. 1. We discuss possible mechanisms which could affect the escape of Lyman continuum photons
Effective Schoolwide Screening to Identify Students at Risk for Social and Behavioral Problems
ERIC Educational Resources Information Center
Walker, Bridget A.
2010-01-01
Many schools are developing a continuum of services and supports for students who may be struggling in school, whether through a response to intervention (RTI) model or a schoolwide positive behavior supports (SWPBS) model. Study results suggest that schools will not be effective if they focus solely on identifying and responding to student…
27-Year R&D 100 Awards Winning Streak - Continuum Magazine | NREL
the real-time quantum efficiency system. Photo by Dennis Schroeder, NREL 27-Year R&D 100 Awards Mehta, and Peter Rupnowski at the controls of the Optical Cavity Furnace. Photo by Dennis Schroeder signals in solar cells used with Innovalight's Silicon Ink. Photo by Dennis Schroeder, NREL Problem: For
ERIC Educational Resources Information Center
Evans, P. L. C.; Hogg, J. H.
1975-01-01
This study relates excitatory and inhibitory personality variables of a heterogeneous group of severely retarded children to performance on a discrete trial, successive go-no-go intradimensional discrimination learning problem, which was followed by stimulus generalization tests on a color hue continuum and extinction trials. (GO)
Potential Issues for Language Planning in Scotland. Language Planning Newsletter, Vol. 3, No. 1.
ERIC Educational Resources Information Center
Wood, Richard E.
The national re-emergence of Scotland is accompanied by the desire for cultural and linguistic autonomy and identity. Issues at hand include language standardization, bilingual education, the language problems of immigrants, the role of Gaelic as compared to the continuum of linguistic varieties that go from Standard English to Scots, the adoption…
ERIC Educational Resources Information Center
Zunz, Sharyn J.; Ferguson, Nancy L.; Senter, Meredith
2005-01-01
School based efforts need to embrace a continuum of care model that moves beyond solely primary prevention to address the needs of students who are identified as substance dependent. The extent of this problem and barriers to program implementation are presented. Efforts to offer services through Student/Assistance Programs, School-based…
Bellman Continuum (3rd) International Workshop (13-14 June 1988)
1988-06-01
Modelling Uncertain Problem ................. 53 David Bensoussan ,---,>Asymptotic Linearization of Uncertain Multivariable Systems by Sliding Modes...K. Ghosh .-. Robust Model Tracking for a Class of Singularly Perturbed Nonlinear Systems via Composite Control ....... 93 F. Garofalo and L. Glielmo...MODELISATION ET COMMANDE EN ECONOMIE MODELS AND CONTROL POLICIES IN ECONOMICS Qualitative Differential Games : A Viability Approach ............. 117
Neurobehavioral impact of menopause on mood.
Alexander, Jeanne Leventhal; Dennerstein, Lorraine; Woods, Nancy Fugate; Kotz, Krista; Halbreich, Uriel; Burt, Vivien; Richardson, Gregg
2007-11-01
The menopausal transition is a time of risk for mood change ranging from distress to minor depression to major depressive disorder in a vulnerable subpopulation of women in the menopausal transition. Somatic symptoms have been implicated as a risk factor for mood problems, although these mood problems have also been shown to occur independently of somatic symptoms. Mood problems have been found to increase in those with a history of mood continuum disorders, but can also occur de novo as a consequence of the transition. Stress has been implicated in the etiology and the exacerbation of these mood problems. Estrogen and add-back testosterone have both been shown to positively affect mood and well-being. In most cases, the period of vulnerability to mood problems subsides when the woman's hormonal levels stabilize and she enters full menopause.
Lasing action from photonic bound states in continuum
NASA Astrophysics Data System (ADS)
Kodigala, Ashok; Lepetit, Thomas; Gu, Qing; Bahari, Babak; Fainman, Yeshaiahu; Kanté, Boubacar
2017-01-01
In 1929, only three years after the advent of quantum mechanics, von Neumann and Wigner showed that Schrödinger’s equation can have bound states above the continuum threshold. These peculiar states, called bound states in the continuum (BICs), manifest themselves as resonances that do not decay. For several decades afterwards the idea lay dormant, regarded primarily as a mathematical curiosity. In 1977, Herrick and Stillinger revived interest in BICs when they suggested that BICs could be observed in semiconductor superlattices. BICs arise naturally from Feshbach’s quantum mechanical theory of resonances, as explained by Friedrich and Wintgen, and are thus more physical than initially realized. Recently, it was realized that BICs are intrinsically a wave phenomenon and are thus not restricted to the realm of quantum mechanics. They have since been shown to occur in many different fields of wave physics including acoustics, microwaves and nanophotonics. However, experimental observations of BICs have been limited to passive systems and the realization of BIC lasers has remained elusive. Here we report, at room temperature, lasing action from an optically pumped BIC cavity. Our results show that the lasing wavelength of the fabricated BIC cavities, each made of an array of cylindrical nanoresonators suspended in air, scales with the radii of the nanoresonators according to the theoretical prediction for the BIC mode. Moreover, lasing action from the designed BIC cavity persists even after scaling down the array to as few as 8-by-8 nanoresonators. BIC lasers open up new avenues in the study of light-matter interaction because they are intrinsically connected to topological charges and represent natural vector beam sources (that is, there are several possible beam shapes), which are highly sought after in the fields of optical trapping, biological sensing and quantum information.
NASA Astrophysics Data System (ADS)
Azadegan, B.
2013-03-01
The presented Mathematica code is an efficient tool for simulation of planar channeling radiation spectra of relativistic electrons channeled along major crystallographic planes of a diamond-structure single crystal. The program is based on the quantum theory of channeling radiation which has been successfully applied to study planar channeling at electron energies between 10 and 100 MeV. Continuum potentials for different planes of diamond, silicon and germanium single crystals are calculated using the Doyle-Turner approximation to the atomic scattering factor and taking thermal vibrations of the crystal atoms into account. Numerical methods are applied to solve the one-dimensional Schrödinger equation. The code is designed to calculate the electron wave functions, transverse electron states in the planar continuum potential, transition energies, line widths of channeling radiation and depth dependencies of the population of quantum states. Finally the spectral distribution of spontaneously emitted channeling radiation is obtained. The simulation of radiation spectra considerably facilitates the interpretation of experimental data. Catalog identifier: AEOH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 446 No. of bytes in distributed program, including test data, etc.: 209805 Distribution format: tar.gz Programming language: Mathematica. Computer: Platforms on which Mathematica is available. Operating system: Operating systems on which Mathematica is available. RAM: 1 MB Classification: 7.10. Nature of problem: Planar channeling radiation is emitted by relativistic charged particles during traversing a single crystal in direction parallel to a crystallographic plane. Channeling is modeled as the motion of charged particles in a continuous planar potential which is formed by the spatially and thermally averaged action of the individual electrostatic potentials of the crystal atoms of the corresponding plane. Classically, the motion of channeled particles through the crystal resembles transverse oscillations being the source of radiation emission. For electrons of energy less than 100 MeV considered here, planar channeling has to be treated quantum mechanically by a one-dimensional Schrödinger equation for the transverse motion. Hence, this motion of the channeled electrons is restricted to a number of discrete (bound) channeling states in the planar continuum potential, and the emission of channeling radiation is caused by spontaneous electron transitions between these eigenstates. Due to relativistic and Doppler effects, the energy of the emitted photons directed into a narrow forward cone is typically shifted up by about three to five orders of magnitude. Consequently, the observed energy spectrum of channeling radiation is characterized by a number of radiation lines in the energy domain of hard X-rays. Channeling radiation may, therefore, be applied as an intense, tunable, quasi-monochromatic X-ray source. Solution method: The problem consists in finding the electron wave function for the planar continuum potential. Both the wave functions and corresponding energies of channeling states solve the Schrödinger equation of transverse electron motion. In the framework of the so-called many-beam formalism, solving the Schrödinger equation reduces to a eigenvector-eigenvalue problem of a Hermitian matrix. For that the program employs the mathematical tools allocated in the commercial computation software Mathematica. The electric field of the atomic planes in the crystal forces dipole oscillations of the channeled charged particles. In the quantum mechanical approach, the dipole approximation is also valid for spontaneous transitions between bound states. The transition strength for dedicated states depends on the magnitude of the corresponding dipole matrix element. The photon energy correlates with the particle energy, and the spectral width of radiation lines is a function of the life times of the channeling states. Running time: The program has been tested on a PC AMD Athlon X2 245 processor 2.9 GHz with 2 GB RAM. Depending on electron energy and crystal thickness, the running time of the program amounts to 5-10 min.
An Ellipsoidal Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 1
NASA Technical Reports Server (NTRS)
Shivarama, Ravishankar; Fahrenthold, Eric P.
2004-01-01
A number of coupled particle-element and hybrid particle-element methods have been developed for the simulation of hypervelocity impact problems, to avoid certain disadvantages associated with the use of pure continuum based or pure particle based methods. To date these methods have employed spherical particles. In recent work a hybrid formulation has been extended to the ellipsoidal particle case. A model formulation approach based on Lagrange's equations, with particles entropies serving as generalized coordinates, avoids the angular momentum conservation problems which have been reported with ellipsoidal smooth particle hydrodynamics models.
NASA Technical Reports Server (NTRS)
Yamakov, Vesselin I.; Saether, Erik; Phillips, Dawn R.; Glaessgen, Edward H.
2006-01-01
A traction-displacement relationship that may be embedded into a cohesive zone model for microscale problems of intergranular fracture is extracted from atomistic molecular-dynamics simulations. A molecular-dynamics model for crack propagation under steady-state conditions is developed to analyze intergranular fracture along a flat 99 [1 1 0] symmetric tilt grain boundary in aluminum. Under hydrostatic tensile load, the simulation reveals asymmetric crack propagation in the two opposite directions along the grain boundary. In one direction, the crack propagates in a brittle manner by cleavage with very little or no dislocation emission, and in the other direction, the propagation is ductile through the mechanism of deformation twinning. This behavior is consistent with the Rice criterion for cleavage vs. dislocation blunting transition at the crack tip. The preference for twinning to dislocation slip is in agreement with the predictions of the Tadmor and Hai criterion. A comparison with finite element calculations shows that while the stress field around the brittle crack tip follows the expected elastic solution for the given boundary conditions of the model, the stress field around the twinning crack tip has a strong plastic contribution. Through the definition of a Cohesive-Zone-Volume-Element an atomistic analog to a continuum cohesive zone model element - the results from the molecular-dynamics simulation are recast to obtain an average continuum traction-displacement relationship to represent cohesive zone interaction along a characteristic length of the grain boundary interface for the cases of ductile and brittle decohesion. Keywords: Crack-tip plasticity; Cohesive zone model; Grain boundary decohesion; Intergranular fracture; Molecular-dynamics simulation
Fernandez, J W; Hunter, P J
2005-08-01
A 3D anatomically based patient-specific finite element (FE) model of patello-femoral (PF) articulation is presented to analyse the main features of patella biomechanics, namely, patella tracking (kinematics), quadriceps extensor forces, surface contact and internal patella stresses. The generic geometries are a subset from the model database of the International Union of Physiological Sciences (IUPS) (http://www.physiome.org.nz) Physiome Project with soft tissue derived from the widely used visible human dataset, and the bones digitised from an anatomically accurate physical model with muscle attachment information. The models are customised to patient magnetic resonance images using a variant of free-form deformation, called 'host-mesh' fitting. The continuum was solved using the governing equation of finite elasticity, with the multibody problem coupled through contact mechanics. Additional constraints such as tissue incompressibility are also imposed. Passive material properties are taken from the literature and implemented for deformable tissue with a non-linear micro-structurally based constitutive law. Bone and cartilage are implemented using a 'St-Venant Kirchoff' model suitable for rigid body rotations. The surface fibre directions have been estimated from anatomy images of cadaver muscle dissections and active muscle contraction was based on a steady-state calcium-tension relation. The 3D continuum model of muscle, tendon and bone is compared with experimental results from the literature, and surgical simulations performed to illustrate its clinical assessment capabilities (a Maquet procedure for reducing patella stresses and a vastus lateralis release for a bipartite patella). Finally, the model limitations, issues and future improvements are discussed.
A continuum model for damage evolution in laminated composites
NASA Technical Reports Server (NTRS)
Lo, D. C.; Allen, D. H.; Harris, C. E.
1991-01-01
The accumulation of matrix cracking is examined using continuum damage mechanics lamination theory. A phenomenologically based damage evolutionary relationship is proposed for matrix cracking in continuous fiber reinforced laminated composites. The use of material dependent properties and damage dependent laminate averaged ply stresses in this evolutionary relationship permits its application independently of the laminate stacking sequence. Several load histories are applied to crossply laminates using this model, and the results are compared to published experimental data. The stress redistribution among the plies during the accumulation of matrix damage is also examined. It is concluded that characteristics of the stress redistribution process could assist in the analysis of the progressive failure process in laminated composites.
On Thermodynamic Constraints upon Turbulence Modeling
NASA Astrophysics Data System (ADS)
Huang, Yu-Ning; Durst, Franz
2000-11-01
Turbulence is a continuum phenomenon which can be described within the framework of continuum mechanics. Such foundation has the potential for improving turbulence modeling, making it less heuristic and more rational. In the present research, we consider the compatibility of turbulence modeling with the second law of thermodynamics. We show that the Clausius-Planck inequality, as an expression of the principle of entropy growth, places a thermodynamic restriction upon the turbulence modeling of an incompressible Navier-Stokes fluid in an isothermal temperature field. This thermodynamic restriction is given in the form of an inequality, which ensures non-negativeness of the mean internal dissipation. As an illustration, we show the thermodynamic constraints on the modeling of a few typical homogeneous turbulent flows.
2013-01-01
fabricated today are based on polymer matrix composites containing Kevlarw KM2 reinforcements , the present work will deal with generic PPTA fibers . In...Multi-length scale enriched continuum-level material model for Kevlarw- fiber reinforced polymer-matrix composites”, Journal of Materials...mechanical transverse behavior of p-phenylene terephthalamide (PPTA) fibers Purpose – A series of all-atom molecular-level computational analyses is