Breakdown and Limit of Continuum Diffusion Velocity for Binary Gas Mixtures from Direct Simulation
NASA Astrophysics Data System (ADS)
Martin, Robert Scott; Najmabadi, Farrokh
2011-05-01
This work investigates the breakdown of the continuum relations for diffusion velocity in inert binary gas mixtures. Values of the relative diffusion velocities for components of a gas mixture may be calculated using of Chapman-Enskog theory and occur not only due to concentration gradients, but also pressure and temperature gradients in the flow as described by Hirschfelder. Because Chapman-Enskog theory employs a linear perturbation around equilibrium, it is expected to break down when the velocity distribution deviates significantly from equilibrium. This breakdown of the overall flow has long been an area of interest in rarefied gas dynamics. By comparing the continuum values to results from Bird's DS2V Monte Carlo code, we propose a new limit on the continuum approach specific to binary gases. To remove the confounding influence of an inconsistent molecular model, we also present the application of the variable hard sphere (VSS) model used in DS2V to the continuum diffusion velocity calculation. Fitting sample asymptotic curves to the breakdown, a limit, Vmax, that is a fraction of an analytically derived limit resulting from the kinetic temperature of the mixture is proposed. With an expected deviation of only 2% between the physical values and continuum calculations within ±Vmax/4, we suggest this as a conservative estimate on the range of applicability for the continuum theory.
A continuum theory for multicomponent chromatography modeling.
Pfister, David; Morbidelli, Massimo; Nicoud, Roger-Marc
2016-05-13
A continuum theory is proposed for modeling multicomponent chromatographic systems under linear conditions. The model is based on the description of complex mixtures, possibly involving tens or hundreds of solutes, by a continuum. The present approach is shown to be very efficient when dealing with a large number of similar components presenting close elution behaviors and whose individual analytical characterization is impossible. Moreover, approximating complex mixtures by continuous distributions of solutes reduces the required number of model parameters to the few ones specific to the characterization of the selected continuous distributions. Therefore, in the frame of the continuum theory, the simulation of large multicomponent systems gets simplified and the computational effectiveness of the chromatographic model is thus dramatically improved. Copyright © 2016 Elsevier B.V. All rights reserved.
A numerical study of shock wave reflections on low density foam
NASA Astrophysics Data System (ADS)
Baer, M. R.
1992-06-01
A continuum mixture theory is used to describe shock wave reflections on low density open-cell polyurethane foam. Numerical simulations are compared to the shock tube experiments of Skews (1991) and detailed wave fields are shown of a shock wave interacting with a layer of foam adjacent to a rigid wall boundary. These comparisons demonstrate that a continuum mixture theory describes well the shock interactions with low density foam.
NASA Astrophysics Data System (ADS)
Motevaselian, Mohammad Hossein; Mashayak, Sikandar Y.; Aluru, Narayana R.
2015-11-01
We present an empirical potential-based quasi-continuum theory (EQT) that seamlessly integrates the interatomic potentials into a continuum framework such as the Nernst-Planck equation. EQT is a simple and fast approach, which provides accurate predictions of potential of mean force (PMF) and density distribution of confined fluids at multiple length-scales, ranging from few Angstroms to macro meters. The EQT potentials can be used to construct the excess free energy functional in the classical density functional theory (cDFT). The combination of EQT and cDFT (EQT-cDFT), allows one to predict the thermodynamic properties of confined fluids. Recently, the EQT-cDFT framework was developed for single component LJ fluids confined in slit-like graphene channels. In this work, we extend the framework to confined LJ fluid mixtures and demonstrate it by simulating a mixture of methane and hydrogen molecules inside slit-like graphene channels. We show that the EQT-cDFT predictions for the structure of the confined fluid mixture compare well with the MD simulations. In addition, our results show that graphene nanochannels exhibit a selective adsorption of methane over hydrogen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motevaselian, M. H.; Mashayak, S. Y.; Aluru, N. R., E-mail: aluru@illinois.edu
Empirical potential-based quasi-continuum theory (EQT) provides a route to incorporate atomistic detail into continuum framework such as the Nernst-Planck equation. EQT can also be used to construct a grand potential functional for classical density functional theory (cDFT). The combination of EQT and cDFT provides a simple and fast approach to predict the inhomogeneous density, potential profiles, and thermodynamic properties of confined fluids. We extend the EQT-cDFT approach to confined fluid mixtures and demonstrate it by simulating a mixture of methane and hydrogen inside slit-like channels of graphene. We show that the EQT-cDFT predictions for the structure of the confined fluidmore » mixture compare well with the molecular dynamics simulation results. In addition, our results show that graphene slit nanopores exhibit a selective adsorption of methane over hydrogen.« less
An EQT-based cDFT approach for thermodynamic properties of confined fluid mixtures
NASA Astrophysics Data System (ADS)
Motevaselian, M. H.; Aluru, N. R.
2017-04-01
We present an empirical potential-based quasi-continuum theory (EQT) to predict the structure and thermodynamic properties of confined fluid mixtures. The central idea in the EQT is to construct potential energies that integrate important atomistic details into a continuum-based model such as the Nernst-Planck equation. The EQT potentials can be also used to construct the excess free energy functional, which is required for the grand potential in the classical density functional theory (cDFT). In this work, we use the EQT-based grand potential to predict various thermodynamic properties of a confined binary mixture of hydrogen and methane molecules inside graphene slit channels of different widths. We show that the EQT-cDFT predictions for the structure, surface tension, solvation force, and local pressure tensor profiles are in good agreement with the molecular dynamics simulations. Moreover, we study the effect of different bulk compositions and channel widths on the thermodynamic properties. Our results reveal that the composition of methane in the mixture can significantly affect the ordering of molecules and thermodynamic properties under confinement. In addition, we find that graphene is selective to methane molecules.
The effect of water on thermal stresses in polymer composites
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.
1994-01-01
The fundamentals of the thermodynamic theory of mixtures and continuum thermochemistry are reviewed for a mixture of condensed water and polymer. A specific mixture which is mechanically elastic with temperature and water concentration gradients present is considered. An expression for the partial pressure of water in the mixture is obtained based on certain assumptions regarding the thermodynamic state of the water in the mixture. Along with a simple diffusion equation, this partial pressure expression may be used to simulate the thermostructural behavior of polymer composite materials due to water in the free volumes of the polymer. These equations are applied to a specific polymer composite material during isothermal heating conditions. The thermal stresses obtained by the application of the theory are compared to measured results to verify the accuracy of the approach.
Theory of the water vapor continuum and validations
NASA Technical Reports Server (NTRS)
Tipping, Richard H.; Ma, Q.
1995-01-01
A far-wing line shape theory based on the binary collision and quasistatic approximations that is applicable for both the low- and high-frequency wings of the vibration-rotational bands has been developed. This theory has been applied in order to calculate the frequency and temperature dependence of the continuous absorption coefficient for frequencies up to 10,000 cm(exp -1) for pure H2O and for H2O-N2 mixtures. The calculations were made assuming an interaction potential consisting of an isotropic Lennard-Jones part with two parameters that are consistent with values obtained from other data, and the leading long-range anisotropic part, together with the measured line strengths and transition frequencies. The results, obtained without the introduction of adjustable parameters, compare well with the existing laboratory data, both in magnitude and in temperature dependence. This leads us to the conclusion that the water continuum can be explained in terms of far-wing absorption. Current work in progress to extend the theory and to validate the theoretically calculated continuum will be discussed briefly.
NASA Technical Reports Server (NTRS)
Pai, S. I.
1973-01-01
The fundamental equations of a mixture of a gas and pseudofluid of small spherical solid particles are derived from the Boltzmann equation of two-fluid theory. The distribution function of the gas molecules is defined in the same manner as in the ordinary kinetic theory of gases, but the distribution function for the solid particles is different from that of the gas molecules, because it is necessary to take into account the different size and physical properties of solid particles. In the proposed simple kinetic theory, two additional parameters are introduced: one is the radius of the spheres and the other is the instantaneous temperature of the solid particles in the distribution of the solid particles. The Boltzmann equation for each species of the mixture is formally written, and the transfer equations of these Boltzmann equations are derived and compared to the well-known fundamental equations of the mixture of a gas and small solid particles from continuum theory. The equations obtained reveal some insight into various terms in the fundamental equations. For instance, the partial pressure of the pseudofluid of solid particles is not negligible if the volume fraction of solid particles is not negligible as in the case of lunar ash flow.
The direct simulation of acoustics on Earth, Mars, and Titan.
Hanford, Amanda D; Long, Lyle N
2009-02-01
With the recent success of the Huygens lander on Titan, a moon of Saturn, there has been renewed interest in further exploring the acoustic environments of the other planets in the solar system. The direct simulation Monte Carlo (DSMC) method is used here for modeling sound propagation in the atmospheres of Earth, Mars, and Titan at a variety of altitudes above the surface. DSMC is a particle method that describes gas dynamics through direct physical modeling of particle motions and collisions. The validity of DSMC for the entire range of Knudsen numbers (Kn), where Kn is defined as the mean free path divided by the wavelength, allows for the exploration of sound propagation in planetary environments for all values of Kn. DSMC results at a variety of altitudes on Earth, Mars, and Titan including the details of nonlinearity, absorption, dispersion, and molecular relaxation in gas mixtures are given for a wide range of Kn showing agreement with various continuum theories at low Kn and deviation from continuum theory at high Kn. Despite large computation time and memory requirements, DSMC is the method best suited to study high altitude effects or where continuum theory is not valid.
NASA Astrophysics Data System (ADS)
Challis, R. E.; Tebbutt, J. S.; Holmes, A. K.
1998-12-01
The aim of this paper is to present a unified approach to the calculation of the complex wavenumber for a randomly distributed ensemble of homogeneous isotropic spheres suspended in a homogeneous isotropic continuum. Three classical formulations of the diffraction problem for a compression wave incident on a single particle are reviewed; the first is for liquid particles in a liquid continuum (Epstein and Carhart), the second for solid or liquid particles in a liquid continuum (Allegra and Hawley), and the third for solid particles in a solid continuum (Ying and Truell). Equivalences between these formulations are demonstrated and it is shown that the Allegra and Hawley formulation can be adapted to provide a basis for calculation in all three regimes. The complex wavenumber that results from an ensemble of such scatterers is treated using the formulations of Foldy (simple forward scattering), Waterman and Truell, and Lloyd and Berry (multiple scattering). The analysis is extended to provide an approximation for the case of a distribution of particle sizes in the mixture. A number of experimental measurements using a broadband spectrometric technique (reported elsewhere) to obtain the attenuation coefficient and phase velocity as functions of frequency are presented for various mixtures of differing contrasts in physical properties between phases in order to provide a comparison with theory. The materials used were aqueous suspensions of polystyrene spheres, silica spheres, iron spheres, 0022-3727/31/24/012/img1 pigment (AHR), droplets of 1-bromohexadecane, and a suspension of talc particles in a cured epoxy resin.
A critical test of bivelocity hydrodynamics for mixtures.
Brenner, Howard
2010-10-21
The present paper provides direct noncircumstantial evidence in support of the existence of a diffuse flux of volume j(v) in mixtures. As such, it supersedes an earlier paper [H. Brenner, J. Chem. Phys. 132, 054106 (2010)], which offered only indirect circumstantial evidence in this regard. Given the relationship of the diffuse volume flux to the fluid's volume velocity, this finding adds additional credibility to the theory of bivelocity hydrodynamics for both gaseous and liquid continua, wherein the term bivelocity refers to the independence of the fluid's respective mass and volume velocities. Explicitly, the present work provides a new and unexpected linkage between a pair of diffuse fluxes entering into bivelocity mixture theory, fluxes that were previously regarded as constitutively independent, except possibly for their coupling arising as a consequence of Onsager reciprocity. In particular, for the case of a binary mixture undergoing an isobaric, isothermal, external force-free, molecular diffusion process we establish by purely macroscopic arguments-while subsequently confirming by purely molecular arguments-the validity of the ansatz j(v)=(v(1)-v(2))j(1) relating the diffuse volume flux j(v) to the diffuse mass fluxes j(1)(=-j(2)) of the two species and, jointly, their partial specific volumes v(1),v(2). Confirmation of that relation is based upon the use of linear irreversible thermodynamic principles to embed this ansatz in a broader context, and to subsequently establish the accord thereof with Shchavaliev's solution of the multicomponent Boltzmann equation for dilute gases [M. Sh. Shchavaliev, Fluid Dyn. 9, 96 (1974)]. Moreover, because the terms v(1), v(2), and j(1) appearing on the right-hand side of the ansatz are all conventional continuum fluid-mechanical terms (with j(1) given, for example, by Fick's law for thermodynamically ideal solutions), parity requires that j(v) appearing on the left-hand side of that relation also be a continuum term. Previously, diffuse volume fluxes, whether in mixtures or single-component fluids, were widely believed to be noncontinuum in nature, and hence of interest only to those primarily concerned with transport phenomena in rarefied gases. This demonstration of the continuum nature of bivelocity hydrodynamics suggests that the latter subject should be of general interest to all fluid mechanicians, even those with no special interest in mixtures.
A constitutive theory of reacting electrolyte mixtures
NASA Astrophysics Data System (ADS)
Costa Reis, Martina; Wang, Yongqi; Bono Maurizio Sacchi Bassi, Adalberto
2013-11-01
A constitutive theory of reacting electrolyte mixtures is formulated. The intermolecular interactions among the constituents of the mixture are accounted for through additional freedom degrees to each constituent of the mixture. Balance equations for polar reacting continuum mixtures are accordingly formulated and a proper set of constitutive equations is derived with basis in the Müller-Liu formulation of the second law of thermodynamics. Moreover, the non-equilibrium and equilibrium responses of the reacting mixture are investigated in detail by emphasizing the inner and reactive structures of the medium. From the balance laws and constitutive relations, the effects of molecular structure of constituents upon the fluid flow are studied. It is also demonstrated that the local thermodynamic equilibrium state can be reached without imposing that the set of independent constitutive variables is time independent, neither spatially homogeneous nor null. The resulting constitutive relations presented throughout this work are of relevance to many practical applications, such as swelling of clays, developing of bio and polymeric membranes, and use of electrorheological fluids in industrial processes. The first author acknowledges financial support from National Counsel of Technological and Scientific Development (CNPq) and German Academic Exchange Service (DAAD).
Continuum limit of the vibrational properties of amorphous solids.
Mizuno, Hideyuki; Shiba, Hayato; Ikeda, Atsushi
2017-11-14
The low-frequency vibrational and low-temperature thermal properties of amorphous solids are markedly different from those of crystalline solids. This situation is counterintuitive because all solid materials are expected to behave as a homogeneous elastic body in the continuum limit, in which vibrational modes are phonons that follow the Debye law. A number of phenomenological explanations for this situation have been proposed, which assume elastic heterogeneities, soft localized vibrations, and so on. Microscopic mean-field theories have recently been developed to predict the universal non-Debye scaling law. Considering these theoretical arguments, it is absolutely necessary to directly observe the nature of the low-frequency vibrations of amorphous solids and determine the laws that such vibrations obey. Herein, we perform an extremely large-scale vibrational mode analysis of a model amorphous solid. We find that the scaling law predicted by the mean-field theory is violated at low frequency, and in the continuum limit, the vibrational modes converge to a mixture of phonon modes that follow the Debye law and soft localized modes that follow another universal non-Debye scaling law.
Continuum limit of the vibrational properties of amorphous solids
Mizuno, Hideyuki; Ikeda, Atsushi
2017-01-01
The low-frequency vibrational and low-temperature thermal properties of amorphous solids are markedly different from those of crystalline solids. This situation is counterintuitive because all solid materials are expected to behave as a homogeneous elastic body in the continuum limit, in which vibrational modes are phonons that follow the Debye law. A number of phenomenological explanations for this situation have been proposed, which assume elastic heterogeneities, soft localized vibrations, and so on. Microscopic mean-field theories have recently been developed to predict the universal non-Debye scaling law. Considering these theoretical arguments, it is absolutely necessary to directly observe the nature of the low-frequency vibrations of amorphous solids and determine the laws that such vibrations obey. Herein, we perform an extremely large-scale vibrational mode analysis of a model amorphous solid. We find that the scaling law predicted by the mean-field theory is violated at low frequency, and in the continuum limit, the vibrational modes converge to a mixture of phonon modes that follow the Debye law and soft localized modes that follow another universal non-Debye scaling law. PMID:29087941
Calculation of far wing of allowed spectra: The water continuum
NASA Technical Reports Server (NTRS)
Tipping, R. H.; Ma, Q.
1995-01-01
A far-wing line shape theory based on the binary collision and quasistatic approximations that is applicable for both the low- and high-frequency wings of allowed vibrational-rotational lines has been developed. This theory has been applied in order to calculate the frequency and temperature dependence of the continuous absorption coefficient for frequencies up to 10,000 cm(exp -1) for pure H2O and for H2O-N2 mixtures. The calculations are made assuming an interaction potential consisting of an isotropic Lennard-Jones part and the leading long-range anisotropic part, and utilizing the measured line strengths and transition frequencies. The results compare well with existing data, both in magnitude and in temperature dependence. This leads us to the conclusion that although dimer and collision-induced absorptions are present, the primary mechanism responsible for the observed water continuum is the far-wing absorption of allowed lines. Recent progress on near-wing corrections to the theory and validations with recent laboratory measurements are discussed briefly.
A continuum theory of a lubrication problem with solid particles
NASA Technical Reports Server (NTRS)
Dai, Fuling; Khonsari, M. M.
1993-01-01
The governing equations for a two-dimensional lubrication problem involving the mixture of a Newtonian fluid with solid particles at an arbitrary volume fraction are developed using the theory of interacting continuua (mixture theory). The equations take the interaction between the fluid and the particles into consideration. Provision is made for the possibility of particle slippage at the boundaries. The equations are simplified assuming that the solid volume fraction varies in the sliding direction alone. Equations are solved for the velocity of the fluid phase and that of the solid phase of the mixture flow in the clearance space of an arbitrary shaped bearing. It is shown that the classical pure fluid case can be recovered as a special case of the solutions presented. Extensive numerical solutions are presented to quantify the effect of particulate solid for a number of pertinent performance parameters for both slider and journal bearings. Included in the results are discussions on the influence of particle slippage on the boundaries as well as the role of the interacting body force between the fluid and solid particles.
Scattering of quasiparticles in $sup 3$He--$sup 4$He mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagchi, A.; Ruvalds, J.
Considering the elementary excitation spectrum of /sup 3/He -/sup 4/He mixtures to be of the form proposed by Landau and Pomeranchuk, the scattering cross section for roton and /sup 3/He quasiparticle collisions was calculated taking final-state interactions into account. The theory demonstrates the importance of final-state interactions in renormalizing the roton energy and lifetime. Previous theories based on the Porn approximation are shown to give unreliable results for the change of the energy and lifetime for rotons in dilute /sup 3/He --/sup 4/He mixtures owing to roton-/sup 3/He scattering. Upper bound s on the changes in the energy and lifetimemore » of a roton as a function of the roton- /sup 3/He coupling strength were obtained using a simplified model for the coupling. These bounds give an insignificant change of the roton energy with the iHe eoncentration and thus explain recent neutron-seattering and Raman data on the mixtures. Effects of level repulsion between rotons and the /sup 3/He quasiparticle-hole continuum are calculated, and estimated to be small on the basis of recent Raman data, However, decay of a roton into a iHe quasiparticle- hole pair may live rise to an interesting concentration dependence of the roton linewidth. Further experimental studies of the mixtures are suggested, which may check the detailed predictions of the theory and provide insight into the momentum dependence of the coupling parameters. The present analysis represents an essential link between microscopic theories of the quasiparticle coupling and related experiments on dilute /sup 3/He --/sup 4/He mixtures. (auth)« less
Advanced dielectric continuum model of preferential solvation
NASA Astrophysics Data System (ADS)
Basilevsky, Mikhail; Odinokov, Alexey; Nikitina, Ekaterina; Grigoriev, Fedor; Petrov, Nikolai; Alfimov, Mikhail
2009-01-01
A continuum model for solvation effects in binary solvent mixtures is formulated in terms of the density functional theory. The presence of two variables, namely, the dimensionless solvent composition y and the dimensionless total solvent density z, is an essential feature of binary systems. Their coupling, hidden in the structure of the local dielectric permittivity function, is postulated at the phenomenological level. Local equilibrium conditions are derived by a variation in the free energy functional expressed in terms of the composition and density variables. They appear as a pair of coupled equations defining y and z as spatial distributions. We consider the simplest spherically symmetric case of the Born-type ion immersed in the benzene/dimethylsulfoxide (DMSO) solvent mixture. The profiles of y(R ) and z(R ) along the radius R, which measures the distance from the ion center, are found in molecular dynamics (MD) simulations. It is shown that for a given solute ion z(R ) does not depend significantly on the composition variable y. A simplified solution is then obtained by inserting z(R ), found in the MD simulation for the pure DMSO, in the single equation which defines y(R ). In this way composition dependences of the main solvation effects are investigated. The local density augmentation appears as a peak of z(R ) at the ion boundary. It is responsible for the fine solvation effects missing when the ordinary solvation theories, in which z =1, are applied. These phenomena, studied for negative ions, reproduce consistently the simulation results. For positive ions the simulation shows that z ≫1 (z =5-6 at the maximum of the z peak), which means that an extremely dense solvation shell is formed. In such a situation the continuum description fails to be valid within a consistent parametrization.
On the Theory of Reactive Mixtures for Modeling Biological Growth
Ateshian, Gerard A.
2013-01-01
Mixture theory, which can combine continuum theories for the motion and deformation of solids and fluids with general principles of chemistry, is well suited for modeling the complex responses of biological tissues, including tissue growth and remodeling, tissue engineering, mechanobiology of cells and a variety of other active processes. A comprehensive presentation of the equations of reactive mixtures of charged solid and fluid constituents is lacking in the biomechanics literature. This study provides the conservation laws and entropy inequality, as well as interface jump conditions, for reactive mixtures consisting of a constrained solid mixture and multiple fluid constituents. The constituents are intrinsically incompressible and may carry an electrical charge. The interface jump condition on the mass flux of individual constituents is shown to define a surface growth equation, which predicts deposition or removal of material points from the solid matrix, complementing the description of volume growth described by the conservation of mass. A formu-lation is proposed for the reference configuration of a body whose material point set varies with time. State variables are defined which can account for solid matrix volume growth and remodeling. Constitutive constraints are provided on the stresses and momentum supplies of the various constituents, as well as the interface jump conditions for the electrochem cal potential of the fluids. Simplifications appropriate for biological tissues are also proposed, which help reduce the governing equations into a more practical format. It is shown that explicit mechanisms of growth-induced residual stresses can be predicted in this framework. PMID:17206407
Danwanichakul, Panu; Glandt, Eduardo D
2004-11-15
We applied the integral-equation theory to the connectedness problem. The method originally applied to the study of continuum percolation in various equilibrium systems was modified for our sequential quenching model, a particular limit of an irreversible adsorption. The development of the theory based on the (quenched-annealed) binary-mixture approximation includes the Ornstein-Zernike equation, the Percus-Yevick closure, and an additional term involving the three-body connectedness function. This function is simplified by introducing a Kirkwood-like superposition approximation. We studied the three-dimensional (3D) system of randomly placed spheres and 2D systems of square-well particles, both with a narrow and with a wide well. The results from our integral-equation theory are in good accordance with simulation results within a certain range of densities.
NASA Astrophysics Data System (ADS)
Danwanichakul, Panu; Glandt, Eduardo D.
2004-11-01
We applied the integral-equation theory to the connectedness problem. The method originally applied to the study of continuum percolation in various equilibrium systems was modified for our sequential quenching model, a particular limit of an irreversible adsorption. The development of the theory based on the (quenched-annealed) binary-mixture approximation includes the Ornstein-Zernike equation, the Percus-Yevick closure, and an additional term involving the three-body connectedness function. This function is simplified by introducing a Kirkwood-like superposition approximation. We studied the three-dimensional (3D) system of randomly placed spheres and 2D systems of square-well particles, both with a narrow and with a wide well. The results from our integral-equation theory are in good accordance with simulation results within a certain range of densities.
Cognitive Continuum Theory in nursing decision-making.
Cader, Raffik; Campbell, Steve; Watson, Don
2005-02-01
The purpose of this paper is to analyse and evaluate Cognitive Continuum Theory and to provide evidence for its relevance to nurses' decision-making. It is critical that theories used in nursing are evaluated to provide an understanding of their aims, concepts and usefulness. With the advent of evidence-based care, theories on decision-making have acquired increased significance. The criteria identified by Fawcett's framework has been used to analyse and evaluate Hammond's Cognitive Continuum Theory. Findings. There is empirical evidence to support many of the concepts and propositions of Cognitive Continuum Theory. The theory has been applied to the decision-making process of many professionals, including medical practitioners and nurses. Existing evidence suggests that Cognitive Continuum Theory can provide the framework to explain decision-making in nursing. Cognitive Continuum Theory has the potential to make major contributions towards understanding the decision-making process of nurses in the clinical environment. Knowledge of the theory in nursing practice has become crucial.
A two-phase theory for non-Newtonian suspensions
NASA Astrophysics Data System (ADS)
Varsakelis, Christos
In this talk, a continuum and thermodynamically consistent theory for macroscopic particles immersed in a non-Newtonian fluid is presented. According to the employed methodology, each phase of the mixture is treated as a thermodynamic system, endowed with its own set of thermodynamic and kinetic variables, and is required to separately satisfy the equations for the balance of mass, momentum and energy. As both constituents of the mixture are not simple fluids, additional degrees of freedom are introduced for the proper description of their thermodynamic state. A subsequent exploitation of the entropy inequality asserts that the accommodation of the complicated rheological characteristics of both phases requires a departure from a linear current-force relationship. For this reason, a subtle nonlinear representation of the stress tensors is employed. Importantly, the inclusion of additional degrees of freedom allows us to obtain a rate equation for the evolution of the volume fraction of the particulate phase. Following a delineation of the fundamentals of the proposed theory, the talk concludes with the presentation of some limiting cases that also serve as preliminary, sanity tests.
Dynamics of osmosis in a porous medium.
Cardoso, Silvana S S; Cartwright, Julyan H E
2014-11-01
We derive from kinetic theory, fluid mechanics and thermodynamics the minimal continuum-level equations governing the flow of a binary, non-electrolytic mixture in an isotropic porous medium with osmotic effects. For dilute mixtures, these equations are linear and in this limit provide a theoretical basis for the widely used semi-empirical relations of Kedem & Katchalsky (Kedem & Katchalsky 1958 Biochim. Biophys. Acta 27, 229-246 (doi:10.1016/0006-3002(58)90330-5), which have hitherto been validated experimentally but not theoretically. The above linearity between the fluxes and the driving forces breaks down for concentrated or non-ideal mixtures, for which our equations go beyond the Kedem-Katchalsky formulation. We show that the heretofore empirical solute permeability coefficient reflects the momentum transfer between the solute molecules that are rejected at a pore entrance and the solvent molecules entering the pore space; it can be related to the inefficiency of a Maxwellian demi-demon.
NASA Astrophysics Data System (ADS)
Nascimento, Luis Alberto Herrmann do
This dissertation presents the implementation and validation of the viscoelastic continuum damage (VECD) model for asphalt mixture and pavement analysis in Brazil. It proposes a simulated damage-to-fatigue cracked area transfer function for the layered viscoelastic continuum damage (LVECD) program framework and defines the model framework's fatigue cracking prediction error for asphalt pavement reliability-based design solutions in Brazil. The research is divided into three main steps: (i) implementation of the simplified viscoelastic continuum damage (S-VECD) model in Brazil (Petrobras) for asphalt mixture characterization, (ii) validation of the LVECD model approach for pavement analysis based on field performance observations, and defining a local simulated damage-to-cracked area transfer function for the Fundao Project's pavement test sections in Rio de Janeiro, RJ, and (iii) validation of the Fundao project local transfer function to be used throughout Brazil for asphalt pavement fatigue cracking predictions, based on field performance observations of the National MEPDG Project's pavement test sections, thereby validating the proposed framework's prediction capability. For the first step, the S-VECD test protocol, which uses controlled-on-specimen strain mode-of-loading, was successfully implemented at the Petrobras and used to characterize Brazilian asphalt mixtures that are composed of a wide range of asphalt binders. This research verified that the S-VECD model coupled with the GR failure criterion is accurate for fatigue life predictions of Brazilian asphalt mixtures, even when very different asphalt binders are used. Also, the applicability of the load amplitude sweep (LAS) test for the fatigue characterization of the asphalt binders was checked, and the effects of different asphalt binders on the fatigue damage properties of the asphalt mixtures was investigated. The LAS test results, modeled according to VECD theory, presented a strong correlation with the asphalt mixtures' fatigue performance. In the second step, the S-VECD test protocol was used to characterize the asphalt mixtures used in the 27 selected Fundao project test sections and subjected to real traffic loading. Thus, the asphalt mixture properties, pavement structure data, traffic loading, and climate were input into the LVECD program for pavement fatigue cracking performance simulations. The simulation results showed good agreement with the field-observed distresses. Then, a damage shift approach, based on the initial simulated damage growth rate, was introduced in order to obtain a unique relationship between the LVECD-simulated shifted damage and the pavement-observed fatigue cracked areas. This correlation was fitted to a power form function and defined as the averaged reduced damage-to-cracked area transfer function. The last step consisted of using the averaged reduced damage-to-cracked area transfer function that was developed in the Fundao project to predict pavement fatigue cracking in 17 National MEPDG project test sections. The procedures for the material characterization and pavement data gathering adopted in this step are similar to those used for the Fundao project simulations. This research verified that the transfer function defined for the Fundao project sections can be used for the fatigue performance predictions of a wide range of pavements all over Brazil, as the predicted and observed cracked areas for the National MEPDG pavements presented good agreement, following the same trends found for the Fundao project pavement sites. Based on the prediction errors determined for all 44 pavement test sections (Fundao and National MEPDG test sections), the proposed framework's prediction capability was determined so that reliability-based solutions can be applied for flexible pavement design. It was concluded that the proposed LVECD program framework has very good fatigue cracking prediction capability.
Cross-Effects in Microgravity Flows
NASA Technical Reports Server (NTRS)
Loyalka, Sudarshan K.; Tompson, R. V.; Ivchenko, I. N.; Ghosh, T. K.; Hamoodi, S. A.; Hickey, K. A.; Huang, C. M.; Tebbe, Patrick A.; Gabis, D. H.; Tekasakul, P.;
1996-01-01
Film growth by chemical/physical vapor deposition is a process of considerable interest in microgravity experiments. The absence of natural convection should allow better control of film growth processes but, in highly non-isothermal ampoules, thermal slip (creep) can become a matter of significant concern. The reported research is a theoretical and experimental investigation of the flow of gas/vapor mixtures under non-continuum conditions. The Boltzmann equation has been solved for a monatomic gas under non-condensing conditions and the various phenomenological coefficients have been computed. Computations for realistic potentials as well as for velocity and creep slip have been completed and the creep slip has been found to be dependent on the type of gas confirming the accuracy of previous variational results. The variational technique has been extended and planar flows calculated via the Burnett solutions. Velocity, diffusion and creep slips have been computed for gas mixtures and previously unknown dependencies of the creep slip on the mixture properties have been observed. Also for gas mixtures, an integral representation of the linearized Boltzmann operator has been developed for use in numerical and variational calculations for all intermolecular force laws. Two, two-bulb capillary systems have been designed, built and tested for the measurements of cross-flows; one of glass for isothermal measurements and one of stainless steel for non-isothermal measurements. Extensive data have been collected for Ar-He and N2-He mixtures at a variety of pressures and mole ratios. Viscosity, velocity slip coefficients and tangential momentum accommodation coefficients have been obtained from measurements with a spinning rotor gauge via a new theory that has been formulated for the spinning rotor gauge in the slip regime. The FIDAP fluid dynamics code has been applied to condensing flows in ampoules in the continuum regime and agreement obtained with the earlier work of Duval.
NASA Technical Reports Server (NTRS)
Passman, Stephen L.
1989-01-01
Generally, two types of theory are used to describe the field equations for suspensions. The so-called postulated equations are based on the kinetic theory of mixtures, which logically should give reasonable equations for solutions. The basis for the use of such theory for suspensions is tenuous, though it at least gives a logical path for mathematical arguments. It has the disadvantage that it leads to a system of equations which is underdetermined, in a sense that can be made precise. On the other hand, the so-called averaging theory starts with a determined system, but the very process of averaging renders the resulting system underdetermined. A third type of theory is proposed in which the kinetic theory of gases is used to motivate continuum equations for the suspended particles. This entails an interpretation of the stress in the particles that is different from the usual one. Classical theory is used to describe the motion of the suspending medium. The result is a determined system for a dilute suspension. Extension of the theory to more concentrated systems is discussed.
Theories of binary fluid mixtures: from phase-separation kinetics to active emulsions
NASA Astrophysics Data System (ADS)
Cates, Michael E.; Tjhung, Elsen
2018-02-01
Binary fluid mixtures are examples of complex fluids whose microstructure and flow are strongly coupled. For pairs of simple fluids, the microstructure consists of droplets or bicontinuous demixed domains and the physics is controlled by the interfaces between these domains. At continuum level, the structure is defined by a composition field whose gradients which are steep near interfaces drive its diffusive current. These gradients also cause thermodynamic stresses which can drive fluid flow. Fluid flow in turn advects the composition field, while thermal noise creates additional random fluxes that allow the system to explore its configuration space and move towards the Boltzmann distribution. This article introduces continuum models of binary fluids, first covering some well-studied areas such as the thermodynamics and kinetics of phase separation, and emulsion stability. We then address cases where one of the fluid components has anisotropic structure at mesoscopic scales creating nematic (or polar) liquid-crystalline order; this can be described through an additional tensor (or vector) order parameter field. We conclude by outlining a thriving area of current research, namely active emulsions, in which one of the binary components consists of living or synthetic material that is continuously converting chemical energy into mechanical work.
Probing the early stages of shock-induced chondritic meteorite formation at the mesoscale
Rutherford, Michael E.; Chapman, David J.; Derrick, James G.; Patten, Jack R. W.; Bland, Philip A.; Rack, Alexander; Collins, Gareth S.; Eakins, Daniel E.
2017-01-01
Chondritic meteorites are fragments of asteroids, the building blocks of planets, that retain a record of primordial processes. Important in their early evolution was impact-driven lithification, where a porous mixture of millimetre-scale chondrule inclusions and sub-micrometre dust was compacted into rock. In this Article, the shock compression of analogue precursor chondrite material was probed using state of the art dynamic X-ray radiography. Spatially-resolved shock and particle velocities, and shock front thicknesses were extracted directly from the radiographs, representing a greatly enhanced scope of data than could be measured in surface-based studies. A statistical interpretation of the measured velocities showed that mean values were in good agreement with those predicted using continuum-level modelling and mixture theory. However, the distribution and evolution of wave velocities and wavefront thicknesses were observed to be intimately linked to the mesoscopic structure of the sample. This Article provides the first detailed experimental insight into the distribution of extreme states within a shocked powder mixture, and represents the first mesoscopic validation of leading theories concerning the variation in extreme pressure-temperature states during the formation of primordial planetary bodies. PMID:28555619
2016-04-01
AFRL-AFOSR-VA-TR-2016-0145 Quasi-continuum reduction of field theories: A route to seamlessly bridge quantum and atomistic length-scales with...field theories: A route to seamlessly bridge quantum and atomistic length-scales with continuum Principal Investigator: Vikram Gavini Department of...calculations on tens of thousands of atoms, and enable continuing efforts towards a seamless bridging of the quantum and continuum length-scales
Numerical simulation of asphalt mixtures fracture using continuum models
NASA Astrophysics Data System (ADS)
Szydłowski, Cezary; Górski, Jarosław; Stienss, Marcin; Smakosz, Łukasz
2018-01-01
The paper considers numerical models of fracture processes of semi-circular asphalt mixture specimens subjected to three-point bending. Parameter calibration of the asphalt mixture constitutive models requires advanced, complex experimental test procedures. The highly non-homogeneous material is numerically modelled by a quasi-continuum model. The computational parameters are averaged data of the components, i.e. asphalt, aggregate and the air voids composing the material. The model directly captures random nature of material parameters and aggregate distribution in specimens. Initial results of the analysis are presented here.
Second law of thermodynamics in volume diffusion hydrodynamics in multicomponent gas mixtures
NASA Astrophysics Data System (ADS)
Dadzie, S. Kokou
2012-10-01
We presented the thermodynamic structure of a new continuum flow model for multicomponent gas mixtures. The continuum model is based on a volume diffusion concept involving specific species. It is independent of the observer's reference frame and enables a straightforward tracking of a selected species within a mixture composed of a large number of constituents. A method to derive the second law and constitutive equations accompanying the model is presented. Using the configuration of a rotating fluid we illustrated an example of non-classical flow physics predicted by new contributions in the entropy and constitutive equations.
An Anisotropic Multiphysics Model for Intervertebral Disk
Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong
2016-01-01
Intervertebral disk (IVD) is the largest avascular structure in human body, consisting of three types of charged hydrated soft tissues. Its mechanical behavior is nonlinear and anisotropic, due mainly to nonlinear interactions among different constituents within tissues. In this study, a more realistic anisotropic multiphysics model was developed based on the continuum mixture theory and employed to characterize the couplings of multiple physical fields in the IVD. Numerical simulations demonstrate that this model is capable of systematically predicting the mechanical and electrochemical signals within the disk under various loading conditions, which is essential in understanding the mechanobiology of IVD. PMID:27099402
Finite-deformation phase-field chemomechanics for multiphase, multicomponent solids
NASA Astrophysics Data System (ADS)
Svendsen, Bob; Shanthraj, Pratheek; Raabe, Dierk
2018-03-01
The purpose of this work is the development of a framework for the formulation of geometrically non-linear inelastic chemomechanical models for a mixture of multiple chemical components diffusing among multiple transforming solid phases. The focus here is on general model formulation. No specific model or application is pursued in this work. To this end, basic balance and constitutive relations from non-equilibrium thermodynamics and continuum mixture theory are combined with a phase-field-based description of multicomponent solid phases and their interfaces. Solid phase modeling is based in particular on a chemomechanical free energy and stress relaxation via the evolution of phase-specific concentration fields, order-parameter fields (e.g., related to chemical ordering, structural ordering, or defects), and local internal variables. At the mixture level, differences or contrasts in phase composition and phase local deformation in phase interface regions are treated as mixture internal variables. In this context, various phase interface models are considered. In the equilibrium limit, phase contrasts in composition and local deformation in the phase interface region are determined via bulk energy minimization. On the chemical side, the equilibrium limit of the current model formulation reduces to a multicomponent, multiphase, generalization of existing two-phase binary alloy interface equilibrium conditions (e.g., KKS). On the mechanical side, the equilibrium limit of one interface model considered represents a multiphase generalization of Reuss-Sachs conditions from mechanical homogenization theory. Analogously, other interface models considered represent generalizations of interface equilibrium conditions consistent with laminate and sharp-interface theory. In the last part of the work, selected existing models are formulated within the current framework as special cases and discussed in detail.
Asinari, Pietro
2009-11-01
A finite difference lattice Boltzmann scheme for homogeneous mixture modeling, which recovers Maxwell-Stefan diffusion model in the continuum limit, without the restriction of the mixture-averaged diffusion approximation, was recently proposed [P. Asinari, Phys. Rev. E 77, 056706 (2008)]. The theoretical basis is the Bhatnagar-Gross-Krook-type kinetic model for gas mixtures [P. Andries, K. Aoki, and B. Perthame, J. Stat. Phys. 106, 993 (2002)]. In the present paper, the recovered macroscopic equations in the continuum limit are systematically investigated by varying the ratio between the characteristic diffusion speed and the characteristic barycentric speed. It comes out that the diffusion speed must be at least one order of magnitude (in terms of Knudsen number) smaller than the barycentric speed, in order to recover the Navier-Stokes equations for mixtures in the incompressible limit. Some further numerical tests are also reported. In particular, (1) the solvent and dilute test cases are considered, because they are limiting cases in which the Maxwell-Stefan model reduces automatically to Fickian cases. Moreover, (2) some tests based on the Stefan diffusion tube are reported for proving the complete capabilities of the proposed scheme in solving Maxwell-Stefan diffusion problems. The proposed scheme agrees well with the expected theoretical results.
Continuum modes of nonlocal field theories
NASA Astrophysics Data System (ADS)
Saravani, Mehdi
2018-04-01
We study a class of nonlocal Lorentzian quantum field theories, where the d’Alembertian operator \\Box is replaced by a non-analytic function of the d’Alembertian, f(\\Box) . This is inspired by the causal set program where such an evolution arises as the continuum limit of a wave equation on causal sets. The spectrum of these theories contains a continuum of massive excitations. This is perhaps the most important feature which leads to distinct/interesting phenomenology. In this paper, we study properties of the continuum massive modes in depth. We derive the path integral formulation of these theories. Meanwhile, this derivation introduces a dual picture in terms of local fields which clearly shows how continuum massive modes of the nonlocal field interact. As an example, we calculate the leading order modification to the Casimir force of a pair of parallel planes. The dual picture formulation opens the way for future developments in the study of nonlocal field theories using tools already available in local quantum field theories.
Extension of a hybrid particle-continuum method for a mixture of chemical species
NASA Astrophysics Data System (ADS)
Verhoff, Ashley M.; Boyd, Iain D.
2012-11-01
Due to the physical accuracy and numerical efficiency achieved by analyzing transitional, hypersonic flow fields with hybrid particle-continuum methods, this paper describes a Modular Particle-Continuum (MPC) method and its extension to include multiple chemical species. Considerations that are specific to a hybrid approach for simulating gas mixtures are addressed, including a discussion of the Chapman-Enskog velocity distribution function (VDF) for near-equilibrium flows, and consistent viscosity models for the individual CFD and DSMC modules of the MPC method. Representative results for a hypersonic blunt-body flow are then presented, where the flow field properties, surface properties, and computational performance are compared for simulations employing full CFD, full DSMC, and the MPC method.
A two-phase micromorphic model for compressible granular materials
NASA Astrophysics Data System (ADS)
Paolucci, Samuel; Li, Weiming; Powers, Joseph
2009-11-01
We introduce a new two-phase continuum model for compressible granular material based on micromorphic theory and treat it as a two-phase mixture with inner structure. By taking an appropriate number of moments of the local micro scale balance equations, the average phase balance equations result from a systematic averaging procedure. In addition to equations for mass, momentum and energy, the balance equations also include evolution equations for microinertia and microspin tensors. The latter equations combine to yield a general form of a compaction equation when the material is assumed to be isotropic. When non-linear and inertial effects are neglected, the generalized compaction equation reduces to that originally proposed by Bear and Nunziato. We use the generalized compaction equation to numerically model a mixture of granular high explosive and interstitial gas. One-dimensional shock tube and piston-driven solutions are presented and compared with experimental results and other known solutions.
Ab Initio Studies of Shock-Induced Chemical Reactions of Inter-Metallics
NASA Astrophysics Data System (ADS)
Zaharieva, Roussislava; Hanagud, Sathya
2009-06-01
Shock-induced and shock assisted chemical reactions of intermetallic mixtures are studied by many researchers, using both experimental and theoretical techniques. The theoretical studies are primarily at continuum scales. The model frameworks include mixture theories and meso-scale models of grains of porous mixtures. The reaction models vary from equilibrium thermodynamic model to several non-equilibrium thermodynamic models. The shock-effects are primarily studied using appropriate conservation equations and numerical techniques to integrate the equations. All these models require material constants from experiments and estimates of transition states. Thus, the objective of this paper is to present studies based on ab initio techniques. The ab inito studies, to date, use ab inito molecular dynamics. This paper presents a study that uses shock pressures, and associated temperatures as starting variables. Then intermetallic mixtures are modeled as slabs. The required shock stresses are created by straining the lattice. Then, ab initio binding energy calculations are used to examine the stability of the reactions. Binding energies are obtained for different strain components super imposed on uniform compression and finite temperatures. Then, vibrational frequencies and nudge elastic band techniques are used to study reactivity and transition states. Examples include Ni and Al.
Development of a multiaxial viscoelastoplastic continuum damage model for asphalt mixtures.
DOT National Transportation Integrated Search
2009-09-01
This report highlights findings from the FHWA DTFH61-05-H-00019 project, which focused on the development of the multiaxial viscoelastoplastic continuum damage model for asphalt concrete in both compression and tension. Asphalt concrete pavement, one...
A continuum state variable theory to model the size-dependent surface energy of nanostructures.
Jamshidian, Mostafa; Thamburaja, Prakash; Rabczuk, Timon
2015-10-14
We propose a continuum-based state variable theory to quantify the excess surface free energy density throughout a nanostructure. The size-dependent effect exhibited by nanoplates and spherical nanoparticles i.e. the reduction of surface energy with reducing nanostructure size is well-captured by our continuum state variable theory. Our constitutive theory is also able to predict the reducing energetic difference between the surface and interior (bulk) portions of a nanostructure with decreasing nanostructure size.
Medhi, Amal; Shenoy, Vijay B
2012-09-05
We develop a continuum theory to model low energy excitations of a generic four-band time reversal invariant electronic system with boundaries. We propose a variational energy functional for the wavefunctions which allows us to derive natural boundary conditions valid for such systems. Our formulation is particularly suited for developing a continuum theory of the protected edge/surface excitations of topological insulators both in two and three dimensions. By a detailed comparison of our analytical formulation with tight binding calculations of ribbons of topological insulators modelled by the Bernevig-Hughes-Zhang (BHZ) Hamiltonian, we show that the continuum theory with a natural boundary condition provides an appropriate description of the low energy physics.
A test of two theories for the low-frequency cutoffs of nonthermal continuum radiation
NASA Technical Reports Server (NTRS)
Shaw, R. R.; Gurnett, D. A.
1980-01-01
A discussion and analysis of two theories that differently identify the low-frequency cutoffs of nonthermal continuum radiation are presented. The cold plasma theory and an alternate one proposed by Jones (1976) are compared experimentally with the use of continuum radiation data obtained in the outer magnetosphere by the Imp 6 and ISEE 1 spacecraft. It is found that the characteristics of this specific radiation are consistent with those expected of ordinary and extraordinary mode waves described by the cold plasma theory and it is shown that the cutoff frequencies occur at the local plasma frequency and R = 0 cutoff frequency as proposed by the same theory. The inconsistencies which were found between the Jones theory (1976) and observation are presented, and in addition no evidence is found for a component of continuum radiation propagating in the Z mode in the outer magnetosphere.
An advanced kinetic theory for morphing continuum with inner structures
NASA Astrophysics Data System (ADS)
Chen, James
2017-12-01
Advanced kinetic theory with the Boltzmann-Curtiss equation provides a promising tool for polyatomic gas flows, especially for fluid flows containing inner structures, such as turbulence, polyatomic gas flows and others. Although a Hamiltonian-based distribution function was proposed for diatomic gas flow, a general distribution function for the generalized Boltzmann-Curtiss equations and polyatomic gas flow is still out of reach. With assistance from Boltzmann's entropy principle, a generalized Boltzmann-Curtiss distribution for polyatomic gas flow is introduced. The corresponding governing equations at equilibrium state are derived and compared with Eringen's morphing (micropolar) continuum theory derived under the framework of rational continuum thermomechanics. Although rational continuum thermomechanics has the advantages of mathematical rigor and simplicity, the presented statistical kinetic theory approach provides a clear physical picture for what the governing equations represent.
Morse, David C; Chung, Jun Kyung
2009-06-14
The self-consistent field (SCF) approach to the thermodynamics of dense polymer liquids is based on the idea that short-range correlations in a polymer liquid are almost independent of how monomers are connected into polymers over larger scales. Some limits of this idea are explored in the context of a perturbation theory for symmetric polymer blends. We consider mixtures of two structurally identical polymers, A and B, in which the AB monomer pair interaction differs slightly from the AA and BB interactions by an amount proportional to a parameter alpha. An expansion of the free energy to first order in alpha yields an excess free energy of mixing per monomer of the form alphaz(N)phi(A)phi(B) in both lattice and continuum models, where z(N) is a measure of the number of intermolecular near neighbors per monomer in a one-component (alpha=0) reference liquid with chains of length N. The quantity z(N) decreases slightly with increasing N because the concentration of intramolecular near neighbors is slightly higher for longer chains, creating a slightly deeper intermolecular correlation hole. We predict that z(N)=z(infinity)[1+betaN(-1/2)], where N is an invariant degree of polymerization and beta=(6/pi)(3/2) is a universal coefficient. This and related predictions about the slight N dependence of local correlations are confirmed by comparison to simulations of a continuum bead-spring model and to published lattice Monte Carlo simulations. We show that a renormalized one-loop theory for blends correctly describes this N dependence of local liquid structure. We also propose a way to estimate the effective interaction parameter appropriate for comparisons of simulation data to SCF theory and to coarse-grained theories of corrections to SCF theory, which is based on an extrapolation of perturbation theory to the limit N-->infinity.
Correlation between length and tilt of lipid tails
NASA Astrophysics Data System (ADS)
Kopelevich, Dmitry I.; Nagle, John F.
2015-10-01
It is becoming recognized from simulations, and to a lesser extent from experiment, that the classical Helfrich-Canham membrane continuum mechanics model can be fruitfully enriched by the inclusion of molecular tilt, even in the fluid, chain disordered, biologically relevant phase of lipid bilayers. Enriched continuum theories then add a tilt modulus κθ to accompany the well recognized bending modulus κ. Different enrichment theories largely agree for many properties, but it has been noticed that there is considerable disagreement in one prediction; one theory postulates that the average length of the hydrocarbon chain tails increases strongly with increasing tilt and another predicts no increase. Our analysis of an all-atom simulation favors the latter theory, but it also shows that the overall tail length decreases slightly with increasing tilt. We show that this deviation from continuum theory can be reconciled by consideration of the average shape of the tails, which is a descriptor not obviously includable in continuum theory.
NASA Astrophysics Data System (ADS)
Tran, H.; Turbet, M.; Chelin, P.; Landsheere, X.
2018-05-01
In this work, we measured the absorption by CO2 + H2O mixtures from 2400 to 2600 cm-1 which corresponds to the spectral region beyond the ν3 band head of CO2. Transmission spectra of CO2 mixed with water vapor were recorded with a high-resolution Fourier-transform spectrometer for various pressure, temperature and concentration conditions. The continuum absorption by CO2 due to the presence of water vapor was determined by subtracting from measured spectra the contribution of local lines of both species, that of the continuum of pure CO2 as well as of the self- and CO2-continua of water vapor induced by the H2O-H2O and H2O-CO2 interactions. The obtained results are in very good agreement with the unique previous measurement (in a narrower spectral range). They confirm that the H2O-continuum of CO2 is significantly larger than that observed for pure CO2. This continuum thus must be taken into account in radiative transfer calculations for media involving CO2+ H2O mixture. An empirical model, using sub-Lorentzian line shapes based on some temperature-dependent correction factors χ is proposed which enables an accurate description of the experimental results.
Measurements of the structure of an ionizing shock wave in a hydrogen-helium mixture
NASA Technical Reports Server (NTRS)
Leibowitz, L. P.
1972-01-01
Shock structure during ionization of a hydrogen-helium mixture was studied using hydrogen line and continuum emission measurements. A reaction scheme is proposed which includes hydrogen dissociation and a two-step excitation-ionization mechanism for hydrogen ionization by atom-atom and atom-electron collisions. Agreement was achieved between numerical calculations and measurements of emission intensity as a function of time for shock velocities from 13 to 20 km/sec in a 0.208 H2 - 0.792 He mixture. The electron temperature was found to be significantly different from the heavy particle temperature during much of the ionization process. Similar time histories for H beta and continuum emission indicate upper level populations of hydrogen in equilibrium with the electron concentration during the relaxation process.
Measurements of the structure of an ionizing shock wave in a hydrogen-helium mixture.
NASA Technical Reports Server (NTRS)
Leibowitz, L. P.
1973-01-01
Shock structure during ionization of a hydrogen-helium mixture has been followed using hydrogen line and continuum emission measurements. A reaction scheme is proposed which includes hydrogen dissociation and a two-step excitation-ionization mechanism for hydrogen ionization by atom-atom and atom-electron collisions. Agreement has been achieved between numerical calculations and measurements of emission intensity as a function of time for shock velocities from 13 to 20 km/sec in a 0.208 H2-0.792 He mixture. The electron temperature was found to be significantly different from the heavy particle temperature during much of the ionization process. Similar time histories for H beta and continuum emission indicate upper level populations of hydrogen in equilibrium with the electron concentration during the relaxation process.
Applicability of the Continuum-Shell Theories to the Mechanics of Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Harik, V. M.; Gates, T. S.; Nemeth, M. P.
2002-01-01
Validity of the assumptions relating the applicability of continuum shell theories to the global mechanical behavior of carbon nanotubes is examined. The present study focuses on providing a basis that can be used to qualitatively assess the appropriateness of continuum-shell models for nanotubes. To address the effect of nanotube structure on their deformation, all nanotube geometries are divided into four major classes that require distinct models. Criteria for the applicability of continuum models are presented. The key parameters that control the buckling strains and deformation modes of these classes of nanotubes are determined. In an analogy with continuum mechanics, mechanical laws of geometric similitude are presented. A parametric map is constructed for a variety of nanotube geometries as a guide for the applicability of different models. The continuum assumptions made in representing a nanotube as a homogeneous thin shell are analyzed to identify possible limitations of applying shell theories and using their bifurcation-buckling equations at the nano-scale.
Translating caring theory across the continuum from inpatient to ambulatory care.
Tonges, Mary; McCann, Meghan; Strickler, Jeff
2014-06-01
While theory-based practice is a Magnet® characteristic, translating theories to practice remains challenging. As a result, theory-guided practice remains an ideal rather than a realized goal in many organizations. This article provides an overview of a research-derived caring theory, a translational model for theory-driven practice, implementation of a delivery model designed to translate theory across the acute and ambulatory care continuum, and resulting outcomes in oncology clinics and the emergency department.
Structure of an electric double layer containing a 2:2 valency dimer electrolyte
Silvestre-Alcantara, Whasington; Henderson, Douglas; Wu, Jianzhong; ...
2014-12-05
In this study, the structure of a planar electric double layer formed by a 2:2 valency dimer electrolyte in the vicinity of a uniformly charged planar hard electrode is investigated using density functional theory and Monte Carlo simulations. The dimer electrolyte consists of a mixture of charged divalent dimers and charged divalent monomers in a dielectric continuum. A dimer is constructed by two tangentially tethered rigid spheres, one of which is divalent and positively charged and the other neutral, whereas the monomer is a divalent and negatively charged rigid sphere. The density functional theory reproduces well the simulation results formore » (i) the singlet distributions of the various ion species with respect to the electrode, and (ii) the mean electrostatic potential. Lastly, comparison with earlier results for a 2:1/1:2 dimer electrolyte shows that the double layer structure is similar when the counterion has the same valency.« less
Geometry of the Gene Expression Space of Individual Cells
Korem, Yael; Szekely, Pablo; Hart, Yuval; Sheftel, Hila; Hausser, Jean; Mayo, Avi; Rothenberg, Michael E.; Kalisky, Tomer; Alon, Uri
2015-01-01
There is a revolution in the ability to analyze gene expression of single cells in a tissue. To understand this data we must comprehend how cells are distributed in a high-dimensional gene expression space. One open question is whether cell types form discrete clusters or whether gene expression forms a continuum of states. If such a continuum exists, what is its geometry? Recent theory on evolutionary trade-offs suggests that cells that need to perform multiple tasks are arranged in a polygon or polyhedron (line, triangle, tetrahedron and so on, generally called polytopes) in gene expression space, whose vertices are the expression profiles optimal for each task. Here, we analyze single-cell data from human and mouse tissues profiled using a variety of single-cell technologies. We fit the data to shapes with different numbers of vertices, compute their statistical significance, and infer their tasks. We find cases in which single cells fill out a continuum of expression states within a polyhedron. This occurs in intestinal progenitor cells, which fill out a tetrahedron in gene expression space. The four vertices of this tetrahedron are each enriched with genes for a specific task related to stemness and early differentiation. A polyhedral continuum of states is also found in spleen dendritic cells, known to perform multiple immune tasks: cells fill out a tetrahedron whose vertices correspond to key tasks related to maturation, pathogen sensing and communication with lymphocytes. A mixture of continuum-like distributions and discrete clusters is found in other cell types, including bone marrow and differentiated intestinal crypt cells. This approach can be used to understand the geometry and biological tasks of a wide range of single-cell datasets. The present results suggest that the concept of cell type may be expanded. In addition to discreet clusters in gene-expression space, we suggest a new possibility: a continuum of states within a polyhedron, in which the vertices represent specialists at key tasks. PMID:26161936
A Zero- and K-Inflated Mixture Model for Health Questionnaire Data
Finkelman, Matthew D.; Green, Jennifer Greif; Gruber, Michael J.; Zaslavsky, Alan M.
2011-01-01
In psychiatric assessment, Item Response Theory (IRT) is a popular tool to formalize the relation between the severity of a disorder and associated responses to questionnaire items. Practitioners of IRT sometimes make the assumption of normally distributed severities within a population; while convenient, this assumption is often violated when measuring psychiatric disorders. Specifically, there may be a sizable group of respondents whose answers place them at an extreme of the latent trait spectrum. In this article, a zero- and K-inflated mixture model is developed to account for the presence of such respondents. The model is fitted using an expectation-maximization (E-M) algorithm to estimate the percentage of the population at each end of the continuum, concurrently analyzing the remaining “graded component” via IRT. A method to perform factor analysis for only the graded component is introduced. In assessments of oppositional defiant disorder and conduct disorder, the zero- and K-inflated model exhibited better fit than the standard IRT model. PMID:21365673
What are Theories For? Concept Use throughout the Continuum of Dinosaur Expertise
ERIC Educational Resources Information Center
Johnson, Kathy E.; Scott, Paul; Mervis, Carolyn B.
2004-01-01
Although it is now well established that object concepts are situated within broader systems of theoretical knowledge, it is less clear how theories influence the use of object concepts at various points throughout the continuum of expertise. Two studies were conducted to investigate the impact of specific theories (concerning dinosaurs) and…
Continuum Mean-Field Theories for Molecular Fluids, and Their Validity at the Nanoscale
NASA Astrophysics Data System (ADS)
Hanna, C. B.; Peyronel, F.; MacDougall, C.; Marangoni, A.; Pink, D. A.; AFMNet-NCE Collaboration
2011-03-01
We present a calculation of the physical properties of solid triglyceride particles dispersed in an oil phase, using atomic- scale molecular dynamics. Significant equilibrium density oscillations in the oil appear when the interparticle distance, d , becomes sufficiently small, with a global minimum in the free energy found at d ~ 1.4 nm. We compare the simulation values of the Hamaker coefficient with those of models which assume that the oil is a homogeneous continuum: (i) Lifshitz theory, (ii) the Fractal Model, and (iii) a Lennard-Jones 6-12 potential model. The last-named yields a minimum in the free energy at d ~ 0.26 nm. We conclude that, at the nanoscale, continuum Lifshitz theory and other continuum mean-field theories based on the assumption of homogeneous fluid density can lead to erroneous conclusions. CBH supported by NSF DMR-0906618. DAP supported by NSERC. This work supported by AFMNet-NCE.
Correction to the Dynamic Tensile Strength of Ice and Ice-Silicate Mixtures (Lange & Ahrens 1983)
NASA Astrophysics Data System (ADS)
Stewart, S. T.; Ahrens, T. J.
1999-03-01
We present a correction to the Weibull parameters for ice and ice-silicate mixtures (Lange & Ahrens 1983). These parameters relate the dynamic tensile strength to the strain rate. These data are useful for continuum fracture models of ice.
Energy transfer studies in krypton-xenon mixtures excited in a cooled DC discharge
NASA Astrophysics Data System (ADS)
Krylov, B.; Gerasimov, G.; Morozov, A.; Arnesen, A.; Hallin, R.; Heijkenskjold, F.
2000-01-01
The VUV spectrum of gaseous mixtures of krypton with a small amount of xenon added was investigated in the range 115-200 nm. The mixtures were excited in a capillary DC discharge where the capillary could be cooled by using liquid nitrogen. The mixed molecule band around the Xe I resonance line at λ = 147 nm and the mixed molecule continuum to the long wavelength side from the line were analysed. The band around λ = 147 nm was identified as transitions between a weakly bound excited state and the weakly bound ground state of XeKr molecules. When cooling the capillary wall, the appearance of the Xe2 continuum was observed. The effect is ascribed to energy transfer between molecular states as a consequence of radiation trapping in the band around λ = 147 nm. The role of the mixed molecule in the formation of the VUV spectrum of the gas mixture is discussed and underlined.
A note on the discrete approach for generalized continuum models
NASA Astrophysics Data System (ADS)
Kalampakas, Antonios; Aifantis, Elias C.
2014-12-01
Generalized continuum theories for materials and processes have been introduced in order to account in a phenomenological manner for microstructural effects. Their drawback mainly rests in the determination of the extra phenomenological coefficients through experiments and simulations. It is shown here that a graphical representation of the local topology describing deformation models can be used to deduce restrictions on the phenomenological coefficients of the gradient elasticity continuum theories.
A Geometrically Nonlinear Phase Field Theory of Brittle Fracture
2014-10-01
of crack propagation. Philos Mag 91:75–95 Sun X, Khaleel M (2004) Modeling of glass fracture damage using continuum damage mechanics -static spherical...elastic fracture mechanics ). Engineering finite element (FE) simula- tions often invoke continuum damage mechanics the- ories, wherein the tangent...stiffness of a material ele- ment degrades as “damage” accumulates.Conventional continuum damage mechanics theories (Clayton and McDowell 2003, 2004; Sun and
Mirrored continuum and molecular scale simulations of the ignition of gamma phase RDX
NASA Astrophysics Data System (ADS)
Stewart, D. Scott; Chaudhuri, Santanu; Joshi, Kaushik; Lee, Kibaek
2017-01-01
We describe the ignition of an explosive crystal of gamma-phase RDX due to a thermal hot spot with reactive molecular dynamics (RMD), with first-principles trained, reactive force field based molecular potentials that represents an extremely complex reaction network. The RMD simulation is analyzed by sorting molecular product fragments into high and low molecular weight groups, to represent identifiable components that can be interpreted by a continuum model. A continuum model based on a Gibbs formulation has a single temperature and stress state for the mixture. The continuum simulation that mirrors the atomistic simulation allows us to study the atomistic simulation in the familiar physical chemistry framework and provides an essential, continuum/atomistic link.
NASA Astrophysics Data System (ADS)
Dame, R.; Childers, D.; Koepfler, E.
Using ecosystem development theory and the River Continuum Concept as starting points, we present a new holistic theory to explain the spatial and temporal behaviour of marsh-estuarine ecosystems Along the marine-estuarine-freshwater gradient in response to sea-level rise. In this theory, a geohydrologic continuum represented by tidal channel provides a predictable physical model of how the marsh-estuarine ecosystem adapts until there is a change of state. North Inlet, South Carolina is used as an example of this marsh-estuarine continuum. Mature creeks are at the ocean-estuary interface and are strongly influenced by marine factors. Further into the estuary, less and less mature creeks are encountered which are dominated by smaller scale spatial and temporal controls such as oyster reefs. Immature or ephemeral creeks import both particulate and dissolved materials, while mature creeks export both forms of nutrients. Mid-aged creeks appear to take up particulate materials and release dissolved constituents. Ultimately, the continuum reaches the fresh-saltwater interface where a very young estuarine ecosystem invades a more mature type, under the influence of disturbance. Our new explanation satisfies most criteria for a good theory by being internally consistent to the location specified, generating testable hypothesis, not blindly adapting existing theories, agreeing with known properties of the ecosystem described and by generating new invigorating discussion within the scientific community.
SEACAS Theory Manuals: Part II. Nonlinear Continuum Mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attaway, S.W.; Laursen, T.A.; Zadoks, R.I.
1998-09-01
This report summarizes the key continuum mechanics concepts required for the systematic prescription and numerical solution of finite deformation solid mechanics problems. Topics surveyed include measures of deformation appropriate for media undergoing large deformations, stress measures appropriate for such problems, balance laws and their role in nonlinear continuum mechanics, the role of frame indifference in description of large deformation response, and the extension of these theories to encompass two dimensional idealizations, structural idealizations, and rigid body behavior. There are three companion reports that describe the problem formulation, constitutive modeling, and finite element technology for nonlinear continuum mechanics systems.
Chemolli, Emanuela; Gagné, Marylène
2014-06-01
Self-determination theory (SDT) proposes a multidimensional conceptualization of motivation in which the different regulations are said to fall along a continuum of self-determination. The continuum has been used as a basis for using a relative autonomy index as a means to create motivational scores. Rasch analysis was used to verify the continuum structure of the Multidimensional Work Motivation Scale and of the Academic Motivation Scale. We discuss the concept of continuum against SDT's conceptualization of motivation and argue against the use of the relative autonomy index on the grounds that evidence for a continuum structure underlying the regulations is weak and because the index is statistically problematic. We suggest exploiting the full richness of SDT's multidimensional conceptualization of motivation through the use of alternative scoring methods when investigating motivational dynamics across life domains.
ERIC Educational Resources Information Center
Turner, Brandon M.; Betz, Nancy E.; Edwards, Michael C.; Borgen, Fred H.
2010-01-01
The psychometric properties of measures of self-efficacy for the six themes of Holland's theory were examined using item response theory. Item and scale quality were compared across levels of the trait continuum; all the scales were highly reliable but differentiated better at some levels of the continuum than others. Applications for adaptive…
Frustration and curvature - Glasses and the cholesteric blue phase
NASA Technical Reports Server (NTRS)
Sethna, J. P.
1983-01-01
An analogy is drawn between continuum elastic theories of the blue phase of cholesteric liquid crystals and recent theories of frustration in configurational glasses. Both involve the introduction of a lattice of disclination lines to relieve frustration; the frustration is due to an intrinsic curvature in the natural form of parallel transport. A continuum theory of configurational glasses is proposed.
Continuum theory of phase separation kinetics for active Brownian particles.
Stenhammar, Joakim; Tiribocchi, Adriano; Allen, Rosalind J; Marenduzzo, Davide; Cates, Michael E
2013-10-04
Active Brownian particles (ABPs), when subject to purely repulsive interactions, are known to undergo activity-induced phase separation broadly resembling an equilibrium (attraction-induced) gas-liquid coexistence. Here we present an accurate continuum theory for the dynamics of phase-separating ABPs, derived by direct coarse graining, capturing leading-order density gradient terms alongside an effective bulk free energy. Such gradient terms do not obey detailed balance; yet we find coarsening dynamics closely resembling that of equilibrium phase separation. Our continuum theory is numerically compared to large-scale direct simulations of ABPs and accurately accounts for domain growth kinetics, domain topologies, and coexistence densities.
Spin waves, vortices, fermions, and duality in the Ising and Baxter models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogilvie, M.C.
1981-10-15
Field-theoretic methods are applied to a number of two-dimensional lattice models with Abelian symmetry groups. It is shown, using a vortex+spin-wave decomposition, that the Z/sub p/-Villain models are related to a class of continuum field theories with analogous duality properties. Fermion operators for these field theories are discussed. In the case of the Ising model, the vortices and spin-waves conspire to produce a free, massive Majorana field theory in the continuum limit. The continuum limit of the Baxter model is also studied, and the recent results of Kadanoff and Brown are rederived and extended.
NASA Astrophysics Data System (ADS)
Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott
2017-12-01
Hybrid molecular-continuum simulation techniques afford a number of advantages for problems in the rapidly burgeoning area of nanoscale engineering and technology, though they are typically quite complex to implement and limited to single-component fluid systems. We describe an approach for modeling multicomponent hydrodynamic problems spanning multiple length scales when using particle-based descriptions for both the finely resolved (e.g., molecular dynamics) and coarse-grained (e.g., continuum) subregions within an overall simulation domain. This technique is based on the multiscale methodology previously developed for mesoscale binary fluids [N. D. Petsev, L. G. Leal, and M. S. Shell, J. Chem. Phys. 144, 084115 (2016)], simulated using a particle-based continuum method known as smoothed dissipative particle dynamics. An important application of this approach is the ability to perform coupled molecular dynamics (MD) and continuum modeling of molecularly miscible binary mixtures. In order to validate this technique, we investigate multicomponent hybrid MD-continuum simulations at equilibrium, as well as non-equilibrium cases featuring concentration gradients.
Simulation of granular and gas-solid flows using discrete element method
NASA Astrophysics Data System (ADS)
Boyalakuntla, Dhanunjay S.
2003-10-01
In recent years there has been increased research activity in the experimental and numerical study of gas-solid flows. Flows of this type have numerous applications in the energy, pharmaceuticals, and chemicals process industries. Typical applications include pulverized coal combustion, flow and heat transfer in bubbling and circulating fluidized beds, hopper and chute flows, pneumatic transport of pharmaceutical powders and pellets, and many more. The present work addresses the study of gas-solid flows using computational fluid dynamics (CFD) techniques and discrete element simulation methods (DES) combined. Many previous studies of coupled gas-solid flows have been performed assuming the solid phase as a continuum with averaged properties and treating the gas-solid flow as constituting of interpenetrating continua. Instead, in the present work, the gas phase flow is simulated using continuum theory and the solid phase flow is simulated using DES. DES treats each solid particle individually, thus accounting for its dynamics due to particle-particle interactions, particle-wall interactions as well as fluid drag and buoyancy. The present work involves developing efficient DES methods for dense granular flow and coupling this simulation to continuum simulations of the gas phase flow. Simulations have been performed to observe pure granular behavior in vibrating beds. Benchmark cases have been simulated and the results obtained match the published literature. The dimensionless acceleration amplitude and the bed height are the parameters governing bed behavior. Various interesting behaviors such as heaping, round and cusp surface standing waves, as well as kinks, have been observed for different values of the acceleration amplitude for a given bed height. Furthermore, binary granular mixtures (granular mixtures with two particle sizes) in a vibrated bed have also been studied. Gas-solid flow simulations have been performed to study fluidized beds. Benchmark 2D fluidized bed simulations have been performed and the results have been shown to satisfactorily compare with those published in the literature. A comprehensive study of the effect of drag correlations on the simulation of fluidized beds has been performed. It has been found that nearly all the drag correlations studied make similar predictions of global quantities such as the time-dependent pressure drop, bubbling frequency and growth. In conclusion, discrete element simulation has been successfully coupled to continuum gas-phase. Though all the results presented in the thesis are two-dimensional, the present implementation is completely three dimensional and can be used to study 3D fluidized beds to aid in better design and understanding. Other industrially important phenomena like particle coating, coal gasification etc., and applications in emerging areas such as nano-particle/fluid mixtures can also be studied through this type of simulation. (Abstract shortened by UMI.)
Testing the Contingency Theory of Accommodation in Public Relations.
ERIC Educational Resources Information Center
Cancel, Amanda E.; Mitrook, Michael A.; Cameron, Glen T.
1999-01-01
Interviews 18 public-relations professionals to provide grounding and refinement of the contingency theory of accommodation in public relations. Supports a continuum from pure accommodation to pure advocacy and a matrix of variables affecting the continuum. Concludes that the practitioners' view of their communication world offers validity to the…
The Need for a Kinetics for Biological Transport
Schindler, A. M.; Iberall, A. S.
1973-01-01
The traditional theory of transport across capillary membranes via a laminar Poiseuille flow is shown to be invalid. It is demonstrated that the random, diffusive nature of the molecular flow and interactions with the “pore” walls play an important role in the transport process. Neither the continuum Navier-Stokes theory nor the equivalent theory of irreversible thermodynamics is adequate to treat the problem. Combination of near-continuum hydrodynamic theory, noncontinuum kinetic theory, and the theory of fluctuations provides a first step toward modeling both liquid processes in general and membrane transport processes as a specific application. PMID:4726880
Simulation and theory of spontaneous TAE frequency sweeping
NASA Astrophysics Data System (ADS)
Wang, Ge; Berk, H. L.
2012-09-01
A simulation model, based on the linear tip model of Rosenbluth, Berk and Van Dam (RBV), is developed to study frequency sweeping of toroidal Alfvén eigenmodes (TAEs). The time response of the background wave in the RBV model is given by a Volterra integral equation. This model captures the properties of TAE waves both in the gap and in the continuum. The simulation shows that phase space structures form spontaneously at frequencies close to the linearly predicted frequency, due to resonant particle-wave interactions and background dissipation. The frequency sweeping signals are found to chirp towards the upper and lower continua. However, the chirping signals penetrate only the lower continuum, whereupon the frequency chirps and mode amplitude increases in synchronism to produce an explosive solution. An adiabatic theory describing the evolution of a chirping signal is developed which replicates the chirping dynamics of the simulation in the lower continuum. This theory predicts that a decaying chirping signal will terminate at the upper continuum though in the numerical simulation the hole disintegrates before the upper continuum is reached.
Coarse-Grained Molecular Monte Carlo Simulations of Liquid Crystal-Nanoparticle Mixtures
NASA Astrophysics Data System (ADS)
Neufeld, Ryan; Kimaev, Grigoriy; Fu, Fred; Abukhdeir, Nasser M.
Coarse-grained intermolecular potentials have proven capable of capturing essential details of interactions between complex molecules, while substantially reducing the number of degrees of freedom of the system under study. In the domain of liquid crystals, the Gay-Berne (GB) potential has been successfully used to model the behavior of rod-like and disk-like mesogens. However, only ellipsoid-like interaction potentials can be described with GB, making it a poor fit for many real-world mesogens. In this work, the results of Monte Carlo simulations of liquid crystal domains using the Zewdie-Corner (ZC) potential are presented. The ZC potential is constructed from an orthogonal series of basis functions, allowing for potentials of essentially arbitrary shapes to be modeled. We also present simulations of mixtures of liquid crystalline mesogens with nanoparticles. Experimentally these mixtures have been observed to exhibit microphase separation and formation of long-range networks under some conditions. This highlights the need for a coarse-grained approach which can capture salient details on the molecular scale while simulating sufficiently large domains to observe these phenomena. We compare the phase behavior of our simulations with that of a recently presented continuum theory. This work was made possible by the Natural Sciences and Engineering Research Council of Canada and Compute Ontario.
NASA Astrophysics Data System (ADS)
Jalali, Payman; Hyppänen, Timo
2017-06-01
In loose or moderately-dense particle mixtures, the contact forces between particles due to successive collisions create average volumetric solid-solid drag force between different granular phases (of different particle sizes). The derivation of the mathematical formula for this drag force is based on the homogeneity of mixture within the calculational control volume. This assumption especially fails when the size ratio of particles grows to a large value of 10 or greater. The size-driven inhomogeneity is responsible to the deviation of intergranular force from the continuum formula. In this paper, we have implemented discrete element method (DEM) simulations to obtain the volumetric mean force exchanged between the granular phases with the size ratios greater than 10. First, the force is calculated directly from DEM averaged over a proper time window. Second, the continuum formula is applied to calculate the drag forces using the DEM quantities. We have shown the two volumetric forces are in good agreement as long as the homogeneity condition is maintained. However, the relative motion of larger particles in a cloud of finer particles imposes the inhomogeneous distribution of finer particles around the larger ones. We have presented correction factors to the volumetric force from continuum formula.
Choe, Seungho; Hecht, Karen A.; Grabe, Michael
2008-01-01
Continuum electrostatic approaches have been extremely successful at describing the charged nature of soluble proteins and how they interact with binding partners. However, it is unclear whether continuum methods can be used to quantitatively understand the energetics of membrane protein insertion and stability. Recent translation experiments suggest that the energy required to insert charged peptides into membranes is much smaller than predicted by present continuum theories. Atomistic simulations have pointed to bilayer inhomogeneity and membrane deformation around buried charged groups as two critical features that are neglected in simpler models. Here, we develop a fully continuum method that circumvents both of these shortcomings by using elasticity theory to determine the shape of the deformed membrane and then subsequently uses this shape to carry out continuum electrostatics calculations. Our method does an excellent job of quantitatively matching results from detailed molecular dynamics simulations at a tiny fraction of the computational cost. We expect that this method will be ideal for studying large membrane protein complexes. PMID:18474636
Continuum percolation of polydisperse rods in quadrupole fields: Theory and simulations.
Finner, Shari P; Kotsev, Mihail I; Miller, Mark A; van der Schoot, Paul
2018-01-21
We investigate percolation in mixtures of nanorods in the presence of external fields that align or disalign the particles with the field axis. Such conditions are found in the formulation and processing of nanocomposites, where the field may be electric, magnetic, or due to elongational flow. Our focus is on the effect of length polydispersity, which-in the absence of a field-is known to produce a percolation threshold that scales with the inverse weight average of the particle length. Using a model of non-interacting spherocylinders in conjunction with connectedness percolation theory, we show that a quadrupolar field always increases the percolation threshold and that the universal scaling with the inverse weight average no longer holds if the field couples to the particle length. Instead, the percolation threshold becomes a function of higher moments of the length distribution, where the order of the relevant moments crucially depends on the strength and type of field applied. The theoretical predictions compare well with the results of our Monte Carlo simulations, which eliminate finite size effects by exploiting the fact that the universal scaling of the wrapping probability function holds even in anisotropic systems. Theory and simulation demonstrate that the percolation threshold of a polydisperse mixture can be lower than that of the individual components, confirming recent work based on a mapping onto a Bethe lattice as well as earlier computer simulations involving dipole fields. Our work shows how the formulation of nanocomposites may be used to compensate for the adverse effects of aligning fields that are inevitable under practical manufacturing conditions.
Continuum percolation of polydisperse rods in quadrupole fields: Theory and simulations
NASA Astrophysics Data System (ADS)
Finner, Shari P.; Kotsev, Mihail I.; Miller, Mark A.; van der Schoot, Paul
2018-01-01
We investigate percolation in mixtures of nanorods in the presence of external fields that align or disalign the particles with the field axis. Such conditions are found in the formulation and processing of nanocomposites, where the field may be electric, magnetic, or due to elongational flow. Our focus is on the effect of length polydispersity, which—in the absence of a field—is known to produce a percolation threshold that scales with the inverse weight average of the particle length. Using a model of non-interacting spherocylinders in conjunction with connectedness percolation theory, we show that a quadrupolar field always increases the percolation threshold and that the universal scaling with the inverse weight average no longer holds if the field couples to the particle length. Instead, the percolation threshold becomes a function of higher moments of the length distribution, where the order of the relevant moments crucially depends on the strength and type of field applied. The theoretical predictions compare well with the results of our Monte Carlo simulations, which eliminate finite size effects by exploiting the fact that the universal scaling of the wrapping probability function holds even in anisotropic systems. Theory and simulation demonstrate that the percolation threshold of a polydisperse mixture can be lower than that of the individual components, confirming recent work based on a mapping onto a Bethe lattice as well as earlier computer simulations involving dipole fields. Our work shows how the formulation of nanocomposites may be used to compensate for the adverse effects of aligning fields that are inevitable under practical manufacturing conditions.
Modeling of nanoscale liquid mixture transport by density functional hydrodynamics
NASA Astrophysics Data System (ADS)
Dinariev, Oleg Yu.; Evseev, Nikolay V.
2017-06-01
Modeling of multiphase compositional hydrodynamics at nanoscale is performed by means of density functional hydrodynamics (DFH). DFH is the method based on density functional theory and continuum mechanics. This method has been developed by the authors over 20 years and used for modeling in various multiphase hydrodynamic applications. In this paper, DFH was further extended to encompass phenomena inherent in liquids at nanoscale. The new DFH extension is based on the introduction of external potentials for chemical components. These potentials are localized in the vicinity of solid surfaces and take account of the van der Waals forces. A set of numerical examples, including disjoining pressure, film precursors, anomalous rheology, liquid in contact with heterogeneous surface, capillary condensation, and forward and reverse osmosis, is presented to demonstrate modeling capabilities.
Emergent vortices in populations of colloidal rollers
Bricard, Antoine; Caussin, Jean-Baptiste; Das, Debasish; Savoie, Charles; Chikkadi, Vijayakumar; Shitara, Kyohei; Chepizhko, Oleksandr; Peruani, Fernando; Saintillan, David; Bartolo, Denis
2015-01-01
Coherent vortical motion has been reported in a wide variety of populations including living organisms (bacteria, fishes, human crowds) and synthetic active matter (shaken grains, mixtures of biopolymers), yet a unified description of the formation and structure of this pattern remains lacking. Here we report the self-organization of motile colloids into a macroscopic steadily rotating vortex. Combining physical experiments and numerical simulations, we elucidate this collective behaviour. We demonstrate that the emergent-vortex structure lives on the verge of a phase separation, and single out the very constituents responsible for this state of polar active matter. Building on this observation, we establish a continuum theory and lay out a strong foundation for the description of vortical collective motion in a broad class of motile populations constrained by geometrical boundaries. PMID:26088835
Petsev, Nikolai Dimitrov; Leal, L. Gary; Shell, M. Scott
2017-12-21
Hybrid molecular-continuum simulation techniques afford a number of advantages for problems in the rapidly burgeoning area of nanoscale engineering and technology, though they are typically quite complex to implement and limited to single-component fluid systems. We describe an approach for modeling multicomponent hydrodynamic problems spanning multiple length scales when using particle-based descriptions for both the finely-resolved (e.g. molecular dynamics) and coarse-grained (e.g. continuum) subregions within an overall simulation domain. This technique is based on the multiscale methodology previously developed for mesoscale binary fluids [N. D. Petsev, L. G. Leal, and M. S. Shell, J. Chem. Phys. 144, 84115 (2016)], simulatedmore » using a particle-based continuum method known as smoothed dissipative particle dynamics (SDPD). An important application of this approach is the ability to perform coupled molecular dynamics (MD) and continuum modeling of molecularly miscible binary mixtures. In order to validate this technique, we investigate multicomponent hybrid MD-continuum simulations at equilibrium, as well as non-equilibrium cases featuring concentration gradients.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petsev, Nikolai Dimitrov; Leal, L. Gary; Shell, M. Scott
Hybrid molecular-continuum simulation techniques afford a number of advantages for problems in the rapidly burgeoning area of nanoscale engineering and technology, though they are typically quite complex to implement and limited to single-component fluid systems. We describe an approach for modeling multicomponent hydrodynamic problems spanning multiple length scales when using particle-based descriptions for both the finely-resolved (e.g. molecular dynamics) and coarse-grained (e.g. continuum) subregions within an overall simulation domain. This technique is based on the multiscale methodology previously developed for mesoscale binary fluids [N. D. Petsev, L. G. Leal, and M. S. Shell, J. Chem. Phys. 144, 84115 (2016)], simulatedmore » using a particle-based continuum method known as smoothed dissipative particle dynamics (SDPD). An important application of this approach is the ability to perform coupled molecular dynamics (MD) and continuum modeling of molecularly miscible binary mixtures. In order to validate this technique, we investigate multicomponent hybrid MD-continuum simulations at equilibrium, as well as non-equilibrium cases featuring concentration gradients.« less
ERIC Educational Resources Information Center
Topczewski, Anna Marie
2013-01-01
Developmental score scales represent the performance of students along a continuum, where as students learn more they move higher along that continuum. Unidimensional item response theory (UIRT) vertical scaling has become a commonly used method to create developmental score scales. Research has shown that UIRT vertical scaling methods can be…
Academic Motivation of the First-Year University Students and the Self-Determination Theory
ERIC Educational Resources Information Center
Koseoglu, Yaman
2013-01-01
The Self Determination Theory has identified various types of motivation along a continuum from weakest to strongest. Yet, until recently, no reliable method existed to measure accurately the strength of motivation along this continuum. Vallerand et al. (1992) developed the Academic Motivation Scale (AMS) to measure the validity of the Self…
Shape dependence of two-cylinder Rényi entropies for free bosons on a lattice
NASA Astrophysics Data System (ADS)
Chojnacki, Leilee; Cook, Caleb Q.; Dalidovich, Denis; Hayward Sierens, Lauren E.; Lantagne-Hurtubise, Étienne; Melko, Roger G.; Vlaar, Tiffany J.
2016-10-01
Universal scaling terms occurring in Rényi entanglement entropies have the potential to bring new understanding to quantum critical points in free and interacting systems. Quantitative comparisons between analytical continuum theories and numerical calculations on lattice models play a crucial role in advancing such studies. In this paper, we exactly calculate the universal two-cylinder shape dependence of entanglement entropies for free bosons on finite-size square lattices, and compare to approximate functions derived in the continuum using several different Ansätze. Although none of these Ansätze are exact in the thermodynamic limit, we find that numerical fits are in good agreement with continuum functions derived using the anti-de Sitter/conformal field theory correspondence, an extensive mutual information model, and a quantum Lifshitz model. We use fits of our lattice data to these functions to calculate universal scalars defined in the thin-cylinder limit, and compare to values previously obtained for the free boson field theory in the continuum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chason, E.; Chan, W. L.; Bharathi, M. S.
Low-energy ion bombardment produces spontaneous periodic structures (sputter ripples) on many surfaces. Continuum theories describe the pattern formation in terms of ion-surface interactions and surface relaxation kinetics, but many features of these models (such as defect concentration) are unknown or difficult to determine. In this work, we present results of kinetic Monte Carlo simulations that model surface evolution using discrete atomistic versions of the physical processes included in the continuum theories. From simulations over a range of parameters, we obtain the dependence of the ripple growth rate, wavelength, and velocity on the ion flux and temperature. The results are discussedmore » in terms of the thermally dependent concentration and diffusivity of ion-induced surface defects. We find that in the early stages of ripple formation the simulation results are surprisingly well described by the predictions of the continuum theory, in spite of simplifying approximations used in the continuum model.« less
Quantum theory of continuum optomechanics
NASA Astrophysics Data System (ADS)
Rakich, Peter; Marquardt, Florian
2018-04-01
We present the basic ingredients of continuum optomechanics, i.e. the suitable extension of cavity-optomechanical concepts to the interaction of photons and phonons in an extended waveguide. We introduce a real-space picture and argue which coupling terms may arise in leading order in the spatial derivatives. This picture allows us to discuss quantum noise, dissipation, and the correct boundary conditions at the waveguide entrance. The connections both to optomechanical arrays as well as to the theory of Brillouin scattering in waveguides are highlighted. Among other examples, we analyze the ‘strong coupling regime’ of continuum optomechanics that may be accessible in future experiments.
Dielectric Self-Energy in Poisson-Boltzmann and Poisson-Nernst-Planck Models of Ion Channels
Corry, Ben; Kuyucak, Serdar; Chung, Shin-Ho
2003-01-01
We demonstrated previously that the two continuum theories widely used in modeling biological ion channels give unreliable results when the radius of the conduit is less than two Debye lengths. The reason for this failure is the neglect of surface charges on the protein wall induced by permeating ions. Here we attempt to improve the accuracy of the Poisson-Boltzmann and Poisson-Nernst-Planck theories, when applied to channel-like environments, by including a specific dielectric self-energy term to overcome spurious shielding effects inherent in these theories. By comparing results with Brownian dynamics simulations, we show that the inclusion of an additional term in the equations yields significant qualitative improvements. The modified theories perform well in very wide and very narrow channels, but are less successful at intermediate sizes. The situation is worse in multi-ion channels because of the inability of the continuum theories to handle the ion-to-ion interactions correctly. Thus, further work is required if these continuum theories are to be reliably salvaged for quantitative studies of biological ion channels in all situations. PMID:12770869
Two-dimensional N = 2 Super-Yang-Mills Theory
NASA Astrophysics Data System (ADS)
August, Daniel; Wellegehausen, Björn; Wipf, Andreas
2018-03-01
Supersymmetry is one of the possible scenarios for physics beyond the standard model. The building blocks of this scenario are supersymmetric gauge theories. In our work we study the N = 1 Super-Yang-Mills (SYM) theory with gauge group SU(2) dimensionally reduced to two-dimensional N = 2 SYM theory. In our lattice formulation we break supersymmetry and chiral symmetry explicitly while preserving R symmetry. By fine tuning the bar-mass of the fermions in the Lagrangian we construct a supersymmetric continuum theory. To this aim we carefully investigate mass spectra and Ward identities, which both show a clear signal of supersymmetry restoration in the continuum limit.
ERIC Educational Resources Information Center
Cummings, E. Mark
2003-01-01
Advocates renewed efforts toward assessing attachment on a single continuum of emotional security. Contends that theory is essential to guide attachment assessment and that the constructs of secure base and emotional security provide the needed conceptual foundation. Addresses challenges to the scoring of attachment on a security continuum.…
Generation of nonthermal continuum radiation in the magnetosphere
NASA Technical Reports Server (NTRS)
Okuda, H.; Chance, M. S.; Ashour-Abdalla, M.; Kurth, W. S.
1982-01-01
Generation of electromagnetic continuum radiation from electrostatic fluctuations near the upper hybrid resonance frequency has been calculated by using cold plasma theory in an inhomogeneous plasma near the plasmapause. It is shown that both the polarization and the amplitude of electromagnetic radiation are in good quantitative agreement with spacecraft observations for nonthermal continuum radiation.
Müller, Sean; Vallence, Ann-Maree; Winstein, Carolee
2017-12-14
A framework is presented of how theoretical predictions can be tested across the expert athlete to disabled patient skill continuum. Common-coding theory is used as the exemplar to discuss sensory and motor system contributions to perceptual-motor behavior. Behavioral and neural studies investigating expert athletes and patients recovering from cerebral stroke are reviewed. They provide evidence of bi-directional contributions of visual and motor systems to perceptual-motor behavior. Majority of this research is focused on perceptual-motor performance or learning, with less on transfer. The field is ripe for research designed to test theoretical predictions across the expert athlete to disabled patient skill continuum. Our view has implications for theory and practice in sports science, physical education, and rehabilitation.
Bonthuis, Douwe Jan; Netz, Roland R
2013-10-03
Standard continuum theory fails to predict several key experimental results of electrostatic and electrokinetic measurements at aqueous electrolyte interfaces. In order to extend the continuum theory to include the effects of molecular solvent structure, we generalize the equations for electrokinetic transport to incorporate a space dependent dielectric profile, viscosity profile, and non-electrostatic interaction potential. All necessary profiles are extracted from atomistic molecular dynamics (MD) simulations. We show that the MD results for the ion-specific distribution of counterions at charged hydrophilic and hydrophobic interfaces are accurately reproduced using the dielectric profile of pure water and a non-electrostatic repulsion in an extended Poisson-Boltzmann equation. The distributions of Na(+) at both surface types and Cl(-) at hydrophilic surfaces can be modeled using linear dielectric response theory, whereas for Cl(-) at hydrophobic surfaces it is necessary to apply nonlinear response theory. The extended Poisson-Boltzmann equation reproduces the experimental values of the double-layer capacitance for many different carbon-based surfaces. In conjunction with a generalized hydrodynamic theory that accounts for a space dependent viscosity, the model captures the experimentally observed saturation of the electrokinetic mobility as a function of the bare surface charge density and the so-called anomalous double-layer conductivity. The two-scale approach employed here-MD simulations and continuum theory-constitutes a successful modeling scheme, providing basic insight into the molecular origins of the static and kinetic properties of charged surfaces, and allowing quantitative modeling at low computational cost.
A continuum deformation theory for metal-matrix composites at high temperature
NASA Technical Reports Server (NTRS)
Robinson, D. N.
1987-01-01
A continuum theory is presented for representing the high temperature, time dependent, hereditary deformation behavior of metallic composites that can be idealized as pseudohomogeneous continua with locally definable directional characteristics. Homogenization of textured materials (molecular, granular, fibrous) and applicability of continuum mechanics in structural applications depends on characteristic body dimensions, the severity of gradients (stress, temperature, etc.) in the structure and the relative size of the internal structure (cell size) of the material. The point of view taken here is that the composite is a material in its own right, with its own properties that can be measured and specified for the composite as a whole.
Thellamurege, Nandun M; Cui, Fengchao; Li, Hui
2013-08-28
A combined quantum mechanical/molecular mechanical/continuum (QM/MMpol/C) style method is developed for time-dependent density functional theory (TDDFT, including long-range corrected TDDFT) method, induced dipole polarizable force field, and induced surface charge continuum model. Induced dipoles and induced charges are included in the TDDFT equations to solve for the transition energies, relaxed density, and transition density. Analytic gradient is derived and implemented for geometry optimization and molecular dynamics simulation. QM/MMpol/C style DFT and TDDFT methods are used to study the hydrogen bonding of the photoactive yellow protein chromopore in ground state and excited state.
NASA Technical Reports Server (NTRS)
Lakes, R.
1991-01-01
Continuum representations of micromechanical phenomena in structured materials are described, with emphasis on cellular solids. These phenomena are interpreted in light of Cosserat elasticity, a generalized continuum theory which admits degrees of freedom not present in classical elasticity. These are the rotation of points in the material, and a couple per unit area or couple stress. Experimental work in this area is reviewed, and other interpretation schemes are discussed. The applicability of Cosserat elasticity to cellular solids and fibrous composite materials is considered as is the application of related generalized continuum theories. New experimental results are presented for foam materials with negative Poisson's ratios.
Determination of the water vapor continuum absorption by THz-TDS and Molecular Response Theory.
Yang, Yihong; Mandehgar, Mahboubeh; Grischkowsky, D
2014-02-24
Determination of the water vapor continuum absorption from 0.35 to 1 THz is reported. The THz pulses propagate though a 137 m long humidity-controlled chamber and are measured by THz time-domain spectroscopy (THz-TDS). The average relative humidity along the entire THz path is precisely obtained by measuring the difference between transit times of the sample and reference THz pulses to an accuracy of 0.1 ps. Using the measured total absorption and the calculated resonance line absorption with the Molecular Response Theory lineshape, based on physical principles and measurements, an accurate continuum absorption is obtained within four THz absorption windows, that agrees well with the empirical theory. The absorption is significantly smaller than that obtained using the van Vleck-Weisskopf lineshape with a 750 GHz cut-off.
From Solvent-Free to Dilute Electrolytes: Essential Components for a Continuum Theory.
Gavish, Nir; Elad, Doron; Yochelis, Arik
2018-01-04
The increasing number of experimental observations on highly concentrated electrolytes and ionic liquids show qualitative features that are distinct from dilute or moderately concentrated electrolytes, such as self-assembly, multiple-time relaxation, and underscreening, which all impact the emergence of fluid/solid interfaces, and the transport in these systems. Because these phenomena are not captured by existing mean-field models of electrolytes, there is a paramount need for a continuum framework for highly concentrated electrolytes and ionic liquid mixtures. In this work, we present a self-consistent spatiotemporal framework for a ternary composition that comprises ions and solvent employing a free energy that consists of short- and long-range interactions, along with an energy dissipation mechanism obtained by Onsager's relations. We show that the model can describe multiple bulk and interfacial morphologies at steady-state. Thus, the dynamic processes in the emergence of distinct morphologies become equally as important as the interactions that are specified by the free energy. The model equations not only provide insights into transport mechanisms beyond the Stokes-Einstein-Smoluchowski relations but also enable qualitative recovery of three distinct regions in the full range of the nonmonotonic electrical screening length that has been recently observed in experiments in which organic solvent is used to dilute ionic liquids.
Models of electroosmotic flow in micro- and nanochannels
NASA Astrophysics Data System (ADS)
Zheng, Z.; Conlisk, A. T.; Sadr, R.; Yoda, M.
2003-11-01
Understanding electrooosmotic flow (EOF) is essential for developing efficient drug delivery and rapid biomolecular analysis devices given the extremely high pressure gradients required to drive flows through channels smaller than about 10 μ m. We consider fully-developed and steady EOF in one- and two-dimensional micro- and nanochannel geometries. The fluid, which is assumed to behave as a continuum, is a mixture of a neutral solvent such as water and a salt where the ionic species are entirely dissociated. The model can be used to analyze EOF where the opposite channel walls are oppositely charged and EOF with arbitrary electric double layer thickness. Unlike most previous models which assume a wall ζ -potential a priori, the model calculates the boundary conditions for the (wall) mole fractions using the equilibrium electrochemical potential in the upstream reservoir. We can therefore predict the wall ζ -potential, and calculate EOF with spatially and temporally varying wall ζ -potentials. The model results for electroosmotic mobility and volumetric flow rate are compared with those from three independent experimental datasets, and found to be in good agreement with all three sets of experimental data for channel sizes ranging from O(10 nm) to O(10 μ m). The limits of the continuum theory for EOF are discussed.
On deformation of complex continuum immersed in a plane space
NASA Astrophysics Data System (ADS)
Kovalev, V. A.; Murashkin, E. V.; Radayev, Y. N.
2018-05-01
The present paper is devoted to mathematical modelling of complex continua deformations considered as immersed in an external plane space. The complex continuum is defined as a differential manifold supplied with metrics induced by the external space. A systematic derivation of strain tensors by notion of isometric immersion of the complex continuum into a plane space of a higher dimension is proposed. Problem of establishing complete systems of irreducible objective strain and extrastrain tensors for complex continuum immersed in an external plane space is resolved. The solution to the problem is obtained by methods of the field theory and the theory of rational algebraic invariants. Strain tensors of the complex continuum are derived as irreducible algebraic invariants of contravariant vectors of the external space emerging as functional arguments in the complex continuum action density. Present analysis is restricted to rational algebraic invariants. Completeness of the considered systems of rational algebraic invariants is established for micropolar elastic continua. Rational syzygies for non-quadratic invariants are discussed. Objective strain tensors (indifferent to frame rotations in the external plane space) for micropolar continuum are alternatively obtained by properly combining multipliers of polar decompositions of deformation and extra-deformation gradients. The latter is realized only for continua immersed in a plane space of the equal mathematical dimension.
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, R. H.
1991-01-01
The present theory for the continuous absorption that is due to the far-wing contribution of allowed lines is based on the quasistatic approximation for the far wing limit and the binary collision approximation of one absorber molecule and one bath molecule. The validity of the theory is discussed, and numerical results of the water-continuum absorption in the IR region are presented for comparison with experimental data. Good agreement is obtained for both the magnitude and temperature dependence of the absorption coefficients.
2012-09-01
Feasibility (MT Modeling ) a. Continuum of mixture distributions interpolated b. Mixture infeasibilities calculated for each pixel c. Valid detections...Visible/Infrared Imaging Spectrometer BRDF Bidirectional Reflectance Distribution Function CASI Compact Airborne Spectrographic Imager CCD...filtering (MTMF), and was designed by Healey and Slater (1999) to use “a physical model to generate the set of sensor spectra for a target that will be
NASA Astrophysics Data System (ADS)
Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard
2016-08-01
Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.
Continuum approaches for describing solid-gas and solid-liquid flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, P.; Harvey, J.; Levine, H.
Two-phase continuum models have been used to describe the multiphase flow properties of solid-gas and solid-liquid mixtures. The approach is limited in that it requires many fitting functions and parameters to be determined empirically, and it does not provide natural explanations for some of the qualitative behavior of solid-fluid flow. In this report, we explore a more recent single-phase continuum model proposed by Jenkins and Savage to describe granular flow. Jenkins and McTigue have proposed a modified model to describe the flow of dense suspensions, and hence, many of our results can be straight-forwardly extended to this flow regime asmore » well. The solid-fluid mixture is treated as a homogeneous, compressible fluid in which the particle fluctuations about the mean flow are described in terms of an effective temperature. The particle collisions are treated as inelastic. After an introduction in which we briefly comment on the present status of the field, we describe the details of the single-phase continuum model and analyze the microscopic and macroscopic flow conditions required for the approach to be valid. We then derive numerous qualitative predictions which can be empirically verified in small-scale experiments: The flow profiles are computed for simple boundary conditions, plane Couette flow and channel flow. Segregaion effects when there are two (or more) particle size are considered. The acoustic dispersion relation is derived and shown to predict that granular flow is supersonic. We point out that the analysis of flow instabilities is complicated by the finite compressibility of the solid-fluid mixture. For example, the large compressibility leads to interchange (Rayleigh-Taylor instabilities) in addition to the usual angular momentum interchange in standard (cylindrical) Couette flow. We conclude by describing some of the advantages and limitations of experimental techniques that might be used to test predictions for solid-fluid flow. 19 refs.« less
Multiscale modeling of lithium ion batteries: thermal aspects
Zausch, Jochen
2015-01-01
Summary The thermal behavior of lithium ion batteries has a huge impact on their lifetime and the initiation of degradation processes. The development of hot spots or large local overpotentials leading, e.g., to lithium metal deposition depends on material properties as well as on the nano- und microstructure of the electrodes. In recent years a theoretical structure emerges, which opens the possibility to establish a systematic modeling strategy from atomistic to continuum scale to capture and couple the relevant phenomena on each scale. We outline the building blocks for such a systematic approach and discuss in detail a rigorous approach for the continuum scale based on rational thermodynamics and homogenization theories. Our focus is on the development of a systematic thermodynamically consistent theory for thermal phenomena in batteries at the microstructure scale and at the cell scale. We discuss the importance of carefully defining the continuum fields for being able to compare seemingly different phenomenological theories and for obtaining rules to determine unknown parameters of the theory by experiments or lower-scale theories. The resulting continuum models for the microscopic and the cell scale are numerically solved in full 3D resolution. The complex very localized distributions of heat sources in a microstructure of a battery and the problems of mapping these localized sources on an averaged porous electrode model are discussed by comparing the detailed 3D microstructure-resolved simulations of the heat distribution with the result of the upscaled porous electrode model. It is shown, that not all heat sources that exist on the microstructure scale are represented in the averaged theory due to subtle cancellation effects of interface and bulk heat sources. Nevertheless, we find that in special cases the averaged thermal behavior can be captured very well by porous electrode theory. PMID:25977870
Testing continuum descriptions of low-Mach-number shock structures
NASA Technical Reports Server (NTRS)
Pham-Van-diep, Gerald C.; Erwin, Daniel A.; Muntz, E. P.
1991-01-01
Numerical experiments have been performed on normal shock waves with Monte Carlo Direct Simulations (MCDS's) to investigate the validity of continuum theories at very low Mach numbers. Results from the Navier-Stokes and the Burnett equations are compared to MCDS's for both hard-sphere and Maxwell gases. It is found that the maximum-slope shock thicknesses are described equally well (within the MCDS computational scatter) by either of the continuum formulations for Mach numbers smaller than about 1.2. For Mach numbers greater that 1.2, the Burnett predictions are more accurate than the Navier-Stokes results. Temperature-density profile separations are best described by the Burnett equations for Mach numbers greater than about 1.3. At lower Mach numbers the MCDS scatter is too great to differentiate between the two continuum theories. For all Mach numbers above one, the shock shapes are more accurately described by the Burnett equations.
Bound states in the continuum on periodic structures: perturbation theory and robustness.
Yuan, Lijun; Lu, Ya Yan
2017-11-01
On periodic structures, a bound state in the continuum (BIC) is a standing or propagating Bloch wave with a frequency in the radiation continuum. Some BICs (e.g., antisymmetric standing waves) are symmetry protected, since they have incompatible symmetry with outgoing waves in the radiation channels. The propagating BICs do not have this symmetry mismatch, but they still crucially depend on the symmetry of the structure. In this Letter, a perturbation theory is developed for propagating BICs on two-dimensional periodic structures. The Letter shows that these BICs are robust against structural perturbations that preserve the symmetry, indicating that these BICs, in fact, are implicitly protected by symmetry.
Shedge, Sapana V; Zhou, Xiuwen; Wesolowski, Tomasz A
2014-09-01
Recent application of the Frozen-Density Embedding Theory based continuum model of the solvent, which is used for calculating solvatochromic shifts in the UV/Vis range, are reviewed. In this model, the solvent is represented as a non-uniform continuum taking into account both the statistical nature of the solvent and specific solute-solvent interactions. It offers, therefore, a computationally attractive alternative to methods in which the solvent is described at atomistic level. The evaluation of the solvatochromic shift involves only two calculations of excitation energy instead of at least hundreds needed to account for inhomogeneous broadening. The present review provides a detailed graphical analysis of the key quantities of this model: the average charge density of the solvent (<ρB>) and the corresponding Frozen-Density Embedding Theory derived embedding potential for coumarin 153.
Equivalence of meson scattering amplitudes in strong coupling lattice and flat space string theory
NASA Astrophysics Data System (ADS)
Armoni, Adi; Ireson, Edwin; Vadacchino, Davide
2018-03-01
We consider meson scattering in the framework of the lattice strong coupling expansion. In particular we derive an expression for the 4-point function of meson operators in the planar limit of scalar Chromodynamics. Interestingly, in the naive continuum limit the expression coincides with an independently known result, that of the worldline formalism. Moreover, it was argued by Makeenko and Olesen that (assuming confinement) the resulting scattering amplitude in momentum space is the celebrated expression proposed by Veneziano several decades ago. This motivates us to also use holography in order to argue that the continuum expression for the scattering amplitude is related to the result obtained from flat space string theory. Our results hint that at strong coupling and large-Nc the naive continuum limit of the lattice formalism can be related to a flat space string theory.
NASA Technical Reports Server (NTRS)
Sabol, Donald E., Jr.; Adams, John B.; Smith, Milton O.
1992-01-01
The conditions that affect the spectral detection of target materials at the subpixel scale are examined. Two levels of spectral mixture analysis for determining threshold detection limits of target materials in a spectral mixture are presented, the cases where the target is detected as: (1) a component of a spectral mixture (continuum threshold analysis) and (2) residuals (residual threshold analysis). The results of these two analyses are compared under various measurement conditions. The examples illustrate the general approach that can be used for evaluating the spectral detectability of terrestrial and planetary targets at the subpixel scale.
Mirrored continuum and molecular scale simulations of the ignition of gamma phase RDX
NASA Astrophysics Data System (ADS)
Stewart, D. Scott; Chaudhuri, Santanu; Joshi, Kaushik; Lee, Kiabek
2015-06-01
We consider the ignition of a high-pressure gamma-phase of an explosive crystal of RDX which forms during overdriven shock initiation. Molecular dynamics (MD), with first-principles based or reactive force field based molecular potentials, provides a description of the chemistry as an extremely complex reaction network. The results of the molecular simulation is analyzed by sorting molecular product fragments into high and low molecular groups, to represent identifiable components that can be interpreted by a continuum model. A continuum model based on a Gibbs formulation, that has a single temperature and stress state for the mixture is used to represent the same RDX material and its chemistry. Each component in the continuum model has a corresponding Gibbs continuum potential, that are in turn inferred from molecular MD informed equation of state libraries such as CHEETAH, or are directly simulated by Monte Carlo MD simulations. Information about transport, kinetic rates and diffusion are derived from the MD simulation and the growth of a reactive hot spot in the RDX is studied with both simulations that mirror the other results to provide an essential, continuum/atomistic link. Supported by N000014-12-1-0555, subaward-36561937 (ONR).
Mixture theory-based poroelasticity as a model of interstitial tissue growth
Cowin, Stephen C.; Cardoso, Luis
2011-01-01
This contribution presents an alternative approach to mixture theory-based poroelasticity by transferring some poroelastic concepts developed by Maurice Biot to mixture theory. These concepts are a larger RVE and the subRVE-RVE velocity average tensor, which Biot called the micro-macro velocity average tensor. This velocity average tensor is assumed here to depend upon the pore structure fabric. The formulation of mixture theory presented is directed toward the modeling of interstitial growth, that is to say changing mass and changing density of an organism. Traditional mixture theory considers constituents to be open systems, but the entire mixture is a closed system. In this development the mixture is also considered to be an open system as an alternative method of modeling growth. Growth is slow and accelerations are neglected in the applications. The velocity of a solid constituent is employed as the main reference velocity in preference to the mean velocity concept from the original formulation of mixture theory. The standard development of statements of the conservation principles and entropy inequality employed in mixture theory are modified to account for these kinematic changes and to allow for supplies of mass, momentum and energy to each constituent and to the mixture as a whole. The objective is to establish a basis for the development of constitutive equations for growth of tissues. PMID:22184481
Mixture theory-based poroelasticity as a model of interstitial tissue growth.
Cowin, Stephen C; Cardoso, Luis
2012-01-01
This contribution presents an alternative approach to mixture theory-based poroelasticity by transferring some poroelastic concepts developed by Maurice Biot to mixture theory. These concepts are a larger RVE and the subRVE-RVE velocity average tensor, which Biot called the micro-macro velocity average tensor. This velocity average tensor is assumed here to depend upon the pore structure fabric. The formulation of mixture theory presented is directed toward the modeling of interstitial growth, that is to say changing mass and changing density of an organism. Traditional mixture theory considers constituents to be open systems, but the entire mixture is a closed system. In this development the mixture is also considered to be an open system as an alternative method of modeling growth. Growth is slow and accelerations are neglected in the applications. The velocity of a solid constituent is employed as the main reference velocity in preference to the mean velocity concept from the original formulation of mixture theory. The standard development of statements of the conservation principles and entropy inequality employed in mixture theory are modified to account for these kinematic changes and to allow for supplies of mass, momentum and energy to each constituent and to the mixture as a whole. The objective is to establish a basis for the development of constitutive equations for growth of tissues.
Water vapor absorption in the atmospheric window at 239 GHz
NASA Technical Reports Server (NTRS)
Bauer, A.; Godon, M.; Carlier, J.; Ma, Q.
1995-01-01
Absolute absorption rates of pure water vapor and mixtures of water vapor and nitrogen have been measured in the atmospheric window at 239 GHz. The dependence on pressure as well as temperature has been obtained. The experimental data are compared with several theoretical or empirical models, and satisfactory agreement is obtained with the models involving a continuum; in the case of pure water vapor, the continuum contribution based upon recent theoretical developments gives good results. The temperature dependence is stronger than that proposed in a commonly used atmospheric transmission model.
Morphing continuum theory for turbulence: Theory, computation, and visualization.
Chen, James
2017-10-01
A high order morphing continuum theory (MCT) is introduced to model highly compressible turbulence. The theory is formulated under the rigorous framework of rational continuum mechanics. A set of linear constitutive equations and balance laws are deduced and presented from the Coleman-Noll procedure and Onsager's reciprocal relations. The governing equations are then arranged in conservation form and solved through the finite volume method with a second-order Lax-Friedrichs scheme for shock preservation. A numerical example of transonic flow over a three-dimensional bump is presented using MCT and the finite volume method. The comparison shows that MCT-based direct numerical simulation (DNS) provides a better prediction than Navier-Stokes (NS)-based DNS with less than 10% of the mesh number when compared with experiments. A MCT-based and frame-indifferent Q criterion is also derived to show the coherent eddy structure of the downstream turbulence in the numerical example. It should be emphasized that unlike the NS-based Q criterion, the MCT-based Q criterion is objective without the limitation of Galilean invariance.
ERIC Educational Resources Information Center
Cook, Margaret
2005-01-01
This paper uses aspects of "third space" theory to support the use of site-based classroom role play as a means of ensuring continuity of text construction between home and school. A hypothetical continuum of text construction between home and school is described, and it is suggested that schools wishing to support this continuum might consider…
NASA Astrophysics Data System (ADS)
Gonzales, Manny; Gurumurthy, Ashok; Gokhale, Arun; Thadhani, Naresh N.
2011-06-01
Impact-initiated anaerobic chemical reactions in Ti-Al-B reactive powder mixtures under uniaxial stress conditions are investigated using a coupled experimental/computational approach. In particular, we characterize the effects of bulk composition on the threshold impact energy to initiate reaction using rod-on-anvil type tests performed on Ti-Al-B powder compacts. Statistical volume elements (SVEs) of different bulk compositions of the powder mixtures are analyzed using the continuum hydrocode CTH to quantify the effects of strain confinement and load configuration on the overall energy of the structure. These SVEs are also validated using one-point correlation functions to characterize the volume fraction and surface area of the constituents. Based on the deformation profiles from the continuum simulations, we investigate the effect of particle size distribution and clustering of Ti and B on the threshold energy required for observed reactivity. The deformation and threshold kinetic energy of the simulated system is compared with published values of the activation energy for Ti+B reactions and Al combustion in air to assess the extent of their impact-initiated reactivity. Funded by DTRA grant No. HDTRA1-10-1-0038
Absorption by H2O and H2O-N2 mixtures at 153 GHz
NASA Technical Reports Server (NTRS)
Bauer, A.; Godon, M.; Carlier, J.; Ma, Q.; Tippings, R. H.
1993-01-01
New experimental data on and a theoretical analysis of the absorption coefficient at 153 GHz are presented for pure water vapor and water vapor-nitrogen mixtures. This frequency is 30 GHz lower than the resonant frequency of the nearest strong water line (183 GHz) and complements our previous measurements at 213 GHz. The pressure dependence is observed to be quadratic in the case of pure water vapor, while in the case of mixtures there are both linear and quadratic density components. By fitting our experimental data taken at several temperatures we have obtained the temperature dependence of the absorption. Our experimental data are compared to several theoretical models with and without a continuum contribution, and we find that none of the models is in very good agreement with the data; in the case of pure water vapor, the continuum contribution calculated using the recent theoretical absorption gives the best results. In general, the agreement between the data and the various models is less satisfactory than found previously in the high-frequency wing. The anisotropy in the observed absorption differs from that currently used in atmospheric models.
Continuum limit and symmetries of the periodic gℓ(1|1) spin chain
NASA Astrophysics Data System (ADS)
Gainutdinov, A. M.; Read, N.; Saleur, H.
2013-06-01
This paper is the first in a series devoted to the study of logarithmic conformal field theories (LCFT) in the bulk. Building on earlier work in the boundary case, our general strategy consists in analyzing the algebraic properties of lattice regularizations (quantum spin chains) of these theories. In the boundary case, a crucial step was the identification of the space of states as a bimodule over the Temperley-Lieb (TL) algebra and the quantum group Uqsℓ(2). The extension of this analysis in the bulk case involves considerable difficulties, since the Uqsℓ(2) symmetry is partly lost, while the TL algebra is replaced by a much richer version (the Jones-Temperley-Lieb — JTL — algebra). Even the simplest case of the gℓ(1|1) spin chain — corresponding to the c=-2 symplectic fermions theory in the continuum limit — presents very rich aspects, which we will discuss in several papers. In this first work, we focus on the symmetries of the spin chain, that is, the centralizer of the JTL algebra in the alternating tensor product of the gℓ(1|1) fundamental representation and its dual. We prove that this centralizer is only a subalgebra of Uqsℓ(2) at q=i that we dub Uqoddsℓ(2). We then begin the analysis of the continuum limit of the JTL algebra: using general arguments about the regularization of the stress-energy tensor, we identify families of JTL elements going over to the Virasoro generators Ln,L in the continuum limit. We then discuss the sℓ(2) symmetry of the (continuum limit) symplectic fermions theory from the lattice and JTL point of view. The analysis of the spin chain as a bimodule over Uqoddsℓ(2) and JTLN is discussed in the second paper of this series.
NASA Astrophysics Data System (ADS)
Morita, Shin-ichi; Hayamizu, Yasutaka; Inaba, Hideo
2011-06-01
The purpose of this study is the development of latent heat transport system by using the mixture of the minute latent heat storage materials and the saccharine solution as medium. The experimental studies are carried out by the evaluation of viscosity and pressure loss in a pipe. Polyethylene (P.E.) is selected as the dispersed minute material that has closeness density (920kg/m3) of ice (917kg/m3). D-sorbitol and D-xylose solutions are picked as continuum phase of the test mixture. The concentration of D-sorbitol solution is set 48mass% from measured results of saturation solubility and the melting point. 40mass% solution of D-xylose is selected as the other test continuum phase. The non-ion surfactant, EA157 Dai-ichiseiyaku CO. Ltd, is used in order to prevent of dispersed P.E. powder cohere. The pressure loss of test mixture is measured by the straight circular pipe that has smooth inner surface. The measuring length for pressure loss is 1000 mm, and the inner diameter of pipe is 15mm. The accuracy of experiment apparatus for measuring pressure loss is within ±5%. The pressure loss data is estimated by the relationship between the heat transport ratio and the required pump power. It is clarified that the optimum range of mixing ratio exists over 10mass% of latent heat storage material.
NASA Astrophysics Data System (ADS)
Eilam, A.; Shapiro, M.
2012-01-01
We present a fully quantum-mechanical theory of the mutual light-matter effects when two laser pulses interact with three discrete states coupled to a (quasi)continuum. Our formulation uses a single set of equations to describe the time dependence of the discrete and continuum populations, as well as pulse propagation in electromagnetically induced transparency (EIT) and stimulated Raman adiabatic passage (STIRAP) situations, for both weak and strong laser pulses. The theory gives a mechanistic picture of the “slowing down of light” and the state of spontaneously emitted photons during this process. Surprising features regarding the time dependence of material and radiative transients as well as limitations on quantum light storage and retrieval are unraveled.
Deformation in Metallic Glass: Connecting Atoms to Continua
NASA Astrophysics Data System (ADS)
Hinkle, Adam R.; Falk, Michael L.; Rycroft, Chris H.; Shields, Michael D.
Metallic glasses like other amorphous solids experience strain localization as the primary mode of failure. However, the development of continuum constitutive laws which provide a quantitative description of disorder and mechanical deformation remains an open challenge. Recent progress has shown the necessity of accurately capturing fluctuations in material structure, in particular the statistical changes in potential energy of the atomic constituents during the non-equilibrium process of applied shear. Here we directly cross-compare molecular dynamics shear simulations of a ZrCu glass with continuum shear transformation zone (STZ) theory representations. We present preliminary results for a methodology to coarse-grain detailed molecular dynamics data with the goal of initializing a continuum representation in the STZ theory. NSF Grants Awards 1107838, 1408685, and 0801471.
Constitutive Relationships and Models in Continuum Theories of Multiphase Flows. [conferences
NASA Technical Reports Server (NTRS)
Decker, Rand (Editor)
1989-01-01
In April, 1989, a workshop on constitutive relationships and models in continuum theories of multiphase flows was held at NASA's Marshall Space Flight Center. Topics of constitutive relationships for the partial or per phase stresses, including the concept of solid phase pressure are discussed. Models used for the exchange of mass, momentum, and energy between the phases in a multiphase flow are also discussed. The program, abstracts, and texts of the presentations from the workshop are included.
Continuum approach to the BF vacuum: The U(1) case
NASA Astrophysics Data System (ADS)
Drobiński, Patryk; Lewandowski, Jerzy
2017-12-01
A quantum representation of holonomies and exponentiated fluxes of a U(1) gauge theory that contains the Pullin-Dittrich-Geiller (DG) vacuum is presented and discussed. Our quantization is performed manifestly in a continuum theory, without any discretization. The discreteness emerges on the quantum level as a property of the spectrum of the quantum holonomy operators. The new type of a cylindrical consistency present in the DG approach now follows easily and naturally. A generalization to the non-Abelian case seems possible.
Boncina, M; Rescic, J; Kalyuzhnyi, Yu V; Vlachy, V
2007-07-21
The depletion interaction between proteins caused by addition of either uncharged or partially charged oligomers was studied using the canonical Monte Carlo simulation technique and the integral equation theory. A protein molecule was modeled in two different ways: either as (i) a hard sphere of diameter 30.0 A with net charge 0, or +5, or (ii) as a hard sphere with discrete charges (depending on the pH of solution) of diameter 45.4 A. The oligomers were pictured as tangentially jointed, uncharged, or partially charged, hard spheres. The ions of a simple electrolyte present in solution were represented by charged hard spheres distributed in the dielectric continuum. In this study we were particularly interested in changes of the protein-protein pair-distribution function, caused by addition of the oligomer component. In agreement with previous studies we found that addition of a nonadsorbing oligomer reduces the phase stability of solution, which is reflected in the shape of the protein-protein pair-distribution function. The value of this function in protein-protein contact increases with increasing oligomer concentration, and is larger for charged oligomers. The range of the depletion interaction and its strength also depend on the length (number of monomer units) of the oligomer chain. The integral equation theory, based on the Wertheim Ornstein-Zernike approach applied in this study, was found to be in fair agreement with Monte Carlo results only for very short oligomers. The computer simulations for a model mimicking the lysozyme molecule (ii) are in qualitative agreement with small-angle neutron experiments for lysozyme-dextran mixtures.
Reverberation Mapping of AGN Accretion Disks
NASA Astrophysics Data System (ADS)
Fausnaugh, Michael; AGN STORM Collaboration
2017-01-01
I will discuss new reverberation mapping results that allow us to investigate the temperature structure of AGN accretion disks. By measuring time-delays between broad-band continuum light curves, we can determine the size of the disk as a function of wavelength. I will discuss the detection of continuum lags in NGC 5548 reported by the AGN STORM project and implications for the accretion disk. I will also present evidence for continuum lags in two other AGN for which we recently measured black hole masses from continuum-Hbeta reverberations. The mass measurements allow us to compare the continuum lags to predictions from standard thin disk theory, and our results indicate that the accretion disks are larger than the simplest expectations.
NASA Technical Reports Server (NTRS)
Chulya, Abhisak; Walker, Kevin P.
1991-01-01
A new scheme to integrate a system of stiff differential equations for both the elasto-plastic creep and the unified viscoplastic theories is presented. The method has high stability, allows large time increments, and is implicit and iterative. It is suitable for use with continuum damage theories. The scheme was incorporated into MARC, a commercial finite element code through a user subroutine called HYPELA. Results from numerical problems under complex loading histories are presented for both small and large scale analysis. To demonstrate the scheme's accuracy and efficiency, comparisons to a self-adaptive forward Euler method are made.
Continuum theory of gene expression waves during vertebrate segmentation.
Jörg, David J; Morelli, Luis G; Soroldoni, Daniele; Oates, Andrew C; Jülicher, Frank
2015-09-01
The segmentation of the vertebrate body plan during embryonic development is a rhythmic and sequential process governed by genetic oscillations. These genetic oscillations give rise to traveling waves of gene expression in the segmenting tissue. Here we present a minimal continuum theory of vertebrate segmentation that captures the key principles governing the dynamic patterns of gene expression including the effects of shortening of the oscillating tissue. We show that our theory can quantitatively account for the key features of segmentation observed in zebrafish, in particular the shape of the wave patterns, the period of segmentation and the segment length as a function of time.
Continuum theory of gene expression waves during vertebrate segmentation
Jörg, David J; Morelli, Luis G; Soroldoni, Daniele; Oates, Andrew C; Jülicher, Frank
2015-01-01
Abstract The segmentation of the vertebrate body plan during embryonic development is a rhythmic and sequential process governed by genetic oscillations. These genetic oscillations give rise to traveling waves of gene expression in the segmenting tissue. Here we present a minimal continuum theory of vertebrate segmentation that captures the key principles governing the dynamic patterns of gene expression including the effects of shortening of the oscillating tissue. We show that our theory can quantitatively account for the key features of segmentation observed in zebrafish, in particular the shape of the wave patterns, the period of segmentation and the segment length as a function of time. PMID:28725158
NASA Technical Reports Server (NTRS)
Chulya, A.; Walker, K. P.
1989-01-01
A new scheme to integrate a system of stiff differential equations for both the elasto-plastic creep and the unified viscoplastic theories is presented. The method has high stability, allows large time increments, and is implicit and iterative. It is suitable for use with continuum damage theories. The scheme was incorporated into MARC, a commercial finite element code through a user subroutine called HYPELA. Results from numerical problems under complex loading histories are presented for both small and large scale analysis. To demonstrate the scheme's accuracy and efficiency, comparisons to a self-adaptive forward Euler method are made.
Analytical theory of the shear Alfvén continuum in the presence of a magnetic island
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, C. R., E-mail: cook@physics.wisc.edu; Hegna, C. C.
2015-04-15
The effect of a magnetic island chain on the shear Alfvén continuum is calculated analytically. Using a WKB approximation of the linearized ideal MHD equations, the island is shown to cause an upshift in the continuum accumulation point frequency. This minimum of the frequency spectrum is shifted from the rational surface to the island separatrix. The structure of the eigenmodes is also presented.
Lehoucq, R B; Sears, Mark P
2011-09-01
The purpose of this paper is to derive the energy and momentum conservation laws of the peridynamic nonlocal continuum theory using the principles of classical statistical mechanics. The peridynamic laws allow the consideration of discontinuous motion, or deformation, by relying on integral operators. These operators sum forces and power expenditures separated by a finite distance and so represent nonlocal interaction. The integral operators replace the differential divergence operators conventionally used, thereby obviating special treatment at points of discontinuity. The derivation presented employs a general multibody interatomic potential, avoiding the standard assumption of a pairwise decomposition. The integral operators are also expressed in terms of a stress tensor and heat flux vector under the assumption that these fields are differentiable, demonstrating that the classical continuum energy and momentum conservation laws are consequences of the more general peridynamic laws. An important conclusion is that nonlocal interaction is intrinsic to continuum conservation laws when derived using the principles of statistical mechanics.
Li, Hui
2009-11-14
Linear response and variational treatment are formulated for Hartree-Fock (HF) and Kohn-Sham density functional theory (DFT) methods and combined discrete-continuum solvation models that incorporate self-consistently induced dipoles and charges. Due to the variational treatment, analytic nuclear gradients can be evaluated efficiently for these discrete and continuum solvation models. The forces and torques on the induced point dipoles and point charges can be evaluated using simple electrostatic formulas as for permanent point dipoles and point charges, in accordance with the electrostatic nature of these methods. Implementation and tests using the effective fragment potential (EFP, a polarizable force field) method and the conductorlike polarizable continuum model (CPCM) show that the nuclear gradients are as accurate as those in the gas phase HF and DFT methods. Using B3LYP/EFP/CPCM and time-dependent-B3LYP/EFP/CPCM methods, acetone S(0)-->S(1) excitation in aqueous solution is studied. The results are close to those from full B3LYP/CPCM calculations.
NASA Technical Reports Server (NTRS)
Ko, William L.; Jackson, Raymond H.
1989-01-01
A composite test specimen in the shape of a semicircular curved bar subjected to bending offers an excellent stress field for studying the open-mode delamination behavior of laminated composite materials. This is because the open-mode delamination nucleates at the midspan of the curved bar. The classical anisotropic elasticity theory was used to construct a 'multilayer' theory for the calculations of the stress and deformation fields induced in the multilayered composite semicircular curved bar subjected to end forces and end moments. The radial location and intensity of the open-mode delamination stress were calculated and were compared with the results obtained from the anisotropic continuum theory and from the finite element method. The multilayer theory gave more accurate predictions of the location and the intensity of the open-mode delamination stress than those calculated from the anisotropic continuum theory.
NASA Astrophysics Data System (ADS)
Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro
2017-08-01
This third part extends the theory of Generalized Poisson-Kac (GPK) processes to nonlinear stochastic models and to a continuum of states. Nonlinearity is treated in two ways: (i) as a dependence of the parameters (intensity of the stochastic velocity, transition rates) of the stochastic perturbation on the state variable, similarly to the case of nonlinear Langevin equations, and (ii) as the dependence of the stochastic microdynamic equations of motion on the statistical description of the process itself (nonlinear Fokker-Planck-Kac models). Several numerical and physical examples illustrate the theory. Gathering nonlinearity and a continuum of states, GPK theory provides a stochastic derivation of the nonlinear Boltzmann equation, furnishing a positive answer to the Kac’s program in kinetic theory. The transition from stochastic microdynamics to transport theory within the framework of the GPK paradigm is also addressed.
NASA Technical Reports Server (NTRS)
Ko, William L.; Jackson, Raymond H.
1989-01-01
A composite test specimen in the shape of a semicircular curved bar subjected to bending offers an excellent stress field for studying the open-mode delamination behavior of laminated composite materials. This is because the open-mode delamination nucleates at the midspan of the curved bar. The classical anisotropic elasticity theory was used to construct a multilayer theory for the calculations of the stress and deformation fields induced in the multilayered composite semicircular curved bar subjected to end forces and end moments. The radial location and intensity of the open-mode delamination stress were calculated and were compared with the results obtained from the anisotropic continuum theory and from the finite element method. The multilayer theory gave more accurate predictions of the location and the intensity of the open-mode delamination stress than those calculated from the anisotropic continuum theory.
Mirrored continuum and molecular scale simulations of the ignition of high-pressure phases of RDX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kibaek; Stewart, D. Scott, E-mail: santc@illinois.edu, E-mail: dss@illinois.edu; Joshi, Kaushik
2016-05-14
We present a mirrored atomistic and continuum framework that is used to describe the ignition of energetic materials, and a high-pressure phase of RDX in particular. The continuum formulation uses meaningful averages of thermodynamic properties obtained from the atomistic simulation and a simplification of enormously complex reaction kinetics. In particular, components are identified based on molecular weight bin averages and our methodology assumes that both the averaged atomistic and continuum simulations are represented on the same time and length scales. The atomistic simulations of thermally initiated ignition of RDX are performed using reactive molecular dynamics (RMD). The continuum model ismore » based on multi-component thermodynamics and uses a kinetics scheme that describes observed chemical changes of the averaged atomistic simulations. Thus the mirrored continuum simulations mimic the rapid change in pressure, temperature, and average molecular weight of species in the reactive mixture. This mirroring enables a new technique to simplify the chemistry obtained from reactive MD simulations while retaining the observed features and spatial and temporal scales from both the RMD and continuum model. The primary benefit of this approach is a potentially powerful, but familiar way to interpret the atomistic simulations and understand the chemical events and reaction rates. The approach is quite general and thus can provide a way to model chemistry based on atomistic simulations and extend the reach of those simulations.« less
[Psychiatric Rehabilitation - From the Linear Continuum Approach Towards Supported Inclusion].
Richter, Dirk; Hertig, Res; Hoffmann, Holger
2016-11-01
Background: For many decades, psychiatric rehabilitation in the German-speaking countries is following a conventional linear continuum approach. Methods: Recent developments in important fields related to psychiatric rehabilitation (UN Convention on the Rights of People with Disabilities, theory of rehabilitation, empirical research) are reviewed. Results: Common to all developments in the reviewed fields are the principles of choice, autonomy and social inclusion. These principles contradict the conventional linear continuum approach. Conclusions: The linear continuum approach of psychiatric rehabilitation should be replaced by the "supported inclusion"-approach. © Georg Thieme Verlag KG Stuttgart · New York.
Microstructural comparison of the kinematics of discrete and continuum dislocations models
NASA Astrophysics Data System (ADS)
Sandfeld, Stefan; Po, Giacomo
2015-12-01
The Continuum Dislocation Dynamics (CDD) theory and the Discrete Dislocation Dynamics (DDD) method are compared based on concise mathematical formulations of the coarse graining of discrete data. A numerical tool for converting from a discrete to a continuum representation of a given dislocation configuration is developed, which allows to directly compare both simulation approaches based on continuum quantities (e.g. scalar density, geometrically necessary densities, mean curvature). Investigating the evolution of selected dislocation configurations within analytically given velocity fields for both DDD and CDD reveals that CDD contains a surprising number of important microstructural details.
Thellamurege, Nandun M; Si, Dejun; Cui, Fengchao; Li, Hui
2014-05-07
A combined quantum mechanical/molecular mechanical/continuum (QM/MM/C) style second order Møller-Plesset perturbation theory (MP2) method that incorporates induced dipole polarizable force field and induced surface charge continuum solvation model is established. The Z-vector method is modified to include induced dipoles and induced surface charges to determine the MP2 response density matrix, which can be used to evaluate MP2 properties. In particular, analytic nuclear gradient is derived and implemented for this method. Using the Assisted Model Building with Energy Refinement induced dipole polarizable protein force field, the QM/MM/C style MP2 method is used to study the hydrogen bonding distances and strengths of the photoactive yellow protein chromopore in the wild type and the Glu46Gln mutant.
Nims, Robert J; Durney, Krista M; Cigan, Alexander D; Dusséaux, Antoine; Hung, Clark T; Ateshian, Gerard A
2016-02-06
This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process.
Nims, Robert J.; Durney, Krista M.; Cigan, Alexander D.; Hung, Clark T.; Ateshian, Gerard A.
2016-01-01
This study presents a damage mechanics framework that employs observable state variables to describe damage in isotropic or anisotropic fibrous tissues. In this mixture theory framework, damage is tracked by the mass fraction of bonds that have broken. Anisotropic damage is subsumed in the assumption that multiple bond species may coexist in a material, each having its own damage behaviour. This approach recovers the classical damage mechanics formulation for isotropic materials, but does not appeal to a tensorial damage measure for anisotropic materials. In contrast with the classical approach, the use of observable state variables for damage allows direct comparison of model predictions to experimental damage measures, such as biochemical assays or Raman spectroscopy. Investigations of damage in discrete fibre distributions demonstrate that the resilience to damage increases with the number of fibre bundles; idealizing fibrous tissues using continuous fibre distribution models precludes the modelling of damage. This damage framework was used to test and validate the hypothesis that growth of cartilage constructs can lead to damage of the synthesized collagen matrix due to excessive swelling caused by synthesized glycosaminoglycans. Therefore, alternative strategies must be implemented in tissue engineering studies to prevent collagen damage during the growth process. PMID:26855751
NASA Astrophysics Data System (ADS)
Serventi, Giovanna; Carli, Cristian; Sgavetti, Maria
2015-07-01
Among the techniques to detect planet's mineralogical composition remote sensing, visible and near-infrared (VNIR) reflectance spectroscopy is a powerful tool, because crystal field absorption bands are related to particular transitional metals in well-defined crystal structures, e.g., Fe2+ in M1 and M2 sites of olivine (OL) or pyroxene (PX). Although OL, PX and their mixtures have been widely studied, plagioclase (PL), considered a spectroscopically transparent mineral, has been poorly analyzed. In this work we quantitatively investigate the influence of plagioclase absorption band on the absorption bands of Fe, Mg minerals using the Modified Gaussian Model - MGM (Sunshine, J.M. et al. [1990]. J. Geophys. Res. 95, 6955-6966). We consider three plagioclase compositions of varying FeO wt.% contents and five mafic end-members (1) 56% orthopyroxene and 44% clinopyroxene, (2) 28% olivine and 72% orthopyroxene, (3) 30% orthopyroxene and 70% olivine, (4) 100% olivine and (5) 100% orthopyroxene, at two different particle sizes. The spectral parameters considered here are: band depth, band center, band width, c0 (the continuum intercept) and c1 (the continuum offset). In particular, we show the variation of the plagioclase and composite (plagioclase-olivine) band spectral parameters versus the volumetric iron content related to the plagioclase abundance in mixtures. Generally, increasing the vol. FeO% due to the PL: (1) 1250 nm band deepens with linear trend in mixtures with pyroxenes, while it decreases in mixtures with olivine, with trend shifting from parabolic to linear increasing the olivine content in end-member; (2) 1250 nm band center moves towards longer wavelengths with linear trend in pyroxene-rich mixtures and parabolic trend in olivine-rich mixtures; and (3) 1250 nm band clearly widens with linear trend in olivine-free mixtures, while the widening is only slight in olivine-rich mixtures. We also outline how spectral parameters can be ambiguous leading to an incorrect mineralogical interpretation. Furthermore, we show the presence of an asymmetry of the plagioclase band towards the IR region, resolvable adding a Gaussian in the 1600-1800 nm spectral region.
A general mixture theory. I. Mixtures of spherical molecules
NASA Astrophysics Data System (ADS)
Hamad, Esam Z.
1996-08-01
We present a new general theory for obtaining mixture properties from the pure species equations of state. The theory addresses the composition and the unlike interactions dependence of mixture equation of state. The density expansion of the mixture equation gives the exact composition dependence of all virial coefficients. The theory introduces multiple-index parameters that can be calculated from binary unlike interaction parameters. In this first part of the work, details are presented for the first and second levels of approximations for spherical molecules. The second order model is simple and very accurate. It predicts the compressibility factor of additive hard spheres within simulation uncertainty (equimolar with size ratio of three). For nonadditive hard spheres, comparison with compressibility factor simulation data over a wide range of density, composition, and nonadditivity parameter, gave an average error of 2%. For mixtures of Lennard-Jones molecules, the model predictions are better than the Weeks-Chandler-Anderson perturbation theory.
The Communication Continuum: A Theory of Public Relations.
ERIC Educational Resources Information Center
Gibson, Dirk C.
1991-01-01
Argues that the best way to understand many public relations situations is to explore communication. Asserts that successful public relations can be described in terms of one of three primary communication functions (informing, persuading, or refuting). Describes this continuum of communication purposes, and a series of theoretical postulates.…
NASA Astrophysics Data System (ADS)
D'Adda, Alessandro; Kawamoto, Noboru; Saito, Jun
2018-03-01
We propose a lattice field theory formulation which overcomes some fundamental diffculties in realizing exact supersymmetry on the lattice. The Leibniz rule for the difference operator can be recovered by defining a new product on the lattice, the star product, and the chiral fermion species doublers degrees of freedom can be avoided consistently. This framework is general enough to formulate non-supersymmetric lattice field theory without chiral fermion problem. This lattice formulation has a nonlocal nature and is essentially equivalent to the corresponding continuum theory. We can show that the locality of the star product is recovered exponentially in the continuum limit. Possible regularization procedures are proposed.The associativity of the product and the lattice translational invariance of the formulation will be discussed.
Continuum theory of lipid bilayer electrostatics.
Gerami, R; Bruinsma, R F
2009-10-01
In order to address the concerns about the applicability of the continuum theory of lipid bilayers, we generalize it by including a film with uniaxial dielectric properties representing the polar head groups of the lipid molecules. As a function of the in-plane dielectric constant κ|| of this film, we encounter a sequence of different phases. For low values of κ||, transmembrane pores have aqueous cores, ions are repelled by the bilayer, and the ion permeability of the bilayer is independent of the ion radius as in the existing theory. For increasing κ||, a threshold is reached--of the order of the dielectric constant of water--beyond which ions are attracted to the lipid bilayer by generic polarization attraction, transmembrane pores collapse, and the ion permeability becomes sensitively dependent on the ion radius, results that are more consistent with experimental and numerical studies of the interaction of ions with neutral lipid bilayers. At even higher values of κ||, the ion/pore complexes are predicted to condense in the form of extended arrays. The generalized continuum theory can be tested quantitatively by studies of the ion permeability as a function of salt concentration and co-surfactant concentration.
Semiclassical multi-phonon theory for atom-surface scattering: Application to the Cu(111) system
NASA Astrophysics Data System (ADS)
Daon, Shauli; Pollak, Eli
2015-05-01
The semiclassical perturbation theory of Hubbard and Miller [J. Chem. Phys. 80, 5827 (1984)] is further developed to include the full multi-phonon transitions in atom-surface scattering. A practically applicable expression is developed for the angular scattering distribution by utilising a discretized bath of oscillators, instead of the continuum limit. At sufficiently low surface temperature good agreement is found between the present multi-phonon theory and the previous one-, and two-phonon theory derived in the continuum limit in our previous study [Daon, Pollak, and Miret-Artés, J. Chem. Phys. 137, 201103 (2012)]. The theory is applied to the measured angular distributions of Ne, Ar, and Kr scattered from a Cu(111) surface. We find that the present multi-phonon theory substantially improves the agreement between experiment and theory, especially at the higher surface temperatures. This provides evidence for the importance of multi-phonon transitions in determining the angular distribution as the surface temperature is increased.
Stoudenmire, E M; Wagner, Lucas O; White, Steven R; Burke, Kieron
2012-08-03
We extend the density matrix renormalization group to compute exact ground states of continuum many-electron systems in one dimension with long-range interactions. We find the exact ground state of a chain of 100 strongly correlated artificial hydrogen atoms. The method can be used to simulate 1D cold atom systems and to study density-functional theory in an exact setting. To illustrate, we find an interacting, extended system which is an insulator but whose Kohn-Sham system is metallic.
A Variational Statistical-Field Theory for Polar Liquid Mixtures
NASA Astrophysics Data System (ADS)
Zhuang, Bilin; Wang, Zhen-Gang
Using a variational field-theoretic approach, we derive a molecularly-based theory for polar liquid mixtures. The resulting theory consists of simple algebraic expressions for the free energy of mixing and the dielectric constant as functions of mixture composition. Using only the dielectric constants and the molar volumes of the pure liquid constituents, the theory evaluates the mixture dielectric constants in good agreement with the experimental values for a wide range of liquid mixtures, without using adjustable parameters. In addition, the theory predicts that liquids with similar dielectric constants and molar volumes dissolve well in each other, while sufficient disparity in these parameters result in phase separation. The calculated miscibility map on the dielectric constant-molar volume axes agrees well with known experimental observations for a large number of liquid pairs. Thus the theory provides a quantification for the well-known empirical ``like-dissolves-like'' rule. Bz acknowledges the A-STAR fellowship for the financial support.
Lagrangian continuum dynamics in ALEGRA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Michael K. W.; Love, Edward
Alegra is an ALE (Arbitrary Lagrangian-Eulerian) multi-material finite element code that emphasizes large deformations and strong shock physics. The Lagrangian continuum dynamics package in Alegra uses a Galerkin finite element spatial discretization and an explicit central-difference stepping method in time. The goal of this report is to describe in detail the characteristics of this algorithm, including the conservation and stability properties. The details provided should help both researchers and analysts understand the underlying theory and numerical implementation of the Alegra continuum hydrodynamics algorithm.
NASA Astrophysics Data System (ADS)
Surana, K. S.; Joy, A. D.; Reddy, J. N.
2017-03-01
This paper presents a non-classical continuum theory in Lagrangian description for solids in which the conservation and the balance laws are derived by incorporating both the internal rotations arising from the Jacobian of deformation and the rotations of Cosserat theories at a material point. In particular, in this non-classical continuum theory, we have (i) the usual displacements ( ±b \\varvec{u}) and (ii) three internal rotations ({}_i ±b \\varvec{Θ}) about the axes of a triad whose axes are parallel to the x-frame arising from the Jacobian of deformation (which are completely defined by the skew-symmetric part of the Jacobian of deformation), and (iii) three additional rotations ({}_e ±b \\varvec{Θ}) about the axes of the same triad located at each material point as additional three degrees of freedom referred to as Cosserat rotations. This gives rise to ±b \\varvec{u} and {}_e ±b \\varvec{{Θ} as six degrees of freedom at a material point. The internal rotations ({}_i ±b \\varvec{Θ}), often neglected in classical continuum mechanics, exist in all deforming solid continua as these are due to Jacobian of deformation. When the internal rotations {}_i ±b \\varvec{Θ} are resisted by the deforming matter, conjugate moment tensor arises that together with {}_i ±b \\varvec{Θ} may result in energy storage and/or dissipation, which must be accounted for in the conservation and the balance laws. The Cosserat rotations {}_e ±b \\varvec{Θ} also result in conjugate moment tensor which, together with {}_e ±b \\varvec{Θ}, may also result in energy storage and/or dissipation. The main focus of the paper is a consistent derivation of conservation and balance laws that incorporate aforementioned physics and associated constitutive theories for thermoelastic solids. The mathematical model derived here has closure, and the constitutive theories derived using two alternate approaches are in agreement with each other as well as with the condition resulting from the entropy inequality. Material coefficients introduced in the constitutive theories are clearly defined and discussed.
Density functional theory calculations of continuum lowering in strongly coupled plasmas.
Vinko, S M; Ciricosta, O; Wark, J S
2014-03-24
An accurate description of the ionization potential depression of ions in plasmas due to their interaction with the environment is a fundamental problem in plasma physics, playing a key role in determining the ionization balance, charge state distribution, opacity and plasma equation of state. Here we present a method to study the structure and position of the continuum of highly ionized dense plasmas using finite-temperature density functional theory in combination with excited-state projector augmented-wave potentials. The method is applied to aluminium plasmas created by intense X-ray irradiation, and shows excellent agreement with recently obtained experimental results. We find that the continuum lowering for ions in dense plasmas at intermediate temperatures is larger than predicted by standard plasma models and explain this effect through the electronic structure of the valence states in these strong-coupling conditions.
The continuum theory of shear localization in two-dimensional foam.
Weaire, Denis; Barry, Joseph D; Hutzler, Stefan
2010-05-19
We review some recent advances in the rheology of two-dimensional liquid foams, which should have implications for three-dimensional foams, as well as other mechanical systems that have a yield stress. We focus primarily on shear localization under steady shear, an effect first highlighted in an experiment by Debrégeas et al. A continuum theory which incorporates wall drag has reproduced the effect. Its further refinements are successful in matching results of more extensive observations and making interesting predictions regarding experiments for low strain rates and non-steady shear. Despite these successes, puzzles remain, particularly in relation to quasistatic simulations. The continuum model is semi-empirical: the meaning of its parameters may be sought in comparison with more detailed simulations and other experiments. The question of the origin of the Herschel-Bulkley relation is particularly interesting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thellamurege, Nandun M.; Si, Dejun; Cui, Fengchao
A combined quantum mechanical/molecular mechanical/continuum (QM/MM/C) style second order Møller-Plesset perturbation theory (MP2) method that incorporates induced dipole polarizable force field and induced surface charge continuum solvation model is established. The Z-vector method is modified to include induced dipoles and induced surface charges to determine the MP2 response density matrix, which can be used to evaluate MP2 properties. In particular, analytic nuclear gradient is derived and implemented for this method. Using the Assisted Model Building with Energy Refinement induced dipole polarizable protein force field, the QM/MM/C style MP2 method is used to study the hydrogen bonding distances and strengths ofmore » the photoactive yellow protein chromopore in the wild type and the Glu46Gln mutant.« less
Restoration of rotational symmetry in the continuum limit of lattice field theories
NASA Astrophysics Data System (ADS)
Davoudi, Zohreh; Savage, Martin J.
2012-09-01
We explore how rotational invariance is systematically recovered from calculations on hyper-cubic lattices through the use of smeared lattice operators that smoothly evolve into continuum operators with definite angular momentum as the lattice-spacing is reduced. Perturbative calculations of the angular momentum violation associated with such operators at tree level and at one loop are presented in λϕ4 theory and QCD. Contributions from these operators that violate rotational invariance occur at tree-level, with coefficients that are suppressed by O(a2) in the continuum limit. Quantum loops do not modify this behavior in λϕ4, nor in QCD if the gauge-fields are smeared over a comparable spatial region. Consequently, the use of this type of operator should, in principle, allow for Lattice QCD calculations of the higher moments of the hadron structure functions.
Solar radio continuum storms and a breathing magnetic field model
NASA Technical Reports Server (NTRS)
1975-01-01
Radio noise continuum emissions observed in metric and decametric wave frequencies are, in general, associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. These continuum emission sources, often called type I storm sources, are often associated with type III burst storm activity from metric to hectometric wave frequencies. This storm activity is, therefore, closely connected with the development of these continuum emission sources. It is shown that the S-component emission in microwave frequencies generally precedes, by several days, the emission of these noise continuum storms of lower frequencies. In order for these storms to develop, the growth of sunspot groups into complex types is very important in addition to the increase of the average magnetic field intensity and area of these groups. After giving a review on the theory of these noise continuum storm emissions, a model is briefly considered to explain the relation of the emissions to the storms.
NASA Astrophysics Data System (ADS)
Dahms, Rainer N.; Oefelein, Joseph C.
2013-09-01
A theory that explains the operating pressures where liquid injection processes transition from exhibiting classical two-phase spray atomization phenomena to single-phase diffusion-dominated mixing is presented. Imaging from a variety of experiments have long shown that under certain conditions, typically when the pressure of the working fluid exceeds the thermodynamic critical pressure of the liquid phase, the presence of discrete two-phase flow processes become diminished. Instead, the classical gas-liquid interface is replaced by diffusion-dominated mixing. When and how this transition occurs, however, is not well understood. Modern theory still lacks a physically based model to quantify this transition and the precise mechanisms that lead to it. In this paper, we derive a new model that explains how the transition occurs in multicomponent fluids and present a detailed analysis to quantify it. The model applies a detailed property evaluation scheme based on a modified 32-term Benedict-Webb-Rubin equation of state that accounts for the relevant real-fluid thermodynamic and transport properties of the multicomponent system. This framework is combined with Linear Gradient Theory, which describes the detailed molecular structure of the vapor-liquid interface region. Our analysis reveals that the two-phase interface breaks down not necessarily due to vanishing surface tension forces, but due to thickened interfaces at high subcritical temperatures coupled with an inherent reduction of the mean free molecular path. At a certain point, the combination of reduced surface tension, the thicker interface, and reduced mean free molecular path enter the continuum length scale regime. When this occurs, inter-molecular forces approach that of the multicomponent continuum where transport processes dominate across the interfacial region. This leads to a continuous phase transition from compressed liquid to supercritical mixture states. Based on this theory, a regime diagram for liquid injection is developed that quantifies the conditions under which classical sprays transition to dense-fluid jets. It is shown that the chamber pressure required to support diffusion-dominated mixing dynamics depends on the composition and temperature of the injected liquid and ambient gas. To illustrate the method and analysis, we use conditions typical of diesel engine injection. We also present a companion set of high-speed images to provide experimental validation of the presented theory. The basic theory is quite general and applies to a wide range of modern propulsion and power systems such as liquid rockets, gas turbines, and reciprocating engines. Interestingly, the regime diagram associated with diesel engine injection suggests that classical spray phenomena at typical injection conditions do not occur.
A Continuum of Learning: From Rote Memorization to Meaningful Learning in Organic Chemistry
ERIC Educational Resources Information Center
Grove, Nathaniel P.; Bretz, Stacey Lowery
2012-01-01
The Assimilation Theory of Ausubel and Novak has typically been used in the research literature to describe two extremes to learning chemistry: meaningful learning "versus" rote memorization. It is unlikely, however, that such discrete categories of learning exist. Rote and meaningful learning, rather, are endpoints along a continuum of…
Drop-tower experiments for capillary surfaces in an exotic container
NASA Technical Reports Server (NTRS)
Concus, Paul; Finn, Robert; Weislogel, Mark
1991-01-01
Low-gravity drop-tower experiments are carried out for an 'exotic' rotationally-symmetric container, which admits an entire continuum of distinct equilibrium symmetric capillary free surfaces. It is found that an initial equilibrium planer interface, a member of the continuum, will reorient toward a non-symmetric interface, as predicted by recent mathematical theory.
Limb observations of the 12.32 micron solar emission line during the 1991 July total eclipse
NASA Technical Reports Server (NTRS)
Deming, Drake; Jennings, Donald E.; Mccabe, George; Noyes, Robert; Wiedemann, Gunter; Espenak, Fred
1992-01-01
The limb profile of the Mg I 12.32-micron emission line is determined by occultation in the July 11, 1991 total solar eclipse over Mauna Kea. It is shown that the emission peaks are very close to the 12-micron continuum limb, as predicted by recent theory for this line as a non-LTE photospheric emission. The increase in optical depth for this extreme limb-viewing situation indicates that most of the observed emission arises from above the chromospheric temperature minimum, and it is found that this emission is extended to heights well in excess of the model predictions. The line emission can be observed as high as 2000 km above the 12-micron continuum limb, whereas theory predicts it to remain observable no higher than about 500 km above the continuum limb. The substantial limb extension observed in this line is quantitatively consistent with limb extensions seen in the far-IR continuum, and it is concluded that it is indicative of departures from gravitational hydrostatic equilibrium, or spatial inhomogeneities, in the upper solar atmosphere.
Steps, Stages, and Structure: Finding Compensatory Order in Scientific Theories
ERIC Educational Resources Information Center
Rutjens, Bastiaan T.; van Harreveld, Frenk; van der Pligt, Joop; Kreemers, Loes M.; Noordewier, Marret K.
2013-01-01
Stage theories are prominent and controversial in science. One possible reason for their appeal is that they provide order and predictability. Participants in Experiment 1 rated stage theories as more orderly and predictable (but less credible) than continuum theories. In Experiments 2-5, we showed that order threats increase the appeal of stage…
NASA Astrophysics Data System (ADS)
Serventi, Giovanna; Carli, Cristian; Sgavetti, Maria
2016-07-01
Anorthositic rocks are widespread on the lunar surface and have probably been formed by flotation of PL over a magma ocean. A large portion of pristine rocks are characterized by a low Mg/(Mg+Fe) ratio, and have been classified as ferroan anorthosite, and recently, after observation from SELENE Spectral Profiler,pure anorthosites regions with more than 98% PL have been recognized. In this paper, we analyze a set of mixtures with PL content similar to the ferroan anorthosites and to the pure anorthosite regions, using the Origin Software and the Modified Gaussian Model. We consider three plagioclases with varying FeOwt% contents (PL1, PL2 and PL3)andthree mafic end-members (1) 100% orthopyroxene, (2) 56% orthopyroxene and 44% clinopyroxene, and (3) 100% olivine (OL). The spectral parameters considered here are: band depth, band center, band width, c0 (the continuum intercept) and c1 (the continuum offset). Here we have shown that in pyroxene (PX)-bearing mixtures, the PX is distinguishable even in mixtures with only 1% PX and that PX band at ca. 900 nm is always deeper than PL1 band while PL2 and PL3 are deeperthan OPX 900 nm band from 95, 96% PL. In OL-bearing mixtures, OL detection limit is 2% when mixed with PL1, and 3% and 4% if mixed with PL2 and PL3. We also demonstrated how spectral parameters vary with PL%, and, generally, increasing the PL content: (1) 1250 nm band depth decreases when mixed with OL, while it deepens in mixtures with PX; (2) 1250 nm band centers generally move towards longer wavelength for PL1-bearing mixtures, while do not show significant variations considering PL2/PL3-mixtures; (3) 1250 nm band width of PL1 in E1 and E5-mixtures substantially widens while in other mixtures it only slightly varies. Here we also proposed an application to a real case, from Proclus crater, revealing how studying terrestrial analogues is fundamental to infer hypothesis on the mineralogical composition of a planetary surface, but also how the spectral convergence of spectra characterized by different compositions can led to misleading interpretations.
DOT National Transportation Integrated Search
2001-06-01
A mechanistic approach to fatigue characterization of asphalt-aggregate mixtures is presented in this volume. This approach is founded on a uniaxial viscoelastic correspondence principle is applied in order to evaluate damage growth and healing in cy...
Han, Haoxue; Schlawitschek, Christiane; Katyal, Naman; Stephan, Peter; Gambaryan-Roisman, Tatiana; Leroy, Frédéric; Müller-Plathe, Florian
2017-05-30
We study the role of solid-liquid interface thermal resistance (Kapitza resistance) on the evaporation rate of droplets on a heated surface by using a multiscale combination of molecular dynamics (MD) simulations and analytical continuum theory. We parametrize the nonbonded interaction potential between perfluorohexane (C 6 F 14 ) and a face-centered-cubic solid surface to reproduce the experimental wetting behavior of C 6 F 14 on black chromium through the solid-liquid work of adhesion (quantity directly related to the wetting angle). The thermal conductances between C 6 F 14 and (100) and (111) solid substrates are evaluated by a nonequilibrium molecular dynamics approach for a liquid pressure lower than 2 MPa. Finally, we examine the influence of the Kapitza resistance on evaporation of droplets in the vicinity of a three-phase contact line with continuum theory, where the thermal resistance of liquid layer is comparable with the Kapitza resistance. We determine the thermodynamic conditions under which the Kapitza resistance plays an important role in correctly predicting the evaporation heat flux.
NASA Astrophysics Data System (ADS)
Roos, Wouter; Gibbons, Melissa; Klug, William; Wuite, Gijs
2009-03-01
We report nanoindentation experiments by atomic force microscopy on capsids of the Hepatitis B Virus (HBV). HBV is investigated because its capsids can form in either a smaller T=3 or a bigger T=4 configuration, making it an ideal system to test the predictive power of continuum elastic theory to describe nanometre-sized objects. It is shown that for small, consecutive indentations the particles behave reversibly linear and no material fatigue occurs. For larger indentations the particles start to deform non-linearly. The experimental force response fits very well with finite element simulations on coarse grained models of HBV capsids. Furthermore, this also fits with thin shell simulations guided by the F"oppl- von K'arm'an (FvK) number (the dimensionless ratio of stretching and bending stiffness of a thin shell). Both the T=3 and T=4 morphology are very well described by the simulations and the capsid material turns out to have the same Young's modulus, as expected. The presented results demonstrate the surprising strength of continuum elastic theory to describe indentation of viral capsids.
Self-thermophoresis and thermal self-diffusion in liquids and gases.
Brenner, Howard
2010-09-01
This paper demonstrates the existence of self-thermophoresis, a phenomenon whereby a virtual thermophoretic force arising from a temperature gradient in a quiescent single-component liquid or gas acts upon an individual molecule of that fluid in much the same manner as a "real" thermophoretic force acts upon a macroscopic, non-Brownian body immersed in that same fluid. In turn, self-thermophoresis acting in concert with Brownian self-diffusion gives rise to the phenomenon of thermal self-diffusion in single-component fluids. The latter furnishes quantitative explanations of both thermophoresis in pure fluids and thermal diffusion in binary mixtures (the latter composed of a dilute solution of a physicochemically inert solute whose molecules are large compared with those of the solvent continuum). Explicitly, the self-thermophoretic theory furnishes a simple expression for both the thermophoretic velocity U of a macroscopic body in a single-component fluid subjected to a temperature gradient ∇T , and the intimately related binary thermal diffusion coefficient D{T} for a two-component colloidal or macromolecular mixture. The predicted expressions U=-D{T}∇T≡-βD{S}∇T and D{T}=βD{S} (with β and D{S} the pure solvent's respective thermal expansion and isothermal self-diffusion coefficients) are each noted to accord reasonably well with experimental data for both liquids and gases. The likely source of systematic deviations of the predicted values of D{T} from these data is discussed. This appears to be the first successful thermodiffusion theory applicable to both liquids and gases, a not insignificant achievement considering that the respective thermal diffusivities and thermophoretic velocities of these two classes of fluids differ by as much as six orders of magnitude.
Kinetic theory-based numerical modeling and analysis of bi-disperse segregated mixture fluidized bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konan, N. A.; Huckaby, E. D.
We discuss a series of continuum Euler-Euler simulations of an initially mixed bi-disperse fluidized bed which segregates under certain operating conditions. The simulations use the multi-phase kinetic theory-based description of the momentum and energy exchanges between the phases by Simonin’s Group [see e.g. Gourdel, Simonin and Brunier (1999). Proceedings of 6th International Conference on Circulating Fluidized Beds, Germany, pp. 205-210]. The discussion and analysis of the results focus on the fluid-particle momentum exchange (i.e. drag). Simulations using mono- and poly-disperse fluid-particle drag correlations are analyzed for the Geldart D-type size bi-disperse gas-solid experiments performed by Goldschmidt et al. [Powder Tech.,more » pp. 135-159 (2003)]. The poly-disperse gas-particle drag correlations account for the local particle size distribution by using an effective mixture diameter when calculating the Reynolds number and then correcting the resulting force coefficient. Simulation results show very good predictions of the segregation index for bidisperse beds with the mono-disperse drag correlations contrary to the poly-disperse drag correlations for which the segregation rate is systematically under-predicted. The statistical analysis of the results shows a clear separation in the distribution of the gas-particle mean relaxation times of the small and large particles with simulations using the mono-disperse drag. In contrast, the poly-disperse drag simulations have a significant overlap and also a smaller difference in the mean particle relaxation times. This results in the small and large particles in the bed to respond to the gas similarly without enough relative time lag. The results suggest that the difference in the particle response time induce flow dynamics favorable to a force imbalance which results in the segregation.« less
Kinetic theory-based numerical modeling and analysis of bi-disperse segregated mixture fluidized bed
Konan, N. A.; Huckaby, E. D.
2017-06-21
We discuss a series of continuum Euler-Euler simulations of an initially mixed bi-disperse fluidized bed which segregates under certain operating conditions. The simulations use the multi-phase kinetic theory-based description of the momentum and energy exchanges between the phases by Simonin’s Group [see e.g. Gourdel, Simonin and Brunier (1999). Proceedings of 6th International Conference on Circulating Fluidized Beds, Germany, pp. 205-210]. The discussion and analysis of the results focus on the fluid-particle momentum exchange (i.e. drag). Simulations using mono- and poly-disperse fluid-particle drag correlations are analyzed for the Geldart D-type size bi-disperse gas-solid experiments performed by Goldschmidt et al. [Powder Tech.,more » pp. 135-159 (2003)]. The poly-disperse gas-particle drag correlations account for the local particle size distribution by using an effective mixture diameter when calculating the Reynolds number and then correcting the resulting force coefficient. Simulation results show very good predictions of the segregation index for bidisperse beds with the mono-disperse drag correlations contrary to the poly-disperse drag correlations for which the segregation rate is systematically under-predicted. The statistical analysis of the results shows a clear separation in the distribution of the gas-particle mean relaxation times of the small and large particles with simulations using the mono-disperse drag. In contrast, the poly-disperse drag simulations have a significant overlap and also a smaller difference in the mean particle relaxation times. This results in the small and large particles in the bed to respond to the gas similarly without enough relative time lag. The results suggest that the difference in the particle response time induce flow dynamics favorable to a force imbalance which results in the segregation.« less
Harmonic oscillator representation in the theory of scattering and nuclear reactions
NASA Technical Reports Server (NTRS)
Smirnov, Yuri F.; Shirokov, A. M.; Lurie, Yuri, A.; Zaitsev, S. A.
1995-01-01
The following questions, concerning the application of the harmonic oscillator representation (HOR) in the theory of scattering and reactions, are discussed: the formulation of the scattering theory in HOR; exact solutions of the free motion Schroedinger equation in HOR; separable expansion of the short range potentials and the calculation of the phase shifts; 'isolated states' as generalization of the Wigner-von Neumann bound states embedded in continuum; a nuclear coupled channel problem in HOR; and the description of true three body scattering in HOR. As an illustration the soft dipole mode in the (11)Li nucleus is considered in a frame of the (9)Li+n+n cluster model taking into account of three body continuum effects.
Multicomponent lattice Boltzmann model from continuum kinetic theory.
Shan, Xiaowen
2010-04-01
We derive from the continuum kinetic theory a multicomponent lattice Boltzmann model with intermolecular interaction. The resulting model is found to be consistent with the model previously derived from a lattice-gas cellular automaton [X. Shan and H. Chen, Phys. Rev. E 47, 1815 (1993)] but applies in a much broader domain. A number of important insights are gained from the kinetic theory perspective. First, it is shown that even in the isothermal case, the energy equipartition principle dictates the form of the equilibrium distribution function. Second, thermal diffusion is shown to exist and the corresponding diffusivities are given in terms of macroscopic parameters. Third, the ordinary diffusion is shown to satisfy the Maxwell-Stefan equation at the ideal-gas limit.
Phenomenology of TeV little string theory from holography.
Antoniadis, Ignatios; Arvanitaki, Asimina; Dimopoulos, Savas; Giveon, Amit
2012-02-24
We study the graviton phenomenology of TeV little string theory by exploiting its holographic gravity dual five-dimensional theory. This dual corresponds to a linear dilaton background with a large bulk that constrains the standard model fields on the boundary of space. The linear dilaton geometry produces a unique Kaluza-Klein graviton spectrum that exhibits a ~TeV mass gap followed by a near continuum of narrow resonances that are separated from each other by only ~30 GeV. Resonant production of these particles at the LHC is the signature of this framework that distinguishes it from large extra dimensions, where the Kaluza-Klein states are almost a continuum with no mass gap, and warped models, where the states are separated by a TeV.
Job Satisfaction: A Possible Integration of Two Theories
ERIC Educational Resources Information Center
Hazer, John T.
1976-01-01
The author proposes an integration of Herzberg's two-factor theory of job satisfaction (job satisfaction/dissatisfaction as two separate, parallel continua) and traditional theory (job satisfaction/dissatisfaction sharing the same continuum) and a rationale for deciding which motivation methods to use for employees with differeing levels of…
Lattice mismatch induced ripples and wrinkles in planar graphene/boron nitride superlattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandwana, Dinkar; Ertekin, Elif, E-mail: ertekin@illinois.edu; International Institute for Carbon Neutral Energy Research
A continuum theory to describe periodic ripple formation in planar graphene/boron nitride superlattices is formulated. Due to the lattice mismatch between the two materials, it is shown that flat superlattices are unstable with respect to ripple formation of appropriate wavelengths. A competition between bending energy and transverse stretching energy gives rise to an optimal ripple wavelength that depends on the superlattice pitch. The optimal wavelengths predicted by the continuum theory are in good agreement with atomic scale total energy calculations previously reported by Nandwana and Ertekin [Nano Lett. 15, 1468 (2015)].
ERIC Educational Resources Information Center
Jackson, A. T.
1973-01-01
Reviews theoretical and experimental fundamentals of Einstein's theory of general relativity. Indicates that recent development of the theory of the continually expanding universe may lead to revision of the space-time continuum of the finite and unbounded universe. (CC)
Discrete shearlet transform: faithful digitization concept and its applications
NASA Astrophysics Data System (ADS)
Lim, Wang-Q.
2011-09-01
Over the past years, various representation systems which sparsely approximate functions governed by anisotropic features such as edges in images have been proposed. Alongside the theoretical development of these systems, algorithmic realizations of the associated transforms were provided. However, one of the most common short-comings of these frameworks is the lack of providing a unified treatment of the continuum and digital world, i.e., allowing a digital theory to be a natural digitization of the continuum theory. Shearlets were introduced as means to sparsely encode anisotropic singularities of multivariate data while providing a unified treatment of the continuous and digital realm. In this paper, we introduce a discrete framework which allows a faithful digitization of the continuum domain shearlet transform based on compactly supported shearlets. Finally, we show numerical experiments demonstrating the potential of the discrete shearlet transform in several image processing applications.
Bulger, Carrie A; Matthews, Russell A; Hoffman, Mark E
2007-10-01
While researchers are increasingly interested in understanding the boundaries surrounding the work and personal life domains, few have tested the propositions set forth by theory. Boundary theory proposes that individuals manage the boundaries between work and personal life through processes of segmenting and/or integrating the domains. The authors investigated boundary management profiles of 332 workers in an investigation of the segmentation-integration continuum. Cluster analysis indicated consistent clusters of boundary management practices related to varying segmentation and integration of the work and personal life domains. But, the authors suggest that the segmentation-integration continuum may be more complicated. Results also indicated relationships between boundary management practices and work-personal life interference and work-personal life enhancement. Less flexible and more permeable boundaries were related to more interference, while more flexible and more permeable boundaries were related to more enhancement.
General topology meets model theory, on and
Malliaris, Maryanthe; Shelah, Saharon
2013-01-01
Cantor proved in 1874 [Cantor G (1874) J Reine Angew Math 77:258–262] that the continuum is uncountable, and Hilbert’s first problem asks whether it is the smallest uncountable cardinal. A program arose to study cardinal invariants of the continuum, which measure the size of the continuum in various ways. By Gödel [Gödel K (1939) Proc Natl Acad Sci USA 25(4):220–224] and Cohen [Cohen P (1963) Proc Natl Acad Sci USA 50(6):1143–1148], Hilbert’s first problem is independent of ZFC (Zermelo-Fraenkel set theory with the axiom of choice). Much work both before and since has been done on inequalities between these cardinal invariants, but some basic questions have remained open despite Cohen’s introduction of forcing. The oldest and perhaps most famous of these is whether “,” which was proved in a special case by Rothberger [Rothberger F (1948) Fund Math 35:29–46], building on Hausdorff [Hausdorff (1936) Fund Math 26:241–255]. In this paper we explain how our work on the structure of Keisler’s order, a large-scale classification problem in model theory, led to the solution of this problem in ZFC as well as of an a priori unrelated open question in model theory. PMID:23836659
Sibutramine characterization and solubility, a theoretical study
NASA Astrophysics Data System (ADS)
Aceves-Hernández, Juan M.; Nicolás Vázquez, Inés; Hinojosa-Torres, Jaime; Penieres Carrillo, Guillermo; Arroyo Razo, Gabriel; Miranda Ruvalcaba, René
2013-04-01
Solubility data from sibutramine (SBA) in a family of alcohols were obtained at different temperatures. Sibutramine was characterized by using thermal analysis and X-ray diffraction technique. Solubility data were obtained by the saturation method. The van't Hoff equation was used to obtain the theoretical solubility values and the ideal solvent activity coefficient. No polymorphic phenomena were found from the X-ray diffraction analysis, even though this compound is a racemic mixture of (+) and (-) enantiomers. Theoretical calculations showed that the polarisable continuum model was able to reproduce the solubility and stability of sibutramine molecule in gas phase, water and a family of alcohols at B3LYP/6-311++G (d,p) level of theory. Dielectric constant, dipolar moment and solubility in water values as physical parameters were used in those theoretical calculations for explaining that behavior. Experimental and theoretical results were compared and good agreement was obtained. Sibutramine solubility increased from methanol to 1-octanol in theoretical and experimental results.
Competition in high dimensional spaces using a sparse approximation of neural fields.
Quinton, Jean-Charles; Girau, Bernard; Lefort, Mathieu
2011-01-01
The Continuum Neural Field Theory implements competition within topologically organized neural networks with lateral inhibitory connections. However, due to the polynomial complexity of matrix-based implementations, updating dense representations of the activity becomes computationally intractable when an adaptive resolution or an arbitrary number of input dimensions is required. This paper proposes an alternative to self-organizing maps with a sparse implementation based on Gaussian mixture models, promoting a trade-off in redundancy for higher computational efficiency and alleviating constraints on the underlying substrate.This version reproduces the emergent attentional properties of the original equations, by directly applying them within a continuous approximation of a high dimensional neural field. The model is compatible with preprocessed sensory flows but can also be interfaced with artificial systems. This is particularly important for sensorimotor systems, where decisions and motor actions must be taken and updated in real-time. Preliminary tests are performed on a reactive color tracking application, using spatially distributed color features.
Reading as Seduction: The Censorship Problem and the Educational Value of Literature.
ERIC Educational Resources Information Center
Bogdan, Deanne
1992-01-01
Uses examples from mass culture to show the relationship of the continuum theory and the gap theory to the connection between the censorship problem and the educational value of literary reading. (SR)
Cammi, R
2009-10-28
We present a general formulation of the coupled-cluster (CC) theory for a molecular solute described within the framework of the polarizable continuum model (PCM). The PCM-CC theory is derived in its complete form, called PTDE scheme, in which the correlated electronic density is used to have a self-consistent reaction field, and in an approximate form, called PTE scheme, in which the PCM-CC equations are solved assuming the fixed Hartree-Fock solvent reaction field. Explicit forms for the PCM-CC-PTDE equations are derived at the single and double (CCSD) excitation level of the cluster operator. At the same level, explicit equations for the analytical first derivatives of the PCM basic energy functional are presented, and analytical second derivatives are also discussed. The corresponding PCM-CCSD-PTE equations are given as a special case of the full theory.
A viscoplastic constitutive theory for metal matrix composites at high temperature
NASA Technical Reports Server (NTRS)
Robinson, David N.; Duffy, Stephen F.; Ellis, John R.
1988-01-01
A viscoplastic constitutive theory is presented for representing the high temperature deformation behavior of metal matrix composites. The point of view taken is a continuum one where the composite is considered a material in its own right, with its own properties that can be determined for the composite as a whole. It is assumed that a single preferential (fiber) direction is identifiable at each material point (continuum element) admitting the idealization of local transverse isotropy. A key ingredient is the specification of an experimental program for the complete determination of the material functions and parameters for characterizing a particular metal matrix composite. The parameters relating to the strength of anisotropy can be determined through tension/torsion tests on longitudinally and circumferentially reinforced thin walled tubes. Fundamental aspects of the theory are explored through a geometric interpretation of some basic features analogous to those of the classical theory of plasticity.
A viscoplastic constitutive theory for metal matrix composites at high temperature
NASA Technical Reports Server (NTRS)
Robinson, D. N.; Duffy, S. F.; Ellis, J. R.
1986-01-01
A viscoplastic constitutive theory is presented for representing the high-temperature deformation behavior of metal matrix composites. The point of view taken is a continuum one where the composite is considered a material in its own right, with its own properties that can be determined for the composite as a whole. It is assumed that a single preferential (fiber) direction is identifiable at each material point (continuum element) admitting the idealization of local transverse isotropy. A key ingredient in this work is the specification of an experimental program for the complete determination of the material functions and parameters for characterizing a particular metal matrix composite. The parameters relating to the strength of anisotropy can be determined through tension/torsion tests on longitudinally and circumferentially reinforced thin-walled tubes. Fundamental aspects of the theory are explored through a geometric interpretation of some basic features analogous to those of the classical theory of plasticity.
A viscoplastic constitutive theory for metal matrix composites at high temperature
NASA Technical Reports Server (NTRS)
Robinson, D. N.; Ellis, J. R.; Duffy, S. F.
1987-01-01
A viscoplastic theory is presented for representing the high-temperature deformation behavior of metal matrix composites. The point of view taken is a continuum one where the composite is considered a material in its own right, with its own properties that can be determined for the composite as a whole. It is presumed that a single preferential (fiber) direction is identifiable at each material point (continuum element) admitting the idealization of local transverse isotropy. A key ingredient in this work is the specification of an experimental program for the complete determination of the material functions and parameters for characterizing a particular metal matrix composite. The parameters relating to the strength of anisotropy can be determined through tension/torsion tests on longitudinally and circumferentially reinforced thin-walled tubes. Fundamental aspects of the theory are explored through a geometric interpretation of some basic features analogous to those of the classical theory of plasticity.
The archetype-genome exemplar in molecular dynamics and continuum mechanics
NASA Astrophysics Data System (ADS)
Greene, M. Steven; Li, Ying; Chen, Wei; Liu, Wing Kam
2014-04-01
We argue that mechanics and physics of solids rely on a fundamental exemplar: the apparent properties of a system depend on the building blocks that comprise it. Building blocks are referred to as archetypes and apparent system properties as the system genome. Three entities are of importance: the archetype properties, the conformation of archetypes, and the properties of interactions activated by that conformation. The combination of these entities into the system genome is called assembly. To show the utility of the archetype-genome exemplar, this work presents the mathematical ingredients and computational implementation of theories in solid mechanics that are (1) molecular and (2) continuum manifestations of the assembly process. Both coarse-grained molecular dynamics (CGMD) and the archetype-blending continuum (ABC) theories are formulated then applied to polymer nanocomposites (PNCs) to demonstrate the impact the components of the assembly triplet have on a material genome. CGMD simulations demonstrate the sensitivity of nanocomposite viscosities and diffusion coefficients to polymer chain types (archetype), polymer-nanoparticle interaction potentials (interaction), and the structural configuration (conformation) of dispersed nanoparticles. ABC simulations show the contributions of bulk polymer (archetype) properties, occluded region of bound rubber (interaction) properties, and microstructural binary images (conformation) to predictions of linear damping properties, the Payne effect, and localization/size effects in the same class of PNC material. The paper is light on mathematics. Instead, the focus is on the usefulness of the archetype-genome exemplar to predict system behavior inaccessible to classical theories by transitioning mechanics away from heuristic laws to mechanism-based ones. There are two core contributions of this research: (1) presentation of a fundamental axiom—the archetype-genome exemplar—to guide theory development in computational mechanics, and (2) demonstrations of its utility in modern theoretical realms: CGMD, and generalized continuum mechanics.
NASA Astrophysics Data System (ADS)
Serov, E. A.; Odintsova, T. A.; Tretyakov, M. Yu.; Semenov, V. E.
2017-05-01
Analysis of the continuum absorption in water vapor at room temperature within the purely rotational and fundamental ro-vibrational bands shows that a significant part (up to a half) of the observed absorption cannot be explained within the framework of the existing concepts of the continuum. Neither of the two most prominent mechanisms of continuum originating, namely, the far wings of monomer lines and the dimers, cannot reproduce the currently available experimental data adequately. We propose a new approach to developing a physically based model of the continuum. It is demonstrated that water dimers and wings of monomer lines may contribute equally to the continuum within the bands, and their contribution should be taken into account in the continuum model. We propose a physical mechanism giving missing justification for the super-Lorentzian behavior of the intermediate line wing. The qualitative validation of the proposed approach is given on the basis of a simple empirical model. The obtained results are directly indicative of the necessity to reconsider the existing line wing theory and can guide this consideration.
Dissipation consistent fabric tensor definition from DEM to continuum for granular media
NASA Astrophysics Data System (ADS)
Li, X. S.; Dafalias, Y. F.
2015-05-01
In elastoplastic soil models aimed at capturing the impact of fabric anisotropy, a necessary ingredient is a measure of anisotropic fabric in the form of an evolving tensor. While it is possible to formulate such a fabric tensor based on indirect phenomenological observations at the continuum level, it is more effective and insightful to have the tensor defined first based on direct particle level microstructural observations and subsequently deduce a corresponding continuum definition. A practical means able to provide such observations, at least in the context of fabric evolution mechanisms, is the discrete element method (DEM). Some DEM defined fabric tensors such as the one based on the statistics of interparticle contact normals have already gained widespread acceptance as a quantitative measure of fabric anisotropy among researchers of granular material behavior. On the other hand, a fabric tensor in continuum elastoplastic modeling has been treated as a tensor-valued internal variable whose evolution must be properly linked to physical dissipation. Accordingly, the adaptation of a DEM fabric tensor definition to a continuum constitutive modeling theory must be thermodynamically consistent in regards to dissipation mechanisms. The present paper addresses this issue in detail, brings up possible pitfalls if such consistency is violated and proposes remedies and guidelines for such adaptation within a recently developed Anisotropic Critical State Theory (ACST) for granular materials.
Goossens, Spencer; Mehdizadeh Rahimi, Ali
2017-01-01
We demonstrate that with two small modifications, the popular dielectric continuum model is capable of predicting, with high accuracy, ion solvation thermodynamics (Gibbs free energies, entropies, and heat capacities) in numerous polar solvents. We are also able to predict ion solvation free energies in water–co-solvent mixtures over available concentration series. The first modification to the classical dielectric Poisson model is a perturbation of the macroscopic dielectric-flux interface condition at the solute–solvent interface: we add a nonlinear function of the local electric field, giving what we have called a solvation-layer interface condition (SLIC). The second modification is including the microscopic interface potential (static potential) in our model. We show that the resulting model exhibits high accuracy without the need for fitting solute atom radii in a state-dependent fashion. Compared to experimental results in nine water–co-solvent mixtures, SLIC predicts transfer free energies to within 2.5 kJ/mol. The co-solvents include both protic and aprotic species, as well as biologically relevant denaturants such as urea and dimethylformamide. Furthermore, our results indicate that the interface potential is essential to reproduce entropies and heat capacities. These and previous tests of the SLIC model indicate that it is a promising dielectric continuum model for accurate predictions in a wide range of conditions.
NASA Astrophysics Data System (ADS)
Molavi Tabrizi, Amirhossein; Goossens, Spencer; Mehdizadeh Rahimi, Ali; Knepley, Matthew; Bardhan, Jaydeep P.
2017-03-01
We demonstrate that with two small modifications, the popular dielectric continuum model is capable of predicting, with high accuracy, ion solvation thermodynamics (Gibbs free energies, entropies, and heat capacities) in numerous polar solvents. We are also able to predict ion solvation free energies in water-co-solvent mixtures over available concentration series. The first modification to the classical dielectric Poisson model is a perturbation of the macroscopic dielectric-flux interface condition at the solute-solvent interface: we add a nonlinear function of the local electric field, giving what we have called a solvation-layer interface condition (SLIC). The second modification is including the microscopic interface potential (static potential) in our model. We show that the resulting model exhibits high accuracy without the need for fitting solute atom radii in a state-dependent fashion. Compared to experimental results in nine water-co-solvent mixtures, SLIC predicts transfer free energies to within 2.5 kJ/mol. The co-solvents include both protic and aprotic species, as well as biologically relevant denaturants such as urea and dimethylformamide. Furthermore, our results indicate that the interface potential is essential to reproduce entropies and heat capacities. These and previous tests of the SLIC model indicate that it is a promising dielectric continuum model for accurate predictions in a wide range of conditions.
Cognitive continuum theory in interprofessional healthcare: A critical analysis.
Parker-Tomlin, Michelle; Boschen, Mark; Morrissey, Shirley; Glendon, Ian
2017-07-01
Effective clinical decision making is among the most important skills required by healthcare practitioners. Making sound decisions while working collaboratively in interprofessional healthcare teams is essential for modern healthcare planning, successful interventions, and patient care. The cognitive continuum theory (CCT) is a model of human judgement and decision making aimed at orienting decision-making processes. CCT has the potential to improve both individual health practitioner, and interprofessional team understanding about, and communication of, clinical decision-making processes. Examination of the current application of CCT indicates that this theory could strengthen interprofessional team clinical decision making (CDM). However, further research is needed before extending the use of this theoretical framework to a wider range of interprofessional healthcare team processes. Implications for research, education, practice, and policy are addressed.
Locally smeared operator product expansions in scalar field theory
Monahan, Christopher; Orginos, Kostas
2015-04-01
We propose a new locally smeared operator product expansion to decompose non-local operators in terms of a basis of smeared operators. The smeared operator product expansion formally connects nonperturbative matrix elements determined numerically using lattice field theory to matrix elements of non-local operators in the continuum. These nonperturbative matrix elements do not suffer from power-divergent mixing on the lattice, which significantly complicates calculations of quantities such as the moments of parton distribution functions, provided the smearing scale is kept fixed in the continuum limit. The presence of this smearing scale complicates the connection to the Wilson coefficients of the standardmore » operator product expansion and requires the construction of a suitable formalism. We demonstrate the feasibility of our approach with examples in real scalar field theory.« less
Lee, Sanghun; Park, Sung Soo
2011-11-03
Dielectric constants of electrolytic organic solvents are calculated employing nonpolarizable Molecular Dynamics simulation with Electronic Continuum (MDEC) model and Density Functional Theory. The molecular polarizabilities are obtained by the B3LYP/6-311++G(d,p) level of theory to estimate high-frequency refractive indices while the densities and dipole moment fluctuations are computed using nonpolarizable MD simulations. The dielectric constants reproduced from these procedures are evaluated to provide a reliable approach for estimating the experimental data. An additional feature, two representative solvents which have similar molecular weights but are different dielectric properties, i.e., ethyl methyl carbonate and propylene carbonate, are compared using MD simulations and the distinctly different dielectric behaviors are observed at short times as well as at long times.
The limits of the nuclear landscape explored by the relativistic continuum Hartree-Bogoliubov theory
NASA Astrophysics Data System (ADS)
Xia, X. W.; Lim, Y.; Zhao, P. W.; Liang, H. Z.; Qu, X. Y.; Chen, Y.; Liu, H.; Zhang, L. F.; Zhang, S. Q.; Kim, Y.; Meng, J.
2018-05-01
The ground-state properties of nuclei with 8 ⩽ Z ⩽ 120 from the proton drip line to the neutron drip line have been investigated using the spherical relativistic continuum Hartree-Bogoliubov (RCHB) theory with the relativistic density functional PC-PK1. With the effects of the continuum included, there are totally 9035 nuclei predicted to be bound, which largely extends the existing nuclear landscapes predicted with other methods. The calculated binding energies, separation energies, neutron and proton Fermi surfaces, root-mean-square (rms) radii of neutron, proton, matter, and charge distributions, ground-state spins and parities are tabulated. The extension of the nuclear landscape obtained with RCHB is discussed in detail, in particular for the neutron-rich side, in comparison with the relativistic mean field calculations without pairing correlations and also other predicted landscapes. It is found that the coupling between the bound states and the continuum due to the pairing correlations plays an essential role in extending the nuclear landscape. The systematics of the separation energies, radii, densities, potentials and pairing energies of the RCHB calculations are also discussed. In addition, the α-decay energies and proton emitters based on the RCHB calculations are investigated.
NASA Astrophysics Data System (ADS)
Egwolf, Bernhard; Tavan, Paul
2004-01-01
We extend our continuum description of solvent dielectrics in molecular-dynamics (MD) simulations [B. Egwolf and P. Tavan, J. Chem. Phys. 118, 2039 (2003)], which has provided an efficient and accurate solution of the Poisson equation, to ionic solvents as described by the linearized Poisson-Boltzmann (LPB) equation. We start with the formulation of a general theory for the electrostatics of an arbitrarily shaped molecular system, which consists of partially charged atoms and is embedded in a LPB continuum. This theory represents the reaction field induced by the continuum in terms of charge and dipole densities localized within the molecular system. Because these densities cannot be calculated analytically for systems of arbitrary shape, we introduce an atom-based discretization and a set of carefully designed approximations. This allows us to represent the densities by charges and dipoles located at the atoms. Coupled systems of linear equations determine these multipoles and can be rapidly solved by iteration during a MD simulation. The multipoles yield the reaction field forces and energies. Finally, we scrutinize the quality of our approach by comparisons with an analytical solution restricted to perfectly spherical systems and with results of a finite difference method.
NASA Astrophysics Data System (ADS)
Marshall, Bennett D.; Chapman, Walter G.
2013-09-01
In this work we develop a new theory to model self assembling mixtures of single patch colloids and colloids with spherically symmetric attractions. In the development of the theory we restrict the interactions such that there are short ranged attractions between patchy and spherically symmetric colloids, but patchy colloids do not attract patchy colloids and spherically symmetric colloids do not attract spherically symmetric colloids. This results in the temperature, density, and composition dependent reversible self assembly of the mixture into colloidal star molecules. This type of mixture has been recently synthesized by grafting of complimentary single stranded DNA [L. Feng, R. Dreyfus, R. Sha, N. C. Seeman, and P. M. Chaikin, Adv. Mater. 25(20), 2779-2783 (2013)], 10.1002/adma.201204864. As a quantitative test of the theory, we perform new monte carlo simulations to study the self assembly of these mixtures; theory and simulation are found to be in excellent agreement.
Simplified conditions holding at the gas-liquid interface during evaporation
NASA Astrophysics Data System (ADS)
Morris, S. J. S.
2017-11-01
We show that on the gas side of the interface between a pure liquid and a binary mixture of its vapour with an insoluble gas, the normal derivative of vapour partial pressure pv satisfies ∂pv/∂n +αc/2 πpD (P -pv) (p -pv) = 0 . Constants α, c, D denote the dimensionless accommodation coefficient, a molecular speed and the diffusivity. Provided the continuum approximation holds within the gas, and α = O(1) , this boundary condition implies that evaporation can take one of two forms. (a) If the coexistence pressure P evaluated at the interface is less than the constant total gas pressure p, liquid at the interface is in local thermodynamic equilibrium with its vapour, and the evaporation rate is determined by diffusion through the gas. (b) Conversely, if P > p , gas at the interface consists of pure vapour, and the evaporation rate is determined by processes within the liquid. In the Wayner theory of the heated evaporating meniscus, such as that in a heat pipe, case (b) is assumed. As an application of our result, we show that some of the published experiments intended to test the Wayner theory instead operate under conditions in which case (a) holds. As a result, they do not perform the test intended.
Saha, Tulshi D; Chou, S Patricia; Grant, Bridget F
2006-07-01
Item response theory (IRT) was used to determine whether the DSM-IV diagnostic criteria for alcohol abuse and dependence are arrayed along a continuum of severity. Data came from a large nationally representative sample of the US population, 18 years and older. A two-parameter logistic IRT model was used to determine the severity and discrimination of each DSM-IV criterion. Differential criterion functioning (DCF) was also assessed across subgroups of the population defined by sex, age and race-ethnicity. All DSM-IV alcohol abuse and dependence criteria, except alcohol-related legal problems, formed a continuum of alcohol use disorder severity. Abuse and dependence criteria did not consistently tap the mildest or more severe end of the continuum respectively, and several criteria were identified as potentially redundant. The drinking in larger amounts or for longer than intended dependence criterion had the greatest discrimination and lowest severity than any other criterion. Although several criteria were found to function differentially between subgroups defined in terms of sex and age, there was evidence that the generalizability and validity of the criterion forming the continuum remained intact at the test score level. DSM-IV diagnostic criteria for alcohol abuse and dependence form a continuum of severity, calling into question the abuse-dependence distinction in the DSM-IV and the interpretation of abuse as a milder disorder than dependence. The criteria tapped the more severe end of the alcohol use disorder continuum, highlighting the need to identify other criteria capturing the mild to intermediate range of the severity. The drinking larger amounts or longer than intended dependence criterion may be a bridging criterion between drinking patterns that incur risk of alcohol use disorder at the milder end of the continuum, with tolerance, withdrawal, impaired control and serious social and occupational dysfunction at the more severe end of the alcohol use disorder continuum. Future IRT and other dimensional analyses hold great promise in informing revisions to categorical classifications and constructing new dimensional classifications of alcohol use disorders based on the DSM and the ICD.
Mean absorption coefficients of He/Ar/N2/(C1-x-y , Ni x , Co y ) thermal plasmas for CNT synthesis
NASA Astrophysics Data System (ADS)
Salem, D.; Hannachi, R.; Cressault, Y.; Teulet, Ph; Béji, L.
2017-01-01
In this paper, we present the mean absorption coefficients (MACs) calculated for plasma mixtures of argon-helium-nitrogen-carbon-nickel-cobalt at 60 kPa and in a temperature range from 1 kK to 20 kK. These coefficients have been computed under the assumption of a local thermodynamic equilibrium (LTE), isothermal plasma, including atomic and molecular continuum, molecular bands and lines radiation splitted into nine spectral intervals. The results show that the continuum absorption coefficients strongly depend on photodissociation and photoionization processes of the molecular species N2, CN and C2, with a significant effect on photodetachment processes of C- in a frequency interval lower than 1 × 1015 Hz and for low temperature (<6 kK). While at high temperature, the main contribution in continuum absorption coefficient comes from radiative recombination processes except in the infrared region (<0.5 × 1015 Hz) where the inverse bremsstrahlung represents the most important component in continuum processes for all temperature values. On the other hand, the calculation of MAC shows that the role of molecular continuum, molecular bands and line absorption of the neutral catalysis species Ni/Co are only important in a small range of temperature and in a few spectral bands located in visible and infrared regions, while at high temperature and in UV and visible regions, the foremost contributions to MAC come from atomic continuum and line absorption.
Traveling Music: Following the Path of Music through the Global Market.
ERIC Educational Resources Information Center
Colista, Celia; Leshner, Glenn
1998-01-01
Reviews the history and structure of the popular music industry; examines applications of the cultural imperialism theory to popular music and the subsequent debate; and surveys newer theories that developed as a result of the debate. Organizes theories along a continuum (meant as a heuristic for researchers) indicating the numerous forms musical…
ERIC Educational Resources Information Center
Hospers, J. Mirjam Boeschen; Smits, Niels; Smits, Cas; Stam, Mariska; Terwee, Caroline B.; Kramer, Sophia E.
2016-01-01
Purpose: We reevaluated the psychometric properties of the Amsterdam Inventory for Auditory Disability and Handicap (AIADH; Kramer, Kapteyn, Festen, & Tobi, 1995) using item response theory. Item response theory describes item functioning along an ability continuum. Method: Cross-sectional data from 2,352 adults with and without hearing…
A continuum model for pressure-flow relationship in human pulmonary circulation.
Huang, Wei; Zhou, Qinlian; Gao, Jian; Yen, R T
2011-06-01
A continuum model was introduced to analyze the pressure-flow relationship for steady flow in human pulmonary circulation. The continuum approach was based on the principles of continuum mechanics in conjunction with detailed measurement of vascular geometry, vascular elasticity and blood rheology. The pulmonary arteries and veins were considered as elastic tubes and the "fifth-power law" was used to describe the pressure-flow relationship. For pulmonary capillaries, the "sheet-flow" theory was employed and the pressure-flow relationship was represented by the "fourth-power law". In this paper, the pressure-flow relationship for the whole pulmonary circulation and the longitudinal pressure distribution along the streamlines were studied. Our computed data showed general agreement with the experimental data for the normal subjects and the patients with mitral stenosis and chronic bronchitis in the literature. In conclusion, our continuum model can be used to predict the changes of steady flow in human pulmonary circulation.
What Information Theory Says About Best Response and About Binding Contracts
NASA Technical Reports Server (NTRS)
Wolpert, David H.
2004-01-01
Product Distribution (PD) theory is the information-theoretic extension of conventional full- rationality game theory to bounded rational games. Here PD theory is used to investigate games in which the players use bounded rational best-response strategies. This investigation illuminates how to determine the optimal organization chart for a corporation, or more generally how to order the sequence of moves of the players / employees so as to optimize an overall objective function. It is then shown that in the continuum-time limit, bounded rational best response games result in a variant of the replicator dynamics of evolutionary game theory. This variant is then investigated for team games, in which the players share the same utility function, by showing that such continuum- limit bounded rational best response is identical to Newton-Raphson iterative optimization of the shared utility function. Next PD theory is used to investigate changing the coordinate system of the game, i.e., changing the mapping from the joint move of the players to the arguments in the utility functions. Such a change couples those arguments, essentially by making each players move be an offered binding contract.
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, R. H.
1992-01-01
The far wing line shape theory developed previously and applied to the calculation of the continuum absorption of pure water vapor is extended to foreign-broadened continua. Explicit results are presented for H2O-N2 and H2O-CO2 in the frequency range from 0 to 10,000/cm. For H2O-N2 the positive and negative resonant frequency average line shape functions and absorption coefficients are computed for a number of temperatures between 296 and 430 K for comparison with available laboratory data. In general the agreement is very good.
Continuum Theory of Retroviral Capsids
NASA Astrophysics Data System (ADS)
Nguyen, T. T.; Bruinsma, R. F.; Gelbart, W. M.
2006-02-01
We present a self-assembly phase diagram for the shape of retroviral capsids, based on continuum elasticity theory. The spontaneous curvature of the capsid proteins drives a weakly first-order transition from spherical to spherocylindrical shapes. The conical capsid shape which characterizes the HIV-1 retrovirus is never stable under unconstrained energy minimization. Only under conditions of fixed volume and/or fixed spanning length can the conical shape be a minimum energy structure. Our results indicate that, unlike the capsids of small viruses, retrovirus capsids are not uniquely determined by the molecular structure of the constituent proteins but depend in an essential way on physical constraints present during assembly.
The application of single particle hydrodynamics in continuum models of multiphase flow
NASA Technical Reports Server (NTRS)
Decker, Rand
1988-01-01
A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.
Bardhan, Jaydeep P; Knepley, Matthew G; Anitescu, Mihai
2009-03-14
The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.
NASA Astrophysics Data System (ADS)
Bardhan, Jaydeep P.; Knepley, Matthew G.; Anitescu, Mihai
2009-03-01
The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful, but the computational costs associated with solving the associated partial differential equations (PDEs) preclude the theory's use in most dynamical simulations. Modern generalized-Born models for electrostatics can reproduce PDE-based calculations to within a few percent and are extremely computationally efficient but do not always faithfully reproduce interactions between chemical groups. Recent work has shown that a boundary-integral-equation formulation of the PDE problem leads naturally to a new approach called boundary-integral-based electrostatics estimation (BIBEE) to approximate electrostatic interactions. In the present paper, we prove that the BIBEE method can be used to rigorously bound the actual continuum-theory electrostatic free energy. The bounds are validated using a set of more than 600 proteins. Detailed numerical results are presented for structures of the peptide met-enkephalin taken from a molecular-dynamics simulation. These bounds, in combination with our demonstration that the BIBEE methods accurately reproduce pairwise interactions, suggest a new approach toward building a highly accurate yet computationally tractable electrostatic model.
Different Approaches to Covariate Inclusion in the Mixture Rasch Model
ERIC Educational Resources Information Center
Li, Tongyun; Jiao, Hong; Macready, George B.
2016-01-01
The present study investigates different approaches to adding covariates and the impact in fitting mixture item response theory models. Mixture item response theory models serve as an important methodology for tackling several psychometric issues in test development, including the detection of latent differential item functioning. A Monte Carlo…
Kirkwood–Buff integrals for ideal solutions
Ploetz, Elizabeth A.; Bentenitis, Nikolaos; Smith, Paul E.
2010-01-01
The Kirkwood–Buff (KB) theory of solutions is a rigorous theory of solution mixtures which relates the molecular distributions between the solution components to the thermodynamic properties of the mixture. Ideal solutions represent a useful reference for understanding the properties of real solutions. Here, we derive expressions for the KB integrals, the central components of KB theory, in ideal solutions of any number of components corresponding to the three main concentration scales. The results are illustrated by use of molecular dynamics simulations for two binary solutions mixtures, benzene with toluene, and methanethiol with dimethylsulfide, which closely approach ideal behavior, and a binary mixture of benzene and methanol which is nonideal. Simulations of a quaternary mixture containing benzene, toluene, methanethiol, and dimethylsulfide suggest this system displays ideal behavior and that ideal behavior is not limited to mixtures containing a small number of components. PMID:20441282
Perturbative matching of continuum and lattice quasi-distributions
NASA Astrophysics Data System (ADS)
Ishikawa, Tomomi
2018-03-01
Matching of the quasi parton distribution functions between continuum and lattice is addressed using lattice perturbation theory specifically withWilson-type fermions. The matching is done for nonlocal quark bilinear operators with a straightWilson line in a spatial direction. We also investigate operator mixing in the renormalization and possible O(a) operators for the nonlocal operators based on a symmetry argument on lattice.
Dielectric constant of liquid alkanes and hydrocarbon mixtures
NASA Technical Reports Server (NTRS)
Sen, A. D.; Anicich, V. G.; Arakelian, T.
1992-01-01
The complex dielectric constants of n-alkanes with two to seven carbon atoms have been measured. The measurements were conducted using a slotted-line technique at 1.2 GHz and at atmospheric pressure. The temperature was varied from the melting point to the boiling point of the respective alkanes. The real part of the dielectric constant was found to decrease with increasing temperature and correlate with the change in the molar volume. An upper limit to all the loss tangents was established at 0.001. The complex dielectric constants of a few mixtures of liquid alkanes were also measured at room temperature. For a pentane-octane mixture the real part of the dielectric constant could be explained by the Clausius-Mosotti theory. For the mixtures of n-hexane-ethylacetate and n-hexane-acetone the real part of the dielectric constants could be explained by the Onsager theory extended to mixtures. The dielectric constant of the n-hexane-acetone mixture displayed deviations from the Onsager theory at the highest fractions of acetone. The dipole moments of ethylacetate and acetone were determined for dilute mixtures using the Onsager theory and were found to be in agreement with their accepted gas-phase values. The loss tangents of the mixtures exhibited a linear relationship with the volume fraction for low concentrations of the polar liquids.
Comparison of shock structure solutions using independent continuum and kinetic theory approaches
NASA Technical Reports Server (NTRS)
Fiscko, Kurt A.; Chapman, Dean R.
1988-01-01
A vehicle traversing the atmosphere will experience flight regimes at high altitudes in which the thickness of a hypersonic shock wave is not small compared to the shock standoff distance from the hard body. When this occurs, it is essential to compute accurate flow field solutions within the shock structure. In this paper, one-dimensional shock structure is investigated for various monatomic gases from Mach 1.4 to Mach 35. Kinetic theory solutions are computed using the Direct Simulation Monte Carlo method. Steady-state solutions of the Navier-Stokes equations and of a slightly truncated form of the Burnett equations are determined by relaxation to a steady state of the time-dependent continuum equations. Monte Carlo results are in excellent agreement with published experimental data and are used as bases of comparison for continuum solutions. For a Maxwellian gas, the truncated Burnett equations are shown to produce far more accurate solutions of shock structure than the Navier-Stokes equations.
Pressure measurements in a low-density nozzle plume for code verification
NASA Technical Reports Server (NTRS)
Penko, Paul F.; Boyd, Iain D.; Meissner, Dana L.; Dewitt, Kenneth J.
1991-01-01
Measurements of Pitot pressure were made in the exit plane and plume of a low-density, nitrogen nozzle flow. Two numerical computer codes were used to analyze the flow, including one based on continuum theory using the explicit MacCormack method, and the other on kinetic theory using the method of direct-simulation Monte Carlo (DSMC). The continuum analysis was carried to the nozzle exit plane and the results were compared to the measurements. The DSMC analysis was extended into the plume of the nozzle flow and the results were compared with measurements at the exit plane and axial stations 12, 24 and 36 mm into the near-field plume. Two experimental apparatus were used that differed in design and gave slightly different profiles of pressure measurements. The DSMC method compared well with the measurements from each apparatus at all axial stations and provided a more accurate prediction of the flow than the continuum method, verifying the validity of DSMC for such calculations.
An EQT-cDFT approach to determine thermodynamic properties of confined fluids.
Mashayak, S Y; Motevaselian, M H; Aluru, N R
2015-06-28
We present a continuum-based approach to predict the structure and thermodynamic properties of confined fluids at multiple length-scales, ranging from a few angstroms to macro-meters. The continuum approach is based on the empirical potential-based quasi-continuum theory (EQT) and classical density functional theory (cDFT). EQT is a simple and fast approach to predict inhomogeneous density and potential profiles of confined fluids. We use EQT potentials to construct a grand potential functional for cDFT. The EQT-cDFT-based grand potential can be used to predict various thermodynamic properties of confined fluids. In this work, we demonstrate the EQT-cDFT approach by simulating Lennard-Jones fluids, namely, methane and argon, confined inside slit-like channels of graphene. We show that the EQT-cDFT can accurately predict the structure and thermodynamic properties, such as density profiles, adsorption, local pressure tensor, surface tension, and solvation force, of confined fluids as compared to the molecular dynamics simulation results.
Chilton, Roy; Pires-Yfantouda, Renata
2015-01-01
To develop a conceptual understanding of the process of adapting to the self-management of type 1 diabetes during adolescence. Participants were recruited from a National Health Service paediatric diabetes service within the south-west of England which runs six countywide diabetes clinics. Thirteen interviews were conducted using a social constructivist grounded theory approach. The findings illustrate how self-management can be understood in terms of a continuum-based framework, ranging from difficulties with, to successful self-management. Adaptation within the continuum can further be understood by specific transitional phases and process mechanisms, providing further depth to individuals' experiences of adaptation. This investigation provides a conceptual understanding of the complex issues adolescents encounter while adapting to and integrating a diabetes self-management regime into their lives. It provides an invaluable framework for exploring psychological mechanisms and contextualising them within a self-management continuum. Implications for healthcare professionals are discussed and further research proposes whether the model could be applicable to other chronic illnesses.
Time evolution as refining, coarse graining and entangling
NASA Astrophysics Data System (ADS)
Dittrich, Bianca; Steinhaus, Sebastian
2014-12-01
We argue that refining, coarse graining and entangling operators can be obtained from time evolution operators. This applies in particular to geometric theories, such as spin foams. We point out that this provides a construction principle for the physical vacuum in quantum gravity theories and more generally allows construction of a (cylindrically) consistent continuum limit of the theory.
Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach.
Rausch, M K; Karniadakis, G E; Humphrey, J D
2017-02-01
Biological soft tissues experience damage and failure as a result of injury, disease, or simply age; examples include torn ligaments and arterial dissections. Given the complexity of tissue geometry and material behavior, computational models are often essential for studying both damage and failure. Yet, because of the need to account for discontinuous phenomena such as crazing, tearing, and rupturing, continuum methods are limited. Therefore, we model soft tissue damage and failure using a particle/continuum approach. Specifically, we combine continuum damage theory with Smoothed Particle Hydrodynamics (SPH). Because SPH is a meshless particle method, and particle connectivity is determined solely through a neighbor list, discontinuities can be readily modeled by modifying this list. We show, for the first time, that an anisotropic hyperelastic constitutive model commonly employed for modeling soft tissue can be conveniently implemented within a SPH framework and that SPH results show excellent agreement with analytical solutions for uniaxial and biaxial extension as well as finite element solutions for clamped uniaxial extension in 2D and 3D. We further develop a simple algorithm that automatically detects damaged particles and disconnects the spatial domain along rupture lines in 2D and rupture surfaces in 3D. We demonstrate the utility of this approach by simulating damage and failure under clamped uniaxial extension and in a peeling experiment of virtual soft tissue samples. In conclusion, SPH in combination with continuum damage theory may provide an accurate and efficient framework for modeling damage and failure in soft tissues.
Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach
Rausch, M. K.; Karniadakis, G. E.; Humphrey, J. D.
2016-01-01
Biological soft tissues experience damage and failure as a result of injury, disease, or simply age; examples include torn ligaments and arterial dissections. Given the complexity of tissue geometry and material behavior, computational models are often essential for studying both damage and failure. Yet, because of the need to account for discontinuous phenomena such as crazing, tearing, and rupturing, continuum methods are limited. Therefore, we model soft tissue damage and failure using a particle/continuum approach. Specifically, we combine continuum damage theory with Smoothed Particle Hydrodynamics (SPH). Because SPH is a meshless particle method, and particle connectivity is determined solely through a neighbor list, discontinuities can be readily modeled by modifying this list. We show, for the first time, that an anisotropic hyperelastic constitutive model commonly employed for modeling soft tissue can be conveniently implemented within a SPH framework and that SPH results show excellent agreement with analytical solutions for uniaxial and biaxial extension as well as finite element solutions for clamped uniaxial extension in 2D and 3D. We further develop a simple algorithm that automatically detects damaged particles and disconnects the spatial domain along rupture lines in 2D and rupture surfaces in 3D. We demonstrate the utility of this approach by simulating damage and failure under clamped uniaxial extension and in a peeling experiment of virtual soft tissue samples. In conclusion, SPH in combination with continuum damage theory may provide an accurate and efficient framework for modeling damage and failure in soft tissues. PMID:27538848
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajagopal, K.R.
The mechanics of the flowing granular materials such as coal, agricultural products, at deal of attention as it has fertilizers, dry chemicals, metal ores, etc. have received a great deal of attention as it has relevance to several important technological problems. Despite wide interest and more than five decades of experimental and theoretical investigations, most aspects of the behavior of flowing granular materials are still not well understood. So Experiments have to be devised which quantify and describe the non-linear behavior of the modular materials, and theories developed which can explain the experimentally observed facts. As many models have beenmore » suggested for describing the behavior of granular materials, from both continuum and kinetic theory viewpoints, we proposed to investigate the validity and usefulness of representative models from both the continuum and kinetic theory points of view, by determining the prediction of such a theory, in a representative flow, with respect to existence, non-existence, multiplicity and stability of solutions. The continuum model to be investigated is an outgrowth of a model due to Goodman and Cowin (1971, 1972) and the kinetic theory models being those due to Jenkins and Richman (1985) and Boyle and Massoudi (1989). In this report we present detailed results regarding the same. Interestingly, we find that the predictions of all the theories, in certain parameter space associated with these models, are qualitatively similar. This ofcourse depends on the values assumed for various material parameters in the models, which as yet are unknown, as reliable experiments have not been carried out as yet for their determination.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slaby, Christoph; Könies, Axel; Kleiber, Ralf
2016-09-15
The resonant interaction of shear Alfvén waves with energetic particles is investigated numerically in tokamak and stellarator geometry using a non-perturbative MHD-kinetic hybrid approach. The focus lies on toroidicity-induced Alfvén eigenmodes (TAEs), which are most easily destabilized by a fast-particle population in fusion plasmas. While the background plasma is treated within the framework of an ideal-MHD theory, the drive of the fast particles, as well as Landau damping of the background plasma, is modelled using the drift-kinetic Vlasov equation without collisions. Building on analytical theory, a fast numerical tool, STAE-K, has been developed to solve the resulting eigenvalue problem usingmore » a Riccati shooting method. The code, which can be used for parameter scans, is applied to tokamaks and the stellarator Wendelstein 7-X. High energetic-ion pressure leads to large growth rates of the TAEs and to their conversion into kinetically modified TAEs and kinetic Alfvén waves via continuum interaction. To better understand the physics of this conversion mechanism, the connections between TAEs and the shear Alfvén wave continuum are examined. It is shown that, when energetic particles are present, the continuum deforms substantially and the TAE frequency can leave the continuum gap. The interaction of the TAE with the continuum leads to singularities in the eigenfunctions. To further advance the physical model and also to eliminate the MHD continuum together with the singularities in the eigenfunctions, a fourth-order term connected to radiative damping has been included. The radiative damping term is connected to non-ideal effects of the bulk plasma and introduces higher-order derivatives to the model. Thus, it has the potential to substantially change the nature of the solution. For the first time, the fast-particle drive, Landau damping, continuum damping, and radiative damping have been modelled together in tokamak- as well as in stellarator geometry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerman, Jonathan A.; Jones, Reese E.; Templeton, Jeremy Alan
Materials with characteristic structures at nanoscale sizes exhibit significantly different mechani-cal responses from those predicted by conventional, macroscopic continuum theory. For example,nanocrystalline metals display an inverse Hall-Petch effect whereby the strength of the materialdecreases with decreasing grain size. The origin of this effect is believed to be a change in defor-mation mechanisms from dislocation motion across grains and pileup at grain boundaries at mi-croscopic grain sizes to rotation of grains and deformation within grain boundary interface regionsfor nanostructured materials. These rotational defects are represented by the mathematical conceptof disclinations. The ability to capture these effects within continuum theory, thereby connectingnanoscalemore » materials phenomena and macroscale behavior, has eluded the research community.The goal of our project was to develop a consistent theory to model both the evolution ofdisclinations and their kinetics. Additionally, we sought to develop approaches to extract contin-uum mechanical information from nanoscale structure to verify any developed continuum theorythat includes dislocation and disclination behavior. These approaches yield engineering-scale ex-pressions to quantify elastic and inelastic deformation in all varieties of materials, even those thatpossess highly directional bonding within their molecular structures such as liquid crystals, cova-lent ceramics, polymers and biological materials. This level of accuracy is critical for engineeringdesign and thermo-mechanical analysis is performed in micro- and nanosystems. The researchproposed here innovates on how these nanoscale deformation mechanisms should be incorporatedinto a continuum mechanical formulation, and provides the foundation upon which to develop ameans for predicting the performance of advanced engineering materials.4 AcknowledgmentThe authors acknowledge helpful discussions with Farid F. Abraham, Youping Chen, Terry J.Delph, Remi Dingreville, James W. Foulk III, Robert J. Hardy, Richard Lehoucq, Alejandro Mota,Gregory J. Wagner, Edmund B. Webb III and Xiaowang Zhou. Support for this project was pro-vided by the Enabling Predictive Simulation Investment Area of Sandia's Laboratory DirectedResearch and Development (LDRD) program.5« less
ERIC Educational Resources Information Center
Kaplan, Sandra N.
2012-01-01
The importance of putting theory into practice can be addressed and advocated to educators and gifted students through the presentation of a Continuum of Practice. Articulating the sequence and phases of practice can underscore how practice can take place; it also can change the perspective and meaning of practice.
Defects in crystalline packings of twisted filament bundles. I. Continuum theory of disclinations.
Grason, Gregory M
2012-03-01
We develop the theory of the coupling between in-plane order and out-of-plane geometry in twisted, two-dimensionally ordered filament bundles based on the nonlinear continuum elasticity theory of columnar materials. We show that twisted textures of filament backbones necessarily introduce stresses into the cross-sectional packing of bundles and that these stresses are formally equivalent to the geometrically induced stresses generated in thin elastic sheets that are forced to adopt spherical curvature. As in the case of crystalline order on curved membranes, geometrically induced stresses couple elastically to the presence of topological defects in the in-plane order. We derive the effective theory of multiple disclination defects in the cross section of bundle with a fixed twist and show that above a critical degree of twist, one or more fivefold disclinations is favored in the elastic energy ground state. We study the structure and energetics of multidisclination packings based on models of equilibrium and nonequilibrium cross-sectional order.
Continuum theory for cluster morphologies of soft colloids.
Kosmrlj, A; Pauschenwein, G J; Kahl, G; Ziherl, P
2011-06-09
We introduce a continuum description of the thermodynamics of colloids with a core-corona architecture. In the case of thick coronas, their overlap can be treated approximately by replacing the exact one-particle density distribution by a suitably shaped step profile, which provides a convenient way of modeling the spherical, columnar, lamellar, and inverted cluster morphologies predicted by numerical simulations and the more involved theories. We use the model to study monodisperse particles with the hard-core/square-shoulder pair interaction as the simplest representatives of the core-corona class. We derive approximate analytical expressions for the enthalpies of the cluster morphologies which offer a clear insight into the mechanisms at work, and we calculate the lattice spacing and the cluster size for all morphologies of the phase sequence as well as the phase-transition pressures. By comparing the results with the exact crystalline minimum-enthalpy configurations, we show that the accuracy of the theory increases with shoulder width. We discuss possible extensions of the theory that could account for the finite-temperature effects.
Lattice corrections to the quark quasidistribution at one loop
Carlson, Carl E.; Freid, Michael
2017-05-12
Here, we calculate radiative corrections to the quark quasidistribution in lattice perturbation theory at one loop to leading orders in the lattice spacing. We also consider one-loop corrections in continuum Euclidean space. We find that the infrared behavior of the corrections in Euclidean and Minkowski space are different. Furthermore, we explore features of momentum loop integrals and demonstrate why loop corrections from the lattice perturbation theory and Euclidean continuum do not correspond with their Minkowski brethren, and comment on a recent suggestion for transcending the differences in the results. Finally, we examine the role of the lattice spacing a andmore » of the r parameter in the Wilson action in these radiative corrections.« less
Is the ground state of Yang-Mills theory Coulombic?
NASA Astrophysics Data System (ADS)
Heinzl, T.; Ilderton, A.; Langfeld, K.; Lavelle, M.; Lutz, W.; McMullan, D.
2008-08-01
We study trial states modelling the heavy quark-antiquark ground state in SU(2) Yang-Mills theory. A state describing the flux tube between quarks as a thin string of glue is found to be a poor description of the continuum ground state; the infinitesimal thickness of the string leads to UV artifacts which suppress the overlap with the ground state. Contrastingly, a state which surrounds the quarks with non-Abelian Coulomb fields is found to have a good overlap with the ground state for all charge separations. In fact, the overlap increases as the lattice regulator is removed. This opens up the possibility that the Coulomb state is the true ground state in the continuum limit.
Lattice corrections to the quark quasidistribution at one loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Carl E.; Freid, Michael
Here, we calculate radiative corrections to the quark quasidistribution in lattice perturbation theory at one loop to leading orders in the lattice spacing. We also consider one-loop corrections in continuum Euclidean space. We find that the infrared behavior of the corrections in Euclidean and Minkowski space are different. Furthermore, we explore features of momentum loop integrals and demonstrate why loop corrections from the lattice perturbation theory and Euclidean continuum do not correspond with their Minkowski brethren, and comment on a recent suggestion for transcending the differences in the results. Finally, we examine the role of the lattice spacing a andmore » of the r parameter in the Wilson action in these radiative corrections.« less
Dynamics of Ranking Processes in Complex Systems
NASA Astrophysics Data System (ADS)
Blumm, Nicholas; Ghoshal, Gourab; Forró, Zalán; Schich, Maximilian; Bianconi, Ginestra; Bouchaud, Jean-Philippe; Barabási, Albert-László
2012-09-01
The world is addicted to ranking: everything, from the reputation of scientists, journals, and universities to purchasing decisions is driven by measured or perceived differences between them. Here, we analyze empirical data capturing real time ranking in a number of systems, helping to identify the universal characteristics of ranking dynamics. We develop a continuum theory that not only predicts the stability of the ranking process, but shows that a noise-induced phase transition is at the heart of the observed differences in ranking regimes. The key parameters of the continuum theory can be explicitly measured from data, allowing us to predict and experimentally document the existence of three phases that govern ranking stability.
The limits of the nuclear landscape explored by the relativistic continuum Hartree–Bogoliubov theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, X. W.; Lim, Y.; Zhao, P. W.
The ground-state properties of nuclei with 8more » $$\\leqslant$$ Z $$\\leqslant$$ 120 from the proton drip line to the neutron drip line have been investigated using the relativistic continuum Hartree-Bogoliubov (RCHB) theory with the relativistic density functional PC-PK1. With the effects of the continuum included, there are totally 9035 nuclei predicted to be bound, which largely extends the existing nuclear landscapes predicted with other methods. The calculated binding energies, separation energies, neutron and proton Fermi surfaces, root-mean-square (rms) radii of neutron, proton, matter, and charge distributions, ground-state spins and parities are tabulated. The extension of the nuclear landscape obtained with RCHB is discussed in detail, in particular for the neutron-rich side, in comparison with the relativistic mean field calculations without pairing correlations and also other predicted landscapes. Here, it is found that the coupling between the bound states and the continuum due to the pairing correlations plays an essential role in extending the nuclear landscape. The systematics of the separation energies, radii, densities, potentials and pairing energies of the RCHB calculations are also discussed. In addition, the α-decay energies and proton emitters based on the RCHB calculations are investigated.« less
The limits of the nuclear landscape explored by the relativistic continuum Hartree–Bogoliubov theory
Xia, X. W.; Lim, Y.; Zhao, P. W.; ...
2017-11-01
The ground-state properties of nuclei with 8more » $$\\leqslant$$ Z $$\\leqslant$$ 120 from the proton drip line to the neutron drip line have been investigated using the relativistic continuum Hartree-Bogoliubov (RCHB) theory with the relativistic density functional PC-PK1. With the effects of the continuum included, there are totally 9035 nuclei predicted to be bound, which largely extends the existing nuclear landscapes predicted with other methods. The calculated binding energies, separation energies, neutron and proton Fermi surfaces, root-mean-square (rms) radii of neutron, proton, matter, and charge distributions, ground-state spins and parities are tabulated. The extension of the nuclear landscape obtained with RCHB is discussed in detail, in particular for the neutron-rich side, in comparison with the relativistic mean field calculations without pairing correlations and also other predicted landscapes. Here, it is found that the coupling between the bound states and the continuum due to the pairing correlations plays an essential role in extending the nuclear landscape. The systematics of the separation energies, radii, densities, potentials and pairing energies of the RCHB calculations are also discussed. In addition, the α-decay energies and proton emitters based on the RCHB calculations are investigated.« less
Mi, Jianguo; Tang, Yiping; Zhong, Chongli; Li, Yi-Gui
2005-11-03
Our recently improved renormalization group (RG) theory is further reformulated within the context of density functional theory. To improve the theory for polar and associating fluids, an explicit and complete expression of the theory is derived in which the density fluctuation is expanded up to the third-order term instead of the original second-order term. A new predictive equation of state based on the first-order mean spherical approximation statistical associating fluid theory (FMSA-SAFT) and the newly improved RG theory is proposed for systems containing polar and associating fluids. The calculated results for both pure fluids and mixtures are in good agreement with experimental data both inside and outside the critical region. This work demonstrates that the RG theory incorporated with the solution of FMSA is a promising route for accurately describing the global phase behavior of complex fluids and mixtures.
Electro-osmotic flow of a model electrolyte
NASA Astrophysics Data System (ADS)
Zhu, Wei; Singer, Sherwin J.; Zheng, Zhi; Conlisk, A. T.
2005-04-01
Electro-osmotic flow is studied by nonequilibrium molecular dynamics simulations in a model system chosen to elucidate various factors affecting the velocity profile and facilitate comparison with existing continuum theories. The model system consists of spherical ions and solvent, with stationary, uniformly charged walls that make a channel with a height of 20 particle diameters. We find that hydrodynamic theory adequately describes simple pressure-driven (Poiseuille) flow in this model. However, Poisson-Boltzmann theory fails to describe the ion distribution in important situations, and therefore continuum fluid dynamics based on the Poisson-Boltzmann ion distribution disagrees with simulation results in those situations. The failure of Poisson-Boltzmann theory is traced to the exclusion of ions near the channel walls resulting from reduced solvation of the ions in that region. When a corrected ion distribution is used as input for hydrodynamic theory, agreement with numerical simulations is restored. An analytic theory is presented that demonstrates that repulsion of the ions from the channel walls increases the flow rate, and attraction to the walls has the opposite effect. A recent numerical study of electro-osmotic flow is reanalyzed in the light of our findings, and the results conform well to our conclusions for the model system.
Variable Weight Fractional Collisions for Multiple Species Mixtures
2017-08-28
DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA #17517 6 / 21 VARIABLE WEIGHTS FOR DYNAMIC RANGE Continuum to Discrete ...Representation: Many Particles →̃ Continuous Distribution Discretized VDF Yields Vlasov But Collision Integral Still a Problem Particle Methods VDF to Delta...Function Set Collisions between Discrete Velocities But Poorly Resolved Tail (Tail Critical to Inelastic Collisions) Variable Weights Permit Extra DOF in
Measurements of hydrogen-helium radiation at shock-layer temperatures appropriate for Jupiter entry.
NASA Technical Reports Server (NTRS)
Cooper, D. M.; Borucki, W. J.
1973-01-01
Shock waves traveling at approximately 16 km/sec into a gas mixture of 7% H2 and 93% He were used to simulate the shock-layer conditions for a representative shallow entry into the Jovian atmosphere. The absolute intensities of line and continuum radiation were measured and the radiative cooling of the shock-heated gas is shown.
Morphing Continuum Theory: A First Order Approximation to the Balance Laws
NASA Astrophysics Data System (ADS)
Wonnell, Louis; Cheikh, Mohamad Ibrahim; Chen, James
2017-11-01
Morphing Continuum Theory is constructed under the framework of Rational Continuum Mechanics (RCM) for fluid flows with inner structure. This multiscale theory has been successfully emplyed to model turbulent flows. The framework of RCM ensures the mathematical rigor of MCT, but contains new material constants related to the inner structure. The physical meanings of these material constants have yet to be determined. Here, a linear deviation from the zeroth-order Boltzmann-Curtiss distribution function is derived. When applied to the Boltzmann-Curtiss equation, a first-order approximation of the MCT governing equations is obtained. The integral equations are then related to the appropriate material constants found in the heat flux, Cauchy stress, and moment stress terms in the governing equations. These new material properties associated with the inner structure of the fluid are compared with the corresponding integrals, and a clearer physical interpretation of these coefficients emerges. The physical meanings of these material properties is determined by analyzing previous results obtained from numerical simulations of MCT for compressible and incompressible flows. The implications for the physics underlying the MCT governing equations will also be discussed. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-17-1-0154.
Gas Phase Pressure Effects on the Apparent Thermal Conductivity of JSC-1A Lunar Regolith Simulant
NASA Technical Reports Server (NTRS)
Yuan, Zeng-Guang; Kleinhenz, Julie E.
2011-01-01
Gas phase pressure effects on the apparent thermal conductivity of a JSC-1A/air mixture have been experimentally investigated under steady state thermal conditions from 10 kPa to 100 kPa. The result showed that apparent thermal conductivity of the JSC-1A/air mixture decreased when pressure was lowered to 80 kPa. At 10 kPa, the conductivity decreased to 0.145 W/m/degree C, which is significantly lower than 0.196 W/m/degree C at 100 kPa. This finding is consistent with the results of previous researchers. The reduction of the apparent thermal conductivity at low pressures is ascribed to the Knudsen effect. Since the characteristic length of the void space in bulk JSC-1A varies over a wide range, both the Knudsen regime and continuum regime can coexist in the pore space. The volume ratio of the two regimes varies with pressure. Thus, as gas pressure decreases, the gas volume controlled by Knudsen regime increases. Under Knudsen regime the resistance to the heat flow is higher than that in the continuum regime, resulting in the observed pressure dependency of the apparent thermal conductivity.
Continuum and three-nucleon force effects on Be 9 energy levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langhammer, Joachim; Navrátil, Petr; Quaglioni, Sofia
2015-02-05
In this paper, we extend the recently proposed ab initio no-core shell model with continuum to include three-nucleon (3N) interactions beyond the few-body domain. The extended approach allows for the assessment of effects of continuum degrees of freedom as well as of the 3N force in ab initio calculations of structure and reaction observables of p- and lower-sd-shell nuclei. As a first application we concentrate on energy levels of the 9Be system for which all excited states lie above the n- 8Be threshold. For all energy levels, the inclusion of the continuum significantly improves the agreement with experiment, which wasmore » an issue in standard no-core shell model calculations. Furthermore, we find the proper treatment of the continuum indispensable for reliable statements about the quality of the adopted 3N interaction from chiral effective field theory. Finally, in particular, we find the 1/2 + resonance energy, which is of astrophysical interest, in good agreement with experiment.« less
Wang, Tiecheng; Zhang, Shihao
2018-01-08
Second harmonic generation from the two-layer structure where a transition-metal dichalcogenide monolayer is put on a one-dimensional grating has been studied. This grating supports bound states in the continuum which have no leakage lying within the continuum of radiation modes, we can enhance the second harmonic generation from the transition-metal dichalcogenide monolayer by more than four orders of magnitude based on the critical field enhancement near the bound states in the continuum. In order to complete this calculation, the scattering matrix theory has been extended to include the nonlinear effect and the scattering matrix of a two-dimensional material including nonlinear terms; furthermore, two methods to observe the bound states in the continuum are considered, where one is tuning the thickness of the grating and the other is changing the incident angle of the electromagnetic wave. We have also discussed various modulation of the second harmonic generation enhancement by adjusting the azimuthal angle of the transition-metal dichalcogenide monolayer.
Evaluating the Dimensionality of Self-Determination Theory's Relative Autonomy Continuum.
Sheldon, Kennon M; Osin, Evgeny N; Gordeeva, Tamara O; Suchkov, Dmitry D; Sychev, Oleg A
2017-09-01
We conducted a theoretical and psychometric evaluation of self-determination theory's "relative autonomy continuum" (RAC), an important aspect of the theory whose validity has recently been questioned. We first derived a Comprehensive Relative Autonomy Index (C-RAI) containing six subscales and 24 items, by conducting a paired paraphrase content analysis of existing RAI measures. We administered the C-RAI to multiple U.S. and Russian samples, assessing motivation to attend class, study a major, and take responsibility. Item-level and scale-level multidimensional scaling analyses, confirmatory factor analyses, and simplex/circumplex modeling analyses reaffirmed the validity of the RAC, across multiple samples, stems, and studies. Validation analyses predicting subjective well-being and trait autonomy from the six separate subscales, in combination with various higher order composites (weighted and unweighted), showed that an aggregate unweighted RAI score provides the most unbiased and efficient indicator of the overall quality of motivation within the behavioral domain being assessed.
NASA Technical Reports Server (NTRS)
Rodal, J. J. A.; Witmer, E. A.
1979-01-01
A method of analysis for thin structures that incorporates finite strain, elastic-plastic, strain hardening, time dependent material behavior implemented with respect to a fixed configuration and is consistently valid for finite strains and finite rotations is developed. The theory is formulated systematically in a body fixed system of convected coordinates with materially embedded vectors that deform in common with continuum. Tensors are considered as linear vector functions and use is made of the dyadic representation. The kinematics of a deformable continuum is treated in detail, carefully defining precisely all quantities necessary for the analysis. The finite strain theory developed gives much better predictions and agreement with experiment than does the traditional small strain theory, and at practically no additional cost. This represents a very significant advance in the capability for the reliable prediction of nonlinear transient structural responses, including the reliable prediction of strains large enough to produce ductile metal rupture.
Is There Evidence for a Mixture of Processes in Speed-Accuracy Trade-Off Behavior?
van Maanen, Leendert
2016-01-01
The speed-accuracy trade-off (SAT) effect refers to the behavioral trade-off between fast yet error-prone respones and accurate but slow responses. Multiple theories on the cognitive mechanisms behind SAT exist. One theory assumes that SAT is a consequence of strategically adjusting the amount of evidence required for overt behaviors, such as perceptual choices. Another theory hypothesizes that SAT is the consequence of the mixture of multiple categorically different cognitive processes. In this paper, these theories are disambiguated by assessing whether the fixed-point property of mixture distributions holds, in both simulations and data. I conclude that, at least for perceptual decision making, there is no evidence for a mixture of different cognitive processes to trade off accuracy of responding for speed. Copyright © 2016 Cognitive Science Society, Inc.
Theory and simulation of electrolyte mixtures
NASA Astrophysics Data System (ADS)
Lee, B. Hribar; Vlachy, V.; Bhuiyan, L. B.; Outhwaite, C. W.; Molero, M.
Monte Carlo simulation and theoretical results on some aspects of thermodynamics of mixtures of electrolytes with a common species are presented. Both charge symmetric mixtures, where ions differ only in size, and charge asymmetric but size symmetric mixtures at ionic strength ranging generally from I = 10-4 to 1.0 M, and in a few cases up to I = M, are examined. The theoretical methods explored are: (i) the symmetric Poisson-Boltzmann theory, (ii) the modified Poisson-Boltzmann theory and (iii) the hypernetted-chain integral equation. The first two electrolyte mixing coefficients w0 and w1 of the various mixtures are calculated from an accurate determination of their osmotic pressure data. The theories are seen to be consistent among themselves, and with certain limiting laws in the literature, in predicting the trends of the mixing coefficients with respect to ionic strength. Some selected relevant experimental data have been analysed and compared with the theoretical and simulation trends. In addition the mean activity coefficients for a model mimicking the mixture of KCl and KF electrolytes are calculated and hence the Harned coefficients obtained for this system. These calculations are compared with the experimental data and Monte Carlo results available in the literature. The theoretically predicted Harned coefficients are in good agreement with the simulation results for the model KCl-KF mixture.
Ion concentrations and velocity profiles in nanochannel electroosmotic flows
NASA Astrophysics Data System (ADS)
Qiao, R.; Aluru, N. R.
2003-03-01
Ion distributions and velocity profiles for electroosmotic flow in nanochannels of different widths are studied in this paper using molecular dynamics and continuum theory. For the various channel widths studied in this paper, the ion distribution near the channel wall is strongly influenced by the finite size of the ions and the discreteness of the solvent molecules. The classical Poisson-Boltzmann equation fails to predict the ion distribution near the channel wall as it does not account for the molecular aspects of the ion-wall and ion-solvent interactions. A modified Poisson-Boltzmann equation based on electrochemical potential correction is introduced to account for ion-wall and ion-solvent interactions. The electrochemical potential correction term is extracted from the ion distribution in a smaller channel using molecular dynamics. Using the electrochemical potential correction term extracted from molecular dynamics (MD) simulation of electroosmotic flow in a 2.22 nm channel, the modified Poisson-Boltzmann equation predicts the ion distribution in larger channel widths (e.g., 3.49 and 10.00 nm) with good accuracy. Detailed studies on the velocity profile in electro-osmotic flow indicate that the continuum flow theory can be used to predict bulk fluid flow in channels as small as 2.22 nm provided that the viscosity variation near the channel wall is taken into account. We propose a technique to embed the velocity near the channel wall obtained from MD simulation of electroosmotic flow in a narrow channel (e.g., 2.22 nm wide channel) into simulation of electroosmotic flow in larger channels. Simulation results indicate that such an approach can predict the velocity profile in larger channels (e.g., 3.49 and 10.00 nm) very well. Finally, simulation of electroosmotic flow in a 0.95 nm channel indicates that viscosity cannot be described by a local, linear constitutive relationship that the continuum flow theory is built upon and thus the continuum flow theory is not applicable for electroosmotic flow in such small channels.
Mennucci, Benedetta; da Silva, Clarissa O
2008-06-05
A computational strategy based on quantum mechanical (QM) calculations and continuum solvation models is used to investigate the structure of liquids (either neat liquids or mixtures). The strategy is based on the comparison of calculated and experimental spectroscopic properties (IR-Raman vibrational frequencies and Raman intensities). In particular, neat formamide, neat acetonitrile, and their equimolar mixture are studied comparing isolated and solvated clusters of different nature and size. In all cases, the study seems to indicate that liquids, even when strongly associated, can be effectively modeled in terms of a shell-like system in which clusters of strongly interacting molecules (the microenvironments) are solvated by a polarizable macroenvironment represented by the rest of the molecules. Only taking into proper account both these effects can a correct picture of the liquid structure be achieved.
Temperature dependence of the water vapor continuum absorption in the 3-5 μm spectral region
NASA Astrophysics Data System (ADS)
Klimeshina, T. E.; Rodimova, O. B.
2013-04-01
Asymptotic line wing theory allows one to construct the line shape describing the frequency and temperature dependence of the self-broadened H2O continuum in the 3-5 μm spectral region obtained experimentally by CAVIAR and NIST. The H2O transmission functions are adequately described as well, using this line shape up to temperatures of ˜675 K and pressures of ˜10 atm.
ERIC Educational Resources Information Center
Maij-de Meij, Annette M.; Kelderman, Henk; van der Flier, Henk
2008-01-01
Mixture item response theory (IRT) models aid the interpretation of response behavior on personality tests and may provide possibilities for improving prediction. Heterogeneity in the population is modeled by identifying homogeneous subgroups that conform to different measurement models. In this study, mixture IRT models were applied to the…
Conformational analysis of cellobiose by electronic structure theories
USDA-ARS?s Scientific Manuscript database
Adiabatic phi/psi maps for cellobiose were prepared with B3LYP density functional theory. A mixed basis set was used for minimization, followed with 6-31+G(d) single-point calculations, with and without SMD continuum solvation. Different arrangements of the exocyclic groups (3starting geometries) we...
Progress in lattice gauge theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Creutz, M.
1983-01-01
These lectures first provide an overview of the current status of lattice gauge theory calculations. They then review some technical points on group integration, gauge fixing, and order parameters. Various Monte Carlo algorithms are discussed. Finally, alternatives to the Wilson action are considered in the context of universality for the continuum limit. 41 references.
Khattab, Muhammad; Wang, Feng; Clayton, Andrew H A
2017-11-24
Tyrosine kinase inhibitors (TKIs) are a major class of drug utilised in the clinic. During transit to their cognate kinases, TKIs will encounter different pH environments that could have a major influence on TKI structure. To address this, we report UV-Vis spectroscopic and computational studies of the TKI, AG1478, as a function of pH. The electronic absorption spectrum of AG1478 shifted by 10 nm (from 342 nm to 332 nm) from acid to neutral pH and split into two peaks (at 334 nm and 345 nm) in highly alkaline conditions. From these transitions, the pKa value was calculated as 5.58 ± 0.01. To compute structures and spectra, time-dependent density functional theory (TD-DFT) calculations were performed along with conductor-like polarizable continuum model (CPCM) to account for implicit solvent effect. On the basis of the theoretical spectra, we could assign the AG1478 experimental spectrum at acidic pH to a mixture of two twisted conformers (71% AG1478 protonated at quinazolyl nitrogen N(1) and 29% AG1478 protonated at quinazolyl nitrogen N(3)) and at neutral pH to the neutral planar conformer. The AG1478 absorption spectrum (pH 13.3) was fitted to a mixture of neutral (70%) and NH-deprotonated species (30%). These studies reveal a pH-induced conformational transition in a TKI.
NASA Astrophysics Data System (ADS)
Hooper, Justin B.; Smith, Grant D.; Bedrov, Dmitry
2013-09-01
Molecular dynamics (MD) simulations of mixtures of the room temperature ionic liquids (ILs) 1-butyl-4-methyl imidazolium [BMIM]/dicyanoamide [DCA] and [BMIM][NO3-] with HNO3 have been performed utilizing the polarizable, quantum chemistry based APPLE&P® potential. Experimentally it has been observed that [BMIM][DCA] exhibits hypergolic behavior when mixed with HNO3 while [BMIM][NO3-] does not. The structural, thermodynamic, and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations over the entire composition range (pure IL to pure HNO3) based on bulk simulations. Additional (non-equilibrium) simulations of the composition profile for IL/HNO3 interfaces as a function of time have been utilized to estimate the composition dependent mutual diffusion coefficients for the mixtures. The latter have been employed in continuum-level simulations in order to examine the nature (composition and width) of the IL/HNO3 interfaces on the millisecond time scale.
NASA Astrophysics Data System (ADS)
Banerjee, Indrani; Chakraborty, Sumanta; SenGupta, Soumitra
2017-10-01
Continuum spectrum from black hole accretion disc holds enormous information regarding the strong gravity regime around the black hole and hence about the nature of gravitational interaction in extreme situations. Since in such strong gravity regime the dynamics of gravity should be modified from the Einstein-Hilbert one, its effect should be imprinted on the continuum spectrum originating from the black hole accretion. To explore the effects of these alternative theories on the black hole continuum spectrum in an explicit manner, we have discussed three alternative gravitational models having their origin in three distinct paradigms—(a) higher dimensions, (b) higher curvature gravity, and (c) generalized Horndeski theories. All of them can have signatures sculptured on the black hole continuum spectrum, distinct from the standard general relativistic scenario. Interestingly all these models exhibit black hole solutions with tidal charge parameter which in these alternative gravity scenarios can become negative, in sharp contrast with the Reissner-Nordström black hole. Using the observational data of optical luminosity for eighty Palomer Green quasars we have illustrated that the difference between the theoretical estimates and the observational results gets minimized for negative values of the tidal charge parameter. As a quantitative estimate of this result we concentrate on several error estimators, including reduced χ2 , Nash-Sutcliffe efficiency, index of agreement etc. Remarkably, all of them indicates a negative value of the tidal charge parameter, signaling the possibility of higher dimensions as well as scalar charge at play in those high gravity regimes.
Transport Phenomena of Water in Molecular Fluidic Channels
Vo, Truong Quoc; Kim, BoHung
2016-01-01
In molecular-level fluidic transport, where the discrete characteristics of a molecular system are not negligible (in contrast to a continuum description), the response of the molecular water system might still be similar to the continuum description if the time and ensemble averages satisfy the ergodic hypothesis and the scale of the average is enough to recover the classical thermodynamic properties. However, even in such cases, the continuum description breaks down on the material interfaces. In short, molecular-level liquid flows exhibit substantially different physics from classical fluid transport theories because of (i) the interface/surface force field, (ii) thermal/velocity slip, (iii) the discreteness of fluid molecules at the interface and (iv) local viscosity. Therefore, in this study, we present the result of our investigations using molecular dynamics (MD) simulations with continuum-based energy equations and check the validity and limitations of the continuum hypothesis. Our study shows that when the continuum description is subjected to the proper treatment of the interface effects via modified boundary conditions, the so-called continuum-based modified-analytical solutions, they can adequately predict nanoscale fluid transport phenomena. The findings in this work have broad effects in overcoming current limitations in modeling/predicting the fluid behaviors of molecular fluidic devices. PMID:27650138
Khodadadian, Mehdi; Ahmadi, Farhad
2010-06-15
Molecularly imprinted polymers (MIPs) were computationally designed and synthesized for the selective extraction of a carbonic anhydrase inhibitor, i.e. acetazolamide (ACZ), from human plasma. Density functional theory (DFT) calculations were performed to study the intermolecular interactions in the pre-polymerization mixture and to find a suitable functional monomer in MIP preparation. The interaction energies were corrected for the basis set superposition error (BSSE) using the counterpoise (CP) correction. The polymerization solvent was simulated by means of polarizable continuum model (PCM). It was found that acrylamide (AAM) is the best candidate to prepare MIPs. To confirm the results of theoretical calculations, three MIPs were synthesized with different functional monomers and evaluated using Langmuir-Freundlich (LF) isotherm. The results indicated that the most homogeneous MIP with the highest number of binding sites is the MIP prepared by AAM. This polymer was then used as a selective adsorbent to develop a molecularly imprinted solid-phase extraction procedure followed by differential pulse voltammetry (MISPE-DPV) for clean-up and determination of ACZ in human plasma.
ERIC Educational Resources Information Center
Semlak, William D.; And Others
A study used M. Cuffe and J. F. Cragan's three-dimensional model for understanding corporate culture within an organization to describe the managerial styles of chairpersons at Illinois State University. Case studies were completed for 18 chairpersons, who then sorted 60 statements on leadership style on a forced choice continuum from most…
NASA Technical Reports Server (NTRS)
Chudnovsky, A.
1984-01-01
A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.
NASA Technical Reports Server (NTRS)
Chudnovsky, A.
1987-01-01
A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.
Full-potential multiple scattering theory with space-filling cells for bound and continuum states.
Hatada, Keisuke; Hayakawa, Kuniko; Benfatto, Maurizio; Natoli, Calogero R
2010-05-12
We present a rigorous derivation of a real-space full-potential multiple scattering theory (FP-MST) that is free from the drawbacks that up to now have impaired its development (in particular the need to expand cell shape functions in spherical harmonics and rectangular matrices), valid both for continuum and bound states, under conditions for space partitioning that are not excessively restrictive and easily implemented. In this connection we give a new scheme to generate local basis functions for the truncated potential cells that is simple, fast, efficient, valid for any shape of the cell and reduces to the minimum the number of spherical harmonics in the expansion of the scattering wavefunction. The method also avoids the need for saturating 'internal sums' due to the re-expansion of the spherical Hankel functions around another point in space (usually another cell center). Thus this approach provides a straightforward extension of MST in the muffin-tin (MT) approximation, with only one truncation parameter given by the classical relation l(max) = kR(b), where k is the electron wavevector (either in the excited or ground state of the system under consideration) and R(b) is the radius of the bounding sphere of the scattering cell. Moreover, the scattering path operator of the theory can be found in terms of an absolutely convergent procedure in the l(max) --> ∞ limit. Consequently, this feature provides a firm ground for the use of FP-MST as a viable method for electronic structure calculations and makes possible the computation of x-ray spectroscopies, notably photo-electron diffraction, absorption and anomalous scattering among others, with the ease and versatility of the corresponding MT theory. Some numerical applications of the theory are presented, both for continuum and bound states.
Lipparini, Filippo; Barone, Vincenzo
2011-11-08
We present a combined fluctuating charges-polarizable continuum model approach to describe molecules in solution. Both static and dynamic approaches are discussed: analytical first and second derivatives are shown as well as an extended lagrangian for molecular dynamics simluations. In particular, we use the polarizable continuum model to provide nonperiodic boundary conditions for molecular dynamics simulations of aqueous solutions. The extended lagrangian method is extensively discussed, with specific reference to the fluctuating charge model, from a numerical point of view by means of several examples, and a rationalization of the behavior found is presented. Several prototypical applications are shown, especially regarding solvation of ions and polar molecules in water.
A nonlinear generalized continuum approach for electro-elasticity including scale effects
NASA Astrophysics Data System (ADS)
Skatulla, S.; Arockiarajan, A.; Sansour, C.
2009-01-01
Materials characterized by an electro-mechanically coupled behaviour fall into the category of so-called smart materials. In particular, electro-active polymers (EAP) recently attracted much interest, because, upon electrical loading, EAP exhibit a large amount of deformation while sustaining large forces. This property can be utilized for actuators in electro-mechanical systems, artificial muscles and so forth. When it comes to smaller structures, it is a well-known fact that the mechanical response deviates from the prediction of classical mechanics theory. These scale effects are due to the fact that the size of the microscopic material constituents of such structures cannot be considered to be negligible small anymore compared to the structure's overall dimensions. In this context so-called generalized continuum formulations have been proven to account for the micro-structural influence to the macroscopic material response. Here, we want to adopt a strain gradient approach based on a generalized continuum framework [Sansour, C., 1998. A unified concept of elastic-viscoplastic Cosserat and micromorphic continua. J. Phys. IV Proc. 8, 341-348; Sansour, C., Skatulla, S., 2007. A higher gradient formulation and meshfree-based computation for elastic rock. Geomech. Geoeng. 2, 3-15] and extend it to also encompass the electro-mechanically coupled behaviour of EAP. The approach introduces new strain and stress measures which lead to the formulation of a corresponding generalized variational principle. The theory is completed by Dirichlet boundary conditions for the displacement field and its derivatives normal to the boundary as well as the electric potential. The basic idea behind this generalized continuum theory is the consideration of a micro- and a macro-space which together span the generalized space. As all quantities are defined in this generalized space, also the constitutive law, which is in this work conventional electro-mechanically coupled nonlinear hyperelasticity, is embedded in the generalized continuum. In this way material information of the micro-space, which are here only the geometrical specifications of the micro-continuum, can naturally enter the constitutive law. Several applications with moving least square-based approximations (MLS) demonstrate the potential of the proposed method. This particular meshfree method is chosen, as it has been proven to be highly flexible with regard to continuity and consistency required by this generalized approach.
Microscopic and continuum descriptions of Janus motor fluid flow fields
Reigh, Shang Yik; Schofield, Jeremy; Kapral, Raymond
2016-01-01
Active media, whose constituents are able to move autonomously, display novel features that differ from those of equilibrium systems. In addition to naturally occurring active systems such as populations of swimming bacteria, active systems of synthetic self-propelled nanomotors have been developed. These synthetic systems are interesting because of their potential applications in a variety of fields. Janus particles, synthetic motors of spherical geometry with one hemisphere that catalyses the conversion of fuel to product and one non-catalytic hemisphere, can propel themselves in solution by self-diffusiophoresis. In this mechanism, the concentration gradient generated by the asymmetric catalytic activity leads to a force on the motor that induces fluid flows in the surrounding medium. These fluid flows are studied in detail through microscopic simulations of Janus motor motion and continuum theory. It is shown that continuum theory is able to capture many, but not all, features of the dynamics of the Janus motor and the velocity fields of the fluid. This article is part of the themed issue ‘Multiscale modelling at the physics–chemistry–biology interface’. PMID:27698037
Self-consistent continuum solvation for optical absorption of complex molecular systems in solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timrov, Iurii; Biancardi, Alessandro; Andreussi, Oliviero
2015-01-21
We introduce a new method to compute the optical absorption spectra of complex molecular systems in solution, based on the Liouville approach to time-dependent density-functional perturbation theory and the revised self-consistent continuum solvation model. The former allows one to obtain the absorption spectrum over a whole wide frequency range, using a recently proposed Lanczos-based technique, or selected excitation energies, using the Casida equation, without having to ever compute any unoccupied molecular orbitals. The latter is conceptually similar to the polarizable continuum model and offers the further advantages of allowing an easy computation of atomic forces via the Hellmann-Feynman theorem andmore » a ready implementation in periodic-boundary conditions. The new method has been implemented using pseudopotentials and plane-wave basis sets, benchmarked against polarizable continuum model calculations on 4-aminophthalimide, alizarin, and cyanin and made available through the QUANTUM ESPRESSO distribution of open-source codes.« less
Micropolar continuum modelling of bi-dimensional tetrachiral lattices
Chen, Y.; Liu, X. N.; Hu, G. K.; Sun, Q. P.; Zheng, Q. S.
2014-01-01
The in-plane behaviour of tetrachiral lattices should be characterized by bi-dimensional orthotropic material owing to the existence of two orthogonal axes of rotational symmetry. Moreover, the constitutive model must also represent the chirality inherent in the lattices. To this end, a bi-dimensional orthotropic chiral micropolar model is developed based on the theory of irreducible orthogonal tensor decomposition. The obtained constitutive tensors display a hierarchy structure depending on the symmetry of the underlying microstructure. Eight additional material constants, in addition to five for the hemitropic case, are introduced to characterize the anisotropy under Z2 invariance. The developed continuum model is then applied to a tetrachiral lattice, and the material constants of the continuum model are analytically derived by a homogenization process. By comparing with numerical simulations for the discrete lattice, it is found that the proposed continuum model can correctly characterize the static and wave properties of the tetrachiral lattice. PMID:24808754
A Plea for a Statewide Content Continuum.
ERIC Educational Resources Information Center
Swiers, Alma
1979-01-01
Suggests that elementary self-contained classroom teachers be provided with specific statewide content guidelines. The content should be based upon Piaget's theory of cognitive development. (Author/KC)
Energy transfer by radiation in non-grey atomic gases in isothermal and non-isothermal slabs
NASA Technical Reports Server (NTRS)
Poon, P. T. Y.
1975-01-01
A multiband model for the absorption coefficient of atomic hydrogen-helium plasmas is constructed which includes continuum and line contributions. Emission from 28 stronger lines of 106 that have been screened is considered, of which 21 are from hydrogen and 7 belong to helium, with reabsorption due to line-line, line-continuum overlap accurately accounted for. The model is utilized in the computation of intensities and fluxes from shock-heated slabs of 85% H2-15% He mixtures for slab thicknesses from 1 to 30 cm, temperature from 10,000 to 20,000 K, and for different densities. In conjunction with the multiband model, simple numerical schemes have been devised which provide a quick and comprehensive way of computing radiative energy transfer in nonisothermal and nongrey gases.
ERIC Educational Resources Information Center
Miller, Alexis; Cook, Jennifer M.
2017-01-01
Many theories are used to conceptualize adolescent substance use, yet none adequately assist mental health professionals in assessing adolescents' strengths and risk factors while incorporating cultural factors. The authors reviewed common adolescent substance abuse theories and their strengths and limitations, and offer a new model to…
Hamiltonian approach to GR - Part 1: covariant theory of classical gravity
NASA Astrophysics Data System (ADS)
Cremaschini, Claudio; Tessarotto, Massimo
2017-05-01
A challenging issue in General Relativity concerns the determination of the manifestly covariant continuum Hamiltonian structure underlying the Einstein field equations and the related formulation of the corresponding covariant Hamilton-Jacobi theory. The task is achieved by adopting a synchronous variational principle requiring distinction between the prescribed deterministic metric tensor \\widehat{g}(r)≡ { \\widehat{g}_{μ ν }(r)} solution of the Einstein field equations which determines the geometry of the background space-time and suitable variational fields x≡ { g,π } obeying an appropriate set of continuum Hamilton equations, referred to here as GR-Hamilton equations. It is shown that a prerequisite for reaching such a goal is that of casting the same equations in evolutionary form by means of a Lagrangian parametrization for a suitably reduced canonical state. As a result, the corresponding Hamilton-Jacobi theory is established in manifestly covariant form. Physical implications of the theory are discussed. These include the investigation of the structural stability of the GR-Hamilton equations with respect to vacuum solutions of the Einstein equations, assuming that wave-like perturbations are governed by the canonical evolution equations.
Modeling the elastic energy of alloys: Potential pitfalls of continuum treatments.
Baskaran, Arvind; Ratsch, Christian; Smereka, Peter
2015-12-01
Some issues that arise when modeling elastic energy for binary alloys are discussed within the context of a Keating model and density-functional calculations. The Keating model is a simplified atomistic formulation based on modeling elastic interactions of a binary alloy with harmonic springs whose equilibrium length is species dependent. It is demonstrated that the continuum limit for the strain field are the usual equations of linear elasticity for alloys and that they correctly capture the coarse-grained behavior of the displacement field. In addition, it is established that Euler-Lagrange equation of the continuum limit of the elastic energy will yield the same strain field equation. This is the same energy functional that is often used to model elastic effects in binary alloys. However, a direct calculation of the elastic energy atomistic model reveals that the continuum expression for the elastic energy is both qualitatively and quantitatively incorrect. This is because it does not take atomistic scale compositional nonuniformity into account. Importantly, this result also shows that finely mixed alloys tend to have more elastic energy than segregated systems, which is the exact opposite of predictions made by some continuum theories. It is also shown that for strained thin films the traditionally used effective misfit for alloys systematically underestimate the strain energy. In some models, this drawback is handled by including an elastic contribution to the enthalpy of mixing, which is characterized in terms of the continuum concentration. The direct calculation of the atomistic model reveals that this approach suffers serious difficulties. It is demonstrated that elastic contribution to the enthalpy of mixing is nonisotropic and scale dependent. It is also shown that such effects are present in density-functional theory calculations for the Si-Ge system. This work demonstrates that it is critical to include the microscopic arrangements in any elastic model to achieve even qualitatively correct behavior.
2012-08-01
biomechanical modeling (e.g. arteries). It is also possible to go still fur- ther with the concept and blend shell theories with continuum solid theories in the...spirit of transition elements. Again biomechanical modeling opportunities present themselves, such as for heart-artery models . We also note that all...these blended theories can be developed within the IGA format of exact CAD modeling . The blended formulation presented here is valid for a broad class
2006-12-31
et al, 2003). Another reason that downsizing is a popular way in which a healthcare organization can become more efficient based on institutional ... theory . This theory states that since other hospitals have used downsizing as a means to become more efficient, so will we. This theory states that
Menon, Shakti N; Hall, Cameron L; McCue, Scott W; McElwain, D L Sean
2017-10-01
The mechanical behaviour of solid biological tissues has long been described using models based on classical continuum mechanics. However, the classical continuum theories of elasticity and viscoelasticity cannot easily capture the continual remodelling and associated structural changes in biological tissues. Furthermore, models drawn from plasticity theory are difficult to apply and interpret in this context, where there is no equivalent of a yield stress or flow rule. In this work, we describe a novel one-dimensional mathematical model of tissue remodelling based on the multiplicative decomposition of the deformation gradient. We express the mechanical effects of remodelling as an evolution equation for the effective strain, a measure of the difference between the current state and a hypothetical mechanically relaxed state of the tissue. This morphoelastic model combines the simplicity and interpretability of classical viscoelastic models with the versatility of plasticity theory. A novel feature of our model is that while most models describe growth as a continuous quantity, here we begin with discrete cells and develop a continuum representation of lattice remodelling based on an appropriate limit of the behaviour of discrete cells. To demonstrate the utility of our approach, we use this framework to capture qualitative aspects of the continual remodelling observed in fibroblast-populated collagen lattices, in particular its contraction and its subsequent sudden re-expansion when remodelling is interrupted.
Fluid-Driven Deformation of a Soft Granular Material
NASA Astrophysics Data System (ADS)
MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.
2015-01-01
Compressing a porous, fluid-filled material drives the interstitial fluid out of the pore space, as when squeezing water out of a kitchen sponge. Inversely, injecting fluid into a porous material can deform the solid structure, as when fracturing a shale for natural gas recovery. These poromechanical interactions play an important role in geological and biological systems across a wide range of scales, from the propagation of magma through Earth's mantle to the transport of fluid through living cells and tissues. The theory of poroelasticity has been largely successful in modeling poromechanical behavior in relatively simple systems, but this continuum theory is fundamentally limited by our understanding of the pore-scale interactions between the fluid and the solid, and these problems are notoriously difficult to study in a laboratory setting. Here, we present a high-resolution measurement of injection-driven poromechanical deformation in a system with granular microsctructure: We inject fluid into a dense, confined monolayer of soft particles and use particle tracking to reveal the dynamics of the multiscale deformation field. We find that a continuum model based on poroelasticity theory captures certain macroscopic features of the deformation, but the particle-scale deformation field exhibits dramatic departures from smooth, continuum behavior. We observe particle-scale rearrangement and hysteresis, as well as petal-like mesoscale structures that are connected to material failure through spiral shear banding.
Lattice quantum gravity and asymptotic safety
NASA Astrophysics Data System (ADS)
Laiho, J.; Bassler, S.; Coumbe, D.; Du, D.; Neelakanta, J. T.
2017-09-01
We study the nonperturbative formulation of quantum gravity defined via Euclidean dynamical triangulations (EDT) in an attempt to make contact with Weinberg's asymptotic safety scenario. We find that a fine-tuning is necessary in order to recover semiclassical behavior. Such a fine-tuning is generally associated with the breaking of a target symmetry by the lattice regulator; in this case we argue that the target symmetry is the general coordinate invariance of the theory. After introducing and fine-tuning a nontrivial local measure term, we find no barrier to taking a continuum limit, and we find evidence that four-dimensional, semiclassical geometries are recovered at long distance scales in the continuum limit. We also find that the spectral dimension at short distance scales is consistent with 3 /2 , a value that could resolve the tension between asymptotic safety and the holographic entropy scaling of black holes. We argue that the number of relevant couplings in the continuum theory is one, once symmetry breaking by the lattice regulator is accounted for. Such a theory is maximally predictive, with no adjustable parameters. The cosmological constant in Planck units is the only relevant parameter, which serves to set the lattice scale. The cosmological constant in Planck units is of order 1 in the ultraviolet and undergoes renormalization group running to small values in the infrared. If these findings hold up under further scrutiny, the lattice may provide a nonperturbative definition of a renormalizable quantum field theory of general relativity with no adjustable parameters and a cosmological constant that is naturally small in the infrared.
Siddaway, Andy P; Wood, Alex M; Taylor, Peter J
2017-04-15
Two core but untested predictions of Positive Clinical Psychology (PCP) are that (1) Many psychiatric problems can be understood as one end of bipolar continua with well-being, and (2) that reducing psychiatric symptoms will provide an equal (near linear) decrease in risk for several other psychiatric variables, irrespective of position on continua. We test these predictions in relation to a purported well-being/depression continuum, as measured by the Center for Epidemiologic Studies-Depression (CES-D), a popular measure of depressive experiences in research and clinical practice. A large (N=4138), diverse sample completed the CES-D, which contains a mixture of negatively worded and positively worded items (e.g., "I felt sad," "I enjoyed life"). The latter are conventionally reverse scored to compute a total score. We first examined whether purportedly separate well-being and depression CES-D factors can be reconceptualised as a bipolar well-being/depression continuum. We then characterised the (linear or nonlinear) form of the relationship between this continuum and other psychiatric variables. Both predictions were supported. When controlling for shared method bias amongst positively worded items, a single factor well-being/depression continuum underlies the CES-D. Baseline levels on this continuum are found to have near linear relationships with changes in anxiety symptoms, aggression, and substance misuse over time, demonstrating that moving from depression to well-being on the CES-D provides an equal decrease in risk for several other psychological problems irrespective of position on the continuum. The CES-D does not measure well-being as comprehensively as established scales of well-being. Results support calls for mental health services to jointly focus on increasing well-being and reducing distress, and point to the value of early intervention and instilling resilience in order to prevent people moving away from high levels of well-being. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Elder, Robert M.; O'Connor, Thomas C.; Chantawansri, Tanya L.; Sliozberg, Yelena R.; Sirk, Timothy W.; Yeh, In-Chul; Robbins, Mark O.; Andzelm, Jan W.
2017-09-01
Semicrystalline polyethylene (PE) is attractive for a variety of mechanically demanding applications, where shock compression can occur. Although often highly crystalline, PE invariably contains nanoscale amorphous domains that influence shock propagation. Our objective in this work is to study the effects of such domains. To this end, we adopt a novel approach wherein we parametrize a simple continuum-level theory based on the shock impedance from molecular dynamics (MD) simulations. Using this theory, we predict how crystalline/amorphous interfaces attenuate shocks via energy reflection due to the impedance mismatch between the phases. The theory predicts that these interfaces attenuate weak shocks more effectively than strong shocks. We compare the theory to explicit nonequilibrium MD simulations of compressive shocks in semicrystalline PE containing nanometer-scale amorphous regions of varying size, where we analyze the pressure response and reflection of energy. The theory and simulations show good agreement for strong shocks (≥1.0 km /s ), but for weak shocks (<1.0 km /s ) the simulations show enhanced energy reflection relative to the continuum predictions. Furthermore, the simulations show an effect not captured by the continuum theory: the size of amorphous regions is important. The theory assumes a sharp (discontinuous) interface between two bulk phases and a sharp change in thermodynamic and hydrodynamic quantities at the shock front. However, the simulations show that when amorphous domains are narrow—with widths comparable to the shock front—reflection is reduced compared to the predictions. We identify several nanoscale mechanisms that reduce the impedance mismatch, and thus reduce reflection, at thin amorphous domains. First, the two-wave elastic-plastic structure of shocks in crystalline PE allows the faster-moving elastic precursor wave to compress small amorphous domains before the plastic wave arrives. Second, confinement between stiff, ordered crystalline domains increases the stiffness and chain ordering in small amorphous regions. Moreover, in terms of stiffness the interfaces are similar in width to the shock front, which may contribute to the underprediction of the theory for weak shocks, where the shock front is widest. We conclude by discussing the significance of these results, namely, how they can be applied to tune shock attenuation for particular applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, Alexander E., E-mail: mayer@csu.ru, E-mail: mayer.al.evg@gmail.com; Mayer, Polina N.
2015-07-21
A continuum model of the metal melt fracture is formulated on the basis of the continuum mechanics and theory of metastable liquid. A character of temperature and strain rate dependences of the tensile strength that is predicted by the continuum model is verified, and parameters of the model are fitted with the use of the results of the molecular dynamics simulations for ultra-high strain rates (≥1–10/ns). A comparison with experimental data from literature is also presented for Al and Ni melts. Using the continuum model, the dynamic tensile strength of initially uniform melts of Al, Cu, Ni, Fe, Ti, andmore » Pb within a wide range of strain rates (from 1–10/ms to 100/ns) and temperatures (from melting temperature up to 70–80% of critical temperature) is calculated. The model is applied to numerical investigation of a problem of the high-current electron irradiation of Al, Cu, and Fe targets.« less
de Lima, Guilherme Ferreira; Duarte, Hélio Anderson; Pliego, Josefredo R
2010-12-09
A new dynamical discrete/continuum solvation model was tested for NH(4)(+) and OH(-) ions in water solvent. The method is similar to continuum solvation models in a sense that the linear response approximation is used. However, different from pure continuum models, explicit solvent molecules are included in the inner shell, which allows adequate treatment of specific solute-solvent interactions present in the first solvation shell, the main drawback of continuum models. Molecular dynamics calculations coupled with SCC-DFTB method are used to generate the configurations of the solute in a box with 64 water molecules, while the interaction energies are calculated at the DFT level. We have tested the convergence of the method using a variable number of explicit water molecules and it was found that even a small number of waters (as low as 14) are able to produce converged values. Our results also point out that the Born model, often used for long-range correction, is not reliable and our method should be applied for more accurate calculations.
A reciprocal theorem for a mixture theory. [development of linearized theory of interacting media
NASA Technical Reports Server (NTRS)
Martin, C. J.; Lee, Y. M.
1972-01-01
A dynamic reciprocal theorem for a linearized theory of interacting media is developed. The constituents of the mixture are a linear elastic solid and a linearly viscous fluid. In addition to Steel's field equations, boundary conditions and inequalities on the material constants that have been shown by Atkin, Chadwick and Steel to be sufficient to guarantee uniqueness of solution to initial-boundary value problems are used. The elements of the theory are given and two different boundary value problems are considered. The reciprocal theorem is derived with the aid of the Laplace transform and the divergence theorem and this section is concluded with a discussion of the special cases which arise when one of the constituents of the mixture is absent.
Multiscale modeling and simulation for nano/micro materials
NASA Astrophysics Data System (ADS)
Wang, Xianqiao
Continuum description and atomic description used to be two distinct methods in the community of modeling and simulations. Science and technology have become so advanced that our understanding of many physical phenomena involves the concepts of both. So our goal now is to build a bridge to make atoms and continua communicate with each other. Micromorphic theory (MMT) envisions a material body as a continuous collection of deformable particles; each possesses finite size and inner structure. It is considered as the most successful top-down formulation of a two-level continuum model to bridge the gap between the micro level and macro level. Therefore MMT can be expected to unveil many new classes of physical phenomena that fall beyond classical field theories. In this work, the constitutive equations for generalized Micromorphic thermoviscoelastic solid and generalized Micromorphic fluid have been formulated. To enlarge the domain of applicability of MMT, from nano, micro to macro, we take a bottom-up approach to re-derive the generalized atomistic field theory (AFT) comprehensively and completely and establish the relationship between AFT and MMT. Finite element (FE) method is then implemented to pursue the numerical solutions of the governing equations derived in AFT. When the finest mesh is used, i.e., the size of FE mesh is equal to the lattice constant of the material, the computational model becomes identical to molecular dynamics simulation. When a coarse mesh is used, the resulting model is a coarse-grained model, the majority of the degrees of freedom are eliminated and the computational cost is largely reduced. When the coarse mesh and finest mesh exist concurrently, i.e., the finest mesh is used in the critical regions and the coarser mesh is used in the far field, it leads naturally to a concurrent atomistic/continuum model. Atomic scale, coarse-grained scale and concurrent atomistic/continuum simulations have demonstrated the potential capability of AFT to simulate most grand challenging problems in nano/micro physics, and shown that AFT has the advantages of both atomic model and MMT. Therefore, AFT has accomplished the mission to bridge the gap between continuum mechanics and atomic physics.
Continuum strong-coupling expansion of Yang-Mills theory: quark confinement and infra-red slavery
NASA Astrophysics Data System (ADS)
Mansfield, Paul
1994-04-01
We solve Schrödinger's equation for the ground-state of four-dimensional Yang-Mills theory as an expansion in inverse powers of the coupling. Expectation values computed with the leading-order approximation are reduced to a calculation in two-dimensional Yang-Mills theory which is known to confine. Consequently the Wilson loop in the four-dimensional theory obeys an area law to leading order and the coupling becomes infinite as the mass scale goes to zero.
Catalytic dimer nanomotors: continuum theory and microscopic dynamics.
Reigh, Shang Yik; Kapral, Raymond
2015-04-28
Synthetic chemically-powered motors with various geometries have potentially new applications involving dynamics on very small scales. Self-generated concentration and fluid flow fields, which depend on geometry, play essential roles in motor dynamics. Sphere-dimer motors, comprising linked catalytic and noncatalytic spheres, display more complex versions of such fields, compared to the often-studied spherical Janus motors. By making use of analytical continuum theory and particle-based simulations we determine the concentration fields, and both the complex structure of the near-field and point-force dipole nature of the far-field behavior of the solvent velocity field that are important for studies of collective motor motion. We derive the dependence of motor velocity on geometric factors such as sphere size and dimer bond length and, thus, show how to construct motors with specific characteristics.
Kanematsu, Yusuke; Tachikawa, Masanori
2014-04-28
We have developed the multicomponent hybrid density functional theory [MC_(HF+DFT)] method with polarizable continuum model (PCM) for the analysis of molecular properties including both nuclear quantum effect and solvent effect. The chemical shifts and H/D isotope shifts of the picolinic acid N-oxide (PANO) molecule in chloroform and acetonitrile solvents are applied by B3LYP electron exchange-correlation functional for our MC_(HF+DFT) method with PCM (MC_B3LYP/PCM). Our MC_B3LYP/PCM results for PANO are in reasonable agreement with the corresponding experimental chemical shifts and isotope shifts. We further investigated the applicability of our method for acetylacetone in several solvents.
Models for twistable elastic polymers in Brownian dynamics, and their implementation for LAMMPS.
Brackley, C A; Morozov, A N; Marenduzzo, D
2014-04-07
An elastic rod model for semi-flexible polymers is presented. Theory for a continuum rod is reviewed, and it is shown that a popular discretised model used in numerical simulations gives the correct continuum limit. Correlation functions relating to both bending and twisting of the rod are derived for both continuous and discrete cases, and results are compared with numerical simulations. Finally, two possible implementations of the discretised model in the multi-purpose molecular dynamics software package LAMMPS are described.
Quantum Probability -- A New Direction for Modeling in Cognitive Science
NASA Astrophysics Data System (ADS)
Roy, Sisir
2014-07-01
Human cognition is still a puzzling issue in research and its appropriate modeling. It depends on how the brain behaves at that particular instance and identifies and responds to a signal among myriads of noises that are present in the surroundings (called external noise) as well as in the neurons themselves (called internal noise). Thus it is not surprising to assume that the functionality consists of various uncertainties, possibly a mixture of aleatory and epistemic uncertainties. It is also possible that a complicated pathway consisting of both types of uncertainties in continuum play a major role in human cognition. For more than 200 years mathematicians and philosophers have been using probability theory to describe human cognition. Recently in several experiments with human subjects, violation of traditional probability theory has been clearly revealed in plenty of cases. Literature survey clearly suggests that classical probability theory fails to model human cognition beyond a certain limit. While the Bayesian approach may seem to be a promising candidate to this problem, the complete success story of Bayesian methodology is yet to be written. The major problem seems to be the presence of epistemic uncertainty and its effect on cognition at any given time. Moreover the stochasticity in the model arises due to the unknown path or trajectory (definite state of mind at each time point), a person is following. To this end a generalized version of probability theory borrowing ideas from quantum mechanics may be a plausible approach. A superposition state in quantum theory permits a person to be in an indefinite state at each point of time. Such an indefinite state allows all the states to have the potential to be expressed at each moment. Thus a superposition state appears to be able to represent better, the uncertainty, ambiguity or conflict experienced by a person at any moment demonstrating that mental states follow quantum mechanics during perception and cognition of ambiguous figures.
Optical properties of highly compressed polystyrene: An ab initio study
NASA Astrophysics Data System (ADS)
Hu, S. X.; Collins, L. A.; Colgan, J. P.; Goncharov, V. N.; Kilcrease, D. P.
2017-10-01
Using all-electron density functional theory, we have performed an ab initio study on x-ray absorption spectra of highly compressed polystyrene (CH). We found that the K -edge shifts in strongly coupled, degenerate polystyrene cannot be explained by existing continuum-lowering models adopted in traditional plasma physics. To gain insights into the K -edge shift in warm, dense CH, we have developed a model designated as "single mixture in a box" (SMIAB), which incorporates both the lowering of the continuum and the rising of the Fermi surface resulting from high compression. This simple SMIAB model correctly predicts the K -edge shift of carbon in highly compressed CH in good agreement with results from quantum molecular dynamics (QMD) calculations. Traditional opacity models failed to give the proper K -edge shifts as the CH density increased. Based on QMD calculations, we have established a first-principles opacity table (FPOT) for CH in a wide range of densities and temperatures [ρ =0.1 -100 g /c m3 and T =2000 -1 000 000 K ]. The FPOT gives much higher Rosseland mean opacity compared to the cold-opacity-patched astrophysics opacity table for warm, dense CH and favorably compares to the newly improved Los Alamos atomic model for moderately compressed CH (ρCH≤10 g /c m3 ), but remains a factor of 2 to 3 higher at extremely high densities (ρCH≥50 g /c m3 ). We anticipate the established FPOT of CH will find important applications to reliable designs of high-energy-density experiments. Moreover, the understanding of K -edge shifting revealed in this study could provide guides for improving the traditional opacity models to properly handle the strongly coupled and degenerate conditions.
Optical properties of highly compressed polystyrene: An ab initio study
Hu, S. X.; Collins, L. A.; Colgan, J. P.; ...
2017-10-16
Using all-electron density functional theory, we have performed an ab initio study on x ray absorption spectra of highly compressed polystyrene (CH). Here, we found that the K-edge shifts in strongly coupled, degenerate polystyrene cannot be explained by existing continuum-lowering models adopted in traditional plasma physics. To gain insights into the K edge shift in warm, dense CH, we have developed a model designated as “single-mixture-in-a-box” (SMIAB), which incorporates both the lowering of continuum and the rising of Fermi surface resulting from high compression. This simple SMIAB model correctly predicts the K-edge shift of carbon in highly compressed CH inmore » good agreement with results from quantum-molecular-dynamics (QMD) calculations. Traditional opacity models failed to give the proper K-edge shifts as the CH density increased. Based on QMD calculations, we have established a first-principles opacity table (FPOT) for CH in a wide range of densities and temperatures [p = 0.1 to 100 g/cm 3 and T = 2000 to 1,000,000 K]. The FPOT gives much higher Rosseland mean opacity compared to the cold-opacity–patched astrophysics opacity table for warm, dense CH and favorably compares to the newly improved Los Alamos ATOMIC model for moderately compressed CH (pCH ≤10 g/cm 3) but remains a factor of 2 to 3 higher at extremely high densities (pCH ≥ 50 g/cm 3). We anticipate the established FPOT of CH will find important applications to reliable designs of high-energy-density experiments. Moreover, the understanding of K-edge shifting revealed in this study could provide guides for improving the traditional opacity models to properly handle the strongly coupled and degenerate conditions.« less
Optical properties of highly compressed polystyrene: An ab initio study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, S. X.; Collins, L. A.; Colgan, J. P.
Using all-electron density functional theory, we have performed an ab initio study on x ray absorption spectra of highly compressed polystyrene (CH). Here, we found that the K-edge shifts in strongly coupled, degenerate polystyrene cannot be explained by existing continuum-lowering models adopted in traditional plasma physics. To gain insights into the K edge shift in warm, dense CH, we have developed a model designated as “single-mixture-in-a-box” (SMIAB), which incorporates both the lowering of continuum and the rising of Fermi surface resulting from high compression. This simple SMIAB model correctly predicts the K-edge shift of carbon in highly compressed CH inmore » good agreement with results from quantum-molecular-dynamics (QMD) calculations. Traditional opacity models failed to give the proper K-edge shifts as the CH density increased. Based on QMD calculations, we have established a first-principles opacity table (FPOT) for CH in a wide range of densities and temperatures [p = 0.1 to 100 g/cm 3 and T = 2000 to 1,000,000 K]. The FPOT gives much higher Rosseland mean opacity compared to the cold-opacity–patched astrophysics opacity table for warm, dense CH and favorably compares to the newly improved Los Alamos ATOMIC model for moderately compressed CH (pCH ≤10 g/cm 3) but remains a factor of 2 to 3 higher at extremely high densities (pCH ≥ 50 g/cm 3). We anticipate the established FPOT of CH will find important applications to reliable designs of high-energy-density experiments. Moreover, the understanding of K-edge shifting revealed in this study could provide guides for improving the traditional opacity models to properly handle the strongly coupled and degenerate conditions.« less
Breakdown parameter for kinetic modeling of multiscale gas flows.
Meng, Jianping; Dongari, Nishanth; Reese, Jason M; Zhang, Yonghao
2014-06-01
Multiscale methods built purely on the kinetic theory of gases provide information about the molecular velocity distribution function. It is therefore both important and feasible to establish new breakdown parameters for assessing the appropriateness of a fluid description at the continuum level by utilizing kinetic information rather than macroscopic flow quantities alone. We propose a new kinetic criterion to indirectly assess the errors introduced by a continuum-level description of the gas flow. The analysis, which includes numerical demonstrations, focuses on the validity of the Navier-Stokes-Fourier equations and corresponding kinetic models and reveals that the new criterion can consistently indicate the validity of continuum-level modeling in both low-speed and high-speed flows at different Knudsen numbers.
Topology and layout optimization of discrete and continuum structures
NASA Technical Reports Server (NTRS)
Bendsoe, Martin P.; Kikuchi, Noboru
1993-01-01
The basic features of the ground structure method for truss structure an continuum problems are described. Problems with a large number of potential structural elements are considered using the compliance of the structure as the objective function. The design problem is the minimization of compliance for a given structural weight, and the design variables for truss problems are the cross-sectional areas of the individual truss members, while for continuum problems they are the variable densities of material in each of the elements of the FEM discretization. It is shown how homogenization theory can be applied to provide a relation between material density and the effective material properties of a periodic medium with a known microstructure of material and voids.
Ward, David B; Wampler, Karen S
2010-04-01
For years therapists have suggested that hope is an important catalyst in the process of change. This study takes a grounded theory approach to address the need for a clearer conceptualization of hope, and to place interventions that increase hope within a therapeutic context so that therapists know how and when to use those interventions. Fifteen active and experienced marriage and family therapists from across the United States participated in hour-long phone interviews about hope in couples therapy. Moving Up the Continuum of Hope emerged as the core category from the grounded theory analysis of the data. This category represents a process, with general and specific conditions and consequences that increase a couple's level of hope. This study serves as a foundation for future process research on couples therapy, as well as research on hope in other contexts (e.g., individual and family therapy) and with other perspectives (e.g., clients).
Diagnostic Reasoning across the Medical Education Continuum.
Smith, C Scott; Hill, William; Francovich, Chris; Morris, Magdalena; Robbins, Bruce; Robins, Lynne; Turner, Andrew
2014-07-15
We aimed to study linguistic and non-linguistic elements of diagnostic reasoning across the continuum of medical education. We performed semi-structured interviews of premedical students, first year medical students, third year medical students, second year internal medicine residents, and experienced faculty (ten each) as they diagnosed three common causes of dyspnea. A second observer recorded emotional tone. All interviews were digitally recorded and blinded transcripts were created. Propositional analysis and concept mapping were performed. Grounded theory was used to identify salient categories and transcripts were scored with these categories. Transcripts were then unblinded. Systematic differences in propositional structure, number of concept connections, distribution of grounded theory categories, episodic and semantic memories, and emotional tone were identified. Summary concept maps were created and grounded theory concepts were explored for each learning level. We identified three major findings: (1) The "apprentice effect" in novices (high stress and low narrative competence); (2) logistic concept growth in intermediates; and (3) a cognitive state transition (between analytical and intuitive approaches) in experts. These findings warrant further study and comparison.
On a Continuum Limit for Loop Quantum Cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corichi, Alejandro; Center for Fundamental Theory, Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park PA 16802; Vukasinac, Tatjana
2008-03-06
The use of non-regular representations of the Heisenberg-Weyl commutation relations has proved to be useful for studying conceptual and technical issues in quantum gravity. Of particular relevance is the study of Loop Quantum Cosmology (LQC), symmetry reduced theory that is related to Loop Quantum Gravity, and that is based on a non-regular, polymeric representation. Recently, a soluble model was used by Ashtekar, Corichi and Singh to study the relation between Loop Quantum Cosmology and the standard Wheeler-DeWitt theory and, in particular, the passage to the limit in which the auxiliary parameter (interpreted as ''quantum geometry discreetness'') is sent to zeromore » in hope to get rid of this 'regulator' that dictates the LQC dynamics at each 'scale'. In this note we outline the first steps toward reformulating this question within the program developed by the authors for studying the continuum limit of polymeric theories, which was successfully applied to simple systems such as a Simple Harmonic Oscillator.« less
NASA Astrophysics Data System (ADS)
Zamani Kouhpanji, Mohammad Reza; Behzadirad, Mahmoud; Busani, Tito
2017-12-01
We used the stable strain gradient theory including acceleration gradients to investigate the classical and nonclassical mechanical properties of gallium nitride (GaN) nanowires (NWs). We predicted the static length scales, Young's modulus, and shear modulus of the GaN NWs from the experimental data. Combining these results with atomic simulations, we also found the dynamic length scale of the GaN NWs. Young's modulus, shear modulus, static, and dynamic length scales were found to be 318 GPa, 131 GPa, 8 nm, and 8.9 nm, respectively, usable for demonstrating the static and dynamic behaviors of GaN NWs having diameters from a few nm to bulk dimensions. Furthermore, the experimental data were analyzed with classical continuum theory (CCT) and compared with the available literature to illustrate the size-dependency of the mechanical properties of GaN NWs. This practice resolves the previous published discrepancies that happened due to the limitations of CCT used for determining the mechanical properties of GaN NWs and their size-dependency.
A Transversely Isotropic Thermoelastic Theory
NASA Technical Reports Server (NTRS)
Arnold, S. M.
1989-01-01
A continuum theory is presented for representing the thermoelastic behavior of composites that can be idealized as transversely isotropic. This theory is consistent with anisotropic viscoplastic theories being developed presently at NASA Lewis Research Center. A multiaxial statement of the theory is presented, as well as plane stress and plane strain reductions. Experimental determination of the required material parameters and their theoretical constraints are discussed. Simple homogeneously stressed elements are examined to illustrate the effect of fiber orientation on the resulting strain distribution. Finally, the multiaxial stress-strain relations are expressed in matrix form to simplify and accelerate implementation of the theory into structural analysis codes.
Phase behaviour of the symmetric binary mixture from thermodynamic perturbation theory.
Dorsaz, N; Foffi, G
2010-03-17
We study the phase behaviour of symmetric binary mixtures of hard core Yukawa (HCY) particles via thermodynamic perturbation theory (TPT). We show that all the topologies of phase diagram reported for the symmetric binary mixtures are correctly reproduced within the TPT approach. In a second step we use the capability of TPT to be straightforwardly extended to mixtures that are nonsymmetric in size. Starting from mixtures that belong to the different topologies of symmetric binary mixtures we investigate the effect on the phase behaviour when an asymmetry in the diameters of the two components is introduced. Interestingly, when the energy of interaction between unlike particles is weaker than the interaction between like particles, the propensity for the solution to demix is found to increase strongly with size asymmetry.
Cognitive Style Index: Further Investigation of the Factor Structure with an American Student Sample
ERIC Educational Resources Information Center
Backhaus, Kristin; Liff, Joshua P.
2007-01-01
The present study investigates the factor structure of the Cognitive Style Index (CSI), comparing the unitary, bipolar continuum of intuition-analysis, the theory upon which the CSI is predicated, with the two-factor theory of cognitive style. We conducted both confirmatory and exploratory factor analyses on data from a sample of 222 American…
Are the Autism and Positive Schizotypy Spectra Diametrically Opposed in Empathizing and Systemizing?
ERIC Educational Resources Information Center
Russell-Smith, Suzanna N.; Bayliss, Donna M.; Maybery, Murray T.; Tomkinson, Rosy L.
2013-01-01
Crespi and Badcock's (Behaviour Brain Sci 31: 241-261, 2008) novel theory, which presents autism and positive schizophrenia as diametrical opposites on a cognitive continuum, has received mixed support in the literature to date. The current study aimed to further assess the validity of this theory by investigating predictions in relation to…
ERIC Educational Resources Information Center
Barkoukis, Vassilis; Tsorbatzoudis, Haralambos; Grouios, George; Sideridis, Georgios
2008-01-01
Self-determination theory provides an integrated conception of school- and academic motivation. The theory proposes a continuum comprising three types of motivation: intrinsic motivation (IM), extrinsic motivation (EM), and amotivation (AM), characterised by seven dimensions (IM = to know, to accomplish and to experience stimulation, EM = external…
Behavior of Man in Health and Illness, Nursing 103A.
ERIC Educational Resources Information Center
Bakke, Sandra I.
A description is provided of a course, "Behavior of Man in Health and Illness," designed to introduce first-year undergraduate nursing students to the theories and concepts related to the health-illness continuum, the stress of illness, and coping theory. The description begins with an overview of course content, followed by information on the…
Delamination Analysis Of Composite Curved Bars
NASA Technical Reports Server (NTRS)
Ko, William L.; Jackson, Raymond H.
1990-01-01
Classical anisotropic elasticity theory used to construct "multilayer" composite semicircular curved bar subjected to end forces and end moments. Radial location and intensity of open-mode delamination stress calculated and compared with results obtained from anisotropic continuum theory and from finite element method. Multilayer theory gave more accurate predictions of location and intensity of open-mode delamination stress. Currently being applied to predict open-mode delamination stress concentrations in horse-shoe-shaped composite test coupons.
RADIO IMAGING OF THE NGC 2024 FIR 5/6 REGION: A HYPERCOMPACT H II REGION CANDIDATE IN ORION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Minho; Kang, Miju; Lee, Jeong-Eun, E-mail: minho@kasi.re.kr
The NGC 2024 FIR 5/6 region was observed in the 6.9 mm continuum with an angular resolution of about 1.5 arcsec. The 6.9 mm continuum map shows four compact sources, FIR 5w, 5e, 6c, and 6n, as well as an extended structure of the ionization front associated with the optical nebulosity. FIR 6c has a source size of about 0.4 arcsec or 150 AU. The spectral energy distribution (SED) of FIR 6c is peculiar: rising steeply around 6.9 mm and flat around 1 mm. The possibility of a hypercompact H II region is explored. If the millimeter flux of FIRmore » 6c comes from hot ionized gas heated by a single object at the center, the central object may be a B1 star of about 5800 solar luminosities and about 13 solar masses. The 6.9 mm continuum of FIR 6n may be a mixture of free-free emission and dust continuum emission. Archival data show that both FIR 6n and 6c exhibit water maser activity, suggesting the existence of shocked gas around them. The 6.9 mm continuum emission from FIR 5w has a size of about 1.8 arcsec or 760 AU. The SEDs suggest that the 6.9 mm emission of FIR 5w and 5e comes from dust, and the masses of the dense molecular gas are about 0.6 and 0.5 solar masses, respectively.« less
A generalized procedure for the prediction of multicomponent adsorption equilibria
Ladshaw, Austin; Yiacoumi, Sotira; Tsouris, Costas
2015-04-07
Prediction of multicomponent adsorption equilibria has been investigated for several decades. While there are theories available to predict the adsorption behavior of ideal mixtures, there are few purely predictive theories to account for nonidealities in real systems. Most models available for dealing with nonidealities contain interaction parameters that must be obtained through correlation with binary-mixture data. However, as the number of components in a system grows, the number of parameters needed to be obtained increases exponentially. Here, a generalized procedure is proposed, as an extension of the predictive real adsorbed solution theory, for determining the parameters of any activity model,more » for any number of components, without correlation. This procedure is then combined with the adsorbed solution theory to predict the adsorption behavior of mixtures. As this method can be applied to any isotherm model and any activity model, it is referred to as the generalized predictive adsorbed solution theory.« less
A continuum theory of grain size evolution and damage
NASA Astrophysics Data System (ADS)
Ricard, Y.; Bercovici, D.
2009-01-01
Lithospheric shear localization, as occurs in the formation of tectonic plate boundaries, is often associated with diminished grain size (e.g., mylonites). Grain size reduction is typically attributed to dynamic recrystallization; however, theoretical models of shear localization arising from this hypothesis are problematic because (1) they require the simultaneous action of two creep mechanisms (diffusion and dislocation creep) that occur in different deformation regimes (i.e., in grain size stress space) and (2) the grain growth ("healing") laws employed by these models are derived from normal grain growth or coarsening theory, which are valid in the absence of deformation, although the shear localization setting itself requires deformation. Here we present a new first principles grained-continuum theory, which accounts for both coarsening and damage-induced grain size reduction in a monomineralic assemblage undergoing irrecoverable deformation. Damage per se is the generic process for generation of microcracks, defects, dislocations (including recrystallization), subgrains, nuclei, and cataclastic breakdown of grains. The theory contains coupled macroscopic continuum mechanical and grain-scale statistical components. The continuum level of the theory considers standard mass, momentum, and energy conservation, as well as entropy production, on a statistically averaged grained continuum. The grain-scale element of the theory describes both the evolution of the grain size distribution and mechanisms for both continuous grain growth and discontinuous grain fracture and coalescence. The continuous and discontinuous processes of grain size variation are prescribed by nonequilibrium thermodynamics (in particular, the treatment of entropy production provides the phenomenological laws for grain growth and reduction); grain size evolution thus incorporates the free energy differences between grains, including both grain boundary surface energy (which controls coarsening) and the contribution of deformational work to these free energies (which controls damage). In the absence of deformation, only two mechanisms that increase the average grain size are allowed by the second law of thermodynamics. One mechanism, involving continuous diffusive mass transport from small to large grains, captures the essential components of normal grain growth theories of Lifshitz-Slyosov and Hillert. The second mechanism involves the aggregation of grains and is described using a Smoluchovski formalism. With the inclusion of deformational work and damage, the theory predicts two mechanisms for which the thermodynamic requirement of entropy positivity always forces large grains to shrink and small ones to grow. The first such damage-driven mechanism involving continuous mass transfer from large to small grains tends to homogenize the distribution of grain size toward its initial mean grain size. The second damage mechanism favors the creation of small grains by discontinuous division of larger grains and reduces the mean grain size with time. When considered separately, most of these mechanisms allow for self-similar grain size distributions whose scales (i.e., statistical moments such as the mean, variance, and skewness) can all be described by a single grain scale, such as the mean or maximum. However, the combination of mechanisms, e.g., one that captures the competition between continuous coarsening and mean grain size reduction by breakage, does not generally permit a self-similar solution for the grain size distribution, which contradicts the classic assumption that grain growth laws allowing for both coarsening and recrystallization can be treated with a single grain scale such as the mean size.
Chemical Mixture Risk Assessment Additivity-Based Approaches
Powerpoint presentation includes additivity-based chemical mixture risk assessment methods. Basic concepts, theory and example calculations are included. Several slides discuss the use of "common adverse outcomes" in analyzing phthalate mixtures.
Discrimination of poorly exposed lithologies in AVIRIS data
NASA Technical Reports Server (NTRS)
Farrand, William H.; Harsanyi, Joseph C.
1993-01-01
One of the advantages afforded by imaging spectrometers such as AVIRIS is the capability to detect target materials at a sub-pixel scale. This paper presents several examples of the identification of poorly exposed geologic materials - materials which are either subpixel in scale or which, while having some surface expression over several pixels, are partially covered by vegetation or other materials. Sabol et al. (1992) noted that a primary factor in the ability to distinguish sub-pixel targets is the spectral contrast between the target and its surroundings. In most cases, this contrast is best expressed as an absorption feature or features present in the target but absent in the surroundings. Under such circumstances, techniques such as band depth mapping (Clark et al., 1992) are feasible. However, the only difference between a target material and its surroundings is often expressed solely in the continuum. We define the 'continuum' as the reflectance or radiance spanning spectral space between spectral features. Differences in continuum slope and shape can only be determined by reduction techniques which considers the entire spectral range; i.e., techniques such as spectral mixture analysis (Adams et al., 1989) and recently developed techniques which utilize an orthogonal subspace projection operator (Harsanyi, 1993). Two of the three examples considered herein deal with cases where the target material differs from its surroundings only by such a subtle continuum change.
2001-08-08
entropy inequality with independent variables consistent with several natural systems and apply the resulting constitutive theory near equi- librium...1973. [3] L. S. Bennethum and J. H. Cushman. Multiscale , hybrid mixture theory for swelling systems - I: Balance laws. International Journal of...Engineering Science, 34(2):125–145, 1996. [4] L. S. Bennethum and J. H. Cushman. Multiscale , hybrid mixture theory for swelling systems - II: Constitutive
Automated isotope identification algorithm using artificial neural networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamuda, Mark; Stinnett, Jacob; Sullivan, Clair
There is a need to develop an algorithm that can determine the relative activities of radio-isotopes in a large dataset of low-resolution gamma-ray spectra that contains a mixture of many radio-isotopes. Low-resolution gamma-ray spectra that contain mixtures of radio-isotopes often exhibit feature over-lap, requiring algorithms that can analyze these features when overlap occurs. While machine learning and pattern recognition algorithms have shown promise for the problem of radio-isotope identification, their ability to identify and quantify mixtures of radio-isotopes has not been studied. Because machine learning algorithms use abstract features of the spectrum, such as the shape of overlapping peaks andmore » Compton continuum, they are a natural choice for analyzing radio-isotope mixtures. An artificial neural network (ANN) has be trained to calculate the relative activities of 32 radio-isotopes in a spectrum. Furthermore, the ANN is trained with simulated gamma-ray spectra, allowing easy expansion of the library of target radio-isotopes. In this paper we present our initial algorithms based on an ANN and evaluate them against a series measured and simulated spectra.« less
Automated isotope identification algorithm using artificial neural networks
Kamuda, Mark; Stinnett, Jacob; Sullivan, Clair
2017-04-12
There is a need to develop an algorithm that can determine the relative activities of radio-isotopes in a large dataset of low-resolution gamma-ray spectra that contains a mixture of many radio-isotopes. Low-resolution gamma-ray spectra that contain mixtures of radio-isotopes often exhibit feature over-lap, requiring algorithms that can analyze these features when overlap occurs. While machine learning and pattern recognition algorithms have shown promise for the problem of radio-isotope identification, their ability to identify and quantify mixtures of radio-isotopes has not been studied. Because machine learning algorithms use abstract features of the spectrum, such as the shape of overlapping peaks andmore » Compton continuum, they are a natural choice for analyzing radio-isotope mixtures. An artificial neural network (ANN) has be trained to calculate the relative activities of 32 radio-isotopes in a spectrum. Furthermore, the ANN is trained with simulated gamma-ray spectra, allowing easy expansion of the library of target radio-isotopes. In this paper we present our initial algorithms based on an ANN and evaluate them against a series measured and simulated spectra.« less
Polymer Fluid Dynamics: Continuum and Molecular Approaches.
Bird, R B; Giacomin, A J
2016-06-07
To solve problems in polymer fluid dynamics, one needs the equations of continuity, motion, and energy. The last two equations contain the stress tensor and the heat-flux vector for the material. There are two ways to formulate the stress tensor: (a) One can write a continuum expression for the stress tensor in terms of kinematic tensors, or (b) one can select a molecular model that represents the polymer molecule and then develop an expression for the stress tensor from kinetic theory. The advantage of the kinetic theory approach is that one gets information about the relation between the molecular structure of the polymers and the rheological properties. We restrict the discussion primarily to the simplest stress tensor expressions or constitutive equations containing from two to four adjustable parameters, although we do indicate how these formulations may be extended to give more complicated expressions. We also explore how these simplest expressions are recovered as special cases of a more general framework, the Oldroyd 8-constant model. Studying the simplest models allows us to discover which types of empiricisms or molecular models seem to be worth investigating further. We also explore equivalences between continuum and molecular approaches. We restrict the discussion to several types of simple flows, such as shearing flows and extensional flows, which are of greatest importance in industrial operations. Furthermore, if these simple flows cannot be well described by continuum or molecular models, then it is not necessary to lavish time and energy to apply them to more complex flow problems.
A multiscale model for charge inversion in electric double layers
NASA Astrophysics Data System (ADS)
Mashayak, S. Y.; Aluru, N. R.
2018-06-01
Charge inversion is a widely observed phenomenon. It is a result of the rich statistical mechanics of the molecular interactions between ions, solvent, and charged surfaces near electric double layers (EDLs). Electrostatic correlations between ions and hydration interactions between ions and water molecules play a dominant role in determining the distribution of ions in EDLs. Due to highly polar nature of water, near a surface, an inhomogeneous and anisotropic arrangement of water molecules gives rise to pronounced variations in the electrostatic and hydration energies of ions. Classical continuum theories fail to accurately describe electrostatic correlations and molecular effects of water in EDLs. In this work, we present an empirical potential based quasi-continuum theory (EQT) to accurately predict the molecular-level properties of aqueous electrolytes. In EQT, we employ rigorous statistical mechanics tools to incorporate interatomic interactions, long-range electrostatics, correlations, and orientation polarization effects at a continuum-level. Explicit consideration of atomic interactions of water molecules is both theoretically and numerically challenging. We develop a systematic coarse-graining approach to coarse-grain interactions of water molecules and electrolyte ions from a high-resolution atomistic scale to the continuum scale. To demonstrate the ability of EQT to incorporate the water orientation polarization, ion hydration, and electrostatic correlations effects, we simulate confined KCl aqueous electrolyte and show that EQT can accurately predict the distribution of ions in a thin EDL and also predict the complex phenomenon of charge inversion.
Mid-course multi-target tracking using continuous representation
NASA Technical Reports Server (NTRS)
Zak, Michail; Toomarian, Nikzad
1991-01-01
The thrust of this paper is to present a new approach to multi-target tracking for the mid-course stage of the Strategic Defense Initiative (SDI). This approach is based upon a continuum representation of a cluster of flying objects. We assume that the velocities of the flying objects can be embedded into a smooth velocity field. This assumption is based upon the impossibility of encounters in a high density cluster between the flying objects. Therefore, the problem is reduced to an identification of a moving continuum based upon consecutive time frame observations. In contradistinction to the previous approaches, here each target is considered as a center of a small continuous neighborhood subjected to a local-affine transformation, and therefore, the target trajectories do not mix. Obviously, their mixture in plane of sensor view is apparent. The approach is illustrated by an example.
Marianski, Mateusz; Dannenberg, J J
2012-02-02
We present density functional theory (DFT) calculations at the X3LYP/D95(d,p) level on the solvation of polyalanine α-helices in water. The study includes the effects of discrete water molecules and the CPCM and AMSOL SM5.2 solvent continuum model both separately and in combination. We find that individual water molecules cooperatively hydrogen-bond to both the C- and N-termini of the helix, which results in increases in the dipole moment of the helix/water complex to more than the vector sum of their individual dipole moments. These waters are found to be more stable than in bulk solvent. On the other hand, individual water molecules that interact with the backbone lower the dipole moment of the helix/water complex to below that of the helix itself. Small clusters of waters at the termini increase the dipole moments of the helix/water aggregates, but the effect diminishes as more waters are added. We discuss the somewhat complex behavior of the helix with the discrete waters in the continuum models.
Self-consistent elastic continuum theory of degenerate, equilibrium aperiodic solids.
Bevzenko, Dmytro; Lubchenko, Vassiliy
2014-11-07
We show that the vibrational response of a glassy liquid at finite frequencies can be described by continuum mechanics despite the vast degeneracy of the vibrational ground state; standard continuum elasticity assumes a unique ground state. The effective elastic constants are determined by the bare elastic constants of individual free energy minima of the liquid, the magnitude of built-in stress, and temperature, analogously to how the dielectric response of a polar liquid is determined by the dipole moment of the constituent molecules and temperature. In contrast with the dielectric constant--which is enhanced by adding polar molecules to the system--the elastic constants are down-renormalized by the relaxation of the built-in stress. The renormalization flow of the elastic constants has three fixed points, two of which are trivial and correspond to the uniform liquid state and an infinitely compressible solid, respectively. There is also a nontrivial fixed point at the Poisson ratio equal to 1/5, which corresponds to an isospin-like degeneracy between shear and uniform deformation. The present description predicts a discontinuous jump in the (finite frequency) shear modulus at the crossover from collisional to activated transport, consistent with the random first order transition theory.
Nanopore Measurements of Filamentous Viruses Reveal a Sub-nanometer-Scale Stagnant Fluid Layer.
McMullen, Angus J; Tang, Jay X; Stein, Derek
2017-11-28
We report measurements and analyses of nanopore translocations by fd and M13, two related strains of filamentous virus that are identical except for their charge densities. The standard continuum theory of electrokinetics greatly overestimates the translocation speed and the conductance associated with counterions for both viruses. Furthermore, fd and M13 behave differently from one another, even translocating in opposite directions under certain conditions. This cannot be explained by Manning-condensed counterions or a number of other proposed models. Instead, we argue that these anomalous findings are consequences of the breakdown of the validity of continuum hydrodynamics at the scale of a few molecular layers. Next to a polyelectrolyte, there exists an extra-viscous, sub-nanometer-thin boundary layer that has a giant influence on the transport characteristics. We show that a stagnant boundary layer captures the essential hydrodynamics and extends the validity of the electrokinetic theory beyond the continuum limit. A stagnant layer with a thickness of about half a nanometer consistently improves predictions of the ionic current change induced by virus translocations and of the translocation velocity for both fd and M13 over a wide range of nanopore dimensions and salt concentrations.
Marianski, Mateusz
2012-01-01
We present density functional theory (DFT) calculations at the X3LYP/D95(d,p) level on the solvation of polyalanine α-helices in water. The study includes the effects of discrete water molecules and the CPCM and AMSOL SM5.2 solvent continuum model both separately and in combination. We find that individual water molecules cooperatively hydrogen-bond to both the C- and N-termini of the helix, which results in increases in the dipole moment of the helix/water complex to more than the vector sum of their individual dipole moments. These waters are found to be more stable than in bulk solvent. On the other hand, individual water that interact with the backbone lower the dipole moment of the helix/water complex to below that of the helix, itself. Small clusters of waters at the termini increase the dipole moments of the helix/water aggregates, but the effect diminishes as more waters are added. We discuss the somewhat complex behavior of the helix with the discrete waters in the continuum models. PMID:22201227
Linear kinetic theory and particle transport in stochastic mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pomraning, G.C.
We consider the formulation of linear transport and kinetic theory describing energy and particle flow in a random mixture of two or more immiscible materials. Following an introduction, we summarize early and fundamental work in this area, and we conclude with a brief discussion of recent results.
NASA Technical Reports Server (NTRS)
Coats, Timothy William
1994-01-01
Progressive failure is a crucial concern when using laminated composites in structural design. Therefore the ability to model damage and predict the life of laminated composites is vital. The purpose of this research was to experimentally verify the application of the continuum damage model, a progressive failure theory utilizing continuum damage mechanics, to a toughened material system. Damage due to tension-tension fatigue was documented for the IM7/5260 composite laminates. Crack density and delamination surface area were used to calculate matrix cracking and delamination internal state variables, respectively, to predict stiffness loss. A damage dependent finite element code qualitatively predicted trends in transverse matrix cracking, axial splits and local stress-strain distributions for notched quasi-isotropic laminates. The predictions were similar to the experimental data and it was concluded that the continuum damage model provided a good prediction of stiffness loss while qualitatively predicting damage growth in notched laminates.
Bipotential continuum models for granular mechanics
NASA Astrophysics Data System (ADS)
Goddard, Joe
2014-03-01
Most currently popular continuum models for granular media are special cases of a generalized Maxwell fluid model, which describes the evolution of stress and internal variables such as granular particle fraction and fabric,in terms of imposed strain rate. It is shown how such models can be obtained from two scalar potentials, a standard elastic free energy and a ``dissipation potential'' given rigorously by the mathematical theory of Edelen. This allows for a relatively easy derivation of properly invariant continuum models for granular media and fluid-particle suspensions within a thermodynamically consistent framework. The resulting continuum models encompass all the prominent regimes of granular flow, ranging from the quasi-static to rapidly sheared, and are readily extended to include higher-gradient or Cosserat effects. Models involving stress diffusion, such as that proposed recently by Kamrin and Koval (PRL 108 178301), provide an alternative approach that is mentioned in passing. This paper provides a brief overview of a forthcoming review articles by the speaker (The Princeton Companion to Applied Mathematics, and Appl. Mech. Rev.,in the press, 2013).
Pankavich, S; Ortoleva, P
2010-06-01
The multiscale approach to N-body systems is generalized to address the broad continuum of long time and length scales associated with collective behaviors. A technique is developed based on the concept of an uncountable set of time variables and of order parameters (OPs) specifying major features of the system. We adopt this perspective as a natural extension of the commonly used discrete set of time scales and OPs which is practical when only a few, widely separated scales exist. The existence of a gap in the spectrum of time scales for such a system (under quasiequilibrium conditions) is used to introduce a continuous scaling and perform a multiscale analysis of the Liouville equation. A functional-differential Smoluchowski equation is derived for the stochastic dynamics of the continuum of Fourier component OPs. A continuum of spatially nonlocal Langevin equations for the OPs is also derived. The theory is demonstrated via the analysis of structural transitions in a composite material, as occurs for viral capsids and molecular circuits.
Improvements in continuum modeling for biomolecular systems
NASA Astrophysics Data System (ADS)
Yu, Qiao; Ben-Zhuo, Lu
2016-01-01
Modeling of biomolecular systems plays an essential role in understanding biological processes, such as ionic flow across channels, protein modification or interaction, and cell signaling. The continuum model described by the Poisson- Boltzmann (PB)/Poisson-Nernst-Planck (PNP) equations has made great contributions towards simulation of these processes. However, the model has shortcomings in its commonly used form and cannot capture (or cannot accurately capture) some important physical properties of the biological systems. Considerable efforts have been made to improve the continuum model to account for discrete particle interactions and to make progress in numerical methods to provide accurate and efficient simulations. This review will summarize recent main improvements in continuum modeling for biomolecular systems, with focus on the size-modified models, the coupling of the classical density functional theory and the PNP equations, the coupling of polar and nonpolar interactions, and numerical progress. Project supported by the National Natural Science Foundation of China (Grant No. 91230106) and the Chinese Academy of Sciences Program for Cross & Cooperative Team of the Science & Technology Innovation.
Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas
NASA Astrophysics Data System (ADS)
Hu, S. X.
2017-08-01
Continuum lowering is a well known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal- or pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K -edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics calculations based on the all-electron density-functional theory. The resulting K -edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of "single-atom-in-box," developed in this work, accurately predicts K -edge locations as ab initio calculations provide.
Multiscale Modeling of Mesoscale and Interfacial Phenomena
NASA Astrophysics Data System (ADS)
Petsev, Nikolai Dimitrov
With rapidly emerging technologies that feature interfaces modified at the nanoscale, traditional macroscopic models are pushed to their limits to explain phenomena where molecular processes can play a key role. Often, such problems appear to defy explanation when treated with coarse-grained continuum models alone, yet remain prohibitively expensive from a molecular simulation perspective. A prominent example is surface nanobubbles: nanoscopic gaseous domains typically found on hydrophobic surfaces that have puzzled researchers for over two decades due to their unusually long lifetimes. We show how an entirely macroscopic, non-equilibrium model explains many of their anomalous properties, including their stability and abnormally small gas-side contact angles. From this purely transport perspective, we investigate how factors such as temperature and saturation affect nanobubbles, providing numerous experimentally testable predictions. However, recent work also emphasizes the relevance of molecular-scale phenomena that cannot be described in terms of bulk phases or pristine interfaces. This is true for nanobubbles as well, whose nanoscale heights may require molecular detail to capture the relevant physics, in particular near the bubble three-phase contact line. Therefore, there is a clear need for general ways to link molecular granularity and behavior with large-scale continuum models in the treatment of many interfacial problems. In light of this, we have developed a general set of simulation strategies that couple mesoscale particle-based continuum models to molecular regions simulated through conventional molecular dynamics (MD). In addition, we derived a transport model for binary mixtures that opens the possibility for a wide range of applications in biological and drug delivery problems, and is readily reconciled with our hybrid MD-continuum techniques. Approaches that couple multiple length scales for fluid mixtures are largely absent in the literature, and we provide a novel and general framework for multiscale modeling of systems featuring one or more dissolved species. This makes it possible to retain molecular detail for parts of the problem that require it while using a simple, continuum description for parts where high detail is unnecessary, reducing the number of degrees of freedom (i.e. number of particles) dramatically. This opens the possibility for modeling ion transport in biological processes and biomolecule assembly in ionic solution, as well as electrokinetic phenomena at interfaces such as corrosion. The number of particles in the system is further reduced through an integrated boundary approach, which we apply to colloidal suspensions. In this thesis, we describe this general framework for multiscale modeling single- and multicomponent systems, provide several simple equilibrium and non-equilibrium case studies, and discuss future applications.
Si, Dejun; Li, Hui
2011-10-14
The analytic energy gradients in combined second order Møller-Plesset perturbation theory and conductorlike polarizable continuum model calculations are derived and implemented for spin-restricted closed shell (RMP2), Z-averaged spin-restricted open shell (ZAPT2), and spin-unrestricted open shell (UMP2) cases. Using these methods, the geometries of the S(0) ground state and the T(1) state of three nucleobase pairs (guanine-cytosine, adenine-thymine, and adenine-uracil) in the gas phase and aqueous solution phase are optimized. It is found that in both the gas phase and the aqueous solution phase the hydrogen bonds in the T(1) state pairs are weakened by ~1 kcal/mol as compared to those in the S(0) state pairs. © 2011 American Institute of Physics
Remarks on a New Possible Discretization Scheme for Gauge Theories
NASA Astrophysics Data System (ADS)
Magnot, Jean-Pierre
2018-03-01
We propose here a new discretization method for a class of continuum gauge theories which action functionals are polynomials of the curvature. Based on the notion of holonomy, this discretization procedure appears gauge-invariant for discretized analogs of Yang-Mills theories, and hence gauge-fixing is fully rigorous for these discretized action functionals. Heuristic parts are forwarded to the quantization procedure via Feynman integrals and the meaning of the heuristic infinite dimensional Lebesgue integral is questioned.
Remarks on a New Possible Discretization Scheme for Gauge Theories
NASA Astrophysics Data System (ADS)
Magnot, Jean-Pierre
2018-07-01
We propose here a new discretization method for a class of continuum gauge theories which action functionals are polynomials of the curvature. Based on the notion of holonomy, this discretization procedure appears gauge-invariant for discretized analogs of Yang-Mills theories, and hence gauge-fixing is fully rigorous for these discretized action functionals. Heuristic parts are forwarded to the quantization procedure via Feynman integrals and the meaning of the heuristic infinite dimensional Lebesgue integral is questioned.
Theory of fracture mechanics based upon plasticity
NASA Technical Reports Server (NTRS)
Lee, J. D.
1976-01-01
A theory of fracture mechanics is formulated on the foundation of continuum mechanics. Fracture surface is introduced as an unknown quantity and is incorporated into boundary and initial conditions. Surface energy is included in the global form of energy conservation law and the dissipative mechanism is formulated into constitutive equations which indicate the thermodynamic irreversibility and the irreversibility of fracture process as well.
ERIC Educational Resources Information Center
Lee, Young-Sun; Park, Yoon Soo; Taylan, Didem
2011-01-01
Studies of international mathematics achievement such as the Trends in Mathematics and Science Study (TIMSS) have employed classical test theory and item response theory to rank individuals within a latent ability continuum. Although these approaches have provided insights into comparisons between countries, they have yet to examine how specific…
ERIC Educational Resources Information Center
Malich, John; Kehus, Marcella J.
2012-01-01
In our essay we discuss Louise Rosenblatt's transactional theory of a reading event. Second, we summarize Carole Cox and Joyce Many who applied the transactional theory and designed a 1-5 point continuum to stories and films. Third, we summarize film theorists David Bordwell's constructivism; Richard Wollheim's central imagining and…
Teaching with Tupac: Building a Solid Grounding in Theory across the Social Work Education Continuum
ERIC Educational Resources Information Center
Elkins, Jennifer; Miller, Shari; Briggs, Harold; Skinner, Sara
2015-01-01
This article describes a collaborative and emergent approach utilizing Tupac Shakur's "Brenda's Got a Baby" to leverage theory education. This song/video uses a fictionalized account of a pregnant 12-year-old African American girl to chronicle the ecological realities of life in the inner city (e.g., teen pregnancy, drug addiction and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundararaman, Ravishankar; Goddard, III, William A.; Arias, Tomas A.
First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solvemore » the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.« less
Sundararaman, Ravishankar; Goddard, William A; Arias, Tomas A
2017-03-21
First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solve the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Finally, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.
Sundararaman, Ravishankar; Goddard, III, William A.; Arias, Tomas A.
2017-03-16
First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solvemore » the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.« less
New developments in reaction theory: preparing for the FRIB era
NASA Astrophysics Data System (ADS)
Nunes, F. M.; Capel, P. C.; Elster, Ch.; Hlophe, L.; Lei, Jin; Li, Weichuan; Lovell, A. E.; Potel, G.; Rotureau, J.; Poxon-Pearson, T.
2018-05-01
This is a brief report on the progress made towards an exact theory for (d,p) on heavy nuclei, which is important to determine neutron capture rates for r-process nuclei. We first discuss the role of core excitation in the framework of Faddeev equations. Following that, we provide the status of the Faddeev theory being developed in the Coulomb basis with separable interactions. We then present some recent developments on nonlocal nucleon optical potentials. Finally, the progress on the theory transfer to the continuum is summarized.
NASA Astrophysics Data System (ADS)
Lee, Hyun Min
2018-03-01
We consider the gauged U (1) clockwork theory with a product of multiple gauge groups and discuss the continuum limit of the theory to a massless gauged U (1) with linear dilaton background in five dimensions. The localization of the lightest state of gauge fields on a site in the theory space naturally leads to exponentially small effective couplings of external matter fields localized away from the site. We discuss the implications of our general discussion with some examples, such as mediators of dark matter interactions, flavor-changing B-meson decays as well as D-term SUSY breaking.
NASA Astrophysics Data System (ADS)
Huber, M.; Keller, F.; Säckel, W.; Hirschler, M.; Kunz, P.; Hassanizadeh, S. M.; Nieken, U.
2016-04-01
The description of wetting phenomena is a challenging problem on every considerable length-scale. The behavior of interfaces and contact lines on the continuum scale is caused by intermolecular interactions like the Van der Waals forces. Therefore, to describe surface tension and the resulting dynamics of interfaces and contact lines on the continuum scale, appropriate formulations must be developed. While the Continuum Surface Force (CSF) model is well-engineered for the description of interfaces, there is still a lack of treatment of contact lines, which are defined by the intersection of an ending fluid interface and a solid boundary surface. In our approach we use a balance equation for the contact line and extend the Navier-Stokes equations in analogy to the extension of a two-phase interface in the CSF model. Since this model depicts a physically motivated approach on the continuum scale, no fitting parameters are introduced and the deterministic description leads to a dynamical evolution of the system. As verification of our theory, we show a Smoothed Particle Hydrodynamics (SPH) model and simulate the evolution of droplet shapes and their corresponding contact angles.
NASA Astrophysics Data System (ADS)
Luscher, Darby
2017-06-01
The dynamic thermomechanical responses of polycrystalline materials under shock loading are often dominated by the interaction of defects and interfaces. For example, polymer-bonded explosives (PBX) can initiate under weak shock impacts whose energy, if distributed homogeneously throughout the material, translates to temperature increases that are insufficient to drive the rapid chemistry observed. In such cases, heterogeneous thermomechanical interactions at the mesoscale (i.e. between single-crystal and macroscale) lead to the formation of localized hot spots. Within metals, a prescribed deformation associated with a shock wave may be accommodated by crystallographic slip, provided a sufficient population of mobile dislocations is available. However, if the deformation rate is large enough, there may be an insufficient number of freely mobile dislocations. In these cases, additional dislocations may be nucleated, or alternate mechanisms (e.g. twinning, damage) activated in order to accommodate the deformation. Direct numerical simulation at the mesoscale offers insight into these physical processes that can be invaluable to the development of macroscale constitutive theories, if the mesoscale models adequately represent the anisotropic nonlinear thermomechanical response of individual crystals and their interfaces. This talk will briefly outline a continuum mesoscale modeling framework founded upon local and nonlocal variations of dislocation-density based crystal plasticity theory. The nonlocal theory couples continuum dislocation transport with the local theory. In the latter, dislocation transport is modeled by enforcing dislocation conservation at a slip-system level through the solution of advection-diffusion equations. The configuration of geometrically necessary dislocation density gives rise to a back-stress that inhibits or accentuates the flow of dislocations. Development of the local theory and application to modeling the explosive molecular crystal RDX and polycrystalline PBX will be discussed. The talk will also emphasize recent implementation of the coupled nonlocal model into a 3D shock hydrocode and simulation results for the dynamic response of polycrystalline copper in two and three dimensions.
Geophysics and Nanosciences: Nano to Micro to Meso to Macro Scale Swelling Soils
NASA Astrophysics Data System (ADS)
Cushman, J.
2003-04-01
We use statistical mechanical simulations of nanoporous materials to motivate a choice of independent constitutive variables for a multiscale mixture theory of swelling soils. A video will illustrate the structural behavior of fluids in nanopores when they are adsorbed from a bulk phase vapor to form capillaries on the nanoscale. These simulations suggest that when a swelling soil is very dry, the full strain tensor for the liquid phase should be included in the list of independent variables in any mixture theory. We use this information to develop a three-scale (micro, meso, macro) mixture theory for swelling soils. For a simplified case, we present the underlying multiscale field equations and constitutive theory, solve the resultant well posed system numerically, and present some graphical results for a drying and shrinking body.
Properties of Shocked Polymers: Mbar experiments on Z and multi-scale simulations
NASA Astrophysics Data System (ADS)
Mattsson, Thomas R.
2010-03-01
Significant progress has been made over the last few years in understanding properties of matter subject to strong shocks and other extreme conditions. High-accuracy multi-Mbar experiments and first-principles theoretical studies together provide detailed insights into the physics and chemistry of high energy-density matter. While comprehensive advances have been made for pure elements like deuterium, helium, and carbon, progress has been slower for equally important, albeit more challenging, materials like molecular crystals, polymers, and foams. Hydrocarbon based polymer foams are common materials and in particular they are used in designing shock- and inertial confinement fusion experiments. Depending on their initial density, foams shock to relatively higher pressure and temperature compared to shocked dense polymers/plastics. As foams and polymers are shocked, they exhibit both structural and chemical transitions. We will present experimental and theoretical results for shocked polymers in the Mbar regime. By shock impact of magnetically launched flyer plates on poly(4-methyl-1-pentene) foams, we create multi-Mbar pressures in a dense plasma mixture of hydrogen, carbon, at temperatures of several eV. Concurrently with executing experiments, we analyze the system by multi-scale simulations, from density functional theory to continuum magneto-hydrodynamics simulations. In particular, density functional theory (DFT) molecular dynamics (MD) and classical MD simulations of the principal shock Hugoniot will be presented in detail for two hydrocarbon polymers: polyethylene (PE) and poly(4-methyl-1-pentene) (PMP).
Lorentz symmetry violation in the fermion number anomaly with the chiral overlap operator
NASA Astrophysics Data System (ADS)
Makino, Hiroki; Morikawa, Okuto
2016-12-01
Recently, Grabowska and Kaplan proposed a four-dimensional lattice formulation of chiral gauge theories on the basis of a chiral overlap operator. We compute the classical continuum limit of the fermion number anomaly in this formulation. Unexpectedly, we find that the continuum limit contains a term which is not Lorentz invariant. The term is, however, proportional to the gauge anomaly coefficient, and thus the fermion number anomaly in this lattice formulation automatically restores the Lorentz-invariant form when and only when the anomaly cancellation condition is met.
Polymers at interfaces and in colloidal dispersions.
Fleer, Gerard J
2010-09-15
This review is an extended version of the Overbeek lecture 2009, given at the occasion of the 23rd Conference of ECIS (European Colloid and Interface Society) in Antalya, where I received the fifth Overbeek Gold Medal awarded by ECIS. I first summarize the basics of numerical SF-SCF: the Scheutjens-Fleer version of Self-Consistent-Field theory for inhomogeneous systems, including polymer adsorption and depletion. The conformational statistics are taken from the (non-SCF) DiMarzio-Rubin lattice model for homopolymer adsorption, which enumerates the conformational details exactly by a discrete propagator for the endpoint distribution but does not account for polymer-solvent interaction and for the volume-filling constraint. SF-SCF corrects for this by adjusting the field such that it becomes self-consistent. The model can be generalized to more complex systems: polydispersity, brushes, random and block copolymers, polyelectrolytes, branching, surfactants, micelles, membranes, vesicles, wetting, etc. On a mean-field level the results are exact; the disadvantage is that only numerical data are obtained. Extensions to excluded-volume polymers are in progress. Analytical approximations for simple systems are based upon solving the Edwards diffusion equation. This equation is the continuum variant of the lattice propagator, but ignores the finite segment size (analogous to the Poisson-Boltzmann equation without a Stern layer). By using the discrete propagator for segments next to the surface as the boundary condition in the continuum model, the finite segment size can be introduced into the continuum description, like the ion size in the Stern-Poisson-Boltzmann model. In most cases a ground-state approximation is needed to find analytical solutions. In this way realistic analytical approximations for simple cases can be found, including depletion effects that occur in mixtures of colloids plus non-adsorbing polymers. In the final part of this review I discuss a generalization of the free-volume theory (FVT) for the phase behavior of colloids and non-adsorbing polymer. In FVT the polymer is considered to be ideal: the osmotic pressure Pi follows the Van 't Hoff law, the depletion thickness delta equals the radius of gyration. This restricts the validity of FVT to the so-called colloid limit (polymer much smaller than the colloids). We have been able to find simple analytical approximations for Pi and delta which account for non-ideality and include established results for the semidilute limit. So we could generalize FVT to GFVT, and can now also describe the so-called protein limit (polymer larger than the 'protein-like' colloids), where the binodal polymer concentrations scale in a simple way with the polymer/colloid size ratio. For an intermediate case (polymer size approximately colloid size) we could give a quantitative description of careful experimental data. Copyright 2010 Elsevier B.V. All rights reserved.
A multiphase model for tissue construct growth in a perfusion bioreactor.
O'Dea, R D; Waters, S L; Byrne, H M
2010-06-01
The growth of a cell population within a rigid porous scaffold in a perfusion bioreactor is studied, using a three-phase continuum model of the type presented by Lemon et al. (2006, Multiphase modelling of tissue growth using the theory of mixtures. J. Math. Biol., 52, 571-594) to represent the cell population (and attendant extracellular matrix), culture medium and porous scaffold. The bioreactor system is modelled as a 2D channel containing the cell-seeded rigid porous scaffold (tissue construct) which is perfused with culture medium. The study concentrates on (i) the cell-cell and cell-scaffold interactions and (ii) the impact of mechanotransduction mechanisms on construct composition. A numerical and analytical analysis of the model equations is presented and, depending upon the relative importance of cell aggregation and repulsion, markedly different cell movement is revealed. Additionally, mechanotransduction effects due to cell density, pressure and shear stress-mediated tissue growth are shown to generate qualitative differences in the composition of the resulting construct. The results of our simulations indicate that this model formulation (in conjunction with appropriate experimental data) has the potential to provide a means of identifying the dominant regulatory stimuli in a cell population.
Craniopharyngioma arising in a Rathke's cleft cyst: case report.
Alomari, Ahmed K; Kelley, Brian J; Damisah, Eyiyemisi; Marks, Asher; Hui, Pei; DiLuna, Michael; Vortmeyer, Alexander
2015-03-01
Craniopharyngioma is one of the most common non-glial intracranial tumors of childhood. Its relation to Rathke's cleft cyst (RCC) is controversial, and both lesions have been hypothesized to lie on a continuum of cystic ectodermal lesions of the sellar region. The authors report on a 7-year-old boy who presented with decreased visual acuity, presumably of at least 2 years' duration, and was found to have a 5.2-cm sellar lesion with rim enhancement. Histological examination of the resected lesion showed a mixture of areas with simple RCC morphology with focal squamous metaplasia and areas with typical craniopharyngioma morphology. Immunohistochemical staining with CK20 and Ki 67 differentially highlighted the 2 morphological components. Testing for beta-catenin and BRAF mutations was negative in the craniopharyngioma component, precluding definitive molecular classification. Follow-up imaging showed minimal residual enhancement and the patient will be closely followed up with serial MRI. Given the clinical and histological findings in the case, a progressive transformation of the RCC to craniopharyngioma seems to be the most plausible explanation for the co-occurrence of the 2 lesion types in this patient. An extensive review of previously proposed theories of the relationship between craniopharyngioma and RCC is also presented.
Zutterman, Freddy; Louant, Orian; Mercier, Gabriel; Leyssens, Tom; Champagne, Benoît
2018-06-21
Salicylideneanilines are characterized by a tautomer equilibrium, between an enol and a keto form of different colors, at the origin of their remarkable thermochromic, solvatochromic, and photochromic properties. The enol form is usually the most stable but appropriate choice of substituents and conditions (solvent, crystal, host compound) can displace the equilibrium toward the keto form so that there is a need for fast prediction of the keto:enol abundance ratio. Here we demonstrate the reliability of a combined theoretical-experimental method, based on comparing simulated and measured UV/visible absorption spectra, to determine this keto/enol ratio. The calculations of the excitation energies, oscillator strengths, and vibronic structures of both enol and keto forms are performed for all excited states absorbing in the relevant (visible and near-UV) wavelength range at the time-dependent density functional theory level by accounting for solvent effects using the polarizable continuum model. This approach is illustrated for two salicylideneaniline derivatives, which are present, in solution, under the form of keto-enol mixtures. The results are compared to those of chemometric analysis as well as ab initio predictions of the reaction free enthalpies.
Ab Initio Calculations of Transport in Titanium and Aluminum Mixtures
NASA Astrophysics Data System (ADS)
Walker, Nicholas; Novak, Brian; Tam, Ka Ming; Moldovan, Dorel; Jarrell, Mark
In classical molecular dynamics simulations, the self-diffusion and shear viscosity of titanium about the melting point have fallen within the ranges provided by experimental data. However, the experimental data is difficult to collect and has been rather scattered, making it of limited value for the validation of these calculations. By using ab initio molecular dynamics simulations within the density functional theory framework, the classical molecular dynamics data can be validated. The dynamical data from the ab initio molecular dynamics can also be used to calculate new potentials for use in classical molecular dynamics, allowing for more accurate classical dynamics simulations for the liquid phase. For metallic materials such as titanium and aluminum alloys, these calculations are very valuable due to an increasing demand for the knowledge of their thermophysical properties that drive the development of new materials. For example, alongside knowledge of the surface tension, viscosity is an important input for modeling the additive manufacturing process at the continuum level. We are developing calculations of the viscosity along with the self-diffusion for aluminum, titanium, and titanium-aluminum alloys with ab initio molecular dynamics. Supported by the National Science Foundation through cooperative agreement OIA-1541079 and the Louisiana Board of Regents.
Statistical Mechanical Theory of Coupled Slow Dynamics in Glassy Polymer-Molecule Mixtures
NASA Astrophysics Data System (ADS)
Zhang, Rui; Schweizer, Kenneth
The microscopic Elastically Collective Nonlinear Langevin Equation theory of activated relaxation in one-component supercooled liquids and glasses is generalized to polymer-molecule mixtures. The key idea is to account for dynamic coupling between molecule and polymer segment motion. For describing the molecule hopping event, a temporal casuality condition is formulated to self-consistently determine a dimensionless degree of matrix distortion relative to the molecule jump distance based on the concept of coupled dynamic free energies. Implementation for real materials employs an established Kuhn sphere model of the polymer liquid and a quantitative mapping to a hard particle reference system guided by the experimental equation-of-state. The theory makes predictions for the mixture dynamic shear modulus, activated relaxation time and diffusivity of both species, and mixture glass transition temperature as a function of molecule-Kuhn segment size ratio and attraction strength, composition and temperature. Model calculations illustrate the dynamical behavior in three distinct mixture regimes (fully miscible, bridging, clustering) controlled by the molecule-polymer interaction or chi-parameter. Applications to specific experimental systems will be discussed.
Mechanics and Physics of Solids, Uncertainy, and the Archetype-Genome Exemplar
NASA Astrophysics Data System (ADS)
Greene, M. Steven
This dissertation argues that the mechanics and physics of solids rely on a fundamental exemplar: the apparent properties of a system depend on the building blocks that comprise it. Building blocks are referred to as archetypes and apparent system properties as the system genome. Three entities are of importance: the archetype properties, the conformation of archetypes, and the properties of interactions activated by that conformation. The combination of these entities into the system genome is called assembly. To show the utility of the archetype-genome exemplar, the dissertation presents the mathematical construction and computational implementation of a new theory for solid mechanics that is a continuum manifestation of the assembly process. The so-called archetype-blending continuum theory aligns the form of globally valid balance laws with physics evolving in a material's composite constitutive response so that, by rethinking conventional micromechanics, the theory accounts naturally for each piece of the genome assembly triplet: archetypes, interactions, and their conformation. With the pieces of the triplet isolated in the theory, materials genome design concepts that separately control microstructure and property may be gleaned from exploration of the constitutive parameter space. A suite of simulations that apply the new theory to polymer nanocomposite materials demonstrate the ability of the theory to predict a robust material genome that includes damping properties, modulus weakening, local strain amplification, and size effects. The dissertation also presents a theoretical assessment of the importance of uncertainty propagation in the archetype-genome exemplar. The findings from a set of computational experiments on instances of a general class of microstructured materials suggest that when overlap occurs between the size of the system geometry and the features of the conformation, material genomes become less certain. Increasing nonuniformity of boundary conditions and the size of random field correlation lengths exacerbate this conclusion. These criteria are combined into a scalar metric used to assess the impact of archetype-level uncertainties on the material genome for general scenarios in solid mechanics. Exemplary benchmark problems include bending in elastoplasticity and instability-induced pattern transition in porous elastomer. The contributions of this dissertation are threefold: (1) the mathematical construction of a new continuum theory for mechanics and physics of solids, (2) implementation of the theory, and (3) theoretical assessment of the scenarios in which material genomes deviate from determinism.
Nonlinear modeling of crystal system transition of black phosphorus using continuum-DFT model.
Setoodeh, A R; Farahmand, H
2018-01-24
In this paper, the nonlinear behavior of black phosphorus crystals is investigated in tandem with dispersion-corrected density functional theory (DFT-D) analysis under uniaxial loadings. From the identified anisotropic behavior of black phosphorus due to its morphological anisotropy, a hyperelastic anisotropic (HA) model named continuum-DFT is established to predict the nonlinear behavior of the material. In this respect, uniaxial Cauchy stresses are employed on both the DFT-D and HA models along the zig-zag and armchair directions. Simultaneously, the transition of the crystal system is recognized at about 4.5 GPa of the applied uniaxial tensile stress along the zig-zag direction on the DFT-D simulation in the nonlinear region. In order to develop the nonlinear continuum model, unknown constants are surveyed with the optimized least square technique. In this regard, the continuum model is obtained to reproduce the Cauchy stress-stretch and density of strain-stretch results of the DFT-D simulation. Consequently, the modified HA model is introduced to characterize the nonlinear behavior of black phosphorus along the zig-zag direction. More importantly, the specific transition of the crystal system is successfully predicted in the new modified continuum-DFT model. The results reveal that the multiscale continuum-DFT model is well defined to replicate the nonlinear behavior of black phosphorus along the zig-zag and armchair directions.
Hamiltonian lattice field theory: Computer calculations using variational methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zako, Robert L.
1991-12-03
I develop a variational method for systematic numerical computation of physical quantities -- bound state energies and scattering amplitudes -- in quantum field theory. An infinite-volume, continuum theory is approximated by a theory on a finite spatial lattice, which is amenable to numerical computation. I present an algorithm for computing approximate energy eigenvalues and eigenstates in the lattice theory and for bounding the resulting errors. I also show how to select basis states and choose variational parameters in order to minimize errors. The algorithm is based on the Rayleigh-Ritz principle and Kato`s generalizations of Temple`s formula. The algorithm could bemore » adapted to systems such as atoms and molecules. I show how to compute Green`s functions from energy eigenvalues and eigenstates in the lattice theory, and relate these to physical (renormalized) coupling constants, bound state energies and Green`s functions. Thus one can compute approximate physical quantities in a lattice theory that approximates a quantum field theory with specified physical coupling constants. I discuss the errors in both approximations. In principle, the errors can be made arbitrarily small by increasing the size of the lattice, decreasing the lattice spacing and computing sufficiently long. Unfortunately, I do not understand the infinite-volume and continuum limits well enough to quantify errors due to the lattice approximation. Thus the method is currently incomplete. I apply the method to real scalar field theories using a Fock basis of free particle states. All needed quantities can be calculated efficiently with this basis. The generalization to more complicated theories is straightforward. I describe a computer implementation of the method and present numerical results for simple quantum mechanical systems.« less
A study of dynamical behavior of space environment
NASA Technical Reports Server (NTRS)
Wu, S. T.
1974-01-01
Studies have covered a wide range of problems in the space environment, such as the problems of the dynamical behavior of the thermosphere, hydromagnetic wave propagation in the ionosphere, and interplanetary space environment. The theories used to analyze these problems range from a continuum theory of magnetohydrodynamics to the kinetic theory of free molecular flow. This is because the problems encountered covered the entire range of the Knudsen number (i.e., the ratio of mean free path to the characteristic length). Significant results are summarized.
Three Boundary Conditions for Computing the Fixed-Point Property in Binary Mixture Data.
van Maanen, Leendert; Couto, Joaquina; Lebreton, Mael
2016-01-01
The notion of "mixtures" has become pervasive in behavioral and cognitive sciences, due to the success of dual-process theories of cognition. However, providing support for such dual-process theories is not trivial, as it crucially requires properties in the data that are specific to mixture of cognitive processes. In theory, one such property could be the fixed-point property of binary mixture data, applied-for instance- to response times. In that case, the fixed-point property entails that response time distributions obtained in an experiment in which the mixture proportion is manipulated would have a common density point. In the current article, we discuss the application of the fixed-point property and identify three boundary conditions under which the fixed-point property will not be interpretable. In Boundary condition 1, a finding in support of the fixed-point will be mute because of a lack of difference between conditions. Boundary condition 2 refers to the case in which the extreme conditions are so different that a mixture may display bimodality. In this case, a mixture hypothesis is clearly supported, yet the fixed-point may not be found. In Boundary condition 3 the fixed-point may also not be present, yet a mixture might still exist but is occluded due to additional changes in behavior. Finding the fixed-property provides strong support for a dual-process account, yet the boundary conditions that we identify should be considered before making inferences about underlying psychological processes.
Characterization of low-temperature properties of plant-produced rap mixtures in the Northeast
NASA Astrophysics Data System (ADS)
Medeiros, Marcelo S., Junior
The dissertation outlined herein results from a Federal Highway Administration sponsored project intended to investigate the impacts of high percentages of RAP material in the performance of pavements under cold climate conditions. It is comprised of two main sections that were incorporated into the body of this dissertation as Part I and Part II. In Part I a reduced testing framework for analysis of HMA mixes was proposed to replace the IDT creep compliance and strength testing by dynamic modulus and fatigue tests performed on an AMPT device. A continuum damage model that incorporates the nonlinear constitutive behavior of the HMA mixtures was also successfully implemented and validated. Mixtures with varying percentages of reclaimed material (RAP) ranging from 0 to 40% were used in this research effort in order to verify the applicability of the proposed methodology to RAP mixtures. Part II is concerned with evaluating the effects of various binder grades on the properties of plant-produced mixtures with various percentages of RAP. The effects of RAP on mechanical and rheological properties of mixtures and extracted binders were studied in order to identify some of the deficiencies in the current production methodologies. The results of this dissertation will help practitioners to identify optimal RAP usage from a material property perspective. It also establishes some guidelines and best practices for the use of higher RAP percentages in HMA.
2016-01-01
Background An estimated one- to two-thirds of new human immunodeficiency virus (HIV) infections among US men who have sex with men (MSM) occur within the context of primary partnerships. Thus, HIV interventions that recognize and harness the power of relationships are needed. Increasingly, HIV prevention efforts are being directed toward improving engagement across the HIV care continuum from testing to linkage to care, antiretroviral therapy (ART) adherence, engagement in care, and viral suppression. However, to our knowledge, no behavioral interventions have attempted to address the HIV care continuum using a dyadic approach. Objective The objective of this paper is to describe the development of and protocol for an innovative couples-based approach to improving treatment adherence and engagement in care among HIV serodiscordant and concordant HIV-positive same sex male couples in the United States. Methods We developed the Partner Steps intervention by drawing from relationship-oriented theory, existing efficacious individual-level ART adherence interventions, couple-focused HIV prevention interventions, and expert consultation. We incorporated new content to address all aspects of the HIV care continuum (eg, linkage to and retention in care) and to draw on relationship strengths through interactive activities. Results The resulting theory-based Partner Steps intervention is delivered by a trained bachelors-level counselor (interventionist) over 2 in-person sessions with male-male dyads in which at least 1 partner has recent suboptimal engagement in HIV care. Each session is designed to use relationship strengths to increase motivation for HIV care and treatment, and cover sequential intervention “steps” relating to specific challenges in HIV care engagement and barriers to ART adherence. For each step, couples work with a trained interventionist to identify their unique challenges, actively problem-solve with the interventionist, and articulate and commit to working together to implement a plan in which each partner agrees to complete specific tasks. Conclusions We drew on theory and evidence to develop novel intervention strategies that leverage strengths of relationships to address engagement across the entire HIV care continuum. We provide details on intervention development and content that may be of use to researchers as well as medical and mental health professionals for whom a dyadic approach to HIV prevention and care may best suit their patient population. PMID:27562905
Bazzi, Angela Robertson; Fergus, Kirkpatrick B; Stephenson, Rob; Finneran, Catherine A; Coffey-Esquivel, Julia; Hidalgo, Marco A; Hoehnle, Sam; Sullivan, Patrick S; Garofalo, Robert; Mimiaga, Matthew J
2016-08-25
An estimated one- to two-thirds of new human immunodeficiency virus (HIV) infections among US men who have sex with men (MSM) occur within the context of primary partnerships. Thus, HIV interventions that recognize and harness the power of relationships are needed. Increasingly, HIV prevention efforts are being directed toward improving engagement across the HIV care continuum from testing to linkage to care, antiretroviral therapy (ART) adherence, engagement in care, and viral suppression. However, to our knowledge, no behavioral interventions have attempted to address the HIV care continuum using a dyadic approach. The objective of this paper is to describe the development of and protocol for an innovative couples-based approach to improving treatment adherence and engagement in care among HIV serodiscordant and concordant HIV-positive same sex male couples in the United States. We developed the Partner Steps intervention by drawing from relationship-oriented theory, existing efficacious individual-level ART adherence interventions, couple-focused HIV prevention interventions, and expert consultation. We incorporated new content to address all aspects of the HIV care continuum (eg, linkage to and retention in care) and to draw on relationship strengths through interactive activities. The resulting theory-based Partner Steps intervention is delivered by a trained bachelors-level counselor (interventionist) over 2 in-person sessions with male-male dyads in which at least 1 partner has recent suboptimal engagement in HIV care. Each session is designed to use relationship strengths to increase motivation for HIV care and treatment, and cover sequential intervention "steps" relating to specific challenges in HIV care engagement and barriers to ART adherence. For each step, couples work with a trained interventionist to identify their unique challenges, actively problem-solve with the interventionist, and articulate and commit to working together to implement a plan in which each partner agrees to complete specific tasks. We drew on theory and evidence to develop novel intervention strategies that leverage strengths of relationships to address engagement across the entire HIV care continuum. We provide details on intervention development and content that may be of use to researchers as well as medical and mental health professionals for whom a dyadic approach to HIV prevention and care may best suit their patient population.
Does the continuum theory of dynamic fracture work?
NASA Astrophysics Data System (ADS)
Kessler, David A.; Levine, Herbert
2003-09-01
We investigate the validity of the linear elastic fracture mechanics approach to dynamic fracture. We first test the predictions in a lattice simulation, using a formula of Eshelby for the time-dependent stress intensity factor. Excellent agreement with the theory is found. We then use the same method to analyze the experiment of Sharon and Fineberg. The data here are not consistent with the theoretical expectation.
ERIC Educational Resources Information Center
Ward, David B.; Wampler, Karen S.
2010-01-01
For years therapists have suggested that hope is an important catalyst in the process of change. This study takes a grounded theory approach to address the need for a clearer conceptualization of hope, and to place interventions that increase hope within a therapeutic context so that therapists know how and when to use those interventions. Fifteen…
ERIC Educational Resources Information Center
Samejima, Fumiko
In latent trait theory the latent space, or space of the hypothetical construct, is usually represented by some unidimensional or multi-dimensional continuum of real numbers. Like the latent space, the item response can either be treated as a discrete variable or as a continuous variable. Latent trait theory relates the item response to the latent…
Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures
NASA Astrophysics Data System (ADS)
Rafii-Tabar, Hashem; Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad
2016-06-01
Insight into the mechanical characteristics of nanoscopic structures is of fundamental interest and indeed poses a great challenge to the research communities around the world. These structures are ultra fine in size and consequently performing standard experiments to measure their various properties is an extremely difficult and expensive endeavor. Hence, to predict the mechanical characteristics of the nanoscopic structures, different theoretical models, numerical modeling techniques, and computer-based simulation methods have been developed. Among several proposed approaches, the nonlocal continuum-based modeling is of particular significance because the results obtained from this modeling for different nanoscopic structures are in very good agreement with the data obtained from both experimental and atomistic-based studies. A review of the essentials of this model together with its applications is presented here. Our paper is a self contained presentation of the nonlocal elasticity theory and contains the analysis of the recent works employing this model within the field of nanoscopic structures. In this review, the concepts from both the classical (local) and the nonlocal elasticity theories are presented and their applications to static and dynamic behavior of nanoscopic structures with various morphologies are discussed. We first introduce the various nanoscopic structures, both carbon-based and non carbon-based types, and then after a brief review of the definitions and concepts from classical elasticity theory, and the basic assumptions underlying size-dependent continuum theories, the mathematical details of the nonlocal elasticity theory are presented. A comprehensive discussion on the nonlocal version of the beam, the plate and the shell theories that are employed in modeling of the mechanical properties and behavior of nanoscopic structures is then provided. Next, an overview of the current literature discussing the application of the nonlocal models of nanoscopic carbon allotropes is presented. We then discuss the application of the models to the investigation of the properties of nanoscopic structures from different materials and with different types of morphologies. Furthermore, we also present recent developments in the application of the nonlocal models. Finally, conclusions and discussions regarding the potentiality of these models for future research are provided.
Burnett-Cattaneo continuum theory for shock waves.
Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon
2011-02-01
We model strong shock-wave propagation, both in the ideal gas and in the dense Lennard-Jones fluid, using a refinement of earlier work, which accounts for the cold compression in the early stages of the shock rise by a nonlinear, Burnett-like, strain-rate dependence of the thermal conductivity, and relaxation of kinetic-temperature components on the hot, compressed side of the shock front. The relaxation of the disequilibrium among the three components of the kinetic temperature, namely, the difference between the component in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, is accomplished at a much more quantitative level by a rigorous application of the Cattaneo-Maxwell relaxation equation to a reference solution, namely, the steady shock-wave solution of linear Navier-Stokes-Fourier theory, along with the nonlinear Burnett heat-flux term. Our new continuum theory is in nearly quantitative agreement with nonequilibrium molecular-dynamics simulations under strong shock-wave conditions, using relaxation parameters obtained from the reference solution. ©2011 American Physical Society
Caricato, Marco
2018-04-07
We report the theory and the implementation of the linear response function of the coupled cluster (CC) with the single and double excitations method combined with the polarizable continuum model of solvation, where the correlation solvent response is approximated with the perturbation theory with energy and singles density (PTES) scheme. The singles name is derived from retaining only the contribution of the CC single excitation amplitudes to the correlation density. We compare the PTES working equations with those of the full-density (PTED) method. We then test the PTES scheme on the evaluation of excitation energies and transition dipoles of solvated molecules, as well as of the isotropic polarizability and specific rotation. Our results show a negligible difference between the PTED and PTES schemes, while the latter affords a significantly reduced computational cost. This scheme is general and can be applied to any solvation model that includes mutual solute-solvent polarization, including explicit models. Therefore, the PTES scheme is a competitive approach to compute response properties of solvated systems using CC methods.
NASA Astrophysics Data System (ADS)
Caricato, Marco
2018-04-01
We report the theory and the implementation of the linear response function of the coupled cluster (CC) with the single and double excitations method combined with the polarizable continuum model of solvation, where the correlation solvent response is approximated with the perturbation theory with energy and singles density (PTES) scheme. The singles name is derived from retaining only the contribution of the CC single excitation amplitudes to the correlation density. We compare the PTES working equations with those of the full-density (PTED) method. We then test the PTES scheme on the evaluation of excitation energies and transition dipoles of solvated molecules, as well as of the isotropic polarizability and specific rotation. Our results show a negligible difference between the PTED and PTES schemes, while the latter affords a significantly reduced computational cost. This scheme is general and can be applied to any solvation model that includes mutual solute-solvent polarization, including explicit models. Therefore, the PTES scheme is a competitive approach to compute response properties of solvated systems using CC methods.
Yamada, Hidetaka; Matsuzaki, Yoichi; Higashii, Takayuki; Kazama, Shingo
2011-04-14
We used density functional theory (DFT) calculations with the latest continuum solvation model (SMD/IEF-PCM) to determine the mechanism of CO(2) absorption into aqueous solutions of 2-amino-2-methyl-1-propanol (AMP). Possible absorption process reactions were investigated by transition-state optimization and intrinsic reaction coordinate (IRC) calculations in the aqueous solution at the SMD/IEF-PCM/B3LYP/6-31G(d) and SMD/IEF-PCM/B3LYP/6-311++G(d,p) levels of theory to determine the absorption pathways. We show that the carbamate anion forms by a two-step reaction via a zwitterion intermediate, and this occurs faster than the formation of the bicarbonate anion. However, we also predict that the carbamate readily decomposes by a reverse reaction rather than by hydrolysis. As a result, the final product is dominated by the thermodynamically stable bicarbonate anion that forms from AMP, H(2)O, and CO(2) in a single-step termolecular reaction.
First-principles simulations of doping-dependent mesoscale screening of adatoms in graphene
NASA Astrophysics Data System (ADS)
Mostofi, Arash; Corsetti, Fabiano; Wong, Dillon; Crommie, Michael; Lischner, Johannes
Adsorbed atoms and molecules play an important role in controlling and tuning the functional properties of 2D materials. Understanding and predicting this phenomenon from theory is challenging because of the need to capture both the local chemistry of the adsorbate-substrate interaction and its complex interplay with the long-range screening response of the substrate. To address this challenge, we have developed a first-principles multi-scale approach that combines linear-scaling density-functional theory, continuum screening theory and large-scale tight-binding simulations. Focussing on the case of a calcium adatom on graphene, we draw comparison between the effect of (i) non-linearity, (ii) intraband and interband transitions, and (iii) the exchange-correlation potential, thus providing insight into the relative importance of these different factors on the screening response. We also determine the charge transfer from the adatom to the graphene substrate (the key parameter used in continuum screening models), showing it to be significantly larger than previous estimates. AM and FC acknowledge support of the EPSRC under Grant EP/J015059/1, and JL under Grant EP/N005244/1.
CMDS9: Continuum Mechanics and Discrete Systems 9, Istanbul Technical University, Macka. Abstracts.
1998-07-01
that can only be achieved via cooperative behavior of the cells. It can be viewed as the action of a singular feedback between the micro -level (the...optimal micro -geometries of multicomponent mixtures. Also, we discuss dynamics of a transition in natural unstable systems that leads to a micro ...failure process. This occurs once the impact load reaches a critical threshold level and results in a collection of oriented matrix micro -cracks
Pressure and Chemical Potential: Effects Hydrophilic Soils Have on Adsorption and Transport
NASA Astrophysics Data System (ADS)
Bennethum, L. S.; Weinstein, T.
2003-12-01
Using the assumption that thermodynamic properties of fluid is affected by its proximity to the solid phase, a theoretical model has been developed based on upscaling and fundamental thermodynamic principles (termed Hybrid Mixture Theory). The theory indicates that Darcy's law and the Darcy-scale chemical potential (which determines the rate of adsorption and diffusion) need to be modified in order to apply to soils containing hydrophilic soils. In this talk we examine the Darcy-scale definition of pressure and chemical potential, especially as it applies to hydrophilic soils. To arrive at our model, we used hybrid mixture theory - first pioneered by Hassanizadeh and Gray in 1979. The technique involves averaging the field equations (i.e. conservation of mass, momentum balance, energy balance, etc.) to obtain macroscopic field equations, where each field variable is defined precisely in terms of its microscale counterpart. To close the system consistently with classical thermodynamics, the entropy inequality is exploited in the sense of Coleman and Noll. With the exceptions that the macroscale field variables are defined precisely in terms of their microscale counterparts and that microscopic interfacial equations can also be treated in a similar manner, the resulting system of equations is consistent with those derived using classical mixture theory. Hence the terminology, Hybrid Mixture Theory.
ERIC Educational Resources Information Center
Bilir, Mustafa Kuzey
2009-01-01
This study uses a new psychometric model (mixture item response theory-MIMIC model) that simultaneously estimates differential item functioning (DIF) across manifest groups and latent classes. Current DIF detection methods investigate DIF from only one side, either across manifest groups (e.g., gender, ethnicity, etc.), or across latent classes…
Downscattering due to Wind Outflows in Compact X-ray Sources: Theory and Interpretation
NASA Technical Reports Server (NTRS)
Titarchuk, Lev; Shrader, Chris
2004-01-01
A number of recent lines of evidence point towards the presence of hot, outflowing plasma from the central regions of compact Galactic and extragalactic X-ray sources. Additionally, it has long been noted that many of these sources exhibit an "excess" continuum component, above approx. 10 keV, usually attributed to Compton Reflection from a static medium. Motivated by these facts, as well as by recent observational constraints on the Compton reflection models - specifically apparently discrepant variability timescales for line and continuum components in some cases - we consider possible of effects of out-flowing plasma on the high-energy continuum spectra of accretion powered compact objects. We present a general formulation for photon downscattering diffusion which includes recoil and Comptonization effects due to divergence of the flow. We then develop an analytical theory for the spectral formation in such systems that allows us to derive formulae for the emergent spectrum. Finally we perform the analytical model fitting on several Galactic X-ray binaries. Objects which have been modeled with high-covering-fraction Compton reflectors, such as GS1353-64 are included in our analysis. In addition, Cyg X-3, is which is widely believed to be characterized by dense circumstellar winds with temperature of order 10(exp 6) K, provides an interesting test case. Data from INTEGRAL and RXTE covering the approx. 3 - 300 keV range are used in our analysis. We further consider the possibility that the widely noted distortion of the power-law continuum above 10 keV may in some cases be explained by these spectral softening effects.
Multicomponent Separation Potential. Generalization of the Dirac Theory
NASA Astrophysics Data System (ADS)
Palkin, V. A.; Gadel‧shin, V. M.; Aleksandrov, O. E.; Seleznev, V. D.
2014-05-01
Formulas for the separation potential and the separative power have been obtained in the present work by generalizing the classical theory of Dirac, with the observance of his two axioms, to the case of a multicomponent mixture without considering a concrete cascade scheme. The resulting expressions are general characteristics of a separation process, since they are applicable to any separation methods and are independentof the form of the components in the mixture. They can be used in constructing actual cascades for separation of multicomponent mixtures and in determining the indices of their effi ciency.
Sustainability, Ecojustice, and Adult Education
ERIC Educational Resources Information Center
Griswold, Wendy
2017-01-01
Adult education has a significant role to play in creating a just and sustainable world. This chapter explores a continuum of perspectives related to the environment and education and highlights sustainability and ecojustice education theory and practices in this volume.
On the entropy function in sociotechnical systems
Montroll, Elliott W.
1981-01-01
The entropy function H = -Σpj log pj (pj being the probability of a system being in state j) and its continuum analogue H = ∫p(x) log p(x) dx are fundamental in Shannon's theory of information transfer in communication systems. It is here shown that the discrete form of H also appears naturally in single-lane traffic flow theory. In merchandising, goods flow from a whole-saler through a retailer to a customer. Certain features of the process may be deduced from price distribution functions derived from Sears Roebuck and Company catalogues. It is found that the dispersion in logarithm of catalogue prices of a given year has remained about constant, independently of the year, for over 75 years. From this it may be inferred that the continuum entropy function for the variable logarithm of price had inadvertently, through Sears Roebuck policies, been maximized for that firm subject to the observed dispersion. PMID:16593136
On the entropy function in sociotechnical systems.
Montroll, E W
1981-12-01
The entropy function H = -Sigmap(j) log p(j) (p(j) being the probability of a system being in state j) and its continuum analogue H = integralp(x) log p(x) dx are fundamental in Shannon's theory of information transfer in communication systems. It is here shown that the discrete form of H also appears naturally in single-lane traffic flow theory. In merchandising, goods flow from a whole-saler through a retailer to a customer. Certain features of the process may be deduced from price distribution functions derived from Sears Roebuck and Company catalogues. It is found that the dispersion in logarithm of catalogue prices of a given year has remained about constant, independently of the year, for over 75 years. From this it may be inferred that the continuum entropy function for the variable logarithm of price had inadvertently, through Sears Roebuck policies, been maximized for that firm subject to the observed dispersion.
NASA Astrophysics Data System (ADS)
Toner, John; Tu, Yu-Hai
2002-05-01
We have developed a new continuum dynamical model for the collective motion of large "flocks" of biological organisms (e.g., flocks of birds, schools of fish, herds of wildebeest, hordes of bacteria, slime molds, etc.) . This model does for flocks what the Navier-Stokes equation does for fluids. The model predicts that, unlike simple fluids, flocks show huge fluctuation effects in spatial dimensions d < 4 that radically change their behavior. In d=2, it is only these effects that make it possible for the flock to move coherently at all. This explains why a million wildebeest can march together across the Serengeti plain, despite the fact that a million physicists gathered on the same plane could NOT all POINT in the same direction. Detailed quantitative predictions of this theory agree beautifully with computer simulations of flock motion.
Soft particles at a fluid interface
NASA Astrophysics Data System (ADS)
Mehrabian, Hadi; Harting, Jens; Snoeijer, Jacco H.
2015-11-01
Particles added to a fluid interface can be used as a surface stabilizer in the food, oil and cosmetic industries. As an alternative to rigid particles, it is promising to consider highly deformable particles that can adapt their conformation at the interface. In this study, we compute the shapes of soft elastic particles using molecular dynamics simulations of a cross-linked polymer gel, complemented by continuum calculations based on the linear elasticity. It is shown that the particle shape is not only affected by the Young's modulus of the particle, but also strongly depends on whether the gel is partially or completely wetting the fluid interface. We find that the molecular simulations for the partially wetting case are very accurately described by the continuum theory. By contrast, when the gel is completely wetting the fluid interface the linear theory breaks down and we reveal that molecular details have a strong influence on the equilibrium shape.
Ghavanloo, Esmaeal; Izadi, Razie; Nayebi, Ali
2018-02-28
Estimating the Young's modulus of a structure in the nanometer size range is a difficult task. The reliable determination of this parameter is, however, important in both basic and applied research. In this study, by combining molecular dynamics (MD) simulations and continuum shell theory, we designed a new approach to determining the Young's modulus values of different spherical fullerenes. The results indicate that the Young's modulus values of fullerene molecules decrease nonlinearly with increasing molecule size and understandably tend to the Young's modulus of an ideal flat graphene sheet at large molecular radii. To the best of our knowledge, this is first time that a combined atomistic-continuum method which can predict the Young's modulus values of fullerene molecules with high precision has been reported.
Calculation of photoionization differential cross sections using complex Gauss-type orbitals.
Matsuzaki, Rei; Yabushita, Satoshi
2017-09-05
Accurate theoretical calculation of photoelectron angular distributions for general molecules is becoming an important tool to image various chemical reactions in real time. We show in this article that not only photoionization total cross sections but also photoelectron angular distributions can be accurately calculated using complex Gauss-type orbital (cGTO) basis functions. Our method can be easily combined with existing quantum chemistry techniques including electron correlation effects, and applied to various molecules. The so-called two-potential formula is applied to represent the transition dipole moment from an initial bound state to a final continuum state in the molecular coordinate frame. The two required continuum functions, the zeroth-order final continuum state and the first-order wave function induced by the photon field, have been variationally obtained using the complex basis function method with a mixture of appropriate cGTOs and conventional real Gauss-type orbitals (GTOs) to represent the continuum orbitals as well as the remaining bound orbitals. The complex orbital exponents of the cGTOs are optimized by fitting to the outgoing Coulomb functions. The efficiency of the current method is demonstrated through the calculations of the asymmetry parameters and molecular-frame photoelectron angular distributions of H2+ and H2 . In the calculations of H2 , the static exchange and random phase approximations are employed, and the dependence of the results on the basis functions is discussed. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Fausnaugh, M. M.; Denney, K. D.; Barth, A.J.; Bentz, M.C.; Bottorff, M.C.; Carini, M.T.; Croxall, K. V.; Rosa, G. De; Goad, M.R.; Gehrels, Cornelis;
2016-01-01
We present ground-based optical photometric monitoring data for NGC 5548, part of an extended multiwavelength reverberation mapping campaign. The light curves have nearly daily cadence from 2014 January to July in ninefilters (BVRI and ugriz). Combined with ultraviolet data from the Hubble Space Telescope and Swift, we confirm significant time delays between the continuum bands as a function of wavelength, extending the wavelength coverage from 1158 Angstrom to the z band (approximately 9160 angstrom). We find that the lags at wavelengths longer than the V band are equal to or greater than the lags of high-ionization-state emission lines (such as He pi lambdal1640 and lambda 4686), suggesting that the continuum-emitting source is of a physical size comparable to the inner broad-line region (BLR). The trend of lag with wavelength is broadly consistent with the prediction for continuum reprocessing by an accretion disk with (tau varies as lambda(exp 4/3)). However, the lags also imply a disk radius that is 3 times larger than the prediction from standardthin-disk theory, assuming that the bolometric luminosity is 10 percent of the Eddington luminosity (L 0.1L(sub Edd)).Using optical spectra from the Large Binocular Telescope, we estimate the bias of the interband continuum lagsdue to BLR emission observed in the filters. We find that the bias for filters with high levels of BLR contamination(20 percent) can be important for the shortest continuum lags and likely has a significant impact on the u and U bandsowing to Balmer continuum emission.
Coherent Raman scattering with incoherent light for a multiply resonant mixture: Theory
NASA Astrophysics Data System (ADS)
Kirkwood, Jason C.; Ulness, Darin J.; Stimson, Michael J.; Albrecht, A. C.
1998-02-01
The theory for coherent Raman scattering (CRS) with broadband incoherent light is presented for a multiply resonant, multicomponent mixture of molecules that exhibits simultaneous multiple resonances with the frequencies of the driving fields. All possible pairwise hyperpolarizability contributions to the signal intensity are included in the theoretical treatment-(resonant-resonant, resonant-nonresonant, and nonresonant-nonresonant correlations between chromophores) and it is shown how the different types of correlations manifest themselves as differently behaved components of the signal intensity. The Raman resonances are modeled as Lorentzians in the frequency domain, as is the spectral density of the incoherent light. The analytic results for this multiply resonant mixture are presented and applied to a specific binary mixture. These analytic results will be used to recover frequencies and dephasing times in a series of experiments on multiply resonant mixtures.
Custers, Eugène J F M
2013-08-01
Recently, human reasoning, problem solving, and decision making have been viewed as products of two separate systems: "System 1," the unconscious, intuitive, or nonanalytic system, and "System 2," the conscious, analytic, or reflective system. This view has penetrated the medical education literature, yet the idea of two independent dichotomous cognitive systems is not entirely without problems.This article outlines the difficulties of this "two-system view" and presents an alternative, developed by K.R. Hammond and colleagues, called cognitive continuum theory (CCT). CCT is featured by three key assumptions. First, human reasoning, problem solving, and decision making can be arranged on a cognitive continuum, with pure intuition at one end, pure analysis at the other, and a large middle ground called "quasirationality." Second, the nature and requirements of the cognitive task, as perceived by the person performing the task, determine to a large extent whether a task will be approached more intuitively or more analytically. Third, for optimal task performance, this approach needs to match the cognitive properties and requirements of the task. Finally, the author makes a case that CCT is better able than a two-system view to describe medical problem solving and clinical reasoning and that it provides clear clues for how to organize training in clinical reasoning.
The running coupling of the minimal sextet composite Higgs model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fodor, Zoltan; Holland, Kieran; Kuti, Julius
We compute the renormalized running coupling of SU(3) gauge theory coupled to N f = 2 flavors of massless Dirac fermions in the 2-index-symmetric (sextet) representation. This model is of particular interest as a minimal realization of the strongly interacting composite Higgs scenario. A recently proposed finite volume gradient flow scheme is used. The calculations are performed at several lattice spacings with two different implementations of the gradient flow allowing for a controlled continuum extrapolation and particular attention is paid to estimating the systematic uncertainties. For small values of the renormalized coupling our results for the β-function agree with perturbation theory. For moderate couplings we observe a downward deviation relative to the 2-loop β-function but in the coupling range where the continuum extrapolation is fully under control we do not observe an infrared fixed point. The explored range includes the locations of the zero of the 3-loop and the 4-loop β-functions in themore » $$\\overline{MS}$$ scheme. The absence of a non-trivial zero in the β-function in the explored range of the coupling is consistent with our earlier findings based on hadronic observables, the chiral condensate and the GMOR relation. The present work is the first to report continuum non-perturbative results for the sextet model.« less
Relativistic viscoelastic fluid mechanics.
Fukuma, Masafumi; Sakatani, Yuho
2011-08-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Relativistic viscoelastic fluid mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuma, Masafumi; Sakatani, Yuho
2011-08-15
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for themore » propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.« less
Poromechanics of compressible charged porous media using the theory of mixtures.
Huyghe, J M; Molenaar, M M; Baajens, F P T
2007-10-01
Osmotic, electrostatic, and/or hydrational swellings are essential mechanisms in the deformation behavior of porous media, such as biological tissues, synthetic hydrogels, and clay-rich rocks. Present theories are restricted to incompressible constituents. This assumption typically fails for bone, in which electrokinetic effects are closely coupled to deformation. An electrochemomechanical formulation of quasistatic finite deformation of compressible charged porous media is derived from the theory of mixtures. The model consists of a compressible charged porous solid saturated with a compressible ionic solution. Four constituents following different kinematic paths are identified: a charged solid and three streaming constituents carrying either a positive, negative, or no electrical charge, which are the cations, anions, and fluid, respectively. The finite deformation model is reduced to infinitesimal theory. In the limiting case without ionic effects, the presented model is consistent with Blot's theory. Viscous drag compression is computed under closed circuit and open circuit conditions. Viscous drag compression is shown to be independent of the storage modulus. A compressible version of the electrochemomechanical theory is formulated. Using material parameter values for bone, the theory predicts a substantial influence of density changes on a viscous drag compression simulation. In the context of quasistatic deformations, conflicts between poromechanics and mixture theory are only semantic in nature.
Breakage mechanics—Part I: Theory
NASA Astrophysics Data System (ADS)
Einav, Itai
2007-06-01
Different measures have been suggested for quantifying the amount of fragmentation in randomly compacted crushable aggregates. A most effective and popular measure is to adopt variants of Hardin's [1985. Crushing of soil particles. J. Geotech. Eng. ASCE 111(10), 1177-1192] definition of relative breakage ' Br'. In this paper we further develop the concept of breakage to formulate a new continuum mechanics theory for crushable granular materials based on statistical and thermomechanical principles. Analogous to the damage internal variable ' D' which is used in continuum damage mechanics (CDM), here the breakage internal variable ' B' is adopted. This internal variable represents a particular form of the relative breakage ' Br' and measures the relative distance of the current grain size distribution from the initial and ultimate distributions. Similar to ' D', ' B' varies from zero to one and describes processes of micro-fractures and the growth of surface area. However, unlike damage that is most suitable to tensioned solid-like materials, the breakage is aimed towards compressed granular matter. While damage effectively represents the opening of micro-cavities and cracks, breakage represents comminution of particles. We term the new theory continuum breakage mechanics (CBM), reflecting the analogy with CDM. A focus is given to developing fundamental concepts and postulates, and identifying the physical meaning of the various variables. In this part of the paper we limit the study to describe an ideal dissipative process that includes breakage without plasticity. Plastic strains are essential, however, in representing aspects that relate to frictional dissipation, and this is covered in Part II of this paper together with model examples.
ERIC Educational Resources Information Center
Privat, Romain; Jaubert, Jean-Noël; Moine, Edouard
2016-01-01
In many textbooks of chemical-engineering thermodynamics, a gas mixture obeying the fundamental law pV[subscript m] = RT is most often called ideal-gas mixture (in some rare cases, the term perfect-gas mixture can be found). These textbooks also define the fundamental concept of ideal solution which in theory, can be applied indifferently to…
Cao, Siqin; Sheong, Fu Kit; Huang, Xuhui
2015-08-07
Reference interaction site model (RISM) has recently become a popular approach in the study of thermodynamical and structural properties of the solvent around macromolecules. On the other hand, it was widely suggested that there exists water density depletion around large hydrophobic solutes (>1 nm), and this may pose a great challenge to the RISM theory. In this paper, we develop a new analytical theory, the Reference Interaction Site Model with Hydrophobicity induced density Inhomogeneity (RISM-HI), to compute solvent radial distribution function (RDF) around large hydrophobic solute in water as well as its mixture with other polyatomic organic solvents. To achieve this, we have explicitly considered the density inhomogeneity at the solute-solvent interface using the framework of the Yvon-Born-Green hierarchy, and the RISM theory is used to obtain the solute-solvent pair correlation. In order to efficiently solve the relevant equations while maintaining reasonable accuracy, we have also developed a new closure called the D2 closure. With this new theory, the solvent RDFs around a large hydrophobic particle in water and different water-acetonitrile mixtures could be computed, which agree well with the results of the molecular dynamics simulations. Furthermore, we show that our RISM-HI theory can also efficiently compute the solvation free energy of solute with a wide range of hydrophobicity in various water-acetonitrile solvent mixtures with a reasonable accuracy. We anticipate that our theory could be widely applied to compute the thermodynamic and structural properties for the solvation of hydrophobic solute.
NASA Technical Reports Server (NTRS)
Lee, Y. M.
1971-01-01
Using a linearized theory of thermally and mechanically interacting mixture of linear elastic solid and viscous fluid, we derive a fundamental relation in an integral form called a reciprocity relation. This reciprocity relation relates the solution of one initial-boundary value problem with a given set of initial and boundary data to the solution of a second initial-boundary value problem corresponding to a different initial and boundary data for a given interacting mixture. From this general integral relation, reciprocity relations are derived for a heat-conducting linear elastic solid, and for a heat-conducting viscous fluid. An initial-boundary value problem is posed and solved for the mixture of linear elastic solid and viscous fluid. With the aid of the Laplace transform and the contour integration, a real integral representation for the displacement of the solid constituent is obtained as one of the principal results of the analysis.
Perna, Frank M; Dwyer, Laura A; Tesauro, Gina; Taber, Jennifer M; Norton, Wynne E; Hartman, Anne M; Geller, Alan C
2017-05-01
The Surgeon General's Call to Action to Prevent Skin Cancer broadly identified research gaps, but specific objectives are needed to further behavioral intervention research. To review National Institute of Health (NIH) grants targeting skin cancer-related behaviors and relevant outcomes. A portfolio analysis of the title, abstract, specific aims, and research plans of identified grant applications from 2000 to 2014 targeting skin cancer-related behaviors or testing behavioral intervention effects on cancer-relevant outcomes along the cancer continuum. Funding trends were compared along the cancer control continuum, with respect to investigator demographics and use of theory, technology, policy, and changes to environmental surroundings (built environment). A total of 112 submitted applications met inclusion criteria; of these, 40 (35.7%) were funded, and 31 of the 40 were interventions. Comparing the 40 funded grants with the 72 unfunded grants, the overall success rates did not differ significantly between male (33.3%) and female (37.3%) investigators, nor did the frequency of R01 awards (36.7% and 28.1%, respectively). Among intervention awards, most (24 of 31) addressed prevention. Fewer awards targeted detection alone or in conjunction with prevention (3) or cancer survivorship (4), and no grant addressed emotional sequelae or adherence behavior related to diagnosis or treatment. Fewer than half of funded grants aimed for clinically related targets (eg, sunburn reduction). Use of theory and technology occurred in more than 75% of grants. However, the full capability of proposed technology was infrequently used, and rarely did constructs of the proposed behavior change theory clearly and comprehensively drive the intervention approach. Policy or environmental manipulation was present in all dissemination grants but was rarely used elsewhere, and 19.4% included policy implementation and 25.8% proposed changes in built environment. Grant success rate in skin cancer-related behavioral science compares favorably to the overall NIH grant success rate (approximately 18%), and the success rate of male and female investigators was not statistically different. However, gaps exist in behavioral research addressing all points of the skin cancer control continuum, measuring interventions that hit clinically related targets, and leveraging technology, theory, and environmental manipulation to optimize intervention approach.
The near-infrared radius-luminosity relationship for active galactic nuclei
NASA Astrophysics Data System (ADS)
Landt, Hermine; Bentz, Misty C.; Peterson, Bradley M.; Elvis, Martin; Ward, Martin J.; Korista, Kirk T.; Karovska, Margarita
2011-05-01
Black hole masses for samples of active galactic nuclei (AGNs) are currently estimated from single-epoch optical spectra. In particular, the size of the broad-line emitting region needed to compute the black hole mass is derived from the optical or ultraviolet continuum luminosity. Here we consider the relationship between the broad-line region size, R, and the near-infrared (near-IR) AGN continuum luminosity, L, as the near-IR continuum suffers less dust extinction than at shorter wavelengths and the prospects for separating the AGN continuum from host-galaxy starlight are better in the near-IR than in the optical. For a relationship of the form R∝Lα, we obtain for a sample of 14 reverberation-mapped AGN a best-fitting slope of α= 0.5 ± 0.1, which is consistent with the slope of the relationship in the optical band and with the value of 0.5 naïvely expected from photoionization theory. Black hole masses can then be estimated from the near-IR virial product, which is calculated using the strong and unblended Paschen broad emission lines (Paα or Paβ).
Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, S. X.
Here, continuum lowering is a well-known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal-/pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K-edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics (QMD) calculations basedmore » on the all-electron density-functional theory (DFT). The resulted K-edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of “single atom in box” (SAIB), developed in this work, accurately predicts K-edge locations as what ab-initio calculations provide.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yuzhou, E-mail: yuzhousun@126.com; Chen, Gensheng; Li, Dongxia
2016-06-08
This paper attempts to study the application of mesh-free method in the numerical simulations of the higher-order continuum structures. A high-order bending beam considers the effect of the third-order derivative of deflections, and can be viewed as a one-dimensional higher-order continuum structure. The moving least-squares method is used to construct the shape function with the high-order continuum property, the curvature and the third-order derivative of deflections are directly interpolated with nodal variables and the second- and third-order derivative of the shape function, and the mesh-free computational scheme is establish for beams. The coupled stress theory is introduced to describe themore » special constitutive response of the layered rock mass in which the bending effect of thin layer is considered. The strain and the curvature are directly interpolated with the nodal variables, and the mesh-free method is established for the layered rock mass. The good computational efficiency is achieved based on the developed mesh-free method, and some key issues are discussed.« less
Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas
Hu, S. X.
2017-08-10
Here, continuum lowering is a well-known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal-/pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K-edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics (QMD) calculations basedmore » on the all-electron density-functional theory (DFT). The resulted K-edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of “single atom in box” (SAIB), developed in this work, accurately predicts K-edge locations as what ab-initio calculations provide.« less
Testing a continuum structure of self-determined motivation: A meta-analysis.
Howard, Joshua L; Gagné, Marylène; Bureau, Julien S
2017-12-01
Self-determination theory proposes a multidimensional representation of motivation comprised of several factors said to fall along a continuum of relative autonomy. The current meta-analysis examined the relationships between these motivation factors in order to demonstrate how reliably they conformed to a predictable continuum-like pattern. Based on data from 486 samples representing over 205,000 participants who completed 1 of 13 validated motivation scales, the results largely supported a continuum-like structure of motivation and indicate that self-determination is central in explaining human motivation. Further examination of heterogeneity indicated that while regulations were predictably ordered across domains and scales, the exact distance between subscales varied across samples in a way that was not explainable by a set of moderators. Results did not support the inclusion of integrated regulation or the 3 subscales of intrinsic motivation (i.e., intrinsic motivation to know, to experience stimulation, and to achieve) due to excessively high interfactor correlations and overlapping confidence intervals. Recommendations for scale refinements and the scoring of motivation are provided. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Monolayers of hard rods on planar substrates. II. Growth
NASA Astrophysics Data System (ADS)
Klopotek, M.; Hansen-Goos, H.; Dixit, M.; Schilling, T.; Schreiber, F.; Oettel, M.
2017-02-01
Growth of hard-rod monolayers via deposition is studied in a lattice model using rods with discrete orientations and in a continuum model with hard spherocylinders. The lattice model is treated with kinetic Monte Carlo simulations and dynamic density functional theory while the continuum model is studied by dynamic Monte Carlo simulations equivalent to diffusive dynamics. The evolution of nematic order (excess of upright particles, "standing-up" transition) is an entropic effect and is mainly governed by the equilibrium solution, rendering a continuous transition [Paper I, M. Oettel et al., J. Chem. Phys. 145, 074902 (2016)]. Strong non-equilibrium effects (e.g., a noticeable dependence on the ratio of rates for translational and rotational moves) are found for attractive substrate potentials favoring lying rods. Results from the lattice and the continuum models agree qualitatively if the relevant characteristic times for diffusion, relaxation of nematic order, and deposition are matched properly. Applicability of these monolayer results to multilayer growth is discussed for a continuum-model realization in three dimensions where spherocylinders are deposited continuously onto a substrate via diffusion.
Sensitivity of the Properties of Ruthenium “Blue Dimer” to Method, Basis Set, and Continuum Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozkanlar, Abdullah; Clark, Aurora E.
2012-05-23
The ruthenium “blue dimer” [(bpy)2RuIIIOH2]2O4+ is best known as the first well-defined molecular catalyst for water oxidation. It has been subject to numerous computational studies primarily employing density functional theory. However, those studies have been limited in the functionals, basis sets, and continuum models employed. The controversy in the calculated electronic structure and the reaction energetics of this catalyst highlights the necessity of benchmark calculations that explore the role of density functionals, basis sets, and continuum models upon the essential features of blue-dimer reactivity. In this paper, we report Kohn-Sham complete basis set (KS-CBS) limit extrapolations of the electronic structuremore » of “blue dimer” using GGA (BPW91 and BP86), hybrid-GGA (B3LYP), and meta-GGA (M06-L) density functionals. The dependence of solvation free energy corrections on the different cavity types (UFF, UA0, UAHF, UAKS, Bondi, and Pauling) within polarizable and conductor-like polarizable continuum model has also been investigated. The most common basis sets of double-zeta quality are shown to yield results close to the KS-CBS limit; however, large variations are observed in the reaction energetics as a function of density functional and continuum cavity model employed.« less
Yan, Zhi; Jiang, Liying
2017-01-01
Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented. PMID:28336861
Yan, Zhi; Jiang, Liying
2017-01-26
Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented.
Liang, Wenkel; Chapman, Craig T; Ding, Feizhi; Li, Xiaosong
2012-03-01
A first-principles solvated electronic dynamics method is introduced. Solvent electronic degrees of freedom are coupled to the time-dependent electronic density of a solute molecule by means of the implicit reaction field method, and the entire electronic system is propagated in time. This real-time time-dependent approach, incorporating the polarizable continuum solvation model, is shown to be very effective in describing the dynamical solvation effect in the charge transfer process and yields a consistent absorption spectrum in comparison to the conventional linear response results in solution. © 2012 American Chemical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, M. P.; Centre for Quantum Technologies, National University of Singapore; QuTech, Delft University of Technology, Lorentzweg 1, 2611 CJ Delft
2016-02-15
Instances of discrete quantum systems coupled to a continuum of oscillators are ubiquitous in physics. Often the continua are approximated by a discrete set of modes. We derive error bounds on expectation values of system observables that have been time evolved under such discretised Hamiltonians. These bounds take on the form of a function of time and the number of discrete modes, where the discrete modes are chosen according to Gauss quadrature rules. The derivation makes use of tools from the field of Lieb-Robinson bounds and the theory of orthonormal polynomials.
Composite fermion theory for bosonic quantum Hall states on lattices.
Möller, G; Cooper, N R
2009-09-04
We study the ground states of the Bose-Hubbard model in a uniform magnetic field, motivated by the physics of cold atomic gases on lattices at high vortex density. Mapping the bosons to composite fermions (CF) leads to the prediction of quantum Hall fluids that have no counterpart in the continuum. We construct trial states for these phases and test numerically the predictions of the CF model. We establish the existence of strongly correlated phases beyond those in the continuum limit and provide evidence for a wider scope of the composite fermion approach beyond its application to the lowest Landau level.
NASA Astrophysics Data System (ADS)
Zajaček, Michal; Britzen, Silke; Eckart, Andreas; Shahzamanian, Banafsheh; Busch, Gerold; Karas, Vladimír; Parsa, Marzieh; Peissker, Florian; Dovčiak, Michal; Subroweit, Matthias; Dinnbier, František; Zensus, J. Anton
2017-06-01
Context. The Dusty S-cluster Object (DSO/G2) orbiting the supermassive black hole (Sgr A*) in the Galactic centre has been monitored in both near-infrared continuum and line emission. There has been a dispute about the character and the compactness of the object: it being interpreted as either a gas cloud or a dust-enshrouded star. A recent analysis of polarimetry data in Ks-band (2.2 μm) allows us to put further constraints on the geometry of the DSO. Aims: The purpose of this paper is to constrain the nature and the geometry of the DSO. Methods: We compared 3D radiative transfer models of the DSO with the near-infrared (NIR) continuum data including polarimetry. In the analysis, we used basic dust continuum radiative transfer theory implemented in the 3D Monte Carlo code Hyperion. Moreover, we implemented analytical results of the two-body problem mechanics and the theory of non-thermal processes. Results: We present a composite model of the DSO - a dust-enshrouded star that consists of a stellar source, dusty, optically thick envelope, bipolar cavities, and a bow shock. This scheme can match the NIR total as well as polarized properties of the observed spectral energy distribution (SED). The SED may be also explained in theory by a young pulsar wind nebula that typically exhibits a large linear polarization degree due to magnetospheric synchrotron emission. Conclusions: The analysis of NIR polarimetry data combined with the radiative transfer modelling shows that the DSO is a peculiar source of compact nature in the S cluster (r ≲ 0.04 pc). It is most probably a young stellar object embedded in a non-spherical dusty envelope, whose components include optically thick dusty envelope, bipolar cavities, and a bow shock. Alternatively, the continuum emission could be of a non-thermal origin due to the presence of a young neutron star and its wind nebula. Although there has been so far no detection of X-ray and radio counterparts of the DSO, the analysis of the neutron star model shows that young, energetic neutron stars similar to the Crab pulsar could in principle be detected in the S cluster with current NIR facilities and they appear as apparent reddened, near-infrared-excess sources. The searches for pulsars in the NIR bands can thus complement standard radio searches, which can put further constraints on the unexplored pulsar population in the Galactic centre. Both thermal and non-thermal models are in accordance with the observed compactness, total as well polarized continuum emission of the DSO.
p-adic string theories provide lattice Discretization to the ordinary string worldsheet.
Ghoshal, Debashis
2006-10-13
A class of models called p-adic strings is useful in understanding the tachyonic instability of string theory. These are found to be empirically related to the ordinary strings in the p-->1 limit. We propose that these models provide discretization for the string worldsheet and argue that the limit is naturally thought of as a continuum limit in the sense of the renormalization group.
Frontiers in Applied and Computational Mathematics 05’
2005-03-01
dynamics, forcing subsets to have the same oscillation numbers and interleaving spiking times . Our analysis follows the theory of coupled systems of...continuum is described by a continuous- time stochastic process, as are their internal dynamics. Soluble factors, such as cytokines, are represent- ed...scale of a partide pas- sage time through the reaction zone. Both are realistic for many systems of physical interest. A higher order theory includes
Higgs compositeness in Sp(2N) gauge theories — The pure gauge model
NASA Astrophysics Data System (ADS)
Bennett, Ed; Ki Hong, Deog; Lee, Jong-Wan; David Lin, C.-J.; Lucini, Biagio; Piai, Maurizio; Vadacchino, Davide
2018-03-01
As a first step in the study of Sp(2N) composite Higgs models, we obtained a set of novel numerical results for the pure gauge Sp(4) lattice theory in 3+1 space-time dimensions. Results for the continuum extrapolations of the string tension and the glueball mass spectrum are presented and their values are compared with the same quantities in neighbouring SU(N) models.
Transient Stress Wave Propagation in One-Dimensional Micropolar Bodies
2009-02-01
based on Biot’s theory of poro- elasticity. Two compressional waves were then observed in the resulting one-dimensional model of a poroelastic column...Lisina, S., Potapov, A., Nesterenko, V., 2001. A nonlinear granular medium with particle rotation: a one-dimensional model . Acoustical Physics 47 (5...zones in failed ceramics, may be modeled using continuum theories incorporating additional kinematic degrees of freedom beyond the scope of classical
p-adic String Theories Provide Lattice Discretization to the Ordinary String Worldsheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghoshal, Debashis
2006-10-13
A class of models called p-adic strings is useful in understanding the tachyonic instability of string theory. These are found to be empirically related to the ordinary strings in the p{yields}1 limit. We propose that these models provide discretization for the string worldsheet and argue that the limit is naturally thought of as a continuum limit in the sense of the renormalization group.
NASA Astrophysics Data System (ADS)
Fukushima, Kimichika; Sato, Hikaru
2018-04-01
Ultraviolet self-interaction energies in field theory sometimes contain meaningful physical quantities. The self-energies in such as classical electrodynamics are usually subtracted from the rest mass. For the consistent treatment of energies as sources of curvature in the Einstein field equations, this study includes these subtracted self-energies into vacuum energy expressed by the constant Lambda (used in such as Lambda-CDM). In this study, the self-energies in electrodynamics and macroscopic classical Einstein field equations are examined, using the formalisms with the ultraviolet cut-off scheme. One of the cut-off formalisms is the field theory in terms of the step-function-type basis functions, developed by the present authors. The other is a continuum theory of a fundamental particle with the same cut-off length. Based on the effectiveness of the continuum theory with the cut-off length shown in the examination, the dominant self-energy is the quadratic term of the Higgs field at a quantum level (classical self-energies are reduced to logarithmic forms by quantum corrections). The cut-off length is then determined to reproduce today's tiny value of Lambda for vacuum energy. Additionally, a field with nonperiodic vanishing boundary conditions is treated, showing that the field has no zero-point energy.
Boeschen Hospers, J Mirjam; Smits, Niels; Smits, Cas; Stam, Mariska; Terwee, Caroline B; Kramer, Sophia E
2016-04-01
We reevaluated the psychometric properties of the Amsterdam Inventory for Auditory Disability and Handicap (AIADH; Kramer, Kapteyn, Festen, & Tobi, 1995) using item response theory. Item response theory describes item functioning along an ability continuum. Cross-sectional data from 2,352 adults with and without hearing impairment, ages 18-70 years, were analyzed. They completed the AIADH in the web-based prospective cohort study "Netherlands Longitudinal Study on Hearing." A graded response model was fitted to the AIADH data. Category response curves, item information curves, and the standard error as a function of self-reported hearing ability were plotted. The graded response model showed a good fit. Item information curves were most reliable for adults who reported having hearing disability and less reliable for adults with normal hearing. The standard error plot showed that self-reported hearing ability is most reliably measured for adults reporting mild up to moderate hearing disability. This is one of the few item response theory studies on audiological self-reports. All AIADH items could be hierarchically placed on the self-reported hearing ability continuum, meaning they measure the same construct. This provides a promising basis for developing a clinically useful computerized adaptive test, where item selection adapts to the hearing ability of individuals, resulting in efficient assessment of hearing disability.
Solvent-Induced Shift of Spectral Lines in Polar–Polarizable Solvents
Matyushov, Dmitry V.; Newton, Marshall D.
2017-03-09
Solvent-induced shift of optical transition lines is traditionally described by the Lippert- McRae equation given in terms of the Onsager theory for dipole solvation. It splits the overall shift into the equilibrium solvation by induced dipoles and the reaction field by the permanent dipoles in equilibrium with the chromophore in the ground state. Here we have reconsidered this classical problem from the perspective of microscopic solvation theories. A microscopic solvation functional is derived and continuum solvation is consistently introduced by taking the limit of zero wavevector in the reciprocal-space solvation susceptibility functions. We show that the phenomenological expression for themore » reaction field of permanent dipoles in the Lippert-McRae equation is not consistent with the microscopic theory. The main deficiency of the Lippert- McRae equation equation is the use of additivity of the response by permanent and induced dipoles of the liquid. An alternative closed-form equation for the spectral shift is derived. Its continuum limit allows a new, non-additive functionality for the solvent-induced shift in terms of the high-frequency and static dielectric constants. Finally, the main qualitative outcome of the theory is a significantly weaker dependence of the spectral shift on the polarizability of the solvent than predicted by the Lippert-McRae formula.« less
Solvent-Induced Shift of Spectral Lines in Polar-Polarizable Solvents.
Matyushov, Dmitry V; Newton, Marshall D
2017-03-23
Solvent-induced shift of optical transition lines is traditionally described by the Lippert-McRae equation given in terms of the Onsager theory for dipole solvation. It splits the overall shift into the equilibrium solvation by induced dipoles and the reaction field by the permanent dipoles in equilibrium with the chromophore in the ground state. We have reconsidered this classical problem from the perspective of microscopic solvation theories. A microscopic solvation functional is derived, and continuum solvation is consistently introduced by taking the limit of zero wavevector in the reciprocal-space solvation susceptibility functions. We show that the phenomenological expression for the reaction field of permanent dipoles in the Lippert-McRae equation is not consistent with the microscopic theory. The main deficiency of the Lippert-McRae equation is the use of additivity of the response by permanent and induced dipoles of the liquid. An alternative closed-form equation for the spectral shift is derived. Its continuum limit allows a new, nonadditive functionality for the solvent-induced shift in terms of the high-frequency and static dielectric constants. The main qualitative outcome of the theory is a significantly weaker dependence of the spectral shift on the polarizability of the solvent than predicted by the Lippert-McRae formula.
Three Boundary Conditions for Computing the Fixed-Point Property in Binary Mixture Data
Couto, Joaquina; Lebreton, Mael
2016-01-01
The notion of “mixtures” has become pervasive in behavioral and cognitive sciences, due to the success of dual-process theories of cognition. However, providing support for such dual-process theories is not trivial, as it crucially requires properties in the data that are specific to mixture of cognitive processes. In theory, one such property could be the fixed-point property of binary mixture data, applied–for instance- to response times. In that case, the fixed-point property entails that response time distributions obtained in an experiment in which the mixture proportion is manipulated would have a common density point. In the current article, we discuss the application of the fixed-point property and identify three boundary conditions under which the fixed-point property will not be interpretable. In Boundary condition 1, a finding in support of the fixed-point will be mute because of a lack of difference between conditions. Boundary condition 2 refers to the case in which the extreme conditions are so different that a mixture may display bimodality. In this case, a mixture hypothesis is clearly supported, yet the fixed-point may not be found. In Boundary condition 3 the fixed-point may also not be present, yet a mixture might still exist but is occluded due to additional changes in behavior. Finding the fixed-property provides strong support for a dual-process account, yet the boundary conditions that we identify should be considered before making inferences about underlying psychological processes. PMID:27893868
Interpreting angina: symptoms along a gender continuum.
Kreatsoulas, Catherine; Crea-Arsenio, Mary; Shannon, Harry S; Velianou, James L; Giacomini, Mita
2016-01-01
'Typical' angina is often used to describe symptoms common among men, while 'atypical' angina is used to describe symptoms common among women, despite a higher prevalence of angina among women. This discrepancy is a source of controversy in cardiac care among women. To redefine angina by (1) qualitatively comparing angina symptoms and experiences in women and men and (2) to propose a more meaningful construct of angina that integrates a more gender-centred approach. Patients were recruited between July and December 2010 from a tertiary cardiac care centre and interviewed immediately prior to their first angiogram. Symptoms were explored through in-depth semi-structured interviews, transcribed verbatim and analysed concurrently using a modified grounded theory approach. Angiographically significant disease was assessed at ≥70% stenosis of a major epicardial vessel. Among 31 total patients, 13 men and 14 women had angiograpically significant CAD. Patients describe angina symptoms according to 6 symptomatic subthemes that array along a 'gender continuum'. Gender-specific symptoms are anchored at each end of the continuum. At the centre of the continuum, are a remarkably large number of symptoms commonly expressed by both men and women. The 'gender continuum' offers new insights into angina experiences of angiography candidates. Notably, there is more overlap of shared experiences between men and women than conventionally thought. The gender continuum can help researchers and clinicians contextualise patient symptom reports, avoiding the conventional 'typical' versus 'atypical' distinction that can misrepresent gendered angina experiences.
Mimetic discretization of the Abelian Chern-Simons theory and link invariants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Bartolo, Cayetano; Grau, Javier; Leal, Lorenzo
A mimetic discretization of the Abelian Chern-Simons theory is presented. The study relies on the formulation of a theory of differential forms in the lattice, including a consistent definition of the Hodge duality operation. Explicit expressions for the Gauss Linking Number in the lattice, which correspond to their continuum counterparts are given. A discussion of the discretization of metric structures in the space of transverse vector densities is presented. The study of these metrics could serve to obtain explicit formulae for knot an link invariants in the lattice.
Mimetic discretization of the Abelian Chern-Simons theory and link invariants
NASA Astrophysics Data System (ADS)
Di Bartolo, Cayetano; Grau, Javier; Leal, Lorenzo
2013-12-01
A mimetic discretization of the Abelian Chern-Simons theory is presented. The study relies on the formulation of a theory of differential forms in the lattice, including a consistent definition of the Hodge duality operation. Explicit expressions for the Gauss Linking Number in the lattice, which correspond to their continuum counterparts are given. A discussion of the discretization of metric structures in the space of transverse vector densities is presented. The study of these metrics could serve to obtain explicit formulae for knot an link invariants in the lattice.
Ab initio study of the Jπ=0± continuum structures in 4He
NASA Astrophysics Data System (ADS)
Aoyama, S.; Baye, D.
2018-05-01
The Jπ=0± continuum structures in 4He are investigated by using an ab initio reaction theory with the microscopic R -matrix method. In the Ex≥˜20 MeV excitation energy region of 4He, the continuum states are mainly described by the t +p , h +n , and d +d channels. The Jπ=0± elastic phase shifts of the t +p and h +n channels show an apparently resonant behavior which might indicate the existence of excited 03+ and 02- resonance states of 4He above the known 02+ and 01- ones. However, the corresponding 03+ and 02- resonances have not been observed yet, although an experimental candidate with a large decay width is reported for 02-. In this paper, by analyzing the Jπ=0± S matrices, we discuss why the observation of these states is unlikely.
On the role of self-adjointness in the continuum formulation of topological quantum phases
NASA Astrophysics Data System (ADS)
Tanhayi Ahari, Mostafa; Ortiz, Gerardo; Seradjeh, Babak
2016-11-01
Topological quantum phases of matter are characterized by an intimate relationship between the Hamiltonian dynamics away from the edges and the appearance of bound states localized at the edges of the system. Elucidating this correspondence in the continuum formulation of topological phases, even in the simplest case of a one-dimensional system, touches upon fundamental concepts and methods in quantum mechanics that are not commonly discussed in textbooks, in particular the self-adjoint extensions of a Hermitian operator. We show how such topological bound states can be derived in a prototypical one-dimensional system. Along the way, we provide a pedagogical exposition of the self-adjoint extension method as well as the role of symmetries in correctly formulating the continuum, field-theory description of topological matter with boundaries. Moreover, we show that self-adjoint extensions can be characterized generally in terms of a conserved local current associated with the self-adjoint operator.
Elucidating a Goal-Setting Continuum in Brain Injury Rehabilitation.
Hunt, Anne W; Le Dorze, Guylaine; Trentham, Barry; Polatajko, Helene J; Dawson, Deirdre R
2015-08-01
For individuals with brain injury, active participation in goal setting is associated with better rehabilitation outcomes. However, clinicians report difficulty engaging these clients in goal setting due to perceived or real deficits (e.g., lack of awareness). We conducted a study using grounded theory methods to understand how clinicians from occupational therapy facilitate client engagement and manage challenges inherent in goal setting with this population. Through constant comparative analysis, a goal-setting continuum emerged. At one end of the continuum, therapists embrace client-determined goals and enable clients to decide their own goals. At the other, therapists accept preset organization-determined goals (e.g., "the goal is discharge") and pay little attention to client input. Although all participants aspired to embrace client-determined goal setting, most felt powerless to do so within perceived organizational constraints. Views of advocacy and empowerment help to explain our findings and inform more inclusive practice. © The Author(s) 2015.
Discrete and continuum modelling of soil cutting
NASA Astrophysics Data System (ADS)
Coetzee, C. J.
2014-12-01
Both continuum and discrete methods are used to investigate the soil cutting process. The Discrete Element Method ( dem) is used for the discrete modelling and the Material-Point Method ( mpm) is used for continuum modelling. M pmis a so-called particle method or meshless finite element method. Standard finite element methods have difficulty in modelling the entire cutting process due to large displacements and deformation of the mesh. The use of meshless methods overcomes this problem. M pm can model large deformations, frictional contact at the soil-tool interface, and dynamic effects (inertia forces). In granular materials the discreteness of the system is often important and rotational degrees of freedom are active, which might require enhanced theoretical approaches like polar continua. In polar continuum theories, the material points are considered to possess orientations. A material point has three degrees-of-freedom for rigid rotations, in addition to the three classic translational degrees-of-freedom. The Cosserat continuum is the most transparent and straightforward extension of the nonpolar (classic) continuum. Two-dimensional dem and mpm (polar and nonpolar) simulations of the cutting problem are compared to experiments. The drag force and flow patterns are compared using cohesionless corn grains as material. The corn macro (continuum) and micro ( dem) properties were obtained from shear and oedometer tests. Results show that the dilatancy angle plays a significant role in the flow of material but has less of an influence on the draft force. Nonpolar mpm is the most accurate in predicting blade forces, blade-soil interface stresses and the position and orientation of shear bands. Polar mpm fails in predicting the orientation of the shear band, but is less sensitive to mesh size and mesh orientation compared to nonpolar mpm. dem simulations show less material dilation than observed during experiments.
Ritter, James A; Pan, Huanhua; Balbuena, Perla B
2010-09-07
Classical density functional theory (DFT) was used to predict the adsorption of nine different binary gas mixtures in a heterogeneous BPL activated carbon with a known pore size distribution (PSD) and in single, homogeneous, slit-shaped carbon pores of different sizes. By comparing the heterogeneous results with those obtained from the ideal adsorbed solution theory and with those obtained in the homogeneous carbon, it was determined that adsorption nonideality and adsorption azeotropes are caused by the coupled effects of differences in the molecular size of the components in a gas mixture and only slight differences in the pore sizes of a heterogeneous adsorbent. For many binary gas mixtures, selectivity was found to be a strong function of pore size. As the width of a homogeneous pore increases slightly, the selectivity for two different sized adsorbates may change from being greater than unity to less than unity. This change in selectivity can be accompanied by the formation of an adsorption azeotrope when this same binary mixture is adsorbed in a heterogeneous adsorbent with a PSD, like in BPL activated carbon. These results also showed that the selectivity exhibited by a heterogeneous adsorbent can be dominated by a small number of pores that are very selective toward one of the components in the gas mixture, leading to adsorption azeotrope formation in extreme cases.
Patrono, Enrico; Gasbarri, Antonella; Tomaz, Carlos; Nishijo, Hisao
2016-08-01
Addiction is a chronic compulsion and relapsing disorder. It involves several brain areas and circuits, which encode vary functions such as reward, motivation, and memory. Drug addiction is defined as a "pathological pattern of use of a substance", characterized by the loss of control on drug-taking-related behaviors, the pursuance of those behaviors even in the presence of negative consequences, and a strong motivated activity to assume substances. Three different theories guide experimental research on drug addiction. Each of these theories consider singles features, such as an aberrant motivation, a hedonic dysregulation, and an aberrant habit learning as the main actor to explain the entire process of the addictive behaviors. The major goal of this study is to present a new hypotheses of transitionality from a controlled use to abuse of addictive substances trough the overview of the three different theories, considering all the single features of each single theory together on the same "temporal continuum" from use to abuse of addictive substances. Recently, it has been suggested that common neural systems may be activated by natural and pharmacological stimuli, raising the hypotheses that binge-eating disorders could be considered as addictive behaviors. The second goal of this study is to present evidences in order to highlight a possible psycho-bio-physiological superimposition between drug and "food addiction". Finally, interesting questions are brought up starting from last findings about a theoretical/psycho-bio-physiological superimposition between drug and "food addiction" and their possibly same transitionality along the same "temporal continuum" from use to abuse of addictive substances in order to investigate new therapeutic strategies based on new therapeutic strategies based on the individual moments characterizing the transition from the voluntary intake of substances to the maladaptive addictive behavior. Copyright © 2016. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Hubbard, W. B.; Dewitt, H. E.
1985-01-01
A model free energy is presented which accurately represents results from 45 high-precision Monte Carlo calculations of the thermodynamics of hydrogen-helium mixtures at pressures of astrophysical and planetophysical interest. The free energy is calculated using free-electron perturbation theory (dielectric function theory), and is an extension of the expression given in an earlier paper in this series. However, it fits the Monte Carlo results more accurately, and is valid for the full range of compositions from pure hydrogen to pure helium. Using the new free energy, the phase diagram of mixtures of liquid metallic hydrogen and helium is calculated and compared with earlier results. Sample results for mixing volumes are also presented, and the new free energy expression is used to compute a theoretical Jovian adiabat and compare the adiabat with results from three-dimensional Thomas-Fermi-Dirac theory. The present theory gives slightly higher densities at pressures of about 10 megabars.
Collective effects in models for interacting molecular motors and motor-microtubule mixtures
NASA Astrophysics Data System (ADS)
Menon, Gautam I.
2006-12-01
Three problems in the statistical mechanics of models for an assembly of molecular motors interacting with cytoskeletal filaments are reviewed. First, a description of the hydrodynamical behaviour of density-density correlations in fluctuating ratchet models for interacting molecular motors is outlined. Numerical evidence indicates that the scaling properties of dynamical behaviour in such models belong to the KPZ universality class. Second, the generalization of such models to include boundary injection and removal of motors is provided. In common with known results for the asymmetric exclusion processes, simulations indicate that such models exhibit sharp boundary driven phase transitions in the thermodynamic limit. In the third part of this paper, recent progress towards a continuum description of pattern formation in mixtures of motors and microtubules is described, and a non-equilibrium “phase-diagram” for such systems discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.
2008-07-15
Resonant enhanced multiphoton ionization (REMPI) and electron avalanche ionization (EAI) are measured simultaneously in Ar:Xe mixtures at different partial pressures of mixture components. A simple theory for combined REMPI+EAI in gas mixture is developed. It is shown that the REMPI electrons seed the avalanche process, and thus the avalanche process amplifies the REMPI signal. Possible applications are discussed.
NASA Astrophysics Data System (ADS)
Song, Y.; Yao, Q.; Wang, G.; Yang, X.; Mayes, M. A.
2017-12-01
Increasing evidences is indicating that soil organic matter (SOM) decomposition and stabilization process is a continuum process and controlled by both microbial functions and their interaction with minerals (known as the microbial efficiency-matrix stabilization theory (MEMS)). Our metagenomics analysis of soil samples from both P-deficit and P-fertilization sites in Panama has demonstrated that community-level enzyme functions could adapt to maximize the acquisition of limiting nutrients and minimize energy demand for foraging (known as the optimal foraging theory). This optimization scheme can mitigate the imbalance of C/P ratio between soil substrate and microbial community and relieve the P limitation on microbial carbon use efficiency over the time. Dynamic allocation of multiple enzyme groups and their interaction with microbial/substrate stoichiometry has rarely been considered in biogeochemical models due to the difficulties in identifying microbial functional groups and quantifying the change in enzyme expression in response to soil nutrient availability. This study aims to represent the omics-informed optimal foraging theory in the Continuum Microbial ENzyme Decomposition model (CoMEND), which was developed to represent the continuum SOM decomposition process following the MEMS theory. The SOM pools in the model are classified based on soil chemical composition (i.e. Carbohydrates, lignin, N-rich SOM and P-rich SOM) and the degree of SOM depolymerization. The enzyme functional groups for decomposition of each SOM pool and N/P mineralization are identified by the relative composition of gene copy numbers. The responses of microbial activities and SOM decomposition to nutrient availability are simulated by optimizing the allocation of enzyme functional groups following the optimal foraging theory. The modeled dynamic enzyme allocation in response to P availability is evaluated by the metagenomics data measured from P addition and P-deficit soil samples in Panama sites.The implementation of dynamic enzyme allocation in response to nutrient availability in the CoMEND model enables us to capture the varying microbial C/P ratio and soil carbon dynamics in response to shifting nutrient constraints over time in tropical soils.
Non-classical continuum theory for fluids incorporating internal and Cosserat rotation rates
NASA Astrophysics Data System (ADS)
Surana, K. S.; Joy, A. D.; Reddy, J. N.
2017-11-01
This paper presents a non-classical continuum theory for fluent continua in which the conservation and balance laws are derived by incorporating both internal rotation rates arising from the velocity gradient tensor and the rotation rates of the Cosserats. Specifically, in this non-classical continuum theory we have (1) the usual velocities (\\bar{ ±b {\\varvec{v }}}), (2) the three internal rotation rates ({}_i^t\\bar{ ±b {\\varvec{Θ }}}) about the axes of a fixed triad whose axes are parallel to the x-frame arising from the velocity gradient tensor (\\bar{ ±b {\\varvec{L }}}) that are completely defined by the antisymmetric part of the velocity gradient tensor, and (3) three additional rotation rates ({}_e^t\\bar{ ±b {\\varvec{Θ }}}) about the axes of the same triad located at each material point as additional three unknown degrees of freedom, referred to as Cosserat rotation rates. This gives rise to \\bar{ ±b {\\varvec{v }}} and {}_e^t\\bar{ ±b {\\varvec{Θ }}} as six degrees of freedom at a material point. The internal rotation rates {}_i^t\\bar{ ±b {\\varvec{Θ }}}, often neglected in classical fluid mechanics, exist in all deforming fluent continua as these are due to velocity gradient tensor. When the internal rotation rates {}_i^t\\bar{ ±b {\\varvec{Θ }}} are resisted by deforming fluent continua, conjugate moment tensor arises that together with {}_i^t\\bar{ ±b {\\varvec{Θ }}} may result in energy storage and/or dissipation, which must be considered in the conservation and balance laws. The Cosserat rotation rations {}_e^t\\bar{ ±b {\\varvec{Θ }}} also result in conjugate moment tensor that together with {}_e^t\\bar{ ±b {\\varvec{Θ }}} may also result in energy storage and/or dissipation. The main focus of this paper is a consistent derivation of conservation and balance laws for fluent continua that incorporate the aforementioned physics and associated constitutive theories for thermofluids using the conditions resulting from the entropy inequality. The material coefficients derived in the constitutive theories are clearly defined and discussed.
Personal Epistemology of Urban Elementary School Teachers
ERIC Educational Resources Information Center
Pearrow, Melissa; Sanchez, William
2008-01-01
Personal epistemology, originating from social construction theory, provides a framework for researchers to understand how individuals view their world. The Attitudes About Reality (AAR) scale is one survey method that qualitatively assesses personal epistemology along the logical positivist and social constructionist continuum; however, the…
Analytical and numerical studies of Bose-Fermi mixtures in a one-dimensional harmonic trap
NASA Astrophysics Data System (ADS)
Dehkharghani, A. S.; Bellotti, F. F.; Zinner, N. T.
2017-07-01
In this paper we study a mixed system of bosons and fermions with up to six particles in total. All particles are assumed to have the same mass. The two-body interactions are repulsive and are assumed to have equal strength in both the Bose-Bose and the Fermi-Boson channels. The particles are confined externally by a harmonic oscillator one-body potential. For the case of four particles, two identical fermions and two identical bosons, we focus on the strongly interacting regime and analyze the system using both an analytical approach and density matrix renormalization group calculations using a discrete version of the underlying continuum Hamiltonian. This provides us with insight into both the ground state and the manifold of excited states that are almost degenerate for large interaction strength. Our results show great variation in the density profiles for bosons and fermions in different states for strongly interacting mixtures. By moving to slightly larger systems, we find that the ground state of balanced mixtures of four to six particles tends to separate bosons and fermions for strong (repulsive) interactions. On the other hand, in imbalanced Bose-Fermi mixtures we find pronounced odd-even effects in systems of five particles. These few-body results suggest that question of phase separation in one-dimensional confined mixtures are very sensitive to system composition, both for the ground state and the excited states.
NASA Technical Reports Server (NTRS)
Bhatia, Anand K.
2008-01-01
Applications of the hybrid theory to the scattering of electrons from Ile+ and Li++ and resonances in these systems, A. K. Bhatia, NASA/Goddard Space Flight Center- The Hybrid theory of electron-hydrogen elastic scattering [I] is applied to the S-wave scattering of electrons from He+ and Li++. In this method, both short-range and long-range correlations are included in the Schrodinger equation at the same time. Phase shifts obtained in this calculation have rigorous lower bounds to the exact phase shifts and they are compared with those obtained using the Feshbach projection operator formalism [2], the close-coupling approach [3], and Harris-Nesbet method [4]. The agreement among all the calculations is very good. These systems have doubly-excited or Feshbach resonances embedded in the continuum. The resonance parameters for the lowest ' S resonances in He and Li+ are calculated and they are compared with the results obtained using the Feshbach projection operator formalism [5,6]. It is concluded that accurate resonance parameters can be obtained by the present method, which has the advantage of including corrections due to neighboring resonances and the continuum in which these resonances are embedded.
Darrell-Berry, Hannah; Bucci, Sandra; Palmier-Claus, Jasper; Emsley, Richard; Drake, Richard; Berry, Katherine
2017-03-01
Anger in the context of psychosis has a significant impact on treatment outcomes and serious implications for risk management. Understanding mechanisms underlying anger will improve interventions and inform strategies for prevention. This study is the first to examine the relationships between anger and key theoretical drivers across different phases of the psychosis continuum. A battery including measures of theory of mind, attachment, hostile attribution bias, paranoia and anger was administered to 174 participants (14 ultra-high risk, 20 first-episode, 20 established psychosis, 120 non-clinical participants). We tested the model that insecure attachment, paranoia, impaired theory of mind and hostile attribution bias would predict trait anger using multiple regression. Attachment avoidance, paranoia and hostile attribution bias were significantly associated with anger but attachment anxiety and theory of mind were not. Mediation analysis showed that paranoia partially mediated the relationship between avoidant attachment and anger but hostile attribution bias did not. Findings emphasise the importance of interventions targeting paranoia to reduce anger and the potential of preventive strategies focused on attachment relationships in early life or adulthood to reduce adult paranoia and anger. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gitlin, M. S., E-mail: gitlin@appl.sci-nnov.ru
The first part of the review is presented which is dedicated to the time-resolved method of imaging and measuring the spatial distribution of the intensity of millimeter waves by using visible continuum (VC) emitted by the positive column (PC) of a dc discharge in a mixture of cesium vapor with xenon. The review focuses on the operating principles, fundamentals, and applications of this new technique. The design of the discharge tube and experimental setup used to create a wide homogeneous plasma slab with the help of the Cs–Xe discharge at a gas pressure of 45 Torr are described. The millimeter-wavemore » effects on the plasma slab are studied experimentally. The mechanism of microwave-induced variations in the VC brightness and the causes of violation of the local relation between the VC brightness and the intensity of millimeter waves are discussed. Experiments on the imaging of the field patterns of horn antennas and quasi-optical beams demonstrate that this technique can be used for good-quality imaging of millimeter-wave beams in the entire millimeter-wavelength band. The method has a microsecond temporal resolution and a spatial resolution of about 2 mm. Energy sensitivities of about 10 μJ/cm{sup 2} in the Ka-band and about 200 μJ/cm{sup 2} in the D-band have been demonstrated.« less
Fowler, Nicholas J.; Blanford, Christopher F.
2017-01-01
Abstract Blue copper proteins, such as azurin, show dramatic changes in Cu2+/Cu+ reduction potential upon mutation over the full physiological range. Hence, they have important functions in electron transfer and oxidation chemistry and have applications in industrial biotechnology. The details of what determines these reduction potential changes upon mutation are still unclear. Moreover, it has been difficult to model and predict the reduction potential of azurin mutants and currently no unique procedure or workflow pattern exists. Furthermore, high‐level computational methods can be accurate but are too time consuming for practical use. In this work, a novel approach for calculating reduction potentials of azurin mutants is shown, based on a combination of continuum electrostatics, density functional theory and empirical hydrophobicity factors. Our method accurately reproduces experimental reduction potential changes of 30 mutants with respect to wildtype within experimental error and highlights the factors contributing to the reduction potential change. Finally, reduction potentials are predicted for a series of 124 new mutants that have not yet been investigated experimentally. Several mutants are identified that are located well over 10 Å from the copper center that change the reduction potential by more than 85 mV. The work shows that secondary coordination sphere mutations mostly lead to long‐range electrostatic changes and hence can be modeled accurately with continuum electrostatics. PMID:28815759
Di Tommaso, Devis; de Leeuw, Nora H
2008-06-12
Density functional theory (Perdew-Burke-Ernzerhof) based methods have been used to study the structure and hydration environment of the building blocks of CaCO 3 in aqueous solutions of calcium bicarbonate and calcium carbonate. Car-Parrinello molecular dynamics simulations of Ca(2+)/CO3(2-) and Ca (2+)/HCO3(-) in explicit water were performed to investigate the formation of CaCO3 and the hydration shell of the solvated hetero-ion pair. Our simulations show that the formation of the monomer of CaCO3 occurs with an associative mechanism and that the dominant building block of calcium (bi)carbonate in aqueous solution is Ca[eta(1)-(H)CO3](H2O)5, i.e., the preferred hydration number is five, while the (bi)carbonate is coordinated to the calcium in a monodentate mode. This result agrees with static calculations, where a hybrid approach using a combination of explicit solvent molecules and a polarizable continuum model has been applied to compute the solvation free energies of calcium bicarbonate species. Furthermore, the discrete-continuum calculations predict that the Ca(HCO3)2 and Ca(HCO3)3(-) species are stable in an aqueous environment preferentially as Ca(HCO3)2(H2O)4 and Ca(HCO3)3(H2O)2(-), respectively.
Instability in dynamic fracture
NASA Astrophysics Data System (ADS)
Fineberg, J.; Marder, M.
1999-05-01
The fracture of brittle amorphous materials is an especially challenging problem, because the way a large object shatters is intimately tied to details of cohesion at microscopic scales. This subject has been plagued by conceptual puzzles, and to make matters worse, experiments seemed to contradict the most firmly established theories. In this review, we will show that the theory and experiments fit within a coherent picture where dynamic instabilities of a crack tip play a crucial role. To accomplish this task, we first summarize the central results of linear elastic dynamic fracture mechanics, an elegant and powerful description of crack motion from the continuum perspective. We point out that this theory is unable to make predictions without additional input, information that must come either from experiment, or from other types of theories. We then proceed to discuss some of the most important experimental observations, and the methods that were used to obtain the them. Once the flux of energy to a crack tip passes a critical value, the crack becomes unstable, and it propagates in increasingly complicated ways. As a result, the crack cannot travel as quickly as theory had supposed, fracture surfaces become rough, it begins to branch and radiate sound, and the energy cost for crack motion increases considerably. All these phenomena are perfectly consistent with the continuum theory, but are not described by it. Therefore, we close the review with an account of theoretical and numerical work that attempts to explain the instabilities. Currently, the experimental understanding of crack tip instabilities in brittle amorphous materials is fairly detailed. We also have a detailed theoretical understanding of crack tip instabilities in crystals, reproducing qualitatively many features of the experiments, while numerical work is beginning to make the missing connections between experiment and theory.
Analogies in electronic properties of graphene wormhole and perturbed nanocylinder
NASA Astrophysics Data System (ADS)
Pincak, R.; Smotlacha, J.
2013-11-01
The electronic properties of the wormhole and the perturbed nanocylinder were investigated using two different methods: the continuum gauge field-theory model that deals with the continuum approximation of the surface and the Haydock recursion method that transforms the surface into a simplier structure and deals with the nearest-neighbor interactions. Furthermore, the changes of the electronic properties were investigated for the case of enclosing the appropriate structure, and possible substitutes for the encloser were derived. Finally, the character of the electron flux through the perturbed wormhole was predicted from the model based on the multiwalled nanotubes. The effect of the "graphene blackhole" is introduced.
NASA Astrophysics Data System (ADS)
Zamanov, A. D.
2001-09-01
A problem on the forced vibrations of a rectangular composite plate with locally curved structures is formulated using the exact three-dimensional equations of continuum mechanics and continuum theory. A technique for numerical solution of the problem is developed based on the semianalytic finite-element method. Numerical results are given for the stress distribution in the plate under forced vibrations. The results obtained are analyzed to study the effect of the curvature in the structure of the plate on the distribution of stress amplitudes. It is shown that the curvatures change significantly the stress pattern under either static or dynamic loading
The continuum fusion theory of signal detection applied to a bi-modal fusion problem
NASA Astrophysics Data System (ADS)
Schaum, A.
2011-05-01
A new formalism has been developed that produces detection algorithms for model-based problems, in which one or more parameter values is unknown. Continuum Fusion can be used to generate different flavors of algorithm for any composite hypothesis testing problem. The methodology is defined by a fusion logic that can be translated into max/min conditions. Here it is applied to a simple sensor fusion model, but one for which the generalized likelihood ratio test is intractable. By contrast, a fusion-based response to the same problem can be devised that is solvable in closed form and represents a good approximation to the GLR test.
Process Dissociation and Mixture Signal Detection Theory
ERIC Educational Resources Information Center
DeCarlo, Lawrence T.
2008-01-01
The process dissociation procedure was developed in an attempt to separate different processes involved in memory tasks. The procedure naturally lends itself to a formulation within a class of mixture signal detection models. The dual process model is shown to be a special case. The mixture signal detection model is applied to data from a widely…
Integrative Learning: A Grounded Theory
ERIC Educational Resources Information Center
Leonard, Jeannie Brown
2012-01-01
This article reports the findings from a study of undergraduate students in an academic program focused on integrative learning rather than interdisciplinarity. One aspect of this study included how students defined integrative learning. This participant-shaped understanding of integrative learning was broad and reflected a continuum of…
DEVELOPMENT, DIFFUSION, AND EVALUATION.
ERIC Educational Resources Information Center
GUBA, EGON G.
THE KNOWLEDGE GAP BETWEEN INITIAL RESEARCH AND FINAL USE IS DISCUSSED IN TERMS OF THE FOUR STATES OF THE THEORY-PRACTICE CONTINUUM (RESEARCH, DEVELOPMENT, DIFFUSION, AND ADOPTION). THE TWO MIDDLE STAGES ARE EMPHASIZED. RESEARCH AND DEVELOPMENT CENTERS, REGIONAL EDUCATIONAL LABORATORIES, AND TITLE III PROJECTS ARE SUGGESTED AS AGENCIES RESPONSIBLE…
Gradient Models in Molecular Biophysics: Progress, Challenges, Opportunities
Bardhan, Jaydeep P.
2014-01-01
In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g. molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically always been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding features such as nonlocal dielectric response, and nonlinearities resulting from dielectric saturation. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost forty years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The paper concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics. PMID:25505358
Gradient Models in Molecular Biophysics: Progress, Challenges, Opportunities.
Bardhan, Jaydeep P
2013-12-01
In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g. molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically always been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding features such as nonlocal dielectric response, and nonlinearities resulting from dielectric saturation. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost forty years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The paper concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics.
Gradient models in molecular biophysics: progress, challenges, opportunities
NASA Astrophysics Data System (ADS)
Bardhan, Jaydeep P.
2013-12-01
In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g., molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically always been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding nonlocal dielectric response. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain, and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost 40 years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The review concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics.
Guido, Ciro A; Jacquemin, Denis; Adamo, Carlo; Mennucci, Benedetta
2015-12-08
We critically analyze the performances of continuum solvation models when coupled to time-dependent density functional theory (TD-DFT) to predict solvent effects on both absorption and emission energies of chromophores in solution. Different polarization schemes of the polarizable continuum model (PCM), such as linear response (LR) and three different state specific (SS) approaches, are considered and compared. We show the necessity of introducing a SS model in cases where large electron density rearrangements are involved in the excitations, such as charge-transfer transitions in both twisted and quadrupolar compounds, and underline the very delicate interplay between the selected polarization method and the chosen exchange-correlation functional. This interplay originates in the different descriptions of the transition and ground/excited state multipolar moments by the different functionals. As a result, the choice of both the DFT functional and the solvent polarization scheme has to be consistent with the nature of the studied electronic excitation.
Ultraviolet continuum absorption /less than about 1000 A/ above the quiet sun transition region
NASA Technical Reports Server (NTRS)
Doschek, G. A.; Feldman, U.
1982-01-01
Lyman continuum absorption shortward of 912 A in the quiet sun solar transition region is investigated by combining spectra obtained from the Apollo Telescope Mount experiments on Skylab. The most recent atomic data are used to compute line intensities for lines that fall on both sides of the Lyman limit. Lines of O III, O IV, O V, and S IV are considered. The computed intensity ratios of most lines from O IV, O V, and S IV agree with the experimental ratios to within a factor of 2. However, the discrepancies show no apparent wavelength dependence. From this fact, it is concluded that at least part of the discrepancy between theory and observation for lines of these ions can be accounted for by uncertainties in instrumental calibration and atomic data. However, difficulties remain in reconciling observation and theory, particularly for lines of O III, and one line of S IV. The other recent results of Schmahl and Orrall (1979) are also discussed in terms of newer atomic data.
Remigio, Roberto Di; Bast, Radovan; Frediani, Luca; Saue, Trond
2015-05-28
We present a formulation of four-component relativistic self-consistent field (SCF) theory for a molecular solute described within the framework of the polarizable continuum model (PCM) for solvation. The linear response function for a four-component PCM-SCF state is also derived, as well as the explicit form of the additional contributions to the first-order response equations. The implementation of such a four-component PCM-SCF model, as carried out in a development version of the DIRAC program package, is documented. In particular, we present the newly developed application programming interface PCMSolver used in the actual implementation with DIRAC. To demonstrate the applicability of the approach, we present and analyze calculations of solvation effects on the geometries, electric dipole moments, and static electric dipole polarizabilities for the group 16 dihydrides H2X (X = O, S, Se, Te, Po).
Spatial averaging of a dissipative particle dynamics model for active suspensions
NASA Astrophysics Data System (ADS)
Panchenko, Alexander; Hinz, Denis F.; Fried, Eliot
2018-03-01
Starting from a fine-scale dissipative particle dynamics (DPD) model of self-motile point particles, we derive meso-scale continuum equations by applying a spatial averaging version of the Irving-Kirkwood-Noll procedure. Since the method does not rely on kinetic theory, the derivation is valid for highly concentrated particle systems. Spatial averaging yields stochastic continuum equations similar to those of Toner and Tu. However, our theory also involves a constitutive equation for the average fluctuation force. According to this equation, both the strength and the probability distribution vary with time and position through the effective mass density. The statistics of the fluctuation force also depend on the fine scale dissipative force equation, the physical temperature, and two additional parameters which characterize fluctuation strengths. Although the self-propulsion force entering our DPD model contains no explicit mechanism for aligning the velocities of neighboring particles, our averaged coarse-scale equations include the commonly encountered cubically nonlinear (internal) body force density.
Free energy change of a dislocation due to a Cottrell atmosphere
Sills, R. B.; Cai, W.
2018-03-07
The free energy reduction of a dislocation due to a Cottrell atmosphere of solutes is computed using a continuum model. In this work, we show that the free energy change is composed of near-core and far-field components. The far-field component can be computed analytically using the linearized theory of solid solutions. Near the core the linearized theory is inaccurate, and the near-core component must be computed numerically. The influence of interactions between solutes in neighbouring lattice sites is also examined using the continuum model. We show that this model is able to reproduce atomistic calculations of the nickel–hydrogen system, predictingmore » hydride formation on dislocations. The formation of these hydrides leads to dramatic reductions in the free energy. Lastly, the influence of the free energy change on a dislocation’s line tension is examined by computing the equilibrium shape of a dislocation shear loop and the activation stress for a Frank–Read source using discrete dislocation dynamics.« less
NASA Astrophysics Data System (ADS)
Reid, Andrew C. E.; Olson, Gregory B.
2000-03-01
Heterogeneous nucleation of martensite is modeled by examining the strain field of a dislocation array in a nonlinear, nonlocal continuum elastic matrix. The dislocations are modeled by including effects from atomic length scales, which control the dislocation Burger's vector, into a mesoscopic continuum model. The dislocation array models the heterogeneous nucleation source of the Olson/Cohen defect dissociation model, and depending on the potency can give rise to embryos of different character. High potency dislocations give rise to fully developed, classical pre-existing embryos, whereas low-potency dislocations result in the formation of highly nonclassical strain embryos. Heterogeneous nucleation theory is related to nucleation kinetics through the critical driving force for nucleation at a defect of a given potency. Recent stereological and calorimetric kinetic studies in thermoelastic TiNi alloys confirm that these materials exhibit the same form of defect potency distribution and resulting sample-size dependent Martensite start temperature, M_s, as nonthermoelastic FeNi systems. These results together point towards a broad theory of heterogeneous nucleation for both thermoelastic and nonthermoelastic martensites.
Free energy change of a dislocation due to a Cottrell atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sills, R. B.; Cai, W.
The free energy reduction of a dislocation due to a Cottrell atmosphere of solutes is computed using a continuum model. In this work, we show that the free energy change is composed of near-core and far-field components. The far-field component can be computed analytically using the linearized theory of solid solutions. Near the core the linearized theory is inaccurate, and the near-core component must be computed numerically. The influence of interactions between solutes in neighbouring lattice sites is also examined using the continuum model. We show that this model is able to reproduce atomistic calculations of the nickel–hydrogen system, predictingmore » hydride formation on dislocations. The formation of these hydrides leads to dramatic reductions in the free energy. Lastly, the influence of the free energy change on a dislocation’s line tension is examined by computing the equilibrium shape of a dislocation shear loop and the activation stress for a Frank–Read source using discrete dislocation dynamics.« less
Frontiers of Theoretical Research on Shape Memory Alloys: A General Overview
NASA Astrophysics Data System (ADS)
Chowdhury, Piyas
2018-03-01
In this concise review, general aspects of modeling shape memory alloys (SMAs) are recounted. Different approaches are discussed under four general categories, namely, (a) macro-phenomenological, (b) micromechanical, (c) molecular dynamics, and (d) first principles models. Macro-phenomenological theories, stemming from empirical formulations depicting continuum elastic, plastic, and phase transformation, are primarily of engineering interest, whereby the performance of SMA-made components is investigated. Micromechanical endeavors are generally geared towards understanding microstructural phenomena within continuum mechanics such as the accommodation of straining due to phase change as well as role of precipitates. By contrast, molecular dynamics, being a more recently emerging computational technique, concerns attributes of discrete lattice structures, and thus captures SMA deformation mechanism by means of empirically reconstructing interatomic bonding forces. Finally, ab initio theories utilize quantum mechanical framework to peek into atomistic foundation of deformation, and can pave the way for studying the role of solid-sate effects. With specific examples, this paper provides concise descriptions of each category along with their relative merits and emphases.
Band gap narrowing in nitrogen-doped La2Ti2O7 predicted by density-functional theory calculations.
Zhang, Junying; Dang, Wenqiang; Ao, Zhimin; Cushing, Scott K; Wu, Nianqiang
2015-04-14
In order to reveal the origin of enhanced photocatalytic activity of N-doped La2Ti2O7 in both the visible light and ultraviolet light regions, its electronic structure has been studied using spin-polarized conventional density functional theory (DFT) and the Heyd-Scuseria-Ernzerhof (HSE06) hybrid approach. The results show that the deep localized states are formed in the forbidden band when nitrogen solely substitutes for oxygen. Introducing the interstitial Ti atom into the N-doped La2Ti2O7 photocatalyst still causes the formation of a localized energy state. Two nitrogen substitutions co-exist stably with one oxygen vacancy, creating a continuum energy band just above the valence band maximum. The formation of a continuum band instead of mid-gap states can extend the light absorption to the visible light region without increasing the charge recombination, explaining the enhanced visible light performance without deteriorating the ultraviolet light photocatalytic activity.
Self-determination theory and physical activity among breast cancer survivors.
Milne, Helen M; Wallman, Karen E; Guilfoyle, Andrew; Gordon, Sandy; Corneya, Kerry S
2008-02-01
The study aim was to examine constructs of autonomy support and competence as well as the motivation continuum from the self-determination theory (SDT) as a framework for understanding physical activity (PA) motivation and behavior in breast cancer survivors. Questionnaires assessing demographics, medical factors, PA, motivation continuum, perceived autonomy support, and competence were completed by 558 breast cancer survivors. Results showed that lymphedema (chi2 = 7.9, p < .01) (chi2 = 4.6, p < .05) were associated with meeting PA guidelines. Moreover, survivors meeting PA guidelines reported more identified regulations and intrinsic motivation (p < .01), autonomy support (p < .01), and competence (p < .01). Forced entry hierarchical regression analysis showed that SDT constructs explained 20.2% (p < .01) of the PA variance. Significant independent SDT predictors included identified regulation (Beta = .14, p < .05) and competence (Beta = .23, p < .01), with autonomy support approaching significance (Beta = .9, p = .057). SDT may be a useful model for understanding PA motivation and behavior in breast cancer survivors.
Free energy change of a dislocation due to a Cottrell atmosphere
NASA Astrophysics Data System (ADS)
Sills, R. B.; Cai, W.
2018-06-01
The free energy reduction of a dislocation due to a Cottrell atmosphere of solutes is computed using a continuum model. We show that the free energy change is composed of near-core and far-field components. The far-field component can be computed analytically using the linearized theory of solid solutions. Near the core the linearized theory is inaccurate, and the near-core component must be computed numerically. The influence of interactions between solutes in neighbouring lattice sites is also examined using the continuum model. We show that this model is able to reproduce atomistic calculations of the nickel-hydrogen system, predicting hydride formation on dislocations. The formation of these hydrides leads to dramatic reductions in the free energy. Finally, the influence of the free energy change on a dislocation's line tension is examined by computing the equilibrium shape of a dislocation shear loop and the activation stress for a Frank-Read source using discrete dislocation dynamics.
Generalized continuum modeling of scale-dependent crystalline plasticity
NASA Astrophysics Data System (ADS)
Mayeur, Jason R.
The use of metallic material systems (e.g. pure metals, alloys, metal matrix composites) in a wide range of engineering applications from medical devices to electronic components to automobiles continues to motivate the development of improved constitutive models to meet increased performance demands while minimizing cost. Emerging technologies often incorporate materials in which the dominant microstructural features have characteristic dimensions reaching into the submicron and nanometer regime. Metals comprised of such fine microstructures often exhibit unique and size-dependent mechanical response, and classical approaches to constitutive model development at engineering (continuum) scales, being local in nature, are inadequate for describing such behavior. Therefore, traditional modeling frameworks must be augmented and/or reformulated to account for such phenomena. Crystal plasticity constitutive models have proven quite capable of capturing first-order microstructural effects such as grain orientation (elastic/plastic anisotropy), grain morphology, phase distribution, etc. on the deformation behavior of both single and polycrystals, yet suffer from the same limitations as other local continuum theories with regard to capturing scale-dependent mechanical response. This research is focused on the development, numerical implementation, and application of a generalized (nonlocal) theory of single crystal plasticity capable of describing the scale-dependent mechanical response of both single and polycrystalline metals that arises as a result of heterogeneous deformation. This research developed a dislocation-based theory of micropolar single crystal plasticity. The majority of nonlocal crystal plasticity theories are predicated on the connection between gradients of slip and geometrically necessary dislocations. Due to the diversity of existing nonlocal crystal plasticity theories, a review, summary, and comparison of representative model classes is presented in Chapter 2 from a unified dislocation-based perspective. The discussion of the continuum crystal plasticity theories is prefaced by a brief review of discrete dislocation plasticity, which facilitates the comparison of certain model aspects and also serves as a reference for latter segments of the research which make connection to this constitutive description. Chapter 2 has utility not only as a literature review, but also as a synthesis and analysis of competing and alternative nonlocal crystal plasticity modeling strategies from a common viewpoint. The micropolar theory of single crystal plasticity is presented in Chapter 3. Two different types of flow criteria are considered - the so-called single and multicriterion theories, and several variations of the dislocation-based strength models appropriate for each theory are presented and discussed. The numerical implementation of the two-dimensional version of the constitutive theory is given in Chapter 4. A user element subroutine for the implicit commercial finite element code Abaqus/Standard is developed and validated through the solution of initial-boundary value problems with closed-form solutions. Convergent behavior of the subroutine is also demonstrated for an initial-boundary value problem exhibiting strain localization. In Chapter 5, the models are employed to solve several standard initial-boundary value problems for heterogeneously deforming single crystals including simple shearing of a semi-infinite constrained thin film, pure bending of thin films, and simple shearing of a metal matrix composite with elastic inclusions. The simulation results are compared to those obtained from the solution of equivalent boundary value problems using discrete dislocation dynamics and alternative generalized crystal plasticity theories. Comparison and calibration with respect to the former provides guidance in the specification of non-traditional material parameters that arise in the model formulation and demonstrates its effectiveness at capturing the heterogeneous deformation fields and size-dependent mechanical behavior predicted by a finer scale constitutive description. Finally, in Chapter 6, the models are applied to simulate the deformation behavior of small polycrystalline ensembles. Several grain boundary constitutive descriptions are explored and the response characteristics are analyzed with respect to experimental observations as well as results obtained from discrete dislocation dynamics and alternative nonlocal crystal plasticity theories. Particular attention is focused on how the various grain boundary descriptions serve to either locally concentrate or diffuse deformation heterogeneity as a function of grain size.
Costanzo, Francesco; Miller, Scott T.
2017-05-22
In this paper, a finite element formulation is developed for a poroelastic medium consisting of an incompressible hyperelastic skeleton saturated by an incompressible fluid. The governing equations stem from mixture theory and the application is motivated by the study of interstitial fluid flow in brain tissue. The formulation is based on the adoption of an arbitrary Lagrangian–Eulerian (ALE) perspective. We focus on a flow regime in which inertia forces are negligible. Finally, the stability and convergence of the formulation is discussed, and numerical results demonstrate agreement with the theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costanzo, Francesco; Miller, Scott T.
In this paper, a finite element formulation is developed for a poroelastic medium consisting of an incompressible hyperelastic skeleton saturated by an incompressible fluid. The governing equations stem from mixture theory and the application is motivated by the study of interstitial fluid flow in brain tissue. The formulation is based on the adoption of an arbitrary Lagrangian–Eulerian (ALE) perspective. We focus on a flow regime in which inertia forces are negligible. Finally, the stability and convergence of the formulation is discussed, and numerical results demonstrate agreement with the theory.
Voice-onset time and buzz-onset time identification: A ROC analysis
NASA Astrophysics Data System (ADS)
Lopez-Bascuas, Luis E.; Rosner, Burton S.; Garcia-Albea, Jose E.
2004-05-01
Previous studies have employed signal detection theory to analyze data from speech and nonspeech experiments. Typically, signal distributions were assumed to be Gaussian. Schouten and van Hessen [J. Acoust. Soc. Am. 104, 2980-2990 (1998)] explicitly tested this assumption for an intensity continuum and a speech continuum. They measured response distributions directly and, assuming an interval scale, concluded that the Gaussian assumption held for both continua. However, Pastore and Macmillan [J. Acoust. Soc. Am. 111, 2432 (2002)] applied ROC analysis to Schouten and van Hessen's data, assuming only an ordinal scale. Their ROC curves suppported the Gaussian assumption for the nonspeech signals only. Previously, Lopez-Bascuas [Proc. Audit. Bas. Speech Percept., 158-161 (1997)] found evidence with a rating scale procedure that the Gaussian model was inadequate for a voice-onset time continuum but not for a noise-buzz continuum. Both continua contained ten stimuli with asynchronies ranging from -35 ms to +55 ms. ROC curves (double-probability plots) are now reported for each pair of adjacent stimuli on the two continua. Both speech and nonspeech ROCs often appeared nonlinear, indicating non-Gaussian signal distributions under the usual zero-variance assumption for response criteria.
Statistical Model of Dynamic Markers of the Alzheimer's Pathological Cascade.
Balsis, Steve; Geraci, Lisa; Benge, Jared; Lowe, Deborah A; Choudhury, Tabina K; Tirso, Robert; Doody, Rachelle S
2018-05-05
Alzheimer's disease (AD) is a progressive disease reflected in markers across assessment modalities, including neuroimaging, cognitive testing, and evaluation of adaptive function. Identifying a single continuum of decline across assessment modalities in a single sample is statistically challenging because of the multivariate nature of the data. To address this challenge, we implemented advanced statistical analyses designed specifically to model complex data across a single continuum. We analyzed data from the Alzheimer's Disease Neuroimaging Initiative (ADNI; N = 1,056), focusing on indicators from the assessments of magnetic resonance imaging (MRI) volume, fluorodeoxyglucose positron emission tomography (FDG-PET) metabolic activity, cognitive performance, and adaptive function. Item response theory was used to identify the continuum of decline. Then, through a process of statistical scaling, indicators across all modalities were linked to that continuum and analyzed. Findings revealed that measures of MRI volume, FDG-PET metabolic activity, and adaptive function added measurement precision beyond that provided by cognitive measures, particularly in the relatively mild range of disease severity. More specifically, MRI volume, and FDG-PET metabolic activity become compromised in the very mild range of severity, followed by cognitive performance and finally adaptive function. Our statistically derived models of the AD pathological cascade are consistent with existing theoretical models.
Photoionization of furan from the ground and excited electronic states.
Ponzi, Aurora; Sapunar, Marin; Angeli, Celestino; Cimiraglia, Renzo; Došlić, Nađa; Decleva, Piero
2016-02-28
Here we present a comparative computational study of the photoionization of furan from the ground and the two lowest-lying excited electronic states. The study aims to assess the quality of the computational methods currently employed for treating bound and continuum states in photoionization. For the ionization from the ground electronic state, we show that the Dyson orbital approach combined with an accurate solution of the continuum one particle wave functions in a multicenter B-spline basis, at the density functional theory (DFT) level, provides cross sections and asymmetry parameters in excellent agreement with experimental data. On the contrary, when the Dyson orbitals approach is combined with the Coulomb and orthogonalized Coulomb treatments of the continuum, the results are qualitatively different. In excited electronic states, three electronic structure methods, TDDFT, ADC(2), and CASSCF, have been used for the computation of the Dyson orbitals, while the continuum was treated at the B-spline/DFT level. We show that photoionization observables are sensitive probes of the nature of the excited states as well as of the quality of excited state wave functions. This paves the way for applications in more complex situations such as time resolved photoionization spectroscopy.
Frequency chirpings in Alfven continuum
NASA Astrophysics Data System (ADS)
Wang, Ge; Berk, Herb; Breizman, Boris; Zheng, Linjin
2017-10-01
We have used a self-consistent mapping technique to describe both the nonlinear wave-energetic particle resonant interaction and its spatial mode structure that depends upon the resonant energetic particle pressure. At the threshold for the onset of the energetic particle mode (EPM), strong chirping emerges in the lower continuum close to the TAE gap and then, driven by strong continuum damping, chirps rapidly to lower frequencies in the Alfven continuum. An adiabatic theory was developed that accurately replicated the results from the simulation where the nonlinearity was only due to the EPM resonant particles. The results show that the EPM-trapped particles have their action conserved during the time of rapid chirping. This adiabaticity enabled wave trapped particles to be confined within their separatrix, and produce even larger resonant structures, that can produce a large amplitude mode far from linearly predicted frequencies. In the present work we describe the effect of additional MHD nonlinearity to this calculation. We studied how the zonal flow component and its nonlinear feedback to the fundamental frequency and found that the MHD nonlinearity doesn't significantly alter the frequency chirping response that is predicted by the calculation that neglects the MHD nonlinearity.
Sixty years of interest in flow and transport theories: Sources of inspiration and a few results
NASA Astrophysics Data System (ADS)
Raats, Peter A. C.
2016-04-01
By choosing to major in soil physics at Wageningen now exactly 60 years ago, I could combine my interest in exact sciences with my experience of growing up on a farm. I never regretted that choice. In the first twenty years, I profited much from close contacts with members of the immediate post-WW II generation of soil physicists (especially Jerry Bolt, Arnold Klute, Ed Miller, Champ Tanner, Wilford Gardner, John Philip, and Jan van Schilfgaarde), chemical engineers (especially at UW Madison the trio Bob Bird, Warren Stewart and Ed Lightfoot) and experts in continuum mechanics (especially at Johns Hopkins Clifford Truesdell and Jerald Ericksen). As graduate student at Illinois with Klute, to describe flow and transport theories in soil science I initially explored as possible framework thermodynamics of irreversible processes (TIP), but soon switched to the continuum theory of mixtures (CTM), initiated by Truesdell in 1957. In CTM, the balance of forces gave a rational basis for flux equations. CTM allowed me to deal with swelling/shrinkage, role of inertia, boundary conditions, and structured soils. Later, I did use TIP to deal with certain aspects of transfer of water and heat in soils and selective uptake of water and nutrients by plant roots. Recently, a variety of theories for upscaling from the pore scale to the Darcy scale have clarified the potential, limits and common ground of CTM and TIP. A great advantage of CTM is that it provides geometric tools suited for kinematic aspects of flow, transport, and growth/decay processes. In particular, the concept of material coordinates of the solid phase that I used in my PhD thesis to cope with large deformation due to swelling/shrinkage of soils, later also turned to be useful to deal with simultaneous shrinkage and decay in peat soils and compost heaps, and the growth of plant tissues. Also, by focusing on the material coordinates for the water, it became possible to describe transport of solutes in unsaturated soils and selective uptake of water and solutes in saline soils and to explore the rational basis for residence time distribution functions and input-output relationships for flow regions. It turns out to be useful to classify flow patterns on the basis of the presence or absence of time dependence, of the geometry of the region and of the intrinsic nature of the flow pattern arising from the form of the flux equation. For example, the fact that the flux of a fluid with spatially variable density cannot be expressed as proportional to the gradient of a single potential, implies possible non-zero helicity of the flow pattern. Generally, I enjoyed considerable freedom in the choice of theoretical and practical problems to study. Only quite late, I was faced with time consuming, overly strict accountability. I retired early, so as to live healthier and pursue freely my interest in our science and, especially, its history.
Two Back Stress Hardening Models in Rate Independent Rigid Plastic Deformation
NASA Astrophysics Data System (ADS)
Yun, Su-Jin
In the present work, the constitutive relations based on the combination of two back stresses are developed using the Armstrong-Frederick, Phillips and Ziegler’s type hardening rules. Various evolutions of the kinematic hardening parameter can be obtained by means of a simple combination of back stress rate using the rule of mixtures. Thus, a wide range of plastic deformation behavior can be depicted depending on the dominant back stress evolution. The ultimate back stress is also determined for the present combined kinematic hardening models. Since a kinematic hardening rule is assumed in the finite deformation regime, the stress rate is co-rotated with respect to the spin of substructure obtained by incorporating the plastic spin concept. A comparison of the various co-rotational rates is also included. Assuming rigid plasticity, the continuum body consists of the elastic deformation zone and the plastic deformation zone to form a hybrid finite element formulation. Then, the plastic deformation behavior is investigated under various loading conditions with an assumption of the J2 deformation theory. The plastic deformation localization turns out to be strongly dependent on the description of back stress evolution and its associated hardening parameters. The analysis for the shear deformation with fixed boundaries is carried out to examine the deformation localization behavior and the evolution of state variables.
Multiscale modeling and simulation of microtubule-motor-protein assemblies
NASA Astrophysics Data System (ADS)
Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.
2015-12-01
Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.
Multiscale modeling and simulation of microtubule-motor-protein assemblies.
Gao, Tong; Blackwell, Robert; Glaser, Matthew A; Betterton, M D; Shelley, Michael J
2015-01-01
Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.
Multiscale modeling and simulation of microtubule–motor-protein assemblies
Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.
2016-01-01
Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate–consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation. PMID:26764729
Properties of AGN coronae in the NuSTAR era - II. Hybrid plasma
NASA Astrophysics Data System (ADS)
Fabian, A. C.; Lohfink, A.; Belmont, R.; Malzac, J.; Coppi, P.
2017-05-01
The corona, a hot cloud of electrons close to the centre of the accretion disc, produces the hard X-ray power-law continuum commonly seen in luminous active galactic nuclei. The continuum has a high-energy turnover, typically in the range of one to several 100 keV and is suggestive of Comptonization by thermal electrons. We are studying hard X-ray spectra of AGN obtained with NuSTAR after correction for X-ray reflection and under the assumption that coronae are compact, being only a few gravitational radii in size as indicated by reflection and reverberation modelling. Compact coronae raise the possibility that the temperature is limited and indeed controlled by electron-positron pair production, as explored earlier (Paper I). Here, we examine hybrid plasmas in which a mixture of thermal and non-thermal particles is present. Pair production from the non-thermal component reduces the temperature leading to a wider temperature range more consistent with observations.
Continuum Thermodynamics - Part II: Applications and Examples
NASA Astrophysics Data System (ADS)
Albers, Bettina; Wilmanski, Krzysztof
The intention by writing Part II of the book on continuum thermodynamics was the deepening of some issues covered in Part I as well as a development of certain skills in dealing with practical problems of oscopic processes. However, the main motivation for this part is the presentation of main facets of thermodynamics which appear when interdisciplinary problems are considered. There are many monographs on the subjects of solid mechanics and thermomechanics, on fluid mechanics and on coupled fields but most of them cover only special problems in great details which are characteristic for the chosen field. It is rather seldom that relations between these fields are discussed. This concerns, for instance, large deformations of the skeleton of porous materials with diffusion (e.g. lungs), couplings of deformable particles with the fluid motion in suspensions, couplings of adsorption processes and chemical reactions in immiscible mixtures with diffusion, various multi-component aspects of the motion, e.g. of avalanches, such as segregation processes, etc...
Measurements of continuum lowering in solid-density plasmas created from elements and compounds
Ciricosta, O.; Vinko, S. M.; Barbrel, B.; ...
2016-05-23
The effect of a dense plasma environment on the energy levels of an embedded ion is usually described in terms of the lowering of its continuum level. For strongly coupled plasmas, the phenomenon is intimately related to the equation of state; hence, an accurate treatment is crucial for most astrophysical and inertial-fusion applications, where the case of plasma mixtures is of particular interest. In this study, we present an experiment showing that the standard density-dependent analytical models are inadequate to describe solid-density plasmas at the temperatures studied, where the reduction of the binding energies for a given species is unaffectedmore » by the different plasma environment (ion density) in either the element or compounds of that species, and can be accurately estimated by calculations only involving the energy levels of an isolated neutral atom. Lastly, the results have implications for the standard approaches to the equation of state calculations.« less
Modeling of active transmembrane transport in a mixture theory framework.
Ateshian, Gerard A; Morrison, Barclay; Hung, Clark T
2010-05-01
This study formulates governing equations for active transport across semi-permeable membranes within the framework of the theory of mixtures. In mixture theory, which models the interactions of any number of fluid and solid constituents, a supply term appears in the conservation of linear momentum to describe momentum exchanges among the constituents. In past applications, this momentum supply was used to model frictional interactions only, thereby describing passive transport processes. In this study, it is shown that active transport processes, which impart momentum to solutes or solvent, may also be incorporated in this term. By projecting the equation of conservation of linear momentum along the normal to the membrane, a jump condition is formulated for the mechano-electrochemical potential of fluid constituents which is generally applicable to nonequilibrium processes involving active transport. The resulting relations are simple and easy to use, and address an important need in the membrane transport literature.
Mixtures of bosonic and fermionic atoms in optical lattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albus, Alexander; Dipartimento di Fisica, Universita di Salerno, Via S. Allende, I-84081 Baronissi; Illuminati, Fabrizio
2003-08-01
We discuss the theory of mixtures of bosonic and fermionic atoms in periodic potentials at zero temperature. We derive a general Bose-Fermi Hubbard Hamiltonian in a one-dimensional optical lattice with a superimposed harmonic trapping potential. We study the conditions for linear stability of the mixture and derive a mean-field criterion for the onset of a bosonic superfluid transition. We investigate the ground-state properties of the mixture in the Gutzwiller formulation of mean-field theory, and present numerical studies of finite systems. The bosonic and fermionic density distributions and the onset of quantum phase transitions to demixing and to a bosonic Mott-insulatormore » are studied as a function of the lattice potential strength. The existence is predicted of a disordered phase for mixtures loaded in very deep lattices. Such a disordered phase possessing many degenerate or quasidegenerate ground states is related to a breaking of the mirror symmetry in the lattice.« less
NASA Technical Reports Server (NTRS)
Hutton, J. F.
1973-01-01
The structure of the modern theory of rheology is discussed to show the assumptions and limitations. Rheology is discussed as a branch of continuum mechanics to determine the relationships between stress, strain, and strain rate which will give a closer representation of lubricant properties than the Newtonian flow equation. Rheology is also investigated as a branch of chemical physics. Consideration is limited to those theories of nonpolymeric and polymeric fluids which can represent viscoelasticity in terms of identifiable and measureable molecular characteristics. The possibility that elastic liquids may rupture in shear and linear tension analogous to the failure of solids is proposed.
Rahimi, Mahshid; Singh, Jayant K; Müller-Plathe, Florian
2016-02-07
The adsorption and separation behavior of SO2-CO2, SO2-N2 and CO2-N2 binary mixtures in bundles of aligned double-walled carbon nanotubes is investigated using the grand-canonical Monte Carlo (GCMC) method and ideal adsorbed solution theory. Simulations were performed at 303 K with nanotubes of 3 nm inner diameter and various intertube distances. The results showed that the packing with an intertube distance d = 0 has the highest selectivity for SO2-N2 and CO2-N2 binary mixtures. For the SO2-CO2 case, the optimum intertube distance for having the maximum selectivity depends on the applied pressure, so that at p < 0.8 bar d = 0 shows the highest selectivity and at 0.8 bar < p < 2.5 bar, the highest selectivity belongs to d = 0.5 nm. Ideal adsorbed solution theory cannot predict the adsorption of the binary systems containing SO2, especially when d = 0. As the intertube distance is increased, the ideal adsorbed solution theory based predictions become closer to those of GCMC simulations. Only in the case of CO2-N2, ideal adsorbed solution theory is everywhere in good agreement with simulations. In a ternary mixture of all three gases, the behavior of SO2 and CO2 remains similar to that in a SO2-CO2 binary mixture because of the weak interaction between N2 molecules and CNTs.
Amin, Mohd C I; Fell, John T
2004-01-01
Percolation theory has been used with great interest in understanding the design and characterization of dosage forms. In this study, work has been carried out to investigate the behavior of binary mixture tablets containing excipients of similar and different deformation properties. The binary mixture tablets were prepared by direct compression using lactose, polyvinyl chloride (PVC), Eudragit RS 100, and microcrystalline cellulose (MCC). The application of percolation theory on the relationships between compactibility, Pmax, or compression susceptibility (compressibility), gamma, and mixture compositions reveals the presence of percolation thresholds even for mixtures of similar deformation properties. The results showed that all mixture compositions exhibited at least one discreet change in the slope, which was referred to as the percolation threshold. The PVC/Eudragit RS100 mixture compositions showed significant percolation threshold at 80% (w/w) PVC loading. Two percolation thresholds were observed from a series of binary mixtures containing similar plastic deformation materials (PVC/MCC). The percolation thresholds were determined at 20% (w/w) and 80% (w/w) PVC loading. These are areas where one of the components percolates throughout the system and the properties of the tablets are expected to experience a sudden change. Experimental results, however, showed that total disruption of the tablet physical properties at the specified percolation thresholds can be observed for PVC/lactose mixtures at 20-30% (w/w) loading while only minor changes in the tablets' strength for PVC/MCC or PVC/Eudragit RS 100 mixtures were observed.
Semiclassical theory of electronically nonadiabatic transitions in molecular collision processes
NASA Technical Reports Server (NTRS)
Lam, K. S.; George, T. F.
1979-01-01
An introductory account of the semiclassical theory of the S-matrix for molecular collision processes is presented, with special emphasis on electronically nonadiabatic transitions. This theory is based on the incorporation of classical mechanics with quantum superposition, and in practice makes use of the analytic continuation of classical mechanics into the complex space of time domain. The relevant concepts of molecular scattering theory and related dynamical models are described and the formalism is developed and illustrated with simple examples - collinear collision of the A+BC type. The theory is then extended to include the effects of laser-induced nonadiabatic transitions. Two bound continuum processes collisional ionization and collision-induced emission also amenable to the same general semiclassical treatment are discussed.
Literature and Composition in the Two-Year College: Love Affair or One-Night Stand?
ERIC Educational Resources Information Center
Lederman, Marie Jean
1985-01-01
Argues that after a decade of intense concentration on the theory and practice of writing, it is now important for literature to reenter the composition classroom and to become part of a course that teaches "language skills" as a continuum. (FL)
Magnetohydrodynamic and gasdynamic theories for planetary bow waves
NASA Technical Reports Server (NTRS)
Spreiter, John R.; Stahara, Stephen S.
1985-01-01
A bow wave was previously observed in the solar wind upstream of each of the first six planets. The observed properties of these bow waves and the associated plasma flows are outlined, and those features identified that can be described by a continuum magnetohydrodynamic flow theory. An account of the fundamental concepts and current status of the magnetohydrodynamic and gas dynamic theories for solar wind flow past planetary bodies is provided. This includes a critical examination of: (1) the fundamental assumptions of the theories; (2) the various simplifying approximations introduced to obtain tractable mathematical problems; (3) the limitations they impose on the results; and (4) the relationship between the results of the simpler gas dynamic-frozen field theory and the more accurate but less completely worked out magnetohydrodynamic theory. Representative results of the various theories are presented and compared.
Magnetohydrodynamic and gasdynamic theories for planetary bow waves
NASA Technical Reports Server (NTRS)
Spreiter, J. R.; Stahara, S. S.
1983-01-01
A bow wave was previously observed in the solar wind upstream of each of the first six planets. The observed properties of these bow waves and the associated plasma flows are outlined, and those features identified that can be described by a continuum magnetohydrodynamic flow theory. An account of the fundamental concepts and current status of the magnetohydrodynamic and gas dynamic theories for solar wind flow past planetary bodies is provided. This includes a critical examination of: (1) the fundamental assumptions of the theories; (2) the various simplifying approximations introduced to obtain tractable mathematical problems; (3) the limitations they impose on the results; and (4) the relationship between the results of the simpler gas dynamic-frozen field theory and the more accurate but less completely worked out magnetohydrodynamic theory. Representative results of the various theories are presented and compared.
Mixture IRT Model with a Higher-Order Structure for Latent Traits
ERIC Educational Resources Information Center
Huang, Hung-Yu
2017-01-01
Mixture item response theory (IRT) models have been suggested as an efficient method of detecting the different response patterns derived from latent classes when developing a test. In testing situations, multiple latent traits measured by a battery of tests can exhibit a higher-order structure, and mixtures of latent classes may occur on…
On lattice chiral gauge theories
NASA Technical Reports Server (NTRS)
Maiani, L.; Rossi, G. C.; Testa, M.
1991-01-01
The Smit-Swift-Aoki formulation of a lattice chiral gauge theory is presented. In this formulation the Wilson and other non invariant terms in the action are made gauge invariant by the coupling with a nonlinear auxilary scalar field, omega. It is shown that omega decouples from the physical states only if appropriate parameters are tuned so as to satisfy a set of BRST identities. In addition, explicit ghost fields are necessary to ensure decoupling. These theories can give rise to the correct continuum limit. Similar considerations apply to schemes with mirror fermions. Simpler cases with a global chiral symmetry are discussed and it is shown that the theory becomes free at decoupling. Recent numerical simulations agree with those considerations.
Time evolution of complexity in Abelian gauge theories
NASA Astrophysics Data System (ADS)
Hashimoto, Koji; Iizuka, Norihiro; Sugishita, Sotaro
2017-12-01
Quantum complexity is conjectured to probe inside of black hole horizons (or wormholes) via gauge gravity correspondence. In order to have a better understanding of this correspondence, we study time evolutions of complexities for Abelian pure gauge theories. For this purpose, we discretize the U (1 ) gauge group as ZN and also the continuum spacetime as lattice spacetime, and this enables us to define a universal gate set for these gauge theories and to evaluate time evolutions of the complexities explicitly. We find that to achieve a large complexity ˜exp (entropy), which is one of the conjectured criteria necessary to have a dual black hole, the Abelian gauge theory needs to be maximally nonlocal.
Multi-scale Rule-of-Mixtures Model of Carbon Nanotube/Carbon Fiber/Epoxy Lamina
NASA Technical Reports Server (NTRS)
Frankland, Sarah-Jane V.; Roddick, Jaret C.; Gates, Thomas S.
2005-01-01
A unidirectional carbon fiber/epoxy lamina in which the carbon fibers are coated with single-walled carbon nanotubes is modeled with a multi-scale method, the atomistically informed rule-of-mixtures. This multi-scale model is designed to include the effect of the carbon nanotubes on the constitutive properties of the lamina. It included concepts from the molecular dynamics/equivalent continuum methods, micromechanics, and the strength of materials. Within the model both the nanotube volume fraction and nanotube distribution were varied. It was found that for a lamina with 60% carbon fiber volume fraction, the Young's modulus in the fiber direction varied with changes in the nanotube distribution, from 138.8 to 140 GPa with nanotube volume fractions ranging from 0.0001 to 0.0125. The presence of nanotube near the surface of the carbon fiber is therefore expected to have a small, but positive, effect on the constitutive properties of the lamina.
Mediating Language Learning: Teacher Interactions with ESL Students in a Content-Based Classroom.
ERIC Educational Resources Information Center
Gibbons, Pauline
2003-01-01
Draws on constructs of "mediation" from sociocultural theory and "mode continuum" from systemic functional linguistics to investigate how student-teacher talk in a content-based classroom contributes to learners' language development. Shows how teachers mediate between students' linguistic levels in English and their…
Reinventing Material Science - Continuum Magazine | NREL
to reinvent an entire field of study, but that is exactly what the Center for Inverse Design is functional materials by developing an "inverse design" approach, powered by theory that guides experiment. The Center for Inverse Design was established as an Energy Frontier Research Center, funded by
Scaling a Single Attribute: A Methodological Study of Conservation
ERIC Educational Resources Information Center
Hofmann, Richard J.; Trepanier, Mary
1975-01-01
This study was designed to assess the acquisition of conservation of number on equal addition tasks through scalogram analysis to determine if this analysis defines a scale or continuum. Ten block tasks administered to 85 kindergarten children validated Piaget's theory that cognitive development is sequential and continuous. (Author/ED)
A Business Advisor's Guide to Counseling Theories.
ERIC Educational Resources Information Center
Boyd, John A.
For the small business advisor, consulting and counseling are part of the same continuum. Advisors' roles can be aligned hierarchically: (1) advisors may need simply to provide business information or expertise; (2) they may need to facilitate the business process, helping clients identify problems and discover their own solutions; (3) for clients…
Role of Experience and Context in Learning To Diagnose Lyme Disease.
ERIC Educational Resources Information Center
Bakken, Lori L.
2002-01-01
Using grounded theory, the learning processes used by nine physicians to diagnose Lyme Disease were investigated. Repetition and counterexperiences served to frame the problem along a continuum of familiarity. Results suggest ways to prepare case studies that include variety, repetition, and counterexperiences to teach diagnosis. (Contains 28…
How Motivation Influences Student Engagement: A Qualitative Case Study
ERIC Educational Resources Information Center
Saeed, Sitwat; Zyngier, David
2012-01-01
The authors use Ryan and Deci's (2000) Self-Determination Theory (SDT) to better understand how student motivation and engagement are linked combined with Schlechty's Student Engagement Continuum to analyse the impact of intrinsic and extrinsic motivation on students' different engagement types. The study seeks to understand which type of…
Radiation Forces and Torques without Stress (Tensors)
ERIC Educational Resources Information Center
Bohren, Craig F.
2011-01-01
To understand radiation forces and torques or to calculate them does not require invoking photon or electromagnetic field momentum transfer or stress tensors. According to continuum electromagnetic theory, forces and torques exerted by radiation are a consequence of electric and magnetic fields acting on charges and currents that the fields induce…
Elementary Quantum Mechanics in a High-Energy Process
ERIC Educational Resources Information Center
Denville, A.; And Others
1978-01-01
Compares two approaches to strong absorption in elementary quantum mechanics; the black sphere and a model based on the continuum theory of nuclear reactions. Examines the application to proton-antiproton interactions at low momenta and concludes that the second model is the appropriate and simplest to use. (Author/GA)
A Model of Cognitive Enhancement.
ERIC Educational Resources Information Center
Martinez, Michael E.
The pursuit of a science of mind has been marked by persistent conceptual tension. At one pole, exemplified by Piaget, the mind is characterized in terms of overarching principles. At the other end of the continuum, theory is more concerned with modeling particulars, as represented by the information processing model. This paper explores the…
Z mode radiation in Jupiter's magnetosphere - The source of Jovian continuum radiation
NASA Technical Reports Server (NTRS)
Barbosa, D. D.; Kurth, W. S.; Moses, S. L.; Scarf, F. L.
1990-01-01
Observations of Z-mode waves in Jupiter's magnetosphere are analyzed. The assumption that the frequency of the intensity minimum, which isolates the signal, corresponds to the electron plasma frequency provides a consistent interpretation of all spectral features in terms of plasma resonances and cutoffs. It is shown that the continuum radiation is composed of both left-hand and right-hand polarized waves with distinct cutoffs observed at the plasma frequency and right-hand cutoff frequency, respectively. It is found that the Z-mode peak frequency lies close to the left-hand cutoff frequency, suggesting that the observed characteristics of the emission are the result of wave reflection at the cutoff layer. Another distinct emission occurring near the upper hybrid resonance frequency is detected simultaneously with the Z mode. The entire set of observations gives strong support to the linear mode theory of the conversion of upper hybrid waves to continuum radiation mediated by the Z mode via the Budden radio window mechanism.
Fractal continuum model for tracer transport in a porous medium.
Herrera-Hernández, E C; Coronado, M; Hernández-Coronado, H
2013-12-01
A model based on the fractal continuum approach is proposed to describe tracer transport in fractal porous media. The original approach has been extended to treat tracer transport and to include systems with radial and uniform flow, which are cases of interest in geoscience. The models involve advection due to the fluid motion in the fractal continuum and dispersion whose mathematical expression is taken from percolation theory. The resulting advective-dispersive equations are numerically solved for continuous and for pulse tracer injection. The tracer profile and the tracer breakthrough curve are evaluated and analyzed in terms of the fractal parameters. It has been found in this work that anomalous transport frequently appears, and a condition on the fractal parameter values to predict when sub- or superdiffusion might be expected has been obtained. The fingerprints of fractality on the tracer breakthrough curve in the explored parameter window consist of an early tracer breakthrough and long tail curves for the spherical and uniform flow cases, and symmetric short tailed curves for the radial flow case.
An extended continuum model considering optimal velocity change with memory and numerical tests
NASA Astrophysics Data System (ADS)
Qingtao, Zhai; Hongxia, Ge; Rongjun, Cheng
2018-01-01
In this paper, an extended continuum model of traffic flow is proposed with the consideration of optimal velocity changes with memory. The new model's stability condition and KdV-Burgers equation considering the optimal velocities change with memory are deduced through linear stability theory and nonlinear analysis, respectively. Numerical simulation is carried out to study the extended continuum model, which explores how optimal velocity changes with memory affected velocity, density and energy consumption. Numerical results show that when considering the effects of optimal velocity changes with memory, the traffic jams can be suppressed efficiently. Both the memory step and sensitivity parameters of optimal velocity changes with memory will enhance the stability of traffic flow efficiently. Furthermore, numerical results demonstrates that the effect of optimal velocity changes with memory can avoid the disadvantage of historical information, which increases the stability of traffic flow on road, and so it improve the traffic flow stability and minimize cars' energy consumptions.
Composition measurements of binary mixture droplets by rainbow refractometry.
Wilms, J; Weigand, B
2007-04-10
So far, refractive index measurements by rainbow refractometry have been used to determine the temperature of single droplets and ensembles of droplets. Rainbow refractometry is, for the first time, to the best of our knowledge, applied to measure composition histories of evaporating, binary mixture droplets. An evaluation method is presented that makes use of Airy theory and the simultaneous size measurement by Mie scattering imaging. The method further includes an empirical correction function for a certain diameter and refractive index range. The measurement uncertainty was investigated by numerical simulations with Lorenz-Mie theory. For the experiments, an optical levitation setup was used allowing for long measurement periods. Temperature measurements of single-component droplets at different temperature levels are shown to demonstrate the accuracy of rainbow refractometry. Measurements of size and composition histories of binary mixture droplets are presented for two different mixtures. Experimental results show good agreement with numerical results using a rapid-mixing model.
Multiscale Constitutive Modeling of Asphalt Concrete
NASA Astrophysics Data System (ADS)
Underwood, Benjamin Shane
Multiscale modeling of asphalt concrete has become a popular technique for gaining improved insight into the physical mechanisms that affect the material's behavior and ultimately its performance. This type of modeling considers asphalt concrete, not as a homogeneous mass, but rather as an assemblage of materials at different characteristic length scales. For proper modeling these characteristic scales should be functionally definable and should have known properties. Thus far, research in this area has not focused significant attention on functionally defining what the characteristic scales within asphalt concrete should be. Instead, many have made assumptions on the characteristic scales and even the characteristic behaviors of these scales with little to no support. This research addresses these shortcomings by directly evaluating the microstructure of the material and uses these results to create materials of different characteristic length scales as they exist within the asphalt concrete mixture. The objectives of this work are to; 1) develop mechanistic models for the linear viscoelastic (LVE) and damage behaviors in asphalt concrete at different length scales and 2) develop a mechanistic, mechanistic/empirical, or phenomenological formulation to link the different length scales into a model capable of predicting the effects of microstructural changes on the linear viscoelastic behaviors of asphalt concrete mixture, e.g., a microstructure association model for asphalt concrete mixture. Through the microstructural study it is found that asphalt concrete mixture can be considered as a build-up of three different phases; asphalt mastic, fine aggregate matrix (FAM), and finally the coarse aggregate particles. The asphalt mastic is found to exist as a homogenous material throughout the mixture and FAM, and the filler content within this material is consistent with the volumetric averaged concentration, which can be calculated from the job mix formula. It is also found that the maximum aggregate size of the FAM is mixture dependent, but consistent with a gradation parameter from the Baily Method of mixture design. Mechanistic modeling of these different length scales reveals that although many consider asphalt concrete to be a LVE material, it is in fact only quasi-LVE because it shows some tendencies that are inconsistent with LVE theory. Asphalt FAM and asphalt mastic show similar nonlinear tendencies although the exact magnitude of the effect differs. These tendencies can be ignored for damage modeling in the mixture and FAM scales as long as the effects are consistently ignored, but it is found that they must be accounted for in mastic and binder damage modeling. The viscoelastic continuum damage (VECD) model is used for damage modeling in this research. To aid in characterization and application of the VECD model for cyclic testing, a simplified version (S-VECD) is rigorously derived and verified. Through the modeling efforts at each scale, various factors affecting the fundamental and engineering properties at each scale are observed and documented. A microstructure association model that accounts for particle interaction through physico-chemical processes and the effects of aggregate structuralization is developed to links the moduli at each scale. This model is shown to be capable of upscaling the mixture modulus from either the experimentally determined mastic modulus or FAM modulus. Finally, an initial attempt at upscaling the damage and nonlinearity phenomenon is shown.
Nakamura, Issei
2014-05-29
We studied the thermodynamic properties of ion solvation in polymer blends and block copolymer melts and developed a dipolar self-consistent field theory for polymer mixtures. Our theory accounts for the chain connectivity of polymerized monomers, the compressibility of the liquid mixtures under electrostriction, the permanent and induced dipole moments of monomers, and the resultant dielectric contrast among species. In our coarse-grained model, dipoles are attached to the monomers and allowed to rotate freely in response to electrostatic fields. We demonstrate that a strong electrostatic field near an ion reorganizes dipolar monomers, resulting in nonmonotonic changes in the volume fraction profile and the dielectric function of the polymers with respect to those of simple liquid mixtures. For the parameter sets used, the spatial variations near an ion can be in the range of 1 nm or larger, producing significant differences in the solvation energy among simple liquid mixtures, polymer blends, and block copolymers. The solvation energy of an ion depends substantially on the chain length in block copolymers; thus, our theory predicts the preferential solvation of ions arising from differences in chain length.
NASA Technical Reports Server (NTRS)
Speziale, Charles G.
1988-01-01
The invariance of constitutive equations in continuum mechanics is examined from a basic theoretical standpoint. It is demonstrated the constitutive equations which are not form invariant under arbitrary translational accelerations of the reference frame are in violation of the Einstein equivalane principle. Furthermore, by making use of an analysis based on statistical mechanics, it is argued that any frame-dependent terms in constitutive equations must arise from the intrinsic spin tensor and are negligible provided that the ratio of microscopic to macroscopic time scales is extremely small. The consistency of these results with existing constitutive theories is discussed in detail along with possible avenues of future research.
A continuum model for damage evolution in laminated composites
NASA Technical Reports Server (NTRS)
Lo, D. C.; Allen, D. H.; Harris, C. E.
1991-01-01
The accumulation of matrix cracking is examined using continuum damage mechanics lamination theory. A phenomenologically based damage evolutionary relationship is proposed for matrix cracking in continuous fiber reinforced laminated composites. The use of material dependent properties and damage dependent laminate averaged ply stresses in this evolutionary relationship permits its application independently of the laminate stacking sequence. Several load histories are applied to crossply laminates using this model, and the results are compared to published experimental data. The stress redistribution among the plies during the accumulation of matrix damage is also examined. It is concluded that characteristics of the stress redistribution process could assist in the analysis of the progressive failure process in laminated composites.
NASA Astrophysics Data System (ADS)
Ciappina, M. F.; Fojón, O. A.; Rivarola, R. D.
2018-04-01
We present theoretical calculations of single ionization of He atoms by protons and multiply charged ions. The kinematical conditions are deliberately chosen in such a way that the ejected electron velocity matches the projectile impact velocity. The computed fully differential cross sections (FDCS) in the scattering plane using the continuum-distorted wave-eikonal initial state show a distinct peaked structure for a polar electron emission angle θ k = 0°. This element is absent when a first order theory is employed. Consequently, we can argue that this peak is a clear manifestation of a three-body effect, not observed before in FDCS. We discuss a possible interpretation of this new feature.
Locally-smeared operator product expansions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monahan, Christopher; Orginos, Kostantinos
2014-12-01
We propose a "locally-smeared Operator Product Expansion" (sOPE) to decompose non-local operators in terms of a basis of locally-smeared operators. The sOPE formally connects nonperturbative matrix elements of smeared degrees of freedom, determined numerically using the gradient flow, to non-local operators in the continuum. The nonperturbative matrix elements do not suffer from power-divergent mixing on the lattice, provided the smearing scale is kept fixed in the continuum limit. The presence of this smearing scale prevents a simple connection to the standard operator product expansion and therefore requires the construction of a two-scale formalism. We demonstrate the feasibility of our approachmore » using the example of real scalar field theory.« less
Mechanics of couple-stress fluid coatings
NASA Technical Reports Server (NTRS)
Waxman, A. M.
1982-01-01
The formal development of a theory of viscoelastic surface fluids with bending resistance - their kinematics, dynamics, and rheology are discussed. It is relevant to the mechanics of fluid drops and jets coated by a thin layer of immiscible fluid with rather general rheology. This approach unifies the hydrodynamics of two-dimensional fluids with the mechanics of an elastic shell in the spirit of a Cosserat continuum. There are three distinct facets to the formulation of surface continuum mechanics. Outlined are the important ideas and results associated with each: the kinematics of evolving surface geometries, the conservation laws governing the mechanics of surface continua, and the rheological equations of state governing the surface stress and moment tensors.