NASA Astrophysics Data System (ADS)
Tselyaev, V.; Lyutorovich, N.; Speth, J.; Krewald, S.; Reinhard, P.-G.
2016-09-01
We present results of the time blocking approximation (TBA) for giant resonances in light-, medium-, and heavy-mass nuclei. The TBA is an extension of the widely used random-phase approximation (RPA) adding complex configurations by coupling to phonon excitations. A new method for handling the single-particle continuum is developed and applied in the present calculations. We investigate in detail the dependence of the numerical results on the size of the single-particle space and the number of phonons as well as on nuclear matter properties. Our approach is self-consistent, based on an energy-density functional of Skyrme type where we used seven different parameter sets. The numerical results are compared with experimental data.
Low-lying dipole modes in 26,28Ne in the quasiparticle relativistic random phase approximation
NASA Astrophysics Data System (ADS)
Cao, Li-Gang; Ma, Zhong-Yu
2005-03-01
The low-lying isovector dipole strengths in the neutron-rich nuclei 26Ne and 28Ne are investigated in the quasiparticle relativistic random phase approximation. Nuclear ground-state properties are calculated in an extended relativistic mean field theory plus Bardeen-Cooper-Schrieffer (BCS) method where the contribution of the resonant continuum to pairing correlations is properly treated. Numerical calculations are tested in the case of isovector dipole and isoscalar quadrupole modes in the neutron-rich nucleus 22O. It is found that in the present calculation, low-lying isovector dipole strengths at Ex<10MeV in nuclei 26Ne and 26Ne exhaust about 4.9% and 5.8% of the Thomas-Reiche-Kuhn dipole sum rule, respectively. The centroid energy of the low-lying dipole excitation is located at 8.3 MeV in 26Ne and 7.9 MeV in 28Ne.
Z-dependence of mean excitation energies for second and third row atoms and their ions
NASA Astrophysics Data System (ADS)
Sauer, Stephan P. A.; Sabin, John R.; Oddershede, Jens
2018-05-01
All mean excitation energies for second and third row atoms and their ions are calculated in the random-phase approximation using large basis sets. To a very good approximation, it turns out that mean excitation energies within an isoelectronic series are a quadratic function of the nuclear charge. It is demonstrated that this behavior is linked to the fact that the contributions from continuum electronic states give the dominate contributions to the mean excitation energies and that these contributions for atomic ions appear hydrogen-like. We argue that this finding may present a method to get a first estimate of mean excitation energies also for other non-relativistic atomic ions.
Critical space-time networks and geometric phase transitions from frustrated edge antiferromagnetism
NASA Astrophysics Data System (ADS)
Trugenberger, Carlo A.
2015-12-01
Recently I proposed a simple dynamical network model for discrete space-time that self-organizes as a graph with Hausdorff dimension dH=4 . The model has a geometric quantum phase transition with disorder parameter (dH-ds) , where ds is the spectral dimension of the dynamical graph. Self-organization in this network model is based on a competition between a ferromagnetic Ising model for vertices and an antiferromagnetic Ising model for edges. In this paper I solve a toy version of this model defined on a bipartite graph in the mean-field approximation. I show that the geometric phase transition corresponds exactly to the antiferromagnetic transition for edges, the dimensional disorder parameter of the former being mapped to the staggered magnetization order parameter of the latter. The model has a critical point with long-range correlations between edges, where a continuum random geometry can be defined, exactly as in Kazakov's famed 2D random lattice Ising model but now in any number of dimensions.
Level Density in the Complex Scaling Method
NASA Astrophysics Data System (ADS)
Suzuki, R.; Myo, T.; Katō, K.
2005-06-01
It is shown that the continuum level density (CLD) at unbound energies can be calculated with the complex scaling method (CSM), in which the energy spectra of bound states, resonances and continuum states are obtained in terms of L(2) basis functions. In this method, the extended completeness relation is applied to the calculation of the Green functions, and the continuum-state part is approximately expressed in terms of discretized complex scaled continuum solutions. The obtained result is compared with the CLD calculated exactly from the scattering phase shift. The discretization in the CSM is shown to give a very good description of continuum states. We discuss how the scattering phase shifts can inversely be calculated from the discretized CLD using a basis function technique in the CSM.
Dynamic Effects in the Photoionization of the 6s Subshell of Radon and Nobelium
NASA Astrophysics Data System (ADS)
Keating, David; Manson, Steven; Deshmukh, Pranawa
2017-04-01
Relativistic interactions are very important contributors to atomic properties. Of interest is the alterations made to the wave functions, i.e., the dynamics. These dynamical changes can greatly affect the photoionization cross section of heavy (high Z) atoms. To explore the extent of these dynamic effects a theoretical study of the 6s photoionization cross section of both radon (Z = 86) and nobelium (Z = 102) have been performed using the relativistic random phase approximation (RRPA) methodology. These two cases have been selected because they offer the clearest picture of the effects in question. In order to determine which features in the photoionization cross section are due to relativity, calculations using the (nonrelativistic) random phase approximation with exchange method (RPAE) are performed for comparison. Interchannel coupling can obscure the dynamic effects by ``pulling'' minima out of the discrete spectrum and into the continuum or by inducing minima. Therefore it is necessary to perform calculations without coupling included. This is possible thanks to the RRPA and RPAE codes being able to calculate cross sections with particular channels omitted. Comparisons are presented between calculations with and without interchannel coupling. Work supported by DOE and NSF.
Probabilistic models for reactive behaviour in heterogeneous condensed phase media
NASA Astrophysics Data System (ADS)
Baer, M. R.; Gartling, D. K.; DesJardin, P. E.
2012-02-01
This work presents statistically-based models to describe reactive behaviour in heterogeneous energetic materials. Mesoscale effects are incorporated in continuum-level reactive flow descriptions using probability density functions (pdfs) that are associated with thermodynamic and mechanical states. A generalised approach is presented that includes multimaterial behaviour by treating the volume fraction as a random kinematic variable. Model simplifications are then sought to reduce the complexity of the description without compromising the statistical approach. Reactive behaviour is first considered for non-deformable media having a random temperature field as an initial state. A pdf transport relationship is derived and an approximate moment approach is incorporated in finite element analysis to model an example application whereby a heated fragment impacts a reactive heterogeneous material which leads to a delayed cook-off event. Modelling is then extended to include deformation effects associated with shock loading of a heterogeneous medium whereby random variables of strain, strain-rate and temperature are considered. A demonstrative mesoscale simulation of a non-ideal explosive is discussed that illustrates the joint statistical nature of the strain and temperature fields during shock loading to motivate the probabilistic approach. This modelling is derived in a Lagrangian framework that can be incorporated in continuum-level shock physics analysis. Future work will consider particle-based methods for a numerical implementation of this modelling approach.
NASA Astrophysics Data System (ADS)
Challis, R. E.; Tebbutt, J. S.; Holmes, A. K.
1998-12-01
The aim of this paper is to present a unified approach to the calculation of the complex wavenumber for a randomly distributed ensemble of homogeneous isotropic spheres suspended in a homogeneous isotropic continuum. Three classical formulations of the diffraction problem for a compression wave incident on a single particle are reviewed; the first is for liquid particles in a liquid continuum (Epstein and Carhart), the second for solid or liquid particles in a liquid continuum (Allegra and Hawley), and the third for solid particles in a solid continuum (Ying and Truell). Equivalences between these formulations are demonstrated and it is shown that the Allegra and Hawley formulation can be adapted to provide a basis for calculation in all three regimes. The complex wavenumber that results from an ensemble of such scatterers is treated using the formulations of Foldy (simple forward scattering), Waterman and Truell, and Lloyd and Berry (multiple scattering). The analysis is extended to provide an approximation for the case of a distribution of particle sizes in the mixture. A number of experimental measurements using a broadband spectrometric technique (reported elsewhere) to obtain the attenuation coefficient and phase velocity as functions of frequency are presented for various mixtures of differing contrasts in physical properties between phases in order to provide a comparison with theory. The materials used were aqueous suspensions of polystyrene spheres, silica spheres, iron spheres, 0022-3727/31/24/012/img1 pigment (AHR), droplets of 1-bromohexadecane, and a suspension of talc particles in a cured epoxy resin.
Sousa, Sérgio Filipe; Fernandes, Pedro Alexandrino; Ramos, Maria João
2009-12-31
Gas-phase optimization of single biological molecules and of small active-site biological models has become a standard approach in first principles computational enzymology. The important role played by the surrounding environment (solvent, enzyme, both) is normally only accounted for through higher-level single point energy calculations performed using a polarizable continuum model (PCM) and an appropriate dielectric constant with the gas-phase-optimized geometries. In this study we analyze this widely used approximation, by comparing gas-phase-optimized geometries with geometries optimized with different PCM approaches (and considering different dielectric constants) for a representative data set of 20 very important biological molecules--the 20 natural amino acids. A total of 323 chemical bonds and 469 angles present in standard amino acid residues were evaluated. The results show that the use of gas-phase-optimized geometries can in fact be quite a reasonable alternative to the use of the more computationally intensive continuum optimizations, providing a good description of bond lengths and angles for typical biological molecules, even for charged amino acids, such as Asp, Glu, Lys, and Arg. This approximation is particularly successful if the protonation state of the biological molecule could be reasonably described in vacuum, a requirement that was already necessary in first principles computational enzymology.
Wen, J. -J.; Koohpayeh, S. M.; Ross, K. A.; ...
2017-03-08
Inelastic neutron scattering reveals a broad continuum of excitations in Pr 2 Zr 2 O 7 , the temperature and magnetic field dependence of which indicate a continuous distribution of quenched transverse fields ( Δ ) acting on the non-Kramers Pr 3 + crystal field ground state doublets. Spin-ice correlations are apparent within 0.2 meV of the Zeeman energy. In a random phase approximation an excellent account of the data is provided and contains a transverse field distribution ρ ( Δ ) ∝ ( Δ 2 + Γ 2 ) - 1 , where Γ = 0.27 ( 1 )more » meV . Established during high temperature synthesis due to an underlying structural instability, it appears disorder in Pr 2 Zr 2 O 7 actually induces a quantum spin liquid.« less
Differential porosimetry and permeametry for random porous media.
Hilfer, R; Lemmer, A
2015-07-01
Accurate determination of geometrical and physical properties of natural porous materials is notoriously difficult. Continuum multiscale modeling has provided carefully calibrated realistic microstructure models of reservoir rocks with floating point accuracy. Previous measurements using synthetic microcomputed tomography (μ-CT) were based on extrapolation of resolution-dependent properties for discrete digitized approximations of the continuum microstructure. This paper reports continuum measurements of volume and specific surface with full floating point precision. It also corrects an incomplete description of rotations in earlier publications. More importantly, the methods of differential permeametry and differential porosimetry are introduced as precision tools. The continuum microstructure chosen to exemplify the methods is a homogeneous, carefully calibrated and characterized model for Fontainebleau sandstone. The sample has been publicly available since 2010 on the worldwide web as a benchmark for methodical studies of correlated random media. High-precision porosimetry gives the volume and internal surface area of the sample with floating point accuracy. Continuum results with floating point precision are compared to discrete approximations. Differential porosities and differential surface area densities allow geometrical fluctuations to be discriminated from discretization effects and numerical noise. Differential porosimetry and Fourier analysis reveal subtle periodic correlations. The findings uncover small oscillatory correlations with a period of roughly 850μm, thus implying that the sample is not strictly stationary. The correlations are attributed to the deposition algorithm that was used to ensure the grain overlap constraint. Differential permeabilities are introduced and studied. Differential porosities and permeabilities provide scale-dependent information on geometry fluctuations, thereby allowing quantitative error estimates.
Isoscalar and isovector giant resonances in a self-consistent phonon coupling approach
NASA Astrophysics Data System (ADS)
Lyutorovich, N.; Tselyaev, V.; Speth, J.; Krewald, S.; Grümmer, F.; Reinhard, P.-G.
2015-10-01
We present fully self-consistent calculations of isoscalar giant monopole and quadrupole as well as isovector giant dipole resonances in heavy and light nuclei. The description is based on Skyrme energy-density functionals determining the static Hartree-Fock ground state and the excitation spectra within random-phase approximation (RPA) and RPA extended by including the quasiparticle-phonon coupling at the level of the time-blocking approximation (TBA). All matrix elements were derived consistently from the given energy-density functional and calculated without any approximation. As a new feature in these calculations, the single-particle continuum was included thus avoiding the artificial discretization usually implied in RPA and TBA. The step to include phonon coupling in TBA leads to small, but systematic, down shifts of the centroid energies of the giant resonances. These shifts are similar in size for all Skyrme parametrizations investigated here. After all, we demonstrate that one can find Skyrme parametrizations which deliver a good simultaneous reproduction of all three giant resonances within TBA.
Boson expansions based on the random phase approximation representation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedrocchi, V.G.; Tamura, T.
1984-04-01
A new boson expansion theory based on the random phase approximation is presented. The boson expansions are derived here directly in the random phase approximation representation with the help of a technique that combines the use of the Usui operator with that of a new bosonization procedure, called the term-by-term bosonization method. The present boson expansion theory is constructed by retaining a single collective quadrupole random phase approximation component, a truncation that allows for a perturbative treatment of the whole problem. Both Hermitian, as well as non-Hermitian boson expansions, valid for even nuclei, are obtained.
Calculation of photoionization differential cross sections using complex Gauss-type orbitals.
Matsuzaki, Rei; Yabushita, Satoshi
2017-09-05
Accurate theoretical calculation of photoelectron angular distributions for general molecules is becoming an important tool to image various chemical reactions in real time. We show in this article that not only photoionization total cross sections but also photoelectron angular distributions can be accurately calculated using complex Gauss-type orbital (cGTO) basis functions. Our method can be easily combined with existing quantum chemistry techniques including electron correlation effects, and applied to various molecules. The so-called two-potential formula is applied to represent the transition dipole moment from an initial bound state to a final continuum state in the molecular coordinate frame. The two required continuum functions, the zeroth-order final continuum state and the first-order wave function induced by the photon field, have been variationally obtained using the complex basis function method with a mixture of appropriate cGTOs and conventional real Gauss-type orbitals (GTOs) to represent the continuum orbitals as well as the remaining bound orbitals. The complex orbital exponents of the cGTOs are optimized by fitting to the outgoing Coulomb functions. The efficiency of the current method is demonstrated through the calculations of the asymmetry parameters and molecular-frame photoelectron angular distributions of H2+ and H2 . In the calculations of H2 , the static exchange and random phase approximations are employed, and the dependence of the results on the basis functions is discussed. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Badalyan, S. M.; Kim, C. S.; Vignale, G.; Senatore, G.
2007-03-01
We investigate the effect of exchange and correlation (XC) on the plasmon spectrum and the Coulomb drag between spatially separated low-density two-dimensional electron layers. We adopt a different approach, which employs dynamic XC kernels in the calculation of the bilayer plasmon spectra and of the plasmon-mediated drag, and static many-body local field factors in the calculation of the particle-hole contribution to the drag. The spectrum of bilayer plasmons and the drag resistivity are calculated in a broad range of temperatures taking into account both intra- and interlayer correlation effects. We observe that both plasmon modes are strongly affected by XC corrections. After the inclusion of the complex dynamic XC kernels, a decrease of the electron density induces shifts of the plasmon branches in opposite directions. This is in stark contrast with the tendency observed within random phase approximation that both optical and acoustical plasmons move away from the boundary of the particle-hole continuum with a decrease in the electron density. We find that the introduction of XC corrections results in a significant enhancement of the transresistivity and qualitative changes in its temperature dependence. In particular, the large high-temperature plasmon peak that is present in the random phase approximation is found to disappear when the XC corrections are included. Our numerical results at low temperatures are in good agreement with the results of recent experiments by Kellogg [Solid State Commun. 123, 515 (2002)].
Continuum theory for cluster morphologies of soft colloids.
Kosmrlj, A; Pauschenwein, G J; Kahl, G; Ziherl, P
2011-06-09
We introduce a continuum description of the thermodynamics of colloids with a core-corona architecture. In the case of thick coronas, their overlap can be treated approximately by replacing the exact one-particle density distribution by a suitably shaped step profile, which provides a convenient way of modeling the spherical, columnar, lamellar, and inverted cluster morphologies predicted by numerical simulations and the more involved theories. We use the model to study monodisperse particles with the hard-core/square-shoulder pair interaction as the simplest representatives of the core-corona class. We derive approximate analytical expressions for the enthalpies of the cluster morphologies which offer a clear insight into the mechanisms at work, and we calculate the lattice spacing and the cluster size for all morphologies of the phase sequence as well as the phase-transition pressures. By comparing the results with the exact crystalline minimum-enthalpy configurations, we show that the accuracy of the theory increases with shoulder width. We discuss possible extensions of the theory that could account for the finite-temperature effects.
Subtraction method in the Second Random Phase Approximation
NASA Astrophysics Data System (ADS)
Gambacurta, Danilo
2018-02-01
We discuss the subtraction method applied to the Second Random Phase Approximation (SRPA). This method has been proposed to overcome double counting and stability issues appearing in beyond mean-field calculations. We show that the subtraction procedure leads to a considerable reduction of the SRPA downwards shift with respect to the random phase approximation (RPA) spectra and to results that are weakly cutoff dependent. Applications to the isoscalar monopole and quadrupole response in 16O and to the low-lying dipole response in 48Ca are shown and discussed.
Filters for Improvement of Multiscale Data from Atomistic Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, David J.; Reynolds, Daniel R.
Multiscale computational models strive to produce accurate and efficient numerical simulations of systems involving interactions across multiple spatial and temporal scales that typically differ by several orders of magnitude. Some such models utilize a hybrid continuum-atomistic approach combining continuum approximations with first-principles-based atomistic models to capture multiscale behavior. By following the heterogeneous multiscale method framework for developing multiscale computational models, unknown continuum scale data can be computed from an atomistic model. Concurrently coupling the two models requires performing numerous atomistic simulations which can dominate the computational cost of the method. Furthermore, when the resulting continuum data is noisy due tomore » sampling error, stochasticity in the model, or randomness in the initial conditions, filtering can result in significant accuracy gains in the computed multiscale data without increasing the size or duration of the atomistic simulations. In this work, we demonstrate the effectiveness of spectral filtering for increasing the accuracy of noisy multiscale data obtained from atomistic simulations. Moreover, we present a robust and automatic method for closely approximating the optimum level of filtering in the case of additive white noise. By improving the accuracy of this filtered simulation data, it leads to a dramatic computational savings by allowing for shorter and smaller atomistic simulations to achieve the same desired multiscale simulation precision.« less
Filters for Improvement of Multiscale Data from Atomistic Simulations
Gardner, David J.; Reynolds, Daniel R.
2017-01-05
Multiscale computational models strive to produce accurate and efficient numerical simulations of systems involving interactions across multiple spatial and temporal scales that typically differ by several orders of magnitude. Some such models utilize a hybrid continuum-atomistic approach combining continuum approximations with first-principles-based atomistic models to capture multiscale behavior. By following the heterogeneous multiscale method framework for developing multiscale computational models, unknown continuum scale data can be computed from an atomistic model. Concurrently coupling the two models requires performing numerous atomistic simulations which can dominate the computational cost of the method. Furthermore, when the resulting continuum data is noisy due tomore » sampling error, stochasticity in the model, or randomness in the initial conditions, filtering can result in significant accuracy gains in the computed multiscale data without increasing the size or duration of the atomistic simulations. In this work, we demonstrate the effectiveness of spectral filtering for increasing the accuracy of noisy multiscale data obtained from atomistic simulations. Moreover, we present a robust and automatic method for closely approximating the optimum level of filtering in the case of additive white noise. By improving the accuracy of this filtered simulation data, it leads to a dramatic computational savings by allowing for shorter and smaller atomistic simulations to achieve the same desired multiscale simulation precision.« less
Long-term persistence of solar activity
NASA Technical Reports Server (NTRS)
Ruzmaikin, Alexander; Feynman, Joan; Robinson, Paul
1994-01-01
We examine the question of whether or not the non-periodic variations in solar activity are caused by a white-noise, random process. The Hurst exponent, which characterizes the persistence of a time series, is evaluated for the series of C-14 data for the time interval from about 6000 BC to 1950 AD. We find a constant Hurst exponent, suggesting that solar activity in the frequency range from 100 to 3000 years includes an important continuum component in addition to the well-known periodic variations. The value we calculate, H approximately 0.8, is significantly larger than the value of 0.5 that would correspond to variations produced by a white-noise process. This value is in good agreement with the results for the monthly sunspot data reported elsewhere, indicating that the physics that produces the continuum is a correlated random process and that it is the same type of process over a wide range of time interval lengths.
Microscopic description of elastic and direct inelastic nucleon scattering off spherical nuclei
NASA Astrophysics Data System (ADS)
Dupuis, M.
2017-05-01
The purpose of this study is to improve the modeling of nucleon direct inelastic scattering to the continuum using a microscopic and parameter-free approach. For the first time, direct elastic scattering, inelastic scattering to discrete excitations and to the continuum are described within a microscopic approach without adjustable parameters. Proton scattering off 90Zr and 208Pb are the reactions used as test case examples of the calculations. The model uses the Melbourne g-matrix and the Random Phase Approximation description of nuclear states, implemented with the Gogny D1S interaction. The relevant optical and transition potentials in a finite nucleus are calculated within a local density approximation. As we use the nuclear matter approach we limit our study to incident energies above 40 MeV. We first checked that this model provides an accurate account of measured cross sections for elastic scattering and inelastic scattering to discrete states. It is then applied to the direct inelastic scattering to the continuum considering all one-phonon excitations predicted within the RPA approach. This accounts for a part of the direct pre-equilibrium emission, often labeled as the one-step direct process in quantum-based approaches. Our approach provides a very accurate description of angular distributions where the one-step process dominates. The impact of collective excitations is shown to be non negligible for energy transfer to the target up to 20 MeV, decreasing as the incident energy increases. For incident energies above 80 MeV, our modeling provides a good account of direct proton emission for an energy transfer to the target up to 30 MeV. However, the proton emission we predict underestimates the measured cross sections for incident energies below 80 MeV. We compare our prediction to those of the phenomenological exciton model to help interpret this result. Directions that may improve our modeling are discussed.
Magnetic excitations of the Cu 2 + quantum spin chain in Sr 3 CuPtO 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leiner, J. C.; Oh, Joosung; Kolesnikov, A. I.
Here, we report the magnetic excitation spectrum as measured by inelastic neutron scattering for a polycrystalline sample of Sr 3CuPtO 6. Modeling the data by the 2+4 spinon contributions to the dynamical susceptibility within the chains, and with interchain coupling treated in the random phase approximation, accounts for the major features of the powder-averaged structure factor. The magnetic excitations broaden considerably as temperature is raised, persisting up to above 100 K and displaying a broad transition as previously seen in the susceptibility data. No spin gap is observed in the dispersive spin excitations at low momentum transfer, which is consistentmore » with the gapless spinon continuum expected from the coordinate Bethe ansatz. However, the temperature dependence of the excitation spectrum gives evidence of some very weak interchain coupling.« less
Magnetic excitations of the Cu 2 + quantum spin chain in Sr 3 CuPtO 6
Leiner, J. C.; Oh, Joosung; Kolesnikov, A. I.; ...
2018-03-30
Here, we report the magnetic excitation spectrum as measured by inelastic neutron scattering for a polycrystalline sample of Sr 3CuPtO 6. Modeling the data by the 2+4 spinon contributions to the dynamical susceptibility within the chains, and with interchain coupling treated in the random phase approximation, accounts for the major features of the powder-averaged structure factor. The magnetic excitations broaden considerably as temperature is raised, persisting up to above 100 K and displaying a broad transition as previously seen in the susceptibility data. No spin gap is observed in the dispersive spin excitations at low momentum transfer, which is consistentmore » with the gapless spinon continuum expected from the coordinate Bethe ansatz. However, the temperature dependence of the excitation spectrum gives evidence of some very weak interchain coupling.« less
One-dimensional wave propagation in particulate suspensions
NASA Technical Reports Server (NTRS)
Rochelle, S. G.; Peddieson, J., Jr.
1976-01-01
One-dimensional small-amplitude wave motion in a two-phase system consisting of an inviscid gas and a cloud of suspended particles is analyzed using a continuum theory of suspensions. Laplace transform methods are used to obtain several approximate solutions. Properties of acoustic wave motion in particulate suspensions are inferred from these solutions.
Random phase approximation and cluster mean field studies of hard core Bose Hubbard model
NASA Astrophysics Data System (ADS)
Alavani, Bhargav K.; Gaude, Pallavi P.; Pai, Ramesh V.
2018-04-01
We investigate zero temperature and finite temperature properties of the Bose Hubbard Model in the hard core limit using Random Phase Approximation (RPA) and Cluster Mean Field Theory (CMFT). We show that our RPA calculations are able to capture quantum and thermal fluctuations significantly better than CMFT.
Garner, Bryan R; Zehner, Mark; Roosa, Mathew R; Martino, Steve; Gotham, Heather J; Ball, Elizabeth L; Stilen, Patricia; Speck, Kathryn; Vandersloot, Denna; Rieckmann, Traci R; Chaple, Michael; Martin, Erika G; Kaiser, David; Ford, James H
2017-11-17
Improving the extent to which evidence-based practices (EBPs)-treatments that have been empirically shown to be efficacious or effective-are integrated within routine practice is a well-documented challenge across numerous areas of health. In 2014, the National Institute on Drug Abuse funded a type 2 effectiveness-implementation hybrid trial titled the substance abuse treatment to HIV Care (SAT2HIV) Project. Aim 1 of the SAT2HIV Project tests the effectiveness of a motivational interviewing-based brief intervention (MIBI) for substance use as an adjunct to usual care within AIDS service organizations (ASOs) as part of its MIBI Experiment. Aim 2 of the SAT2HIV Project tests the effectiveness of implementation and sustainment facilitation (ISF) as an adjunct to the Addiction Technology Transfer Center (ATTC) model for training staff in motivational interviewing as part of its ISF Experiment. The current paper describes the study protocol for the ISF Experiment. Using a cluster randomized design, case management and leadership staff from 39 ASOs across the United States were randomized to receive either the ATTC strategy (control condition) or the ATTC + ISF strategy (experimental condition). The ATTC strategy is staff-focused and includes 10 discrete strategies (e.g., provide centralized technical assistance, conduct educational meetings, provide ongoing consultation). The ISF strategy is organization-focused and includes seven discrete strategies (e.g., use an implementation advisor, organize implementation team meetings, conduct cyclical small tests of change). Building upon the exploration-preparation-implementation-sustainment (EPIS) framework, the effectiveness of the ISF strategy is examined via three staff-level measures: (1) time-to-proficiency (i.e., preparation phase outcome), (2) implementation effectiveness (i.e., implementation phase outcome), and (3) level of sustainment (i.e., sustainment phase outcome). Although not without limitations, the ISF experiment has several strengths: a highly rigorous design (randomized, hypothesis-driven), high-need setting (ASOs), large sample size (39 ASOs), large geographic representation (23 states and the District of Columbia), and testing along multiple phases of the EPIS continuum (preparation, implementation, and sustainment). Thus, study findings will significantly improve generalizable knowledge regarding the best preparation, implementation, and sustainment strategies for advancing EBPs along the EPIS continuum. Moreover, increasing ASO's capacity to address substance use may improve the HIV Care Continuum. Trial registration ClinicalTrials.gov: NCT03120598.
Correlation Energies from the Two-Component Random Phase Approximation.
Kühn, Michael
2014-02-11
The correlation energy within the two-component random phase approximation accounting for spin-orbit effects is derived. The resulting plasmon equation is rewritten-analogously to the scalar relativistic case-in terms of the trace of two Hermitian matrices for (Kramers-restricted) closed-shell systems and then represented as an integral over imaginary frequency using the resolution of the identity approximation. The final expression is implemented in the TURBOMOLE program suite. The code is applied to the computation of equilibrium distances and vibrational frequencies of heavy diatomic molecules. The efficiency is demonstrated by calculation of the relative energies of the Oh-, D4h-, and C5v-symmetric isomers of Pb6. Results within the random phase approximation are obtained based on two-component Kohn-Sham reference-state calculations, using effective-core potentials. These values are finally compared to other two-component and scalar relativistic methods, as well as experimental data.
Nuclear structure and weak rates of heavy waiting point nuclei under rp-process conditions
NASA Astrophysics Data System (ADS)
Nabi, Jameel-Un; Böyükata, Mahmut
2017-01-01
The structure and the weak interaction mediated rates of the heavy waiting point (WP) nuclei 80Zr, 84Mo, 88Ru, 92Pd and 96Cd along N = Z line were studied within the interacting boson model-1 (IBM-1) and the proton-neutron quasi-particle random phase approximation (pn-QRPA). The energy levels of the N = Z WP nuclei were calculated by fitting the essential parameters of IBM-1 Hamiltonian and their geometric shapes were predicted by plotting potential energy surfaces (PESs). Half-lives, continuum electron capture rates, positron decay rates, electron capture cross sections of WP nuclei, energy rates of β-delayed protons and their emission probabilities were later calculated using the pn-QRPA. The calculated Gamow-Teller strength distributions were compared with previous calculation. We present positron decay and continuum electron capture rates on these WP nuclei under rp-process conditions using the same model. For the rp-process conditions, the calculated total weak rates are twice the Skyrme HF+BCS+QRPA rates for 80Zr. For remaining nuclei the two calculations compare well. The electron capture rates are significant and compete well with the corresponding positron decay rates under rp-process conditions. The finding of the present study supports that electron capture rates form an integral part of the weak rates under rp-process conditions and has an important role for the nuclear model calculations.
Speckle phase near random surfaces
NASA Astrophysics Data System (ADS)
Chen, Xiaoyi; Cheng, Chuanfu; An, Guoqiang; Han, Yujing; Rong, Zhenyu; Zhang, Li; Zhang, Meina
2018-03-01
Based on Kirchhoff approximation theory, the speckle phase near random surfaces with different roughness is numerically simulated. As expected, the properties of the speckle phase near the random surfaces are different from that in far field. In addition, as scattering distances and roughness increase, the average fluctuations of the speckle phase become larger. Unusually, the speckle phase is somewhat similar to the corresponding surface topography. We have performed experiments to verify the theoretical simulation results. Studies in this paper contribute to understanding the evolution of speckle phase near a random surface and provide a possible way to identify a random surface structure based on its speckle phase.
Polymers at interfaces and in colloidal dispersions.
Fleer, Gerard J
2010-09-15
This review is an extended version of the Overbeek lecture 2009, given at the occasion of the 23rd Conference of ECIS (European Colloid and Interface Society) in Antalya, where I received the fifth Overbeek Gold Medal awarded by ECIS. I first summarize the basics of numerical SF-SCF: the Scheutjens-Fleer version of Self-Consistent-Field theory for inhomogeneous systems, including polymer adsorption and depletion. The conformational statistics are taken from the (non-SCF) DiMarzio-Rubin lattice model for homopolymer adsorption, which enumerates the conformational details exactly by a discrete propagator for the endpoint distribution but does not account for polymer-solvent interaction and for the volume-filling constraint. SF-SCF corrects for this by adjusting the field such that it becomes self-consistent. The model can be generalized to more complex systems: polydispersity, brushes, random and block copolymers, polyelectrolytes, branching, surfactants, micelles, membranes, vesicles, wetting, etc. On a mean-field level the results are exact; the disadvantage is that only numerical data are obtained. Extensions to excluded-volume polymers are in progress. Analytical approximations for simple systems are based upon solving the Edwards diffusion equation. This equation is the continuum variant of the lattice propagator, but ignores the finite segment size (analogous to the Poisson-Boltzmann equation without a Stern layer). By using the discrete propagator for segments next to the surface as the boundary condition in the continuum model, the finite segment size can be introduced into the continuum description, like the ion size in the Stern-Poisson-Boltzmann model. In most cases a ground-state approximation is needed to find analytical solutions. In this way realistic analytical approximations for simple cases can be found, including depletion effects that occur in mixtures of colloids plus non-adsorbing polymers. In the final part of this review I discuss a generalization of the free-volume theory (FVT) for the phase behavior of colloids and non-adsorbing polymer. In FVT the polymer is considered to be ideal: the osmotic pressure Pi follows the Van 't Hoff law, the depletion thickness delta equals the radius of gyration. This restricts the validity of FVT to the so-called colloid limit (polymer much smaller than the colloids). We have been able to find simple analytical approximations for Pi and delta which account for non-ideality and include established results for the semidilute limit. So we could generalize FVT to GFVT, and can now also describe the so-called protein limit (polymer larger than the 'protein-like' colloids), where the binodal polymer concentrations scale in a simple way with the polymer/colloid size ratio. For an intermediate case (polymer size approximately colloid size) we could give a quantitative description of careful experimental data. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pengvanich, P.; Chernin, D. P.; Lau, Y. Y.; Luginsland, J. W.; Gilgenbach, R. M.
2007-11-01
Motivated by the current interest in mm-wave and THz sources, which use miniature, difficult-to-fabricate circuit components, we evaluate the statistical effects of random fabrication errors on a helix traveling wave tube amplifier's small signal characteristics. The small signal theory is treated in a continuum model in which the electron beam is assumed to be monoenergetic, and axially symmetric about the helix axis. Perturbations that vary randomly along the beam axis are introduced in the dimensionless Pierce parameters b, the beam-wave velocity mismatch, C, the gain parameter, and d, the cold tube circuit loss. Our study shows, as expected, that perturbation in b dominates the other two. The extensive numerical data have been confirmed by our analytic theory. They show in particular that the standard deviation of the output phase is linearly proportional to standard deviation of the individual perturbations in b, C, and d. Simple formulas have been derived which yield the output phase variations in terms of the statistical random manufacturing errors. This work was supported by AFOSR and by ONR.
A diffusion approximation for ocean wave scatterings by randomly distributed ice floes
NASA Astrophysics Data System (ADS)
Zhao, Xin; Shen, Hayley
2016-11-01
This study presents a continuum approach using a diffusion approximation method to solve the scattering of ocean waves by randomly distributed ice floes. In order to model both strong and weak scattering, the proposed method decomposes the wave action density function into two parts: the transmitted part and the scattered part. For a given wave direction, the transmitted part of the wave action density is defined as the part of wave action density in the same direction before the scattering; and the scattered part is a first order Fourier series approximation for the directional spreading caused by scattering. An additional approximation is also adopted for simplification, in which the net directional redistribution of wave action by a single scatterer is assumed to be the reflected wave action of a normally incident wave into a semi-infinite ice cover. Other required input includes the mean shear modulus, diameter and thickness of ice floes, and the ice concentration. The directional spreading of wave energy from the diffusion approximation is found to be in reasonable agreement with the previous solution using the Boltzmann equation. The diffusion model provides an alternative method to implement wave scattering into an operational wave model.
NASA Technical Reports Server (NTRS)
Bai, T.
1977-01-01
Observations of solar X-rays and gamma-rays from large flares show that the hard X-ray spectrum extends into the gamma ray region, where a flattening in the spectrum of the continuum emission is observed above about 1 MeV. This emission is believed to be due to bremsstrahlung. In addition to electron-proton collisions, at energies greater than approximately 500 keV, bremsstrahlung due to electron-electron collisions becomes significant. Bremsstrahlung production was calculated for a variety of electron spectra extending from the nonrelativistic region to relativistic energies and electron-electron bremsstrahlung is taken into account. By comparing these calculations with data, it is shown that the flattening in the spectrum of the continuum emission can be best explained by an electron spectrum consisting of two distinctive components. This evidence, together with information on the X-ray and gamma ray time profiles, implied the existence of two phases of acceleration. The first phase accelerates electrons mainly up to about several hundred keV; the second phase accelerates a small fraction of the electrons accelerated in the first phase to relativistic energies and accelerates protons to tens and hundreds of MeV.
Explanatory Versus Pragmatic Trials: An Essential Concept in Study Design and Interpretation.
Merali, Zamir; Wilson, Jefferson R
2017-11-01
Randomized clinical trials often represent the highest level of clinical evidence available to evaluate the efficacy of an intervention in clinical medicine. Although the process of randomization serves to maximize internal validity, the external validity, or generalizability, of such studies depends on several factors determined at the design phase of the trial including eligibility criteria, study setting, and outcomes of interest. In general, explanatory trials are optimized to demonstrate the efficacy of an intervention in a highly selected patient group; however, findings from these studies may not be generalizable to the larger clinical problem. In contrast, pragmatic trials attempt to understand the real-world benefit of an intervention by incorporating design elements that allow for greater generalizability and clinical applicability of study results. In this article we describe the explanatory-pragmatic continuum for clinical trials in greater detail. Further, a well-accepted tool for grading trials on this continuum is described, and applied, to 2 recently published trials pertaining to the surgical management of lumbar degenerative spondylolisthesis.
Use of the ( e , e prime n ) reaction to study the giant multipole resonances in sup 116 Sn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miskimen, R.A.; Ammons, E.A.; Arruda-Neto, J.D.T.
1991-04-01
The giant multipole resonances in {sup 116}Sn have been studied using the ({ital e},{ital e}{prime}{ital n}) reaction. Data were taken at effective momentum transfers of 0.37, 0.45, and 0.55 fm{sup {minus}1} and a multipole analysis of the data was performed. The inferred multipole strength functions identify the {ital E}2 and {ital E}0 resonances as distinct peaks at 12.2 and 17.9 MeV, respectively. The energy-weighted sum-rule strengths for the {ital E}2 and {ital E}0 resonances, obtained using a Lorentzian fit to the data, are 34{plus minus}13% and 93{plus minus}37%. When compared with results from alpha scattering and pion scattering the sum-rulemore » strengths exhibit approximate agreement, but the {ital E}0 strength identified in this measurement lies at higher excitation energy, consistent with the trend observed in heavier nuclei. The ({ital e},{ital e}{prime}{ital n}) data are compared with a continuum random phase approximation (RPA) calculation of the {ital E}2 and {ital E}0 strengths, and with an open-shell RPA calculation of the {ital E}2 strength. Both calculations disagree with the data in the region of the {ital E}2 resonance.« less
Reproduction of exact solutions of Lipkin model by nonlinear higher random-phase approximation
NASA Astrophysics Data System (ADS)
Terasaki, J.; Smetana, A.; Šimkovic, F.; Krivoruchenko, M. I.
2017-10-01
It is shown that the random-phase approximation (RPA) method with its nonlinear higher generalization, which was previously considered as approximation except for a very limited case, reproduces the exact solutions of the Lipkin model. The nonlinear higher RPA is based on an equation nonlinear on eigenvectors and includes many-particle-many-hole components in the creation operator of the excited states. We demonstrate the exact character of solutions analytically for the particle number N = 2 and numerically for N = 8. This finding indicates that the nonlinear higher RPA is equivalent to the exact Schrödinger equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faessler, Amand; Rodin, V.; Fogli, G. L.
2009-03-01
The variances and covariances associated to the nuclear matrix elements of neutrinoless double beta decay (0{nu}{beta}{beta}) are estimated within the quasiparticle random phase approximation. It is shown that correlated nuclear matrix elements uncertainties play an important role in the comparison of 0{nu}{beta}{beta} decay rates for different nuclei, and that they are degenerate with the uncertainty in the reconstructed Majorana neutrino mass.
On the variability of LSI+61 deg 303 (identical with GT 0236)
NASA Technical Reports Server (NTRS)
Tanzi, E. G.; Bignami, G. F.; Caraveo, P. A.; Maraschi, L.; Sormani, F.; Treves, A.
1982-01-01
Out of six long and six short wavelength observations, one spectrum exhibits a significant photometric variation: or approximately 20%. Interpreting the continuum as due to superposition of an early B main sequence star plus a gaseous component contributing at lambda 2000 A, the wavelength dependence of the variation suggests that it derives from the latter component. The data indicate that if the observed variation is phase dependent, a minimum should occur between phases 0.8 and 0.2. However, since the variation is observed in only one spectrum, it may well be erratic.
NASA Astrophysics Data System (ADS)
Pattabhiraman, Harini; Gantapara, Anjan P.; Dijkstra, Marjolein
2015-10-01
Using computer simulations, we study the phase behavior of a model system of colloidal hard disks with a diameter σ and a soft corona of width 1.4σ. The particles interact with a hard core and a repulsive square-shoulder potential. We calculate the free energy of the random-tiling quasicrystal and its crystalline approximants using the Frenkel-Ladd method. We explicitly account for the configurational entropy associated with the number of distinct configurations of the random-tiling quasicrystal. We map out the phase diagram and find that the random tiling dodecagonal quasicrystal is stabilised by entropy at finite temperatures with respect to the crystalline approximants that we considered, and its stability region seems to extend to zero temperature as the energies of the defect-free quasicrystal and the crystalline approximants are equal within our statistical accuracy.
Nonlinear transient waves in coupled phase oscillators with inertia.
Jörg, David J
2015-05-01
Like the inertia of a physical body describes its tendency to resist changes of its state of motion, inertia of an oscillator describes its tendency to resist changes of its frequency. Here, we show that finite inertia of individual oscillators enables nonlinear phase waves in spatially extended coupled systems. Using a discrete model of coupled phase oscillators with inertia, we investigate these wave phenomena numerically, complemented by a continuum approximation that permits the analytical description of the key features of wave propagation in the long-wavelength limit. The ability to exhibit traveling waves is a generic feature of systems with finite inertia and is independent of the details of the coupling function.
Photoionization cross sections for atomic chlorine using an open-shell random phase approximation
NASA Technical Reports Server (NTRS)
Starace, A. F.; Armstrong, L., Jr.
1975-01-01
The use of the Random Phase Approximation with Exchange (RPAE) for calculating partial and total photoionization cross sections and photoelectron angular distributions for open shell atoms is examined for atomic chlorine. Whereas the RPAE corrections in argon (Z=18) are large, it is found that those in chlorine (Z=17) are much smaller due to geometric factors. Hartree-Fock calculations with and without core relaxation are also presented. Sizable deviations from the close coupling results of Conneely are also found.
Role of small-norm components in extended random-phase approximation
NASA Astrophysics Data System (ADS)
Tohyama, Mitsuru
2017-09-01
The role of the small-norm amplitudes in extended random-phase approximation (RPA) theories such as the particle-particle and hole-hole components of one-body amplitudes and the two-body amplitudes other than two-particle/two-hole components are investigated for the one-dimensional Hubbard model using an extended RPA derived from the time-dependent density matrix theory. It is found that these amplitudes cannot be neglected in strongly interacting regions where the effects of ground-state correlations are significant.
Restoring the Pauli principle in the random phase approximation ground state
NASA Astrophysics Data System (ADS)
Kosov, D. S.
2017-12-01
Random phase approximation ground state contains electronic configurations where two (and more) identical electrons can occupy the same molecular spin-orbital violating the Pauli exclusion principle. This overcounting of electronic configurations happens due to quasiboson approximation in the treatment of electron-hole pair operators. We describe the method to restore the Pauli principle in the RPA wavefunction. The proposed theory is illustrated by the calculations of molecular dipole moments and electronic kinetic energies. The Hartree-Fock based RPA, which is corrected for the Pauli principle, gives the results of comparable accuracy with Møller-Plesset second order perturbation theory and coupled-cluster singles and doubles method.
Analytic Interatomic Forces in the Random Phase Approximation
NASA Astrophysics Data System (ADS)
Ramberger, Benjamin; Schäfer, Tobias; Kresse, Georg
2017-03-01
We discuss that in the random phase approximation (RPA) the first derivative of the energy with respect to the Green's function is the self-energy in the G W approximation. This relationship allows us to derive compact equations for the RPA interatomic forces. We also show that position dependent overlap operators are elegantly incorporated in the present framework. The RPA force equations have been implemented in the projector augmented wave formalism, and we present illustrative applications, including ab initio molecular dynamics simulations, the calculation of phonon dispersion relations for diamond and graphite, as well as structural relaxations for water on boron nitride. The present derivation establishes a concise framework for forces within perturbative approaches and is also applicable to more involved approximations for the correlation energy.
NASA Astrophysics Data System (ADS)
Ivliev, S. V.
2017-12-01
For calculation of short laser pulse absorption in metal the imaginary part of permittivity, which is simply related to the conductivity, is required. Currently to find the static and dynamic conductivity the Kubo-Greenwood formula is most commonly used. It describes the electromagnetic energy absorption in the one-electron approach. In the present study, this formula is derived directly from the expression for the permittivity expression in the random phase approximation, which in fact is equivalent to the method of the mean field. The detailed analysis of the role of electron-electron interaction in the calculation of the matrix elements of the velocity operator is given. It is shown that in the one-electron random phase approximation the single-particle conductive electron wave functions in the field of fixed ions should be used. The possibility of considering the exchange and correlation effects by means of an amendment to a local function field is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shenvi, Neil; Yang, Yang; Yang, Weitao
In recent years, interest in the random-phase approximation (RPA) has grown rapidly. At the same time, tensor hypercontraction has emerged as an intriguing method to reduce the computational cost of electronic structure algorithms. In this paper, we combine the particle-particle random phase approximation with tensor hypercontraction to produce the tensor-hypercontracted particle-particle RPA (THC-ppRPA) algorithm. Unlike previous implementations of ppRPA which scale as O(r{sup 6}), the THC-ppRPA algorithm scales asymptotically as only O(r{sup 4}), albeit with a much larger prefactor than the traditional algorithm. We apply THC-ppRPA to several model systems and show that it yields the same results as traditionalmore » ppRPA to within mH accuracy. Our method opens the door to the development of post-Kohn Sham functionals based on ppRPA without the excessive asymptotic cost of traditional ppRPA implementations.« less
NASA Astrophysics Data System (ADS)
Shenvi, Neil; van Aggelen, Helen; Yang, Yang; Yang, Weitao
2014-07-01
In recent years, interest in the random-phase approximation (RPA) has grown rapidly. At the same time, tensor hypercontraction has emerged as an intriguing method to reduce the computational cost of electronic structure algorithms. In this paper, we combine the particle-particle random phase approximation with tensor hypercontraction to produce the tensor-hypercontracted particle-particle RPA (THC-ppRPA) algorithm. Unlike previous implementations of ppRPA which scale as O(r6), the THC-ppRPA algorithm scales asymptotically as only O(r4), albeit with a much larger prefactor than the traditional algorithm. We apply THC-ppRPA to several model systems and show that it yields the same results as traditional ppRPA to within mH accuracy. Our method opens the door to the development of post-Kohn Sham functionals based on ppRPA without the excessive asymptotic cost of traditional ppRPA implementations.
Continuum Absorption Coefficient of Atoms and Ions
NASA Technical Reports Server (NTRS)
Armaly, B. F.
1979-01-01
The rate of heat transfer to the heat shield of a Jupiter probe has been estimated to be one order of magnitude higher than any previously experienced in an outer space exploration program. More than one-third of this heat load is due to an emission of continuum radiation from atoms and ions. The existing computer code for calculating the continuum contribution to the total load utilizes a modified version of Biberman's approximate method. The continuum radiation absorption cross sections of a C - H - O - N ablation system were examined in detail. The present computer code was evaluated and updated by being compared with available exact and approximate calculations and correlations of experimental data. A detailed calculation procedure, which can be applied to other atomic species, is presented. The approximate correlations can be made to agree with the available exact and experimental data.
Anomalous properties of the acoustic excitations in glasses on the mesoscopic length scale.
Monaco, Giulio; Mossa, Stefano
2009-10-06
The low-temperature thermal properties of dielectric crystals are governed by acoustic excitations with large wavelengths that are well described by plane waves. This is the Debye model, which rests on the assumption that the medium is an elastic continuum, holds true for acoustic wavelengths large on the microscopic scale fixed by the interatomic spacing, and gradually breaks down on approaching it. Glasses are characterized as well by universal low-temperature thermal properties that are, however, anomalous with respect to those of the corresponding crystalline phases. Related universal anomalies also appear in the low-frequency vibrational density of states and, despite a longstanding debate, remain poorly understood. By using molecular dynamics simulations of a model monatomic glass of extremely large size, we show that in glasses the structural disorder undermines the Debye model in a subtle way: The elastic continuum approximation for the acoustic excitations breaks down abruptly on the mesoscopic, medium-range-order length scale of approximately 10 interatomic spacings, where it still works well for the corresponding crystalline systems. On this scale, the sound velocity shows a marked reduction with respect to the macroscopic value. This reduction turns out to be closely related to the universal excess over the Debye model prediction found in glasses at frequencies of approximately 1 THz in the vibrational density of states or at temperatures of approximately 10 K in the specific heat.
When push comes to shove: Exclusion processes with nonlocal consequences
NASA Astrophysics Data System (ADS)
Almet, Axel A.; Pan, Michael; Hughes, Barry D.; Landman, Kerry A.
2015-11-01
Stochastic agent-based models are useful for modelling collective movement of biological cells. Lattice-based random walk models of interacting agents where each site can be occupied by at most one agent are called simple exclusion processes. An alternative motility mechanism to simple exclusion is formulated, in which agents are granted more freedom to move under the compromise that interactions are no longer necessarily local. This mechanism is termed shoving. A nonlinear diffusion equation is derived for a single population of shoving agents using mean-field continuum approximations. A continuum model is also derived for a multispecies problem with interacting subpopulations, which either obey the shoving rules or the simple exclusion rules. Numerical solutions of the derived partial differential equations compare well with averaged simulation results for both the single species and multispecies processes in two dimensions, while some issues arise in one dimension for the multispecies case.
Disorder-induced stiffness degradation of highly disordered porous materials
NASA Astrophysics Data System (ADS)
Laubie, Hadrien; Monfared, Siavash; Radjaï, Farhang; Pellenq, Roland; Ulm, Franz-Josef
2017-09-01
The effective mechanical behavior of multiphase solid materials is generally modeled by means of homogenization techniques that account for phase volume fractions and elastic moduli without considering the spatial distribution of the different phases. By means of extensive numerical simulations of randomly generated porous materials using the lattice element method, the role of local textural properties on the effective elastic properties of disordered porous materials is investigated and compared with different continuum micromechanics-based models. It is found that the pronounced disorder-induced stiffness degradation originates from stress concentrations around pore clusters in highly disordered porous materials. We identify a single disorder parameter, φsa, which combines a measure of the spatial disorder of pores (the clustering index, sa) with the pore volume fraction (the porosity, φ) to scale the disorder-induced stiffness degradation. Thus, we conclude that the classical continuum micromechanics models with one spherical pore phase, due to their underlying homogeneity assumption fall short of addressing the clustering effect, unless additional texture information is introduced, e.g. in form of the shift of the percolation threshold with disorder, or other functional relations between volume fractions and spatial disorder; as illustrated herein for a differential scheme model representative of a two-phase (solid-pore) composite model material.
QRAP: A numerical code for projected (Q)uasiparticle (RA)ndom (P)hase approximation
NASA Astrophysics Data System (ADS)
Samana, A. R.; Krmpotić, F.; Bertulani, C. A.
2010-06-01
A computer code for quasiparticle random phase approximation - QRPA and projected quasiparticle random phase approximation - PQRPA models of nuclear structure is explained in details. The residual interaction is approximated by a simple δ-force. An important application of the code consists in evaluating nuclear matrix elements involved in neutrino-nucleus reactions. As an example, cross sections for 56Fe and 12C are calculated and the code output is explained. The application to other nuclei and the description of other nuclear and weak decay processes are also discussed. Program summaryTitle of program: QRAP ( Quasiparticle RAndom Phase approximation) Computers: The code has been created on a PC, but also runs on UNIX or LINUX machines Operating systems: WINDOWS or UNIX Program language used: Fortran-77 Memory required to execute with typical data: 16 Mbytes of RAM memory and 2 MB of hard disk space No. of lines in distributed program, including test data, etc.: ˜ 8000 No. of bytes in distributed program, including test data, etc.: ˜ 256 kB Distribution format: tar.gz Nature of physical problem: The program calculates neutrino- and antineutrino-nucleus cross sections as a function of the incident neutrino energy, and muon capture rates, using the QRPA or PQRPA as nuclear structure models. Method of solution: The QRPA, or PQRPA, equations are solved in a self-consistent way for even-even nuclei. The nuclear matrix elements for the neutrino-nucleus interaction are treated as the beta inverse reaction of odd-odd nuclei as function of the transfer momentum. Typical running time: ≈ 5 min on a 3 GHz processor for Data set 1.
Singles correlation energy contributions in solids
NASA Astrophysics Data System (ADS)
Klimeš, Jiří; Kaltak, Merzuk; Maggio, Emanuele; Kresse, Georg
2015-09-01
The random phase approximation to the correlation energy often yields highly accurate results for condensed matter systems. However, ways how to improve its accuracy are being sought and here we explore the relevance of singles contributions for prototypical solid state systems. We set out with a derivation of the random phase approximation using the adiabatic connection and fluctuation dissipation theorem, but contrary to the most commonly used derivation, the density is allowed to vary along the coupling constant integral. This yields results closely paralleling standard perturbation theory. We re-derive the standard singles of Görling-Levy perturbation theory [A. Görling and M. Levy, Phys. Rev. A 50, 196 (1994)], highlight the analogy of our expression to the renormalized singles introduced by Ren and coworkers [Phys. Rev. Lett. 106, 153003 (2011)], and introduce a new approximation for the singles using the density matrix in the random phase approximation. We discuss the physical relevance and importance of singles alongside illustrative examples of simple weakly bonded systems, including rare gas solids (Ne, Ar, Xe), ice, adsorption of water on NaCl, and solid benzene. The effect of singles on covalently and metallically bonded systems is also discussed.
4-wave dynamics in kinetic wave turbulence
NASA Astrophysics Data System (ADS)
Chibbaro, Sergio; Dematteis, Giovanni; Rondoni, Lamberto
2018-01-01
A general Hamiltonian wave system with quartic resonances is considered, in the standard kinetic limit of a continuum of weakly interacting dispersive waves with random phases. The evolution equation for the multimode characteristic function Z is obtained within an ;interaction representation; and a perturbation expansion in the small nonlinearity parameter. A frequency renormalization is performed to remove linear terms that do not appear in the 3-wave case. Feynman-Wyld diagrams are used to average over phases, leading to a first order differential evolution equation for Z. A hierarchy of equations, analogous to the Boltzmann hierarchy for low density gases is derived, which preserves in time the property of random phases and amplitudes. This amounts to a general formalism for both the N-mode and the 1-mode PDF equations for 4-wave turbulent systems, suitable for numerical simulations and for investigating intermittency. Some of the main results which are developed here in detail have been tested numerically in a recent work.
NASA Astrophysics Data System (ADS)
John, T. L.
1996-04-01
Free-free absorption coefficients of the negative neon ion are calculated by the phase-shift approximation based on multiconfiguration Hartree-Fock continuum wave functions. These wave functions accurately account for electron-neon correlation and polarization, and yield scattering cross-sections in excellent agreement with the latest experimental values. The coefficients are expected to give the best current estimates of Ne^- continuous absorption. We find that Ne^- makes only a small contribution (less than 0.3 per cent) to stellar opacities, including hydrogen-deficient stars with enhanced Ne abundances.
Insight into organic reactions from the direct random phase approximation and its corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruzsinszky, Adrienn; Zhang, Igor Ying; Scheffler, Matthias
2015-10-14
The performance of the random phase approximation (RPA) and beyond-RPA approximations for the treatment of electron correlation is benchmarked on three different molecular test sets. The test sets are chosen to represent three typical sources of error which can contribute to the failure of most density functional approximations in chemical reactions. The first test set (atomization and n-homodesmotic reactions) offers a gradually increasing balance of error from the chemical environment. The second test set (Diels-Alder reaction cycloaddition = DARC) reflects more the effect of weak dispersion interactions in chemical reactions. Finally, the third test set (self-interaction error 11 = SIE11)more » represents reactions which are exposed to noticeable self-interaction errors. This work seeks to answer whether any one of the many-body approximations considered here successfully addresses all these challenges.« less
Thomson scattering from a three-component plasma.
Johnson, W R; Nilsen, J
2014-02-01
A model for a three-component plasma consisting of two distinct ionic species and electrons is developed and applied to study x-ray Thomson scattering. Ions of a specific type are assumed to be identical and are treated in the average-atom approximation. Given the plasma temperature and density, the model predicts mass densities, effective ionic charges, and cell volumes for each ionic type, together with the plasma chemical potential and free-electron density. Additionally, the average-atom treatment of individual ions provides a quantum-mechanical description of bound and continuum electrons. The model is used to obtain parameters needed to determine the dynamic structure factors for x-ray Thomson scattering from a three-component plasma. The contribution from inelastic scattering by free electrons is evaluated in the random-phase approximation. The contribution from inelastic scattering by bound electrons is evaluated using the bound-state and scattering wave functions obtained from the average-atom calculations. Finally, the partial static structure factors for elastic scattering by ions are evaluated using a two-component version of the Ornstein-Zernike equations with hypernetted chain closure, in which electron-ion interactions are accounted for using screened ion-ion interaction potentials. The model is used to predict the x-ray Thomson scattering spectrum from a CH plasma and the resulting spectrum is compared with experimental results obtained by Feltcher et al. [Phys. Plasmas 20, 056316 (2013)].
Continuum-Kinetic Models and Numerical Methods for Multiphase Applications
NASA Astrophysics Data System (ADS)
Nault, Isaac Michael
This thesis presents a continuum-kinetic approach for modeling general problems in multiphase solid mechanics. In this context, a continuum model refers to any model, typically on the macro-scale, in which continuous state variables are used to capture the most important physics: conservation of mass, momentum, and energy. A kinetic model refers to any model, typically on the meso-scale, which captures the statistical motion and evolution of microscopic entitites. Multiphase phenomena usually involve non-negligible micro or meso-scopic effects at the interfaces between phases. The approach developed in the thesis attempts to combine the computational performance benefits of a continuum model with the physical accuracy of a kinetic model when applied to a multiphase problem. The approach is applied to modeling a single particle impact in Cold Spray, an engineering process that intimately involves the interaction of crystal grains with high-magnitude elastic waves. Such a situation could be classified a multiphase application due to the discrete nature of grains on the spatial scale of the problem. For this application, a hyper elasto-plastic model is solved by a finite volume method with approximate Riemann solver. The results of this model are compared for two types of plastic closure: a phenomenological macro-scale constitutive law, and a physics-based meso-scale Crystal Plasticity model.
1976-05-01
random walk photon scattering, geometric optics refraction at a thin phase screen, plane wave scattering from a thin screen in the Fraunhofer limit and...significant cases. In the geometric optics regime the distribution of density of allowable multipath rays is gsslanly distributed and the power...3.1 Random Walk Approach to Scattering 10 3.2 Phase Screen Approximation to Strong Scattering 13 3.3 Ray Optics and Stationary Phase Analysis 21 3,3,1
NASA Astrophysics Data System (ADS)
Jamaluddin, Muzhar Bin
The Boson Expansion Theory of Kishimoto and Tamura has proved to be very successful in describing quadrupole collective motions in even-even nuclei. This theory, however, involves a complicated transformation from the Tamm-Dancoff phonons to the phonons of the Random Phase Approximation. In this thesis a Boson Expansion formalism, derived directly from the Random Phase Approximation and set forth by Pedracchi and Tamura, is used to derive the boson forms of the nuclear Hamiltonian and the electromagnetic transition operator. Detailed discussions of the formalism of Pedrocchi and Tamura and its extension needed to perform realistic calculations are presented. The technique used to deriving the boson forms and the formulae used in the calculations are also given a thorough treatment to demonstrate the simplicity of this approach. Finally, the theory is tested by applying it to calculate the energy levels and some electromagnetic properties of the Samarium isotopes. The results show that the present theory is capable of describing the range of behavior from a vibrational to a rotational character of the Samarium isotopes as good as the previous theory.
RXTE Observations of the Seyfert 2 Galaxy MrK 348
NASA Technical Reports Server (NTRS)
Smith, David A.; Georgantopoulos, Ioannis; Warwick, Robert S.
2000-01-01
We present RXTE monitoring observations of the Seyfert 2 galaxy Mrk 348 spanning a 6 month period. The time-averaged spectrum in the 3-20 keV band shows many features characteristic of a Compton-thin Seyfert 2 galaxy, namely a hard underlying power-law continuum (Gamma approximately equal 1.8) with heavy soft X-ray absorption (N(sub H) approximately 10(exp 23)/sq cm) plus measurable iron K.alpha emission (equivalent width approximately 100 eV) and, at high energy, evidence for a reflection component (R approximately < 1). During the first half of the monitoring period the X-ray continuum flux from Mrk 348 remained relatively steady. However this was followed by a significant brightening of the source (by roughly a factor of 4) with the fastest change corresponding to a doubling of its X-ray flux on a timescale of about 20 days. The flux increase was accompanied by a marked softening of X-ray spectrum most likely attributable to a factor approximately 3 decline in the intrinsic line-of-sight column density. In contrast the iron K.alpha line and the reflection components showed no evidence of variability. These observations suggest a scenario in which the central X-ray source is surrounded by a patchy distribution of absorbing material located within about a light-week of the nucleus of Mrk 348. The random movement of individual clouds within the absorbing screen, across our line of sight, produces substantial temporal variations in the measured column density on timescales of weeks to months and gives rise to the observed X-ray spectral variability. However, as viewed from the nucleus the global coverage and typical thickness of the cloud layer remains relatively constant.
On the relation between phase-field crack approximation and gradient damage modelling
NASA Astrophysics Data System (ADS)
Steinke, Christian; Zreid, Imadeddin; Kaliske, Michael
2017-05-01
The finite element implementation of a gradient enhanced microplane damage model is compared to a phase-field model for brittle fracture. Phase-field models and implicit gradient damage models share many similarities despite being conceived from very different standpoints. In both approaches, an additional differential equation and a length scale are introduced. However, while the phase-field method is formulated starting from the description of a crack in fracture mechanics, the gradient method starts from a continuum mechanics point of view. At first, the scope of application for both models is discussed to point out intersections. Then, the analysis of the employed mathematical methods and their rigorous comparison are presented. Finally, numerical examples are introduced to illustrate the findings of the comparison which are summarized in a conclusion at the end of the paper.
Zhang, Du; Su, Neil Qiang; Yang, Weitao
2017-07-20
The GW self-energy, especially G 0 W 0 based on the particle-hole random phase approximation (phRPA), is widely used to study quasiparticle (QP) energies. Motivated by the desirable features of the particle-particle (pp) RPA compared to the conventional phRPA, we explore the pp counterpart of GW, that is, the T-matrix self-energy, formulated with the eigenvectors and eigenvalues of the ppRPA matrix. We demonstrate the accuracy of the T-matrix method for molecular QP energies, highlighting the importance of the pp channel for calculating QP spectra.
Danwanichakul, Panu; Glandt, Eduardo D
2004-11-15
We applied the integral-equation theory to the connectedness problem. The method originally applied to the study of continuum percolation in various equilibrium systems was modified for our sequential quenching model, a particular limit of an irreversible adsorption. The development of the theory based on the (quenched-annealed) binary-mixture approximation includes the Ornstein-Zernike equation, the Percus-Yevick closure, and an additional term involving the three-body connectedness function. This function is simplified by introducing a Kirkwood-like superposition approximation. We studied the three-dimensional (3D) system of randomly placed spheres and 2D systems of square-well particles, both with a narrow and with a wide well. The results from our integral-equation theory are in good accordance with simulation results within a certain range of densities.
NASA Astrophysics Data System (ADS)
Danwanichakul, Panu; Glandt, Eduardo D.
2004-11-01
We applied the integral-equation theory to the connectedness problem. The method originally applied to the study of continuum percolation in various equilibrium systems was modified for our sequential quenching model, a particular limit of an irreversible adsorption. The development of the theory based on the (quenched-annealed) binary-mixture approximation includes the Ornstein-Zernike equation, the Percus-Yevick closure, and an additional term involving the three-body connectedness function. This function is simplified by introducing a Kirkwood-like superposition approximation. We studied the three-dimensional (3D) system of randomly placed spheres and 2D systems of square-well particles, both with a narrow and with a wide well. The results from our integral-equation theory are in good accordance with simulation results within a certain range of densities.
Emergence of low-energy monopole strength in the neutron-rich calcium isotopes
NASA Astrophysics Data System (ADS)
Piekarewicz, J.
2017-10-01
Background: The isoscalar monopole response of neutron-rich nuclei is sensitive to both the incompressibility coefficient of symmetric nuclear matter and the density dependence of the symmetry energy. For exotic nuclei with a large neutron excess, a low-energy component emerges that is driven by transitions into the continuum. Purpose: While understanding the scaling of the giant monopole resonance with mass number is central to this work, the main goal of this paper is to explore the emergence, evolution, and origin of low-energy monopole strength along the even-even calcium isotopes: from 40Ca to 60Ca. Methods: The distribution of isoscalar monopole strength is computed in a relativistic random phase approximation (RPA) using three effective interactions that have been calibrated to the properties of finite nuclei and neutron stars. A nonspectral approach is adopted that allows for an exact treatment of the continuum without any reliance on discretization. This is particularly critical in the case of weakly bound nuclei with single-particle orbits near the continuum. The discretization of the continuum is neither required nor admitted. Results: For the stable calcium isotopes, no evidence of low-energy monopole strength is observed, even as the 1 f7 /2 neutron orbital is being filled and the neutron-skin thickness progressively grows. Further, in contrast to experimental findings, a mild softening of the monopole response with increasing mass number is predicted. Beyond 48Ca, a significant amount of low-energy monopole strength emerges as soon as the weak-binding neutron orbitals (2 p and 1 f5 /2 ) become populated. The emergence and evolution of low-energy strength is identified with transitions from these weakly bound states into the continuum—which is treated exactly in the RPA approach. Moreover, given that models with a soft symmetry energy tend to reach the neutron-drip line earlier than their stiffer counterparts, an inverse correlation is identified between the neutron-skin thickness and the inverse energy weighted sum. Conclusions: Despite experimental claims to the contrary, a mild softening of the giant monopole resonance is observed in going from 40Ca to 48Ca. Measurements for other stable calcium isotopes may be critical in elucidating the nature of the discrepancy. Moreover, given the early success in measuring the distribution of isoscalar monopole strength in the unstable 68Ni nucleus, new measurements along the unstable neutron-rich calcium isotopes are advocated in order to explore the critical role of the continuum in the development of a soft monopole mode.
NASA Astrophysics Data System (ADS)
Luo, D. M.; Xie, Y.; Su, X. R.; Zhou, Y. L.
2018-01-01
Based on the four classical models of Mooney-Rivlin (M-R), Yeoh, Ogden and Neo-Hookean (N-H) model, a strain energy constitutive equation with large deformation for rubber composites reinforced with random ceramic particles is proposed from the angle of continuum mechanics theory in this paper. By decoupling the interaction between matrix and random particles, the strain energy of each phase is obtained to derive the explicit constitutive equation for rubber composites. The tests results of uni-axial tensile, pure shear and equal bi-axial tensile are simulated by the non-linear finite element method on the ANSYS platform. The results from finite element method are compared with those from experiment, and the material parameters are determined by fitting the results from different test conditions, and the influence of radius of random ceramic particles on the effective mechanical properties are analyzed.
NASA Astrophysics Data System (ADS)
Haque, Ghousia Nasreen
The absorption of electromagnetic radiation by positive ions is one of the fundamental processes of nature which occurs in every intensely hot environment. Due to the difficulties in producing sufficient densities of ions in a laboratory, there are very few measurements of ionic photoabsorption parameters. On the theoretical side, some calculations have been made of a few major photoionization parameters, but generally speaking, most of the work done so far has employed rather simple single particle models and any theoretical work which has adequately taken into account intricate atomic many-body and relativistic effects is only scanty. In the present work, several complex aspects of atomic/ionic photoabsorption parameters have been studied. Non -resonant photoionization in neon and argon isonuclear as well as isoelectronic sequences has been studied using a very sophisticated technique, namely the relativistic random phase approximation (RRPA). This technique takes into account relativistic effects as well as an important class of major many-body effects on the same footing. The present calculations confirmed that gross features of photoionization parameters calculated using simpler models were not an artifact of the simple model. Also, the present RRPA calculations on K^+ ion and neutral Ar brought out the relative importance of various many-body effects such the inter-channel coupling. Inter-channel coupling between discrete bound state photoexcitation channels from an inner atomic/ionic level and photoionization continuum channels from an outer atomic/ionic level leads to the phenomena of autoionization resonances in the photoionization process. These resonances lead to very complex effects in the atomic/ionic photoabsorption spectra. These resonances have been calculated and studied in the present work in the neon and magnesium isoelectronic sequences using the relativistic multi-channel quantum defect theory (RMQDT) within the framework of the RRPA. The character of the autoionization resonances studied was determined in the present work and the effect of series perturbations in the Rydberg series due to interference between various multichannel processes was quantitatively determined. Furthermore, results of the present calculations also serve as important pointer to measure the relative strengths of radiative (fluorescence) decay modes and non -radiative (autoionization/auger) decay modes in an isoelectronic sequence.
Continuum Limit of Total Variation on Point Clouds
NASA Astrophysics Data System (ADS)
García Trillos, Nicolás; Slepčev, Dejan
2016-04-01
We consider point clouds obtained as random samples of a measure on a Euclidean domain. A graph representing the point cloud is obtained by assigning weights to edges based on the distance between the points they connect. Our goal is to develop mathematical tools needed to study the consistency, as the number of available data points increases, of graph-based machine learning algorithms for tasks such as clustering. In particular, we study when the cut capacity, and more generally total variation, on these graphs is a good approximation of the perimeter (total variation) in the continuum setting. We address this question in the setting of Γ-convergence. We obtain almost optimal conditions on the scaling, as the number of points increases, of the size of the neighborhood over which the points are connected by an edge for the Γ-convergence to hold. Taking of the limit is enabled by a transportation based metric which allows us to suitably compare functionals defined on different point clouds.
Electric transport through circular graphene quantum dots: Presence of disorder
NASA Astrophysics Data System (ADS)
Pal, G.; Apel, W.; Schweitzer, L.
2011-08-01
The electronic states of an electrostatically confined cylindrical graphene quantum dot and the electric transport through this device are studied theoretically within the continuum Dirac-equation approximation and compared with numerical results obtained from a tight-binding lattice description. A spectral gap, which may originate from strain effects, additional adsorbed atoms, or substrate-induced sublattice-symmetry breaking, allows for bound and scattering states. As long as the diameter of the dot is much larger than the lattice constant, the results of the continuum and the lattice model are in very good agreement. We also investigate the influence of a sloping dot-potential step, of on-site disorder along the sample edges, of uncorrelated short-range disorder potentials in the bulk, and of random magnetic fluxes that mimic ripple disorder. The quantum dot's spectral and transport properties depend crucially on the specific type of disorder. In general, the peaks in the density of bound states are broadened but remain sharp only in the case of edge disorder.
Continuum theory of phase separation kinetics for active Brownian particles.
Stenhammar, Joakim; Tiribocchi, Adriano; Allen, Rosalind J; Marenduzzo, Davide; Cates, Michael E
2013-10-04
Active Brownian particles (ABPs), when subject to purely repulsive interactions, are known to undergo activity-induced phase separation broadly resembling an equilibrium (attraction-induced) gas-liquid coexistence. Here we present an accurate continuum theory for the dynamics of phase-separating ABPs, derived by direct coarse graining, capturing leading-order density gradient terms alongside an effective bulk free energy. Such gradient terms do not obey detailed balance; yet we find coarsening dynamics closely resembling that of equilibrium phase separation. Our continuum theory is numerically compared to large-scale direct simulations of ABPs and accurately accounts for domain growth kinetics, domain topologies, and coexistence densities.
NASA Astrophysics Data System (ADS)
Garrido Torres, José A.; Ramberger, Benjamin; Früchtl, Herbert A.; Schaub, Renald; Kresse, Georg
2017-11-01
The adsorption energy of benzene on various metal substrates is predicted using the random phase approximation (RPA) for the correlation energy. Agreement with available experimental data is systematically better than 10% for both coinage and reactive metals. The results are also compared with more approximate methods, including van der Waals density functional theory (DFT), as well as dispersion-corrected DFT functionals. Although dispersion-corrected DFT can yield accurate results, for instance, on coinage metals, the adsorption energies are clearly overestimated on more reactive transition metals. Furthermore, coverage dependent adsorption energies are well described by the RPA. This shows that for the description of aromatic molecules on metal surfaces further improvements in density functionals are necessary, or more involved many-body methods such as the RPA are required.
High-order continuum kinetic method for modeling plasma dynamics in phase space
Vogman, G. V.; Colella, P.; Shumlak, U.
2014-12-15
Continuum methods offer a high-fidelity means of simulating plasma kinetics. While computationally intensive, these methods are advantageous because they can be cast in conservation-law form, are not susceptible to noise, and can be implemented using high-order numerical methods. Advances in continuum method capabilities for modeling kinetic phenomena in plasmas require the development of validation tools in higher dimensional phase space and an ability to handle non-cartesian geometries. To that end, a new benchmark for validating Vlasov-Poisson simulations in 3D (x,v x,v y) is presented. The benchmark is based on the Dory-Guest-Harris instability and is successfully used to validate a continuummore » finite volume algorithm. To address challenges associated with non-cartesian geometries, unique features of cylindrical phase space coordinates are described. Preliminary results of continuum kinetic simulations in 4D (r,z,v r,v z) phase space are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altmeyer, Michaela; Guterding, Daniel; Hirschfeld, P. J.
2016-12-21
In the framework of a multiorbital Hubbard model description of superconductivity, a matrix formulation of the superconducting pairing interaction that has been widely used is designed to treat spin, charge, and orbital fluctuations within a random phase approximation (RPA). In terms of Feynman diagrams, this takes into account particle-hole ladder and bubble contributions as expected. It turns out, however, that this matrix formulation also generates additional terms which have the diagrammatic structure of vertex corrections. Furthermore we examine these terms and discuss the relationship between the matrix-RPA superconducting pairing interaction and the Feynman diagrams that it sums.
Photons in dense nuclear matter: Random-phase approximation
NASA Astrophysics Data System (ADS)
Stetina, Stephan; Rrapaj, Ermal; Reddy, Sanjay
2018-04-01
We present a comprehensive and pedagogic discussion of the properties of photons in cold and dense nuclear matter based on the resummed one-loop photon self-energy. Correlations among electrons, muons, protons, and neutrons in β equilibrium that arise as a result of electromagnetic and strong interactions are consistently taken into account within the random phase approximation. Screening effects, damping, and collective excitations are systematically studied in a fully relativistic setup. Our study is relevant to the linear response theory of dense nuclear matter, calculations of transport properties of cold dense matter, and investigations of the production and propagation of hypothetical vector bosons such as the dark photons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamaluddin, M.B.
1986-01-01
The Boson Expansion Theory of Kishimoto and Tamura has proved to be very successful in describing quadrupole collective motions in even-even nuclei. This theory, however, involves a complicated transformation from the Tamm-Dancoff phonons to the phonons of the random Phase Approximation. In this thesis a Boson Expansion formalism, derived directly from the Random Phase Approximation and set forth by Pedracchi and Tamura, is used to derive the boson forms of the nuclear Hamiltonian and the electromagnetic transition operator. Detailed discussions of the formalism of Pedrocchi and Tamura and its extension needed to perform realistic calculations are presented. The technique usedmore » to deriving the boson forms and the formulae used in the calculations are also given a thorough treatment to demonstrate the simplicity of this approach. Finally, the theory is tested by applying it to calculate the energy levels and some electromagnetic properties of the Samarium isotopes. The results show that the present theory is capable of describing the range of behavior from a vibrational to a rotational character of the Samarium isotopes as well as the previous theory.« less
Electron-neutrino scattering off nuclei from two different theoretical perspectives
NASA Astrophysics Data System (ADS)
Martini, M.; Jachowicz, N.; Ericson, M.; Pandey, V.; Van Cuyck, T.; Van Dessel, N.
2016-07-01
We analyze charged-current electron-neutrino cross sections on carbon. We consider two different theoretical approaches, on one hand the continuum random phase approximation (CRPA) which allows a description of giant resonances and quasielastic excitations, on the other hand the RPA-based calculations which are able to describe multinucleon emission and coherent and incoherent pion production as well as quasielastic excitations. We compare the two approaches in the genuine quasielastic channel, and find a satisfactory agreement between them at large energies while at low energies the collective giant resonances show up only in the CRPA approach. We also compare electron-neutrino cross sections with the corresponding muon-neutrino ones in order to investigate the impact of the different charged-lepton masses. Finally, restricting to the RPA-based approach, we compare the sum of quasielastic, multinucleon emission, coherent, and incoherent one-pion production cross sections (folded with the electron-neutrino T2K flux) with the charged-current inclusive electron-neutrino differential cross sections on carbon measured by T2K. We find a good agreement with the data. The multinucleon component is needed in order to reproduce the T2K electron-neutrino inclusive cross sections.
Collective properties of low-lying octupole excitations in 208
NASA Astrophysics Data System (ADS)
Zhou, X. R.; Zhao, E. G.; Dong, B. G.; Zhang, X. Z.; Long, G. L.
2003-08-01
The octupole strengths of three nuclei: β-stable nucleus 20882Pb 126, neutron skin nucleus 6020Ca 40 and neutron drip line nucleus 288O 20 are studied by using the self-consistent Hartree-Fock calculation with the random phase approximation. The collective properties of low-lying excitations are analyzed by particle-vibration coupling. The results show that there is the coexistence of the collective excitations and the decoupled strong continuum strength near the threshold in the lowest isoscalar states in 6020Ca 40 and 288O 20. For these three nuclei, both the low-lying isoscalar states and giant isoscalar resonance carry isovector strength. The ratio B(IV)/ B(IS) is checked and it is found that, for 20882Pb 126, the ratio is equal to (( N- Z)/ A) 2 in good accuracy, while for 6020Ca 40 and 288O 20, the ratios are much larger than (( N- Z)/ A) 2. The study shows that the enhancement of the ratio is due to the excess neutrons that have small binding energies in 6020Ca 40 and 288O 20.
Mirrored continuum and molecular scale simulations of the ignition of gamma phase RDX
NASA Astrophysics Data System (ADS)
Stewart, D. Scott; Chaudhuri, Santanu; Joshi, Kaushik; Lee, Kibaek
2017-01-01
We describe the ignition of an explosive crystal of gamma-phase RDX due to a thermal hot spot with reactive molecular dynamics (RMD), with first-principles trained, reactive force field based molecular potentials that represents an extremely complex reaction network. The RMD simulation is analyzed by sorting molecular product fragments into high and low molecular weight groups, to represent identifiable components that can be interpreted by a continuum model. A continuum model based on a Gibbs formulation has a single temperature and stress state for the mixture. The continuum simulation that mirrors the atomistic simulation allows us to study the atomistic simulation in the familiar physical chemistry framework and provides an essential, continuum/atomistic link.
Theories of binary fluid mixtures: from phase-separation kinetics to active emulsions
NASA Astrophysics Data System (ADS)
Cates, Michael E.; Tjhung, Elsen
2018-02-01
Binary fluid mixtures are examples of complex fluids whose microstructure and flow are strongly coupled. For pairs of simple fluids, the microstructure consists of droplets or bicontinuous demixed domains and the physics is controlled by the interfaces between these domains. At continuum level, the structure is defined by a composition field whose gradients which are steep near interfaces drive its diffusive current. These gradients also cause thermodynamic stresses which can drive fluid flow. Fluid flow in turn advects the composition field, while thermal noise creates additional random fluxes that allow the system to explore its configuration space and move towards the Boltzmann distribution. This article introduces continuum models of binary fluids, first covering some well-studied areas such as the thermodynamics and kinetics of phase separation, and emulsion stability. We then address cases where one of the fluid components has anisotropic structure at mesoscopic scales creating nematic (or polar) liquid-crystalline order; this can be described through an additional tensor (or vector) order parameter field. We conclude by outlining a thriving area of current research, namely active emulsions, in which one of the binary components consists of living or synthetic material that is continuously converting chemical energy into mechanical work.
NASA Astrophysics Data System (ADS)
Yang, Ming-Hsu; Chou, Dean-Yi; Zhao, Hui; Liang, Zhi-Chao
2012-08-01
The solar acoustic waves around a sunspot are modified because of the interaction with the sunspot. The interaction can be viewed as that the sunspot, excited by the incident wave, generates the scattered wave, and the scattered wave is added to the incident wave to form the total wave around the sunspot. We define an interaction parameter, which could be complex, describing the interaction between the acoustic waves and the sunspot. The scattered wavefunction on the surface can be expressed as a two-dimensional integral of the product of the Green's function, the wavefunction, and the two-dimensional interaction parameter over the sunspot area for the Born approximation of different orders. We assume a simple model for the two-dimensional interaction parameter distribution: its absolute value is axisymmetric with a Gaussian distribution and its phase is a constant. The measured scattered wavefunctions of various modes for NOAAs 11084 and 11092 are fitted to the theoretical scattered wavefunctions to determine the three model parameters, magnitude, Gaussian radius, and phase, for the Born approximation of different orders. The three model parameters converge to some values at high-order Born approximations. The result of the first-order Born approximation is significantly different from the convergent value in some cases. The rate of convergence depends on the sunspot size and wavelength. It converges more rapidly for the smaller sunspot and longer wavelength. The magnitude increases with mode frequency and degree for each radial order. The Gaussian radius is insensitive to frequency and degree. The spatial range of the interaction parameter is greater than that of the continuum intensity deficit, but smaller than that of the acoustic power deficit of the sunspot. The phase versus phase speed falls into a small range. This suggests that the phase could be a function phase speed. NOAAs 11084 and 11092 have a similar magnitude and phase, although the ratio of their sizes is 0.75.
Low-lying dipole response in the stable 40,48Ca nuclei within the second random-phase approximation
NASA Astrophysics Data System (ADS)
Gambacurta, D.; Grasso, M.; Catara, F.
2012-10-01
The low-lying dipole strength distributions of 40CaCa and 48Ca, in the energy region between 5 and 10 MeV, are studied within the second random phase approximation (RPA) with Skyrme interaction. Standard RPA models do not usually predict any presence of strength in this energy region, while experimentally a significant amount of strength is found. The inclusion of the 2 particle -2 hole configurations allows to obtain a description in a rather good agreement with the experimental data. The properties of the most collective state are analyzed in terms of its 1 particle -1 hole nature and its transition densities.
NASA Astrophysics Data System (ADS)
Tatomir, Alexandru Bogdan A. C.; Flemisch, Bernd; Class, Holger; Helmig, Rainer; Sauter, Martin
2017-04-01
Geological storage of CO2 represents one viable solution to reduce greenhouse gas emission in the atmosphere. Potential leakage of CO2 storage can occur through networks of interconnected fractures. The geometrical complexity of these networks is often very high involving fractures occurring at various scales and having hierarchical structures. Such multiphase flow systems are usually hard to solve with a discrete fracture modelling (DFM) approach. Therefore, continuum fracture models assuming average properties are usually preferred. The multiple interacting continua (MINC) model is an extension of the classic double porosity model (Warren and Root, 1963) which accounts for the non-linear behaviour of the matrix-fracture interactions. For CO2 storage applications the transient representation of the inter-porosity two phase flow plays an important role. This study tests the accuracy and computational efficiency of the MINC method complemented with the multiple sub-region (MSR) upscaling procedure versus the DFM. The two phase flow MINC simulator is implemented in the free-open source numerical toolbox DuMux (www.dumux.org). The MSR (Gong et al., 2009) determines the inter-porosity terms by solving simplified local single-phase flow problems. The DFM is considered as the reference solution. The numerical examples consider a quasi-1D reservoir with a quadratic fracture system , a five-spot radial symmetric reservoir, and a completely random generated fracture system. Keywords: MINC, upscaling, two-phase flow, fractured porous media, discrete fracture model, continuum fracture model
NASA Astrophysics Data System (ADS)
Katkovnik, Vladimir; Shevkunov, Igor; Petrov, Nikolay V.; Egiazarian, Karen
2017-06-01
In-line lensless holography is considered with a random phase modulation at the object plane. The forward wavefront propagation is modelled using the Fourier transform with the angular spectrum transfer function. The multiple intensities (holograms) recorded by the sensor are random due to the random phase modulation and noisy with Poissonian noise distribution. It is shown by computational experiments that high-accuracy reconstructions can be achieved with resolution going up to the two thirds of the wavelength. With respect to the sensor pixel size it is a super-resolution with a factor of 32. The algorithm designed for optimal superresolution phase/amplitude reconstruction from Poissonian data is based on the general methodology developed for phase retrieval with a pixel-wise resolution in V. Katkovnik, "Phase retrieval from noisy data based on sparse approximation of object phase and amplitude", http://www.cs.tut.fi/ lasip/DDT/index3.html.
Sharma, Ity; Kaminski, George A.
2012-01-01
We have computed pKa values for eleven substituted phenol compounds using the continuum Fuzzy-Border (FB) solvation model. Hydration energies for 40 other compounds, including alkanes, alkenes, alkynes, ketones, amines, alcohols, ethers, aromatics, amides, heterocycles, thiols, sulfides and acids have been calculated. The overall average unsigned error in the calculated acidity constant values was equal to 0.41 pH units and the average error in the solvation energies was 0.076 kcal/mol. We have also reproduced pKa values of propanoic and butanoic acids within ca. 0.1 pH units from the experimental values by fitting the solvation parameters for carboxylate ion carbon and oxygen atoms. The FB model combines two distinguishing features. First, it limits the amount of noise which is common in numerical treatment of continuum solvation models by using fixed-position grid points. Second, it employs either second- or first-order approximation for the solvent polarization, depending on a particular implementation. These approximations are similar to those used for solute and explicit solvent fast polarization treatment which we developed previously. This article describes results of employing the first-order technique. This approximation places the presented methodology between the Generalized Born and Poisson-Boltzmann continuum solvation models with respect to their accuracy of reproducing the many-body effects in modeling a continuum solvent. PMID:22815192
Calculating Free Energy Changes in Continuum Solvation Models
Ho, Junming; Ertem, Mehmed Z.
2016-02-27
We recently showed for a large dataset of pK as and reduction potentials that free energies calculated directly within the SMD continuum model compares very well with corresponding thermodynamic cycle calculations in both aqueous and organic solvents (Phys. Chem. Chem. Phys. 2015, 17, 2859). In this paper, we significantly expand the scope of our study to examine the suitability of this approach for the calculation of general solution phase kinetics and thermodynamics, in conjunction with several commonly used solvation models (SMDM062X, SMD-HF, CPCM-UAKS, and CPCM-UAHF) for a broad range of systems and reaction types. This includes cluster-continuum schemes for pKmore » a calculations, as well as various neutral, radical and ionic reactions such as enolization, cycloaddition, hydrogen and chlorine atom transfer, and bimolecular SN2 and E2 reactions. On the basis of this benchmarking study, we conclude that the accuracies of both approaches are generally very similar – the mean errors for Gibbs free energy changes of neutral and ionic reactions are approximately 5 kJ mol -1 and 25 kJ mol -1 respectively. In systems where there are significant structural changes due to solvation, as is the case for certain ionic transition states and amino acids, the direct approach generally afford free energy changes that are in better agreement with experiment. The results indicate that when appropriate combinations of electronic structure methods are employed, the direct approach provides a reliable alternative to the thermodynamic cycle calculations of solution phase kinetics and thermodynamics across a broad range of organic reactions.« less
Comparison of solar hard X-ray and UV line and continuum bursts with high time resolution
NASA Technical Reports Server (NTRS)
Orwig, L. E.; Woodgate, B. E.
1986-01-01
A comparison of data sets from the UV Spectrometer and Polarimeter and Hard X-ray Burst Spectrometer instruments on SMM has established the close relationship of the impulsive phase hard X-ray and UV continuum and OV line emissions, lending support to the notion that they have a similar origin low in the solar atmosphere. These results severely constrain models that attempt to explain impulsive phase hard X-rays and UV emission; alternative processes of impulsive-phase UV continuum production should accordingly be considered. Attention is given to an electron beam 'hole boring' mechanism and a photoionization radiation transport mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Koushik; Jawulski, Konrad; Pastorczak, Ewa
A perfect-pairing generalized valence bond (GVB) approximation is known to be one of the simplest approximations, which allows one to capture the essence of static correlation in molecular systems. In spite of its attractive feature of being relatively computationally efficient, this approximation misses a large portion of dynamic correlation and does not offer sufficient accuracy to be generally useful for studying electronic structure of molecules. We propose to correct the GVB model and alleviate some of its deficiencies by amending it with the correlation energy correction derived from the recently formulated extended random phase approximation (ERPA). On the examples ofmore » systems of diverse electronic structures, we show that the resulting ERPA-GVB method greatly improves upon the GVB model. ERPA-GVB recovers most of the electron correlation and it yields energy barrier heights of excellent accuracy. Thanks to a balanced treatment of static and dynamic correlation, ERPA-GVB stays reliable when one moves from systems dominated by dynamic electron correlation to those for which the static correlation comes into play.« less
Conditions where random phase approximation becomes exact in the high-density limit
NASA Astrophysics Data System (ADS)
Morawetz, Klaus; Ashokan, Vinod; Bala, Renu; Pathak, Kare Narain
2018-04-01
It is shown that, in d -dimensional systems, the vertex corrections beyond the random phase approximation (RPA) or G W approximation scales with the power d -β -α of the Fermi momentum if the relation between Fermi energy and Fermi momentum is ɛf˜pfβ and the interacting potential possesses a momentum power law of ˜p-α . The condition d -β -α <0 specifies systems where RPA is exact in the high-density limit. The one-dimensional structure factor is found to be the interaction-free one in the high-density limit for contact interaction. A cancellation of RPA and vertex corrections render this result valid up to second order in contact interaction. For finite-range potentials of cylindrical wires a large-scale cancellation appears and is found to be independent of the width parameter of the wire. The proposed high-density expansion agrees with the quantum Monte Carlo simulations.
Heßelmann, Andreas
2015-04-14
Molecular excitation energies have been calculated with time-dependent density-functional theory (TDDFT) using random-phase approximation Hessians augmented with exact exchange contributions in various orders. It has been observed that this approach yields fairly accurate local valence excitations if combined with accurate asymptotically corrected exchange-correlation potentials used in the ground-state Kohn-Sham calculations. The inclusion of long-range particle-particle with hole-hole interactions in the kernel leads to errors of 0.14 eV only for the lowest excitations of a selection of three alkene, three carbonyl, and five azabenzene molecules, thus surpassing the accuracy of a number of common TDDFT and even some wave function correlation methods. In the case of long-range charge-transfer excitations, the method typically underestimates accurate reference excitation energies by 8% on average, which is better than with standard hybrid-GGA functionals but worse compared to range-separated functional approximations.
Random-Phase Approximation Methods
NASA Astrophysics Data System (ADS)
Chen, Guo P.; Voora, Vamsee K.; Agee, Matthew M.; Balasubramani, Sree Ganesh; Furche, Filipp
2017-05-01
Random-phase approximation (RPA) methods are rapidly emerging as cost-effective validation tools for semilocal density functional computations. We present the theoretical background of RPA in an intuitive rather than formal fashion, focusing on the physical picture of screening and simple diagrammatic analysis. A new decomposition of the RPA correlation energy into plasmonic modes leads to an appealing visualization of electron correlation in terms of charge density fluctuations. Recent developments in the areas of beyond-RPA methods, RPA correlation potentials, and efficient algorithms for RPA energy and property calculations are reviewed. The ability of RPA to approximately capture static correlation in molecules is quantified by an analysis of RPA natural occupation numbers. We illustrate the use of RPA methods in applications to small-gap systems such as open-shell d- and f-element compounds, radicals, and weakly bound complexes, where semilocal density functional results exhibit strong functional dependence.
Sun, Zhimei; Zhou, Jian; Pan, Yuanchun; Song, Zhitang; Mao, Ho-Kwang; Ahuja, Rajeev
2011-01-01
Ge2Sb2Te5 (GST) is a technologically very important phase-change material that is used in digital versatile disks-random access memory and is currently studied for the use in phase-change random access memory devices. This type of data storage is achieved by the fast reversible phase transition between amorphous and crystalline GST upon heat pulse. Here we report pressure-induced reversible crystalline-amorphous and polymorphic amorphous transitions in NaCl structured GST by ab initio molecular dynamics calculations. We have showed that the onset amorphization of GST starts at approximately 18 GPa and the system become completely random at approximately 22 GPa. This amorphous state has a cubic framework (c-amorphous) of sixfold coordinations. With further increasing pressure, the c-amorphous transforms to a high-density amorphous structure with trigonal framework (t-amorphous) and an average coordination number of eight. The pressure-induced amorphization is investigated to be due to large displacements of Te atoms for which weak Te–Te bonds exist or vacancies are nearby. Upon decompressing to ambient conditions, the original cubic crystalline structure is restored for c-amorphous, whereas t-amorphous transforms to another amorphous phase that is similar to the melt-quenched amorphous GST. PMID:21670255
Sun, Zhimei; Zhou, Jian; Pan, Yuanchun; Song, Zhitang; Mao, Ho-Kwang; Ahuja, Rajeev
2011-06-28
Ge(2)Sb(2)Te(5) (GST) is a technologically very important phase-change material that is used in digital versatile disks-random access memory and is currently studied for the use in phase-change random access memory devices. This type of data storage is achieved by the fast reversible phase transition between amorphous and crystalline GST upon heat pulse. Here we report pressure-induced reversible crystalline-amorphous and polymorphic amorphous transitions in NaCl structured GST by ab initio molecular dynamics calculations. We have showed that the onset amorphization of GST starts at approximately 18 GPa and the system become completely random at approximately 22 GPa. This amorphous state has a cubic framework (c-amorphous) of sixfold coordinations. With further increasing pressure, the c-amorphous transforms to a high-density amorphous structure with trigonal framework (t-amorphous) and an average coordination number of eight. The pressure-induced amorphization is investigated to be due to large displacements of Te atoms for which weak Te-Te bonds exist or vacancies are nearby. Upon decompressing to ambient conditions, the original cubic crystalline structure is restored for c-amorphous, whereas t-amorphous transforms to another amorphous phase that is similar to the melt-quenched amorphous GST.
Quantum description of the high-order harmonic generation in multiphoton and tunneling regimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Hernandez, J. A.; Plaja, L.
2007-08-15
We employ a recently developed S-matrix approach [L. Plaja and J. A. Perez-Hernandez, Opt. Express 15, 3629 (2007)] to investigate the process of harmonic generation in tunnel and multiphoton ionization regimes. In contrast with most of the previous approaches, this model is developed without the stationary phase approximation and including the relevant continuum-continuum transitions. Therefore, it provides a full quantum description of the harmonic generation process in these two ionization regimes, with a good quantitative accuracy with the exact results of the time-dependent Schroedinger equation. We show how this model can be used to investigate the contribution of the electronicmore » population ionized at different times, thus giving a time-resolved description that, up to now, was reserved only to semiclassical models. In addition, we will show some aspects of harmonic generation beyond the semiclassical predictions as, for instance, the emission of radiation while the electron is leaving the parent ion and the generation of harmonics in semiclassically forbidden situations.« less
Multiscale volatility duration characteristics on financial multi-continuum percolation dynamics
NASA Astrophysics Data System (ADS)
Wang, Min; Wang, Jun
A random stock price model based on the multi-continuum percolation system is developed to investigate the nonlinear dynamics of stock price volatility duration, in an attempt to explain various statistical facts found in financial data, and have a deeper understanding of mechanisms in the financial market. The continuum percolation system is usually referred to be a random coverage process or a Boolean model, it is a member of a class of statistical physics systems. In this paper, the multi-continuum percolation (with different values of radius) is employed to model and reproduce the dispersal of information among the investors. To testify the rationality of the proposed model, the nonlinear analyses of return volatility duration series are preformed by multifractal detrending moving average analysis and Zipf analysis. The comparison empirical results indicate the similar nonlinear behaviors for the proposed model and the actual Chinese stock market.
Woolley, Thomas E; Gaffney, Eamonn A; Goriely, Alain
2017-07-01
If the plasma membrane of a cell is able to delaminate locally from its actin cortex, a cellular bleb can be produced. Blebs are pressure-driven protrusions, which are noteworthy for their ability to produce cellular motion. Starting from a general continuum mechanics description, we restrict ourselves to considering cell and bleb shapes that maintain approximately spherical forms. From this assumption, we obtain a tractable algebraic system for bleb formation. By including cell-substrate adhesions, we can model blebbing cell motility. Further, by considering mechanically isolated blebbing events, which are randomly distributed over the cell, we can derive equations linking the macroscopic migration characteristics to the microscopic structural parameters of the cell. This multiscale modeling framework is then used to provide parameter estimates, which are in agreement with current experimental data. In summary, the construction of the mathematical model provides testable relationships between the bleb size and cell motility.
APPARENT CROSS-FIELD SUPERSLOW PROPAGATION OF MAGNETOHYDRODYNAMIC WAVES IN SOLAR PLASMAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneko, T.; Yokoyama, T.; Goossens, M.
2015-10-20
In this paper we show that the phase-mixing of continuum Alfvén waves and/or continuum slow waves in the magnetic structures of the solar atmosphere as, e.g., coronal arcades, can create the illusion of wave propagation across the magnetic field. This phenomenon could be erroneously interpreted as fast magnetosonic waves. The cross-field propagation due to the phase-mixing of continuum waves is apparent because there is no real propagation of energy across the magnetic surfaces. We investigate the continuous Alfvén and slow spectra in two-dimensional (2D) Cartesian equilibrium models with a purely poloidal magnetic field. We show that apparent superslow propagation acrossmore » the magnetic surfaces in solar coronal structures is a consequence of the existence of continuum Alfvén waves and continuum slow waves that naturally live on those structures and phase-mix as time evolves. The apparent cross-field phase velocity is related to the spatial variation of the local Alfvén/slow frequency across the magnetic surfaces and is slower than the Alfvén/sound velocities for typical coronal conditions. Understanding the nature of the apparent cross-field propagation is important for the correct analysis of numerical simulations and the correct interpretation of observations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gambacurta, D.; Grasso, M.; Catara, F.
2012-10-20
The low-lying dipole strength distributions of {sup 40}CaCa and {sup 48}Ca, in the energy region between 5 and 10 MeV, are studied within the second random phase approximation (RPA) with Skyrme interaction. Standard RPA models do not usually predict any presence of strength in this energy region, while experimentally a significant amount of strength is found. The inclusion of the 2 particle -2 hole configurations allows to obtain a description in a rather good agreement with the experimental data. The properties of the most collective state are analyzed in terms of its 1 particle -1 hole nature and its transitionmore » densities.« less
Inhomogeneous fluid of penetrable-spheres: Application of the random phase approximation
NASA Astrophysics Data System (ADS)
Xiang, Yan; Frydel, Derek
2017-05-01
The focus of the present work is the application of the random phase approximation (RPA), derived for inhomogeneous fluids [Frydel and Ma, Phys. Rev. E 93, 062112 (2016)], to penetrable-spheres. As penetrable-spheres transform into hard-spheres with increasing interactions, they provide an interesting case for exploring the RPA, its shortcomings, and limitations, the weak- versus the strong-coupling limit. Two scenarios taken up by the present study are a one-component and a two-component fluid with symmetric interactions. In the latter case, the mean-field contributions cancel out and any contributions from particle interactions are accounted for by correlations. The accuracy of the RPA for this case is the result of a somewhat lucky cancellation of errors.
simulation methods for materials physics and chemistry, with particular expertise in post-DFT, high accuracy methods such as the GW approximation for electronic structure and random phase approximation (RPA) total the art in computational methods, including efficient methods for including the effects of substrates
Modeling stock price dynamics by continuum percolation system and relevant complex systems analysis
NASA Astrophysics Data System (ADS)
Xiao, Di; Wang, Jun
2012-10-01
The continuum percolation system is developed to model a random stock price process in this work. Recent empirical research has demonstrated various statistical features of stock price changes, the financial model aiming at understanding price fluctuations needs to define a mechanism for the formation of the price, in an attempt to reproduce and explain this set of empirical facts. The continuum percolation model is usually referred to as a random coverage process or a Boolean model, the local interaction or influence among traders is constructed by the continuum percolation, and a cluster of continuum percolation is applied to define the cluster of traders sharing the same opinion about the market. We investigate and analyze the statistical behaviors of normalized returns of the price model by some analysis methods, including power-law tail distribution analysis, chaotic behavior analysis and Zipf analysis. Moreover, we consider the daily returns of Shanghai Stock Exchange Composite Index from January 1997 to July 2011, and the comparisons of return behaviors between the actual data and the simulation data are exhibited.
Time-Resolved Properties and Global Trends in dMe Flares from Simultaneous Photometry and Spectra
NASA Astrophysics Data System (ADS)
Kowalski, Adam F.
We present a homogeneous survey of near-ultraviolet (NUV) /optical line and continuum emission during twenty M dwarf flares with simultaneous, high cadence photometry and spectra. These data were obtained to study the white-light continuum components to the blue and red of the Balmer jump to break the degeneracy with fitting emission mechanisms to broadband colors and to provide constraints for radiative-hydrodynamic flare models that seek to reproduce the white-light flare emission. The main results from the continuum analysis are the following: 1) the detection of Balmer continuum (in emission) that is present during all flares, with a wide range of relative contribution to the continuum flux in the NUV; 2) a blue continuum at the peak of the photometry that is linear with wavelength from λ = 4000 - 4800Å, matched by the spectral shape of hot, blackbody emission with typical temperatures of 10 000 - 12 000 K; 3) a redder continuum apparent at wavelengths longer than Hβ; this continuum becomes relatively more important to the energy budget during the late gradual phase. The hot blackbody component and redder continuum component (which we call "the conundruum") have been detected in previous UBVR colorimetry studies of flares. With spectra, one can compare the properties and detailed timings of all three components. Using time-resolved spectra during the rise phase of three flares, we calculate the speed of an expanding flare region assuming a simple geometry; the speeds are found to be ~5- 10 km s-1 and 50 - 120 km s -1, which are strikingly consistent with the speeds at which two-ribbon flares develop on the Sun. The main results from the emission line analysis are 1) the presentation of the "time-decrement", a relation between the timescales of the Balmer series; 2) a Neupert-like relation between Ca \\pcy K and the blackbody continuum, and 3) the detection of absorption wings in the Hydrogen Balmer lines during times of peak continuum emission, indicative of hot-star spectra forming during the flare. A byproduct of this study is a new method for deriving absolute fluxes during M dwarf flare observations obtained from narrow-slit spectra or during variable weather conditions. This technique allows us to analyze the spectra and photometry independently of one another, in order to connect the spectral properties to the rise, peak, and decay phases of broadband light curve morphology. We classify the light curve morphology according to an "impulsiveness index" and find that the fast (impulsive) flares have less Balmer continuum at peak emission than the slow (gradual) flares. In the gradual phase, the energy budget of the flare spectrum during almost all flares has a larger contribution from the Hydrogen Balmer component than in the impulsive phase, suggesting that the heating and cooling processes evolve over the course of a flare. We find that, in general, the evolution of the hot blackbody is rapid, and that the blackbody temperature decreases to ~8000 K in the gradual phase. The Balmer continuum evolves more slowly than the blackbody ¨C similar to the higher order Balmer lines but faster than the lower order Balmer lines. The height of the Balmer jump increases during the gradual decay phase. We model the Balmer continuum emission using the RHD F11 model spectrum from Allred et al. (2006), but we discuss several important systematic uncertainties in relating the apparent amount of Balmer continuum to a given RHD beam model. Good fits to the shape of the RHD F11 model spectrum are not obtained at peak times, in contrast to the gradual phase. We model the blackbody component using model hot star atmospheres from Castelli & Kurucz (2004) in order to account for the effects of flux redistribution in the flare atmosphere. This modeling is motivated by observations during a secondary flare in the decay phase of a megaflare, when the newly formed flare spectrum resembled that of Vega with the Balmer continuum and lines in absorption. We model this continuum phenomenologically with the RH code using hot spots placed at high column mass in the M dwarf quiescent atmosphere; a superposition of hot spot models and the RHD model are used to explain the anti-correlation in the apparent amount of Balmer continuum in emission and the U-band light curve. We attempt to reproduce the blackbody component in self-consistent 1D radiative hydrodynamic flare models using the RADYN code. We simulate the flare using a solar-type nonthermal electron beam heating function with a total energy flux of 1012 ergs cm-2 s-1 (F12) for a duration of 5 seconds and a subsequent gradual phase. Although there is a larger amount of NUV backwarming at log mc/(1g cm-2)~0 than in the F11 model, the resulting flare continuum shape is similar to the F11 model spectrum with a larger Balmer jump and a much redder spectral shape than is seen in the observations. We do not find evidence of white-light emitting chromospheric condensations, in contrast to the previous F12 model of Livshits et al. (1981). We discuss future avenues for RHD modeling in order to produce a hot blackbody component, including the treatment of nonthermal protons in M dwarf flares.
Equation of State and Viscosity of Tantalum and Iron from First Principles
NASA Astrophysics Data System (ADS)
Miljacic, Ljubomir; Demers, Steven; van de Walle, Axel
2011-03-01
To understand and model at continuum level the high-energy-density dynamic response in transition metals like Tantalum and Iron, as it arises in hypervelocity impact experiments, an accurate prediction of the underlying thermodynamic and kinetic properties for a range of temperatures and pressures is of critical importance. The relevant time scale of atomic motion in a dense gas, liquid, and solid is accessible with ab-initio Molecular Dynamics (MD) simulations. We calculate EoS for Ta and Fe via Thermodynamical Integration in 2D (V,T) phase space throughout different single and two-component phases. To reduce the ab-initio demand in selected regions of the space, we fit available gas-liquid data to the Peng-Robinson model and treat the solid phase within the Boxed-quasi-harmonic approximation. In the fluid part of the 2D phase space, we calculate shear viscosity via Green-Kubo relations, as time integration of the stress autocorrelation function.
Analytical theory of the shear Alfvén continuum in the presence of a magnetic island
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, C. R., E-mail: cook@physics.wisc.edu; Hegna, C. C.
2015-04-15
The effect of a magnetic island chain on the shear Alfvén continuum is calculated analytically. Using a WKB approximation of the linearized ideal MHD equations, the island is shown to cause an upshift in the continuum accumulation point frequency. This minimum of the frequency spectrum is shifted from the rational surface to the island separatrix. The structure of the eigenmodes is also presented.
Impurity-induced anisotropic semiconductor-semimetal transition in monolayer biased black phosphorus
NASA Astrophysics Data System (ADS)
Bui, D. H.; Yarmohammadi, Mohsen
2018-07-01
Taking into account the electron-impurity interaction within the continuum approximation of tight-binding model, the Born approximation, and the Green's function method, the main features of anisotropic electronic phase transition are investigated in monolayer biased black phosphorus (BP). To this end, we concentrated on the disordered electronic density of states (DOS), which gives useful information for electro-optical devices. Increasing the impurity concentration in both unbiased and biased impurity-infected single-layer BP, in addition to the decrease of the band gap, independent of the direction, leads to the midgap states and an extra Van Hove singularity inside and outside of the band gap, respectively. Furthermore, strong impurity scattering potentials lead to a semiconductor-semimetal transition and one more Van Hove singularity in x-direction of unbiased BP and surprisingly, this transition does not occur in biased BP. We found that there is no phase transition in y-direction. Since real applications require structures with modulated band gaps, we have studied the influence of different bias voltages on the disordered DOS in both directions, resulting in the increase of the band gap.
Crystal structure and phase stability in Fe{sub 1{minus}x}Co{sub x} from AB initio theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soederlind, P.; Abrikosov, I.A.; James, P.
1996-06-01
For alloys between Fe and Co, their magnetic properties determine their structure. From the occupation of d states, a phase diagram is expected which depend largely on the spin polarization. A method more elaborate than canonical band models is used to calculate the spin moment and crystal structure energies. This method was the multisublattice generalization of the coherent potential approximation in conjunction with the Linear-Muffin-Tin-Orbital method in the atomic sphere approximation. To treat itinerant magnetism, the Vosko-Wilk-Nusair parameterization was used for the local spin density approximation. The fcc, bcc, and hcp phases were studied as completely random alloys, while themore » {alpha}{prime} phase for off-stoichiometries were considered as partially ordered. Results are compared with experiment and canonical band model.« less
Spectroscopic monitoring of active Galactic nuclei from CTIO. 1: NGC 3227
NASA Technical Reports Server (NTRS)
Winge, Claudia; Peterson, Bradley M.; Horne, Keith; Pogge, Richard W.; Pastoriza, Miriani G.; Storchi-Bergmann, Thaisa
1995-01-01
The results of a five-month monitoring campaign on the Seyfert 1.5 galaxy NGC 3227 are presented. Variability was detected in the continuum and in the broad emission lines. Cross correlations of the 4200 A continuum light curve with the H beta and He II wavelength 4686 emission-line light curves indicate delays of 18 +/- 5 and 16 +/- 2 days, respectively, between the continuum variations and the response of the lines. We apply a maximum entropy method to solve for the transfer function that relates the H beta and He II wavelength 4686 lines and 4200 A continuum variability and the result of this analysis suggests that there is a deficit of emission-line response due to gas along the line of sight to the continuum source for both lines. Using a composite off-nuclear spectrum, we synthesize the bulge stellar population, which is found to be mainly old (77% with age greater than 10 Gyr) with a metallicity twice the solar value. The synthesis also yields an internal color excess E(B - V) approximately equal 0.04. The mean contribution of the stellar population to the inner 5 sec x 10 sec spectra during the campaign was approximately equal 40%.
Instability of superfluid Fermi gases induced by a rotonlike density mode in optical lattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yunomae, Yoshihiro; Yamamoto, Daisuke; Danshita, Ippei
2009-12-15
We study the stability of superfluid Fermi gases in deep optical lattices in the BCS-Bose-Einstein condensation (BEC) crossover at zero temperature. Within the tight-binding attractive Hubbard model, we calculate the spectrum of the low-energy Anderson-Bogoliubov (AB) mode as well as the single-particle excitations in the presence of superfluid flow in order to determine the critical velocities. To obtain the spectrum of the AB mode, we calculate the density response function in the generalized random-phase approximation applying the Green's function formalism developed by Cote and Griffin to the Hubbard model. We find that the spectrum of the AB mode is separatedmore » from the particle-hole continuum having the characteristic rotonlike minimum at short wavelength due to the strong charge-density-wave fluctuations. The energy of the rotonlike minimum decreases with increasing the lattice velocity and it reaches zero at the critical velocity which is smaller than the pair-breaking velocity. This indicates that the superfluid state is energetically unstable due to the spontaneous emission of the short-wavelength rotonlike excitations of the AB mode instead due to pair breaking. We determine the critical velocities as functions of the interaction strength across the BCS-BEC crossover regime.« less
NASA Astrophysics Data System (ADS)
Gambacurta, D.; Grasso, M.; Vasseur, O.
2018-02-01
The second random-phase-approximation model corrected by a subtraction procedure designed to cure double counting, instabilities, and ultraviolet divergences, is employed for the first time to analyze the dipole strength and polarizability in 48Ca. All the terms of the residual interaction are included, leading to a fully self-consistent scheme. Results are illustrated with two Skyrme parametrizations, SGII and SLy4. Those obtained with the SGII interaction are particularly satisfactory. In this case, the low-lying strength below the neutron threshold is well reproduced and the giant dipole resonance is described in a very satisfactory way especially in its spreading and fragmentation. Spreading and fragmentation are produced in a natural way within such a theoretical model by the coupling of 1 particle-1 hole and 2 particle-2 hole configurations. Owing to this feature, we may provide for the electric polarizability as a function of the excitation energy a curve with a similar slope around the centroid energy of the giant resonance compared to the corresponding experimental results. This represents a considerable improvement with respect to previous theoretical predictions obtained with the random-phase approximation or with several ab-initio models. In such cases, the spreading width of the excitation cannot be reproduced and the polarizability as a function of the excitation energy displays a stiff increase around the predicted centroid energy of the giant resonance.
NASA Technical Reports Server (NTRS)
Rybicki, G. B.; Hummer, D. G.
1991-01-01
A method is presented for solving multilevel transfer problems when nonoverlapping lines and background continuum are present and active continuum transfer is absent. An approximate lambda operator is employed to derive linear, 'preconditioned', statistical-equilibrium equations. A method is described for finding the diagonal elements of the 'true' numerical lambda operator, and therefore for obtaining the coefficients of the equations. Iterations of the preconditioned equations, in conjunction with the transfer equation's formal solution, are used to solve linear equations. Some multilevel problems are considered, including an eleven-level neutral helium atom. Diagonal and tridiagonal approximate lambda operators are utilized in the problems to examine the convergence properties of the method, and it is found to be effective for the line transfer problems.
Topological analysis of the CfA redshift survey
NASA Technical Reports Server (NTRS)
Vogeley, Michael S.; Park, Changbom; Geller, Margaret J.; Huchra, John P.; Gott, J. Richard, III
1994-01-01
We study the topology of large-scale structure in the Center for Astrophysics Redshift Survey, which now includes approximately 12,000 galaxies with limiting magnitude m(sub B) is less than or equal to 15.5. The dense sampling and large volume of this survey allow us to compute the topology on smoothing scales from 6 to 20/h Mpc; we thus examine the topology of structure in both 'nonlinear' and 'linear' regimes. On smoothing scales less than or equal to 10/h Mpc this sample has 3 times the number of resolution elements of samples examined in previous studies. Isodensity surface of the smoothed galaxy density field demonstrate that coherent high-density structures and large voids dominate the galaxy distribution. We compute the genus-threshold density relation for isodensity surfaces of the CfA survey. To quantify phase correlation in these data, we compare the CfA genus with the genus of realizations of Gaussian random fields with the power spectrum measured for the CfA survey. On scales less than or equal to 10/h Mpc the observed genus amplitude is smaller than random phase (96% confidence level). This decrement reflects the degree of phase coherence in the observed galaxy distribution. In other words the genus amplitude on these scales is not good measure of the power spectrum slope. On scales greater than 10/h Mpc, where the galaxy distribution is rougly in the 'linear' regime, the genus ampitude is consistent with the random phase amplitude. The shape of the genus curve reflects the strong coherence in the observed structure; the observed genus curve appears broader than random phase (94% confidence level for smoothing scales less than or equal to 10/h Mpc) because the topolgoy is spongelike over a very large range of density threshold. This departre from random phase consistent with a distribution like a filamentary net of 'walls with holes.' On smoothing scales approaching approximately 20/h Mpc the shape of the CfA genus curve is consistent with random phase. There is very weak evidence for a shift of the genus toward a 'bubble-like' topology. To test cosmological models, we compute the genus for mock CfA surveys drawn from large (L greater than or approximately 400/h Mpc) N-body simulations of three variants of the cold dark matter (CDM) cosmogony. The genus amplitude of the 'standard' CDM model (omega h = 0.5, b = 1.5) differs from the observations (96% confidence level) on smoothing scales is less than or approximately 10/h Mpc. An open CDM model (omega h = 0.2) and a CDM model with nonzero cosmological constant (omega h = 0.24, lambda (sub 0) = 0.6) are consistent with the observed genus amplitude over the full range of smoothing scales. All of these models fail (97% confidence level) to match the broadness of the observed genus curve on smoothing scales is less than or equal to 10/h Mpc.
Theoretical derivation of laser-dressed atomic states by using a fractal space
NASA Astrophysics Data System (ADS)
Duchateau, Guillaume
2018-05-01
The derivation of approximate wave functions for an electron submitted to both a Coulomb and a time-dependent laser electric fields, the so-called Coulomb-Volkov (CV) state, is addressed. Despite its derivation for continuum states does not exhibit any particular problem within the framework of the standard theory of quantum mechanics (QM), difficulties arise when considering an initially bound atomic state. Indeed the natural way of translating the unperturbed momentum by the laser vector potential is no longer possible since a bound state does not exhibit a plane wave form explicitly including a momentum. The use of a fractal space permits to naturally define a momentum for a bound wave function. Within this framework, it is shown how the derivation of laser-dressed bound states can be performed. Based on a generalized eikonal approach, a new expression for the laser-dressed states is also derived, fully symmetric relative to the continuum or bound nature of the initial unperturbed wave function. It includes an additional crossed term in the Volkov phase which was not obtained within the standard theory of quantum mechanics. The derivations within this fractal framework have highlighted other possible ways to derive approximate laser-dressed states in QM. After comparing the various obtained wave functions, an application to the prediction of the ionization probability of hydrogen targets by attosecond XUV pulses within the sudden approximation is provided. This approach allows to make predictions in various regimes depending on the laser intensity, going from the non-resonant multiphoton absorption to tunneling and barrier-suppression ionization.
A continuum theory of edge dislocations
NASA Astrophysics Data System (ADS)
Berdichevsky, V. L.
2017-09-01
Continuum theory of dislocation aims to describe the behavior of large ensembles of dislocations. This task is far from completion, and, most likely, does not have a "universal solution", which is applicable to any dislocation ensemble. In this regards it is important to have guiding lines set by benchmark cases, where the transition from a discrete set of dislocations to a continuum description is made rigorously. Two such cases have been considered recently: equilibrium of dislocation walls and screw dislocations in beams. In this paper one more case is studied, equilibrium of a large set of 2D edge dislocations placed randomly in a 2D bounded region. The major characteristic of interest is energy of dislocation ensemble, because it determines the structure of continuum equations. The homogenized energy functional is obtained for the periodic dislocation ensembles with a random contents of the periodic cell. Parameters of the periodic structure can change slowly on distances of order of the size of periodic cells. The energy functional is obtained by the variational-asymptotic method. Equilibrium positions are local minima of energy. It is confirmed the earlier assertion that energy density of the system is the sum of elastic energy of averaged elastic strains and microstructure energy, which is elastic energy of the neutralized dislocation system, i.e. the dislocation system placed in a constant dislocation density field making the averaged dislocation density zero. The computation of energy is reduced to solution of a variational cell problem. This problem is solved analytically. The solution is used to investigate stability of simple dislocation arrays, i.e. arrays with one dislocation in the periodic cell. The relations obtained yield two outcomes: First, there is a state parameter of the system, dislocation polarization; averaged stresses affect only dislocation polarization and cannot change other characteristics of the system. Second, the structure of dislocation phase space is strikingly simple. Dislocation phase space is split in a family of subspaces corresponding to constant values of dislocation polarizations; in each equipolarization subspace there are many local minima of energy; for zero external stresses the system is stuck in a local minimum of energy; for non-zero slowly changing external stress, dislocation polarization evolves, while the system moves over local energy minima of equipolarization subspaces. Such a simple picture of dislocation dynamics is due to the presence of two time scales, slow evolution of dislocation polarization and fast motion of the system over local minima of energy. The existence of two time scales is justified for a neutral system of edge dislocations.
Resilience Among Patients Across the Cancer Continuum: Diverse Perspectives
Molina, Yamile; Yi, Jean C.; Martinez-Gutierrez, Javiera; Reding, Kerryn W.; Yi-Frazier, Joyce P.; Rosenberg, Abby R.
2014-01-01
Each phase of the cancer experience profoundly affects patients’ lives. Much of the literature has focused on negative consequences of cancer; however, the study of resilience may enable providers to promote more positive psychosocial outcomes before, during, and after the cancer experience. The current review describes the ways in which elements of resilience have been defined and studied at each phase of the cancer continuum. Extensive literature searches were conducted to find studies assessing resilience during one or more stages of the adult cancer continuum. For all phases of the cancer continuum, resilience descriptions included preexisting or baseline characteristics, such as demographics and personal attributes (e.g., optimism, social support), mechanisms of adaptation, such as coping and medical experiences (e.g., positive provider communication), as well as psychosocial outcomes, such as growth and quality of life. Promoting resilience is a critical element of patient psychosocial care. Nurses may enable resilience by recognizing and promoting certain baseline characteristics and optimizing mechanisms of adaptation. PMID:24476731
NASA Astrophysics Data System (ADS)
Jin, Wang; Penington, Catherine J.; McCue, Scott W.; Simpson, Matthew J.
2016-10-01
Two-dimensional collective cell migration assays are used to study cancer and tissue repair. These assays involve combined cell migration and cell proliferation processes, both of which are modulated by cell-to-cell crowding. Previous discrete models of collective cell migration assays involve a nearest-neighbour proliferation mechanism where crowding effects are incorporated by aborting potential proliferation events if the randomly chosen target site is occupied. There are two limitations of this traditional approach: (i) it seems unreasonable to abort a potential proliferation event based on the occupancy of a single, randomly chosen target site; and, (ii) the continuum limit description of this mechanism leads to the standard logistic growth function, but some experimental evidence suggests that cells do not always proliferate logistically. Motivated by these observations, we introduce a generalised proliferation mechanism which allows non-nearest neighbour proliferation events to take place over a template of r≥slant 1 concentric rings of lattice sites. Further, the decision to abort potential proliferation events is made using a crowding function, f(C), which accounts for the density of agents within a group of sites rather than dealing with the occupancy of a single randomly chosen site. Analysing the continuum limit description of the stochastic model shows that the standard logistic source term, λ C(1-C), where λ is the proliferation rate, is generalised to a universal growth function, λ C f(C). Comparing the solution of the continuum description with averaged simulation data indicates that the continuum model performs well for many choices of f(C) and r. For nonlinear f(C), the quality of the continuum-discrete match increases with r.
Jin, Wang; Penington, Catherine J; McCue, Scott W; Simpson, Matthew J
2016-10-07
Two-dimensional collective cell migration assays are used to study cancer and tissue repair. These assays involve combined cell migration and cell proliferation processes, both of which are modulated by cell-to-cell crowding. Previous discrete models of collective cell migration assays involve a nearest-neighbour proliferation mechanism where crowding effects are incorporated by aborting potential proliferation events if the randomly chosen target site is occupied. There are two limitations of this traditional approach: (i) it seems unreasonable to abort a potential proliferation event based on the occupancy of a single, randomly chosen target site; and, (ii) the continuum limit description of this mechanism leads to the standard logistic growth function, but some experimental evidence suggests that cells do not always proliferate logistically. Motivated by these observations, we introduce a generalised proliferation mechanism which allows non-nearest neighbour proliferation events to take place over a template of [Formula: see text] concentric rings of lattice sites. Further, the decision to abort potential proliferation events is made using a crowding function, f(C), which accounts for the density of agents within a group of sites rather than dealing with the occupancy of a single randomly chosen site. Analysing the continuum limit description of the stochastic model shows that the standard logistic source term, [Formula: see text], where λ is the proliferation rate, is generalised to a universal growth function, [Formula: see text]. Comparing the solution of the continuum description with averaged simulation data indicates that the continuum model performs well for many choices of f(C) and r. For nonlinear f(C), the quality of the continuum-discrete match increases with r.
Kilometric Continuum Radiation
NASA Technical Reports Server (NTRS)
Green, James L.; Boardsen, Scott
2006-01-01
Kilometric continuum (KC) is the high frequency component (approximately 100 kHz to approximately 800 kHz) of nonthermal continuum (NTC). Unlike the lower frequency portion of NTC (approximately 5 kHz to approximately 100 kHz) whose source is around the dawn sector, the source of KC occurs at all magnetic local times. The latitudinal beaming of KC as observed by GEOTAIL is, for most events, restricted to plus or minus 15 degrees magnetic latitude. KC has been observed during periods of both low and strong geomagnetic activity, with no significant correlation of wave intensity with K(sub p), index. However statistically the maximum observed frequency of KC emission tends to increase with K(sub p) index, the effect is more pronounced around solar maximum, but is also detected near solar minimum. There is strong evidence that the source region of KC is from the equatorial plasmapause during periods when a portion of the plasmapause moves significantly inwards from its nominal position. Case studies have shown that KC emissions are nearly always associated with plasmaspheric notches, shoulders, and tails. There is a recent focus on trying to understand the banded frequency structure of this emission and its relationship to plasmaspheric density ducts and irregularities in the source region.
Wilhelm, Jan; Seewald, Patrick; Del Ben, Mauro; Hutter, Jürg
2016-12-13
We present an algorithm for computing the correlation energy in the random phase approximation (RPA) in a Gaussian basis requiring [Formula: see text] operations and [Formula: see text] memory. The method is based on the resolution of the identity (RI) with the overlap metric, a reformulation of RI-RPA in the Gaussian basis, imaginary time, and imaginary frequency integration techniques, and the use of sparse linear algebra. Additional memory reduction without extra computations can be achieved by an iterative scheme that overcomes the memory bottleneck of canonical RPA implementations. We report a massively parallel implementation that is the key for the application to large systems. Finally, cubic-scaling RPA is applied to a thousand water molecules using a correlation-consistent triple-ζ quality basis.
Yura, H T; Thrane, L; Andersen, P E
2000-12-01
Within the paraxial approximation, a closed-form solution for the Wigner phase-space distribution function is derived for diffuse reflection and small-angle scattering in a random medium. This solution is based on the extended Huygens-Fresnel principle for the optical field, which is widely used in studies of wave propagation through random media. The results are general in that they apply to both an arbitrary small-angle volume scattering function, and arbitrary (real) ABCD optical systems. Furthermore, they are valid in both the single- and multiple-scattering regimes. Some general features of the Wigner phase-space distribution function are discussed, and analytic results are obtained for various types of scattering functions in the asymptotic limit s > 1, where s is the optical depth. In particular, explicit results are presented for optical coherence tomography (OCT) systems. On this basis, a novel way of creating OCT images based on measurements of the momentum width of the Wigner phase-space distribution is suggested, and the advantage over conventional OCT images is discussed. Because all previous published studies regarding the Wigner function are carried out in the transmission geometry, it is important to note that the extended Huygens-Fresnel principle and the ABCD matrix formalism may be used successfully to describe this geometry (within the paraxial approximation). Therefore for completeness we present in an appendix the general closed-form solution for the Wigner phase-space distribution function in ABCD paraxial optical systems for direct propagation through random media, and in a second appendix absorption effects are included.
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, R. H.
1991-01-01
The present theory for the continuous absorption that is due to the far-wing contribution of allowed lines is based on the quasistatic approximation for the far wing limit and the binary collision approximation of one absorber molecule and one bath molecule. The validity of the theory is discussed, and numerical results of the water-continuum absorption in the IR region are presented for comparison with experimental data. Good agreement is obtained for both the magnitude and temperature dependence of the absorption coefficients.
Approximate Genealogies Under Genetic Hitchhiking
Pfaffelhuber, P.; Haubold, B.; Wakolbinger, A.
2006-01-01
The rapid fixation of an advantageous allele leads to a reduction in linked neutral variation around the target of selection. The genealogy at a neutral locus in such a selective sweep can be simulated by first generating a random path of the advantageous allele's frequency and then a structured coalescent in this background. Usually the frequency path is approximated by a logistic growth curve. We discuss an alternative method that approximates the genealogy by a random binary splitting tree, a so-called Yule tree that does not require first constructing a frequency path. Compared to the coalescent in a logistic background, this method gives a slightly better approximation for identity by descent during the selective phase and a much better approximation for the number of lineages that stem from the founder of the selective sweep. In applications such as the approximation of the distribution of Tajima's D, the two approximation methods perform equally well. For relevant parameter ranges, the Yule approximation is faster. PMID:17182733
Model of fracture of metal melts and the strength of melts under dynamic conditions
NASA Astrophysics Data System (ADS)
Mayer, P. N.; Mayer, A. E.
2015-07-01
The development of a continuum model of deformation and fracture of melts is needed for the description of the behavior of metals in extreme states, in particular, under high-current electron and ultrashort laser irradiation. The model proposed includes the equations of mechanics of a two-phase continuum and the equations of the kinetics of phase transitions. The change (exchange) of the volumes of dispersed and carrier phases and of the number of dispersed particles is described, and the energy and mass exchange between the phases due to phase transitions is taken into account. Molecular dynamic (MD) calculations are carried out with the use of the LAMMPS program. The continuum model is verified by MD, computational, and experimental data. The strength of aluminum, copper, and nickel is determined at various temperatures and strain rates. It is shown that an increase in the strain rate leads to an increase in the strength of a liquid metal, while an increase in temperature leads to a decrease in its strength.
NASA Technical Reports Server (NTRS)
Tilley, David G.
1987-01-01
NASA Space Shuttle Challenger SIR-B ocean scenes are used to derive directional wave spectra for which speckle noise is modeled as a function of Rayleigh random phase coherence downrange and Poisson random amplitude errors inherent in the Doppler measurement of along-track position. A Fourier filter that preserves SIR-B image phase relations is used to correct the stationary and dynamic response characteristics of the remote sensor and scene correlator, as well as to subtract an estimate of the speckle noise component. A two-dimensional map of sea surface elevation is obtained after the filtered image is corrected for both random and deterministic motions.
Frustration and curvature - Glasses and the cholesteric blue phase
NASA Technical Reports Server (NTRS)
Sethna, J. P.
1983-01-01
An analogy is drawn between continuum elastic theories of the blue phase of cholesteric liquid crystals and recent theories of frustration in configurational glasses. Both involve the introduction of a lattice of disclination lines to relieve frustration; the frustration is due to an intrinsic curvature in the natural form of parallel transport. A continuum theory of configurational glasses is proposed.
NASA Astrophysics Data System (ADS)
Paramonov, L. E.
2012-05-01
Light scattering by isotropic ensembles of ellipsoidal particles is considered in the Rayleigh-Gans-Debye approximation. It is proved that randomly oriented ellipsoidal particles are optically equivalent to polydisperse randomly oriented spheroidal particles and polydisperse spherical particles. Density functions of the shape and size distributions for equivalent ensembles of spheroidal and spherical particles are presented. In the anomalous diffraction approximation, equivalent ensembles of particles are shown to also have equal extinction, scattering, and absorption coefficients. Consequences of optical equivalence are considered. The results are illustrated by numerical calculations of the angular dependence of the scattering phase function using the T-matrix method and the Mie theory.
Spectral weight of excitations in Bose Hubbard model
NASA Astrophysics Data System (ADS)
Alavani, Bhargav K.; Pai, Ramesh V.
2017-05-01
We obtain excitation spectra in the superfluid and the Mott Insulator phases of Bose Hubbard model near unit filling within Random Phase Approximation (RPA) and calculate its spectral weight. This gives a transparent description of contribution of each excitation towards the total Density of States (DOS) which we calculate from these spectral weights.
Constitutive Relationships and Models in Continuum Theories of Multiphase Flows. [conferences
NASA Technical Reports Server (NTRS)
Decker, Rand (Editor)
1989-01-01
In April, 1989, a workshop on constitutive relationships and models in continuum theories of multiphase flows was held at NASA's Marshall Space Flight Center. Topics of constitutive relationships for the partial or per phase stresses, including the concept of solid phase pressure are discussed. Models used for the exchange of mass, momentum, and energy between the phases in a multiphase flow are also discussed. The program, abstracts, and texts of the presentations from the workshop are included.
Imaging the Formation of High-Energy Dispersion Anomalies in the Actinide UCoGa5
NASA Astrophysics Data System (ADS)
Das, Tanmoy; Durakiewicz, Tomasz; Zhu, Jian-Xin; Joyce, John J.; Sarrao, John L.; Graf, Matthias J.
2012-10-01
We use angle-resolved photoemission spectroscopy to image the emergence of substantial dispersion and spectral-weight anomalies in the electronic renormalization of the actinide compound UCoGa5 that was presumed to belong to a conventional Fermi-liquid family. Kinks or abrupt breaks in the slope of the quasiparticle dispersion are detected both at low (approximately 130 meV) and high (approximately 1 eV) binding energies below the Fermi energy, ruling out any significant contribution of phonons. We perform numerical calculations to demonstrate that the anomalies are adequately described by coupling between itinerant fermions and spin fluctuations arising from the particle-hole continuum of the spin-orbit-split 5f states of uranium. These anomalies resemble the “waterfall” phenomenon of the high-temperature copper-oxide superconductors, suggesting that spin fluctuations are a generic route toward multiform electronic phases in correlated materials as different as high-temperature superconductors and actinides.
Modal kinematics for multisection continuum arms.
Godage, Isuru S; Medrano-Cerda, Gustavo A; Branson, David T; Guglielmino, Emanuele; Caldwell, Darwin G
2015-05-13
This paper presents a novel spatial kinematic model for multisection continuum arms based on mode shape functions (MSF). Modal methods have been used in many disciplines from finite element methods to structural analysis to approximate complex and nonlinear parametric variations with simple mathematical functions. Given certain constraints and required accuracy, this helps to simplify complex phenomena with numerically efficient implementations leading to fast computations. A successful application of the modal approximation techniques to develop a new modal kinematic model for general variable length multisection continuum arms is discussed. The proposed method solves the limitations associated with previous models and introduces a new approach for readily deriving exact, singularity-free and unique MSF's that simplifies the approach and avoids mode switching. The model is able to simulate spatial bending as well as straight arm motions (i.e., pure elongation/contraction), and introduces inverse position and orientation kinematics for multisection continuum arms. A kinematic decoupling feature, splitting position and orientation inverse kinematics is introduced. This type of decoupling has not been presented for these types of robotic arms before. The model also carefully accounts for physical constraints in the joint space to provide enhanced insight into practical mechanics and impose actuator mechanical limitations onto the kinematics thus generating fully realizable results. The proposed method is easily applicable to a broad spectrum of continuum arm designs.
The information needs of adult cancer survivors across the cancer continuum: A scoping review.
Fletcher, Chloe; Flight, Ingrid; Chapman, Janine; Fennell, Kate; Wilson, Carlene
2017-03-01
To provide an updated synthesis of the literature that investigates the self-reported information needs of people diagnosed with cancer across the cancer continuum. We conducted a scoping review of the literature published from August 2003 to June 2015 and expanded an existing typology summarizing the information needs of people diagnosed with cancer. The majority of the included studies (n=104) focused on questions relevant to the diagnosis/active treatment phase of the cancer continuum (52.9%) and thus the most frequently identified information needs related to this phase (33.4%). Information needs varied across the continuum and the results highlight the importance of recognising this fact. People diagnosed with cancer experience discrete information needs at different points from diagnosis to survival. Much of the research conducted in this area has focused on their information needs during the diagnosis and treatment of cancer, and literature relating to information needs following completion of treatment is sparse. Further research is needed to discern the specific nature of the treatment concerns and identify the information needs that survivors experience during recurrence of cancer, metastasis or changes in diagnosis, and the end of life phase of the cancer continuum. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Luenser, Arne; Schurkus, Henry F; Ochsenfeld, Christian
2017-04-11
A reformulation of the random phase approximation within the resolution-of-the-identity (RI) scheme is presented, that is competitive to canonical molecular orbital RI-RPA already for small- to medium-sized molecules. For electronically sparse systems drastic speedups due to the reduced scaling behavior compared to the molecular orbital formulation are demonstrated. Our reformulation is based on two ideas, which are independently useful: First, a Cholesky decomposition of density matrices that reduces the scaling with basis set size for a fixed-size molecule by one order, leading to massive performance improvements. Second, replacement of the overlap RI metric used in the original AO-RPA by an attenuated Coulomb metric. Accuracy is significantly improved compared to the overlap metric, while locality and sparsity of the integrals are retained, as is the effective linear scaling behavior.
Schlosser, Florian; Moskaleva, Lyudmila V; Kremleva, Alena; Krüger, Sven; Rösch, Notker
2010-06-28
With a relativistic all-electron density functional method, we studied two anionic uranium(VI) carbonate complexes that are important for uranium speciation and transport in aqueous medium, the mononuclear tris(carbonato) complex [UO(2)(CO(3))(3)](4-) and the trinuclear hexa(carbonato) complex [(UO(2))(3)(CO(3))(6)](6-). Focusing on the structures in solution, we applied for the first time a full solvation treatment to these complexes. We approximated short-range effects by explicit aqua ligands and described long-range electrostatic interactions via a polarizable continuum model. Structures and vibrational frequencies of "gas-phase" models with explicit aqua ligands agree best with experiment. This is accidental because the continuum model of the solvent to some extent overestimates the electrostatic interactions of these highly anionic systems with the bulk solvent. The calculated free energy change when three mono-nuclear complexes associate to the trinuclear complex, agrees well with experiment and supports the formation of the latter species upon acidification of a uranyl carbonate solution.
Index theorem and universality properties of the low-lying eigenvalues of improved staggered quarks.
Follana, E; Hart, A; Davies, C T H
2004-12-10
We study various improved staggered quark Dirac operators on quenched gluon backgrounds in lattice QCD generated using a Symanzik-improved gluon action. We find a clear separation of the spectrum into would-be zero modes and others. The number of would-be zero modes depends on the topological charge as expected from the index theorem, and their chirality expectation value is large ( approximately 0.7). The remaining modes have low chirality and show clear signs of clustering into quartets and approaching the random matrix theory predictions for all topological charge sectors. We conclude that improvement of the fermionic and gauge actions moves the staggered quarks closer to the continuum limit where they respond correctly to QCD topology.
Soliton formation in the FFLO phase
NASA Astrophysics Data System (ADS)
Croitoru, M. D.; Buzdin, A. I.
2016-12-01
There is increasing body of experimental evidences of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase in quasi-low-dimensional organic and heavy-fermion superconductors. The emergence of the FFLO phase has been demonstrated mainly based on a thermodynamic quantity or microscopically with spin polarization distribution that exhibit anomalies within the superconducting state in the presence of the in-plane magnetic field. However, the direct observation of superconducting order parameter modulation is so far (still) missing. Within the quasiclassical approach and Ginzburg-Landau formalism we study how the orbital effect of the in-plane field influences the FFLO instability in quasi-one-dimensional superconductors with a sufficiently weak interlayer coupling locking the magnetic flux to Josephson-type vortices. By making use of the continuum limit approximation of the Frenkel-Kontorova model for competing periodicities, we find and characterize the locking behavior of the modulation wave vector, when it remains equal to the magnetic length through some range of values of the external field.
Mirrored continuum and molecular scale simulations of the ignition of gamma phase RDX
NASA Astrophysics Data System (ADS)
Stewart, D. Scott; Chaudhuri, Santanu; Joshi, Kaushik; Lee, Kiabek
2015-06-01
We consider the ignition of a high-pressure gamma-phase of an explosive crystal of RDX which forms during overdriven shock initiation. Molecular dynamics (MD), with first-principles based or reactive force field based molecular potentials, provides a description of the chemistry as an extremely complex reaction network. The results of the molecular simulation is analyzed by sorting molecular product fragments into high and low molecular groups, to represent identifiable components that can be interpreted by a continuum model. A continuum model based on a Gibbs formulation, that has a single temperature and stress state for the mixture is used to represent the same RDX material and its chemistry. Each component in the continuum model has a corresponding Gibbs continuum potential, that are in turn inferred from molecular MD informed equation of state libraries such as CHEETAH, or are directly simulated by Monte Carlo MD simulations. Information about transport, kinetic rates and diffusion are derived from the MD simulation and the growth of a reactive hot spot in the RDX is studied with both simulations that mirror the other results to provide an essential, continuum/atomistic link. Supported by N000014-12-1-0555, subaward-36561937 (ONR).
NASA Astrophysics Data System (ADS)
Benedetti, Ivano; Nguyen, Hoang; Soler-Crespo, Rafael A.; Gao, Wei; Mao, Lily; Ghasemi, Arman; Wen, Jianguo; Nguyen, SonBinh; Espinosa, Horacio D.
2018-03-01
Novel 2D materials, e.g., graphene oxide (GO), are attractive building blocks in the design of advanced materials due to their reactive chemistry, which can enhance interfacial interactions while providing good in-plane mechanical properties. Recent studies have hypothesized that the randomly distributed two-phase microstructure of GO, which arises due to its oxidized chemistry, leads to differences in nano- vs meso-scale mechanical responses. However, this effect has not been carefully studied using molecular dynamics due to computational limitations. Herein, a continuum mechanics model, formulated based on density functional based tight binding (DFTB) constitutive results for GO nano-flakes, is establish for capturing the effect of oxidation patterns on the material mechanical properties. GO is idealized as a continuum heterogeneous two-phase material, where the mechanical response of each phase, graphitic and oxidized, is informed from DFTB simulations. A finite element implementation of the model is validated via MD simulations and then used to investigate the existence of GO representative volume elements (RVE). We find that for the studied GO, an RVE behavior arises for monolayer sizes in excess to 40 nm. Moreover, we reveal that the response of monolayers with two main different functional chemistries, epoxide-rich and hydroxyl-rich, present distinct differences in mechanical behavior. In addition, we explored the role of defect density in GO, and validate the applicability of the model to larger length scales by predicting membrane deflection behavior, in close agreement with previous experimental and theoretical observations. As such the work presents a reduced order modeling framework applicable in the study of mechanical properties and deformation mechanisms in 2D multiphase materials.
Parameterizations of Chromospheric Condensations in dG and dMe Model Flare Atmospheres
NASA Astrophysics Data System (ADS)
Kowalski, Adam F.; Allred, Joel C.
2018-01-01
The origin of the near-ultraviolet and optical continuum radiation in flares is critical for understanding particle acceleration and impulsive heating in stellar atmospheres. Radiative-hydrodynamic (RHD) simulations in 1D have shown that high energy deposition rates from electron beams produce two flaring layers at T ∼ 104 K that develop in the chromosphere: a cooling condensation (downflowing compression) and heated non-moving (stationary) flare layers just below the condensation. These atmospheres reproduce several observed phenomena in flare spectra, such as the red-wing asymmetry of the emission lines in solar flares and a small Balmer jump ratio in M dwarf flares. The high beam flux simulations are computationally expensive in 1D, and the (human) timescales for completing NLTE models with adaptive grids in 3D will likely be unwieldy for some time to come. We have developed a prescription for predicting the approximate evolved states, continuum optical depth, and emergent continuum flux spectra of RHD model flare atmospheres. These approximate prescriptions are based on an important atmospheric parameter: the column mass ({m}{ref}) at which hydrogen becomes nearly completely ionized at the depths that are approximately in steady state with the electron beam heating. Using this new modeling approach, we find that high energy flux density (>F11) electron beams are needed to reproduce the brightest observed continuum intensity in IRIS data of the 2014 March 29 X1 solar flare, and that variation in {m}{ref} from 0.001 to 0.02 g cm‑2 reproduces most of the observed range of the optical continuum flux ratios at the peak of M dwarf flares.
Self-Management: Enabling and empowering patients living with cancer as a chronic illness
McCorkle, Ruth; Ercolano, Elizabeth; Lazenby, Mark; Schulman-Green, Dena; Schilling, Lynne S.; Lorig, Kate; Wagner, Edward H.
2010-01-01
With recent improvements in early detection, diagnosis and treatment of cancer, people with cancer are living longer, and their cancer may be managed as a chronic illness. Cancer as a chronic illness places new demands on patients and families to manage their own care, and it challenges old paradigms that oncology's work is done after treatment. As a chronic illness, however, cancer care occurs on a continuum that stretches from prevention to the end of life, with early detection, diagnosis, treatment, and survivorship in between. In this paper, we review self-management interventions that enable patients and families to participate in managing their care along this continuum. We review randomized controlled trials of self-management interventions with cancer patients and families in the treatment, survivorship, and end-of-life phases of the cancer-care continuum. We also present the Chronic Care Model as a model of care that oncology practices can use to enable and empower patients and families to engage in self-management. We conclude that, the need for a common language by which to speak about self-management and a common set of self-management actions for cancer care notwithstanding, oncology practices can now build strong relationships with their patients and formulate mutually-agreed upon care plans that enable and empower patients to care for themselves in the way they prefer. PMID:21205833
Changing public stigma with continuum beliefs.
Corrigan, Patrick W; Schmidt, Annie; Bink, Andrea B; Nieweglowski, Katherine; Al-Khouja, Maya A; Qin, Sang; Discont, Steve
2017-10-01
Given the egregious effect of public stigma on the lives of people with mental illness, researchers have sought to unpack and identify effective components of anti-stigma programs. We expect to show that continuum messages have more positive effect on stigma and affirming attitudes (beliefs that people with mental illness recover and should be personally empowered) than categorical perspectives. The effect of continuum beliefs will interact with contact strategies. A total of 598 research participants were randomly assigned to online presentations representing one of the six conditions: three messages (continuum, categorical, or neutral control) by two processes (education or contact). Participants completed measures of continuum beliefs (as a manipulation check), stigma and affirming attitudes after viewing the condition. Continuum messages had significantly better effect on views that people with mental illness are "different," a finding that interacted with contact. Continuum messages also had better effects on recovery beliefs, once again an effect that interacted significantly with contact. Implications of these findings for improving anti-stigma programs are discussed.
Singular unlocking transition in the Winfree model of coupled oscillators.
Quinn, D Dane; Rand, Richard H; Strogatz, Steven H
2007-03-01
The Winfree model consists of a population of globally coupled phase oscillators with randomly distributed natural frequencies. As the coupling strength and the spread of natural frequencies are varied, the various stable states of the model can undergo bifurcations, nearly all of which have been characterized previously. The one exception is the unlocking transition, in which the frequency-locked state disappears abruptly as the spread of natural frequencies exceeds a critical width. Viewed as a function of the coupling strength, this critical width defines a bifurcation curve in parameter space. For the special case where the frequency distribution is uniform, earlier work had uncovered a puzzling singularity in this bifurcation curve. Here we seek to understand what causes the singularity. Using the Poincaré-Lindstedt method of perturbation theory, we analyze the locked state and its associated unlocking transition, first for an arbitrary distribution of natural frequencies, and then for discrete systems of N oscillators. We confirm that the bifurcation curve becomes singular for a continuum uniform distribution, yet find that it remains well behaved for any finite N , suggesting that the continuum limit is responsible for the singularity.
Mirrored continuum and molecular scale simulations of the ignition of high-pressure phases of RDX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kibaek; Stewart, D. Scott, E-mail: santc@illinois.edu, E-mail: dss@illinois.edu; Joshi, Kaushik
2016-05-14
We present a mirrored atomistic and continuum framework that is used to describe the ignition of energetic materials, and a high-pressure phase of RDX in particular. The continuum formulation uses meaningful averages of thermodynamic properties obtained from the atomistic simulation and a simplification of enormously complex reaction kinetics. In particular, components are identified based on molecular weight bin averages and our methodology assumes that both the averaged atomistic and continuum simulations are represented on the same time and length scales. The atomistic simulations of thermally initiated ignition of RDX are performed using reactive molecular dynamics (RMD). The continuum model ismore » based on multi-component thermodynamics and uses a kinetics scheme that describes observed chemical changes of the averaged atomistic simulations. Thus the mirrored continuum simulations mimic the rapid change in pressure, temperature, and average molecular weight of species in the reactive mixture. This mirroring enables a new technique to simplify the chemistry obtained from reactive MD simulations while retaining the observed features and spatial and temporal scales from both the RMD and continuum model. The primary benefit of this approach is a potentially powerful, but familiar way to interpret the atomistic simulations and understand the chemical events and reaction rates. The approach is quite general and thus can provide a way to model chemistry based on atomistic simulations and extend the reach of those simulations.« less
Spectral structure and stability studies on microstructure-fiber continuum
NASA Astrophysics Data System (ADS)
Gu, Xun; Kimmel, Mark; Zeek, Erik; Shreenath, Aparna P.; Trebino, Rick P.; Windeler, Robert S.
2003-07-01
Although previous direct measurements of the microstructure-fiber continuum have all showed a smooth and stable spectrum, our cross-correlation frequency-resolved optical gating (XFROG) full-intensity-and-phase characterization of the continuum pulse, utilizing sum-frequency-generation with a pre-characterized reference pulse and the angle-dithered-crystal technique, indicates that fine-scale spectral structure exists on a single-shot basis, contrary to previous observations. In particular, deep and fine oscillations are found in the retrieved spectrum, and the retrieved trace contains a "measles" pattern, whereas the measured trace and the independently-measured spectrum are rather smooth. The discrepancy is shown to be the result of unstable single-shot spectral structure. Although the XFROG measurement is not able to directly measure the single-shot fine structure in the trace, the redundancy of information in FROG traces enables the retrieval algorithm to correctly recognize the existence of the spectral fine structure, and restore the structure in the retrieved trace and spectrum. Numerical simulations have supported our hypothesis, and we directly observed the fine spectral structure in single-shot measurements of the continuum spectrum and the structure was seen to be highly unstable, the continuum spectrum appearing smooth only when many shots are averaged. Despite the structure and instability in the continuum spectrum, coherence experiments also reveal that the spectral phase is rather stable, being able to produce well-defined spectral fringes across the entire continuum bandwidth.
NASA Astrophysics Data System (ADS)
Bianchi Janetti, Emanuela; Riva, Monica; Guadagnini, Alberto
2017-04-01
We study the relative role of the complex pore space geometry and wettability of the solid matrix on the quantification of relative permeabilities characterizing steady state immiscible two-phase flow in porous media. We do so by considering elementary cells, which are typically employed in upscaling frameworks based on, e.g., homogenization or volume averaging. In this context one typically relies on the solution of pore-scale physics at a scale which is much smaller than that of an investigated porous system. Pressure-driven two-phase flow following simultaneous co-current injection of water and oil is numerically solved for a suite of regular and stochastically generated two-dimensional explicit elementary cells with fixed porosity and sharing main topological/morphological features. We show that relative permeabilities of the randomly generated elementary cells are significantly influenced by the formation of preferential percolation paths (principal pathways), giving rise to a strongly nonuniform distribution of fluid fluxes. These pathways are a result of the spatially variable resistance that the random pore structures exert on the fluid. The overall effect on relative permeabilities of the diverse organization of principal pathways, as driven by a given random realization at the scale of the unit cell, is significantly larger than that of the wettability of the host rock. In contrast to what can be observed for the random cells analyzed, relative permeabilities of regular cells display a clear trend with contact angle at the investigated scale. Our findings suggest the need to perform systematic upscaling studies in a stochastic context, to propagate the effects of uncertain pore space geometries to a probabilistic description of relative permeability curves at the continuum scale.
Ren, Xinguo; Tkatchenko, Alexandre; Rinke, Patrick; Scheffler, Matthias
2011-04-15
The random-phase approximation (RPA) for the electron correlation energy, combined with the exact-exchange (EX) energy, represents the state-of-the-art exchange-correlation functional within density-functional theory. However, the standard RPA practice--evaluating both the EX and the RPA correlation energies using Kohn-Sham (KS) orbitals from local or semilocal exchange-correlation functionals--leads to a systematic underbinding of molecules and solids. Here we demonstrate that this behavior can be corrected by adding a "single excitation" contribution, so far not included in the standard RPA scheme. A similar improvement can also be achieved by replacing the non-self-consistent EX total energy by the corresponding self-consistent Hartree-Fock total energy, while retaining the RPA correlation energy evaluated using KS orbitals. Both schemes achieve chemical accuracy for a standard benchmark set of noncovalent intermolecular interactions.
NASA Astrophysics Data System (ADS)
Lu, Jianfeng; Yang, Haizhao
2017-07-01
The particle-particle random phase approximation (pp-RPA) has been shown to be capable of describing double, Rydberg, and charge transfer excitations, for which the conventional time-dependent density functional theory (TDDFT) might not be suitable. It is thus desirable to reduce the computational cost of pp-RPA so that it can be efficiently applied to larger molecules and even solids. This paper introduces an O (N3) algorithm, where N is the number of orbitals, based on an interpolative separable density fitting technique and the Jacobi-Davidson eigensolver to calculate a few low-lying excitations in the pp-RPA framework. The size of the pp-RPA matrix can also be reduced by keeping only a small portion of orbitals with orbital energy close to the Fermi energy. This reduced system leads to a smaller prefactor of the cubic scaling algorithm, while keeping the accuracy for the low-lying excitation energies.
Localized Scale Coupling and New Educational Paradigms in Multiscale Mathematics and Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
LEAL, L. GARY
2013-06-30
One of the most challenging multi-scale simulation problems in the area of multi-phase materials is to develop effective computational techniques for the prediction of coalescence and related phenomena involving rupture of a thin liquid film due to the onset of instability driven by van der Waals or other micro-scale attractive forces. Accurate modeling of this process is critical to prediction of the outcome of milling processes for immiscible polymer blends, one of the most important routes to new advanced polymeric materials. In typical situations, the blend evolves into an ?emulsion? of dispersed phase drops in a continuous matrix fluid. Coalescencemore » is then a critical factor in determining the size distribution of the dispersed phase, but is extremely difficult to predict from first principles. The thin film separating two drops may only achieve rupture at dimensions of approximately 10 nm while the drop sizes are 0(10 ?m). It is essential to achieve very accurate solutions for the flow and for the interface shape at both the macroscale of the full drops, and within the thin film (where the destabilizing disjoining pressure due to van der Waals forces is proportional approximately to the inverse third power of the local film thickness, h-3). Furthermore, the fluids of interest are polymeric (through Newtonian) and the classical continuum description begins to fail as the film thins ? requiring incorporation of molecular effects, such as a hybrid code that incorporates a version of coarse grain molecular dynamics within the thin film coupled with a classical continuum description elsewhere in the flow domain. Finally, the presence of surface active additions, either surfactants (in the form of di-block copolymers) or surface-functionalized micro- or nano-scale particles, adds an additional level of complexity, requiring development of a distinct numerical method to predict the nonuniform concentration gradients of these additives that are responsible for Marangoni stresses at the interface. Again, the physical dimensions of these additives may become comparable to the thin film dimensions, requiring an additional layer of multi-scale modeling.« less
A simple but fully nonlocal correction to the random phase approximation
NASA Astrophysics Data System (ADS)
Ruzsinszky, Adrienn; Perdew, John P.; Csonka, Gábor I.
2011-03-01
The random phase approximation (RPA) stands on the top rung of the ladder of ground-state density functional approximations. The simple or direct RPA has been found to predict accurately many isoelectronic energy differences. A nonempirical local or semilocal correction to this direct RPA leaves isoelectronic energy differences almost unchanged, while improving total energies, ionization energies, etc., but fails to correct the RPA underestimation of molecular atomization energies. Direct RPA and its semilocal correction may miss part of the middle-range multicenter nonlocality of the correlation energy in a molecule. Here we propose a fully nonlocal, hybrid-functional-like addition to the semilocal correction. The added full nonlocality is important in molecules, but not in atoms. Under uniform-density scaling, this fully nonlocal correction scales like the second-order-exchange contribution to the correlation energy, an important part of the correction to direct RPA, and like the semilocal correction itself. For the atomization energies of ten molecules, and with the help of one fit parameter, it performs much better than the elaborate second-order screened exchange correction.
NASA Astrophysics Data System (ADS)
Pahlavani, M. R.; Firoozi, B.
2016-09-01
γ-ray transitions from excited states of {}16{{N}} and {}16{{O}} isomers that appear in the γ spectrum of the {}616{{{C}}}10\\to {}716{{{N}}}9\\to {}816{{{O}}}8 beta decay chain are investigated. The theoretical approach used in this research starts with a mean-field potential consisting of a phenomenological Woods-Saxon potential including spin-orbit and Coulomb terms (for protons) in order to obtain single-particle energies and wave functions for nucleons in a nucleus. A schematic residual surface delta interaction is then employed on the top of the mean field and is treated within the proton-neutron Tamm-Dancoff approximation (pnTDA) and the proton-neutron random phase approximation. The goal is to use an optimized surface delta interaction interaction, as a residual interaction, to improve the results. We have used artificial intelligence algorithms to establish a good agreement between theoretical and experimental energy spectra. The final results of the ‘optimized’ calculations are reasonable via this approach.
On the role of self-adjointness in the continuum formulation of topological quantum phases
NASA Astrophysics Data System (ADS)
Tanhayi Ahari, Mostafa; Ortiz, Gerardo; Seradjeh, Babak
2016-11-01
Topological quantum phases of matter are characterized by an intimate relationship between the Hamiltonian dynamics away from the edges and the appearance of bound states localized at the edges of the system. Elucidating this correspondence in the continuum formulation of topological phases, even in the simplest case of a one-dimensional system, touches upon fundamental concepts and methods in quantum mechanics that are not commonly discussed in textbooks, in particular the self-adjoint extensions of a Hermitian operator. We show how such topological bound states can be derived in a prototypical one-dimensional system. Along the way, we provide a pedagogical exposition of the self-adjoint extension method as well as the role of symmetries in correctly formulating the continuum, field-theory description of topological matter with boundaries. Moreover, we show that self-adjoint extensions can be characterized generally in terms of a conserved local current associated with the self-adjoint operator.
Reexamination of the effective fine structure constant of graphene as measured in graphite
Gan, Yu; de la Pena Munoz, Gilberto; Kogar, Anshul; ...
2016-05-24
Here we present a refined and improved study of the influence of screening on the effective fine structure constant of graphene, α*, as measured in graphite using inelastic x-ray scattering. This followup to our previous study [J. P. Reed et al., Science 330, 805 (2010)] was carried out with two times better energy resolution, five times better momentum resolution, and an improved experimental setup with lower background. We compare our results to random-phase approximation (RPA) calculations and evaluate the relative importance of interlayer hopping, excitonic corrections, and screening from high energy excitations involving the sigma bands. We find that themore » static, limiting value of α* falls in the range 0.25-0.35, which is higher than our previous result of 0.14, but still below the value expected from RPA. We show the reduced value is not a consequence of interlayer hopping effects, which were ignored in our previous analysis, but of a combination of excitonic effects in the π→ π* particle-hole continuum, and background screening from the σ-bonded electrons. We find that σ-band screening is extremely strong at distances of less than a few nanometers, and should be highly effective at screening out short-distance, Hubbard-like interactions in graphene as well as other carbon allotropes.« less
NASA Astrophysics Data System (ADS)
Nepal, Niraj K.; Ruzsinszky, Adrienn; Bates, Jefferson E.
2018-03-01
The ground state structural and energetic properties for rocksalt and cesium chloride phases of the cesium halides were explored using the random phase approximation (RPA) and beyond-RPA methods to benchmark the nonempirical SCAN meta-GGA and its empirical dispersion corrections. The importance of nonadditivity and higher-order multipole moments of dispersion in these systems is discussed. RPA generally predicts the equilibrium volume for these halides within 2.4% of the experimental value, while beyond-RPA methods utilizing the renormalized adiabatic LDA (rALDA) exchange-correlation kernel are typically within 1.8%. The zero-point vibrational energy is small and shows that the stability of these halides is purely due to electronic correlation effects. The rAPBE kernel as a correction to RPA overestimates the equilibrium volume and could not predict the correct phase ordering in the case of cesium chloride, while the rALDA kernel consistently predicted results in agreement with the experiment for all of the halides. However, due to its reasonable accuracy with lower computational cost, SCAN+rVV10 proved to be a good alternative to the RPA-like methods for describing the properties of these ionic solids.
A Geometrically Nonlinear Phase Field Theory of Brittle Fracture
2014-10-01
of crack propagation. Philos Mag 91:75–95 Sun X, Khaleel M (2004) Modeling of glass fracture damage using continuum damage mechanics -static spherical...elastic fracture mechanics ). Engineering finite element (FE) simula- tions often invoke continuum damage mechanics the- ories, wherein the tangent...stiffness of a material ele- ment degrades as “damage” accumulates.Conventional continuum damage mechanics theories (Clayton and McDowell 2003, 2004; Sun and
Chaotic oscillations and noise transformations in a simple dissipative system with delayed feedback
NASA Astrophysics Data System (ADS)
Zverev, V. V.; Rubinstein, B. Ya.
1991-04-01
We analyze the statistical behavior of signals in nonlinear circuits with delayed feedback in the presence of external Markovian noise. For the special class of circuits with intense phase mixing we develop an approach for the computation of the probability distributions and multitime correlation functions based on the random phase approximation. Both Gaussian and Kubo-Andersen models of external noise statistics are analyzed and the existence of the stationary (asymptotic) random process in the long-time limit is shown. We demonstrate that a nonlinear system with chaotic behavior becomes a noise amplifier with specific statistical transformation properties.
Continuum description of solvent dielectrics in molecular-dynamics simulations of proteins
NASA Astrophysics Data System (ADS)
Egwolf, Bernhard; Tavan, Paul
2003-02-01
We present a continuum approach for efficient and accurate calculation of reaction field forces and energies in classical molecular-dynamics (MD) simulations of proteins in water. The derivation proceeds in two steps. First, we reformulate the electrostatics of an arbitrarily shaped molecular system, which contains partially charged atoms and is embedded in a dielectric continuum representing the water. A so-called fuzzy partition is used to exactly decompose the system into partial atomic volumes. The reaction field is expressed by means of dipole densities localized at the atoms. Since these densities cannot be calculated analytically for general systems, we introduce and carefully analyze a set of approximations in a second step. These approximations allow us to represent the dipole densities by simple dipoles localized at the atoms. We derive a system of linear equations for these dipoles, which can be solved numerically by iteration. After determining the two free parameters of our approximate method we check its quality by comparisons (i) with an analytical solution, which is available for a perfectly spherical system, (ii) with forces obtained from a MD simulation of a soluble protein in water, and (iii) with reaction field energies of small molecules calculated by a finite difference method.
Comprehensive modeling of a liquid rocket combustion chamber
NASA Technical Reports Server (NTRS)
Liang, P.-Y.; Fisher, S.; Chang, Y. M.
1985-01-01
An analytical model for the simulation of detailed three-phase combustion flows inside a liquid rocket combustion chamber is presented. The three phases involved are: a multispecies gaseous phase, an incompressible liquid phase, and a particulate droplet phase. The gas and liquid phases are continuum described in an Eulerian fashion. A two-phase solution capability for these continuum media is obtained through a marriage of the Implicit Continuous Eulerian (ICE) technique and the fractional Volume of Fluid (VOF) free surface description method. On the other hand, the particulate phase is given a discrete treatment and described in a Lagrangian fashion. All three phases are hence treated rigorously. Semi-empirical physical models are used to describe all interphase coupling terms as well as the chemistry among gaseous components. Sample calculations using the model are given. The results show promising application to truly comprehensive modeling of complex liquid-fueled engine systems.
A continuum theory for multicomponent chromatography modeling.
Pfister, David; Morbidelli, Massimo; Nicoud, Roger-Marc
2016-05-13
A continuum theory is proposed for modeling multicomponent chromatographic systems under linear conditions. The model is based on the description of complex mixtures, possibly involving tens or hundreds of solutes, by a continuum. The present approach is shown to be very efficient when dealing with a large number of similar components presenting close elution behaviors and whose individual analytical characterization is impossible. Moreover, approximating complex mixtures by continuous distributions of solutes reduces the required number of model parameters to the few ones specific to the characterization of the selected continuous distributions. Therefore, in the frame of the continuum theory, the simulation of large multicomponent systems gets simplified and the computational effectiveness of the chromatographic model is thus dramatically improved. Copyright © 2016 Elsevier B.V. All rights reserved.
XTE Proposal #20102--"SS 433's High Energy Spectrum"
NASA Technical Reports Server (NTRS)
Band, David L.; Blanco, P.; Rothschild, R.; Kawai, N.; Kotani, T.; Oka, T.; Wagner, R. M.; Hjellming, R.; Rupen, M.; Brinkmann, W.
1999-01-01
We observed the jet-producing compact binary system SS 433 with RXTE during three multiwavelength campaigns, the first in conjunction with ASCA observations, the second simultaneous with a VLA-VLBA-MERLIN campaign, and the third associated with a Nobeyama millimeter-band campaign. All these campaigns included optical observations. Occurring at different jet precession and binary phases, the observations also monitored the system during a radio flare. The data provide SS 433's X-ray spectrum over more than an energy decade, and track the spectral variations as the X-ray source was partially eclipsed. The continuum can be modeled as a power law with an exponential cutoff, which can be detected to approximately 50 keV. Strong line emission is evident in the 5-10 keV range which can be modeled as a broad line whose energy is precession independent and a narrow line whose energy does vary with jet precession phase; this line model is clearly an over simplification since the PCA does not have sufficient energy resolution to detect the lines ASCA observed. The eclipses are deeper at high energy and at jet precession phases when the jets are more inclined towards and away from us. A large radio flare occurred between two sets of X-ray monitoring observations; an X-ray observation at the peak of the flare found a softer spectrum with a flux approximately 1/3 that of the quiescent level.
Regular and Random Components in Aiming-Point Trajectory During Rifle Aiming and Shooting
Goodman, Simon; Haufler, Amy; Shim, Jae Kun; Hatfield, Bradley
2009-01-01
The authors examined the kinematic qualities of the aiming trajectory as related to expertise. In all, 2 phases of the trajectory were discriminated. The first phase was regular approximation to the target accompanied by substantial fluctuations obeying the Weber–Fechner law. During the first phase, shooters did not initiate the triggering despite any random closeness of the aiming point (AP) to the target. In the second phase, beginning at 0.6–0.8 s before the trigger pull, shooters applied a different control strategy: They waited until the following random fluctuation brought the AP closer to the target and then initiated triggering. This strategy is tenable when sensitivity of perception is greater than precision of the motor action, and could be considered a case of stochastic resonance. The strategies that novices and experts used distinguished only in the values of parameters. The authors present an analytical model explaining the main properties of shooting. PMID:19508963
First Science Verification of the VLA Sky Survey Pilot
NASA Astrophysics Data System (ADS)
Cavanaugh, Amy
2017-01-01
My research involved analyzing test images by Steve Myers for the upcoming VLA Sky Survey. This survey will cover the entire sky visible from the VLA site in S band (2-4 GHz). The VLA will be in B configuration for the survey, as it was when the test images were produced, meaning a resolution of approximately 2.5 arcseconds. Conducted using On-the-Fly mode, the survey will have a speed of approximately 20 deg2 hr-1 (including overhead). New Python imaging scripts are being developed and improved to process the VLASS images. My research consisted of comparing a continuum test image over S band (from the new imaging scripts) to two previous images of the same region of the sky (from the CNSS and FIRST surveys), as well as comparing the continuum image to single spectral windows (from the new imaging scripts and of the same sky region). By comparing our continuum test image to images from CNSS and FIRST, we tested on-the-Fly mode and the imaging script used to produce our images. Another goal was to test whether individual spectral windows could be used in combination to calculate spectral indices close to those produced over S band (based only on our continuum image). Our continuum image contained 64 sources as opposed to the 99 sources found in the CNSS image. The CNSS image also had lower noise level (0.095 mJy/beam compared to 0.119 mJy/beam). Additionally, when our continuum image was compared to the CNSS image, separation showed no dependence on total flux density (in our continuum image). At lower flux densities, sources in our image were brighter than the same ones in the CNSS image. When our continuum image was compared to the FIRST catalog, the spectral index difference showed no dependence on total flux (in our continuum image). In conclusion, the quality of our images did not completely match the quality of the CNSS and FIRST images. More work is needed in developing the new imaging scripts.
Lattice QCD phase diagram in and away from the strong coupling limit.
de Forcrand, Ph; Langelage, J; Philipsen, O; Unger, W
2014-10-10
We study lattice QCD with four flavors of staggered quarks. In the limit of infinite gauge coupling, "dual" variables can be introduced, which render the finite-density sign problem mild and allow a full determination of the μ-T phase diagram by Monte Carlo simulations, also in the chiral limit. However, the continuum limit coincides with the weak coupling limit. We propose a strong-coupling expansion approach towards the continuum limit. We show first results, including the phase diagram and its chiral critical point, from this expansion truncated at next-to-leading order.
Continuum analyzing power for 4He(p-->,p') at 100 MeV
NASA Astrophysics Data System (ADS)
Lawrie, J. J.; Whittal, D. M.; Cowley, A. A.
1990-08-01
Distorted-wave impulse approximation calculations of the continuum analyzing power for the inclusive reaction 4He(p-->,p') at an incident energy of 100 MeV are presented. In addition to the quasifree knockout of nucleons, contributions from the knockout of deuteron, triton, and helion clusters are taken into account, together with a breakup component. Whereas nucleon knockout by itself does not account for the experimentally observed analyzing power, the inclusion of clusters has a large effect. Thus a simple knockout model is able to provide a reasonable description of the experimental continuum analyzing power.
Model of chiral spin liquids with Abelian and non-Abelian topological phases
NASA Astrophysics Data System (ADS)
Chen, Jyong-Hao; Mudry, Christopher; Chamon, Claudio; Tsvelik, A. M.
2017-12-01
We present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase approximation (RPA) for the single-particle Green's functions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases, one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition. Remarkably, the Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev model) domain walls propagating along only one of the two space directions.
NASA Technical Reports Server (NTRS)
White, N. E.; Kallman, T. R.; Swank, J. H.
1982-01-01
The first high resolution non-dispersive 2-60 KeV X-ray spectra of 4U1700-37 is presented. The continuum is typical of that found from X-ray pulsars; that is a flat power law between 2 and 10 keV and, beyond 10 keV, an exponential decay of characteristic energy varying between 10 and 20 keV. No X-ray pulsations were detected between 160 ms and 6 min with an amplitude greater than approximately 2%. The absorption measured at binary phases approximately 0.72 is comparable to that expected from the stellar wind of the primary. The gravitational capture of material in the wind is found to be more than enough to power the X-ray source. The increase in the average absorption after phi o approximately 0.5 is confirmed. The minimum level of adsorption is a factor of 2 or 3 lower than that reported by previous observers, which may be related to a factor of approximately 10 decline in the average X-ray luminosity over the same interval. Short term approximately 50% variations in adsorption are seen for the first time which appear to be loosely correlated with approximately 10 min flickering activity in the X-ray flux. These most likely originate from inhomogeneities in the stellar wind of the primary.
Enhancing Security of Double Random Phase Encoding Based on Random S-Box
NASA Astrophysics Data System (ADS)
Girija, R.; Singh, Hukum
2018-06-01
In this paper, we propose a novel asymmetric cryptosystem for double random phase encoding (DRPE) using random S-Box. While utilising S-Box separately is not reliable and DRPE does not support non-linearity, so, our system unites the effectiveness of S-Box with an asymmetric system of DRPE (through Fourier transform). The uniqueness of proposed cryptosystem lies on employing high sensitivity dynamic S-Box for our DRPE system. The randomness and scalability achieved due to applied technique is an additional feature of the proposed solution. The firmness of random S-Box is investigated in terms of performance parameters such as non-linearity, strict avalanche criterion, bit independence criterion, linear and differential approximation probabilities etc. S-Boxes convey nonlinearity to cryptosystems which is a significant parameter and very essential for DRPE. The strength of proposed cryptosystem has been analysed using various parameters such as MSE, PSNR, correlation coefficient analysis, noise analysis, SVD analysis, etc. Experimental results are conferred in detail to exhibit proposed cryptosystem is highly secure.
Energy and criticality in random Boolean networks
NASA Astrophysics Data System (ADS)
Andrecut, M.; Kauffman, S. A.
2008-06-01
The central issue of the research on the Random Boolean Networks (RBNs) model is the characterization of the critical transition between ordered and chaotic phases. Here, we discuss an approach based on the ‘energy’ associated with the unsatisfiability of the Boolean functions in the RBNs model, which provides an upper bound estimation for the energy used in computation. We show that in the ordered phase the RBNs are in a ‘dissipative’ regime, performing mostly ‘downhill’ moves on the ‘energy’ landscape. Also, we show that in the disordered phase the RBNs have to ‘hillclimb’ on the ‘energy’ landscape in order to perform computation. The analytical results, obtained using Derrida's approximation method, are in complete agreement with numerical simulations.
ERIC Educational Resources Information Center
Trinidad, Dennis R.; Xie, Bin; Fagan, Pebbles; Pulvers, Kim; Romero, Devan R.; Blanco, Lyzette; Sakuma, Kari-Lyn K.
2015-01-01
Purpose: To examine disparities and changes over time in the population-level distribution of smokers along a cigarette quitting continuum among African American smokers compared with non-Hispanic Whites. Methods: Secondary data analyses of the 1999, 2002, 2005, and 2008 California Tobacco Surveys (CTS). The CTS are large, random-digit-dialed,…
Low-Energy Excitation Spectra in the Excitonic Phase of Cobalt Oxides
NASA Astrophysics Data System (ADS)
Yamaguchi, Tomoki; Sugimoto, Koudai; Ohta, Yukinori
2017-04-01
We study the excitonic phase and low-energy excitation spectra of perovskite cobalt oxides. Constructing the five-orbital Hubbard model defined on the three-dimensional cubic lattice for the 3d bands of Pr0.5Ca0.5CoO3, we calculate the excitonic susceptibility in the normal state in the random-phase approximation (RPA) to show the presence of the instability toward excitonic condensation. On the basis of the excitonic ground state with a magnetic multipole obtained in the mean-field approximation, we calculate the dynamical susceptibility of the excitonic phase in the RPA and find that there appear a gapless collective excitation in the spin-transverse mode (Goldstone mode) and a gapful collective excitation in the spin-longitudinal mode (Higgs mode). The experimental relevance of our results is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jabran Zahid, H.; Kudritzki, Rolf-Peter; Ho, I-Ting
We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relationsmore » obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.« less
Changes in the ultraviolet spectrum of EG Andromedae
NASA Technical Reports Server (NTRS)
Stencel, R. E.
1984-01-01
Ultraviolet observations of EG Andromedae, a symbiotic star, are reported which clearly show pronounced eclipse-like effects on the high-temperature far-UV continuum. Continuum and emission-line variations with phase are reported and related to synoptic hydrogen alpha data. System parameters are characterized.
Grain transport mechanics in shallow flow
USDA-ARS?s Scientific Manuscript database
A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flows. The two-phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a dispe...
Grain transport mechanics in shallow overland flow
USDA-ARS?s Scientific Manuscript database
A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flow. The two phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a disper...
NASA Technical Reports Server (NTRS)
Depree, C. G.; Goss, W. M.; Palmer, Patrick; Rubin, Robert H.
1994-01-01
The H II regions near K3-50 (G70.3 + 1.6) have been imaged at high angular resolution (approximately 1 sec .3) in the continuum and the recombination lines H76(sub alpha and He76(sub alpha) using the Very Large Array (VLA). The helium line is detected in only the brightest component K3-50A while the hydrogen line is detected in three components (K3-50A, B and C1). K3-50A shows a pronounced velocity gradient of approximately 150 km/sec/pc along its major axis (P.A. = 160 deg); in addition a wide range of line widths are observed, from 20 to 65 km/sec. Kinematics from the line data and the morphology of the continuum emission suggest that the ionized material associated with K3-50A is undergoing a high-velocity bipolar outflow.
Magnetic Excitations and Continuum of a Possibly Field-Induced Quantum Spin Liquid in α -RuCl3
NASA Astrophysics Data System (ADS)
Wang, Zhe; Reschke, S.; Hüvonen, D.; Do, S.-H.; Choi, K.-Y.; Gensch, M.; Nagel, U.; Rõõm, T.; Loidl, A.
2017-12-01
We report on terahertz spectroscopy of quantum spin dynamics in α -RuCl3 , a system proximate to the Kitaev honeycomb model, as a function of temperature and magnetic field. We follow the evolution of an extended magnetic continuum below the structural phase transition at Ts 2=62 K . With the onset of a long-range magnetic order at TN=6.5 K , spectral weight is transferred to a well-defined magnetic excitation at ℏω1=2.48 meV , which is accompanied by a higher-energy band at ℏω2=6.48 meV . Both excitations soften in a magnetic field, signaling a quantum phase transition close to Bc=7 T , where a broad continuum dominates the dynamical response. Above Bc, the long-range order is suppressed, and on top of the continuum, emergent magnetic excitations evolve. These excitations follow clear selection rules and exhibit distinct field dependencies, characterizing the dynamical properties of a possibly field-induced quantum spin liquid.
Long-wavelength instabilities in a system of interacting active particles
NASA Astrophysics Data System (ADS)
Fazli, Zahra; Najafi, Ali
2018-02-01
Based on a microscopic model, we develop a continuum description for a suspension of microscopic self-propelled particles. With this continuum description we study the role of long-range interactions in destabilizing macroscopic ordered phases that are developed by short-range interactions. Long-wavelength fluctuations can destabilize both isotropic and symmetry-broken polar phases in a suspension of dipolar particles. The instabilities in a suspension of pullers (pushers) arise from splay (bend) fluctuations. Such instabilities are not seen in a suspension of quadrupolar particles.
Nonequilibrium Statistical Mechanics in One Dimension
NASA Astrophysics Data System (ADS)
Privman, Vladimir
2005-08-01
Part I. Reaction-Diffusion Systems and Models of Catalysis; 1. Scaling theories of diffusion-controlled and ballistically-controlled bimolecular reactions S. Redner; 2. The coalescence process, A+A->A, and the method of interparticle distribution functions D. ben-Avraham; 3. Critical phenomena at absorbing states R. Dickman; Part II. Kinetic Ising Models; 4. Kinetic ising models with competing dynamics: mappings, correlations, steady states, and phase transitions Z. Racz; 5. Glauber dynamics of the ising model N. Ito; 6. 1D Kinetic ising models at low temperatures - critical dynamics, domain growth, and freezing S. Cornell; Part III. Ordering, Coagulation, Phase Separation; 7. Phase-ordering dynamics in one dimension A. J. Bray; 8. Phase separation, cluster growth, and reaction kinetics in models with synchronous dynamics V. Privman; 9. Stochastic models of aggregation with injection H. Takayasu and M. Takayasu; Part IV. Random Sequential Adsorption and Relaxation Processes; 10. Random and cooperative sequential adsorption: exactly solvable problems on 1D lattices, continuum limits, and 2D extensions J. W. Evans; 11. Lattice models of irreversible adsorption and diffusion P. Nielaba; 12. Deposition-evaporation dynamics: jamming, conservation laws and dynamical diversity M. Barma; Part V. Fluctuations In Particle and Surface Systems; 13. Microscopic models of macroscopic shocks S. A. Janowsky and J. L. Lebowitz; 14. The asymmetric exclusion model: exact results through a matrix approach B. Derrida and M. R. Evans; 15. Nonequilibrium surface dynamics with volume conservation J. Krug; 16. Directed walks models of polymers and wetting J. Yeomans; Part VI. Diffusion and Transport In One Dimension; 17. Some recent exact solutions of the Fokker-Planck equation H. L. Frisch; 18. Random walks, resonance, and ratchets C. R. Doering and T. C. Elston; 19. One-dimensional random walks in random environment K. Ziegler; Part VII. Experimental Results; 20. Diffusion-limited exciton kinetics in one-dimensional systems R. Kroon and R. Sprik; 21. Experimental investigations of molecular and excitonic elementary reaction kinetics in one-dimensional systems R. Kopelman and A. L. Lin; 22. Luminescence quenching as a probe of particle distribution S. H. Bossmann and L. S. Schulman; Index.
NASA Technical Reports Server (NTRS)
Stern, Robert A.; Lemen, James R.; Schmitt, Jurgen H. M. M.; Pye, John P.
1995-01-01
We report results from the first extreme ultraviolet spectrum of the prototypical eclipsing binary Algol (beta Per), obtained with the spectrometers on the Extreme Ultraviolet Explorer (EUVE). The Algol spectrum in the 80-350 A range is dominated by emission lines of Fe XVI-XXIV, and the He II 304 A line. The Fe emission is characteristic of high-temperature plasma at temperatures up to at least log T approximately 7.3 K. We have successfully modeled the observed quiescent spectrum using a continuous emission measure distribution with the bulk of the emitting material at log T greater than 6.5. We are able to adequately fit both the coronal lines and continuum data with a cosmic abundance plasma, but only if Algol's quiescent corona is dominated by material at log T greater than 7.5, which is physically ruled out by prior X-ray observations of the quiescent Algol spectrum. Since the coronal (Fe/H) abundance is the principal determinant of the line-to-continuum ratio in the EUV, allowing the abundance to be a free parameter results in models with a range of best-fit abundances approximately = 15%-40% of solar photospheric (Fe/H). Since Algol's photospheric (Fe/H) appears to be near-solar, the anomalous EUV line-to-continuum ratio could either be the result of element segregation in the coronal formation process, or other, less likely mechanisms that may enhance the continuum with respect to the lines.
On the Nature of Off-limb Flare Continuum Sources Detected by SDO /HMI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinzel, P.; Kašparová, J.; Kleint, L.
The Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory has provided unique observations of off-limb flare emission. White-light continuum enhancements were detected in the “continuum” channel of the Fe 6173 Å line during the impulsive phase of the observed flares. In this paper we aim to determine which radiation mechanism is responsible for such enhancement being seen above the limb, at chromospheric heights around or below 1000 km. Using a simple analytical approach, we compare two candidate mechanisms, the hydrogen recombination continuum (Paschen) and the Thomson continuum due to scattering of disk radiation on flare electrons. Both mechanismsmore » depend on the electron density, which is typically enhanced during the impulsive phase of a flare as the result of collisional ionization (both thermal and also non-thermal due to electron beams). We conclude that for electron densities higher than 10{sup 12} cm{sup −3}, the Paschen recombination continuum significantly dominates the Thomson scattering continuum and there is some contribution from the hydrogen free–free emission. This is further supported by detailed radiation-hydrodynamical (RHD) simulations of the flare chromosphere heated by the electron beams. We use the RHD code FLARIX to compute the temporal evolution of the flare-heating in a semi-circular loop. The synthesized continuum structure above the limb resembles the off-limb flare structures detected by HMI, namely their height above the limb, as well as the radiation intensity. These results are consistent with recent findings related to hydrogen Balmer continuum enhancements, which were clearly detected in disk flares by the IRIS near-ultraviolet spectrometer.« less
Energy and angular distribution of electrons ejected from water by the impact of fast O8+ ion beams
NASA Astrophysics Data System (ADS)
Bhattacharjee, Shamik; Bagdia, Chandan; Chowdhury, Madhusree Roy; Monti, Juan M.; Rivarola, Roberto D.; Tribedi, Lokesh C.
2018-01-01
Double differential cross sections (DDCS) of electrons emitted from vapor water molecules (in vapor phase) by 2.0 MeV/u and 3.75 MeV/u bare oxygen ion impact have been measured by continuum electron spectroscopy technique. The ejected electrons were detected by an electrostatic hemispherical deflection analyzer over an energy range of 1-600 eV and emission angles from 20∘ to 160∘. The DDCS data has been compared with the continuum-distorted-wave-eikonal-initial state (CDW-EIS) approximation and a reasonable agreement was found with both version of the models i.e. post and prior version. By numerical integration of the DDCS data, the single differential cross section (SDCS) and total ionization cross section (TCS) were obtained. The obtained TCS results were compared with other available TCS results for water target within the same energy range. The total ionization cross sections values are seen to saturate as the projectile charge state ( q p ) increases, which is in contrast to the first-Born predicted q p 2 dependence. This is also in contrast to the prediction of the CDW-EIS models.
A new continuum model for suspensions of gyrotactic micro-organisms
NASA Technical Reports Server (NTRS)
Pedley, T. J.; Kessler, J. O.
1990-01-01
A new continuum model is formulated for dilute suspensions of swimming micro-organisms with asymmetric mass distributions. Account is taken of randomness in a cell's swimming direction, p, by postulating that the probability density function for p satisfies a Fokker-Planck equation analogous to that obtained for colloid suspensions in the presence of rotational Brownian motion. The deterministic torques on a cell, viscous and gravitational, are balanced by diffusion, represented by an isotropic rotary diffusivity Dr, which is unknown a priori, but presumably reflects stochastic influences on the cell's internal workings. When the Fokker-Planck equation is solved, macroscopic quantities such as the average cell velocity Vc, the particle diffusivity tensor D and the effective stress tensor sigma can be computed; Vc and D are required in the cell conservation equation, and sigma in the momentum equation. The Fokker-Planck equation contains two dimensionless parameters, lambda and epsilon; lambda is the ratio of the rotary diffusion time Dr-1 to the torque relaxation time B (balancing gravitational and viscous torques), while epsilon is a scale for the local vorticity or strain rate made dimensionless with B. In this paper we solve the Fokker-Planck equation exactly for epsilon = 0 (lambda arbitrary) and also obtain the first-order solution for small epsilon. Using experimental data on Vc and D obtained with the swimming alga, Chlamydomonas nivalis, in the absence of bulk flow, the epsilon = 0 results can be used to estimate the value of lambda for that species (lambda approximately 2.2; Dr approximately 0.13 s-1). The continuum model for small epsilon is then used to reanalyse the instability of a uniform suspension, previously investigated by Pedley, Hill & Kessler (1988). The only qualitatively different result is that there no longer seem to be circumstances in which disturbances with a non-zero vertical wavenumber are more unstable than purely horizontal disturbances. On the way, it is demonstrated that the only significant contribution to sigma, other than the basic Newtonian stress, is that derived from the stresslets associated with the cells' intrinsic swimming motions.
Spectrophotometry of 2 complete samples of flat radio spectrum quasars
NASA Technical Reports Server (NTRS)
Wampler, E. J.; Gaskell, C. M.; Burke, W. L.; Baldwin, J. A.
1983-01-01
Spectrophotometry of two complete samples of flat-spectrum radio quasars show that for these objects there is a strong correlation between the equivalent width of the CIV wavelength 1550 emission line and the luminosity of the underlying continuum. Assuming Friedmann cosmologies, the scatter in this correlation is a minimum for q (sub o) is approximately 1. Alternatively, luminosity evolution can be invoked to give compact distributions for q (sub o) is approximately 0 models. A sample of Seyfert galaxies observed with IUE shows that despite some dispersion the average equivalent width of CIV wavelength 1550 in Seyfert galaxies is independent of the underlying continuum luminosity. New redshifts for 4 quasars are given.
Nonlinear sigma models with compact hyperbolic target spaces
NASA Astrophysics Data System (ADS)
Gubser, Steven; Saleem, Zain H.; Schoenholz, Samuel S.; Stoica, Bogdan; Stokes, James
2016-06-01
We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model [1, 2]. Unlike in the O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. The diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.
Nonlinear sigma models with compact hyperbolic target spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gubser, Steven; Saleem, Zain H.; Schoenholz, Samuel S.
We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model [1, 2]. Unlike in themore » O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. In conclusion, the diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.« less
Nonlinear sigma models with compact hyperbolic target spaces
Gubser, Steven; Saleem, Zain H.; Schoenholz, Samuel S.; ...
2016-06-23
We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model [1, 2]. Unlike in themore » O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. In conclusion, the diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.« less
The application of single particle hydrodynamics in continuum models of multiphase flow
NASA Technical Reports Server (NTRS)
Decker, Rand
1988-01-01
A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.
Yasui, S; Young, L R
1984-01-01
Smooth pursuit and saccadic components of foveal visual tracking as well as more involuntary ocular movements of optokinetic (o.k.n.) and vestibular nystagmus slow phase components were investigated in man, with particular attention given to their possible input-adaptive or predictive behaviour. Each component in question was isolated from the eye movement records through a computer-aided procedure. The frequency response method was used with sinusoidal (predictable) and pseudo-random (unpredictable) stimuli. When the target motion was pseudo-random, the frequency response of pursuit eye movements revealed a large phase lead (up to about 90 degrees) at low stimulus frequencies. It is possible to interpret this result as a predictive effect, even though the stimulation was pseudo-random and thus 'unpredictable'. The pseudo-random-input frequency response intrinsic to the saccadic system was estimated in an indirect way from the pursuit and composite (pursuit + saccade) frequency response data. The result was fitted well by a servo-mechanism model, which has a simple anticipatory mechanism to compensate for the inherent neuromuscular saccadic delay by utilizing the retinal slip velocity signal. The o.k.n. slow phase also exhibited a predictive effect with sinusoidal inputs; however, pseudo-random stimuli did not produce such phase lead as found in the pursuit case. The vestibular nystagmus slow phase showed no noticeable sign of prediction in the frequency range examined (0 approximately 0.7 Hz), in contrast to the results of the visually driven eye movements (i.e. saccade, pursuit and o.k.n. slow phase) at comparable stimulus frequencies. PMID:6707954
RXTE and BeppoSAX Observations of MCG-5-23-16: Reflection From Distant Cold Material
NASA Technical Reports Server (NTRS)
Mattson, B. J.; Weaver, K. A.
2003-01-01
We examine the spectral variability of the Seyfert 1.9 galaxy MCG-5-23-16 using RXTE and BeppoSAX observations spanning 2 years from April 1996 to April 1998. During the first year the X-ray source brightens by a factor of approximately 25% on timescales of days to months. During this time, the reprocessed continuum emission seen with RXTE does not respond measurably to the continuum increase. However, by the end of the second year during the BeppoSAX epoch the X-ray source has faded again. This time, the reprocessed emission has also faded, indicating that the reprocessed flux has responded to the continuum. If these effects are caused by time delays due to the distance between the X-ray source and the reprocessing region, we derive a light crossing time of between approximately 1 light day and approximately 1.5 light years. This corresponds to a distance of 0.001 pc to 0.55 pc, which implies that the reprocessed emission originates between 3 x 10(exp 15) cm and 1.6 x 10(exp l8) cm from the X-ray source. In other words, the reprocessing in MCG-5-23-16 is not dominated by the inner regions of a standard accretion disk.
Beyond the continuum: a multi-dimensional phase space for neutral-niche community assembly.
Latombe, Guillaume; Hui, Cang; McGeoch, Melodie A
2015-12-22
Neutral and niche processes are generally considered to interact in natural communities along a continuum, exhibiting community patterns bounded by pure neutral and pure niche processes. The continuum concept uses niche separation, an attribute of the community, to test the hypothesis that communities are bounded by pure niche or pure neutral conditions. It does not accommodate interactions via feedback between processes and the environment. By contrast, we introduce the Community Assembly Phase Space (CAPS), a multi-dimensional space that uses community processes (such as dispersal and niche selection) to define the limiting neutral and niche conditions and to test the continuum hypothesis. We compare the outputs of modelled communities in a heterogeneous landscape, assembled by pure neutral, pure niche and composite processes. Differences in patterns under different combinations of processes in CAPS reveal hidden complexity in neutral-niche community dynamics. The neutral-niche continuum only holds for strong dispersal limitation and niche separation. For weaker dispersal limitation and niche separation, neutral and niche processes amplify each other via feedback with the environment. This generates patterns that lie well beyond those predicted by a continuum. Inferences drawn from patterns about community assembly processes can therefore be misguided when based on the continuum perspective. CAPS also demonstrates the complementary information value of different patterns for inferring community processes and captures the complexity of community assembly. It provides a general tool for studying the processes structuring communities and can be applied to address a range of questions in community and metacommunity ecology. © 2015 The Author(s).
Beyond the continuum: a multi-dimensional phase space for neutral–niche community assembly
Latombe, Guillaume; McGeoch, Melodie A.
2015-01-01
Neutral and niche processes are generally considered to interact in natural communities along a continuum, exhibiting community patterns bounded by pure neutral and pure niche processes. The continuum concept uses niche separation, an attribute of the community, to test the hypothesis that communities are bounded by pure niche or pure neutral conditions. It does not accommodate interactions via feedback between processes and the environment. By contrast, we introduce the Community Assembly Phase Space (CAPS), a multi-dimensional space that uses community processes (such as dispersal and niche selection) to define the limiting neutral and niche conditions and to test the continuum hypothesis. We compare the outputs of modelled communities in a heterogeneous landscape, assembled by pure neutral, pure niche and composite processes. Differences in patterns under different combinations of processes in CAPS reveal hidden complexity in neutral–niche community dynamics. The neutral–niche continuum only holds for strong dispersal limitation and niche separation. For weaker dispersal limitation and niche separation, neutral and niche processes amplify each other via feedback with the environment. This generates patterns that lie well beyond those predicted by a continuum. Inferences drawn from patterns about community assembly processes can therefore be misguided when based on the continuum perspective. CAPS also demonstrates the complementary information value of different patterns for inferring community processes and captures the complexity of community assembly. It provides a general tool for studying the processes structuring communities and can be applied to address a range of questions in community and metacommunity ecology. PMID:26702047
NASA Astrophysics Data System (ADS)
Garza, Alejandro J.; Bulik, Ireneusz W.; Alencar, Ana G. Sousa; Sun, Jianwei; Perdew, John P.; Scuseria, Gustavo E.
2016-04-01
Contrary to standard coupled cluster doubles (CCD) and Brueckner doubles (BD), singlet-paired analogues of CCD and BD (denoted here as CCD0 and BD0) do not break down when static correlation is present, but neglect substantial amounts of dynamic correlation. In fact, CCD0 and BD0 do not account for any contributions from multielectron excitations involving only same-spin electrons at all. We exploit this feature to add - without introducing double counting, self-interaction, or increase in cost - the missing correlation to these methods via meta-GGA (generalised gradient approximation) density functionals (Tao-Perdew-Staroverov-Scuseria and strongly constrained and appropriately normed). Furthermore, we improve upon these CCD0+DFT blends by invoking range separation: the short- and long-range correlations absent in CCD0/BD0 are evaluated with density functional theory and the direct random phase approximation, respectively. This corrects the description of long-range van der Waals forces. Comprehensive benchmarking shows that the combinations presented here are very accurate for weakly correlated systems, while also providing a reasonable description of strongly correlated problems without resorting to symmetry breaking.
Roles of antinucleon degrees of freedom in the relativistic random phase approximation
NASA Astrophysics Data System (ADS)
Kurasawa, Haruki; Suzuki, Toshio
2015-11-01
The roles of antinucleon degrees of freedom in the relativistic random phase approximation (RPA) are investigated. The energy-weighted sum of the RPA transition strengths is expressed in terms of the double commutator between the excitation operator and the Hamiltonian, as in nonrelativistic models. The commutator, however, should not be calculated in the usual way in the local field theory, because, otherwise, the sum vanishes. The sum value obtained correctly from the commutator is infinite, owing to the Dirac sea. Most of the previous calculations take into account only some of the nucleon-antinucleon states, in order to avoid divergence problems. As a result, RPA states with negative excitation energy appear, which make the sum value vanish. Moreover, disregarding the divergence changes the sign of nuclear interactions in the RPA equation that describes the coupling of the nucleon particle-hole states with the nucleon-antinucleon states. Indeed, the excitation energies of the spurious state and giant monopole states in the no-sea approximation are dominated by these unphysical changes. The baryon current conservation can be described without touching the divergence problems. A schematic model with separable interactions is presented, which makes the structure of the relativistic RPA transparent.
Wang, Xiaoling; Meng, Shuo; Han, Jingshi
2017-10-03
The Bacterial flagellar filament can undergo a polymorphic phase transition in response to both mechanical and chemical variations in vitro and in vivo environments. Under mechanical stimuli, such as viscous flow or forces induced by motor rotation, the filament changes its phase from left-handed normal (N) to right-handed semi-coiled (SC) via phase nucleation and growth. Our detailed mechanical analysis of existing experiments shows that both torque and bending moment contribute to the filament phase transition. In this paper, we establish a non-convex and non-local continuum model based on the Ginzburg-Landau theory to describe main characteristics of the filament phase transition such as new-phase nucleation, growth, propagation and the merging of neighboring interfaces. The finite element method (FEM) is adopted to simulate the phase transition under a displacement-controlled loading condition (rotation angle and bending deflection). We show that new-phase nucleation corresponds to the maximum torque and bending moment at the stuck end of the filament. The hysteresis loop in the loading and unloading curves indicates energy dissipation. When the new phase grows and propagates, torque and bending moment remain static. We also find that there is a drop in load when the two interfaces merge, indicating a concomitant reduction in the interfacial energy. Finally, the interface thickness is governed by the coefficients of the gradient of order parameters in the non-local interface energy. Our continuum theory and the finite element method provide a method to study the mechanical behavior of such biomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.
Estimation of gloss from rough surface parameters
NASA Astrophysics Data System (ADS)
Simonsen, Ingve; Larsen, Åge G.; Andreassen, Erik; Ommundsen, Espen; Nord-Varhaug, Katrin
2005-12-01
Gloss is a quantity used in the optical industry to quantify and categorize materials according to how well they scatter light specularly. With the aid of phase perturbation theory, we derive an approximate expression for this quantity for a one-dimensional randomly rough surface. It is demonstrated that gloss depends in an exponential way on two dimensionless quantities that are associated with the surface randomness: the root-mean-square roughness times the perpendicular momentum transfer for the specular direction, and a correlation function dependent factor times a lateral momentum variable associated with the collection angle. Rigorous Monte Carlo simulations are used to access the quality of this approximation, and good agreement is observed over large regions of parameter space.
NASA Astrophysics Data System (ADS)
Pengvanich, Phongphaeth
In this thesis, several contemporary issues on coherent radiation sources are examined. They include the fast startup and the injection locking of microwave magnetrons, and the effects of random manufacturing errors on phase and small signal gain of terahertz traveling wave amplifiers. In response to the rapid startup and low noise magnetron experiments performed at the University of Michigan that employed periodic azimuthal perturbations in the axial magnetic field, a systematic study of single particle orbits is performed for a crossed electric and periodic magnetic field. A parametric instability in the orbits, which brings a fraction of the electrons from the cathode toward the anode, is discovered. This offers an explanation of the rapid startup observed in the experiments. A phase-locking model has been constructed from circuit theory to qualitatively explain various regimes observed in kilowatt magnetron injection-locking experiments, which were performed at the University of Michigan. These experiments utilize two continuous-wave magnetrons; one functions as an oscillator and the other as a driver. Time and frequency domain solutions are developed from the model, allowing investigations into growth, saturation, and frequency response of the output. The model qualitatively recovers many of the phase-locking frequency characteristics observed in the experiments. Effects of frequency chirp and frequency perturbation on the phase and lockability have also been quantified. Development of traveling wave amplifier operating at terahertz is a subject of current interest. The small circuit size has prompted a statistical analysis of the effects of random fabrication errors on phase and small signal gain of these amplifiers. The small signal theory is treated with a continuum model in which the electron beam is monoenergetic. Circuit perturbations that vary randomly along the beam axis are introduced through the dimensionless Pierce parameters describing the beam-wave velocity mismatch (b), the gain parameter (C), and the cold tube circuit loss ( d). Our study shows that perturbation in b dominates the other two in terms of power gain and phase shift. Extensive data show that standard deviation of the output phase is linearly proportional to standard deviation of the individual perturbations in b, C and d.
Yan, Xin-Zhong
2011-07-01
The discrete Fourier transform is approximated by summing over part of the terms with corresponding weights. The approximation reduces significantly the requirement for computer memory storage and enhances the numerical computation efficiency with several orders without losing accuracy. As an example, we apply the algorithm to study the three-dimensional interacting electron gas under the renormalized-ring-diagram approximation where the Green's function needs to be self-consistently solved. We present the results for the chemical potential, compressibility, free energy, entropy, and specific heat of the system. The ground-state energy obtained by the present calculation is compared with the existing results of Monte Carlo simulation and random-phase approximation.
Importance of σ Bonding Electrons for the Accurate Description of Electron Correlation in Graphene.
Zheng, Huihuo; Gan, Yu; Abbamonte, Peter; Wagner, Lucas K
2017-10-20
Electron correlation in graphene is unique because of the interplay between the Dirac cone dispersion of π electrons and long-range Coulomb interaction. Because of the zero density of states at Fermi level, the random phase approximation predicts no metallic screening at long distance and low energy, so one might expect that graphene should be a poorly screened system. However, empirically graphene is a weakly interacting semimetal, which leads to the question of how electron correlations take place in graphene at different length scales. We address this question by computing the equal time and dynamic structure factor S(q) and S(q,ω) of freestanding graphene using ab initio fixed-node diffusion Monte Carlo simulations and the random phase approximation. We find that the σ electrons contribute strongly to S(q,ω) for relevant experimental values of ω even at distances up to around 80 Å. These findings illustrate how the emergent physics from underlying Coulomb interactions results in the observed weakly correlated semimetal.
NASA Astrophysics Data System (ADS)
Kvasil, J.; Nesterenko, V. O.; Repko, A.; Kleinig, W.; Reinhard, P.-G.
2016-12-01
The deformation-induced splitting of isoscalar giant monopole resonance (ISGMR) is systematically analyzed in a wide range of masses covering medium, rare-earth, actinide, and superheavy axial deformed nuclei. The study is performed within the fully self-consistent quasiparticle random-phase-approximation method based on the Skyrme functional. Two Skyrme forces, one with a large (SV-bas) and one with a small (SkP) nuclear incompressibility, are considered. The calculations confirm earlier results that, because of the deformation-induced E 0 -E 2 coupling, the isoscalar E 0 resonance attains a double-peak structure and significant energy upshift. Our results are compared with available analytic estimations. Unlike earlier studies, we get a smaller energy difference between the lower and upper peaks and thus a stronger E 0 -E 2 coupling. This in turn results in more pumping of E 0 strength into the lower peak and more pronounced splitting of ISGMR. We also discuss widths of the peaks and their negligible correlation with deformation.
Moiré-pattern interlayer potentials in van der Waals materials in the random-phase approximation
NASA Astrophysics Data System (ADS)
Leconte, Nicolas; Jung, Jeil; Lebègue, Sébastien; Gould, Tim
2017-11-01
Stacking-dependent interlayer interactions are important for understanding the structural and electronic properties in incommensurable two-dimensional material assemblies where long-range moiré patterns arise due to small lattice constant mismatch or twist angles. Here we study the stacking-dependent interlayer coupling energies between graphene (G) and hexagonal boron nitride (BN) homo- and heterostructures using high-level random-phase approximation (RPA) ab initio calculations. Our results show that although total binding energies within LDA and RPA differ substantially by a factor of 200%-400%, the energy differences as a function of stacking configuration yield nearly constant values with variations smaller than 20%, meaning that LDA estimates are quite reliable. We produce phenomenological fits to these energy differences, which allows us to calculate various properties of interest including interlayer spacing, sliding energetics, pressure gradients, and elastic coefficients to high accuracy. The importance of long-range interactions (captured by RPA but not LDA) on various properties is also discussed. Parametrizations for all fits are provided.
NASA Astrophysics Data System (ADS)
Jin, Ye; Yang, Yang; Zhang, Du; Peng, Degao; Yang, Weitao
2017-10-01
The optimized effective potential (OEP) that gives accurate Kohn-Sham (KS) orbitals and orbital energies can be obtained from a given reference electron density. These OEP-KS orbitals and orbital energies are used here for calculating electronic excited states with the particle-particle random phase approximation (pp-RPA). Our calculations allow the examination of pp-RPA excitation energies with the exact KS density functional theory (DFT). Various input densities are investigated. Specifically, the excitation energies using the OEP with the electron densities from the coupled-cluster singles and doubles method display the lowest mean absolute error from the reference data for the low-lying excited states. This study probes into the theoretical limit of the pp-RPA excitation energies with the exact KS-DFT orbitals and orbital energies. We believe that higher-order correlation contributions beyond the pp-RPA bare Coulomb kernel are needed in order to achieve even higher accuracy in excitation energy calculations.
NASA Technical Reports Server (NTRS)
Wang, C.-W.; Stark, W.
2005-01-01
This article considers a quaternary direct-sequence code-division multiple-access (DS-CDMA) communication system with asymmetric quadrature phase-shift-keying (AQPSK) modulation for unequal error protection (UEP) capability. Both time synchronous and asynchronous cases are investigated. An expression for the probability distribution of the multiple-access interference is derived. The exact bit-error performance and the approximate performance using a Gaussian approximation and random signature sequences are evaluated by extending the techniques used for uniform quadrature phase-shift-keying (QPSK) and binary phase-shift-keying (BPSK) DS-CDMA systems. Finally, a general system model with unequal user power and the near-far problem is considered and analyzed. The results show that, for a system with UEP capability, the less protected data bits are more sensitive to the near-far effect that occurs in a multiple-access environment than are the more protected bits.
NASA Astrophysics Data System (ADS)
Yang, Jing; Youssef, Mostafa; Yildiz, Bilge
2018-01-01
In this work, we quantify oxygen self-diffusion in monoclinic-phase zirconium oxide as a function of temperature and oxygen partial pressure. A migration barrier of each type of oxygen defect was obtained by first-principles calculations. Random walk theory was used to quantify the diffusivities of oxygen interstitials by using the calculated migration barriers. Kinetic Monte Carlo simulations were used to calculate diffusivities of oxygen vacancies by distinguishing the threefold- and fourfold-coordinated lattice oxygen. By combining the equilibrium defect concentrations obtained in our previous work together with the herein calculated diffusivity of each defect species, we present the resulting oxygen self-diffusion coefficients and the corresponding atomistically resolved transport mechanisms. The predicted effective migration barriers and diffusion prefactors are in reasonable agreement with the experimentally reported values. This work provides insights into oxygen diffusion engineering in Zr O2 -related devices and parametrization for continuum transport modeling.
Stiffness Control of Surgical Continuum Manipulators
Mahvash, Mohsen; Dupont, Pierre E.
2013-01-01
This paper introduces the first stiffness controller for continuum robots. The control law is based on an accurate approximation of a continuum robot’s coupled kinematic and static force model. To implement a desired tip stiffness, the controller drives the actuators to positions corresponding to a deflected robot configuration that produces the required tip force for the measured tip position. This approach provides several important advantages. First, it enables the use of robot deflection sensing as a means to both sense and control tip forces. Second, it enables stiffness control to be implemented by modification of existing continuum robot position controllers. The proposed controller is demonstrated experimentally in the context of a concentric tube robot. Results show that the stiffness controller achieves the desired stiffness in steady state, provides good dynamic performance, and exhibits stability during contact transitions. PMID:24273466
Nanosecond laser ablation of target Al in a gaseous medium: explosive boiling
NASA Astrophysics Data System (ADS)
Mazhukin, V. I.; Mazhukin, A. V.; Demin, M. M.; Shapranov, A. V.
2018-03-01
An approximate mathematical description of the processes of homogeneous nucleation and homogeneous evaporation (explosive boiling) of a metal target (Al) under the influence of ns laser radiation is proposed in the framework of the hydrodynamic model. Within the continuum approach, a multi-phase, multi-front hydrodynamic model and a computational algorithm are designed to simulate nanosecond laser ablation of the metal targets immersed in gaseous media. The proposed approach is intended for modeling and detailed analysis of the mechanisms of heterogeneous and homogeneous evaporation and their interaction with each other. It is shown that the proposed model and computational algorithm allow modeling of interrelated mechanisms of heterogeneous and homogeneous evaporation of metals, manifested in the form of pulsating explosive boiling. Modeling has shown that explosive evaporation in metals is due to the presence of a near-surface temperature maximum. It has been established that in nanosecond pulsed laser ablation, such exposure regimes can be implemented in which phase explosion is the main mechanism of material removal.
Wellman, Tristan P.; Poeter, Eileen P.
2006-01-01
Computational limitations and sparse field data often mandate use of continuum representation for modeling hydrologic processes in large‐scale fractured aquifers. Selecting appropriate element size is of primary importance because continuum approximation is not valid for all scales. The traditional approach is to select elements by identifying a single representative elementary scale (RES) for the region of interest. Recent advances indicate RES may be spatially variable, prompting unanswered questions regarding the ability of sparse data to spatially resolve continuum equivalents in fractured aquifers. We address this uncertainty of estimating RES using two techniques. In one technique we employ data‐conditioned realizations generated by sequential Gaussian simulation. For the other we develop a new approach using conditioned random walks and nonparametric bootstrapping (CRWN). We evaluate the effectiveness of each method under three fracture densities, three data sets, and two groups of RES analysis parameters. In sum, 18 separate RES analyses are evaluated, which indicate RES magnitudes may be reasonably bounded using uncertainty analysis, even for limited data sets and complex fracture structure. In addition, we conduct a field study to estimate RES magnitudes and resulting uncertainty for Turkey Creek Basin, a crystalline fractured rock aquifer located 30 km southwest of Denver, Colorado. Analyses indicate RES does not correlate to rock type or local relief in several instances but is generally lower within incised creek valleys and higher along mountain fronts. Results of this study suggest that (1) CRWN is an effective and computationally efficient method to estimate uncertainty, (2) RES predictions are well constrained using uncertainty analysis, and (3) for aquifers such as Turkey Creek Basin, spatial variability of RES is significant and complex.
Large-N -approximated field theory for multipartite entanglement
NASA Astrophysics Data System (ADS)
Facchi, P.; Florio, G.; Parisi, G.; Pascazio, S.; Scardicchio, A.
2015-12-01
We try to characterize the statistics of multipartite entanglement of the random states of an n -qubit system. Unable to solve the problem exactly we generalize it, replacing complex numbers with real vectors with Nc components (the original problem is recovered for Nc=2 ). Studying the leading diagrams in the large-Nc approximation, we unearth the presence of a phase transition and, in an explicit example, show that the so-called entanglement frustration disappears in the large-Nc limit.
Ziegler, Tom; Krykunov, Mykhaylo; Autschbach, Jochen
2014-09-09
The random phase approximation (RPA) equation of adiabatic time dependent density functional ground state response theory (ATDDFT) has been used extensively in studies of excited states. It extracts information about excited states from frequency dependent ground state response properties and avoids, thus, in an elegant way, direct Kohn-Sham calculations on excited states in accordance with the status of DFT as a ground state theory. Thus, excitation energies can be found as resonance poles of frequency dependent ground state polarizability from the eigenvalues of the RPA equation. ATDDFT is approximate in that it makes use of a frequency independent energy kernel derived from the ground state functional. It is shown in this study that one can derive the RPA equation of ATDDFT from a purely variational approach in which stationary states above the ground state are located using our constricted variational DFT (CV-DFT) method and the ground state functional. Thus, locating stationary states above the ground state due to one-electron excitations with a ground state functional is completely equivalent to solving the RPA equation of TDDFT employing the same functional. The present study is an extension of a previous work in which we demonstrated the equivalence between ATDDFT and CV-DFT within the Tamm-Dancoff approximation.
Modeling the Impact of Interventions Along the HIV Continuum of Care in Newark, New Jersey
Birger, Ruthie B.; Hallett, Timothy B.; Sinha, Anushua; Grenfell, Bryan T.; Hodder, Sally L.
2014-01-01
Background. The human immunodeficiency virus (HIV) epidemic in Newark, New Jersey, is among the most severe in the United States. Prevalence ranges up to 3.3% in some groups. The aim of this study is to use a mathematical model of the epidemic in Newark to assess the impact of interventions along the continuum of care, leading to virologic suppression. Methods. A model was constructed of HIV infection including specific care-continuum steps. The model was calibrated to HIV/AIDS cases in Newark among different populations over a 10-year period. Interventions applied to model fits were increasing proportions tested, linked and retained in care, linked and adherent to treatment, and increasing testing frequency, high-risk-group testing, and adherence. Impacts were assessed by measuring incidence and death reductions 10 years postintervention. Results. The most effective interventions for reducing incidence were improving treatment adherence and increasing testing frequency and coverage. No single intervention reduced incidence in 2023 by >5%, and the most effective combination of interventions reduced incidence by approximately 16% (2%–24%). The most efficacious interventions for reducing deaths were increasing retention, linkage to care, testing coverage, and adherence. Increasing retention reduced deaths by approximately 27% (24%–29%); the most efficacious combination of interventions reduced deaths in 2023 by approximately 52% (46%–57%). Conclusions. Reducing HIV deaths in Newark over a 10-year period may be a realizable goal, but reducing incidence is less likely. Our results highlight the importance of addressing leaks across the entire continuum of care and reinforcing efforts to prevention new HIV infections with additional interventions. PMID:24140971
Schutyser, M A I; Briels, W J; Boom, R M; Rinzema, A
2004-05-20
The development of mathematical models facilitates industrial (large-scale) application of solid-state fermentation (SSF). In this study, a two-phase model of a drum fermentor is developed that consists of a discrete particle model (solid phase) and a continuum model (gas phase). The continuum model describes the distribution of air in the bed injected via an aeration pipe. The discrete particle model describes the solid phase. In previous work, mixing during SSF was predicted with the discrete particle model, although mixing simulations were not carried out in the current work. Heat and mass transfer between the two phases and biomass growth were implemented in the two-phase model. Validation experiments were conducted in a 28-dm3 drum fermentor. In this fermentor, sufficient aeration was provided to control the temperatures near the optimum value for growth during the first 45-50 hours. Several simulations were also conducted for different fermentor scales. Forced aeration via a single pipe in the drum fermentors did not provide homogeneous cooling in the substrate bed. Due to large temperature gradients, biomass yield decreased severely with increasing size of the fermentor. Improvement of air distribution would be required to avoid the need for frequent mixing events, during which growth is hampered. From these results, it was concluded that the two-phase model developed is a powerful tool to investigate design and scale-up of aerated (mixed) SSF fermentors. Copyright 2004 Wiley Periodicals, Inc.
Wind asymmetry imprint in the UV light curves of the symbiotic binary SY Mus
NASA Astrophysics Data System (ADS)
Shagatova, N.; Skopal, A.
2017-06-01
Context. Light curves (LCs) of some symbiotic stars show a different slope of the ascending and descending branch of their minimum profile. The origin of this asymmetry is not well understood. Aims: We explain this effect in the ultraviolet LCs of the symbiotic binary SY Mus. Methods: We model the continuum fluxes in the spectra obtained by the International Ultraviolet Explorer at ten wavelengths, from 1280 to 3080 Å. We consider that the white dwarf radiation is attenuated by H0 atoms, H- ions, and free electrons in the red giant wind. Variation in the nebular component is approximated by a sine wave along the orbit as suggested by spectral energy distribution models. The model includes asymmetric wind velocity distribution and the corresponding ionization structure of the binary. Results: We determined distribution of the H0 and H+, as well as upper limits of H- and H0 column densities in the neutral and ionized region at the selected wavelengths as functions of the orbital phase. Corresponding models of the LCs match well the observed continuum fluxes. In this way, we suggested the main UV continuum absorbing (scattering) processes in the circumbinary environment of S-type symbiotic stars. Conclusions: The asymmetric profile of the ultraviolet LCs of SY Mus is caused by the asymmetric distribution of the circumstellar matter at the near-orbital-plane area. Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A71
Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements.
Ptashnik, Igor V; McPheat, Robert A; Shine, Keith P; Smith, Kevin M; Williams, R Gary
2012-06-13
For a long time, it has been believed that atmospheric absorption of radiation within wavelength regions of relatively high infrared transmittance (so-called 'windows') was dominated by the water vapour self-continuum, that is, spectrally smooth absorption caused by H(2)O--H(2)O pair interaction. Absorption due to the foreign continuum (i.e. caused mostly by H(2)O--N(2) bimolecular absorption in the Earth's atmosphere) was considered to be negligible in the windows. We report new retrievals of the water vapour foreign continuum from high-resolution laboratory measurements at temperatures between 350 and 430 K in four near-infrared windows between 1.1 and 5 μm (9000-2000 cm(-1)). Our results indicate that the foreign continuum in these windows has a very weak temperature dependence and is typically between one and two orders of magnitude stronger than that given in representations of the continuum currently used in many climate and weather prediction models. This indicates that absorption owing to the foreign continuum may be comparable to the self-continuum under atmospheric conditions in the investigated windows. The calculated global-average clear-sky atmospheric absorption of solar radiation is increased by approximately 0.46 W m(-2) (or 0.6% of the total clear-sky absorption) by using these new measurements when compared with calculations applying the widely used MTCKD (Mlawer-Tobin-Clough-Kneizys-Davies) foreign-continuum model.
Concatenated shift registers generating maximally spaced phase shifts of PN-sequences
NASA Technical Reports Server (NTRS)
Hurd, W. J.; Welch, L. R.
1977-01-01
A large class of linearly concatenated shift registers is shown to generate approximately maximally spaced phase shifts of pn-sequences, for use in pseudorandom number generation. A constructive method is presented for finding members of this class, for almost all degrees for which primitive trinomials exist. The sequences which result are not normally characterized by trinomial recursions, which is desirable since trinomial sequences can have some undesirable randomness properties.
Model of chiral spin liquids with Abelian and non-Abelian topological phases
Chen, Jyong-Hao; Mudry, Christopher; Chamon, Claudio; ...
2017-12-15
In this article, we present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase approximation (RPA) for the single-particle Green's functions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases, one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition. Remarkably, themore » Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev model) domain walls propagating along only one of the two space directions.« less
Model of chiral spin liquids with Abelian and non-Abelian topological phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jyong-Hao; Mudry, Christopher; Chamon, Claudio
In this article, we present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase approximation (RPA) for the single-particle Green's functions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases, one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition. Remarkably, themore » Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev model) domain walls propagating along only one of the two space directions.« less
Determination of astrophysical parameters of quasars within the Gaia mission
NASA Astrophysics Data System (ADS)
Delchambre, L.
2018-01-01
We describe methods designed to determine the astrophysical parameters of quasars based on spectra coming from the red and blue spectrophotometers of the Gaia satellite. These methods principally rely on two already published algorithms that are the weighted principal component analysis and the weighted phase correlation. The presented approach benefits from a fast implementation, an intuitive interpretation as well as strong diagnostic tools on the potential errors that may arise during predictions. The production of a semi-empirical library of spectra as they will be observed by Gaia is also covered and subsequently used for validation purpose. We detail the pre-processing that is necessary in order for these spectra to be fully exploitable by our algorithms along with the procedures that are used to predict the redshifts of the quasars, their continuum slopes, the total equivalent width of their emission lines and whether these are broad absorption line (BAL) quasars or not. Performances of these procedures were assessed in comparison with the extremely randomized trees learning method and were proven to provide better results on the redshift predictions and on the ratio of correctly classified observations though the probability of detection of BAL quasars remains restricted by the low resolution of these spectra as well as by their limited signal-to-noise ratio. Finally, the triggering of some warning flags allows us to obtain an extremely pure subset of redshift predictions where approximately 99 per cent of the observations come along with absolute errors that are below 0.1.
Jones, C Allyson; Martin, Ruben San; Westby, Marie D; Beaupre, Lauren A
2016-11-04
Comprehensive and timely rehabilitation for total joint arthroplasty (TJA) is needed to maximize recovery from this elective surgical procedure for hip and knee arthritis. Administrative data do not capture the variation of treatment for rehabilitation across the continuum of care for TJA, so we conducted a survey for physiotherapists to report practice for TJA across the continuum of care. The primary objective was to describe the reported practice of physiotherapy for TJA across the continuum of care within the context of a provincial TJA clinical pathway and highlight possible gaps in care. A cross-sectional on-line survey was accessible to licensed physiotherapists in Alberta, Canada for 11 weeks. Physiotherapists who treated at least five patients with TJA annually were asked to complete the survey. The survey consisted of 58 questions grouped into pre-operative, acute care and post-acute rehabilitation. Variation of practice was described in terms of number, duration and type of visits along with goals of care and program delivery methods. Of the 80 respondents, 26 (33 %) stated they worked in small centres or rural settings in Alberta with the remaining respondents working in two large urban sites. The primary treatment goal differed for each phase across the continuum of care in that pre-operative phase was directed at improving muscle strength, functional activities were commonly reported for acute care, and post-acute phase was directed at improving joint range-of-motion. Proportionally, more physiotherapists from rural areas treated patients in out-patient hospital departments (59 %), whereas a higher proportion in urban physiotherapists saw patients in private clinics (48 %). Across the continuum of care, treatment was primarily delivered on an individual basis rather than in a group format. Variation of practice reported with pre-and post-operative care in the community will stimulate dialogue within the profession as to what is the minimal standard of care to provide patients undergoing TJA.
Nonconvergence of the Wang-Landau algorithms with multiple random walkers.
Belardinelli, R E; Pereyra, V D
2016-05-01
This paper discusses some convergence properties in the entropic sampling Monte Carlo methods with multiple random walkers, particularly in the Wang-Landau (WL) and 1/t algorithms. The classical algorithms are modified by the use of m-independent random walkers in the energy landscape to calculate the density of states (DOS). The Ising model is used to show the convergence properties in the calculation of the DOS, as well as the critical temperature, while the calculation of the number π by multiple dimensional integration is used in the continuum approximation. In each case, the error is obtained separately for each walker at a fixed time, t; then, the average over m walkers is performed. It is observed that the error goes as 1/sqrt[m]. However, if the number of walkers increases above a certain critical value m>m_{x}, the error reaches a constant value (i.e., it saturates). This occurs for both algorithms; however, it is shown that for a given system, the 1/t algorithm is more efficient and accurate than the similar version of the WL algorithm. It follows that it makes no sense to increase the number of walkers above a critical value m_{x}, since it does not reduce the error in the calculation. Therefore, the number of walkers does not guarantee convergence.
Hurwitz, M; Bowyer, S; Martin, C
1991-05-01
We have determined the scattering parameters of dust in the interstellar medium at far-ultraviolet (FUV) wavelengths (1415-1835 angstroms). Our results are based on spectra of the diffuse background taken with the Berkeley UVX spectrometer. The unique design of this instrument makes possible for the first time accurate determination of the background both at high Galactic latitude, where the signal is intrinsically faint, and at low Galactic latitude, where direct starlight has heretofore compromised measurements of the diffuse emission. Because the data are spectroscopic, the continuum can be distinguished from the atomic and molecular transition features which also contribute to the background. We find the continuum intensity to be well correlated with the Galactic neutral hydrogen column density until saturation at about 1200 photons cm-2 s-1 sr-1 angstrom-1 is reached where tau FUV approximately 1. Our measurement of the intensity where tau FUV > or = 1 is crucial to the determination of the scattering properties of the grains. We interpret the data with a detailed radiative transfer model and conclude that the FUV albedo of the grains is low (<25%) and that the grains scatter fairly isotropically. We evaluate models of dust composition and grain-size distribution and compare their predictions with these new results. We present evidence that, as the Galactic neutral hydrogen column density approaches zero, the FUV continuum background arises primarily from scattering by dust, which implies that dust may be present in virtually all view directions. A non-dust-scattering continuum component has also been identified, with an intensity (external to the foreground Galactic dust) of about 115 photons cm-2 s-1 angstrom-1. With about half this intensity accounted for by two-photon emission from Galactic ionized gas, we identify roughly 50 photons cm-2 s-1 sr-1 angstrom-1 as a true extragalactic component.
Correlational correction to plasmon dispersion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalman, G.; Golden, K.I.
The authors question the suggestion that plasmon dispersion increases for small values of the coupling over its random-phase-approximation value, and conclude that, contrary to what has been stated in the literature, it does not: high-frequency-moment sum-rule and Kramers-Kronig arguments, when properly treated, do not entail such a consequence.
Ocean acoustic interferometry.
Brooks, Laura A; Gerstoft, Peter
2007-06-01
Ocean acoustic interferometry refers to an approach whereby signals recorded from a line of sources are used to infer the Green's function between two receivers. An approximation of the time domain Green's function is obtained by summing, over all source positions (stacking), the cross-correlations between the receivers. Within this paper a stationary phase argument is used to describe the relationship between the stacked cross-correlations from a line of vertical sources, located in the same vertical plane as two receivers, and the Green's function between the receivers. Theory and simulations demonstrate the approach and are in agreement with those of a modal based approach presented by others. Results indicate that the stacked cross-correlations can be directly related to the shaded Green's function, so long as the modal continuum of any sediment layers is negligible.
Zhang, Yang; Chong, Edwin K. P.; Hannig, Jan; ...
2013-01-01
We inmore » troduce a continuum modeling method to approximate a class of large wireless networks by nonlinear partial differential equations (PDEs). This method is based on the convergence of a sequence of underlying Markov chains of the network indexed by N , the number of nodes in the network. As N goes to infinity, the sequence converges to a continuum limit, which is the solution of a certain nonlinear PDE. We first describe PDE models for networks with uniformly located nodes and then generalize to networks with nonuniformly located, and possibly mobile, nodes. Based on the PDE models, we develop a method to control the transmissions in nonuniform networks so that the continuum limit is invariant under perturbations in node locations. This enables the networks to maintain stable global characteristics in the presence of varying node locations.« less
NASA Astrophysics Data System (ADS)
Greiner-Petter, Christoph; Sattel, Thomas
2017-12-01
For planar tubular continuum structures based on precurved shape memory alloy tubes a beam model with respect to the pseudoelastic material behaviour of NiTi is derived. Thereunto a constitutive material law respecting tension-compression asymmetry as well as hysteresis is used. The beam model is then employed to calculate equilibrium curvatures of concentric tube assemblies without clearance between the tubes. In a second step, the influence of clearance is approximated to account for non-concentric tube assemblies. These elastokinematic results are integrated into a purely kinematic model to describe the cannula path under the presence of material hysteresis and clearance. Finally a photogrammetric measurement system is used to track the path of an exemplary two-tube continuum structure to examine the accuracy of the proposed model. It is shown that material hysteresis leads to a hysteresis phenomena in the path of the tubular continuum structure.
Kollen, Boudewijn J; Groenier, Klaas H; Berendsen, Annette J
2011-05-01
Communication between professionals is essential because it contributes to an optimal continuum of care. Whether patients experience adequate continuum of care is uncertain. To address this, a questionnaire was developed to elucidate this care process from a patients' perspective. In this study, the instrument's ability to measure differences in "Consumer Quality Index Continuum of Care" scores between hospitals was investigated. The questionnaire was mailed to a random sample of 2159 patients and comprised of 22 items divided over four domains, GP approach, GP referral, specialist and collaboration. Multilevel analysis was conducted to identify case-mix and determine this questionnaire's ability to measure differences in domain scores between hospitals. Based on a 65% response rate, 1404 questionnaires were available for analysis. Case-mix of patient characteristics across hospitals could not be demonstrated. Some differences in scores between hospitals were observed. At most two in eight hospitals showed different domain scores. The ability of this questionnaire to measure differences in continuum of care scores between hospitals is limited. The outcome of this survey suggests that hospitals provide a similar level of continuum of care from a patient's perspective. This questionnaire is especially useful for measuring differences between patients. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Si, Dejun; Li, Hui
2011-10-14
The analytic energy gradients in combined second order Møller-Plesset perturbation theory and conductorlike polarizable continuum model calculations are derived and implemented for spin-restricted closed shell (RMP2), Z-averaged spin-restricted open shell (ZAPT2), and spin-unrestricted open shell (UMP2) cases. Using these methods, the geometries of the S(0) ground state and the T(1) state of three nucleobase pairs (guanine-cytosine, adenine-thymine, and adenine-uracil) in the gas phase and aqueous solution phase are optimized. It is found that in both the gas phase and the aqueous solution phase the hydrogen bonds in the T(1) state pairs are weakened by ~1 kcal/mol as compared to those in the S(0) state pairs. © 2011 American Institute of Physics
Composite fermion theory for bosonic quantum Hall states on lattices.
Möller, G; Cooper, N R
2009-09-04
We study the ground states of the Bose-Hubbard model in a uniform magnetic field, motivated by the physics of cold atomic gases on lattices at high vortex density. Mapping the bosons to composite fermions (CF) leads to the prediction of quantum Hall fluids that have no counterpart in the continuum. We construct trial states for these phases and test numerically the predictions of the CF model. We establish the existence of strongly correlated phases beyond those in the continuum limit and provide evidence for a wider scope of the composite fermion approach beyond its application to the lowest Landau level.
Non-continuum, anisotropic nanomechanics of random and aligned electrospun nanofiber matrices
NASA Astrophysics Data System (ADS)
Chery, Daphney; Han, Biao; Mauck, Robert; Shenoy, Vivek; Han, Lin
Polymer nanofiber assemblies are widely used in cell culture and tissue engineering, while their nanomechanical characteristics have received little attention. In this study, to understand their nanoscale structure-mechanics relations, nanofibers of polycaprolactone (PCL) and poly(vinyl alcohol) (PVA) were fabricated via electrospinning, and tested via AFM-nanoindentation with a microspherical tip (R ~10 μm) in PBS. For the hydrophobic, less-swollen PCL, a novel, non-continuum linear F-D dependence was observed, instead of the typical Hertzian F-D3/2 behavior, which is usually expected for continuum materials. This linear trend is likely resulted from the tensile stretch of a few individual nanofibers as they were indented in the normal plane. In contrast, for the hydrophilic, highly swollen PVA, the observed typical Hertzian response indicates the dominance of localized deformation within each nanofiber, which had swollen to become hydrogels. Furthermore, for both matrices, aligned fibers showed significantly higher stiffness than random fibers. These results provide a fundamental basis on the nanomechanics of biomaterials for specialized applications in cell phenotype and tissue repair.
NASA Astrophysics Data System (ADS)
Tucker, Laura Jane
Under the harsh conditions of limited nutrient and hard growth surface, Paenibacillus dendritiformis in agar plates form two classes of patterns (morphotypes). The first class, called the dendritic morphotype, has radially directed branches. The second class, called the chiral morphotype, exhibits uniform handedness. The dendritic morphotype has been modeled successfully using a continuum model on a regular lattice; however, a suitable computational approach was not known to solve a continuum chiral model. This work details a new computational approach to solving the chiral continuum model of pattern formation in P. dendritiformis. The approach utilizes a random computational lattice and new methods for calculating certain derivative terms found in the model.
Frequency distributions from birth, death, and creation processes.
Bartley, David L; Ogden, Trevor; Song, Ruiguang
2002-01-01
The time-dependent frequency distribution of groups of individuals versus group size was investigated within a continuum approximation, assuming a simplified individual growth, death and creation model. The analogy of the system to a physical fluid exhibiting both convection and diffusion was exploited in obtaining various solutions to the distribution equation. A general solution was approximated through the application of a Green's function. More specific exact solutions were also found to be useful. The solutions were continually checked against the continuum approximation through extensive simulation of the discrete system. Over limited ranges of group size, the frequency distributions were shown to closely exhibit a power-law dependence on group size, as found in many realizations of this type of system, ranging from colonies of mutated bacteria to the distribution of surnames in a given population. As an example, the modeled distributions were successfully fit to the distribution of surnames in several countries by adjusting the parameters specifying growth, death and creation rates.
A spectrum of the veiled T Tauri star CY Tau
NASA Technical Reports Server (NTRS)
Stuewe, J. A.; Schultz, R.
1994-01-01
We present a flux calibrated spectrum of the star listed as CY Tau in the `General Catalog of Variable Stars 4th ed.' in the spectral range 3700 A less than or equal to lambda less than or equal to 6400 A with a resolution of approximately equals 15 A showing the Balmer-Series from H(sub beta) to H(sub 10) as well as the CaII H (in blend with H(sub epsilon) and K lines in emission. Apart from the emission lines the spectrum is composed of a continuum equivalent to that of an ordinary pre-main sequence star (i.e. a `naked' T Tau) of spectral type M2 V with emission lines plus a `blue' veiling continuum that can be described as black body radiation of temperature T(sub BL) approximately equals 7000K due to accretion onto a boundary layer at a rate of M-dot(sub acc) greater than or approximately = 2.18 10(exp -8) solar mass/a.
de Lima, Guilherme Ferreira; Duarte, Hélio Anderson; Pliego, Josefredo R
2010-12-09
A new dynamical discrete/continuum solvation model was tested for NH(4)(+) and OH(-) ions in water solvent. The method is similar to continuum solvation models in a sense that the linear response approximation is used. However, different from pure continuum models, explicit solvent molecules are included in the inner shell, which allows adequate treatment of specific solute-solvent interactions present in the first solvation shell, the main drawback of continuum models. Molecular dynamics calculations coupled with SCC-DFTB method are used to generate the configurations of the solute in a box with 64 water molecules, while the interaction energies are calculated at the DFT level. We have tested the convergence of the method using a variable number of explicit water molecules and it was found that even a small number of waters (as low as 14) are able to produce converged values. Our results also point out that the Born model, often used for long-range correction, is not reliable and our method should be applied for more accurate calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, B.; Menten, K. M.; Wu, Y.
We conducted Very Large Array C-configuration observations to measure positions and luminosities of Galactic Class II 6.7 GHz methanol masers and their associated ultra-compact H ii regions. The spectral resolution was 3.90625 kHz and the continuum sensitivity reached 45 μ Jy beam{sup −1}. We mapped 372 methanol masers with peak flux densities of more than 2 Jy selected from the literature. Absolute positions have nominal uncertainties of 0.″3. In this first paper on the data analysis, we present three catalogs; the first gives information on the strongest feature of 367 methanol maser sources, and the second provides information on allmore » detected maser spots. The third catalog presents derived data of the 127 radio continuum counterparts associated with maser sources. Our detection rate of radio continuum counterparts toward methanol masers is approximately one-third. Our catalogs list properties including distance, flux density, luminosity, and the distribution in the Galactic plane. We found no significant relationship between luminosities of masers and their associated radio continuum counterparts, however, the detection rate of radio continuum emission toward maser sources increases statistically with the maser luminosities.« less
Series Pneumatic Artificial Muscles (sPAMs) and Application to a Soft Continuum Robot.
Greer, Joseph D; Morimoto, Tania K; Okamura, Allison M; Hawkes, Elliot W
2017-01-01
We describe a new series pneumatic artificial muscle (sPAM) and its application as an actuator for a soft continuum robot. The robot consists of three sPAMs arranged radially round a tubular pneumatic backbone. Analogous to tendons, the sPAMs exert a tension force on the robot's pneumatic backbone, causing bending that is approximately constant curvature. Unlike a traditional tendon driven continuum robot, the robot is entirely soft and contains no hard components, making it safer for human interaction. Models of both the sPAM and soft continuum robot kinematics are presented and experimentally verified. We found a mean position accuracy of 5.5 cm for predicting the end-effector position of a 42 cm long robot with the kinematic model. Finally, closed-loop control is demonstrated using an eye-in-hand visual servo control law which provides a simple interface for operation by a human. The soft continuum robot with closed-loop control was found to have a step-response rise time and settling time of less than two seconds.
Series Pneumatic Artificial Muscles (sPAMs) and Application to a Soft Continuum Robot
Greer, Joseph D.; Morimoto, Tania K.; Okamura, Allison M.; Hawkes, Elliot W.
2017-01-01
We describe a new series pneumatic artificial muscle (sPAM) and its application as an actuator for a soft continuum robot. The robot consists of three sPAMs arranged radially round a tubular pneumatic backbone. Analogous to tendons, the sPAMs exert a tension force on the robot’s pneumatic backbone, causing bending that is approximately constant curvature. Unlike a traditional tendon driven continuum robot, the robot is entirely soft and contains no hard components, making it safer for human interaction. Models of both the sPAM and soft continuum robot kinematics are presented and experimentally verified. We found a mean position accuracy of 5.5 cm for predicting the end-effector position of a 42 cm long robot with the kinematic model. Finally, closed-loop control is demonstrated using an eye-in-hand visual servo control law which provides a simple interface for operation by a human. The soft continuum robot with closed-loop control was found to have a step-response rise time and settling time of less than two seconds. PMID:29379672
NASA Astrophysics Data System (ADS)
Shahi, Chandra; Sun, Jianwei; Perdew, John P.
2018-03-01
Most of the group IV, III-V, and II-VI compounds crystallize in semiconductor structures under ambient conditions. Upon application of pressure, they undergo structural phase transitions to more closely packed structures, sometimes metallic phases. We have performed density functional calculations using projector augmented wave (PAW) pseudopotentials to determine the transition pressures for these transitions within the local density approximation (LDA), the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA), and the strongly constrained and appropriately normed (SCAN) meta-GGA. LDA underestimates the transition pressure for most of the studied materials. PBE under- or overestimates in many cases. SCAN typically corrects the errors of LDA and PBE for the transition pressure. The accuracy of SCAN is comparable to that of computationally expensive methods like the hybrid functional HSE06, the random phase approximation (RPA), and quantum Monte Carlo (QMC), in cases where calculations with these methods have been reported, but at a more modest computational cost. The improvement from LDA to PBE to SCAN is especially clearcut and dramatic for covalent semiconductor-metal transitions, as for Si and Ge, where it reflects the increasing relative stabilization of the covalent semiconducting phases under increasing functional sophistication.
Dynamic Modelling for Planar Extensible Continuum Robot Manipulators
2006-01-01
5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7... octopus arm [18]. The OCTARM, shown in Figure 1, is a three-section robot with nine degrees of freedom. Aside from two axis bending with constant... octopus arm. However, while allowing extensibility, the model is based on an approximation (by a Þnite number of linear models) to the true continuum
Microstructure-Based Fatigue Life Prediction Methods for Naval Steel Structures
1993-01-30
approach is to work with the lognormal random variable model proposed by Yang et al . [2], which avoids these difficulties. The simplest form of the...I Al - I I 11. and Ti-alloys [ 10- 111 correlate with the elastic modulus only in the continuum growth regime. On the other hand. compilation of...growth. In fact, Eq. (5) implies that microstructure plays no role in the continuum growth regime. Theoretical models of Frost, et al . [35], and
Phase computations and phase models for discrete molecular oscillators.
Suvak, Onder; Demir, Alper
2012-06-11
Biochemical oscillators perform crucial functions in cells, e.g., they set up circadian clocks. The dynamical behavior of oscillators is best described and analyzed in terms of the scalar quantity, phase. A rigorous and useful definition for phase is based on the so-called isochrons of oscillators. Phase computation techniques for continuous oscillators that are based on isochrons have been used for characterizing the behavior of various types of oscillators under the influence of perturbations such as noise. In this article, we extend the applicability of these phase computation methods to biochemical oscillators as discrete molecular systems, upon the information obtained from a continuous-state approximation of such oscillators. In particular, we describe techniques for computing the instantaneous phase of discrete, molecular oscillators for stochastic simulation algorithm generated sample paths. We comment on the accuracies and derive certain measures for assessing the feasibilities of the proposed phase computation methods. Phase computation experiments on the sample paths of well-known biological oscillators validate our analyses. The impact of noise that arises from the discrete and random nature of the mechanisms that make up molecular oscillators can be characterized based on the phase computation techniques proposed in this article. The concept of isochrons is the natural choice upon which the phase notion of oscillators can be founded. The isochron-theoretic phase computation methods that we propose can be applied to discrete molecular oscillators of any dimension, provided that the oscillatory behavior observed in discrete-state does not vanish in a continuous-state approximation. Analysis of the full versatility of phase noise phenomena in molecular oscillators will be possible if a proper phase model theory is developed, without resorting to such approximations.
Phase computations and phase models for discrete molecular oscillators
2012-01-01
Background Biochemical oscillators perform crucial functions in cells, e.g., they set up circadian clocks. The dynamical behavior of oscillators is best described and analyzed in terms of the scalar quantity, phase. A rigorous and useful definition for phase is based on the so-called isochrons of oscillators. Phase computation techniques for continuous oscillators that are based on isochrons have been used for characterizing the behavior of various types of oscillators under the influence of perturbations such as noise. Results In this article, we extend the applicability of these phase computation methods to biochemical oscillators as discrete molecular systems, upon the information obtained from a continuous-state approximation of such oscillators. In particular, we describe techniques for computing the instantaneous phase of discrete, molecular oscillators for stochastic simulation algorithm generated sample paths. We comment on the accuracies and derive certain measures for assessing the feasibilities of the proposed phase computation methods. Phase computation experiments on the sample paths of well-known biological oscillators validate our analyses. Conclusions The impact of noise that arises from the discrete and random nature of the mechanisms that make up molecular oscillators can be characterized based on the phase computation techniques proposed in this article. The concept of isochrons is the natural choice upon which the phase notion of oscillators can be founded. The isochron-theoretic phase computation methods that we propose can be applied to discrete molecular oscillators of any dimension, provided that the oscillatory behavior observed in discrete-state does not vanish in a continuous-state approximation. Analysis of the full versatility of phase noise phenomena in molecular oscillators will be possible if a proper phase model theory is developed, without resorting to such approximations. PMID:22687330
NASA Astrophysics Data System (ADS)
Wang, B. X.; Zhao, C. Y.
2018-02-01
Understanding radiative transfer in random media like micro- or nanoporous and particulate materials, allows people to manipulate the scattering and absorption of radiation, as well as opens new possibilities in applications such as imaging through turbid media, photovoltaics, and radiative cooling. A strong-backscattering phase function, i.e., a negative scattering asymmetry parameter g , is of great interest, which can possibly lead to unusual radiative transport phenomena, for instance, Anderson localization of light. Here we demonstrate that by utilizing the structural correlations and second Kerker condition for a disordered medium composed of randomly distributed silicon nanoparticles, a strongly negative scattering asymmetry factor (g ˜-0.5 ) for multiple light scattering can be realized in the near infrared. Based on the multipole expansion of Foldy-Lax equations and quasicrystalline approximation (QCA), we have rigorously derived analytical expressions for the effective propagation constant and scattering phase function for a random system containing spherical particles, by taking the effect of structural correlations into account. We show that as the concentration of scattering particles rises, the backscattering is also enhanced. Moreover, in this circumstance, the transport mean free path is largely reduced and even becomes smaller than that predicted by independent scattering approximation. We further explore the dependent scattering effects, including the modification of electric and magnetic dipole excitations and far-field interference effect, both induced and influenced by the structural correlations, for volume fraction of particles up to fv˜0.25 . Our results have profound implications in harnessing micro- or nanoscale radiative transfer through random media.
Model for spontaneous frequency sweeping of an Alfvén wave in a toroidal plasma
NASA Astrophysics Data System (ADS)
Wang, Ge; Berk, H. L.
2012-05-01
We study the frequency chirping signals arising from spontaneously excited toroidial Alfvén eigenmode (TAE) waves that are being driven by an inverted energetic particle distribution whose free energy is tapped from the generic particle/wave resonance interaction. Initially a wave is excited inside the Alfvén gap with a frequency determined from the linear tip model of Rosenbluth, Berk and Van dam (RBV) [1]. Hole/clumps structures are formed and are observed to chirp towards lower energy states. We find that the chirping signals from clump enter the Alfvén continuum which eventually produce more rapid chirping signals. The accuracy of the adiabatic approximation for the mode evolution is tested and verified by demonstrating that a WKB-like decomposition of the time response for the field phase and amplitude agree with the data. Plots of the phase space structure correlate well with the chirping dependent shape of the separatrix structure. A novel aspect of the simulation is that it performed close to the wave frame of the phase space structure, which enables the numerical time step to remain the same during the simulation, independent of the rest frame frequency.
NASA Astrophysics Data System (ADS)
Kees, C. E.; Miller, C. T.; Dimakopoulos, A.; Farthing, M.
2016-12-01
The last decade has seen an expansion in the development and application of 3D free surface flow models in the context of environmental simulation. These models are based primarily on the combination of effective algorithms, namely level set and volume-of-fluid methods, with high-performance, parallel computing. These models are still computationally expensive and suitable primarily when high-fidelity modeling near structures is required. While most research on algorithms and implementations has been conducted in the context of finite volume methods, recent work has extended a class of level set schemes to finite element methods on unstructured methods. This work considers models of three-phase flow in domains containing air, water, and granular phases. These multi-phase continuum mechanical formulations show great promise for applications such as analysis of coastal and riverine structures. This work will consider formulations proposed in the literature over the last decade as well as new formulations derived using the thermodynamically constrained averaging theory, an approach to deriving and closing macroscale continuum models for multi-phase and multi-component processes. The target applications require the ability to simulate wave breaking and structure over-topping, particularly fully three-dimensional, non-hydrostatic flows that drive these phenomena. A conservative level set scheme suitable for higher-order finite element methods is used to describe the air/water phase interaction. The interaction of these air/water flows with granular materials, such as sand and rubble, must also be modeled. The range of granular media dynamics targeted including flow and wave transmision through the solid media as well as erosion and deposition of granular media and moving bed dynamics. For the granular phase we consider volume- and time-averaged continuum mechanical formulations that are discretized with the finite element method and coupled to the underlying air/water flow via operator splitting (fractional step) schemes. Particular attention will be given to verification and validation of the numerical model and important qualitative features of the numerical methods including phase conservation, wave energy dissipation, and computational efficiency in regimes of interest.
Breakdown of the Debye approximation for the acoustic modes with nanometric wavelengths in glasses
Monaco, Giulio; Giordano, Valentina M.
2009-01-01
On the macroscopic scale, the wavelengths of sound waves in glasses are large enough that the details of the disordered microscopic structure are usually irrelevant, and the medium can be considered as a continuum. On decreasing the wavelength this approximation must of course fail at one point. We show here that this takes place unexpectedly on the mesoscopic scale characteristic of the medium range order of glasses, where it still works well for the corresponding crystalline phases. Specifically, we find that the acoustic excitations with nanometric wavelengths show the clear signature of being strongly scattered, indicating the existence of a cross-over between well-defined acoustic modes for larger wavelengths and ill-defined ones for smaller wavelengths. This cross-over region is accompanied by a softening of the sound velocity that quantitatively accounts for the excess observed in the vibrational density of states of glasses over the Debye level at energies of a few milli-electronvolts. These findings thus highlight the acoustic contribution to the well-known universal low-temperature anomalies found in the specific heat of glasses. PMID:19240211
Piccini, Jonathan P; Connolly, Stuart J; Abraham, William T; Healey, Jeff S; Steinberg, Benjamin A; Al-Khalidi, Hussein R; Dignacco, Patricia; van Veldhuisen, Dirk J; Sauer, William H; White, Michel; Wilton, Stephen B; Anand, Inder S; Dufton, Christopher; Marshall, Debra A; Aleong, Ryan G; Davis, Gordon W; Clark, Richard L; Emery, Laura L; Bristow, Michael R
2018-05-01
Few therapies are available for the safe and effective treatment of atrial fibrillation (AF) in patients with heart failure. Bucindolol is a non-selective beta-blocker with mild vasodilator activity previously found to have accentuated antiarrhythmic effects and increased efficacy for preventing heart failure events in patients homozygous for the major allele of the ADRB1 Arg389Gly polymorphism (ADRB1 Arg389Arg genotype). The safety and efficacy of bucindolol for the prevention of AF or atrial flutter (AFL) in these patients has not been proven in randomized trials. The Genotype-Directed Comparative Effectiveness Trial of Bucindolol and Metoprolol Succinate for Prevention of Symptomatic Atrial Fibrillation/Atrial Flutter in Patients with Heart Failure (GENETIC-AF) trial is a multicenter, randomized, double-blinded "seamless" phase 2B/3 trial of bucindolol hydrochloride versus metoprolol succinate, for the prevention of symptomatic AF/AFL in patients with reduced ejection fraction heart failure (HFrEF). Patients with pre-existing HFrEF and recent history of symptomatic AF are eligible for enrollment and genotype screening, and if they are ADRB1 Arg389Arg, eligible for randomization. A total of approximately 200 patients will comprise the phase 2B component and if pre-trial assumptions are met, 620 patients will be randomized at approximately 135 sites to form the Phase 3 population. The primary endpoint is the time to recurrence of symptomatic AF/AFL or mortality over a 24-week follow-up period, and the trial will continue until 330 primary endpoints have occurred. GENETIC-AF is the first randomized trial of pharmacogenetic guided rhythm control, and will test the safety and efficacy of bucindolol compared with metoprolol succinate for the prevention of recurrent symptomatic AF/AFL in patients with HFrEF and an ADRB1 Arg389Arg genotype. (ClinicalTrials.govNCT01970501). Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Khazanov, George V.; Sibeck, David G.
2013-01-01
The interaction of electrons with coherent chorus waves in the random phase approximation can be described as quasi-linear diffusion for waves with amplitudes below some limit. The limit is calculated for relativistic and non-relativistic electrons. For stronger waves, the friction force should be taken into account.
Flux quantization in aperiodic and periodic networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behrooz, A.
1987-01-01
The phase boundary of quasicrystalline, quasi-periodic, and random networks, was studied. It was found that if a network is composed of two different tiles, whose areas are relatively irrational, then the T/sub c/ (H) curve shows large-scale structure at fields that approximate flux quantization around the tiles, i.e., when the ratio of fluxoids contained in the large tiles to those in the small tiles is a rational approximant to the irrational area ratio. The phase boundaries of quasi-crystalline and quasi-periodic networks show fine structure indicating the existence of commensurate vortex superlattices on these networks. No such fine structure is foundmore » on the random array. For a quasi-crystal whose quasi-periodic long-range order is characterized by the irrational number of tau, the commensurate vortex lattices are all found at H = H/sub 0/ absolute value n + m tau (n,m integers). It was found that the commensurate superlattices on quasicrystalline as well as on crystalline networks are related to the inflation symmetry. A general definition of commensurability is proposed.« less
NASA Astrophysics Data System (ADS)
Fang, Dong-Liang; Faessler, Amand; Šimkovic, Fedor
2018-04-01
In this paper, with restored isospin symmetry, we evaluated the neutrinoless double-β -decay nuclear matrix elements for 76Ge, 82Se, 130Te, 136Xe, and 150Nd for both the light and heavy neutrino mass mechanisms using the deformed quasiparticle random-phase approximation approach with realistic forces. We give detailed decompositions of the nuclear matrix elements over different intermediate states and nucleon pairs, and discuss how these decompositions are affected by the model space truncations. Compared to the spherical calculations, our results show reductions from 30 % to about 60 % of the nuclear matrix elements for the calculated isotopes mainly due to the presence of the BCS overlap factor between the initial and final ground states. The comparison between different nucleon-nucleon (NN) forces with corresponding short-range correlations shows that the choice of the NN force gives roughly 20 % deviations for the light exchange neutrino mechanism and much larger deviations for the heavy neutrino exchange mechanism.
Pion properties at finite isospin chemical potential with isospin symmetry breaking
NASA Astrophysics Data System (ADS)
Wu, Zuqing; Ping, Jialun; Zong, Hongshi
2017-12-01
Pion properties at finite temperature, finite isospin and baryon chemical potentials are investigated within the SU(2) NJL model. In the mean field approximation for quarks and random phase approximation fpr mesons, we calculate the pion mass, the decay constant and the phase diagram with different quark masses for the u quark and d quark, related to QCD corrections, for the first time. Our results show an asymmetry between μI <0 and μI >0 in the phase diagram, and different values for the charged pion mass (or decay constant) and neutral pion mass (or decay constant) at finite temperature and finite isospin chemical potential. This is caused by the effect of isospin symmetry breaking, which is from different quark masses. Supported by National Natural Science Foundation of China (11175088, 11475085, 11535005, 11690030) and the Fundamental Research Funds for the Central Universities (020414380074)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhandari, Churna; van Schilfgaarde, Mark; Kotani, Takao
The electronic band structure of SrTiO3 is investigated in the all-electron quasiparticle self-consistent GW (QSGW) approximation. Unlike previous pseudopotential-based QSGW or single-shot G0W0 calculations, the gap is found to be significantly overestimated compared to experiment. After putting in a correction for the underestimate of the screening by the random phase approximation in terms of a 0.8Σ approach, the gap is still overestimated. The 0.8Σ approach is discussed and justified in terms of various recent literature results including electron-hole corrections. Adding a lattice polarization correction (LPC) in the q→0 limit for the screening of W, agreement with experiment is recovered. Themore » LPC is alternatively estimated using a polaron model. Here, we apply our approach to the cubic and tetragonal phases as well as a hypothetical layered postperovskite structure and find that the local density approximation (LDA) to GW gap correction is almost independent of structure.« less
Bhandari, Churna; van Schilfgaarde, Mark; Kotani, Takao; ...
2018-01-23
The electronic band structure of SrTiO3 is investigated in the all-electron quasiparticle self-consistent GW (QSGW) approximation. Unlike previous pseudopotential-based QSGW or single-shot G0W0 calculations, the gap is found to be significantly overestimated compared to experiment. After putting in a correction for the underestimate of the screening by the random phase approximation in terms of a 0.8Σ approach, the gap is still overestimated. The 0.8Σ approach is discussed and justified in terms of various recent literature results including electron-hole corrections. Adding a lattice polarization correction (LPC) in the q→0 limit for the screening of W, agreement with experiment is recovered. Themore » LPC is alternatively estimated using a polaron model. Here, we apply our approach to the cubic and tetragonal phases as well as a hypothetical layered postperovskite structure and find that the local density approximation (LDA) to GW gap correction is almost independent of structure.« less
Field-theoretical approach to a dense polymer with an ideal binary mixture of clustering centers.
Fantoni, Riccardo; Müller-Nedebock, Kristian K
2011-07-01
We propose a field-theoretical approach to a polymer system immersed in an ideal mixture of clustering centers. The system contains several species of these clustering centers with different functionality, each of which connects a fixed number segments of the chain to each other. The field theory is solved using the saddle point approximation and evaluated for dense polymer melts using the random phase approximation. We find a short-ranged effective intersegment interaction with strength dependent on the average segment density and discuss the structure factor within this approximation. We also determine the fractions of linkers of the different functionalities.
Correlation energy functional within the GW -RPA: Exact forms, approximate forms, and challenges
NASA Astrophysics Data System (ADS)
Ismail-Beigi, Sohrab
2010-05-01
In principle, the Luttinger-Ward Green’s-function formalism allows one to compute simultaneously the total energy and the quasiparticle band structure of a many-body electronic system from first principles. We present approximate and exact expressions for the correlation energy within the GW -random-phase approximation that are more amenable to computation and allow for developing efficient approximations to the self-energy operator and correlation energy. The exact form is a sum over differences between plasmon and interband energies. The approximate forms are based on summing over screened interband transitions. We also demonstrate that blind extremization of such functionals leads to unphysical results: imposing physical constraints on the allowed solutions (Green’s functions) is necessary. Finally, we present some relevant numerical results for atomic systems.
Are genetically robust regulatory networks dynamically different from random ones?
NASA Astrophysics Data System (ADS)
Sevim, Volkan; Rikvold, Per Arne
We study a genetic regulatory network model developed to demonstrate that genetic robustness can evolve through stabilizing selection for optimal phenotypes. We report preliminary results on whether such selection could result in a reorganization of the state space of the system. For the chosen parameters, the evolution moves the system slightly toward the more ordered part of the phase diagram. We also find that strong memory effects cause the Derrida annealed approximation to give erroneous predictions about the model's phase diagram.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korotkevich, Alexander O.; Lushnikov, Pavel M., E-mail: plushnik@math.unm.edu; Landau Institute for Theoretical Physics, 2 Kosygin Str., Moscow 119334
2015-01-15
We developed a linear theory of backward stimulated Brillouin scatter (BSBS) of a spatially and temporally random laser beam relevant for laser fusion. Our analysis reveals a new collective regime of BSBS (CBSBS). Its intensity threshold is controlled by diffraction, once cT{sub c} exceeds a laser speckle length, with T{sub c} the laser coherence time. The BSBS spatial gain rate is approximately the sum of that due to CBSBS, and a part which is independent of diffraction and varies linearly with T{sub c}. The CBSBS spatial gain rate may be reduced significantly by the temporal bandwidth of KrF-based laser systemsmore » compared to the bandwidth currently available to temporally smoothed glass-based laser systems.« less
Multipole ordering and collective excitations in the excitonic phase of Pr0.5Ca0.5CoO3
NASA Astrophysics Data System (ADS)
Yamaguchi, Tomoki; Sugimoto, Koudai; Ohta, Yukinori
2018-05-01
As an extension of our previous paper (Yamaguchi et al., 2017) [24], we study the carrier doping dependence of the excitonic condensation in Pr0.5Ca0.5CoO3 using the random-phase and mean-field approximations for the realistic five-orbital Hubbard model. We show that the spin-triplet excitonic phase with a magnetic multipole ordering is stable against the doping of carriers in a considerable range around Co3+ (or 3d6). We discuss experimental relevance of our results.
NASA Technical Reports Server (NTRS)
Kapania, Rakesh K.; Liu, Youhua
1998-01-01
The use of continuum models for the analysis of discrete built-up complex aerospace structures is an attractive idea especially at the conceptual and preliminary design stages. But the diversity of available continuum models and hard-to-use qualities of these models have prevented them from finding wide applications. In this regard, Artificial Neural Networks (ANN or NN) may have a great potential as these networks are universal approximators that can realize any continuous mapping, and can provide general mechanisms for building models from data whose input-output relationship can be highly nonlinear. The ultimate aim of the present work is to be able to build high fidelity continuum models for complex aerospace structures using the ANN. As a first step, the concepts and features of ANN are familiarized through the MATLAB NN Toolbox by simulating some representative mapping examples, including some problems in structural engineering. Then some further aspects and lessons learned about the NN training are discussed, including the performances of Feed-Forward and Radial Basis Function NN when dealing with noise-polluted data and the technique of cross-validation. Finally, as an example of using NN in continuum models, a lattice structure with repeating cells is represented by a continuum beam whose properties are provided by neural networks.
A symplectic integration method for elastic filaments
NASA Astrophysics Data System (ADS)
Ladd, Tony; Misra, Gaurav
2009-03-01
Elastic rods are a ubiquitous coarse-grained model of semi-flexible biopolymers such as DNA, actin, and microtubules. The Worm-Like Chain (WLC) is the standard numerical model for semi-flexible polymers, but it is only a linearized approximation to the dynamics of an elastic rod, valid for small deflections; typically the torsional motion is neglected as well. In the standard finite-difference and finite-element formulations of an elastic rod, the continuum equations of motion are discretized in space and time, but it is then difficult to ensure that the Hamiltonian structure of the exact equations is preserved. Here we discretize the Hamiltonian itself, expressed as a line integral over the contour of the filament. This discrete representation of the continuum filament can then be integrated by one of the explicit symplectic integrators frequently used in molecular dynamics. The model systematically approximates the continuum partial differential equations, but has the same level of computational complexity as molecular dynamics and is constraint free. Numerical tests show that the algorithm is much more stable than a finite-difference formulation and can be used for high aspect ratio filaments, such as actin. We present numerical results for the deterministic and stochastic motion of single filaments.
NASA Astrophysics Data System (ADS)
McCurdy, C. William; Lucchese, Robert L.; Greenman, Loren
2017-04-01
The complex Kohn variational method, which represents the continuum wave function in each channel using a combination of Gaussians and Bessel or Coulomb functions, has been successful in numerous applications to electron-polyatomic molecule scattering and molecular photoionization. The hybrid basis representation limits it to relatively low energies (< 50 eV) , requires an approximation to exchange matrix elements involving continuum functions, and hampers its coupling to modern electronic structure codes for the description of correlated target states. We describe a successful implementation of the method using completely adaptive overset grids to describe continuum functions, in which spherical subgrids are placed on every atomic center to complement a spherical master grid that describes the behavior at large distances. An accurate method for applying the free-particle Green's function on the grid eliminates the need to operate explicitly with the kinetic energy, enabling a rapidly convergent Arnoldi algorithm for solving linear equations on the grid, and no approximations to exchange operators are made. Results for electron scattering from several polyatomic molecules will be presented. Army Research Office, MURI, WN911NF-14-1-0383 and U. S. DOE DE-SC0012198 (at Texas A&M).
Atomistic to Continuum Multiscale and Multiphysics Simulation of NiTi Shape Memory Alloy
NASA Astrophysics Data System (ADS)
Gur, Sourav
Shape memory alloys (SMAs) are materials that show reversible, thermo-elastic, diffusionless, displacive (solid to solid) phase transformation, due to the application of temperature and/ or stress (/strain). Among different SMAs, NiTi is a popular one. NiTi shows reversible phase transformation, the shape memory effect (SME), where irreversible deformations are recovered upon heating, and superelasticity (SE), where large strains imposed at high enough temperatures are fully recovered. Phase transformation process in NiTi SMA is a very complex process that involves the competition between developed internal strain and phonon dispersion instability. In NiTi SMA, phase transformation occurs over a wide range of temperature and/ or stress (strain) which involves, evolution of different crystalline phases (cubic austenite i.e. B2, different monoclinic variant of martensite i.e. B19', and orthorhombic B19 or BCO structures). Further, it is observed from experimental and computational studies that the evolution kinetics and growth rate of different phases in NiTi SMA vary significantly over a wide spectrum of spatio-temporal scales, especially with length scales. At nano-meter length scale, phase transformation temperatures, critical transformation stress (or strain) and phase fraction evolution change significantly with sample or simulation cell size and grain size. Even, below a critical length scale, the phase transformation process stops. All these aspects make NiTi SMA very interesting to the science and engineering research community and in this context, the present focuses on the following aspects. At first this study address the stability, evolution and growth kinetics of different phases (B2 and variants of B19'), at different length scales, starting from the atomic level and ending at the continuum macroscopic level. The effects of simulation cell size, grain size, and presence of free surface and grain boundary on the phase transformation process (transformation temperature, phase fraction evolution kinetics due to temperature) are also demonstrated herein. Next, to couple and transfer the statistical information of length scale dependent phase transformation process, multiscale/ multiphysics methods are used. Here, the computational difficulty from the fact that the representative governing equations (i.e. different sub-methods such as molecular dynamics simulations, phase field simulations and continuum level constitutive/ material models) are only valid or can be implemented over a range of spatiotemporal scales. Therefore, in the present study, a wavelet based multiscale coupling method is used, where simulation results (phase fraction evolution kinetics) from different sub-methods are linked via concurrent multiscale coupling fashion. Finally, these multiscale/ multiphysics simulation results are used to develop/ modify the macro/ continuum scale thermo-mechanical constitutive relations for NiTi SMA. Finally, the improved material model is used to model new devices, such as thermal diodes and smart dampers.
QCD-inspired spectra from Blue's functions
NASA Astrophysics Data System (ADS)
Nowak, Maciej A.; Papp, Gábor; Zahed, Ismail
1996-02-01
We use the law of addition in random matrix theory to analyze the spectral distributions of a variety of chiral random matrix models as inspired from QCD whether through symmetries or models. In terms of the Blue's functions recently discussed by Zee, we show that most of the spectral distributions in the macroscopic limit and the quenched approximation, follow algebraically from the discontinuity of a pertinent solution to a cubic (Cardano) or a quartic (Ferrari) equation. We use the end-point equation of the energy spectra in chiral random matrix models to argue for novel phase structures, in which the Dirac density of states plays the role of an order parameter.
Immersed boundary method for Boltzmann model kinetic equations
NASA Astrophysics Data System (ADS)
Pekardan, Cem; Chigullapalli, Sruti; Sun, Lin; Alexeenko, Alina
2012-11-01
Three different immersed boundary method formulations are presented for Boltzmann model kinetic equations such as Bhatnagar-Gross-Krook (BGK) and Ellipsoidal statistical Bhatnagar-Gross-Krook (ESBGK) model equations. 1D unsteady IBM solution for a moving piston is compared with the DSMC results and 2D quasi-steady microscale gas damping solutions are verified by a conformal finite volume method solver. Transient analysis for a sinusoidally moving beam is also carried out for the different pressure conditions (1 atm, 0.1 atm and 0.01 atm) corresponding to Kn=0.05,0.5 and 5. Interrelaxation method (Method 2) is shown to provide a faster convergence as compared to the traditional interpolation scheme used in continuum IBM formulations. Unsteady damping in rarefied regime is characterized by a significant phase-lag which is not captured by quasi-steady approximations.
Compaction and High-Pressure Response of Granular Tantalum Oxide
NASA Astrophysics Data System (ADS)
Vogler, Tracy; Root, Seth; Knudson, Marcus; Thornhill, Tom; Reinhart, William
2015-06-01
The dynamic behavior of nearly fully-dense and porous tantalum oxide (Ta2O5) is studied. Two particle morphologies are used to obtain two distinct initial tap densities, which correspond to approximately 40% and 15% of crystalline density. The response is characterized from low pressures, which result in incomplete compaction, to very high pressures where the thermal component of the EOS dominates. Issues related to a possible phase transformation along the Hugoniot and to establishing reasonable error bars on the experimental data will be discussed. The suitability of continuum and mesoscale models to capture the experimental results will be examined. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Self-consistency in the phonon space of the particle-phonon coupling model
NASA Astrophysics Data System (ADS)
Tselyaev, V.; Lyutorovich, N.; Speth, J.; Reinhard, P.-G.
2018-04-01
In the paper the nonlinear generalization of the time blocking approximation (TBA) is presented. The TBA is one of the versions of the extended random-phase approximation (RPA) developed within the Green-function method and the particle-phonon coupling model. In the generalized version of the TBA the self-consistency principle is extended onto the phonon space of the model. The numerical examples show that this nonlinear version of the TBA leads to the convergence of results with respect to enlarging the phonon space of the model.
Shape dependence of two-cylinder Rényi entropies for free bosons on a lattice
NASA Astrophysics Data System (ADS)
Chojnacki, Leilee; Cook, Caleb Q.; Dalidovich, Denis; Hayward Sierens, Lauren E.; Lantagne-Hurtubise, Étienne; Melko, Roger G.; Vlaar, Tiffany J.
2016-10-01
Universal scaling terms occurring in Rényi entanglement entropies have the potential to bring new understanding to quantum critical points in free and interacting systems. Quantitative comparisons between analytical continuum theories and numerical calculations on lattice models play a crucial role in advancing such studies. In this paper, we exactly calculate the universal two-cylinder shape dependence of entanglement entropies for free bosons on finite-size square lattices, and compare to approximate functions derived in the continuum using several different Ansätze. Although none of these Ansätze are exact in the thermodynamic limit, we find that numerical fits are in good agreement with continuum functions derived using the anti-de Sitter/conformal field theory correspondence, an extensive mutual information model, and a quantum Lifshitz model. We use fits of our lattice data to these functions to calculate universal scalars defined in the thin-cylinder limit, and compare to values previously obtained for the free boson field theory in the continuum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chason, E.; Chan, W. L.; Bharathi, M. S.
Low-energy ion bombardment produces spontaneous periodic structures (sputter ripples) on many surfaces. Continuum theories describe the pattern formation in terms of ion-surface interactions and surface relaxation kinetics, but many features of these models (such as defect concentration) are unknown or difficult to determine. In this work, we present results of kinetic Monte Carlo simulations that model surface evolution using discrete atomistic versions of the physical processes included in the continuum theories. From simulations over a range of parameters, we obtain the dependence of the ripple growth rate, wavelength, and velocity on the ion flux and temperature. The results are discussedmore » in terms of the thermally dependent concentration and diffusivity of ion-induced surface defects. We find that in the early stages of ripple formation the simulation results are surprisingly well described by the predictions of the continuum theory, in spite of simplifying approximations used in the continuum model.« less
Lyman continuum observations of solar flares
NASA Technical Reports Server (NTRS)
Machado, M. E.; Noyes, R. W.
1978-01-01
A study is made of Lyman continuum observations of solar flares, using data obtained by the EUV spectroheliometer on the Apollo Telescope Mount. It is found that there are two main types of flare regions: an overall 'mean' flare coincident with the H-alpha flare region, and transient Lyman continuum kernels which can be identified with the H-alpha and X-ray kernels observed by other authors. It is found that the ground level hydrogen population in flares is closer to LTE than in the quiet sun and active regions, and that the level of Lyman continuum formation is lowered in the atmosphere from a mass column density .000005 g/sq cm in the quiet sun to .0003 g/sq cm in the mean flare, and to .001 g/sq cm in kernels. From these results the amount of chromospheric material 'evaporated' into the high temperature region is derived, which is found to be approximately 10 to the 15th g, in agreement with observations of X-ray emission measures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.
The objective of this study is to develop a finite element continuum damage model suitable for modeling deformation, cracking, and crack bridging for W-Cu, W-Ni-Fe, and other ductile phase toughened W-composites, or more generally, any multi-phase composite structure where two or more phases undergo cooperative deformation in a composite system.
On the Brγ line emission of the Herbig Ae/Be star MWC 120
NASA Astrophysics Data System (ADS)
Kreplin, Alexander; Tambovtseva, Larisa; Grinin, Vladimir; Kraus, Stefan; Weigelt, Gerd; Wang, Yang
2018-06-01
The origin of the Br γ line in Herbig Ae/Be stars is still an open question. It has been proposed that a fraction of the 2.166-μm Br γ emission might emerge from a disc wind, the magnetosphere and other regions. Investigations of the Br γ line in young stellar objects are important to improve our understanding of the accretion-ejection process. Near-infrared long-baseline interferometry enables the investigation of the Br γ line-emitting region with high spatial and high spectral resolution. We observed the Herbig Ae/Be star MWC 120 with the Astronomical Multi-Beam Recombiner (AMBER) on the Very Large Telescope Interferometer (VLTI) in different spectral channels across the Br γ line with a spectral resolution of R ˜ 1500. Comparison of the visibilities, differential and closure phases in the continuum and the line-emitting region with geometric and radiative transfer disc-wind models leads to constraints on the origin and dynamics of the gas emitting the Br γ light. Geometric modelling of the visibilities reveals a line-emission region about two times smaller than the K-band continuum region, which indicates a scenario where the Br γ emission is dominated by an extended disc wind rather than by a much more compact magnetospheric origin. To compare our data with a physical model, we applied a state-of-the-art radiative transfer disc-wind model. We find that all measured visibilities, differential and closure phases of MWC 120 can be approximately reproduced by a disc-wind model. A comparison with other Herbig stars indicates a correlation of the modelled inner disc-wind radii with the corresponding Alfvén radii for late spectral type stars.
Can the Lyman Continuum Leaked Out of H II Regions Explain Diffuse Ionized Gas?
NASA Astrophysics Data System (ADS)
Seon, Kwang-Il
2009-09-01
We present an attempt to explain the diffuse Hα emission of a face-on galaxy M 51 with the "standard" photoionization model, in which the Lyman continuum (Lyc) escaping from H II regions propagates large distances into the diffuse interstellar medium (ISM). The diffuse Hα emission of M 51 is analyzed using thin slab models and exponential disk models in the context of the "on-the-spot" approximation. The scale height of the ionized gas needed to explain the diffuse Hα emission with the scenario is found to be of the order of ~1-2 kpc, consistent with those of our Galaxy and edge-on galaxies. The model also provides a vertical profile, when the galaxy is viewed edge-on, consisting of two-exponential components. However, it is found that an incredibly low absorption coefficient of κ0 ≈ 0.4-0.8 kpc-1 at the galactic plane, or, equivalently, an effective cross section as low as σeff ~ 10-5 of the photoionization cross section at 912 Å is required to allow the stellar Lyc photons to travel through the H I disk. Such a low absorption coefficient is out of accord with the properties of the ISM. Furthermore, we found that even the model that has the diffuse ionized gas (DIG) phase only and no H I gas phase shows highly concentrated Hα emissions around H II regions, and can account for only lsim26% of the Hα luminosity of the DIG. This result places a strong constraint on the ionizing source of the DIG. We also report that the Hα intensity distribution functions not only of the DIG, but also of H II regions in M 51, appear to be lognormal.
High-Energy Spectral and Temporal Characteristics of GRO J1008-57
NASA Astrophysics Data System (ADS)
Shrader, C. R.; Sutaria, F. K.; Singh, K. P.; Macomb, D. J.
1999-02-01
A transient X-ray source, GRO J1008-57, was discovered by the Burst and Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory (CGRO) in 1993 July. It reached a maximum intensity of about 1.4 times that of the Crab, in the 20-60 keV energy band. Pulsations in the X-ray intensity were detected at a period of 93.5 s. It has subsequently been determined to be a member of the Be star subclass of X-ray transients. In addition to BATSE, GRO J1008-57 was observed during its outburst by several pointed high-energy experiments: ROSAT, ASCA, and CGRO/OSSE. These nonsimultaneous but contemporaneous observations took place near and shortly after the peak of the outburst light curve. We report for the first time on a combined analysis of the CGRO and ASCA data sets. We have attempted to model the broadband high-energy continuum distribution and phase-resolved spectra. The broadband, phase-averaged continuum is well approximated by a power law with an exponential cutoff. Evidence for 6.4 keV line emission due to Fe is presented based on our spectral analysis. The energy dependence of the pulse profiles is examined in order to determine the energy at which the low-energy double-peaked profile detected by ASCA evolves into single-peaked pulse profile detected by BATSE. We discuss the implications of this pulse profile for the magnetic field and beam distribution for GRO J1008-57. Analysis of the BATSE and Rossi X-Ray Timing Explorer/ASM flux histories suggests that Porbital~135 days. We further suggest that a transient disk is likely to form during episodes of outbursts.
Atomistic to continuum modeling of solidification microstructures
Karma, Alain; Tourret, Damien
2015-09-26
We summarize recent advances in modeling of solidification microstructures using computational methods that bridge atomistic to continuum scales. We first discuss progress in atomistic modeling of equilibrium and non-equilibrium solid–liquid interface properties influencing microstructure formation, as well as interface coalescence phenomena influencing the late stages of solidification. The latter is relevant in the context of hot tearing reviewed in the article by M. Rappaz in this issue. We then discuss progress to model microstructures on a continuum scale using phase-field methods. We focus on selected examples in which modeling of 3D cellular and dendritic microstructures has been directly linked tomore » experimental observations. Finally, we discuss a recently introduced coarse-grained dendritic needle network approach to simulate the formation of well-developed dendritic microstructures. The approach reliably bridges the well-separated scales traditionally simulated by phase-field and grain structure models, hence opening new avenues for quantitative modeling of complex intra- and inter-grain dynamical interactions on a grain scale.« less
An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snider, D.M.; O`Rourke, P.J.; Andrews, M.J.
1997-06-01
A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles,more » with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.« less
Flux Quantization in Aperiodic and Periodic Networks
NASA Astrophysics Data System (ADS)
Behrooz, Angelika
The normal - superconducting phase boundary, T_{c}(H), of a periodic wire network shows periodic oscillations with period H _{o} = phi_ {o}/A due to flux quantization around the individual plaquettes (of area A) of the network. The magnetic flux quantum is phi_{o } = hc/2e. The phase boundary also shows fine structure at fields H = (p/q)H_{o} (p,q integers), where the flux vortices can form commensurate superlattices on the periodic substrate. We have studied the phase boundary of quasicrystalline, quasiperiodic and random networks. We have found that if a network is composed of two different tiles, whose areas are relatively irrational then the T_ {c}(H) curve shows large scale structure at fields that approximate flux quantization around the tiles, i.e. when the ratio of fluxoids contained in the large tiles to those in the small tiles is a rational approximant to the irrational area ratio. The phase boundaries of quasicrystalline and quasiperiodic networks show fine structure indicating the existence of commensurate vortex superlattices on these networks. No such fine structure is found on the random array. For a quasicrystal whose quasiperiodic long-range order is characterized by the irrational number tau the commensurate vortex lattices are all found at H = H_{o}| n + mtau| (n,m integers). We have found that the commensurate superlattices on quasicrystalline as well as on crystalline networks are related to the inflation symmetry. We propose a general definition of commensurability.
SS 433: Total Coverage of 162-Day Precession Phase in Four Years
NASA Technical Reports Server (NTRS)
Band, David L.
1997-01-01
The observations prior to AO-4 covered a number of precession phases, leaving a gap at phase 0.8. In addition, ASCA and previous observations of SS 433 did not observe the spectrum above approx. 10 keV, and consequently the continuum underlying the spectral lines was poorly constrained. Therefore RXTE observations were scheduled for April 1997 to extend the observed spectrum to higher energies; these observations were planned to sample the X-ray lightcurve during the 13.08 day binary period, concentrating on the eclipse of the compact object which emits the jets. We proposed and were awarded ASCA observations simultaneous with the RXTE observations; the purpose of the ASCA observations was to provide greater spectral resolution at the low end of the spectrum observed by RXTE, and to complete the phase coverage of SS 433. As a result of scheduling difficulties early in the mission the RXTE observations were confined to a much shorter time range than originally planned, April 18-91 1997. Optical observations of SS 433 were performed at a number of observatories. The ASCA observations occurred from April 18 13:10 (UT) to April 21 13:20 (UT) for a total effective exposure of 120 ks. The continuum X-ray light curve shows that the ASCA observations started shortly before the ingress into the X-ray partial eclipse, and ended approximately at the time of the egress. Light curves were also obtained for the prominent Fe emission lines in the blue-shifted frame (approaching jet), red-shifted frame (receding jet), and the stationary frame (fluorescent line from the ambient matter). Through the eclipse mapping technique using the light curves, the parameters of the jet emission model were constrained, showing that the kinetic power in the jet exceeds 104? erg s-l. If the energy source is gravitational accretion, as is commonly believed, the derived l;inetic power implies extremely supercritical accretion even for a black; hole with 10M. These results will be described more fully in a major presentation of all the ASCA observations of SS 433.
Spectral risk measures: the risk quadrangle and optimal approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kouri, Drew P.
We develop a general risk quadrangle that gives rise to a large class of spectral risk measures. The statistic of this new risk quadrangle is the average value-at-risk at a specific confidence level. As such, this risk quadrangle generates a continuum of error measures that can be used for superquantile regression. For risk-averse optimization, we introduce an optimal approximation of spectral risk measures using quadrature. Lastly, we prove the consistency of this approximation and demonstrate our results through numerical examples.
Spectral risk measures: the risk quadrangle and optimal approximation
Kouri, Drew P.
2018-05-24
We develop a general risk quadrangle that gives rise to a large class of spectral risk measures. The statistic of this new risk quadrangle is the average value-at-risk at a specific confidence level. As such, this risk quadrangle generates a continuum of error measures that can be used for superquantile regression. For risk-averse optimization, we introduce an optimal approximation of spectral risk measures using quadrature. Lastly, we prove the consistency of this approximation and demonstrate our results through numerical examples.
NASA Astrophysics Data System (ADS)
Inaba, Hideo; Morita, Shin-Ichi
This paper deals with flow and cold heat storage characteristics of the oil (tetradecane, C14H30, freezing point 278.9 K, Latent heat 229 kJ/kg)/water emulsion as a latent heat storage material having a low melting point. The test emulsion includes a water-urea solution as a continuum phase. The freezing point depression of the continuum phase permits enhancement of the heat transfer rate of the emulison, due to the large temperature difference between the latent heat storage material and water-urea solution. The velocity of emulsion flow and the inlet temperature of coolant in a coiled double tube heat exchanger are chosen as the experimental parameters. The pressure drop, the heat transfer coefficient of the emulsion in the coiled tube are measured in the temperture region over solid and liquid phase of the latent heat storage material. The finishing time of the cold heat storage is defined experimentally in the range of sensible and latent heat storage. It is clarified that the flow behavior of the emulsion as a non-Newtonian fluid has an important role in cold heat storage. The useful nondimentional correlation equations for the additional pressure loss coefficient, the heat transfer coefficient and the finishing time of the cold heat storage are derived in terms of Dean number and heat capacity ratio.
Models of Uranium continuum radio emission
NASA Technical Reports Server (NTRS)
Romig, Joseph H.; Evans, David R.; Sawyer, Constance B.; Schweitzer, Andrea E.; Warwick, James W.
1987-01-01
Uranium continuum radio emission detected by the Voyager 2 Planetary Radio Astronomy experiment during the January 1986 encounter is considered. The continuum emissions comprised four components (equatorial emissions, anomaly emissions, strong nightside emissions, and weak nightside emissions) associated with different sources. The equatorial emissions appeared most prominently during the days before closest approach and extended from 40 kHz or below to about 120 kHz. The anomaly emissions were seen about 12 hours before closest approach and extended to about 250 kHz. The agreement found between Miranda's phase and strong radio emission at 20.4 kHz, just after closest approach, suggests intense dynamic activity on the Miranda L shell.
Optical fiber sources and transmission controls for multi-Tb/s systems
NASA Astrophysics Data System (ADS)
Nowak, George Adelbert
The accelerating demand for bandwidth capacity in backbone links of terrestrial communications systems is projected to exceed 1Tb/s by 2002. Lightwave carrier frequencies and fused-silica optical fibers provide the natural combination of high passband frequencies and low- loss medium to satisfy this evolving demand for bandwidth capacity. This thesis addresses three key technologies for enabling multi-Tb/s optical fiber communication systems. The first technology is a broadband source based on supercontinuum generation in optical fiber. Using a single modelocked laser with output pulsewidths of 0.5psec pulses, we generate in ~2m of dispersion-shifted fiber more that 200nm of spectral continuum in the vicinity of 1550nm that is flat to better than +/- 0.5 dB over more than 60nm. The short fiber length prevents degradation of timing jitter of the seed pulses and preserves coherence of the continuum by inhibiting environmental perturbations and mapping of random noise from the vicinity of the input pulse across the continuum. Through experiments and simulations, we find that the continuum characteristics result from 3rd order dispersion effects on higher-order soliton compression. We determine optimal fiber properties to provide desired continuum broadness and flatness for given input pulsewidth and energy conditions. The second technology is a novel delay-shifted nonlinear optical loop mirror (DS-NOLM) that performs a transmission control function by serving as an intensity filter and frequency compensator for <5psec soliton transmission systems. A theoretical and experimental study of the DS-NOLM as a transmission control element in a periodically amplified soliton transmission system is presented. We show that DS-NOLMs enable 4ps soliton transmission over 75km of standard dispersion fiber, with 25km spacing between amplifiers, by filtering the dispersive waves and compensating for Raman-induced soliton self-frequency shift. The third technology is all-fiber wavelength conversion employing induced modulational instability. We obtain wavelength conversion over 40nm with a peak conversion efficiency of 28dB using 600mW pump pulses in 720m of high-nonlinearity optical fiber. We show that the high- nonlinearity fiber enhances the phase-matching bandwidth as well as reducing the required fiber lengths and pump powers.
Lam, Tram Kim; Chang, Christine Q.; Rogers, Scott D.; Khoury, Muin J.; Schully, Sheri D.
2015-01-01
Concurrently with a workshop sponsored by the National Cancer Institute, we identified key “drivers” for accelerating cancer epidemiology across the translational research continuum in the 21st century: emerging technologies, a multilevel approach, knowledge integration, and team science. To map the evolution of these “drivers” and translational phases (T0–T4) in the past decade, we analyzed cancer epidemiology grants funded by the National Cancer Institute and published literature for 2000, 2005, and 2010. For each year, we evaluated the aims of all new/competing grants and abstracts of randomly selected PubMed articles. Compared with grants based on a single institution, consortium-based grants were more likely to incorporate contemporary technologies (P = 0.012), engage in multilevel analyses (P = 0.010), and incorporate elements of knowledge integration (P = 0.036). Approximately 74% of analyzed grants and publications involved discovery (T0) or characterization (T1) research, suggesting a need for more translational (T2–T4) research. Our evaluation indicated limited research in 1) a multilevel approach that incorporates molecular, individual, social, and environmental determinants and 2) knowledge integration that evaluates the robustness of scientific evidence. Cancer epidemiology is at the cusp of a paradigm shift, and the field will need to accelerate the pace of translating scientific discoveries in order to impart population health benefits. While multi-institutional and technology-driven collaboration is happening, concerted efforts to incorporate other key elements are warranted for the discipline to meet future challenges. PMID:25767265
Nature of ground and electronic excited states of higher acenes
Yang, Yang; Yang, Weitao
2016-01-01
Higher acenes have drawn much attention as promising organic semiconductors with versatile electronic properties. However, the nature of their ground state and electronic excited states is still not fully clear. Their unusual chemical reactivity and instability are the main obstacles for experimental studies, and the potentially prominent diradical character, which might require a multireference description in such large systems, hinders theoretical investigations. Here, we provide a detailed answer with the particle–particle random-phase approximation calculation. The 1Ag ground states of acenes up to decacene are on the closed-shell side of the diradical continuum, whereas the ground state of undecacene and dodecacene tilts more to the open-shell side with a growing polyradical character. The ground state of all acenes has covalent nature with respect to both short and long axes. The lowest triplet state 3B2u is always above the singlet ground state even though the energy gap could be vanishingly small in the polyacene limit. The bright singlet excited state 1B2u is a zwitterionic state to the short axis. The excited 1Ag state gradually switches from a double-excitation state to another zwitterionic state to the short axis, but always keeps its covalent nature to the long axis. An energy crossing between the 1B2u and excited 1Ag states happens between hexacene and heptacene. Further energetic consideration suggests that higher acenes are likely to undergo singlet fission with a low photovoltaic efficiency; however, the efficiency might be improved if a singlet fission into multiple triplets could be achieved. PMID:27528690
Rethinking the continuum of stroke rehabilitation.
Teasell, Robert W; Murie Fernandez, Manuel; McIntyre, Amanda; Mehta, Swati
2014-04-01
Suffering a stroke can be a devastating and life-changing event. Although there is a large evidence base for stroke rehabilitation in the acute and subacute stages, it has been long accepted that patients with stroke reach a plateau in their rehabilitation recovery relatively early. We have recently published the results of a systematic review designed to identify all randomized controlled trials (RCTs) where a rehabilitation intervention was initiated more than 6 months after the onset of the stroke. Of the trials identified, 339 RCTs met inclusion criteria, demonstrating an evidence base for stroke rehabilitation in the chronic phase as well. This seems at odds with the assumption that further recovery is unlikely and the subsequent lack of resources devoted to chronic stroke rehabilitation and management. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jalali, Payman; Hyppänen, Timo
2017-06-01
In loose or moderately-dense particle mixtures, the contact forces between particles due to successive collisions create average volumetric solid-solid drag force between different granular phases (of different particle sizes). The derivation of the mathematical formula for this drag force is based on the homogeneity of mixture within the calculational control volume. This assumption especially fails when the size ratio of particles grows to a large value of 10 or greater. The size-driven inhomogeneity is responsible to the deviation of intergranular force from the continuum formula. In this paper, we have implemented discrete element method (DEM) simulations to obtain the volumetric mean force exchanged between the granular phases with the size ratios greater than 10. First, the force is calculated directly from DEM averaged over a proper time window. Second, the continuum formula is applied to calculate the drag forces using the DEM quantities. We have shown the two volumetric forces are in good agreement as long as the homogeneity condition is maintained. However, the relative motion of larger particles in a cloud of finer particles imposes the inhomogeneous distribution of finer particles around the larger ones. We have presented correction factors to the volumetric force from continuum formula.
NASA Astrophysics Data System (ADS)
Zhang, Chunwei; Zhao, Hong; Zhu, Qian; Zhou, Changquan; Qiao, Jiacheng; Zhang, Lu
2018-06-01
Phase-shifting fringe projection profilometry (PSFPP) is a three-dimensional (3D) measurement technique widely adopted in industry measurement. It recovers the 3D profile of measured objects with the aid of the fringe phase. The phase accuracy is among the dominant factors that determine the 3D measurement accuracy. Evaluation of the phase accuracy helps refine adjustable measurement parameters, contributes to evaluating the 3D measurement accuracy, and facilitates improvement of the measurement accuracy. Although PSFPP has been deeply researched, an effective, easy-to-use phase accuracy evaluation method remains to be explored. In this paper, methods based on the uniform-phase coded image (UCI) are presented to accomplish phase accuracy evaluation for PSFPP. These methods work on the principle that the phase value of a UCI can be manually set to be any value, and once the phase value of a UCI pixel is the same as that of a pixel of a corresponding sinusoidal fringe pattern, their phase accuracy values are approximate. The proposed methods provide feasible approaches to evaluating the phase accuracy for PSFPP. Furthermore, they can be used to experimentally research the property of the random and gamma phase errors in PSFPP without the aid of a mathematical model to express random phase error or a large-step phase-shifting algorithm. In this paper, some novel and interesting phenomena are experimentally uncovered with the aid of the proposed methods.
On the derivation of approximations to cellular automata models and the assumption of independence.
Davies, K J; Green, J E F; Bean, N G; Binder, B J; Ross, J V
2014-07-01
Cellular automata are discrete agent-based models, generally used in cell-based applications. There is much interest in obtaining continuum models that describe the mean behaviour of the agents in these models. Previously, continuum models have been derived for agents undergoing motility and proliferation processes, however, these models only hold under restricted conditions. In order to narrow down the reason for these restrictions, we explore three possible sources of error in deriving the model. These sources are the choice of limiting arguments, the use of a discrete-time model as opposed to a continuous-time model and the assumption of independence between the state of sites. We present a rigorous analysis in order to gain a greater understanding of the significance of these three issues. By finding a limiting regime that accurately approximates the conservation equation for the cellular automata, we are able to conclude that the inaccuracy between our approximation and the cellular automata is completely based on the assumption of independence. Copyright © 2014 Elsevier Inc. All rights reserved.
Fermi-Compton scattering due to magnetopause surface fluctuations in Jupiter's magnetospheric cavity
NASA Technical Reports Server (NTRS)
Barbosa, D. D.
1981-01-01
The effects of boundary surface fluctuations on a spectrum of electromagnetic radiation trapped in a high Q (quality) cavity are considered. Undulating walls introduce small frequency shifts at reflection to the radiation, and it is argued that the process is entirely analogous to both Fermi (particle) acceleration and inverse Compton scattering. A Fokker-Planck formalism is pursued; it yields a diffusion equation in frequency for which the Green's function and steady-state solutions are found. Applying this analysis to the Jovian continuum radiation discovered by Voyager spacecraft, it is suggested that characteristic diffusion times are greater than 1 year, and that in order to account for the steep frequency spectra observed, an unidentified loss mechanism must operate in the cavity with a decay time constant approximately equal to the characteristic diffusion time divided by 28. A radiator-reactor model of the cavity is investigated to provide an estimate for the intrinsic luminosity of the low frequency (approximately 100 Hz) continuum source whose power is approximately 7 x 10 to the 6th W.
Mizuno, Yuko; Purcell, David W.; Knowlton, Amy R.; Wilkinson, James D.; Gourevitch, Marc N.; Knight, Kelly R.
2015-01-01
Limited investigations have been conducted on syndemics and HIV continuum of care outcomes. Using baseline data from a multi-site, randomized controlled study of HIV-positive injection drug users (n=1052), we examined whether psychosocial factors co-occurred, and whether these factors were additively associated with behavioral and HIV continuum of care outcomes. Experiencing one type of psychosocial problem was significantly (p<0.05) associated with an increased odds of experiencing another type of problem. Persons with 3 or more psychosocial problems were significantly more likely to report sexual and injection risk behaviors and were less likely to be adherent to HIV medications. Persons with 4 or more problems were less likely to be virally suppressed. Reporting any problems was associated with not currently taking HIV medications. Our findings highlight the association of syndemics not only with risk behaviors, but also with outcomes related to the continuum of care for HIV-positive persons. PMID:25249392
NASA Astrophysics Data System (ADS)
Iveson, Simon M.
2003-06-01
Pietruszczak and coworkers (Internat. J. Numer. Anal. Methods Geomech. 1994; 18(2):93-105; Comput. Geotech. 1991; 12( ):55-71) have presented a continuum-based model for predicting the dynamic mechanical response of partially saturated granular media with viscous interstitial liquids. In their model they assume that the gas phase is distributed uniformly throughout the medium as discrete spherical air bubbles occupying the voids between the particles. However, their derivation of the air pressure inside these gas bubbles is inconsistent with their stated assumptions. In addition the resultant dependence of gas pressure on liquid saturation lies outside of the plausible range of possible values for discrete air bubbles. This results in an over-prediction of the average bulk modulus of the void phase. Corrected equations are presented.
Deposition on disordered substrates with precursor layer diffusion
NASA Astrophysics Data System (ADS)
Filipe, J. A. N.; Rodgers, G. J.; Tavassoli, Z.
1998-09-01
Recently we introduced a one-dimensional accelerated random sequential adsorption process as a model for chemisorption with precursor layer diffusion. In this paper we consider this deposition process on disordered or impure substrates. The problem is solved exactly on both the lattice and continuum and for various impurity distributions. The results are compared with those from the standard random sequential adsorption model.
Simpson, Matthew J; Lo, Kai-Yin; Sun, Yung-Shin
2017-03-17
Directed cell migration can be driven by a range of external stimuli, such as spatial gradients of: chemical signals (chemotaxis); adhesion sites (haptotaxis); or temperature (thermotaxis). Continuum models of cell migration typically include a diffusion term to capture the undirected component of cell motility and an advection term to capture the directed component of cell motility. However, there is no consensus in the literature about the form that the advection term takes. Some theoretical studies suggest that the advection term ought to include receptor saturation effects. However, others adopt a much simpler constant coefficient. One of the limitations of including receptor saturation effects is that it introduces several additional unknown parameters into the model. Therefore, a relevant research question is to investigate whether directed cell migration is best described by a simple constant tactic coefficient or a more complicated model incorporating saturation effects. We study directed cell migration using an experimental device in which the directed component of the cell motility is driven by a spatial gradient of electric potential, which is known as electrotaxis. The electric field (EF) is proportional to the spatial gradient of the electric potential. The spatial variation of electric potential across the experimental device varies in such a way that there are several subregions on the device in which the EF takes on different values that are approximately constant within those subregions. We use cell trajectory data to quantify the motion of 3T3 fibroblast cells at different locations on the device to examine how different values of the EF influences cell motility. The undirected (random) motility of the cells is quantified in terms of the cell diffusivity, D, and the directed motility is quantified in terms of a cell drift velocity, v. Estimates D and v are obtained under a range of four different EF conditions, which correspond to normal physiological conditions. Our results suggest that there is no anisotropy in D, and that D appears to be approximately independent of the EF and the electric potential. The drift velocity increases approximately linearly with the EF, suggesting that the simplest linear advection term, with no additional saturation parameters, provides a good explanation of these physiologically relevant data. We find that the simplest linear advection term in a continuum model of directed cell motility is sufficient to describe a range of different electrotaxis experiments for 3T3 fibroblast cells subject to normal physiological values of the electric field. This is useful information because alternative models that include saturation effects involve additional parameters that need to be estimated before a partial differential equation model can be applied to interpret or predict a cell migration experiment.
Generalized Born Models of Macromolecular Solvation Effects
NASA Astrophysics Data System (ADS)
Bashford, Donald; Case, David A.
2000-10-01
It would often be useful in computer simulations to use a simple description of solvation effects, instead of explicitly representing the individual solvent molecules. Continuum dielectric models often work well in describing the thermodynamic aspects of aqueous solvation, and approximations to such models that avoid the need to solve the Poisson equation are attractive because of their computational efficiency. Here we give an overview of one such approximation, the generalized Born model, which is simple and fast enough to be used for molecular dynamics simulations of proteins and nucleic acids. We discuss its strengths and weaknesses, both for its fidelity to the underlying continuum model and for its ability to replace explicit consideration of solvent molecules in macromolecular simulations. We focus particularly on versions of the generalized Born model that have a pair-wise analytical form, and therefore fit most naturally into conventional molecular mechanics calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuda, Ryoichi, E-mail: fukuda@ims.ac.jp; Ehara, Masahiro; Elements Strategy Initiative for Catalysts and Batteries
2015-12-31
The effects from solvent environment are specific to the electronic states; therefore, a computational scheme for solvent effects consistent with the electronic states is necessary to discuss electronic excitation of molecules in solution. The PCM (polarizable continuum model) SAC (symmetry-adapted cluster) and SAC-CI (configuration interaction) methods are developed for such purposes. The PCM SAC-CI adopts the state-specific (SS) solvation scheme where solvent effects are self-consistently considered for every ground and excited states. For efficient computations of many excited states, we develop a perturbative approximation for the PCM SAC-CI method, which is called corrected linear response (cLR) scheme. Our test calculationsmore » show that the cLR PCM SAC-CI is a very good approximation of the SS PCM SAC-CI method for polar and nonpolar solvents.« less
Dynamics of Ranking Processes in Complex Systems
NASA Astrophysics Data System (ADS)
Blumm, Nicholas; Ghoshal, Gourab; Forró, Zalán; Schich, Maximilian; Bianconi, Ginestra; Bouchaud, Jean-Philippe; Barabási, Albert-László
2012-09-01
The world is addicted to ranking: everything, from the reputation of scientists, journals, and universities to purchasing decisions is driven by measured or perceived differences between them. Here, we analyze empirical data capturing real time ranking in a number of systems, helping to identify the universal characteristics of ranking dynamics. We develop a continuum theory that not only predicts the stability of the ranking process, but shows that a noise-induced phase transition is at the heart of the observed differences in ranking regimes. The key parameters of the continuum theory can be explicitly measured from data, allowing us to predict and experimentally document the existence of three phases that govern ranking stability.
Statistical theory of correlations in random packings of hard particles.
Jin, Yuliang; Puckett, James G; Makse, Hernán A
2014-05-01
A random packing of hard particles represents a fundamental model for granular matter. Despite its importance, analytical modeling of random packings remains difficult due to the existence of strong correlations which preclude the development of a simple theory. Here, we take inspiration from liquid theories for the n-particle angular correlation function to develop a formalism of random packings of hard particles from the bottom up. A progressive expansion into a shell of particles converges in the large layer limit under a Kirkwood-like approximation of higher-order correlations. We apply the formalism to hard disks and predict the density of two-dimensional random close packing (RCP), ϕ(rcp) = 0.85 ± 0.01, and random loose packing (RLP), ϕ(rlp) = 0.67 ± 0.01. Our theory also predicts a phase diagram and angular correlation functions that are in good agreement with experimental and numerical data.
Schomerus, G; Angermeyer, M C; Baumeister, S E; Stolzenburg, S; Link, B G; Phelan, J C
2016-02-01
A core component of stigma is being set apart as a distinct, dichotomously different kind of person. We examine whether information on a continuum from mental health to mental illness reduces stigma. Online survey experiment in a quota sample matching the German population for age, gender and region (n=1679). Participants randomly received information on either (1) a continuum, (2) a strict dichotomy of mental health and mental illness, or (3) no information. We elicited continuity beliefs and stigma toward a person with schizophrenia or depression. The continuum intervention decreased perceived difference by 0.19 standard deviations (SD, P<0.001) and increased social acceptance by 0.18 SD (P=0.003) compared to the no-text condition. These effects were partially mediated by continuity beliefs (proportion mediated, 25% and 26%), which increased by 0.19 SD (P<0.001). The dichotomy intervention, in turn, decreased continuity beliefs and increased notions of difference, but did not affect social acceptance. Attitudes towards a person with mental illness can be improved by providing information on a mental health-mental illness continuum. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Detection of the 158 Micrometers[CII] Transition at z=1.3: Evidence for a Galaxy-Wide Starburst
NASA Technical Reports Server (NTRS)
Hailey-Dunsheath, S.; Nikola, T.; Oberst, T. E.; Parshley, S. C.; Benford, D. J.; Staguhn, J. G.; Tucker, C. E.
2010-01-01
We report the detection of 158 micron [C II] fine-structure line emission from MIPS J142824.0+352619, a hyperluminous ( L(sub IR) approximates 10(exp 13) L (sub solar)) starburst galaxy at z = 1.3. The line is bright, corresponding to a fraction L(sub [Cu II] L(sub Fir) approximates 2 x 10(exp -3) of the far-IR (FIR) continuum. The [C II], CO, and FIR continuum emission may be modeled as arising from photodissociation regions (PDRs) that have a characteristic gas density of n approximates 10(exp 4.2) /cm(exp 3) , and that are illuminated by a far-UV radiation field approximately 10(exp 3.2) times more intense than the local interstellar radiation field. The mass in these PDRs accounts for approximately half of the molecular gas mass in this galaxy. The L(sub [CII])/L(sub FIR) ratio is higher than observed in local ultralummous infrared galaxies or in the few high-redshift QSOs detected in [C II], but the L(sub [CII])/L(sub FIR) and L(sub CO)/L(sub FIR) ratios are similar to the values seen in nearby starburst galaxies. This suggests that MIPS J142824.0+352619 is a scaled-up version of a starburst nucleus, with the burst extended over several kiloparsecs.
Bradley, Nina S; Solanki, Dhara; Zhao, Dawn
2005-12-01
New imaging technologies are revealing ever-greater details of motor behavior in fetuses for clinical diagnosis and treatment. Understanding the form, mechanisms, and significance of fetal behavior will maximize imaging applications. The chick is readily available for experimentation throughout embryogenesis, making it an excellent model for this purpose. Yet in 40 yr since Hamburger and colleagues described chick embryonic behavior, we have not determined if motility belongs to a developmental continuum fundamental to posthatching behavior. This study examined kinematics and synchronized electromyography (EMG) during spontaneous limb movements in chicks at four time points between embryonic days (E) 9-18. We report that coordinated kinematic and/or EMG patterns were expressed at each time point. Variability observed in knee and ankle excursions at E15-E18 sorted into distinct in-phase and out-of-phase patterns. EMG patterns did not directly account for out-of-phase patterns, indicating study of movement biomechanics will be critical to fully understand motor control in the embryo. We also provide the first descriptions of 2- to 10-Hz limb movements emerging E15-E18 and a shift from in-phase to out-of-phase interlimb coordination E9-E18. Our findings revealed that coordinated limb movements persist across development and suggest they belong to a developmental continuum for locomotion. Limb patterns were consistent with the half center model for a locomotor pattern generator. Achievement of these patterns by E9 may thus indicate the embryo has completed a critical phase beyond which developmental progression may be less vulnerable to experimental perturbations or prenatal events.
Numerical simulation of asphalt mixtures fracture using continuum models
NASA Astrophysics Data System (ADS)
Szydłowski, Cezary; Górski, Jarosław; Stienss, Marcin; Smakosz, Łukasz
2018-01-01
The paper considers numerical models of fracture processes of semi-circular asphalt mixture specimens subjected to three-point bending. Parameter calibration of the asphalt mixture constitutive models requires advanced, complex experimental test procedures. The highly non-homogeneous material is numerically modelled by a quasi-continuum model. The computational parameters are averaged data of the components, i.e. asphalt, aggregate and the air voids composing the material. The model directly captures random nature of material parameters and aggregate distribution in specimens. Initial results of the analysis are presented here.
Phase Field Modeling of Directional Fracture in Anisotropic Polycrystals
2015-02-01
include [35–37]. The phase field description of fracture should be con- trasted with continuum damage mechanics descriptions such as [38,39] that do not...ARL-RP-0518 ● FEBRUARY 2015 US Army Research Laboratory Phase Field Modeling of Directional Fracture in Anisotropic Polycrystals...0518 ● FEBRUARY 2015 US Army Research Laboratory Phase Field Modeling of Directional Fracture in Anisotropic Polycrystals by JD Clayton
The capital-asset-pricing model and arbitrage pricing theory: A unification
Khan, M. Ali; Sun, Yeneng
1997-01-01
We present a model of a financial market in which naive diversification, based simply on portfolio size and obtained as a consequence of the law of large numbers, is distinguished from efficient diversification, based on mean-variance analysis. This distinction yields a valuation formula involving only the essential risk embodied in an asset’s return, where the overall risk can be decomposed into a systematic and an unsystematic part, as in the arbitrage pricing theory; and the systematic component further decomposed into an essential and an inessential part, as in the capital-asset-pricing model. The two theories are thus unified, and their individual asset-pricing formulas shown to be equivalent to the pervasive economic principle of no arbitrage. The factors in the model are endogenously chosen by a procedure analogous to the Karhunen–Loéve expansion of continuous time stochastic processes; it has an optimality property justifying the use of a relatively small number of them to describe the underlying correlational structures. Our idealized limit model is based on a continuum of assets indexed by a hyperfinite Loeb measure space, and it is asymptotically implementable in a setting with a large but finite number of assets. Because the difficulties in the formulation of the law of large numbers with a standard continuum of random variables are well known, the model uncovers some basic phenomena not amenable to classical methods, and whose approximate counterparts are not already, or even readily, apparent in the asymptotic setting. PMID:11038614
The capital-asset-pricing model and arbitrage pricing theory: a unification.
Ali Khan, M; Sun, Y
1997-04-15
We present a model of a financial market in which naive diversification, based simply on portfolio size and obtained as a consequence of the law of large numbers, is distinguished from efficient diversification, based on mean-variance analysis. This distinction yields a valuation formula involving only the essential risk embodied in an asset's return, where the overall risk can be decomposed into a systematic and an unsystematic part, as in the arbitrage pricing theory; and the systematic component further decomposed into an essential and an inessential part, as in the capital-asset-pricing model. The two theories are thus unified, and their individual asset-pricing formulas shown to be equivalent to the pervasive economic principle of no arbitrage. The factors in the model are endogenously chosen by a procedure analogous to the Karhunen-Loéve expansion of continuous time stochastic processes; it has an optimality property justifying the use of a relatively small number of them to describe the underlying correlational structures. Our idealized limit model is based on a continuum of assets indexed by a hyperfinite Loeb measure space, and it is asymptotically implementable in a setting with a large but finite number of assets. Because the difficulties in the formulation of the law of large numbers with a standard continuum of random variables are well known, the model uncovers some basic phenomena not amenable to classical methods, and whose approximate counterparts are not already, or even readily, apparent in the asymptotic setting.
Long-term persistence of solar activity. [Abstract only
NASA Technical Reports Server (NTRS)
Ruzmaikin, Alexander; Feynman, Joan; Robinson, Paul
1994-01-01
The solar irradiance has been found to change by 0.1% over the recent solar cycle. A change of irradiance of about 0.5% is required to effect the Earth's climate. How frequently can a variation of this size be expected? We examine the question of the persistence of non-periodic variations in solar activity. The Huerst exponent, which characterizes the persistence of a time series (Mandelbrot and Wallis, 1969), is evaluated for the series of C-14 data for the time interval from about 6000 BC to 1950 AD (Stuiver and Pearson, 1986). We find a constant Huerst exponent, suggesting that solar activity in the frequency range of from 100 to 3000 years includes an important continuum component in addition to the well-known periodic variations. The value we calculate, H approximately equal to 0.8, is significantly larger than the value of 0.5 that would correspond to variations produced by a white-noise process. This value is in good agreement with the results for the monthly sunspot data reported elsewhere, indicating that the physics that produces the continuum is a correlated random process (Ruzmaikin et al., 1992), and that is is the same type of process over a wide range of time interval lengths. We conclude that the time period over which an irradiance change of 0.5% can be expected to occur is significantly shorter than that which would be expected for variations produced by a white-noise process.
Relativistic Confinement Resonances
NASA Astrophysics Data System (ADS)
Keating, David; Manson, Steven; Deshmukh, Pranawa
2017-04-01
Photoionization of confined atoms in a C60 fullerene have been under intense investigation in the recent years, in particular the confinement induced resonances, termed confinement resonances. The effects of the C60 potential are modeled by a static spherical well, with (in atomic units) inner radius r0 = 5.8, width Δ = 1.9, and depth U0 = -0.302, which is reasonable in the energy region well above the C60 plasmons. At very high Z, relativistic interactions become important contributors to even the qualitative nature of atomic properties; this is true for confined atomic properties as well. To explore the extent of these interactions, a theoretical study of several heavy atoms has been performed using the relativistic random phase approximation (RRPA) methodology. In order to determine which features in the photoionization cross section are due to relativity, calculations using the (nonrelativistic) random phase approximation with exchange method (RPAE) are performed for comparison. The existence of the second subshell of the spin-orbit-split doublets can induce new confinement resonances in the total cross section, which is the sum of the spin-orbit-split doublets, due to the shift in the doublet's threshold. Several examples for confined high-Z atoms are presented. Work supported by DOE and NSF.
Erukhimovich, I Ya; Kudryavtsev, Ya V
2003-08-01
An extended generalization of the dynamic random phase approximation (DRPA) for L-component polymer systems is presented. Unlike the original version of the DRPA, which relates the (LxL) matrices of the collective density-density time correlation functions and the corresponding susceptibilities of concentrated polymer systems to those of the tracer macromolecules and so-called broken-links system (BLS), our generalized DRPA solves this problem for the (5xL) x (5xL) matrices of the coupled susceptibilities and time correlation functions of the component number, kinetic energy and flux densities. The presented technique is used to study propagation of sound and dynamic form-factor in disentangled (Rouse) monodisperse homopolymer melt. The calculated ultrasonic velocity and absorption coefficient reveal substantial frequency dispersion. The relaxation time tau is proportional to the degree of polymerization N, which is N times less than the Rouse time and evidences strong dynamic screening because of interchain interaction. We discuss also some peculiarities of the Brillouin scattering in polymer melts. Besides, a new convenient expression for the dynamic structure function of the single Rouse chain in (q,p) representation is found.
Orthen, E; Lange, P; Wöhrmann, K
1984-12-01
This paper analyses the fate of artificially induced mutations and their importance to the fitness of populations of the yeast, Saccharomyces cerevisiae, an increasingly important model organism in population genetics. Diploid strains, treated with UV and EMS, were cultured asexually for approximately 540 generations and under conditions where the asexual growth was interrupted by a sexual phase. Growth rates of 100 randomly sampled diploid clones were estimated at the beginning and at the end of the experiment. After the induction of sporulation the growth rates of 100 randomly sampled spores were measured. UV and EMS treatment decreases the average growth rate of the clones significantly but increases the variability in comparison to the untreated control. After selection over approximately 540 generations, variability in growth rates was reduced to that of the untreated control. No increase in mean population fitness was observed. However, the results show that after selection there still exists a large amount of hidden genetic variability in the populations which is revealed when the clones are cultivated in environments other than those in which selection took place. A sexual phase increased the reduction of the induced variability.
Morphing Continuum Theory: A First Order Approximation to the Balance Laws
NASA Astrophysics Data System (ADS)
Wonnell, Louis; Cheikh, Mohamad Ibrahim; Chen, James
2017-11-01
Morphing Continuum Theory is constructed under the framework of Rational Continuum Mechanics (RCM) for fluid flows with inner structure. This multiscale theory has been successfully emplyed to model turbulent flows. The framework of RCM ensures the mathematical rigor of MCT, but contains new material constants related to the inner structure. The physical meanings of these material constants have yet to be determined. Here, a linear deviation from the zeroth-order Boltzmann-Curtiss distribution function is derived. When applied to the Boltzmann-Curtiss equation, a first-order approximation of the MCT governing equations is obtained. The integral equations are then related to the appropriate material constants found in the heat flux, Cauchy stress, and moment stress terms in the governing equations. These new material properties associated with the inner structure of the fluid are compared with the corresponding integrals, and a clearer physical interpretation of these coefficients emerges. The physical meanings of these material properties is determined by analyzing previous results obtained from numerical simulations of MCT for compressible and incompressible flows. The implications for the physics underlying the MCT governing equations will also be discussed. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-17-1-0154.
VizieR Online Data Catalog: ALMA 106GHz continuum observations in Chamaeleon I (Dunham+, 2016)
NASA Astrophysics Data System (ADS)
Dunham, M. M.; Offner, S. S. R.; Pineda, J. E.; Bourke, T. L.; Tobin, J. J.; Arce, H. G.; Chen, X.; di, Francesco J.; Johnstone, D.; Lee, K. I.; Myers, P. C.; Price, D.; Sadavoy, S. I.; Schnee, S.
2018-02-01
We obtained ALMA observations of every source in Chamaleon I detected in the single-dish 870 μm LABOCA survey by Belloche et al. (2011, J/A+A/527/A145), except for those listed as likely artifacts (1 source), residuals from bright sources (7 sources), or detections tentatively associated with YSOs (3 sources). We observed 73 sources from the initial list of 84 objects identified by Belloche et al. (2011, J/A+A/527/A145). We observed the 73 pointings using the ALMA Band 3 receivers during its Cycle 1 campaign between 2013 November 29 and 2014 March 08. Between 25 and 27 antennas were available for our observations, with the array configured in a relatively compact configuration to provide a resolution of approximately 2" FWHM (300 AU at the distance to Chamaeleon I). Each target was observed in a single pointing with approximately 1 minute of on-source integration time. Three out of the four available spectral windows were configured to measure the continuum at 101, 103, and 114 GHz, each with a bandwidth of 2 GHz, for a total continuum bandwidth of 6 GHz (2.8 mm) at a central frequency of 106 GHz. (2 data files).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundararaman, Ravishankar; Gunceler, Deniz; Arias, T. A.
2014-10-07
Continuum solvation models enable efficient first principles calculations of chemical reactions in solution, but require extensive parametrization and fitting for each solvent and class of solute systems. Here, we examine the assumptions of continuum solvation models in detail and replace empirical terms with physical models in order to construct a minimally-empirical solvation model. Specifically, we derive solvent radii from the nonlocal dielectric response of the solvent from ab initio calculations, construct a closed-form and parameter-free weighted-density approximation for the free energy of the cavity formation, and employ a pair-potential approximation for the dispersion energy. We show that the resulting modelmore » with a single solvent-independent parameter: the electron density threshold (n c), and a single solvent-dependent parameter: the dispersion scale factor (s 6), reproduces solvation energies of organic molecules in water, chloroform, and carbon tetrachloride with RMS errors of 1.1, 0.6 and 0.5 kcal/mol, respectively. We additionally show that fitting the solvent-dependent s 6 parameter to the solvation energy of a single non-polar molecule does not substantially increase these errors. Parametrization of this model for other solvents, therefore, requires minimal effort and is possible without extensive databases of experimental solvation free energies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundararaman, Ravishankar; Gunceler, Deniz; Arias, T. A.
2014-10-07
Continuum solvation models enable efficient first principles calculations of chemical reactions in solution, but require extensive parametrization and fitting for each solvent and class of solute systems. Here, we examine the assumptions of continuum solvation models in detail and replace empirical terms with physical models in order to construct a minimally-empirical solvation model. Specifically, we derive solvent radii from the nonlocal dielectric response of the solvent from ab initio calculations, construct a closed-form and parameter-free weighted-density approximation for the free energy of the cavity formation, and employ a pair-potential approximation for the dispersion energy. We show that the resulting modelmore » with a single solvent-independent parameter: the electron density threshold (n{sub c}), and a single solvent-dependent parameter: the dispersion scale factor (s{sub 6}), reproduces solvation energies of organic molecules in water, chloroform, and carbon tetrachloride with RMS errors of 1.1, 0.6 and 0.5 kcal/mol, respectively. We additionally show that fitting the solvent-dependent s{sub 6} parameter to the solvation energy of a single non-polar molecule does not substantially increase these errors. Parametrization of this model for other solvents, therefore, requires minimal effort and is possible without extensive databases of experimental solvation free energies.« less
NASA Astrophysics Data System (ADS)
Hérisson, Benjamin; Challamel, Noël; Picandet, Vincent; Perrot, Arnaud
2016-09-01
The static behavior of the Fermi-Pasta-Ulam (FPU) axial chain under distributed loading is examined. The FPU system examined in the paper is a nonlinear elastic lattice with linear and quadratic spring interaction. A dimensionless parameter controls the possible loss of convexity of the associated quadratic and cubic energy. Exact analytical solutions based on Hurwitz zeta functions are developed in presence of linear static loading. It is shown that this nonlinear lattice possesses scale effects and possible localization properties in the absence of energy convexity. A continuous approach is then developed to capture the main phenomena observed regarding the discrete axial problem. The associated continuum is built from a continualization procedure that is mainly based on the asymptotic expansion of the difference operators involved in the lattice problem. This associated continuum is an enriched gradient-based or nonlocal axial medium. A Taylor-based and a rational differential method are both considered in the continualization procedures to approximate the FPU lattice response. The Padé approximant used in the continualization procedure fits the response of the discrete system efficiently, even in the vicinity of the limit load when the non-convex FPU energy is examined. It is concluded that the FPU lattice system behaves as a nonlocal axial system in dynamic but also static loading.
Continuation through Singularity of Continuum Multiphase Algorithms
2013-03-01
capturing simulation of two-phase flow ; a singularity- free mesoscopic simulation that bridges atomic and continuum scales; and a physics-based closure...for free surface flow . The full two-way coupling was found to be irrelevant to the overall objective of developing a closure model to allow...The method can be used for the study of single species free - surface flow , for instance, in the case of pinch-off of a liquid thread during the
Line-profile and continuum variations of the contact binary SV Centauri
NASA Technical Reports Server (NTRS)
Rahe, J.; Drechsel, H.; Wargau, W.
1982-01-01
A total of five high and ten low dispersion UV spectra of the interacting contact binary SV Centauri obtained between 1979 and 1982 are analyzed. The low resolution observations cover the whole phase range, while a few selected phases were observed in high dispersion. The UV data were complemented with optical photometric and spectroscopic observations, in order to determine the tructure and absolute dimensions of the system. The profiles of prominent UV resonance and metastable lines undergo drastic changes with phase angle and time. Their overall appearance indicates relatively strong mass loss from the system, exhibiting pronounced variations of the stellar wind. The far UV continuum distribution suggests the presence of a luminous hot radiation source with maximum emission in the soft X-ray range, which is most apparently seen during the first quadrature phase, while it is weakest close to primary minimum. The case exchange and mass loss process as well as the evolutionary stage of SV Centauri are discussed.
Arakelian 564: An XMM-Newton View
NASA Technical Reports Server (NTRS)
Vignali, Cristian; Brandt, W. N.; Boller, Th.; Fabian, A. C.; Vaughan, Simon
2003-01-01
We report on two XMM-Newton observations of the bright narrow-line Seyfert 1 galaxy Ark 564 taken one year apart (2000 June and 2001 June). The 0.6-10 keV continuum is well described by a soft blackbody component (kTau approximately equal 140-150 eV) plus a steep power law (Tau approximately equal to 2.50-2.55). No significant spectral changes are observed between the two observations, although the X-ray flux in the second observation is approximately equal to 40-50 per cent lower. In both observations we detect a significant absorption edge at a rest-frame energy of approximately equal to 0.73 keV, corresponding to O VII. The presence of the absorption feature is confirmed by a simultaneous Chandra grating observation in 2000 June, although the best-fitting edge threshold is at a slightly lower energy in the Chandra data, possibly because of a different parameterization of the underlying X-ray continuum. We find tentative evidence for a broad iron emission line in the 2000 June observation. The results from an analysis of the power spectral density (PSD) function are also presented. The present XMM-Newton data support the idea that the PSD shown two breads, although the location of the high-frequency break requires further constraints.
Kikuchi, Kimiyo; Enuameh, Yeetey; Yasuoka, Junko; Nanishi, Keiko; Shibanuma, Akira; Gyapong, Margaret; Owusu-Agyei, Seth; Oduro, Abraham Rexford; Asare, Gloria Quansah; Hodgson, Abraham; Jimba, Masamine
2015-01-01
Background Continuum of care has the potential to improve maternal, newborn, and child health (MNCH) by ensuring care for mothers and children. Continuum of care in MNCH is widely accepted as comprising sequential time (from pre-pregnancy to motherhood and childhood) and space dimensions (from community-family care to clinical care). However, it is unclear which linkages of care could have a greater effect on MNCH outcomes. The objective of the present study is to assess the effectiveness of different continuum of care linkages for reducing neonatal, perinatal, and maternal mortality in low- and middle-income countries. Methods We searched for randomized and quasi-randomized controlled trials that addressed two or more linkages of continuum of care and attempted to increase mothers’ uptake of antenatal care, skilled birth attendance, and postnatal care. The outcome variables were neonatal, perinatal, and maternal mortality. Results Out of the 7,142 retrieved articles, we selected 19 as eligible for the final analysis. Of these studies, 13 used packages of intervention that linked antenatal care, skilled birth attendance, and postnatal care. One study each used packages that linked antenatal care and skilled birth attendance or skilled birth attendance and postnatal care. Four studies used an intervention package that linked antenatal care and postnatal care. Among the packages that linked antenatal care, skilled birth attendance, and postnatal care, a significant reduction was observed in combined neonatal, perinatal, and maternal mortality risks (RR 0.83; 95% CI 0.77 to 0.89, I2 79%). Furthermore, this linkage reduced combined neonatal, perinatal, and maternal mortality when integrating the continuum of care space dimension (RR 0.85; 95% CI 0.77 to 0.93, I2 81%). Conclusions Our review suggests that continuous uptake of antenatal care, skilled birth attendance, and postnatal care is necessary to improve MNCH outcomes in low- and middle-income countries. The review was conclusive for the reduction of neonatal and perinatal deaths. Although maternal deaths were not significantly reduced, composite measures of all mortality were. Thus, the evidence is sufficient to scale up this intervention package for the improvement of MNCH outcomes. PMID:26422685
NASA Astrophysics Data System (ADS)
Brown, Shannon; Moon, Dae-Sik; Ni, Yuan Qi; Drout, Maria; Antoniadis, John; Afsariardchi, Niloufar; Cha, Sang-Mok; Lee, Yongseok
2018-06-01
We report multicolor BVI monitoring and spectroscopic classification of the dwarf nova KSP-OT-201503a. The transient was detected by the Korean Microlensing Telescope Network (KMTNet) Supernova Program (KSP) in 2015 March, reached a peak apparent magnitude V ≃ 17.3 mag from a quiescent magnitude V ≃ 22.6 mag, and lasted for approximately 17 days. Our high-cadence sampling allows us to identify distinctive phases consisting of a rapid ascent, a main outburst composed of a flat plateau followed by a gradual dimming, and a quick decline. We observe the sharp transition between the ascent phase and main outburst phase, likely related to the deceleration of the heating front as it passes through the accretion disk. These features in the light curves indicate that the outburst is outside-in. Archival data reveal the outburst history of the source, showing at least three outbursts between 2011 and 2015. These are equally separated by approximately 25 months, though we find a recurrence time as short as 189 days is compatible with the archival data. An optical spectrum obtained 701 days from outburst peak shows prominent Balmer emission lines superimposed on a blue continuum, consistent with a cataclysmic variable in quiescence. The outburst properties of KSP-OT-201503a closely resemble those of U Gem-type dwarf novae usually associated with younger, longer-period systems above the period gap of 2–3 hr observed in cataclysmic variables. This suggests that the source may be a rare U Gem-type dwarf nova with a long recurrence time, though we are unable to rule out the possibility that KSP-OT-201503a lies below the period gap.
Continuum Mean-Field Theories for Molecular Fluids, and Their Validity at the Nanoscale
NASA Astrophysics Data System (ADS)
Hanna, C. B.; Peyronel, F.; MacDougall, C.; Marangoni, A.; Pink, D. A.; AFMNet-NCE Collaboration
2011-03-01
We present a calculation of the physical properties of solid triglyceride particles dispersed in an oil phase, using atomic- scale molecular dynamics. Significant equilibrium density oscillations in the oil appear when the interparticle distance, d , becomes sufficiently small, with a global minimum in the free energy found at d ~ 1.4 nm. We compare the simulation values of the Hamaker coefficient with those of models which assume that the oil is a homogeneous continuum: (i) Lifshitz theory, (ii) the Fractal Model, and (iii) a Lennard-Jones 6-12 potential model. The last-named yields a minimum in the free energy at d ~ 0.26 nm. We conclude that, at the nanoscale, continuum Lifshitz theory and other continuum mean-field theories based on the assumption of homogeneous fluid density can lead to erroneous conclusions. CBH supported by NSF DMR-0906618. DAP supported by NSERC. This work supported by AFMNet-NCE.
NASA Technical Reports Server (NTRS)
Fausnaugh, M. M.; Denney, K. D.; Barth, A.J.; Bentz, M.C.; Bottorff, M.C.; Carini, M.T.; Croxall, K. V.; Rosa, G. De; Goad, M.R.; Gehrels, Cornelis;
2016-01-01
We present ground-based optical photometric monitoring data for NGC 5548, part of an extended multiwavelength reverberation mapping campaign. The light curves have nearly daily cadence from 2014 January to July in ninefilters (BVRI and ugriz). Combined with ultraviolet data from the Hubble Space Telescope and Swift, we confirm significant time delays between the continuum bands as a function of wavelength, extending the wavelength coverage from 1158 Angstrom to the z band (approximately 9160 angstrom). We find that the lags at wavelengths longer than the V band are equal to or greater than the lags of high-ionization-state emission lines (such as He pi lambdal1640 and lambda 4686), suggesting that the continuum-emitting source is of a physical size comparable to the inner broad-line region (BLR). The trend of lag with wavelength is broadly consistent with the prediction for continuum reprocessing by an accretion disk with (tau varies as lambda(exp 4/3)). However, the lags also imply a disk radius that is 3 times larger than the prediction from standardthin-disk theory, assuming that the bolometric luminosity is 10 percent of the Eddington luminosity (L 0.1L(sub Edd)).Using optical spectra from the Large Binocular Telescope, we estimate the bias of the interband continuum lagsdue to BLR emission observed in the filters. We find that the bias for filters with high levels of BLR contamination(20 percent) can be important for the shortest continuum lags and likely has a significant impact on the u and U bandsowing to Balmer continuum emission.
A new phase of disordered phonons modelled by random matrices
NASA Astrophysics Data System (ADS)
Schmittner, Sebastian; Zirnbauer, Martin
2015-03-01
Starting from the clean harmonic crystal and not invoking two-level systems, we propose a model for phonons in a disordered solid. In this model the strength of mass and spring constant disorder can be increased separately. Both types of disorder are modelled by random matrices that couple the degrees of freedom locally. Treated in coherent potential approximation (CPA), the speed of sound decreases with increasing disorder until it reaches zero at finite disorder strength. There, a critical transition to a strong disorder phase occurs. In this novel phase, we find the density of states at zero energy in three dimensions to be finite, leading to a linear temperature dependence of the heat capacity, as observed experimentally for vitreous systems. For any disorder strength, our model is stable, i.e. masses and spring constants are positive, and there are no runaway dynamics. This is ensured by using appropriate probability distributions, inspired by Wishart ensembles, for the random matrices. The CPA self-consistency equations are derived in a very accessible way using planar diagrams. The talk focuses on the model and the results. The first author acknowledges financial support by the Deutsche Telekom Stiftung.
Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light
NASA Astrophysics Data System (ADS)
Flores, Angel; Ehrehreich, Thomas; Holten, Roger; Anderson, Brian; Dajani, Iyad
2016-03-01
We report efficient coherent beam combining of five kilowatt-class fiber amplifiers with a diffractive optical element (DOE). Based on a master oscillator power amplifier (MOPA) configuration, the amplifiers were seeded with pseudo random phase modulated light. Each non-polarization maintaining fiber amplifier was optically path length matched and provides approximately 1.2 kW of near diffraction-limited output power (measured M2<1.1). Consequently, a low power sample of each laser was utilized for active linear polarization control. A low power sample of the combined beam after the DOE provided an error signal for active phase locking which was performed via Locking of Optical Coherence by Single-Detector Electronic-Frequency Tagging (LOCSET). After phase stabilization, the beams were coherently combined via the 1x5 DOE. A total combined output power of 4.9 kW was achieved with 82% combining efficiency and excellent beam quality (M2<1.1). The intrinsic DOE splitter loss was 5%. Similarly, losses due in part to non-ideal polarization, ASE content, uncorrelated wavefront errors, and misalignment errors contributed to the efficiency reduction.
NASA Astrophysics Data System (ADS)
Granato, Enzo
2017-11-01
We study numerically the superconductor-insulator transition in two-dimensional inhomogeneous superconductors with gauge disorder, described by four different quantum rotor models: a gauge glass, a flux glass, a binary phase glass, and a Gaussian phase glass. The first two models describe the combined effect of geometrical disorder in the array of local superconducting islands and a uniform external magnetic field, while the last two describe the effects of random negative Josephson-junction couplings or π junctions. Monte Carlo simulations in the path-integral representation of the models are used to determine the critical exponents and the universal conductivity at the quantum phase transition. The gauge- and flux-glass models display the same critical behavior, within the estimated numerical uncertainties. Similar agreement is found for the binary and Gaussian phase-glass models. Despite the different symmetries and disorder correlations, we find that the universal conductivity of these models is approximately the same. In particular, the ratio of this value to that of the pure model agrees with recent experiments on nanohole thin-film superconductors in a magnetic field, in the large disorder limit.
Hydrogen Balmer Line Broadening in Solar and Stellar Flares
NASA Technical Reports Server (NTRS)
Kowalski, Adam F.; Allred, Joel C.; Uitenbroek, Han; Tremblay, Pier-Emmanuel; Brown, Stephen; Carlsson, Mats; Osten, Rachel A.; Wisniewski, John P.; Hawley, Suzanne L.
2017-01-01
The broadening of the hydrogen lines during flares is thought to result from increased charge (electron, proton) density in the flare chromosphere. However, disagreements between theory and modeling prescriptions have precluded an accurate diagnostic of the degree of ionization and compression resulting from flare heating in the chromosphere. To resolve this issue, we have incorporated the unified theory of electric pressure broadening of the hydrogen lines into the non-LTE radiative-transfer code RH. This broadening prescription produces a much more realistic spectrum of the quiescent, A0 star Vega compared to the analytic approximations used as a damping parameter in the Voigt profiles. We test recent radiative-hydrodynamic (RHD) simulations of the atmospheric response to high nonthermal electron beam fluxes with the new broadening prescription and find that the Balmer lines are overbroadened at the densest times in the simulations. Adding many simultaneously heated and cooling model loops as a 'multithread' model improves the agreement with the observations. We revisit the three component phenomenological flare model of the YZ CMi Megaflare using recent and new RHD models. The evolution of the broadening, line flux ratios, and continuum flux ratios are well-reproduced by a multithread model with high-flux nonthermal electron beam heating, an extended decay phase model, and a 'hot spot' atmosphere heated by an ultra relativistic electron beam with reasonable filling factors: approximately 0.1%, 1%, and 0.1% of the visible stellar hemisphere, respectively. The new modeling motivates future work to understand the origin of the extended gradual phase emission.
UV spectroscopy of Z Chamaeleontis. II - The 1988 January normal outburst
NASA Technical Reports Server (NTRS)
Harlaftis, E. T.; Naylor, T.; Hassall, B. J. M.; Charles, P. A.; Sonneborn, G.; Bailey, J.
1992-01-01
IUE observations taken during the 1988 January normal outburst of Z Cha are presented and a detailed comparison with the 1987 April superoutburst is made. The most important difference from the superoutburst is that the normal outburst continuum flux shows less than 10 percent orbital variation away from the eclipse, implying that there is no 'cool' bulge on the disk to occult the brighter inner disk periodically. The implications for the outburst mechanism in the types of outburst are discussed. The evolution of the continuum flux distribution and emission-line fluxes, the modulation of the continuum and line fluxes with orbital phase, and the behavior of the mideclipse spectral during normal outburst are investigated.
Fuel-injector/air-swirl characterization
NASA Technical Reports Server (NTRS)
Mcvey, J. B.; Kennedy, J. B.; Bennett, J. C.
1985-01-01
The objectives of this program are to establish an experimental data base documenting the behavior of gas turbine engine fuel injector sprays as the spray interacts with the swirling gas flow existing in the combustor dome, and to conduct an assessment of the validity of current analytical techniques for predicting fuel spray behavior. Emphasis is placed on the acquisition of data using injector/swirler components which closely resemble components currently in use in advanced aircraft gas turbine engines, conducting tests under conditions that closely simulate or closely approximate those developed in actual combustors, and conducting a well-controlled experimental effort which will comprise using a combination of low-risk experiments and experiments requiring the use of state-of-the-art diagnostic instrumentation. Analysis of the data is to be conducted using an existing, TEACH-type code which employs a stochastic analysis of the motion of the dispersed phase in the turbulent continuum flow field.
Gauge-invariant variables and entanglement entropy
NASA Astrophysics Data System (ADS)
Agarwal, Abhishek; Karabali, Dimitra; Nair, V. P.
2017-12-01
The entanglement entropy (EE) of gauge theories in three spacetime dimensions is analyzed using manifestly gauge-invariant variables defined directly in the continuum. Specifically, we focus on the Maxwell, Maxwell-Chern-Simons (MCS), and non-Abelian Yang-Mills theories. Special attention is paid to the analysis of edge modes and their contribution to EE. The contact term is derived without invoking the replica method and its physical origin is traced to the phase space volume measure for the edge modes. The topological contribution to the EE for the MCS case is calculated. For all the Abelian cases, the EE presented in this paper agrees with known results in the literature. The EE for the non-Abelian theory is computed in a gauge-invariant Gaussian approximation, which incorporates the dynamically generated mass gap. A formulation of the contact term for the non-Abelian case is also presented.
Comparing methods for modelling spreading cell fronts.
Markham, Deborah C; Simpson, Matthew J; Maini, Philip K; Gaffney, Eamonn A; Baker, Ruth E
2014-07-21
Spreading cell fronts play an essential role in many physiological processes. Classically, models of this process are based on the Fisher-Kolmogorov equation; however, such continuum representations are not always suitable as they do not explicitly represent behaviour at the level of individual cells. Additionally, many models examine only the large time asymptotic behaviour, where a travelling wave front with a constant speed has been established. Many experiments, such as a scratch assay, never display this asymptotic behaviour, and in these cases the transient behaviour must be taken into account. We examine the transient and the asymptotic behaviour of moving cell fronts using techniques that go beyond the continuum approximation via a volume-excluding birth-migration process on a regular one-dimensional lattice. We approximate the averaged discrete results using three methods: (i) mean-field, (ii) pair-wise, and (iii) one-hole approximations. We discuss the performance of these methods, in comparison to the averaged discrete results, for a range of parameter space, examining both the transient and asymptotic behaviours. The one-hole approximation, based on techniques from statistical physics, is not capable of predicting transient behaviour but provides excellent agreement with the asymptotic behaviour of the averaged discrete results, provided that cells are proliferating fast enough relative to their rate of migration. The mean-field and pair-wise approximations give indistinguishable asymptotic results, which agree with the averaged discrete results when cells are migrating much more rapidly than they are proliferating. The pair-wise approximation performs better in the transient region than does the mean-field, despite having the same asymptotic behaviour. Our results show that each approximation only works in specific situations, thus we must be careful to use a suitable approximation for a given system, otherwise inaccurate predictions could be made. Copyright © 2014 Elsevier Ltd. All rights reserved.
The early ultraviolet, optical, and radio evolution of the soft X-ray transient GRO J0422+32
NASA Technical Reports Server (NTRS)
Shrader, C. R.; Wagner, R. Mark; Hjellming, R. M.; Han, X. H.; Starrfield, S. G.
1994-01-01
We have monitored the evolution of the transient X-ray source GRO J0422+32 from approximately 2 weeks postdiscovery into its early decline phase at ultraviolet, optical, and radio wavelengths. Optical and ultraviolet spectra exhibit numerous, but relatively weak, high-excitation emission lines such as those arising from He II, N III, N V, and C IV superposed on an intrinsically blue continuum. High-resolution optical spectroscopy reveals line profiles which are double peaked, and in the case of the higher order Balmer lines, superposed on a broad absorption profile. The early outburst optical-ultraviolet continuum energy distribution is well represented by a two power-law fit with a break at approximately equal 4000 A. Radio observations with the Very Large Array (VLA) reveal a flat-spectrum source, slowly increasing in intensity at the earliest epochs observed, followed by an approximate power-law decay light curve with an index of -1. Light curves for each wavelength domain are presented and discussed. Notable are the multiple secondary outbursts seen in the optical more than 1 year postdiscovery, and spectral changes associated with secondary rises seen in the radio and UV. We find that the ultraviolet and optical characteristics of GRO J0422+32 as well as its radio evolution, are similar to other recent well-observed soft X-ray transients (also called X-ray novae) such as Cen X-4, A0620-00 (V616 Mon), and Nova Muscae 1991 (GS 1124-683), suggesting that GRO J0422+32 is also a member of that subclass of low-mass X-ray binaries. We present definitive astrometric determination of the source position, and place an upper limit of R approximately equals 20 from our analysis of the Palomar Observatory Sky Survey (POSS). Additionally, we derive distinct values for color excess from analysis of the optical (E(B-V) = 0.23) and ultraviolet (E(B-V) = 0.4) data, suggesting an intrinsic magnitude of 19-19.5 for the progenitor if it is mid-K dwarf. This leads to a likely range of 2.4-3.0 kpc for the source distance, which is consistent with our separate estimate of 2.4 +/- 0.4 kpc based on measurement of the NaD interstellar line profile. Adopting 2.4 kpc and E(B-V) = 0.23, the outburst absolute magnitude was M approximately equals 0.0, which is a typical value for this class of objects.
Panzacchi, Manuela; Van Moorter, Bram; Strand, Olav; Saerens, Marco; Kivimäki, Ilkka; St Clair, Colleen C; Herfindal, Ivar; Boitani, Luigi
2016-01-01
The loss, fragmentation and degradation of habitat everywhere on Earth prompts increasing attention to identifying landscape features that support animal movement (corridors) or impedes it (barriers). Most algorithms used to predict corridors assume that animals move through preferred habitat either optimally (e.g. least cost path) or as random walkers (e.g. current models), but neither extreme is realistic. We propose that corridors and barriers are two sides of the same coin and that animals experience landscapes as spatiotemporally dynamic corridor-barrier continua connecting (separating) functional areas where individuals fulfil specific ecological processes. Based on this conceptual framework, we propose a novel methodological approach that uses high-resolution individual-based movement data to predict corridor-barrier continua with increased realism. Our approach consists of two innovations. First, we use step selection functions (SSF) to predict friction maps quantifying corridor-barrier continua for tactical steps between consecutive locations. Secondly, we introduce to movement ecology the randomized shortest path algorithm (RSP) which operates on friction maps to predict the corridor-barrier continuum for strategic movements between functional areas. By modulating the parameter Ѳ, which controls the trade-off between exploration and optimal exploitation of the environment, RSP bridges the gap between algorithms assuming optimal movements (when Ѳ approaches infinity, RSP is equivalent to LCP) or random walk (when Ѳ → 0, RSP → current models). Using this approach, we identify migration corridors for GPS-monitored wild reindeer (Rangifer t. tarandus) in Norway. We demonstrate that reindeer movement is best predicted by an intermediate value of Ѳ, indicative of a movement trade-off between optimization and exploration. Model calibration allows identification of a corridor-barrier continuum that closely fits empirical data and demonstrates that RSP outperforms models that assume either optimality or random walk. The proposed approach models the multiscale cognitive maps by which animals likely navigate real landscapes and generalizes the most common algorithms for identifying corridors. Because suboptimal, but non-random, movement strategies are likely widespread, our approach has the potential to predict more realistic corridor-barrier continua for a wide range of species. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
NASA Astrophysics Data System (ADS)
Keylock, Christopher J.
2018-04-01
A technique termed gradual multifractal reconstruction (GMR) is formulated. A continuum is defined from a signal that preserves the pointwise Hölder exponent (multifractal) structure of a signal but randomises the locations of the original data values with respect to this (φ = 0), to the original signal itself(φ = 1). We demonstrate that this continuum may be populated with synthetic time series by undertaking selective randomisation of wavelet phases using a dual-tree complex wavelet transform. That is, the φ = 0 end of the continuum is realised using the recently proposed iterated, amplitude adjusted wavelet transform algorithm (Keylock, 2017) that fully randomises the wavelet phases. This is extended to the GMR formulation by selective phase randomisation depending on whether or not the wavelet coefficient amplitudes exceeds a threshold criterion. An econophysics application of the technique is presented. The relation between the normalised log-returns and their Hölder exponents for the daily returns of eight financial indices are compared. One particularly noticeable result is the change for the two American indices (NASDAQ 100 and S&P 500) from a non-significant to a strongly significant (as determined using GMR) cross-correlation between the returns and their Hölder exponents from before the 2008 crash to afterwards. This is also reflected in the skewness of the phase difference distributions, which exhibit a geographical structure, with Asian markets not exhibiting significant skewness in contrast to those from elsewhere globally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, M. P.; Centre for Quantum Technologies, National University of Singapore; QuTech, Delft University of Technology, Lorentzweg 1, 2611 CJ Delft
2016-02-15
Instances of discrete quantum systems coupled to a continuum of oscillators are ubiquitous in physics. Often the continua are approximated by a discrete set of modes. We derive error bounds on expectation values of system observables that have been time evolved under such discretised Hamiltonians. These bounds take on the form of a function of time and the number of discrete modes, where the discrete modes are chosen according to Gauss quadrature rules. The derivation makes use of tools from the field of Lieb-Robinson bounds and the theory of orthonormal polynomials.
NASA Astrophysics Data System (ADS)
Taib, L. Abdul; Hadi, M. S. Abdul; Umarov, B. A.
2017-12-01
The existence of dark strongly localized modes of binary discrete media with cubic-quintic nonlinearity is numerically demonstrated by solving the relevant discrete nonlinear Schrödinger equations. In the model, the coupling coefficients between adjacent sites are set to be relatively small representing the anti-continuum limit. In addition, approximated analytical solutions for vectorial solitons with various topologies are derived. Stability analysis of the localized states was performed using the standard linearized eigenfrequency problem. The prediction from the stability analysis are furthermore verified by direct numerical integrations.
NASA Astrophysics Data System (ADS)
Kerbstadt, S.; Pengel, D.; Englert, L.; Bayer, T.; Wollenhaupt, M.
2018-06-01
We report on bichromatic multiphoton ionization of xenon atoms (Xe) to demonstrate carrier-envelope-phase (CEP) control of lateral asymmetries in the photoelectron momentum distribution. In the experiments, we employ a 4 f polarization pulse shaper to sculpture bichromatic fields with commensurable center frequencies ω1:ω2=7 :8 from an over-octave-spanning CEP-stable white light supercontinuum by spectral amplitude and phase modulation. The bichromatic fields are spectrally tailored to induce controlled interferences of 7- vs 8-photon quantum pathways in the 5 P3 /2 ionization continuum of Xe. The CEP sensitivity of the asymmetric final-state wave function arises from coherent superposition of continuum states with opposite parity. Our results demonstrate that shaper-generated bichromatic fields with tailored center frequency ratio are a suitable tool to localize CEP-sensitive asymmetries in a specific photoelectron kinetic-energy window.
Moncho, Salvador; Autschbach, Jochen
2010-01-12
A benchmark study for relativistic density functional calculations of NMR spin-spin coupling constants has been performed. The test set contained 47 complexes with heavy metal atoms (W, Pt, Hg, Tl, Pb) with a total of 88 coupling constants involving one or two heavy metal atoms. One-, two-, three-, and four-bond spin-spin couplings have been computed at different levels of theory (nonhybrid vs hybrid DFT, scalar vs two-component relativistic). The computational model was based on geometries fully optimized at the BP/TZP scalar relativistic zeroth-order regular approximation (ZORA) and the conductor-like screening model (COSMO) to include solvent effects. The NMR computations also employed the continuum solvent model. Computations in the gas phase were performed in order to assess the importance of the solvation model. The relative median deviations between various computational models and experiment were found to range between 13% and 21%, with the highest-level computational model (hybrid density functional computations including scalar plus spin-orbit relativistic effects, the COSMO solvent model, and a Gaussian finite-nucleus model) performing best.
Zhang, Zhaoyan
2016-01-01
The goal of this study is to better understand the cause-effect relation between vocal fold physiology and the resulting vibration pattern and voice acoustics. Using a three-dimensional continuum model of phonation, the effects of changes in vocal fold stiffness, medial surface thickness in the vertical direction, resting glottal opening, and subglottal pressure on vocal fold vibration and different acoustic measures are investigated. The results show that the medial surface thickness has dominant effects on the vertical phase difference between the upper and lower margins of the medial surface, closed quotient, H1-H2, and higher-order harmonics excitation. The main effects of vocal fold approximation or decreasing resting glottal opening are to lower the phonation threshold pressure, reduce noise production, and increase the fundamental frequency. Increasing subglottal pressure is primarily responsible for vocal intensity increase but also leads to significant increase in noise production and an increased fundamental frequency. Increasing AP stiffness significantly increases the fundamental frequency and slightly reduces noise production. The interaction among vocal fold thickness, stiffness, approximation, and subglottal pressure in the control of F0, vocal intensity, and voice quality is discussed. PMID:27106298
VLTI-GRAVITY measurements of cool evolved stars
NASA Astrophysics Data System (ADS)
Wittkowski, M.; Rau, G.; Chiavassa, A.; Höfner, S.; Scholz, M.; Wood, P. R.; de Wit, W. J.; Eisenhauer, F.; Haubois, X.; Paumard, T.
2018-06-01
Context. Dynamic model atmospheres of Mira stars predict variabilities in the photospheric radius and in atmospheric molecular layers which are not yet strongly constrained by observations. Aims: Here we measure the variability of the oxygen-rich Mira star R Peg in near-continuum and molecular bands. Methods: We used near-infrared K-band spectro-interferometry with a spectral resolution of about 4000 obtained at four epochs between post-maximum and minimum visual phases employing the newly available GRAVITY beam combiner at the Very Large Telescope Interferometer (VLTI). Results: Our observations show a continuum radius that is anti-correlated with the visual lightcurve. Uniform disc (UD) angular diameters at a near-continuum wavelength of 2.25 μm are steadily increasing with values of 8.7 ± 0.1 mas, 9.4 ± 0.1 mas, 9.8 ± 0.1 mas, and 9.9 ± 0.1 mas at visual phases of 0.15, 0.36, 0,45, 0.53, respectively. UD diameters at a bandpass around 2.05 μm, dominated by water vapour, follow the near-continuum variability at larger UD diameters between 10.7 mas and 11.7 mas. UD diameters at the CO 2-0 bandhead, instead, are correlated with the visual lightcurve and anti-correlated with the near-continuum UD diameters, with values between 12.3 mas and 11.7 mas. Conclusions: The observed anti-correlation between continuum radius and visual lightcurve is consistent with an earlier study of the oxygen-rich Mira S Lac, and with recent 1D CODEX dynamic model atmosphere predictions. The amplitude of the variation is comparable to the earlier observations of S Lac, and smaller than predicted by CODEX models. The wavelength-dependent visibility variations at our epochs can be reproduced by a set of CODEX models at model phases between 0.3 and 0.6. The anti-correlation of water vapour and CO contributions at our epochs suggests that these molecules undergo different processes in the extended atmosphere along the stellar cycle. The newly available GRAVITY instrument is suited to conducting longer time series observations, which are needed to provide strong constraints on the model-predicted intra- and inter-cycle variability. Based on observations made with the VLT Interferometer at Paranal Observatory under programme IDs 60.A-9176 and 098.D-0647.
Low-Density Nozzle Flow by the Direct Simulation Monte Carlo and Continuum Methods
NASA Technical Reports Server (NTRS)
Chung, Chang-Hong; Kim, Sku C.; Stubbs, Robert M.; Dewitt, Kenneth J.
1994-01-01
Two different approaches, the direct simulation Monte Carlo (DSMC) method based on molecular gasdynamics, and a finite-volume approximation of the Navier-Stokes equations, which are based on continuum gasdynamics, are employed in the analysis of a low-density gas flow in a small converging-diverging nozzle. The fluid experiences various kinds of flow regimes including continuum, slip, transition, and free-molecular. Results from the two numerical methods are compared with Rothe's experimental data, in which density and rotational temperature variations along the centerline and at various locations inside a low-density nozzle were measured by the electron-beam fluorescence technique. The continuum approach showed good agreement with the experimental data as far as density is concerned. The results from the DSMC method showed good agreement with the experimental data, both in the density and the rotational temperature. It is also shown that the simulation parameters, such as the gas/surface interaction model, the energy exchange model between rotational and translational modes, and the viscosity-temperature exponent, have substantial effects on the results of the DSMC method.
Random sex determination: When developmental noise tips the sex balance.
Perrin, Nicolas
2016-12-01
Sex-determining factors are usually assumed to be either genetic or environmental. The present paper aims at drawing attention to the potential contribution of developmental noise, an important but often-neglected component of phenotypic variance. Mutual inhibitions between male and female pathways make sex a bistable equilibrium, such that random fluctuations in the expression of genes at the top of the cascade are sufficient to drive individual development toward one or the other stable state. Evolutionary modeling shows that stochastic sex determinants should resist elimination by genetic or environmental sex determinants under ecologically meaningful settings. On the empirical side, many sex-determination systems traditionally considered as environmental or polygenic actually provide evidence for large components of stochasticity. In reviewing the field, I argue that sex-determination systems should be considered within a three-ends continuum, rather than the classical two-ends continuum. © 2016 WILEY Periodicals, Inc.
Simulation and theory of spontaneous TAE frequency sweeping
NASA Astrophysics Data System (ADS)
Wang, Ge; Berk, H. L.
2012-09-01
A simulation model, based on the linear tip model of Rosenbluth, Berk and Van Dam (RBV), is developed to study frequency sweeping of toroidal Alfvén eigenmodes (TAEs). The time response of the background wave in the RBV model is given by a Volterra integral equation. This model captures the properties of TAE waves both in the gap and in the continuum. The simulation shows that phase space structures form spontaneously at frequencies close to the linearly predicted frequency, due to resonant particle-wave interactions and background dissipation. The frequency sweeping signals are found to chirp towards the upper and lower continua. However, the chirping signals penetrate only the lower continuum, whereupon the frequency chirps and mode amplitude increases in synchronism to produce an explosive solution. An adiabatic theory describing the evolution of a chirping signal is developed which replicates the chirping dynamics of the simulation in the lower continuum. This theory predicts that a decaying chirping signal will terminate at the upper continuum though in the numerical simulation the hole disintegrates before the upper continuum is reached.
Boyer, David S; Nguyen, Quan Dong; Brown, David M; Basu, Karen; Ehrlich, Jason S
2015-12-01
To determine whether the efficacy and safety achieved with monthly ranibizumab as treatment for diabetic macular edema (DME) can be maintained with less-than-monthly treatment. Open-label extension (OLE) phase of randomized, sham-controlled phase III trials: RIDE (NCT00473382) and RISE (NCT00473330). Five hundred of 582 adults who completed the 36-month randomized core studies elected to enter the OLE. All patients participating in the OLE were eligible to receive 0.5 mg ranibizumab according to predefined re-treatment criteria: Treatment was administered when DME was identified by the investigator on optical coherence tomography or when best-corrected visual acuity (BCVA) worsened by ≥5 Early Treatment Diabetic Retinopathy Study letters versus month 36. Patients were observed at 30-, 60-, or 90-day intervals depending on the need for treatment. The incidence and severity of ocular and nonocular events, proportion of patients with ≥15-letter best-corrected visual acuity (BCVA) gain from baseline, mean BCVA change from month 36 (final core study visit), mean central foveal thickness (CFT), and mean CFT change from month 36. A mean of 4.5 injections were administered over a mean follow-up of 14.1 months. Approximately 25% of patients did not require further treatment based on protocol-defined re-treatment criteria. Mean BCVA was sustained or improved in these patients through the end of follow-up. Approximately 75% of patients received ≥1 criteria-based re-treatment; mean time to first re-treatment was approximately 3 months after the last masked-phase visit. Mean BCVA remained stable in re-treated patients; CFT was generally stable with a trend toward slight thickening in all patients when mandatory monthly therapy was relaxed. Vision gains achieved after 1 or 3 years of monthly ranibizumab therapy were maintained with a marked reduction in treatment frequency; some patients required no additional treatment. These observations are consistent with other studies evaluating induction followed by maintenance ranibizumab therapy for DME. Patients whose treatment was deferred by 2 years (randomized initially to sham) did not ultimately achieve the same BCVA gains as patients who received ranibizumab from baseline. Ranibizumab's safety profile in the OLE appeared similar to that observed in the controlled core studies and other studies. Copyright © 2015 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.
2016-03-31
Finite element continuum damage models (FE-CDM) have been developed to simulate and model dual-phase joints and cracked joints for improved analysis of SiC materials in nuclear environments. This report extends the analysis from the last reporting cycle by including results from dual-phase models and from cracked joint models.
Resolving the Cygnus X-3 iron K line
NASA Technical Reports Server (NTRS)
Kitamoto, Shunji; Kawashima, Kenji; Negoro, Hitoshi; Miyamoto, Sigenori; White, N. E.; Nagase, Fumiaki
1994-01-01
An Advanced Satellite for Cosmology and Astrophysics (ASCA) observation of Cygnus X-3 on 1993 June 11, in its X-ray high intensity state, has for the first time resolved the broad iron K line emission into three components: a He-like line at 6.67 +/- 0.01 keV, a H-like line at 6.96 +/- 0.02 keV, and a neutral line at 6.37 +/- 0.03 keV. The line intensities of the 6.67 keV and 6.96 keV lines are modulated with the 4.8 hr orbital period and are maximum when the continuum intensity is minimum. There is a sharp minimum of the line intensity on the rising phase of the continuum intensity. An iron absorption edge is observed at 7.19 +/- 0.02 keV. The optical depth of the absorption edge varies from 0.3 to 0.5 and is in anti-phase with the overall X-ray continuum modulation. The observed complexity of the iron K line region is greater than that had been assumed in previous spectral modeling based on observations with lower resolution detectors.
NASA Technical Reports Server (NTRS)
Eaton, J. E.; Cherepashchuk, A. M.; Khaliullin, K. F.
1982-01-01
The 1200-1900 angstrom region and fine error sensor observations in the optical for V444 Cyg were continuously observed. More than half of a primary minimum and almost a complete secondary minimum were observed. It is found that the time of minimum for the secondary eclipse is consistent with that for primary eclipse, and the ultraviolet times of minimum are consistent with the optical ones. The spectrum shows a considerable amount of phase dependence. The general shaps and depths of the light curves for the FES signal and the 1565-1900 angstrom continuum are similar to those for the blue continuum. The FES, however, detected an atmospheric eclipse in line absorption at about the phase the NIV absorption was strongest. It is suggested that there is a source of continuum absorption shortward of 1460 angstrom which exists throughout a large part of the extended atmosphere and which, by implication, must redden considerably the ultraviolet continuua of WN stars. A fairly high degree of ionization for the inner part of the WN star a atmosphere is implied.
Angle-adjustable density field formulation for the modeling of crystalline microstructure
NASA Astrophysics Data System (ADS)
Wang, Zi-Le; Liu, Zhirong; Huang, Zhi-Feng
2018-05-01
A continuum density field formulation with particle-scale resolution is constructed to simultaneously incorporate the orientation dependence of interparticle interactions and the rotational invariance of the system, a fundamental but challenging issue in modeling the structure and dynamics of a broad range of material systems across variable scales. This generalized phase field crystal-type approach is based upon the complete expansion of particle direct correlation functions and the concept of isotropic tensors. Through applications to the modeling of various two- and three-dimensional crystalline structures, our study demonstrates the capability of bond-angle control in this continuum field theory and its effects on the emergence of ordered phases, and provides a systematic way of performing tunable angle analyses for crystalline microstructures.
NASA Technical Reports Server (NTRS)
Cheng, Chung-Chieh; Vanderveen, K.; Orwig, L. E.; Tandberg-Hanssen, E.
1988-01-01
The impulsive phase of solar flares has been simultaneously observed in the ultraviolet O V line, the UV continuum, and hard X-rays with a time resolution of 0.128 s by the SMM satellite. A close time correspondence between the three impulsive components is found, with the best correlation being at the peak of the impulsive phase. Individual bursts or fast features in the O V and the UV continuum are shown to lag behind the corresponding hard X-ray features. None of the considered energy transport mechanisms (thermal conduction, a nonthermal electron beam, electron hole boring, UV radiation, and Alfven waves) are able to consistently account for the observed temporal correlations.
Molina, Yamile; Glassgow, Anne E; Kim, Sage J; Berrios, Nerida M; Pauls, Heather; Watson, Karriem S; Darnell, Julie S; Calhoun, Elizabeth A
2017-02-01
The Patient Navigation in Medically Underserved Areas study objectives are to assess if navigation improves: 1) care uptake and time to diagnosis; and 2) outcomes depending on patients' residential medically underserved area (MUA) status. Secondary objectives include the efficacy of navigation across 1) different points of the care continuum among patients diagnosed with breast cancer; and 2) multiple regular screening episodes among patients who did not obtain breast cancer diagnoses. Our randomized controlled trial was implemented in three community hospitals in South Chicago. Eligible participants were: 1) female, 2) 18+years old, 3) not pregnant, 4) referred from a primary care provider for a screening or diagnostic mammogram based on an abnormal clinical breast exam. Participants were randomized to 1) control care or 2) receive longitudinal navigation, through treatment if diagnosed with cancer or across multiple years if asymptomatic, by a lay health worker. Participants' residential areas were identified as: 1) established MUA (before 1998), 2) new MUA (after 1998), 3) eligible/but not designated as MUA, and 4) affluent/ineligible for MUA. Primary outcomes include days to initially recommended care after randomization and days to diagnosis for women with abnormal results. Secondary outcomes concern days to treatment initiation following a diagnosis and receipt of subsequent screening following normal/benign results. This intervention aims to assess the efficacy of patient navigation on breast cancer care uptake across the continuum. If effective, the program may improve rates of early cancer detection and breast cancer morbidity. Copyright © 2016 Elsevier Inc. All rights reserved.
Matsiaka, Oleksii M; Penington, Catherine J; Baker, Ruth E; Simpson, Matthew J
2018-04-01
Scratch assays are routinely used to study the collective spreading of cell populations. In general, the rate at which a population of cells spreads is driven by the combined effects of cell migration and proliferation. To examine the effects of cell migration separately from the effects of cell proliferation, scratch assays are often performed after treating the cells with a drug that inhibits proliferation. Mitomycin-C is a drug that is commonly used to suppress cell proliferation in this context. However, in addition to suppressing cell proliferation, mitomycin-C also causes cells to change size during the experiment, as each cell in the population approximately doubles in size as a result of treatment. Therefore, to describe a scratch assay that incorporates the effects of cell-to-cell crowding, cell-to-cell adhesion, and dynamic changes in cell size, we present a new stochastic model that incorporates these mechanisms. Our agent-based stochastic model takes the form of a system of Langevin equations that is the system of stochastic differential equations governing the evolution of the population of agents. We incorporate a time-dependent interaction force that is used to mimic the dynamic increase in size of the agents. To provide a mathematical description of the average behaviour of the stochastic model we present continuum limit descriptions using both a standard mean-field approximation and a more sophisticated moment dynamics approximation that accounts for the density of agents and density of pairs of agents in the stochastic model. Comparing the accuracy of the two continuum descriptions for a typical scratch assay geometry shows that the incorporation of agent growth in the system is associated with a decrease in accuracy of the standard mean-field description. In contrast, the moment dynamics description provides a more accurate prediction of the evolution of the scratch assay when the increase in size of individual agents is included in the model.
ROSAT and ASCA Observations of the Seyfert Galaxy 1H0419-577-577, Identified with LB 1727
NASA Technical Reports Server (NTRS)
Turner, T. J.; George, I. M.; Nandra, K.; Marshall, H. L.; Grupe, D.; Remillard, R.; Leighly, K.
1998-01-01
We discuss the properties of the Seyfert 1.5 galaxy LB 1727 based upon the analysis of two ASCA observations, a two-month Rosat monitoring campaign, and optical data. The target is identified with the HEAO-A1 source 1H0419-577, so it has been observed by ASCA and ROSAT in order to obtain better X-ray variability and spectra data. Only modest (20%) variability is observed within or between ASCA and BeppoSAX observations in the approximately 2 - 10 keV band. However, the soft X-ray flux increased by a factor of 3 over a period of 2 months, while it was monitored daily by the ROSAT HRI instrument. The hard X-ray continuum can be parameterized as a power-law of slope Gamma approximately 1.5 - 1.6 across 0.7 - 11 keV in the rest-frame. We also report the first detection of an iron K(alpha) line in this source, consistent with emission from neutral material. The X-ray spectrum steepens sharply below 0.7 keV yielding a power-law of slope Gamma approximately 3.2. There is no evidence for absorption by neutral material, intrinsic to the nucleus. If the nucleus is unattenuated, then the break energy between the soft-excess and hard component is 0.7+/-0.08 keV. An ionized absorber may produce some turn-up in the spectrum at low energies, but a steepening of the underlying continuum is also required to explain the simultaneous ASCA and HRI data. We cannot rule out the possibility that a significant column of ionized material exists in the line-of-sight, if that is true, then the continuum break-energy can only be constrained to lie within the approximately 0.1 - 0.7 keV band.
ROSAT and ASCA Observations of the Seyfert Galaxy 1H0419-577, Identified with LB 1727
NASA Technical Reports Server (NTRS)
Turner, T. J.; George, I. M.; Nandra, K.; Grupe, D.; Remillard, R.; Leighly, K.; Marshall, H. L.
1998-01-01
We discuss the properties of the Seyfert 1.5 galaxy LB 1727 based upon the analysis of two ASCA observations, a two-month Rosat monitoring campaign, and optical data. The target is identified with the HEAO-A1 source 1H0419-577, so it has been observed by ASCA and ROSAT in order to obtain better X-ray variability and spectra data. Only modest (20%) variability is observed within or between ASCA and BeppoSAX observations in the approximately 2 - 10 keV band. However, the soft X-ray flux increased by a factor of 3 over a period of 2 months, while it was monitored daily by the ROSAT HRI instrument. The hard X-ray continuum can be parameterized as a power-law of slope Gamma approximately 1.5 - 1.6 across 9.7 - 11 keV in the rest-frame. We also report the first detection of an iron K(alpha) line in this source, consistent with emission from neutral material. The X-ray spectrum steepens sharply below 0.7 keV yielding a power-law of slope Gamma approximately 3.2. There is no evidence for absorption by neutral material, instrinsic to the nucleus. If the nucleus is unattenuated, then the break energy between the soft-excess and hard component is 0.7+/-0.08 keV. An ionized absorber may produce some tum-up in the spectrum at low energies, but a steepening of the underlying continuum is also required to explain the simultaneous ASCA and HRI data. We cannot rule out the possibility that a significant column of ionized material exists in the line-of-sight, if that is true, then the continuum break-energy can only be constrained to lie within the approximately 0.1 - -0.7 keV band.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Anders D.; Tonks, Michael R.; Casillas, Luis
2014-10-31
In light water reactor fuel, gaseous fission products segregate to grain boundaries, resulting in the nucleation and growth of large intergranular fission gas bubbles. Based on the mechanisms established from density functional theory (DFT) and empirical potential calculations 1, continuum models for diffusion of xenon (Xe), uranium (U) vacancies and U interstitials in UO 2 have been derived for both intrinsic conditions and under irradiation. Segregation of Xe to grain boundaries is described by combining the bulk diffusion model with a model for the interaction between Xe atoms and three different grain boundaries in UO 2 ( Σ5 tilt, Σ5more » twist and a high angle random boundary),as derived from atomistic calculations. All models are implemented in the MARMOT phase field code, which is used to calculate effective Xe and U diffusivities as well as redistribution for a few simple microstructures.« less
Sum Rule for a Schiff-Like Dipole Moment
NASA Astrophysics Data System (ADS)
Raduta, A. A.; Budaca, R.
The energy-weighted sum rule for an electric dipole transition operator of a Schiff type differs from the Thomas-Reiche-Kuhn (TRK) sum rule by several corrective terms which depend on the number of system components, N. For illustration the formalism was applied to the case of Na clusters. One concludes that the random phase approximation (RPA) results for Na clusters obey the modified TRK sum rule.
Saxvig, Ingvild West; Wilhelmsen-Langeland, Ane; Pallesen, Ståle; Vedaa, Oystein; Nordhus, Inger Hilde; Bjorvatn, Bjørn
2014-02-01
Delayed sleep phase disorder (DSPD) is assumed to be common amongst adolescents, with potentially severe consequences in terms of school attendance and daytime functioning. The most common treatment approaches for DSPD are based on the administration of bright light and/or exogenous melatonin with or without adjunct behavioural instructions. Much is generally known about the chronobiological effects of light and melatonin. However, placebo-controlled treatment studies for DSPD are scarce, in particular in adolescents and young adults, and no standardized guidelines exist regarding treatment. The aim of the present study was, therefore, to investigate the short- and long-term effects on sleep of a DSPD treatment protocol involving administration of timed bright light and melatonin alongside gradual advancement of rise time in adolescents and young adults with DSPD in a randomized controlled trial and an open label follow-up study. A total of 40 adolescents and young adults (age range 16-25 years) diagnosed with DSPD were recruited to participate in the study. The participants were randomized to receive treatment for two weeks in one of four treatment conditions: dim light and placebo capsules, bright light and placebo capsules, dim light and melatonin capsules or bright light and melatonin capsules. In a follow-up study, participants were re-randomized to either receive treatment with the combination of bright light and melatonin or no treatment in an open label trial for approximately three months. Light and capsules were administered alongside gradual advancement of rise times. The main end points were sleep as assessed by sleep diaries and actigraphy recordings and circadian phase as assessed by salivary dim light melatonin onset (DLMO). During the two-week intervention, the timing of sleep and DLMO was advanced in all treatment conditions as seen by about 1 h advance of bed time, 2 h advance of rise time and 2 h advance of DLMO in all four groups. Sleep duration was reduced with approximately 1 h. At three-month follow-up, only the treatment group had maintained an advanced sleep phase. Sleep duration had returned to baseline levels in both groups. In conclusion, gradual advancement of rise time produced a phase advance during the two-week intervention, irrespective of treatment condition. Termination of treatment caused relapse into delayed sleep times, whereas long-term treatment with bright light and melatonin (three months) allowed maintenance of the advanced sleep phase.
Micromechanical modelling of polyethylene
NASA Astrophysics Data System (ADS)
Alvarado Contreras, Jose Andres
2008-10-01
The increasing use of polyethylene in diverse applications motivates the need for understanding how its molecular properties relate to the overall behaviour of the material. Although microstructure and mechanical properties of polymers have been the subject of several studies, the irreversible microstructural rearrangements occurring at large deformations are not completely understood. The purpose of this thesis is to describe how the concepts of Continuum Damage Mechanics can be applied to modelling of polyethylene materials under different loading conditions. The first part of the thesis consists of the theoretical formulation and numerical implementation of a three-dimensional micromechanical model for crystalline polyethylene. Based on the theory of shear slip on crystallographic planes, the proposed model is expressed in the framework of viscoplasticity coupled with degradation at large deformations. Earlier models aid in the interpretation of the mechanical behaviour of crystalline polyethylene under different loading conditions; however, they cannot predict the microstructural damage caused by deformation. The model, originally due to Parks and Ahzi (199o), was further developed in the light of the concept of Continuum Damage Mechanics to consider the original microstructure, the particular irreversible rearrangements, and the deformation mechanisms. Damage mechanics has been a matter of intensive research by many authors, yet it has not been introduced to the micromodelling of semicrystalline polymeric materials such as polyethylene. Regarding the material representation, the microstructure is simplified as an aggregate of randomly oriented and perfectly bonded crystals. To simulate large deformations, the new constitutive model attempts to take into account existence of intracrystalline microcracks. The second part of the work presents the theoretical formulation and numerical implementation of a three-dimensional constitutive model for the mechanical behaviour of semicrystalline polyethylene. The model proposed herein attempts to describe the deformation and degradation process in semicrystalline polyethylene following the approach of damage mechanics. Structural degradation, an important phenomenon at large deformations, has not received sufficient attention in the literature. The modifications to the constitutive equations consist essentially of introducing the concept of Continuum Damage Mechanics to describe the rupture of the intermolecular (van der Waals) bonds that hold crystals as coherent structures. In order to model the mechanical behaviour, the material morphology is simplified as a collection of inclusions comprising the crystalline and amorphous phases with their characteristic average volume fractions. In the spatial arrangement, each inclusion consists of crystalline material lying in a thin lamella attached to an amorphous layer. To consider microstructural damage, two different approaches are analyzed. The first approach assumes damage occurs only in the crystalline phase, i.e., degradation of the amorphous phase is ignored. The second approach considers the effect of damage on the mechanical behaviour of both the amorphous and crystalline phases. To illustrate the proposed constitutive formulations, the models were used to predict the responses of crystalline and semicrystalline polyethylene under uniaxial tension and simple shear. The numerical simulations were compared with experimental data previously obtained by Bartczak et al. (1994), G'Sell and Jonas (1981), G'Sell et al. (1983), Hillmansen et al. (2000), and Li et al. (2001). Our model's predictions show a consistently good agreement with the experimental results and a significant improvement with respect to the ones obtained by Parks and Ahzi (1990), Schoenfeld et al. (1995), Yang and Chen (2001), Lee et al. (i993b), Lee et al. (1993a), and Nikolov et al. (2006). The newly proposed formulations demonstrate that these types of constitutive models based on Continuum Damage Mechanics are appropriate for predicting large deformations and failure in polyethylene materials.
Discrete shearlet transform: faithful digitization concept and its applications
NASA Astrophysics Data System (ADS)
Lim, Wang-Q.
2011-09-01
Over the past years, various representation systems which sparsely approximate functions governed by anisotropic features such as edges in images have been proposed. Alongside the theoretical development of these systems, algorithmic realizations of the associated transforms were provided. However, one of the most common short-comings of these frameworks is the lack of providing a unified treatment of the continuum and digital world, i.e., allowing a digital theory to be a natural digitization of the continuum theory. Shearlets were introduced as means to sparsely encode anisotropic singularities of multivariate data while providing a unified treatment of the continuous and digital realm. In this paper, we introduce a discrete framework which allows a faithful digitization of the continuum domain shearlet transform based on compactly supported shearlets. Finally, we show numerical experiments demonstrating the potential of the discrete shearlet transform in several image processing applications.
Dimensionality-strain phase diagram of strontium iridates
NASA Astrophysics Data System (ADS)
Kim, Bongjae; Liu, Peitao; Franchini, Cesare
2017-03-01
The competition between spin-orbit coupling, bandwidth (W ), and electron-electron interaction (U ) makes iridates highly susceptible to small external perturbations, which can trigger the onset of novel types of electronic and magnetic states. Here we employ first principles calculations based on density functional theory and on the constrained random phase approximation to study how dimensionality and strain affect the strength of U and W in (SrIrO3)m/(SrTiO3) superlattices. The result is a phase diagram explaining two different types of controllable magnetic and electronic transitions, spin-flop and insulator-to-metal, connected with the disruption of the Jeff=1 /2 state which cannot be understood within a simplified local picture.
NASA Astrophysics Data System (ADS)
Mazzarella, J. M.; Iwasawa, K.; Vavilkin, T.; Armus, L.; Kim, D.-C.; Bothun, G.; Evans, A. S.; Spoon, H. W. W.; Haan, S.; Howell, J. H.; Lord, S.; Marshall, J. A.; Ishida, C. M.; Xu, C. K.; Petric, A.; Sanders, D. B.; Surace, J. A.; Appleton, P.; Chan, B. H. P.; Frayer, D. T.; Inami, H.; Khachikian, E. Ye.; Madore, B. F.; Privon, G. C.; Sturm, E.; U, Vivian; Veilleux, S.
2012-11-01
Results of observations with the Spitzer, Hubble, GALEX, Chandra, and XMM-Newton space telescopes are presented for the luminous infrared galaxy (LIRG) merger Markarian 266. The SW (Seyfert 2) and NE (LINER) nuclei reside in galaxies with Hubble types SBb (pec) and S0/a (pec), respectively. Both companions are more luminous than L* galaxies and they are inferred to each contain a ≈2.5 × 108 M ⊙ black hole. Although the nuclei have an observed hard X-ray flux ratio of fX (NE)/fX (SW) = 6.4, Mrk 266 SW is likely the primary source of a bright Fe Kα line detected from the system, consistent with the reflection-dominated X-ray spectrum of a heavily obscured active galactic nucleus (AGN). Optical knots embedded in an arc with aligned radio continuum radiation, combined with luminous H2 line emission, provide evidence for a radiative bow shock in an AGN-driven outflow surrounding the NE nucleus. A soft X-ray emission feature modeled as shock-heated plasma with T ~ 107 K is cospatial with radio continuum emission between the galaxies. Mid-infrared diagnostics provide mixed results, but overall suggest a composite system with roughly equal contributions of AGN and starburst radiation powering the bolometric luminosity. Approximately 120 star clusters have been detected, with most having estimated ages less than 50 Myr. Detection of 24 μm emission aligned with soft X-rays, radio continuum, and ionized gas emission extending ~34'' (20 kpc) north of the galaxies is interpreted as ~2 × 107 M ⊙ of dust entrained in an outflowing superwind. At optical wavelengths this Northern Loop region is resolved into a fragmented morphology indicative of Rayleigh-Taylor instabilities in an expanding shell of ionized gas. Mrk 266 demonstrates that the dust "blow-out" phase can begin in a LIRG well before the galaxies fully coalesce during a subsequent ultraluminous infrared galaxy (ULIRG) phase, and rapid gas consumption in luminous dual AGNs with kiloparsec-scale separations early in the merger process may explain the paucity of detected binary QSOs (with parsec-scale orbital separations) in spectroscopic surveys. An evolutionary sequence is proposed representing a progression from dual to binary AGNs, accompanied by an increase in observed Lx /L ir ratios by over two orders of magnitude.
The gamma ray continuum spectrum from the galactic center disk and point sources
NASA Technical Reports Server (NTRS)
Gehrels, Neil; Tueller, Jack
1992-01-01
A light curve of gamma-ray continuum emission from point sources in the galactic center region is generated from balloon and satellite observations made over the past 25 years. The emphasis is on the wide field-of-view instruments which measure the combined flux from all sources within approximately 20 degrees of the center. These data have not been previously used for point-source analyses because of the unknown contribution from diffuse disk emission. In this study, the galactic disk component is estimated from observations made by the Gamma Ray Imaging Spectrometer (GRIS) instrument in Oct. 1988. Surprisingly, there are several times during the past 25 years when all gamma-ray sources (at 100 keV) within about 20 degrees of the galactic center are turned off or are in low emission states. This implies that the sources are all variable and few in number. The continuum gamma-ray emission below approximately 150 keV from the black hole candidate 1E1740.7-2942 is seen to turn off in May 1989 on a time scale of less than two weeks, significantly shorter than ever seen before. With the continuum below 150 keV turned off, the spectral shape derived from the HEXAGONE observation on 22 May 1989 is very peculiar with a peak near 200 keV. This source was probably in its normal state for more than half of all observations since the mid-1960's. There are only two observations (in 1977 and 1979) for which the sum flux from the point sources in the region significantly exceeds that from 1E1740.7-2942 in its normal state.
Schieschke, Nils; Di Remigio, Roberto; Frediani, Luca; Heuser, Johannes; Höfener, Sebastian
2017-07-15
We present the explicit derivation of an approach to the multiscale description of molecules in complex environments that combines frozen-density embedding (FDE) with continuum solvation models, in particular the conductor-like screening model (COSMO). FDE provides an explicit atomistic description of molecule-environment interactions at reduced computational cost, while the outer continuum layer accounts for the effect of long-range isotropic electrostatic interactions. Our treatment is based on a variational Lagrangian framework, enabling rigorous derivations of ground- and excited-state response properties. As an example of the flexibility of the theoretical framework, we derive and discuss FDE + COSMO analytical molecular gradients for excited states within the Tamm-Dancoff approximation (TDA) and for ground states within second-order Møller-Plesset perturbation theory (MP2) and a second-order approximate coupled cluster with singles and doubles (CC2). It is shown how this method can be used to describe vertical electronic excitation (VEE) energies and Stokes shifts for uracil in water and carbostyril in dimethyl sulfoxide (DMSO), respectively. In addition, VEEs for some simplified protein models are computed, illustrating the performance of this method when applied to larger systems. The interaction terms between the FDE subsystem densities and the continuum can influence excitation energies up to 0.3 eV and, thus, cannot be neglected for general applications. We find that the net influence of the continuum in presence of the first FDE shell on the excitation energy amounts to about 0.05 eV for the cases investigated. The present work is an important step toward rigorously derived ab initio multilayer and multiscale modeling approaches. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Yang, Jingjing; Cox, Dennis D; Lee, Jong Soo; Ren, Peng; Choi, Taeryon
2017-12-01
Functional data are defined as realizations of random functions (mostly smooth functions) varying over a continuum, which are usually collected on discretized grids with measurement errors. In order to accurately smooth noisy functional observations and deal with the issue of high-dimensional observation grids, we propose a novel Bayesian method based on the Bayesian hierarchical model with a Gaussian-Wishart process prior and basis function representations. We first derive an induced model for the basis-function coefficients of the functional data, and then use this model to conduct posterior inference through Markov chain Monte Carlo methods. Compared to the standard Bayesian inference that suffers serious computational burden and instability in analyzing high-dimensional functional data, our method greatly improves the computational scalability and stability, while inheriting the advantage of simultaneously smoothing raw observations and estimating the mean-covariance functions in a nonparametric way. In addition, our method can naturally handle functional data observed on random or uncommon grids. Simulation and real studies demonstrate that our method produces similar results to those obtainable by the standard Bayesian inference with low-dimensional common grids, while efficiently smoothing and estimating functional data with random and high-dimensional observation grids when the standard Bayesian inference fails. In conclusion, our method can efficiently smooth and estimate high-dimensional functional data, providing one way to resolve the curse of dimensionality for Bayesian functional data analysis with Gaussian-Wishart processes. © 2017, The International Biometric Society.
Critical flavor number of the Thirring model in three dimensions
NASA Astrophysics Data System (ADS)
Wellegehausen, Björn H.; Schmidt, Daniel; Wipf, Andreas
2017-11-01
The Thirring model is a four-fermion theory with a current-current interaction and U (2 N ) chiral symmetry. It is closely related to three-dimensional QED and other models used to describe properties of graphene. In addition, it serves as a toy model to study chiral symmetry breaking. In the limit of flavor number N →1 /2 it is equivalent to the Gross-Neveu model, which shows a parity-breaking discrete phase transition. The model was already studied with different methods, including Dyson-Schwinger equations, functional renormalization group methods, and lattice simulations. Most studies agree that there is a phase transition from a symmetric phase to a spontaneously broken phase for a small number of fermion flavors, but no symmetry breaking for large N . But there is no consensus on the critical flavor number Ncr above which there is no phase transition anymore and on further details of the critical behavior. Values of N found in the literature vary between 2 and 7. All earlier lattice studies were performed with staggered fermions. Thus it is questionable if in the continuum limit the lattice model recovers the internal symmetries of the continuum model. We present new results from lattice Monte Carlo simulations of the Thirring model with SLAC fermions which exactly implement all internal symmetries of the continuum model even at finite lattice spacing. If we reformulate the model in an irreducible representation of the Clifford algebra, we find, in contradiction to earlier results, that the behavior for even and odd flavor numbers is very different: for even flavor numbers, chiral and parity symmetry are always unbroken; for odd flavor numbers, parity symmetry is spontaneously broken below the critical flavor number Nircr=9 , while chiral symmetry is still unbroken.
The Need for a Kinetics for Biological Transport
Schindler, A. M.; Iberall, A. S.
1973-01-01
The traditional theory of transport across capillary membranes via a laminar Poiseuille flow is shown to be invalid. It is demonstrated that the random, diffusive nature of the molecular flow and interactions with the “pore” walls play an important role in the transport process. Neither the continuum Navier-Stokes theory nor the equivalent theory of irreversible thermodynamics is adequate to treat the problem. Combination of near-continuum hydrodynamic theory, noncontinuum kinetic theory, and the theory of fluctuations provides a first step toward modeling both liquid processes in general and membrane transport processes as a specific application. PMID:4726880
The Solar Flare 4: 10 keV X-ray Spectrum
NASA Technical Reports Server (NTRS)
Phillips, K. J. H.
2004-01-01
The 4-10 keV solar flare spectrum includes highly excited lines of stripped Ca, Fe, and Ni ions as well as a continuum steeply falling with energy. Groups of lines at approximately 7 keV and approximately 8 keV, observed during flares by the broad-band RHESSI spectrometer and called here the Fe-line and Fe/Ni-line features, are formed mostly of Fe lines but with Ni lines contributing to the approximately 8 keV feature. Possible temperature indicators of these line features are discussed - the peak or centroid energies of the Fe-line feature, the line ratio of the Fe-line to the Fe/Ni-line features, and the equivalent width of the Fe-line feature. The equivalent width is by far the most sensitive to temperature. However, results will be confused if, as is commonly believed, the abundance of Fe varies from flare to flare, even during the course of a single flare. With temperature determined from the thermal continuum, the Fe-line feature becomes a diagnostic of the Fe abundance in flare plasmas. These results are of interest for other hot plasmas in coronal ionization equilibrium such as stellar flare plasmas, hot gas in galaxies, and older supernova remnants.
Workplace disaster preparedness and response: the employee assistance program continuum of services.
Paul, Jan; Blum, Dorothy
2005-01-01
Response programs for workplace critical and traumatic events are becoming an acknowledged and sought after standard of care. The current trauma literature recognizes what goes on in the workplace between the Employee Assistance Program (EAP) and management. The authors have taken this intra-organizational relationship, assimilated the information, and developed a model that recognizes and supports management throughout the continuum of response to workplace traumatic events. The model recognizes the EAP as an important workplace resource and tool in management's ability to strike the balance of managing the workforce while assisting in recovery following workplace trauma. The introduced concept defines the continuum and highlights the before, during, and after phases, showing how EAP supports management in most effectively doing their job.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Wontae; Dec, John; Sjoeberg, Magnus
The temporal phases of autoignition and combustion in an HCCI engine have been investigated in both an all-metal engine and a matching optical engine. Gasoline, a primary reference fuel mixture (PRF80), and several representative real-fuel constituents were examined. Only PRF80, which is a two-stage ignition fuel, exhibited a ''cool-flame'' low-temperature heat-release (LTHR) phase. For all fuels, slow exothermic reactions occurring at intermediate temperatures raised the charge temperature to the hot-ignition point. In addition to the amount of LTHR, differences in this intermediate-temperature heat-release (ITHR) phase affect the fuel ignition quality. Chemiluminescence images of iso-octane show a weak and uniform lightmore » emission during this phase. This is followed by the main high-temperature heat-release (HTHR) phase. Finally, a ''burnout'' phase was observed, with very weak uniform emission and near-zero heat-release rate (HRR). To better understand these combustion phases, chemiluminescence spectroscopy and chemical-kinetic analysis were applied for the single-stage ignition fuel, iso-octane, and the two-stage fuel, PRF80. For both fuels, the spectrum obtained during the ITHR phase was dominated by formaldehyde chemiluminescence. This was similar to the LTHR spectrum of PRF80, but the emission intensity and the temperature were much higher, indicating differences between the ITHR and LTHR phases. Chemical-kinetic modeling clarified the differences and similarities between the LTHR and ITHR phases and the cause of the enhanced ITHR with PRF80. The HTHR spectra for both fuels were dominated by a broad CO continuum with some contribution from bands of HCO, CH, and OH. The modeling showed that the CO+ O{yields}CO{sub 2}+h{nu} reaction responsible for the CO continuum emission tracks the HTHR well, explaining the strong correlation observed experimentally between the total chemiluminescence and HRR during the HTHR phase. It also showed that the CO continuum does not contribute to the ITHR and LTHR chemiluminescence. Bands of H{sub 2}O and O{sub 2} in the red and IR regions were also detected during the HTHR, which the data indicated were most likely due to thermal excitation. The very weak light emission in the ''burnout'' phase also appeared to be thermal emission from H{sub 2}O and O{sub 2}. (author)« less
Phase transitions in Ising models on directed networks
NASA Astrophysics Data System (ADS)
Lipowski, Adam; Ferreira, António Luis; Lipowska, Dorota; Gontarek, Krzysztof
2015-11-01
We examine Ising models with heat-bath dynamics on directed networks. Our simulations show that Ising models on directed triangular and simple cubic lattices undergo a phase transition that most likely belongs to the Ising universality class. On the directed square lattice the model remains paramagnetic at any positive temperature as already reported in some previous studies. We also examine random directed graphs and show that contrary to undirected ones, percolation of directed bonds does not guarantee ferromagnetic ordering. Only above a certain threshold can a random directed graph support finite-temperature ferromagnetic ordering. Such behavior is found also for out-homogeneous random graphs, but in this case the analysis of magnetic and percolative properties can be done exactly. Directed random graphs also differ from undirected ones with respect to zero-temperature freezing. Only at low connectivity do they remain trapped in a disordered configuration. Above a certain threshold, however, the zero-temperature dynamics quickly drives the model toward a broken symmetry (magnetized) state. Only above this threshold, which is almost twice as large as the percolation threshold, do we expect the Ising model to have a positive critical temperature. With a very good accuracy, the behavior on directed random graphs is reproduced within a certain approximate scheme.
Modification of Jupiter's Stratosphere Three Weeks After the 2009 Impact
NASA Technical Reports Server (NTRS)
Fast, Kelly E.; Kostiuk, Theodor; Livengood, Timothy A.; Hewagama, Tilak; Annen, John
2011-01-01
Infrared spectroscopy sensitive to thermal emission from Jupiter's stratosphere reveals effects persisting 23 days after the impact of a body in late July 2009. Measurements obtained on 2009 August II UT at the impact latitude of 56 S (planetocentric), using the Goddard Heterodyne Instrument for Planetary Wind and Composition mounted on the NASA Infrared Telescope Facility, reveal increased ethane abundance and the effects of aerosol opacity. An interval of reduced thermal continuum emission at 11. 744 lm is measured 60o-80 towards planetary east of the impact site, estimated to be at 3050 longitude (System Ill). Retrieved stratospheric ethane mole fraction in the near vicinity of the impact site is enhanced by up to -60% relative to quiescent regions at this latitude. Thermal continuum emission at the impact site, and somewhat west of it, is significantly enhanced in the same spectra that retrieve enhanced ethane mole fraction. Assuming that the enhanced continuum brightness near the impact site results from thermalized aerosol debris blocking contribution from the continuum formed in the upper troposphere and indicating the local temperature, then continuum emission by a haze layer can be approximated by an opaque surface inserted at the 45-60 mbar pressure level in the stratosphere in an unperturbed thermal profile, setting an upper limit on the pressure and therefore a lower limit on the altitude of the top of the impact debris at this time. The reduced continuum brightness east of the impact site can be modeled by an opaque surface near the cold tropopause, which is consistent with a lower altitude of ejecta/impactor-formed opacity or significantly lesser column density of opaque haze material. The physical extent of the observed region of reduced continuum implies a minimum average velocity of 21 m/s transporting material prograde (planetary east) from the impact.
Abelian-Higgs phase of SU(2) QCD and glueball energy
NASA Astrophysics Data System (ADS)
Jia, Duojie
2008-07-01
It is shown that SU(2) QCD admits an dual Abelian-Higgs phase, with a Higgs vacuum of a type-II superconductor. This is done by using a connection decomposition for the gluon field and the random-direction approximation. Using a bag picture with soft wall, we presented a calculational procedure for the glueball energy based on the recent proof for wall-vortices [Nucl. Phys. B 741(2006)1]. Supported by National Natural Science Foundation of China (10547009) and Research Backbone Fostering Program of Knowledge and S&T Innovation Project of NWNU (KJCXGC 03-41)
Complex X-ray Absorption and the Fe K(alpha) Profile in NGC 3516
NASA Technical Reports Server (NTRS)
Turner, T. J.; Kraemer, S. B.; George, I. M.; Reeves, J. N.; Botorff, M. C.
2004-01-01
We present data from simultaneous Chandra, XMM-Newton and BeppoSAX observations of the Seyfert 1 galaxy NGC 3516, taken during 2001 April and November. We have investigated the nature of the very flat observed X-ray spectrum. Chandra grating data show the presence of X-ray absorption lines, revealing two distinct components of the absorbing gas, one which is consistent with our previous model of the UV/X-ray absorber while the other, which is outflowing at a velocity of approximately 1100 kilometers per second, has a larger column density and is much more highly ionized. The broad-band spectral characteristics of the X-ray continuum observed with XMM during 2001 April, reveal the presence of a third layer of absorption consisting of a very large column (approximately 2.5 x 10(exp 23) per square centimeter) of highly ionized gas with a covering fraction approximately 50%. This low covering fraction suggests that the absorber lies within a few 1t-days of the X-ray source and/or is filamentary in structure. Interestingly, these absorbers are not in thermal equilibrium with one another. The two new components are too highly ionized to be radiatively accelerated, which we suggest is evidence for a hydromagnetic origin for the outflow. Applying our model to the November dataset, we can account for the spectral variability primarily by a drop in the ionization states of the absorbers, as expected by the change in the continuum flux. When this complex absorption is accounted for we find the underlying continuum to be typical of Seyfert 1 galaxies. The spectral curvature attributed to the high column absorber, in turn, reduces estimates of the flux and extent of any broad Fe emission line from the accretion disk.
Raman scattering spectra of superconducting Bi2Sr2CaCu2O8 single crystals
NASA Astrophysics Data System (ADS)
Kirillov, D.; Bozovic, I.; Geballe, T. H.; Kapitulnik, A.; Mitzi, D. B.
1988-12-01
Raman spectra of Bi2Sr2CaCu2O8 single crystals with superconducting phase-transition temperature of 90 K have been studied. The spectra contained phonon lines and electronic continuum. Phonon energies and polarization selection rules were measured. A gap in the electronic continuum spectrum was observed in a superconducting state. Noticeable similarity between Raman spectra of Bi2Sr2CaCu2O8 and YBa2Cu3O7 was found.
A CONTINUUM HARD-SPHERE MODEL OF PROTEIN ADSORPTION
Finch, Craig; Clarke, Thomas; Hickman, James J.
2012-01-01
Protein adsorption plays a significant role in biological phenomena such as cell-surface interactions and the coagulation of blood. Two-dimensional random sequential adsorption (RSA) models are widely used to model the adsorption of proteins on solid surfaces. Continuum equations have been developed so that the results of RSA simulations can be used to predict the kinetics of adsorption. Recently, Brownian dynamics simulations have become popular for modeling protein adsorption. In this work a continuum model was developed to allow the results from a Brownian dynamics simulation to be used as the boundary condition in a computational fluid dynamics (CFD) simulation. Brownian dynamics simulations were used to model the diffusive transport of hard-sphere particles in a liquid and the adsorption of the particles onto a solid surface. The configuration of the adsorbed particles was analyzed to quantify the chemical potential near the surface, which was found to be a function of the distance from the surface and the fractional surface coverage. The near-surface chemical potential was used to derive a continuum model of adsorption that incorporates the results from the Brownian dynamics simulations. The equations of the continuum model were discretized and coupled to a CFD simulation of diffusive transport to the surface. The kinetics of adsorption predicted by the continuum model closely matched the results from the Brownian dynamics simulation. This new model allows the results from mesoscale simulations to be incorporated into micro- or macro-scale CFD transport simulations of protein adsorption in practical devices. PMID:23729843
Anomalies in the 1D Anderson model: Beyond the band-centre and band-edge cases
NASA Astrophysics Data System (ADS)
Tessieri, L.; Izrailev, F. M.
2018-03-01
We consider the one-dimensional Anderson model with weak disorder. Using the Hamiltonian map approach, we analyse the validity of the random-phase approximation for resonant values of the energy, E = 2 cos(πr) , with r a rational number. We expand the invariant measure of the phase variable in powers of the disorder strength and we show that, contrary to what happens at the centre and at the edges of the band, for all other resonant energies the leading term of the invariant measure is uniform. When higher-order terms are taken into account, a modulation of the invariant measure appears for all resonant values of the energy. This implies that, when the localisation length is computed within the second-order approximation in the disorder strength, the Thouless formula is valid everywhere except at the band centre and at the band edges.
Bulbous head formation in bidisperse shallow granular flows over inclined planes
NASA Astrophysics Data System (ADS)
Denissen, I.; Thornton, A.; Weinhart, T.; Luding, S.
2017-12-01
Predicting the behaviour of hazardous natural granular flows (e.g. debris-flows and pyroclastic flows) is vital for an accurate assessment of the risks posed by such events. In these situations, an inversely graded vertical particle-size distribution develops, with larger particles on top of smaller particles. As the surface velocity of such flows is larger than the mean velocity, the larger material is then transported to the flow front. This creates a downstream size-segregation structure, resulting in a flow front composed purely of large particles, that are generally more frictional in geophysical flows. Thus, this segregation process reduces the mobility of the flow front, resulting in the formation of, a so-called, bulbous head. One of the main challenges of simulating these hazardous natural granular flows is the enormous number of particles they contain, which makes discrete particle simulations too computationally expensive to be practically useful. Continuum methods are able to simulate the bulk flow- and segregation behaviour of such flows, but have to make averaging approximations that reduce the huge number of degrees of freedom to a few continuum fields. Small-scale periodic discrete particle simulations can be used to determine the material parameters needed for the continuum model. In this presentation, we use a depth-averaged model to predict the flow profile for particulate chute flows, based on flow height, depth-averaged velocity and particle-size distribution [1], and show that the bulbous head structure naturally emerges from this model. The long-time behaviour of this solution of the depth-averaged continuum model converges to a novel travelling wave solution [2]. Furthermore, we validate this framework against computationally expensive 3D particle simulations, where we see surprisingly good agreement between both approaches, considering the approximations made in the continuum model. We conclude by showing that the travelling distance and height of a bidisperse granular avalanche can be well predicted by our continuum model. REFERENCES [1] M. J. Woodhouse, A. R. Thornton, C. G. Johnson, B. P. Kokelaar, J. M. N. T. Gray, J. Fluid Mech., 709, 543-580 (2012) [2] I.F.C. Denissen, T. Weinhart, A. Te Voortwis, S. Luding, J. M. N. T. Gray, A. R. Thornton, under review with J. Fluid Mech. (2017)
Elemental Abundances in NGC 3516
NASA Technical Reports Server (NTRS)
Turner, T. J.; Kraemer, S. B.; Mushotzky, R. F.; George, I. M.; Gabel, J. R.
2003-01-01
We present Reflection Grating Spectrometer data from an XMM-Newton observation of the Seyfert 1 galaxy NGC 3516, taken while the continuum source was in an extremely low flux state. This observation offers a rare opportunity for a detailed study of emission from a Seyfert 1 galaxy as these are usually dominated by high nuclear continuum levels and heavy absorption. The spectrum shows numerous narrow emission lines (FWHM approximately less than 1300 kilometers per second) in the 0.3 - 2 keV range, including the H-like lines of C, N, and O and the He-like lines of N, O and Ne. The emission-line ratios and the narrow width of the radiative recombination continuum of CVI indicate that the gas is photoionized and of fairly low temperature (kT approximately less than 0.01 keV). The availability of emission lines from different elements for two iso-electronic sequences allows us to constrain the element abundances. These data show that the N lines are far stronger than would be expected from gas of solar abundances. Based on our photoionization models we find that nitrogen is overabundant in the central regions of the galaxy, compared to carbon, oxygen and neon by at least a factor of 2.5. We suggest that this is the result of secondary production of nitrogen in intermediate mass stars, and indicative of the history of star formation in NGC 3516.
Wavelet-based surrogate time series for multiscale simulation of heterogeneous catalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savara, Aditya Ashi; Daw, C. Stuart; Xiong, Qingang
We propose a wavelet-based scheme that encodes the essential dynamics of discrete microscale surface reactions in a form that can be coupled with continuum macroscale flow simulations with high computational efficiency. This makes it possible to simulate the dynamic behavior of reactor-scale heterogeneous catalysis without requiring detailed concurrent simulations at both the surface and continuum scales using different models. Our scheme is based on the application of wavelet-based surrogate time series that encodes the essential temporal and/or spatial fine-scale dynamics at the catalyst surface. The encoded dynamics are then used to generate statistically equivalent, randomized surrogate time series, which canmore » be linked to the continuum scale simulation. As a result, we illustrate an application of this approach using two different kinetic Monte Carlo simulations with different characteristic behaviors typical for heterogeneous chemical reactions.« less
Continuous and line spectra of granules and intergranular lanes
NASA Astrophysics Data System (ADS)
Suemoto, Z.; Hiei, E.; Nakagomi, Y.
1990-05-01
Temperature and velocity structures above granules and intergranular lanes were studied on spectrograms covering Ca II H and K lines. In agreement with earlier results, it was confirmed more quantitatively that there appear two kinds of bright continua, one in the outer wings (granular continuum) and the other in the inner wings (temporarily called K0-continuum) of Ca II H and K lines, and that these two kinds of bright continua are located more or less in a complementary fashion. Further, it was found that the bright K0-continuum is well associated with higher central residual intensity of absorption lines. These facts suggest that, in the upper photosphere, there are high temperature regions in the intergranular lanes. Motions above granular regions are essentially upwards, whereas those of intergranular regions are predominantly downwards, and in the uppermost photosphere the motions become more random.
Constitutive Modeling of Nanotube/Polymer Composites with Various Nanotube Orientations
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Gates, Thomas S.
2002-01-01
In this study, a technique has been proposed for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT) with various orientations with respect to the bulk material coordinates. A nanotube, the local polymer adjacent to the nanotube, and the nanotube/polymer interface have been modeled as an equivalent-continuum fiber by using an equivalent-continuum modeling method. The equivalent-continuum fiber accounts for the local molecular structure and bonding information and serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composite. As an example, the proposed approach is used for the constitutive modeling of a SWNT/LaRC-SI (with a PmPV interface) composite system, with aligned nanotubes, three-dimensionally randomly oriented nanotubes, and nanotubes oriented with varying degrees of axisymmetry. It is shown that the Young s modulus is highly dependent on the SWNT orientation distribution.
Wavelet-based surrogate time series for multiscale simulation of heterogeneous catalysis
Savara, Aditya Ashi; Daw, C. Stuart; Xiong, Qingang; ...
2016-01-28
We propose a wavelet-based scheme that encodes the essential dynamics of discrete microscale surface reactions in a form that can be coupled with continuum macroscale flow simulations with high computational efficiency. This makes it possible to simulate the dynamic behavior of reactor-scale heterogeneous catalysis without requiring detailed concurrent simulations at both the surface and continuum scales using different models. Our scheme is based on the application of wavelet-based surrogate time series that encodes the essential temporal and/or spatial fine-scale dynamics at the catalyst surface. The encoded dynamics are then used to generate statistically equivalent, randomized surrogate time series, which canmore » be linked to the continuum scale simulation. As a result, we illustrate an application of this approach using two different kinetic Monte Carlo simulations with different characteristic behaviors typical for heterogeneous chemical reactions.« less
Mathematical and Computational Aspects Related to Soil Modeling and Simulation
2017-09-26
and simulation challenges at the interface of applied math (homogenization, handling of discontinuous behavior, discrete vs. continuum representations...applied math tools need to be established and used to figure out how to impose compatible boundary conditions, how to better approximate the gradient
A dependence of quasielastic charged-current neutrino-nucleus cross sections
NASA Astrophysics Data System (ADS)
Van Dessel, N.; Jachowicz, N.; González-Jiménez, R.; Pandey, V.; Van Cuyck, T.
2018-04-01
Background: 12C has been and is still widely used in neutrino-nucleus scattering and oscillation experiments. More recently, 40Ar has emerged as an important nuclear target for current and future experiments. Liquid argon time projection chambers (LArTPCs) possess various advantages in measuring electroweak neutrino-nucleus cross sections. Concurrent theoretical research is an evident necessity. Purpose: 40Ar is larger than 12C , and one expects nuclear effects to play a bigger role in reactions. We present inclusive differential and total cross section results for charged-current neutrino scattering on 40Ar and perform a comparison with 12C , 16O , and 56Fe targets, to find out about the A -dependent behavior of model predictions. Method: Our model starts off with a Hartree-Fock description of the nucleus, with the nucleons interacting through a mean field generated by an effective Skyrme force. Long-range correlations are introduced by means of a continuum random phase approximation approach. Further methods to improve the accuracy of model predictions are also incorporated in the calculations. Results: We present calculations for 12C , 16O , 40Ar , and 56Fe , showcasing differential cross sections over a broad range of kinematic values in the quasielastic regime. We furthermore show flux-folded results for 40Ar and we discuss the differences between nuclear responses. Conclusions: At low incoming energies and forward scattering we identify an enhancement in the 40Ar cross section compared to 12C , as well as in the high ω (low Tμ) region across the entire studied Eν range. The contribution to the folded cross section of the reaction strength at values of ω lower than 50 MeV for forward scattering is sizable.
NASA Astrophysics Data System (ADS)
Dabiri, M.; Ghafouri, M.; Rohani Raftar, H. R.; Björk, T.
2018-03-01
Methods to estimate the strain-life curve, which were divided into three categories: simple approximations, artificial neural network-based approaches and continuum damage mechanics models, were examined, and their accuracy was assessed in strain-life evaluation of a direct-quenched high-strength steel. All the prediction methods claim to be able to perform low-cycle fatigue analysis using available or easily obtainable material properties, thus eliminating the need for costly and time-consuming fatigue tests. Simple approximations were able to estimate the strain-life curve with satisfactory accuracy using only monotonic properties. The tested neural network-based model, although yielding acceptable results for the material in question, was found to be overly sensitive to the data sets used for training and showed an inconsistency in estimation of the fatigue life and fatigue properties. The studied continuum damage-based model was able to produce a curve detecting early stages of crack initiation. This model requires more experimental data for calibration than approaches using simple approximations. As a result of the different theories underlying the analyzed methods, the different approaches have different strengths and weaknesses. However, it was found that the group of parametric equations categorized as simple approximations are the easiest for practical use, with their applicability having already been verified for a broad range of materials.
Analogies in electronic properties of graphene wormhole and perturbed nanocylinder
NASA Astrophysics Data System (ADS)
Pincak, R.; Smotlacha, J.
2013-11-01
The electronic properties of the wormhole and the perturbed nanocylinder were investigated using two different methods: the continuum gauge field-theory model that deals with the continuum approximation of the surface and the Haydock recursion method that transforms the surface into a simplier structure and deals with the nearest-neighbor interactions. Furthermore, the changes of the electronic properties were investigated for the case of enclosing the appropriate structure, and possible substitutes for the encloser were derived. Finally, the character of the electron flux through the perturbed wormhole was predicted from the model based on the multiwalled nanotubes. The effect of the "graphene blackhole" is introduced.
Histidine in Continuum Electrostatics Protonation State Calculations
Couch, Vernon; Stuchebruckhov, Alexei
2014-01-01
A modification to the standard continuum electrostatics approach to calculate protein pKas which allows for the decoupling of histidine tautomers within a two state model is presented. Histidine with four intrinsically coupled protonation states cannot be easily incorporated into a two state formalism because the interaction between the two protonatable sites of the imidazole ring is not purely electrostatic. The presented treatment, based on a single approximation of the interrelation between histidine’s charge states, allows for a natural separation of the two protonatable sites associated with the imidazole ring as well as the inclusion of all protonation states within the calculation. PMID:22072521
The continuum fusion theory of signal detection applied to a bi-modal fusion problem
NASA Astrophysics Data System (ADS)
Schaum, A.
2011-05-01
A new formalism has been developed that produces detection algorithms for model-based problems, in which one or more parameter values is unknown. Continuum Fusion can be used to generate different flavors of algorithm for any composite hypothesis testing problem. The methodology is defined by a fusion logic that can be translated into max/min conditions. Here it is applied to a simple sensor fusion model, but one for which the generalized likelihood ratio test is intractable. By contrast, a fusion-based response to the same problem can be devised that is solvable in closed form and represents a good approximation to the GLR test.
Delgado-Aparicio, L; Tritz, K; Kramer, T; Stutman, D; Finkenthal, M; Hill, K; Bitter, M
2010-10-01
A new set of analytic formulas describes the transmission of soft x-ray continuum radiation through a metallic foil for its application to fast electron temperature measurements in fusion plasmas. This novel approach shows good agreement with numerical calculations over a wide range of plasma temperatures in contrast with the solutions obtained when using a transmission approximated by a single-Heaviside function [S. von Goeler et al., Rev. Sci. Instrum. 70, 599 (1999)]. The new analytic formulas can improve the interpretation of the experimental results and thus contribute in obtaining fast temperature measurements in between intermittent Thomson scattering data.
NASA Technical Reports Server (NTRS)
Stamnes, S.; Ou, S. C.; Lin, Z.; Takano, Y.; Tsay, S. C.; Liou, K.N.; Stamnes, K.
2016-01-01
The reflection and transmission of polarized light for a cirrus cloud consisting of randomly oriented hexagonal columns were calculated by two very different vector radiative transfer models. The forward peak of the phase function for the ensemble-averaged ice crystals has a value of order 6 x 10(exp 3) so a truncation procedure was used to help produce numerically efficient yet accurate results. One of these models, the Vectorized Line-by-Line Equivalent model (VLBLE), is based on the doubling- adding principle, while the other is based on a vector discrete ordinates method (VDISORT). A comparison shows that the two models provide very close although not entirely identical results, which can be explained by differences in treatment of single scattering and the representation of the scattering phase matrix. The relative differences in the reflected I and Q Stokes parameters are within 0.5 for I and within 1.5 for Q for all viewing angles. In 1971 Hansen showed that for scattering by spherical particles the 3 x 3 approximation is sufficient to produce accurate results for the reflected radiance I and the degree of polarization (DOP), and he conjectured that these results would hold also for non-spherical particles. Simulations were conducted to test Hansen's conjecture for the cirrus cloud particles considered in this study. It was found that the 3 x 3 approximation also gives accurate results for the transmitted light, and for Q and U in addition to I and DOP. For these non-spherical ice particles the 3 x 3 approximation leads to an absolute error 2 x 10(exp -6) for the reflected and transmitted I, Q and U Stokes parameters. Hence, it appears to be an excellent approximation, which significantly reduces the computational complexity and burden required for multiple scattering calculations.
NASA Astrophysics Data System (ADS)
Stamnes, S.; Ou, S. C.; Lin, Z.; Takano, Y.; Tsay, S. C.; Liou, K. N.; Stamnes, K.
2017-05-01
The reflection and transmission of polarized light for a cirrus cloud consisting of randomly oriented hexagonal columns were calculated by two very different vector radiative transfer models. The forward peak of the phase function for the ensemble-averaged ice crystals has a value of order 6 ×103 so a truncation procedure was used to help produce numerically efficient yet accurate results. One of these models, the Vectorized Line-by-Line Equivalent model (VLBLE), is based on the doubling-adding principle, while the other is based on a vector discrete ordinates method (VDISORT). A comparison shows that the two models provide very close although not entirely identical results, which can be explained by differences in treatment of single scattering and the representation of the scattering phase matrix. The relative differences in the reflected I and Q Stokes parameters are within 0.5% for I and within 1.5% for Q for all viewing angles. In 1971 Hansen [1] showed that for scattering by spherical particles the 3×3 approximation is sufficient to produce accurate results for the reflected radiance I and the degree of polarization (DOP), and he conjectured that these results would hold also for non-spherical particles. Simulations were conducted to test Hansen's conjecture for the cirrus cloud particles considered in this study. It was found that the 3×3 approximation also gives accurate results for the transmitted light, and for Q and U in addition to I and DOP. For these non-spherical ice particles the 3×3 approximation leads to an absolute error < 2 ×10-6 for the reflected and transmitted I, Q and U Stokes parameters. Hence, it appears to be an excellent approximation, which significantly reduces the computational complexity and burden required for multiple scattering calculations.
Optimal approximation of harmonic growth clusters by orthogonal polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teodorescu, Razvan
2008-01-01
Interface dynamics in two-dimensional systems with a maximal number of conservation laws gives an accurate theoreticaI model for many physical processes, from the hydrodynamics of immiscible, viscous flows (zero surface-tension limit of Hele-Shaw flows), to the granular dynamics of hard spheres, and even diffusion-limited aggregation. Although a complete solution for the continuum case exists, efficient approximations of the boundary evolution are very useful due to their practical applications. In this article, the approximation scheme based on orthogonal polynomials with a deformed Gaussian kernel is discussed, as well as relations to potential theory.
Ionization potential depression and optical spectra in a Debye plasma model
NASA Astrophysics Data System (ADS)
Lin, Chengliang; Röpke, Gerd; Reinholz, Heidi; Kraeft, Wolf-Dietrich
2017-11-01
We show how optical spectra in dense plasmas are determined by the shift of energy levels as well as the broadening owing to collisions with the plasma particles. In lowest approximation, the interaction with the plasma particles is described by the RPA dielectric function, leading to the Debye shift of the continuum edge. The bound states remain nearly un-shifted, their broadening is calculated in Born approximation. The role of ionization potential depression as well as the Inglis-Teller effect are shown. The model calculations have to be improved going beyond the lowest (RPA) approximation when applying to WDM spectra.
Phase diagram and thermal properties of strong-interaction matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Fei; Chen, Jing; Liu, Yu-Xin
2016-05-20
We introduce a novel method for computing the (μ, T)-dependent pressure in continuum QCD, from which we obtain a complex phase diagram and predictions for thermal properties of the dressed-quark component of the system, providing the in-medium behavior of the related trace anomaly, speed of sound, latent heat, and heat capacity.
Grid-Independent Compressive Imaging and Fourier Phase Retrieval
ERIC Educational Resources Information Center
Liao, Wenjing
2013-01-01
This dissertation is composed of two parts. In the first part techniques of band exclusion(BE) and local optimization(LO) are proposed to solve linear continuum inverse problems independently of the grid spacing. The second part is devoted to the Fourier phase retrieval problem. Many situations in optics, medical imaging and signal processing call…
Romero, Eduardo E; Hernandez, Florencio E
2018-01-03
Herein we present our results on the study of the double proton transfer (DPT) mechanism in the adenine-thymine (AT) and guanine-cytosine (GC) base pairs, both in gas phase and in solution. The latter was modeled using the polarizable continuum method (PCM) in different solvents. According to our DFT calculations, the DPT may occur for both complexes in a stepwise mechanism in condensate phase. In gas phase only the GC base pair exhibits a concerted DPT mechanism. Using the Wigner's tunneling corrections to the transition state theory we demonstrate that such corrections are important for the prediction of the rate constants of both systems in gas and in condensate phase. We also show that (i) as the polarity of the medium decreases the equilibrium constant of the DPT reaction increases in both complexes, and (ii) that the equilibrium constant in the GC complex is four orders of magnitude larger than in AT. This observation suggests that the spontaneous mutations in DNA base pairs are more probable in GC than in AT.
NASA Astrophysics Data System (ADS)
Navrátil, Zdeněk; Morávek, Tomáš; Ráheľ, Jozef; Čech, Jan; Lalinský, Ondřej; Trunec, David
2017-05-01
Weak light emission (˜10-3 of active discharge signal; average count rate ˜ 1 photon s-1 nm-1) associated with surface charge relaxation during the dark phase of a helium diffuse coplanar barrier discharge was studied by optical emission spectroscopy, using a technique of phase-resolved single photon counting. The optical emission spectra of the dark phase contained luminescent bands of the dielectrics used (Al2O3, AlN) and spectral lines from the gas constituents (OH*, {{{N}}}2* , {{{N}}}2+* , He*, He{}2* , O*). During the charge relaxation event, a broad continuum appeared in the optical emission spectra, consisting of bremsstrahlung radiation and amplified luminescence of the dielectric barrier. The analysis presented suggests that the bremsstrahlung radiation originated from slow electrons colliding with neutral helium atoms. The fitting procedure we developed reproduced well the observed shape of the continuum. Moreover, it provided a method for the determination of electric field strength in the discharge during this particular phase. The electric field reached 1 kV cm-1 during the charge relaxation event.
NASA Astrophysics Data System (ADS)
Witte, B. B. L.; Fletcher, L. B.; Galtier, E.; Gamboa, E.; Lee, H. J.; Zastrau, U.; Redmer, R.; Glenzer, S. H.; Sperling, P.
2017-06-01
We present simulations using finite-temperature density-functional-theory molecular dynamics to calculate the dynamic electrical conductivity in warm dense aluminum. The comparison between exchange-correlation functionals in the Perdew-Burke-Enzerhof and Heyd-Scuseria-Enzerhof (HSE) approximation indicates evident differences in the density of states and the dc conductivity. The HSE calculations show excellent agreement with experimental Linac Coherent Light Source x-ray plasmon scattering spectra revealing plasmon damping below the widely used random phase approximation. These findings demonstrate non-Drude-like behavior of the dynamic conductivity that needs to be taken into account to determine the optical properties of warm dense matter.
Phonons around a soliton in a continuum model of t-(CH)x
NASA Astrophysics Data System (ADS)
Ono, Y.; Terai, A.; Wada, Y.
1986-05-01
The eigenvalue problem for phonons around a soliton in a continuum model of trans-polyacetylene t-(CH)x, the so-called TLM model (Takayama et al, 1980), is reinvestigated using a kernel which satisfies the correct boundary condition. The three localized modes are reproduced, two with even parity and one with odd parity. The phase-shift analysis of the extended modes confirms their existence if the one-dimensional version of Levinson's theorem is applicable to the present problem. It is found that the phase shifts of even and odd modes differ from each other in the long-wavelength limit. The conclusion of Ito et al. (1984), that the scattering of phonons by the soliton is reflectionless, has to be modified in this limit, where phonons suffer reflection from the soliton.
IUE observations of the 1987 superoutburst of the dwarf nova Z Cha
NASA Technical Reports Server (NTRS)
Harlaftis, E.; Hassall, B. J. M.; Sonneborn, G.; Naylor, T.; Charles, P. A.
1988-01-01
Low resolution IUE observations of the dwarf nova Z Cha during superoutburst are presented. These cover most of the development of the outburst and have sufficient time resolution to probe continuum and line behavior on orbital phase. The observed modulation on this phase is very similar to that observed in the related object OY Car. The results imply the presence of a cool spot on the edge of the edge of the accretion disk, which periodically occults the brighter inner disk. Details of the line behavior suggest that the line originated in an extended wind-emitting region. In contrast to archive spectra obtained in normal outburst, the continuum is fainter and redder, indicating that the entire superoutburst disk may be geometrically thicker than during a normal outburst.
Joint XMM-Newton, Chandra, and RXTE Observations of Cyg X-1 at Phase Zero
NASA Technical Reports Server (NTRS)
Pottschmidt, Katja
2008-01-01
We present first results of simultaneous observations of the high mass X-ray binary Cyg X-1 for 50 ks with XMM-Newton, Chandra-HETGS and RXTE in 2008 April. The observations are centered on phase 0 of the 5.6 d orbit when pronounced dips in the X-ray emission from the black hole are known to occur. The dips are due to highly variable absorption in the accretion stream from the O-star companion to the black hole. Compared to previous high resolution spectroscopy studies of the dip and non-dip emission with Chandra, the addition of XMM-Newton data allows for a better determination of the continuum, especially through the broad iron line region (with RXTE constraining the greater than 10 keV continuum).
Dispersion-free continuum two-dimensional electronic spectrometer
Zheng, Haibin; Caram, Justin R.; Dahlberg, Peter D.; Rolczynski, Brian S.; Viswanathan, Subha; Dolzhnikov, Dmitriy S.; Khadivi, Amir; Talapin, Dmitri V.; Engel, Gregory S.
2015-01-01
Electronic dynamics span broad energy scales with ultrafast time constants in the condensed phase. Two-dimensional (2D) electronic spectroscopy permits the study of these dynamics with simultaneous resolution in both frequency and time. In practice, this technique is sensitive to changes in nonlinear dispersion in the laser pulses as time delays are varied during the experiment. We have developed a 2D spectrometer that uses broadband continuum generated in argon as the light source. Using this visible light in phase-sensitive optical experiments presents new challenges in implementation. We demonstrate all-reflective interferometric delays using angled stages. Upon selecting an ~180 nm window of the available bandwidth at ~10 fs compression, we probe the nonlinear response of broadly absorbing CdSe quantum dots and electronic transitions of Chlorophyll a. PMID:24663470
SYMBMAT: Symbolic computation of quantum transition matrix elements
NASA Astrophysics Data System (ADS)
Ciappina, M. F.; Kirchner, T.
2012-08-01
We have developed a set of Mathematica notebooks to compute symbolically quantum transition matrices relevant for atomic ionization processes. The utilization of a symbolic language allows us to obtain analytical expressions for the transition matrix elements required in charged-particle and laser induced ionization of atoms. Additionally, by using a few simple commands, it is possible to export these symbolic expressions to standard programming languages, such as Fortran or C, for the subsequent computation of differential cross sections or other observables. One of the main drawbacks in the calculation of transition matrices is the tedious algebraic work required when initial states other than the simple hydrogenic 1s state need to be considered. Using these notebooks the work is dramatically reduced and it is possible to generate exact expressions for a large set of bound states. We present explicit examples of atomic collisions (in First Born Approximation and Distorted Wave Theory) and laser-matter interactions (within the Dipole and Strong Field Approximations and different gauges) using both hydrogenic wavefunctions and Slater-Type Orbitals with arbitrary nlm quantum numbers as initial states. Catalogue identifier: AEMI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 71 628 No. of bytes in distributed program, including test data, etc.: 444 195 Distribution format: tar.gz Programming language: Mathematica Computer: Single machines using Linux or Windows (with cores with any clock speed, cache memory and bits in a word) Operating system: Any OS that supports Mathematica. The notebooks have been tested under Windows and Linux and with versions 6.x, 7.x and 8.x Classification: 2.6 Nature of problem: The notebooks generate analytical expressions for quantum transition matrix elements required in diverse atomic processes: ionization by ion, electron, or photon impact and ionization within the framework of strong field physics. In charged-particle collisions approaches based on perturbation theory enjoy widespread utilization. Accordingly, we have chosen the First Born Approximation and Distorted Wave theories as examples. In light-matter interactions, the main ingredient for many types of calculations is the dipole transition matrix in its different formulations, i.e. length, velocity, and acceleration gauges. In all these cases the transitions of interest occur between a bound state and a continuum state which can be described in different ways. With the notebooks developed in the present work it is possible to calculate transition matrix elements analytically for any set of quantum numbers nlm of initial hydrogenic states or Slater-Type Orbitals and for plane waves or Coulomb waves as final continuum states. Solution method: The notebooks employ symbolic computation to generate analytical expressions for transition matrix elements used in both collision and light-matter interaction physics. fba_hyd.nb - This notebook computes analytical expressions for the transition matrix of collision-induced ionization in the First Born Approximation (FBA). The transitions considered are from a bound hydrogenic state with arbitrary quantum numbers nlm to a continuum state represented by a plane wave (PW) or a Coulomb wave (CW). distorted_hyd.nb - This notebook computes analytical expressions for the transition matrix of collision-induced ionization in Distorted Wave (DW) theories. The transitions considered are from a (distorted) bound hydrogenic state with arbitrary quantum numbers nlm to a distorted-wave continuum state. The computations are based on scalar and vectorial integrals (see the text for details). dipoleLength_hyd.nb - This notebook computes analytical expressions for the dipole transition matrix in length gauge. The transitions considered are from a bound hydrogenic state with arbitrary quantum numbers nlm to a continuum state represented by a PW (the Strong Field Approximation (SFA)) or a CW (the Coulomb-Volkov Approximation (CVA)). dipoleVelocity_hyd.nb - This notebook computes analytical expressions for the dipole transition matrix in velocity gauge. The transitions considered are from a bound hydrogenic state with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA) or a CW (the CVA). dipoleAcceleration_hyd.nb - This notebook computes analytical expressions for the dipole transition matrix in acceleration gauge. The transitions considered are from a bound hydrogenic state with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA). For the case of the CVA we only include the transition from the 1s state to a continuum state represented by a CW. fba_STO.nb - This notebook computes analytical expressions for the transition matrix of collision-induced ionization in the FBA. The transitions considered are from a Slater-Type Orbital (STO) with arbitrary quantum numbers nlm to a continuum state represented by a PW or a CW. distorted_STO.nb - This notebook computes analytical expressions for the transition matrix of collision-induced ionization in DW theories. The transitions considered are from a (distorted) STO with arbitrary quantum numbers nlm to a distorted-wave continuum state. The computations are based on scalar and vectorial integrals (see the text for details). dipoleLength_STO.nb - This notebook computes analytical expressions for the dipole transition matrix in length gauge. The transitions considered are from an STO with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA) or a CW (the CVA). dipoleVelocity_STO.nb - This notebook computes analytical expressions for the dipole transition matrix in velocity gauge. The transitions considered are from an STO with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA) or a CW (the CVA). dipoleAcceleration_STO.nb - This notebook computes analytical expressions for the dipole transition matrix in acceleration gauge. The transitions considered are from an STO with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA). The symbolic expressions obtained within each notebook can be exported to standard programming languages such as Fortran or C using the Format.m package (see the text and Ref. Sofroniou (1993) [16] for details). Running time: Computational times vary according to the transition matrix selected and quantum numbers nlm of the initial state used. The typical running time is several minutes, but it will take longer for large values of nlm.
Li, Hui
2009-11-14
Linear response and variational treatment are formulated for Hartree-Fock (HF) and Kohn-Sham density functional theory (DFT) methods and combined discrete-continuum solvation models that incorporate self-consistently induced dipoles and charges. Due to the variational treatment, analytic nuclear gradients can be evaluated efficiently for these discrete and continuum solvation models. The forces and torques on the induced point dipoles and point charges can be evaluated using simple electrostatic formulas as for permanent point dipoles and point charges, in accordance with the electrostatic nature of these methods. Implementation and tests using the effective fragment potential (EFP, a polarizable force field) method and the conductorlike polarizable continuum model (CPCM) show that the nuclear gradients are as accurate as those in the gas phase HF and DFT methods. Using B3LYP/EFP/CPCM and time-dependent-B3LYP/EFP/CPCM methods, acetone S(0)-->S(1) excitation in aqueous solution is studied. The results are close to those from full B3LYP/CPCM calculations.
Correlation between length and tilt of lipid tails
NASA Astrophysics Data System (ADS)
Kopelevich, Dmitry I.; Nagle, John F.
2015-10-01
It is becoming recognized from simulations, and to a lesser extent from experiment, that the classical Helfrich-Canham membrane continuum mechanics model can be fruitfully enriched by the inclusion of molecular tilt, even in the fluid, chain disordered, biologically relevant phase of lipid bilayers. Enriched continuum theories then add a tilt modulus κθ to accompany the well recognized bending modulus κ. Different enrichment theories largely agree for many properties, but it has been noticed that there is considerable disagreement in one prediction; one theory postulates that the average length of the hydrocarbon chain tails increases strongly with increasing tilt and another predicts no increase. Our analysis of an all-atom simulation favors the latter theory, but it also shows that the overall tail length decreases slightly with increasing tilt. We show that this deviation from continuum theory can be reconciled by consideration of the average shape of the tails, which is a descriptor not obviously includable in continuum theory.
NASA Astrophysics Data System (ADS)
Heßelmann, Andreas
2017-06-01
A many-body Green's-function method employing an infinite order summation of ring and exchange-ring contributions to the self-energy is presented. The individual correlation and relaxation contributions to the quasiparticle energies are calculated using an iterative scheme which utilizes density fitting of the particle-hole, particle-particle and hole-hole densities. It is shown that the ionization energies and electron affinities of this approach agree better with highly accurate coupled-cluster singles and doubles with perturbative triples energy difference results than those obtained with second-order Green's-function approaches. An analysis of the correlation and relaxation terms of the self-energy for the direct- and exchange-random-phase-approximation (RPA) Green's-function methods shows that the inclusion of exchange interactions leads to a reduction of the two contributions in magnitude. These differences, however, strongly cancel each other when summing the individual terms to the quasiparticle energies. Due to this, the direct- and exchange-RPA methods perform similarly for the description of ionization energies (IPs) and electron affinities (EAs). The coupled-cluster reference IPs and EAs, if corrected to the adiabatic energy differences between the neutral and charged molecules, were shown to be in very good agreement with experimental measurements.
NASA Astrophysics Data System (ADS)
Olsen, Thomas
2017-09-01
The random phase approximation (RPA) for total energies has previously been shown to provide a qualitatively correct description of static correlation in molecular systems, where density functional theory (DFT) with local functionals are bound to fail. This immediately poses the question of whether the RPA is also able to capture the correct physics of strongly correlated solids such as Mott insulators. Due to strong electron localization, magnetic interactions in such systems are dominated by superexchange, which in the simplest picture can be regarded as the analog of static correlation for molecules. In this paper, we investigate the performance of the RPA for evaluating both superexchange and direct exchange interactions in the magnetic solids NiO, MnO, Na3Cu2SbO6,Sr2CuO3,Sr2CuTeO6 , and a monolayer of CrI3, which were chosen to represent a broad variety of magnetic interactions. It is found that the RPA can accurately correct the large errors introduced by Hartree-Fock, independent of the input orbitals used for the perturbative expansion. However, in most cases, accuracies similar to RPA can be obtained with DFT+U, which is significantly simpler from a computational point of view.
Beta decay of 187Re and cosmochronology
NASA Astrophysics Data System (ADS)
Ashktorab, K.; Jänecke, J. W.; Becchetti, F. D.
1993-06-01
Uncertainties which limit the use of the 187-187Os isobaric pair as a cosmochronometer for the age of the galaxy and the universe include those of the partial half-lives of the continuum and bound-state decays of 187Re. While the total half-life of the decay is well established, the partial half-life for the continuum decay is uncertain, and several previous measurements are not compatible with each other. A high-temperature quartz proportional counter has been used in this work to remeasure the continuum decay of 187Re by introducing a metallo-organic rhenium compound into the counting gas. The measured beta end-point energy for the continuum decay of neutral 187Re to singly ionized 187Os of 2.70+/-0.09 keV agrees with earlier results. However, the present half-life measurement of (45+/-3) Gyr agrees within the quoted uncertainties only with the earlier measurement of Payne [Ph.D. thesis, University of Glasgow, 1965 (unpublished)] and Drever (private communication). The new half-life for the continuum decay and the total half-life of (43.5+/-1.3) Gyr, as reported by Linder et al. [Nature (London) 320, 246 (1986)] yield a branching ratio for the bound-state decay into discrete atomic states of (3+/-6)%. This is in agreement with the most recent calculated theoretical branching ratio of approximately 1%.
NASA Astrophysics Data System (ADS)
Ishii, Nobuhisa; Kaneshima, Keisuke; Kanai, Teruto; Watanabe, Shuntaro; Itatani, Jiro
2018-01-01
An optical parametric chirped-pulse amplifier (OPCPA) based on bismuth triborate (BiB3O6, BIBO) crystals has been developed to deliver 1.5 mJ, 10.1 fs optical pulses around 1.6 μm with a repetition rate of 1 kHz and a stable carrier-envelope phase. The seed and pump pulses of the BIBO-based OPCPA are provided from two Ti:sapphire chirped-pulse amplification (CPA) systems. In both CPA systems, transmission gratings are used in the stretchers and compressors that result in a high throughput and robust operation without causing any thermal problem and optical damage. The seed pulses of the OPCPA are generated by intrapulse frequency mixing of a spectrally broadened continuum, temporally stretched to approximately 5 ps then, and amplified to more than 1.5 mJ. The amplified pulses are compressed in a fused silica block down to 10.1 fs. This BIBO-based OPCPA has been applied to high-flux high harmonic generation beyond the carbon K edge at 284 eV. The high-flux soft-x-ray continuum allows measuring the x-ray absorption near-edge structure of the carbon K edge within 2 min, which is shorter than a typical measurement time using synchrotron-based light sources. This laser-based table-top soft-x-ray source is a promising candidate for ultrafast soft x-ray spectroscopy with femtosecond to attosecond time resolution.
NASA Astrophysics Data System (ADS)
Huber, M.; Keller, F.; Säckel, W.; Hirschler, M.; Kunz, P.; Hassanizadeh, S. M.; Nieken, U.
2016-04-01
The description of wetting phenomena is a challenging problem on every considerable length-scale. The behavior of interfaces and contact lines on the continuum scale is caused by intermolecular interactions like the Van der Waals forces. Therefore, to describe surface tension and the resulting dynamics of interfaces and contact lines on the continuum scale, appropriate formulations must be developed. While the Continuum Surface Force (CSF) model is well-engineered for the description of interfaces, there is still a lack of treatment of contact lines, which are defined by the intersection of an ending fluid interface and a solid boundary surface. In our approach we use a balance equation for the contact line and extend the Navier-Stokes equations in analogy to the extension of a two-phase interface in the CSF model. Since this model depicts a physically motivated approach on the continuum scale, no fitting parameters are introduced and the deterministic description leads to a dynamical evolution of the system. As verification of our theory, we show a Smoothed Particle Hydrodynamics (SPH) model and simulate the evolution of droplet shapes and their corresponding contact angles.
NASA Astrophysics Data System (ADS)
Hahn, Oliver; Angulo, Raul E.
2016-01-01
N-body simulations are essential for understanding the formation and evolution of structure in the Universe. However, the discrete nature of these simulations affects their accuracy when modelling collisionless systems. We introduce a new approach to simulate the gravitational evolution of cold collisionless fluids by solving the Vlasov-Poisson equations in terms of adaptively refineable `Lagrangian phase-space elements'. These geometrical elements are piecewise smooth maps between Lagrangian space and Eulerian phase-space and approximate the continuum structure of the distribution function. They allow for dynamical adaptive splitting to accurately follow the evolution even in regions of very strong mixing. We discuss in detail various one-, two- and three-dimensional test problems to demonstrate the performance of our method. Its advantages compared to N-body algorithms are: (I) explicit tracking of the fine-grained distribution function, (II) natural representation of caustics, (III) intrinsically smooth gravitational potential fields, thus (IV) eliminating the need for any type of ad hoc force softening. We show the potential of our method by simulating structure formation in a warm dark matter scenario. We discuss how spurious collisionality and large-scale discreteness noise of N-body methods are both strongly suppressed, which eliminates the artificial fragmentation of filaments. Therefore, we argue that our new approach improves on the N-body method when simulating self-gravitating cold and collisionless fluids, and is the first method that allows us to explicitly follow the fine-grained evolution in six-dimensional phase-space.
Systematic Onset of Periodic Patterns in Random Disk Packings
NASA Astrophysics Data System (ADS)
Topic, Nikola; Pöschel, Thorsten; Gallas, Jason A. C.
2018-04-01
We report evidence of a surprising systematic onset of periodic patterns in very tall piles of disks deposited randomly between rigid walls. Independently of the pile width, periodic structures are always observed in monodisperse deposits containing up to 1 07 disks. The probability density function of the lengths of disordered transient phases that precede the onset of periodicity displays an approximately exponential tail. These disordered transients may become very large when the channel width grows without bound. For narrow channels, the probability density of finding periodic patterns of a given period displays a series of discrete peaks, which, however, are washed out completely when the channel width grows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.
2016-09-30
Finite element (FE) continuum damage mechanics (CDM) models have been developed to simulate and model dual-phase joints and cracked joints for improved analysis of SiC materials in nuclear environments. This report extends the analysis from the last reporting cycle by including preliminary thermomechanical analyses of cracked joints and implementation of dual-phase damage models.
NASA Astrophysics Data System (ADS)
Egwolf, Bernhard; Tavan, Paul
2004-01-01
We extend our continuum description of solvent dielectrics in molecular-dynamics (MD) simulations [B. Egwolf and P. Tavan, J. Chem. Phys. 118, 2039 (2003)], which has provided an efficient and accurate solution of the Poisson equation, to ionic solvents as described by the linearized Poisson-Boltzmann (LPB) equation. We start with the formulation of a general theory for the electrostatics of an arbitrarily shaped molecular system, which consists of partially charged atoms and is embedded in a LPB continuum. This theory represents the reaction field induced by the continuum in terms of charge and dipole densities localized within the molecular system. Because these densities cannot be calculated analytically for systems of arbitrary shape, we introduce an atom-based discretization and a set of carefully designed approximations. This allows us to represent the densities by charges and dipoles located at the atoms. Coupled systems of linear equations determine these multipoles and can be rapidly solved by iteration during a MD simulation. The multipoles yield the reaction field forces and energies. Finally, we scrutinize the quality of our approach by comparisons with an analytical solution restricted to perfectly spherical systems and with results of a finite difference method.
Role of phase synchronisation in turbulence
NASA Astrophysics Data System (ADS)
Moradi, Sara; Teaca, Bogdan; Anderson, Johan
2017-11-01
The role of the phase dynamics in turbulence is investigated. As a demonstration of the importance of the phase dynamics, a simplified system is used, namely the one-dimensional Burgers equation, which is evolved numerically. The system is forced via a known external force, with two components that are added into the evolution equations of the amplitudes and the phase of the Fourier modes, separately. In this way, we are able to control the impact of the force on the dynamics of the phases. In the absence of the direct forcing in the phase equation, it is observed that the phases are not stochastic as assumed in the Random Phase Approximation (RPA) models, and in contrast, the non-linear couplings result in intermittent locking of the phases to ± π/2. The impact of the force, applied purely on the phases, is to increase the occurrence of the phase locking events in which the phases of the modes in a wide k range are now locked to ± π/2, leading to a change in the dynamics of both phases and amplitudes, with a significant localization of the real space flow structures.
A continuum theory for two-phase flows of particulate solids: application to Poiseuille flows
NASA Astrophysics Data System (ADS)
Monsorno, Davide; Varsakelis, Christos; Papalexandris, Miltiadis V.
2015-11-01
In the first part of this talk, we present a novel two-phase continuum model for incompressible fluid-saturated granular flows. The model accounts for both compaction and shear-induced dilatancy and accommodates correlations for the granular rheology in a thermodynamically consistent way. In the second part of this talk, we exercise this two-phase model in the numerical simulation of a fully-developed Poiseuille flow of a dense suspension. The numerical predictions are shown to compare favorably against experimental measurements and confirm that the model can capture the important characteristics of the flow field, such as segregation and formation of plug zones. Finally, results from parametric studies with respect to the initial concentration, the magnitude of the external forcing and the width of the channel are presented and the role of these physical parameters is quantified. Financial Support has been provided by SEDITRANS, an Initial Training Network of the European Commission's 7th Framework Programme
Effects of Composite Pions on the Chiral Condensate within the PNJL Model at Finite Temperature
NASA Astrophysics Data System (ADS)
Blaschke, D.; Dubinin, A.; Ebert, D.; Friesen, A. V.
2018-05-01
We investigate the effect of composite pions on the behaviour of the chiral condensate at finite temperature within the Polyakov-loop improved NJL model. To this end we treat quark-antiquark correlations in the pion channel (bound states and scattering continuum) within a Beth-Uhlenbeck approach that uses medium-dependent phase shifts. A striking medium effect is the Mott transition which occurs when the binding energy vanishes and the discrete pion bound state merges the continuum. This transition is triggered by the lowering of the continuum edge due to the chiral restoration transition. This in turn also entails a modification of the Polyakov-loop so that the SU(3) center symmetry gets broken at finite temperature and dynamical quarks (and gluons) appear in the system, taking over the role of the dominant degrees of freedom from the pions. At low temperatures our model reproduces the chiral perturbation theory result for the chiral condensate while at high temperatures the PNJL model result is recovered. The new aspect of the current work is a consistent treatment of the chiral restoration transition region within the Beth-Uhlenbeck approach on the basis of mesonic phase shifts for the treatment of the correlations.
Why phase errors affect the electron function more than amplitude errors.
Lattman, Eaton; DeRosier, David
2008-03-01
If Fexp(ialpha) are the set of structure factors for a structure f, the amplitudes can be converted to those of an uncorrelated structure g (amplitude swapping) by multiplying each F by the positive number G/F. Correspondingly, the image f is convoluted with k, the Fourier transform of G/F; k has a large peak at the origin, so that f * k approximately f. For swapped phases, the image f is convoluted with l, the Fourier transform of exp(iDeltaalpha), where Deltaalpha, the phase difference between F and G, is a random variable; l does not have a large peak at the origin, so that f * l does not resemble f. The paper provides quantitative descriptions of these arguments.
Dalaudier, F; Kan, V; Gurvich, A S
2001-02-20
We describe refractive and chromatic effects, both regular and random, that occur during star occultations by the Earth's atmosphere. The scintillation that results from random density fluctuations, as well as the consequences of regular chromatic refraction, is qualitatively described. The resultant chromatic scintillation will produce random features on the Global Ozone Monitoring by Occultation of Stars (GOMOS) spectrometer, with an amplitude comparable with that of some of the real absorbing features that result from atmospheric constituents. A correction method that is based on the use of fast photometer signals is described, and its efficiency is discussed. We give a qualitative (although accurate) description of the phenomena, including numerical values when needed. Geometrical optics and the phase-screen approximation are used to keep the description simple.
The importance of fluctuations in fluid mixing.
Kadau, Kai; Rosenblatt, Charles; Barber, John L; Germann, Timothy C; Huang, Zhibin; Carlès, Pierre; Alder, Berni J
2007-05-08
A ubiquitous example of fluid mixing is the Rayleigh-Taylor instability, in which a heavy fluid initially sits atop a light fluid in a gravitational field. The subsequent development of the unstable interface between the two fluids is marked by several stages. At first, each interface mode grows exponentially with time before transitioning to a nonlinear regime characterized by more complex hydrodynamic mixing. Unfortunately, traditional continuum modeling of this process has generally been in poor agreement with experiment. Here, we indicate that the natural, random fluctuations of the flow field present in any fluid, which are neglected in continuum models, can lead to qualitatively and quantitatively better agreement with experiment. We performed billion-particle atomistic simulations and magnetic levitation experiments with unprecedented control of initial interface conditions. A comparison between our simulations and experiments reveals good agreement in terms of the growth rate of the mixing front as well as the new observation of droplet breakup at later times. These results improve our understanding of many fluid processes, including interface phenomena that occur, for example, in supernovae, the detachment of droplets from a faucet, and ink jet printing. Such instabilities are also relevant to the possible energy source of inertial confinement fusion, in which a millimeter-sized capsule is imploded to initiate nuclear fusion reactions between deuterium and tritium. Our results suggest that the applicability of continuum models would be greatly enhanced by explicitly including the effects of random fluctuations.
NASA Technical Reports Server (NTRS)
Schlegel, E.; Swank, Jean (Technical Monitor)
2001-01-01
Analysis of 80 ks ASCA (Advanced Satellite for Cosmology and Astrophysics) and 60 ks ROSAT HRI (High Resolution Image) observations of the face-on spiral galaxy NGC 6946 are presented. The ASCA image is the first observation of this galaxy above approximately 2 keV. Diffuse emission may be present in the inner approximately 4' extending to energies above approximately 2-3 keV. In the HRI data, 14 pointlike sources are detected, the brightest two being a source very close to the nucleus and a source to the northeast that corresponds to a luminous complex of interacting supernova remnants (SNRs). We detect a point source that lies approximately 30" west of the SNR complex but with a luminosity -1115 of the SNR complex. None of the point sources show evidence of strong variability; weak variability would escape our detection. The ASCA spectrum of the SNR complex shows evidence for an emission line at approximately 0.9 keV that could be either Ne IX at approximately 0.915 keV or a blend of ion stages of Fe L-shell emission if the continuum is fitted with a power law. However, a two-component, Raymond-Smith thermal spectrum with no lines gives an equally valid continuum fit and may be more physically plausible given the observed spectrum below 3 keV. Adopting this latter model, we derive a density for the SNR complex of 10-35 cm(exp -3), consistent with estimates inferred from optical emission-line ratios. The complex's extraordinary X-ray luminosity may be related more to the high density of the surrounding medium than to a small but intense interaction region where two of the complex's SNRs are apparently colliding.
Hamiltonian lattice field theory: Computer calculations using variational methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zako, Robert L.
1991-12-03
I develop a variational method for systematic numerical computation of physical quantities -- bound state energies and scattering amplitudes -- in quantum field theory. An infinite-volume, continuum theory is approximated by a theory on a finite spatial lattice, which is amenable to numerical computation. I present an algorithm for computing approximate energy eigenvalues and eigenstates in the lattice theory and for bounding the resulting errors. I also show how to select basis states and choose variational parameters in order to minimize errors. The algorithm is based on the Rayleigh-Ritz principle and Kato`s generalizations of Temple`s formula. The algorithm could bemore » adapted to systems such as atoms and molecules. I show how to compute Green`s functions from energy eigenvalues and eigenstates in the lattice theory, and relate these to physical (renormalized) coupling constants, bound state energies and Green`s functions. Thus one can compute approximate physical quantities in a lattice theory that approximates a quantum field theory with specified physical coupling constants. I discuss the errors in both approximations. In principle, the errors can be made arbitrarily small by increasing the size of the lattice, decreasing the lattice spacing and computing sufficiently long. Unfortunately, I do not understand the infinite-volume and continuum limits well enough to quantify errors due to the lattice approximation. Thus the method is currently incomplete. I apply the method to real scalar field theories using a Fock basis of free particle states. All needed quantities can be calculated efficiently with this basis. The generalization to more complicated theories is straightforward. I describe a computer implementation of the method and present numerical results for simple quantum mechanical systems.« less
The Free-Free Absorption Coefficients of the Negative Helium Ion
NASA Astrophysics Data System (ADS)
John, T. L.
1994-08-01
Free-free absorption coefficients of the negative helium ion are calculated by a phaseshift approximation, using continuum data that accurately account for electron-atom correlation and polarization. The approximation is considered to yield results within a few per cent of numerical values for wavelengths greater than 1 m, over the temperature range 1400-10080 K. These coefficients are expected to give the best current estimates of He - continuous absorption. Key words: atomic data - atomic processes - stars: atmospheres - infrared: general.
2008-10-30
rigorous Poisson-based methods generally apply a Lee-Richards mo- lecular surface.9 This surface is considered the de facto description for continuum...definition and calculation of the Born radii. To evaluate the Born radii, two approximations are invoked. The first is the Coulomb field approximation (CFA...energy term, and depending on the particular GB formulation, higher-order non- Coulomb correction terms may be added to the Born radii to account for the
Graf, Daniel; Beuerle, Matthias; Schurkus, Henry F; Luenser, Arne; Savasci, Gökcen; Ochsenfeld, Christian
2018-05-08
An efficient algorithm for calculating the random phase approximation (RPA) correlation energy is presented that is as accurate as the canonical molecular orbital resolution-of-the-identity RPA (RI-RPA) with the important advantage of an effective linear-scaling behavior (instead of quartic) for large systems due to a formulation in the local atomic orbital space. The high accuracy is achieved by utilizing optimized minimax integration schemes and the local Coulomb metric attenuated by the complementary error function for the RI approximation. The memory bottleneck of former atomic orbital (AO)-RI-RPA implementations ( Schurkus, H. F.; Ochsenfeld, C. J. Chem. Phys. 2016 , 144 , 031101 and Luenser, A.; Schurkus, H. F.; Ochsenfeld, C. J. Chem. Theory Comput. 2017 , 13 , 1647 - 1655 ) is addressed by precontraction of the large 3-center integral matrix with the Cholesky factors of the ground state density reducing the memory requirements of that matrix by a factor of [Formula: see text]. Furthermore, we present a parallel implementation of our method, which not only leads to faster RPA correlation energy calculations but also to a scalable decrease in memory requirements, opening the door for investigations of large molecules even on small- to medium-sized computing clusters. Although it is known that AO methods are highly efficient for extended systems, where sparsity allows for reaching the linear-scaling regime, we show that our work also extends the applicability when considering highly delocalized systems for which no linear scaling can be achieved. As an example, the interlayer distance of two covalent organic framework pore fragments (comprising 384 atoms in total) is analyzed.
Continuous Shape Estimation of Continuum Robots Using X-ray Images
Lobaton, Edgar J.; Fu, Jinghua; Torres, Luis G.; Alterovitz, Ron
2015-01-01
We present a new method for continuously and accurately estimating the shape of a continuum robot during a medical procedure using a small number of X-ray projection images (e.g., radiographs or fluoroscopy images). Continuum robots have curvilinear structure, enabling them to maneuver through constrained spaces by bending around obstacles. Accurately estimating the robot’s shape continuously over time is crucial for the success of procedures that require avoidance of anatomical obstacles and sensitive tissues. Online shape estimation of a continuum robot is complicated by uncertainty in its kinematic model, movement of the robot during the procedure, noise in X-ray images, and the clinical need to minimize the number of X-ray images acquired. Our new method integrates kinematics models of the robot with data extracted from an optimally selected set of X-ray projection images. Our method represents the shape of the continuum robot over time as a deformable surface which can be described as a linear combination of time and space basis functions. We take advantage of probabilistic priors and numeric optimization to select optimal camera configurations, thus minimizing the expected shape estimation error. We evaluate our method using simulated concentric tube robot procedures and demonstrate that obtaining between 3 and 10 images from viewpoints selected by our method enables online shape estimation with errors significantly lower than using the kinematic model alone or using randomly spaced viewpoints. PMID:26279960
Continuous Shape Estimation of Continuum Robots Using X-ray Images.
Lobaton, Edgar J; Fu, Jinghua; Torres, Luis G; Alterovitz, Ron
2013-05-06
We present a new method for continuously and accurately estimating the shape of a continuum robot during a medical procedure using a small number of X-ray projection images (e.g., radiographs or fluoroscopy images). Continuum robots have curvilinear structure, enabling them to maneuver through constrained spaces by bending around obstacles. Accurately estimating the robot's shape continuously over time is crucial for the success of procedures that require avoidance of anatomical obstacles and sensitive tissues. Online shape estimation of a continuum robot is complicated by uncertainty in its kinematic model, movement of the robot during the procedure, noise in X-ray images, and the clinical need to minimize the number of X-ray images acquired. Our new method integrates kinematics models of the robot with data extracted from an optimally selected set of X-ray projection images. Our method represents the shape of the continuum robot over time as a deformable surface which can be described as a linear combination of time and space basis functions. We take advantage of probabilistic priors and numeric optimization to select optimal camera configurations, thus minimizing the expected shape estimation error. We evaluate our method using simulated concentric tube robot procedures and demonstrate that obtaining between 3 and 10 images from viewpoints selected by our method enables online shape estimation with errors significantly lower than using the kinematic model alone or using randomly spaced viewpoints.
NASA Astrophysics Data System (ADS)
Malkin, B. Z.; Abishev, N. M.; Baibekov, E. I.; Pytalev, D. S.; Boldyrev, K. N.; Popova, M. N.; Bettinelli, M.
2017-07-01
We construct a distribution function of the strain-tensor components induced by point defects in an elastically anisotropic continuum, which can be used to account quantitatively for many effects observed in different branches of condensed matter physics. Parameters of the derived six-dimensional generalized Lorentz distribution are expressed through the integrals computed over the array of strains. The distribution functions for the cubic diamond and elpasolite crystals and tetragonal crystals with the zircon and scheelite structures are presented. Our theoretical approach is supported by a successful modeling of specific line shapes of singlet-doublet transitions of the T m3 + ions doped into AB O4 (A =Y , Lu; B =P , V) crystals with zircon structure, observed in high-resolution optical spectra. The values of the defect strengths of impurity T m3 + ions in the oxygen surroundings, obtained as a result of this modeling, can be used in future studies of random strains in different rare-earth oxides.
Modelling the light-scattering properties of a planetary-regolith analog sample
NASA Astrophysics Data System (ADS)
Vaisanen, T.; Markkanen, J.; Hadamcik, E.; Levasseur-Regourd, A. C.; Lasue, J.; Blum, J.; Penttila, A.; Muinonen, K.
2017-12-01
Solving the scattering properties of asteroid surfaces can be made cheaper, faster, and more accurate with reliable physics-based electromagnetic scattering programs for large and dense random media. Existing exact methods fail to produce solutions for such large systems and it is essential to develop approximate methods. Radiative transfer (RT) is an approximate method which works for sparse random media such as atmospheres fails when applied to dense media. In order to make the method applicable to dense media, we have developed a radiative-transfer coherent-backscattering method (RT-CB) with incoherent interactions. To show the current progress with the RT-CB, we have modeled a planetary-regolith analog sample. The analog sample is a low-density agglomerate produced by random ballistic deposition of almost equisized silicate spheres studied using the PROGRA2-surf experiment. The scattering properties were then computed with the RT-CB assuming that the silicate spheres were equisized and that there were a Gaussian particle size distribution. The results were then compared to the measured data and the intensity plot is shown below. The phase functions are normalized to unity at the 40-deg phase angle. The tentative intensity modeling shows good match with the measured data, whereas the polarization modeling shows discrepancies. In summary, the current RT-CB modeling is promising, but more work needs to be carried out, in particular, for modeling the polarization. Acknowledgments. Research supported by European Research Council with Advanced Grant No. 320773 SAEMPL, Scattering and Absorption of ElectroMagnetic waves in ParticuLate media. Computational resources provided by CSC - IT Centre for Science Ltd, Finland.
Precision Fe K-Alpha and Fe K-Beta Line Spectroscopy of the Seyfert 1.9 Galaxy NGC 2992 with Suzaku
NASA Technical Reports Server (NTRS)
Yaqoob, Tahir; Murphy, Kendrah D.; Griffiths, Richard E.; Haba, Yoshito; Inoue, Hajime; Itoh, Takeshi; Kelley, Richard; Kokubun, Motohide; Markowitz, Alex; Mushotzky, Richard;
2006-01-01
We present detailed time-averaged X-ray spectroscopy in the 0.5-10 keV band of the Seyfert 1.9 galaxy NGC 2992 with the Suzaku X-ray Imaging Spectrometers (XIS). The source had a factor approximately 3 higher 2-10 keV flux (approximately 1.2 x l0(exp -11) erg per square cm per s) than the historical minimum and a factor approximately 7 less than the historical maximum. The XIS spectrum of NGC 2992 can be described by several components. There is a primary continuum, modeled as a power-law with a photon index of Gamma = 1.57(sup +0.06) (sup -0.03) that is obscured by a Compton-thin absorber with a column density of 8.01(sup +0.6) (sup -0.5)x l0 (exp 21) per square cm. . There is another, weaker, unabsorbed power-law component (modeled with the same slope as the primary), that is likely to be due to the primary continuum being electron-scattered into our line-of-sight by a region extended on a scale of hundreds of parsecs. We measure the Thomson depth of the scattering zone to be Tau = 0.072 +/- 0.021. An optically-thin thermal continuum emission component, which probably originates in the same extended region, is included in the model and yields a temperature and luminosity of KT = 0.656(sup +0.088) (sup -0.0.61) keV and approximately 1.2 +/- 0.4 x l0 (exp 40) erg per s respectively. We detect an Fe K emission complex which we model with broad and narrow lines and we show that the intensities of the two components are decoupled at a confidence level > 3 sigma. The broad Fe K alpha line has an equivalent width of 118(sup +32) (sup -61) eV and could originate in an accretion disk (with inclination angle greater than approximately 30 deg) around the putative central black hole. The narrow Fe K alpha line has an equivalent width of 1632(sup +47) (sup -26) eV and is unresolved (FWHM < 4630 km per s) and likely originates in distant matter. The absolute flux in the narrow line implies that the column density out of the line-of-sight could be much higher than measured in the line-of-sight, and that the mean (historically-averaged) continuum luminosity responsible for forming the line could be a factor of several higher than that measured from the data. We also detect the Fe K Beta line (corresponding to the narrow Fe K alpha line) with a high signal-to-noise ratio and describe a new robust method to constrain the ionization state of Fe responsible for the Fe K alpha and Fe K Beta lines that does not require any knowledge of possible gravitational and Doppler energy shifts affecting the line energies. For the distant line-emitting matter (e. g. the putative obscuring torus) we deduce that the predominant ionization state is lower than Fe VIII (at 99% confidence), conservatively taking into account residual calibration uncertainties in the XIS energy scale and theoretical and experimental uncertainties in the Fe K fluorescent line energies. From the limits on a possible Compton-reflection continuum it is likely that the narrow Fe K alpha and Fe K Beta lines originate in a Compton-thin structure.
A statistical model of false negative and false positive detection of phase singularities.
Jacquemet, Vincent
2017-10-01
The complexity of cardiac fibrillation dynamics can be assessed by analyzing the distribution of phase singularities (PSs) observed using mapping systems. Interelectrode distance, however, limits the accuracy of PS detection. To investigate in a theoretical framework the PS false negative and false positive rates in relation to the characteristics of the mapping system and fibrillation dynamics, we propose a statistical model of phase maps with controllable number and locations of PSs. In this model, phase maps are generated from randomly distributed PSs with physiologically-plausible directions of rotation. Noise and distortion of the phase are added. PSs are detected using topological charge contour integrals on regular grids of varying resolutions. Over 100 × 10 6 realizations of the random field process are used to estimate average false negative and false positive rates using a Monte-Carlo approach. The false detection rates are shown to depend on the average distance between neighboring PSs expressed in units of interelectrode distance, following approximately a power law with exponents in the range of 1.14 to 2 for false negatives and around 2.8 for false positives. In the presence of noise or distortion of phase, false detection rates at high resolution tend to a non-zero noise-dependent lower bound. This model provides an easy-to-implement tool for benchmarking PS detection algorithms over a broad range of configurations with multiple PSs.
NASA Astrophysics Data System (ADS)
Beck, R.; Carilli, C. L.; Holdaway, M. A.; Klein, U.
1994-12-01
Radio continuum observations of the spiral galaxy NGC 253 with the Effelsberg and Very Large Array (VLA) telescopes reveal polarized emission from the bar and halo regions. Within the bar Faraday depolarization is strong at 1.5 and 5 GHz, due to ionized gas with ne approximately equal 0.1 - 3/cu cm which is mixed with turbulent magnetic fields of approximately equal 17 microG estimated strength. Even at 10 GHz the degree of polarization in the bar is low (only approximately equal 5% east and approximately equal 2% west of the nucleus) due to beam depolarization by unresolved tangled fields. In contrast, the magnetic fields in the halo are highly uniform, as indicated by fractional polarizations up to 40% at 10 GHz. Faraday depolarization in the halo at 1.5 GHz calls for a warm, clumpy gas component with ne approximately equal 0.02/cu cm and approximately equal 6 microG turbulent fields. We detected Faraday rotation in the bar, with rotation measures absolute value of RM approximately equal 100 rad/sq m (between 10 and 5 GHz) having different signs east and west of the nucleus. Below 5 GHz Faraday rotation is strongly reduced by the limited transparency for polarized emission in the bar. Faraday rotation in the halo in two regions at approximately 5 kpc above and below the plane with RM approximately equal -7 rad/sq m between 10 and 1.5 GHz can be ascribed to hot gas with mean value of ne approximately equal 0.002/cu cm and uniform fields along the line of sight of mean value of Bu parallel approximately equal -2 microG. The magnetic field structure in the bar and halo of NGC 253 is best described by the quadrupole-type dynamo mode SO, with a ring-like field in the bar and a field mainly parallel to the plane in a co-rotating halo. A major perturbation occurs in the east where the field is perpendicular to the plane and follows a 'spur'. The galactic wind is suppressed by the dominating plane-parallel field, except along the spur.
Dislocation Transport in Continuum Crystal Plasticity Simulations (First-year Report)
2011-12-01
plasticity model are taken from an existing implementation in ALE3D (Becker, 2004). A brief description is given below. An idealized, two...fluxes are determined on element faces during a first phase , and the deformation due to those fluxes is applied in the subsequent phase . This is...this first phase are averaged on the faces, giving values denoted as , where the superscript refers to the face number associated with the element
Gaussian theory for spatially distributed self-propelled particles
NASA Astrophysics Data System (ADS)
Seyed-Allaei, Hamid; Schimansky-Geier, Lutz; Ejtehadi, Mohammad Reza
2016-12-01
Obtaining a reduced description with particle and momentum flux densities outgoing from the microscopic equations of motion of the particles requires approximations. The usual method, we refer to as truncation method, is to zero Fourier modes of the orientation distribution starting from a given number. Here we propose another method to derive continuum equations for interacting self-propelled particles. The derivation is based on a Gaussian approximation (GA) of the distribution of the direction of particles. First, by means of simulation of the microscopic model, we justify that the distribution of individual directions fits well to a wrapped Gaussian distribution. Second, we numerically integrate the continuum equations derived in the GA in order to compare with results of simulations. We obtain that the global polarization in the GA exhibits a hysteresis in dependence on the noise intensity. It shows qualitatively the same behavior as we find in particles simulations. Moreover, both global polarizations agree perfectly for low noise intensities. The spatiotemporal structures of the GA are also in agreement with simulations. We conclude that the GA shows qualitative agreement for a wide range of noise intensities. In particular, for low noise intensities the agreement with simulations is better as other approximations, making the GA to an acceptable candidates of describing spatially distributed self-propelled particles.
Random vibration analysis of space flight hardware using NASTRAN
NASA Technical Reports Server (NTRS)
Thampi, S. K.; Vidyasagar, S. N.
1990-01-01
During liftoff and ascent flight phases, the Space Transportation System (STS) and payloads are exposed to the random acoustic environment produced by engine exhaust plumes and aerodynamic disturbances. The analysis of payloads for randomly fluctuating loads is usually carried out using the Miles' relationship. This approximation technique computes an equivalent load factor as a function of the natural frequency of the structure, the power spectral density of the excitation, and the magnification factor at resonance. Due to the assumptions inherent in Miles' equation, random load factors are often over-estimated by this approach. In such cases, the estimates can be refined using alternate techniques such as time domain simulations or frequency domain spectral analysis. Described here is the use of NASTRAN to compute more realistic random load factors through spectral analysis. The procedure is illustrated using Spacelab Life Sciences (SLS-1) payloads and certain unique features of this problem are described. The solutions are compared with Miles' results in order to establish trends at over or under prediction.
Continuum approaches for describing solid-gas and solid-liquid flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, P.; Harvey, J.; Levine, H.
Two-phase continuum models have been used to describe the multiphase flow properties of solid-gas and solid-liquid mixtures. The approach is limited in that it requires many fitting functions and parameters to be determined empirically, and it does not provide natural explanations for some of the qualitative behavior of solid-fluid flow. In this report, we explore a more recent single-phase continuum model proposed by Jenkins and Savage to describe granular flow. Jenkins and McTigue have proposed a modified model to describe the flow of dense suspensions, and hence, many of our results can be straight-forwardly extended to this flow regime asmore » well. The solid-fluid mixture is treated as a homogeneous, compressible fluid in which the particle fluctuations about the mean flow are described in terms of an effective temperature. The particle collisions are treated as inelastic. After an introduction in which we briefly comment on the present status of the field, we describe the details of the single-phase continuum model and analyze the microscopic and macroscopic flow conditions required for the approach to be valid. We then derive numerous qualitative predictions which can be empirically verified in small-scale experiments: The flow profiles are computed for simple boundary conditions, plane Couette flow and channel flow. Segregaion effects when there are two (or more) particle size are considered. The acoustic dispersion relation is derived and shown to predict that granular flow is supersonic. We point out that the analysis of flow instabilities is complicated by the finite compressibility of the solid-fluid mixture. For example, the large compressibility leads to interchange (Rayleigh-Taylor instabilities) in addition to the usual angular momentum interchange in standard (cylindrical) Couette flow. We conclude by describing some of the advantages and limitations of experimental techniques that might be used to test predictions for solid-fluid flow. 19 refs.« less
Mass-stiffness substructuring of an elastic metasurface for full transmission beam steering
NASA Astrophysics Data System (ADS)
Lee, Hyuk; Lee, Jun Kyu; Seung, Hong Min; Kim, Yoon Young
2018-03-01
The metasurface concept has a significant potential due to its novel wavefront-shaping functionalities that can be critically useful for ultrasonic and solid wave-based applications. To achieve the desired functionalities, elastic metasurfaces should cover full 2π phase shift and also acquire full transmission within subwavelength scale. However, they have not been explored much with respect to the elastic regime, because the intrinsic proportionality of mass-stiffness within the continuum elastic media causes an inevitable trade-off between abrupt phase shift and sufficient transmission. Our goal is to engineer an elastic metasurface that can realize an inverse relation between (amplified) effective mass and (weakened) stiffness in order to satisfy full 2π phase shift as well as full transmission. To achieve this goal, we propose a continuum elastic metasurface unit cell that is decomposed into two substructures, namely a mass-tuning substructure with a local dipolar resonator and a stiffness-tuning substructure composed of non-resonant multiply-perforated slits. We demonstrate analytically, numerically, and experimentally that this unique substructured unit cell can satisfy the required phase shift with high transmission. The substructuring enables independent tuning of the elastic properties over a wide range of values. We use a mass-spring model of the proposed continuum unit cell to investigate the working mechanism of the proposed metasurface. With the designed metasurface consisting of substructured unit cells embedded in an aluminum plate, we demonstrate that our metasurface can successfully realize anomalous steering and focusing of in-plane longitudinal ultrasonic beams. The proposed substructuring concept is expected to provide a new principle for the design of general elastic metasurfaces that can be used to efficiently engineer arbitrary wave profiles.
SN 2013fs and SN 2013fr: exploring the circumstellar-material diversity in Type II supernovae
NASA Astrophysics Data System (ADS)
Bullivant, Christopher; Smith, Nathan; Williams, G. Grant; Mauerhan, Jon C.; Andrews, Jennifer E.; Fong, Wen-Fai; Bilinski, Christopher; Kilpatrick, Charles D.; Milne, Peter A.; Fox, Ori D.; Cenko, S. Bradley; Filippenko, Alexei V.; Zheng, WeiKang; Kelly, Patrick L.; Clubb, Kelsey I.
2018-05-01
We present photometry and spectroscopy of SN 2013fs and SN 2013fr in the first ˜100 d post-explosion. Both objects showed transient, relatively narrow H α emission lines characteristic of SNe IIn, but later resembled normal SNe II-P or SNe II-L, indicative of fleeting interaction with circumstellar material (CSM). SN 2013fs was discovered within 8 h of explosion; one of the earliest SNe discovered thus far. Its light curve exhibits a plateau, with spectra revealing strong CSM interaction at early times. It is a less luminous version of the transitional SN IIn PTF11iqb, further demonstrating a continuum of CSM interaction intensity between SNe II-P and SNe IIn. It requires dense CSM within 6.5 × 1014 cm of the progenitor, from a phase of advanced pre-SN mass loss beginning shortly before explosion. Spectropolarimetry of SN 2013fs shows little continuum polarization (˜0.5 per cent, consistent with zero), but noticeable line polarization during the plateau phase. SN 2013fr morphed from an SN IIn at early times to an SN II-L. After the first epoch, its narrow lines probably arose from host-galaxy emission, but the bright, narrow H α emission at early times may be intrinsic to the SN. As for SN 2013fs, this would point to a short-lived phase of strong CSM interaction if proven to be intrinsic, suggesting a continuum between SNe IIn and SNe II-L. It is a low-velocity SN II-L like SN 2009kr, but more luminous. SN 2013fr also developed an infrared excess at later times, due to warm CSM dust that requires a more sustained phase of strong pre-SN mass loss.
NASA Astrophysics Data System (ADS)
Bi, Lei; Yang, Ping
2016-07-01
The accuracy of the physical-geometric optics (PG-O) approximation is examined for the simulation of electromagnetic scattering by nonspherical dielectric particles. This study seeks a better understanding of the tunneling effect on the phase matrix by employing the invariant imbedding method to rigorously compute the zeroth-order Debye series, from which the tunneling efficiency and the phase matrix corresponding to the diffraction and external reflection are obtained. The tunneling efficiency is shown to be a factor quantifying the relative importance of the tunneling effect over the Fraunhofer diffraction near the forward scattering direction. Due to the tunneling effect, different geometries with the same projected cross section might have different diffraction patterns, which are traditionally assumed to be identical according to the Babinet principle. For particles with a fixed orientation, the PG-O approximation yields the external reflection pattern with reasonable accuracy, but ordinarily fails to predict the locations of peaks and minima in the diffraction pattern. The larger the tunneling efficiency, the worse the PG-O accuracy is at scattering angles less than 90°. If the particles are assumed to be randomly oriented, the PG-O approximation yields the phase matrix close to the rigorous counterpart, primarily due to error cancellations in the orientation-average process. Furthermore, the PG-O approximation based on an electric field volume-integral equation is shown to usually be much more accurate than the Kirchhoff surface integral equation at side-scattering angles, particularly when the modulus of the complex refractive index is close to unity. Finally, tunneling efficiencies are tabulated for representative faceted particles.
Two-Phase Model of Combustion in Explosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhl, A L; Khasainov, B; Bell, J
2006-06-19
A two-phase model for Aluminum particle combustion in explosions is proposed. It combines the gas-dynamic conservation laws for the gas phase with the continuum mechanics laws of multi-phase media, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by the Khasainov model. Combustion is specified as material transformations in the Le Chatelier diagram which depicts the locus of thermodynamic states in the internal energy-temperature plane according to Kuhl. Numerical simulations are used to show the evolution of two-phase combustion fields generated by the explosive dissemination of a powdered Al fuel.
Chavanis, P H; Delfini, L
2014-03-01
We study random transitions between two metastable states that appear below a critical temperature in a one-dimensional self-gravitating Brownian gas with a modified Poisson equation experiencing a second order phase transition from a homogeneous phase to an inhomogeneous phase [P. H. Chavanis and L. Delfini, Phys. Rev. E 81, 051103 (2010)]. We numerically solve the N-body Langevin equations and the stochastic Smoluchowski-Poisson system, which takes fluctuations (finite N effects) into account. The system switches back and forth between the two metastable states (bistability) and the particles accumulate successively at the center or at the boundary of the domain. We explicitly show that these random transitions exhibit the phenomenology of the ordinary Kramers problem for a Brownian particle in a double-well potential. The distribution of the residence time is Poissonian and the average lifetime of a metastable state is given by the Arrhenius law; i.e., it is proportional to the exponential of the barrier of free energy ΔF divided by the energy of thermal excitation kBT. Since the free energy is proportional to the number of particles N for a system with long-range interactions, the lifetime of metastable states scales as eN and is considerable for N≫1. As a result, in many applications, metastable states of systems with long-range interactions can be considered as stable states. However, for moderate values of N, or close to a critical point, the lifetime of the metastable states is reduced since the barrier of free energy decreases. In that case, the fluctuations become important and the mean field approximation is no more valid. This is the situation considered in this paper. By an appropriate change of notations, our results also apply to bacterial populations experiencing chemotaxis in biology. Their dynamics can be described by a stochastic Keller-Segel model that takes fluctuations into account and goes beyond the usual mean field approximation.
Understanding the relationship between environmental quality ...
In 2014, approximately 17.7 million (7.4%) of United States (U.S.) adults had asthma. In 2009 alone, asthma caused 479,300 hospitalizations and 1.9 million emergency room visits. Asthma has been associated with exposure to air pollution and socioeconomic status, and reductions in atopic sensitization, an asthma precursor, have been associated with green space exposure, suggesting a role of environmental quality. We linked the Environmental Quality Index (EQI), representing 5 environmental domains (air, water, land, built, and sociodemographic) for all US counties (N=3,141) from 2000—2005 to Truven Health’s MarketScan individual claims database to examine associations between county-level EQI and asthma among U.S. adults ages 18-65 from 2003-2010. We defined asthma as having at least 1 claim (International Classification of Disease 9th edition, code 493) during the study period. We used random intercept multi-level Poisson regression clustered by county, adjusted for 10-year age category and sex, to estimate fixed effects of quintiles of the EQI on asthma prevalence. We examined modification by urbanicity through stratification by 4 rural-urban continuum codes (RUCC) ranging from most urban (RUCC1) to rural (RUCC4). Approximately 3% of adults in MarketScan have asthma claims. Comparing the highest EQI quintile (worst quality) to lowest EQI quintile (best quality), we observed increased asthma claims associated with worse environmental quality (prevalence rat
Constraint algebra in Smolin's G →0 limit of 4D Euclidean gravity
NASA Astrophysics Data System (ADS)
Varadarajan, Madhavan
2018-05-01
Smolin's generally covariant GNewton→0 limit of 4d Euclidean gravity is a useful toy model for the study of the constraint algebra in loop quantum gravity (LQG). In particular, the commutator between its Hamiltonian constraints has a metric dependent structure function. While a prior LQG-like construction of nontrivial anomaly free constraint commutators for the model exists, that work suffers from two defects. First, Smolin's remarks on the inability of the quantum dynamics to generate propagation effects apply. Second, the construction only yields the action of a single Hamiltonian constraint together with the action of its commutator through a continuum limit of corresponding discrete approximants; the continuum limit of a product of two or more constraints does not exist. Here, we incorporate changes in the quantum dynamics through structural modifications in the choice of discrete approximants to the quantum Hamiltonian constraint. The new structure is motivated by that responsible for propagation in an LQG-like quantization of paramatrized field theory and significantly alters the space of physical states. We study the off shell constraint algebra of the model in the context of these structural changes and show that the continuum limit action of multiple products of Hamiltonian constraints is (a) supported on an appropriate domain of states, (b) yields anomaly free commutators between pairs of Hamiltonian constraints, and (c) is diffeomorphism covariant. Many of our considerations seem robust enough to be applied to the setting of 4d Euclidean gravity.
NASA Astrophysics Data System (ADS)
van Loon, E. G. C. P.; Schüler, M.; Katsnelson, M. I.; Wehling, T. O.
2016-10-01
We investigate the Peierls-Feynman-Bogoliubov variational principle to map Hubbard models with nonlocal interactions to effective models with only local interactions. We study the renormalization of the local interaction induced by nearest-neighbor interaction and assess the quality of the effective Hubbard models in reproducing observables of the corresponding extended Hubbard models. We compare the renormalization of the local interactions as obtained from numerically exact determinant quantum Monte Carlo to approximate but more generally applicable calculations using dual boson, dynamical mean field theory, and the random phase approximation. These more approximate approaches are crucial for any application with real materials in mind. Furthermore, we use the dual boson method to calculate observables of the extended Hubbard models directly and benchmark these against determinant quantum Monte Carlo simulations of the effective Hubbard model.
NASA Astrophysics Data System (ADS)
Kadowaki, Hiroaki; Wakita, Mika; Fåk, Björn; Ollivier, Jacques; Ohira-Kawamura, Seiko; Nakajima, Kenji; Takatsu, Hiroshi; Tamai, Mototake
2018-06-01
The ground states of the frustrated pyrochlore oxide Tb2+xTi2-xO7+y have been studied by inelastic neutron scattering experiments. Three single-crystal samples are investigated; one shows no phase transition (x = -0.007 < xc ˜ -0.0025), being a putative quantum spin-liquid (QSL), and the other two (x = 0.000,0.003) show electric quadrupole ordering (QO) below Tc ˜ 0.5 K. The QSL sample shows continuum excitation spectra with an energy scale 0.1 meV as well as energy-resolution-limited (nominally) elastic scattering. As x is increased, pseudospin wave of the QO state emerges from this continuum excitation, which agrees with that of powder samples and consequently verifies good x control for the present single crystal samples.
Why granular media are thermal after all
NASA Astrophysics Data System (ADS)
Liu, Mario; Jiang, Yimin
2017-06-01
Two approaches exist to account for granular behavior. The thermal one considers the total entropy, which includes microscopic degrees of freedom such as phonons; the athermal one (as with the Edward entropy) takes grains as elementary. Granular solid hydrodynamics (GSH) belongs to the first, DEM, granular kinetic theory and athermal statistical mechanics (ASM) to the second. A careful discussion of their conceptual differences is given here. Three noteworthy insights or results are: (1) While DEM and granular kinetic theory are well justified to take grains as elementary, any athermal entropic consideration is bound to run into trouble. (2) Many general principles are taken as invalid in granular media. Yet within the thermal approach, energy conservation and fluctuation-dissipation theorem remain valid, granular temperatures equilibrate, and phase space is well explored in a grain at rest. Hence these are abnormalities of the athermal approximation, not of granular media as such. (3) GSH is a wide-ranged continuum mechanical description of granular dynamics.
Collisional tests and an extension of the TEMPEST continuum gyrokinetic code
NASA Astrophysics Data System (ADS)
Cohen, R. H.; Dorr, M.; Hittinger, J.; Kerbel, G.; Nevins, W. M.; Rognlien, T.; Xiong, Z.; Xu, X. Q.
2006-04-01
An important requirement of a kinetic code for edge plasmas is the ability to accurately treat the effect of colllisions over a broad range of collisionalities. To test the interaction of collisions and parallel streaming, TEMPEST has been compared with published analytic and numerical (Monte Carlo, bounce-averaged Fokker-Planck) results for endloss of particles confined by combined electrostatic and magnetic wells. Good agreement is found over a wide range of collisionality, confining potential and mirror ratio, and the required velocity space resolution is modest. We also describe progress toward extension of (4-dimensional) TEMPEST into a ``kinetic edge transport code'' (a kinetic counterpart of UEDGE). The extension includes averaging of the gyrokinetic equations over fast timescales and approximating the averaged quadratic terms by diffusion terms which respect the boundaries of inaccessable regions in phase space. F. Najmabadi, R.W. Conn and R.H. Cohen, Nucl. Fusion 24, 75 (1984); T.D. Rognlien and T.A. Cutler, Nucl. Fusion 20, 1003 (1980).
Final-state interactions in inclusive deep-inelastic scattering from the deuteron
Cosyn, Wim; Melnitchouk, Wally; Sargsian, Misak M.
2014-01-16
We explore the role of final-state interactions (FSI) in inclusive deep-inelastic scattering from the deuteron. Relating the inclusive cross section to the deuteron forward virtual Compton scattering amplitude, a general formula for the FSI contribution is derived in the generalized eikonal approximation, utilizing the diffractive nature of the effective hadron-nucleon interaction. The calculation uses a factorized model with a basis of three resonances with mass W~<2 GeV and a continuum contribution for larger W as the relevant set of effective hadron states entering the final-state interaction amplitude. The results show sizeable on-shell FSI contributions for Bjorken x ~> 0.6 andmore » Q 2 < 10 GeV 2 increasing in magnitude for lower Q 2, but vanishing in the high-Q 2 limit due to phase space constraints. The off-shell rescattering contributes at x ~> 0.8 and is taken as an uncertainty on the on-shell result.« less
Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion.
Zhang, Zhen; Sui, Xin; Li, Pei; Xie, Ganhua; Kong, Xiang-Yu; Xiao, Kai; Gao, Longcheng; Wen, Liping; Jiang, Lei
2017-07-05
The osmotic energy existing in fluids is recognized as a promising "blue" energy source that can help solve the global issues of energy shortage and environmental pollution. Recently, nanofluidic channels have shown great potential for capturing this worldwide energy because of their novel transport properties contributed by nanoconfinement. However, with respect to membrane-scale porous systems, high resistance and undesirable ion selectivity remain bottlenecks, impeding their applications. The development of thinner, low-resistance membranes, meanwhile promoting their ion selectivity, is a necessity. Here, we engineered ultrathin and ion-selective Janus membranes prepared via the phase separation of two block copolymers, which enable osmotic energy conversion with power densities of approximately 2.04 W/m 2 by mixing natural seawater and river water. Both experiments and continuum simulation help us to understand the mechanism for how membrane thickness and channel structure dominate the ion transport process and overall device performance, which can serve as a general guiding principle for the future design of nanochannel membranes for high-energy concentration cells.
Modification of Jupiter's Stratosphere Three Weeks After the 2009 Impact
NASA Technical Reports Server (NTRS)
Fast, Kelly Elizabeth; Kostiuk, T.; Livengood, T. A.; Hewagama, T.; Annen, J.
2010-01-01
Infrared spectroscopy sensitive to thermal emission from Jupiter's stratosphere reveals effects persisting 3 1/2 weeks after the impact of a body in late July 2009. Measurements obtained at 11.7 microns on 2009 August 11 UT at the impact latitude of 56degS (planetocentric), using the Goddard Heterodyne Instrument for Planetary Winds and Composition (HIPWAC) mounted on the NASA Infrared Telescope facility, reveal an interval of reduced thermal continuum emission that extends approx.60deg-80deg towards planetary East of the impact site, estimated to be at 305deg longitude (System III). Retrieved stratospheric ethane mole fraction in the near vicinity of the impact site is enhanced by up to approx.60% relative to quiescent regions at this latitude. Thermal continuum emission at the impact site, and somewhat west of it, is significantly enhanced in the same spectra that retrieve enhanced ethane mole fraction. Assuming that the enhanced continuum brightness near the impact site results from thermalized aerosol debris, then continuum emission by a haze layer can be approximated by an opaque surface inserted at the 45-60 mbar pressure level in the stratosphere in an unperturbed thermal profile, setting a lower limit on the altitude of the top of the ejecta cloud at this time. The reduced continuum brightness east of the impact site can be modeled by an opaque surface near the cold tropopause, consistent with a lower altitude of ejecta/impactor-formed opacity or significantly lesser column density of opaque haze material. The physical extent of the observed region of reduced continuum implies a minimum average velocity of 21 m/s transporting material prograde (East) from the impact. Spectra acquired further East, with quiescent characteristics, imply an average zonal velocity of less than 63 m/s.
Modeling of Continuum Manipulators Using Pythagorean Hodograph Curves.
Singh, Inderjeet; Amara, Yacine; Melingui, Achille; Mani Pathak, Pushparaj; Merzouki, Rochdi
2018-05-10
Research on continuum manipulators is increasingly developing in the context of bionic robotics because of their many advantages over conventional rigid manipulators. Due to their soft structure, they have inherent flexibility, which makes it a huge challenge to control them with high performances. Before elaborating a control strategy of such robots, it is essential to reconstruct first the behavior of the robot through development of an approximate behavioral model. This can be kinematic or dynamic depending on the conditions of operation of the robot itself. Kinematically, two types of modeling methods exist to describe the robot behavior; quantitative methods describe a model-based method, and qualitative methods describe a learning-based method. In kinematic modeling of continuum manipulator, the assumption of constant curvature is often considered to simplify the model formulation. In this work, a quantitative modeling method is proposed, based on the Pythagorean hodograph (PH) curves. The aim is to obtain a three-dimensional reconstruction of the shape of the continuum manipulator with variable curvature, allowing the calculation of its inverse kinematic model (IKM). It is noticed that the performances of the PH-based kinematic modeling of continuum manipulators are considerable regarding position accuracy, shape reconstruction, and time/cost of the model calculation, than other kinematic modeling methods, for two cases: free load manipulation and variable load manipulation. This modeling method is applied to the compact bionic handling assistant (CBHA) manipulator for validation. The results are compared with other IKMs developed in case of CBHA manipulator.
Continuum definition for Ceres absorption bands at 3.1, 3.4 and 4.0 μm
NASA Astrophysics Data System (ADS)
Galiano, A.; Palomba, E.; Longobardo, A.; Zinzi, A.; De Sanctis, M. C.; Raponi, A.; Carrozzo, F. G.; Ciarniello, M.; Dirri, F.
2017-09-01
The images and hyperspectral data acquired during various Dawn mission phases (e.g. Survey, HAMO and LAMO) allowed identifying regions of different albedo on Ceres surface, where absorption bands located at 3.4 and 4.0 μm can assume different shapes. The 3.1 μm feature is observed on the entire Ceres surface except on Cerealia Facula, the brightest spot located on the dome of Occator crater. To perform a mineralogical investigation, absorption bands in reflectance spectra should be properly isolated by removing spectral continuum; hence, parameters as band centers and band depths must be estimated. The problem in the defining the continuum is in the VIR spectral range, which ends at 5.1 μm even though the reliable data, where the thermal contribution is properly removed, stops at 4.2 μm. Band shoulders located at longer wavelengths cannot be estimated. We defined different continua, with the aim to find the most appropriate to isolate the three spectral bands, whatever the region and the spatial resolution of hyperspectral images. The linear continuum seems to be the most suitable definition for our goals. Then, we performed an error evaluation on band depths and band centers introduced by this continuum definition.
ERIC Educational Resources Information Center
Wainwright, N.; Goodway, J.; Whitehed, M.; Williams, A.; Kirk, D.
2016-01-01
In 2008, the Welsh Assembly Government began the implementation of a new holistic play-based learning continuum for children aged three to seven called the Foundation Phase. Areas of learning replaced subjects and consequently pupils in Wales under the age of seven no longer study Physical Education in its traditional form. With growing…
Rapid freezing of water under dynamic compression
NASA Astrophysics Data System (ADS)
Myint, Philip C.; Belof, Jonathan L.
2018-06-01
Understanding the behavior of materials at extreme pressures is a central issue in fields like aerodynamics, astronomy, and geology, as well as for advancing technological grand challenges such as inertial confinement fusion. Dynamic compression experiments to probe high-pressure states often encounter rapid phase transitions that may cause the materials to behave in unexpected ways, and understanding the kinetics of these phase transitions remains an area of great interest. In this review, we examine experimental and theoretical/computational efforts to study the freezing kinetics of water to a high-pressure solid phase known as ice VII. We first present a detailed analysis of dynamic compression experiments in which water has been observed to freeze on sub-microsecond time scales to ice VII. This is followed by a discussion of the limitations of currently available molecular and continuum simulation methods in modeling these experiments. We then describe how our phase transition kinetics models, which are based on classical nucleation theory, provide a more physics-based framework that overcomes some of these limitations. Finally, we give suggestions on future experimental and modeling work on the liquid–ice VII transition, including an outline of the development of a predictive multiscale model in which molecular and continuum simulations are intimately coupled.
NASA Astrophysics Data System (ADS)
Mohan, Nisha
Modeling the evolution of microstructure during sintering is a persistent challenge in ceramics science, although needed as the microstructure impacts properties of an engineered material. Bridging the gap between microscopic and continuum models, kinetic Monte Carlo (kMC) methods provide a stochastic approach towards sintering and microstructure evolution. These kMC models work at the mesoscale, with length and time-scales between those of atomistic and continuum approaches. We develop a sintering/compacting model for the two-phase sintering of boron nitride ceramics and allotropes alike. Our formulation includes mechanisms for phase transformation between h-BN and c-BN and takes into account thermodynamics of pressure and temperature on interaction energies and mechanism rates. In addition to replicating the micro-structure evolution observed in experiments, it also captures the phase diagram of Boron Nitride materials. Results have been analyzed in terms of phase diagrams and crystal growth. It also serves with insights to guide the choice of additives and conditions for the sintering process.While detailed time and spatial resolutions are lost in any MC, the progression of stochastic events still captures plausible local energy minima and long-time temporal developments. DARPA.
Rapid freezing of water under dynamic compression.
Myint, Philip C; Belof, Jonathan L
2018-06-13
Understanding the behavior of materials at extreme pressures is a central issue in fields like aerodynamics, astronomy, and geology, as well as for advancing technological grand challenges such as inertial confinement fusion. Dynamic compression experiments to probe high-pressure states often encounter rapid phase transitions that may cause the materials to behave in unexpected ways, and understanding the kinetics of these phase transitions remains an area of great interest. In this review, we examine experimental and theoretical/computational efforts to study the freezing kinetics of water to a high-pressure solid phase known as ice VII. We first present a detailed analysis of dynamic compression experiments in which water has been observed to freeze on sub-microsecond time scales to ice VII. This is followed by a discussion of the limitations of currently available molecular and continuum simulation methods in modeling these experiments. We then describe how our phase transition kinetics models, which are based on classical nucleation theory, provide a more physics-based framework that overcomes some of these limitations. Finally, we give suggestions on future experimental and modeling work on the liquid-ice VII transition, including an outline of the development of a predictive multiscale model in which molecular and continuum simulations are intimately coupled.
Phase behaviors of supramolecular graft copolymers with reversible bonding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xu; Wang, Liquan, E-mail: jlin@ecust.edu.cn, E-mail: lq-wang@ecust.edu.cn; Jiang, Tao
2013-11-14
Phase behaviors of supramolecular graft copolymers with reversible bonding interactions were examined by the random-phase approximation and real-space implemented self-consistent field theory. The studied supramolecular graft copolymers consist of two different types of mutually incompatible yet reactive homopolymers, where one homopolymer (backbone) possesses multifunctional groups that allow second homopolymers (grafts) to be placed on. The calculations carried out show that the bonding strength exerts a pronounced effect on the phase behaviors of supramolecular graft copolymers. The length ratio of backbone to graft and the positions of functional groups along the backbone are also of importance to determine the phase behaviors.more » Phase diagrams were constructed at high bonding strength to illustrate this architectural dependence. It was found that the excess unbounded homopolymers swell the phase domains and shift the phase boundaries. The results were finally compared with the available experimental observations, and a well agreement is shown. The present work could, in principle, provide a general understanding of the phase behaviors of supramolecular graft copolymers with reversible bonding.« less
An Off-Lattice Hybrid Discrete-Continuum Model of Tumor Growth and Invasion
Jeon, Junhwan; Quaranta, Vito; Cummings, Peter T.
2010-01-01
Abstract We have developed an off-lattice hybrid discrete-continuum (OLHDC) model of tumor growth and invasion. The continuum part of the OLHDC model describes microenvironmental components such as matrix-degrading enzymes, nutrients or oxygen, and extracellular matrix (ECM) concentrations, whereas the discrete portion represents individual cell behavior such as cell cycle, cell-cell, and cell-ECM interactions and cell motility by the often-used persistent random walk, which can be depicted by the Langevin equation. Using this framework of the OLHDC model, we develop a phenomenologically realistic and bio/physically relevant model that encompasses the experimentally observed superdiffusive behavior (at short times) of mammalian cells. When systemic simulations based on the OLHDC model are performed, tumor growth and its morphology are found to be strongly affected by cell-cell adhesion and haptotaxis. There is a combination of the strength of cell-cell adhesion and haptotaxis in which fingerlike shapes, characteristic of invasive tumor, are observed. PMID:20074513
Continuum and discrete approach in modeling biofilm development and structure: a review.
Mattei, M R; Frunzo, L; D'Acunto, B; Pechaud, Y; Pirozzi, F; Esposito, G
2018-03-01
The scientific community has recognized that almost 99% of the microbial life on earth is represented by biofilms. Considering the impacts of their sessile lifestyle on both natural and human activities, extensive experimental activity has been carried out to understand how biofilms grow and interact with the environment. Many mathematical models have also been developed to simulate and elucidate the main processes characterizing the biofilm growth. Two main mathematical approaches for biomass representation can be distinguished: continuum and discrete. This review is aimed at exploring the main characteristics of each approach. Continuum models can simulate the biofilm processes in a quantitative and deterministic way. However, they require a multidimensional formulation to take into account the biofilm spatial heterogeneity, which makes the models quite complicated, requiring significant computational effort. Discrete models are more recent and can represent the typical multidimensional structural heterogeneity of biofilm reflecting the experimental expectations, but they generate computational results including elements of randomness and introduce stochastic effects into the solutions.
Multiscale synchrony behaviors of paired financial time series by 3D multi-continuum percolation
NASA Astrophysics Data System (ADS)
Wang, M.; Wang, J.; Wang, B. T.
2018-02-01
Multiscale synchrony behaviors and nonlinear dynamics of paired financial time series are investigated, in an attempt to study the cross correlation relationships between two stock markets. A random stock price model is developed by a new system called three-dimensional (3D) multi-continuum percolation system, which is utilized to imitate the formation mechanism of price dynamics and explain the nonlinear behaviors found in financial time series. We assume that the price fluctuations are caused by the spread of investment information. The cluster of 3D multi-continuum percolation represents the cluster of investors who share the same investment attitude. In this paper, we focus on the paired return series, the paired volatility series, and the paired intrinsic mode functions which are decomposed by empirical mode decomposition. A new cross recurrence quantification analysis is put forward, combining with multiscale cross-sample entropy, to investigate the multiscale synchrony of these paired series from the proposed model. The corresponding research is also carried out for two China stock markets as comparison.
Caricato, Marco
2018-04-07
We report the theory and the implementation of the linear response function of the coupled cluster (CC) with the single and double excitations method combined with the polarizable continuum model of solvation, where the correlation solvent response is approximated with the perturbation theory with energy and singles density (PTES) scheme. The singles name is derived from retaining only the contribution of the CC single excitation amplitudes to the correlation density. We compare the PTES working equations with those of the full-density (PTED) method. We then test the PTES scheme on the evaluation of excitation energies and transition dipoles of solvated molecules, as well as of the isotropic polarizability and specific rotation. Our results show a negligible difference between the PTED and PTES schemes, while the latter affords a significantly reduced computational cost. This scheme is general and can be applied to any solvation model that includes mutual solute-solvent polarization, including explicit models. Therefore, the PTES scheme is a competitive approach to compute response properties of solvated systems using CC methods.
NASA Astrophysics Data System (ADS)
Caricato, Marco
2018-04-01
We report the theory and the implementation of the linear response function of the coupled cluster (CC) with the single and double excitations method combined with the polarizable continuum model of solvation, where the correlation solvent response is approximated with the perturbation theory with energy and singles density (PTES) scheme. The singles name is derived from retaining only the contribution of the CC single excitation amplitudes to the correlation density. We compare the PTES working equations with those of the full-density (PTED) method. We then test the PTES scheme on the evaluation of excitation energies and transition dipoles of solvated molecules, as well as of the isotropic polarizability and specific rotation. Our results show a negligible difference between the PTED and PTES schemes, while the latter affords a significantly reduced computational cost. This scheme is general and can be applied to any solvation model that includes mutual solute-solvent polarization, including explicit models. Therefore, the PTES scheme is a competitive approach to compute response properties of solvated systems using CC methods.
NE VIII lambda 774 and time variable associated absorption in the QSO UM 675
NASA Technical Reports Server (NTRS)
Hamann, Fred; Barlow, Thomas A.; Beaver, E. A.; Burbidge, E. M.; Cohen, Ross D.; Junkkarinen, Vesa; Lyons, R.
1995-01-01
We discuss measurements of Ne VIII lambda 774 absorption and the time variability of other lines in the z(sub a) approximately equal z(sub e) absorption system of the z(sub e) = 2.15 QSO UM 675 (0150-203). The C IV lambda 1549 and N V 1240 doublets at z(sub a) = 2.1340 (shifted approximately 1500 km/s from z(sub e) strengthened by a factor of approximately 3 between observations by Sargent, Boksenberg and Steidel (1981 November) and our earliest measurements (1990 November and December). We have no information on changes in other z(sub a) approximately equal z(sub e) absorption lines. Continued monitoring since 1990 November shows no clear changes in any of the absorptions between approximately 1100 and 1640 A rest. The short timescale of the variability (less than or approximately equal to 2.9 yr rest) strongly suggests that the clouds are dense, compact, close to the QSO, and photoionized by the QSO continuum. If the line variability is caused by changes in the ionization, the timescale requires densities greater than approximately 4000/cu cm. Photoionization calculations place the absorbing clouds within approximately 200 pc of the continuum source. The full range of line ionizations (from Ne VIII lambda 774 to C III lambda 977) in optically thin gas (no Lyman limit) implies that the absorbing regions span a factor of more than approximately 10 in distance or approximately 100 in density. Across these regions, the total hydrogen (H I + H II) column ranges from a few times 10(exp 18)/sq cm in the low-ionization gas to approximately 10(exp 20)/sq cm where the Ne VIII doublet forms. The metallicity is roughly solar or higher, with nitrogen possibly more enhanced by factors of a few. The clouds might contribute significant line emission if they nearly envelop the QSO. The presence of highly ionized Ne VIII lambda 774 absorption near the QSO supports recent studies that link z(sub a) approximately equal to z(sub e) systems with X-ray 'wamr absorbers. We show that the Ne VIII absorbing gas would itself produce measurable warm absorption -- characterized by bound-free O VII or O VIII edegs near 0.8 keV -- if the column densities were N(sub H) greater than or approximately equal to 10(exp 21)/sq cm (for solar abundances).
NE VIII lambda 774 and time variable associated absorption in the QSO UM 675
NASA Astrophysics Data System (ADS)
Hamann, Fred; Barlow, Thomas A.; Beaver, E. A.; Burbidge, E. M.; Cohen, Ross D.; Junkkarinen, Vesa; Lyons, R.
1995-04-01
We discuss measurements of Ne VIII lambda 774 absorption and the time variability of other lines in the za approximately equal ze absorption system of the ze = 2.15 QSO UM 675 (0150-203). The C IV lambda 1549 and N V 1240 doublets at za = 2.1340 (shifted approximately 1500 km/s from ze strengthened by a factor of approximately 3 between observations by Sargent, Boksenberg and Steidel (1981 November) and our earliest measurements (1990 November and December). We have no information on changes in other za approximately equal ze absorption lines. Continued monitoring since 1990 November shows no clear changes in any of the absorptions between approximately 1100 and 1640 A rest. The short timescale of the variability (less than or approximately equal to 2.9 yr rest) strongly suggests that the clouds are dense, compact, close to the QSO, and photoionized by the QSO continuum. If the line variability is caused by changes in the ionization, the timescale requires densities greater than approximately 4000/cu cm. Photoionization calculations place the absorbing clouds within approximately 200 pc of the continuum source. The full range of line ionizations (from Ne VIII lambda 774 to C III lambda 977) in optically thin gas (no Lyman limit) implies that the absorbing regions span a factor of more than approximately 10 in distance or approximately 100 in density. Across these regions, the total hydrogen (H I + H II) column ranges from a few times 1018/sq cm in the low-ionization gas to approximately 1020/sq cm where the Ne VIII doublet forms. The metallicity is roughly solar or higher, with nitrogen possibly more enhanced by factors of a few. The clouds might contribute significant line emission if they nearly envelop the QSO. The presence of highly ionized Ne VIII lambda 774 absorption near the QSO supports recent studies that link za approximately equal to ze systems with X-ray 'wamr absorbers. We show that the Ne VIII absorbing gas would itself produce measurable warm absorption -- characterized by bound-free O VII or O VIII edegs near 0.8 keV -- if the column densities were NH greater than or approximately equal to 1021/sq cm (for solar abundances).
Criminal justice continuum for opioid users at risk of overdose.
Brinkley-Rubinstein, Lauren; Zaller, Nickolas; Martino, Sarah; Cloud, David H; McCauley, Erin; Heise, Andrew; Seal, David
2018-02-24
The United States (US) is in the midst of an epidemic of opioid use; however, overdose mortality disproportionately affects certain subgroups. For example, more than half of state prisoners and approximately two-thirds of county jail detainees report issues with substance use. Overdose is one of the leading causes of mortality among individuals released from correctional settings. Even though the criminal justice (CJ) system interacts with a disproportionately high number of individuals at risk of opioid use and overdose, few CJ agencies screen for opioid use disorder (OUD). Even less provide access to medication assisted treatment (e.g. methadone, buprenorphine, and depot naltrexone), which is one of the most effective tools to combat addiction and lower overdose risk. However, there is an opportunity to implement programs across the CJ continuum in collaboration with law enforcement, courts, correctional facilities, community service providers, and probation and parole. In the current paper, we introduce the concept of a "CJ Continuum of Care for Opioid Users at Risk of Overdose", grounded by the Sequential Intercept Model. We present each step on the CJ Continuum and include a general overview and highlight opportunities for: 1) screening for OUD and overdose risk, 2) treatment and/or diversion, and 3) overdose prevention and naloxone provision. Copyright © 2018 Elsevier Ltd. All rights reserved.
New band structures in Neutron-Rich Mo and Ru Isotopes
Hamilton, J. H.; Luoa, Y. X.; Zhu, S. J.; ...
2009-01-01
Rotational bands in 110,112Ru and 108Mo have been investigated by means of γ-γ-γ and γ-γ(θ) coincidences of prompt γ rays emitted in the spontaneous fission of 252Cf. New ΔI = 1 negative parity doublet bands are found. These bands in 110,112Ru and 108Mo have all the properties expected for chiral vibrations. Microscopic calculations that combine the TAC meanfield with random phase approximation support this interpretation.
Reference Determinant Dependence of the Random Phase Approximation in 3d Transition Metal Chemistry.
Bates, J E; Mezei, P D; Csonka, G I; Sun, J; Ruzsinszky, A
2017-01-10
Without extensive fitting, accurate prediction of transition metal chemistry is a challenge for semilocal and hybrid density funcitonals. The Random Phase Approximation (RPA) has been shown to yield superior results to semilocal functionals for main group thermochemistry, but much less is known about its performance for transition metals. We have therefore analyzed the behavior of reaction energies, barrier heights, and ligand dissociation energies obtained with RPA and compare our results to several semilocal and hybrid functionals. Particular attention is paid to the reference determinant dependence of RPA. We find that typically the results do not vary much between semilocal or hybrid functionals as a reference, as long as the fraction of exact exchange (EXX) mixing in the hybrid functional is small. For large fractions of EXX mixing, however, the Hartree-Fock-like nature of the determinant can severely degrade the performance. Overall, RPA systematically reduces the errors of semilocal functionals and delivers excellent performance from a single reference determinant for inherently multireference reactions. The behavior of dual hybrids that combine RPA correlation with a hybrid exchange energy was also explored, but ultimately did not lead to a systematic improvement compared to traditional RPA for these systems. We rationalize this conclusion by decomposing the contributions to the reaction energies, and briefly discuss the possible implications for double-hybrid functionals based on RPA. The correlation between EXX mixing and spin-symmetry breaking is also discussed.
The Effects of Sacred Value Networks Within an Evolutionary, Adversarial Game
NASA Astrophysics Data System (ADS)
McCalla, Scott G.; Short, Martin B.; Brantingham, P. Jeffrey
2013-05-01
The effects of personal relationships and shared ideologies on levels of crime and the formation of criminal coalitions are studied within the context of an adversarial, evolutionary game first introduced in Short et al. (Phys. Rev. E 82:066114, 2010). Here, we interpret these relationships as connections on a graph of N players. These connections are then used in a variety of ways to define each player's "sacred value network"—groups of individuals that are subject to special consideration or treatment by that player. We explore the effects on the dynamics of the system that these networks introduce, through various forms of protection from both victimization and punishment. Under local protection, these networks introduce a new fixed point within the game dynamics, which we find through a continuum approximation of the discrete game. Under more complicated, extended protection, we numerically observe the emergence of criminal coalitions, or "gangs". We also find that a high-crime steady state is much more frequent in the context of extended protection networks, in both the case of Erdős-Rényi and small world random graphs.
Diffusion in random networks: Asymptotic properties, and numerical and engineering approximations
NASA Astrophysics Data System (ADS)
Padrino, Juan C.; Zhang, Duan Z.
2016-11-01
The ensemble phase averaging technique is applied to model mass transport by diffusion in random networks. The system consists of an ensemble of random networks, where each network is made of a set of pockets connected by tortuous channels. Inside a channel, we assume that fluid transport is governed by the one-dimensional diffusion equation. Mass balance leads to an integro-differential equation for the pores mass density. The so-called dual porosity model is found to be equivalent to the leading order approximation of the integration kernel when the diffusion time scale inside the channels is small compared to the macroscopic time scale. As a test problem, we consider the one-dimensional mass diffusion in a semi-infinite domain, whose solution is sought numerically. Because of the required time to establish the linear concentration profile inside a channel, for early times the similarity variable is xt- 1 / 4 rather than xt- 1 / 2 as in the traditional theory. This early time sub-diffusive similarity can be explained by random walk theory through the network. In addition, by applying concepts of fractional calculus, we show that, for small time, the governing equation reduces to a fractional diffusion equation with known solution. We recast this solution in terms of special functions easier to compute. Comparison of the numerical and exact solutions shows excellent agreement.
Assessing Density Functionals Using Many Body Theory for Hybrid Perovskites
NASA Astrophysics Data System (ADS)
Bokdam, Menno; Lahnsteiner, Jonathan; Ramberger, Benjamin; Schäfer, Tobias; Kresse, Georg
2017-10-01
Which density functional is the "best" for structure simulations of a particular material? A concise, first principles, approach to answer this question is presented. The random phase approximation (RPA)—an accurate many body theory—is used to evaluate various density functionals. To demonstrate and verify the method, we apply it to the hybrid perovskite MAPbI3 , a promising new solar cell material. The evaluation is done by first creating finite temperature ensembles for small supercells using RPA molecular dynamics, and then evaluating the variance between the RPA and various approximate density functionals for these ensembles. We find that, contrary to recent suggestions, van der Waals functionals do not improve the description of the material, whereas hybrid functionals and the strongly constrained appropriately normed (SCAN) density functional yield very good agreement with the RPA. Finally, our study shows that in the room temperature tetragonal phase of MAPbI3 , the molecules are preferentially parallel to the shorter lattice vectors but reorientation on ps time scales is still possible.
Connors, B M; Cooper, A B
2014-12-01
Categorization of the status of populations, species, and ecosystems underpins most conservation activities. Status is often based on how a system's current indicator value (e.g., change in abundance) relates to some threshold of conservation concern. Receiver operating characteristic (ROC) curves can be used to quantify the statistical reliability of indicators of conservation status and evaluate trade-offs between correct (true positive) and incorrect (false positive) classifications across a range of decision thresholds. However, ROC curves assume a discrete, binary relationship between an indicator and the conservation status it is meant to track, which is a simplification of the more realistic continuum of conservation status, and may limit the applicability of ROC curves in conservation science. We describe a modified ROC curve that treats conservation status as a continuum rather than a discrete state. We explored the influence of this continuum and typical sources of variation in abundance that can lead to classification errors (i.e., random variation and measurement error) on the true and false positive rates corresponding to varying decision thresholds and the reliability of change in abundance as an indicator of conservation status, respectively. We applied our modified ROC approach to an indicator of endangerment in Pacific salmon (Oncorhynchus nerka) (i.e., percent decline in geometric mean abundance) and an indicator of marine ecosystem structure and function (i.e., detritivore biomass). Failure to treat conservation status as a continuum when choosing thresholds for indicators resulted in the misidentification of trade-offs between true and false positive rates and the overestimation of an indicator's reliability. We argue for treating conservation status as a continuum when ROC curves are used to evaluate decision thresholds in indicators for the assessment of conservation status. © 2014 Society for Conservation Biology.
Berglund, Helene; Hasson, Henna; Kjellgren, Karin; Wilhelmson, Katarina
2015-04-01
The aim of this study was to analyse effects of a comprehensive continuum of care (intervention group) on frail older persons' life satisfaction, as compared to those receiving usual care (control group). The intervention included geriatric assessment, case management, interprofessional collaboration, support for relatives and organising of care-planning meetings in older persons' own homes. Improvements in older persons' subjective well-being have been shown in studies including care planning and coordination by a case manager. However, effects of more complex continuum of care interventions on frail older persons' life satisfaction are not well explored. Randomised controlled study. The validated LiSat-11 scale was used in face-to-face interviews to assess older persons' life satisfaction at baseline and at three, six and 12 months after the baseline. The odds ratio for improving or maintaining satisfaction was compared for intervention and control groups from baseline to three-month, three- to six-month as well as six- to 12-month follow-ups. Older persons who received the intervention were more likely to improve or maintain satisfaction than those who received usual care, between 6 and 12 month follow-ups, for satisfaction regarding functional capacity, psychological health and financial situation. A comprehensive continuum of care intervention comprising several components had a positive effect on frail older persons' satisfaction with functional capacity, psychological health and financial situation. Frail older persons represent a great proportion of the persons in need of support from the health care system. Health care professionals need to consider continuum of care interventions' impact on life satisfaction. As life satisfaction is an essential part of older persons' well-being, we propose that policy makers and managers promote comprehensive continuum of care solutions. © 2014 John Wiley & Sons Ltd.
Phase-sensitive atomic dynamics in quantum light
NASA Astrophysics Data System (ADS)
Balybin, S. N.; Zakharov, R. V.; Tikhonova, O. V.
2018-05-01
Interaction between a quantum electromagnetic field and a model Ry atom with possible transitions to the continuum and to the low-lying resonant state is investigated. Strong sensitivity of atomic dynamics to the phase of applied coherent and squeezed vacuum light is found. Methods to extract the quantum field phase performing the measurements on the atomic system are proposed. In the case of the few-photon coherent state high accuracy of the phase determination is demonstrated, which appears to be much higher in comparison to the usually used quantum-optical methods such as homodyne detection.
Integral approximations to classical diffusion and smoothed particle hydrodynamics
Du, Qiang; Lehoucq, R. B.; Tartakovsky, A. M.
2014-12-31
The contribution of the paper is the approximation of a classical diffusion operator by an integral equation with a volume constraint. A particular focus is on classical diffusion problems associated with Neumann boundary conditions. By exploiting this approximation, we can also approximate other quantities such as the flux out of a domain. Our analysis of the model equation on the continuum level is closely related to the recent work on nonlocal diffusion and peridynamic mechanics. In particular, we elucidate the role of a volumetric constraint as an approximation to a classical Neumann boundary condition in the presence of physical boundary.more » The volume-constrained integral equation then provides the basis for accurate and robust discretization methods. As a result, an immediate application is to the understanding and improvement of the Smoothed Particle Hydrodynamics (SPH) method.« less
First Optical observation of a microquasar at sub-milliarsec scale: SS 433 resolved by VLTI/GRAVITY
NASA Astrophysics Data System (ADS)
Petrucci, P.; Waisberg, I.; Lebouquin, J.; Dexter, J.; Dubus, G.; Perraut, K.; Kervella, P.; Gravity Collaboration
2017-10-01
We present the first Optical observation at sub-milliarcsec (mas) scale of the famous microquasar SS 433 obtained with the GRAVITY instrument on the VLTI interferometer. This observation reveals the SS 433 inner regions with unprecedent details: The K-band continuum emitting region is dominated by a marginally resolved point source (< 1 mas) embedded inside a diffuse background accounting for 10% of the total flux. The significant visibility drop across the jet lines present in the K-band spectrum, together with the small and nearly identical phases for all baselines, point toward a jet that is offset by < 0.5 mas from the continuum source and resolved in the direction of propagation, with a size of ˜2 mas. Jet emission so close to the central binary system implies that line locking, if relevant to explain the 0.26c jet velocity, operates on elements heavier than hydrogen. Concerning The Brγ line, it is better resolved than the continuum and the S-shape phase signal present across the line suggests an East-West oriented geometry alike the jet direction and supporting a (polar) disk wind origin. This observation show the potentiality of Optical interferometry to constrain the inner regions of high energy sources like microquasars.
Ciftci, Harun; Er, Cigdem
2013-03-01
In the present study, a separation/preconcentration procedure for determination of aluminum in water samples has been developed by using a new atomic absorption spectrometer concept with a high-intensity xenon short-arc lamp as continuum radiation source, a high-resolution double-echelle monochromator, and a charge-coupled device array detector. Sample solution pH, sample volume, flow rate of sample solution, volume, and concentration of eluent for solid-phase extraction of Al chelates with 4-[(dicyanomethyl)diazenyl] benzoic acid on polymeric resin (Duolite XAD-761) have been investigated. The adsorbed aluminum on resin was eluted with 5 mL of 2 mol L(-1) HNO(3) and its concentration was determined by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Under the optimal conditions, limit of detection obtained with HR-CS FAAS and Line Source FAAS (LS-FAAS) were 0.49 μg L(-1) and 3.91 μg L(-1), respectively. The accuracy of the procedure was confirmed by analyzing certified materials (NIST SRM 1643e, Trace elements in water) and spiked real samples. The developed procedure was successfully applied to water samples.
NASA Technical Reports Server (NTRS)
Szkody, Paula
1987-01-01
IUE time-resolved spectra of the high-inclination cataclysmic variables IP Peg, PG 1030+590, and V1315 Aql are analyzed in order to determine the characteristics of the disk, hotspots, and white dwarfs. The UV continuum flux distributions are generally flatter than systems of low inclination and high mass-transfer rate, and the white dwarfs/inner disk appear to be relatively cool (15,000-19,000 K) for their orbital periods, possibly because the boundary layers are blocked from view. The continuum fluxes increase at spot phases, with the spot providing the dominant flux in IP Peg. The spot temperatures range from hot (20,000 K) in IP Peg, and perhaps in PG 1030+590, to cool (11,000 K) in V1315 Aql. The C IV emission lines show slightly larger decreases at spot phases than during eclipse, which implies an extended stream area.
The importance of fluctuations in fluid mixing
Kadau, Kai; Rosenblatt, Charles; Barber, John L.; Germann, Timothy C.; Huang, Zhibin; Carlès, Pierre; Alder, Berni J.
2007-01-01
A ubiquitous example of fluid mixing is the Rayleigh–Taylor instability, in which a heavy fluid initially sits atop a light fluid in a gravitational field. The subsequent development of the unstable interface between the two fluids is marked by several stages. At first, each interface mode grows exponentially with time before transitioning to a nonlinear regime characterized by more complex hydrodynamic mixing. Unfortunately, traditional continuum modeling of this process has generally been in poor agreement with experiment. Here, we indicate that the natural, random fluctuations of the flow field present in any fluid, which are neglected in continuum models, can lead to qualitatively and quantitatively better agreement with experiment. We performed billion-particle atomistic simulations and magnetic levitation experiments with unprecedented control of initial interface conditions. A comparison between our simulations and experiments reveals good agreement in terms of the growth rate of the mixing front as well as the new observation of droplet breakup at later times. These results improve our understanding of many fluid processes, including interface phenomena that occur, for example, in supernovae, the detachment of droplets from a faucet, and ink jet printing. Such instabilities are also relevant to the possible energy source of inertial confinement fusion, in which a millimeter-sized capsule is imploded to initiate nuclear fusion reactions between deuterium and tritium. Our results suggest that the applicability of continuum models would be greatly enhanced by explicitly including the effects of random fluctuations. PMID:17470811
NASA Astrophysics Data System (ADS)
Santra, Siddhartha; Cruikshank, Benjamin; Balu, Radhakrishnan; Jacobs, Kurt
2017-10-01
Fermi’s golden rule applies to a situation in which a single quantum state \\vert \\psi> is coupled to a near-continuum. This ‘quasi-continuum coupling’ structure results in a rate equation for the population of \\vert \\psi> . Here we show that the coupling of a quantum system to the standard model of a thermal environment, a bath of harmonic oscillators, can be decomposed into a ‘cascade’ made up of the quasi-continuum coupling structures of Fermi’s golden rule. This clarifies the connection between the physics of the golden rule and that of a thermal bath, and provides a non-rigorous but physically intuitive derivation of the Markovian master equation directly from the former. The exact solution to the Hamiltonian of the golden rule, known as the Bixon-Jortner model, generalized for an asymmetric spectrum, provides a window on how the evolution induced by the bath deviates from the master equation as one moves outside the Markovian regime. Our analysis also reveals the relationship between the oscillator bath and the ‘random matrix model’ (RMT) of a thermal bath. We show that the cascade structure is the one essential difference between the two models, and the lack of it prevents the RMT from generating transition rates that are independent of the initial state of the system. We suggest that the cascade structure is one of the generic elements of thermalizing many-body systems.
Random variations in the ultraviolet spectrum of Beta Lyrae
NASA Technical Reports Server (NTRS)
Bless, R. C.; Eaton, J. A.; Meade, M. R.
1977-01-01
Spectrophotometric scans of Beta Lyrae over the wavelength range from 1100 to 3700 A are analyzed which were obtained at different times with different resolutions by the OAO 2 satellite and from the ground. A model atmosphere with normal H and He abundances, an electron temperature of 11,000 K, and log g of 3.0 is found to fit the visual region of the spectrum well but to be a poor representation in the Balmer continuum. It is shown that a large complex emission feature dominates the spectrum from about 1700 to 2200 A, that there is a very pronounced strengthening of the spectrum just shortward of the 1550-A C IV feature at phase 0.69, and that the overall level of the spectrum shortward of 1400 A is quite high in comparison with the broad emission feature. A model is discussed in which the light from a disk-shaped secondary is highly concentrated toward the polar regions.
Garcia, Gustavo A.; Nahon, Laurent; Daly, Steven; Powis, Ivan
2013-01-01
Electron–nuclei coupling accompanying excitation and relaxation processes is a fascinating phenomenon in molecular dynamics. A striking and unexpected example of such coupling is presented here in the context of photoelectron circular dichroism measurements on randomly oriented, chiral methyloxirane molecules, unaffected by any continuum resonance. Here, we report that the forward-backward asymmetry in the electron angular distribution, with respect to the photon axis, which is associated with photoelectron circular dichroism can surprisingly reverse direction according to the ion vibrational mode excited. This vibrational dependence represents a clear breakdown of the usual Franck–Condon assumption, ascribed to the enhanced sensitivity of photoelectron circular dichroism (compared with other observables like cross-sections or the conventional anisotropy parameter-β) to the scattering phase off the chiral molecular potential, inducing a dependence on the nuclear geometry sampled in the photoionization process. Important consequences for the interpretation of such dichroism measurements within analytical contexts are discussed. PMID:23828557
The quantum-field renormalization group in the problem of a growing phase boundary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonov, N.V.; Vasil`ev, A.N.
1995-09-01
Within the quantum-field renormalization-group approach we examine the stochastic equation discussed by S.I. Pavlik in describing a randomly growing phase boundary. We show that, in contrast to Pavlik`s assertion, the model is not multiplicatively renormalizable and that its consistent renormalization-group analysis requires introducing an infinite number of counterterms and the respective coupling constants ({open_quotes}charge{close_quotes}). An explicit calculation in the one-loop approximation shows that a two-dimensional surface of renormalization-group points exits in the infinite-dimensional charge space. If the surface contains an infrared stability region, the problem allows for scaling with the nonuniversal critical dimensionalities of the height of the phase boundarymore » and time, {delta}{sub h} and {delta}{sub t}, which satisfy the exact relationship 2 {delta}{sub h}= {delta}{sub t} + d, where d is the dimensionality of the phase boundary. 23 refs., 1 tab.« less
Envelope and phase distribution of a resonance transmission through a complex environment
NASA Astrophysics Data System (ADS)
Savin, Dmitry V.
2018-06-01
A transmission amplitude is considered for quantum or wave transport mediated by a single resonance coupled to the background of many chaotic states. Such a model provides a useful approach to quantify fluctuations in an established signal induced by a complex environment. Applying random matrix theory to the problem, we derive an exact result for the joint distribution of the transmission intensity (envelope) and the transmission phase at arbitrary coupling to the background with finite absorption. The intensity and phase are distributed within a certain region, revealing essential correlations even at strong absorption. In the latter limit, we obtain a simple asymptotic expression that provides a uniformly good approximation of the exact distribution within its whole support, thus going beyond the Rician distribution often used for such purposes. Exact results are also derived for the marginal distribution of the phase, including its limiting forms at weak and strong absorption.
NASA Astrophysics Data System (ADS)
Eshuis, Henk; Yarkony, Julian; Furche, Filipp
2010-06-01
The random phase approximation (RPA) is an increasingly popular post-Kohn-Sham correlation method, but its high computational cost has limited molecular applications to systems with few atoms. Here we present an efficient implementation of RPA correlation energies based on a combination of resolution of the identity (RI) and imaginary frequency integration techniques. We show that the RI approximation to four-index electron repulsion integrals leads to a variational upper bound to the exact RPA correlation energy if the Coulomb metric is used. Auxiliary basis sets optimized for second-order Møller-Plesset (MP2) calculations are well suitable for RPA, as is demonstrated for the HEAT [A. Tajti et al., J. Chem. Phys. 121, 11599 (2004)] and MOLEKEL [F. Weigend et al., Chem. Phys. Lett. 294, 143 (1998)] benchmark sets. Using imaginary frequency integration rather than diagonalization to compute the matrix square root necessary for RPA, evaluation of the RPA correlation energy requires O(N4 log N) operations and O(N3) storage only; the price for this dramatic improvement over existing algorithms is a numerical quadrature. We propose a numerical integration scheme that is exact in the two-orbital case and converges exponentially with the number of grid points. For most systems, 30-40 grid points yield μH accuracy in triple zeta basis sets, but much larger grids are necessary for small gap systems. The lowest-order approximation to the present method is a post-Kohn-Sham frequency-domain version of opposite-spin Laplace-transform RI-MP2 [J. Jung et al., Phys. Rev. B 70, 205107 (2004)]. Timings for polyacenes with up to 30 atoms show speed-ups of two orders of magnitude over previous implementations. The present approach makes it possible to routinely compute RPA correlation energies of systems well beyond 100 atoms, as is demonstrated for the octapeptide angiotensin II.
Eshuis, Henk; Yarkony, Julian; Furche, Filipp
2010-06-21
The random phase approximation (RPA) is an increasingly popular post-Kohn-Sham correlation method, but its high computational cost has limited molecular applications to systems with few atoms. Here we present an efficient implementation of RPA correlation energies based on a combination of resolution of the identity (RI) and imaginary frequency integration techniques. We show that the RI approximation to four-index electron repulsion integrals leads to a variational upper bound to the exact RPA correlation energy if the Coulomb metric is used. Auxiliary basis sets optimized for second-order Møller-Plesset (MP2) calculations are well suitable for RPA, as is demonstrated for the HEAT [A. Tajti et al., J. Chem. Phys. 121, 11599 (2004)] and MOLEKEL [F. Weigend et al., Chem. Phys. Lett. 294, 143 (1998)] benchmark sets. Using imaginary frequency integration rather than diagonalization to compute the matrix square root necessary for RPA, evaluation of the RPA correlation energy requires O(N(4) log N) operations and O(N(3)) storage only; the price for this dramatic improvement over existing algorithms is a numerical quadrature. We propose a numerical integration scheme that is exact in the two-orbital case and converges exponentially with the number of grid points. For most systems, 30-40 grid points yield muH accuracy in triple zeta basis sets, but much larger grids are necessary for small gap systems. The lowest-order approximation to the present method is a post-Kohn-Sham frequency-domain version of opposite-spin Laplace-transform RI-MP2 [J. Jung et al., Phys. Rev. B 70, 205107 (2004)]. Timings for polyacenes with up to 30 atoms show speed-ups of two orders of magnitude over previous implementations. The present approach makes it possible to routinely compute RPA correlation energies of systems well beyond 100 atoms, as is demonstrated for the octapeptide angiotensin II.
NASA Astrophysics Data System (ADS)
Singh, Hukum
2016-06-01
An asymmetric scheme has been proposed for optical double images encryption in the gyrator wavelet transform (GWT) domain. Grayscale and binary images are encrypted separately using double random phase encoding (DRPE) in the GWT domain. Phase masks based on devil's vortex Fresnel Lens (DVFLs) and random phase masks (RPMs) are jointly used in spatial as well as in the Fourier plane. The images to be encrypted are first gyrator transformed and then single-level discrete wavelet transformed (DWT) to decompose LL , HL , LH and HH matrices of approximation, horizontal, vertical and diagonal coefficients. The resulting coefficients from the DWT are multiplied by other RPMs and the results are applied to inverse discrete wavelet transform (IDWT) for obtaining the encrypted images. The images are recovered from their corresponding encrypted images by using the correct parameters of the GWT, DVFL and its digital implementation has been performed using MATLAB 7.6.0 (R2008a). The mother wavelet family, DVFL and gyrator transform orders associated with the GWT are extra keys that cause difficulty to an attacker. Thus, the scheme is more secure as compared to conventional techniques. The efficacy of the proposed scheme is verified by computing mean-squared-error (MSE) between recovered and the original images. The sensitivity of the proposed scheme is verified with encryption parameters and noise attacks.
Phase Transitions in Geomorphology
NASA Astrophysics Data System (ADS)
Ortiz, C. P.; Jerolmack, D. J.
2015-12-01
Landscapes are patterns in a dynamic steady-state, due to competing processes that smooth or sharpen features over large distances and times. Geomorphic transport laws have been developed to model the mass-flux due to different processes, but are unreasonably effective at recovering the scaling relations of landscape features. Using a continuum approximation to compare experimental landscapes and the observed landscapes of the earth, one finds they share similar morphodynamics despite a breakdown of classical dynamical similarity between the two. We propose the origin of this effectiveness is a different kind of dynamic similarity in the statistics of initiation and cessation of motion of groups of grains, which is common to disordered systems of grains under external driving. We will show how the existing data of sediment transport points to common signatures with dynamical phase transitions between "mobile" and "immobile" phases in other disordered systems, particularly granular materials, colloids, and foams. Viewing landscape evolution from the lens of non-equilibrium statistical physics of disordered systems leads to predictions that the transition of bulk measurements such as particle flux is continuous from one phase to another, that the collective nature of the particle dynamics leads to very slow aging of bulk properties, and that the dynamics are history-dependent. Recent results from sediment transport experiments support these predictions, suggesting that existing geomorphic transport laws may need to be replaced by a new generation of stochastic models with ingredients based on the physics of disordered phase transitions. We discuss possible strategies for extracting the necessary information to develop these models from measurements of geomorphic transport noise by connecting particle-scale collective dynamics and space-time fluctuations over landscape features.
Hydration of copper(II): new insights from density functional theory and the COSMO solvation model.
Bryantsev, Vyacheslav S; Diallo, Mamadou S; van Duin, Adri C T; Goddard, William A
2008-09-25
The hydrated structure of the Cu(II) ion has been a subject of ongoing debate in the literature. In this article, we use density functional theory (B3LYP) and the COSMO continuum solvent model to characterize the structure and stability of [Cu(H2O)n](2+) clusters as a function of coordination number (4, 5, and 6) and cluster size (n = 4-18). We find that the most thermodynamically favored Cu(II) complexes in the gas phase have a very open four-coordinate structure. They are formed from a stable square-planar [Cu(H2O)8](2+) core stabilized by an unpaired electron in the Cu(II) ion d(x(2)-y(2)) orbital. This is consistent with cluster geometries suggested by recent mass-spectrometric experiments. In the aqueous phase, we find that the more compact five-coordinate square-pyramidal geometry is more stable than either the four-coordinate or six-coordinate clusters in agreement with recent combined EXAFS and XANES studies of aqueous solutions of Cu(II). However, a small energetic difference (approximately 1.4 kcal/mol) between the five- and six-coordinate models with two full hydration shells around the metal ion suggests that both forms may coexist in solution.
A multi-physics study of Li-ion battery material Li1+xTi2O4
NASA Astrophysics Data System (ADS)
Jiang, Tonghu; Falk, Michael; Siva Shankar Rudraraju, Krishna; Garikipati, Krishna; van der Ven, Anton
2013-03-01
Recently, lithium ion batteries have been subject to intense scientific study due to growing demand arising from their utilization in portable electronics, electric vehicles and other applications. Most cathode materials in lithium ion batteries involve a two-phase process during charging and discharging, and the rate of these processes is typically limited by the slow interface mobility. We have undertaken modeling regarding how lithium diffusion in the interface region affects the motion of the phase boundary. We have developed a multi-physics computational method suitable for predicting time evolution of the driven interface. In this method, we calculate formation energies and migration energy barriers by ab initio methods, which are then approximated by cluster expansions. Monte Carlo calculation is further employed to obtain thermodynamic and kinetic information, e.g., anisotropic interfacial energies, and mobilities, which are used to parameterize continuum modeling of the charging and discharging processes. We test this methodology on spinel Li1+xTi2O4. Elastic effects are incorporated into the calculations to determine the effect of variations in modulus and strain on stress concentrations and failure modes within the material. We acknowledge support by the National Science Foundation Cyber Discovery and Innovation Program under Award No. 1027765.
Towards a phase diagram for spin foams
NASA Astrophysics Data System (ADS)
Delcamp, Clement; Dittrich, Bianca
2017-11-01
One of the most pressing issues for loop quantum gravity and spin foams is the construction of the continuum limit. In this paper, we propose a systematic coarse-graining scheme for three-dimensional lattice gauge models including spin foams. This scheme is based on the concept of decorated tensor networks, which have been introduced recently. Here we develop an algorithm applicable to gauge theories with non-Abelian groups, which for the first time allows for the application of tensor network coarse-graining techniques to proper spin foams. The procedure deals efficiently with the large redundancy of degrees of freedom resulting from gauge invariance. The algorithm is applied to 3D spin foams defined on a cubical lattice which, in contrast to a proper triangulation, allows for non-trivial simplicity constraints. This mimics the construction of spin foams for 4D gravity. For lattice gauge models based on a finite group we use the algorithm to obtain phase diagrams, encoding the continuum limit of a wide range of these models. We find phase transitions for various families of models carrying non-trivial simplicity constraints.
Optical, IUE, and ROSAT observations of the eclipsing nova-like variable V347 Puppis (LB 1800)
NASA Technical Reports Server (NTRS)
Mauche, Christopher W.; Raymond, John C.; Buckley, David A. H.; Mouchet, Martine; Bonnell, Jerry; Sullivan, Denis J.; Bonnet-Bidaud, Jean-Marc; Bunk, Wolfram H.
1994-01-01
Using time-resolved optical spectroscopy and UBVRI and high-speed photometry obtained at Mount Stromlo Observatory, Mount John University Observatory, and the South African Astronomical Observatory; International Ultraviolet Explorer (IUE) ultraviolet spectroscopy; and Roentgen Satellite (ROSAT) survey X-ray fluxes, we present a study of the accretion disk, hot spot, and emission line regions in the bright eclipsing nova-like variable V347 Pup (LB 1800). In the optical and UV, V347 Pup is a strong emission line source with a continuum spectrum which is remarkably red for a high-M cataclysmic variable. Consistent with its high inclination, we interpret the continuum spectrum as the superposition of the spectrum of the cool (T(sub eff) approximately 7000 K) outer edge and the hot (T(sub eff) approximately 100,000 K) inner regions of a self-eclipsed accretion disk. For the assumed parameters, the model matches the level and shape of the observed spectrum for an inclination of approximately 88 and a distance of approximately 300 pc. The prominent hump in the optical and UV light curves just before eclipse manifests the presence of the hot spot where the accretion stream strikes the edge of the disk. The wavelength dependence of the amplitude of the hump is best modeled by a spot having an effective temperature of approximately 25,000 K and an area of approximately 3 x 10(exp 18) sq cm if the spot radiates like a blackbody, or an effective temperatue of approximately 14,000 K and an area of approximately 3 x 10(exp 19) sq cm if it radiates with a stellar spectrum. In either case, the hot spot produces only one-tenth of the predicted luminosity for the assumed mass-transfer rate of 10(exp -8) solar mass/yr. Either the hot spot is 'buried' in the edge of the accretion disk, or a significant fraction of its luminosity is radiated away in lines. The difference in azimuth between the peak of the hump and the dynamically expected location of the hot spot suggests that the spot's emitting surface is rotated forward by approximately 36 deg relative to the edge of the disk.
Optical, IUE, and ROSAT observations of the eclipsing nova-like variable V347 Puppis (LB 1800)
NASA Astrophysics Data System (ADS)
Mauche, Christopher W.; Raymond, John C.; Buckley, David A. H.; Mouchet, Martine; Bonnell, Jerry; Sullivan, Denis J.; Bonnet-Bidaud, Jean-Marc; Bunk, Wolfram H.
1994-03-01
Using time-resolved optical spectroscopy and UBVRI and high-speed photometry obtained at Mount Stromlo Observatory, Mount John University Observatory, and the South African Astronomical Observatory; International Ultraviolet Explorer (IUE) ultraviolet spectroscopy; and Roentgen Satellite (ROSAT) survey X-ray fluxes, we present a study of the accretion disk, hot spot, and emission line regions in the bright eclipsing nova-like variable V347 Pup (LB 1800). In the optical and UV, V347 Pup is a strong emission line source with a continuum spectrum which is remarkably red for a high-M cataclysmic variable. Consistent with its high inclination, we interpret the continuum spectrum as the superposition of the spectrum of the cool (Teff approximately 7000 K) outer edge and the hot (Teff approximately 100,000 K) inner regions of a self-eclipsed accretion disk. For the assumed parameters, the model matches the level and shape of the observed spectrum for an inclination of approximately 88 and a distance of approximately 300 pc. The prominent hump in the optical and UV light curves just before eclipse manifests the presence of the hot spot where the accretion stream strikes the edge of the disk. The wavelength dependence of the amplitude of the hump is best modeled by a spot having an effective temperature of approximately 25,000 K and an area of approximately 3 x 1018 sq cm if the spot radiates like a blackbody, or an effective temperatue of approximately 14,000 K and an area of approximately 3 x 1019 sq cm if it radiates with a stellar spectrum. In either case, the hot spot produces only one-tenth of the predicted luminosity for the assumed mass-transfer rate of 10-8 solar mass/yr. Either the hot spot is 'buried' in the edge of the accretion disk, or a significant fraction of its luminosity is radiated away in lines. The difference in azimuth between the peak of the hump and the dynamically expected location of the hot spot suggests that the spot's emitting surface is rotated forward by approximately 36 deg relative to the edge of the disk.
Convergence behavior of the random phase approximation renormalized correlation energy
NASA Astrophysics Data System (ADS)
Bates, Jefferson E.; Sensenig, Jonathon; Ruzsinszky, Adrienn
2017-05-01
Based on the random phase approximation (RPA), RPA renormalization [J. E. Bates and F. Furche, J. Chem. Phys. 139, 171103 (2013), 10.1063/1.4827254] is a robust many-body perturbation theory that works for molecules and materials because it does not diverge as the Kohn-Sham gap approaches zero. Additionally, RPA renormalization enables the simultaneous calculation of RPA and beyond-RPA correlation energies since the total correlation energy is the sum of a series of independent contributions. The first-order approximation (RPAr1) yields the dominant beyond-RPA contribution to the correlation energy for a given exchange-correlation kernel, but systematically underestimates the total beyond-RPA correction. For both the homogeneous electron gas model and real systems, we demonstrate numerically that RPA renormalization beyond first order converges monotonically to the infinite-order beyond-RPA correlation energy for several model exchange-correlation kernels and that the rate of convergence is principally determined by the choice of the kernel and spin polarization of the ground state. The monotonic convergence is rationalized from an analysis of the RPA renormalized correlation energy corrections, assuming the exchange-correlation kernel and response functions satisfy some reasonable conditions. For spin-unpolarized atoms, molecules, and bulk solids, we find that RPA renormalization is typically converged to 1 meV error or less by fourth order regardless of the band gap or dimensionality. Most spin-polarized systems converge at a slightly slower rate, with errors on the order of 10 meV at fourth order and typically requiring up to sixth order to reach 1 meV error or less. Slowest to converge, however, open-shell atoms present the most challenging case and require many higher orders to converge.
Stiffness-constant variation in nickel-based alloys: Experiment and theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hennion, M.; Hennion, B.
1979-01-01
Recent measurements of the spin-wave stiffness constant in several nickel alloys at various concentrations are interpreted within a random-phase approximation, coherent-potential approximation (RPA-CPA) band model which uses the Hartree-Fock approximation to treat the intraatomic correlations. We give a theoretical description of the possible impurity states in the Hartree-Fock approximation. This allows the determination of the Hartree-Fock solutions which can account for the stiffness-constant behavior and the magnetic moment on the impurity for all the investigated alloys. For alloys such as NiCr, NiV, NiMo, and NiRu, the magnetizations of which deviate from the Slater-Pauling curve, our determination does not correspond tomore » previous works and is consequently discussed. The limits of the model appear mainly due to local-environment effects; in the case of NiMn, it is found that a ternary-alloy model with some Mn atoms in the antiferromagnetic state can account for both stiffness-constant and magnetization behaviors.« less
NASA Astrophysics Data System (ADS)
Tarantino, Walter; Mendoza, Bernardo S.; Romaniello, Pina; Berger, J. A.; Reining, Lucia
2018-04-01
Many-body perturbation theory is often formulated in terms of an expansion in the dressed instead of the bare Green’s function, and in the screened instead of the bare Coulomb interaction. However, screening can be calculated on different levels of approximation, and it is important to define what is the most appropriate choice. We explore this question by studying a zero-dimensional model (so called ‘one-point model’) that retains the structure of the full equations. We study both linear and non-linear response approximations to the screening. We find that an expansion in terms of the screening in the random phase approximation is the most promising way for an application in real systems. Moreover, by making use of the nonperturbative features of the Kadanoff-Baym equation for the one-body Green’s function, we obtain an approximate solution in our model that is very promising, although its applicability to real systems has still to be explored.
Optics of Water Microdroplets with Soot Inclusions: Exact Versus Approximate Results
NASA Technical Reports Server (NTRS)
Liu, Li; Mishchenko, Michael I.
2016-01-01
We use the recently generalized version of the multi-sphere superposition T-matrix method (STMM) to compute the scattering and absorption properties of microscopic water droplets contaminated by black carbon. The soot material is assumed to be randomly distributed throughout the droplet interior in the form of numerous small spherical inclusions. Our numerically-exact STMM results are compared with approximate ones obtained using the Maxwell-Garnett effective-medium approximation (MGA) and the Monte Carlo ray-tracing approximation (MCRTA). We show that the popular MGA can be used to calculate the droplet optical cross sections, single-scattering albedo, and asymmetry parameter provided that the soot inclusions are quasi-uniformly distributed throughout the droplet interior, but can fail in computations of the elements of the scattering matrix depending on the volume fraction of soot inclusions. The integral radiative characteristics computed with the MCRTA can deviate more significantly from their exact STMM counterparts, while accurate MCRTA computations of the phase function require droplet size parameters substantially exceeding 60.
Phased-mission system analysis using Boolean algebraic methods
NASA Technical Reports Server (NTRS)
Somani, Arun K.; Trivedi, Kishor S.
1993-01-01
Most reliability analysis techniques and tools assume that a system is used for a mission consisting of a single phase. However, multiple phases are natural in many missions. The failure rates of components, system configuration, and success criteria may vary from phase to phase. In addition, the duration of a phase may be deterministic or random. Recently, several researchers have addressed the problem of reliability analysis of such systems using a variety of methods. A new technique for phased-mission system reliability analysis based on Boolean algebraic methods is described. Our technique is computationally efficient and is applicable to a large class of systems for which the failure criterion in each phase can be expressed as a fault tree (or an equivalent representation). Our technique avoids state space explosion that commonly plague Markov chain-based analysis. A phase algebra to account for the effects of variable configurations and success criteria from phase to phase was developed. Our technique yields exact (as opposed to approximate) results. The use of our technique was demonstrated by means of an example and present numerical results to show the effects of mission phases on the system reliability.
Cluster-Continuum Calculations of Hydration Free Energies of Anions and Group 12 Divalent Cations.
Riccardi, Demian; Guo, Hao-Bo; Parks, Jerry M; Gu, Baohua; Liang, Liyuan; Smith, Jeremy C
2013-01-08
Understanding aqueous phase processes involving group 12 metal cations is relevant to both environmental and biological sciences. Here, quantum chemical methods and polarizable continuum models are used to compute the hydration free energies of a series of divalent group 12 metal cations (Zn(2+), Cd(2+), and Hg(2+)) together with Cu(2+) and the anions OH(-), SH(-), Cl(-), and F(-). A cluster-continuum method is employed, in which gas-phase clusters of the ion and explicit solvent molecules are immersed in a dielectric continuum. Two approaches to define the size of the solute-water cluster are compared, in which the number of explicit waters used is either held constant or determined variationally as that of the most favorable hydration free energy. Results obtained with various polarizable continuum models are also presented. Each leg of the relevant thermodynamic cycle is analyzed in detail to determine how different terms contribute to the observed mean signed error (MSE) and the standard deviation of the error (STDEV) between theory and experiment. The use of a constant number of water molecules for each set of ions is found to lead to predicted relative trends that benefit from error cancellation. Overall, the best results are obtained with MP2 and the Solvent Model D polarizable continuum model (SMD), with eight explicit water molecules for anions and 10 for the metal cations, yielding a STDEV of 2.3 kcal mol(-1) and MSE of 0.9 kcal mol(-1) between theoretical and experimental hydration free energies, which range from -72.4 kcal mol(-1) for SH(-) to -505.9 kcal mol(-1) for Cu(2+). Using B3PW91 with DFT-D3 dispersion corrections (B3PW91-D) and SMD yields a STDEV of 3.3 kcal mol(-1) and MSE of 1.6 kcal mol(-1), to which adding MP2 corrections from smaller divalent metal cation water molecule clusters yields very good agreement with the full MP2 results. Using B3PW91-D and SMD, with two explicit water molecules for anions and six for divalent metal cations, also yields reasonable agreement with experimental values, due in part to fortuitous error cancellation associated with the metal cations. Overall, the results indicate that the careful application of quantum chemical cluster-continuum methods provides valuable insight into aqueous ionic processes that depend on both local and long-range electrostatic interactions with the solvent.
ERIC Educational Resources Information Center
BOTTIGLIA, WILLIAM F.
THESE REPORTS OF THE WORKING COMMITTEES OF THE 1963 NORTHEAST CONFERENCE ON THE TEACHING OF FOREIGN LANGUAGES ANALYZE PROBLEMS CONFRONTING LANGUAGE TEACHERS AS THEY PROGRESS FROM THE AUDIOLINGUAL ORIENTATION OF THE ELEMENTARY LEVELS TO THE INTERMEDIATE PHASE IN A CONTINUUM OF LANGUAGE STUDY. IN AN ATTEMPT TO DISCOVER WHETHER BILINGUALISM CAN BE…
Ab initio study of the Jπ=0± continuum structures in 4He
NASA Astrophysics Data System (ADS)
Aoyama, S.; Baye, D.
2018-05-01
The Jπ=0± continuum structures in 4He are investigated by using an ab initio reaction theory with the microscopic R -matrix method. In the Ex≥˜20 MeV excitation energy region of 4He, the continuum states are mainly described by the t +p , h +n , and d +d channels. The Jπ=0± elastic phase shifts of the t +p and h +n channels show an apparently resonant behavior which might indicate the existence of excited 03+ and 02- resonance states of 4He above the known 02+ and 01- ones. However, the corresponding 03+ and 02- resonances have not been observed yet, although an experimental candidate with a large decay width is reported for 02-. In this paper, by analyzing the Jπ=0± S matrices, we discuss why the observation of these states is unlikely.
The sunward continuum feature of Comet 45P/Honda-Mrkos-Pajdušáková
NASA Astrophysics Data System (ADS)
Mueller, Beatrice E. A.; Samarasinha, Nalin H.; Harris, Walter M.; Springmann, Alessondra; Lejoly, Cassandra; Bodnarik, Julia; Howell, Ellen S.; Ryan, Erin L.; Kikwaya Eluo, Jean-Baptiste; Ryleigh Fitzpatrick, M.; Watson, Zachary Tyler; Maciel, Ricardo; Macieira Mitchell, Adriana; Scotti, James Vernon
2017-10-01
We will present results of our investigation of the sunward continuum feature of comet 45P/Honda-Mrkos-Pajdušáková (HMP). HMP was observed in 2017 at the University of Arizona’s Kuiper 61’’ telescope on Mount Bigelow on February 8, 9, 10, 16, and March 7 with the Mont4K camera, and at the Bok 2.3m telescope on Kitt Peak on February 16 and 17 with the 90Prime imager. The heliocentric distance of HMP varied from 0.94 au to 1.32 au, the geocentric distance from 0.08 au to 0.34 au, and the solar phase angle from 15 deg to 119 deg during that time period. The sunward continuum feature is present in all our images. Position angle variations and radial spatial profiles of the feature, as well as deduced physical parameters will be discussed.
Discrete and continuum links to a nonlinear coupled transport problem of interacting populations
NASA Astrophysics Data System (ADS)
Duong, M. H.; Muntean, A.; Richardson, O. M.
2017-07-01
We are interested in exploring interacting particle systems that can be seen as microscopic models for a particular structure of coupled transport flux arising when different populations are jointly evolving. The scenarios we have in mind are inspired by the dynamics of pedestrian flows in open spaces and are intimately connected to cross-diffusion and thermo-diffusion problems holding a variational structure. The tools we use include a suitable structure of the relative entropy controlling TV-norms, the construction of Lyapunov functionals and particular closed-form solutions to nonlinear transport equations, a hydrodynamics limiting procedure due to Philipowski, as well as the construction of numerical approximates to both the continuum limit problem in 2D and to the original interacting particle systems.
A Lack of Continuity in Education, Training, and Practice Violates the "Do No Harm" Principle.
Englander, Robert; Carraccio, Carol
2018-03-01
The paradigm shift to competency-based medical education (CBME) is under way, but incomplete implementation is blunting the potential impact on learning and patient outcomes. The fundamental principles of CBME call for standardizing outcomes addressing population health needs, then allowing time-variable progression to achieving them. Operationalizing CBME principles requires continuity within and across phases of the education, training, and practice continuum. However, the piecemeal origin of the phases of the "continuum" has resulted in a sequence of undergraduate to graduate medical education to practice that may be continuous temporally but bears none of the integration of a true continuum.With these timed interruptions during phase transitions, learning is not reinforced because of a failure to integrate experiences. Brief block rotations for learners and ever-shorter supervisory assignments for faculty preclude the development of relationships. Without these relationships, feedback falls on deaf ears. Block rotations also disrupt learners' relationships with patients. The harms resulting from such a system include decreases in patient satisfaction with their care and learner satisfaction with their work. Learners in this block system also demonstrate an erosion of empathy compared with those in innovative longitudinal training models. In addition, higher patient mortality during intern transitions has been demonstrated.The current medical education system is violating the first principle of medicine: "Do no harm." Full implementation of competency-based, time-variable education and training, with fixed outcomes aligned with population health needs, continuity in learning and relationships, and support from a developmental program of assessment, holds great potential to stop this harm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sano, Nobuyuki, E-mail: sano@esys.tsukuba.ac.jp
2015-12-28
The impurity-limited resistance and the effect of the phase interference among localized multiple impurities in the quasi-one dimensional (quasi-1D) nanowire structures are systematically investigated under the framework of the scattering theory. We derive theoretical expressions of the impurity-limited resistance in the nanowire under the linear response regime from the Landauer formula and from the Boltzmann transport equation (BTE) with the relaxation time approximation. We show that the formula from the BTE exactly coincides with that from the Landauer approach with the weak-scattering limit when the energy spectrum of the in-coming electrons from the reservoirs is narrow and, thus, point outmore » a possibility that the distinction of the impurity-limited resistances derived from the Landauer formula and that of the BTE could be made clear. The derived formulas are applied to the quasi-1D nanowires doped with multiple localized impurities with short-range scattering potential and the validity of various approximations on the resistance are discussed. It is shown that impurity scattering becomes so strong under the nanowire structures that the weak-scattering limit breaks down in most cases. Thus, both phase interference and phase randomization simultaneously play a crucial role in determining the impurity-limited resistance even under the fully coherent framework. When the impurity separation along the wire axis direction is small, the constructive phase interference dominates and the resistance is much greater than the average resistance. As the separation becomes larger, however, it approaches the series resistance of the single-impurity resistance due to the phase randomization. Furthermore, under the uniform configuration of impurities, the space-average resistance of multiple impurities at room temperature is very close to the series resistance of the single-impurity resistance, and thus, each impurity could be regarded as an independent scattering center. The physical origin of this “self-averaging” under the fully coherent environments is attributed to the broadness of the energy spectrum of the in-coming electrons from the reservoirs.« less
Theoretical results which strengthen the hypothesis of electroweak bioenantioselection
NASA Astrophysics Data System (ADS)
Zanasi, R.; Lazzeretti, P.; Ligabue, A.; Soncini, A.
1999-03-01
It is shown via a large series of numerical tests on two fundamental organic molecules, the L-α-amino acid L-valine and the sugar precursor hydrated D-glyceraldheyde, that the ab initio calculation of the parity-violating energy shift, at the random-phase approximation level of accuracy, provides results that are about one order of magnitude larger than those obtained by means of less accurate methods employed previously. These findings would make more plausible the hypothesis of electroweak selection of natural enantiomers via the Kondepudi-Nelson scenario, or could imply that Salam phase-transition temperature is higher than previously inferred: accordingly, the hypothesis of terrestrial origin of life would become more realistic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanai, Ryo; Littlewood, Peter B.; Ohashi, Yoji
2017-09-01
We present a stability analysis on a driven-dissipative electron-hole condensate in the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein-condensation)-crossover region. Extending the combined BCS-Leggett theory with the generalized random phase approximation (GRPA) to the non-equilibrium case by employing the Keldysh formalism, we show that the pumping-and-decay of carriers causes a depairing effect on excitons. This phenomenon gives rise to an attractive interaction between excitons in the BEC regime, as well as a supercurrent that anomalously flows anti-parallel to ∇θ(r) (where θ(r) is the phase of the condensate) in the BCS regime, both leading to dynamical instabilities of an exciton-BEC.
Chagomoka, Takemore; Drescher, Axel; Glaser, Rüdiger; Marschner, Bernd; Schlesinger, Johannes; Nyandoro, George
2016-01-01
Malnutrition is still prevalent worldwide, and its severity, which differs between regions and countries, has led to international organisations proposing its inclusion in the global development framework that will succeed the Millennium Development Goals (post-2015 framework). In Sub-Saharan Africa, malnutrition is particularly severe, among women and children under 5 years. The prevalence of malnutrition has been reported worldwide, differing from region to region and country to country. Nevertheless, little is known about how malnutrition differs between multiple locations along an urban-rural continuum. A survey was carried out in and around Ouagadougou, Burkina Faso, between August and September 2014 to map household nutrition insecurity along the urban-rural continuum, using a transect approach to guide the data collection. Transects of 70 km long and 2 km wide directed radially from the city centre outwards were laid, and data were collected from randomly selected households along these transects. Women's dietary diversity scores (WDDSs) were calculated from a sample of 179 women of reproductive age (15-49 years) from randomly selected households. Additionally, anthropometric data (height/length and weight) of 133 children under 5 years of age were collected along the same transects for the computation of anthropometric indices. We found that relative proportions of the nutrition indices such as stunting, wasting and underweight varied across the urban-rural continuum. Rural households (15%) had the highest relative proportion of WDDS compared with urban households (11%) and periurban households (8%). There was a significant association between children under 5 years' nutritional status (wasting, stunting and underweight) and spatial location (p=0.023). The level of agricultural activities is a possible indicator of wasting in children aged 6-59 months (p=0.032). Childhood undernutrition certainly has a spatial dimension that is highly influenced by the degree of urbanity, which should be taken into consideration in policy formulation and implementation.
An Effective Continuum Model for the Gas Evolution in Internal Steam Drives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsimpanogiannis, Ioannis N.; Yortsos, Yanis C.
This report examines the gas phase growth from a supersaturated, slightly compressible, liquid in a porous medium, driven by heat transfer and controlled by the application of a constant-rate decline of the system pressure.
Dynamic Structure Factor: An Introduction
NASA Astrophysics Data System (ADS)
Sturm, K.
1993-02-01
The doubly differential cross-section for weak inelastic scattering of waves or particles by manybody systems is derived in Born approximation and expressed in terms of the dynamic structure factor according to van Hove. The application of this very general scheme to scattering of neutrons, x-rays and high-energy electrons is discussed briefly. The dynamic structure factor, which is the space and time Fourier transform of the density-density correlation function, is a property of the many-body system independent of the external probe and carries information on the excitation spectrum of the system. The relation of the electronic structure factor to the density-density response function defined in linear-response theory is shown using the fluctuation-dissipation theorem. This is important for calculations, since the response function can be calculated approximately from the independent-particle response function in self-consistent field approximations, such as the random-phase approximation or the local-density approximation of the density functional theory. Since the density-density response function also determines the dielectric function, the dynamic structure can be expressed by the dielectric function.
Rupert, C.P.; Miller, C.T.
2008-01-01
We examine a variety of polynomial-chaos-motivated approximations to a stochastic form of a steady state groundwater flow model. We consider approaches for truncating the infinite dimensional problem and producing decoupled systems. We discuss conditions under which such decoupling is possible and show that to generalize the known decoupling by numerical cubature, it would be necessary to find new multivariate cubature rules. Finally, we use the acceleration of Monte Carlo to compare the quality of polynomial models obtained for all approaches and find that in general the methods considered are more efficient than Monte Carlo for the relatively small domains considered in this work. A curse of dimensionality in the series expansion of the log-normal stochastic random field used to represent hydraulic conductivity provides a significant impediment to efficient approximations for large domains for all methods considered in this work, other than the Monte Carlo method. PMID:18836519