Sample records for continuum solvent model

  1. Non-uniform Continuum Model for Solvated Species Based on Frozen-Density Embedding Theory: The Study Case of Solvatochromism of Coumarin 153.

    PubMed

    Shedge, Sapana V; Zhou, Xiuwen; Wesolowski, Tomasz A

    2014-09-01

    Recent application of the Frozen-Density Embedding Theory based continuum model of the solvent, which is used for calculating solvatochromic shifts in the UV/Vis range, are reviewed. In this model, the solvent is represented as a non-uniform continuum taking into account both the statistical nature of the solvent and specific solute-solvent interactions. It offers, therefore, a computationally attractive alternative to methods in which the solvent is described at atomistic level. The evaluation of the solvatochromic shift involves only two calculations of excitation energy instead of at least hundreds needed to account for inhomogeneous broadening. The present review provides a detailed graphical analysis of the key quantities of this model: the average charge density of the solvent (<ρB>) and the corresponding Frozen-Density Embedding Theory derived embedding potential for coumarin 153.

  2. Dynamical discrete/continuum linear response shells theory of solvation: convergence test for NH4+ and OH- ions in water solution using DFT and DFTB methods.

    PubMed

    de Lima, Guilherme Ferreira; Duarte, Hélio Anderson; Pliego, Josefredo R

    2010-12-09

    A new dynamical discrete/continuum solvation model was tested for NH(4)(+) and OH(-) ions in water solvent. The method is similar to continuum solvation models in a sense that the linear response approximation is used. However, different from pure continuum models, explicit solvent molecules are included in the inner shell, which allows adequate treatment of specific solute-solvent interactions present in the first solvation shell, the main drawback of continuum models. Molecular dynamics calculations coupled with SCC-DFTB method are used to generate the configurations of the solute in a box with 64 water molecules, while the interaction energies are calculated at the DFT level. We have tested the convergence of the method using a variable number of explicit water molecules and it was found that even a small number of waters (as low as 14) are able to produce converged values. Our results also point out that the Born model, often used for long-range correction, is not reliable and our method should be applied for more accurate calculations.

  3. Weighted-density functionals for cavity formation and dispersion energies in continuum solvation models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundararaman, Ravishankar; Gunceler, Deniz; Arias, T. A.

    2014-10-07

    Continuum solvation models enable efficient first principles calculations of chemical reactions in solution, but require extensive parametrization and fitting for each solvent and class of solute systems. Here, we examine the assumptions of continuum solvation models in detail and replace empirical terms with physical models in order to construct a minimally-empirical solvation model. Specifically, we derive solvent radii from the nonlocal dielectric response of the solvent from ab initio calculations, construct a closed-form and parameter-free weighted-density approximation for the free energy of the cavity formation, and employ a pair-potential approximation for the dispersion energy. We show that the resulting modelmore » with a single solvent-independent parameter: the electron density threshold (n c), and a single solvent-dependent parameter: the dispersion scale factor (s 6), reproduces solvation energies of organic molecules in water, chloroform, and carbon tetrachloride with RMS errors of 1.1, 0.6 and 0.5 kcal/mol, respectively. We additionally show that fitting the solvent-dependent s 6 parameter to the solvation energy of a single non-polar molecule does not substantially increase these errors. Parametrization of this model for other solvents, therefore, requires minimal effort and is possible without extensive databases of experimental solvation free energies.« less

  4. Weighted-density functionals for cavity formation and dispersion energies in continuum solvation models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundararaman, Ravishankar; Gunceler, Deniz; Arias, T. A.

    2014-10-07

    Continuum solvation models enable efficient first principles calculations of chemical reactions in solution, but require extensive parametrization and fitting for each solvent and class of solute systems. Here, we examine the assumptions of continuum solvation models in detail and replace empirical terms with physical models in order to construct a minimally-empirical solvation model. Specifically, we derive solvent radii from the nonlocal dielectric response of the solvent from ab initio calculations, construct a closed-form and parameter-free weighted-density approximation for the free energy of the cavity formation, and employ a pair-potential approximation for the dispersion energy. We show that the resulting modelmore » with a single solvent-independent parameter: the electron density threshold (n{sub c}), and a single solvent-dependent parameter: the dispersion scale factor (s{sub 6}), reproduces solvation energies of organic molecules in water, chloroform, and carbon tetrachloride with RMS errors of 1.1, 0.6 and 0.5 kcal/mol, respectively. We additionally show that fitting the solvent-dependent s{sub 6} parameter to the solvation energy of a single non-polar molecule does not substantially increase these errors. Parametrization of this model for other solvents, therefore, requires minimal effort and is possible without extensive databases of experimental solvation free energies.« less

  5. Incorporation of the TIP4P water model into a continuum solvent for computing solvation free energy

    NASA Astrophysics Data System (ADS)

    Yang, Pei-Kun

    2014-10-01

    The continuum solvent model is one of the commonly used strategies to compute solvation free energy especially for large-scale conformational transitions such as protein folding or to calculate the binding affinity of protein-protein/ligand interactions. However, the dielectric polarization for computing solvation free energy from the continuum solvent is different than that obtained from molecular dynamic simulations. To mimic the dielectric polarization surrounding a solute in molecular dynamic simulations, the first-shell water molecules was modeled using a charge distribution of TIP4P in a hard sphere; the time-averaged charge distribution from the first-shell water molecules were estimated based on the coordination number of the solute, and the orientation distribution of the first-shell waters and the intermediate water molecules were treated as that of a bulk solvent. Based on this strategy, an equation describing the solvation free energy of ions was derived.

  6. A Multi-Scale Method for Dynamics Simulation in Continuum Solvent Models I: Finite-Difference Algorithm for Navier-Stokes Equation.

    PubMed

    Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray

    2014-11-25

    A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design.

  7. Assessing implicit models for nonpolar mean solvation forces: The importance of dispersion and volume terms

    PubMed Central

    Wagoner, Jason A.; Baker, Nathan A.

    2006-01-01

    Continuum solvation models provide appealing alternatives to explicit solvent methods because of their ability to reproduce solvation effects while alleviating the need for expensive sampling. Our previous work has demonstrated that Poisson-Boltzmann methods are capable of faithfully reproducing polar explicit solvent forces for dilute protein systems; however, the popular solvent-accessible surface area model was shown to be incapable of accurately describing nonpolar solvation forces at atomic-length scales. Therefore, alternate continuum methods are needed to reproduce nonpolar interactions at the atomic scale. In the present work, we address this issue by supplementing the solvent-accessible surface area model with additional volume and dispersion integral terms suggested by scaled particle models and Weeks–Chandler–Andersen theory, respectively. This more complete nonpolar implicit solvent model shows very good agreement with explicit solvent results and suggests that, although often overlooked, the inclusion of appropriate dispersion and volume terms are essential for an accurate implicit solvent description of atomic-scale nonpolar forces. PMID:16709675

  8. A Multi-Scale Method for Dynamics Simulation in Continuum Solvent Models I: Finite-Difference Algorithm for Navier-Stokes Equation

    PubMed Central

    Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray

    2014-01-01

    A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design. PMID:25404761

  9. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.

    PubMed

    Marenich, Aleksandr V; Cramer, Christopher J; Truhlar, Donald G

    2009-05-07

    We present a new continuum solvation model based on the quantum mechanical charge density of a solute molecule interacting with a continuum description of the solvent. The model is called SMD, where the "D" stands for "density" to denote that the full solute electron density is used without defining partial atomic charges. "Continuum" denotes that the solvent is not represented explicitly but rather as a dielectric medium with surface tension at the solute-solvent boundary. SMD is a universal solvation model, where "universal" denotes its applicability to any charged or uncharged solute in any solvent or liquid medium for which a few key descriptors are known (in particular, dielectric constant, refractive index, bulk surface tension, and acidity and basicity parameters). The model separates the observable solvation free energy into two main components. The first component is the bulk electrostatic contribution arising from a self-consistent reaction field treatment that involves the solution of the nonhomogeneous Poisson equation for electrostatics in terms of the integral-equation-formalism polarizable continuum model (IEF-PCM). The cavities for the bulk electrostatic calculation are defined by superpositions of nuclear-centered spheres. The second component is called the cavity-dispersion-solvent-structure term and is the contribution arising from short-range interactions between the solute and solvent molecules in the first solvation shell. This contribution is a sum of terms that are proportional (with geometry-dependent proportionality constants called atomic surface tensions) to the solvent-accessible surface areas of the individual atoms of the solute. The SMD model has been parametrized with a training set of 2821 solvation data including 112 aqueous ionic solvation free energies, 220 solvation free energies for 166 ions in acetonitrile, methanol, and dimethyl sulfoxide, 2346 solvation free energies for 318 neutral solutes in 91 solvents (90 nonaqueous organic solvents and water), and 143 transfer free energies for 93 neutral solutes between water and 15 organic solvents. The elements present in the solutes are H, C, N, O, F, Si, P, S, Cl, and Br. The SMD model employs a single set of parameters (intrinsic atomic Coulomb radii and atomic surface tension coefficients) optimized over six electronic structure methods: M05-2X/MIDI!6D, M05-2X/6-31G, M05-2X/6-31+G, M05-2X/cc-pVTZ, B3LYP/6-31G, and HF/6-31G. Although the SMD model has been parametrized using the IEF-PCM protocol for bulk electrostatics, it may also be employed with other algorithms for solving the nonhomogeneous Poisson equation for continuum solvation calculations in which the solute is represented by its electron density in real space. This includes, for example, the conductor-like screening algorithm. With the 6-31G basis set, the SMD model achieves mean unsigned errors of 0.6-1.0 kcal/mol in the solvation free energies of tested neutrals and mean unsigned errors of 4 kcal/mol on average for ions with either Gaussian03 or GAMESS.

  10. Calculating pKa values for substituted phenols and hydration energies for other compounds with the first-order Fuzzy-Border continuum solvation model

    PubMed Central

    Sharma, Ity; Kaminski, George A.

    2012-01-01

    We have computed pKa values for eleven substituted phenol compounds using the continuum Fuzzy-Border (FB) solvation model. Hydration energies for 40 other compounds, including alkanes, alkenes, alkynes, ketones, amines, alcohols, ethers, aromatics, amides, heterocycles, thiols, sulfides and acids have been calculated. The overall average unsigned error in the calculated acidity constant values was equal to 0.41 pH units and the average error in the solvation energies was 0.076 kcal/mol. We have also reproduced pKa values of propanoic and butanoic acids within ca. 0.1 pH units from the experimental values by fitting the solvation parameters for carboxylate ion carbon and oxygen atoms. The FB model combines two distinguishing features. First, it limits the amount of noise which is common in numerical treatment of continuum solvation models by using fixed-position grid points. Second, it employs either second- or first-order approximation for the solvent polarization, depending on a particular implementation. These approximations are similar to those used for solute and explicit solvent fast polarization treatment which we developed previously. This article describes results of employing the first-order technique. This approximation places the presented methodology between the Generalized Born and Poisson-Boltzmann continuum solvation models with respect to their accuracy of reproducing the many-body effects in modeling a continuum solvent. PMID:22815192

  11. Exploring a multi-scale method for molecular simulation in continuum solvent model: Explicit simulation of continuum solvent as an incompressible fluid.

    PubMed

    Xiao, Li; Luo, Ray

    2017-12-07

    We explored a multi-scale algorithm for the Poisson-Boltzmann continuum solvent model for more robust simulations of biomolecules. In this method, the continuum solvent/solute interface is explicitly simulated with a numerical fluid dynamics procedure, which is tightly coupled to the solute molecular dynamics simulation. There are multiple benefits to adopt such a strategy as presented below. At this stage of the development, only nonelectrostatic interactions, i.e., van der Waals and hydrophobic interactions, are included in the algorithm to assess the quality of the solvent-solute interface generated by the new method. Nevertheless, numerical challenges exist in accurately interpolating the highly nonlinear van der Waals term when solving the finite-difference fluid dynamics equations. We were able to bypass the challenge rigorously by merging the van der Waals potential and pressure together when solving the fluid dynamics equations and by considering its contribution in the free-boundary condition analytically. The multi-scale simulation method was first validated by reproducing the solute-solvent interface of a single atom with analytical solution. Next, we performed the relaxation simulation of a restrained symmetrical monomer and observed a symmetrical solvent interface at equilibrium with detailed surface features resembling those found on the solvent excluded surface. Four typical small molecular complexes were then tested, both volume and force balancing analyses showing that these simple complexes can reach equilibrium within the simulation time window. Finally, we studied the quality of the multi-scale solute-solvent interfaces for the four tested dimer complexes and found that they agree well with the boundaries as sampled in the explicit water simulations.

  12. Explicitly Representing the Solvation Shell in Continuum Solvent Calculations

    PubMed Central

    Svendsen, Hallvard F.; Merz, Kenneth M.

    2009-01-01

    A method is presented to explicitly represent the first solvation shell in continuum solvation calculations. Initial solvation shell geometries were generated with classical molecular dynamics simulations. Clusters consisting of solute and 5 solvent molecules were fully relaxed in quantum mechanical calculations. The free energy of solvation of the solute was calculated from the free energy of formation of the cluster and the solvation free energy of the cluster calculated with continuum solvation models. The method has been implemented with two continuum solvation models, a Poisson-Boltzmann model and the IEF-PCM model. Calculations were carried out for a set of 60 ionic species. Implemented with the Poisson-Boltzmann model the method gave an unsigned average error of 2.1 kcal/mol and a RMSD of 2.6 kcal/mol for anions, for cations the unsigned average error was 2.8 kcal/mol and the RMSD 3.9 kcal/mol. Similar results were obtained with the IEF-PCM model. PMID:19425558

  13. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marenich, Aleksandr; Cramer, Christopher J; Truhlar, Donald G

    2009-04-30

    We present a new continuum solvation model based on the quantum mechanical charge density of a solute molecule interacting with a continuum description of the solvent. The model is called SMD, where the “D” stands for “density” to denote that the full solute electron density is used without defining partial atomic charges. “Continuum” denotes that the solvent is not represented explicitly but rather as a dielectric medium with surface tension at the solute-solvent boundary. SMD is a universal solvation model, where “universal” denotes its applicability to any charged or uncharged solute in any solvent or liquid medium for which amore » few key descriptors are known (in particular, dielectric constant, refractive index, bulk surface tension, and acidity and basicity parameters). The model separates the observable solvation free energy into two main components. The first component is the bulk electrostatic contribution arising from a self-consistent reaction field treatment that involves the solution of the nonhomogeneous Poisson equation for electrostatics in terms of the integral-equation-formalism polarizable continuum model (IEF-PCM). The cavities for the bulk electrostatic calculation are defined by superpositions of nuclear-centered spheres. The second component is called the cavity-dispersion-solvent-structure term and is the contribution arising from short-range interactions between the solute and solvent molecules in the first solvation shell. This contribution is a sum of terms that are proportional (with geometry-dependent proportionality constants called atomic surface tensions) to the solvent-accessible surface areas of the individual atoms of the solute. The SMD model has been parametrized with a training set of 2821 solvation data including 112 aqueous ionic solvation free energies, 220 solvation free energies for 166 ions in acetonitrile, methanol, and dimethyl sulfoxide, 2346 solvation free energies for 318 neutral solutes in 91 solvents (90 nonaqueous organic solvents and water), and 143 transfer free energies for 93 neutral solutes between water and 15 organic solvents. The elements present in the solutes are H, C, N, O, F, Si, P, S, Cl, and Br. The SMD model employs a single set of parameters (intrinsic atomic Coulomb radii and atomic surface tension coefficients) optimized over six electronic structure methods: M05-2X/MIDI!6D, M05-2X/6-31G*, M05-2X/6-31+G**, M05-2X/cc-pVTZ, B3LYP/6-31G*, and HF/6-31G*. Although the SMD model has been parametrized using the IEF-PCM protocol for bulk electrostatics, it may also be employed with other algorithms for solving the nonhomogeneous Poisson equation for continuum solvation calculations in which the solute is represented by its electron density in real space. This includes, for example, the conductor-like screening algorithm. With the 6-31G* basis set, the SMD model achieves mean unsigned errors of 0.6-1.0 kcal/mol in the solvation free energies of tested neutrals and mean unsigned errors of 4 kcal/mol on average for ions with either Gaussian03 or GAMESS.« less

  14. Development of multicomponent hybrid density functional theory with polarizable continuum model for the analysis of nuclear quantum effect and solvent effect on NMR chemical shift.

    PubMed

    Kanematsu, Yusuke; Tachikawa, Masanori

    2014-04-28

    We have developed the multicomponent hybrid density functional theory [MC_(HF+DFT)] method with polarizable continuum model (PCM) for the analysis of molecular properties including both nuclear quantum effect and solvent effect. The chemical shifts and H/D isotope shifts of the picolinic acid N-oxide (PANO) molecule in chloroform and acetonitrile solvents are applied by B3LYP electron exchange-correlation functional for our MC_(HF+DFT) method with PCM (MC_B3LYP/PCM). Our MC_B3LYP/PCM results for PANO are in reasonable agreement with the corresponding experimental chemical shifts and isotope shifts. We further investigated the applicability of our method for acetylacetone in several solvents.

  15. Structure of a tethered polymer under flow using molecular dynamics and hybrid molecular-continuum simulations

    NASA Astrophysics Data System (ADS)

    Delgado-Buscalioni, Rafael; Coveney, Peter V.

    2006-03-01

    We analyse the structure of a single polymer tethered to a solid surface undergoing a Couette flow. We study the problem using molecular dynamics (MD) and hybrid MD-continuum simulations, wherein the polymer and the surrounding solvent are treated via standard MD, and the solvent flow farther away from the polymer is solved by continuum fluid dynamics (CFD). The polymer represents a freely jointed chain (FJC) and is modelled by Lennard-Jones (LJ) beads interacting through the FENE potential. The solvent (modelled as a LJ fluid) and a weakly attractive wall are treated at the molecular level. At large shear rates the polymer becomes more elongated than predicted by existing theoretical scaling laws. Also, along the normal-to-wall direction the structure observed for the FJC is, surprisingly, very similar to that predicted for a semiflexible chain. Comparison with previous Brownian dynamics simulations (which exclude both solvent and wall potential) indicates that these effects are due to the polymer-solvent and polymer-wall interactions. The hybrid simulations are in perfect agreement with the MD simulations, showing no trace of finite size effects. Importantly, the extra cost required to couple the MD and CFD domains is negligible.

  16. Quantum dynamics in continuum for proton transport II: Variational solvent-solute interface.

    PubMed

    Chen, Duan; Chen, Zhan; Wei, Guo-Wei

    2012-01-01

    Proton transport plays an important role in biological energy transduction and sensory systems. Therefore, it has attracted much attention in biological science and biomedical engineering in the past few decades. The present work proposes a multiscale/multiphysics model for the understanding of the molecular mechanism of proton transport in transmembrane proteins involving continuum, atomic, and quantum descriptions, assisted with the evolution, formation, and visualization of membrane channel surfaces. We describe proton dynamics quantum mechanically via a new density functional theory based on the Boltzmann statistics, while implicitly model numerous solvent molecules as a dielectric continuum to reduce the number of degrees of freedom. The density of all other ions in the solvent is assumed to obey the Boltzmann distribution in a dynamic manner. The impact of protein molecular structure and its charge polarization on the proton transport is considered explicitly at the atomic scale. A variational solute-solvent interface is designed to separate the explicit molecule and implicit solvent regions. We formulate a total free-energy functional to put proton kinetic and potential energies, the free energy of all other ions, and the polar and nonpolar energies of the whole system on an equal footing. The variational principle is employed to derive coupled governing equations for the proton transport system. Generalized Laplace-Beltrami equation, generalized Poisson-Boltzmann equation, and generalized Kohn-Sham equation are obtained from the present variational framework. The variational solvent-solute interface is generated and visualized to facilitate the multiscale discrete/continuum/quantum descriptions. Theoretical formulations for the proton density and conductance are constructed based on fundamental laws of physics. A number of mathematical algorithms, including the Dirichlet-to-Neumann mapping, matched interface and boundary method, Gummel iteration, and Krylov space techniques are utilized to implement the proposed model in a computationally efficient manner. The gramicidin A channel is used to validate the performance of the proposed proton transport model and demonstrate the efficiency of the proposed mathematical algorithms. The proton channel conductances are studied over a number of applied voltages and reference concentrations. A comparison with experimental data verifies the present model predictions and confirms the proposed model. Copyright © 2011 John Wiley & Sons, Ltd.

  17. Electronic excitation of molecules in solution calculated using the symmetry-adapted cluster–configuration interaction method in the polarizable continuum model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuda, Ryoichi, E-mail: fukuda@ims.ac.jp; Ehara, Masahiro; Elements Strategy Initiative for Catalysts and Batteries

    2015-12-31

    The effects from solvent environment are specific to the electronic states; therefore, a computational scheme for solvent effects consistent with the electronic states is necessary to discuss electronic excitation of molecules in solution. The PCM (polarizable continuum model) SAC (symmetry-adapted cluster) and SAC-CI (configuration interaction) methods are developed for such purposes. The PCM SAC-CI adopts the state-specific (SS) solvation scheme where solvent effects are self-consistently considered for every ground and excited states. For efficient computations of many excited states, we develop a perturbative approximation for the PCM SAC-CI method, which is called corrected linear response (cLR) scheme. Our test calculationsmore » show that the cLR PCM SAC-CI is a very good approximation of the SS PCM SAC-CI method for polar and nonpolar solvents.« less

  18. An extensible framework for capturing solvent effects in computer generated kinetic models.

    PubMed

    Jalan, Amrit; West, Richard H; Green, William H

    2013-03-14

    Detailed kinetic models provide useful mechanistic insight into a chemical system. Manual construction of such models is laborious and error-prone, which has led to the development of automated methods for exploring chemical pathways. These methods rely on fast, high-throughput estimation of species thermochemistry and kinetic parameters. In this paper, we present a methodology for extending automatic mechanism generation to solution phase systems which requires estimation of solvent effects on reaction rates and equilibria. The linear solvation energy relationship (LSER) method of Abraham and co-workers is combined with Mintz correlations to estimate ΔG(solv)°(T) in over 30 solvents using solute descriptors estimated from group additivity. Simple corrections are found to be adequate for the treatment of radical sites, as suggested by comparison with known experimental data. The performance of scaled particle theory expressions for enthalpic-entropic decomposition of ΔG(solv)°(T) is also presented along with the associated computational issues. Similar high-throughput methods for solvent effects on free-radical kinetics are only available for a handful of reactions due to lack of reliable experimental data, and continuum dielectric calculations offer an alternative method for their estimation. For illustration, we model liquid phase oxidation of tetralin in different solvents computing the solvent dependence for ROO• + ROO• and ROO• + solvent reactions using polarizable continuum quantum chemistry methods. The resulting kinetic models show an increase in oxidation rate with solvent polarity, consistent with experiment. Further work needed to make this approach more generally useful is outlined.

  19. Dielectric properties of organic solvents from non-polarizable molecular dynamics simulation with electronic continuum model and density functional theory.

    PubMed

    Lee, Sanghun; Park, Sung Soo

    2011-11-03

    Dielectric constants of electrolytic organic solvents are calculated employing nonpolarizable Molecular Dynamics simulation with Electronic Continuum (MDEC) model and Density Functional Theory. The molecular polarizabilities are obtained by the B3LYP/6-311++G(d,p) level of theory to estimate high-frequency refractive indices while the densities and dipole moment fluctuations are computed using nonpolarizable MD simulations. The dielectric constants reproduced from these procedures are evaluated to provide a reliable approach for estimating the experimental data. An additional feature, two representative solvents which have similar molecular weights but are different dielectric properties, i.e., ethyl methyl carbonate and propylene carbonate, are compared using MD simulations and the distinctly different dielectric behaviors are observed at short times as well as at long times.

  20. Using polarizable POSSIM force field and fuzzy-border continuum solvent model to calculate pK(a) shifts of protein residues.

    PubMed

    Sharma, Ity; Kaminski, George A

    2017-01-15

    Our Fuzzy-Border (FB) continuum solvent model has been extended and modified to produce hydration parameters for small molecules using POlarizable Simulations Second-order Interaction Model (POSSIM) framework with an average error of 0.136 kcal/mol. It was then used to compute pK a shifts for carboxylic and basic residues of the turkey ovomucoid third domain (OMTKY3) protein. The average unsigned errors in the acid and base pK a values were 0.37 and 0.4 pH units, respectively, versus 0.58 and 0.7 pH units as calculated with a previous version of polarizable protein force field and Poisson Boltzmann continuum solvent. This POSSIM/FB result is produced with explicit refitting of the hydration parameters to the pK a values of the carboxylic and basic residues of the OMTKY3 protein; thus, the values of the acidity constants can be viewed as additional fitting target data. In addition to calculating pK a shifts for the OMTKY3 residues, we have studied aspartic acid residues of Rnase Sa. This was done without any further refitting of the parameters and agreement with the experimental pK a values is within an average unsigned error of 0.65 pH units. This result included the Asp79 residue that is buried and thus has a high experimental pK a value of 7.37 units. Thus, the presented model is capable or reproducing pK a results for residues in an environment that is significantly different from the solvated protein surface used in the fitting. Therefore, the POSSIM force field and the FB continuum solvent parameters have been demonstrated to be sufficiently robust and transferable. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Predicting solvation free energies and thermodynamics in polar solvents and mixtures using a solvation-layer interface condition

    PubMed Central

    Goossens, Spencer; Mehdizadeh Rahimi, Ali

    2017-01-01

    We demonstrate that with two small modifications, the popular dielectric continuum model is capable of predicting, with high accuracy, ion solvation thermodynamics (Gibbs free energies, entropies, and heat capacities) in numerous polar solvents. We are also able to predict ion solvation free energies in water–co-solvent mixtures over available concentration series. The first modification to the classical dielectric Poisson model is a perturbation of the macroscopic dielectric-flux interface condition at the solute–solvent interface: we add a nonlinear function of the local electric field, giving what we have called a solvation-layer interface condition (SLIC). The second modification is including the microscopic interface potential (static potential) in our model. We show that the resulting model exhibits high accuracy without the need for fitting solute atom radii in a state-dependent fashion. Compared to experimental results in nine water–co-solvent mixtures, SLIC predicts transfer free energies to within 2.5 kJ/mol. The co-solvents include both protic and aprotic species, as well as biologically relevant denaturants such as urea and dimethylformamide. Furthermore, our results indicate that the interface potential is essential to reproduce entropies and heat capacities. These and previous tests of the SLIC model indicate that it is a promising dielectric continuum model for accurate predictions in a wide range of conditions.

  2. Predicting solvation free energies and thermodynamics in polar solvents and mixtures using a solvation-layer interface condition

    NASA Astrophysics Data System (ADS)

    Molavi Tabrizi, Amirhossein; Goossens, Spencer; Mehdizadeh Rahimi, Ali; Knepley, Matthew; Bardhan, Jaydeep P.

    2017-03-01

    We demonstrate that with two small modifications, the popular dielectric continuum model is capable of predicting, with high accuracy, ion solvation thermodynamics (Gibbs free energies, entropies, and heat capacities) in numerous polar solvents. We are also able to predict ion solvation free energies in water-co-solvent mixtures over available concentration series. The first modification to the classical dielectric Poisson model is a perturbation of the macroscopic dielectric-flux interface condition at the solute-solvent interface: we add a nonlinear function of the local electric field, giving what we have called a solvation-layer interface condition (SLIC). The second modification is including the microscopic interface potential (static potential) in our model. We show that the resulting model exhibits high accuracy without the need for fitting solute atom radii in a state-dependent fashion. Compared to experimental results in nine water-co-solvent mixtures, SLIC predicts transfer free energies to within 2.5 kJ/mol. The co-solvents include both protic and aprotic species, as well as biologically relevant denaturants such as urea and dimethylformamide. Furthermore, our results indicate that the interface potential is essential to reproduce entropies and heat capacities. These and previous tests of the SLIC model indicate that it is a promising dielectric continuum model for accurate predictions in a wide range of conditions.

  3. The importance of excluded solvent volume effects in computing hydration free energies.

    PubMed

    Yang, Pei-Kun; Lim, Carmay

    2008-11-27

    Continuum dielectric methods such as the Born equation have been widely used to compute the electrostatic component of the solvation free energy, DeltaG(solv)(elec), because they do not need to include solvent molecules explicitly and are thus far less costly compared to molecular simulations. All of these methods can be derived from Gauss Law of Maxwell's equations, which yields an analytical solution for the solvation free energy, DeltaG(Born), when the solute is spherical. However, in Maxwell's equations, the solvent is assumed to be a structureless continuum, whereas in reality, the near-solute solvent molecules are highly structured unlike far-solute bulk solvent. Since we have recently reformulated Gauss Law of Maxwell's equations to incorporate the near-solute solvent structure by considering excluded solvent volume effects, we have used it in this work to derive an analytical solution for the hydration free energy of an ion. In contrast to continuum solvent models, which assume that the normalized induced solvent electric dipole density P(n) is constant, P(n) mimics that observed from simulations. The analytical formula for the ionic hydration free energy shows that the Born radius, which has been used as an adjustable parameter to fit experimental hydration free energies, is no longer ill defined but is related to the radius and polarizability of the water molecule, the hydration number, and the first peak position of the solute-solvent radial distribution function. The resulting DeltaG(solv)(elec) values are shown to be close to the respective experimental numbers.

  4. Two-photon absorption of [2.2]paracyclophane derivatives in solution: A theoretical investigation

    NASA Astrophysics Data System (ADS)

    Ferrighi, Lara; Frediani, Luca; Fossgaard, Eirik; Ruud, Kenneth

    2007-12-01

    The two-photon absorption of a class of [2.2]paracyclophane derivatives has been studied using quadratic response and density functional theories. For the molecules investigated, several effects influencing the two-photon absorption spectra have been investigated, such as side-chain elongation, hydrogen bonding, the use of ionic species, and solvent effects, the latter described by the polarizable continuum model. The calculations have been carried out using a recent parallel implementation of the polarizable continuum model in the DALTON code. Special attention is given to those aspects that could explain the large solvent effect on the two-photon absorption cross sections observed experimentally for this class of compounds.

  5. An ab initio time-dependent Hartree Fock study of solvent effects on the polarizability and second hyperpolarizability of polyacetylene chains within the polarizable continuum model

    NASA Astrophysics Data System (ADS)

    Champagne, Benoı̂t; Mennucci, Benedetta; Cossi, Maurizio; Cammi, Roberto; Tomasi, Jacopo

    1998-11-01

    The solvent effects upon the longitudinal polarizability ( αL) and second hyperpolarizability ( γL) of small all-trans polyacetylene (PA) chains ranging from C 2H 4 to C 10H 12 have been evaluated at the time-dependent Hartree-Fock (TDHF) level within the framework of the polarizable continuum model. The solvent effects, which correspond to the solvent-induced modifications of the solute properties, result in large increases of the linear and nonlinear responses even for solvents with low dielectric constants. When the dielectric constant is increased, the αL values tend to saturate at values 30%-40% larger than in vacuo, whereas for γL it ranges from 100% to 400% depending upon the nonlinear optical process and the length of the PA chain. These solvent-induced αL and γL enhancements can partially be accounted for by the corresponding decrease of the energy of the lowest optically-allowed electronic excitation. The geometrical parameters of the ground state of the PA chains are almost unaffected by the solvent. This shows that the solvent effects are mainly of electronic nature. In addition, the local field factors, which relate the macroscopic or Maxwell field to the field experienced by the solute, tend towards unity with increasing chain length for the longitudinal PA axis.

  6. A unified electrostatic and cavitation model for first-principles molecular dynamics in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherlis, D A; Fattebert, J; Gygi, F

    2005-11-14

    The electrostatic continuum solvent model developed by Fattebert and Gygi is combined with a first-principles formulation of the cavitation energy based on a natural quantum-mechanical definition for the surface of a solute. Despite its simplicity, the cavitation contribution calculated by this approach is found to be in remarkable agreement with that obtained by more complex algorithms relying on a large set of parameters. The model allows for very efficient Car-Parrinello simulations of finite or extended systems in solution, and demonstrates a level of accuracy as good as that of established quantum-chemistry continuum solvent methods. They apply this approach to themore » study of tetracyanoethylene dimers in dichloromethane, providing valuable structural and dynamical insights on the dimerization phenomenon.« less

  7. Discrete and continuum modeling of solvent effects in a twisted intramolecular charge transfer system: The 4-N,N-dimethylaminobenzonitrile (DMABN) molecule.

    PubMed

    Modesto-Costa, Lucas; Borges, Itamar

    2018-08-05

    The 4-N,N-dimethylaminobenzonitrile (DMABN) molecule is a prototypical system displaying twisted intramolecular (TICT) charge transfer effects. The ground and the first four electronic excited states (S 1 -S 4 ) in gas phase and upon solvation were studied. Charge transfer values as function of the torsion angle between the donor group (dimethylamine) and the acceptor moiety (benzonitrile) were explicitly computed. Potential energy curves were also obtained. The algebraic diagrammatic construction method at the second-order [ADC(2)] ab initio wave function was employed. Three solvents of increased polarities (benzene, DMSO and water) were investigated using discrete (average solvent electrostatic configuration - ASEC) and continuum (conductor-like screening model - COSMO) models. The results for the S 3 and S 4 excited states and the S 1 -S 4 charge transfer curves were not previously available in the literature. Electronic gas phase and solvent vertical spectra are in good agreement with previous theoretical and experimental results. In the twisted (90°) geometry the optical oscillator strengths have negligible values even for the S 2 bright state. Potential energy curves show two distinct pairs of curves intersecting at decreasing angles or not crossing in the more polar solvents. Charge transfer and electric dipole values allowed the rationalization of these results. The former effects are mostly independent of the solvent model and polarity. Although COSMO and ASEC solvent models mostly lead to similar results, there is an important difference: some crossings of the excitation energy curves appear only in the ASEC solvation model, which has important implications to the photochemistry of DMABN. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Generalized Born Models of Macromolecular Solvation Effects

    NASA Astrophysics Data System (ADS)

    Bashford, Donald; Case, David A.

    2000-10-01

    It would often be useful in computer simulations to use a simple description of solvation effects, instead of explicitly representing the individual solvent molecules. Continuum dielectric models often work well in describing the thermodynamic aspects of aqueous solvation, and approximations to such models that avoid the need to solve the Poisson equation are attractive because of their computational efficiency. Here we give an overview of one such approximation, the generalized Born model, which is simple and fast enough to be used for molecular dynamics simulations of proteins and nucleic acids. We discuss its strengths and weaknesses, both for its fidelity to the underlying continuum model and for its ability to replace explicit consideration of solvent molecules in macromolecular simulations. We focus particularly on versions of the generalized Born model that have a pair-wise analytical form, and therefore fit most naturally into conventional molecular mechanics calculations.

  9. Solvent dependent frequency shift and Raman noncoincidence effect of S=O stretching mode of Dimethyl sulfoxide in liquid binary mixtures.

    PubMed

    Upadhyay, Ganesh; Devi, Th Gomti; Singh, Ranjan K; Singh, A; Alapati, P R

    2013-05-15

    The isotropic and anisotropic Raman peak frequencies of S=O stretching mode of Dimethyl sulfoxide (DMSO) have been discussed in different chemical and isotopic solvent molecules using different mechanisms. The shifting of peak frequency in further dilution of DMSO with solvent molecule is observed for all solvents. Transition dipole - transition dipole interaction and hydrogen bonding may play a major role in shifting of peak frequencies. The non-coincidence effect (NCE) of DMSO was determined for all the solvents and compared with four theoretical models such as McHale's model, Mirone's modification of McHale's model, Logan's model and Onsager-Fröhlich dielectric continuum model respectively. Most of the theoretical models are largely consistent with our experimental data. Copyright © 2013. Published by Elsevier B.V.

  10. Linear response coupled cluster theory with the polarizable continuum model within the singles approximation for the solvent response.

    PubMed

    Caricato, Marco

    2018-04-07

    We report the theory and the implementation of the linear response function of the coupled cluster (CC) with the single and double excitations method combined with the polarizable continuum model of solvation, where the correlation solvent response is approximated with the perturbation theory with energy and singles density (PTES) scheme. The singles name is derived from retaining only the contribution of the CC single excitation amplitudes to the correlation density. We compare the PTES working equations with those of the full-density (PTED) method. We then test the PTES scheme on the evaluation of excitation energies and transition dipoles of solvated molecules, as well as of the isotropic polarizability and specific rotation. Our results show a negligible difference between the PTED and PTES schemes, while the latter affords a significantly reduced computational cost. This scheme is general and can be applied to any solvation model that includes mutual solute-solvent polarization, including explicit models. Therefore, the PTES scheme is a competitive approach to compute response properties of solvated systems using CC methods.

  11. Linear response coupled cluster theory with the polarizable continuum model within the singles approximation for the solvent response

    NASA Astrophysics Data System (ADS)

    Caricato, Marco

    2018-04-01

    We report the theory and the implementation of the linear response function of the coupled cluster (CC) with the single and double excitations method combined with the polarizable continuum model of solvation, where the correlation solvent response is approximated with the perturbation theory with energy and singles density (PTES) scheme. The singles name is derived from retaining only the contribution of the CC single excitation amplitudes to the correlation density. We compare the PTES working equations with those of the full-density (PTED) method. We then test the PTES scheme on the evaluation of excitation energies and transition dipoles of solvated molecules, as well as of the isotropic polarizability and specific rotation. Our results show a negligible difference between the PTED and PTES schemes, while the latter affords a significantly reduced computational cost. This scheme is general and can be applied to any solvation model that includes mutual solute-solvent polarization, including explicit models. Therefore, the PTES scheme is a competitive approach to compute response properties of solvated systems using CC methods.

  12. Theoretical prediction of pKa in methanol: testing SM8 and SMD models for carboxylic acids, phenols, and amines.

    PubMed

    Miguel, Elizabeth L M; Silva, Poliana L; Pliego, Josefredo R

    2014-05-29

    Methanol is a widely used solvent for chemical reactions and has solvation properties similar to those of water. However, the performance of continuum solvation models in this solvent has not been tested yet. In this report, we have investigated the performance of the SM8 and SMD models for pKa prediction of 26 carboxylic acids, 24 phenols, and 23 amines in methanol. The gas phase contribution was included at the X3LYP/TZVPP+diff//X3LYP/DZV+P(d) level. Using the proton exchange reaction with acetic acid, phenol, and ammonia as reference species leads to RMS error in the range of 1.4 to 3.6 pKa units. This finding suggests that the performance of the continuum models for methanol is similar to that found for aqueous solvent. Application of simple empirical correction through a linear equation leads to accurate pKa prediction, with uncertainty less than 0.8 units with the SM8 method. Testing with the less expensive PBE1PBE/6-311+G** method results in a slight improvement in the results.

  13. Solvent effects on the excited-state double proton transfer mechanism in the 7-azaindole dimer: a TDDFT study with the polarizable continuum model.

    PubMed

    Yu, Xue-Fang; Yamazaki, Shohei; Taketsugu, Tetsuya

    2017-08-30

    Solvent effects on the excited-state double proton transfer (ESDPT) mechanism in the 7-azaindole (7AI) dimer were investigated using the time-dependent density functional theory (TDDFT) method. Excited-state potential energy profiles along the reaction paths in a locally excited (LE) state and a charge transfer (CT) state were calculated using the polarizable continuum model (PCM) to include the solvent effect. A series of non-polar and polar solvents with different dielectric constants were used to examine the polarity effect on the ESDPT mechanism. The present results suggest that in a non-polar solvent and a polar solvent with a small dielectric constant, ESDPT follows a concerted mechanism, similar to the case in the gas phase. In a polar solvent with a relatively large dielectric constant, however, ESDPT is likely to follow a stepwise mechanism via a stable zwitterionic intermediate in the LE state on the adiabatic potential energy surface, although inclusion of zero-point vibrational energy (ZPE) corrections again suggests the concerted mechanism. In the meantime, the stepwise reaction path involving the CT state with neutral intermediates is also examined, and is found to be less competitive than the concerted or stepwise path in the LE state in both non-polar and polar solvents. The present study provides a new insight into the experimental controversy of the ESDPT mechanism of the 7AI dimer in a solution.

  14. Quantum Dynamics in Continuum for Proton Transport I: Basic Formulation.

    PubMed

    Chen, Duan; Wei, Guo-Wei

    2013-01-01

    Proton transport is one of the most important and interesting phenomena in living cells. The present work proposes a multiscale/multiphysics model for the understanding of the molecular mechanism of proton transport in transmembrane proteins. We describe proton dynamics quantum mechanically via a density functional approach while implicitly model other solvent ions as a dielectric continuum to reduce the number of degrees of freedom. The densities of all other ions in the solvent are assumed to obey the Boltzmann distribution. The impact of protein molecular structure and its charge polarization on the proton transport is considered explicitly at the atomic level. We formulate a total free energy functional to put proton kinetic and potential energies as well as electrostatic energy of all ions on an equal footing. The variational principle is employed to derive nonlinear governing equations for the proton transport system. Generalized Poisson-Boltzmann equation and Kohn-Sham equation are obtained from the variational framework. Theoretical formulations for the proton density and proton conductance are constructed based on fundamental principles. The molecular surface of the channel protein is utilized to split the discrete protein domain and the continuum solvent domain, and facilitate the multiscale discrete/continuum/quantum descriptions. A number of mathematical algorithms, including the Dirichlet to Neumann mapping, matched interface and boundary method, Gummel iteration, and Krylov space techniques are utilized to implement the proposed model in a computationally efficient manner. The Gramicidin A (GA) channel is used to demonstrate the performance of the proposed proton transport model and validate the efficiency of proposed mathematical algorithms. The electrostatic characteristics of the GA channel is analyzed with a wide range of model parameters. The proton conductances are studied over a number of applied voltages and reference concentrations. A comparison with experimental data verifies the present model predictions and validates the proposed model.

  15. Extending the Solvation-Layer Interface Condition Continum Electrostatic Model to a Linearized Poisson-Boltzmann Solvent.

    PubMed

    Molavi Tabrizi, Amirhossein; Goossens, Spencer; Mehdizadeh Rahimi, Ali; Cooper, Christopher D; Knepley, Matthew G; Bardhan, Jaydeep P

    2017-06-13

    We extend the linearized Poisson-Boltzmann (LPB) continuum electrostatic model for molecular solvation to address charge-hydration asymmetry. Our new solvation-layer interface condition (SLIC)/LPB corrects for first-shell response by perturbing the traditional continuum-theory interface conditions at the protein-solvent and the Stern-layer interfaces. We also present a GPU-accelerated treecode implementation capable of simulating large proteins, and our results demonstrate that the new model exhibits significant accuracy improvements over traditional LPB models, while reducing the number of fitting parameters from dozens (atomic radii) to just five parameters, which have physical meanings related to first-shell water behavior at an uncharged interface. In particular, atom radii in the SLIC model are not optimized but uniformly scaled from their Lennard-Jones radii. Compared to explicit-solvent free-energy calculations of individual atoms in small molecules, SLIC/LPB is significantly more accurate than standard parametrizations (RMS error 0.55 kcal/mol for SLIC, compared to RMS error of 3.05 kcal/mol for standard LPB). On parametrizing the electrostatic model with a simple nonpolar component for total molecular solvation free energies, our model predicts octanol/water transfer free energies with an RMS error 1.07 kcal/mol. A more detailed assessment illustrates that standard continuum electrostatic models reproduce total charging free energies via a compensation of significant errors in atomic self-energies; this finding offers a window into improving the accuracy of Generalized-Born theories and other coarse-grained models. Most remarkably, the SLIC model also reproduces positive charging free energies for atoms in hydrophobic groups, whereas standard PB models are unable to generate positive charging free energies regardless of the parametrized radii. The GPU-accelerated solver is freely available online, as is a MATLAB implementation.

  16. Counterintuitive electron localisation from density-functional theory with polarisable solvent models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Stephen G., E-mail: sdale@ucmerced.edu; Johnson, Erin R., E-mail: erin.johnson@dal.ca

    2015-11-14

    Exploration of the solvated electron phenomena using density-functional theory (DFT) generally results in prediction of a localised electron within an induced solvent cavity. However, it is well known that DFT favours highly delocalised charges, rendering the localisation of a solvated electron unexpected. We explore the origins of this counterintuitive behaviour using a model Kevan-structure system. When a polarisable-continuum solvent model is included, it forces electron localisation by introducing a strong energetic bias that favours integer charges. This results in the formation of a large energetic barrier for charge-hopping and can cause the self-consistent field to become trapped in local minimamore » thus converging to stable solutions that are higher in energy than the ground electronic state. Finally, since the bias towards integer charges is caused by the polarisable continuum, these findings will also apply to other classical polarisation corrections, as in combined quantum mechanics and molecular mechanics (QM/MM) methods. The implications for systems beyond the solvated electron, including cationic DNA bases, are discussed.« less

  17. On the Helix Propensity in Generalized Born Solvent Descriptions of Modeling the Dark Proteome

    DTIC Science & Technology

    2017-01-10

    benchmarks of conformational sampling methods and their all-atom force fields plus solvent descriptions to accurately model structural transitions on a...atom simulations of proteins is the replacement of explicit water interactions with a continuum description of treating implicitly the bulk physical... structure was reported by Amarasinghe and coworkers (Leung et al., 2015) of the Ebola nucleoprotein NP in complex with a 28-residue peptide extracted

  18. Polarizable Molecular Dynamics in a Polarizable Continuum Solvent

    PubMed Central

    Lipparini, Filippo; Lagardère, Louis; Raynaud, Christophe; Stamm, Benjamin; Cancès, Eric; Mennucci, Benedetta; Schnieders, Michael; Ren, Pengyu; Maday, Yvon; Piquemal, Jean-Philip

    2015-01-01

    We present for the first time scalable polarizable molecular dynamics (MD) simulations within a polarizable continuum solvent with molecular shape cavities and exact solution of the mutual polarization. The key ingredients are a very efficient algorithm for solving the equations associated with the polarizable continuum, in particular, the domain decomposition Conductor-like Screening Model (ddCOSMO), a rigorous coupling of the continuum with the polarizable force field achieved through a robust variational formulation and an effective strategy to solve the coupled equations. The coupling of ddCOSMO with non variational force fields, including AMOEBA, is also addressed. The MD simulations are feasible, for real life systems, on standard cluster nodes; a scalable parallel implementation allows for further speed up in the context of a newly developed module in Tinker, named Tinker-HP. NVE simulations are stable and long term energy conservation can be achieved. This paper is focused on the methodological developments, on the analysis of the algorithm and on the stability of the simulations; a proof-of-concept application is also presented to attest the possibilities of this newly developed technique. PMID:26516318

  19. Aqueous solvation of polyalanine α-helices with specific water molecules and with the CPCM and SM5.2 aqueous continuum models using density functional theory.

    PubMed

    Marianski, Mateusz; Dannenberg, J J

    2012-02-02

    We present density functional theory (DFT) calculations at the X3LYP/D95(d,p) level on the solvation of polyalanine α-helices in water. The study includes the effects of discrete water molecules and the CPCM and AMSOL SM5.2 solvent continuum model both separately and in combination. We find that individual water molecules cooperatively hydrogen-bond to both the C- and N-termini of the helix, which results in increases in the dipole moment of the helix/water complex to more than the vector sum of their individual dipole moments. These waters are found to be more stable than in bulk solvent. On the other hand, individual water molecules that interact with the backbone lower the dipole moment of the helix/water complex to below that of the helix itself. Small clusters of waters at the termini increase the dipole moments of the helix/water aggregates, but the effect diminishes as more waters are added. We discuss the somewhat complex behavior of the helix with the discrete waters in the continuum models.

  20. Aqueous Solvation of Polyalanine α-Helices with Specific Water Molecules and with the CPCM and SM5.2 Aqueous Continuum Models using Density Functional Theory

    PubMed Central

    Marianski, Mateusz

    2012-01-01

    We present density functional theory (DFT) calculations at the X3LYP/D95(d,p) level on the solvation of polyalanine α-helices in water. The study includes the effects of discrete water molecules and the CPCM and AMSOL SM5.2 solvent continuum model both separately and in combination. We find that individual water molecules cooperatively hydrogen-bond to both the C- and N-termini of the helix, which results in increases in the dipole moment of the helix/water complex to more than the vector sum of their individual dipole moments. These waters are found to be more stable than in bulk solvent. On the other hand, individual water that interact with the backbone lower the dipole moment of the helix/water complex to below that of the helix, itself. Small clusters of waters at the termini increase the dipole moments of the helix/water aggregates, but the effect diminishes as more waters are added. We discuss the somewhat complex behavior of the helix with the discrete waters in the continuum models. PMID:22201227

  1. Beyond the continuum: how molecular solvent structure affects electrostatics and hydrodynamics at solid-electrolyte interfaces.

    PubMed

    Bonthuis, Douwe Jan; Netz, Roland R

    2013-10-03

    Standard continuum theory fails to predict several key experimental results of electrostatic and electrokinetic measurements at aqueous electrolyte interfaces. In order to extend the continuum theory to include the effects of molecular solvent structure, we generalize the equations for electrokinetic transport to incorporate a space dependent dielectric profile, viscosity profile, and non-electrostatic interaction potential. All necessary profiles are extracted from atomistic molecular dynamics (MD) simulations. We show that the MD results for the ion-specific distribution of counterions at charged hydrophilic and hydrophobic interfaces are accurately reproduced using the dielectric profile of pure water and a non-electrostatic repulsion in an extended Poisson-Boltzmann equation. The distributions of Na(+) at both surface types and Cl(-) at hydrophilic surfaces can be modeled using linear dielectric response theory, whereas for Cl(-) at hydrophobic surfaces it is necessary to apply nonlinear response theory. The extended Poisson-Boltzmann equation reproduces the experimental values of the double-layer capacitance for many different carbon-based surfaces. In conjunction with a generalized hydrodynamic theory that accounts for a space dependent viscosity, the model captures the experimentally observed saturation of the electrokinetic mobility as a function of the bare surface charge density and the so-called anomalous double-layer conductivity. The two-scale approach employed here-MD simulations and continuum theory-constitutes a successful modeling scheme, providing basic insight into the molecular origins of the static and kinetic properties of charged surfaces, and allowing quantitative modeling at low computational cost.

  2. Cluster-Continuum Calculations of Hydration Free Energies of Anions and Group 12 Divalent Cations.

    PubMed

    Riccardi, Demian; Guo, Hao-Bo; Parks, Jerry M; Gu, Baohua; Liang, Liyuan; Smith, Jeremy C

    2013-01-08

    Understanding aqueous phase processes involving group 12 metal cations is relevant to both environmental and biological sciences. Here, quantum chemical methods and polarizable continuum models are used to compute the hydration free energies of a series of divalent group 12 metal cations (Zn(2+), Cd(2+), and Hg(2+)) together with Cu(2+) and the anions OH(-), SH(-), Cl(-), and F(-). A cluster-continuum method is employed, in which gas-phase clusters of the ion and explicit solvent molecules are immersed in a dielectric continuum. Two approaches to define the size of the solute-water cluster are compared, in which the number of explicit waters used is either held constant or determined variationally as that of the most favorable hydration free energy. Results obtained with various polarizable continuum models are also presented. Each leg of the relevant thermodynamic cycle is analyzed in detail to determine how different terms contribute to the observed mean signed error (MSE) and the standard deviation of the error (STDEV) between theory and experiment. The use of a constant number of water molecules for each set of ions is found to lead to predicted relative trends that benefit from error cancellation. Overall, the best results are obtained with MP2 and the Solvent Model D polarizable continuum model (SMD), with eight explicit water molecules for anions and 10 for the metal cations, yielding a STDEV of 2.3 kcal mol(-1) and MSE of 0.9 kcal mol(-1) between theoretical and experimental hydration free energies, which range from -72.4 kcal mol(-1) for SH(-) to -505.9 kcal mol(-1) for Cu(2+). Using B3PW91 with DFT-D3 dispersion corrections (B3PW91-D) and SMD yields a STDEV of 3.3 kcal mol(-1) and MSE of 1.6 kcal mol(-1), to which adding MP2 corrections from smaller divalent metal cation water molecule clusters yields very good agreement with the full MP2 results. Using B3PW91-D and SMD, with two explicit water molecules for anions and six for divalent metal cations, also yields reasonable agreement with experimental values, due in part to fortuitous error cancellation associated with the metal cations. Overall, the results indicate that the careful application of quantum chemical cluster-continuum methods provides valuable insight into aqueous ionic processes that depend on both local and long-range electrostatic interactions with the solvent.

  3. Conformational analysis of glutamic acid: a density functional approach using implicit continuum solvent model.

    PubMed

    Turan, Başak; Selçuki, Cenk

    2014-09-01

    Amino acids are constituents of proteins and enzymes which take part almost in all metabolic reactions. Glutamic acid, with an ability to form a negatively charged side chain, plays a major role in intra and intermolecular interactions of proteins, peptides, and enzymes. An exhaustive conformational analysis has been performed for all eight possible forms at B3LYP/cc-pVTZ level. All possible neutral, zwitterionic, protonated, and deprotonated forms of glutamic acid structures have been investigated in solution by using polarizable continuum model mimicking water as the solvent. Nine families based on the dihedral angles have been classified for eight glutamic acid forms. The electrostatic effects included in the solvent model usually stabilize the charged forms more. However, the stability of the zwitterionic form has been underestimated due to the lack of hydrogen bonding between the solute and solvent; therefore, it is observed that compact neutral glutamic acid structures are more stable in solution than they are in vacuum. Our calculations have shown that among all eight possible forms, some are not stable in solution and are immediately converted to other more stable forms. Comparison of isoelectronic glutamic acid forms indicated that one of the structures among possible zwitterionic and anionic forms may dominate over the other possible forms. Additional investigations using explicit solvent models are necessary to determine the stability of charged forms of glutamic acid in solution as our results clearly indicate that hydrogen bonding and its type have a major role in the structure and energy of conformers.

  4. Modeling ultrafast solvated electronic dynamics using time-dependent density functional theory and polarizable continuum model.

    PubMed

    Liang, Wenkel; Chapman, Craig T; Ding, Feizhi; Li, Xiaosong

    2012-03-01

    A first-principles solvated electronic dynamics method is introduced. Solvent electronic degrees of freedom are coupled to the time-dependent electronic density of a solute molecule by means of the implicit reaction field method, and the entire electronic system is propagated in time. This real-time time-dependent approach, incorporating the polarizable continuum solvation model, is shown to be very effective in describing the dynamical solvation effect in the charge transfer process and yields a consistent absorption spectrum in comparison to the conventional linear response results in solution. © 2012 American Chemical Society

  5. Electrostatic Solvation Energy for Two Oppositely Charged Ions in a Solvated Protein System: Salt Bridges Can Stabilize Proteins

    PubMed Central

    Gong, Haipeng; Freed, Karl F.

    2010-01-01

    Abstract Born-type electrostatic continuum methods have been an indispensable ingredient in a variety of implicit-solvent methods that reduce computational effort by orders of magnitude compared to explicit-solvent MD simulations and thus enable treatment using larger systems and/or longer times. An analysis of the limitations and failures of the Born approaches serves as a guide for fundamental improvements without diminishing the importance of prior works. One of the major limitations of the Born theory is the lack of a liquidlike description of the response of solvent dipoles to the electrostatic field of the solute and the changes therein, a feature contained in the continuum Langevin-Debye (LD) model applied here to investigate how Coulombic interactions depend on the location of charges relative to the protein/water boundary. This physically more realistic LD model is applied to study the stability of salt bridges. When compared head to head using the same (independently measurable) physical parameters (radii, dielectric constants, etc.), the LD model is in good agreement with observations, whereas the Born model is grossly in error. Our calculations also suggest that a salt bridge on the protein's surface can be stabilizing when the charge separation is ≤4 Å. PMID:20141761

  6. Advanced dielectric continuum model of preferential solvation

    NASA Astrophysics Data System (ADS)

    Basilevsky, Mikhail; Odinokov, Alexey; Nikitina, Ekaterina; Grigoriev, Fedor; Petrov, Nikolai; Alfimov, Mikhail

    2009-01-01

    A continuum model for solvation effects in binary solvent mixtures is formulated in terms of the density functional theory. The presence of two variables, namely, the dimensionless solvent composition y and the dimensionless total solvent density z, is an essential feature of binary systems. Their coupling, hidden in the structure of the local dielectric permittivity function, is postulated at the phenomenological level. Local equilibrium conditions are derived by a variation in the free energy functional expressed in terms of the composition and density variables. They appear as a pair of coupled equations defining y and z as spatial distributions. We consider the simplest spherically symmetric case of the Born-type ion immersed in the benzene/dimethylsulfoxide (DMSO) solvent mixture. The profiles of y(R ) and z(R ) along the radius R, which measures the distance from the ion center, are found in molecular dynamics (MD) simulations. It is shown that for a given solute ion z(R ) does not depend significantly on the composition variable y. A simplified solution is then obtained by inserting z(R ), found in the MD simulation for the pure DMSO, in the single equation which defines y(R ). In this way composition dependences of the main solvation effects are investigated. The local density augmentation appears as a peak of z(R ) at the ion boundary. It is responsible for the fine solvation effects missing when the ordinary solvation theories, in which z =1, are applied. These phenomena, studied for negative ions, reproduce consistently the simulation results. For positive ions the simulation shows that z ≫1 (z =5-6 at the maximum of the z peak), which means that an extremely dense solvation shell is formed. In such a situation the continuum description fails to be valid within a consistent parametrization.

  7. Differential geometry-based solvation and electrolyte transport models for biomolecular modeling: a review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Guowei; Baker, Nathan A.

    2016-11-11

    This chapter reviews the differential geometry-based solvation and electrolyte transport for biomolecular solvation that have been developed over the past decade. A key component of these methods is the differential geometry of surfaces theory, as applied to the solvent-solute boundary. In these approaches, the solvent-solute boundary is determined by a variational principle that determines the major physical observables of interest, for example, biomolecular surface area, enclosed volume, electrostatic potential, ion density, electron density, etc. Recently, differential geometry theory has been used to define the surfaces that separate the microscopic (solute) domains for biomolecules from the macroscopic (solvent) domains. In thesemore » approaches, the microscopic domains are modeled with atomistic or quantum mechanical descriptions, while continuum mechanics models (including fluid mechanics, elastic mechanics, and continuum electrostatics) are applied to the macroscopic domains. This multiphysics description is integrated through an energy functional formalism and the resulting Euler-Lagrange equation is employed to derive a variety of governing partial differential equations for different solvation and transport processes; e.g., the Laplace-Beltrami equation for the solvent-solute interface, Poisson or Poisson-Boltzmann equations for electrostatic potentials, the Nernst-Planck equation for ion densities, and the Kohn-Sham equation for solute electron density. Extensive validation of these models has been carried out over hundreds of molecules, including proteins and ion channels, and the experimental data have been compared in terms of solvation energies, voltage-current curves, and density distributions. We also propose a new quantum model for electrolyte transport.« less

  8. Simulations of fluorescence solvatochromism in substituted PPV oligomers from excited state molecular dynamics with implicit solvent

    DOE PAGES

    Bjorgaard, J. A.; Nelson, T.; Kalinin, K.; ...

    2015-04-28

    In this study, an efficient method of treating solvent effects in excited state molecular dynamics (ESMD) is implemented and tested by exploring the solvatochromic effects in substituted p-phenylene vinylene oligomers. A continuum solvent model is used which has very little computational overhead. This allows simulations of ESMD with solvent effects on the scale of hundreds of picoseconds for systems of up to hundreds of atoms. At these time scales, solvatochromic shifts in fluoresence spectra can be described. Solvatochromic shifts in absorption and fluorescence spectra from ESMD are compared with time-dependent density functional theory calculations and experiments.

  9. Cluster-continuum quasichemical theory calculation of the lithium ion solvation in water, acetonitrile and dimethyl sulfoxide: an absolute single-ion solvation free energy scale.

    PubMed

    Carvalho, Nathalia F; Pliego, Josefredo R

    2015-10-28

    Absolute single-ion solvation free energy is a very useful property for understanding solution phase chemistry. The real solvation free energy of an ion depends on its interaction with the solvent molecules and on the net potential inside the solute cavity. The tetraphenyl arsonium-tetraphenyl borate (TATB) assumption as well as the cluster-continuum quasichemical theory (CC-QCT) approach for Li(+) solvation allows access to a solvation scale excluding the net potential. We have determined this free energy scale investigating the solvation of the lithium ion in water (H2O), acetonitrile (CH3CN) and dimethyl sulfoxide (DMSO) solvents via the CC-QCT approach. Our calculations at the MP2 and MP4 levels with basis sets up to the QZVPP+diff quality, and including solvation of the clusters and solvent molecules by the dielectric continuum SMD method, predict the solvation free energy of Li(+) as -116.1, -120.6 and -123.6 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively (1 mol L(-1) standard state). These values are compatible with the solvation free energy of the proton of -253.4, -253.2 and -261.1 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively. Deviations from the experimental TATB scale are only 1.3 kcal mol(-1) in H2O and 1.8 kcal mol(-1) in DMSO solvents. However, in the case of CH3CN, the deviation reaches a value of 9.2 kcal mol(-1). The present study suggests that the experimental TATB scale is inconsistent for CH3CN. A total of 125 values of the solvation free energy of ions in these three solvents were obtained. These new data should be useful for the development of theoretical solvation models.

  10. Electronic Excitations in Solution: The Interplay between State Specific Approaches and a Time-Dependent Density Functional Theory Description.

    PubMed

    Guido, Ciro A; Jacquemin, Denis; Adamo, Carlo; Mennucci, Benedetta

    2015-12-08

    We critically analyze the performances of continuum solvation models when coupled to time-dependent density functional theory (TD-DFT) to predict solvent effects on both absorption and emission energies of chromophores in solution. Different polarization schemes of the polarizable continuum model (PCM), such as linear response (LR) and three different state specific (SS) approaches, are considered and compared. We show the necessity of introducing a SS model in cases where large electron density rearrangements are involved in the excitations, such as charge-transfer transitions in both twisted and quadrupolar compounds, and underline the very delicate interplay between the selected polarization method and the chosen exchange-correlation functional. This interplay originates in the different descriptions of the transition and ground/excited state multipolar moments by the different functionals. As a result, the choice of both the DFT functional and the solvent polarization scheme has to be consistent with the nature of the studied electronic excitation.

  11. Investigating the Effect of Charge Hydration Asymmetry and Incorporating it in Continuum Solvation Framework

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Abhishek

    One of the essential requirements of biomolecular modeling is an accurate description of water as a solvent. The challenge is to make this description computationally facile - reasonably fast, simple, robust and easy to incorporate into existing software packages, yet accurate. The most rigorous procedure to model the effect of aqueous solvent is to explicitly model every water molecule in the system. For many practical applications, this approach is computationally too intense, as the number of required water atoms is on an average at least one order of magnitude larger than the number of atoms of the molecule of interest. Implicit solvent models, in which solvent molecules are replaced by a continuous dielectric, have become a popular alternative to explicit solvent methods. However, implicit solvation models often lack various microscopic details which are crucial for accuracy. One such missing effect that is currently missing from popular implicit models is the so called effect of charge hydration asymmetry (CHA). The missing effect of charge hydration asymmetry - the asymmetric response of water upon the sign of solute charge - manifests a characteristic, strong dependence of solvation free energies on the sign of solute charge. Here, we incorporate this missing effect into the continuum solvation framework via the conceptually simplest Born equation and also in the generalized Born model. We identify the key electric multipole moments of model water molecules critical for the various degrees of CHA effect observed in studies based on molecular dynamics simulations using different rigid water models. We then use this gained insight to incorporate this effect first into the Born model and then into the generalized Born model. The proposed framework significantly improves accuracy of the hydration free energy estimates tested on a comprehensive set of varied molecular solutes - monovalent and divalent ions, small drug-like molecules, charged and uncharged amino acid dipeptides, and small proteins. We finally develop a methodology to resolve the issue with unacceptably large uncertainty that stems from a variety of fundamental and technical difficulties in experimental quantification of CHA from charged solutes. Using the proposed corrections in the continuum framework, we untangle the charge-asymmetric response of water from its symmetric response, and further circumvent the difficulties by extracting accurate estimate propensity of water to cause CHA from accurate experimental hydration free energies of neutral polar molecules. We show that the asymmetry in water's response is strong, about 50% of the symmetric response.

  12. Long Dynamics Simulations of Proteins Using Atomistic Force Fields and a Continuum Representation of Solvent Effects: Calculation of Structural and Dynamic Properties

    PubMed Central

    Li, Xianfeng; Hassan, Sergio A.; Mehler, Ernest L.

    2006-01-01

    Long dynamics simulations were carried out on the B1 immunoglobulin-binding domain of streptococcal protein G (ProtG) and bovine pancreatic trypsin inhibitor (BPTI) using atomistic descriptions of the proteins and a continuum representation of solvent effects. To mimic frictional and random collision effects, Langevin dynamics (LD) were used. The main goal of the calculations was to explore the stability of tens-of-nanosecond trajectories as generated by this molecular mechanics approximation and to analyze in detail structural and dynamical properties. Conformational fluctuations, order parameters, cross correlation matrices, residue solvent accessibilities, pKa values of titratable groups, and hydrogen-bonding (HB) patterns were calculated from all of the trajectories and compared with available experimental data. The simulations comprised over 40 ns per trajectory for ProtG and over 30 ns per trajectory for BPTI. For comparison, explicit water molecular dynamics simulations (EW/MD) of 3 ns and 4 ns, respectively, were also carried out. Two continuum simulations were performed on each protein using the CHARMM program, one with the all-atom PAR22 representation of the protein force field (here referred to as PAR22/LD simulations) and the other with the modifications introduced by the recently developed CMAP potential (CMAP/LD simulations). The explicit solvent simulations were performed with PAR22 only. Solvent effects are described by a continuum model based on screened Coulomb potentials (SCP) reported earlier, i.e., the SCP-based implicit solvent model (SCP–ISM). For ProtG, both the PAR22/LD and the CMAP/LD 40-ns trajectories were stable, yielding Cα root mean square deviations (RMSD) of about 1.0 and 0.8 Å respectively along the entire simulation time, compared to 0.8 Å for the EW/MD simulation. For BPTI, only the CMAP/LD trajectory was stable for the entire 30-ns simulation, with a Cα RMSD of ≈ 1.4 Å, while the PAR22/LD trajectory became unstable early in the simulation, reaching a Cα RMSD of about 2.7 Å and remaining at this value until the end of the simulation; the Cα RMSD of the EW/MD simulation was about 1.5 Å. The source of the instabilities of the BPTI trajectories in the PAR22/LD simulations was explored by an analysis of the backbone torsion angles. To further validate the findings from this analysis of BPTI, a 35-ns SCP–ISM simulation of Ubiquitin (Ubq) was carried out. For this protein, the CMAP/LD simulation was stable for the entire simulation time (Cα RMSD of ≈1.0 Å), while the PAR22/LD trajectory showed a trend similar to that in BPTI, reaching a Cα RMSD of ≈1.5 Å at 7 ns. All the calculated properties were found to be in agreement with the corresponding experimental values, although local deviations were also observed. HB patterns were also well reproduced by all the continuum solvent simulations with the exception of solvent-exposed side chain–side chain (sc–sc) HB in ProtG, where several of the HB interactions observed in the crystal structure and in the EW/MD simulation were lost. The overall analysis reported in this work suggests that the combination of an atomistic representation of a protein with a CMAP/CHARMM force field and a continuum representation of solvent effects such as the SCP–ISM provides a good description of structural and dynamic properties obtained from long computer simulations. Although the SCP–ISM simulations (CMAP/LD) reported here were shown to be stable and the properties well reproduced, further refinement is needed to attain a level of accuracy suitable for more challenging biological applications, particularly the study of protein–protein interactions. PMID:15959866

  13. Charge transfer optical absorption and fluorescence emission of 4-(9-acridyl)julolidine from long-range-corrected time dependent density functional theory in polarizable continuum approach.

    PubMed

    Kityk, A V

    2014-07-15

    A long-range-corrected time-dependent density functional theory (LC-TDDFT) in combination with polarizable continuum model (PCM) have been applied to study charge transfer (CT) optical absorption and fluorescence emission energies basing on parameterized LC-BLYP xc-potential. The molecule of 4-(9-acridyl)julolidine selected for this study represents typical CT donor-acceptor dye with strongly solvent dependent optical absorption and fluorescence emission spectra. The result of calculations are compared with experimental spectra reported in the literature to derive an optimal value of the model screening parameter ω. The first absorption band appears to be quite well predictable within DFT/TDDFT/PCM with the screening parameter ω to be solvent independent (ω ≈ 0.245 Bohr(-1)) whereas the fluorescence emission exhibits a strong dependence on the range separation with ω-value varying on a rising solvent polarity from about 0.225 to 0.151 Bohr(-1). Dipolar properties of the initial state participating in the electronic transition have crucial impact on the effective screening. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. From Solvent-Free to Dilute Electrolytes: Essential Components for a Continuum Theory.

    PubMed

    Gavish, Nir; Elad, Doron; Yochelis, Arik

    2018-01-04

    The increasing number of experimental observations on highly concentrated electrolytes and ionic liquids show qualitative features that are distinct from dilute or moderately concentrated electrolytes, such as self-assembly, multiple-time relaxation, and underscreening, which all impact the emergence of fluid/solid interfaces, and the transport in these systems. Because these phenomena are not captured by existing mean-field models of electrolytes, there is a paramount need for a continuum framework for highly concentrated electrolytes and ionic liquid mixtures. In this work, we present a self-consistent spatiotemporal framework for a ternary composition that comprises ions and solvent employing a free energy that consists of short- and long-range interactions, along with an energy dissipation mechanism obtained by Onsager's relations. We show that the model can describe multiple bulk and interfacial morphologies at steady-state. Thus, the dynamic processes in the emergence of distinct morphologies become equally as important as the interactions that are specified by the free energy. The model equations not only provide insights into transport mechanisms beyond the Stokes-Einstein-Smoluchowski relations but also enable qualitative recovery of three distinct regions in the full range of the nonmonotonic electrical screening length that has been recently observed in experiments in which organic solvent is used to dilute ionic liquids.

  15. On the Helix Propensity in Generalized Born Solvent Descriptions of Modeling the Dark Proteome

    PubMed Central

    Olson, Mark A.

    2017-01-01

    Intrinsically disordered proteins that populate the so-called “Dark Proteome” offer challenging benchmarks of atomistic simulation methods to accurately model conformational transitions on a multidimensional energy landscape. This work explores the application of parallel tempering with implicit solvent models as a computational framework to capture the conformational ensemble of an intrinsically disordered peptide derived from the Ebola virus protein VP35. A recent X-ray crystallographic study reported a protein-peptide interface where the VP35 peptide underwent a folding transition from a disordered form to a helix-β-turn-helix topological fold upon molecular association with the Ebola protein NP. An assessment is provided of the accuracy of two generalized Born solvent models (GBMV2 and GBSW2) using the CHARMM force field and applied with temperature-based replica exchange dynamics to calculate the disorder propensity of the peptide and its probability density of states in a continuum solvent. A further comparison is presented of applying an explicit/implicit solvent hybrid replica exchange simulation of the peptide to determine the effect of modeling water interactions at the all-atom resolution. PMID:28197405

  16. On the Helix Propensity in Generalized Born Solvent Descriptions of Modeling the Dark Proteome.

    PubMed

    Olson, Mark A

    2017-01-01

    Intrinsically disordered proteins that populate the so-called "Dark Proteome" offer challenging benchmarks of atomistic simulation methods to accurately model conformational transitions on a multidimensional energy landscape. This work explores the application of parallel tempering with implicit solvent models as a computational framework to capture the conformational ensemble of an intrinsically disordered peptide derived from the Ebola virus protein VP35. A recent X-ray crystallographic study reported a protein-peptide interface where the VP35 peptide underwent a folding transition from a disordered form to a helix-β-turn-helix topological fold upon molecular association with the Ebola protein NP. An assessment is provided of the accuracy of two generalized Born solvent models (GBMV2 and GBSW2) using the CHARMM force field and applied with temperature-based replica exchange dynamics to calculate the disorder propensity of the peptide and its probability density of states in a continuum solvent. A further comparison is presented of applying an explicit/implicit solvent hybrid replica exchange simulation of the peptide to determine the effect of modeling water interactions at the all-atom resolution.

  17. FY10 Report on Multi-scale Simulation of Solvent Extraction Processes: Molecular-scale and Continuum-scale Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wardle, Kent E.; Frey, Kurt; Pereira, Candido

    2014-02-02

    This task is aimed at predictive modeling of solvent extraction processes in typical extraction equipment through multiple simulation methods at various scales of resolution. We have conducted detailed continuum fluid dynamics simulation on the process unit level as well as simulations of the molecular-level physical interactions which govern extraction chemistry. Through combination of information gained through simulations at each of these two tiers along with advanced techniques such as the Lattice Boltzmann Method (LBM) which can bridge these two scales, we can develop the tools to work towards predictive simulation for solvent extraction on the equipment scale (Figure 1). Themore » goal of such a tool-along with enabling optimized design and operation of extraction units-would be to allow prediction of stage extraction effrciency under specified conditions. Simulation efforts on each of the two scales will be described below. As the initial application of FELBM in the work performed during FYl0 has been on annular mixing it will be discussed in context of the continuum-scale. In the future, however, it is anticipated that the real value of FELBM will be in its use as a tool for sub-grid model development through highly refined DNS-like multiphase simulations facilitating exploration and development of droplet models including breakup and coalescence which will be needed for the large-scale simulations where droplet level physics cannot be resolved. In this area, it can have a significant advantage over traditional CFD methods as its high computational efficiency allows exploration of significantly greater physical detail especially as computational resources increase in the future.« less

  18. Solvolysis of para-substituted cumyl chlorides. Brown and Okamoto's electrophilic substituent constants revisited using continuum solvent models.

    PubMed

    DiLabio, Gino A; Ingold, K U

    2004-03-05

    Brown and Okamoto (J. Am. Chem. Soc. 1958, 80, 4979) derived their electrophilic substitutent constants, sigma(p)+, from the relative rates of solvolysis of ring-substituted cumyl chlorides in an acetone/water solvent mixture. Application of the Hammett equation to the rates for the meta-substituted cumyl chlorides, where there could be no resonance interaction with the developing carbocation, gave a slope, rho(+) = -4.54 ( identical with 6.2 kcal/mol free energy). Rates for the para-substituted chlorides were then used to obtain sigma(p)+ values. We have calculated gas-phase C-Cl heterolytic bond dissociation enthalpy differences, Delta BDE(het) (= BDE(het)(4-YC(6)H(4)CMe(2)Cl) - BDE(het)(C(6)H(5)CMe(2)Cl)), for 16 of the 4-Y substituents employed by Brown and Okamoto. The plot of Delta BDE(het) vs sigma(p)+ gave rho(+) (SD) = 16.3 (2.3) kcal/mol, i.e., a rho(+) value roughly 2.5 times greater than experiment. Inclusion of solvation (water) energies, calculated using three continuum solvent models, reduced rho(+) and SD. The computationally least expensive model used, SM5.42R (Li et al. Theor. Chem. Acc. 1999, 103, 9) gave the best agreement with experiment. This model yielded rho(+) (SD) = 7.7 (0.9) kcal/mol, i.e., a rho(+) value that is only 24% larger than experiment.

  19. Study of the solvent effects on the molecular structure and Cdbnd O stretching vibrations of flurbiprofen

    NASA Astrophysics Data System (ADS)

    Tekin, Nalan; Pir, Hacer; Sagdinc, Seda

    2012-12-01

    The effects of 15 solvents on the C=O stretching vibrational frequency of flurbiprofen (FBF) were determined to investigate solvent-solute interactions. Solvent effects on the geometry and C=O stretching vibrational frequency, ν(C=O), of FBF were studied theoretically at the DFT/B3LYP and HF level in combination with the polarizable continuum model and experimentally using attenuated total reflection infrared spectroscopy (ATR-IR). The calculated C=O stretching frequencies in the liquid phase are in agreement with experimental values. Moreover, the wavenumbers of ν(C=O) of FBF in different solvents have been obtained and correlated with the Kirkwood-Bauer-Magat equation (KBM), the solvent acceptor numbers (ANs), and the linear solvation energy relationships (LSERs). The solvent-induced stretching vibrational frequency shifts displayed a better correlation with the LSERs than with the ANs and KBM.

  20. Variational Implicit Solvation with Solute Molecular Mechanics: From Diffuse-Interface to Sharp-Interface Models.

    PubMed

    Li, Bo; Zhao, Yanxiang

    2013-01-01

    Central in a variational implicit-solvent description of biomolecular solvation is an effective free-energy functional of the solute atomic positions and the solute-solvent interface (i.e., the dielectric boundary). The free-energy functional couples together the solute molecular mechanical interaction energy, the solute-solvent interfacial energy, the solute-solvent van der Waals interaction energy, and the electrostatic energy. In recent years, the sharp-interface version of the variational implicit-solvent model has been developed and used for numerical computations of molecular solvation. In this work, we propose a diffuse-interface version of the variational implicit-solvent model with solute molecular mechanics. We also analyze both the sharp-interface and diffuse-interface models. We prove the existence of free-energy minimizers and obtain their bounds. We also prove the convergence of the diffuse-interface model to the sharp-interface model in the sense of Γ-convergence. We further discuss properties of sharp-interface free-energy minimizers, the boundary conditions and the coupling of the Poisson-Boltzmann equation in the diffuse-interface model, and the convergence of forces from diffuse-interface to sharp-interface descriptions. Our analysis relies on the previous works on the problem of minimizing surface areas and on our observations on the coupling between solute molecular mechanical interactions with the continuum solvent. Our studies justify rigorously the self consistency of the proposed diffuse-interface variational models of implicit solvation.

  1. Electronic excitation spectra of molecules in solution calculated using the symmetry-adapted cluster-configuration interaction method in the polarizable continuum model with perturbative approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuda, Ryoichi, E-mail: fukuda@ims.ac.jp; Ehara, Masahiro; Elements Strategy Initiative for Catalysts and Batteries

    A perturbative approximation of the state specific polarizable continuum model (PCM) symmetry-adapted cluster-configuration interaction (SAC-CI) method is proposed for efficient calculations of the electronic excitations and absorption spectra of molecules in solutions. This first-order PCM SAC-CI method considers the solvent effects on the energies of excited states up to the first-order with using the zeroth-order wavefunctions. This method can avoid the costly iterative procedure of the self-consistent reaction field calculations. The first-order PCM SAC-CI calculations well reproduce the results obtained by the iterative method for various types of excitations of molecules in polar and nonpolar solvents. The first-order contribution ismore » significant for the excitation energies. The results obtained by the zeroth-order PCM SAC-CI, which considers the fixed ground-state reaction field for the excited-state calculations, are deviated from the results by the iterative method about 0.1 eV, and the zeroth-order PCM SAC-CI cannot predict even the direction of solvent shifts in n-hexane for many cases. The first-order PCM SAC-CI is applied to studying the solvatochromisms of (2,2{sup ′}-bipyridine)tetracarbonyltungsten [W(CO){sub 4}(bpy), bpy = 2,2{sup ′}-bipyridine] and bis(pentacarbonyltungsten)pyrazine [(OC){sub 5}W(pyz)W(CO){sub 5}, pyz = pyrazine]. The SAC-CI calculations reveal the detailed character of the excited states and the mechanisms of solvent shifts. The energies of metal to ligand charge transfer states are significantly sensitive to solvents. The first-order PCM SAC-CI well reproduces the observed absorption spectra of the tungsten carbonyl complexes in several solvents.« less

  2. The Influence of Solvent on the Structural Properties of trans-(NHC)PtI2Py Complex: A Platinum-Based Anticancer Drug

    NASA Astrophysics Data System (ADS)

    Sadigh Vishkaee, Teherh; Fazaeli, Reza

    2018-06-01

    Quantum chemical calculations using MPW1PW91 method were applied to analyze the solvent effect on the structural, spectral, and thermochemical parameters for a platinum-based anticancer drug trans-(NHC)PtI2Py complex. The solvent effects were examined by the self-consistent reaction field theory (SCRF) based on Polarizable Continuum Model (PCM). The linear correlations between the solvation energies, HOMO-LUMO gaps, IR-active stretching vibration of Pt-N bonds and N-H of NHC ligand with dielectric constants of solvents were studied. The wave numbers of these IR-active stretching vibrations in different solvents were correlated with the Kirkwood-Bauer-Magat equation (KBM). The thermodynamic activation parameter such free energy of solvation, enthalpy of solvation were also calculated.

  3. Can a continuum solvent model reproduce the free energy landscape of a -hairpin folding in water?

    NASA Astrophysics Data System (ADS)

    Zhou, Ruhong; Berne, Bruce J.

    2002-10-01

    The folding free energy landscape of the C-terminal -hairpin of protein G is explored using the surface-generalized Born (SGB) implicit solvent model, and the results are compared with the landscape from an earlier study with explicit solvent model. The OPLSAA force field is used for the -hairpin in both implicit and explicit solvent simulations, and the conformational space sampling is carried out with a highly parallel replica-exchange method. Surprisingly, we find from exhaustive conformation space sampling that the free energy landscape from the implicit solvent model is quite different from that of the explicit solvent model. In the implicit solvent model some nonnative states are heavily overweighted, and more importantly, the lowest free energy state is no longer the native -strand structure. An overly strong salt-bridge effect between charged residues (E42, D46, D47, E56, and K50) is found to be responsible for this behavior in the implicit solvent model. Despite this, we find that the OPLSAA/SGB energies of all the nonnative structures are higher than that of the native structure; thus the OPLSAA/SGB energy is still a good scoring function for structure prediction for this -hairpin. Furthermore, the -hairpin population at 282 K is found to be less than 40% from the implicit solvent model, which is much smaller than the 72% from the explicit solvent model and 80% from experiment. On the other hand, both implicit and explicit solvent simulations with the OPLSAA force field exhibit no meaningful helical content during the folding process, which is in contrast to some very recent studies using other force fields.

  4. Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water?

    PubMed Central

    Zhou, Ruhong; Berne, Bruce J.

    2002-01-01

    The folding free energy landscape of the C-terminal β-hairpin of protein G is explored using the surface-generalized Born (SGB) implicit solvent model, and the results are compared with the landscape from an earlier study with explicit solvent model. The OPLSAA force field is used for the β-hairpin in both implicit and explicit solvent simulations, and the conformational space sampling is carried out with a highly parallel replica-exchange method. Surprisingly, we find from exhaustive conformation space sampling that the free energy landscape from the implicit solvent model is quite different from that of the explicit solvent model. In the implicit solvent model some nonnative states are heavily overweighted, and more importantly, the lowest free energy state is no longer the native β-strand structure. An overly strong salt-bridge effect between charged residues (E42, D46, D47, E56, and K50) is found to be responsible for this behavior in the implicit solvent model. Despite this, we find that the OPLSAA/SGB energies of all the nonnative structures are higher than that of the native structure; thus the OPLSAA/SGB energy is still a good scoring function for structure prediction for this β-hairpin. Furthermore, the β-hairpin population at 282 K is found to be less than 40% from the implicit solvent model, which is much smaller than the 72% from the explicit solvent model and ≈80% from experiment. On the other hand, both implicit and explicit solvent simulations with the OPLSAA force field exhibit no meaningful helical content during the folding process, which is in contrast to some very recent studies using other force fields. PMID:12242327

  5. Can a continuum solvent model reproduce the free energy landscape of a beta -hairpin folding in water?

    PubMed

    Zhou, Ruhong; Berne, Bruce J

    2002-10-01

    The folding free energy landscape of the C-terminal beta-hairpin of protein G is explored using the surface-generalized Born (SGB) implicit solvent model, and the results are compared with the landscape from an earlier study with explicit solvent model. The OPLSAA force field is used for the beta-hairpin in both implicit and explicit solvent simulations, and the conformational space sampling is carried out with a highly parallel replica-exchange method. Surprisingly, we find from exhaustive conformation space sampling that the free energy landscape from the implicit solvent model is quite different from that of the explicit solvent model. In the implicit solvent model some nonnative states are heavily overweighted, and more importantly, the lowest free energy state is no longer the native beta-strand structure. An overly strong salt-bridge effect between charged residues (E42, D46, D47, E56, and K50) is found to be responsible for this behavior in the implicit solvent model. Despite this, we find that the OPLSAA/SGB energies of all the nonnative structures are higher than that of the native structure; thus the OPLSAA/SGB energy is still a good scoring function for structure prediction for this beta-hairpin. Furthermore, the beta-hairpin population at 282 K is found to be less than 40% from the implicit solvent model, which is much smaller than the 72% from the explicit solvent model and approximately equal 80% from experiment. On the other hand, both implicit and explicit solvent simulations with the OPLSAA force field exhibit no meaningful helical content during the folding process, which is in contrast to some very recent studies using other force fields.

  6. Exact solution for the hydrogen atom confined by a dielectric continuum and the correct basis set to study many-electron atoms under similar confinements

    NASA Astrophysics Data System (ADS)

    Martínez-Sánchez, Michael-Adán; Aquino, Norberto; Vargas, Rubicelia; Garza, Jorge

    2017-12-01

    The Schrödinger equation associated to the hydrogen atom confined by a dielectric continuum is solved exactly and suggests the appropriate basis set to be used when an atom is immersed in a dielectric continuum. Exact results show that this kind of confinement spread the electron density, which is confirmed through the Shannon entropy. The basis set suggested by the exact results is similar to Slater type orbitals and it was applied on two-electron atoms, where the H- ion ejects one electron for moderate confinements for distances much larger than those commonly used to generate cavities in solvent models.

  7. Applications of MMPBSA to Membrane Proteins I: Efficient Numerical Solutions of Periodic Poisson-Boltzmann Equation

    PubMed Central

    Botello-Smith, Wesley M.; Luo, Ray

    2016-01-01

    Continuum solvent models have been widely used in biomolecular modeling applications. Recently much attention has been given to inclusion of implicit membrane into existing continuum Poisson-Boltzmann solvent models to extend their applications to membrane systems. Inclusion of an implicit membrane complicates numerical solutions of the underlining Poisson-Boltzmann equation due to the dielectric inhomogeneity on the boundary surfaces of a computation grid. This can be alleviated by the use of the periodic boundary condition, a common practice in electrostatic computations in particle simulations. The conjugate gradient and successive over-relaxation methods are relatively straightforward to be adapted to periodic calculations, but their convergence rates are quite low, limiting their applications to free energy simulations that require a large number of conformations to be processed. To accelerate convergence, the Incomplete Cholesky preconditioning and the geometric multi-grid methods have been extended to incorporate periodicity for biomolecular applications. Impressive convergence behaviors were found as in the previous applications of these numerical methods to tested biomolecules and MMPBSA calculations. PMID:26389966

  8. Comparative density functional study of the complexes [UO2(CO3)3]4- and [(UO2)3(CO3)6]6- in aqueous solution.

    PubMed

    Schlosser, Florian; Moskaleva, Lyudmila V; Kremleva, Alena; Krüger, Sven; Rösch, Notker

    2010-06-28

    With a relativistic all-electron density functional method, we studied two anionic uranium(VI) carbonate complexes that are important for uranium speciation and transport in aqueous medium, the mononuclear tris(carbonato) complex [UO(2)(CO(3))(3)](4-) and the trinuclear hexa(carbonato) complex [(UO(2))(3)(CO(3))(6)](6-). Focusing on the structures in solution, we applied for the first time a full solvation treatment to these complexes. We approximated short-range effects by explicit aqua ligands and described long-range electrostatic interactions via a polarizable continuum model. Structures and vibrational frequencies of "gas-phase" models with explicit aqua ligands agree best with experiment. This is accidental because the continuum model of the solvent to some extent overestimates the electrostatic interactions of these highly anionic systems with the bulk solvent. The calculated free energy change when three mono-nuclear complexes associate to the trinuclear complex, agrees well with experiment and supports the formation of the latter species upon acidification of a uranyl carbonate solution.

  9. Dissolution of covalent adaptable network polymers in organic solvent

    NASA Astrophysics Data System (ADS)

    Yu, Kai; Yang, Hua; Dao, Binh H.; Shi, Qian; Yakacki, Christopher M.

    2017-12-01

    It was recently reported that thermosetting polymers can be fully dissolved in a proper organic solvent utilizing a bond-exchange reaction (BER), where small molecules diffuse into the polymer, break the long polymer chains into short segments, and eventually dissolve the network when sufficient solvent is provided. The solvent-assisted dissolution approach was applied to fully recycle thermosets and their fiber composites. This paper presents the first multi-scale modeling framework to predict the dissolution kinetics and mechanics of thermosets in organic solvent. The model connects the micro-scale network dynamics with macro-scale material properties: in the micro-scale, a model is developed based on the kinetics of BERs to describe the cleavage rate of polymer chains and evolution of chain segment length during the dissolution. The micro-scale model is then fed into a continuum-level model with considerations of the transportation of solvent molecules and chain segments in the system. The model shows good prediction on conversion rate of functional groups, degradation of network mechanical properties, and dissolution rate of thermosets during the dissolution. It identifies the underlying kinetic factors governing the dissolution process, and reveals the influence of different material and processing variables on the dissolution process, such as time, temperature, catalyst concentration, and chain length between cross-links.

  10. FT-IR spectroscopy combined with DFT calculation to explore solvent effects of vinyl acetate

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Zhang, Hui; Liu, Qing

    The infrared vibration frequencies of vinyl acetate (VAc) in 18 different solvents were theoretically computed at Density Function Theory (DFT) B3LYP/6-311G* level based on Polarizable Continuum Model (PCM) and experimentally recorded by FT-IR spectroscopy. The solvent-induced long-range bulk electrostatic solvation free energies of VAc (ΔGelec) were calculated by the SMD model. The Cdbnd O stretching vibration frequencies of VAc were utilized as a measure of the chemical reactivities of the Cdbnd C group in VAc. The calculated and experimental Cdbnd O stretching vibration frequencies of VAc (νcal(Cdbnd O) and νexp(Cdbnd O)) were correlated with empirical solvent parameters including the KBM equation, the Swain equation and the linear solvation energy relationships (LSER). Through ab initio calculation, assignments of the two Cdbnd O absorption bands of VAc in alcohol solvents were achieved. The PCM, SMD and ab initio calculation offered supporting evidence to explain the FT-IR experimental observations from differing aspects.

  11. Free energy functionals for polarization fluctuations: Pekar factor revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinpajooh, Mohammadhasan; Newton, Marshall D.; Matyushov, Dmitry V.

    The separation of slow nuclear and fast electronic polarization in problems related to electron mobility in polarizable media was considered by Pekar 70 years ago. Within dielectric continuum models, this separation leads to the Pekar factor in the free energy of solvation by the nuclear degrees of freedom. The main qualitative prediction of Pekar’s perspective is a significant, by about a factor of two, drop of the nuclear solvation free energy compared to the total (electronic plus nuclear) free energy of solvation. The Pekar factor enters the solvent reorganization energy of electron transfer reactions and is a significant mechanistic parametermore » accounting for the solvent effect on electron transfer. Here, we study the separation of the fast and slow polarization modes in polar molecular liquids (polarizable dipolar liquids and polarizable water force fields) without relying on the continuum approximation. We derive the nonlocal free energy functional and use atomistic numerical simulations to obtain nonlocal, reciprocal space electronic and nuclear susceptibilities. A consistent transition to the continuum limit is introduced by extrapolating the results of finite-size numerical simulation to zero wavevector. The continuum nuclear susceptibility extracted from simulations is numerically close to the Pekar factor. However, we derive a new functionality involving the static and high-frequency dielectric constants. The main distinction of our approach from the traditional theories is found for the solvation free energy due to the nuclear polarization: the anticipated significant drop of its magnitude with increasing liquid polarizability does not occur. The reorganization energy of electron transfer is either nearly constant with increasing the solvent polarizability and the corresponding high-frequency dielectric constant (polarizable dipolar liquids) or actually noticeably increases (polarizable force fields of water).« less

  12. Free energy functionals for polarization fluctuations: Pekar factor revisited

    DOE PAGES

    Dinpajooh, Mohammadhasan; Newton, Marshall D.; Matyushov, Dmitry V.

    2017-02-13

    The separation of slow nuclear and fast electronic polarization in problems related to electron mobility in polarizable media was considered by Pekar 70 years ago. Within dielectric continuum models, this separation leads to the Pekar factor in the free energy of solvation by the nuclear degrees of freedom. The main qualitative prediction of Pekar’s perspective is a significant, by about a factor of two, drop of the nuclear solvation free energy compared to the total (electronic plus nuclear) free energy of solvation. The Pekar factor enters the solvent reorganization energy of electron transfer reactions and is a significant mechanistic parametermore » accounting for the solvent effect on electron transfer. Here, we study the separation of the fast and slow polarization modes in polar molecular liquids (polarizable dipolar liquids and polarizable water force fields) without relying on the continuum approximation. We derive the nonlocal free energy functional and use atomistic numerical simulations to obtain nonlocal, reciprocal space electronic and nuclear susceptibilities. A consistent transition to the continuum limit is introduced by extrapolating the results of finite-size numerical simulation to zero wavevector. The continuum nuclear susceptibility extracted from simulations is numerically close to the Pekar factor. However, we derive a new functionality involving the static and high-frequency dielectric constants. The main distinction of our approach from the traditional theories is found for the solvation free energy due to the nuclear polarization: the anticipated significant drop of its magnitude with increasing liquid polarizability does not occur. The reorganization energy of electron transfer is either nearly constant with increasing the solvent polarizability and the corresponding high-frequency dielectric constant (polarizable dipolar liquids) or actually noticeably increases (polarizable force fields of water).« less

  13. Free energy functionals for polarization fluctuations: Pekar factor revisited.

    PubMed

    Dinpajooh, Mohammadhasan; Newton, Marshall D; Matyushov, Dmitry V

    2017-02-14

    The separation of slow nuclear and fast electronic polarization in problems related to electron mobility in polarizable media was considered by Pekar 70 years ago. Within dielectric continuum models, this separation leads to the Pekar factor in the free energy of solvation by the nuclear degrees of freedom. The main qualitative prediction of Pekar's perspective is a significant, by about a factor of two, drop of the nuclear solvation free energy compared to the total (electronic plus nuclear) free energy of solvation. The Pekar factor enters the solvent reorganization energy of electron transfer reactions and is a significant mechanistic parameter accounting for the solvent effect on electron transfer. Here, we study the separation of the fast and slow polarization modes in polar molecular liquids (polarizable dipolar liquids and polarizable water force fields) without relying on the continuum approximation. We derive the nonlocal free energy functional and use atomistic numerical simulations to obtain nonlocal, reciprocal space electronic and nuclear susceptibilities. A consistent transition to the continuum limit is introduced by extrapolating the results of finite-size numerical simulation to zero wavevector. The continuum nuclear susceptibility extracted from the simulations is numerically close to the Pekar factor. However, we derive a new functionality involving the static and high-frequency dielectric constants. The main distinction of our approach from the traditional theories is found in the solvation free energy due to the nuclear polarization: the anticipated significant drop of its magnitude with increasing liquid polarizability does not occur. The reorganization energy of electron transfer is either nearly constant with increasing the solvent polarizability and the corresponding high-frequency dielectric constant (polarizable dipolar liquids) or actually noticeably increases (polarizable force fields of water).

  14. Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon, E-mail: shs3@illinois.edu

    2014-01-21

    The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents formore » a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible systems.« less

  15. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.

    PubMed

    Vorobjev, Y N; Almagro, J C; Hermans, J

    1998-09-01

    A new method for calculating the total conformational free energy of proteins in water solvent is presented. The method consists of a relatively brief simulation by molecular dynamics with explicit solvent (ES) molecules to produce a set of microstates of the macroscopic conformation. Conformational energy and entropy are obtained from the simulation, the latter in the quasi-harmonic approximation by analysis of the covariance matrix. The implicit solvent (IS) dielectric continuum model is used to calculate the average solvation free energy as the sum of the free energies of creating the solute-size hydrophobic cavity, of the van der Waals solute-solvent interactions, and of the polarization of water solvent by the solute's charges. The reliability of the solvation free energy depends on a number of factors: the details of arrangement of the protein's charges, especially those near the surface; the definition of the molecular surface; and the method chosen for solving the Poisson equation. Molecular dynamics simulation in explicit solvent relaxes the protein's conformation and allows polar surface groups to assume conformations compatible with interaction with solvent, while averaging of internal energy and solvation free energy tend to enhance the precision. Two recently developed methods--SIMS, for calculation of a smooth invariant molecular surface, and FAMBE, for solution of the Poisson equation via a fast adaptive multigrid boundary element--have been employed. The SIMS and FAMBE programs scale linearly with the number of atoms. SIMS is superior to Connolly's MS (molecular surface) program: it is faster, more accurate, and more stable, and it smooths singularities of the molecular surface. Solvation free energies calculated with these two programs do not depend on molecular position or orientation and are stable along a molecular dynamics trajectory. We have applied this method to calculate the conformational free energy of native and intentionally misfolded globular conformations of proteins (the EMBL set of deliberately misfolded proteins) and have obtained good discrimination in favor of the native conformations in all instances.

  16. Theoretical study of structure and stability of small gadolinium carboxylate complexes in liquid scintillator solvents.

    PubMed

    Huang, Pin-Wen

    2014-09-01

    The structural properties of three small gadolinium carboxylate complexes in three liquid scintillator solvents (pseudocumene, linear alkylbenzene, and phenyl xylylethane) were theoretically investigated using density functional theory (B3LYP/LC-RECP) and polarizable continuum model (PCM). The average interaction energy between gadolinium atom and carboxylate ligand (E(int)) and the energy difference of the highest singly occupied molecular orbital and lowest unoccupied molecular orbital (Δ(SL)) were calculated to evaluate and compare the relative stability of these complexes in solvents. The calculation results show that the larger (with a longer alkyl chain) gadolinium carboxylate complex has greater stability than the smaller one, while these gadolinium carboxylates in linear alkylbenzene were found to have greater stability than those in the other two solvents.

  17. Calculations of the Electric Fields in Liquid Solutions

    PubMed Central

    Fried, Stephen D.; Wang, Lee-Ping; Boxer, Steven G.; Ren, Pengyu; Pande, Vijay S.

    2014-01-01

    The electric field created by a condensed phase environment is a powerful and convenient descriptor for intermolecular interactions. Not only does it provide a unifying language to compare many different types of interactions, but it also possesses clear connections to experimental observables, such as vibrational Stark effects. We calculate here the electric fields experienced by a vibrational chromophore (the carbonyl group of acetophenone) in an array of solvents of diverse polarities using molecular dynamics simulations with the AMOEBA polarizable force field. The mean and variance of the calculated electric fields correlate well with solvent-induced frequency shifts and band broadening, suggesting Stark effects as the underlying mechanism of these key solution phase spectral effects. Compared to fixed-charge and continuum models, AMOEBA was the only model examined that could describe non-polar, polar, and hydrogen bonding environments in a consistent fashion. Nevertheless, we found that fixed-charge force fields and continuum models were able to replicate some results of the polarizable simulations accurately, allowing us to clearly identify which properties and situations require explicit polarization and/or atomistic representations to be modeled properly, and for which properties and situations simpler models are sufficient. We also discuss the ramifications of these results for modeling electrostatics in complex environments, such as proteins. PMID:24304155

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Soumya; Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    Electron transfer and proton coupled electron transfer (PCET) reactions at electrochemical interfaces play an essential role in a broad range of energy conversion processes. The reorganization energy, which is a measure of the free energy change associated with solute and solvent rearrangements, is a key quantity for calculating rate constants for these reactions. We present a computational method for including the effects of the double layer and ionic environment of the diffuse layer in calculations of electrochemical solvent reorganization energies. This approach incorporates an accurate electronic charge distribution of the solute within a molecular-shaped cavity in conjunction with a dielectricmore » continuum treatment of the solvent, ions, and electrode using the integral equations formalism polarizable continuum model. The molecule-solvent boundary is treated explicitly, but the effects of the electrode-double layer and double layer-diffuse layer boundaries, as well as the effects of the ionic strength of the solvent, are included through an external Green’s function. The calculated total reorganization energies agree well with experimentally measured values for a series of electrochemical systems, and the effects of including both the double layer and ionic environment are found to be very small. This general approach was also extended to electrochemical PCET and produced total reorganization energies in close agreement with experimental values for two experimentally studied PCET systems. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.« less

  19. Solvent effect on the intermolecular proton transfer of the Watson and Crick guanine-cytosine and adenine-thymine base pairs: a polarizable continuum model study.

    PubMed

    Romero, Eduardo E; Hernandez, Florencio E

    2018-01-03

    Herein we present our results on the study of the double proton transfer (DPT) mechanism in the adenine-thymine (AT) and guanine-cytosine (GC) base pairs, both in gas phase and in solution. The latter was modeled using the polarizable continuum method (PCM) in different solvents. According to our DFT calculations, the DPT may occur for both complexes in a stepwise mechanism in condensate phase. In gas phase only the GC base pair exhibits a concerted DPT mechanism. Using the Wigner's tunneling corrections to the transition state theory we demonstrate that such corrections are important for the prediction of the rate constants of both systems in gas and in condensate phase. We also show that (i) as the polarity of the medium decreases the equilibrium constant of the DPT reaction increases in both complexes, and (ii) that the equilibrium constant in the GC complex is four orders of magnitude larger than in AT. This observation suggests that the spontaneous mutations in DNA base pairs are more probable in GC than in AT.

  20. Solvent effects on the vibronic one-photon absorption profiles of dioxaborine heterocycles

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Hua; Halik, Marcus; Wang, Chuan-Kui; Marder, Seth R.; Luo, Yi

    2005-11-01

    The vibronic profiles of one-photon absorption spectra of dioxaborine heterocycles in gas phase and solution have been calculated at the Hartree-Fock and density-functional-theory levels. The polarizable continuum model has been applied to simulate the solvent effect, while the linear coupling model is used to compute the Franck-Condon and Herzberg-Teller contributions. It is found that a good agreement between theory and experiment can be achieved when the solvent effect and electron correlation are taken into account simultaneously. For the first excited charge-transfer state, the maximum of its Herzberg-Teller profile is blueshifted from that of the Franck-Condon profile. The shifted energy is found to be around 0.2eV, which agrees well with the measured energy difference between two- and one-photon absorptions of the first excited state.

  1. DIFFUSED SOLUTE-SOLVENT INTERFACE WITH POISSON-BOLTZMANN ELECTROSTATICS: FREE-ENERGY VARIATION AND SHARP-INTERFACE LIMIT.

    PubMed

    Li, B O; Liu, Yuan

    A phase-field free-energy functional for the solvation of charged molecules (e.g., proteins) in aqueous solvent (i.e., water or salted water) is constructed. The functional consists of the solute volumetric and solute-solvent interfacial energies, the solute-solvent van der Waals interaction energy, and the continuum electrostatic free energy described by the Poisson-Boltzmann theory. All these are expressed in terms of phase fields that, for low free-energy conformations, are close to one value in the solute phase and another in the solvent phase. A key property of the model is that the phase-field interpolation of dielectric coefficient has the vanishing derivative at both solute and solvent phases. The first variation of such an effective free-energy functional is derived. Matched asymptotic analysis is carried out for the resulting relaxation dynamics of the diffused solute-solvent interface. It is shown that the sharp-interface limit is exactly the variational implicit-solvent model that has successfully captured capillary evaporation in hydrophobic confinement and corresponding multiple equilibrium states of underlying biomolecular systems as found in experiment and molecular dynamics simulations. Our phase-field approach and analysis can be used to possibly couple the description of interfacial fluctuations for efficient numerical computations of biomolecular interactions.

  2. Investigation of Solvation Effects on Optical Rotatory Dispersion Using the Polarizable Continuum Model

    NASA Astrophysics Data System (ADS)

    Aharon, Tal; Lemler, Paul M.; Vaccaro, Patrick; Caricato, Marco

    2017-06-01

    The Optical Rotatory Dispersion (ORD) of a chiral solute is heavily affected by solvation, but this effect does not follow the usual correlation with the solvent polarity, i.e., larger solvent polarity does not imply a larger change in the solute's property. Therefore, a great deal of experimental and theoretical effort has been directed towards correlating the solvation effect on the ORD and the solvent properties. This discovery followed from the development of cavity ring down polarimetry (CRPD), which allows measurements of gas-phase ORD. In order to investigate this phenomenon, we chose a set of five rigid molecules to limit the effect of molecular vibrations and isolate the role of solvation. The latter was investigated with the Polarizable Continuum Model (PCM), and compared to experimental results. We used Bondi radii to build the PCM cavity, and performed extensive calculations at multiple frequencies using density functional theory (DFT) with two functionals: B3LYP and CAM-B3LYP, together with the aug-cc-pVDZ basis set. We also performed coupled cluster singles and doubles (CCSD/aug-cc-pVDZ) calculations at the wavelengths where gas-phase data are available, all of which are augmented with zero point vibrational corrections. These results are compared to experimental data and seem to indicate that PCM does not entirely account for the environmental effects on the ORD.

  3. Solvation effects on chemical shifts by embedded cluster integral equation theory.

    PubMed

    Frach, Roland; Kast, Stefan M

    2014-12-11

    The accurate computational prediction of nuclear magnetic resonance (NMR) parameters like chemical shifts represents a challenge if the species studied is immersed in strongly polarizing environments such as water. Common approaches to treating a solvent in the form of, e.g., the polarizable continuum model (PCM) ignore strong directional interactions such as H-bonds to the solvent which can have substantial impact on magnetic shieldings. We here present a computational methodology that accounts for atomic-level solvent effects on NMR parameters by extending the embedded cluster reference interaction site model (EC-RISM) integral equation theory to the prediction of chemical shifts of N-methylacetamide (NMA) in aqueous solution. We examine the influence of various so-called closure approximations of the underlying three-dimensional RISM theory as well as the impact of basis set size and different treatment of electrostatic solute-solvent interactions. We find considerable and systematic improvement over reference PCM and gas phase calculations. A smaller basis set in combination with a simple point charge model already yields good performance which can be further improved by employing exact electrostatic quantum-mechanical solute-solvent interaction energies. A larger basis set benefits more significantly from exact over point charge electrostatics, which can be related to differences of the solvent's charge distribution.

  4. Water solvent effects using continuum and discrete models: The nitromethane molecule, CH3NO2.

    PubMed

    Modesto-Costa, Lucas; Uhl, Elmar; Borges, Itamar

    2015-11-15

    The first three valence transitions of the two nitromethane conformers (CH3NO2) are two dark n → π* transitions and a very intense π → π* transition. In this work, these transitions in gas-phase and solvated in water of both conformers were investigated theoretically. The polarizable continuum model (PCM), two conductor-like screening (COSMO) models, and the discrete sequential quantum mechanics/molecular mechanics (S-QM/MM) method were used to describe the solvation effect on the electronic spectra. Time dependent density functional theory (TDDFT), configuration interaction including all single substitutions and perturbed double excitations (CIS(D)), the symmetry-adapted-cluster CI (SAC-CI), the multistate complete active space second order perturbation theory (CASPT2), and the algebraic-diagrammatic construction (ADC(2)) electronic structure methods were used. Gas-phase CASPT2, SAC-CI, and ADC(2) results are in very good agreement with published experimental and theoretical spectra. Among the continuum models, PCM combined either with CASPT2, SAC-CI, or B3LYP provided good agreement with available experimental data. COSMO combined with ADC(2) described the overall trends of the transition energy shifts. The effect of increasing the number of explicit water molecules in the S-QM/MM approach was discussed and the formation of hydrogen bonds was clearly established. By including explicitly 24 water molecules corresponding to the complete first solvation shell in the S-QM/MM approach, the ADC(2) method gives more accurate results as compared to the TDDFT approach and with similar computational demands. The ADC(2) with S-QM/MM model is, therefore, the best compromise for accurate solvent calculations in a polar environment. © 2015 Wiley Periodicals, Inc.

  5. Effect of the ordered interfacial water layer in protein complex formation: A nonlocal electrostatic approach

    NASA Astrophysics Data System (ADS)

    Rubinstein, A.; Sabirianov, R. F.; Mei, W. N.; Namavar, F.; Khoynezhad, A.

    2010-08-01

    Using a nonlocal electrostatic approach that incorporates the short-range structure of the contacting media, we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In this study, we have demonstrated that the existence of an ordered interfacial water layer at the protein-solvent interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the electrostatic contribution to the protein binding (change in free energy upon the complex formation of two proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.

  6. Effect of the ordered interfacial water layer in protein complex formation: A nonlocal electrostatic approach.

    PubMed

    Rubinstein, A; Sabirianov, R F; Mei, W N; Namavar, F; Khoynezhad, A

    2010-08-01

    Using a nonlocal electrostatic approach that incorporates the short-range structure of the contacting media, we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In this study, we have demonstrated that the existence of an ordered interfacial water layer at the protein-solvent interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the electrostatic contribution to the protein binding (change in free energy upon the complex formation of two proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.

  7. Continuum and atomistic description of excess electrons in TiO2

    NASA Astrophysics Data System (ADS)

    Maggio, Emanuele; Martsinovich, Natalia; Troisi, Alessandro

    2016-02-01

    The modelling of an excess electron in a semiconductor in a prototypical dye sensitised solar cell is carried out using two complementary approaches: atomistic simulation of the TiO2 nanoparticle surface is complemented by a dielectric continuum model of the solvent-semiconductor interface. The two methods are employed to characterise the bound (excitonic) states formed by the interaction of the electron in the semiconductor with a positive charge opposite the interface. Density-functional theory (DFT) calculations show that the excess electron in TiO2 in the presence of a counterion is not fully localised but extends laterally over a large region, larger than system sizes accessible to DFT calculations. The numerical description of the excess electron at the semiconductor-electrolyte interface based on the continuum model shows that the exciton is also delocalised over a large area: the exciton radius can have values from tens to hundreds of Ångströms, depending on the nature of the semiconductor (characterised by the dielectric constant and the electron effective mass in our model).

  8. On the magnetic circular dichroism of benzene. A density-functional study

    NASA Astrophysics Data System (ADS)

    Kaminský, Jakub; Kříž, Jan; Bouř, Petr

    2017-04-01

    Spectroscopy of magnetic circular dichroism (MCD) provides enhanced information on molecular structure and a more reliable assignment of spectral bands than absorption alone. Theoretical modeling can significantly enhance the information obtained from experimental spectra. In the present study, the time dependent density functional theory is employed to model the lowest-energy benzene transitions, in particular to investigate the role of the Rydberg states and vibrational interference in spectral intensities. The effect of solvent is explored on model benzene-methane clusters. For the lowest-energy excitation, the vibrational sub-structure of absorption and MCD spectra is modeled within the harmonic approximation, providing a very good agreement with the experiment. The simulations demonstrate that the Rydberg states have a much stronger effect on the MCD intensities than on the absorption, and a very diffuse basis set must be used to obtain reliable results. The modeling also indicates that the Rydberg-like states and associated transitions may persist in solutions. Continuum-like solvent models are thus not suitable for their modeling; solvent-solute clusters appear to be more appropriate, providing they are large enough.

  9. Free energy landscape of protein folding in water: explicit vs. implicit solvent.

    PubMed

    Zhou, Ruhong

    2003-11-01

    The Generalized Born (GB) continuum solvent model is arguably the most widely used implicit solvent model in protein folding and protein structure prediction simulations; however, it still remains an open question on how well the model behaves in these large-scale simulations. The current study uses the beta-hairpin from C-terminus of protein G as an example to explore the folding free energy landscape with various GB models, and the results are compared to the explicit solvent simulations and experiments. All free energy landscapes are obtained from extensive conformation space sampling with a highly parallel replica exchange method. Because solvation model parameters are strongly coupled with force fields, five different force field/solvation model combinations are examined and compared in this study, namely the explicit solvent model: OPLSAA/SPC model, and the implicit solvent models: OPLSAA/SGB (Surface GB), AMBER94/GBSA (GB with Solvent Accessible Surface Area), AMBER96/GBSA, and AMBER99/GBSA. Surprisingly, we find that the free energy landscapes from implicit solvent models are quite different from that of the explicit solvent model. Except for AMBER96/GBSA, all other implicit solvent models find the lowest free energy state not the native state. All implicit solvent models show erroneous salt-bridge effects between charged residues, particularly in OPLSAA/SGB model, where the overly strong salt-bridge effect results in an overweighting of a non-native structure with one hydrophobic residue F52 expelled from the hydrophobic core in order to make better salt bridges. On the other hand, both AMBER94/GBSA and AMBER99/GBSA models turn the beta-hairpin in to an alpha-helix, and the alpha-helical content is much higher than the previously reported alpha-helices in an explicit solvent simulation with AMBER94 (AMBER94/TIP3P). Only AMBER96/GBSA shows a reasonable free energy landscape with the lowest free energy structure the native one despite an erroneous salt-bridge between D47 and K50. Detailed results on free energy contour maps, lowest free energy structures, distribution of native contacts, alpha-helical content during the folding process, NOE comparison with NMR, and temperature dependences are reported and discussed for all five models. Copyright 2003 Wiley-Liss, Inc.

  10. Estimation of boiling points using density functional theory with polarized continuum model solvent corrections.

    PubMed

    Chan, Poh Yin; Tong, Chi Ming; Durrant, Marcus C

    2011-09-01

    An empirical method for estimation of the boiling points of organic molecules based on density functional theory (DFT) calculations with polarized continuum model (PCM) solvent corrections has been developed. The boiling points are calculated as the sum of three contributions. The first term is calculated directly from the structural formula of the molecule, and is related to its effective surface area. The second is a measure of the electronic interactions between molecules, based on the DFT-PCM solvation energy, and the third is employed only for planar aromatic molecules. The method is applicable to a very diverse range of organic molecules, with normal boiling points in the range of -50 to 500 °C, and includes ten different elements (C, H, Br, Cl, F, N, O, P, S and Si). Plots of observed versus calculated boiling points gave R²=0.980 for a training set of 317 molecules, and R²=0.979 for a test set of 74 molecules. The role of intramolecular hydrogen bonding in lowering the boiling points of certain molecules is quantitatively discussed. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  11. Interfacial ion solvation: Obtaining the thermodynamic limit from molecular simulations

    NASA Astrophysics Data System (ADS)

    Cox, Stephen J.; Geissler, Phillip L.

    2018-06-01

    Inferring properties of macroscopic solutions from molecular simulations is complicated by the limited size of systems that can be feasibly examined with a computer. When long-ranged electrostatic interactions are involved, the resulting finite size effects can be substantial and may attenuate very slowly with increasing system size, as shown by previous work on dilute ions in bulk aqueous solution. Here we examine corrections for such effects, with an emphasis on solvation near interfaces. Our central assumption follows the perspective of Hünenberger and McCammon [J. Chem. Phys. 110, 1856 (1999)]: Long-wavelength solvent response underlying finite size effects should be well described by reduced models like dielectric continuum theory, whose size dependence can be calculated straightforwardly. Applied to an ion in a periodic slab of liquid coexisting with vapor, this approach yields a finite size correction for solvation free energies that differs in important ways from results previously derived for bulk solution. For a model polar solvent, we show that this new correction quantitatively accounts for the variation of solvation free energy with volume and aspect ratio of the simulation cell. Correcting periodic slab results for an aqueous system requires an additional accounting for the solvent's intrinsic charge asymmetry, which shifts electric potentials in a size-dependent manner. The accuracy of these finite size corrections establishes a simple method for a posteriori extrapolation to the thermodynamic limit and also underscores the realism of dielectric continuum theory down to the nanometer scale.

  12. Acidity in DMSO from the embedded cluster integral equation quantum solvation model.

    PubMed

    Heil, Jochen; Tomazic, Daniel; Egbers, Simon; Kast, Stefan M

    2014-04-01

    The embedded cluster reference interaction site model (EC-RISM) is applied to the prediction of acidity constants of organic molecules in dimethyl sulfoxide (DMSO) solution. EC-RISM is based on a self-consistent treatment of the solute's electronic structure and the solvent's structure by coupling quantum-chemical calculations with three-dimensional (3D) RISM integral equation theory. We compare available DMSO force fields with reference calculations obtained using the polarizable continuum model (PCM). The results are evaluated statistically using two different approaches to eliminating the proton contribution: a linear regression model and an analysis of pK(a) shifts for compound pairs. Suitable levels of theory for the integral equation methodology are benchmarked. The results are further analyzed and illustrated by visualizing solvent site distribution functions and comparing them with an aqueous environment.

  13. Effect of the ordered interfacial water layer in protein complex formation: a non-local electrostatic approach

    NASA Astrophysics Data System (ADS)

    Rubinstein, Alexander; Sabirianov, Renat

    2011-03-01

    Using a non-local electrostatic approach that incorporates the short-range structure of the contacting media, we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In this study, we have demonstrated that the existence of an low-dielectric interfacial water layer at the protein-solvent interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the electrostatic contribution to the protein binding (change in free energy upon the complex formation of two proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.

  14. The molecular structure and absorption spectrum of hydroxy substituted dibenzoylmethanatoboron difluoride in solution: A theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Gelfand, Natalia; Freidzon, Alexandra; Fedorenko, Elena

    2018-01-01

    Electronic spectroscopy and quantum chemistry are used to study the structure and absorption spectra of the hydroxy substituted dibenzoylmethanatoboron difluoride (OHDBMBF2) in solutions. Introducing a hydroxy group in the diketonate moiety allows the dye to form intermolecular complexes with proton acceptors, such as solvents or analytes, thus making it a promising chemical sensor. Our calculations show that donor oxygen-containing solvents break the intramolecular hydrogen bond Osbnd H···Odik and form an intermolecular Osbnd H···Osolv bond thus disrupting the coplanarity of the dye and affecting the position and shape of its absorption bands. The spectra calculated with explicit solvent combined with polarizable continuum model (PCM) better agree with the experiment than those calculated only within PCM.

  15. Relativistic Zeroth-Order Regular Approximation Combined with Nonhybrid and Hybrid Density Functional Theory: Performance for NMR Indirect Nuclear Spin-Spin Coupling in Heavy Metal Compounds.

    PubMed

    Moncho, Salvador; Autschbach, Jochen

    2010-01-12

    A benchmark study for relativistic density functional calculations of NMR spin-spin coupling constants has been performed. The test set contained 47 complexes with heavy metal atoms (W, Pt, Hg, Tl, Pb) with a total of 88 coupling constants involving one or two heavy metal atoms. One-, two-, three-, and four-bond spin-spin couplings have been computed at different levels of theory (nonhybrid vs hybrid DFT, scalar vs two-component relativistic). The computational model was based on geometries fully optimized at the BP/TZP scalar relativistic zeroth-order regular approximation (ZORA) and the conductor-like screening model (COSMO) to include solvent effects. The NMR computations also employed the continuum solvent model. Computations in the gas phase were performed in order to assess the importance of the solvation model. The relative median deviations between various computational models and experiment were found to range between 13% and 21%, with the highest-level computational model (hybrid density functional computations including scalar plus spin-orbit relativistic effects, the COSMO solvent model, and a Gaussian finite-nucleus model) performing best.

  16. Reconstructing Solvent Density of Myoglobin Unit Cell from Proximal Radial Distribution Functions of Amino Acids

    NASA Astrophysics Data System (ADS)

    Galbraith, Madeline; Lynch, Gc; Pettitt, Bm

    Understanding the solvent density around a protein crystal structure is an important step for refining accurate crystal structures for use in dynamics simulations or in free energy calculations. The free energy of solvation has typically been approximated using an implicit continuum solvent model or an all atom MD simulation, with a trade-off between accuracy and computation time. For proteins, using precomputed proximal radial distribution functions (pRDFs) of the solvent to reconstruct solvent density on a grid is much faster than all atom MD simulations and more accurate than using implicit solvent models. MD simulations were run for the 20 common amino acids and pRDFs were calculated for several atom type data sets with and without hydrogens, using atom types representative of amino acid side chain atoms. Preliminary results from reconstructions suggest using a data set with 15 heavy atoms and 3 hydrogen yields results with the lowest error without a tradeoff on time. The results of using precomputed pRDFs to reconstruct the solvent density of water for the myoglobin (pdb ID 2mgk) unit cell quantifies the accuracy of the method in comparison with the crystallographic data. Funding Acknowledgement: This research was funded by the CPRIT Summer Undergraduate Program in Computational Cancer Biology, training Grant award RP 140113 from the Cancer Prevention & Research Institute of Texas (CPRIT).

  17. A Continuum Poisson-Boltzmann Model for Membrane Channel Proteins

    PubMed Central

    Xiao, Li; Diao, Jianxiong; Greene, D'Artagnan; Wang, Junmei; Luo, Ray

    2017-01-01

    Membrane proteins constitute a large portion of the human proteome and perform a variety of important functions as membrane receptors, transport proteins, enzymes, signaling proteins, and more. Computational studies of membrane proteins are usually much more complicated than those of globular proteins. Here we propose a new continuum model for Poisson-Boltzmann calculations of membrane channel proteins. Major improvements over the existing continuum slab model are as follows:1) The location and thickness of the slab model are fine-tuned based on explicit-solvent MD simulations. 2) The highly different accessibility in the membrane and water regions are addressed with a two-step, two-probe grid labeling procedure, and 3) The water pores/channels are automatically identified. The new continuum membrane model is optimized (by adjusting the membrane probe, as well as the slab thickness and center) to best reproduce the distributions of buried water molecules in the membrane region as sampled in explicit water simulations. Our optimization also shows that the widely adopted water probe of 1.4 Å for globular proteins is a very reasonable default value for membrane protein simulations. It gives the best compromise in reproducing the explicit water distributions in membrane channel proteins, at least in the water accessible pore/channel regions that we focus on. Finally, we validate the new membrane model by carrying out binding affinity calculations for a potassium channel, and we observe a good agreement with experiment results. PMID:28564540

  18. Nonlocal and nonlinear electrostatics of a dipolar Coulomb fluid.

    PubMed

    Sahin, Buyukdagli; Ralf, Blossey

    2014-07-16

    We study a model Coulomb fluid consisting of dipolar solvent molecules of finite extent which generalizes the point-like dipolar Poisson-Boltzmann model (DPB) previously introduced by Coalson and Duncan (1996 J. Phys. Chem. 100 2612) and Abrashkin et al (2007 Phys. Rev. Lett. 99 077801). We formulate a nonlocal Poisson-Boltzmann equation (NLPB) and study both linear and nonlinear dielectric response in this model for the case of a single plane geometry. Our results shed light on the relevance of nonlocal versus nonlinear effects in continuum models of material electrostatics.

  19. Solvent induced conformational fluctuation of alanine dipeptide studied by using vibrational probes

    NASA Astrophysics Data System (ADS)

    Cai, Kaicong; Du, Fenfen; Liu, Jia; Su, Tingting

    2015-02-01

    The solvation effect on the three dimensional structure and the vibrational feature of alanine dipeptide (ALAD) was evaluated by applying the implicit solvents from polarizable continuum solvent model (PCM) through ab initio calculations, by using molecular dynamic (MD) simulations with explicit solvents, and by combining these two approaches. The implicit solvent induced potential energy fluctuations of ALAD in CHCl3, DMSO and H2O are revealed by means of ab initio calculations, and a global view of conformational and solvation environmental dependence of amide I frequencies is achieved. The results from MD simulations with explicit solvents show that ALAD trends to form PPII, αL, αR, and C5 in water, PPII and C5 in DMSO, and C5 in CHCl3, ordered by population, and the demonstration of the solvated structure, the solute-solvent interaction and hydrogen bonding is therefore enhanced. Representative ALAD-solvent clusters were sampled from MD trajectories and undergone ab initio calculations. The explicit solvents reveal the hydrogen bonding between ALAD and solvents, and the correlation between amide I frequencies and the Cdbnd O bond length is built. The implicit solvents applied to the ALAD-solvent clusters further compensate the solvation effect from the bulk, and thus enlarge the degree of structural distortion and the amide I frequency red shift. The combination of explicit solvent in the first hydration shell and implicit solvent in the bulk is helpful for our understanding about the conformational fluctuation of solvated polypeptides through vibrational probes.

  20. Lattice Boltzmann scheme for mixture modeling: analysis of the continuum diffusion regimes recovering Maxwell-Stefan model and incompressible Navier-Stokes equations.

    PubMed

    Asinari, Pietro

    2009-11-01

    A finite difference lattice Boltzmann scheme for homogeneous mixture modeling, which recovers Maxwell-Stefan diffusion model in the continuum limit, without the restriction of the mixture-averaged diffusion approximation, was recently proposed [P. Asinari, Phys. Rev. E 77, 056706 (2008)]. The theoretical basis is the Bhatnagar-Gross-Krook-type kinetic model for gas mixtures [P. Andries, K. Aoki, and B. Perthame, J. Stat. Phys. 106, 993 (2002)]. In the present paper, the recovered macroscopic equations in the continuum limit are systematically investigated by varying the ratio between the characteristic diffusion speed and the characteristic barycentric speed. It comes out that the diffusion speed must be at least one order of magnitude (in terms of Knudsen number) smaller than the barycentric speed, in order to recover the Navier-Stokes equations for mixtures in the incompressible limit. Some further numerical tests are also reported. In particular, (1) the solvent and dilute test cases are considered, because they are limiting cases in which the Maxwell-Stefan model reduces automatically to Fickian cases. Moreover, (2) some tests based on the Stefan diffusion tube are reported for proving the complete capabilities of the proposed scheme in solving Maxwell-Stefan diffusion problems. The proposed scheme agrees well with the expected theoretical results.

  1. Open-ended formulation of self-consistent field response theory with the polarizable continuum model for solvation.

    PubMed

    Di Remigio, Roberto; Beerepoot, Maarten T P; Cornaton, Yann; Ringholm, Magnus; Steindal, Arnfinn Hykkerud; Ruud, Kenneth; Frediani, Luca

    2016-12-21

    The study of high-order absorption properties of molecules is a field of growing importance. Quantum-chemical studies can help design chromophores with desirable characteristics. Given that most experiments are performed in solution, it is important to devise a cost-effective strategy to include solvation effects in quantum-chemical studies of these properties. We here present an open-ended formulation of self-consistent field (SCF) response theory for a molecular solute coupled to a polarizable continuum model (PCM) description of the solvent. Our formulation relies on the open-ended, density matrix-based quasienergy formulation of SCF response theory of Thorvaldsen, et al., [J. Chem. Phys., 2008, 129, 214108] and the variational formulation of the PCM, as presented by Lipparini et al., [J. Chem. Phys., 2010, 133, 014106]. Within the PCM approach to solvation, the mutual solute-solvent polarization is represented by means of an apparent surface charge (ASC) spread over the molecular cavity defining the solute-solvent boundary. In the variational formulation, the ASC is an independent, variational degree of freedom. This allows us to formulate response theory for molecular solutes in the fixed-cavity approximation up to arbitrary order and with arbitrary perturbation operators. For electric dipole perturbations, pole and residue analyses of the response functions naturally lead to the identification of excitation energies and transition moments. We document the implementation of this approach in the Dalton program package using a recently developed open-ended response code and the PCMSolver libraries and present results for one-, two-, three-, four- and five-photon absorption processes of three small molecules in solution.

  2. The influence of solvent on conformational properties of peptides with Aib residue-a DFT study.

    PubMed

    Wałęsa, Roksana; Broda, Małgorzata A

    2017-11-21

    The conformational propensities of the Aib residue on the example of two model peptides Ac-Aib-NHMe (1) and Ac-Aib-NMe 2 (2), were studied by B3LYP and M06-2X functionals, in the gas phase and in the polar solvents. To verify the reliability of selected functionals, we also performed MP2 calculations for the tested molecules in vacuum. Polarizable continuum models (PCM and SMD) were used to estimate the solvent effect. Ramachandran maps were calculated to find all energy minima. Noncovalent intramolecular interactions due to hydrogen-bonds and dipole attractions between carbonyl groups are responsible for the relative stabilities of the conformers. In order to verify the theoretical results, the available conformations of similar X-ray structures from the Cambridge Crystallographic Data Center (CCDC) were analyzed. The results of the calculations show that both derivatives with the Aib residue in the gas phase prefer structures stabilized by intramolecular N-H⋯O hydrogen bonds, i.e., C 5 and C 7 conformations, while polar solvent promotes helical conformation with φ, ψ values equal to +/-60°, +/-40°. In addition, in the case of molecule 2, the helical conformation is the only one available in the polar environment. This result is fully consistent with the X-ray data. Graphical abstract Effect of solvent on the Ramachandran maps of the model peptides with Aib residue.

  3. Strong Solvent Effects on the Nonlinear Optical Properties of Z and E isomers from Azo-Enaminone Derivatives.

    PubMed

    Machado, Daniel Francisco Scalabrini; Lopes, Thiago O; Lima, Igo Torres; da Silva Filho, Demetrio Antonio; de Oliveira, Heibbe Cristhian Benedito

    2016-07-01

    We calculated the nonlinear optical properties of 24 azo-enaminone derivatives, incorporating solvent effects on their geometric and elec-tronic structure, to assess the impact of the environment on these properties. Namely, we incorporated chloroform, tetrahydrofuran, acetone, ethanol, methanol, dimethyl sulfoxide on our calculations and compared our results incorporating solvent effects with our gas phase calculations. To account for the electron correlation effects on NLO properties, the calculations were performed at MP2/6-31G(p)//MP2/6-31G(d) level set. The Polarizable Continuum Model (PCM) was used to simulate the presence of the solvent. The exponents of p extra functions added to heavy atoms were obtained, imposing the maximization of the first hyperpolarizability. Two structural configurations (Z and E) of azo-enaminones were investigated to assess the isomeric effects of the electric properties. Our results show that both solvent polarity and relative strength of the donor groups have significant impact on the electric properties, but more strikingly on the first hyperpolarizability β.

  4. Efficient implementation of three-dimensional reference interaction site model self-consistent-field method: Application to solvatochromic shift calculations

    NASA Astrophysics Data System (ADS)

    Minezawa, Noriyuki; Kato, Shigeki

    2007-02-01

    The authors present an implementation of the three-dimensional reference interaction site model self-consistent-field (3D-RISM-SCF) method. First, they introduce a robust and efficient algorithm for solving the 3D-RISM equation. The algorithm is a hybrid of the Newton-Raphson and Picard methods. The Jacobian matrix is analytically expressed in a computationally useful form. Second, they discuss the solute-solvent electrostatic interaction. For the solute to solvent route, the electrostatic potential (ESP) map on a 3D grid is constructed directly from the electron density. The charge fitting procedure is not required to determine the ESP. For the solvent to solute route, the ESP acting on the solute molecule is derived from the solvent charge distribution obtained by solving the 3D-RISM equation. Matrix elements of the solute-solvent interaction are evaluated by the direct numerical integration. A remarkable reduction in the computational time is observed in both routes. Finally, the authors implement the first derivatives of the free energy with respect to the solute nuclear coordinates. They apply the present method to "solute" water and formaldehyde in aqueous solvent using the simple point charge model, and the results are compared with those from other methods: the six-dimensional molecular Ornstein-Zernike SCF, the one-dimensional site-site RISM-SCF, and the polarizable continuum model. The authors also calculate the solvatochromic shifts of acetone, benzonitrile, and nitrobenzene using the present method and compare them with the experimental and other theoretical results.

  5. Efficient implementation of three-dimensional reference interaction site model self-consistent-field method: application to solvatochromic shift calculations.

    PubMed

    Minezawa, Noriyuki; Kato, Shigeki

    2007-02-07

    The authors present an implementation of the three-dimensional reference interaction site model self-consistent-field (3D-RISM-SCF) method. First, they introduce a robust and efficient algorithm for solving the 3D-RISM equation. The algorithm is a hybrid of the Newton-Raphson and Picard methods. The Jacobian matrix is analytically expressed in a computationally useful form. Second, they discuss the solute-solvent electrostatic interaction. For the solute to solvent route, the electrostatic potential (ESP) map on a 3D grid is constructed directly from the electron density. The charge fitting procedure is not required to determine the ESP. For the solvent to solute route, the ESP acting on the solute molecule is derived from the solvent charge distribution obtained by solving the 3D-RISM equation. Matrix elements of the solute-solvent interaction are evaluated by the direct numerical integration. A remarkable reduction in the computational time is observed in both routes. Finally, the authors implement the first derivatives of the free energy with respect to the solute nuclear coordinates. They apply the present method to "solute" water and formaldehyde in aqueous solvent using the simple point charge model, and the results are compared with those from other methods: the six-dimensional molecular Ornstein-Zernike SCF, the one-dimensional site-site RISM-SCF, and the polarizable continuum model. The authors also calculate the solvatochromic shifts of acetone, benzonitrile, and nitrobenzene using the present method and compare them with the experimental and other theoretical results.

  6. Performance of the SMD and SM8 models for predicting solvation free energy of neutral solutes in methanol, dimethyl sulfoxide and acetonitrile.

    PubMed

    Zanith, Caroline C; Pliego, Josefredo R

    2015-03-01

    The continuum solvation models SMD and SM8 were developed using 2,346 solvation free energy values for 318 neutral molecules in 91 solvents as reference. However, no solvation data of neutral solutes in methanol was used in the parametrization, while only few solvation free energy values of solutes in dimethyl sulfoxide and acetonitrile were used. In this report, we have tested the performance of the models for these important solvents. Taking data from literature, we have generated solvation free energy, enthalpy and entropy values for 37 solutes in methanol, 21 solutes in dimethyl sulfoxide and 19 solutes in acetonitrile. Both SMD and SM8 models have presented a good performance in methanol and acetonitrile, with mean unsigned error equal or less than 0.66 and 0.55 kcal mol(-1) in methanol and acetonitrile, respectively. However, the correlation is worse in dimethyl sulfoxide, where the SMD and SM8 methods present mean unsigned error of 1.02 and 0.95 kcal mol(-1), respectively. Our results point out the SMx family of models need be improved for dimethyl sulfoxide solvent.

  7. Performance of the SMD and SM8 models for predicting solvation free energy of neutral solutes in methanol, dimethyl sulfoxide and acetonitrile

    NASA Astrophysics Data System (ADS)

    Zanith, Caroline C.; Pliego, Josefredo R.

    2015-03-01

    The continuum solvation models SMD and SM8 were developed using 2,346 solvation free energy values for 318 neutral molecules in 91 solvents as reference. However, no solvation data of neutral solutes in methanol was used in the parametrization, while only few solvation free energy values of solutes in dimethyl sulfoxide and acetonitrile were used. In this report, we have tested the performance of the models for these important solvents. Taking data from literature, we have generated solvation free energy, enthalpy and entropy values for 37 solutes in methanol, 21 solutes in dimethyl sulfoxide and 19 solutes in acetonitrile. Both SMD and SM8 models have presented a good performance in methanol and acetonitrile, with mean unsigned error equal or less than 0.66 and 0.55 kcal mol-1 in methanol and acetonitrile, respectively. However, the correlation is worse in dimethyl sulfoxide, where the SMD and SM8 methods present mean unsigned error of 1.02 and 0.95 kcal mol-1, respectively. Our results point out the SMx family of models need be improved for dimethyl sulfoxide solvent.

  8. Microhydration and the Enhanced Acidity of Free Radicals.

    PubMed

    Walton, John C

    2018-02-14

    Recent theoretical research employing a continuum solvent model predicted that radical centers would enhance the acidity (RED-shift) of certain proton-donor molecules. Microhydration studies employing a DFT method are reported here with the aim of establishing the effect of the solvent micro-structure on the acidity of radicals with and without RED-shifts. Microhydration cluster structures were obtained for carboxyl, carboxy-ethynyl, carboxy-methyl, and hydroperoxyl radicals. The numbers of water molecules needed to induce spontaneous ionization were determined. The hydration clusters formed primarily round the CO₂ units of the carboxylate-containing radicals. Only 4 or 5 water molecules were needed to induce ionization of carboxyl and carboxy-ethynyl radicals, thus corroborating their large RED-shifts.

  9. NMR shielding and a thermodynamic study of the effect of environmental exposure to petrochemical solvent on DPPC, an important component of lung surfactant

    NASA Astrophysics Data System (ADS)

    Monajjemi, M.; Afsharnezhad, S.; Jaafari, M. R.; Abdolahi, T.; Nikosade, A.; Monajemi, H.

    2007-12-01

    The chemical and petrochemical industries are the major air polluters. Millions of workers are exposed to toxic chemicals on the job, and it is becoming more toxic, causing much damage to respiratory system, today. One of the main components of lung alveoli is a surfactant. DPPC (Dipalmitolphosphatidylcholine) is the predominant lipid component in the lung surfactant, which is responsible for lowering surface tension in alveoli. In this article, we used an approximate model and ab initio computations to describe interactions between DPPC and some chemical solvents, such as benzene, toluene, heptane, acetone, chloroform, ether, and ethanol, which cause lung injuries and lead to respiratory distress such as ARDS. The effect of these solvents on the conformation and disordering of the DPPC head group was investigated by calculations at the Hatree-Fock level using the 6-31G basis set with the Onsager continuum solvation, GAIO, and frequency models. The simulation model was confirmed by accurate NMR measurements as concerns conformational energy. Water can be the most suitable solvent for DPPC. Furthermore, this study shows that ethanol has the most destructive effect on the conformation and lipid disorder of the DPPC head group of the lung surfactant in our model. Our finding will be useful for detecting the dysfunction of DPPC in the lung surfactant caused by acute or chronic exposures to air toxics from petrochemical organic solvent emission source and chronic alcohol consumption, which may lead to ARDS.

  10. Anomalous Protein-Protein Interactions in Multivalent Salt Solution.

    PubMed

    Pasquier, Coralie; Vazdar, Mario; Forsman, Jan; Jungwirth, Pavel; Lund, Mikael

    2017-04-13

    The stability of aqueous protein solutions is strongly affected by multivalent ions, which induce ion-ion correlations beyond the scope of classical mean-field theory. Using all-atom molecular dynamics (MD) and coarse grained Monte Carlo (MC) simulations, we investigate the interaction between a pair of protein molecules in 3:1 electrolyte solution. In agreement with available experimental findings of "reentrant protein condensation", we observe an anomalous trend in the protein-protein potential of mean force with increasing electrolyte concentration in the order: (i) double-layer repulsion, (ii) ion-ion correlation attraction, (iii) overcharge repulsion, and in excess of 1:1 salt, (iv) non Coulombic attraction. To efficiently sample configurational space we explore hybrid continuum solvent models, applicable to many-protein systems, where weakly coupled ions are treated implicitly, while strongly coupled ones are treated explicitly. Good agreement is found with the primitive model of electrolytes, as well as with atomic models of protein and solvent.

  11. Numerical integration techniques for curved-element discretizations of molecule-solvent interfaces.

    PubMed

    Bardhan, Jaydeep P; Altman, Michael D; Willis, David J; Lippow, Shaun M; Tidor, Bruce; White, Jacob K

    2007-07-07

    Surface formulations of biophysical modeling problems offer attractive theoretical and computational properties. Numerical simulations based on these formulations usually begin with discretization of the surface under consideration; often, the surface is curved, possessing complicated structure and possibly singularities. Numerical simulations commonly are based on approximate, rather than exact, discretizations of these surfaces. To assess the strength of the dependence of simulation accuracy on the fidelity of surface representation, here methods were developed to model several important surface formulations using exact surface discretizations. Following and refining Zauhar's work [J. Comput.-Aided Mol. Des. 9, 149 (1995)], two classes of curved elements were defined that can exactly discretize the van der Waals, solvent-accessible, and solvent-excluded (molecular) surfaces. Numerical integration techniques are presented that can accurately evaluate nonsingular and singular integrals over these curved surfaces. After validating the exactness of the surface discretizations and demonstrating the correctness of the presented integration methods, a set of calculations are presented that compare the accuracy of approximate, planar-triangle-based discretizations and exact, curved-element-based simulations of surface-generalized-Born (sGB), surface-continuum van der Waals (scvdW), and boundary-element method (BEM) electrostatics problems. Results demonstrate that continuum electrostatic calculations with BEM using curved elements, piecewise-constant basis functions, and centroid collocation are nearly ten times more accurate than planar-triangle BEM for basis sets of comparable size. The sGB and scvdW calculations give exceptional accuracy even for the coarsest obtainable discretized surfaces. The extra accuracy is attributed to the exact representation of the solute-solvent interface; in contrast, commonly used planar-triangle discretizations can only offer improved approximations with increasing discretization and associated increases in computational resources. The results clearly demonstrate that the methods for approximate integration on an exact geometry are far more accurate than exact integration on an approximate geometry. A MATLAB implementation of the presented integration methods and sample data files containing curved-element discretizations of several small molecules are available online as supplemental material.

  12. Quantum cluster theory for the polarizable continuum model. I. The CCSD level with analytical first and second derivatives.

    PubMed

    Cammi, R

    2009-10-28

    We present a general formulation of the coupled-cluster (CC) theory for a molecular solute described within the framework of the polarizable continuum model (PCM). The PCM-CC theory is derived in its complete form, called PTDE scheme, in which the correlated electronic density is used to have a self-consistent reaction field, and in an approximate form, called PTE scheme, in which the PCM-CC equations are solved assuming the fixed Hartree-Fock solvent reaction field. Explicit forms for the PCM-CC-PTDE equations are derived at the single and double (CCSD) excitation level of the cluster operator. At the same level, explicit equations for the analytical first derivatives of the PCM basic energy functional are presented, and analytical second derivatives are also discussed. The corresponding PCM-CCSD-PTE equations are given as a special case of the full theory.

  13. Configurations of base-pair complexes in solutions. [nucleotide chemistry

    NASA Technical Reports Server (NTRS)

    Egan, J. T.; Nir, S.; Rein, R.; Macelroy, R.

    1978-01-01

    A theoretical search for the most stable conformations (i.e., stacked or hydrogen bonded) of the base pairs A-U and G-C in water, CCl4, and CHCl3 solutions is presented. The calculations of free energies indicate a significant role of the solvent in determining the conformations of the base-pair complexes. The application of the continuum method yields preferred conformations in good agreement with experiment. Results of the calculations with this method emphasize the importance of both the electrostatic interactions between the two bases in a complex, and the dipolar interaction of the complex with the entire medium. In calculations with the solvation shell method, the last term, i.e., dipolar interaction of the complex with the entire medium, was added. With this modification the prediction of the solvation shell model agrees both with the continuum model and with experiment, i.e., in water the stacked conformation of the bases is preferred.

  14. Relative complexation energies for Li(+) ion in solution: molecular level solvation versus polarizable continuum model study.

    PubMed

    Eilmes, Andrzej; Kubisiak, Piotr

    2010-01-21

    Relative complexation energies for the lithium cation in acetonitrile and diethyl ether have been studied. Quantum-chemical calculations explicitly describing the solvation of Li(+) have been performed based on structures obtained from molecular dynamics simulations. The effect of an increasing number of solvent molecules beyond the first solvation shell has been found to consist in reduction of the differences in complexation energies for different coordination numbers. Explicit-solvation data have served as a benchmark to the results of polarizable continuum model (PCM) calculations. It has been demonstrated that the PCM approach can yield relative complexation energies comparable to the predictions based on molecular-level solvation, but at significantly lower computational cost. The best agreement between the explicit-solvation and the PCM results has been obtained when the van der Waals surface was adopted to build the molecular cavity.

  15. Continuum description of ionic and dielectric shielding for molecular-dynamics simulations of proteins in solution

    NASA Astrophysics Data System (ADS)

    Egwolf, Bernhard; Tavan, Paul

    2004-01-01

    We extend our continuum description of solvent dielectrics in molecular-dynamics (MD) simulations [B. Egwolf and P. Tavan, J. Chem. Phys. 118, 2039 (2003)], which has provided an efficient and accurate solution of the Poisson equation, to ionic solvents as described by the linearized Poisson-Boltzmann (LPB) equation. We start with the formulation of a general theory for the electrostatics of an arbitrarily shaped molecular system, which consists of partially charged atoms and is embedded in a LPB continuum. This theory represents the reaction field induced by the continuum in terms of charge and dipole densities localized within the molecular system. Because these densities cannot be calculated analytically for systems of arbitrary shape, we introduce an atom-based discretization and a set of carefully designed approximations. This allows us to represent the densities by charges and dipoles located at the atoms. Coupled systems of linear equations determine these multipoles and can be rapidly solved by iteration during a MD simulation. The multipoles yield the reaction field forces and energies. Finally, we scrutinize the quality of our approach by comparisons with an analytical solution restricted to perfectly spherical systems and with results of a finite difference method.

  16. Solvent-Induced Shift of Spectral Lines in Polar–Polarizable Solvents

    DOE PAGES

    Matyushov, Dmitry V.; Newton, Marshall D.

    2017-03-09

    Solvent-induced shift of optical transition lines is traditionally described by the Lippert- McRae equation given in terms of the Onsager theory for dipole solvation. It splits the overall shift into the equilibrium solvation by induced dipoles and the reaction field by the permanent dipoles in equilibrium with the chromophore in the ground state. Here we have reconsidered this classical problem from the perspective of microscopic solvation theories. A microscopic solvation functional is derived and continuum solvation is consistently introduced by taking the limit of zero wavevector in the reciprocal-space solvation susceptibility functions. We show that the phenomenological expression for themore » reaction field of permanent dipoles in the Lippert-McRae equation is not consistent with the microscopic theory. The main deficiency of the Lippert- McRae equation equation is the use of additivity of the response by permanent and induced dipoles of the liquid. An alternative closed-form equation for the spectral shift is derived. Its continuum limit allows a new, non-additive functionality for the solvent-induced shift in terms of the high-frequency and static dielectric constants. Finally, the main qualitative outcome of the theory is a significantly weaker dependence of the spectral shift on the polarizability of the solvent than predicted by the Lippert-McRae formula.« less

  17. Solvent-Induced Shift of Spectral Lines in Polar-Polarizable Solvents.

    PubMed

    Matyushov, Dmitry V; Newton, Marshall D

    2017-03-23

    Solvent-induced shift of optical transition lines is traditionally described by the Lippert-McRae equation given in terms of the Onsager theory for dipole solvation. It splits the overall shift into the equilibrium solvation by induced dipoles and the reaction field by the permanent dipoles in equilibrium with the chromophore in the ground state. We have reconsidered this classical problem from the perspective of microscopic solvation theories. A microscopic solvation functional is derived, and continuum solvation is consistently introduced by taking the limit of zero wavevector in the reciprocal-space solvation susceptibility functions. We show that the phenomenological expression for the reaction field of permanent dipoles in the Lippert-McRae equation is not consistent with the microscopic theory. The main deficiency of the Lippert-McRae equation is the use of additivity of the response by permanent and induced dipoles of the liquid. An alternative closed-form equation for the spectral shift is derived. Its continuum limit allows a new, nonadditive functionality for the solvent-induced shift in terms of the high-frequency and static dielectric constants. The main qualitative outcome of the theory is a significantly weaker dependence of the spectral shift on the polarizability of the solvent than predicted by the Lippert-McRae formula.

  18. IR, Raman and Vibrational Optical Activity Spectra of Methyl Glycidate in Chloroform and Water: The Clusters-in-a-Liquid Solvation Model.

    PubMed

    Xu, Yunjie; Perera, Angelo Shehan; Cheramy, Joseph; Merten, Christian; Thomas, Javix

    2018-05-16

    Solvent effects, in particular those involving water as the solvent, are of significant interest to chemistry and physics communities. IR, vibrational circular dichroism (VCD), Raman, and Raman optical activity (ROA) spectra of methyl glycidate in two very different solvents, namely CCl4 and water, have been measured experimentally and simulated theoretically. While the observed spectra in CCl4 could be well modelled using the polarizable continuum model for the solvent, the situation is much different in water. The experimental VCD spectrum of methyl glycidate in water reveals strong induced VCD signatures in the water bending region, indicating the presence of the relatively long-lived methyl glycidate-watern complexes. We applied the clusters-in-a-liquid approach to identify the dominant methyl glycidate-water1,2 complexes which are the long-lived species responsible for all the spectra observed in water. We examined the influences of solvent dielectric environment and the hydrogen-bonding interactions on the conformational distribution of methyl glycidate. The geometry optimizations, frequency calculations, IR, VCD, Raman and ROA intensity calculations were performed at the B3LYP/6-311++G(2d,p) and aug-cc-pVTZ levels of theory with D3BJ dispersion correction. It is particularly satisfying to note that the clusters-in-a-liquid approach has captured all main experimental features in IR, VCD, Raman and ROA spectra of methyl glycidate in water. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Vertical detachment energy of hydrated electron based on a modified form of solvent reorganization energy.

    PubMed

    Wang, Xing-Jian; Zhu, Quan; Li, Yun-Kui; Cheng, Xue-Min; Li, Xiang-Yuan; Fu, Ke-Xiang; He, Fu-Cheng

    2010-02-18

    In this work, the constrained equilibrium principle is introduced and applied to the derivations of the nonequilibrium solvation free energy and solvent reorganization energy in the process of removing the hydrated electron. Within the framework of the continuum model, a modified expression of the vertical detachment energy (VDE) of a hydrated electron in water is formulated. Making use of the approximation of spherical cavity and point charge, the variation tendency of VDE accompanying the size increase of the water cluster has been inspected. Discussions comparing the present form of the VDE and the traditional one and the influence of the cavity radius in either the fixed pattern or the varying pattern on the VDE have been made.

  20. Effects of the dielectric properties of the ceramic-solvent interface on the binding of proteins to oxide ceramics: a non-local electrostatic approach.

    PubMed

    Rubinstein, Alexander I; Sabirianov, Renat F; Namavar, Fereydoon

    2016-10-14

    The rapid development of nanoscience and nanotechnology has raised many fundamental questions that significantly impede progress in these fields. In particular, understanding the physicochemical processes at the interface in aqueous solvents requires the development and application of efficient and accurate methods. In the present work we evaluate the electrostatic contribution to the energy of model protein-ceramic complex formation in an aqueous solvent. We apply a non-local (NL) electrostatic approach that accounts for the effects of the short-range structure of the solvent on the electrostatic interactions of the interfacial systems. In this approach the aqueous solvent is considered as a non-ionic liquid, with the rigid and strongly correlated dipoles of the water molecules. We have found that an ordered interfacial aqueous solvent layer at the protein- and ceramic-solvent interfaces reduces the charging energy of both the ceramic and the protein in the solvent, and significantly increases the electrostatic contribution to their association into a complex. This contribution in the presented NL approach was found to be significantly shifted with respect to the classical model at any dielectric constant value of the ceramics. This implies a significant increase of the adsorption energy in the protein-ceramic complex formation for any ceramic material. We show that for several biocompatible ceramics (for example HfO2, ZrO2, and Ta2O5) the above effect predicts electrostatically induced protein-ceramic complex formation. However, in the framework of the classical continuum electrostatic model (the aqueous solvent as a uniform dielectric medium with a high dielectric constant ∼80) the above ceramics cannot be considered as suitable for electrostatically induced complex formation. Our results also show that the protein-ceramic electrostatic interactions can be strong enough to compensate for the unfavorable desolvation effect in the process of protein-ceramic complex formation.

  1. Effects of the dielectric properties of the ceramic-solvent interface on the binding of proteins to oxide ceramics: a non-local electrostatic approach

    NASA Astrophysics Data System (ADS)

    Rubinstein, Alexander I.; Sabirianov, Renat F.; Namavar, Fereydoon

    2016-10-01

    The rapid development of nanoscience and nanotechnology has raised many fundamental questions that significantly impede progress in these fields. In particular, understanding the physicochemical processes at the interface in aqueous solvents requires the development and application of efficient and accurate methods. In the present work we evaluate the electrostatic contribution to the energy of model protein-ceramic complex formation in an aqueous solvent. We apply a non-local (NL) electrostatic approach that accounts for the effects of the short-range structure of the solvent on the electrostatic interactions of the interfacial systems. In this approach the aqueous solvent is considered as a non-ionic liquid, with the rigid and strongly correlated dipoles of the water molecules. We have found that an ordered interfacial aqueous solvent layer at the protein- and ceramic-solvent interfaces reduces the charging energy of both the ceramic and the protein in the solvent, and significantly increases the electrostatic contribution to their association into a complex. This contribution in the presented NL approach was found to be significantly shifted with respect to the classical model at any dielectric constant value of the ceramics. This implies a significant increase of the adsorption energy in the protein-ceramic complex formation for any ceramic material. We show that for several biocompatible ceramics (for example HfO2, ZrO2, and Ta2O5) the above effect predicts electrostatically induced protein-ceramic complex formation. However, in the framework of the classical continuum electrostatic model (the aqueous solvent as a uniform dielectric medium with a high dielectric constant ˜80) the above ceramics cannot be considered as suitable for electrostatically induced complex formation. Our results also show that the protein-ceramic electrostatic interactions can be strong enough to compensate for the unfavorable desolvation effect in the process of protein-ceramic complex formation.

  2. Challenges in modelling homogeneous catalysis: new answers from ab initio molecular dynamics to the controversy over the Wacker process.

    PubMed

    Stirling, András; Nair, Nisanth N; Lledós, Agustí; Ujaque, Gregori

    2014-07-21

    We present here a review of the mechanistic studies of the Wacker process stressing the long controversy about the key reaction steps. We give an overview of the previous experimental and theoretical studies on the topic. Then we describe the importance of the most recent Ab Initio Molecular Dynamics (AIMD) calculations in modelling organometallic reactivity in water. As a prototypical example of homogeneous catalytic reactions, the Wacker process poses serious challenges to modelling. The adequate description of the multiple role of the water solvent is very difficult by using static quantum chemical approaches including cluster and continuum solvent models. In contrast, such reaction systems are suitable for AIMD, and by combining with rare event sampling techniques, the method provides reaction mechanisms and the corresponding free energy profiles. The review also highlights how AIMD has helped to obtain a novel understanding of the mechanism and kinetics of the Wacker process.

  3. Nonlocal continuum electrostatic theory predicts surprisingly small energetic penalties for charge burial in proteins.

    PubMed

    Bardhan, Jaydeep P

    2011-09-14

    We study the energetics of burying charges, ion pairs, and ionizable groups in a simple protein model using nonlocal continuum electrostatics. Our primary finding is that the nonlocal response leads to markedly reduced solvent screening, comparable to the use of application-specific protein dielectric constants. Employing the same parameters as used in other nonlocal studies, we find that for a sphere of radius 13.4 Å containing a single +1e charge, the nonlocal solvation free energy varies less than 18 kcal/mol as the charge moves from the surface to the center, whereas the difference in the local Poisson model is ∼35 kcal/mol. Because an ion pair (salt bridge) generates a comparatively more rapidly varying Coulomb potential, energetics for salt bridges are even more significantly reduced in the nonlocal model. By varying the central parameter in nonlocal theory, which is an effective length scale associated with correlations between solvent molecules, nonlocal-model energetics can be varied from the standard local results to essentially zero; however, the existence of the reduction in charge-burial penalties is quite robust to variations in the protein dielectric constant and the correlation length. Finally, as a simple exploratory test of the implications of nonlocal response, we calculate glutamate pK(a) shifts and find that using standard protein parameters (ε(protein) = 2-4), nonlocal results match local-model predictions with much higher dielectric constants. Nonlocality may, therefore, be one factor in resolving discrepancies between measured protein dielectric constants and the model parameters often used to match titration experiments. Nonlocal models may hold significant promise to deepen our understanding of macromolecular electrostatics without substantially increasing computational complexity. © 2011 American Institute of Physics

  4. Comparative theoretical study of the structures and stabilities of four typical gadolinium carboxylates in different scintillator solvents.

    PubMed

    Huang, Pin-Wen

    2016-03-01

    The structural properties and stabilities of four typical gadolinium carboxylates (Gd-CBX) in toluene, linear alkyl benzene (LAB), and phenyl xylyl ethane (PXE) solvents were theoretically studied using density functional theory (DFT/B3LYP with the basis sets 6-311G(d) and MWB54) and the polarizable continuum model (PCM). The average Gd-ligand interaction energies (E int, corrected for dispersion) and the values of the energy gap between the highest occupied molecular orbital and lowest unoccupied molecular orbital (ΔHL) for the gadolinium complexes were calculated to compare the relative stabilities of the four Gd-CBX molecules in the three liquid scintillator solvents. According to the calculations, the values of E int and ΔHL for Gd-CBX in LAB are larger than the corresponding values in PXE and toluene. Gd-CBX may therefore be more compatible with LAB than with PXE and toluene. It was also found that, in the three scintillator solvents, the stabilities of the four Gd-CBX molecules increase in the order Gd-2EHA < Gd-2MVA < Gd-pivalate < Gd-TMHA.

  5. Combining MOSCED with molecular simulation free energy calculations or electronic structure calculations to develop an efficient tool for solvent formulation and selection

    NASA Astrophysics Data System (ADS)

    Cox, Courtney E.; Phifer, Jeremy R.; Ferreira da Silva, Larissa; Gonçalves Nogueira, Gabriel; Ley, Ryan T.; O'Loughlin, Elizabeth J.; Pereira Barbosa, Ana Karolyne; Rygelski, Brett T.; Paluch, Andrew S.

    2017-02-01

    Solubility parameter based methods have long been a valuable tool for solvent formulation and selection. Of these methods, the MOdified Separation of Cohesive Energy Density (MOSCED) has recently been shown to correlate well the equilibrium solubility of multifunctional non-electrolyte solids. However, before it can be applied to a novel solute, a limited amount of reference solubility data is required to regress the necessary MOSCED parameters. Here we demonstrate for the solutes methylparaben, ethylparaben, propylparaben, butylparaben, lidocaine and ephedrine how conventional molecular simulation free energy calculations or electronic structure calculations in a continuum solvent, here the SMD or SM8 solvation model, can instead be used to generate the necessary reference data, resulting in a predictive flavor of MOSCED. Adopting the melting point temperature and enthalpy of fusion of these compounds from experiment, we are able to predict equilibrium solubilities. We find the method is able to well correlate the (mole fraction) equilibrium solubility in non-aqueous solvents over four orders of magnitude with good quantitative agreement.

  6. Combining MOSCED with molecular simulation free energy calculations or electronic structure calculations to develop an efficient tool for solvent formulation and selection.

    PubMed

    Cox, Courtney E; Phifer, Jeremy R; Ferreira da Silva, Larissa; Gonçalves Nogueira, Gabriel; Ley, Ryan T; O'Loughlin, Elizabeth J; Pereira Barbosa, Ana Karolyne; Rygelski, Brett T; Paluch, Andrew S

    2017-02-01

    Solubility parameter based methods have long been a valuable tool for solvent formulation and selection. Of these methods, the MOdified Separation of Cohesive Energy Density (MOSCED) has recently been shown to correlate well the equilibrium solubility of multifunctional non-electrolyte solids. However, before it can be applied to a novel solute, a limited amount of reference solubility data is required to regress the necessary MOSCED parameters. Here we demonstrate for the solutes methylparaben, ethylparaben, propylparaben, butylparaben, lidocaine and ephedrine how conventional molecular simulation free energy calculations or electronic structure calculations in a continuum solvent, here the SMD or SM8 solvation model, can instead be used to generate the necessary reference data, resulting in a predictive flavor of MOSCED. Adopting the melting point temperature and enthalpy of fusion of these compounds from experiment, we are able to predict equilibrium solubilities. We find the method is able to well correlate the (mole fraction) equilibrium solubility in non-aqueous solvents over four orders of magnitude with good quantitative agreement.

  7. New solution decomposition and minimization schemes for Poisson-Boltzmann equation in calculation of biomolecular electrostatics

    NASA Astrophysics Data System (ADS)

    Xie, Dexuan

    2014-10-01

    The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model in the calculation of electrostatic potential energy for biomolecules in ionic solvent, but its numerical solution remains a challenge due to its strong singularity and nonlinearity caused by its singular distribution source terms and exponential nonlinear terms. To effectively deal with such a challenge, in this paper, new solution decomposition and minimization schemes are proposed, together with a new PBE analysis on solution existence and uniqueness. Moreover, a PBE finite element program package is developed in Python based on the FEniCS program library and GAMer, a molecular surface and volumetric mesh generation program package. Numerical tests on proteins and a nonlinear Born ball model with an analytical solution validate the new solution decomposition and minimization schemes, and demonstrate the effectiveness and efficiency of the new PBE finite element program package.

  8. Scalable free energy calculation of proteins via multiscale essential sampling

    NASA Astrophysics Data System (ADS)

    Moritsugu, Kei; Terada, Tohru; Kidera, Akinori

    2010-12-01

    A multiscale simulation method, "multiscale essential sampling (MSES)," is proposed for calculating free energy surface of proteins in a sizable dimensional space with good scalability. In MSES, the configurational sampling of a full-dimensional model is enhanced by coupling with the accelerated dynamics of the essential degrees of freedom. Applying the Hamiltonian exchange method to MSES can remove the biasing potential from the coupling term, deriving the free energy surface of the essential degrees of freedom. The form of the coupling term ensures good scalability in the Hamiltonian exchange. As a test application, the free energy surface of the folding process of a miniprotein, chignolin, was calculated in the continuum solvent model. Results agreed with the free energy surface derived from the multicanonical simulation. Significantly improved scalability with the MSES method was clearly shown in the free energy calculation of chignolin in explicit solvent, which was achieved without increasing the number of replicas in the Hamiltonian exchange.

  9. Calculation of Protein Heat Capacity from Replica-Exchange Molecular Dynamics Simulations with Different Implicit Solvent Models

    DTIC Science & Technology

    2008-10-30

    rigorous Poisson-based methods generally apply a Lee-Richards mo- lecular surface.9 This surface is considered the de facto description for continuum...definition and calculation of the Born radii. To evaluate the Born radii, two approximations are invoked. The first is the Coulomb field approximation (CFA...energy term, and depending on the particular GB formulation, higher-order non- Coulomb correction terms may be added to the Born radii to account for the

  10. Size-dependent error of the density functional theory ionization potential in vacuum and solution

    DOE PAGES

    Sosa Vazquez, Xochitl A.; Isborn, Christine M.

    2015-12-22

    Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potentialmore » for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. As a result, in vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.« less

  11. Size-dependent error of the density functional theory ionization potential in vacuum and solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sosa Vazquez, Xochitl A.; Isborn, Christine M., E-mail: cisborn@ucmerced.edu

    2015-12-28

    Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potentialmore » for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.« less

  12. Solvent, temperature and concentration effects on the optical rotatory dispersion of (R)-3-methylcyclohexanone

    NASA Astrophysics Data System (ADS)

    Alenaizan, Asem; Al-Basheer, Watheq; Musa, Musa M.

    2017-02-01

    Optical rotatory dispersion (ORD) spectra are reported for isolated and solvated (R)-3-methylcyclohexanone (R-3MCH) in 10 solvents, of wide polarity range, and over the spectral range 350-650 nm. Sample concentration effects on ORD spectra of R-3MCH were also recorded and investigated over widely varying concentrations from 2.5 × 10-3 to 2.5 × 10-1 g/mL where an observed sensitivity of optical rotation (OR) to incident light wavelength at low concentrations is correlated to solvent effects. Temperature effects were also studied by recording ORD spectra over the temperature range 0-65 °C in toluene. Recorded specific OR was plotted against various solvent parameters, namely, dipole moment, polarity, refractive index and polarizability to probe solvent effects. Furthermore, solvent effects were studied by incorporating Kamlet's and Taft's solvent parameters in the multi-parametric linear fitting. Theoretically, ORD spectra and populations of optimized geometries of equatorial and axial conformers of R-3MCH were calculated in the gas and solvated phases. All theoretical calculations were performed employing the polarizable continuum model using density functional theoretical and composite scheme (G4) methods with aug-cc-pVTZ and aug-cc-pVDZ basis sets. Net ORD spectra of R-3MCH were generated by the Boltzmann-weighted sum of the contributions of the dominant conformers. Upon comparing theoretical and experimental ORD spectra, a very good agreement is observed for the ORD spectra in the gas phase and high polarity solvents compared to relatively lesser agreement in low polarity solvents.

  13. Absorption and fluorescence spectra of heterocyclic isomers from long-range-corrected density functional theory in polarizable continuum approach.

    PubMed

    Kityk, Andriy V

    2012-03-22

    Long-range-corrected (LC) DFT/TDDFT methods may provide adequate description of ground and excited state properties; however, accuracy of such an approach depends much on a range separation (exchange screening) representing adjustable model parameter. Its relation to a size or specific of molecular systems has been explored in numerous studies, whereas the effect of solvent environment is usually ignored during the evaluation of state properties. To benchmark and assess the quality of the LC-DFT/TDDFT formalism, we report the optical absorption and fluorescence emission energies of organic heterocyclic isomers, DPIPQ and PTNA, calculated by LC-BLYP DFT/TDDFT method in the polarizable continuum (PCM) approach. The calculations are compared with the optical absorption and fluorescence spectra measured in organic solvents of different polarity. Despite a considerable structural difference, both dyes exhibit quite similar range separations being somewhat different for the optical absorption and fluorescence emission processes. Properly parametrized LC-BLYP xc-potential well reproduces basic features of the optical absorption spectra including the electronic transitions to higher excited states. The DFT/TDDFT/PCM analysis correctly predicts the solvation trends although solvatochromic shifts of the electronic transition energies appear to be evidently underestimated in most cases, especially for the fluorescence emission. Considering the discrepancy between the experiment and theory, evaluated state dipole moments and solvation corrections to the exchange screening are analyzed. The results of the present study emphasize the importance of a solvent-dependent range separation in DFT/TDDFT/PCM calculations for investigating excited state properties. © 2012 American Chemical Society

  14. Discrete-to-continuum simulation approach to polymer chain systems: Subdiffusion, segregation, and chain folding

    NASA Astrophysics Data System (ADS)

    Foo, Grace M.; Pandey, R. B.

    1998-05-01

    A discrete-to-continuum approach is introduced to study the static and dynamic properties of polymer chain systems with a bead-spring chain model in two dimensions. A finitely extensible nonlinear elastic potential is used for the bond between the consecutive beads with the Lennard-Jones (LJ) potential with smaller (Rc=21/6σ=0.95) and larger (Rc=2.5σ=2.1) values of the upper cutoff for the nonbonding interaction among the neighboring beads. We find that chains segregate at temperature T=1.0 with Rc=2.1 and remain desegregated with Rc=0.95. At low temperature (T=0.2), chains become folded, in a ribbonlike conformation, unlike random and self-avoiding walk conformations at T=1.0. The power-law dependence of the rms displacements of the center of mass (Rc.m.) of the chains and their center node (Rcn) with time are nonuniversal, with the range of exponents ν1~=0.45-0.25 and ν2~=0.30-0.10, respectively. Both radius of gyration (Rg) and average bond length () decrease on increasing the range of interaction (Rc), consistent with the extended state in good solvent to collapsed state in poor solvent description of the polymer chains. Analysis of the radial distribution function supports these observations.

  15. A quantum mechanical-Poisson-Boltzmann equation approach for studying charge flow between ions and a dielectric continuum

    NASA Astrophysics Data System (ADS)

    Gogonea, Valentin; Merz, Kenneth M.

    2000-02-01

    This paper presents a theoretical model for the investigation of charge transfer between ions and a solvent treated as a dielectric continuum media. The method is a combination of a semiempirical effective Hamiltonian with a modified Poisson-Boltzmann equation which includes charge transfer in the form of a surface charge density positioned at the dielectric interface. The new Poisson-Boltzmann equation together with new boundary conditions results in a new set of equations for the electrostatic potential (or polarization charge densities). Charge transfer adds a new free energy component to the solvation free energy term, which accounts for all interactions between the transferred charge at the dielectric interface, the solute wave function and the solvent polarization charges. Practical calculations on a set of 19 anions and 17 cations demonstrate that charge exchange with a dielectric is present and it is in the range of 0.06-0.4 eu. Furthermore, the pattern of the magnitudes of charge transfer can be related to the acid-base properties of the ions in many cases, but exceptions are also found. Finally, we show that the method leads to an energy decomposition scheme of the total electrostatic energy, which can be used in mechanistic studies on protein and DNA interaction with water.

  16. First-principles prediction of the effects of temperature and solvent selection on the dimerization of benzoic acid.

    PubMed

    Pham, Hieu H; Taylor, Christopher D; Henson, Neil J

    2013-01-24

    We introduce a procedure of quantum chemical calculations (B3P86/6-31G**) to study carboxylic acid dimerization and its correlation with temperature and properties of the solvent. Benzoic acid is chosen as a model system for studying dimerization via hydrogen bonding. Organic solvents are simulated using the self-consistent reaction field (SCRF) method with the polarized continuum model (PCM). The cyclic dimer is the most stable structure both in gas phase and solution. Dimer mono- and dihydrates could be found in the gas phase if acid molecules are in contact with water vapor. However, the formation of these hydrated conformers is very limited and cyclic dimer is the principal conformer to coexist with monomer acid in solution. Solvation of the cyclic dimer is more favorable compared to other complexes, partially due to the diminishing of hydrogen bonding capability and annihilation of dipole moments. Solvents have a strong effect on inducing dimer dissociation and this dependence is more pronounced at low dielectric constants. By accounting for selected terms in the total free energy of solvation, the solvation entropy could be incorporated to predict the dimer behavior at elevated temperatures. The temperature dependence of benzoic acid dimerization obtained by this technique is in good agreement with available experimental measurements, in which a tendency of dimer to dissociate is observed with increased temperatures. In addition, dimer breakup is more sensitive to temperature in low dielectric environments rather than in solvents with a higher dielectric constant.

  17. Numerical Integration Techniques for Curved-Element Discretizations of Molecule–Solvent Interfaces

    PubMed Central

    Bardhan, Jaydeep P.; Altman, Michael D.; Willis, David J.; Lippow, Shaun M.; Tidor, Bruce; White, Jacob K.

    2012-01-01

    Surface formulations of biophysical modeling problems offer attractive theoretical and computational properties. Numerical simulations based on these formulations usually begin with discretization of the surface under consideration; often, the surface is curved, possessing complicated structure and possibly singularities. Numerical simulations commonly are based on approximate, rather than exact, discretizations of these surfaces. To assess the strength of the dependence of simulation accuracy on the fidelity of surface representation, we have developed methods to model several important surface formulations using exact surface discretizations. Following and refining Zauhar’s work (J. Comp.-Aid. Mol. Des. 9:149-159, 1995), we define two classes of curved elements that can exactly discretize the van der Waals, solvent-accessible, and solvent-excluded (molecular) surfaces. We then present numerical integration techniques that can accurately evaluate nonsingular and singular integrals over these curved surfaces. After validating the exactness of the surface discretizations and demonstrating the correctness of the presented integration methods, we present a set of calculations that compare the accuracy of approximate, planar-triangle-based discretizations and exact, curved-element-based simulations of surface-generalized-Born (sGB), surface-continuum van der Waals (scvdW), and boundary-element method (BEM) electrostatics problems. Results demonstrate that continuum electrostatic calculations with BEM using curved elements, piecewise-constant basis functions, and centroid collocation are nearly ten times more accurate than planartriangle BEM for basis sets of comparable size. The sGB and scvdW calculations give exceptional accuracy even for the coarsest obtainable discretized surfaces. The extra accuracy is attributed to the exact representation of the solute–solvent interface; in contrast, commonly used planar-triangle discretizations can only offer improved approximations with increasing discretization and associated increases in computational resources. The results clearly demonstrate that our methods for approximate integration on an exact geometry are far more accurate than exact integration on an approximate geometry. A MATLAB implementation of the presented integration methods and sample data files containing curved-element discretizations of several small molecules are available online at http://web.mit.edu/tidor. PMID:17627358

  18. Reaction Mechanism of Organocatalytic Michael Addition of Nitromethane to Cinnamaldehyde: A Case Study on Catalyst Regeneration and Solvent Effects.

    PubMed

    Świderek, Katarzyna; Nödling, Alexander R; Tsai, Yu-Hsuan; Luk, Louis Y P; Moliner, Vicent

    2018-01-11

    The Michael addition of nitromethane to cinnamaldehyde has been computationally studied in the absence of a catalyst and the presence of a biotinylated secondary amine by a combined computational and experimental approach. The calculations were performed at the density functional theory (DFT) level with the M06-2X hybrid functional, and a polarizable continuum model has been employed to mimic the effect of two different solvents: dichloromethane (DCM) and water. Contrary to common assumption, the product-derived iminium intermediate was absent in both of the solvents tested. Instead, hydrating the C1-C2 double bond in the enamine intermediate directly yields the tetrahedral intermediate, which is key for forming the product and regenerating the catalyst. Enamine hydration is concerted and found to be rate-limiting in DCM but segregated into two non-rate-limiting steps when the solvent is replaced with water. However, further analysis revealed that the use of water as solvent also raises the energy barriers for other chemical steps, particularly the critical step of C-C bond formation between the iminium intermediate and nucleophile; this consequently lowers both the reaction yield and enantioselectivity of this LUMO-lowering reaction, as experimentally detected. These findings provide a logical explanation to why water often enhances organocatalysis when used as an additive but hampers the reaction progress when employed as a solvent.

  19. Reaction Mechanism of Organocatalytic Michael Addition of Nitromethane to Cinnamaldehyde: A Case Study on Catalyst Regeneration and Solvent Effects

    PubMed Central

    2017-01-01

    The Michael addition of nitromethane to cinnamaldehyde has been computationally studied in the absence of a catalyst and the presence of a biotinylated secondary amine by a combined computational and experimental approach. The calculations were performed at the density functional theory (DFT) level with the M06-2X hybrid functional, and a polarizable continuum model has been employed to mimic the effect of two different solvents: dichloromethane (DCM) and water. Contrary to common assumption, the product-derived iminium intermediate was absent in both of the solvents tested. Instead, hydrating the C1–C2 double bond in the enamine intermediate directly yields the tetrahedral intermediate, which is key for forming the product and regenerating the catalyst. Enamine hydration is concerted and found to be rate-limiting in DCM but segregated into two non-rate-limiting steps when the solvent is replaced with water. However, further analysis revealed that the use of water as solvent also raises the energy barriers for other chemical steps, particularly the critical step of C–C bond formation between the iminium intermediate and nucleophile; this consequently lowers both the reaction yield and enantioselectivity of this LUMO-lowering reaction, as experimentally detected. These findings provide a logical explanation to why water often enhances organocatalysis when used as an additive but hampers the reaction progress when employed as a solvent. PMID:29256614

  20. Revisiting the Dielectric Constant Effect on the Nucleophile and Leaving Group of Prototypical Backside Sn2 Reactions: a Reaction Force and Atomic Contribution Analysis.

    PubMed

    Pedraza-González, Laura Milena; Galindo, Johan Fabian; Gonzalez, Ronald; Reyes, Andrés

    2016-10-09

    The solvent effect on the nucleophile and leaving group atoms of the prototypical F - + CH 3 Cl → CH 3 F + Cl - backside bimolecular nucleophilic substitution reaction (S N 2) is analyzed employing the reaction force and the atomic contributions methods on the intrinsic reaction coordinate (IRC). Solvent effects were accounted for using the polarizable continuum solvent model. Calculations were performed employing eleven dielectric constants, ε, ranging from 1.0 to 78.5, to cover a wide spectrum of solvents. The reaction force data reveals that the solvent mainly influences the region of the IRC preceding the energy barrier, where the structural rearrangement to reach the transition state occurs. A detailed analysis of the atomic role in the reaction as a function of ε reveals that the nucleophile and the carbon atom are the ones that contribute the most to the energy barrier. In addition, we investigated the effect of the choice of nucleophile and leaving group on the ΔE 0 and ΔE ↕ of Y - + CH 3 X → YCH 3 + X - (X,Y= F, Cl, Br, I) in aqueous solution. Our analysis allowed us to find relationships between the atomic contributions to the activation energy and leaving group ability and nucleophilicity.

  1. Dielectric Interactions and the Prediction of Retention Times of Pesticides in Supercritical Fluid Chromatography with CO2

    NASA Astrophysics Data System (ADS)

    Alvarez, Guillermo A.; Baumanna, Wolfram

    2005-02-01

    A thermodynamic model for the partition of a solute (pesticide) between two immiscible phases, such as the stationary and mobile phases of supercritical fluid chromatography with CO2, is developed from first principles. A key ingredient of the model is the result of the calculation made by Liptay of the energy of interaction of a polar molecule with a dielectric continuum, which represents the solvent. The strength of the interaction between the solute and the solvent, which may be considered a measure of the solvent power, is characterized by a function g = (ɛ - 1)/(2ɛ +1), where ɛ is the dielectric constant of the medium, which is a function of the temperature T and the pressure P. Since the interactions between the nonpolar supercritical CO2 solvent and the slightly polar pesticide molecules are considered to be extremely weak, a regular solution model is appropriate from the thermodynamic point of view. At constant temperature, the model predicts a linear dependence of the logarithm of the capacity factor (lnk) of the chromatographic experiment on the function g = g(P), as the pressure is varied, with a slope which depends on the dipole moment of the solute, dispersion interactions and the size of the solute cavity in the solvent. At constant pressure, once the term containing the g (solvent interaction) factor is subtracted from lnk, a plot of the resulting term against the inverse of temperature yields the enthalpy change of transfer of the solute from the mobile (supercritical CO2) phase to the stationary (adsorbent) phase. The increase in temperature with the consequent large volume expansion of the supercritical fluid lowers its solvent strength and hence the capacity factor of the column (or solute retention time) increases. These pressure and temperature effects, predicted by the model, agree excellently with the experimental retention times of seven pesticides. Beyond a temperature of about 393 K, where the liquid solvent densities approach those of a gas (and hence the solvent strength becomes negligible), a dramatic loss of the retention times of all pesticides is observed in the experiments; this is attributed to desorption of the solute from the stationary phase, as predicted by Le Châtelier's principle for the (exothermic) adsorption process.

  2. An image-based reaction field method for electrostatic interactions in molecular dynamics simulations of aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lin, Yuchun; Baumketner, Andrij; Deng, Shaozhong; Xu, Zhenli; Jacobs, Donald; Cai, Wei

    2009-10-01

    In this paper, a new solvation model is proposed for simulations of biomolecules in aqueous solutions that combines the strengths of explicit and implicit solvent representations. Solute molecules are placed in a spherical cavity filled with explicit water, thus providing microscopic detail where it is most needed. Solvent outside of the cavity is modeled as a dielectric continuum whose effect on the solute is treated through the reaction field corrections. With this explicit/implicit model, the electrostatic potential represents a solute molecule in an infinite bath of solvent, thus avoiding unphysical interactions between periodic images of the solute commonly used in the lattice-sum explicit solvent simulations. For improved computational efficiency, our model employs an accurate and efficient multiple-image charge method to compute reaction fields together with the fast multipole method for the direct Coulomb interactions. To minimize the surface effects, periodic boundary conditions are employed for nonelectrostatic interactions. The proposed model is applied to study liquid water. The effect of model parameters, which include the size of the cavity, the number of image charges used to compute reaction field, and the thickness of the buffer layer, is investigated in comparison with the particle-mesh Ewald simulations as a reference. An optimal set of parameters is obtained that allows for a faithful representation of many structural, dielectric, and dynamic properties of the simulated water, while maintaining manageable computational cost. With controlled and adjustable accuracy of the multiple-image charge representation of the reaction field, it is concluded that the employed model achieves convergence with only one image charge in the case of pure water. Future applications to pKa calculations, conformational sampling of solvated biomolecules and electrolyte solutions are briefly discussed.

  3. The effect of macromolecular crowding on the electrostatic component of barnase-barstar binding: a computational, implicit solvent-based study.

    PubMed

    Qi, Helena W; Nakka, Priyanka; Chen, Connie; Radhakrishnan, Mala L

    2014-01-01

    Macromolecular crowding within the cell can impact both protein folding and binding. Earlier models of cellular crowding focused on the excluded volume, entropic effect of crowding agents, which generally favors compact protein states. Recently, other effects of crowding have been explored, including enthalpically-related crowder-protein interactions and changes in solvation properties. In this work, we explore the effects of macromolecular crowding on the electrostatic desolvation and solvent-screened interaction components of protein-protein binding. Our simple model enables us to focus exclusively on the electrostatic effects of water depletion on protein binding due to crowding, providing us with the ability to systematically analyze and quantify these potentially intuitive effects. We use the barnase-barstar complex as a model system and randomly placed, uncharged spheres within implicit solvent to model crowding in an aqueous environment. On average, we find that the desolvation free energy penalties incurred by partners upon binding are lowered in a crowded environment and solvent-screened interactions are amplified. At a constant crowder density (fraction of total available volume occupied by crowders), this effect generally increases as the radius of model crowders decreases, but the strength and nature of this trend can depend on the water probe radius used to generate the molecular surface in the continuum model. In general, there is huge variation in desolvation penalties as a function of the random crowder positions. Results with explicit model crowders can be qualitatively similar to those using a lowered "effective" solvent dielectric to account for crowding, although the "best" effective dielectric constant will likely depend on multiple system properties. Taken together, this work systematically demonstrates, quantifies, and analyzes qualitative intuition-based insights into the effects of water depletion due to crowding on the electrostatic component of protein binding, and it provides an initial framework for future analyses.

  4. The Effect of Macromolecular Crowding on the Electrostatic Component of Barnase–Barstar Binding: A Computational, Implicit Solvent-Based Study

    PubMed Central

    Qi, Helena W.; Nakka, Priyanka; Chen, Connie; Radhakrishnan, Mala L.

    2014-01-01

    Macromolecular crowding within the cell can impact both protein folding and binding. Earlier models of cellular crowding focused on the excluded volume, entropic effect of crowding agents, which generally favors compact protein states. Recently, other effects of crowding have been explored, including enthalpically-related crowder–protein interactions and changes in solvation properties. In this work, we explore the effects of macromolecular crowding on the electrostatic desolvation and solvent-screened interaction components of protein–protein binding. Our simple model enables us to focus exclusively on the electrostatic effects of water depletion on protein binding due to crowding, providing us with the ability to systematically analyze and quantify these potentially intuitive effects. We use the barnase–barstar complex as a model system and randomly placed, uncharged spheres within implicit solvent to model crowding in an aqueous environment. On average, we find that the desolvation free energy penalties incurred by partners upon binding are lowered in a crowded environment and solvent-screened interactions are amplified. At a constant crowder density (fraction of total available volume occupied by crowders), this effect generally increases as the radius of model crowders decreases, but the strength and nature of this trend can depend on the water probe radius used to generate the molecular surface in the continuum model. In general, there is huge variation in desolvation penalties as a function of the random crowder positions. Results with explicit model crowders can be qualitatively similar to those using a lowered “effective” solvent dielectric to account for crowding, although the “best” effective dielectric constant will likely depend on multiple system properties. Taken together, this work systematically demonstrates, quantifies, and analyzes qualitative intuition-based insights into the effects of water depletion due to crowding on the electrostatic component of protein binding, and it provides an initial framework for future analyses. PMID:24915485

  5. Gas-phase geometry optimization of biological molecules as a reasonable alternative to a continuum environment description: fact, myth, or fiction?

    PubMed

    Sousa, Sérgio Filipe; Fernandes, Pedro Alexandrino; Ramos, Maria João

    2009-12-31

    Gas-phase optimization of single biological molecules and of small active-site biological models has become a standard approach in first principles computational enzymology. The important role played by the surrounding environment (solvent, enzyme, both) is normally only accounted for through higher-level single point energy calculations performed using a polarizable continuum model (PCM) and an appropriate dielectric constant with the gas-phase-optimized geometries. In this study we analyze this widely used approximation, by comparing gas-phase-optimized geometries with geometries optimized with different PCM approaches (and considering different dielectric constants) for a representative data set of 20 very important biological molecules--the 20 natural amino acids. A total of 323 chemical bonds and 469 angles present in standard amino acid residues were evaluated. The results show that the use of gas-phase-optimized geometries can in fact be quite a reasonable alternative to the use of the more computationally intensive continuum optimizations, providing a good description of bond lengths and angles for typical biological molecules, even for charged amino acids, such as Asp, Glu, Lys, and Arg. This approximation is particularly successful if the protonation state of the biological molecule could be reasonably described in vacuum, a requirement that was already necessary in first principles computational enzymology.

  6. Polarizable continuum model associated with the self-consistent-reaction field for molecular adsorbates at the interface.

    PubMed

    Wang, Jing-Bo; Ma, Jian-Yi; Li, Xiang-Yuan

    2010-01-07

    In this work, a new procedure has been developed in order to realize the self-consistent-reaction field computation for interfacial molecules. Based on the extension of the dielectric polarizable continuum model, the quantum-continuum calculations for interfacial molecules have been carried out. This work presents an investigation into how the molecular structure influences the adsorbate-solvent interaction and consequently alters the orientation angle at the air/water interface. Taking both electrostatic and non-electrostatic energies into account, we investigate the orientation behavior of three interfacial molecules, 2,6-dimethyl-4-hydroxy-benzonitrile, 3,5-dimethyl-4-hydroxy-benzonitrile and p-cyanophenol, at the air/water interface. The results show that the hydrophilic hydroxyl groups in 2,6-dimethyl-4-hydroxy-benzonitrile and in p-cyanophenol point from the air to the water side, but the hydroxyl group in 3,5-dimethyl-4-hydroxy-benzonitrile takes the opposite direction. Our detailed analysis reveals that the opposite orientation of 3,5-dimethyl-4-hydroxy-benzonitrile results mainly from the cavitation energy. The different orientations of the hydrophilic hydroxyl group indicate the competition of electrostatic and cavitation energies. The theoretical prediction gives a satisfied explanation of the most recent sum frequency generation measurement for these molecules at the interface.

  7. The theoretical investigation of solvent effects on the relative stability and 15N NMR shielding of antidepressant heterocyclic drug

    NASA Astrophysics Data System (ADS)

    Tahan, Arezoo; Khojandi, Mahya; Salari, Ali Akbar

    2016-01-01

    The density functional theory (DFT) and Tomasi's polarized continuum model (PCM) were used for the investigation of solvent polarity and its dielectric constant effects on the relative stability and NMR shielding tensors of antidepressant mirtazapine (MIR). The obtained results indicated that the relative stability in the polar solvents is higher than that in non-polar solvents and the most stable structure was observed in the water at the B3LYP/6-311++G ( d, p) level of theory. Also, natural bond orbital (NBO) interpretation demonstrated that by increase of solvent dielectric constant, negative charge on nitrogen atoms of heterocycles and resonance energy for LP(N10) → σ* and π* delocalization of the structure's azepine ring increase and the highest values of them were observed in water. On the other hand, NMR calculations showed that with an increase in negative charge of nitrogen atoms, isotropic chemical shielding (σiso) around them increase and nitrogen of piperazine ring (N19) has the highest values of negative charge and σiso among nitrogen atoms. NMR calculations also represented that direct solvent effect on nitrogen of pyridine ring (N15) is more than other nitrogens, while its effect on N19 is less than other ones. Based on NMR data and NBO interpretation, it can be deduced that with a decrease in the negative charge on nitrogen atoms, the intramolecular effects on them decrease, while direct solvent effect increases.

  8. ABSINTH: A new continuum solvation model for simulations of polypeptides in aqueous solutions

    PubMed Central

    Vitalis, Andreas; Pappu, Rohit V.

    2009-01-01

    A new implicit solvation model for use in Monte Carlo simulations of polypeptides is introduced. The model is termed ABSINTH for self-Assembly of Biomolecules Studied by an Implicit, Novel, and Tunable Hamiltonian. It is designed primarily for simulating conformational equilibria and oligomerization reactions of intrinsically disordered proteins in aqueous solutions. The paradigm for ABSINTH is conceptually similar to the EEF1 model of Lazaridis and Karplus (Proteins: Struct. Func. Genet., 1999, 35: 133-152). In ABSINTH, the transfer of a polypeptide solute from the gas phase into a continuum solvent is the sum of a direct mean field interaction (DMFI), and a term to model the screening of polar interactions. Polypeptide solutes are decomposed into a set of distinct solvation groups. The DMFI is a sum of contributions from each of the solvation groups, which are analogs of model compounds. Continuum-mediated screening of electrostatic interactions is achieved using a framework similar to the one used for the DMFI. Promising results are shown for a set of test cases. These include the calculation of NMR coupling constants for short peptides, the assessment of the thermal stability of two small proteins, reversible folding of both an alpha-helix and a beta-hairpin forming peptide, and the polymeric properties of intrinsically disordered polyglutamine peptides of varying lengths. The tests reveal that the computational expense for simulations with the ABSINTH implicit solvation model increase by a factor that is in the range of 2.5-5.0 with respect to gas-phase calculations. PMID:18506808

  9. Solvent, Temperature And Concentration Effects on the Optical Activity of Chiral FIVE-And-SIX Membered Ring Ketones Conformers

    NASA Astrophysics Data System (ADS)

    Al-Basheer, Watheq

    2017-06-01

    Chiral five-and-six membered ring ketones are important molecules that are found in many biological systems and can exist in many possible conformers. In this talk, experimental and computational investigation of solvent, temperature and concentration effects on the circular dichroism (CD) and optical rotation (OR) of (R)-3 -methylcyclohexanone (R3MCH), (R)-3-methylcyclopentanone (R3MCP) and carvone conformers will be discussed. CD and OR measurements of these ketones gaseous samples and in ten common solvents of wide polarity range for different concentrations and sample temperatures were recorded and related to molecular conformation. Density functional theoretical calculations were performed using Gaussian09 at B3LYP functions with aug-cc-pVDZ level of theory. Also, CD and OR spectra for the optimized geometries of the ketones dominant conformers were computed over the ultraviolet and visible region in the gas phase as well as in ten solvents of varying polarity range, and under the umbrella of the polarizable continuum model (PCM). By comparing theoretical and experimental results, few thermodynamic parameters were deduced for the individual equatorial and axial conformers of each molecule in gas phase and in solvation.

  10. Probing potential Li-ion battery electrolyte through first principles simulation of atomic clusters

    NASA Astrophysics Data System (ADS)

    Kushwaha, Anoop Kumar; Sahoo, Mihir Ranjan; Nayak, Saroj

    2018-04-01

    Li-ion battery has wide area of application starting from low power consumer electronics to high power electric vehicles. However, their large scale application in electric vehicles requires further improvement due to their low specific power density which is an essential parameter and is closely related to the working potential windows of the battery system. Several studies have found that these parameters can be taken care of by considering different cathode/anode materials and electrolytes. Recently, a unique approach has been reported on the basis of cluster size in which the use of Li3 cluster has been suggested as a potential component of the battery electrode material. The cluster based approach significantly enhances the working electrode potential up to 0.6V in the acetonitrile solvent. In the present work, using ab-initio quantum chemical calculation and the dielectric continuum model, we have investigated various dielectric solvent medium for the suitable electrolyte for the potential component Li3 cluster. This study suggests that high dielectric electrolytic solvent (ethylene carbonate and propylene carbonate) could be better for lithium cluster due to improvement in the total electrode potential in comparison to the other dielectric solvent.

  11. Electro-osmotic flow of a model electrolyte

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Singer, Sherwin J.; Zheng, Zhi; Conlisk, A. T.

    2005-04-01

    Electro-osmotic flow is studied by nonequilibrium molecular dynamics simulations in a model system chosen to elucidate various factors affecting the velocity profile and facilitate comparison with existing continuum theories. The model system consists of spherical ions and solvent, with stationary, uniformly charged walls that make a channel with a height of 20 particle diameters. We find that hydrodynamic theory adequately describes simple pressure-driven (Poiseuille) flow in this model. However, Poisson-Boltzmann theory fails to describe the ion distribution in important situations, and therefore continuum fluid dynamics based on the Poisson-Boltzmann ion distribution disagrees with simulation results in those situations. The failure of Poisson-Boltzmann theory is traced to the exclusion of ions near the channel walls resulting from reduced solvation of the ions in that region. When a corrected ion distribution is used as input for hydrodynamic theory, agreement with numerical simulations is restored. An analytic theory is presented that demonstrates that repulsion of the ions from the channel walls increases the flow rate, and attraction to the walls has the opposite effect. A recent numerical study of electro-osmotic flow is reanalyzed in the light of our findings, and the results conform well to our conclusions for the model system.

  12. Are mixed explicit/implicit solvation models reliable for studying phosphate hydrolysis? A comparative study of continuum, explicit and mixed solvation models.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamerlin, Shina C. L.; Haranczyk, Maciej; Warshel, Arieh

    2009-05-01

    Phosphate hydrolysis is ubiquitous in biology. However, despite intensive research on this class of reactions, the precise nature of the reaction mechanism remains controversial. In this work, we have examined the hydrolysis of three homologous phosphate diesters. The solvation free energy was simulated by means of either an implicit solvation model (COSMO), hybrid quantum mechanical / molecular mechanical free energy perturbation (QM/MM-FEP) or a mixed solvation model in which N water molecules were explicitly included in the ab initio description of the reacting system (where N=1-3), with the remainder of the solvent being implicitly modelled as a continuum. Here, bothmore » COSMO and QM/MM-FEP reproduce Delta Gobs within an error of about 2kcal/mol. However, we demonstrate that in order to obtain any form of reliable results from a mixed model, it is essential to carefully select the explicit water molecules from short QM/MM runs that act as a model for the true infinite system. Additionally, the mixed models tend to be increasingly inaccurate the more explicit water molecules are placed into the system. Thus, our analysis indicates that this approach provides an unreliable way for modelling phosphate hydrolysis in solution.« less

  13. Isotope effect on the circular dichroism spectrum of methyl α-D-glucopyranoside in aqueous solution

    PubMed Central

    Kanematsu, Yusuke; Kamiya, Yukiko; Matsuo, Koichi; Gekko, Kunihiko; Kato, Koichi; Tachikawa, Masanori

    2015-01-01

    H/D isotope effect on the circular dichroism spectrum of methyl α-D-glucopyranoside in aqueous solution has been analyzed by multicomponent density functional theory calculations using the polarizable continuum model. By comparing the computational spectra with the corresponding experimental spectrum obtained with a vacuum-ultraviolet circular dichroism spectrophotometer, it was demonstrated that the isotope effect provides insights not only into the isotopic difference of the intramolecular interactions of the solutes, but also into that of the solute–solvent intermolecular interaction. PMID:26658851

  14. Modeling solvation effects in real-space and real-time within density functional approaches

    NASA Astrophysics Data System (ADS)

    Delgado, Alain; Corni, Stefano; Pittalis, Stefano; Rozzi, Carlo Andrea

    2015-10-01

    The Polarizable Continuum Model (PCM) can be used in conjunction with Density Functional Theory (DFT) and its time-dependent extension (TDDFT) to simulate the electronic and optical properties of molecules and nanoparticles immersed in a dielectric environment, typically liquid solvents. In this contribution, we develop a methodology to account for solvation effects in real-space (and real-time) (TD)DFT calculations. The boundary elements method is used to calculate the solvent reaction potential in terms of the apparent charges that spread over the van der Waals solute surface. In a real-space representation, this potential may exhibit a Coulomb singularity at grid points that are close to the cavity surface. We propose a simple approach to regularize such singularity by using a set of spherical Gaussian functions to distribute the apparent charges. We have implemented the proposed method in the Octopus code and present results for the solvation free energies and solvatochromic shifts for a representative set of organic molecules in water.

  15. Modeling solvation effects in real-space and real-time within density functional approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delgado, Alain; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, Calle 30 # 502, 11300 La Habana; Corni, Stefano

    2015-10-14

    The Polarizable Continuum Model (PCM) can be used in conjunction with Density Functional Theory (DFT) and its time-dependent extension (TDDFT) to simulate the electronic and optical properties of molecules and nanoparticles immersed in a dielectric environment, typically liquid solvents. In this contribution, we develop a methodology to account for solvation effects in real-space (and real-time) (TD)DFT calculations. The boundary elements method is used to calculate the solvent reaction potential in terms of the apparent charges that spread over the van der Waals solute surface. In a real-space representation, this potential may exhibit a Coulomb singularity at grid points that aremore » close to the cavity surface. We propose a simple approach to regularize such singularity by using a set of spherical Gaussian functions to distribute the apparent charges. We have implemented the proposed method in the OCTOPUS code and present results for the solvation free energies and solvatochromic shifts for a representative set of organic molecules in water.« less

  16. Photoinduced intramolecular charge transfer (ICT) reaction in trans-methyl p-(dimethylamino) cinnamate: A combined fluorescence measurement and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Chakraborty, Amrita; Kar, Samiran; Guchhait, Nikhil

    2006-01-01

    The photophysical behaviour of trans-methyl p-(dimethylamino) cinnamate ( t-MDMAC) donor-acceptor system has been investigated by steady-state absorption and emission spectroscopy and quantum chemical calculations. The molecule t-MDMAC shows an emission from the locally excited state in non-polar solvents. In addition to weak local emission, a strong solvent dependent red shifted fluorescence in polar aprotic solvents is attributed to highly polar intramolecular charge transfer state. However, the formation of hydrogen-bonded clusters with polar protic solvents has been suggested from a linear correlation between the observed red shifted fluorescence band maxima with hydrogen bonding parameters ( α). Calculations by ab initio and density functional theory show that the lone pair electron at nitrogen center is out of plane of the benzene ring in the global minimum ground state structure. In the gas phase, a potential energy surface along the twist coordinate at the donor (-NMe 2) and acceptor (-CH = CHCOOMe) sites shows stabilization of S 1 state and destabilization S 2 and S 0 states. A similar potential energy calculation along the twist coordinate in acetonitrile solvent using non-equilibrium polarized continuum model also shows more stabilization of S 1 state relative to other states and supports solvent dependent red shifted emission properties. In all types of calculations it is found that the nitrogen lone pair is delocalized over the benzene ring in the global minimum ground state and is localized on the nitrogen centre at the 90° twisted configuration. The S 1 energy state stabilization along the twist coordinate at the donor site and localized nitrogen lone pair at the perpendicular configuration support well the observed dual fluorescence in terms of proposed twisted intramolecular charge transfer (TICT) model.

  17. Experimental and theoretical aspects of studying themodynamics and mass transport in polymer-solvent systems

    NASA Astrophysics Data System (ADS)

    Davis, Peter Kennedy

    Mass transport and thermodynamics in polymer-solvent systems are two key areas of importance to the polymer industry. Numerous processes including polymerization reactors, membrane separations, foam production, devolatilization processes, film and coating drying, supercritical extractions, drug delivery, and even nano-technology require fundamental phase equilibria and diffusion information. Although such information is vital in equipment design and optimization, acquisition and modeling of these data are still in the research and development stages. This thesis is rather diverse as it addresses many realms of this broad research area. From high pressure to low pressure, experimental to theoretical, and infinite dilution to finite concentration, the thesis covers a wide range of topics that are of current importance to the industrial and academic polymer community. Chapter 1 discusses advances in the development of a new volumetric sorption pressure decay technique to make phase equilibrium and diffusion measurements in severe temperature-pressure environments. Chapter 2 provides the derivations and results of a new completely predictive Group Contribution Lattice Fluid Equation of State for multi-component polymer-solvent systems. The remaining four chapters demonstrate advances in the modeling of inverse gas chromatography (IGC) experiments. IGC has been used extensively of the last 50 years to make low pressure sorption and diffusion measurements at infinitely dilute and finite solvent concentrations. Chapter 3 proposes a new IGC experiment capable of obtaining ternary vapor-liquid equilibria in polymer-solvent-solvent systems. Also in that chapter, an extensive derivation is provided for a continuum model capable of describing the results of such an experiment. Chapter 4 presents new data collected on a packed column IGC experiment and a new model that can be used with those experimental data to obtain diffusion and partition coefficients. Chapter 5 addresses a rather controversial topic about IGC experiments near the polymer glass transition temperature. Using a new IGC model capable of describing both bulk absorption and surface adsorption, IGC behavior around the glass transition was able to be better understood. Finally, Chapter 6 presents an IGC model that can be used to separate bulk effects from surface effects in capillary column IGC experiments.

  18. Ion concentrations and velocity profiles in nanochannel electroosmotic flows

    NASA Astrophysics Data System (ADS)

    Qiao, R.; Aluru, N. R.

    2003-03-01

    Ion distributions and velocity profiles for electroosmotic flow in nanochannels of different widths are studied in this paper using molecular dynamics and continuum theory. For the various channel widths studied in this paper, the ion distribution near the channel wall is strongly influenced by the finite size of the ions and the discreteness of the solvent molecules. The classical Poisson-Boltzmann equation fails to predict the ion distribution near the channel wall as it does not account for the molecular aspects of the ion-wall and ion-solvent interactions. A modified Poisson-Boltzmann equation based on electrochemical potential correction is introduced to account for ion-wall and ion-solvent interactions. The electrochemical potential correction term is extracted from the ion distribution in a smaller channel using molecular dynamics. Using the electrochemical potential correction term extracted from molecular dynamics (MD) simulation of electroosmotic flow in a 2.22 nm channel, the modified Poisson-Boltzmann equation predicts the ion distribution in larger channel widths (e.g., 3.49 and 10.00 nm) with good accuracy. Detailed studies on the velocity profile in electro-osmotic flow indicate that the continuum flow theory can be used to predict bulk fluid flow in channels as small as 2.22 nm provided that the viscosity variation near the channel wall is taken into account. We propose a technique to embed the velocity near the channel wall obtained from MD simulation of electroosmotic flow in a narrow channel (e.g., 2.22 nm wide channel) into simulation of electroosmotic flow in larger channels. Simulation results indicate that such an approach can predict the velocity profile in larger channels (e.g., 3.49 and 10.00 nm) very well. Finally, simulation of electroosmotic flow in a 0.95 nm channel indicates that viscosity cannot be described by a local, linear constitutive relationship that the continuum flow theory is built upon and thus the continuum flow theory is not applicable for electroosmotic flow in such small channels.

  19. Substituent and Solvent Effects on the Absorption Spectra of Cation-π Complexes of Benzene and Borazine: A Theoretical Study.

    PubMed

    Sarmah, Nabajit; Bhattacharyya, Pradip Kr; Bania, Kusum K

    2014-05-29

    Time-dependent density functional theory (TDDFT) has been used to predict the absorption spectra of cation-π complexes of benzene and borazine. Both polarized continuum model (PCM) and discrete solvation model (DSM) and a combined effect of PCM and DSM on the absorption spectra have been elucidated. With decrease in size of the cation, the π → π* transitions of benzene and borazine are found to undergo blue and red shift, respectively. A number of different substituents (both electron-withdrawing and electron-donating) and a range of solvents (nonpolar to polar) have been considered to understand the effect of substituent and solvents on the absorption spectra of the cation-π complexes of benzene and borazine. Red shift in the absorption spectra of benzene cation-π complexes are observed with both electron-donating groups (EDGs) and electron-withdrawing groups (EWGs). The same trend has not been observed in the case of substituted borazine cation-π complexes. The wavelength of the electronic transitions corresponding to cation-π complexes correlates well with the Hammet constants (σ p and σ m ). This correlation indicates that the shifting of spectral lines of the cation-π complexes on substitution is due to both resonance and inductive effect. On incorporation of solvent phases, significant red or blue shifting in the absorption spectra of the complexes has been observed. Kamlet-Taft multiparametric equation has been used to explain the effect of solvent on the absorption spectra of complexes. Polarity and polarizability are observed to play an important role in the solvatochromism of the cation-π complexes.

  20. Theoretical Investigation of OCN(-) Charge Transfer Complexes in Condensed Phase Media: Spectroscopic Properties in Amorphous Ice

    NASA Technical Reports Server (NTRS)

    Park, Jin-Young; Woon, David E.

    2004-01-01

    Density functional theory (DFT) calculations of cyanate (OCN(-)) charge-transfer complexes were performed to model the "XCN" feature observed in interstellar icy grain mantles. OCN(-) charge-transfer complexes were formed from precursor combinations of HNCO or HOCN with either NH3 or H2O. Three different solvation strategies for realistically modeling the ice matrix environment were explored, including (1) continuum solvation, (2) pure DFT cluster calculations, and (3) an ONIOM DFT/PM3 cluster calculation. The model complexes were evaluated by their ability to reproduce seven spectroscopic measurements associated with XCN: the band origin of the OCN(-) asymmetric stretching mode, shifts in that frequency due to isotopic substitutions of C, N, O, and H, plus two weak features. The continuum solvent field method produced results consistent with some of the experimental data but failed to account for other behavior due to its limited capacity to describe molecular interactions with solvent. DFT cluster calculations successfully reproduced the available spectroscopic measurements very well. In particular, the deuterium shift showed excellent agreement in complexes where OCN(-) was fully solvated. Detailed studies of representative complexes including from two to twelve water molecules allowed the exploration of various possible solvation structures and provided insights into solvation trends. Moreover, complexes arising from cyanic or isocyanic acid in pure water suggested an alternative mechanism for the formation of OCN(-) charge-transfer complexes without the need for a strong base such as NH3 to be present. An extended ONIOM (B3LYP/PM3) cluster calculation was also performed to assess the impact of a more realistic environment on HNCO dissociation in pure water.

  1. Does an electronic continuum correction improve effective short-range ion-ion interactions in aqueous solution?

    NASA Astrophysics Data System (ADS)

    Bruce, Ellen E.; van der Vegt, Nico F. A.

    2018-06-01

    Non-polarizable force fields for hydrated ions not always accurately describe short-range ion-ion interactions, frequently leading to artificial ion clustering in bulk aqueous solutions. This can be avoided by adjusting the nonbonded anion-cation or cation-water Lennard-Jones parameters. This approach has been successfully applied to different systems, but the parameterization is demanding owing to the necessity of separate investigations of each ion pair. Alternatively, polarization effects may effectively be accounted for using the electronic continuum correction (ECC) of Leontyev et al. [J. Chem. Phys. 119, 8024 (2003)], which involves scaling the ionic charges with the inverse square-root of the water high-frequency dielectric permittivity. ECC has proven to perform well for monovalent salts as well as for divalent salts in water. Its performance, however, for multivalent salts with higher valency remains unexplored. The present work illustrates the applicability of the ECC model to trivalent K3PO4 and divalent K2HPO4 in water. We demonstrate that the ECC models, without additional tuning of force field parameters, provide an accurate description of water-mediated interactions between salt ions. This results in predictions of the osmotic coefficients of aqueous K3PO4 and K2HPO4 solutions in good agreement with experimental data. Analysis of ion pairing thermodynamics in terms of contact ion pair (CIP), solvent-separated ion pair, and double solvent-separated ion pair contributions shows that potassium-phosphate CIP formation is stronger with trivalent than with divalent phosphate ions.

  2. A comparison between state-specific and linear-response formalisms for the calculation of vertical electronic transition energy in solution with the CCSD-PCM method.

    PubMed

    Caricato, Marco

    2013-07-28

    The calculation of vertical electronic transition energies of molecular systems in solution with accurate quantum mechanical methods requires the use of approximate and yet reliable models to describe the effect of the solvent on the electronic structure of the solute. The polarizable continuum model (PCM) of solvation represents a computationally efficient way to describe this effect, especially when combined with coupled cluster (CC) methods. Two formalisms are available to compute transition energies within the PCM framework: State-Specific (SS) and Linear-Response (LR). The former provides a more complete account of the solute-solvent polarization in the excited states, while the latter is computationally very efficient (i.e., comparable to gas phase) and transition properties are well defined. In this work, I review the theory for the two formalisms within CC theory with a focus on their computational requirements, and present the first implementation of the LR-PCM formalism with the coupled cluster singles and doubles method (CCSD). Transition energies computed with LR- and SS-CCSD-PCM are presented, as well as a comparison between solvation models in the LR approach. The numerical results show that the two formalisms provide different absolute values of transition energy, but similar relative solvatochromic shifts (from nonpolar to polar solvents). The LR formalism may then be used to explore the solvent effect on multiple states and evaluate transition probabilities, while the SS formalism may be used to refine the description of specific states and for the exploration of excited state potential energy surfaces of solvated systems.

  3. Dielectric and thermal effects on the optical properties of natural dyes: a case study on solvated cyanin.

    PubMed

    Malcıoğlu, Osman Bariş; Calzolari, Arrigo; Gebauer, Ralph; Varsano, Daniele; Baroni, Stefano

    2011-10-05

    The optical properties of the flavylium state of the cyanin dye are simulated numerically by combining Car-Parrinello molecular dynamics and linear-response time-dependent density functional theory calculations. The spectrum of the dye calculated in the gas phase is characterized by two peaks in the yellow and in the blue (green and violet), using a GGA-PBE (hybrid-B3LYP) DFT functional, which would bring about a greenish (bright orange) color incompatible with the dark purple hue observed in nature. Describing the effect of the water solvent through a polarizable continuum model does not modify qualitatively the resulting picture. An explicit simulation of both solvent and thermal effects using ab initio molecular dynamics results instead in a spectrum that is compatible with the observed coloration. This result is analyzed in terms of the spectroscopic effects of the molecular distortions induced by thermal fluctuations.

  4. Solvent effects on static and dynamic polarizability and hyperpolarizabilities of acetonitrile

    NASA Astrophysics Data System (ADS)

    Cammi, Roberto; Cossi, Maurizio; Mennucci, Benedetta; Tomasi, Jacopo

    1997-12-01

    An application of the theory recently developed to calculate SCF static and dynamic (hyper)polarizabilities of molecular solutes within the framework of the polarizable continuum model is presented here. The specific system under analysis is given by the acetonitrile molecule both in vacuo and in two different dilute solutions, water and benzene. The numerical results reported in the present paper are focused on an evaluation of the main changes produced by the presence of a solvent on the static and dynamic polarizability, α, and first and second hyperpolarizabilities, β and ρ, with respect to the corresponding quantities in the gas phase. The limits of the present calculations, and the prospects for their refinement, are discussed with a view to giving a preliminary hint and a first tool for future reliable prediction of the behavior of this kind of response function when the molecule is perturbed by the presence of a surrounding medium.

  5. UV-Vis absorption spectra and electronic structure of merocyanines in the gas phase

    NASA Astrophysics Data System (ADS)

    Ishchenko, Alexander A.; Kulinich, Andrii V.; Bondarev, Stanislav L.; Raichenok, Tamara F.

    2018-02-01

    Gas-phase absorption spectra of a merocyanine vinylogous series have been studied for the first time. In vapour, their long-wavelength absorption bands were found to be considerably shifted hypsochromically, broader, more symmetrical, less intense, and their vinylene shift much smaller than even in low-polarity n-hexane. This indicates that in the gas phase their electronic structure closely approaches the nonpolar polyene limiting structure. The TDDFT calculations of the long-wavelength electronic transitions in the studied merocyanines in vacuo demonstrated good-to-excellent correlation - depending on the functional used - with the obtained experimental data. For comparison, the solvent effects was accounted for using the polarizable continuum model (PCM) with n-hexane and ethanol as low-polarity and high-polarity media, and compared with the UV-Vis spectral data in these solvents. In this case, the discrepancy between theory and experiment was much greater, increasing at that with the polymethine chain length.

  6. The reorganization energy of electron transfer in nonpolar solvents: Molecular level treatment of the solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leontyev, I.V.; Tachiya, M.

    The intermolecular electron transfer in a solute pair consisting of pyrene and dimethylaniline is investigated in a nonpolar solvent, n-hexane. The earlier elaborated approach [M. Tachiya, J. Phys Chem. 97, 5911 (1993)] is used; this method provides a physically relevant background for separating inertial and inertialess polarization responses for both nonpolarizable and polarizable molecular level simulations. The molecular-dynamics technique was implemented for obtaining the equilibrium ensemble of solvent configurations. The nonpolar solvent, n-hexane, was treated in terms of OPLS-AA parametrization. Solute Lennard-Jones parameters were taken from the same parametrization. Solute charge distributions of the initial and final states were determinedmore » using ab initio level [HF/6-31G(d,p)] quantum-chemical calculations. Configuration analysis was performed explicitly taking into account the anisotropic polarizability of n-hexane. It is shown that the Gaussian law well describes calculated distribution functions of the solvent coordinate, therefore, the rate constant of the ET reaction can be characterized by the reorganization energy. Evaluated values of the reorganization energies are in a range of 0.03-0.11 eV and significant contribution (more then 40% of magnitude) comes from anisotropic polarizability. Investigation of the reorganization energy {lambda} dependence on the solute pair separation distance d revealed unexpected behavior. The dependence has a very sharp peak at the distance d=7 A where solvent molecules are able to penetrate into the intermediate space between the solute pair. The reason for such behavior is clarified. This new effect has a purely molecular origin and cannot be described within conventional continuum solvent models.« less

  7. Protonation/deprotonation process of Emodin in aqueous solution and pKa determination: UV/Visible spectrophotometric titration and quantum/molecular mechanics calculations

    NASA Astrophysics Data System (ADS)

    da Cunha, Antonio R.; Duarte, Evandro L.; Lamy, M. Teresa; Coutinho, Kaline

    2014-08-01

    We combined theoretical and experimental studies to elucidate the important deprotonation process of Emodin in water. We used the UV/Visible spectrophotometric titration curves to obtain its pKa values, pKa1 = 8.0 ± 0.1 and pKa2 = 10.9 ± 0.2. Additionally, we obtained the pKa values of Emodin in the water-methanol mixture (1:3v/v). We give a new interpretation of the experimental data, obtaining apparent pKa1 = 6.2 ± 0.1, pKa2 = 8.3 ± 0.1 and pKa3 > 12.7. Performing quantum mechanics calculations for all possible deprotonation sites and tautomeric isomers of Emodin in vacuum and in water, we identified the sites of the first and second deprotonation. We calculated the standard deprotonation free energy of Emodin in water and the pKa1, using an explicit model of the solvent, with Free Energy Perturbation theory in Monte Carlo simulations obtaining, ΔGaq = 12.1 ± 1.4 kcal/mol and pKa1 = 8.7 ± 0.9. With the polarizable continuum model for the solvent, we obtained ΔGaq = 11.6 ± 1.0 kcal/mol and pKa1 = 8.3 ± 0.7. Both solvent models gave theoretical results in very good agreement with the experimental values.

  8. Keto-enol tautomerism of (E)-2-[(3,4-dimethylphenylimino)methyl]-4-nitrophenol: Synthesis, X-ray, FT-IR, UV-Vis, NMR and quantum chemical characterizations

    NASA Astrophysics Data System (ADS)

    Özek Yıldırım, Arzu; Yıldırım, M. Hakkı; Albayrak Kaştaş, Çiǧdem

    2017-01-01

    (E)-2-((3,4-dimethylphenylimino)methyl)-4-nitrophenol, which is a new Schiff base compound, was synthesized and characterized by experimental and computational methods. Molecular geometry, harmonic oscillator model of aromaticity (HOMA) indices, intra- and inter-molecular interactions in the crystal structure were determined by using single crystal X-ray diffraction technique. The optimized structures, which are obtained by Gaussian and Slater type orbitals, were compared to experimental structures to determine how much correlation is found between the experimental and the calculated properties. Intramolecular and hyperconjugative interactions of bonds have been found by Natural Bond Orbital analysis. The experimental infrared spectrum of the compound has been analyzed in detail by the calculated infrared spectra and Potential Energy Distribution analysis. To find out about the correlation between the solvent polarity and the enol-keto equilibrium, experimental UV-Visible spectra of the compound were obtained in benzene, CHCl3, EtOH and DMSO solvents. In these solvents, the UV-Vis spectra and relaxed potential energy surface scan (PES) calculations have been performed to get more insight into the equilibrium dynamics. Solvent effects in UV-Vis and PES calculations have been taken into account by using Polarizable Continuum Modelling method. 1H and 13C NMR spectra of the compound (in DMSO) were analyzed. The computational study of nonlinear optical properties shows that the compound can be used for the development of nonlinear optical materials.

  9. Comparison of the Marcus and Pekar partitions in the context of non-equilibrium, polarizable-continuum solvation models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Zhi-Qiang; Herbert, John M., E-mail: herbert@chemistry.ohio-state.edu; Mewes, Jan-Michael

    2015-11-28

    The Marcus and Pekar partitions are common, alternative models to describe the non-equilibrium dielectric polarization response that accompanies instantaneous perturbation of a solute embedded in a dielectric continuum. Examples of such a perturbation include vertical electronic excitation and vertical ionization of a solution-phase molecule. Here, we provide a general derivation of the accompanying polarization response, for a quantum-mechanical solute described within the framework of a polarizable continuum model (PCM) of electrostatic solvation. Although the non-equilibrium free energy is formally equivalent within the two partitions, albeit partitioned differently into “fast” versus “slow” polarization contributions, discretization of the PCM integral equations failsmore » to preserve certain symmetries contained in these equations (except in the case of the conductor-like models or when the solute cavity is spherical), leading to alternative, non-equivalent matrix equations. Unlike the total equilibrium solvation energy, however, which can differ dramatically between different formulations, we demonstrate that the equivalence of the Marcus and Pekar partitions for the non-equilibrium solvation correction is preserved to high accuracy. Differences in vertical excitation and ionization energies are <0.2 eV (and often <0.01 eV), even for systems specifically selected to afford a large polarization response. Numerical results therefore support the interchangeability of the Marcus and Pekar partitions, but also caution against relying too much on the fast PCM charges for interpretive value, as these charges differ greatly between the two partitions, especially in polar solvents.« less

  10. Models of electroosmotic flow in micro- and nanochannels

    NASA Astrophysics Data System (ADS)

    Zheng, Z.; Conlisk, A. T.; Sadr, R.; Yoda, M.

    2003-11-01

    Understanding electrooosmotic flow (EOF) is essential for developing efficient drug delivery and rapid biomolecular analysis devices given the extremely high pressure gradients required to drive flows through channels smaller than about 10 μ m. We consider fully-developed and steady EOF in one- and two-dimensional micro- and nanochannel geometries. The fluid, which is assumed to behave as a continuum, is a mixture of a neutral solvent such as water and a salt where the ionic species are entirely dissociated. The model can be used to analyze EOF where the opposite channel walls are oppositely charged and EOF with arbitrary electric double layer thickness. Unlike most previous models which assume a wall ζ -potential a priori, the model calculates the boundary conditions for the (wall) mole fractions using the equilibrium electrochemical potential in the upstream reservoir. We can therefore predict the wall ζ -potential, and calculate EOF with spatially and temporally varying wall ζ -potentials. The model results for electroosmotic mobility and volumetric flow rate are compared with those from three independent experimental datasets, and found to be in good agreement with all three sets of experimental data for channel sizes ranging from O(10 nm) to O(10 μ m). The limits of the continuum theory for EOF are discussed.

  11. Soft Wall Ion Channel in Continuum Representation with Application to Modeling Ion Currents in α-Hemolysin

    PubMed Central

    Simakov, Nikolay A.

    2010-01-01

    A soft repulsion (SR) model of short range interactions between mobile ions and protein atoms is introduced in the framework of continuum representation of the protein and solvent. The Poisson-Nernst-Plank (PNP) theory of ion transport through biological channels is modified to incorporate this soft wall protein model. Two sets of SR parameters are introduced: the first is parameterized for all essential amino acid residues using all atom molecular dynamic simulations; the second is a truncated Lennard – Jones potential. We have further designed an energy based algorithm for the determination of the ion accessible volume, which is appropriate for a particular system discretization. The effects of these models of short-range interaction were tested by computing current-voltage characteristics of the α-hemolysin channel. The introduced SR potentials significantly improve prediction of channel selectivity. In addition, we studied the effect of choice of some space-dependent diffusion coefficient distributions on the predicted current-voltage properties. We conclude that the diffusion coefficient distributions largely affect total currents and have little effect on rectifications, selectivity or reversal potential. The PNP-SR algorithm is implemented in a new efficient parallel Poisson, Poisson-Boltzman and PNP equation solver, also incorporated in a graphical molecular modeling package HARLEM. PMID:21028776

  12. Multiscale Multiphysics and Multidomain Models I: Basic Theory

    PubMed Central

    Wei, Guo-Wei

    2013-01-01

    This work extends our earlier two-domain formulation of a differential geometry based multiscale paradigm into a multidomain theory, which endows us the ability to simultaneously accommodate multiphysical descriptions of aqueous chemical, physical and biological systems, such as fuel cells, solar cells, nanofluidics, ion channels, viruses, RNA polymerases, molecular motors and large macromolecular complexes. The essential idea is to make use of the differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain of solvent from the microscopic domain of solute, and dynamically couple continuum and discrete descriptions. Our main strategy is to construct energy functionals to put on an equal footing of multiphysics, including polar (i.e., electrostatic) solvation, nonpolar solvation, chemical potential, quantum mechanics, fluid mechanics, molecular mechanics, coarse grained dynamics and elastic dynamics. The variational principle is applied to the energy functionals to derive desirable governing equations, such as multidomain Laplace-Beltrami (LB) equations for macromolecular morphologies, multidomain Poisson-Boltzmann (PB) equation or Poisson equation for electrostatic potential, generalized Nernst-Planck (NP) equations for the dynamics of charged solvent species, generalized Navier-Stokes (NS) equation for fluid dynamics, generalized Newton's equations for molecular dynamics (MD) or coarse-grained dynamics and equation of motion for elastic dynamics. Unlike the classical PB equation, our PB equation is an integral-differential equation due to solvent-solute interactions. To illustrate the proposed formalism, we have explicitly constructed three models, a multidomain solvation model, a multidomain charge transport model and a multidomain chemo-electro-fluid-MD-elastic model. Each solute domain is equipped with distinct surface tension, pressure, dielectric function, and charge density distribution. In addition to long-range Coulombic interactions, various non-electrostatic solvent-solute interactions are considered in the present modeling. We demonstrate the consistency between the non-equilibrium charge transport model and the equilibrium solvation model by showing the systematical reduction of the former to the latter at equilibrium. This paper also offers a brief review of the field. PMID:25382892

  13. Multiscale Multiphysics and Multidomain Models I: Basic Theory.

    PubMed

    Wei, Guo-Wei

    2013-12-01

    This work extends our earlier two-domain formulation of a differential geometry based multiscale paradigm into a multidomain theory, which endows us the ability to simultaneously accommodate multiphysical descriptions of aqueous chemical, physical and biological systems, such as fuel cells, solar cells, nanofluidics, ion channels, viruses, RNA polymerases, molecular motors and large macromolecular complexes. The essential idea is to make use of the differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain of solvent from the microscopic domain of solute, and dynamically couple continuum and discrete descriptions. Our main strategy is to construct energy functionals to put on an equal footing of multiphysics, including polar (i.e., electrostatic) solvation, nonpolar solvation, chemical potential, quantum mechanics, fluid mechanics, molecular mechanics, coarse grained dynamics and elastic dynamics. The variational principle is applied to the energy functionals to derive desirable governing equations, such as multidomain Laplace-Beltrami (LB) equations for macromolecular morphologies, multidomain Poisson-Boltzmann (PB) equation or Poisson equation for electrostatic potential, generalized Nernst-Planck (NP) equations for the dynamics of charged solvent species, generalized Navier-Stokes (NS) equation for fluid dynamics, generalized Newton's equations for molecular dynamics (MD) or coarse-grained dynamics and equation of motion for elastic dynamics. Unlike the classical PB equation, our PB equation is an integral-differential equation due to solvent-solute interactions. To illustrate the proposed formalism, we have explicitly constructed three models, a multidomain solvation model, a multidomain charge transport model and a multidomain chemo-electro-fluid-MD-elastic model. Each solute domain is equipped with distinct surface tension, pressure, dielectric function, and charge density distribution. In addition to long-range Coulombic interactions, various non-electrostatic solvent-solute interactions are considered in the present modeling. We demonstrate the consistency between the non-equilibrium charge transport model and the equilibrium solvation model by showing the systematical reduction of the former to the latter at equilibrium. This paper also offers a brief review of the field.

  14. Computational study of the synthesis of benzoin derivatives from benzil

    NASA Astrophysics Data System (ADS)

    Topal, Kevser Göçmen; Unaleroglu, Canan; Aviyente, Viktorya

    Benzil (1,2-diphenylethane-1,2-dione) undergoes cyanide catalyzed condensation with benzaldehyde to yield O-benzoylated benzoin (2-benzoyl-1,2-diphenylethanone). In this study, the experimentally suggested mechanism has been modeled with PM3 and verified with B3LYP. The effect of the substituent on the reaction yield has been rationalized by considering two benzil derivatives; 1,2-bis(2-chlorophenyl)ethane-1,2-dione and 1,2-bis(2-fluorophenyl)ethane-1,2-dione and three benzaldehyde derivatives; o-fluorobenzaldehyde, o-methylbenzaldehyde and 2-pyridinecarboxaldehyde. The effect of the solvent has been modeled by using the isodensity-surface polarizable continuum (IPCM) model. Reactivity descriptors have been used to justify the reactivity differences of the various substituents.

  15. Quantum Monte Carlo studies of solvated systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Kathleen; Letchworth Weaver, Kendra; Arias, T. A.; Hennig, Richard G.

    2011-03-01

    Solvation qualitatively alters the energetics of diverse processes from protein folding to reactions on catalytic surfaces. An explicit description of the solvent in quantum-mechanical calculations requires both a large number of electrons and exploration of a large number of configurations in the phase space of the solvent. These problems can be circumvented by including the effects of solvent through a rigorous classical density-functional description of the liquid environment, thereby yielding free energies and thermodynamic averages directly, while eliminating the need for explicit consideration of the solvent electrons. We have implemented and tested this approach within the CASINO Quantum Monte Carlo code. Our method is suitable for calculations in any basis within CASINO, including b-spline and plane wave trial wavefunctions, and is equally applicable to molecules, surfaces, and crystals. For our preliminary test calculations, we use a simplified description of the solvent in terms of an isodensity continuum dielectric solvation approach, though the method is fully compatible with more reliable descriptions of the solvent we shall employ in the future.

  16. Computing pKa Values in Different Solvents by Electrostatic Transformation.

    PubMed

    Rossini, Emanuele; Netz, Roland R; Knapp, Ernst-Walter

    2016-07-12

    We introduce a method that requires only moderate computational effort to compute pKa values of small molecules in different solvents with an average accuracy of better than 0.7 pH units. With a known pKa value in one solvent, the electrostatic transform method computes the pKa value in any other solvent if the proton solvation energy is known in both considered solvents. To apply the electrostatic transform method to a molecule, the electrostatic solvation energies of the protonated and deprotonated molecular species are computed in the two considered solvents using a dielectric continuum to describe the solvent. This is demonstrated for 30 molecules belonging to 10 different molecular families by considering 77 measured pKa values in 4 different solvents: water, acetonitrile, dimethyl sulfoxide, and methanol. The electrostatic transform method can be applied to any other solvent if the proton solvation energy is known. It is exclusively based on physicochemical principles, not using any empirical fetch factors or explicit solvent molecules, to obtain agreement with measured pKa values and is therefore ready to be generalized to other solute molecules and solvents. From the computed pKa values, we obtained relative proton solvation energies, which agree very well with the proton solvation energies computed recently by ab initio methods, and used these energies in the present study.

  17. Excited State Charge Transfer reaction with dual emission from 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile: Spectral measurement and theoretical density functional theory calculation

    NASA Astrophysics Data System (ADS)

    Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Kar, Samiran; Guchhait, Nikhil

    2011-07-01

    The excited state intramolecular charge transfer process in donor-chromophore-acceptor system 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile (DMAPPDN) has been investigated by steady state absorption and emission spectroscopy in combination with Density Functional Theory (DFT) calculations. This flexible donor acceptor molecule DMAPPDN shows dual fluorescence corresponding to emission from locally excited and charge transfer state in polar solvent. Large solvatochromic emission shift, effect of variation of pH and HOMO-LUMO molecular orbital pictures support excited state intramolecular charge transfer process. The experimental findings have been correlated with the calculated structure and potential energy surfaces based on the Twisted Intramolecular Charge Transfer (TICT) model obtained at DFT level using B3LYP functional and 6-31+G( d, p) basis set. The theoretical potential energy surfaces for the excited states have been generated in vacuo and acetonitrile solvent using Time Dependent Density Functional Theory (TDDFT) and Time Dependent Density Functional Theory Polarized Continuum Model (TDDFT-PCM) method, respectively. All the theoretical results show well agreement with the experimental observations.

  18. Predicting cyclohexane/water distribution coefficients for the SAMPL5 challenge using MOSCED and the SMD solvation model.

    PubMed

    Diaz-Rodriguez, Sebastian; Bozada, Samantha M; Phifer, Jeremy R; Paluch, Andrew S

    2016-11-01

    We present blind predictions using the solubility parameter based method MOSCED submitted for the SAMPL5 challenge on calculating cyclohexane/water distribution coefficients at 298 K. Reference data to parameterize MOSCED was generated with knowledge only of chemical structure by performing solvation free energy calculations using electronic structure calculations in the SMD continuum solvent. To maintain simplicity and use only a single method, we approximate the distribution coefficient with the partition coefficient of the neutral species. Over the final SAMPL5 set of 53 compounds, we achieved an average unsigned error of [Formula: see text] log units (ranking 15 out of 62 entries), the correlation coefficient (R) was [Formula: see text] (ranking 35), and [Formula: see text] of the predictions had the correct sign (ranking 30). While used here to predict cyclohexane/water distribution coefficients at 298 K, MOSCED is broadly applicable, allowing one to predict temperature dependent infinite dilution activity coefficients in any solvent for which parameters exist, and provides a means by which an excess Gibbs free energy model may be parameterized to predict composition dependent phase-equilibrium.

  19. Exhaustive rotamer search of the 4C1 conformation of α- and β-d-galactopyranose.

    PubMed

    Del Vigo, Enrique A; Marino, Carla; Stortz, Carlos A

    2017-08-07

    An exhaustive search approach was used to establish all possible rotamers of α- and β-d-galactopyranose using DFT at the B3LYP/6-311+G** and M06-2X/6-311+G** levels, both in vacuum calculations, and including two variants of continuum solvent models as PCM and SMD to simulate water solutions. Free energies were also calculated. MM3 was used as the starting point for calculations, using a dielectric constant of 1.5 for vacuum modeling, and 80 for water solution modeling. For the vacuum calculations, out of the theoretically possible 729 rotamers, only about a hundred rendered stable minima, highly stabilized by hydrogen bonding and scattered in a ca. 14 kcal/mol span. The rotamer with a clockwise arrangement of hydrogen bonds was the most stable for the α-anomer, whereas that with a counterclockwise arrangement was the most stable for the β-anomer. Free energy calculations, and especially solvent modeling, tend to flatten the potential energy surface. With PCM, the total range of energies was reduced to 9-10 kcal/mol (α-anomer) or 7-8 kcal/mol (β-anomer). These figures fall to 4.5-6 kcal/mol using SMD. At the same time, the total number of possible rotamers increases dramatically to about 300 with PCM, and to 400 with SMD. Both models show a divergent behavior: PCM tends to underestimate the effect of solvent, thus rendering as the most stable many common rotamers with vacuum calculations, and giving underestimations of populations of β-anomers and gt rotamers in the equilibrium. On the other hand, SMD gives a better estimation of the solvent effect, yielding correct populations of gt rotamers, but more β-anomers than expected by the experimental values. The best agreement is observed when the functional M06-2X is combined with SMD. Both DFT models show minimal geometrical differences between the optimized conformers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A multiscale model for charge inversion in electric double layers

    NASA Astrophysics Data System (ADS)

    Mashayak, S. Y.; Aluru, N. R.

    2018-06-01

    Charge inversion is a widely observed phenomenon. It is a result of the rich statistical mechanics of the molecular interactions between ions, solvent, and charged surfaces near electric double layers (EDLs). Electrostatic correlations between ions and hydration interactions between ions and water molecules play a dominant role in determining the distribution of ions in EDLs. Due to highly polar nature of water, near a surface, an inhomogeneous and anisotropic arrangement of water molecules gives rise to pronounced variations in the electrostatic and hydration energies of ions. Classical continuum theories fail to accurately describe electrostatic correlations and molecular effects of water in EDLs. In this work, we present an empirical potential based quasi-continuum theory (EQT) to accurately predict the molecular-level properties of aqueous electrolytes. In EQT, we employ rigorous statistical mechanics tools to incorporate interatomic interactions, long-range electrostatics, correlations, and orientation polarization effects at a continuum-level. Explicit consideration of atomic interactions of water molecules is both theoretically and numerically challenging. We develop a systematic coarse-graining approach to coarse-grain interactions of water molecules and electrolyte ions from a high-resolution atomistic scale to the continuum scale. To demonstrate the ability of EQT to incorporate the water orientation polarization, ion hydration, and electrostatic correlations effects, we simulate confined KCl aqueous electrolyte and show that EQT can accurately predict the distribution of ions in a thin EDL and also predict the complex phenomenon of charge inversion.

  1. A biomolecular electrostatics solver using Python, GPUs and boundary elements that can handle solvent-filled cavities and Stern layers.

    PubMed

    Cooper, Christopher D; Bardhan, Jaydeep P; Barba, L A

    2014-03-01

    The continuum theory applied to biomolecular electrostatics leads to an implicit-solvent model governed by the Poisson-Boltzmann equation. Solvers relying on a boundary integral representation typically do not consider features like solvent-filled cavities or ion-exclusion (Stern) layers, due to the added difficulty of treating multiple boundary surfaces. This has hindered meaningful comparisons with volume-based methods, and the effects on accuracy of including these features has remained unknown. This work presents a solver called PyGBe that uses a boundary-element formulation and can handle multiple interacting surfaces. It was used to study the effects of solvent-filled cavities and Stern layers on the accuracy of calculating solvation energy and binding energy of proteins, using the well-known apbs finite-difference code for comparison. The results suggest that if required accuracy for an application allows errors larger than about 2% in solvation energy, then the simpler, single-surface model can be used. When calculating binding energies, the need for a multi-surface model is problem-dependent, becoming more critical when ligand and receptor are of comparable size. Comparing with the apbs solver, the boundary-element solver is faster when the accuracy requirements are higher. The cross-over point for the PyGBe code is in the order of 1-2% error, when running on one gpu card (nvidia Tesla C2075), compared with apbs running on six Intel Xeon cpu cores. PyGBe achieves algorithmic acceleration of the boundary element method using a treecode, and hardware acceleration using gpus via PyCuda from a user-visible code that is all Python. The code is open-source under MIT license.

  2. Solvent effect in implicit/explicit model on FT-IR, 1H, 13C and 19F NMR, UV-vis and fluorescence spectra, linear, second- and third-nonlinear optical parameters of 2-(trifluoromethyl)benzoic acid: Experimental and computational study

    NASA Astrophysics Data System (ADS)

    Avcı, Davut; Altürk, Sümeyye; Tamer, Ömer; Kuşbazoğlu, Mustafa; Atalay, Yusuf

    2017-09-01

    FT-IR, 1H, 13C and 19F NMR, UV-vis and fluorescence spectra for 2-(trifluoromethyl)benzoic acid (2-TFMBA) were recorded. DFT//B3LYP/6-31++G(d,p) calculations were used to determine the optimized molecular geometry, vibrational frequencies, 1H, 13C and 19F GIAO-NMR chemical shifts of 2-TFMBA. The detailed assignments of vibrational frequencies were carried out on the basis of potential energy distribution (PED) by using VEDA program. TD-DFT/B3LYP/6-31++G(d,p) calculations with the PCM (polarizable continuum model) in ethanol and DMSO solvents based on implicit/explicit model and gas phase in the excited state were employed to investigate UV-vis absorption and fluorescence emission wavelengths. The UV-vis and emission spectra were given in ethanol and DMSO solvents, and the major contributions to the electronic transitions were obtained. In addition, the NLO parameters (β, γ and χ(3)) and frontier molecular orbital energies of 2-TFMBA were calculated by using B3LYP/6-31++G(d,p) level. The NLO parameters of 2-TFMBA were compared with that of para-Nitroaniline (pNA) and urea which are the typical NLO materials. The refractive index (n) is calculated by using the Lorentz-Lorenz equation to observe polarization behavior of 2-TFMBA in DMSO and ethanol solvents. In order to investigate intramolecular and hydrogen bonding interactions, NBO calculations were also performed by the same level. To sum up, considering the well-known biological role, photochemical properties of 2-TFMBA were discussed.

  3. A biomolecular electrostatics solver using Python, GPUs and boundary elements that can handle solvent-filled cavities and Stern layers

    NASA Astrophysics Data System (ADS)

    Cooper, Christopher D.; Bardhan, Jaydeep P.; Barba, L. A.

    2014-03-01

    The continuum theory applied to biomolecular electrostatics leads to an implicit-solvent model governed by the Poisson-Boltzmann equation. Solvers relying on a boundary integral representation typically do not consider features like solvent-filled cavities or ion-exclusion (Stern) layers, due to the added difficulty of treating multiple boundary surfaces. This has hindered meaningful comparisons with volume-based methods, and the effects on accuracy of including these features has remained unknown. This work presents a solver called PyGBe that uses a boundary-element formulation and can handle multiple interacting surfaces. It was used to study the effects of solvent-filled cavities and Stern layers on the accuracy of calculating solvation energy and binding energy of proteins, using the well-known APBS finite-difference code for comparison. The results suggest that if required accuracy for an application allows errors larger than about 2% in solvation energy, then the simpler, single-surface model can be used. When calculating binding energies, the need for a multi-surface model is problem-dependent, becoming more critical when ligand and receptor are of comparable size. Comparing with the APBS solver, the boundary-element solver is faster when the accuracy requirements are higher. The cross-over point for the PyGBe code is on the order of 1-2% error, when running on one GPU card (NVIDIA Tesla C2075), compared with APBS running on six Intel Xeon CPU cores. PyGBe achieves algorithmic acceleration of the boundary element method using a treecode, and hardware acceleration using GPUs via PyCuda from a user-visible code that is all Python. The code is open-source under MIT license.

  4. The wet solidus of silica: predictions from the scaled particle theory and polarized continuum model.

    PubMed

    Ottonello, G; Richet, P; Vetuschi Zuccolini, M

    2015-02-07

    We present an application of the Scaling Particle Theory (SPT) coupled with an ab initio assessment of the electronic, dispersive, and repulsive energy terms based on the Polarized Continuum Model (PCM) aimed at reproducing the observed solubility behavior of OH2 over the entire compositional range from pure molten silica to pure water and wide pressure and temperature regimes. It is shown that the solution energy is dominated by cavitation terms, mainly entropic in nature, which cause a large negative solution entropy and a consequent marked increase of gas phase fugacity with increasing temperatures. Besides, the solution enthalpy is negative and dominated by electrostatic terms which depict a pseudopotential well whose minimum occurs at a low water fraction (XH2O) of about 6 mol. %. The fine tuning of the solute-solvent interaction is achieved through very limited adjustments of the electrostatic scaling factor γel which, in pure water, is slightly higher than the nominal value (i.e., γel  =  1.224 against 1.2), it attains its minimum at low H2O content (γel = 0.9958) and then rises again at infinite dilution (γel   =  1.0945). The complex solution behavior is interpreted as due to the formation of energetically efficient hydrogen bonding when OH functionals are in appropriate amount and relative positioning with respect to the discrete OH2 molecules, reinforcing in this way the nominal solute-solvent inductive interaction. The interaction energy derived from the SPT-PCM calculations is then recast in terms of a sub-regular Redlich-Kister expansion of appropriate order whereas the thermodynamic properties of the H2O component at its standard state (1-molal solution referred to infinite dilution) are calculated from partial differentiation of the solution energy over the intensive variables.

  5. Calculating Free Energy Changes in Continuum Solvation Models

    DOE PAGES

    Ho, Junming; Ertem, Mehmed Z.

    2016-02-27

    We recently showed for a large dataset of pK as and reduction potentials that free energies calculated directly within the SMD continuum model compares very well with corresponding thermodynamic cycle calculations in both aqueous and organic solvents (Phys. Chem. Chem. Phys. 2015, 17, 2859). In this paper, we significantly expand the scope of our study to examine the suitability of this approach for the calculation of general solution phase kinetics and thermodynamics, in conjunction with several commonly used solvation models (SMDM062X, SMD-HF, CPCM-UAKS, and CPCM-UAHF) for a broad range of systems and reaction types. This includes cluster-continuum schemes for pKmore » a calculations, as well as various neutral, radical and ionic reactions such as enolization, cycloaddition, hydrogen and chlorine atom transfer, and bimolecular SN2 and E2 reactions. On the basis of this benchmarking study, we conclude that the accuracies of both approaches are generally very similar – the mean errors for Gibbs free energy changes of neutral and ionic reactions are approximately 5 kJ mol -1 and 25 kJ mol -1 respectively. In systems where there are significant structural changes due to solvation, as is the case for certain ionic transition states and amino acids, the direct approach generally afford free energy changes that are in better agreement with experiment. The results indicate that when appropriate combinations of electronic structure methods are employed, the direct approach provides a reliable alternative to the thermodynamic cycle calculations of solution phase kinetics and thermodynamics across a broad range of organic reactions.« less

  6. Incorporation of Hydrogen Bond Angle Dependency into the Generalized Solvation Free Energy Density Model.

    PubMed

    Ma, Songling; Hwang, Sungbo; Lee, Sehan; Acree, William E; No, Kyoung Tai

    2018-04-23

    To describe the physically realistic solvation free energy surface of a molecule in a solvent, a generalized version of the solvation free energy density (G-SFED) calculation method has been developed. In the G-SFED model, the contribution from the hydrogen bond (HB) between a solute and a solvent to the solvation free energy was calculated as the product of the acidity of the donor and the basicity of the acceptor of an HB pair. The acidity and basicity parameters of a solute were derived using the summation of acidities and basicities of the respective acidic and basic functional groups of the solute, and that of the solvent was experimentally determined. Although the contribution of HBs to the solvation free energy could be evenly distributed to grid points on the surface of a molecule, the G-SFED model was still inadequate to describe the angle dependency of the HB of a solute with a polarizable continuum solvent. To overcome this shortcoming of the G-SFED model, the contribution of HBs was formulated using the geometric parameters of the grid points described in the HB coordinate system of the solute. We propose an HB angle dependency incorporated into the G-SFED model, i.e., the G-SFED-HB model, where the angular-dependent acidity and basicity densities are defined and parametrized with experimental data. The G-SFED-HB model was then applied to calculate the solvation free energies of organic molecules in water, various alcohols and ethers, and the log P values of diverse organic molecules, including peptides and a protein. Both the G-SFED model and the G-SFED-HB model reproduced the experimental solvation free energies with similar accuracy, whereas the distributions of the SFED on the molecular surface calculated by the G-SFED and G-SFED-HB models were quite different, especially for molecules having HB donors or acceptors. Since the angle dependency of HBs was included in the G-SFED-HB model, the SFED distribution of the G-SFED-HB model is well described as compared to that of the G-SFED model.

  7. Multiply Reduced Oligofluorenes: Their Nature and Pairing with THF-Solvated Sodium Ions

    DOE PAGES

    Wu, Qin; Zaikowski, Lori; Kaur, Parmeet; ...

    2016-07-01

    Conjugated oligofluorenes are chemically reduced up to five charges in tetrahydrofuran solvent and confirmed with clear spectroscopic evidence. Stimulated by these experimental results, we have conducted a comprehensive computational study of the electronic structure and the solvation structure of representative oligofluorene anions with a focus on the pairing between sodium ions and these multianions. In addition, using density functional theory (DFT) methods and a solvation model of both explicit solvent molecules and implicit polarizable continuum, we first elucidate the structure of tightly solvated free sodium ions, and then explore the pairing of sodium ions either in contact with reduced oligofluorenesmore » or as solvent-separated ion pairs. Computed time-dependent-DFT absorption spectra are compared with experiments to assign the dominant ion pairing structure for each multianion. Computed ion pair binding energies further support our assignment. Lastly, the availability of different length and reducing level of oligofluorenes enables us to investigate the effects of total charge and charge density on the binding with sodium ions, and our results suggest both factors play important roles in ion pairing for small molecules. However, as the oligofluorene size grows, its charge density determines the binding strength with the sodium ion.« less

  8. Trends in mica–mica adhesion reflect the influence of molecular details on long-range dispersion forces underlying aggregation and coalignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongsheng; Chun, Jaehun; Xiao, Dongdong

    2017-07-05

    Oriented attachment of nanocrystalline subunits is recognized as a common crystallization pathway that is closely related to formation of nanoparticle superlattices, mesocrystals, and other kinetically stabilized structures. Approaching particles have been observed to rotate to achieve co-alignment while separated by nanometer-scale solvent layers. Little is known about the forces that drive co-alignment, particularly in this “solvent-separated” regime. To obtain a mechanistic understanding of this process, we used atomic force microscopy-based dynamic force spectroscopy with tips fabricated from oriented mica to measure the adhesion forces between mica (001) surfaces in electrolyte solutions as a function of orientation, temperature, electrolyte type, andmore » electrolyte concentration. The results reveal a ~60° periodicity as well as a complex dependence on electrolyte concentration and temperature. A continuum model that considers the competition between electrostatic repulsion and van der Waals attraction, augmented by microscopic details that include surface separation, water structure, ion hydration, and charge regulation at the interface, qualitatively reproduces the observed trends and implies that dispersion forces are responsible for establishing co-alignment in the solvent-separated state.« less

  9. Trends in mica–mica adhesion reflect the influence of molecular details on long-range dispersion forces underlying aggregation and coalignment

    DOE PAGES

    Li, Dongsheng; Chun, Jaehun; Xiao, Dongdong; ...

    2017-07-05

    Here, oriented attachment of nanocrystalline subunits is recognized as a common crystallization pathway that is closely related to formation of nanoparticle superlattices, mesocrystals, and other kinetically stabilized structures. Approaching particles have been observed to rotate to achieve co-alignment while separated by nanometer-scale solvent layers. Little is known about the forces that drive co-alignment, particularly in this “solvent-separated” regime. To obtain a mechanistic understanding of this process, we used atomic force microscopy-based dynamic force spectroscopy with tips fabricated from oriented mica to measure the adhesion forces between mica (001) surfaces in electrolyte solutions as a function of orientation, temperature, electrolyte type,more » and electrolyte concentration. The results reveal a ~60° periodicity as well as a complex dependence on electrolyte concentration and temperature. A continuum model that considers the competition between electrostatic repulsion and van der Waals attraction, augmented by microscopic details that include surface separation, water structure, ion hydration, and charge regulation at the interface, qualitatively reproduces the observed trends and implies that dispersion forces are responsible for establishing co-alignment in the solvent-separated state.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qin; Zaikowski, Lori; Kaur, Parmeet

    Conjugated oligofluorenes are chemically reduced up to five charges in tetrahydrofuran solvent and confirmed with clear spectroscopic evidence. Stimulated by these experimental results, we have conducted a comprehensive computational study of the electronic structure and the solvation structure of representative oligofluorene anions with a focus on the pairing between sodium ions and these multianions. In addition, using density functional theory (DFT) methods and a solvation model of both explicit solvent molecules and implicit polarizable continuum, we first elucidate the structure of tightly solvated free sodium ions, and then explore the pairing of sodium ions either in contact with reduced oligofluorenesmore » or as solvent-separated ion pairs. Computed time-dependent-DFT absorption spectra are compared with experiments to assign the dominant ion pairing structure for each multianion. Computed ion pair binding energies further support our assignment. Lastly, the availability of different length and reducing level of oligofluorenes enables us to investigate the effects of total charge and charge density on the binding with sodium ions, and our results suggest both factors play important roles in ion pairing for small molecules. However, as the oligofluorene size grows, its charge density determines the binding strength with the sodium ion.« less

  11. Trends in mica–mica adhesion reflect the influence of molecular details on long-range dispersion forces underlying aggregation and coalignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongsheng; Chun, Jaehun; Xiao, Dongdong

    Oriented attachment of nanocrystalline subunits is recognized as a common crystallization pathway that is closely related to formation of nanoparticle superlattices, mesocrystals, and other kinetically stabilized structures. Approaching particles have been observed to rotate to achieve co-alignment while separated by nanometer-scale solvent layers. Little is known about the forces that drive co-alignment, particularly in this “solvent-separated” regime. To obtain a mechanistic understanding of this process, we used atomic force microscopy-based dynamic force spectroscopy with tips fabricated from oriented mica to measure the adhesion forces between mica (001) surfaces in electrolyte solutions as a function of orientation, temperature, electrolyte type, andmore » electrolyte concentration. The results reveal a ~60° periodicity as well as a complex dependence on electrolyte concentration and temperature. A continuum model that considers the competition between electrostatic repulsion and van der Waals attraction, augmented by microscopic details that include surface separation, water structure, ion hydration, and charge regulation at the interface, qualitatively reproduces the observed trends and implies that dispersion forces are responsible for establishing co-alignment in the solvent-separated state.« less

  12. Effective particle size from molecular dynamics simulations in fluids

    NASA Astrophysics Data System (ADS)

    Ju, Jianwei; Welch, Paul M.; Rasmussen, Kim Ø.; Redondo, Antonio; Vorobieff, Peter; Kober, Edward M.

    2018-04-01

    We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks-Chandler-Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ˜ 0.75σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective "hydrodynamic" radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.

  13. Effective particle size from molecular dynamics simulations in fluids

    NASA Astrophysics Data System (ADS)

    Ju, Jianwei; Welch, Paul M.; Rasmussen, Kim Ø.; Redondo, Antonio; Vorobieff, Peter; Kober, Edward M.

    2017-12-01

    We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks-Chandler-Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ˜ 0.75σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective "hydrodynamic" radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.

  14. Ab initio, density functional theory, and continuum solvation model prediction of the product ratio in the S(N)2 reaction of NO2(-) with CH3CH2Cl and CH3CH2Br in DMSO solution.

    PubMed

    Westphal, Eduard; Pliego, Josefredo R

    2007-10-11

    The reaction pathways for the interaction of the nitrite ion with ethyl chloride and ethyl bromide in DMSO solution were investigated at the ab initio level of theory, and the solvent effect was included through the polarizable continuum model. The performance of BLYP, GLYP, XLYP, OLYP, PBE0, B3PW91, B3LYP, and X3LYP density functionals has been tested. For the ethyl bromide case, our best ab initio calculations at the CCSD(T)/aug-cc-pVTZ level predicts product ratio of 73% and 27% for nitroethane and ethyl nitrite, respectively, which can be compared with the experimental values of 67% and 33%. This translates to an error in the relative DeltaG* of only 0.17 kcal mol(-1). No functional is accurate (deviation <0.5 kcal mol(-1)) for predicting relative DeltaG*. The hybrid X3LYP functional presents the best performance with deviation 0.82 kcal mol(-1). The present problem should be included in the test set used for the evaluation of new functionals.

  15. Sharp Interface Tracking in Rotating Microflows of Solvent Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glimm, James; Almeida, Valmor de; Jiao, Xiangmin

    2013-01-08

    The objective of this project is to develop a specialized sharp interface tracking simulation capability for predicting interaction of micron-sized drops and bubbles in rotating flows relevant to optimized design of contactor devices used in solvent extraction processes of spent nuclear fuel reprocessing. The primary outcomes of this project include the capability to resolve drops and bubbles micro-hydrodynamics in solvent extraction contactors, determining from first principles continuum fluid mechanics how micro-drops and bubbles interact with each other and the surrounding shearing fluid for realistic flows. In the near term, this effort will play a central role in providing parameters andmore » insight into the flow dynamics of models that average over coarser scales, say at the millimeter unit length. In the longer term, it will prove to be the platform to conduct full-device, detailed simulations as parallel computing power reaches the exaflop level. The team will develop an accurate simulation tool for flows containing interacting droplets and bubbles with sharp interfaces under conditions that mimic those found in realistic contactor operations. The main objective is to create an off-line simulation capability to model drop and bubble interactions in a domain representative of the averaged length scale. The technical approach is to combine robust interface tracking software, subgrid modeling, validation quality experiments, powerful computational hardware, and a team with simulation modeling, physical modeling and technology integration experience. Simulations will then fully resolve the microflow of drops and bubbles at the microsecond time scale. This approach is computationally intensive but very accurate in treating important coupled physical phenomena in the vicinity of interfaces. The method makes it possible to resolve spatial scales smaller than the typical distance between bubbles and to model some non-equilibrium thermodynamic features such as finite critical tension in cavitating liquids« less

  16. Experimental and theoretical investigation of the first-order hyperpolarizability of a class of triarylamine derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Daniel L., E-mail: dlsilva.physics@gmail.com, E-mail: deboni@ifsc.usp.br; Instituto de Física, Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP; Fonseca, Ruben D.

    2015-02-14

    This paper reports on the static and dynamic first-order hyperpolarizabilities of a class of push-pull octupolar triarylamine derivatives dissolved in toluene. We have combined hyper-Rayleigh scattering experiment and the coupled perturbed Hartree-Fock method implemented at the Density Functional Theory (DFT) level of theory to determine the static and dynamic (at 1064 nm) first-order hyperpolarizability (β{sub HRS}) of nine triarylamine derivatives with distinct electron-withdrawing groups. In four of these derivatives, an azoaromatic unit is inserted and a pronounceable increase of the first-order hyperpolarizability is reported. Based on the theoretical results, the dipolar/octupolar character of the derivatives is determined. By using amore » polarizable continuum model in combination with the DFT calculations, it was found that although solvated in an aprotic and low dielectric constant solvent, due to solvent-induced polarization and the frequency dispersion effect, the environment substantially affects the first-order hyperpolarizability of all derivatives investigated. This statement is supported due to the solvent effects to be essential for the better agreement between theoretical results and experimental data concerning the dynamic first-order hyperpolarizability of the derivatives. The first-order hyperpolarizability of the derivatives was also modeled using the two- and three-level models, where the relationship between static and dynamic first hyperpolarizabilities is given by a frequency dispersion model. Using this approach, it was verified that the dynamic first hyperpolarizability of the derivatives is satisfactorily reproduced by the two-level model and that, in the case of the derivatives with an azoaromatic unit, the use of a damped few-level model is essential for, considering also the molecular size of such derivatives, a good quantitative agreement between theoretical results and experimental data to be observed.« less

  17. The Hartree-Fock calculation of the magnetic properties of molecular solutes

    NASA Astrophysics Data System (ADS)

    Cammi, R.

    1998-08-01

    In this paper we set the formal bases for the calculation of the magnetic susceptibility and of the nuclear magnetic shielding tensors for molecular solutes described within the framework of the polarizable continuum model (PCM). The theory has been developed at self-consistent field (SCF) level and adapted to be used within the framework of some of the computational procedures of larger use, i.e., the gauge invariant atomic orbital method (GIAO) and the continuous set gauge transformation method (CSGT). The numerical results relative to the magnetizabilities and chemical shielding of acetonitrile and nitrometane in various solvents computed with the PCM-CSGT method are also presented.

  18. Atomic decomposition of the protein solvation free energy and its application to amyloid-beta protein in water

    NASA Astrophysics Data System (ADS)

    Chong, Song-Ho; Ham, Sihyun

    2011-07-01

    We report the development of an atomic decomposition method of the protein solvation free energy in water, which ascribes global change in the solvation free energy to local changes in protein conformation as well as in hydration structure. So far, empirical decomposition analyses based on simple continuum solvation models have prevailed in the study of protein-protein interactions, protein-ligand interactions, as well as in developing scoring functions for computer-aided drug design. However, the use of continuum solvation model suffers serious drawbacks since it yields the protein free energy landscape which is quite different from that of the explicit solvent model and since it does not properly account for the non-polar hydrophobic effects which play a crucial role in biological processes in water. Herein, we develop an exact and general decomposition method of the solvation free energy that overcomes these hindrances. We then apply this method to elucidate the molecular origin for the solvation free energy change upon the conformational transitions of 42-residue amyloid-beta protein (Aβ42) in water, whose aggregation has been implicated as a primary cause of Alzheimer's disease. We address why Aβ42 protein exhibits a great propensity to aggregate when transferred from organic phase to aqueous phase.

  19. Alkaline hydrolysis of ethylene phosphate: an ab initio study by supermolecule model and polarizable continuum approach.

    PubMed

    Xia, Futing; Zhu, Hua

    2011-09-01

    The alkaline hydrolysis reaction of ethylene phosphate (EP) has been investigated using a supermolecule model, in which several explicit water molecules are included. The structures and single-point energies for all of the stationary points are calculated in the gas phase and in solution at the B3LYP/6-31++G(df,p) and MP2/6-311++G(df,2p) levels. The effect of water bulk solvent is introduced by the polarizable continuum model (PCM). Water attack and hydroxide attack pathways are taken into account for the alkaline hydrolysis of EP. An associative mechanism is observed for both of the two pathways with a kinetically insignificant intermediate. The water attack pathway involves a water molecule attacking and a proton transfer from the attacking water to the hydroxide in the first step, followed by an endocyclic bond cleavage to the leaving group. While in the first step of the hydroxide attack pathway the nucleophile is the hydroxide anion. The calculated barriers in aqueous solution for the water attack and hydroxide attack pathways are all about 22 kcal/mol. The excellent agreement between the calculated and observed values demonstrates that both of the two pathways are possible for the alkaline hydrolysis of EP. Copyright © 2011 Wiley Periodicals, Inc.

  20. Quantum mechanics/molecular mechanics modeling of photoelectron spectra: the carbon 1s core-electron binding energies of ethanol-water solutions.

    PubMed

    Löytynoja, T; Niskanen, J; Jänkälä, K; Vahtras, O; Rinkevicius, Z; Ågren, H

    2014-11-20

    Using ethanol-water solutions as illustration, we demonstrate the capability of the hybrid quantum mechanics/molecular mechanics (QM/MM) paradigm to simulate core photoelectron spectroscopy: the binding energies and the chemical shifts. An integrated approach with QM/MM binding energy calculations coupled to preceding molecular dynamics sampling is adopted to generate binding energies averaged over the solute-solvent configurations available at a particular temperature and pressure and thus allowing for a statistical assessment with confidence levels for the final binding energies. The results are analyzed in terms of the contributions in the molecular mechanics model-electrostatic, polarization, and van der Waals-with atom or bond granulation of the corresponding MM charge and polarizability force-fields. The role of extramolecular charge transfer screening of the core-hole and explicit hydrogen bonding is studied by extending the QM core to cover the first solvation shell. The results are compared to those obtained from pure electrostatic and polarizable continuum models. Particularly, the dependence of the carbon 1s binding energies with respect to the ethanol concentration is studied. Our results indicate that QM/MM can be used as an all-encompassing model to study photoelectron binding energies and chemical shifts in solvent environments.

  1. A priori calculations of the free energy of formation from solution of polymorphic self-assembled monolayers.

    PubMed

    Reimers, Jeffrey R; Panduwinata, Dwi; Visser, Johan; Chin, Yiing; Tang, Chunguang; Goerigk, Lars; Ford, Michael J; Sintic, Maxine; Sum, Tze-Jing; Coenen, Michiel J J; Hendriksen, Bas L M; Elemans, Johannes A A W; Hush, Noel S; Crossley, Maxwell J

    2015-11-10

    Modern quantum chemical electronic structure methods typically applied to localized chemical bonding are developed to predict atomic structures and free energies for meso-tetraalkylporphyrin self-assembled monolayer (SAM) polymorph formation from organic solution on highly ordered pyrolytic graphite surfaces. Large polymorph-dependent dispersion-induced substrate-molecule interactions (e.g., -100 kcal mol(-1) to -150 kcal mol(-1) for tetratrisdecylporphyrin) are found to drive SAM formation, opposed nearly completely by large polymorph-dependent dispersion-induced solvent interactions (70-110 kcal mol(-1)) and entropy effects (25-40 kcal mol(-1) at 298 K) favoring dissolution. Dielectric continuum models of the solvent are used, facilitating consideration of many possible SAM polymorphs, along with quantum mechanical/molecular mechanical and dispersion-corrected density functional theory calculations. These predict and interpret newly measured and existing high-resolution scanning tunnelling microscopy images of SAM structure, rationalizing polymorph formation conditions. A wide range of molecular condensed matter properties at room temperature now appear suitable for prediction and analysis using electronic structure calculations.

  2. Solvation and thermal effects on the optical properties of naturaldyes: a case study on the flavylium cyanin

    NASA Astrophysics Data System (ADS)

    Calzolari, Arrigo; Malcioglu, Baris; Gebauer, Ralph; Varsano, Daniele; Baroni, Stefano

    2011-03-01

    We present a first-principles study of the effects of both hydration and thermal dynamics on the optical properties of a natural anthocyanin dye, namely, cyanin (Cya), in aqueous solution. We combine Car-Parrinello molecular dynamics and time-dependent density functional theory (TDDFT) approaches to simulate the time evolution of UV-vis spectrum of the hydrated Cya molecule at room temperature [2,3]. The spectrum of the dye calculated in the gas phase is characterized by two peaks in the red and in the blue, which would bring about a greenish hue incompatible with the dark purple coloration observed in nature. Describing the effect of the water solvent through a polarizable continuum model does not modify qualitatively the resulting picture. An explicit simulation of both solvent and thermal effects using ab-initio molecular dynamics results instead in a spectrum that is compatible with the observed coloration. This result is analyzed in terms of the spectroscopic effects of molecular distortions, induced by thermal fluctuations.

  3. Evaluation of the influence of the internal aqueous solvent structure on electrostatic interactions at the protein-solvent interface by nonlocal continuum electrostatic approach.

    PubMed

    Rubinstein, Alexander; Sherman, Simon

    The dielectric properties of the polar solvent on the protein-solvent interface at small intercharge distances are still poorly explored. To deconvolute this problem and to evaluate the pair-wise electrostatic interaction (PEI) energies of the point charges located at the protein-solvent interface we used a nonlocal (NL) electrostatic approach along with a static NL dielectric response function of water. The influence of the aqueous solvent microstructure (determined by a strong nonelectrostatic correlation effect between water dipoles within the orientational Debye polarization mode) on electrostatic interactions at the interface was studied in our work. It was shown that the PEI energies can be significantly higher than the energies evaluated by the classical (local) consideration, treating water molecules as belonging to the bulk solvent with a high dielectric constant. Our analysis points to the existence of a rather extended, effective low-dielectric interfacial water shell on the protein surface. The main dielectric properties of this shell (effective thickness together with distance- and orientation-dependent dielectric permittivity function) were evaluated. The dramatic role of this shell was demonstrated when estimating the protein association rate constants.

  4. The mechanism for water exchange in [UO(2)(H(2)O)(5)](2+) and [UO(2)(oxalate)(2)(H(2)O)](2-), as studied by quantum chemical methods.

    PubMed

    Vallet, V; Wahlgren, U; Schimmelpfennig, B; Szabó, Z; Grenthe, I

    2001-12-05

    The mechanisms for the exchange of water between [UO(2)(H(2)O)(5)](2+), [UO(2)(oxalate)(2)(H(2)O)](2)(-)(,) and water solvent along dissociative (D), associative (A) and interchange (I) pathways have been investigated with quantum chemical methods. The choice of exchange mechanism is based on the computed activation energy and the geometry of the identified transition states and intermediates. These quantities were calculated both in the gas phase and with a polarizable continuum model for the solvent. There is a significant and predictable difference between the activation energy of the gas phase and solvent models: the energy barrier for the D-mechanism increases in the solvent as compared to the gas phase, while it decreases for the A- and I-mechanisms. The calculated activation energy, Delta U(++), for the water exchange in [UO(2)(H(2)O)(5)](2+) is 74, 19, and 21 kJ/mol, respectively, for the D-, A-, and I-mechanisms in the solvent, as compared to the experimental value Delta H(++) = 26 +/- 1 kJ/mol. This indicates that the D-mechanism for this system can be ruled out. The energy barrier between the intermediates and the transition states is small, indicating a lifetime for the intermediate approximately 10(-10) s, making it very difficult to distinguish between the A- and I-mechanisms experimentally. There is no direct experimental information on the rate and mechanism of water exchange in [UO(2)(oxalate)(2)(H(2)O)](2-) containing two bidentate oxalate ions. The activation energy and the geometry of transition states and intermediates along the D-, A-, and I-pathways were calculated both in the gas phase and in a water solvent model, using a single-point MP2 calculation with the gas phase geometry. The activation energy, Delta U(++), in the solvent for the D-, A-, and I-mechanisms is 56, 12, and 53 kJ/mol, respectively. This indicates that the water exchange follows an associative reaction mechanism. The geometry of the A- and I-transition states for both [UO(2)(H(2)O)(5)](2+) and [UO(2)(oxalate)(2)(H(2)O)](2-) indicates that the entering/leaving water molecules are located outside the plane formed by the spectator ligands.

  5. A Grand Canonical Monte Carlo simulation program for computing ion distributions around biomolecules in hard sphere solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The GIBS software program is a Grand Canonical Monte Carlo (GCMC) simulation program (written in C++) that can be used for 1) computing the excess chemical potential of ions and the mean activity coefficients of salts in homogeneous electrolyte solutions; and, 2) for computing the distribution of ions around fixed macromolecules such as, nucleic acids and proteins. The solvent can be represented as neutral hard spheres or as a dielectric continuum. The ions are represented as charged hard spheres that can interact via Coulomb, hard-sphere, or Lennard-Jones potentials. In addition to hard-sphere repulsions, the ions can also be made tomore » interact with the solvent hard spheres via short-ranged attractive square-well potentials.« less

  6. Ionic screening and dissociation are crucial for understanding chemical self-propulsion in polar solvents.

    PubMed

    Brown, Aidan T; Poon, Wilson C K; Holm, Christian; de Graaf, Joost

    2017-02-08

    Polar solvents like water support the bulk dissociation of themselves and their solutes into ions, and the re-association of these ions into neutral molecules in a dynamic equilibrium, e.g., H 2 O 2 ⇌ H + + HO 2 - . Using continuum theory, we study the influence of these association-dissociation reactions on the self-propulsion of colloids driven by surface chemical reactions (chemical swimmers). We find that association-dissociation reactions should have a strong influence on swimmers' behaviour, and therefore should be included in future modelling. In particular, such bulk reactions should permit charged swimmers to propel electrophoretically even if all species involved in the surface reactions are neutral. The bulk reactions also significantly modify the predicted speed of chemical swimmers propelled by ionic currents, by up to an order of magnitude. For swimmers whose surface reactions produce both anions and cations (ionic self-diffusiophoresis), the bulk reactions produce an additional reactive screening length, analogous to the Debye length in electrostatics. This in turn leads to an inverse relationship between swimmer radius and swimming speed, which could provide an alternative explanation for recent experimental observations on Pt-polystyrene Janus swimmers [S. Ebbens et al., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2012, 85, 020401]. We also use our continuum theory to investigate the effect of the Debye screening length itself, going beyond the infinitely-thin-screening-length approximation used by previous analytical theories. We identify significant departures from this limiting behaviour for micron-sized swimmers under typical experimental conditions and find that the approximation fails entirely for nanoscale swimmers.

  7. A new finite element and finite difference hybrid method for computing electrostatics of ionic solvated biomolecule

    NASA Astrophysics Data System (ADS)

    Ying, Jinyong; Xie, Dexuan

    2015-10-01

    The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model for calculating electrostatics of ionic solvated biomolecule. In this paper, a new finite element and finite difference hybrid method is presented to solve PBE efficiently based on a special seven-overlapped box partition with one central box containing the solute region and surrounded by six neighboring boxes. In particular, an efficient finite element solver is applied to the central box while a fast preconditioned conjugate gradient method using a multigrid V-cycle preconditioning is constructed for solving a system of finite difference equations defined on a uniform mesh of each neighboring box. Moreover, the PBE domain, the box partition, and an interface fitted tetrahedral mesh of the central box can be generated adaptively for a given PQR file of a biomolecule. This new hybrid PBE solver is programmed in C, Fortran, and Python as a software tool for predicting electrostatics of a biomolecule in a symmetric 1:1 ionic solvent. Numerical results on two test models with analytical solutions and 12 proteins validate this new software tool, and demonstrate its high performance in terms of CPU time and memory usage.

  8. Predicting cyclohexane/water distribution coefficients for the SAMPL5 challenge using MOSCED and the SMD solvation model

    NASA Astrophysics Data System (ADS)

    Diaz-Rodriguez, Sebastian; Bozada, Samantha M.; Phifer, Jeremy R.; Paluch, Andrew S.

    2016-11-01

    We present blind predictions using the solubility parameter based method MOSCED submitted for the SAMPL5 challenge on calculating cyclohexane/water distribution coefficients at 298 K. Reference data to parameterize MOSCED was generated with knowledge only of chemical structure by performing solvation free energy calculations using electronic structure calculations in the SMD continuum solvent. To maintain simplicity and use only a single method, we approximate the distribution coefficient with the partition coefficient of the neutral species. Over the final SAMPL5 set of 53 compounds, we achieved an average unsigned error of 2.2± 0.2 log units (ranking 15 out of 62 entries), the correlation coefficient ( R) was 0.6± 0.1 (ranking 35), and 72± 6 % of the predictions had the correct sign (ranking 30). While used here to predict cyclohexane/water distribution coefficients at 298 K, MOSCED is broadly applicable, allowing one to predict temperature dependent infinite dilution activity coefficients in any solvent for which parameters exist, and provides a means by which an excess Gibbs free energy model may be parameterized to predict composition dependent phase-equilibrium.

  9. Modeling deformation and chaining of flexible shells in a nematic solvent with finite elements on an adaptive moving mesh

    NASA Astrophysics Data System (ADS)

    DeBenedictis, Andrew; Atherton, Timothy J.; Rodarte, Andrea L.; Hirst, Linda S.

    2018-03-01

    A micrometer-scale elastic shell immersed in a nematic liquid crystal may be deformed by the host if the cost of deformation is comparable to the cost of elastic deformation of the nematic. Moreover, such inclusions interact and form chains due to quadrupolar distortions induced in the host. A continuum theory model using finite elements is developed for this system, using mesh regularization and dynamic refinement to ensure quality of the numerical representation even for large deformations. From this model, we determine the influence of the shell elasticity, nematic elasticity, and anchoring condition on the shape of the shell and hence extract parameter values from an experimental realization. Extending the model to multibody interactions, we predict the alignment angle of the chain with respect to the host nematic as a function of aspect ratio, which is found to be in excellent agreement with experiments.

  10. Effective Particle Size From Molecular Dynamics Simulations in Fluids

    DOE PAGES

    Ju, Jianwei; Welch, Paul Michael Jr.; Rasmussen, Kim Orskov; ...

    2017-12-08

    Here, we report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. Thismore » procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks–Chandler–Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ~0.75σ, where σ defines the length scale of the force interaction (the LJ diameter). The effective “hydrodynamic” radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ, but agree with a value developed from the atomistic analysis of the viscosity of such systems.« less

  11. Effective Particle Size From Molecular Dynamics Simulations in Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Jianwei; Welch, Paul Michael Jr.; Rasmussen, Kim Orskov

    Here, we report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. Thismore » procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks–Chandler–Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ~0.75σ, where σ defines the length scale of the force interaction (the LJ diameter). The effective “hydrodynamic” radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ, but agree with a value developed from the atomistic analysis of the viscosity of such systems.« less

  12. Theoretical study on electronic excitation spectra: A matrix form of numerical algorithm for spectral shift

    NASA Astrophysics Data System (ADS)

    Ming, Mei-Jun; Xu, Long-Kun; Wang, Fan; Bi, Ting-Jun; Li, Xiang-Yuan

    2017-07-01

    In this work, a matrix form of numerical algorithm for spectral shift is presented based on the novel nonequilibrium solvation model that is established by introducing the constrained equilibrium manipulation. This form is convenient for the development of codes for numerical solution. By means of the integral equation formulation polarizable continuum model (IEF-PCM), a subroutine has been implemented to compute spectral shift numerically. Here, the spectral shifts of absorption spectra for several popular chromophores, N,N-diethyl-p-nitroaniline (DEPNA), methylenecyclopropene (MCP), acrolein (ACL) and p-nitroaniline (PNA) were investigated in different solvents with various polarities. The computed spectral shifts can explain the available experimental findings reasonably. Discussions were made on the contributions of solute geometry distortion, electrostatic polarization and other non-electrostatic interactions to spectral shift.

  13. The onset of calcium carbonate nucleation: a density functional theory molecular dynamics and hybrid microsolvation/continuum study.

    PubMed

    Di Tommaso, Devis; de Leeuw, Nora H

    2008-06-12

    Density functional theory (Perdew-Burke-Ernzerhof) based methods have been used to study the structure and hydration environment of the building blocks of CaCO 3 in aqueous solutions of calcium bicarbonate and calcium carbonate. Car-Parrinello molecular dynamics simulations of Ca(2+)/CO3(2-) and Ca (2+)/HCO3(-) in explicit water were performed to investigate the formation of CaCO3 and the hydration shell of the solvated hetero-ion pair. Our simulations show that the formation of the monomer of CaCO3 occurs with an associative mechanism and that the dominant building block of calcium (bi)carbonate in aqueous solution is Ca[eta(1)-(H)CO3](H2O)5, i.e., the preferred hydration number is five, while the (bi)carbonate is coordinated to the calcium in a monodentate mode. This result agrees with static calculations, where a hybrid approach using a combination of explicit solvent molecules and a polarizable continuum model has been applied to compute the solvation free energies of calcium bicarbonate species. Furthermore, the discrete-continuum calculations predict that the Ca(HCO3)2 and Ca(HCO3)3(-) species are stable in an aqueous environment preferentially as Ca(HCO3)2(H2O)4 and Ca(HCO3)3(H2O)2(-), respectively.

  14. Theoretical insight into the solvent effect of H2O and formamide on the cooperativity effect in HMX complex.

    PubMed

    Meng, Rui-Hong; Cao, Xiong; Hu, Shuang-Qi; Hu, Li-Shuang

    2017-08-01

    The cooperativity effects of the H-bonding interactions in HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane)∙∙∙HMX∙∙∙FA (formamide), HMX∙∙∙HMX∙∙∙H 2 O and HMX∙∙∙HMX∙∙∙HMX complexes involving the chair and chair-chair HMX are investigated by using the ONIOM2 (CAM-B3LYP/6-31++G(d,p):PM3) and ONIOM2 (M06-2X/6-31++G(d,p):PM3) methods. The solvent effect of FA or H 2 O on the cooperativity effect in HMX∙∙∙HMX∙∙∙HMX are evaluated by the integral equation formalism polarized continuum model. The results show that the cooperativity and anti-cooperativity effects are not notable in all the systems. Although the effect of solvation on the binding energy of ternary system HMX∙∙∙HMX∙∙∙HMX is not large, that on the cooperativity of H-bonds is notable, which leads to the mutually strengthened H-bonding interaction in solution. This is perhaps the reason for the formation of different conformation of HMX in different solvent. Surface electrostatic potential and reduced density gradient are used to reveal the nature of the solvent effect on cooperativity effect in HMX∙∙∙HMX∙∙∙HMX. Graphical abstract RDG isosurface and electrostatic potential surface of HMX∙∙∙HMX∙∙∙HMX.

  15. First-Principles Molecular Dynamics Studies of Organometallic Complexes and Homogeneous Catalytic Processes.

    PubMed

    Vidossich, Pietro; Lledós, Agustí; Ujaque, Gregori

    2016-06-21

    Computational chemistry is a valuable aid to complement experimental studies of organometallic systems and their reactivity. It allows probing mechanistic hypotheses and investigating molecular structures, shedding light on the behavior and properties of molecular assemblies at the atomic scale. When approaching a chemical problem, the computational chemist has to decide on the theoretical approach needed to describe electron/nuclear interactions and the composition of the model used to approximate the actual system. Both factors determine the reliability of the modeling study. The community dedicated much effort to developing and improving the performance and accuracy of theoretical approaches for electronic structure calculations, on which the description of (inter)atomic interactions rely. Here, the importance of the model system used in computational studies is highlighted through examples from our recent research focused on organometallic systems and homogeneous catalytic processes. We show how the inclusion of explicit solvent allows the characterization of molecular events that would otherwise not be accessible in reduced model systems (clusters). These include the stabilization of nascent charged fragments via microscopic solvation (notably, hydrogen bonding), transfer of charge (protons) between distant fragments mediated by solvent molecules, and solvent coordination to unsaturated metal centers. Furthermore, when weak interactions are involved, we show how conformational and solvation properties of organometallic complexes are also affected by the explicit inclusion of solvent molecules. Such extended model systems may be treated under periodic boundary conditions, thus removing the cluster/continuum (or vacuum) boundary, and require a statistical mechanics simulation technique to sample the accessible configurational space. First-principles molecular dynamics, in which atomic forces are computed from electronic structure calculations (namely, density functional theory), is certainly the technique of choice to investigate chemical events in solution. This methodology is well established and thanks to advances in both algorithms and computational resources simulation times required for the modeling of chemical events are nowadays accessible, though the computational requirements use to be high. Specific applications reviewed here include mechanistic studies of the Shilov and Wacker processes, speciation in Pd chemistry, hydrogen bonding to metal centers, and the dynamics of agostic interactions.

  16. Complexation of nicotinic acid with first generation poly(amidoamine) dendrimers: A microscopic view from density functional theory

    NASA Astrophysics Data System (ADS)

    Badalkhani-Khamseh, Farideh; Bahrami, Aidin; Ebrahim-Habibi, Azadeh; Hadipour, Nasser L.

    2017-09-01

    This study explains some electronic and structural parameters of niacin (NA) encapsulation into PAMAM-G1 dendrimer using DFT calculations. Optimized structural geometries, interaction energies, NMR, NBO, and AIM analyses, in accordance with experiment, revealed that the stability of G1@NA complex can be attributed to the five intermolecular hydrogen bonds formed between the functional groups of G1 and NA. Because of nearing to the experimental results, all the calculations repeated again using a self-consistent reaction field (SCRF) and the polarizable continuum model (PCM) to address the implicit solvent effects and the obtained results were in line with the calculations in gas phase.

  17. Two-photon absorption in oxazole derivatives: An experimental and quantum chemical study

    NASA Astrophysics Data System (ADS)

    Silva, D. L.; De Boni, L.; Correa, D. S.; Costa, S. C. S.; Hidalgo, A. A.; Zilio, S. C.; Canuto, S.; Mendonca, C. R.

    2012-05-01

    Experimental and theoretical studies on the two-photon absorption properties of two oxazole derivatives: 2,5-diphenyloxazole (PPO) and 2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole (PBD) are presented. The two-photon absorption cross-section spectra were determined by means of the Z-scan technique, from 460 up to 650 nm, and reached peak values of 84 GM for PBD and 27 GM for PPO. Density Functional Theory and response function formalism are used to determine the molecular structures and the one- and two-photon absorption properties and to assist in the interpretation of the experimental results. The Polarizable Continuum Model in one-photon absorption calculations is used to estimate solvent effects.

  18. Impact of solvent granularity and layering on tracer hydrodynamics in confinement.

    PubMed

    Bollinger, Jonathan A; Carmer, James; Jain, Avni; Truskett, Thomas M

    2016-11-28

    Classic hydrodynamic arguments establish that when a spherical tracer particle is suspended between parallel walls, tracer-wall coupling mediated by the solvent will cause the tracer to exhibit position-dependent diffusivity. We investigate how the diffusivity profiles of confined tracers are impacted by the diameter size-ratio of the tracer to solvent: starting from the classic limit of infinite size-ratio (i.e., continuum solvent), we consider size-ratios of four or less to examine how hydrodynamic predictions are disrupted for systems where the tracer and solvent are of similar scale. We use computer simulations and techniques based on the Fokker-Planck formalism to calculate the diffusivity profiles of hard-sphere tracer particles in hard-sphere solvents, focusing on the dynamics perpendicular to the walls. Given wall separations of several tracer diameters, we first consider confinement between hard walls, where anisotropic structuring at the solvent lengthscale generates inhomogeneity in the tracer free-energy landscape and undermines hydrodynamic predictions locally. We then introduce confining planes that we term transparent walls, which restrict tracer and solvent center-accessibilities while completely eliminating static anisotropy, and reveal position-dependent signatures in tracer diffusivity solely attributable to confinement. With or without suppressing static heterogeneity, we find that tracer diffusivity increasingly deviates on a local basis from hydrodynamic predictions at smaller size-ratios. However, hydrodynamic theory still approximately captures spatially-averaged dynamics across the pores even for very small tracer-solvent size-ratios over a wide range of solvent densities and wall separations.

  19. Joint density-functional theory for energetics and spectroscopy in complex aqueous and nonaqueous solvents

    NASA Astrophysics Data System (ADS)

    Gunceler, Deniz

    Solvents are of great importance in many technological applications, but are difficult to study using standard, off-the-shelf ab initio electronic structure methods. This is because a single configuration of molecular positions in the solvent (a "snapshot" of the fluid) is not necessarily representative of the thermodynamic average. To obtain any thermodynamic averages (e.g. free energies), the phase space of the solvent must be sampled, typically using molecular dynamics. This greatly increases the computational cost involved in studying solvated systems. Joint density-functional theory has made its mark by being a computationally efficient yet rigorous theory by which to study solvation. It replaces the need for thermodynamic sampling with an effective continuum description of the solvent environment that is in-principle exact, computationally efficient and intuitive (easier to interpret). It has been very successful in aqueous systems, with potential applications in (among others) energy materials discovery, catalysis and surface science. In this dissertation, we develop accurate and fast joint density functional theories for complex, non-aqueous solvent enviroments, including organic solvents and room temperature ionic liquids, as well as new methods for calculating electron excitation spectra in such systems. These theories are then applied to a range of physical problems, from dendrite formation in lithium-metal batteries to the optical spectra of solvated ions.

  20. An Engineered Membrane to Measure Electroporation: Effect of Tethers and Bioelectronic Interface

    PubMed Central

    Hoiles, William; Krishnamurthy, Vikram; Cranfield, Charles G.; Cornell, Bruce

    2014-01-01

    This article reports on the construction and predictive models for a platform comprised of an engineered tethered membrane. The platform provides a controllable and physiologically relevant environment for the study of the electroporation process. The mixed self-assembled membrane is formed via a rapid solvent exchange technique. The membrane is tethered to the gold electrode and includes an ionic reservoir separating the membrane and gold surface. Above the membrane, there is an electrolyte solution, and a gold counterelectrode. A voltage is applied between the gold electrodes and the current measured. The current is dependent on the energy required to form aqueous pores and the conductance of each pore. A two-level predictive model, consisting of a macroscopic and a continuum model, is developed to relate the pore dynamics to the measured current. The macroscopic model consists of an equivalent circuit model of the tethered membrane, and asymptotic approximations to the Smoluchowski-Einstein equation of electroporation that is dependent on the pore conductance and the energy required to form aqueous pores. The continuum model is a generalized Poisson-Nernst-Planck (GPNP) system where an activity coefficient to account for steric effects of ions is added to the standard PNP system. The GPNP is used to evaluate the conductance of aqueous pores, and the electrical energy required to form the pores. As an outcome of the setup of the device and the two-level model, biologically important variables can be estimated from experimental measurements. To validate the accuracy of the two-level model, the predicted current is compared with experimentally measured current for different tethering densities. PMID:25229142

  1. Unusual solvent effect on a SN2 reaction. A quantum-mechanical and kinetic study of the Menshutkin reaction between 2-amino-1-methylbenzimidazole and iodomethane in the gas phase and in acetonitrile.

    PubMed

    Melo, André; Alfaia, António J I; Reis, João Carlos R; Calado, António R T

    2006-02-02

    The quaternization reaction between 2-amino-1-methylbenzimidazole and iodomethane was investigated in the gas phase and in liquid acetonitrile. Both experimental and theoretical techniques were used in this study. In the experimental part of this work, accurate second-order rate constants were obtained for this reaction in acetonitrile from conductivity data in the 293-323 K temperature range and at ambient pressure. From two different empirical equations describing the effect of temperature on reaction rates, thermodynamic functions of activation were calculated. In the theoretical part of this work, the mechanism of this reaction was investigated in the gas phase and in acetonitrile. Two different quantum levels (B3LYP/[6-311++G(3df,3pd)/LanL2DZ]//B3LYP/[6-31G(d)/LanL2DZ] and B3LYP/[6-311++G(3df,3pd)/LanL2DZ]//B3LYP/[6-31+G(d)/LanL2DZ]) were used in the calculations, and the acetonitrile environment was modeled using the polarized continuum model (PCM). In addition, an atoms in molecules (AIM) analysis was made aiming to characterize possible hydrogen bonding. The results obtained by both techniques are in excellent agreement and lead to new insight into the mechanism of the reaction under examination. These include the identification and thermodynamic characterization of the relevant stationary species, the rationalization of the mechanistic role played by the solvent and the amine group adjacent to the nucleophile nitrogen atom, the proposal of alternative paths on the modeled potential energy surfaces, and the origin of the marked non-Arrhenius behavior of the kinetic data in solvent acetonitrile. In particular, the AIM analysis confirmed the operation of intermolecular hydrogen bonds between reactants and between products, both in the gas phase and in solution. It is also concluded that the unusual solvent effect on this Menshutkin reaction stems from the conjunction of a nucleophile possessing a relatively complex chemical structure with a dipolar aprotic solvent that is protophobic.

  2. Hydration structure of the α-chymotrypsin substrate binding pocket: the impact of constrained geometry

    NASA Astrophysics Data System (ADS)

    Carey, Christina; Cheng, Yuen-Kit; Rossky, Peter J.

    2000-08-01

    The concave substrate binding pocket of α-chymotrypsin binds specifically hydrophobic side chains. In order to understand the hydration structure present in the absence of substrate, and elucidate the character of the solvent displaced on binding, molecular dynamics computer simulation of the solvent in a fully hydrated protein has been carried out and analyzed. The pocket is found to be characterized in terms of a mixed polar and apolar macromolecular surface. It is shown that the simulated solvent structure within it is spatially consistent with that seen via crystallography. The solvent structure is energetically characterized by large losses in hydrogen bonding among solvent molecules except at the mouth of the pocket where exposure to bulk-like solvent is possible. The loss in hydrogen bonding is attributed to the highly constrained geometry available to the solvent, preventing formation of a hydrogen bonding network, with only partial compensation by interactions with the macromolecular surface. The solvent displacement concomitant with substrate binding will therefore be associated with a large enthalpic driving force. This result is at the extreme of a continuum of variable cases of "hydrophobic" hydration, which differ most basically in surface curvature. These range from convex solute surfaces, inducing clathrate-like structures, with negligible hydrogen bond loss, to flat surfaces with significant interfacial loss, to the present concave case with hydrogen bonding losses exceeding 50%.

  3. Investigation of solvent polarity effect on molecular structure and vibrational spectrum of xanthine with the aid of quantum chemical computations.

    PubMed

    Polat, Turgay; Yıldırım, Gurcan

    2014-04-05

    The main scope of this study is to determine the effects of 8 solvents on the geometric structure and vibrational spectra of the title compound, xanthine, by means of the DFT/B3LYP level of theory in the combination with the polarizable conductor continuum model (CPCM) for the first time. After determination of the most-steady state (favored structure) of the xanthine molecule, the role of the solvent polarity on the SCF energy (for the molecule stability), atomic charges (for charge distribution) and dipole moments (for molecular charge transfer) belonging to tautomer is discussed in detail. The results obtained indicate not only the presence of the hydrogen bonding and strong intra-molecular charge transfer (ICT) in the compound but the increment of the molecule stability with the solvent polarity, as well. Moreover, it is noted that the optimized geometric parameters and the theoretical vibrational frequencies are in good agreement with the available experimental results found in the literature. In fact, the correlations between the experimental and theoretical findings for the molecular structures improve with the enhancement of the solvent polarity. At the same time, the dimer forms of the xanthine compound are simulated to describe the effect of intermolecular hydrogen bonding on the molecular geometry and vibrational frequencies. It is found that the CO and NH stretching vibrations shift regularly to lower frequency value with higher IR intensity as the dielectric medium enhances systematically due to the intermolecular NH⋯O hydrogen bonds. Theoretical vibrational spectra are also assigned based on the potential energy distribution (PED) using the VEDA 4 program. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Solvation behavior of carbonate-based electrolytes in sodium ion batteries.

    PubMed

    Cresce, Arthur V; Russell, Selena M; Borodin, Oleg; Allen, Joshua A; Schroeder, Marshall A; Dai, Michael; Peng, Jing; Gobet, Mallory P; Greenbaum, Steven G; Rogers, Reginald E; Xu, Kang

    2016-12-21

    Sodium ion batteries are on the cusp of being a commercially available technology. Compared to lithium ion batteries, sodium ion batteries can potentially offer an attractive dollar-per-kilowatt-hour value, though at the penalty of reduced energy density. As a materials system, sodium ion batteries present a unique opportunity to apply lessons learned in the study of electrolytes for lithium ion batteries; specifically, the behavior of the sodium ion in an organic carbonate solution and the relationship of ion solvation with electrode surface passivation. In this work the Li + and Na + -based solvates were characterized using electrospray mass spectrometry, infrared and Raman spectroscopy, 17 O, 23 Na and pulse field gradient double-stimulated-echo pulse sequence nuclear magnetic resonance (NMR), and conductivity measurements. Spectroscopic evidence demonstrate that the Li + and Na + cations share a number of similar ion-solvent interaction trends, such as a preference in the gas and liquid phase for a solvation shell rich in cyclic carbonates over linear carbonates and fluorinated carbonates. However, quite different IR spectra due to the PF 6 - anion interactions with the Na + and Li + cations were observed and were rationalized with the help of density functional theory (DFT) calculations that were also used to examine the relative free energies of solvates using cluster - continuum models. Ion-solvent distances for Na + were longer than Li + , and Na + had a greater tendency towards forming contact pairs compared to Li + in linear carbonate solvents. In tests of hard carbon Na-ion batteries, performance was not well correlated to Na + solvent preference, leading to the possibility that Na + solvent preference may play a reduced role in the passivation of anode surfaces and overall Na-ion battery performance.

  5. The wet solidus of silica: Predictions from the scaled particle theory and polarized continuum model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ottonello, G., E-mail: giotto@dipteris.unige.it; Vetuschi Zuccolini, M.; Richet, P.

    2015-02-07

    We present an application of the Scaling Particle Theory (SPT) coupled with an ab initio assessment of the electronic, dispersive, and repulsive energy terms based on the Polarized Continuum Model (PCM) aimed at reproducing the observed solubility behavior of OH{sub 2} over the entire compositional range from pure molten silica to pure water and wide pressure and temperature regimes. It is shown that the solution energy is dominated by cavitation terms, mainly entropic in nature, which cause a large negative solution entropy and a consequent marked increase of gas phase fugacity with increasing temperatures. Besides, the solution enthalpy is negativemore » and dominated by electrostatic terms which depict a pseudopotential well whose minimum occurs at a low water fraction (X{sub H{sub 2O}}) of about 6 mol. %. The fine tuning of the solute-solvent interaction is achieved through very limited adjustments of the electrostatic scaling factor γ{sub el} which, in pure water, is slightly higher than the nominal value (i.e., γ{sub el}  =  1.224 against 1.2), it attains its minimum at low H{sub 2}O content (γ{sub el} = 0.9958) and then rises again at infinite dilution (γ{sub el}   =  1.0945). The complex solution behavior is interpreted as due to the formation of energetically efficient hydrogen bonding when OH functionals are in appropriate amount and relative positioning with respect to the discrete OH{sub 2} molecules, reinforcing in this way the nominal solute-solvent inductive interaction. The interaction energy derived from the SPT-PCM calculations is then recast in terms of a sub-regular Redlich-Kister expansion of appropriate order whereas the thermodynamic properties of the H{sub 2}O component at its standard state (1-molal solution referred to infinite dilution) are calculated from partial differentiation of the solution energy over the intensive variables.« less

  6. A priori calculations of the free energy of formation from solution of polymorphic self-assembled monolayers

    PubMed Central

    Reimers, Jeffrey R.; Panduwinata, Dwi; Visser, Johan; Chin, Yiing; Tang, Chunguang; Goerigk, Lars; Ford, Michael J.; Sintic, Maxine; Sum, Tze-Jing; Coenen, Michiel J. J.; Hendriksen, Bas L. M.; Elemans, Johannes A. A. W.; Hush, Noel S.; Crossley, Maxwell J.

    2015-01-01

    Modern quantum chemical electronic structure methods typically applied to localized chemical bonding are developed to predict atomic structures and free energies for meso-tetraalkylporphyrin self-assembled monolayer (SAM) polymorph formation from organic solution on highly ordered pyrolytic graphite surfaces. Large polymorph-dependent dispersion-induced substrate−molecule interactions (e.g., −100 kcal mol−1 to −150 kcal mol−1 for tetratrisdecylporphyrin) are found to drive SAM formation, opposed nearly completely by large polymorph-dependent dispersion-induced solvent interactions (70–110 kcal mol−1) and entropy effects (25–40 kcal mol−1 at 298 K) favoring dissolution. Dielectric continuum models of the solvent are used, facilitating consideration of many possible SAM polymorphs, along with quantum mechanical/molecular mechanical and dispersion-corrected density functional theory calculations. These predict and interpret newly measured and existing high-resolution scanning tunnelling microscopy images of SAM structure, rationalizing polymorph formation conditions. A wide range of molecular condensed matter properties at room temperature now appear suitable for prediction and analysis using electronic structure calculations. PMID:26512115

  7. Ionic strength independence of charge distributions in solvation of biomolecules

    NASA Astrophysics Data System (ADS)

    Virtanen, J. J.; Sosnick, T. R.; Freed, K. F.

    2014-12-01

    Electrostatic forces enormously impact the structure, interactions, and function of biomolecules. We perform all-atom molecular dynamics simulations for 5 proteins and 5 RNAs to determine the dependence on ionic strength of the ion and water charge distributions surrounding the biomolecules, as well as the contributions of ions to the electrostatic free energy of interaction between the biomolecule and the surrounding salt solution (for a total of 40 different biomolecule/solvent combinations). Although water provides the dominant contribution to the charge density distribution and to the electrostatic potential even in 1M NaCl solutions, the contributions of water molecules and of ions to the total electrostatic interaction free energy with the solvated biomolecule are comparable. The electrostatic biomolecule/solvent interaction energies and the total charge distribution exhibit a remarkable insensitivity to salt concentrations over a huge range of salt concentrations (20 mM to 1M NaCl). The electrostatic potentials near the biomolecule's surface obtained from the MD simulations differ markedly, as expected, from the potentials predicted by continuum dielectric models, even though the total electrostatic interaction free energies are within 11% of each other.

  8. Study on structural and spectral properties of isobavachalcone and 4-hydroxyderricin by computational method

    NASA Astrophysics Data System (ADS)

    Rong, Yuzhi; Wu, Jinhong; Liu, Xing; Zhao, Bo; Wang, Zhengwu

    Isobavachalcone and 4-hydroxyderricin, two major chalcone constituents isolated from the roots of Angelica keiskei KOIDZUMI, exhibit numerous biological activities. Quantum chemical methods have been employed to investigate their structural and spectral properties. The ground state structures were optimized using density functional B3LYP method with 6-311G (d, p) basis set in both gas and solvent phases. Based on the optimized geometries, the harmonic vibrational frequency, the 1H and 13C nuclear magnetic resonance (NMR) chemical shift using the GIAO method were calculated at the same level of theory, with the aim of verifying the experimental values. Results reveal that B3LYP has been a good method to study their vibrational spectroscopic and NMR spectral properties of the two chalcones. The electronic absorption spectra were calculated using the time-dependent density functional theory (TDDFT) method. The solvent polarity effects were considered and calculated using the polarizable continuum model (PCM). Results also show that substitutions of different electron donating groups can alter the absorption properties and shift the spectra to a higher wavelength region.

  9. Computer-assisted design and synthesis of a highly selective smart adsorbent for extraction of clonazepam from human serum.

    PubMed

    Aqababa, Heydar; Tabandeh, Mehrdad; Tabatabaei, Meisam; Hasheminejad, Meisam; Emadi, Masoomeh

    2013-01-01

    A computational approach was applied to screen functional monomers and polymerization solvents for rational design of molecular imprinted polymers (MIPs) as smart adsorbents for solid-phase extraction of clonazepam (CLO) form human serum. The comparison of the computed binding energies of the complexes formed between the template and functional monomers was conducted. The primary computational results were corrected by taking into calculation both the basis set superposition error (BSSE) and the effect of the polymerization solvent using the counterpoise (CP) correction and the polarizable continuum model, respectively. Based on the theoretical calculations, trifluoromethyl acrylic acid (TFMAA) and acrylonitrile (ACN) were found as the best and the worst functional monomers, correspondingly. To test the accuracy of the computational results, three MIPs were synthesized by different functional monomers and their Langmuir-Freundlich (LF) isotherms were studied. The experimental results obtained confirmed the computational results and indicated that the MIP synthesized using TFMAA had the highest affinity for CLO in human serum despite the presence of a vast spectrum of ions. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Particle-based membrane model for mesoscopic simulation of cellular dynamics

    NASA Astrophysics Data System (ADS)

    Sadeghi, Mohsen; Weikl, Thomas R.; Noé, Frank

    2018-01-01

    We present a simple and computationally efficient coarse-grained and solvent-free model for simulating lipid bilayer membranes. In order to be used in concert with particle-based reaction-diffusion simulations, the model is purely based on interacting and reacting particles, each representing a coarse patch of a lipid monolayer. Particle interactions include nearest-neighbor bond-stretching and angle-bending and are parameterized so as to reproduce the local membrane mechanics given by the Helfrich energy density over a range of relevant curvatures. In-plane fluidity is implemented with Monte Carlo bond-flipping moves. The physical accuracy of the model is verified by five tests: (i) Power spectrum analysis of equilibrium thermal undulations is used to verify that the particle-based representation correctly captures the dynamics predicted by the continuum model of fluid membranes. (ii) It is verified that the input bending stiffness, against which the potential parameters are optimized, is accurately recovered. (iii) Isothermal area compressibility modulus of the membrane is calculated and is shown to be tunable to reproduce available values for different lipid bilayers, independent of the bending rigidity. (iv) Simulation of two-dimensional shear flow under a gravity force is employed to measure the effective in-plane viscosity of the membrane model and show the possibility of modeling membranes with specified viscosities. (v) Interaction of the bilayer membrane with a spherical nanoparticle is modeled as a test case for large membrane deformations and budding involved in cellular processes such as endocytosis. The results are shown to coincide well with the predicted behavior of continuum models, and the membrane model successfully mimics the expected budding behavior. We expect our model to be of high practical usability for ultra coarse-grained molecular dynamics or particle-based reaction-diffusion simulations of biological systems.

  11. Chemical association in simple models of molecular and ionic fluids. III. The cavity function

    NASA Astrophysics Data System (ADS)

    Zhou, Yaoqi; Stell, George

    1992-01-01

    Exact equations which relate the cavity function to excess solvation free energies and equilibrium association constants are rederived by using a thermodynamic cycle. A zeroth-order approximation, derived previously by us as a simple interpolation scheme, is found to be very accurate if the associative bonding occurs on or near the surface of the repulsive core of the interaction potential. If the bonding radius is substantially less than the core radius, the approximation overestimates the association degree and the association constant. For binary association, the zeroth-order approximation is equivalent to the first-order thermodynamic perturbation theory (TPT) of Wertheim. For n-particle association, the combination of the zeroth-order approximation with a ``linear'' approximation (for n-particle distribution functions in terms of the two-particle function) yields the first-order TPT result. Using our exact equations to go beyond TPT, near-exact analytic results for binary hard-sphere association are obtained. Solvent effects on binary hard-sphere association and ionic association are also investigated. A new rule which generalizes Le Chatelier's principle is used to describe the three distinct forms of behaviors involving solvent effects that we find. The replacement of the dielectric-continuum solvent model by a dipolar hard-sphere model leads to improved agreement with an experimental observation. Finally, equation of state for an n-particle flexible linear-chain fluid is derived on the basis of a one-parameter approximation that interpolates between the generalized Kirkwood superposition approximation and the linear approximation. A value of the parameter that appears to be near optimal in the context of this application is obtained from comparison with computer-simulation data.

  12. Does Harcus-Hush theory really work The solvent dependence of intervalence charge-transfer energetics in (NH[sub 3])[sub 5]Ru[sup II]-4,4'-bipyridine-Ru[sup III](NH[sub 3] )[sub 5][sup 5+] in the limit of infinite dilution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hupp, J.T.; Dong, Y.; Blackbourn, R.L.

    1993-04-01

    Because of concern about ion-pairing artifacts, the solvent dependence of the intervalence charge-transfer absorption energy for a prototypical mixed-valence system, (NH[sub 3])[sub 5]Ru[sup III]-4,4'-bipyridine-Ru[sup II](NH[sub 3])[sub 5][sup 5+], has been reexamined in the limit of infinite dilution. New data are reported for 14 solvents. While one of these (hexamethylphosphoramide) yields anomalous energetics, the absorption energies for the remaining 13 solvents agree qualitatively with the predictions of the Marcus-Hush theory (i.e., two-sphere dielectric continuum theory). On a quantitative basis, however, there is substantial disagreement with theory, at least when the charge-transfer distance is equated with the metal-to-metal separation distance (as conventionallymore » done). Replacement of this distance with a much shorter distance inferred from by electronic Stark-effect spectroscopy leads to a 3-fold decrease in the magnitude of calculated solvent reorganizational contributions to the overall intervalence energy (and therefore, very good agreement with experiment). Unfortunately, the use of such a short charge-transfer distance (d = 5.1 [+-] 0.7 A) also leads to a violation of one of the boundary conditions for use of the two-sphere model. Reformulation of the problem in terms of a generalized dipole-inversion, dielectric cavity problem, however, leads to nearly perfect agreement between theory and experiment. Additional analysis shows that experiment now also agrees reasonably well with theory regarding the magnitude of solvent-independent energy contributions. Finally, it is noted that downward revision in the estimated charge-transfer distance (from 11.3 to 5.1 A) leads to a substantial upward revision in the experimental (i.e., oscillator-strength based) estimate of the electronic coupling element, H[sub if], for intervalence transfer. 33 refs., 3 figs., 2 tabs.« less

  13. Theoretical study of chain transfer to solvent reactions of alkyl acrylates.

    PubMed

    Moghadam, Nazanin; Srinivasan, Sriraj; Grady, Michael C; Rappe, Andrew M; Soroush, Masoud

    2014-07-24

    This computational and theoretical study deals with chain transfer to solvent (CTS) reactions of methyl acrylate (MA), ethyl acrylate (EA), and n-butyl acrylate (n-BA) self-initiated homopolymerization in solvents such as butanol (polar, protic), methyl ethyl ketone (MEK) (polar, aprotic), and p-xylene (nonpolar). The results indicate that abstraction of a hydrogen atom from the methylene group next to the oxygen atom in n-butanol, from the methylene group in MEK, and from a methyl group in p-xylene by a live polymer chain are the most likely mechanisms of CTS reactions in MA, EA, and n-BA. Energy barriers and molecular geometries of reactants, products, and transition states are predicted. The sensitivity of the predictions to three hybrid functionals (B3LYP, X3LYP, and M06-2X) and three different basis sets (6-31G(d,p), 6-311G(d), and 6-311G(d,p)) is investigated. Among n-butanol, sec-butanol, and tert-butanol, tert-butanol has the highest CTS energy barrier and the lowest rate constant. Although the application of the conductor-like screening model (COSMO) does not affect the predicted CTS kinetic parameter values, the application of the polarizable continuum model (PCM) results in higher CTS energy barriers. This increase in the predicted CTS energy barriers is larger for butanol and MEK than for p-xylene. The higher rate constants of chain transfer to n-butanol reactions compared to those of chain transfer to MEK and p-xylene reactions suggest the higher CTS reactivity of n-butanol.

  14. Derivation of a hydrodynamic theory for mesoscale dynamics in microswimmer suspensions

    NASA Astrophysics Data System (ADS)

    Reinken, Henning; Klapp, Sabine H. L.; Bär, Markus; Heidenreich, Sebastian

    2018-02-01

    In this paper, we systematically derive a fourth-order continuum theory capable of reproducing mesoscale turbulence in a three-dimensional suspension of microswimmers. We start from overdamped Langevin equations for a generic microscopic model (pushers or pullers), which include hydrodynamic interactions on both small length scales (polar alignment of neighboring swimmers) and large length scales, where the solvent flow interacts with the order parameter field. The flow field is determined via the Stokes equation supplemented by an ansatz for the stress tensor. In addition to hydrodynamic interactions, we allow for nematic pair interactions stemming from excluded-volume effects. The results here substantially extend and generalize earlier findings [S. Heidenreich et al., Phys. Rev. E 94, 020601 (2016), 10.1103/PhysRevE.94.020601], in which we derived a two-dimensional hydrodynamic theory. From the corresponding mean-field Fokker-Planck equation combined with a self-consistent closure scheme, we derive nonlinear field equations for the polar and the nematic order parameter, involving gradient terms of up to fourth order. We find that the effective microswimmer dynamics depends on the coupling between solvent flow and orientational order. For very weak coupling corresponding to a high viscosity of the suspension, the dynamics of mesoscale turbulence can be described by a simplified model containing only an effective microswimmer velocity.

  15. RNA and Its Ionic Cloud: Solution Scattering Experiments and Atomically Detailed Simulations

    PubMed Central

    Kirmizialtin, Serdal; Pabit, Suzette A.; Meisburger, Steve P.; Pollack, Lois; Elber, Ron

    2012-01-01

    RNA molecules play critical roles in many cellular processes. Traditionally viewed as genetic messengers, RNA molecules were recently discovered to have diverse functions related to gene regulation and expression. RNA also has great potential as a therapeutic and a tool for further investigation of gene regulation. Metal ions are an integral part of RNA structure and should be considered in any experimental or theoretical study of RNA. Here, we report a multidisciplinary approach that combines anomalous small-angle x-ray scattering and molecular-dynamics (MD) simulations with explicit solvent and ions around RNA. From experiment and simulation results, we find excellent agreement in the number and distribution of excess monovalent and divalent ions around a short RNA duplex. Although similar agreement can be obtained from a continuum description of the solvent and mobile ions (by solving the Poisson-Boltzmann equation and accounting for finite ion size), the use of MD is easily extended to flexible RNA systems with thermal fluctuations. Therefore, we also model a short RNA pseudoknot and find good agreement between the MD results and the experimentally derived solution structures. Surprisingly, both deviate from crystal structure predictions. These favorable comparisons of experiment and simulations encourage work on RNA in all-atom dynamic models. PMID:22385853

  16. Theory of polyelectrolytes in solvents.

    PubMed

    Chitanvis, Shirish M

    2003-12-01

    Using a continuum description, we account for fluctuations in the ionic solvent surrounding a Gaussian, charged chain and derive an effective short-ranged potential between the charges on the chain. This potential is repulsive at short separations and attractive at longer distances. The chemical potential can be derived from this potential. When the chemical potential is positive, it leads to a meltlike state. For a vanishingly low concentration of segments, this state exhibits scaling behavior for long chains. The Flory exponent characterizing the radius of gyration for long chains is calculated to be approximately 0.63, close to the classical value obtained for second order phase transitions. For short chains, the radius of gyration varies linearly with N, the chain length, and is sensitive to the parameters in the interaction potential. The linear dependence on the chain length N indicates a stiff behavior. The chemical potential associated with this interaction changes sign, when the screening length in the ionic solvent exceeds a critical value. This leads to condensation when the chemical potential is negative. In this state, it is shown using the mean-field approximation that spherical and toroidal condensed shapes can be obtained. The thickness of the toroidal polyelectrolyte is studied as a function of the parameters of the model, such as the ionic screening length. The predictions of this theory should be amenable to experimental verification.

  17. Location of protons in N-H···N hydrogen-bonded systems: a theoretical study on intramolecular pyridine-dihydropyridine and pyridine-pyridinium pairs.

    PubMed

    Mori, Yukie; Takano, Keiko

    2012-08-21

    Two-dimensional potential energy surfaces (PESs) were calculated for the degenerate intramolecular proton transfer (PT) in two N-H···N hydrogen-bonded systems, (Z)-2-(2-pyridylmethylidene)-1,2-dihydropyridine (1) and monoprotonated di(2-pyridyl) ether (2), at the MP2/cc-pVDZ level of theory. The calculated PES had two minima in both cases. The energy barrier in 1 was higher than the zero-point energy (ZPE) level, while that in 2 was close to the ZPE. Vibrational wavefunctions were obtained by solving time-independent Schrödinger equations with the calculated PESs. The maximum points of the probability density were shifted from the energy minima towards the region where the covalent N-H bond was elongated and the N···N distance shortened. The effects of a polar solvent on the PES were investigated with the continuum or cluster models in such a way that the solute-solvent electrostatic interactions could be taken into account under non-equilibrated conditions. A solvated contact ion-pair was modelled by a cluster consisting of one cation 2, one chloride ion and 26 molecules of acetonitrile. The calculation with this model suggested that the bridging proton is localised in the deeper well due to the significant asymmetry of the PES and the high potential barrier.

  18. Continuum modeling of large lattice structures: Status and projections

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Mikulas, Martin M., Jr.

    1988-01-01

    The status and some recent developments of continuum modeling for large repetitive lattice structures are summarized. Discussion focuses on a number of aspects including definition of an effective substitute continuum; characterization of the continuum model; and the different approaches for generating the properties of the continuum, namely, the constitutive matrix, the matrix of mass densities, and the matrix of thermal coefficients. Also, a simple approach is presented for generating the continuum properties. The approach can be used to generate analytic and/or numerical values of the continuum properties.

  19. Phosphoryl Transfer Reaction in RNA in Alkaline Conditions.

    PubMed

    Bertran, Joan; Oliva, Antoni; Branchadell, Vicenç; Acosta-Silva, Carles

    2018-06-25

    In this work we have studied the phosphoryl transfer reaction in RNA in alkaline conditions by theoretically exploring the influence of several solvents. The calculations have been carried out using the M06-2X functional while the solvents are taken as a continuum using the SMD method. The main results are that the O2'-P-O5' angle in the reactants, the free activation energies and the reaction mechanism are clearly dependent on the dielectric constant of the environment, thus showing that the electrostatic term is determining for this chemical system with two negative charges. Our study seems to indicate that water, the solvent with the greatest dielectric constant, would be the one that mostly increases the reaction rate. As this is not the case in enzymatic catalysis, one has to conclude that, in the case of proteins as well as in the case of ribozymes, the enzymatic catalysis is not mainly due to the solvent reaction field, but to local electrical fields due to the enzyme preorganization. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Investigating effects of sample pretreatment on protein stability using size-exclusion chromatography and high-resolution continuum source atomic absorption spectrometry.

    PubMed

    Rakow, Tobias; El Deeb, Sami; Hahne, Thomas; El-Hady, Deia Abd; AlBishri, Hassan M; Wätzig, Hermann

    2014-09-01

    In this study, size-exclusion chromatography and high-resolution atomic absorption spectrometry methods have been developed and evaluated to test the stability of proteins during sample pretreatment. This especially includes different storage conditions but also adsorption before or even during the chromatographic process. For the development of the size exclusion method, a Biosep S3000 5 μm column was used for investigating a series of representative model proteins, namely bovine serum albumin, ovalbumin, monoclonal immunoglobulin G antibody, and myoglobin. Ambient temperature storage was found to be harmful to all model proteins, whereas short-term storage up to 14 days could be done in an ordinary refrigerator. Freezing the protein solutions was always complicated and had to be evaluated for each protein in the corresponding solvent. To keep the proteins in their native state a gentle freezing temperature should be chosen, hence liquid nitrogen should be avoided. Furthermore, a high-resolution continuum source atomic absorption spectrometry method was developed to observe the adsorption of proteins on container material and chromatographic columns. Adsorption to any container led to a sample loss and lowered the recovery rates. During the pretreatment and high-performance size-exclusion chromatography, adsorption caused sample losses of up to 33%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Continuum Fatigue Damage Modeling for Use in Life Extending Control

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.

    1994-01-01

    This paper develops a simplified continuum (continuous wrp to time, stress, etc.) fatigue damage model for use in Life Extending Controls (LEC) studies. The work is based on zero mean stress local strain cyclic damage modeling. New nonlinear explicit equation forms of cyclic damage in terms of stress amplitude are derived to facilitate the continuum modeling. Stress based continuum models are derived. Extension to plastic strain-strain rate models are also presented. Application of these models to LEC applications is considered. Progress toward a nonzero mean stress based continuum model is presented. Also, new nonlinear explicit equation forms in terms of stress amplitude are also derived for this case.

  2. Catalytic dimer nanomotors: continuum theory and microscopic dynamics.

    PubMed

    Reigh, Shang Yik; Kapral, Raymond

    2015-04-28

    Synthetic chemically-powered motors with various geometries have potentially new applications involving dynamics on very small scales. Self-generated concentration and fluid flow fields, which depend on geometry, play essential roles in motor dynamics. Sphere-dimer motors, comprising linked catalytic and noncatalytic spheres, display more complex versions of such fields, compared to the often-studied spherical Janus motors. By making use of analytical continuum theory and particle-based simulations we determine the concentration fields, and both the complex structure of the near-field and point-force dipole nature of the far-field behavior of the solvent velocity field that are important for studies of collective motor motion. We derive the dependence of motor velocity on geometric factors such as sphere size and dimer bond length and, thus, show how to construct motors with specific characteristics.

  3. Development of a conformational search strategy for flexible ligands: A study of the potent μ-selective opioid analgesic fentanyl

    NASA Astrophysics Data System (ADS)

    Cometta-Morini, Chiara; Loew, Gilda H.

    1991-08-01

    An extensive conformational search of the potent opioid analgesic, fentanyl, was performed using the semiempirical quantum mechanical method AM1 and the CHARMm potential energy function. A combination of two procedures was used to search the conformational space for fentanyl, which included nested dihedral scans, geometry optimization and molecular dynamics simulation at different temperatures. In addition, the effect of a continuum solvent environment was taken into account by use of appropriate values for the dielectric constant in the CHARMm computations. The results of the conformational search allowed the determination of the probable conformation of fentanyl in polar and nonpolar solvents and of three candidate conformers for its bioactive form.

  4. Phoretic self-propulsion: a mesoscopic description of reaction dynamics that powers motion.

    PubMed

    de Buyl, Pierre; Kapral, Raymond

    2013-02-21

    The fabrication of synthetic self-propelled particles and the experimental investigations of their dynamics have stimulated interest in self-generated phoretic effects that propel nano- and micron-scale objects. Theoretical modeling of these phenomena is often based on a continuum description of the solvent for different phoretic propulsion mechanisms, including, self-electrophoresis, self-diffusiophoresis and self-thermophoresis. The work in this paper considers various types of catalytic chemical reaction at the motor surface and in the bulk fluid that come into play in mesoscopic descriptions of the dynamics. The formulation is illustrated by developing the mesoscopic reaction dynamics for exothermic and dissociation reactions that are used to power motor motion. The results of simulations of the self-propelled dynamics of composite Janus particles by these mechanisms are presented.

  5. Interactions in charged colloidal suspensions: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Padidela, Uday Kumar; Behera, Raghu Nath

    2017-07-01

    Colloidal suspensions are extensively used in everyday life and find several applications in the pharmaceutical, chemical, food industries, etc. We present the classical molecular dynamics simulation results of the structural and transport properties of charged colloidal suspensions as a function of its size, charge and concentration. The system is viewed as a two-component (colloids and counterions) primitive model consisting of spherical colloid particle (macroion) and the counterions (micro-particles), which are treated explicitly. The solvent is treated as dielectric continuum. A systematic trend in the radial distribution functions g(r), potential of mean force W(r), different thermodynamic properties and diffusion coefficients is obtained as a function of colloid charge, size and concentration. An attractive minimum in W(r) is obtained at short interparticle distance.

  6. Reduced viscosity for flagella moving in a solution of long polymer chains

    NASA Astrophysics Data System (ADS)

    Zhang, Yuchen; Li, Gaojin; Ardekani, Arezoo M.

    2018-02-01

    The bacterial flagellum thickness is smaller than the radius of gyration of long polymer chain molecules. The flow velocity gradient over the length of polymer chains can be nonuniform and continuum models of polymeric liquids break in this limit. In this work, we use Brownian dynamics simulations to study a rotating helical flagellum in a polymer solution and overcome this limitation. As the polymer size increases, the viscosity experienced by the flagellum asymptotically reduces to the solvent viscosity. The contribution of polymer molecules to the local viscosity in a solution of long polymer chains decreases with the inverse of polymer size to the power 1/2. The difference in viscosity experienced by the bacterial cell body and flagella can predict the nonmonotonic swimming speed of bacteria in polymer solutions.

  7. Optimizing electrostatic field calculations with the Adaptive Poisson-Boltzmann Solver to predict electric fields at protein-protein interfaces II: explicit near-probe and hydrogen-bonding water molecules.

    PubMed

    Ritchie, Andrew W; Webb, Lauren J

    2014-07-17

    We have examined the effects of including explicit, near-probe solvent molecules in a continuum electrostatics strategy using the linear Poisson-Boltzmann equation with the Adaptive Poisson-Boltzmann Solver (APBS) to calculate electric fields at the midpoint of a nitrile bond both at the surface of a monomeric protein and when docked at a protein-protein interface. Results were compared to experimental vibrational absorption energy measurements of the nitrile oscillator. We examined three methods for selecting explicit water molecules: (1) all water molecules within 5 Å of the nitrile nitrogen; (2) the water molecule closest to the nitrile nitrogen; and (3) any single water molecule hydrogen-bonding to the nitrile. The correlation between absolute field strengths with experimental absorption energies were calculated and it was observed that method 1 was only an improvement for the monomer calculations, while methods 2 and 3 were not significantly different from the purely implicit solvent calculations for all protein systems examined. Upon taking the difference in calculated electrostatic fields and comparing to the difference in absorption frequencies, we typically observed an increase in experimental correlation for all methods, with method 1 showing the largest gain, likely due to the improved absolute monomer correlations using that method. These results suggest that, unlike with quantum mechanical methods, when calculating absolute fields using entirely classical models, implicit solvent is typically sufficient and additional work to identify hydrogen-bonding or nearest waters does not significantly impact the results. Although we observed that a sphere of solvent near the field of interest improved results for relative field calculations, it should not be consider a panacea for all situations.

  8. Uranyl extraction by N,N-dialkylamide ligands studied using static and dynamic DFT simulations.

    PubMed

    Sieffert, Nicolas; Wipff, Georges

    2015-02-14

    We report DFT static and dynamic studies on uranyl complexes [UO(2)(NO(3))x(H(2)O)(y)L(z)](2-x) involved in the uranyl extraction from water to an "oil" phase (hexane) by an amide ligand L (N,N-dimethylacetamide). Static DFT results "in solution" (continuum SMD models for water and hexane) predict that the stepwise formation of [UO(2)(NO(3))(2)L(2)] from the UO(2)(H(2)O)(5)(2+) species is energetically favourable, and allow us to compare cis/trans isomers of penta- and hexa-coordinated complexes and key intermediates in the two solvents. DFT-MD simulations of [UO(2)(NO(3))(2)L(2)], [UO(2)(NO(3))(2)(H(2)O)L(2)], and [UO(2)(NO(3))(H(2)O)L(2)](+) species in explicit solvent environments (water, hexane, or the water/hexane interface) represented at the MM or full-DFT level reveal a versatile solvent dependent binding mode of nitrates, also evidenced by metadynamics simulations. In water and at the interface, the latter exchange from bi- to monodentate, via in plane rotational motions in some cases. Remarkably, structures of complexes at the interface are more "water-like" than gas phase- or hexane-like. Thus, the order of U-O(NO(3))/U-O(L) bond distances observed in the gas phase (U-O(nit) < U-OL) is inverted at the interface and in water. Overall, the results are consistent with the experimental observation of uranyl extraction from nitric acid solutions by amide analogues (bearing "fatty" substituents), and allow us to propose possible extraction mechanisms, involving complexation of L "right at the interface". They also point to the importance of the solvent environment and the dynamics on the structure and stability of the complexes.

  9. Predicting Keto-Enol Equilibrium from Combining UV/Visible Absorption Spectroscopy with Quantum Chemical Calculations of Vibronic Structures for Many Excited States. A Case Study on Salicylideneanilines.

    PubMed

    Zutterman, Freddy; Louant, Orian; Mercier, Gabriel; Leyssens, Tom; Champagne, Benoît

    2018-06-21

    Salicylideneanilines are characterized by a tautomer equilibrium, between an enol and a keto form of different colors, at the origin of their remarkable thermochromic, solvatochromic, and photochromic properties. The enol form is usually the most stable but appropriate choice of substituents and conditions (solvent, crystal, host compound) can displace the equilibrium toward the keto form so that there is a need for fast prediction of the keto:enol abundance ratio. Here we demonstrate the reliability of a combined theoretical-experimental method, based on comparing simulated and measured UV/visible absorption spectra, to determine this keto/enol ratio. The calculations of the excitation energies, oscillator strengths, and vibronic structures of both enol and keto forms are performed for all excited states absorbing in the relevant (visible and near-UV) wavelength range at the time-dependent density functional theory level by accounting for solvent effects using the polarizable continuum model. This approach is illustrated for two salicylideneaniline derivatives, which are present, in solution, under the form of keto-enol mixtures. The results are compared to those of chemometric analysis as well as ab initio predictions of the reaction free enthalpies.

  10. Including thermal disorder of hydrogen bonding to describe the vibrational circular dichroism spectrum of zwitterionic L-alanine in water.

    PubMed

    Orestes, Ednilsom; Bistafa, Carlos; Rivelino, Roberto; Canuto, Sylvio

    2015-05-28

    The vibrational circular dichroism (VCD) spectrum of l-alanine amino acid in aqueous solution in ambient conditions has been studied. The emphasis has been placed on the inclusion of the thermal disorder of the solute-solvent hydrogen bonds that characterize the aqueous solution condition. A combined and sequential use of molecular mechanics and quantum mechanics was adopted. To calculate the average VCD spectrum, the DFT B3LYP/6-311++G(d,p) level of calculation was employed, over one-hundred configurations composed of the solute plus all water molecules making hydrogen bonds with the solute. Simplified considerations including only four explicit solvent molecules and the polarizable continuum model were also made for comparison. Considering the large number of vibration frequencies with only limited experimental results a direct comparison is presented, when possible, and in addition a statistical analysis of the calculated values was performed. The results are found to be in line with the experiment, leading to the conclusion that including thermal disorder may improve the agreement of the vibrational frequencies with experimental results, but the thermal effects may be of greater value in the calculations of the rotational strengths.

  11. Specific and Non-Specific Protein Association in Solution: Computation of Solvent Effects and Prediction of First-Encounter Modes for Efficient Configurational Bias Monte Carlo Simulations

    PubMed Central

    Cardone, Antonio; Pant, Harish; Hassan, Sergio A.

    2013-01-01

    Weak and ultra-weak protein-protein association play a role in molecular recognition, and can drive spontaneous self-assembly and aggregation. Such interactions are difficult to detect experimentally, and are a challenge to the force field and sampling technique. A method is proposed to identify low-population protein-protein binding modes in aqueous solution. The method is designed to identify preferential first-encounter complexes from which the final complex(es) at equilibrium evolves. A continuum model is used to represent the effects of the solvent, which accounts for short- and long-range effects of water exclusion and for liquid-structure forces at protein/liquid interfaces. These effects control the behavior of proteins in close proximity and are optimized based on binding enthalpy data and simulations. An algorithm is described to construct a biasing function for self-adaptive configurational-bias Monte Carlo of a set of interacting proteins. The function allows mixing large and local changes in the spatial distribution of proteins, thereby enhancing sampling of relevant microstates. The method is applied to three binary systems. Generalization to multiprotein complexes is discussed. PMID:24044772

  12. Stereochemical analysis of (+)-limonene using theoretical and experimental NMR and chiroptical data

    NASA Astrophysics Data System (ADS)

    Reinscheid, F.; Reinscheid, U. M.

    2016-02-01

    Using limonene as test molecule, the success and the limitations of three chiroptical methods (optical rotatory dispersion (ORD), electronic and vibrational circular dichroism, ECD and VCD) could be demonstrated. At quite low levels of theory (mpw1pw91/cc-pvdz, IEFPCM (integral equation formalism polarizable continuum model)) the experimental ORD values differ by less than 10 units from the calculated values. The modelling in the condensed phase still represents a challenge so that experimental NMR data were used to test for aggregation and solvent-solute interactions. After establishing a reasonable structural model, only the ECD spectra prediction showed a decisive dependence on the basis set: only augmented (in the case of Dunning's basis sets) or diffuse (in the case of Pople's basis sets) basis sets predicted the position and shape of the ECD bands correctly. Based on these result we propose a procedure to assign the absolute configuration (AC) of an unknown compound using the comparison between experimental and calculated chiroptical data.

  13. Accurate pKa calculation of the conjugate acids of alkanolamines, alkaloids and nucleotide bases by quantum chemical methods.

    PubMed

    Gangarapu, Satesh; Marcelis, Antonius T M; Zuilhof, Han

    2013-04-02

    The pKa of the conjugate acids of alkanolamines, neurotransmitters, alkaloid drugs and nucleotide bases are calculated with density functional methods (B3LYP, M08-HX and M11-L) and ab initio methods (SCS-MP2, G3). Implicit solvent effects are included with a conductor-like polarizable continuum model (CPCM) and universal solvation models (SMD, SM8). G3, SCS-MP2 and M11-L methods coupled with SMD and SM8 solvation models perform well for alkanolamines with mean unsigned errors below 0.20 pKa units, in all cases. Extending this method to the pKa calculation of 35 nitrogen-containing compounds spanning 12 pKa units showed an excellent correlation between experimental and computational pKa values of these 35 amines with the computationally low-cost SM8/M11-L density functional approach. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Binding-affinity predictions of HSP90 in the D3R Grand Challenge 2015 with docking, MM/GBSA, QM/MM, and free-energy simulations

    NASA Astrophysics Data System (ADS)

    Misini Ignjatović, Majda; Caldararu, Octav; Dong, Geng; Muñoz-Gutierrez, Camila; Adasme-Carreño, Francisco; Ryde, Ulf

    2016-09-01

    We have estimated the binding affinity of three sets of ligands of the heat-shock protein 90 in the D3R grand challenge blind test competition. We have employed four different methods, based on five different crystal structures: first, we docked the ligands to the proteins with induced-fit docking with the Glide software and calculated binding affinities with three energy functions. Second, the docked structures were minimised in a continuum solvent and binding affinities were calculated with the MM/GBSA method (molecular mechanics combined with generalised Born and solvent-accessible surface area solvation). Third, the docked structures were re-optimised by combined quantum mechanics and molecular mechanics (QM/MM) calculations. Then, interaction energies were calculated with quantum mechanical calculations employing 970-1160 atoms in a continuum solvent, combined with energy corrections for dispersion, zero-point energy and entropy, ligand distortion, ligand solvation, and an increase of the basis set to quadruple-zeta quality. Fourth, relative binding affinities were estimated by free-energy simulations, using the multi-state Bennett acceptance-ratio approach. Unfortunately, the results were varying and rather poor, with only one calculation giving a correlation to the experimental affinities larger than 0.7, and with no consistent difference in the quality of the predictions from the various methods. For one set of ligands, the results could be strongly improved (after experimental data were revealed) if it was recognised that one of the ligands displaced one or two water molecules. For the other two sets, the problem is probably that the ligands bind in different modes than in the crystal structures employed or that the conformation of the ligand-binding site or the whole protein changes.

  15. Binding-affinity predictions of HSP90 in the D3R Grand Challenge 2015 with docking, MM/GBSA, QM/MM, and free-energy simulations.

    PubMed

    Misini Ignjatović, Majda; Caldararu, Octav; Dong, Geng; Muñoz-Gutierrez, Camila; Adasme-Carreño, Francisco; Ryde, Ulf

    2016-09-01

    We have estimated the binding affinity of three sets of ligands of the heat-shock protein 90 in the D3R grand challenge blind test competition. We have employed four different methods, based on five different crystal structures: first, we docked the ligands to the proteins with induced-fit docking with the Glide software and calculated binding affinities with three energy functions. Second, the docked structures were minimised in a continuum solvent and binding affinities were calculated with the MM/GBSA method (molecular mechanics combined with generalised Born and solvent-accessible surface area solvation). Third, the docked structures were re-optimised by combined quantum mechanics and molecular mechanics (QM/MM) calculations. Then, interaction energies were calculated with quantum mechanical calculations employing 970-1160 atoms in a continuum solvent, combined with energy corrections for dispersion, zero-point energy and entropy, ligand distortion, ligand solvation, and an increase of the basis set to quadruple-zeta quality. Fourth, relative binding affinities were estimated by free-energy simulations, using the multi-state Bennett acceptance-ratio approach. Unfortunately, the results were varying and rather poor, with only one calculation giving a correlation to the experimental affinities larger than 0.7, and with no consistent difference in the quality of the predictions from the various methods. For one set of ligands, the results could be strongly improved (after experimental data were revealed) if it was recognised that one of the ligands displaced one or two water molecules. For the other two sets, the problem is probably that the ligands bind in different modes than in the crystal structures employed or that the conformation of the ligand-binding site or the whole protein changes.

  16. Mechanisms of the Knoevenagel hetero Diels-Alder sequence in multicomponent reactions to dihydropyrans: experimental and theoretical investigations into the role of water.

    PubMed

    Frapper, Gilles; Bachmann, Christian; Gu, Yanlong; Coval De Sousa, Rodolphe; Jérôme, François

    2011-01-14

    The role of water in a multicomponent domino reaction (MCR) involving styrene, 2,4-pentanedione, and formaldehyde was studied. Whereas anhydrous conditions produced no reaction, the MCR successfully proceeded in the presence of water, affording the targeted dihydropyran derivatives with good yield. The mechanism of this MCR (Knoevenagel hetero Diels-Alder sequence) was studied with and without explicit water molecules using the SMD continuum solvation model in combination with the B3LYP density functional and the 6-311++G** basis set to compute the water and acetone (aprotic organic solvent) solution Gibbs free energies. In the Knoevenagel step, we found that water acted as a proton relay to favor the formation of more flexible six-membered ring transition state structures both in concerted (direct H(2)O elimination) and stepwise (keto-enol tautomerization and dehydration) pathways. The inclusion of a water molecule in our model resulted in a significant decrease (-8.5 kcal mol(-1)ΔG(water)(‡)) of the direct water elimination activation barrier. Owing to the presence of water, all chemical steps involved in the MCR mechanism had activation free energies barriers lower than 39 kcal mol(-1) at 25 °C in aqueous solvent (<21 kcal mol(-1) ZPE corrected electronic energies barriers). Consequently, the MCR proceeded without the assistance of any catalyst.

  17. Equivalent-Continuum Modeling With Application to Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

    2002-01-01

    A method has been proposed for developing structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with equivalent-continuum models. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As important examples with direct application to the development and characterization of single-walled carbon nanotubes and the design of nanotube-based devices, the modeling technique has been applied to determine the effective-continuum geometry and bending rigidity of a graphene sheet. A representative volume element of the chemical structure of graphene has been substituted with equivalent-truss and equivalent continuum models. As a result, an effective thickness of the continuum model has been determined. This effective thickness has been shown to be significantly larger than the interatomic spacing of graphite. The effective thickness has been shown to be significantly larger than the inter-planar spacing of graphite. The effective bending rigidity of the equivalent-continuum model of a graphene sheet was determined by equating the vibrational potential energy of the molecular model of a graphene sheet subjected to cylindrical bending with the strain energy of an equivalent continuum plate subjected to cylindrical bending.

  18. Enzymes with lid-gated active sites must operate by an induced fit mechanism instead of conformational selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Sarah M.; Holyoak, Todd

    2008-09-17

    The induced fit and conformational selection/population shift models are two extreme cases of a continuum aimed at understanding the mechanism by which the final key-lock or active enzyme conformation is achieved upon formation of the correctly ligated enzyme. Structures of complexes representing the Michaelis and enolate intermediate complexes of the reaction catalyzed by phosphoenolpyruvate carboxykinase provide direct structural evidence for the encounter complex that is intrinsic to the induced fit model and not required by the conformational selection model. In addition, the structural data demonstrate that the conformational selection model is not sufficient to explain the correlation between dynamics andmore » catalysis in phosphoenolpyruvate carboxykinase and other enzymes in which the transition between the uninduced and the induced conformations occludes the active site from the solvent. The structural data are consistent with a model in that the energy input from substrate association results in changes in the free energy landscape for the protein, allowing for structural transitions along an induced fit pathway.« less

  19. Enzymes With Lid-Gated Active Sites Must Operate By An Induced Fit Mechanism Instead of Conformational Selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, S.M.; Holyoak, T.

    2009-05-26

    The induced fit and conformational selection/population shift models are two extreme cases of a continuum aimed at understanding the mechanism by which the final key-lock or active enzyme conformation is achieved upon formation of the correctly ligated enzyme. Structures of complexes representing the Michaelis and enolate intermediate complexes of the reaction catalyzed by phosphoenolpyruvate carboxykinase provide direct structural evidence for the encounter complex that is intrinsic to the induced fit model and not required by the conformational selection model. In addition, the structural data demonstrate that the conformational selection model is not sufficient to explain the correlation between dynamics andmore » catalysis in phosphoenolpyruvate carboxykinase and other enzymes in which the transition between the uninduced and the induced conformations occludes the active site from the solvent. The structural data are consistent with a model in that the energy input from substrate association results in changes in the free energy landscape for the protein, allowing for structural transitions along an induced fit pathway.« less

  20. Noise Propagation and Uncertainty Quantification in Hybrid Multiphysics Models: Initiation and Reaction Propagation in Energetic Materials

    DTIC Science & Technology

    2016-05-23

    general model for heterogeneous granular media under compaction and (ii) the lack of a reliable multiscale discrete -to-continuum framework for...dynamics. These include a continuum- discrete model of heat dissipation/diffusion and a continuum- discrete model of compaction of a granular material with...the lack of a general model for het- erogeneous granular media under compac- tion and (ii) the lack of a reliable multi- scale discrete -to-continuum

  1. Reproducing the nonlinear dynamic behavior of a structured beam with a generalized continuum model

    NASA Astrophysics Data System (ADS)

    Vila, J.; Fernández-Sáez, J.; Zaera, R.

    2018-04-01

    In this paper we study the coupled axial-transverse nonlinear vibrations of a kind of one dimensional structured solids by application of the so called Inertia Gradient Nonlinear continuum model. To show the accuracy of this axiomatic model, previously proposed by the authors, its predictions are compared with numeric results from a previously defined finite discrete chain of lumped masses and springs, for several number of particles. A continualization of the discrete model equations based on Taylor series allowed us to set equivalent values of the mechanical properties in both discrete and axiomatic continuum models. Contrary to the classical continuum model, the inertia gradient nonlinear continuum model used herein is able to capture scale effects, which arise for modes in which the wavelength is comparable to the characteristic distance of the structured solid. The main conclusion of the work is that the proposed generalized continuum model captures the scale effects in both linear and nonlinear regimes, reproducing the behavior of the 1D nonlinear discrete model adequately.

  2. Hybrid MC/QC simulations of water-assisted proton transfer in nucleosides. Guanosine and its analog acyclovir.

    PubMed

    Markova, Nadezhda; Pejov, Ljupco; Stoyanova, Nina; Enchev, Venelin

    2017-05-01

    To provide an in-depth insight into the molecular basis of spontaneous tautomerism in DNA and RNA base pairs, a hybrid Monte Carlo (MC)-quantum chemical (QC) methodology is implemented to map two-dimensional potential energy surfaces along the reaction coordinates of solvent-assisted proton transfer processes in guanosine and its analog acyclovir in aqueous solution. The solvent effects were simulated by explicit inclusion of water molecules that model the relevant part of the first hydration shell around the solute. The position of these water molecules was estimated by carrying out a classical Metropolis Monte Carlo simulation of dilute water solutions of the guanosine (Gs) and acyclovir (ACV) and subsequently analyzing solute-solvent intermolecular interactions in the statistically-independent MC-generated configurations. The solvent-assisted proton transfer processes were further investigated using two different ab initio MP2 quantum chemical approaches. In the first one, potential energy surfaces of the 'bare' finite solute-solvent clusters containing Gs/ACV and four water molecules (MP2/6-31+G(d,p) level) were explored, while within the second approach, these clusters were embedded in 'bulk' solvent treated as polarizable continuum (C-PCM/MP2/6-31+G(d,p) level of theory). It was found that in the gas phase and in water solution, the most stable tautomer for guanosine and acyclovir is the 1H-2-amino-6-oxo form followed by the 2-amino-6-(sZ)-hydroxy form. The energy barriers of the water-assisted proton transfer reaction in guanosine and in acyclovir are found to be very similar - 11.74 kcal mol -1 for guanosine and 11.16 kcal mol -1 for acyclovir, and the respective rate constants (k = 1.5 × 10 1 s -1 , guanosine and k = 4.09 × 10 1 s -1 , acyclovir), are sufficiently large to generate the 2-amino-6-(sZ)-hydroxy tautomer. The analysis of the reaction profiles in both compounds shows that the proton transfer processes occur through the asynchronous concerted mechanism.

  3. How does a three-dimensional continuum muscle model affect the kinematics and muscle strains of a finite element neck model compared to a discrete muscle model in rear-end, frontal, and lateral impacts.

    PubMed

    Hedenstierna, Sofia; Halldin, Peter

    2008-04-15

    A finite element (FE) model of the human neck with incorporated continuum or discrete muscles was used to simulate experimental impacts in rear, frontal, and lateral directions. The aim of this study was to determine how a continuum muscle model influences the impact behavior of a FE human neck model compared with a discrete muscle model. Most FE neck models used for impact analysis today include a spring element musculature and are limited to discrete geometries and nodal output results. A solid-element muscle model was thought to improve the behavior of the model by adding properties such as tissue inertia and compressive stiffness and by improving the geometry. It would also predict the strain distribution within the continuum elements. A passive continuum muscle model with nonlinear viscoelastic materials was incorporated into the KTH neck model together with active spring muscles and used in impact simulations. The resulting head and vertebral kinematics was compared with the results from a discrete muscle model as well as volunteer corridors. The muscle strain prediction was compared between the 2 muscle models. The head and vertebral kinematics were within the volunteer corridors for both models when activated. The continuum model behaved more stiffly than the discrete model and needed less active force to fit the experimental results. The largest difference was seen in the rear impact. The strain predicted by the continuum model was lower than for the discrete model. The continuum muscle model stiffened the response of the KTH neck model compared with a discrete model, and the strain prediction in the muscles was improved.

  4. Binding selectivity of dibenzo-18-crown-6 for alkali metal cations in aqueous solution: A density functional theory study using a continuum solvation model.

    PubMed

    Choi, Chang Min; Heo, Jiyoung; Kim, Nam Joon

    2012-08-08

    Dibenzo-18-crown-6 (DB18C6) exhibits the binding selectivity for alkali metal cations in solution phase. In this study, we investigate the main forces that determine the binding selectivity of DB18C6 for the metal cations in aqueous solution using the density functional theory (DFT) and the conductor-like polarizable continuum model (CPCM). The bond dissociation free energies (BDFE) of DB18C6 complexes with alkali metal cations (M+-DB18C6, M = Li, Na, K, Rb, and Cs) in aqueous solution are calculated at the B3LYP/6-311++G(d,p)//B3LYP/6-31 + G(d) level using the CPCM. It is found that the theoretical BDFE is the largest for K+-DB18C6 and decreases as the size of the metal cation gets larger or smaller than that of K+, which agrees well with previous experimental results. The solvation energy of M+-DB18C6 in aqueous solution plays a key role in determining the binding selectivity of DB18C6. In particular, the non-electrostatic dispersion interaction between the solute and solvent, which depends strongly on the complex structure, is largely responsible for the different solvation energies of M+-DB18C6. This study shows that the implicit solvation model like the CPCM works reasonably well in predicting the binding selectivity of DB18C6 in aqueous solution.

  5. Electric dipole moments of the fluorescent probes Prodan and Laurdan: experimental and theoretical evaluations.

    PubMed

    Vequi-Suplicy, Cíntia C; Coutinho, Kaline; Lamy, M Teresa

    2014-03-01

    Several experimental and theoretical approaches can be used for a comprehensive understanding of solvent effects on the electronic structure of solutes. In this review, we revisit the influence of solvents on the electronic structure of the fluorescent probes Prodan and Laurdan, focusing on their electric dipole moments. These biologically used probes were synthesized to be sensitive to the environment polarity. However, their solvent-dependent electronic structures are still a matter of discussion in the literature. The absorption and emission spectra of Prodan and Laurdan in different solvents indicate that the two probes have very similar electronic structures in both the ground and excited states. Theoretical calculations confirm that their electronic ground states are very much alike. In this review, we discuss the electric dipole moments of the ground and excited states calculated using the widely applied Lippert-Mataga equation, using both spherical and spheroid prolate cavities for the solute. The dimensions of the cavity were found to be crucial for the calculated dipole moments. These values are compared to those obtained by quantum mechanics calculations, considering Prodan in vacuum, in a polarizable continuum solvent, and using a hybrid quantum mechanics-molecular mechanics methodology. Based on the theoretical approaches it is evident that the Prodan dipole moment can change even in the absence of solute-solvent-specific interactions, which is not taken into consideration with the experimental Lippert-Mataga method. Moreover, in water, for electric dipole moment calculations, it is fundamental to consider hydrogen-bonded molecules.

  6. Derivation of Reliable Geometries in QM Calculations of DNA Structures: Explicit Solvent QM/MM and Restrained Implicit Solvent QM Optimizations of G-Quadruplexes.

    PubMed

    Gkionis, Konstantinos; Kruse, Holger; Šponer, Jiří

    2016-04-12

    Modern dispersion-corrected DFT methods have made it possible to perform reliable QM studies on complete nucleic acid (NA) building blocks having hundreds of atoms. Such calculations, although still limited to investigations of potential energy surfaces, enhance the portfolio of computational methods applicable to NAs and offer considerably more accurate intrinsic descriptions of NAs than standard MM. However, in practice such calculations are hampered by the use of implicit solvent environments and truncation of the systems. Conventional QM optimizations are spoiled by spurious intramolecular interactions and severe structural deformations. Here we compare two approaches designed to suppress such artifacts: partially restrained continuum solvent QM and explicit solvent QM/MM optimizations. We report geometry relaxations of a set of diverse double-quartet guanine quadruplex (GQ) DNA stems. Both methods provide neat structures without major artifacts. However, each one also has distinct weaknesses. In restrained optimizations, all errors in the target geometries (i.e., low-resolution X-ray and NMR structures) are transferred to the optimized geometries. In QM/MM, the initial solvent configuration causes some heterogeneity in the geometries. Nevertheless, both approaches represent a decisive step forward compared to conventional optimizations. We refine earlier computations that revealed sizable differences in the relative energies of GQ stems computed with AMBER MM and QM. We also explore the dependence of the QM/MM results on the applied computational protocol.

  7. Fluctuating Finite Element Analysis (FFEA): A continuum mechanics software tool for mesoscale simulation of biomolecules.

    PubMed

    Solernou, Albert; Hanson, Benjamin S; Richardson, Robin A; Welch, Robert; Read, Daniel J; Harlen, Oliver G; Harris, Sarah A

    2018-03-01

    Fluctuating Finite Element Analysis (FFEA) is a software package designed to perform continuum mechanics simulations of proteins and other globular macromolecules. It combines conventional finite element methods with stochastic thermal noise, and is appropriate for simulations of large proteins and protein complexes at the mesoscale (length-scales in the range of 5 nm to 1 μm), where there is currently a paucity of modelling tools. It requires 3D volumetric information as input, which can be low resolution structural information such as cryo-electron tomography (cryo-ET) maps or much higher resolution atomistic co-ordinates from which volumetric information can be extracted. In this article we introduce our open source software package for performing FFEA simulations which we have released under a GPLv3 license. The software package includes a C ++ implementation of FFEA, together with tools to assist the user to set up the system from Electron Microscopy Data Bank (EMDB) or Protein Data Bank (PDB) data files. We also provide a PyMOL plugin to perform basic visualisation and additional Python tools for the analysis of FFEA simulation trajectories. This manuscript provides a basic background to the FFEA method, describing the implementation of the core mechanical model and how intermolecular interactions and the solvent environment are included within this framework. We provide prospective FFEA users with a practical overview of how to set up an FFEA simulation with reference to our publicly available online tutorials and manuals that accompany this first release of the package.

  8. Molecular structure and interactions in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide.

    PubMed

    Dhumal, Nilesh R; Noack, Kristina; Kiefer, Johannes; Kim, Hyung J

    2014-04-03

    Electronic structure theory (density functional and Møller-Plesset perturbation theory) and vibrational spectroscopy (FT-IR and Raman) are employed to study molecular interactions in the room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Different conformers of a cation-anion pair based on their molecular interactions are simulated in the gas phase and in a dielectric continuum solvent environment. Although the ordering of conformers in energy varies with theoretical methods, their predictions for three lowest energy conformers in the gas phase are similar. Strong C-H---N interactions between the acidic hydrogen atom of the cation imidazole ring and the nitrogen atom of the anion are predicted for either the lowest or second lowest energy conformer. In a continuum solvent, different theoretical methods yield the same ion-pair conformation for the lowest energy state. In both phases, the density functional method predicts that the anion is in a trans conformation in the lowest energy ion pair state. The theoretical results are compared with experimental observations from Raman scattering and IR absorption spectroscopies and manifestations of the molecular interactions in the vibrational spectra are discussed. The directions of the frequency shifts of the characteristic vibrations relative to the free anion and cation are explained by calculating the difference electron density coupled with electron density topography.

  9. Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: how does vinylene carbonate play its role as an electrolyte additive?

    PubMed

    Wang, Yixuan; Nakamura, Shinichiro; Tasaki, Ken; Balbuena, Perla B

    2002-04-24

    To elucidate the role of vinylene carbonate (VC) as a solvent additive in organic polar solutions for lithium-ion batteries, reductive decompositions for vinylene carbonate (VC) and ethylene carbonate (EC) molecules have been comprehensively investigated both in the gas phase and in solution by means of density functional theory calculations. The salt and solvent effects are incorporated with the clusters (EC)nLi+(VC) (n = 0-3), and further corrections that account for bulk solvent effects are added using the polarized continuum model (PCM). The electron affinities of (EC)nLi+(VC) (n = 0-3) monotonically decrease when the number of EC molecules increases; a sharp decrease of about 20.0 kcal/mol is found from n = 0 to 1 and a more gentle variation for n > 1. For (EC)nLi+(VC) (n = 1-3), the reduction of VC brings about more stable ion-pair intermediates than those due to reduction of the EC molecule by 3.1, 6.1, and 5.3 kcal/mol, respectively. This finding qualitatively agrees with the experimental fact that the reduction potential of VC in the presence of Li salt is more negative than that of EC. The calculated reduction potentials corresponding to radical anion formation are close to the experimental potentials determined with cyclic voltammetry on a gold electrode surface (-2.67, -3.19 eV on the physical scale for VC and EC respectively vs experimental values -2.96 and -2.94 eV). Regarding the decomposition mechanisms, the VC and EC moieties undergo homolytic ring opening from their respective reduction intermediates, and the energy barrier of VC is about one time higher than that of EC (e.g., 20.1 vs 8.8 kcal/mol for (EC)2Li+(VC)); both are weakly affected by the explicit solvent molecules and by a bulk solvent represented by a continuum model. Alternatively, starting from the VC-reduction intermediate, the ring opening of the EC moiety via an intramolecular electron-transfer transition state has also been located; its barrier lies between those of EC and VC (e.g., 17.2 kcal/mol for (EC)2Li+(VC)). On the basis of these results, we suggest the following explanation about the role that VC may play as additive in EC-based lithium-ion battery electrolytes; VC is initially reduced to a more stable intermediate than that from EC reduction. One possibility then is that the reduced VC decomposes to form a radical anion via a barrier of about 20 kcal/mol, which undergoes a series of reactions to give rise to more active film-forming products than those resulting from EC reduction, such as lithium divinylene dicarbonate, Li-C carbides, lithium vinylene dicarbonate, R-O-Li compound, and even oligomers with repeated vinylene and carbonate-vinylene units. Another possibility starting from the VC-reduction intermediate is that the ring opening occurs on the unreduced EC moiety instead of being on the reduced VC, via an intramolecular electron transfer transition state, the energy barrier of which is lower than that of the former, in which VC just helps the intermediate formation and is not consumed. The factors that determine the additive functioning mechanism are briefly discussed, and consequently a general rule for the selection of electrolyte additive is proposed.

  10. Equivalent-Continuum Modeling of Nano-Structured Materials

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

    2001-01-01

    A method has been developed for modeling structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with an equivalent-continuum model. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As an important example with direct application to the development and characterization of single-walled carbon nanotubes, the model has been applied to determine the effective continuum geometry of a graphene sheet. A representative volume element of the equivalent-continuum model has been developed with an effective thickness. This effective thickness has been shown to be similar to, but slightly smaller than, the interatomic spacing of graphite.

  11. Prediction of Size Effects in Notched Laminates Using Continuum Damage Mechanics

    NASA Technical Reports Server (NTRS)

    Camanho, D. P.; Maimi, P.; Davila, C. G.

    2007-01-01

    This paper examines the use of a continuum damage model to predict strength and size effects in notched carbon-epoxy laminates. The effects of size and the development of a fracture process zone before final failure are identified in an experimental program. The continuum damage model is described and the resulting predictions of size effects are compared with alternative approaches: the point stress and the inherent flaw models, the Linear-Elastic Fracture Mechanics approach, and the strength of materials approach. The results indicate that the continuum damage model is the most accurate technique to predict size effects in composites. Furthermore, the continuum damage model does not require any calibration and it is applicable to general geometries and boundary conditions.

  12. Effects of continuum breakdown on hypersonic aerothermodynamics for reacting flow

    NASA Astrophysics Data System (ADS)

    Holman, Timothy D.; Boyd, Iain D.

    2011-02-01

    This study investigates the effects of continuum breakdown on the surface aerothermodynamic properties (pressure, stress, and heat transfer rate) of a sphere in a Mach 25 flow of reacting air in regimes varying from continuum to a rarefied gas. Results are generated using both continuum [computational fluid dynamics (CFD)] and particle [direct simulation Monte Carlo (DSMC)] approaches. The DSMC method utilizes a chemistry model that calculates the backward rates from an equilibrium constant. A preferential dissociation model is modified in the CFD method to better compare with the vibrationally favored dissociation model that is utilized in the DSMC method. Tests of these models are performed to confirm their validity and to compare the chemistry models in both numerical methods. This study examines the effect of reacting air flow on continuum breakdown and the surface properties of the sphere. As the global Knudsen number increases, the amount of continuum breakdown in the flow and on the surface increases. This increase in continuum breakdown significantly affects the surface properties, causing an increase in the differences between CFD and DSMC. Explanations are provided for the trends observed.

  13. Revisiting the continuum model of tendon pathology: what is its merit in clinical practice and research?

    PubMed Central

    Cook, J L; Rio, E; Purdam, C R; Docking, S I

    2016-01-01

    The pathogenesis of tendinopathy and the primary biological change in the tendon that precipitates pathology have generated several pathoaetiological models in the literature. The continuum model of tendon pathology, proposed in 2009, synthesised clinical and laboratory-based research to guide treatment choices for the clinical presentations of tendinopathy. While the continuum has been cited extensively in the literature, its clinical utility has yet to be fully elucidated. The continuum model proposed a model for staging tendinopathy based on the changes and distribution of disorganisation within the tendon. However, classifying tendinopathy based on structure in what is primarily a pain condition has been challenged. The interplay between structure, pain and function is not yet fully understood, which has partly contributed to the complex clinical picture of tendinopathy. Here we revisit and assess the merit of the continuum model in the context of new evidence. We (1) summarise new evidence in tendinopathy research in the context of the continuum, (2) discuss tendon pain and the relevance of a model based on structure and (3) describe relevant clinical elements (pain, function and structure) to begin to build a better understanding of the condition. Our goal is that the continuum model may help guide targeted treatments and improved patient outcomes. PMID:27127294

  14. Nonisothermal Brownian motion: Thermophoresis as the macroscopic manifestation of thermally biased molecular motion.

    PubMed

    Brenner, Howard

    2005-12-01

    A quiescent single-component gravity-free gas subject to a small steady uniform temperature gradient T, despite being at rest, is shown to experience a drift velocity UD=-D* gradient ln T, where D* is the gas's nonisothermal self-diffusion coefficient. D* is identified as being the gas's thermometric diffusivity alpha. The latter differs from the gas's isothermal isotopic self-diffusion coefficient D, albeit only slightly. Two independent derivations are given of this drift velocity formula, one kinematical and the other dynamical, both derivations being strictly macroscopic in nature. Within modest experimental and theoretical uncertainties, this virtual drift velocity UD=-alpha gradient ln T is shown to be constitutively and phenomenologically indistinguishable from the well-known experimental and theoretical formulas for the thermophoretic velocity U of a macroscopic (i.e., non-Brownian) non-heat-conducting particle moving under the influence of a uniform temperature gradient through an otherwise quiescent single-component rarefied gas continuum at small Knudsen numbers. Coupled with the size independence of the particle's thermophoretic velocity, the empirically observed equality, U=UD, leads naturally to the hypothesis that these two velocities, the former real and the latter virtual, are, in fact, simply manifestations of the same underlying molecular phenomenon, namely the gas's Brownian movement, albeit biased by the temperature gradient. This purely hydrodynamic continuum-mechanical equality is confirmed by theoretical calculations effected at the kinetic-molecular level on the basis of an existing solution of the Boltzmann equation for a quasi-Lorentzian gas, modulo small uncertainties pertaining to the choice of collision model. Explicitly, this asymptotically valid molecular model allows the virtual drift velocity UD of the light gas and the thermophoretic velocity U of the massive, effectively non-Brownian, particle, now regarded as the tracer particle of the light gas's drift velocity, to each be identified with the Chapman-Enskog "thermal diffusion velocity" of the quasi-Lorentzian gas, here designated by the symbol UM/M, as calculated by de la Mora and Mercer. It is further pointed out that, modulo the collective uncertainties cited above, the common velocities UD,U, and UM/M are identical to the single-component gas's diffuse volume current jv, the latter representing yet another, independent, strictly continuum-mechanical concept. Finally, comments are offered on the extension of the single-component drift velocity notion to liquids, and its application towards rationalizing Soret thermal-diffusion separation phenomena in quasi-Lorentzian liquid-phase binary mixtures composed of disparately sized solute and solvent molecules, with the massive Brownian solute molecules (e.g., colloidal particles) present in disproportionately small amounts relative to that of the solvent.

  15. Relative Stability of the La and Lb Excited States in Adenine and Guanine: Direct Evidence from TD-DFT Calculations of MCD Spectra.

    PubMed

    Santoro, Fabrizio; Improta, Roberto; Fahleson, Tobias; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-06-05

    The relative position of La and Lb ππ* electronic states in purine nucleobases is a much debated topic, since it can strongly affect our understanding of their photoexcited dynamics. To assess this point, we calculated the absorption and magnetic circular dichroism (MCD) spectra of adenine, guanine, and their nucleosides in gas-phase and aqueous solution, exploiting recent developments in MCD computational technology within time-dependent density functional theory. MCD spectroscopy allows us to resolve the intense S0→ La transition from the weak S0→ Lb transition. The spectra obtained in water solution, by using B3LYP and CAM-B3LYP functionals and describing solvent effect by cluster models and by the polarizable continuum model (PCM), are in very good agreement with the experimental counterparts, thus providing direct and unambiguous evidence that the energy ordering predicted by TD-DFT, La < Lb, is the correct one.

  16. Synthesis, thermogravimetric, spectroscopic and theoretical characterization of copper(II) complex with 4-chloro-2-nitrobenzenosulfonamide

    NASA Astrophysics Data System (ADS)

    Camí, G.; Chacón Villalba, E.; Di Santi, Y.; Colinas, P.; Estiu, G.; Soria, D. B.

    2011-05-01

    4-Chloro-2-nitrobenzenesulfonamide (ClNbsa) was purified and characterized. A new copper(II) complex, [Cu(ClNbsa) 2(NH 3) 2], has been prepared using the sulfonamide as ligand. The thermal behavior of both, the ligand and the Cu(II) complex, was investigated by thermogravimetric analyses (TG) and differential thermal analysis (DT), and the electronic characteristics analyzed by UV-VIS, FTIR, Raman and 1H NMR spectroscopies. The experimental IR, Raman and UV-VIS spectra have been assigned on the basis of DFT calculations at the B3LYP level of theory using the standard (6-31 + G ∗∗) basis set. The geometries have been fully optimized in vacuum and in modeled dimethylsulfoxide (DMSO) solvent, using for the latter a continuum solvation model that reproduced the experimental conditions of the UV-VIS spectroscopy. The theoretical results converged to stable conformations for the free sulfonamide and for the complex, suggesting for the latter a distorted square planar geometry in both environments.

  17. The Experimental Evidence in Support of Glycosylation Mechanisms at the SN1-SN2 Interface.

    PubMed

    Adero, Philip Ouma; Amarasekara, Harsha; Wen, Peng; Bohé, Luis; Crich, David

    2018-05-30

    A critical review of the state-of-the-art evidence in support of the mechanisms of glycosylation reactions is provided. Factors affecting the stability of putative oxocarbenium ions as intermediates at the S N 1 end of the mechanistic continuum are first surveyed before the evidence, spectroscopic and indirect, for the existence of such species on the time scale of glycosylation reactions is presented. Current models for diastereoselectivity in nucleophilic attack on oxocarbenium ions are then described. Evidence in support of the intermediacy of activated covalent glycosyl donors is reviewed, before the influences of the structure of the nucleophile, of the solvent, of temperature, and of donor-acceptor hydrogen bonding on the mechanism of glycosylation reactions are surveyed. Studies on the kinetics of glycosylation reactions and the use of kinetic isotope effects for the determination of transition-state structure are presented, before computational models are finally surveyed. The review concludes with a critical appraisal of the state of the art.

  18. Continuum description of solvent dielectrics in molecular-dynamics simulations of proteins

    NASA Astrophysics Data System (ADS)

    Egwolf, Bernhard; Tavan, Paul

    2003-02-01

    We present a continuum approach for efficient and accurate calculation of reaction field forces and energies in classical molecular-dynamics (MD) simulations of proteins in water. The derivation proceeds in two steps. First, we reformulate the electrostatics of an arbitrarily shaped molecular system, which contains partially charged atoms and is embedded in a dielectric continuum representing the water. A so-called fuzzy partition is used to exactly decompose the system into partial atomic volumes. The reaction field is expressed by means of dipole densities localized at the atoms. Since these densities cannot be calculated analytically for general systems, we introduce and carefully analyze a set of approximations in a second step. These approximations allow us to represent the dipole densities by simple dipoles localized at the atoms. We derive a system of linear equations for these dipoles, which can be solved numerically by iteration. After determining the two free parameters of our approximate method we check its quality by comparisons (i) with an analytical solution, which is available for a perfectly spherical system, (ii) with forces obtained from a MD simulation of a soluble protein in water, and (iii) with reaction field energies of small molecules calculated by a finite difference method.

  19. Combine experimental and theoretical investigation on an alkaloid-Dimethylisoborreverine

    NASA Astrophysics Data System (ADS)

    Singh, Swapnil; Singh, Harshita; Karthick, T.; Agarwal, Parag; Erande, Rohan D.; Dethe, Dattatraya H.; Tandon, Poonam

    2016-01-01

    A combined experimental (FT-IR, 1H and 13C NMR) and theoretical approach is used to study the structure and properties of antimalarial drug dimethylisoborreverine (DMIB). Conformational analysis, has been performed by plotting one dimensional potential energy curve that was computed using density functional theory (DFT) with B3LYP/6-31G method and predicted conformer A1 as the most stable conformer. After full geometry optimization, harmonic wavenumbers were computed for conformer A1 at the DFT/B3LYP/6-311++G(d,P) level. A complete vibrational assignment of all the vibrational modes have been performed on the bases of the potential energy distribution (PED) and theoretical results were found to be in good agreement with the observed data. To predict the solvent effect, the UV-Vis spectra were calculated in different solvents by polarizable continuum model using TD-DFT method. Molecular docking studies were performed to test the biological activity of the sample using SWISSDOCK web server and Hex 8.0.0 software. The molecular electrostatic potential (MESP) was plotted to identify the reactive sites of the molecule. Natural bond orbital (NBO) analysis was performed to get a deep insight of intramolecular charge transfer. Thermodynamical parameters were calculated to predict the direction of chemical reaction.

  20. TD-DFT investigation of the magnetic circular dichroism spectra of some purine and pyrimidine bases of nucleic acids.

    PubMed

    Fahleson, Tobias; Kauczor, Joanna; Norman, Patrick; Santoro, Fabrizio; Improta, Roberto; Coriani, Sonia

    2015-05-28

    We present a computational study of the magnetic circular dichroism (MCD) spectra in the 200-300 nm wavelength region of purine and its derivative hypoxanthine, as well as of the pyrimidine bases of nucleic acids uracil, thymine, and cytosine, using the B3LYP and CAM-B3LYP functionals. Solvent effects are investigated within the polarizable continuum model and by inclusion of explicit water molecules. In general, the computed spectra are found to be in good agreement with the experimental ones, apart from some overall blue shifts. Both the pseudo-A term shape of the MCD spectra of the purines and the B term shape of the spectra of pyrimidine bases are reproduced. Our calculations also correctly reproduce the reversed phase of the MCD bands in purine compared to that of its derivatives present in nucleic acids. Solvent effects are sizable and system specific, but they do not in general alter the qualitative shape of the spectra. The bands are dominated by the bright π → π* transitions, and our calculations in solution nicely reproduce their energy differences, improving the estimates obtained in the gas phase. Shoulders are predicted for purine and uracil due to n → π* excitations, but they are too weak to be observed in the experiment.

  1. Ionization energies of aqueous nucleic acids: photoelectron spectroscopy of pyrimidine nucleosides and ab initio calculations.

    PubMed

    Slavícek, Petr; Winter, Bernd; Faubel, Manfred; Bradforth, Stephen E; Jungwirth, Pavel

    2009-05-13

    Vertical ionization energies of the nucleosides cytidine and deoxythymidine in water, the lowest ones amounting in both cases to 8.3 eV, are obtained from photoelectron spectroscopy measurements in aqueous microjets. Ab initio calculations employing a nonequilibrium polarizable continuum model quantitatively reproduce the experimental spectra and provide molecular interpretation of the individual peaks of the photoelectron spectrum, showing also that lowest ionization originates from the base. Comparison of calculated vertical ionization potentials of pyrimidine bases, nucleosides, and nucleotides in water and in the gas phase underlines the dramatic effect of bulk hydration on the electronic structure. In the gas phase, the presence of sugar and, in particular, of phosphate has a strong effect on the energetics of ionization of the base. Upon bulk hydration, the ionization potential of the base in contrast becomes rather insensitive to the presence of the sugar and phosphate, which indicates a remarkable screening ability of the aqueous solvent. Accurate aqueous-phase vertical ionization potentials provide a significant improvement to the corrected gas-phase values used in the literature and represent important information in assessing the threshold energies for photooxidation and oxidation free energies of solvent-exposed DNA components. Likewise, such energetic data should allow improved assessment of delocalization and charge-hopping mechanisms in DNA ionized by radiation.

  2. Modelling the crystallization of the globular proteins

    NASA Astrophysics Data System (ADS)

    Shiryayev, Andrey S.

    Crystallization of globular proteins has become a very important subject in recent yearn. However there is still no understanding of the particular conditions that lead to the crystallization. Since nucleation of a crystalline droplet is the critical step toward the formation of the solid phase from the supersaturated solution, this is the focus of current studies. In this work we use different approaches to investigate the collective behavior of a system of globular proteins. Especially we focused on the models which have a metastable critical point, because this reflects the properties of solutions of globular proteins. The first approach is a continuum model of globular proteins. This model was first presented by Talanquer and Oxtoby and is based on the van der Waals theory. The model can have either a stable or a metastable critical point. For the system with the metastable critical point we studied the behavior of the free energy barrier to nucleation; we found that along particular pathways the barrier to nucleation has a minimim around the critical point. As well, the number of molecules in the critical cluster was found to diverge as one approaches the critical point, though most of the molecules are in the fluid tail of the droplet. Our results are an extension of earlier work [17, 7]. The properties of the solvent affect the behavior of the solution. In our second approach, we proposed a model that takes into account the contribution of the solvent free energy to the free energy of the globular proteins. We show that one can map the phase diagram of a repulsive hard core plus attractive square well interacting system to the same system particles in the solvent environment. In particular we show that this leads to phase diagrams with upper critical points, lower critical points and even closed loops with both upper and lower critical points, similar to the one found before [10]. For systems with interaction different from the square well, in the presence of the solvent this mapping procedure can be a first approximation to understand the phase diagram. The final part of this work is dedicated to the behavior of sickle hemoglobin. While the fluid behavior of the HbS molecules can be approximately explained by the uniform interparticle potential, this model fails to describe the polymerization process and the particular structure of fibers. We develop an anisotropic "patchy" model to describe some features of the HbS polymerization process. To determine the degree of polymerization of the system a "patchy" order parameter was defined. Monte Carlo simulations for the simple two-patch model was performed and reveal the possibility of obtaining chains that can be considered as one dimensional crystals.

  3. NASA Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Marks, Virginia B. (Compiler); Keckler, Claude R. (Compiler)

    1994-01-01

    Although significant advances have been made in modeling and controlling flexible systems, there remains a need for improvements in model accuracy and in control performance. The finite element models of flexible systems are unduly complex and are almost intractable to optimum parameter estimation for refinement using experimental data. Distributed parameter or continuum modeling offers some advantages and some challenges in both modeling and control. Continuum models often result in a significantly reduced number of model parameters, thereby enabling optimum parameter estimation. The dynamic equations of motion of continuum models provide the advantage of allowing the embedding of the control system dynamics, thus forming a complete set of system dynamics. There is also increased insight provided by the continuum model approach.

  4. The significance of turbulent flow representation in single-continuum models

    USGS Publications Warehouse

    Reimann, T.; Rehrl, C.; Shoemaker, W.B.; Geyer, T.; Birk, S.

    2011-01-01

    Karst aquifers exhibit highly conductive features caused from rock dissolution processes. Flow within these structures can become turbulent and therefore can be expressed by nonlinear gradient functions. One way to account for these effects is by coupling a continuum model with a conduit network. Alternatively, turbulent flow can be considered by adapting the hydraulic conductivity within the continuum model. Consequently, the significance of turbulent flow on the dynamic behavior of karst springs is investigated by an enhanced single-continuum model that results in conduit-type flow in continuum cells (CTFC). The single-continuum approach CTFC represents laminar and turbulent flow as well as more complex hybrid models that require additional programming and numerical efforts. A parameter study is conducted to investigate the effects of turbulent flow on the response of karst springs to recharge events using the new CTFC approach, existing hybrid models, and MODFLOW-2005. Results reflect the importance of representing (1) turbulent flow in karst conduits and (2) the exchange between conduits and continuum cells. More specifically, laminar models overestimate maximum spring discharge and underestimate hydraulic gradients within the conduit. It follows that aquifer properties inferred from spring hydrographs are potentially impaired by ignoring flow effects due to turbulence. The exchange factor used for hybrid models is necessary to account for the scale dependency between hydraulic properties of the matrix continuum and conduits. This functionality, which is not included in CTFC, can be mimicked by appropriate use of the Horizontal Flow Barrier package for MODFLOW. Copyright 2011 by the American Geophysical Union.

  5. Origin of Enhanced Reactivity of a Microsolvated Nucleophile in Ion Pair SN2 Reactions: The Cases of Sodium p-Nitrophenoxide with Halomethanes in Acetone.

    PubMed

    Li, Qiang-Gen; Xu, Ke; Ren, Yi

    2015-04-30

    In a kinetic experiment on the SN2 reaction of sodium p-nitrophenoxide with iodomethane in acetone-water mixed solvent, Humeres et al. (J. Org. Chem. 2001, 66, 1163) found that the reaction depends strongly on the medium, and the fastest rate constant was observed in pure acetone. The present work tries to explore why acetone can enhance the reactivity of the title reactions. Accordingly, we make a mechanistic study on the reactions of sodium p-nitrophenoxide with halomethanes (CH3X, X = Cl, Br, I) in acetone by using a supramolecular/continuum model at the PCM-MP2/6-311+G(d,p)//B3LYP/6-311+G(d,p) level, in which the ion pair nucleophile is microsolvated by one to three acetone molecules. We compared the reactivity of the microsolvated ion pair nucleophiles with solvent-free ion pair and anionic ones. Our results clearly reveal that the microsolvated ion pair nucleophile is favorable for the SN2 reactions; meanwhile, the origin of the enhanced reactivity induced by microsolvation of the nucleophile is discussed in terms of the geometries of transition state (TS) structures and activation strain model, suggesting that lower deformation energies and stronger interaction energies between the deformed reactants in the TS lead to the lower overall reaction barriers for the SN2 reaction of microsolvated sodium p-nitrophenoxide toward halomethanes in acetone.

  6. Nonlocal Electrostatics in Spherical Geometries Using Eigenfunction Expansions of Boundary-Integral Operators.

    PubMed

    Bardhan, Jaydeep P; Knepley, Matthew G; Brune, Peter

    2015-01-01

    In this paper, we present an exact, infinite-series solution to Lorentz nonlocal continuum electrostatics for an arbitrary charge distribution in a spherical solute. Our approach relies on two key steps: (1) re-formulating the PDE problem using boundary-integral equations, and (2) diagonalizing the boundary-integral operators using the fact that their eigenfunctions are the surface spherical harmonics. To introduce this uncommon approach for calculations in separable geometries, we first re-derive Kirkwood's classic results for a protein surrounded concentrically by a pure-water ion-exclusion (Stern) layer and then a dilute electrolyte, which is modeled with the linearized Poisson-Boltzmann equation. The eigenfunction-expansion approach provides a computationally efficient way to test some implications of nonlocal models, including estimating the reasonable range of the nonlocal length-scale parameter λ. Our results suggest that nonlocal solvent response may help to reduce the need for very high dielectric constants in calculating pH-dependent protein behavior, though more sophisticated nonlocal models are needed to resolve this question in full. An open-source MATLAB implementation of our approach is freely available online.

  7. Nonlocal Electrostatics in Spherical Geometries Using Eigenfunction Expansions of Boundary-Integral Operators

    PubMed Central

    Bardhan, Jaydeep P.; Knepley, Matthew G.; Brune, Peter

    2015-01-01

    In this paper, we present an exact, infinite-series solution to Lorentz nonlocal continuum electrostatics for an arbitrary charge distribution in a spherical solute. Our approach relies on two key steps: (1) re-formulating the PDE problem using boundary-integral equations, and (2) diagonalizing the boundary-integral operators using the fact that their eigenfunctions are the surface spherical harmonics. To introduce this uncommon approach for calculations in separable geometries, we first re-derive Kirkwood’s classic results for a protein surrounded concentrically by a pure-water ion-exclusion (Stern) layer and then a dilute electrolyte, which is modeled with the linearized Poisson–Boltzmann equation. The eigenfunction-expansion approach provides a computationally efficient way to test some implications of nonlocal models, including estimating the reasonable range of the nonlocal length-scale parameter λ. Our results suggest that nonlocal solvent response may help to reduce the need for very high dielectric constants in calculating pH-dependent protein behavior, though more sophisticated nonlocal models are needed to resolve this question in full. An open-source MATLAB implementation of our approach is freely available online. PMID:26273581

  8. GIAO-DFT calculation of 15 N NMR chemical shifts of Schiff bases: Accuracy factors and protonation effects.

    PubMed

    Semenov, Valentin A; Samultsev, Dmitry O; Krivdin, Leonid B

    2018-02-09

    15 N NMR chemical shifts in the representative series of Schiff bases together with their protonated forms have been calculated at the density functional theory level in comparison with available experiment. A number of functionals and basis sets have been tested in terms of a better agreement with experiment. Complimentary to gas phase results, 2 solvation models, namely, a classical Tomasi's polarizable continuum model (PCM) and that in combination with an explicit inclusion of one molecule of solvent into calculation space to form supermolecule 1:1 (SM + PCM), were examined. Best results are achieved with PCM and SM + PCM models resulting in mean absolute errors of calculated 15 N NMR chemical shifts in the whole series of neutral and protonated Schiff bases of accordingly 5.2 and 5.8 ppm as compared with 15.2 ppm in gas phase for the range of about 200 ppm. Noticeable protonation effects (exceeding 100 ppm) in protonated Schiff bases are rationalized in terms of a general natural bond orbital approach. Copyright © 2018 John Wiley & Sons, Ltd.

  9. Application of Mortar Coupling in Multiscale Modelling of Coupled Flow, Transport, and Biofilm Growth in Porous Media

    NASA Astrophysics Data System (ADS)

    Laleian, A.; Valocchi, A. J.; Werth, C. J.

    2017-12-01

    Multiscale models of reactive transport in porous media are capable of capturing complex pore-scale processes while leveraging the efficiency of continuum-scale models. In particular, porosity changes caused by biofilm development yield complex feedbacks between transport and reaction that are difficult to quantify at the continuum scale. Pore-scale models, needed to accurately resolve these dynamics, are often impractical for applications due to their computational cost. To address this challenge, we are developing a multiscale model of biofilm growth in which non-overlapping regions at pore and continuum spatial scales are coupled with a mortar method providing continuity at interfaces. We explore two decompositions of coupled pore-scale and continuum-scale regions to study biofilm growth in a transverse mixing zone. In the first decomposition, all reaction is confined to a pore-scale region extending the transverse mixing zone length. Only solute transport occurs in the surrounding continuum-scale regions. Relative to a fully pore-scale result, we find the multiscale model with this decomposition has a reduced run time and consistent result in terms of biofilm growth and solute utilization. In the second decomposition, reaction occurs in both an up-gradient pore-scale region and a down-gradient continuum-scale region. To quantify clogging, the continuum-scale model implements empirical relations between porosity and continuum-scale parameters, such as permeability and the transverse dispersion coefficient. Solutes are sufficiently mixed at the end of the pore-scale region, such that the initial reaction rate is accurately computed using averaged concentrations in the continuum-scale region. Relative to a fully pore-scale result, we find accuracy of biomass growth in the multiscale model with this decomposition improves as the interface between pore-scale and continuum-scale regions moves downgradient where transverse mixing is more fully developed. Also, this decomposition poses additional challenges with respect to mortar coupling. We explore these challenges and potential solutions. While recent work has demonstrated growing interest in multiscale models, further development is needed for their application to field-scale subsurface contaminant transport and remediation.

  10. Comparison of hydration reactions for "piano-stool" RAPTA-B and [Ru(η6- arene)(en)Cl]+ complexes: Density functional theory computational study

    NASA Astrophysics Data System (ADS)

    Chval, Zdeněk; Futera, Zdeněk; Burda, Jaroslav V.

    2011-01-01

    The hydration process for two Ru(II) representative half-sandwich complexes: Ru(arene)(pta)Cl2 (from the RAPTA family) and [Ru(arene)(en)Cl]+ (further labeled as Ru_en) were compared with analogous reaction of cisplatin. In the study, quantum chemical methods were employed. All the complexes were optimized at the B3LYP/6-31G(d) level using Conductor Polarizable Continuum Model (CPCM) solvent continuum model and single-point (SP) energy calculations and determination of electronic properties were performed at the B3LYP/6-311++G(2df,2pd)/CPCM level. It was found that the hydration model works fairly well for the replacement of the first chloride by water where an acceptable agreement for both Gibbs free energies and rate constants was obtained. However, in the second hydration step worse agreement of the experimental and calculated values was achieved. In agreement with experimental values, the rate constants for the first step can be ordered as RAPTA-B > Ru_en > cisplatin. The rate constants correlate well with binding energies (BEs) of the Pt/Ru-Cl bond in the reactant complexes. Substitution reactions on Ru_en and cisplatin complexes proceed only via pseudoassociative (associative interchange) mechanism. On the other hand in the case of RAPTA there is also possible a competitive dissociation mechanism with metastable pentacoordinated intermediate. The first hydration step is slightly endothermic for all three complexes by 3-5 kcal/mol. Estimated BEs confirm that the benzene ligand is relatively weakly bonded assuming the fact that it occupies three coordination positions of the Ru(II) cation.

  11. Coupling discrete and continuum concentration particle models for multiscale and hybrid molecular-continuum simulations

    NASA Astrophysics Data System (ADS)

    Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott

    2017-12-01

    Hybrid molecular-continuum simulation techniques afford a number of advantages for problems in the rapidly burgeoning area of nanoscale engineering and technology, though they are typically quite complex to implement and limited to single-component fluid systems. We describe an approach for modeling multicomponent hydrodynamic problems spanning multiple length scales when using particle-based descriptions for both the finely resolved (e.g., molecular dynamics) and coarse-grained (e.g., continuum) subregions within an overall simulation domain. This technique is based on the multiscale methodology previously developed for mesoscale binary fluids [N. D. Petsev, L. G. Leal, and M. S. Shell, J. Chem. Phys. 144, 084115 (2016)], simulated using a particle-based continuum method known as smoothed dissipative particle dynamics. An important application of this approach is the ability to perform coupled molecular dynamics (MD) and continuum modeling of molecularly miscible binary mixtures. In order to validate this technique, we investigate multicomponent hybrid MD-continuum simulations at equilibrium, as well as non-equilibrium cases featuring concentration gradients.

  12. Syn- and anti-conformations of 5'-deoxy- and 5'-O-methyl-uridine 2',3'-cyclic monophosphate.

    PubMed

    Grabarkiewicz, Tomasz; Hoffmann, Marcin

    2006-01-01

    Two uridine 2',3'-cyclic monophosphate (cUMP) derivatives, 5'-deoxy (DcUMP) and 5'-O-methyl (McUMP), were studied by means of quantum chemical methods. Aqueous solvent effects were estimated based on the isodensity-surface polarized-continuum model (IPCM). Gas phase calculations revealed only slight energy differences between the syn- and anti-conformers of both compounds: the relative energies of the syn-structure are -0.9 and 0.2 kcal mol(-1) for DcUMP and McUMP, respectively. According to the results from the IPCM calculations, however, both syn-conformers become about 14 kcal mol(-1) more stable in aqueous solution than their corresponding anti-structures. Additionally, the effects of a countercation and protonation on DcUMP were studied, revealing that the syn-structure is also favored over the anti-one for these systems.

  13. Methods for Monte Carlo simulations of biomacromolecules

    PubMed Central

    Vitalis, Andreas; Pappu, Rohit V.

    2010-01-01

    The state-of-the-art for Monte Carlo (MC) simulations of biomacromolecules is reviewed. Available methodologies for sampling conformational equilibria and associations of biomacromolecules in the canonical ensemble, given a continuum description of the solvent environment, are reviewed. Detailed sections are provided dealing with the choice of degrees of freedom, the efficiencies of MC algorithms and algorithmic peculiarities, as well as the optimization of simple movesets. The issue of introducing correlations into elementary MC moves, and the applicability of such methods to simulations of biomacromolecules is discussed. A brief discussion of multicanonical methods and an overview of recent simulation work highlighting the potential of MC methods are also provided. It is argued that MC simulations, while underutilized biomacromolecular simulation community, hold promise for simulations of complex systems and phenomena that span multiple length scales, especially when used in conjunction with implicit solvation models or other coarse graining strategies. PMID:20428473

  14. Theoretical studies on the inactivation mechanism of γ-aminobutyric acid aminotransferase.

    PubMed

    Durak, A T; Gökcan, H; Konuklar, F A S

    2011-07-21

    The inactivation mechanism of γ-aminobutyric acid aminotransferase (GABA-AT) in the presence of γ-vinyl-aminobutyric acid, an anti-epilepsy drug, has been studied by means of theoretical calculations. Density functional theory methods have been applied to compare the three experimentally proposed inactivation mechanisms (Silverman et al., J. Biol. Chem., 2004, 279, 363). All the calculations were performed at the B3LYP/6-31+G(d,p) level of theory. Single point solvent calculations were carried out in water, by means of an integral equation formalism-polarizable continuum model (IEFPCM) at the B3LYP/6-31+G(d,p) level of theory. The present calculations provide an insight into the mechanistic preferences of the inactivation reaction of GABA-AT. The results also allow us to elucidate the key factors behind the mechanistic preferences. The computations also confirm the importance of explicit water molecules around the reacting center in the proton transfer steps.

  15. Applicability of the Continuum-Shell Theories to the Mechanics of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Harik, V. M.; Gates, T. S.; Nemeth, M. P.

    2002-01-01

    Validity of the assumptions relating the applicability of continuum shell theories to the global mechanical behavior of carbon nanotubes is examined. The present study focuses on providing a basis that can be used to qualitatively assess the appropriateness of continuum-shell models for nanotubes. To address the effect of nanotube structure on their deformation, all nanotube geometries are divided into four major classes that require distinct models. Criteria for the applicability of continuum models are presented. The key parameters that control the buckling strains and deformation modes of these classes of nanotubes are determined. In an analogy with continuum mechanics, mechanical laws of geometric similitude are presented. A parametric map is constructed for a variety of nanotube geometries as a guide for the applicability of different models. The continuum assumptions made in representing a nanotube as a homogeneous thin shell are analyzed to identify possible limitations of applying shell theories and using their bifurcation-buckling equations at the nano-scale.

  16. Electrostatics of proteins in dielectric solvent continua. I. Newton's third law marries qE forces

    NASA Astrophysics Data System (ADS)

    Stork, Martina; Tavan, Paul

    2007-04-01

    The authors reformulate and revise an electrostatic theory treating proteins surrounded by dielectric solvent continua [B. Egwolf and P. Tavan, J. Chem. Phys. 118, 2039 (2003)] to make the resulting reaction field (RF) forces compatible with Newton's third law. Such a compatibility is required for their use in molecular dynamics (MD) simulations, in which the proteins are modeled by all-atom molecular mechanics force fields. According to the original theory the RF forces, which are due to the electric field generated by the solvent polarization and act on the partial charges of a protein, i.e., the so-called qE forces, can be quite accurately computed from Gaussian RF dipoles localized at the protein atoms. Using a slightly different approximation scheme also the RF energies of given protein configurations are obtained. However, because the qE forces do not account for the dielectric boundary pressure exerted by the solvent continuum on the protein, they do not obey the principle that actio equals reactio as required by Newton's third law. Therefore, their use in MD simulations is severely hampered. An analysis of the original theory has led the authors now to a reformulation removing the main difficulties. By considering the RF energy, which represents the dominant electrostatic contribution to the free energy of solvation for a given protein configuration, they show that its negative configurational gradient yields mean RF forces obeying the reactio principle. Because the evaluation of these mean forces is computationally much more demanding than that of the qE forces, they derive a suggestion how the qE forces can be modified to obey Newton's third law. Various properties of the thus established theory, particularly issues of accuracy and of computational efficiency, are discussed. A sample application to a MD simulation of a peptide in solution is described in the following paper [M. Stork and P. Tavan, J. Chem. Phys., 126, 165106 (2007).

  17. Ultrafast excited-state deactivation of 9-methylhypoxanthine in aqueous solution: A QM/MM MD study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xugeng, E-mail: xgguo@henu.edu.cn, E-mail: zhangjinglai@henu.edu.cn; Yuan, Huijuan; An, Beibei

    Photoinduced ultrafast non-adiabatic decay of 9-methylhypoxanthine (9MHPX) in aqueous solution was investigated by ab initio surface-hopping dynamics calculations using a combined quantum mechanical/molecular mechanical approach. The absorption spectra of 9MHPX in aqueous solution were also explored by the hybrid cluster-continuum model at the level of time-dependent density functional theory along with the polarizable continuum model (PCM). The static electronic-structure calculations indicate that the absorption spectra of 9MHPX simulated by TD-B3LYP/PCM and TD-X3LYP/PCM can reproduce very well the experimental findings, with the accuracy of about 0.20 eV. According to dynamics simulations, irradiation of 9MHPX populates the bright excited singlet S{sub 1}more » state, which may undergo an ultrafast non-radiative deactivation to the S{sub 0} state. The lifetime of the S{sub 1} state of 9MHPX in aqueous solution is predicted to be 115.6 fs, slightly longer than that in the gas phase (88.8 fs), suggesting that the solvent water has no significant influence on the excited-state lifetime of 9MHPX. Such a behavior in 9MHPX is distinctly different from its parent hypoxanthine keto-N9H tautomer in which the excited-state lifetime of the latter in water solution was remarkably enhanced as compared to the gas phase. The significant difference of the photodynamical behaviors between 9MHPX and keto-N9H can be ascribed to their different hydrogen bond environment in aqueous solution.« less

  18. Fluctuating Finite Element Analysis (FFEA): A continuum mechanics software tool for mesoscale simulation of biomolecules

    PubMed Central

    Solernou, Albert

    2018-01-01

    Fluctuating Finite Element Analysis (FFEA) is a software package designed to perform continuum mechanics simulations of proteins and other globular macromolecules. It combines conventional finite element methods with stochastic thermal noise, and is appropriate for simulations of large proteins and protein complexes at the mesoscale (length-scales in the range of 5 nm to 1 μm), where there is currently a paucity of modelling tools. It requires 3D volumetric information as input, which can be low resolution structural information such as cryo-electron tomography (cryo-ET) maps or much higher resolution atomistic co-ordinates from which volumetric information can be extracted. In this article we introduce our open source software package for performing FFEA simulations which we have released under a GPLv3 license. The software package includes a C ++ implementation of FFEA, together with tools to assist the user to set up the system from Electron Microscopy Data Bank (EMDB) or Protein Data Bank (PDB) data files. We also provide a PyMOL plugin to perform basic visualisation and additional Python tools for the analysis of FFEA simulation trajectories. This manuscript provides a basic background to the FFEA method, describing the implementation of the core mechanical model and how intermolecular interactions and the solvent environment are included within this framework. We provide prospective FFEA users with a practical overview of how to set up an FFEA simulation with reference to our publicly available online tutorials and manuals that accompany this first release of the package. PMID:29570700

  19. Considerations for the Development of a Substance-Related Care and Prevention Continuum Model

    PubMed Central

    Perlman, David C.; Jordan, Ashly E.

    2017-01-01

    There are significant gaps in the identification and engagement in care and prevention services of people who use illicit substances. Care continuum models have proven to be useful tools in the evaluation of care for HIV and other conditions; numerous issues in substance-related care and prevention resemble those identified in other continua models. Systems of care for substance misuse and substance use disorders (SUDs) can be viewed as consisting of a prevention and care continuum, reflecting incidence and prevalence of substance misuse and SUDs, screening and identification, medical and psychosocial evaluation for treatment, engagement in evidence-based treatment, treatment retention, relapse prevention, timeliness of step completion, and measures of overall and substance use-related specific morbidity and mortality. Care and prevention continuum models could potentially be applied at program, local, regional, state, and national levels. We discuss important lessons that can be drawn from applications of continuum models in other fields. The development and use of a substance-related care and prevention continuum may yield significant patient care, program evaluation and improvement, and population-level benefits. PMID:28770195

  20. Realistic Gamow shell model for resonance and continuum in atomic nuclei

    NASA Astrophysics Data System (ADS)

    Xu, F. R.; Sun, Z. H.; Wu, Q.; Hu, B. S.; Dai, S. J.

    2018-02-01

    The Gamow shell model can describe resonance and continuum for atomic nuclei. The model is established in the complex-moment (complex-k) plane of the Berggren coordinates in which bound, resonant and continuum states are treated on equal footing self-consistently. In the present work, the realistic nuclear force, CD Bonn, has been used. We have developed the full \\hat{Q}-box folded-diagram method to derive the realistic effective interaction in the model space which is nondegenerate and contains resonance and continuum channels. The CD-Bonn potential is renormalized using the V low-k method. With choosing 16O as the inert core, we have applied the Gamow shell model to oxygen isotopes.

  1. Hybrid plasma modeling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, Matthew Morgan; DeChant, Lawrence Justin.; Piekos, Edward Stanley

    2009-02-01

    This report summarizes the work completed during FY2007 and FY2008 for the LDRD project ''Hybrid Plasma Modeling''. The goal of this project was to develop hybrid methods to model plasmas across the non-continuum-to-continuum collisionality spectrum. The primary methodology to span these regimes was to couple a kinetic method (e.g., Particle-In-Cell) in the non-continuum regions to a continuum PDE-based method (e.g., finite differences) in continuum regions. The interface between the two would be adjusted dynamically ased on statistical sampling of the kinetic results. Although originally a three-year project, it became clear during the second year (FY2008) that there were not sufficientmore » resources to complete the project and it was terminated mid-year.« less

  2. Ultrafast dynamics of electrons in ammonia.

    PubMed

    Vöhringer, Peter

    2015-04-01

    Solvated electrons were first discovered in solutions of metals in liquid ammonia. The physical and chemical properties of these species have been studied extensively for many decades using an arsenal of electrochemical, spectroscopic, and theoretical techniques. Yet, in contrast to their hydrated counterpart, the ultrafast dynamics of ammoniated electrons remained completely unexplored until quite recently. Femtosecond pump-probe spectroscopy on metal-ammonia solutions and femtosecond multiphoton ionization spectroscopy on the neat ammonia solvent have provided new insights into the optical properties and the reactivities of this fascinating species. This article reviews the nature of the optical transition, which gives the metal-ammonia solutions their characteristic blue appearance, in terms of ultrafast relaxation processes involving bound and continuum excited states. The recombination processes following the injection of an electron via photoionization of the solvent are discussed in the context of the electronic structure of the liquid and the anionic defect associated with the solvated electron.

  3. Discrete-to-continuum modelling of weakly interacting incommensurate two-dimensional lattices.

    PubMed

    Español, Malena I; Golovaty, Dmitry; Wilber, J Patrick

    2018-01-01

    In this paper, we derive a continuum variational model for a two-dimensional deformable lattice of atoms interacting with a two-dimensional rigid lattice. The starting point is a discrete atomistic model for the two lattices which are assumed to have slightly different lattice parameters and, possibly, a small relative rotation. This is a prototypical example of a three-dimensional system consisting of a graphene sheet suspended over a substrate. We use a discrete-to-continuum procedure to obtain the continuum model which recovers both qualitatively and quantitatively the behaviour observed in the corresponding discrete model. The continuum model predicts that the deformable lattice develops a network of domain walls characterized by large shearing, stretching and bending deformation that accommodates the misalignment and/or mismatch between the deformable and rigid lattices. Two integer-valued parameters, which can be identified with the components of a Burgers vector, describe the mismatch between the lattices and determine the geometry and the details of the deformation associated with the domain walls.

  4. Applications of Artificial Neural Networks in Structural Engineering with Emphasis on Continuum Models

    NASA Technical Reports Server (NTRS)

    Kapania, Rakesh K.; Liu, Youhua

    1998-01-01

    The use of continuum models for the analysis of discrete built-up complex aerospace structures is an attractive idea especially at the conceptual and preliminary design stages. But the diversity of available continuum models and hard-to-use qualities of these models have prevented them from finding wide applications. In this regard, Artificial Neural Networks (ANN or NN) may have a great potential as these networks are universal approximators that can realize any continuous mapping, and can provide general mechanisms for building models from data whose input-output relationship can be highly nonlinear. The ultimate aim of the present work is to be able to build high fidelity continuum models for complex aerospace structures using the ANN. As a first step, the concepts and features of ANN are familiarized through the MATLAB NN Toolbox by simulating some representative mapping examples, including some problems in structural engineering. Then some further aspects and lessons learned about the NN training are discussed, including the performances of Feed-Forward and Radial Basis Function NN when dealing with noise-polluted data and the technique of cross-validation. Finally, as an example of using NN in continuum models, a lattice structure with repeating cells is represented by a continuum beam whose properties are provided by neural networks.

  5. Nonlinear modeling of crystal system transition of black phosphorus using continuum-DFT model.

    PubMed

    Setoodeh, A R; Farahmand, H

    2018-01-24

    In this paper, the nonlinear behavior of black phosphorus crystals is investigated in tandem with dispersion-corrected density functional theory (DFT-D) analysis under uniaxial loadings. From the identified anisotropic behavior of black phosphorus due to its morphological anisotropy, a hyperelastic anisotropic (HA) model named continuum-DFT is established to predict the nonlinear behavior of the material. In this respect, uniaxial Cauchy stresses are employed on both the DFT-D and HA models along the zig-zag and armchair directions. Simultaneously, the transition of the crystal system is recognized at about 4.5 GPa of the applied uniaxial tensile stress along the zig-zag direction on the DFT-D simulation in the nonlinear region. In order to develop the nonlinear continuum model, unknown constants are surveyed with the optimized least square technique. In this regard, the continuum model is obtained to reproduce the Cauchy stress-stretch and density of strain-stretch results of the DFT-D simulation. Consequently, the modified HA model is introduced to characterize the nonlinear behavior of black phosphorus along the zig-zag direction. More importantly, the specific transition of the crystal system is successfully predicted in the new modified continuum-DFT model. The results reveal that the multiscale continuum-DFT model is well defined to replicate the nonlinear behavior of black phosphorus along the zig-zag and armchair directions.

  6. A three-dimensional transient mixed hybrid finite element model for superabsorbent polymers with strain-dependent permeability.

    PubMed

    Yu, Cong; Malakpoor, Kamyar; Huyghe, Jacques M

    2018-05-16

    A hydrogel is a cross-linked polymer network with water as solvent. Industrially widely used superabsorbent polymers (SAP) are partially neutralized sodium polyacrylate hydrogels. The extremely large degree of swelling is one of the most distinctive characteristics of such hydrogels, as the volume increase can be about 30 times its original volume when exposed to physiological solution. The large deformation resulting from the swelling demands careful numerical treatment. In this work, we present a biphasic continuum-level swelling model using the mixed hybrid finite element method (MHFEM) in three dimensions. The hydraulic permeability is highly dependent on the swelling ratio, resulting in values that are orders of magnitude apart from each other. The property of the local mass conservation of MHFEM contributes to a more accurate calculation of the deformation as the permeability across the swelling gel in a transient state is highly non-uniform. We show that the proposed model is able to simulate the free swelling of a random-shaped gel and the squeezing of fluid out of a swollen gel. Finally, we make use of the proposed numerical model to study the onset of surface instability in transient swelling.

  7. Diffusiophoretic self-propulsion for partially catalytic spherical colloids.

    PubMed

    de Graaf, Joost; Rempfer, Georg; Holm, Christian

    2015-04-01

    Colloidal spheres with a partial platinum surface coating perform autophoretic motion when suspended in hydrogen peroxide solution. We present a theoretical analysis of the self-propulsion velocity of these particles using a continuum multi-component, self-diffusiophoretic model. With this model as a basis, we show how the slip-layer approximation can be derived and in which limits it holds. First, we consider the differences between the full multi-component model and the slip-layer approximation. Then the slip model is used to demonstrate and explore the sensitive nature of the particle's velocity on the details of the molecule-surface interaction. We find a strong asymmetry in the dependence of the colloid's velocity as a function of the level of catalytic coating, when there is a different interaction between the solute and solvent molecules and the inert and catalytic part of the colloid, respectively. The direction of motion can even be reversed by varying the level of the catalytic coating. Finally, we investigate the robustness of these results with respect to variations in the reaction rate near the edge between the catalytic and inert parts of the particle. Our results are of significant interest to the interpretation of experimental results on the motion of self-propelled particles.

  8. Coupling discrete and continuum concentration particle models for multiscale and hybrid molecular-continuum simulations

    DOE PAGES

    Petsev, Nikolai Dimitrov; Leal, L. Gary; Shell, M. Scott

    2017-12-21

    Hybrid molecular-continuum simulation techniques afford a number of advantages for problems in the rapidly burgeoning area of nanoscale engineering and technology, though they are typically quite complex to implement and limited to single-component fluid systems. We describe an approach for modeling multicomponent hydrodynamic problems spanning multiple length scales when using particle-based descriptions for both the finely-resolved (e.g. molecular dynamics) and coarse-grained (e.g. continuum) subregions within an overall simulation domain. This technique is based on the multiscale methodology previously developed for mesoscale binary fluids [N. D. Petsev, L. G. Leal, and M. S. Shell, J. Chem. Phys. 144, 84115 (2016)], simulatedmore » using a particle-based continuum method known as smoothed dissipative particle dynamics (SDPD). An important application of this approach is the ability to perform coupled molecular dynamics (MD) and continuum modeling of molecularly miscible binary mixtures. In order to validate this technique, we investigate multicomponent hybrid MD-continuum simulations at equilibrium, as well as non-equilibrium cases featuring concentration gradients.« less

  9. Coupling discrete and continuum concentration particle models for multiscale and hybrid molecular-continuum simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petsev, Nikolai Dimitrov; Leal, L. Gary; Shell, M. Scott

    Hybrid molecular-continuum simulation techniques afford a number of advantages for problems in the rapidly burgeoning area of nanoscale engineering and technology, though they are typically quite complex to implement and limited to single-component fluid systems. We describe an approach for modeling multicomponent hydrodynamic problems spanning multiple length scales when using particle-based descriptions for both the finely-resolved (e.g. molecular dynamics) and coarse-grained (e.g. continuum) subregions within an overall simulation domain. This technique is based on the multiscale methodology previously developed for mesoscale binary fluids [N. D. Petsev, L. G. Leal, and M. S. Shell, J. Chem. Phys. 144, 84115 (2016)], simulatedmore » using a particle-based continuum method known as smoothed dissipative particle dynamics (SDPD). An important application of this approach is the ability to perform coupled molecular dynamics (MD) and continuum modeling of molecularly miscible binary mixtures. In order to validate this technique, we investigate multicomponent hybrid MD-continuum simulations at equilibrium, as well as non-equilibrium cases featuring concentration gradients.« less

  10. On the origin of the water vapor continuum absorption within rotational and fundamental vibrational bands

    NASA Astrophysics Data System (ADS)

    Serov, E. A.; Odintsova, T. A.; Tretyakov, M. Yu.; Semenov, V. E.

    2017-05-01

    Analysis of the continuum absorption in water vapor at room temperature within the purely rotational and fundamental ro-vibrational bands shows that a significant part (up to a half) of the observed absorption cannot be explained within the framework of the existing concepts of the continuum. Neither of the two most prominent mechanisms of continuum originating, namely, the far wings of monomer lines and the dimers, cannot reproduce the currently available experimental data adequately. We propose a new approach to developing a physically based model of the continuum. It is demonstrated that water dimers and wings of monomer lines may contribute equally to the continuum within the bands, and their contribution should be taken into account in the continuum model. We propose a physical mechanism giving missing justification for the super-Lorentzian behavior of the intermediate line wing. The qualitative validation of the proposed approach is given on the basis of a simple empirical model. The obtained results are directly indicative of the necessity to reconsider the existing line wing theory and can guide this consideration.

  11. A continuum theory for multicomponent chromatography modeling.

    PubMed

    Pfister, David; Morbidelli, Massimo; Nicoud, Roger-Marc

    2016-05-13

    A continuum theory is proposed for modeling multicomponent chromatographic systems under linear conditions. The model is based on the description of complex mixtures, possibly involving tens or hundreds of solutes, by a continuum. The present approach is shown to be very efficient when dealing with a large number of similar components presenting close elution behaviors and whose individual analytical characterization is impossible. Moreover, approximating complex mixtures by continuous distributions of solutes reduces the required number of model parameters to the few ones specific to the characterization of the selected continuous distributions. Therefore, in the frame of the continuum theory, the simulation of large multicomponent systems gets simplified and the computational effectiveness of the chromatographic model is thus dramatically improved. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Theoretical studies of UO(2)(OH)(H(2)O)(n) (+), UO(2)(OH)(2)(H(2)O)(n), NpO(2)(OH)(H(2)O)(n), and PuO(2)(OH)(H(2)O)(n) (+) (n

    PubMed

    Cao, Zhiji; Balasubramanian, K

    2009-10-28

    Extensive ab initio calculations have been carried out to study equilibrium structures, vibrational frequencies, and the nature of chemical bonds of hydrated UO(2)(OH)(+), UO(2)(OH)(2), NpO(2)(OH), and PuO(2)(OH)(+) complexes that contain up to 21 water molecules both in first and second hydration spheres in both aqueous solution and the gas phase. The structures have been further optimized by considering long-range solvent effects through a polarizable continuum dielectric model. The hydrolysis reaction Gibbs free energy of UO(2)(H(2)O)(5) (2+) is computed to be 8.11 kcal/mol at the MP2 level in good agreement with experiments. Our results reveal that it is necessary to include water molecules bound to the complex in the first hydration sphere for proper treatment of the hydrated complex and the dielectric cavity although water molecules in the second hydration sphere do not change the coordination complex. Structural reoptimization of the complex in a dielectric cavity seems inevitable to seek subtle structural variations in the solvent and to correlate with the observed spectra and thermodynamic properties in the aqueous environment. Our computations reveal dramatically different equilibrium structures in the gas phase and solution and also confirm the observed facile exchanges between the complex and bulk solvent. Complete active space multiconfiguration self-consistent field followed by multireference singles+doubles CI (MRSDCI) computations on smaller complexes confirm predominantly single-configurational nature of these species and the validity of B3LYP and MP2 techniques for these complexes in their ground states.

  13. Solvent Effects on the Kinetics of Simple Electrochemical Reactions. I. Comparison of the Behavior of Co(III)/(II) Trisethylenediamine and Ammine Couples with the Predictions of Dielectric Continuum Theory.

    DTIC Science & Technology

    1981-01-08

    lithium perchlorate was dried at -180°C for several days. Tetraethylammonium perchlorate was recrystallized from water and dried in a vacuum oven at...cases the electrolyte composition p, was chosen to be 0.1 M lithium perchlorate or 0.1 M tetraethyl ammonium perchlorate (TEAP). These electrolytes...perchlorate specific adsorption is quite noticeable. Hexafluorophosphate adsorption is sufficiently weak so that small positive values of the potential across

  14. Tautomerism and spectroscopic properties of the immunosuppressant azathioprine.

    PubMed

    Makhyoun, Mohamed A; Massoud, Raghdaa A; Soliman, Saied M

    2013-10-01

    The molecular structure and the relative stabilities of the four possible tautomers of the immunosuppressant azathioprine (AZA) are calculated by DFT/B3LYP method using different basis sets. The results of the energy analysis and thermodynamic treatment of the obtained data are used to predict the relative stabilities of the AZA tautomers. The effect of solvents such as DMSO and water on the stability of the AZA tautomers was studied using the polarized continuum method (PCM) at the same level of theory. The calculation predicted that, the total energies of all tautomers are decreased indicating that all tautomers are more or less stabilized by the solvent effect. The vibrational spectra of AZA are calculated using the same level of theory and the results are compared with the experimentally measured FTIR spectra. Good correlation is obtained between the experimental and calculated vibrational frequencies (R(2)=0.997). The electronic spectra of AZA in gas phase and in methanol as solvent are calculated using the TD-DFT method. The calculations predicted bathochromic shift in all the spectral bands in presence of solvent compared to the gas phase. Also the NMR spectra of all tautomers are calculated and the results are correlated with the experimental NMR chemical shifts where the most stable tautomer gives the best correlation coefficient (R(2)=0.996). Copyright © 2013 Elsevier B.V. All rights reserved.

  15. New Insights into the Electroreduction of Ethylene Sulfite as Electrolyte Additive for Facilitating Solid Electrolyte Interphase of Lithium Ion Battery

    PubMed Central

    Sun, Youmin; Wang, Yixuan

    2017-01-01

    To help understand the solid electrolyte interphase (SEI) formation facilitated by electrolyte additives of lithium-ion batteries (LIB) the supermolecular clusters [(ES)Li+(PC)m](PC)n (m=1–2; n=0, 6, and 9) were used to investigate the electroreductive decompositions of the electrolyte additive, ethylene sulfite (ES), as well as the solvent, propylene carbonate (PC) with density functional theory. The results show that ES can be reduced prior to PC, resulting in a reduction precursor that will then undergo a ring opening decomposition to yield a radical anion. A new concerted pathway (path B) was located for the ring opening of the reduced ES, which has much lower energy barrier than the previously reported stepwise pathway (path A). The transition state for the ring opening of PC induced by the reduced ES (path C, indirect path) is closer to that of path A than path B in energy. The direct ring opening of the reduced PC (path D) has lower energy barrier than those of paths A, B and C, yet it is less favorable than the latter paths in terms of thermodynamics (vertical electron affinity or the reduction potential dissociation energy). The overall rate constant including the initial reduction and the subsequent ring opening for path B is the largest among the four paths, followed by paths A>C>D, which further signifies the importance of the concerted new path in facilitating the SEI. The hybrid models, the supermolecular cluster augmented by polarized continuum model, PCM-[(ES)Li+(PC)2](PC)n (n=0,6, and 9), were used to further estimate the reduction potential by taking into account both explicit and implicit solvent effects. The second solvation shell of Li+ in [(ES)Li+(PC)2](PC)n (n=6, and 9) partially compensates the overestimation of solvent effects arising from the PCM model for the naked (ES)Li+(PC)2, and the theoretical reduction potential with PCM-[(ES)Li+(PC)2](PC)6 (1.90–1.93V) agrees very well with the experimental one (1.8–2.0V). PMID:28220165

  16. A CONTINUUM HARD-SPHERE MODEL OF PROTEIN ADSORPTION

    PubMed Central

    Finch, Craig; Clarke, Thomas; Hickman, James J.

    2012-01-01

    Protein adsorption plays a significant role in biological phenomena such as cell-surface interactions and the coagulation of blood. Two-dimensional random sequential adsorption (RSA) models are widely used to model the adsorption of proteins on solid surfaces. Continuum equations have been developed so that the results of RSA simulations can be used to predict the kinetics of adsorption. Recently, Brownian dynamics simulations have become popular for modeling protein adsorption. In this work a continuum model was developed to allow the results from a Brownian dynamics simulation to be used as the boundary condition in a computational fluid dynamics (CFD) simulation. Brownian dynamics simulations were used to model the diffusive transport of hard-sphere particles in a liquid and the adsorption of the particles onto a solid surface. The configuration of the adsorbed particles was analyzed to quantify the chemical potential near the surface, which was found to be a function of the distance from the surface and the fractional surface coverage. The near-surface chemical potential was used to derive a continuum model of adsorption that incorporates the results from the Brownian dynamics simulations. The equations of the continuum model were discretized and coupled to a CFD simulation of diffusive transport to the surface. The kinetics of adsorption predicted by the continuum model closely matched the results from the Brownian dynamics simulation. This new model allows the results from mesoscale simulations to be incorporated into micro- or macro-scale CFD transport simulations of protein adsorption in practical devices. PMID:23729843

  17. Solvation effects on alanine dipeptide: A MP2/cc-pVTZ//MP2/6-31G** study of (Phi, Psi) energy maps and conformers in the gas phase, ether, and water.

    PubMed

    Wang, Zhi-Xiang; Duan, Yong

    2004-11-15

    The effects of solvation on the conformations and energies of alanine dipeptide (AD) have been studied by ab initio calculations up to MP2/cc-pVTZ//MP2/6-31G**, utilizing the polarizable continuum model (PCM) to mimic solvation effects. The energy surfaces in the gas phase, ether, and water bear similar topological features carved by the steric hindrance, but the details differ significantly due to the solvent effects. The gas-phase energy map is qualitatively consistent with the Ramachandran plot showing seven energy minima. With respect to the gas-phase map, the significant changes of the aqueous map include (1) the expanded low-energy regions, (2) the emergence of an energy barrier between C5-beta and alpha(R)-beta(2) regions, (3) a clearly pronounced alpha(R) minimum, a new beta-conformer, and the disappearance of the gas-phase global minimum, and (4) the shift of the dominant region in LEII from the gas-phase C7(ax) region to the alpha(L) region. These changes bring the map in water to be much closer to the Ramachandran plot than the gas-phase map. The solvent effects on the geometries include the elongation of the exposed N-H and C=O bonds, the shortening of the buried HN--CO peptide bonds, and the enhanced planarity of the peptide bonds. The energy surface in ether has features similar to those both in the gas phase and in water. The free energy order computed in the gas phase and in ether is in good agreement with experimental studies that concluded that C5 and C7(eq) are the dominant species in both the gas phase and nonpolar solvents. The free energy order in water is consistent with the experimental observation that the dominant C7(eq) in the nonpolar solvent was largely replaced by P(II)-like (i.e., beta) and alpha(R) in the strong polar solvents. Based on calculations on AD + 4H(2)O and other AD-water clusters, we suggest that explicit water-AD interactions may distort C5 and beta (or alpha(R) and beta) to an intermediate conformation. Our analysis also shows that the PCM calculations at the MP2/cc-pVTZ//MP2/6-31G** level give good descriptions to the bulk solvent polarization effect. The results presented in this article should be of sufficient quality to characterize the peptide bonds in the gas phase and solvents. The energy surfaces may serve as the basis for developing of strategies enabling the inclusion of solvent polarization in the force field.

  18. Gradient Models in Molecular Biophysics: Progress, Challenges, Opportunities

    PubMed Central

    Bardhan, Jaydeep P.

    2014-01-01

    In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g. molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically always been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding features such as nonlocal dielectric response, and nonlinearities resulting from dielectric saturation. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost forty years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The paper concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics. PMID:25505358

  19. Gradient Models in Molecular Biophysics: Progress, Challenges, Opportunities.

    PubMed

    Bardhan, Jaydeep P

    2013-12-01

    In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g. molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically always been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding features such as nonlocal dielectric response, and nonlinearities resulting from dielectric saturation. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost forty years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The paper concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics.

  20. Gradient models in molecular biophysics: progress, challenges, opportunities

    NASA Astrophysics Data System (ADS)

    Bardhan, Jaydeep P.

    2013-12-01

    In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g., molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically always been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding nonlocal dielectric response. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain, and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost 40 years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The review concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics.

  1. Progress toward bridging from atomistic to continuum modeling to predict nuclear waste glass dissolution.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapol, Peter; Bourg, Ian; Criscenti, Louise Jacqueline

    2011-10-01

    This report summarizes research performed for the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Subcontinuum and Upscaling Task. The work conducted focused on developing a roadmap to include molecular scale, mechanistic information in continuum-scale models of nuclear waste glass dissolution. This information is derived from molecular-scale modeling efforts that are validated through comparison with experimental data. In addition to developing a master plan to incorporate a subcontinuum mechanistic understanding of glass dissolution into continuum models, methods were developed to generate constitutive dissolution rate expressions from quantum calculations, force field models were selected to generate multicomponent glass structures and gel layers,more » classical molecular modeling was used to study diffusion through nanopores analogous to those in the interfacial gel layer, and a micro-continuum model (K{mu}C) was developed to study coupled diffusion and reaction at the glass-gel-solution interface.« less

  2. Multiscale modeling and computation of nano-electronic transistors and transmembrane proton channels

    NASA Astrophysics Data System (ADS)

    Chen, Duan

    The miniaturization of nano-scale electronic transistors, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. In biology, proton dynamics and transport across membrane proteins are of paramount importance to the normal function of living cells. Similar physical characteristics are behind the two subjects, and model simulations share common mathematical interests/challenges. In this thesis work, multiscale and multiphysical models are proposed to study the mechanisms of nanotransistors and proton transport in transmembrane at the atomic level. For nano-electronic transistors, we introduce a unified two-scale energy functional to describe the electrons and the continuum electrostatic potential. This framework enables us to put microscopic and macroscopic descriptions on an equal footing at nano-scale. Additionally, this model includes layered structures and random doping effect of nano-transistors. For transmembrane proton channels, we describe proton dynamics quantum mechanically via a density functional approach while implicitly treat numerous solvent molecules as a dielectric continuum. The densities of all other ions in the solvent are assumed to obey the Boltzmann distribution. The impact of protein molecular structure and its charge polarization on the proton transport is considered in atomic details. We formulate a total free energy functional to include kinetic and potential energies of protons, as well as electrostatic energy of all other ions on an equal footing. For both nano-transistors and proton channels systems, the variational principle is employed to derive nonlinear governing equations. The Poisson-Kohn-Sham equations are derived for nano-transistors while the generalized Poisson-Boltzmann equation and Kohn-Sham equation are obtained for proton channels. Related numerical challenges in simulations are addressed: the matched interface and boundary (MIB) method, the Dirichlet-to-Neumann mapping (DNM) technique, and the Krylov subspace and preconditioner theory are introduced to improve the computational efficiency of the Poisson-type equation. The quantum transport theory is employed to solve the Kohn-Sham equation. The Gummel iteration and relaxation technique are utilized for overall self-consistent iterations. Finally, applications are considered and model validations are verified by realistic nano-transistors and transmembrane proteins. Two distinct device configurations, a double-gate MOSFET and a four-gate MOSFET, are considered in our threedimensional numerical simulations. For these devices, the current uctuation and voltage threshold lowering effect induced by discrete dopants are explored. For proton transport, a realistic channel protein, the Gramicidin A (GA) is used to demonstrate the performance of the proposed proton channel model and validate the efficiency of the proposed mathematical algorithms. The electrostatic characteristics of the GA channel is analyzed with a wide range of model parameters. Proton channel conductances are studied over a number of applied voltages and reference concentrations. Comparisons with experimental data are utilized to verify our model predictions.

  3. Nonuniform continuum model for solvatochromism based on frozen-density embedding theory.

    PubMed

    Shedge, Sapana Vitthal; Wesolowski, Tomasz A

    2014-10-20

    Frozen-density embedding theory (FDET) provides the formal framework for multilevel numerical simulations, such that a selected subsystem is described at the quantum mechanical level, whereas its environment is described by means of the electron density (frozen density; ${\\rho _{\\rm{B}} (\\vec r)}$). The frozen density ${\\rho _{\\rm{B}} (\\vec r)}$ is usually obtained from some lower-level quantum mechanical methods applied to the environment, but FDET is not limited to such choices for ${\\rho _{\\rm{B}} (\\vec r)}$. The present work concerns the application of FDET, in which ${\\rho _{\\rm{B}} (\\vec r)}$ is the statistically averaged electron density of the solvent ${\\left\\langle {\\rho _{\\rm{B}} (\\vec r)} \\right\\rangle }$. The specific solute-solvent interactions are represented in a statistical manner in ${\\left\\langle {\\rho _{\\rm{B}} (\\vec r)} \\right\\rangle }$. A full self-consistent treatment of solvated chromophore, thus involves a single geometry of the chromophore in a given state and the corresponding ${\\left\\langle {\\rho _{\\rm{B}} (\\vec r)} \\right\\rangle }$. We show that the coupling between the two descriptors might be made in an approximate manner that is applicable for both absorption and emission. The proposed protocol leads to accurate (error in the range of 0.05 eV) descriptions of the solvatochromic shifts in both absorption and emission. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Treatment of geometric singularities in implicit solvent models

    NASA Astrophysics Data System (ADS)

    Yu, Sining; Geng, Weihua; Wei, G. W.

    2007-06-01

    Geometric singularities, such as cusps and self-intersecting surfaces, are major obstacles to the accuracy, convergence, and stability of the numerical solution of the Poisson-Boltzmann (PB) equation. In earlier work, an interface technique based PB solver was developed using the matched interface and boundary (MIB) method, which explicitly enforces the flux jump condition at the solvent-solute interfaces and leads to highly accurate biomolecular electrostatics in continuum electric environments. However, such a PB solver, denoted as MIBPB-I, cannot maintain the designed second order convergence whenever there are geometric singularities, such as cusps and self-intersecting surfaces. Moreover, the matrix of the MIBPB-I is not optimally symmetrical, resulting in the convergence difficulty. The present work presents a new interface method based PB solver, denoted as MIBPB-II, to address the aforementioned problems. The present MIBPB-II solver is systematical and robust in treating geometric singularities and delivers second order convergence for arbitrarily complex molecular surfaces of proteins. A new procedure is introduced to make the MIBPB-II matrix optimally symmetrical and diagonally dominant. The MIBPB-II solver is extensively validated by the molecular surfaces of few-atom systems and a set of 24 proteins. Converged electrostatic potentials and solvation free energies are obtained at a coarse grid spacing of 0.5Å and are considerably more accurate than those obtained by the PBEQ and the APBS at finer grid spacings.

  5. Analysis of an optimization-based atomistic-to-continuum coupling method for point defects

    DOE PAGES

    Olson, Derek; Shapeev, Alexander V.; Bochev, Pavel B.; ...

    2015-11-16

    Here, we formulate and analyze an optimization-based Atomistic-to-Continuum (AtC) coupling method for problems with point defects. Application of a potential-based atomistic model near the defect core enables accurate simulation of the defect. Away from the core, where site energies become nearly independent of the lattice position, the method switches to a more efficient continuum model. The two models are merged by minimizing the mismatch of their states on an overlap region, subject to the atomistic and continuum force balance equations acting independently in their domains. We prove that the optimization problem is well-posed and establish error estimates.

  6. Nanoindentation of virus capsids in a molecular model

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek; Robbins, Mark O.

    2010-01-01

    A molecular-level model is used to study the mechanical response of empty cowpea chlorotic mottle virus (CCMV) and cowpea mosaic virus (CPMV) capsids. The model is based on the native structure of the proteins that constitute the capsids and is described in terms of the Cα atoms. Nanoindentation by a large tip is modeled as compression between parallel plates. Plots of the compressive force versus plate separation for CCMV are qualitatively consistent with continuum models and experiments, showing an elastic region followed by an irreversible drop in force. The mechanical response of CPMV has not been studied, but the molecular model predicts an order of magnitude higher stiffness and a much shorter elastic region than for CCMV. These large changes result from small structural changes that increase the number of bonds by only 30% and would be difficult to capture in continuum models. Direct comparison of local deformations in continuum and molecular models of CCMV shows that the molecular model undergoes a gradual symmetry breaking rotation and accommodates more strain near the walls than the continuum model. The irreversible drop in force at small separations is associated with rupturing nearly all of the bonds between capsid proteins in the molecular model, while a buckling transition is observed in continuum models.

  7. Continuum model of tensile fracture of metal melts and its application to a problem of high-current electron irradiation of metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, Alexander E., E-mail: mayer@csu.ru, E-mail: mayer.al.evg@gmail.com; Mayer, Polina N.

    2015-07-21

    A continuum model of the metal melt fracture is formulated on the basis of the continuum mechanics and theory of metastable liquid. A character of temperature and strain rate dependences of the tensile strength that is predicted by the continuum model is verified, and parameters of the model are fitted with the use of the results of the molecular dynamics simulations for ultra-high strain rates (≥1–10/ns). A comparison with experimental data from literature is also presented for Al and Ni melts. Using the continuum model, the dynamic tensile strength of initially uniform melts of Al, Cu, Ni, Fe, Ti, andmore » Pb within a wide range of strain rates (from 1–10/ms to 100/ns) and temperatures (from melting temperature up to 70–80% of critical temperature) is calculated. The model is applied to numerical investigation of a problem of the high-current electron irradiation of Al, Cu, and Fe targets.« less

  8. Modeling stock price dynamics by continuum percolation system and relevant complex systems analysis

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Wang, Jun

    2012-10-01

    The continuum percolation system is developed to model a random stock price process in this work. Recent empirical research has demonstrated various statistical features of stock price changes, the financial model aiming at understanding price fluctuations needs to define a mechanism for the formation of the price, in an attempt to reproduce and explain this set of empirical facts. The continuum percolation model is usually referred to as a random coverage process or a Boolean model, the local interaction or influence among traders is constructed by the continuum percolation, and a cluster of continuum percolation is applied to define the cluster of traders sharing the same opinion about the market. We investigate and analyze the statistical behaviors of normalized returns of the price model by some analysis methods, including power-law tail distribution analysis, chaotic behavior analysis and Zipf analysis. Moreover, we consider the daily returns of Shanghai Stock Exchange Composite Index from January 1997 to July 2011, and the comparisons of return behaviors between the actual data and the simulation data are exhibited.

  9. Numerical simulation of freshwater/seawater interaction in a dual-permeability karst system with conduits: the development of discrete-continuum VDFST-CFP model

    NASA Astrophysics Data System (ADS)

    Xu, Zexuan; Hu, Bill

    2016-04-01

    Dual-permeability karst aquifers of porous media and conduit networks with significant different hydrological characteristics are widely distributed in the world. Discrete-continuum numerical models, such as MODFLOW-CFP and CFPv2, have been verified as appropriate approaches to simulate groundwater flow and solute transport in numerical modeling of karst hydrogeology. On the other hand, seawater intrusion associated with fresh groundwater resources contamination has been observed and investigated in numbers of coastal aquifers, especially under conditions of sea level rise. Density-dependent numerical models including SEAWAT are able to quantitatively evaluate the seawater/freshwater interaction processes. A numerical model of variable-density flow and solute transport - conduit flow process (VDFST-CFP) is developed to provide a better description of seawater intrusion and submarine groundwater discharge in a coastal karst aquifer with conduits. The coupling discrete-continuum VDFST-CFP model applies Darcy-Weisbach equation to simulate non-laminar groundwater flow in the conduit system in which is conceptualized and discretized as pipes, while Darcy equation is still used in continuum porous media. Density-dependent groundwater flow and solute transport equations with appropriate density terms in both conduit and porous media systems are derived and numerically solved using standard finite difference method with an implicit iteration procedure. Synthetic horizontal and vertical benchmarks are created to validate the newly developed VDFST-CFP model by comparing with other numerical models such as variable density SEAWAT, couplings of constant density groundwater flow and solute transport MODFLOW/MT3DMS and discrete-continuum CFPv2/UMT3D models. VDFST-CFP model improves the simulation of density dependent seawater/freshwater mixing processes and exchanges between conduit and matrix. Continuum numerical models greatly overestimated the flow rate under turbulent flow condition but discrete-continuum models provide more accurate results. Parameters sensitivities analysis indicates that conduit diameter and friction factor, matrix hydraulic conductivity and porosity are important parameters that significantly affect variable-density flow and solute transport simulation. The pros and cons of model assumptions, conceptual simplifications and numerical techniques in VDFST-CFP are discussed. In general, the development of VDFST-CFP model is an innovation in numerical modeling methodology and could be applied to quantitatively evaluate the seawater/freshwater interaction in coastal karst aquifers. Keywords: Discrete-continuum numerical model; Variable density flow and transport; Coastal karst aquifer; Non-laminar flow

  10. Theoretical calculation of reorganization energy for electron self-exchange reaction by constrained density functional theory and constrained equilibrium thermodynamics.

    PubMed

    Ren, Hai-Sheng; Ming, Mei-Jun; Ma, Jian-Yi; Li, Xiang-Yuan

    2013-08-22

    Within the framework of constrained density functional theory (CDFT), the diabatic or charge localized states of electron transfer (ET) have been constructed. Based on the diabatic states, inner reorganization energy λin has been directly calculated. For solvent reorganization energy λs, a novel and reasonable nonequilibrium solvation model is established by introducing a constrained equilibrium manipulation, and a new expression of λs has been formulated. It is found that λs is actually the cost of maintaining the residual polarization, which equilibrates with the extra electric field. On the basis of diabatic states constructed by CDFT, a numerical algorithm using the new formulations with the dielectric polarizable continuum model (D-PCM) has been implemented. As typical test cases, self-exchange ET reactions between tetracyanoethylene (TCNE) and tetrathiafulvalene (TTF) and their corresponding ionic radicals in acetonitrile are investigated. The calculated reorganization energies λ are 7293 cm(-1) for TCNE/TCNE(-) and 5939 cm(-1) for TTF/TTF(+) reactions, agreeing well with available experimental results of 7250 cm(-1) and 5810 cm(-1), respectively.

  11. New Methods of Esterification of Nanodiamonds in Fighting Breast Cancer-A Density Functional Theory Approach.

    PubMed

    Landeros-Martinez, Linda-Lucila; Glossman-Mitnik, Daniel; Orrantia-Borunda, Erasmo; Flores-Holguín, Norma

    2017-10-19

    The use of nanodiamonds as anticancer drug delivery vehicles has received much attention in recent years. In this theoretical paper, we propose using different esterification methods for nanodiamonds. The monomers proposed are 2-hydroxypropanal, polyethylene glycol, and polyglicolic acid. Specifically, the hydrogen bonds, infrared (IR) spectra, molecular polar surface area, and reactivity parameters are analyzed. The monomers proposed for use in esterification follow Lipinski's rule of five, meaning permeability is good, they have good permeation, and their bioactivity is high. The results show that the complex formed between tamoxifen and nanodiamond esterified with polyglicolic acid presents the greatest number of hydrogen bonds and a good amount of molecular polar surface area. Calculations concerning the esterified nanodiamond and reactivity parameters were performed using Density Functional Theory with the M06 functional and the basis set 6-31G (d); for the esterified nanodiamond-Tamoxifen complexes, the semi-empirical method PM6 was used. The solvent effect has been taken into account by using implicit modelling and the conductor-like polarizable continuum model.

  12. Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution.

    PubMed

    Lu, Benzhuo; Zhou, Y C; Huber, Gary A; Bond, Stephen D; Holst, Michael J; McCammon, J Andrew

    2007-10-07

    A computational framework is presented for the continuum modeling of cellular biomolecular diffusion influenced by electrostatic driving forces. This framework is developed from a combination of state-of-the-art numerical methods, geometric meshing, and computer visualization tools. In particular, a hybrid of (adaptive) finite element and boundary element methods is adopted to solve the Smoluchowski equation (SE), the Poisson equation (PE), and the Poisson-Nernst-Planck equation (PNPE) in order to describe electrodiffusion processes. The finite element method is used because of its flexibility in modeling irregular geometries and complex boundary conditions. The boundary element method is used due to the convenience of treating the singularities in the source charge distribution and its accurate solution to electrostatic problems on molecular boundaries. Nonsteady-state diffusion can be studied using this framework, with the electric field computed using the densities of charged small molecules and mobile ions in the solvent. A solution for mesh generation for biomolecular systems is supplied, which is an essential component for the finite element and boundary element computations. The uncoupled Smoluchowski equation and Poisson-Boltzmann equation are considered as special cases of the PNPE in the numerical algorithm, and therefore can be solved in this framework as well. Two types of computations are reported in the results: stationary PNPE and time-dependent SE or Nernst-Planck equations solutions. A biological application of the first type is the ionic density distribution around a fragment of DNA determined by the equilibrium PNPE. The stationary PNPE with nonzero flux is also studied for a simple model system, and leads to an observation that the interference on electrostatic field of the substrate charges strongly affects the reaction rate coefficient. The second is a time-dependent diffusion process: the consumption of the neurotransmitter acetylcholine by acetylcholinesterase, determined by the SE and a single uncoupled solution of the Poisson-Boltzmann equation. The electrostatic effects, counterion compensation, spatiotemporal distribution, and diffusion-controlled reaction kinetics are analyzed and different methods are compared.

  13. Translational research: understanding the continuum from bench to bedside.

    PubMed

    Drolet, Brian C; Lorenzi, Nancy M

    2011-01-01

    The process of translating basic scientific discoveries to clinical applications, and ultimately to public health improvements, has emerged as an important, but difficult, objective in biomedical research. The process is best described as a "translation continuum" because various resources and actions are involved in this progression of knowledge, which advances discoveries from the bench to the bedside. The current model of this continuum focuses primarily on translational research, which is merely one component of the overall translation process. This approach is ineffective. A revised model to address the entire continuum would provide a methodology to identify and describe all translational activities (eg, implementation, adoption translational research, etc) as well their place within the continuum. This manuscript reviews and synthesizes the literature to provide an overview of the current terminology and model for translation. A modification of the existing model is proposed to create a framework called the Biomedical Research Translation Continuum, which defines the translation process and describes the progression of knowledge from laboratory to health gains. This framework clarifies translation for readers who have not followed the evolving and complicated models currently described. Authors and researchers may use the continuum to understand and describe their research better as well as the translational activities within a conceptual framework. Additionally, the framework may increase the advancement of knowledge by refining discussions of translation and allowing more precise identification of barriers to progress. Copyright © 2011 Mosby, Inc. All rights reserved.

  14. A Comparison of Coarse-Grained and Continuum Models for Membrane Bending in Lipid Bilayer Fusion Pores

    PubMed Central

    Yoo, Jejoong; Jackson, Meyer B.; Cui, Qiang

    2013-01-01

    To establish the validity of continuum mechanics models quantitatively for the analysis of membrane remodeling processes, we compare the shape and energies of the membrane fusion pore predicted by coarse-grained (MARTINI) and continuum mechanics models. The results at these distinct levels of resolution give surprisingly consistent descriptions for the shape of the fusion pore, and the deviation between the continuum and coarse-grained models becomes notable only when the radius of curvature approaches the thickness of a monolayer. Although slow relaxation beyond microseconds is observed in different perturbative simulations, the key structural features (e.g., dimension and shape of the fusion pore near the pore center) are consistent among independent simulations. These observations provide solid support for the use of coarse-grained and continuum models in the analysis of membrane remodeling. The combined coarse-grained and continuum analysis confirms the recent prediction of continuum models that the fusion pore is a metastable structure and that its optimal shape is neither toroidal nor catenoidal. Moreover, our results help reveal a new, to our knowledge, bowing feature in which the bilayers close to the pore axis separate more from one another than those at greater distances from the pore axis; bowing helps reduce the curvature and therefore stabilizes the fusion pore structure. The spread of the bilayer deformations over distances of hundreds of nanometers and the substantial reduction in energy of fusion pore formation provided by this spread indicate that membrane fusion can be enhanced by allowing a larger area of membrane to participate and be deformed. PMID:23442963

  15. Stochastic Ground Water Flow Simulation with a Fracture Zone Continuum Model

    USGS Publications Warehouse

    Langevin, C.D.

    2003-01-01

    A method is presented for incorporating the hydraulic effects of vertical fracture zones into two-dimensional cell-based continuum models of ground water flow and particle tracking. High hydraulic conductivity features are used in the model to represent fracture zones. For fracture zones that are not coincident with model rows or columns, an adjustment is required for the hydraulic conductivity value entered into the model cells to compensate for the longer flowpath through the model grid. A similar adjustment is also required for simulated travel times through model cells. A travel time error of less than 8% can occur for particles moving through fractures with certain orientations. The fracture zone continuum model uses stochastically generated fracture zone networks and Monte Carlo analysis to quantify uncertainties with simulated advective travel times. An approach is also presented for converting an equivalent continuum model into a fracture zone continuum model by establishing the contribution of matrix block transmissivity to the bulk transmissivity of the aquifer. The methods are used for a case study in west-central Florida to quantify advective travel times from a potential wetland rehydration site to a municipal supply wellfield. Uncertainties in advective travel times are assumed to result from the presence of vertical fracture zones, commonly observed on aerial photographs as photolineaments.

  16. Electrostatics of proteins in dielectric solvent continua. II. First applications in molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Stork, Martina; Tavan, Paul

    2007-04-01

    In the preceding paper by Stork and Tavan, [J. Chem. Phys. 126, 165105 (2007)], the authors have reformulated an electrostatic theory which treats proteins surrounded by dielectric solvent continua and approximately solves the associated Poisson equation [B. Egwolf and P. Tavan, J. Chem. Phys. 118, 2039 (2003)]. The resulting solution comprises analytical expressions for the electrostatic reaction field (RF) and potential, which are generated within the protein by the polarization of the surrounding continuum. Here the field and potential are represented in terms of Gaussian RF dipole densities localized at the protein atoms. Quite like in a polarizable force field, also the RF dipole at a given protein atom is induced by the partial charges and RF dipoles at the other atoms. Based on the reformulated theory, the authors have suggested expressions for the RF forces, which obey Newton's third law. Previous continuum approaches, which were also built on solutions of the Poisson equation, used to violate the reactio principle required by this law, and thus were inapplicable to molecular dynamics (MD) simulations. In this paper, the authors suggest a set of techniques by which one can surmount the few remaining hurdles still hampering the application of the theory to MD simulations of soluble proteins and peptides. These techniques comprise the treatment of the RF dipoles within an extended Lagrangian approach and the optimization of the atomic RF polarizabilities. Using the well-studied conformational dynamics of alanine dipeptide as the simplest example, the authors demonstrate the remarkable accuracy and efficiency of the resulting RF-MD approach.

  17. Ranges of Applicability for the Continuum-beam Model in the Constitutive Analysis of Carbon Nanotubes: Nanotubes or Nano-beams?

    NASA Technical Reports Server (NTRS)

    Harik, Vasyl Michael; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    Ranges of validity for the continuum-beam model, the length-scale effects and continuum assumptions are analyzed in the framework of scaling analysis of NT structure. Two coupled criteria for the applicability of the continuum model are presented. Scaling analysis of NT buckling and geometric parameters (e.g., diameter and length) is carried out to determine the key non-dimensional parameters that control the buckling strains and modes of NT buckling. A model applicability map, which represents two classes of NTs, is constructed in the space of non-dimensional parameters. In an analogy with continuum mechanics, a mechanical law of geometric similitude is presented for two classes of beam-like NTs having different geometries. Expressions for the critical buckling loads and strains are tailored for the distinct groups of NTs and compared with the data provided by the molecular dynamics simulations. Implications for molecular dynamics simulations and the NT-based scanning probes are discussed.

  18. A Micro-Mechanism-Based Continuum Corrosion Fatigue Damage Model for Steels

    NASA Astrophysics Data System (ADS)

    Sun, Bin; Li, Zhaoxia

    2018-05-01

    A micro-mechanism-based corrosion fatigue damage model is developed for studying the high-cycle corrosion fatigue of steel from multi-scale viewpoint. The developed physical corrosion fatigue damage model establishes micro-macro relationships between macroscopic continuum damage evolution and collective evolution behavior of microscopic pits and cracks, which can be used to describe the multi-scale corrosion fatigue process of steel. As a case study, the model is used to predict continuum damage evolution and number density of the corrosion pit and short crack of steel component in 5% NaCl water under constant stress amplitude at 20 kHz, and the numerical results are compared with experimental results. It shows that the model is effective and can be used to evaluate the continuum macroscopic corrosion fatigue damage and study microscopic corrosion fatigue mechanisms of steel.

  19. A Micro-Mechanism-Based Continuum Corrosion Fatigue Damage Model for Steels

    NASA Astrophysics Data System (ADS)

    Sun, Bin; Li, Zhaoxia

    2018-04-01

    A micro-mechanism-based corrosion fatigue damage model is developed for studying the high-cycle corrosion fatigue of steel from multi-scale viewpoint. The developed physical corrosion fatigue damage model establishes micro-macro relationships between macroscopic continuum damage evolution and collective evolution behavior of microscopic pits and cracks, which can be used to describe the multi-scale corrosion fatigue process of steel. As a case study, the model is used to predict continuum damage evolution and number density of the corrosion pit and short crack of steel component in 5% NaCl water under constant stress amplitude at 20 kHz, and the numerical results are compared with experimental results. It shows that the model is effective and can be used to evaluate the continuum macroscopic corrosion fatigue damage and study microscopic corrosion fatigue mechanisms of steel.

  20. Micropolar continuum modelling of bi-dimensional tetrachiral lattices

    PubMed Central

    Chen, Y.; Liu, X. N.; Hu, G. K.; Sun, Q. P.; Zheng, Q. S.

    2014-01-01

    The in-plane behaviour of tetrachiral lattices should be characterized by bi-dimensional orthotropic material owing to the existence of two orthogonal axes of rotational symmetry. Moreover, the constitutive model must also represent the chirality inherent in the lattices. To this end, a bi-dimensional orthotropic chiral micropolar model is developed based on the theory of irreducible orthogonal tensor decomposition. The obtained constitutive tensors display a hierarchy structure depending on the symmetry of the underlying microstructure. Eight additional material constants, in addition to five for the hemitropic case, are introduced to characterize the anisotropy under Z2 invariance. The developed continuum model is then applied to a tetrachiral lattice, and the material constants of the continuum model are analytically derived by a homogenization process. By comparing with numerical simulations for the discrete lattice, it is found that the proposed continuum model can correctly characterize the static and wave properties of the tetrachiral lattice. PMID:24808754

  1. A continuum model for pressure-flow relationship in human pulmonary circulation.

    PubMed

    Huang, Wei; Zhou, Qinlian; Gao, Jian; Yen, R T

    2011-06-01

    A continuum model was introduced to analyze the pressure-flow relationship for steady flow in human pulmonary circulation. The continuum approach was based on the principles of continuum mechanics in conjunction with detailed measurement of vascular geometry, vascular elasticity and blood rheology. The pulmonary arteries and veins were considered as elastic tubes and the "fifth-power law" was used to describe the pressure-flow relationship. For pulmonary capillaries, the "sheet-flow" theory was employed and the pressure-flow relationship was represented by the "fourth-power law". In this paper, the pressure-flow relationship for the whole pulmonary circulation and the longitudinal pressure distribution along the streamlines were studied. Our computed data showed general agreement with the experimental data for the normal subjects and the patients with mitral stenosis and chronic bronchitis in the literature. In conclusion, our continuum model can be used to predict the changes of steady flow in human pulmonary circulation.

  2. A fast multipole method combined with a reaction field for long-range electrostatics in molecular dynamics simulations: The effects of truncation on the properties of water

    NASA Astrophysics Data System (ADS)

    Mathias, Gerald; Egwolf, Bernhard; Nonella, Marco; Tavan, Paul

    2003-06-01

    We present a combination of the structure adapted multipole method with a reaction field (RF) correction for the efficient evaluation of electrostatic interactions in molecular dynamics simulations under periodic boundary conditions. The algorithm switches from an explicit electrostatics evaluation to a continuum description at the maximal distance that is consistent with the minimum image convention, and, thus, avoids the use of a periodic electrostatic potential. A physically motivated switching function enables charge clusters interacting with a given charge to smoothly move into the solvent continuum by passing through the spherical dielectric boundary surrounding this charge. This transition is complete as soon as the cluster has reached the so-called truncation radius Rc. The algorithm is used to examine the dependence of thermodynamic properties and correlation functions on Rc in the three point transferable intermolecular potential water model. Our test simulations on pure liquid water used either the RF correction or a straight cutoff and values of Rc ranging from 14 Å to 40 Å. In the RF setting, the thermodynamic properties and the correlation functions show convergence for Rc increasing towards 40 Å. In the straight cutoff case no such convergence is found. Here, in particular, the dipole-dipole correlation functions become completely artificial. The RF description of the long-range electrostatics is verified by comparison with the results of a particle-mesh Ewald simulation at identical conditions.

  3. The solvent component of macromolecular crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weichenberger, Christian X.; Afonine, Pavel V.; Kantardjieff, Katherine

    2015-04-30

    On average, the mother liquor or solvent and its constituents occupy about 50% of a macromolecular crystal. Ordered as well as disordered solvent components need to be accurately accounted for in modelling and refinement, often with considerable complexity. The mother liquor from which a biomolecular crystal is grown will contain water, buffer molecules, native ligands and cofactors, crystallization precipitants and additives, various metal ions, and often small-molecule ligands or inhibitors. On average, about half the volume of a biomolecular crystal consists of this mother liquor, whose components form the disordered bulk solvent. Its scattering contributions can be exploited in initialmore » phasing and must be included in crystal structure refinement as a bulk-solvent model. Concomitantly, distinct electron density originating from ordered solvent components must be correctly identified and represented as part of the atomic crystal structure model. Herein, are reviewed (i) probabilistic bulk-solvent content estimates, (ii) the use of bulk-solvent density modification in phase improvement, (iii) bulk-solvent models and refinement of bulk-solvent contributions and (iv) modelling and validation of ordered solvent constituents. A brief summary is provided of current tools for bulk-solvent analysis and refinement, as well as of modelling, refinement and analysis of ordered solvent components, including small-molecule ligands.« less

  4. Mathematics for understanding disease.

    PubMed

    Bies, R R; Gastonguay, M R; Schwartz, S L

    2008-06-01

    The application of mathematical models to reflect the organization and activity of biological systems can be viewed as a continuum of purpose. The far left of the continuum is solely the prediction of biological parameter values, wherein an understanding of the underlying biological processes is irrelevant to the purpose. At the far right of the continuum are mathematical models, the purposes of which are a precise understanding of those biological processes. No models in present use fall at either end of the continuum. Without question, however, the emphasis in regards to purpose has been on prediction, e.g., clinical trial simulation and empirical disease progression modeling. Clearly the model that ultimately incorporates a universal understanding of biological organization will also precisely predict biological events, giving the continuum the logical form of a tautology. Currently that goal lies at an immeasurable distance. Nonetheless, the motive here is to urge movement in the direction of that goal. The distance traveled toward understanding naturally depends upon the nature of the scientific question posed with respect to comprehending and/or predicting a particular disease process. A move toward mathematical models implies a move away from static empirical modeling and toward models that focus on systems biology, wherein modeling entails the systematic study of the complex pattern of organization inherent in biological systems.

  5. Molecular Dynamics based on a Generalized Born solvation model: application to protein folding

    NASA Astrophysics Data System (ADS)

    Onufriev, Alexey

    2004-03-01

    An accurate description of the aqueous environment is essential for realistic biomolecular simulations, but may become very expensive computationally. We have developed a version of the Generalized Born model suitable for describing large conformational changes in macromolecules. The model represents the solvent implicitly as continuum with the dielectric properties of water, and include charge screening effects of salt. The computational cost associated with the use of this model in Molecular Dynamics simulations is generally considerably smaller than the cost of representing water explicitly. Also, compared to traditional Molecular Dynamics simulations based on explicit water representation, conformational changes occur much faster in implicit solvation environment due to the absence of viscosity. The combined speed-up allow one to probe conformational changes that occur on much longer effective time-scales. We apply the model to folding of a 46-residue three helix bundle protein (residues 10-55 of protein A, PDB ID 1BDD). Starting from an unfolded structure at 450 K, the protein folds to the lowest energy state in 6 ns of simulation time, which takes about a day on a 16 processor SGI machine. The predicted structure differs from the native one by 2.4 A (backbone RMSD). Analysis of the structures seen on the folding pathway reveals details of the folding process unavailable form experiment.

  6. Moving Contact Lines: Linking Molecular Dynamics and Continuum-Scale Modeling.

    PubMed

    Smith, Edward R; Theodorakis, Panagiotis E; Craster, Richard V; Matar, Omar K

    2018-05-17

    Despite decades of research, the modeling of moving contact lines has remained a formidable challenge in fluid dynamics whose resolution will impact numerous industrial, biological, and daily life applications. On the one hand, molecular dynamics (MD) simulation has the ability to provide unique insight into the microscopic details that determine the dynamic behavior of the contact line, which is not possible with either continuum-scale simulations or experiments. On the other hand, continuum-based models provide a link to the macroscopic description of the system. In this Feature Article, we explore the complex range of physical factors, including the presence of surfactants, which governs the contact line motion through MD simulations. We also discuss links between continuum- and molecular-scale modeling and highlight the opportunities for future developments in this area.

  7. Solar radio continuum storms and a breathing magnetic field model

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Radio noise continuum emissions observed in metric and decametric wave frequencies are, in general, associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. These continuum emission sources, often called type I storm sources, are often associated with type III burst storm activity from metric to hectometric wave frequencies. This storm activity is, therefore, closely connected with the development of these continuum emission sources. It is shown that the S-component emission in microwave frequencies generally precedes, by several days, the emission of these noise continuum storms of lower frequencies. In order for these storms to develop, the growth of sunspot groups into complex types is very important in addition to the increase of the average magnetic field intensity and area of these groups. After giving a review on the theory of these noise continuum storm emissions, a model is briefly considered to explain the relation of the emissions to the storms.

  8. Ensuring congruency in multiscale modeling: towards linking agent based and continuum biomechanical models of arterial adaptation.

    PubMed

    Hayenga, Heather N; Thorne, Bryan C; Peirce, Shayn M; Humphrey, Jay D

    2011-11-01

    There is a need to develop multiscale models of vascular adaptations to understand tissue-level manifestations of cellular level mechanisms. Continuum-based biomechanical models are well suited for relating blood pressures and flows to stress-mediated changes in geometry and properties, but less so for describing underlying mechanobiological processes. Discrete stochastic agent-based models are well suited for representing biological processes at a cellular level, but not for describing tissue-level mechanical changes. We present here a conceptually new approach to facilitate the coupling of continuum and agent-based models. Because of ubiquitous limitations in both the tissue- and cell-level data from which one derives constitutive relations for continuum models and rule-sets for agent-based models, we suggest that model verification should enforce congruency across scales. That is, multiscale model parameters initially determined from data sets representing different scales should be refined, when possible, to ensure that common outputs are consistent. Potential advantages of this approach are illustrated by comparing simulated aortic responses to a sustained increase in blood pressure predicted by continuum and agent-based models both before and after instituting a genetic algorithm to refine 16 objectively bounded model parameters. We show that congruency-based parameter refinement not only yielded increased consistency across scales, it also yielded predictions that are closer to in vivo observations.

  9. Models of collective cell spreading with variable cell aspect ratio: a motivation for degenerate diffusion models.

    PubMed

    Simpson, Matthew J; Baker, Ruth E; McCue, Scott W

    2011-02-01

    Continuum diffusion models are often used to represent the collective motion of cell populations. Most previous studies have simply used linear diffusion to represent collective cell spreading, while others found that degenerate nonlinear diffusion provides a better match to experimental cell density profiles. In the cell modeling literature there is no guidance available with regard to which approach is more appropriate for representing the spreading of cell populations. Furthermore, there is no knowledge of particular experimental measurements that can be made to distinguish between situations where these two models are appropriate. Here we provide a link between individual-based and continuum models using a multiscale approach in which we analyze the collective motion of a population of interacting agents in a generalized lattice-based exclusion process. For round agents that occupy a single lattice site, we find that the relevant continuum description of the system is a linear diffusion equation, whereas for elongated rod-shaped agents that occupy L adjacent lattice sites we find that the relevant continuum description is connected to the porous media equation (PME). The exponent in the nonlinear diffusivity function is related to the aspect ratio of the agents. Our work provides a physical connection between modeling collective cell spreading and the use of either the linear diffusion equation or the PME to represent cell density profiles. Results suggest that when using continuum models to represent cell population spreading, we should take care to account for variations in the cell aspect ratio because different aspect ratios lead to different continuum models.

  10. Mirrored continuum and molecular scale simulations of the ignition of gamma phase RDX

    NASA Astrophysics Data System (ADS)

    Stewart, D. Scott; Chaudhuri, Santanu; Joshi, Kaushik; Lee, Kibaek

    2017-01-01

    We describe the ignition of an explosive crystal of gamma-phase RDX due to a thermal hot spot with reactive molecular dynamics (RMD), with first-principles trained, reactive force field based molecular potentials that represents an extremely complex reaction network. The RMD simulation is analyzed by sorting molecular product fragments into high and low molecular weight groups, to represent identifiable components that can be interpreted by a continuum model. A continuum model based on a Gibbs formulation has a single temperature and stress state for the mixture. The continuum simulation that mirrors the atomistic simulation allows us to study the atomistic simulation in the familiar physical chemistry framework and provides an essential, continuum/atomistic link.

  11. Reply to "Comment on 'Hydrodynamics of fractal continuum flow' and 'Map of fluid flow in fractal porous medium into fractal continuum flow'".

    PubMed

    Balankin, Alexander S; Elizarraraz, Benjamin Espinoza

    2013-11-01

    The aim of this Reply is to elucidate the difference between the fractal continuum models used in the preceding Comment and the models of fractal continuum flow which were put forward in our previous articles [Phys. Rev. E 85, 025302(R) (2012); 85, 056314 (2012)]. In this way, some drawbacks of the former models are highlighted. Specifically, inconsistencies in the definitions of the fractal derivative, the Jacobian of transformation, the displacement vector, and angular momentum are revealed. The proper forms of the Reynolds' transport theorem and angular momentum principle for the fractal continuum are reaffirmed in a more illustrative manner. Consequently, we emphasize that in the absence of any internal angular momentum, body couples, and couple stresses, the Cauchy stress tensor in the fractal continuum should be symmetric. Furthermore, we stress that the approach based on the Cartesian product measured and used in the preceding Comment cannot be employed to study the path-connected fractals, such as a flow in a fractally permeable medium. Thus, all statements of our previous works remain unchallenged.

  12. Time-Resolved Properties and Global Trends in dMe Flares from Simultaneous Photometry and Spectra

    NASA Astrophysics Data System (ADS)

    Kowalski, Adam F.

    We present a homogeneous survey of near-ultraviolet (NUV) /optical line and continuum emission during twenty M dwarf flares with simultaneous, high cadence photometry and spectra. These data were obtained to study the white-light continuum components to the blue and red of the Balmer jump to break the degeneracy with fitting emission mechanisms to broadband colors and to provide constraints for radiative-hydrodynamic flare models that seek to reproduce the white-light flare emission. The main results from the continuum analysis are the following: 1) the detection of Balmer continuum (in emission) that is present during all flares, with a wide range of relative contribution to the continuum flux in the NUV; 2) a blue continuum at the peak of the photometry that is linear with wavelength from λ = 4000 - 4800Å, matched by the spectral shape of hot, blackbody emission with typical temperatures of 10 000 - 12 000 K; 3) a redder continuum apparent at wavelengths longer than Hβ; this continuum becomes relatively more important to the energy budget during the late gradual phase. The hot blackbody component and redder continuum component (which we call "the conundruum") have been detected in previous UBVR colorimetry studies of flares. With spectra, one can compare the properties and detailed timings of all three components. Using time-resolved spectra during the rise phase of three flares, we calculate the speed of an expanding flare region assuming a simple geometry; the speeds are found to be ~5- 10 km s-1 and 50 - 120 km s -1, which are strikingly consistent with the speeds at which two-ribbon flares develop on the Sun. The main results from the emission line analysis are 1) the presentation of the "time-decrement", a relation between the timescales of the Balmer series; 2) a Neupert-like relation between Ca \\pcy K and the blackbody continuum, and 3) the detection of absorption wings in the Hydrogen Balmer lines during times of peak continuum emission, indicative of hot-star spectra forming during the flare. A byproduct of this study is a new method for deriving absolute fluxes during M dwarf flare observations obtained from narrow-slit spectra or during variable weather conditions. This technique allows us to analyze the spectra and photometry independently of one another, in order to connect the spectral properties to the rise, peak, and decay phases of broadband light curve morphology. We classify the light curve morphology according to an "impulsiveness index" and find that the fast (impulsive) flares have less Balmer continuum at peak emission than the slow (gradual) flares. In the gradual phase, the energy budget of the flare spectrum during almost all flares has a larger contribution from the Hydrogen Balmer component than in the impulsive phase, suggesting that the heating and cooling processes evolve over the course of a flare. We find that, in general, the evolution of the hot blackbody is rapid, and that the blackbody temperature decreases to ~8000 K in the gradual phase. The Balmer continuum evolves more slowly than the blackbody ¨C similar to the higher order Balmer lines but faster than the lower order Balmer lines. The height of the Balmer jump increases during the gradual decay phase. We model the Balmer continuum emission using the RHD F11 model spectrum from Allred et al. (2006), but we discuss several important systematic uncertainties in relating the apparent amount of Balmer continuum to a given RHD beam model. Good fits to the shape of the RHD F11 model spectrum are not obtained at peak times, in contrast to the gradual phase. We model the blackbody component using model hot star atmospheres from Castelli & Kurucz (2004) in order to account for the effects of flux redistribution in the flare atmosphere. This modeling is motivated by observations during a secondary flare in the decay phase of a megaflare, when the newly formed flare spectrum resembled that of Vega with the Balmer continuum and lines in absorption. We model this continuum phenomenologically with the RH code using hot spots placed at high column mass in the M dwarf quiescent atmosphere; a superposition of hot spot models and the RHD model are used to explain the anti-correlation in the apparent amount of Balmer continuum in emission and the U-band light curve. We attempt to reproduce the blackbody component in self-consistent 1D radiative hydrodynamic flare models using the RADYN code. We simulate the flare using a solar-type nonthermal electron beam heating function with a total energy flux of 1012 ergs cm-2 s-1 (F12) for a duration of 5 seconds and a subsequent gradual phase. Although there is a larger amount of NUV backwarming at log mc/(1g cm-2)~0 than in the F11 model, the resulting flare continuum shape is similar to the F11 model spectrum with a larger Balmer jump and a much redder spectral shape than is seen in the observations. We do not find evidence of white-light emitting chromospheric condensations, in contrast to the previous F12 model of Livshits et al. (1981). We discuss future avenues for RHD modeling in order to produce a hot blackbody component, including the treatment of nonthermal protons in M dwarf flares.

  13. Solvent Boundary Potentials for Hybrid QM/MM Computations Using Classical Drude Oscillators: A Fully Polarizable Model.

    PubMed

    Boulanger, Eliot; Thiel, Walter

    2012-11-13

    Accurate quantum mechanical/molecular mechanical (QM/MM) treatments should account for MM polarization and properly include long-range electrostatic interactions. We report on a development that covers both these aspects. Our approach combines the classical Drude oscillator (DO) model for the electronic polarizability of the MM atoms with the generalized solvent boundary Potential (GSBP) and the solvated macromolecule boundary potential (SMBP). These boundary potentials (BP) are designed to capture the long-range effects of the outer region of a large system on its interior. They employ a finite difference approximation to the Poisson-Boltzmann equation for computing electrostatic interactions and take into account outer-region bulk solvent through a polarizable dielectric continuum (PDC). This approach thus leads to fully polarizable three-layer QM/MM-DO/BP methods. As the mutual responses of each of the subsystems have to be taken into account, we propose efficient schemes to converge the polarization of each layer simultaneously. For molecular dynamics (MD) simulations using GSBP, this is achieved by considering the MM polarizable model as a dynamical degree of freedom, and hence contributions from the boundary potential can be evaluated for a frozen state of polarization at every time step. For geometry optimizations using SMBP, we propose a dual self-consistent field approach for relaxing the Drude oscillators to their ideal positions and converging the QM wave function with the proper boundary potential. The chosen coupling schemes are evaluated with a test system consisting of a glycine molecule in a water ball. Both boundary potentials are capable of properly reproducing the gradients at the inner-region atoms and the Drude oscillators. We show that the effect of the Drude oscillators must be included in all terms of the boundary potentials to obtain accurate results and that the use of a high dielectric constant for the PDC does not lead to a polarization catastrophe of the DO models. Optimum values for some key parameters are discussed. We also address the efficiency of these approaches compared to standard QM/MM-DO calculations without BP. In the SMBP case, computation times can be reduced by around 40% for each step of a geometry optimization, with some variation depending on the chosen QM method. In the GSBP case, the computational advantages of using the boundary potential increase with system size and with the number of MD steps.

  14. THE BINARY BLACK HOLE MODEL FOR MRK 231 BITES THE DUST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leighly, Karen M.; Terndrup, Donald M.; Gallagher, Sarah C.

    2016-09-20

    Mrk 231 is a nearby quasar with an unusually red near-UV-to-optical continuum, generally explained as heavy reddening by dust. Yan et al. proposed that Mrk 231 is a milliparsec black hole binary with little intrinsic reddening. We show that if the observed FUV continuum is intrinsic, as assumed by Yan et al., it fails by a factor of about 100 in powering the observed strength of the near-infrared emission lines and the thermal near and mid-infrared continuum. In contrast, the line and continuum strengths are typical for a reddened AGN spectral energy distribution (SED). We find that the He i*/Pmore » β ratio is sensitive to the SED for a one-zone model. If this sensitivity is maintained in general broadline region models, then this ratio may prove a useful diagnostic for heavily reddened quasars. Analysis of archival Hubble Space Telescope STIS and Faint Object Camera data revealed evidence that the far-UV continuum emission is resolved on size scales of ∼40 pc. The lack of broad absorption lines in the far-UV continuum might be explained if it were not coincident with the central engine. One possibility is that it is the central engine continuum reflected from the receding wind on the far side of the quasar.« less

  15. Multiscale volatility duration characteristics on financial multi-continuum percolation dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Min; Wang, Jun

    A random stock price model based on the multi-continuum percolation system is developed to investigate the nonlinear dynamics of stock price volatility duration, in an attempt to explain various statistical facts found in financial data, and have a deeper understanding of mechanisms in the financial market. The continuum percolation system is usually referred to be a random coverage process or a Boolean model, it is a member of a class of statistical physics systems. In this paper, the multi-continuum percolation (with different values of radius) is employed to model and reproduce the dispersal of information among the investors. To testify the rationality of the proposed model, the nonlinear analyses of return volatility duration series are preformed by multifractal detrending moving average analysis and Zipf analysis. The comparison empirical results indicate the similar nonlinear behaviors for the proposed model and the actual Chinese stock market.

  16. Bipotential continuum models for granular mechanics

    NASA Astrophysics Data System (ADS)

    Goddard, Joe

    2014-03-01

    Most currently popular continuum models for granular media are special cases of a generalized Maxwell fluid model, which describes the evolution of stress and internal variables such as granular particle fraction and fabric,in terms of imposed strain rate. It is shown how such models can be obtained from two scalar potentials, a standard elastic free energy and a ``dissipation potential'' given rigorously by the mathematical theory of Edelen. This allows for a relatively easy derivation of properly invariant continuum models for granular media and fluid-particle suspensions within a thermodynamically consistent framework. The resulting continuum models encompass all the prominent regimes of granular flow, ranging from the quasi-static to rapidly sheared, and are readily extended to include higher-gradient or Cosserat effects. Models involving stress diffusion, such as that proposed recently by Kamrin and Koval (PRL 108 178301), provide an alternative approach that is mentioned in passing. This paper provides a brief overview of a forthcoming review articles by the speaker (The Princeton Companion to Applied Mathematics, and Appl. Mech. Rev.,in the press, 2013).

  17. Improvements in continuum modeling for biomolecular systems

    NASA Astrophysics Data System (ADS)

    Yu, Qiao; Ben-Zhuo, Lu

    2016-01-01

    Modeling of biomolecular systems plays an essential role in understanding biological processes, such as ionic flow across channels, protein modification or interaction, and cell signaling. The continuum model described by the Poisson- Boltzmann (PB)/Poisson-Nernst-Planck (PNP) equations has made great contributions towards simulation of these processes. However, the model has shortcomings in its commonly used form and cannot capture (or cannot accurately capture) some important physical properties of the biological systems. Considerable efforts have been made to improve the continuum model to account for discrete particle interactions and to make progress in numerical methods to provide accurate and efficient simulations. This review will summarize recent main improvements in continuum modeling for biomolecular systems, with focus on the size-modified models, the coupling of the classical density functional theory and the PNP equations, the coupling of polar and nonpolar interactions, and numerical progress. Project supported by the National Natural Science Foundation of China (Grant No. 91230106) and the Chinese Academy of Sciences Program for Cross & Cooperative Team of the Science & Technology Innovation.

  18. A note on the discrete approach for generalized continuum models

    NASA Astrophysics Data System (ADS)

    Kalampakas, Antonios; Aifantis, Elias C.

    2014-12-01

    Generalized continuum theories for materials and processes have been introduced in order to account in a phenomenological manner for microstructural effects. Their drawback mainly rests in the determination of the extra phenomenological coefficients through experiments and simulations. It is shown here that a graphical representation of the local topology describing deformation models can be used to deduce restrictions on the phenomenological coefficients of the gradient elasticity continuum theories.

  19. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review

    PubMed Central

    Yan, Zhi; Jiang, Liying

    2017-01-01

    Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented. PMID:28336861

  20. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review.

    PubMed

    Yan, Zhi; Jiang, Liying

    2017-01-26

    Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented.

  1. Peridynamics with LAMMPS : a user guide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehoucq, Richard B.; Silling, Stewart Andrew; Seleson, Pablo

    Peridynamics is a nonlocal extension of classical continuum mechanics. The discrete peridynamic model has the same computational structure as a molecular dynamics model. This document provides a brief overview of the peridynamic model of a continuum, then discusses how the peridynamic model is discretized within LAMMPS. An example problem is also included.

  2. Predicting the equilibrium solubility of solid polycyclic aromatic hydrocarbons and dibenzothiophene using a combination of MOSCED plus molecular simulation or electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Phifer, Jeremy R.; Cox, Courtney E.; da Silva, Larissa Ferreira; Nogueira, Gabriel Gonçalves; Barbosa, Ana Karolyne Pereira; Ley, Ryan T.; Bozada, Samantha M.; O'Loughlin, Elizabeth J.; Paluch, Andrew S.

    2017-06-01

    Methods to predict the equilibrium solubility of non-electrolyte solids are important for the design of novel separation processes. Here we demonstrate how conventional molecular simulation free energy calculations or electronic structure calculations in a continuum solvent, here SMD or SM8, can be used to predict parameters for the MOdified Separation of Cohesive Energy Density (MOSCED) method. The method is applied to the solutes naphthalene, anthracene, phenanthrene, pyrene and dibenzothiophene, compounds of interested to the petroleum industry and for environmental remediation. Adopting the melting point temperature and enthalpy of fusion of these compounds from experiment, we are able to predict equilibrium solubilities. Comparing to a total of 422 non-aqueous and 193 aqueous experimental solubilities, we find the proposed method is able to well correlate the data. The use of MOSCED is additionally advantageous as it is a solubility parameter-based method useful for intuitive solvent selection and formulation.

  3. Leucine/Pd-loaded (5,5) single-walled carbon nanotube matrix as a novel nanobiosensors for in silico detection of protein.

    PubMed

    Yoosefian, Mehdi; Etminan, Nazanin

    2018-06-01

    We have designed a novel nanobiosensor for in silico detecting proteins based on leucine/Pd-loaded single-walled carbon nanotube matrix. Density functional theory at the B3LYP/6-31G (d) level of theory was realized to analyze the geometrical and electronic structure of the proposed nanobiosensor. The solvent effects were investigated using the Tomasi's polarized continuum model. Atoms-in-molecules theory was used to study the nature of interactions by calculating the electron density ρ(r) and Laplacian at the bond critical points. Natural bond orbital analysis was performed to achieve a deep understanding of the nature of the interactions. The biosensor has potential application for high sensitive and rapid response to protein due to the chemical adsorption of L-leucine amino acid onto Pd-loaded single-walled carbon nanotube and reactive functional groups that can incorporate in hydrogen binding, hydrophobic interactions and van der Waals forces with the protein surface in detection process.

  4. Structure of spherical electric double layers with fully asymmetric electrolytes: a systematic study by Monte Carlo simulations and density functional theory.

    PubMed

    Patra, Chandra N

    2014-11-14

    A systematic investigation of the spherical electric double layers with the electrolytes having size as well as charge asymmetry is carried out using density functional theory and Monte Carlo simulations. The system is considered within the primitive model, where the macroion is a structureless hard spherical colloid, the small ions as charged hard spheres of different size, and the solvent is represented as a dielectric continuum. The present theory approximates the hard sphere part of the one particle correlation function using a weighted density approach whereas a perturbation expansion around the uniform fluid is applied to evaluate the ionic contribution. The theory is in quantitative agreement with Monte Carlo simulation for the density and the mean electrostatic potential profiles over a wide range of electrolyte concentrations, surface charge densities, valence of small ions, and macroion sizes. The theory provides distinctive evidence of charge and size correlations within the electrode-electrolyte interface in spherical geometry.

  5. Structural and vibrational properties of oxcarbazepine, an anticonvulsant substance by using DFT and SCRF calculations

    NASA Astrophysics Data System (ADS)

    Ladetto, María F.; Márquez, María B.; Brandán, Silvia A.

    2014-10-01

    In this work, we have presented a structural and vibrational study on the properties in gas and aqueous solution phases of oxcarbazepine, a polymorphic anticonvulsant substance, combining the available IR and Raman spectra with Density Functional Theory (DFT) calculations. Two stable C1 and C2 forms for the title molecule were theoretically determined by using the hybrid B3LYP/6-31G* method. The integral equation formalism variant polarised continuum model (IEFPCM) was employed to study the solvent effects by means of the self-consistent reaction field (SCRF) method. The vibrational spectra for the two forms of oxcarbazepine were completely assigned together with two dimeric species also observed in the solid phase. The presences of the two C1 and C2 forms together with the two dimeric species are supported by the IR and Raman bands between 1424 and 125 cm-1. Here, the properties for both forms of oxcarbazepine are compared and discussed.

  6. Sibutramine characterization and solubility, a theoretical study

    NASA Astrophysics Data System (ADS)

    Aceves-Hernández, Juan M.; Nicolás Vázquez, Inés; Hinojosa-Torres, Jaime; Penieres Carrillo, Guillermo; Arroyo Razo, Gabriel; Miranda Ruvalcaba, René

    2013-04-01

    Solubility data from sibutramine (SBA) in a family of alcohols were obtained at different temperatures. Sibutramine was characterized by using thermal analysis and X-ray diffraction technique. Solubility data were obtained by the saturation method. The van't Hoff equation was used to obtain the theoretical solubility values and the ideal solvent activity coefficient. No polymorphic phenomena were found from the X-ray diffraction analysis, even though this compound is a racemic mixture of (+) and (-) enantiomers. Theoretical calculations showed that the polarisable continuum model was able to reproduce the solubility and stability of sibutramine molecule in gas phase, water and a family of alcohols at B3LYP/6-311++G (d,p) level of theory. Dielectric constant, dipolar moment and solubility in water values as physical parameters were used in those theoretical calculations for explaining that behavior. Experimental and theoretical results were compared and good agreement was obtained. Sibutramine solubility increased from methanol to 1-octanol in theoretical and experimental results.

  7. Outdoor Program Models: Placing Cooperative Adventure and Adventure Education Models on the Continuum.

    ERIC Educational Resources Information Center

    Guthrie, Steven P.

    In two articles on outdoor programming models, Watters distinguished four models on a continuum ranging from the common adventure model, with minimal organizational structure and leadership control, to the guide service model, in which leaders are autocratic and trips are highly structured. Club programs and instructional programs were in between,…

  8. Simulation and theory of spontaneous TAE frequency sweeping

    NASA Astrophysics Data System (ADS)

    Wang, Ge; Berk, H. L.

    2012-09-01

    A simulation model, based on the linear tip model of Rosenbluth, Berk and Van Dam (RBV), is developed to study frequency sweeping of toroidal Alfvén eigenmodes (TAEs). The time response of the background wave in the RBV model is given by a Volterra integral equation. This model captures the properties of TAE waves both in the gap and in the continuum. The simulation shows that phase space structures form spontaneously at frequencies close to the linearly predicted frequency, due to resonant particle-wave interactions and background dissipation. The frequency sweeping signals are found to chirp towards the upper and lower continua. However, the chirping signals penetrate only the lower continuum, whereupon the frequency chirps and mode amplitude increases in synchronism to produce an explosive solution. An adiabatic theory describing the evolution of a chirping signal is developed which replicates the chirping dynamics of the simulation in the lower continuum. This theory predicts that a decaying chirping signal will terminate at the upper continuum though in the numerical simulation the hole disintegrates before the upper continuum is reached.

  9. Spin waves, vortices, fermions, and duality in the Ising and Baxter models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogilvie, M.C.

    1981-10-15

    Field-theoretic methods are applied to a number of two-dimensional lattice models with Abelian symmetry groups. It is shown, using a vortex+spin-wave decomposition, that the Z/sub p/-Villain models are related to a class of continuum field theories with analogous duality properties. Fermion operators for these field theories are discussed. In the case of the Ising model, the vortices and spin-waves conspire to produce a free, massive Majorana field theory in the continuum limit. The continuum limit of the Baxter model is also studied, and the recent results of Kadanoff and Brown are rederived and extended.

  10. Modeling of Continuum Manipulators Using Pythagorean Hodograph Curves.

    PubMed

    Singh, Inderjeet; Amara, Yacine; Melingui, Achille; Mani Pathak, Pushparaj; Merzouki, Rochdi

    2018-05-10

    Research on continuum manipulators is increasingly developing in the context of bionic robotics because of their many advantages over conventional rigid manipulators. Due to their soft structure, they have inherent flexibility, which makes it a huge challenge to control them with high performances. Before elaborating a control strategy of such robots, it is essential to reconstruct first the behavior of the robot through development of an approximate behavioral model. This can be kinematic or dynamic depending on the conditions of operation of the robot itself. Kinematically, two types of modeling methods exist to describe the robot behavior; quantitative methods describe a model-based method, and qualitative methods describe a learning-based method. In kinematic modeling of continuum manipulator, the assumption of constant curvature is often considered to simplify the model formulation. In this work, a quantitative modeling method is proposed, based on the Pythagorean hodograph (PH) curves. The aim is to obtain a three-dimensional reconstruction of the shape of the continuum manipulator with variable curvature, allowing the calculation of its inverse kinematic model (IKM). It is noticed that the performances of the PH-based kinematic modeling of continuum manipulators are considerable regarding position accuracy, shape reconstruction, and time/cost of the model calculation, than other kinematic modeling methods, for two cases: free load manipulation and variable load manipulation. This modeling method is applied to the compact bionic handling assistant (CBHA) manipulator for validation. The results are compared with other IKMs developed in case of CBHA manipulator.

  11. On the physically based modeling of surface tension and moving contact lines with dynamic contact angles on the continuum scale

    NASA Astrophysics Data System (ADS)

    Huber, M.; Keller, F.; Säckel, W.; Hirschler, M.; Kunz, P.; Hassanizadeh, S. M.; Nieken, U.

    2016-04-01

    The description of wetting phenomena is a challenging problem on every considerable length-scale. The behavior of interfaces and contact lines on the continuum scale is caused by intermolecular interactions like the Van der Waals forces. Therefore, to describe surface tension and the resulting dynamics of interfaces and contact lines on the continuum scale, appropriate formulations must be developed. While the Continuum Surface Force (CSF) model is well-engineered for the description of interfaces, there is still a lack of treatment of contact lines, which are defined by the intersection of an ending fluid interface and a solid boundary surface. In our approach we use a balance equation for the contact line and extend the Navier-Stokes equations in analogy to the extension of a two-phase interface in the CSF model. Since this model depicts a physically motivated approach on the continuum scale, no fitting parameters are introduced and the deterministic description leads to a dynamical evolution of the system. As verification of our theory, we show a Smoothed Particle Hydrodynamics (SPH) model and simulate the evolution of droplet shapes and their corresponding contact angles.

  12. Hydration and conformational equilibria of simple hydrophobic and amphiphilic solutes.

    PubMed Central

    Ashbaugh, H S; Kaler, E W; Paulaitis, M E

    1998-01-01

    We consider whether the continuum model of hydration optimized to reproduce vacuum-to-water transfer free energies simultaneously describes the hydration free energy contributions to conformational equilibria of the same solutes in water. To this end, transfer and conformational free energies of idealized hydrophobic and amphiphilic solutes in water are calculated from explicit water simulations and compared to continuum model predictions. As benchmark hydrophobic solutes, we examine the hydration of linear alkanes from methane through hexane. Amphiphilic solutes were created by adding a charge of +/-1e to a terminal methyl group of butane. We find that phenomenological continuum parameters fit to transfer free energies are significantly different from those fit to conformational free energies of our model solutes. This difference is attributed to continuum model parameters that depend on solute conformation in water, and leads to effective values for the free energy/surface area coefficient and Born radii that best describe conformational equilibrium. In light of these results, we believe that continuum models of hydration optimized to fit transfer free energies do not accurately capture the balance between hydrophobic and electrostatic contributions that determines the solute conformational state in aqueous solution. PMID:9675177

  13. Effect of nonlinearity in hybrid kinetic Monte Carlo-continuum models.

    PubMed

    Balter, Ariel; Lin, Guang; Tartakovsky, Alexandre M

    2012-01-01

    Recently there has been interest in developing efficient ways to model heterogeneous surface reactions with hybrid computational models that couple a kinetic Monte Carlo (KMC) model for a surface to a finite-difference model for bulk diffusion in a continuous domain. We consider two representative problems that validate a hybrid method and show that this method captures the combined effects of nonlinearity and stochasticity. We first validate a simple deposition-dissolution model with a linear rate showing that the KMC-continuum hybrid agrees with both a fully deterministic model and its analytical solution. We then study a deposition-dissolution model including competitive adsorption, which leads to a nonlinear rate, and show that in this case the KMC-continuum hybrid and fully deterministic simulations do not agree. However, we are able to identify the difference as a natural result of the stochasticity coming from the KMC surface process. Because KMC captures inherent fluctuations, we consider it to be more realistic than a purely deterministic model. Therefore, we consider the KMC-continuum hybrid to be more representative of a real system.

  14. Effect of Nonlinearity in Hybrid Kinetic Monte Carlo-Continuum Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balter, Ariel I.; Lin, Guang; Tartakovsky, Alexandre M.

    2012-04-23

    Recently there has been interest in developing efficient ways to model heterogeneous surface reactions with hybrid computational models that couple a KMC model for a surface to a finite difference model for bulk diffusion in a continuous domain. We consider two representative problems that validate a hybrid method and also show that this method captures the combined effects of nonlinearity and stochasticity. We first validate a simple deposition/dissolution model with a linear rate showing that the KMC-continuum hybrid agrees with both a fully deterministic model and its analytical solution. We then study a deposition/dissolution model including competitive adsorption, which leadsmore » to a nonlinear rate, and show that, in this case, the KMC-continuum hybrid and fully deterministic simulations do not agree. However, we are able to identify the difference as a natural result of the stochasticity coming from the KMC surface process. Because KMC captures inherent fluctuations, we consider it to be more realistic than a purely deterministic model. Therefore, we consider the KMC-continuum hybrid to be more representative of a real system.« less

  15. Toward calculations of the 129Xe chemical shift in Xe@C60 at experimental conditions: relativity, correlation, and dynamics.

    PubMed

    Straka, Michal; Lantto, Perttu; Vaara, Juha

    2008-03-27

    We calculate the 129Xe chemical shift in endohedral Xe@C60 with systematic inclusion of the contributing physical effects to model the real experimental conditions. These are relativistic effects, electron correlation, the temperature-dependent dynamics, and solvent effects. The ultimate task is to obtain the right result for the right reason and to develop a physically justified methodological model for calculations and simulations of endohedral Xe fullerenes and other confined Xe systems. We use the smaller Xe...C6H6 model to calibrate density functional theory approaches against accurate correlated wave function methods. Relativistic effects as well as the coupling of relativity and electron correlation are evaluated using the leading-order Breit-Pauli perturbation theory. The dynamic effects are treated in two ways. In the first approximation, quantum dynamics of the Xe atom in a rigid cage takes advantage of the centrosymmetric potential for Xe within the thermally accessible distance range from the center of the cage. This reduces the problem of obtaining the solution of a diatomic rovibrational problem. In the second approach, first-principles classical molecular dynamics on the density functional potential energy hypersurface is used to produce the dynamical trajectory for the whole system, including the dynamic cage. Snapshots from the trajectory are used for calculations of the dynamic contribution to the absorption 129Xe chemical shift. The calculated nonrelativistic Xe shift is found to be highly sensitive to the optimized molecular structure and to the choice of the exchange-correlation functional. Relativistic and dynamic effects are significant and represent each about 10% of the nonrelativistic static shift at the minimum structure. While the role of the Xe dynamics inside of the rigid cage is negligible, the cage dynamics turns out to be responsible for most of the dynamical correction to the 129Xe shift. Solvent effects evaluated with a polarized continuum model are found to be very small.

  16. Passing waves from atomistic to continuum

    NASA Astrophysics Data System (ADS)

    Chen, Xiang; Diaz, Adrian; Xiong, Liming; McDowell, David L.; Chen, Youping

    2018-02-01

    Progress in the development of coupled atomistic-continuum methods for simulations of critical dynamic material behavior has been hampered by a spurious wave reflection problem at the atomistic-continuum interface. This problem is mainly caused by the difference in material descriptions between the atomistic and continuum models, which results in a mismatch in phonon dispersion relations. In this work, we introduce a new method based on atomistic dynamics of lattice coupled with a concurrent atomistic-continuum method to enable a full phonon representation in the continuum description. This permits the passage of short-wavelength, high-frequency phonon waves from the atomistic to continuum regions. The benchmark examples presented in this work demonstrate that the new scheme enables the passage of all allowable phonons through the atomistic-continuum interface; it also preserves the wave coherency and energy conservation after phonons transport across multiple atomistic-continuum interfaces. This work is the first step towards developing a concurrent atomistic-continuum simulation tool for non-equilibrium phonon-mediated thermal transport in materials with microstructural complexity.

  17. Simple liquid models with corrected dielectric constants

    PubMed Central

    Fennell, Christopher J.; Li, Libo; Dill, Ken A.

    2012-01-01

    Molecular simulations often use explicit-solvent models. Sometimes explicit-solvent models can give inaccurate values for basic liquid properties, such as the density, heat capacity, and permittivity, as well as inaccurate values for molecular transfer free energies. Such errors have motivated the development of more complex solvents, such as polarizable models. We describe an alternative here. We give new fixed-charge models of solvents for molecular simulations – water, carbon tetrachloride, chloroform and dichloromethane. Normally, such solvent models are parameterized to agree with experimental values of the neat liquid density and enthalpy of vaporization. Here, in addition to those properties, our parameters are chosen to give the correct dielectric constant. We find that these new parameterizations also happen to give better values for other properties, such as the self-diffusion coefficient. We believe that parameterizing fixed-charge solvent models to fit experimental dielectric constants may provide better and more efficient ways to treat solvents in computer simulations. PMID:22397577

  18. Mirrored continuum and molecular scale simulations of the ignition of gamma phase RDX

    NASA Astrophysics Data System (ADS)

    Stewart, D. Scott; Chaudhuri, Santanu; Joshi, Kaushik; Lee, Kiabek

    2015-06-01

    We consider the ignition of a high-pressure gamma-phase of an explosive crystal of RDX which forms during overdriven shock initiation. Molecular dynamics (MD), with first-principles based or reactive force field based molecular potentials, provides a description of the chemistry as an extremely complex reaction network. The results of the molecular simulation is analyzed by sorting molecular product fragments into high and low molecular groups, to represent identifiable components that can be interpreted by a continuum model. A continuum model based on a Gibbs formulation, that has a single temperature and stress state for the mixture is used to represent the same RDX material and its chemistry. Each component in the continuum model has a corresponding Gibbs continuum potential, that are in turn inferred from molecular MD informed equation of state libraries such as CHEETAH, or are directly simulated by Monte Carlo MD simulations. Information about transport, kinetic rates and diffusion are derived from the MD simulation and the growth of a reactive hot spot in the RDX is studied with both simulations that mirror the other results to provide an essential, continuum/atomistic link. Supported by N000014-12-1-0555, subaward-36561937 (ONR).

  19. Reducing Actuator Requirements in Continuum Robots Through Optimized Cable Routing.

    PubMed

    Case, Jennifer C; White, Edward L; SunSpiral, Vytas; Kramer-Bottiglio, Rebecca

    2018-02-01

    Continuum manipulators offer many advantages compared to their rigid-linked counterparts, such as increased degrees of freedom and workspace volume. Inspired by biological systems, such as elephant trunks and octopus tentacles, many continuum manipulators are made of multiple segments that allow large-scale deformations to be distributed throughout the body. Most continuum manipulators currently control each segment individually. For example, a planar cable-driven system is typically controlled by a pair of cables for each segment, which implies two actuators per segment. In this article, we demonstrate how highly coupled crossing cable configurations can reduce both actuator count and actuator torque requirements in a planar continuum manipulator, while maintaining workspace reachability and manipulability. We achieve highly coupled actuation by allowing cables to cross through the manipulator to create new cable configurations. We further derive an analytical model to predict the underactuated manipulator workspace and experimentally verify the model accuracy with a physical system. We use this model to compare crossing cable configurations to the traditional cable configuration using workspace performance metrics. Our work here focuses on a simplified planar robot, both in simulation and in hardware, with the goal of extending this to spiraling-cable configurations on full 3D continuum robots in future work.

  20. Solvent Reaction Field Potential inside an Uncharged Globular Protein: A Bridge between Implicit and Explicit Solvent Models?

    PubMed Central

    Baker, Nathan A.; McCammon, J. Andrew

    2008-01-01

    The solvent reaction field potential of an uncharged protein immersed in Simple Point Charge/Extended (SPC/E) explicit solvent was computed over a series of molecular dynamics trajectories, intotal 1560 ns of simulation time. A finite, positive potential of 13 to 24 kbTec−1 (where T = 300K), dependent on the geometry of the solvent-accessible surface, was observed inside the biomolecule. The primary contribution to this potential arose from a layer of positive charge density 1.0 Å from the solute surface, on average 0.008 ec/Å3, which we found to be the product of a highly ordered first solvation shell. Significant second solvation shell effects, including additional layers of charge density and a slight decrease in the short-range solvent-solvent interaction strength, were also observed. The impact of these findings on implicit solvent models was assessed by running similar explicit-solvent simulations on the fully charged protein system. When the energy due to the solvent reaction field in the uncharged system is accounted for, correlation between per-atom electrostatic energies for the explicit solvent model and a simple implicit (Poisson) calculation is 0.97, and correlation between per-atom energies for the explicit solvent model and a previously published, optimized Poisson model is 0.99. PMID:17949217

  1. Solvent reaction field potential inside an uncharged globular protein: A bridge between implicit and explicit solvent models?

    NASA Astrophysics Data System (ADS)

    Cerutti, David S.; Baker, Nathan A.; McCammon, J. Andrew

    2007-10-01

    The solvent reaction field potential of an uncharged protein immersed in simple point charge/extended explicit solvent was computed over a series of molecular dynamics trajectories, in total 1560ns of simulation time. A finite, positive potential of 13-24 kbTec-1 (where T =300K), dependent on the geometry of the solvent-accessible surface, was observed inside the biomolecule. The primary contribution to this potential arose from a layer of positive charge density 1.0Å from the solute surface, on average 0.008ec/Å3, which we found to be the product of a highly ordered first solvation shell. Significant second solvation shell effects, including additional layers of charge density and a slight decrease in the short-range solvent-solvent interaction strength, were also observed. The impact of these findings on implicit solvent models was assessed by running similar explicit solvent simulations on the fully charged protein system. When the energy due to the solvent reaction field in the uncharged system is accounted for, correlation between per-atom electrostatic energies for the explicit solvent model and a simple implicit (Poisson) calculation is 0.97, and correlation between per-atom energies for the explicit solvent model and a previously published, optimized Poisson model is 0.99.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Ryne C.; Zhou, Jing; Smith, Jeremy C.

    In redox processes in complex transition metal-containing species are often intimately associated with changes in ligand protonation states and metal coordination number. Moreover, a major challenge is therefore to develop consistent computational approaches for computing pH-dependent redox and ligand dissociation properties of organometallic species. Reduction of the Co center in the vitamin B12 derivative aquacobalamin can be accompanied by ligand dissociation, protonation, or both, making these properties difficult to compute accurately. We examine this challenge here by using density functional theory and continuum solvation to compute Co ligand binding equilibrium constants (Kon/off), pKas and reduction potentials for models of aquacobalaminmore » in aqueous solution. We consider two models for cobalamin ligand coordination: the first follows the hexa, penta, tetra coordination scheme for Co III, Co II, and Co I species, respectively, and the second model features saturation of each vacant axial coordination site on Co II and Co I species with a single, explicit water molecule to maintain six directly interacting ligands or water molecules in each oxidation state. Comparing these two coordination schemes in combination with five dispersion-corrected density functionals, we find that the accuracy of the computed properties is largely independent of the scheme used, but including only a continuum representation of the solvent yields marginally better results than saturating the first solvation shell around Co throughout. PBE performs best, displaying balanced accuracy and superior performance overall, with RMS errors of 80 mV for seven reduction potentials, 2.0 log units for five pK as and 2.3 log units for two log K on/off values for the aquacobalamin system. Furthermore, we find that the BP86 functional commonly used in corrinoid studies suffers from erratic behavior and inaccurate descriptions of Co axial ligand binding, leading to substantial errors in predicted pK as and K on/off values. Finally, these findings demonstrate the effectiveness of the present approach for computing electrochemical and thermodynamic properties of a complex transition metal-containing cofactor.« less

  3. Discrete and continuum modelling of soil cutting

    NASA Astrophysics Data System (ADS)

    Coetzee, C. J.

    2014-12-01

    Both continuum and discrete methods are used to investigate the soil cutting process. The Discrete Element Method ( dem) is used for the discrete modelling and the Material-Point Method ( mpm) is used for continuum modelling. M pmis a so-called particle method or meshless finite element method. Standard finite element methods have difficulty in modelling the entire cutting process due to large displacements and deformation of the mesh. The use of meshless methods overcomes this problem. M pm can model large deformations, frictional contact at the soil-tool interface, and dynamic effects (inertia forces). In granular materials the discreteness of the system is often important and rotational degrees of freedom are active, which might require enhanced theoretical approaches like polar continua. In polar continuum theories, the material points are considered to possess orientations. A material point has three degrees-of-freedom for rigid rotations, in addition to the three classic translational degrees-of-freedom. The Cosserat continuum is the most transparent and straightforward extension of the nonpolar (classic) continuum. Two-dimensional dem and mpm (polar and nonpolar) simulations of the cutting problem are compared to experiments. The drag force and flow patterns are compared using cohesionless corn grains as material. The corn macro (continuum) and micro ( dem) properties were obtained from shear and oedometer tests. Results show that the dilatancy angle plays a significant role in the flow of material but has less of an influence on the draft force. Nonpolar mpm is the most accurate in predicting blade forces, blade-soil interface stresses and the position and orientation of shear bands. Polar mpm fails in predicting the orientation of the shear band, but is less sensitive to mesh size and mesh orientation compared to nonpolar mpm. dem simulations show less material dilation than observed during experiments.

  4. Mirrored continuum and molecular scale simulations of the ignition of high-pressure phases of RDX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kibaek; Stewart, D. Scott, E-mail: santc@illinois.edu, E-mail: dss@illinois.edu; Joshi, Kaushik

    2016-05-14

    We present a mirrored atomistic and continuum framework that is used to describe the ignition of energetic materials, and a high-pressure phase of RDX in particular. The continuum formulation uses meaningful averages of thermodynamic properties obtained from the atomistic simulation and a simplification of enormously complex reaction kinetics. In particular, components are identified based on molecular weight bin averages and our methodology assumes that both the averaged atomistic and continuum simulations are represented on the same time and length scales. The atomistic simulations of thermally initiated ignition of RDX are performed using reactive molecular dynamics (RMD). The continuum model ismore » based on multi-component thermodynamics and uses a kinetics scheme that describes observed chemical changes of the averaged atomistic simulations. Thus the mirrored continuum simulations mimic the rapid change in pressure, temperature, and average molecular weight of species in the reactive mixture. This mirroring enables a new technique to simplify the chemistry obtained from reactive MD simulations while retaining the observed features and spatial and temporal scales from both the RMD and continuum model. The primary benefit of this approach is a potentially powerful, but familiar way to interpret the atomistic simulations and understand the chemical events and reaction rates. The approach is quite general and thus can provide a way to model chemistry based on atomistic simulations and extend the reach of those simulations.« less

  5. Kinematics and the implementation of an elephant's trunk manipulator and other continuum style robots.

    PubMed

    Hannan, Michael W; Walker, Ian D

    2003-02-01

    Traditionally, robot manipulators have been a simple arrangement of a small number of serially connected links and actuated joints. Though these manipulators prove to be very effective for many tasks, they are not without their limitations, due mainly to their lack of maneuverability or total degrees of freedom. Continuum style (i.e., continuous "back-bone") robots, on the other hand, exhibit a wide range of maneuverability, and can have a large number of degrees of freedom. The motion of continuum style robots is generated through the bending of the robot over a given section; unlike traditional robots where the motion occurs in discrete locations, i.e., joints. The motion of continuum manipulators is often compared to that of biological manipulators such as trunks and tentacles. These continuum style robots can achieve motions that could only be obtainable by a conventionally designed robot with many more degrees of freedom. In this paper we present a detailed formulation and explanation of a novel kinematic model for continuum style robots. The design, construction, and implementation of our continuum style robot called the elephant trunk manipulator is presented. Experimental results are then provided to verify the legitimacy of our model when applied to our physical manipulator. We also provide a set of obstacle avoidance experiments that help to exhibit the practical implementation of both our manipulator and our kinematic model. c2003 Wiley Periodicals, Inc.

  6. Kinematics and the implementation of an elephant's trunk manipulator and other continuum style robots

    NASA Technical Reports Server (NTRS)

    Hannan, Michael W.; Walker, Ian D.

    2003-01-01

    Traditionally, robot manipulators have been a simple arrangement of a small number of serially connected links and actuated joints. Though these manipulators prove to be very effective for many tasks, they are not without their limitations, due mainly to their lack of maneuverability or total degrees of freedom. Continuum style (i.e., continuous "back-bone") robots, on the other hand, exhibit a wide range of maneuverability, and can have a large number of degrees of freedom. The motion of continuum style robots is generated through the bending of the robot over a given section; unlike traditional robots where the motion occurs in discrete locations, i.e., joints. The motion of continuum manipulators is often compared to that of biological manipulators such as trunks and tentacles. These continuum style robots can achieve motions that could only be obtainable by a conventionally designed robot with many more degrees of freedom. In this paper we present a detailed formulation and explanation of a novel kinematic model for continuum style robots. The design, construction, and implementation of our continuum style robot called the elephant trunk manipulator is presented. Experimental results are then provided to verify the legitimacy of our model when applied to our physical manipulator. We also provide a set of obstacle avoidance experiments that help to exhibit the practical implementation of both our manipulator and our kinematic model. c2003 Wiley Periodicals, Inc.

  7. Computational study on the aminolysis of beta-hydroxy-alpha,beta-unsaturated ester via the favorable path including the formation of alpha-oxo ketene intermediate.

    PubMed

    Jin, Lu; Xue, Ying; Zhang, Hui; Kim, Chan Kyung; Xie, Dai Qian; Yan, Guo Sen

    2008-05-15

    The possible mechanisms of the aminolysis of N-methyl-3-(methoxycarbonyl)-4-hydroxy-2-pyridone (beta-hydroxy-alpha,beta-unsaturated ester) with dimethylamine are investigated at the hybrid density functional theory B3LYP/6-31G(d,p) level in the gas phase. Single-point computations at the B3LYP/6-311++G(d,p) and the Becke88-Becke95 1-parameter model BB1K/6-311++G(d,p) levels are performed for more precise energy predictions. Solvent effects are also assessed by single-point calculations at the integral equation formalism polarized continuum model IEFPCM-B3LYP/6-311++G(d,p) and IEFPCM-BB1K/6-311++G(d,p) levels on the gas-phase optimized geometries. Three possible pathways, the concerted pathway (path A), the stepwise pathway involving tetrahedral intermediates (path B), and the stepwise pathway via alpha-oxo ketene intermediate due to the participation of beta-hydroxy (path C), are taken into account for the title reaction. Moreover, path C includes two sequential processes. The first process is to generate alpha-oxo ketene intermediate via the decomposition of N-methyl-3-(methoxycarbonyl)-4-hydroxy-2-pyridone; the second process is the addition of dimethylamine to alpha-oxo ketene intermediate. Our results indicate that path C is more favorable than paths A and B both in the gas phase and in solvent (heptane). In path C, the first process is the rate-determining step, and the second process is revealed to be a [4+2] pseudopericyclic reaction without the energy barrier. Being independent of the concentration of amine, the first process obeys the first-order rate law.

  8. Pathophysiological Progression Model for Selected Toxicological Endpoints

    EPA Science Inventory

    The existing continuum paradigms are effective models to organize toxicological data associated with endpoints used in human health assessments. A compendium of endpoints characterized along a pathophysiological continuum would serve to: weigh the relative importance of effects o...

  9. Continuum Modeling and Control of Large Nonuniform Wireless Networks via Nonlinear Partial Differential Equations

    DOE PAGES

    Zhang, Yang; Chong, Edwin K. P.; Hannig, Jan; ...

    2013-01-01

    We inmore » troduce a continuum modeling method to approximate a class of large wireless networks by nonlinear partial differential equations (PDEs). This method is based on the convergence of a sequence of underlying Markov chains of the network indexed by N , the number of nodes in the network. As N goes to infinity, the sequence converges to a continuum limit, which is the solution of a certain nonlinear PDE. We first describe PDE models for networks with uniformly located nodes and then generalize to networks with nonuniformly located, and possibly mobile, nodes. Based on the PDE models, we develop a method to control the transmissions in nonuniform networks so that the continuum limit is invariant under perturbations in node locations. This enables the networks to maintain stable global characteristics in the presence of varying node locations.« less

  10. On the influence of pseudoelastic material behaviour in planar shape-memory tubular continuum structures

    NASA Astrophysics Data System (ADS)

    Greiner-Petter, Christoph; Sattel, Thomas

    2017-12-01

    For planar tubular continuum structures based on precurved shape memory alloy tubes a beam model with respect to the pseudoelastic material behaviour of NiTi is derived. Thereunto a constitutive material law respecting tension-compression asymmetry as well as hysteresis is used. The beam model is then employed to calculate equilibrium curvatures of concentric tube assemblies without clearance between the tubes. In a second step, the influence of clearance is approximated to account for non-concentric tube assemblies. These elastokinematic results are integrated into a purely kinematic model to describe the cannula path under the presence of material hysteresis and clearance. Finally a photogrammetric measurement system is used to track the path of an exemplary two-tube continuum structure to examine the accuracy of the proposed model. It is shown that material hysteresis leads to a hysteresis phenomena in the path of the tubular continuum structure.

  11. Modes of interconnected lattice trusses using continuum models, part 1

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1991-01-01

    This represents a continuing systematic attempt to explore the use of continuum models--in contrast to the Finite Element Models currently universally in use--to develop feedback control laws for stability enhancement of structures, particularly large structures, for deployment in space. We shall show that for the control objective, continuum models do offer unique advantages. It must be admitted of course that developing continuum models for arbitrary structures is no easy task. In this paper we take advantage of the special nature of current Large Space Structures--typified by the NASA-LaRC Evolutionary Model which will be our main concern--which consists of interconnected orthogonal lattice trusses each with identical bays. Using an equivalent one-dimensional Timoshenko beam model, we develop an almost complete continuum model for the evolutionary structure. We do this in stages, beginning only with the main bus as flexible and then going on to make all the appendages also flexible-except for the antenna structure. Based on these models we proceed to develop formulas for mode frequencies and shapes. These are shown to be the roots of the determinant of a matrix of small dimension compared with mode calculations using Finite Element Models, even though the matrix involves transcendental functions. The formulas allow us to study asymptotic properties of the modes and how they evolve as we increase the number of bodies which are treated as flexible. The asymptotics, in fact, become simpler.

  12. Crystal structure, spectroscopic studies and quantum mechanical calculations of 2-[((3-iodo-4-methyl)phenylimino)methyl]-5-nitrothiophene.

    PubMed

    Özdemir Tarı, Gonca; Gümüş, Sümeyye; Ağar, Erbil

    2015-04-15

    The title compound, 2-[((3-iodo-4-methyl)phenylimino)methyl]-5-nitrothiophene, C12H9O2N2I1S1, was synthesized and characterized by IR, UV-Vis and single-crystal X-ray diffraction technique. The molecular structure was optimized at the B3LYP, B3PW91 and PBEPBE levels of the density functional method (DFT) with the 6-311G+(d,p) basis set. Using the TD-DFT method, the electronic absorption spectra of the title compound was computed in both the gas phase and ethanol solvent. The harmonic vibrational frequencies of the title compound were calculated using the same methods with the 6-311G+(d,p) basis set. The calculated results were compared with the experimental determination results of the compound. The energetic behavior such as the total energy, atomic charges, dipole moment of the title compound in solvent media were examined using the B3LYP, B3PW91 and PBEPBE methods with the 6-311G+(d,p) basis set by applying the Onsager and the polarizable continuum model (PCM). The molecular orbitals (FMOs) analysis, the molecular electrostatic potential map (MEP) and the nonlinear optical properties (NLO) for the title compound were obtained with the same levels of theory. And then thermodynamic properties for the title compound were obtained using the same methods with the 6-311G(d,p) basis set. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. New insights into the electroreduction of ethylene sulfite as an electrolyte additive for facilitating solid electrolyte interphase formation in lithium ion batteries.

    PubMed

    Sun, Youmin; Wang, Yixuan

    2017-03-01

    To help understand the solid electrolyte interphase (SEI) formation facilitated by electrolyte additives of lithium-ion batteries (LIBs) the supermolecular clusters [(ES)Li + (PC) m ](PC) n (m = 1-2; n = 0, 6 and 9) were used to investigate the electroreductive decompositions of the electrolyte additive ethylene sulfite (ES) as well as the solvent propylene carbonate (PC) with density functional theory. The results show that ES can be reduced prior to PC, resulting in a reduction precursor that will then undergo a ring opening decomposition to yield a radical anion. A new concerted pathway (path B) was located for the ring opening of the reduced ES, which has a much lower energy barrier than the previously reported stepwise pathway (path A). The transition state for the ring opening of PC induced by the reduced ES (path C, indirect path) is closer to that of path A than path B in energy. The direct ring opening of the reduced PC (path D) has a lower energy barrier than paths A, B and C, yet it is less favorable than the latter paths in terms of thermodynamics (vertical electron affinity or reduction potential and dissociation energy). The overall rate constant including the initial reduction and the subsequent ring opening for path B is the largest among the four paths, followed by paths A > C > D, which further signifies the importance of the concerted new path in facilitating the SEI formation. The hybrid models, the supermolecular clusters augmented by a polarized continuum model, PCM-[(ES)Li + (PC) 2 ](PC) n (n = 0, 6 and 9), were used to further estimate the reduction potential by taking into account both explicit and implicit solvent effects. The second solvation shell of Li + in [(ES)Li + (PC) 2 ](PC) n (n = 6 and 9) partially compensates the overestimation of solvent effects arising from the PCM for the naked (ES)Li + (PC) 2 , and the theoretical reduction potential of PCM-[(ES)Li + (PC) 2 ](PC) 6 (1.90-1.93 V) agrees very well with the experimental one (1.8-2.0 V).

  14. Diffusion of Small Solute Particles in Viscous Liquids: Cage Diffusion, a Result of Decoupling of Solute-Solvent Dynamics, Leads to Amplification of Solute Diffusion.

    PubMed

    Acharya, Sayantan; Nandi, Manoj K; Mandal, Arkajit; Sarkar, Sucharita; Bhattacharyya, Sarika Maitra

    2015-08-27

    We study the diffusion of small solute particles through solvent by keeping the solute-solvent interaction repulsive and varying the solvent properties. The study involves computer simulations, development of a new model to describe diffusion of small solutes in a solvent, and also mode coupling theory (MCT) calculations. In a viscous solvent, a small solute diffuses via coupling to the solvent hydrodynamic modes and also through the transient cages formed by the solvent. The model developed can estimate the independent contributions from these two different channels of diffusion. Although the solute diffusion in all the systems shows an amplification, the degree of it increases with solvent viscosity. The model correctly predicts that when the solvent viscosity is high, the solute primarily diffuses by exploiting the solvent cages. In such a scenario the MCT diffusion performed for a static solvent provides a correct estimation of the cage diffusion.

  15. Continuum Thinking and the Contexts of Personal Information Management

    ERIC Educational Resources Information Center

    Huvila, Isto; Eriksen, Jon; Häusner, Eva-Maria; Jansson, Ina-Maria

    2014-01-01

    Introduction: Recent personal information management literature has underlined the significance of the contextuality of personal information and its use. The present article discusses the applicability of the records continuum model and its generalisation, continuum thinking, as a theoretical framework for explicating the overlap and evolution of…

  16. A new computational approach to simulate pattern formation in Paenibacillus dendritiformis bacterial colonies

    NASA Astrophysics Data System (ADS)

    Tucker, Laura Jane

    Under the harsh conditions of limited nutrient and hard growth surface, Paenibacillus dendritiformis in agar plates form two classes of patterns (morphotypes). The first class, called the dendritic morphotype, has radially directed branches. The second class, called the chiral morphotype, exhibits uniform handedness. The dendritic morphotype has been modeled successfully using a continuum model on a regular lattice; however, a suitable computational approach was not known to solve a continuum chiral model. This work details a new computational approach to solving the chiral continuum model of pattern formation in P. dendritiformis. The approach utilizes a random computational lattice and new methods for calculating certain derivative terms found in the model.

  17. Landau-Zener transitions and Dykhne formula in a simple continuum model

    NASA Astrophysics Data System (ADS)

    Dunham, Yujin; Garmon, Savannah

    The Landau-Zener model describing the interaction between two linearly driven discrete levels is useful in describing many simple dynamical systems; however, no system is completely isolated from the surrounding environment. Here we examine a generalizations of the original Landau-Zener model to study simple environmental influences. We consider a model in which one of the discrete levels is replaced with a energy continuum, in which we find that the survival probability for the initially occupied diabatic level is unaffected by the presence of the continuum. This result can be predicted by assuming that each step in the evolution for the diabatic state evolves independently according to the Landau-Zener formula, even in the continuum limit. We also show that, at least for the simplest model, this result can also be predicted with the natural generalization of the Dykhne formula for open systems. We also observe dissipation as the non-escape probability from the discrete levels is no longer equal to one.

  18. Continuum mesoscopic framework for multiple interacting species and processes on multiple site types and/or crystallographic planes.

    PubMed

    Chatterjee, Abhijit; Vlachos, Dionisios G

    2007-07-21

    While recently derived continuum mesoscopic equations successfully bridge the gap between microscopic and macroscopic physics, so far they have been derived only for simple lattice models. In this paper, general deterministic continuum mesoscopic equations are derived rigorously via nonequilibrium statistical mechanics to account for multiple interacting surface species and multiple processes on multiple site types and/or different crystallographic planes. Adsorption, desorption, reaction, and surface diffusion are modeled. It is demonstrated that contrary to conventional phenomenological continuum models, microscopic physics, such as the interaction potential, determines the final form of the mesoscopic equation. Models of single component diffusion and binary diffusion of interacting particles on single-type site lattice and of single component diffusion on complex microporous materials' lattices consisting of two types of sites are derived, as illustrations of the mesoscopic framework. Simplification of the diffusion mesoscopic model illustrates the relation to phenomenological models, such as the Fickian and Maxwell-Stefan transport models. It is demonstrated that the mesoscopic equations are in good agreement with lattice kinetic Monte Carlo simulations for several prototype examples studied.

  19. Kinematics optimization and static analysis of a modular continuum robot used for minimally invasive surgery.

    PubMed

    Qi, Fei; Ju, Feng; Bai, Dong Ming; Chen, Bai

    2018-02-01

    For the outstanding compliance and dexterity of continuum robot, it is increasingly used in minimally invasive surgery. The wide workspace, high dexterity and strong payload capacity are essential to the continuum robot. In this article, we investigate the workspace of a cable-driven continuum robot that we proposed. The influence of section number on the workspace is discussed when robot is operated in narrow environment. Meanwhile, the structural parameters of this continuum robot are optimized to achieve better kinematic performance. Moreover, an indicator based on the dexterous solid angle for evaluating the dexterity of robot is introduced and the distal end dexterity is compared for the three-section continuum robot with different range of variables. Results imply that the wider range of variables achieve the better dexterity. Finally, the static model of robot based on the principle of virtual work is derived to analyze the relationship between the bending shape deformation and the driven force. The simulations and experiments for plane and spatial motions are conducted to validate the feasibility of model, respectively. Results of this article can contribute to the real-time control and movement and can be a design reference for cable-driven continuum robot.

  20. Essential roles of protein-solvent many-body correlation in solvent-entropy effect on protein folding and denaturation: comparison between hard-sphere solvent and water.

    PubMed

    Oshima, Hiraku; Kinoshita, Masahiro

    2015-04-14

    In earlier works, we showed that the entropic effect originating from the translational displacement of water molecules plays the pivotal role in protein folding and denaturation. The two different solvent models, hard-sphere solvent and model water, were employed in theoretical methods wherein the entropic effect was treated as an essential factor. However, there were similarities and differences in the results obtained from the two solvent models. In the present work, to unveil the physical origins of the similarities and differences, we simultaneously consider structural transition, cold denaturation, and pressure denaturation for the same protein by employing the two solvent models and considering three different thermodynamic states for each solvent model. The solvent-entropy change upon protein folding/unfolding is decomposed into the protein-solvent pair (PA) and many-body (MB) correlation components using the integral equation theories. Each component is further decomposed into the excluded-volume (EV) and solvent-accessible surface (SAS) terms by applying the morphometric approach. The four physically insightful constituents, (PA, EV), (PA, SAS), (MB, EV), and (MB, SAS), are thus obtained. Moreover, (MB, SAS) is discussed by dividing it into two factors. This all-inclusive investigation leads to the following results: (1) the protein-water many-body correlation always plays critical roles in a variety of folding/unfolding processes; (2) the hard-sphere solvent model fails when it does not correctly reproduce the protein-water many-body correlation; (3) the hard-sphere solvent model becomes problematic when the dependence of the many-body correlation on the solvent number density and temperature is essential: it is not quite suited to studies on cold and pressure denaturating of a protein; (4) when the temperature and solvent number density are limited to the ambient values, the hard-sphere solvent model is usually successful; and (5) even at the ambient values, however, the many-body correlation plays significant roles in the β-sheet formation and argument of relative stabilities of very similar structures of a protein. These results are argued in detail with respect to the four physically insightful constituents and the two factors mentioned above. The relevance to the absence or presence of hydrogen-bonding properties in the solvent is also discussed in detail.

  1. Mathematical and Computational Aspects of Multiscale Materials Modeling, Mathematics-Numerical analysis, Section II.A.a.3.4, Conference and symposia organization II.A.2.a

    DTIC Science & Technology

    2015-02-04

    dislocation dynamics models ( DDD ), continuum representations). Coupling of these models is difficult. Coupling of atomistics and DDD models has been...explored to some extent, but the coupling between DDD and continuum models of the evolution of large populations of dislocations is essentially unexplored

  2. Continuum theory of edge states of topological insulators: variational principle and boundary conditions.

    PubMed

    Medhi, Amal; Shenoy, Vijay B

    2012-09-05

    We develop a continuum theory to model low energy excitations of a generic four-band time reversal invariant electronic system with boundaries. We propose a variational energy functional for the wavefunctions which allows us to derive natural boundary conditions valid for such systems. Our formulation is particularly suited for developing a continuum theory of the protected edge/surface excitations of topological insulators both in two and three dimensions. By a detailed comparison of our analytical formulation with tight binding calculations of ribbons of topological insulators modelled by the Bernevig-Hughes-Zhang (BHZ) Hamiltonian, we show that the continuum theory with a natural boundary condition provides an appropriate description of the low energy physics.

  3. Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements.

    PubMed

    Ptashnik, Igor V; McPheat, Robert A; Shine, Keith P; Smith, Kevin M; Williams, R Gary

    2012-06-13

    For a long time, it has been believed that atmospheric absorption of radiation within wavelength regions of relatively high infrared transmittance (so-called 'windows') was dominated by the water vapour self-continuum, that is, spectrally smooth absorption caused by H(2)O--H(2)O pair interaction. Absorption due to the foreign continuum (i.e. caused mostly by H(2)O--N(2) bimolecular absorption in the Earth's atmosphere) was considered to be negligible in the windows. We report new retrievals of the water vapour foreign continuum from high-resolution laboratory measurements at temperatures between 350 and 430 K in four near-infrared windows between 1.1 and 5 μm (9000-2000 cm(-1)). Our results indicate that the foreign continuum in these windows has a very weak temperature dependence and is typically between one and two orders of magnitude stronger than that given in representations of the continuum currently used in many climate and weather prediction models. This indicates that absorption owing to the foreign continuum may be comparable to the self-continuum under atmospheric conditions in the investigated windows. The calculated global-average clear-sky atmospheric absorption of solar radiation is increased by approximately 0.46 W m(-2) (or 0.6% of the total clear-sky absorption) by using these new measurements when compared with calculations applying the widely used MTCKD (Mlawer-Tobin-Clough-Kneizys-Davies) foreign-continuum model.

  4. Quantifying sampling noise and parametric uncertainty in atomistic-to-continuum simulations using surrogate models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salloum, Maher N.; Sargsyan, Khachik; Jones, Reese E.

    2015-08-11

    We present a methodology to assess the predictive fidelity of multiscale simulations by incorporating uncertainty in the information exchanged between the components of an atomistic-to-continuum simulation. We account for both the uncertainty due to finite sampling in molecular dynamics (MD) simulations and the uncertainty in the physical parameters of the model. Using Bayesian inference, we represent the expensive atomistic component by a surrogate model that relates the long-term output of the atomistic simulation to its uncertain inputs. We then present algorithms to solve for the variables exchanged across the atomistic-continuum interface in terms of polynomial chaos expansions (PCEs). We alsomore » consider a simple Couette flow where velocities are exchanged between the atomistic and continuum components, while accounting for uncertainty in the atomistic model parameters and the continuum boundary conditions. Results show convergence of the coupling algorithm at a reasonable number of iterations. As a result, the uncertainty in the obtained variables significantly depends on the amount of data sampled from the MD simulations and on the width of the time averaging window used in the MD simulations.« less

  5. A comparison of FE beam and continuum elements for typical nitinol stent geometries

    NASA Astrophysics Data System (ADS)

    Ballew, Wesley; Seelecke, Stefan

    2009-03-01

    With interest in improved efficiency and a more complete description of the SMA material, this paper compares finite element (FE) simulations of typical stent geometries using two different constitutive models and two different element types. Typically, continuum elements are used for the simulation of stents, for example the commercial FE software ANSYS offers a continuum element based on Auricchio's SMA model. Almost every stent geometry, however, is made up of long and slender components and can be modeled more efficiently, in the computational sense, with beam elements. Using the ANSYS user programmable material feature, we implement the free energy based SMA model developed by Mueller and Seelecke into the ANSYS beam element 188. Convergence behavior for both, beam and continuum formulations, is studied in terms of element and layer number, respectively. This is systematically illustrated first for the case of a straight cantilever beam under end loading, and subsequently for a section of a z-bend wire, a typical stent sub-geometry. It is shown that the computation times for the beam element are reduced to only one third of those of the continuum element, while both formulations display a comparable force/displacement response.

  6. The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint.

    PubMed

    Naghibi Beidokhti, Hamid; Janssen, Dennis; van de Groes, Sebastiaan; Hazrati, Javad; Van den Boogaard, Ton; Verdonschot, Nico

    2017-12-08

    In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on segmentations. Continuum models closer approximate the anatomy, and facilitate ligament wrapping, while spring models are computationally less expensive. The mechanical properties of ligaments can be based on literature, or adjusted specifically for the subject. In the current study we investigated the effect of ligament modelling strategy on the predictive capability of FE models of the human knee joint. The effect of literature-based versus specimen-specific optimized material parameters was evaluated. Experiments were performed on three human cadaver knees, which were modelled in FE models with ligaments represented either using springs, or using continuum representations. In spring representation collateral ligaments were each modelled with three and cruciate ligaments with two single-element bundles. Stiffness parameters and pre-strains were optimized based on laxity tests for both approaches. Validation experiments were conducted to evaluate the outcomes of the FE models. Models (both spring and continuum) with subject-specific properties improved the predicted kinematics and contact outcome parameters. Models incorporating literature-based parameters, and particularly the spring models (with the representations implemented in this study), led to relatively high errors in kinematics and contact pressures. Using a continuum modelling approach resulted in more accurate contact outcome variables than the spring representation with two (cruciate ligaments) and three (collateral ligaments) single-element-bundle representations. However, when the prediction of joint kinematics is of main interest, spring ligament models provide a faster option with acceptable outcome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Development of a multiaxial viscoelastoplastic continuum damage model for asphalt mixtures.

    DOT National Transportation Integrated Search

    2009-09-01

    This report highlights findings from the FHWA DTFH61-05-H-00019 project, which focused on the development of the multiaxial viscoelastoplastic continuum damage model for asphalt concrete in both compression and tension. Asphalt concrete pavement, one...

  8. Sensitivity of the Properties of Ruthenium “Blue Dimer” to Method, Basis Set, and Continuum Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozkanlar, Abdullah; Clark, Aurora E.

    2012-05-23

    The ruthenium “blue dimer” [(bpy)2RuIIIOH2]2O4+ is best known as the first well-defined molecular catalyst for water oxidation. It has been subject to numerous computational studies primarily employing density functional theory. However, those studies have been limited in the functionals, basis sets, and continuum models employed. The controversy in the calculated electronic structure and the reaction energetics of this catalyst highlights the necessity of benchmark calculations that explore the role of density functionals, basis sets, and continuum models upon the essential features of blue-dimer reactivity. In this paper, we report Kohn-Sham complete basis set (KS-CBS) limit extrapolations of the electronic structuremore » of “blue dimer” using GGA (BPW91 and BP86), hybrid-GGA (B3LYP), and meta-GGA (M06-L) density functionals. The dependence of solvation free energy corrections on the different cavity types (UFF, UA0, UAHF, UAKS, Bondi, and Pauling) within polarizable and conductor-like polarizable continuum model has also been investigated. The most common basis sets of double-zeta quality are shown to yield results close to the KS-CBS limit; however, large variations are observed in the reaction energetics as a function of density functional and continuum cavity model employed.« less

  9. Modal kinematics for multisection continuum arms.

    PubMed

    Godage, Isuru S; Medrano-Cerda, Gustavo A; Branson, David T; Guglielmino, Emanuele; Caldwell, Darwin G

    2015-05-13

    This paper presents a novel spatial kinematic model for multisection continuum arms based on mode shape functions (MSF). Modal methods have been used in many disciplines from finite element methods to structural analysis to approximate complex and nonlinear parametric variations with simple mathematical functions. Given certain constraints and required accuracy, this helps to simplify complex phenomena with numerically efficient implementations leading to fast computations. A successful application of the modal approximation techniques to develop a new modal kinematic model for general variable length multisection continuum arms is discussed. The proposed method solves the limitations associated with previous models and introduces a new approach for readily deriving exact, singularity-free and unique MSF's that simplifies the approach and avoids mode switching. The model is able to simulate spatial bending as well as straight arm motions (i.e., pure elongation/contraction), and introduces inverse position and orientation kinematics for multisection continuum arms. A kinematic decoupling feature, splitting position and orientation inverse kinematics is introduced. This type of decoupling has not been presented for these types of robotic arms before. The model also carefully accounts for physical constraints in the joint space to provide enhanced insight into practical mechanics and impose actuator mechanical limitations onto the kinematics thus generating fully realizable results. The proposed method is easily applicable to a broad spectrum of continuum arm designs.

  10. Modeling the elastic energy of alloys: Potential pitfalls of continuum treatments.

    PubMed

    Baskaran, Arvind; Ratsch, Christian; Smereka, Peter

    2015-12-01

    Some issues that arise when modeling elastic energy for binary alloys are discussed within the context of a Keating model and density-functional calculations. The Keating model is a simplified atomistic formulation based on modeling elastic interactions of a binary alloy with harmonic springs whose equilibrium length is species dependent. It is demonstrated that the continuum limit for the strain field are the usual equations of linear elasticity for alloys and that they correctly capture the coarse-grained behavior of the displacement field. In addition, it is established that Euler-Lagrange equation of the continuum limit of the elastic energy will yield the same strain field equation. This is the same energy functional that is often used to model elastic effects in binary alloys. However, a direct calculation of the elastic energy atomistic model reveals that the continuum expression for the elastic energy is both qualitatively and quantitatively incorrect. This is because it does not take atomistic scale compositional nonuniformity into account. Importantly, this result also shows that finely mixed alloys tend to have more elastic energy than segregated systems, which is the exact opposite of predictions made by some continuum theories. It is also shown that for strained thin films the traditionally used effective misfit for alloys systematically underestimate the strain energy. In some models, this drawback is handled by including an elastic contribution to the enthalpy of mixing, which is characterized in terms of the continuum concentration. The direct calculation of the atomistic model reveals that this approach suffers serious difficulties. It is demonstrated that elastic contribution to the enthalpy of mixing is nonisotropic and scale dependent. It is also shown that such effects are present in density-functional theory calculations for the Si-Ge system. This work demonstrates that it is critical to include the microscopic arrangements in any elastic model to achieve even qualitatively correct behavior.

  11. Comparing a discrete and continuum model of the intestinal crypt

    PubMed Central

    Murray, Philip J.; Walter, Alex; Fletcher, Alex G.; Edwards, Carina M.; Tindall, Marcus J.; Maini, Philip K.

    2011-01-01

    The integration of processes at different scales is a key problem in the modelling of cell populations. Owing to increased computational resources and the accumulation of data at the cellular and subcellular scales, the use of discrete, cell-level models, which are typically solved using numerical simulations, has become prominent. One of the merits of this approach is that important biological factors, such as cell heterogeneity and noise, can be easily incorporated. However, it can be difficult to efficiently draw generalisations from the simulation results, as, often, many simulation runs are required to investigate model behaviour in typically large parameter spaces. In some cases, discrete cell-level models can be coarse-grained, yielding continuum models whose analysis can lead to the development of insight into the underlying simulations. In this paper we apply such an approach to the case of a discrete model of cell dynamics in the intestinal crypt. An analysis of the resulting continuum model demonstrates that there is a limited region of parameter space within which steady-state (and hence biologically realistic) solutions exist. Continuum model predictions show good agreement with corresponding results from the underlying simulations and experimental data taken from murine intestinal crypts. PMID:21411869

  12. Role of Desolvation in Thermodynamics and Kinetics of Ligand Binding to a Kinase

    PubMed Central

    2015-01-01

    Computer simulations are used to determine the free energy landscape for the binding of the anticancer drug Dasatinib to its src kinase receptor and show that before settling into a free energy basin the ligand must surmount a free energy barrier. An analysis based on using both the ligand-pocket separation and the pocket-water occupancy as reaction coordinates shows that the free energy barrier is a result of the free energy cost for almost complete desolvation of the binding pocket. The simulations further show that the barrier is not a result of the reorganization free energy of the binding pocket. Although a continuum solvent model gives the location of free energy minima, it is not able to reproduce the intermediate free energy barrier. Finally, it is shown that a kinetic model for the on rate constant in which the ligand diffuses up to a doorway state and then surmounts the desolvation free energy barrier is consistent with published microsecond time-scale simulations of the ligand binding kinetics for this system [Shaw, D. E. et al. J. Am. Chem. Soc.2011, 133, 9181−918321545110]. PMID:25516727

  13. Mind the Gap: A Semicontinuum Model for Discrete Electrical Propagation in Cardiac Tissue.

    PubMed

    Costa, Caroline Mendonca; Silva, Pedro Andre Arroyo; dos Santos, Rodrigo Weber

    2016-04-01

    Electrical propagation in cardiac tissue is a discrete or discontinuous phenomenon that reflects the complexity of the anatomical structures and their organization in the heart, such as myocytes, gap junctions, microvessels, and extracellular matrix, just to name a few. Discrete models or microscopic and discontinuous models are, so far, the best options to accurately study how structural properties of cardiac tissue influence electrical propagation. These models are, however, inappropriate in the context of large scale simulations, which have been traditionally performed by the use of continuum and macroscopic models, such as the monodomain and the bidomain models. However, continuum models may fail to reproduce many important physiological and physiopathological aspects of cardiac electrophysiology, for instance, those related to slow conduction. In this study, we develop a new mathematical model that combines characteristics of both continuum and discrete models. The new model was evaluated in scenarios of low gap-junctional coupling, where slow conduction is observed, and was able to reproduce conduction block, increase of the maximum upstroke velocity and of the repolarization dispersion. None of these features can be captured by continuum models. In addition, the model overcomes a great disadvantage of discrete models, as it allows variation of the spatial resolution within a certain range.

  14. Monolayers of hard rods on planar substrates. II. Growth

    NASA Astrophysics Data System (ADS)

    Klopotek, M.; Hansen-Goos, H.; Dixit, M.; Schilling, T.; Schreiber, F.; Oettel, M.

    2017-02-01

    Growth of hard-rod monolayers via deposition is studied in a lattice model using rods with discrete orientations and in a continuum model with hard spherocylinders. The lattice model is treated with kinetic Monte Carlo simulations and dynamic density functional theory while the continuum model is studied by dynamic Monte Carlo simulations equivalent to diffusive dynamics. The evolution of nematic order (excess of upright particles, "standing-up" transition) is an entropic effect and is mainly governed by the equilibrium solution, rendering a continuous transition [Paper I, M. Oettel et al., J. Chem. Phys. 145, 074902 (2016)]. Strong non-equilibrium effects (e.g., a noticeable dependence on the ratio of rates for translational and rotational moves) are found for attractive substrate potentials favoring lying rods. Results from the lattice and the continuum models agree qualitatively if the relevant characteristic times for diffusion, relaxation of nematic order, and deposition are matched properly. Applicability of these monolayer results to multilayer growth is discussed for a continuum-model realization in three dimensions where spherocylinders are deposited continuously onto a substrate via diffusion.

  15. Dynamics of electrical double layer formation in room-temperature ionic liquids under constant-current charging conditions

    NASA Astrophysics Data System (ADS)

    Jiang, Xikai; Huang, Jingsong; Zhao, Hui; Sumpter, Bobby G.; Qiao, Rui

    2014-07-01

    We report detailed simulation results on the formation dynamics of an electrical double layer (EDL) inside an electrochemical cell featuring room-temperature ionic liquids (RTILs) enclosed between two planar electrodes. Under relatively small charging currents, the evolution of cell potential from molecular dynamics (MD) simulations during charging can be suitably predicted by the Landau-Ginzburg-type continuum model proposed recently (Bazant et al 2011 Phys. Rev. Lett. 106 046102). Under very large charging currents, the cell potential from MD simulations shows pronounced oscillation during the initial stage of charging, a feature not captured by the continuum model. Such oscillation originates from the sequential growth of the ionic space charge layers near the electrode surface. This allows the evolution of EDLs in RTILs with time, an atomistic process difficult to visualize experimentally, to be studied by analyzing the cell potential under constant-current charging conditions. While the continuum model cannot predict the potential oscillation under such far-from-equilibrium charging conditions, it can nevertheless qualitatively capture the growth of cell potential during the later stage of charging. Improving the continuum model by introducing frequency-dependent dielectric constant and density-dependent ion diffusion coefficients may help to further extend the applicability of the model. The evolution of ion density profiles is also compared between the MD and the continuum model, showing good agreement.

  16. Dynamics of electrical double layer formation in room-temperature ionic liquids under constant-current charging conditions.

    PubMed

    Jiang, Xikai; Huang, Jingsong; Zhao, Hui; Sumpter, Bobby G; Qiao, Rui

    2014-07-16

    We report detailed simulation results on the formation dynamics of an electrical double layer (EDL) inside an electrochemical cell featuring room-temperature ionic liquids (RTILs) enclosed between two planar electrodes. Under relatively small charging currents, the evolution of cell potential from molecular dynamics (MD) simulations during charging can be suitably predicted by the Landau-Ginzburg-type continuum model proposed recently (Bazant et al 2011 Phys. Rev. Lett. 106 046102). Under very large charging currents, the cell potential from MD simulations shows pronounced oscillation during the initial stage of charging, a feature not captured by the continuum model. Such oscillation originates from the sequential growth of the ionic space charge layers near the electrode surface. This allows the evolution of EDLs in RTILs with time, an atomistic process difficult to visualize experimentally, to be studied by analyzing the cell potential under constant-current charging conditions. While the continuum model cannot predict the potential oscillation under such far-from-equilibrium charging conditions, it can nevertheless qualitatively capture the growth of cell potential during the later stage of charging. Improving the continuum model by introducing frequency-dependent dielectric constant and density-dependent ion diffusion coefficients may help to further extend the applicability of the model. The evolution of ion density profiles is also compared between the MD and the continuum model, showing good agreement.

  17. Creating a Simple Single Computational Approach to Modeling Rarefied and Continuum Flow About Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Goldstein, David B.; Varghese, Philip L.

    1997-01-01

    We proposed to create a single computational code incorporating methods that can model both rarefied and continuum flow to enable the efficient simulation of flow about space craft and high altitude hypersonic aerospace vehicles. The code was to use a single grid structure that permits a smooth transition between the continuum and rarefied portions of the flow. Developing an appropriate computational boundary between the two regions represented a major challenge. The primary approach chosen involves coupling a four-speed Lattice Boltzmann model for the continuum flow with the DSMC method in the rarefied regime. We also explored the possibility of using a standard finite difference Navier Stokes solver for the continuum flow. With the resulting code we will ultimately investigate three-dimensional plume impingement effects, a subject of critical importance to NASA and related to the work of Drs. Forrest Lumpkin, Steve Fitzgerald and Jay Le Beau at Johnson Space Center. Below is a brief background on the project and a summary of the results as of the end of the grant.

  18. Electrostatics of the photosynthetic bacterial reaction center. Protonation of Glu L 212 and Asp L 213 - A new method of calculation.

    PubMed

    Ptushenko, Vasily V; Cherepanov, Dmitry A; Krishtalik, Lev I

    2015-12-01

    Continuum electrostatic calculation of the transfer energies of anions from water into aprotic solvents gives the figures erroneous by order of magnitude. This is due to the hydrogen bond disruption that suggests the necessity to reconsider the traditional approach of the purely electrostatic calculation of the transfer energy from water into protein. In this paper, the method combining the experimental estimates of the transfer energies from water into aprotic solvent and the electrostatic calculation of the transfer energies from aprotic solvent into protein is proposed. Hydrogen bonds between aprotic solvent and solute are taken into account by introducing an imaginary aprotic medium incapable to form hydrogen bonds with the solute. Besides, a new treatment of the heterogeneous intraprotein dielectric permittivity based on the microscopic protein structure and electrometric measurements is elaborated. The method accounts semi-quantitatively for the electrostatic effect of diverse charged amino acid substitutions in the donor and acceptor parts of the photosynthetic bacterial reaction center from Rhodobacter sphaeroides. Analysis of the volatile secondary acceptor site QB revealed that in the conformation with a minimal distance between quinone QB and Glu L 212 the proton uptake upon the reduction of QB is prompted by Glu L 212 in alkaline and by Asp L 213 in slightly acidic regions. This agrees with the pH dependences of protonation degrees and the proton uptake. The method of pK calculation was applied successfully also for dissociation of Asp 26 in bacterial thioredoxin. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. On the continuum mechanics approach for the analysis of single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chaudhry, M. S.; Czekanski, A.

    2016-04-01

    Today carbon nanotubes have found various applications in structural, thermal and almost every field of engineering. Carbon nanotubes provide great strength, stiffness resilience properties. Evaluating the structural behavior of nanoscale materials is an important task. In order to understand the materialistic behavior of nanotubes, atomistic models provide a basis for continuum mechanics modelling. Although the properties of bulk materials are consistent with the size and depends mainly on the material but the properties when we are in Nano-range, continuously change with the size. Such models start from the modelling of interatomic interaction. Modelling and simulation has advantage of cost saving when compared with the experiments. So in this project our aim is to use a continuum mechanics model of carbon nanotubes from atomistic perspective and analyses some structural behaviors of nanotubes. It is generally recognized that mechanical properties of nanotubes are dependent upon their structural details. The properties of nanotubes vary with the varying with the interatomic distance, angular orientation, radius of the tube and many such parameters. Based on such models one can analyses the variation of young's modulus, strength, deformation behavior, vibration behavior and thermal behavior. In this study some of the structural behaviors of the nanotubes are analyzed with the help of continuum mechanics models. Using the properties derived from the molecular mechanics model a Finite Element Analysis of carbon nanotubes is performed and results are verified. This study provides the insight on continuum mechanics modelling of nanotubes and hence the scope to study the effect of various parameters on some structural behavior of nanotubes.

  20. Influence of molecular geometry, exchange-correlation functional, and solvent effects in the modeling of vertical excitation energies in phthalocyanines using time-dependent density functional theory (TDDFT) and polarized continuum model TDDFT methods: can modern computational chemistry methods explain experimental controversies?

    PubMed

    Nemykin, Victor N; Hadt, Ryan G; Belosludov, Rodion V; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2007-12-20

    A time-dependent density functional theory (TDDFT) approach coupled with 14 different exchange-correlation functionals was used for the prediction of vertical excitation energies in zinc phthalocyanine (PcZn). In general, the TDDFT approach provides a more accurate description of both visible and ultraviolet regions of the UV-vis and magnetic circular dichroism (MCD) spectra of PcZn in comparison to the more popular semiempirical ZINDO/S and PM3 methods. It was found that the calculated vertical excitation energies of PcZn correlate with the amount of Hartree-Fock exchange involved in the exchange-correlation functional. The correlation was explained on the basis of the calculated difference in energy between occupied and unoccupied molecular orbitals. The influence of PcZn geometry, optimized using different exchange-correlation functionals, on the calculated vertical excitation energies in PcZn was found to be relatively small. The influence of solvents on the calculated vertical excitation energies in PcZn was considered for the first time using a polarized continuum model TDDFT (PCM-TDDFT) method and was found to be relatively small in excellent agreement with the experimental data. For all tested TDDFT and PCM-TDDFT cases, an assignment of the Q-band as an almost pure a1u (HOMO)-->eg (LUMO) transition, initially suggested by Gouterman, was confirmed. Pure exchange-correlation functionals indicate the presence of six 1Eu states in the B-band region of the UV-vis spectrum of PcZn, while hybrid exchange-correlation functionals predict only five 1Eu states for the same energy envelope. The first two symmetry-forbidden n-->pi* transitions were predicted in the Q0-2 region and in the low-energy tail of the B-band, while the first two symmetry-allowed n-->pi* transitions were found within the B-band energy envelope when pure exchange-correlation functionals were used for TDDFT calculations. The presence of a symmetry-forbidden but vibronically allowed n-->pi* transition in the Q0-2 spectral envelope explains the long-time controversy between the experimentally observed low-intensity transition in the Q0-2 region and previous semiempirical and TDDFT calculations, which were unable to predict any electronic transitions in this area. To prove the conceptual possibility of the presence of several degenerate 1Eu states in the B-band region of PcZn, room-temperature UV-vis and MCD spectra of zinc tetra-tert-butylphthalocyanine (PctZn) in non-coordinating solvents were recorded and analyzed using band deconvolution analysis. It was found that the B-band region of the UV-vis and MCD spectra of PctZn can be easily deconvoluted using six MCD Faraday A-terms and two MCD Faraday B-terms with energies close to those predicted by TDDFT calculations for 1Eu and 1A2u excited states, respectively. Such a good agreement between theory and experiment clearly indicates the possibility of employing a TDDFT approach for the accurate prediction of vertical excitation energies in phthalocyanines within a large energy range.

  1. Essential roles of protein-solvent many-body correlation in solvent-entropy effect on protein folding and denaturation: Comparison between hard-sphere solvent and water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oshima, Hiraku; Kinoshita, Masahiro, E-mail: kinoshit@iae.kyoto-u.ac.jp

    In earlier works, we showed that the entropic effect originating from the translational displacement of water molecules plays the pivotal role in protein folding and denaturation. The two different solvent models, hard-sphere solvent and model water, were employed in theoretical methods wherein the entropic effect was treated as an essential factor. However, there were similarities and differences in the results obtained from the two solvent models. In the present work, to unveil the physical origins of the similarities and differences, we simultaneously consider structural transition, cold denaturation, and pressure denaturation for the same protein by employing the two solvent modelsmore » and considering three different thermodynamic states for each solvent model. The solvent-entropy change upon protein folding/unfolding is decomposed into the protein-solvent pair (PA) and many-body (MB) correlation components using the integral equation theories. Each component is further decomposed into the excluded-volume (EV) and solvent-accessible surface (SAS) terms by applying the morphometric approach. The four physically insightful constituents, (PA, EV), (PA, SAS), (MB, EV), and (MB, SAS), are thus obtained. Moreover, (MB, SAS) is discussed by dividing it into two factors. This all-inclusive investigation leads to the following results: (1) the protein-water many-body correlation always plays critical roles in a variety of folding/unfolding processes; (2) the hard-sphere solvent model fails when it does not correctly reproduce the protein-water many-body correlation; (3) the hard-sphere solvent model becomes problematic when the dependence of the many-body correlation on the solvent number density and temperature is essential: it is not quite suited to studies on cold and pressure denaturating of a protein; (4) when the temperature and solvent number density are limited to the ambient values, the hard-sphere solvent model is usually successful; and (5) even at the ambient values, however, the many-body correlation plays significant roles in the β-sheet formation and argument of relative stabilities of very similar structures of a protein. These results are argued in detail with respect to the four physically insightful constituents and the two factors mentioned above. The relevance to the absence or presence of hydrogen-bonding properties in the solvent is also discussed in detail.« less

  2. Airborne and satellite remote sensing of the mid-infrared water vapour continuum.

    PubMed

    Newman, Stuart M; Green, Paul D; Ptashnik, Igor V; Gardiner, Tom D; Coleman, Marc D; McPheat, Robert A; Smith, Kevin M

    2012-06-13

    Remote sensing of the atmosphere from space plays an increasingly important role in weather forecasting. Exploiting observations from the latest generation of weather satellites relies on an accurate knowledge of fundamental spectroscopy, including the water vapour continuum absorption. Field campaigns involving the Facility for Airborne Atmospheric Measurements research aircraft have collected a comprehensive dataset, comprising remotely sensed infrared radiance observations collocated with accurate measurements of the temperature and humidity structure of the atmosphere. These field measurements have been used to validate the strength of the infrared water vapour continuum in comparison with the latest laboratory measurements. The recent substantial changes to self-continuum coefficients in the widely used MT_CKD (Mlawer-Tobin-Clough-Kneizys-Davies) model between 2400 and 3200 cm(-1) are shown to be appropriate and in agreement with field measurements. Results for the foreign continuum in the 1300-2000 cm(-1) band suggest a weak temperature dependence that is not currently included in atmospheric models. A one-dimensional variational retrieval experiment is performed that shows a small positive benefit from using new laboratory-derived continuum coefficients for humidity retrievals.

  3. Testing the Use of Implicit Solvent in the Molecular Dynamics Modelling of DNA Flexibility

    NASA Astrophysics Data System (ADS)

    Mitchell, J.; Harris, S.

    DNA flexibility controls packaging, looping and in some cases sequence specific protein binding. Molecular dynamics simulations carried out with a computationally efficient implicit solvent model are potentially a powerful tool for studying larger DNA molecules than can be currently simulated when water and counterions are represented explicitly. In this work we compare DNA flexibility at the base pair step level modelled using an implicit solvent model to that previously determined from explicit solvent simulations and database analysis. Although much of the sequence dependent behaviour is preserved in implicit solvent, the DNA is considerably more flexible when the approximate model is used. In addition we test the ability of the implicit solvent to model stress induced DNA disruptions by simulating a series of DNA minicircle topoisomers which vary in size and superhelical density. When compared with previously run explicit solvent simulations, we find that while the levels of DNA denaturation are similar using both computational methodologies, the specific structural form of the disruptions is different.

  4. Continuum-Kinetic Models and Numerical Methods for Multiphase Applications

    NASA Astrophysics Data System (ADS)

    Nault, Isaac Michael

    This thesis presents a continuum-kinetic approach for modeling general problems in multiphase solid mechanics. In this context, a continuum model refers to any model, typically on the macro-scale, in which continuous state variables are used to capture the most important physics: conservation of mass, momentum, and energy. A kinetic model refers to any model, typically on the meso-scale, which captures the statistical motion and evolution of microscopic entitites. Multiphase phenomena usually involve non-negligible micro or meso-scopic effects at the interfaces between phases. The approach developed in the thesis attempts to combine the computational performance benefits of a continuum model with the physical accuracy of a kinetic model when applied to a multiphase problem. The approach is applied to modeling a single particle impact in Cold Spray, an engineering process that intimately involves the interaction of crystal grains with high-magnitude elastic waves. Such a situation could be classified a multiphase application due to the discrete nature of grains on the spatial scale of the problem. For this application, a hyper elasto-plastic model is solved by a finite volume method with approximate Riemann solver. The results of this model are compared for two types of plastic closure: a phenomenological macro-scale constitutive law, and a physics-based meso-scale Crystal Plasticity model.

  5. Simple Estimators for the Simple Latent Class Mastery Testing Model. Twente Educational Memorandum No. 19.

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    Latent class models for mastery testing differ from continuum models in that they do not postulate a latent mastery continuum but conceive mastery and non-mastery as two latent classes, each characterized by different probabilities of success. Several researchers use a simple latent class model that is basically a simultaneous application of the…

  6. Hydration of copper(II): new insights from density functional theory and the COSMO solvation model.

    PubMed

    Bryantsev, Vyacheslav S; Diallo, Mamadou S; van Duin, Adri C T; Goddard, William A

    2008-09-25

    The hydrated structure of the Cu(II) ion has been a subject of ongoing debate in the literature. In this article, we use density functional theory (B3LYP) and the COSMO continuum solvent model to characterize the structure and stability of [Cu(H2O)n](2+) clusters as a function of coordination number (4, 5, and 6) and cluster size (n = 4-18). We find that the most thermodynamically favored Cu(II) complexes in the gas phase have a very open four-coordinate structure. They are formed from a stable square-planar [Cu(H2O)8](2+) core stabilized by an unpaired electron in the Cu(II) ion d(x(2)-y(2)) orbital. This is consistent with cluster geometries suggested by recent mass-spectrometric experiments. In the aqueous phase, we find that the more compact five-coordinate square-pyramidal geometry is more stable than either the four-coordinate or six-coordinate clusters in agreement with recent combined EXAFS and XANES studies of aqueous solutions of Cu(II). However, a small energetic difference (approximately 1.4 kcal/mol) between the five- and six-coordinate models with two full hydration shells around the metal ion suggests that both forms may coexist in solution.

  7. Polarizable Force Fields and Polarizable Continuum Model: A Fluctuating Charges/PCM Approach. 1. Theory and Implementation.

    PubMed

    Lipparini, Filippo; Barone, Vincenzo

    2011-11-08

    We present a combined fluctuating charges-polarizable continuum model approach to describe molecules in solution. Both static and dynamic approaches are discussed: analytical first and second derivatives are shown as well as an extended lagrangian for molecular dynamics simluations. In particular, we use the polarizable continuum model to provide nonperiodic boundary conditions for molecular dynamics simulations of aqueous solutions. The extended lagrangian method is extensively discussed, with specific reference to the fluctuating charge model, from a numerical point of view by means of several examples, and a rationalization of the behavior found is presented. Several prototypical applications are shown, especially regarding solvation of ions and polar molecules in water.

  8. Surveying implicit solvent models for estimating small molecule absolute hydration free energies

    PubMed Central

    Knight, Jennifer L.

    2011-01-01

    Implicit solvent models are powerful tools in accounting for the aqueous environment at a fraction of the computational expense of explicit solvent representations. Here, we compare the ability of common implicit solvent models (TC, OBC, OBC2, GBMV, GBMV2, GBSW, GBSW/MS, GBSW/MS2 and FACTS) to reproduce experimental absolute hydration free energies for a series of 499 small neutral molecules that are modeled using AMBER/GAFF parameters and AM1-BCC charges. Given optimized surface tension coefficients for scaling the surface area term in the nonpolar contribution, most implicit solvent models demonstrate reasonable agreement with extensive explicit solvent simulations (average difference 1.0-1.7 kcal/mol and R2=0.81-0.91) and with experimental hydration free energies (average unsigned errors=1.1-1.4 kcal/mol and R2=0.66-0.81). Chemical classes of compounds are identified that need further optimization of their ligand force field parameters and others that require improvement in the physical parameters of the implicit solvent models themselves. More sophisticated nonpolar models are also likely necessary to more effectively represent the underlying physics of solvation and take the quality of hydration free energies estimated from implicit solvent models to the next level. PMID:21735452

  9. STABILITY OF A CYLINDRICAL SOLUTE-SOLVENT INTERFACE: EFFECT OF GEOMETRY, ELECTROSTATICS, AND HYDRODYNAMICS.

    PubMed

    Li, B O; Sun, Hui; Zhou, Shenggao

    The solute-solvent interface that separates biological molecules from their surrounding aqueous solvent characterizes the conformation and dynamics of such molecules. In this work, we construct a solvent fluid dielectric boundary model for the solvation of charged molecules and apply it to study the stability of a model cylindrical solute-solvent interface. The motion of the solute-solvent interface is defined to be the same as that of solvent fluid at the interface. The solvent fluid is assumed to be incompressible and is described by the Stokes equation. The solute is modeled simply by the ideal-gas law. All the viscous force, hydrostatic pressure, solute-solvent van der Waals interaction, surface tension, and electrostatic force are balanced at the solute-solvent interface. We model the electrostatics by Poisson's equation in which the solute-solvent interface is treated as a dielectric boundary that separates the low-dielectric solute from the high-dielectric solvent. For a cylindrical geometry, we find multiple cylindrically shaped equilibrium interfaces that describe polymodal (e.g., dry and wet) states of hydration of an underlying molecular system. These steady-state solutions exhibit bifurcation behavior with respect to the charge density. For their linearized systems, we use the projection method to solve the fluid equation and find the dispersion relation. Our asymptotic analysis shows that, for large wavenumbers, the decay rate is proportional to wavenumber with the proportionality half of the ratio of surface tension to solvent viscosity, indicating that the solvent viscosity does affect the stability of a solute-solvent interface. Consequences of our analysis in the context of biomolecular interactions are discussed.

  10. Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach.

    PubMed

    Rausch, M K; Karniadakis, G E; Humphrey, J D

    2017-02-01

    Biological soft tissues experience damage and failure as a result of injury, disease, or simply age; examples include torn ligaments and arterial dissections. Given the complexity of tissue geometry and material behavior, computational models are often essential for studying both damage and failure. Yet, because of the need to account for discontinuous phenomena such as crazing, tearing, and rupturing, continuum methods are limited. Therefore, we model soft tissue damage and failure using a particle/continuum approach. Specifically, we combine continuum damage theory with Smoothed Particle Hydrodynamics (SPH). Because SPH is a meshless particle method, and particle connectivity is determined solely through a neighbor list, discontinuities can be readily modeled by modifying this list. We show, for the first time, that an anisotropic hyperelastic constitutive model commonly employed for modeling soft tissue can be conveniently implemented within a SPH framework and that SPH results show excellent agreement with analytical solutions for uniaxial and biaxial extension as well as finite element solutions for clamped uniaxial extension in 2D and 3D. We further develop a simple algorithm that automatically detects damaged particles and disconnects the spatial domain along rupture lines in 2D and rupture surfaces in 3D. We demonstrate the utility of this approach by simulating damage and failure under clamped uniaxial extension and in a peeling experiment of virtual soft tissue samples. In conclusion, SPH in combination with continuum damage theory may provide an accurate and efficient framework for modeling damage and failure in soft tissues.

  11. Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach

    PubMed Central

    Rausch, M. K.; Karniadakis, G. E.; Humphrey, J. D.

    2016-01-01

    Biological soft tissues experience damage and failure as a result of injury, disease, or simply age; examples include torn ligaments and arterial dissections. Given the complexity of tissue geometry and material behavior, computational models are often essential for studying both damage and failure. Yet, because of the need to account for discontinuous phenomena such as crazing, tearing, and rupturing, continuum methods are limited. Therefore, we model soft tissue damage and failure using a particle/continuum approach. Specifically, we combine continuum damage theory with Smoothed Particle Hydrodynamics (SPH). Because SPH is a meshless particle method, and particle connectivity is determined solely through a neighbor list, discontinuities can be readily modeled by modifying this list. We show, for the first time, that an anisotropic hyperelastic constitutive model commonly employed for modeling soft tissue can be conveniently implemented within a SPH framework and that SPH results show excellent agreement with analytical solutions for uniaxial and biaxial extension as well as finite element solutions for clamped uniaxial extension in 2D and 3D. We further develop a simple algorithm that automatically detects damaged particles and disconnects the spatial domain along rupture lines in 2D and rupture surfaces in 3D. We demonstrate the utility of this approach by simulating damage and failure under clamped uniaxial extension and in a peeling experiment of virtual soft tissue samples. In conclusion, SPH in combination with continuum damage theory may provide an accurate and efficient framework for modeling damage and failure in soft tissues. PMID:27538848

  12. Continuum of Medical Education in Obstetrics and Gynecology.

    ERIC Educational Resources Information Center

    Dohner, Charles W.; Hunter, Charles A., Jr.

    1980-01-01

    Over the past eight years the obstetric and gynecology specialty has applied a system model of instructional planning to the continuum of medical education. The systems model of needs identification, preassessment, instructional objectives, instructional materials, learning experiences; and evaluation techniques directly related to objectives was…

  13. Issues and Methods for Standard-Setting.

    ERIC Educational Resources Information Center

    Hambleton, Ronald K.; And Others

    Issues involved in standard setting along with methods for standard setting are reviewed, with specific reference to their relevance for criterion referenced testing. Definitions are given of continuum and state models, and traditional and normative standard setting procedures. Since continuum models are considered more appropriate for criterion…

  14. Quantum mechanical/molecular mechanical/continuum style solvation model: linear response theory, variational treatment, and nuclear gradients.

    PubMed

    Li, Hui

    2009-11-14

    Linear response and variational treatment are formulated for Hartree-Fock (HF) and Kohn-Sham density functional theory (DFT) methods and combined discrete-continuum solvation models that incorporate self-consistently induced dipoles and charges. Due to the variational treatment, analytic nuclear gradients can be evaluated efficiently for these discrete and continuum solvation models. The forces and torques on the induced point dipoles and point charges can be evaluated using simple electrostatic formulas as for permanent point dipoles and point charges, in accordance with the electrostatic nature of these methods. Implementation and tests using the effective fragment potential (EFP, a polarizable force field) method and the conductorlike polarizable continuum model (CPCM) show that the nuclear gradients are as accurate as those in the gas phase HF and DFT methods. Using B3LYP/EFP/CPCM and time-dependent-B3LYP/EFP/CPCM methods, acetone S(0)-->S(1) excitation in aqueous solution is studied. The results are close to those from full B3LYP/CPCM calculations.

  15. Experimental verification of a progressive damage model for composite laminates based on continuum damage mechanics. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Coats, Timothy William

    1994-01-01

    Progressive failure is a crucial concern when using laminated composites in structural design. Therefore the ability to model damage and predict the life of laminated composites is vital. The purpose of this research was to experimentally verify the application of the continuum damage model, a progressive failure theory utilizing continuum damage mechanics, to a toughened material system. Damage due to tension-tension fatigue was documented for the IM7/5260 composite laminates. Crack density and delamination surface area were used to calculate matrix cracking and delamination internal state variables, respectively, to predict stiffness loss. A damage dependent finite element code qualitatively predicted trends in transverse matrix cracking, axial splits and local stress-strain distributions for notched quasi-isotropic laminates. The predictions were similar to the experimental data and it was concluded that the continuum damage model provided a good prediction of stiffness loss while qualitatively predicting damage growth in notched laminates.

  16. Self-consistent continuum solvation for optical absorption of complex molecular systems in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timrov, Iurii; Biancardi, Alessandro; Andreussi, Oliviero

    2015-01-21

    We introduce a new method to compute the optical absorption spectra of complex molecular systems in solution, based on the Liouville approach to time-dependent density-functional perturbation theory and the revised self-consistent continuum solvation model. The former allows one to obtain the absorption spectrum over a whole wide frequency range, using a recently proposed Lanczos-based technique, or selected excitation energies, using the Casida equation, without having to ever compute any unoccupied molecular orbitals. The latter is conceptually similar to the polarizable continuum model and offers the further advantages of allowing an easy computation of atomic forces via the Hellmann-Feynman theorem andmore » a ready implementation in periodic-boundary conditions. The new method has been implemented using pseudopotentials and plane-wave basis sets, benchmarked against polarizable continuum model calculations on 4-aminophthalimide, alizarin, and cyanin and made available through the QUANTUM ESPRESSO distribution of open-source codes.« less

  17. Continuum Mean-Field Theories for Molecular Fluids, and Their Validity at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Hanna, C. B.; Peyronel, F.; MacDougall, C.; Marangoni, A.; Pink, D. A.; AFMNet-NCE Collaboration

    2011-03-01

    We present a calculation of the physical properties of solid triglyceride particles dispersed in an oil phase, using atomic- scale molecular dynamics. Significant equilibrium density oscillations in the oil appear when the interparticle distance, d , becomes sufficiently small, with a global minimum in the free energy found at d ~ 1.4 nm. We compare the simulation values of the Hamaker coefficient with those of models which assume that the oil is a homogeneous continuum: (i) Lifshitz theory, (ii) the Fractal Model, and (iii) a Lennard-Jones 6-12 potential model. The last-named yields a minimum in the free energy at d ~ 0.26 nm. We conclude that, at the nanoscale, continuum Lifshitz theory and other continuum mean-field theories based on the assumption of homogeneous fluid density can lead to erroneous conclusions. CBH supported by NSF DMR-0906618. DAP supported by NSERC. This work supported by AFMNet-NCE.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onić, D.; Urošević, D.; Leahy, D., E-mail: donic@matf.bg.ac.rs

    Recent observations of the microwave sky, by space telescopes such as the Wilkinson Microwave Anisotropy Probe and Planck , have opened a new window into the analysis of continuum emission from supernova remnants (SNRs). In this paper, different emission models that can explain the characteristic shape of currently known integrated radio/microwave continuum spectrum of the Galactic SNR IC 443 are tested and discussed. In particular, the possibility is emphasized that the slight bump in the integrated continuum of this remnant around 20–70 GHz is genuine and that it can be explained by the contribution of an additional emission mechanism suchmore » as spinning dust. We find that adding a spinning dust component to the emission model improves the fit of the integrated spectrum of this SNR while at the same time preserving the physically probable parameter values. Finally, models that include the high-frequency synchrotron bending of the IC 443 radio to microwave continuum are favored.« less

  19. A continuum-based structural modeling approach for cellulose nanocrystals (CNCs)

    Treesearch

    Mehdi Shishehbor; Fernando L. Dri; Robert J. Moon; Pablo D. Zavattieri

    2018-01-01

    We present a continuum-based structural model to study the mechanical behavior of cel- lulose nanocrystals (CNCs), and analyze the effect of bonded and non-bonded interactions on the mechanical properties under various loading conditions. In particular, this model assumes the uncoupling between the bonded and non-bonded interactions and their be- havior is obtained...

  20. Peridynamics with LAMMPS : a user guide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehoucq, Richard B.; Silling, Stewart Andrew; Plimpton, Steven James

    2008-01-01

    Peridynamics is a nonlocal formulation of continuum mechanics. The discrete peridynamic model has the same computational structure as a molecular dynamic model. This document details the implementation of a discrete peridynamic model within the LAMMPS molecular dynamic code. This document provides a brief overview of the peridynamic model of a continuum, then discusses how the peridynamic model is discretized, and overviews the LAMMPS implementation. A nontrivial example problem is also included.

  1. Two factors defining humus as a key structural component of soil organic matter and as a physicochemical speciation of carbon in its turnover wending its way through the micro environment of soil, sediments and natural waters

    NASA Astrophysics Data System (ADS)

    Aleksandrova, Olga

    2016-04-01

    Over the last 40-50 years, the scientific community started to question the model of soil organic matter. Close consideration has been given to the following models: the classic model that regards a significant part of soil organic matter as large, covalently bonded 'humus polymers', which are formed via "humification", and the continuum model that considers soil organic matter as 'supra molecular aggregates of degradation fragments'[1]. The underlying cause of a contradiction between 'humus polymers' model and continuum model of SOM implies that 'the vast majority of operationally defined humic material in soils is a very complex mixture of microbial and plant biopolymers and their degradation products but not a distinct chemical category'. Furthermore, authors [1] of the continuum model suggested 'to turn to modern, evidence based concept, and to abandon the operational proxies of the past' that means to consider term 'humus' as an out-of-date model. However, micro cosmos of organic matter in soil implies not only an assemblage of molecular units but also a system of interactions of different types [2]. Peculiar interactions in SOM allow us to understand a lot of physicochemical phenomena observed in soil samples, for example by EPR and SL EPR examinations [3, 4, 5]. Among specific interactions in soil, mention should be made of hydrogen (H) bonds and hydrophobic interaction. Spin Labeling EPR examination of natural and labeled soil samples showed that in SOM, there are stable and roaming H-bonds. Stable H-bonds are typical of a part of SOM, which can be isolated as humus, whereas a non-humified part of SOM is rich in roaming hydrogen bonds. Addition of some water (more than maximal moisture) to soil leads to disintegration of some weak H-bond. Other solvents influence SOM the same way but they disintegrate stronger or weaker H-bonds in dependence on used solvent. Thus in soil, different environmental conditions (like moisture, temperature or pollution) influence on a change in the partitioning of roaming H-bonds, and in turn, define components, into which non-humified SOM can be disintegrated. Therefore, some physicochemical species of SOM, which can be observed in physicochemical processes of carbon turnover in soil, originate from disintegrated SOM bulged at the seams of weak H-bonds, and doesn't reveal strong properties of humus because humus structure is still bound to SOM via stronger H-bonds. Also, SL EPR examination of native and labeled soil samples revealed the substantial influence of hydrophobic interaction on physicochemical speciation of carbon in soil, and this interaction is mediated by humus [3]. Among different effects of hydrophobic interaction, the formation of condensed matter is of great interest. Condensed matter mediated by humic acids is shown to reveal specific quantum properties and invoke hydrodynamic instability on the surface of plant roots that results in uptake of the whole nano-pieces of humus by plant roots, as it was observed in [6, 7]. Considered effects of H-bonds with different bonding energy and hydrophobic interaction in SOM show that a carbon turnover in soil is mediated by humus, and humus play a substantial role as the physicochemical speciation in carbon turnover. Thus, model of 'humus' is still an up-to-date model. 1.Lehmann J. &Kleber H. (2015). Nature, 528, Issue 7580, 60 - 68. 2. M. Hutta, R. Gora, R. Halko, et al., (2011). J. Chromatogr. A., 1218, 8946. 3. Alexanderova O.N. (2015). J Soils Sediments, DOI 10.1007/s11368-015-1195-2 4. Aleksandrova O.N., Kholodov V.A., Perminova I.V. (2015). Russian Journal of Physical Chemistry A, 2015, Vol. 89, No. 8, pp. 1407-1413. 5. Aleksandrova O.N. (2013). J Geochem Explor 129:6-13. 6. Smirnov A.I. et al. (1991). J. of Magnetic Resonance 91, 386-391 7. Kulikova N.V. et al. (2012). Conference HIT-2012.

  2. Applications of discrete element method in modeling of grain postharvest operations

    USDA-ARS?s Scientific Manuscript database

    Grain kernels are finite and discrete materials. Although flowing grain can behave like a continuum fluid at times, the discontinuous behavior exhibited by grain kernels cannot be simulated solely with conventional continuum-based computer modeling such as finite-element or finite-difference methods...

  3. Investigation of Coupled model of Pore network and Continuum in shale gas

    NASA Astrophysics Data System (ADS)

    Cao, G.; Lin, M.

    2016-12-01

    Flow in shale spanning over many scales, makes the majority of conventional treatment methods disabled. For effectively simulating, a coupled model of pore-scale and continuum-scale was proposed in this paper. Based on the SEM image, we decompose organic-rich-shale into two subdomains: kerogen and inorganic matrix. In kerogen, the nanoscale pore-network is the main storage space and migration pathway so that the molecular phenomena (slip and diffusive transport) is significant. Whereas, inorganic matrix, with relatively large pores and micro fractures, the flow is approximate to Darcy. We use pore-scale network models (PNM) to represent kerogen and continuum-scale models (FVM or FEM) to represent matrix. Finite element mortars are employed to couple pore- and continuum-scale models by enforcing continuity of pressures and fluxes at shared boundary interfaces. In our method, the process in the coupled model is described by pressure square equation, and uses Dirichlet boundary conditions. We discuss several problems: the optimal element number of mortar faces, two categories boundary faces of pore network, the difference between 2D and 3D models, and the difference between continuum models FVM and FEM in mortars. We conclude that: (1) too coarse mesh in mortars will decrease the accuracy, while too fine mesh will lead to an ill-condition even singular system, the optimal element number is depended on boundary pores and nodes number. (2) pore network models are adjacent to two different mortar faces (PNM to PNM, PNM to continuum model), incidental repeated mortar nodes must be deleted. (3) 3D models can be replaced by 2D models under certain condition. (4) FVM is more convenient than FEM, for its simplicity in assigning interface nodes pressure and calculating interface fluxes. This work is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB10020302), the 973 Program (2014CB239004), the Key Instrument Developing Project of the CAS (ZDYZ2012-1-08-02), the National Natural Science Foundation of China (41574129).

  4. Fundamentals of continuum mechanics – classical approaches and new trends

    NASA Astrophysics Data System (ADS)

    Altenbach, H.

    2018-04-01

    Continuum mechanics is a branch of mechanics that deals with the analysis of the mechanical behavior of materials modeled as a continuous manifold. Continuum mechanics models begin mostly by introducing of three-dimensional Euclidean space. The points within this region are defined as material points with prescribed properties. Each material point is characterized by a position vector which is continuous in time. Thus, the body changes in a way which is realistic, globally invertible at all times and orientation-preserving, so that the body cannot intersect itself and as transformations which produce mirror reflections are not possible in nature. For the mathematical formulation of the model it is also assumed to be twice continuously differentiable, so that differential equations describing the motion may be formulated. Finally, the kinematical relations, the balance equations, the constitutive and evolution equations and the boundary and/or initial conditions should be defined. If the physical fields are non-smooth jump conditions must be taken into account. The basic equations of continuum mechanics are presented following a short introduction. Additionally, some examples of solid deformable continua will be discussed within the presentation. Finally, advanced models of continuum mechanics will be introduced. The paper is dedicated to Alexander Manzhirov’s 60th birthday.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leitherer, Claus; Lee, Janice C.; Hernandez, Svea

    We report on the detection of Lyman continuum radiation in two nearby starburst galaxies. Tol 0440-381, Tol 1247-232, and Mrk 54 were observed with the Cosmic Origins Spectrograph on board the Hubble Space Telescope . The three galaxies have radial velocities of ∼13,000 km s{sup −1}, permitting a ∼35 Å window on the restframe Lyman continuum shortward of the Milky Way Lyman edge at 912 Å. The chosen instrument configuration using the G140L grating covers the spectral range from 912 to 2000 Å. We developed a dedicated background subtraction method to account for the temporal and spatial background variations ofmore » the detector, which is crucial at the low flux levels around 912 Å. This modified pipeline allowed us to significantly improve the statistical and systematic detector noise and will be made available to the community. We detect Lyman continuum in all three galaxies. However, we conservatively interpret the emission in Tol 0440-381 as an upper limit due to possible contamination by geocoronal Lyman series lines. We determined the current star formation properties from the far-ultraviolet continuum and spectral lines and used synthesis models to predict the Lyman continuum radiation emitted by the current population of hot stars. We discuss various model uncertainties such as, among others, atmospheres and evolution models. Lyman continuum escape fractions were derived from a comparison between the observed and predicted Lyman continuum fluxes. Tol 1247-232, Mrk 54, and Tol 0440-381 have absolute escape fractions of (4.5 ± 1.2)%, (2.5 ± 0.72)%, and <(7.1 ± 1.1)%, respectively.« less

  6. Airborne spectrophotometry of SN 1987A from 1.7 to 12.6 microns - Time history of the dust continuum and line emission

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Rank, David M.; Bregman, Jesse D.; Witteborn, Fred C.; Tielens, A. G. G. M.; Cohen, Martin; Pinto, Philip A.; Axelrod, Timothy S.

    1993-01-01

    Spectrophotometric observations of SN 1987A from the Kuiper Airborne Observatory are presented for five epochs at 60, 260, 415, 615, and 775 days after the explosion. The low-resolution (lambda/Delta lambda = 50-100) spectra of SN 1987A are combined with data from other wavelengths to model the continuum, subtract the continuum from the spectra to determine line strengths and reveal molecular bands, separate the atomic continuum radiation from the dust continuum, and derive constraints on the grain temperatures and optical depths. A scenario for the evolution of SN 1987A and that of the ejecta from which it arises is obtained on the basis of the analysis of the continuum emission.

  7. The Multiple Continuum Components in the White-Light Flare of 16 January 2009 on the dM4.5e Star YZ CMi

    NASA Astrophysics Data System (ADS)

    Kowalski, A. F.; Hawley, S. L.; Holtzman, J. A.; Wisniewski, J. P.; Hilton, E. J.

    2012-03-01

    The white light during M dwarf flares has long been known to exhibit the broadband shape of a T≈10 000 K blackbody, and the white light in solar-flares is thought to arise primarily from hydrogen recombination. Yet, a current lack of broad-wavelength coverage solar flare spectra in the optical/near-UV region prohibits a direct comparison of the continuum properties to determine if they are indeed so different. New spectroscopic observations of a secondary flare during the decay of a megaflare on the dM4.5e star YZ CMi have revealed multiple components in the white-light continuum of stellar flares, including both a blackbody-like spectrum and a hydrogen-recombination spectrum. One of the most surprising findings is that these two components are anti-correlated in their temporal evolution. We combine initial phenomenological modeling of the continuum components with spectra from radiative hydrodynamic models to show that continuum veiling causes the measured anti-correlation. This modeling allows us to use the components' inferred properties to predict how a similar spatially resolved, multiple-component, white-light continuum might appear using analogies to several solar-flare phenomena. We also compare the properties of the optical stellar flare white light to Ellerman bombs on the Sun.

  8. Bottom-up modeling of damage in heterogeneous quasi-brittle solids

    NASA Astrophysics Data System (ADS)

    Rinaldi, Antonio

    2013-03-01

    The theoretical modeling of multisite cracking in quasi-brittle materials is a complex damage problem, hard to model with traditional methods of fracture mechanics due to its multiscale nature and to strain localization induced by microcracks interaction. Macroscale "effective" elastic models can be conveniently applied if a suitable Helmholtz free energy function is identified for a given material scenario. Del Piero and Truskinovsky (Continuum Mech Thermodyn 21:141-171, 2009), among other authors, investigated macroscale continuum solutions capable of matching—in a top-down view—the phenomenology of the damage process for quasi-brittle materials regardless of the microstructure. On the contrary, this paper features a physically based solution method that starts from the direct consideration of the microscale properties and, in a bottom-up view, recovers a continuum elastic description. This procedure is illustrated for a simple one-dimensional problem of this type, a bar modeled stretched by an axial displacement, where the bar is modeled as a 2D random lattice of decohesive spring elements of finite strength. The (microscale) data from simulations are used to identify the "exact" (macro-) damage parameter and to build up the (macro-) Helmholtz function for the equivalent elastic model, bridging the macroscale approach by Del Piero and Truskinovsky. The elastic approach, coupled with microstructural knowledge, becomes a more powerful tool to reproduce a broad class of macroscopic material responses by changing the convexity-concavity of the Helmholtz energy. The analysis points out that mean-field statistics are appropriate prior to damage localization but max-field statistics are better suited in the softening regime up to failure, where microstrain fluctuation needs to be incorporated in the continuum model. This observation is of consequence to revise mean-field damage models from literature and to calibrate Nth gradient continuum models.

  9. Families with burn injury: application in the clinically relevant continuum model.

    PubMed

    Lehna, Carlee

    2011-06-01

    This article incorporates the findings from a predominantly qualitative, mixed-method study examining sibling survivors' experiences of a major childhood burn injury into the clinically relevant continuum model as a means of promoting culturally competent and family-centered care. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Evolution of plastic anisotropy for high-strain-rate computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, S.K.; Maudlin, P.J.

    1994-12-01

    A model for anisotropic material strength, and for changes in the anisotropy due to plastic strain, is described. This model has been developed for use in high-rate, explicit, Lagrangian multidimensional continuum-mechanics codes. The model handles anisotropies in single-phase materials, in particular the anisotropies due to crystallographic texture--preferred orientations of the single-crystal grains. Textural anisotropies, and the changes in these anisotropies, depend overwhelmingly no the crystal structure of the material and on the deformation history. The changes, particularly for a complex deformations, are not amenable to simple analytical forms. To handle this problem, the material model described here includes a texturemore » code, or micromechanical calculation, coupled to a continuum code. The texture code updates grain orientations as a function of tensor plastic strain, and calculates the yield strength in different directions. A yield function is fitted to these yield points. For each computational cell in the continuum simulation, the texture code tracks a particular set of grain orientations. The orientations will change due to the tensor strain history, and the yield function will change accordingly. Hence, the continuum code supplies a tensor strain to the texture code, and the texture code supplies an updated yield function to the continuum code. Since significant texture changes require relatively large strains--typically, a few percent or more--the texture code is not called very often, and the increase in computer time is not excessive. The model was implemented, using a finite-element continuum code and a texture code specialized for hexagonal-close-packed crystal structures. The results for several uniaxial stress problems and an explosive-forming problem are shown.« less

  11. Methylene blue binding to DNA with alternating AT base sequence: minor groove binding is favored over intercalation.

    PubMed

    Rohs, Remo; Sklenar, Heinz

    2004-04-01

    The results presented in this paper on methylene blue (MB) binding to DNA with AT alternating base sequence complement the data obtained in two former modeling studies of MB binding to GC alternating DNA. In the light of the large amount of experimental data for both systems, this theoretical study is focused on a detailed energetic analysis and comparison in order to understand their different behavior. Since experimental high-resolution structures of the complexes are not available, the analysis is based on energy minimized structural models of the complexes in different binding modes. For both sequences, four different intercalation structures and two models for MB binding in the minor and major groove have been proposed. Solvent electrostatic effects were included in the energetic analysis by using electrostatic continuum theory, and the dependence of MB binding on salt concentration was investigated by solving the non-linear Poisson-Boltzmann equation. We find that the relative stability of the different complexes is similar for the two sequences, in agreement with the interpretation of spectroscopic data. Subtle differences, however, are seen in energy decompositions and can be attributed to the change from symmetric 5'-YpR-3' intercalation to minor groove binding with increasing salt concentration, which is experimentally observed for the AT sequence at lower salt concentration than for the GC sequence. According to our results, this difference is due to the significantly lower non-electrostatic energy for the minor groove complex with AT alternating DNA, whereas the slightly lower binding energy to this sequence is caused by a higher deformation energy of DNA. The energetic data are in agreement with the conclusions derived from different spectroscopic studies and can also be structurally interpreted on the basis of the modeled complexes. The simple static modeling technique and the neglect of entropy terms and of non-electrostatic solute-solvent interactions, which are assumed to be nearly constant for the compared complexes of MB with DNA, seem to be justified by the results.

  12. Continuum and three-nucleon force effects on Be 9 energy levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langhammer, Joachim; Navrátil, Petr; Quaglioni, Sofia

    2015-02-05

    In this paper, we extend the recently proposed ab initio no-core shell model with continuum to include three-nucleon (3N) interactions beyond the few-body domain. The extended approach allows for the assessment of effects of continuum degrees of freedom as well as of the 3N force in ab initio calculations of structure and reaction observables of p- and lower-sd-shell nuclei. As a first application we concentrate on energy levels of the 9Be system for which all excited states lie above the n- 8Be threshold. For all energy levels, the inclusion of the continuum significantly improves the agreement with experiment, which wasmore » an issue in standard no-core shell model calculations. Furthermore, we find the proper treatment of the continuum indispensable for reliable statements about the quality of the adopted 3N interaction from chiral effective field theory. Finally, in particular, we find the 1/2 + resonance energy, which is of astrophysical interest, in good agreement with experiment.« less

  13. Electrostatic and induction effects in the solubility of water in alkanes

    NASA Astrophysics Data System (ADS)

    Asthagiri, D.; Valiya Parambathu, Arjun; Ballal, Deepti; Chapman, Walter G.

    2017-08-01

    Experiments show that at 298 K and 1 atm pressure, the transfer free energy, μex, of water from its vapor to liquid normal alkanes CnH2n+2 (n =5 …12 ) is negative. Earlier it was found that with the united-atom TraPPE model for alkanes and the SPC/E model for water, one had to artificially enhance the attractive alkane-water cross interaction to capture this behavior. Here we revisit the calculation of μex using the polarizable AMOEBA and the non-polarizable Charmm General (CGenFF) forcefields. We test both the AMOEBA03 and AMOEBA14 water models; the former has been validated with the AMOEBA alkane model while the latter is a revision of AMOEBA03 to better describe liquid water. We calculate μex using the test particle method. With CGenFF, μex is positive and the error relative to experiments is about 1.5 kBT. With AMOEBA, μex is negative and deviations relative to experiments are between 0.25 kBT (AMOEBA14) and 0.5 kBT (AMOEBA03). Quantum chemical calculations in a continuum solvent suggest that zero point effects may account for some of the deviation. Forcefield limitations notwithstanding, electrostatic and induction effects, commonly ignored in consideration of water-alkane interactions, appear to be decisive in the solubility of water in alkanes.

  14. Comparing Multidimensional and Continuum Models of Vocabulary Acquisition: An Empirical Examination of the Vocabulary Knowledge Scale

    ERIC Educational Resources Information Center

    Stewart, Jeffrey; Batty, Aaron Olaf; Bovee, Nicholas

    2012-01-01

    Second language vocabulary acquisition has been modeled both as multidimensional in nature and as a continuum wherein the learner's knowledge of a word develops along a cline from recognition through production. In order to empirically examine and compare these models, the authors assess the degree to which the Vocabulary Knowledge Scale (VKS;…

  15. The 'Baldwin Effect' in Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Morris, Patrick; Conti, Peter S.; Lamers, Henny J. G. L. M.; Koenigsberger, Gloria

    1993-01-01

    The equivalent widths of a number of emission lines in the spectra of WN-type Wolf-Rayet stars are found to inversely correlate with the luminosity of the underlying continuum. This is the well-known Baldwin Effect that has previously been observed in quasars and some Seyfert I galaxies. The Effect can be inferred from line and continuum predictions in published non-LTE model helium atmospheres and is explainable in terms of differences in wind density among WN stars. Using a simple wind model, we show that the Effect arises from the fact that both the effective radius for the local continuum and the emission measure of the layers above the continuum-forming region depend on the density in the wind. The Effect provides a new method for distance determinations of W-R stars.

  16. Continuum simulation of the discharge of the granular silo: a validation test for the μ(I) visco-plastic flow law.

    PubMed

    Staron, L; Lagrée, P-Y; Popinet, S

    2014-01-01

    Using a continuum Navier-Stokes solver with the μ(I) flow law implemented to model the viscous behavior, and the discrete Contact Dynamics algorithm, the discharge of granular silos is simulated in two dimensions from the early stages of the discharge until complete release of the material. In both cases, the Beverloo scaling is recovered. We first do not attempt a quantitative comparison, but focus on the qualitative behavior of velocity and pressure at different locations in the flow. A good agreement for the velocity is obtained in the regions of rapid flows, while areas of slow creep are not entirely captured by the continuum model. The pressure field shows a general good agreement, while bulk deformations are found to be similar in both approaches. The influence of the parameters of the μ(I) flow law is systematically investigated, showing the importance of the dependence on the inertial number I to achieve quantitative agreement between continuum and discrete discharge. However, potential problems involving the systems size, the configuration and "non-local" effects, are suggested. Yet the general ability of the continuum model to reproduce qualitatively the granular behavior is found to be very encouraging.

  17. High throughput research and evaporation rate modeling for solvent screening for ethylcellulose barrier membranes in pharmaceutical applications.

    PubMed

    Schoener, Cody A; Curtis-Fisk, Jaime L; Rogers, True L; Tate, Michael P

    2016-10-01

    Ethylcellulose is commonly dissolved in a solvent or formed into an aqueous dispersion and sprayed onto various dosage forms to form a barrier membrane to provide controlled release in pharmaceutical formulations. Due to the variety of solvents utilized in the pharmaceutical industry and the importance solvent can play on film formation and film strength it is critical to understand how solvent can influence these parameters. To systematically study a variety of solvent blends and how these solvent blends influence ethylcellulose film formation, physical and mechanical film properties and solution properties such as clarity and viscosity. Using high throughput capabilities and evaporation rate modeling, thirty-one different solvent blends composed of ethanol, isopropanol, acetone, methanol, and/or water were formulated, analyzed for viscosity and clarity, and narrowed down to four solvent blends. Brookfield viscosity, film casting, mechanical film testing and water permeation were also completed. High throughput analysis identified isopropanol/water, ethanol, ethanol/water and methanol/acetone/water as solvent blends with unique clarity and viscosity values. Evaporation rate modeling further rank ordered these candidates from excellent to poor interaction with ethylcellulose. Isopropanol/water was identified as the most suitable solvent blend for ethylcellulose due to azeotrope formation during evaporation, which resulted in a solvent-rich phase allowing the ethylcellulose polymer chains to remain maximally extended during film formation. Consequently, the highest clarity and most ductile films were formed. Employing high throughput capabilities paired with evaporation rate modeling allowed strong predictions between solvent interaction with ethylcellulose and mechanical film properties.

  18. Connecting Free Energy Surfaces in Implicit and Explicit Solvent: an Efficient Method to Compute Conformational and Solvation Free Energies

    PubMed Central

    Deng, Nanjie; Zhang, Bin W.; Levy, Ronald M.

    2015-01-01

    The ability to accurately model solvent effects on free energy surfaces is important for understanding many biophysical processes including protein folding and misfolding, allosteric transitions and protein-ligand binding. Although all-atom simulations in explicit solvent can provide an accurate model for biomolecules in solution, explicit solvent simulations are hampered by the slow equilibration on rugged landscapes containing multiple basins separated by barriers. In many cases, implicit solvent models can be used to significantly speed up the conformational sampling; however, implicit solvent simulations do not fully capture the effects of a molecular solvent, and this can lead to loss of accuracy in the estimated free energies. Here we introduce a new approach to compute free energy changes in which the molecular details of explicit solvent simulations are retained while also taking advantage of the speed of the implicit solvent simulations. In this approach, the slow equilibration in explicit solvent, due to the long waiting times before barrier crossing, is avoided by using a thermodynamic cycle which connects the free energy basins in implicit solvent and explicit solvent using a localized decoupling scheme. We test this method by computing conformational free energy differences and solvation free energies of the model system alanine dipeptide in water. The free energy changes between basins in explicit solvent calculated using fully explicit solvent paths agree with the corresponding free energy differences obtained using the implicit/explicit thermodynamic cycle to within 0.3 kcal/mol out of ~3 kcal/mol at only ~8 % of the computational cost. We note that WHAM methods can be used to further improve the efficiency and accuracy of the explicit/implicit thermodynamic cycle. PMID:26236174

  19. Connecting free energy surfaces in implicit and explicit solvent: an efficient method to compute conformational and solvation free energies.

    PubMed

    Deng, Nanjie; Zhang, Bin W; Levy, Ronald M

    2015-06-09

    The ability to accurately model solvent effects on free energy surfaces is important for understanding many biophysical processes including protein folding and misfolding, allosteric transitions, and protein–ligand binding. Although all-atom simulations in explicit solvent can provide an accurate model for biomolecules in solution, explicit solvent simulations are hampered by the slow equilibration on rugged landscapes containing multiple basins separated by barriers. In many cases, implicit solvent models can be used to significantly speed up the conformational sampling; however, implicit solvent simulations do not fully capture the effects of a molecular solvent, and this can lead to loss of accuracy in the estimated free energies. Here we introduce a new approach to compute free energy changes in which the molecular details of explicit solvent simulations are retained while also taking advantage of the speed of the implicit solvent simulations. In this approach, the slow equilibration in explicit solvent, due to the long waiting times before barrier crossing, is avoided by using a thermodynamic cycle which connects the free energy basins in implicit solvent and explicit solvent using a localized decoupling scheme. We test this method by computing conformational free energy differences and solvation free energies of the model system alanine dipeptide in water. The free energy changes between basins in explicit solvent calculated using fully explicit solvent paths agree with the corresponding free energy differences obtained using the implicit/explicit thermodynamic cycle to within 0.3 kcal/mol out of ∼3 kcal/mol at only ∼8% of the computational cost. We note that WHAM methods can be used to further improve the efficiency and accuracy of the implicit/explicit thermodynamic cycle.

  20. Assessment of current state of the art in modeling techniques and analysis methods for large space structures

    NASA Technical Reports Server (NTRS)

    Noor, A. K.

    1983-01-01

    Advances in continuum modeling, progress in reduction methods, and analysis and modeling needs for large space structures are covered with specific attention given to repetitive lattice trusses. As far as continuum modeling is concerned, an effective and verified analysis capability exists for linear thermoelastic stress, birfurcation buckling, and free vibration problems of repetitive lattices. However, application of continuum modeling to nonlinear analysis needs more development. Reduction methods are very effective for bifurcation buckling and static (steady-state) nonlinear analysis. However, more work is needed to realize their full potential for nonlinear dynamic and time-dependent problems. As far as analysis and modeling needs are concerned, three areas are identified: loads determination, modeling and nonclassical behavior characteristics, and computational algorithms. The impact of new advances in computer hardware, software, integrated analysis, CAD/CAM stems, and materials technology is also discussed.

  1. Polymers at interfaces and in colloidal dispersions.

    PubMed

    Fleer, Gerard J

    2010-09-15

    This review is an extended version of the Overbeek lecture 2009, given at the occasion of the 23rd Conference of ECIS (European Colloid and Interface Society) in Antalya, where I received the fifth Overbeek Gold Medal awarded by ECIS. I first summarize the basics of numerical SF-SCF: the Scheutjens-Fleer version of Self-Consistent-Field theory for inhomogeneous systems, including polymer adsorption and depletion. The conformational statistics are taken from the (non-SCF) DiMarzio-Rubin lattice model for homopolymer adsorption, which enumerates the conformational details exactly by a discrete propagator for the endpoint distribution but does not account for polymer-solvent interaction and for the volume-filling constraint. SF-SCF corrects for this by adjusting the field such that it becomes self-consistent. The model can be generalized to more complex systems: polydispersity, brushes, random and block copolymers, polyelectrolytes, branching, surfactants, micelles, membranes, vesicles, wetting, etc. On a mean-field level the results are exact; the disadvantage is that only numerical data are obtained. Extensions to excluded-volume polymers are in progress. Analytical approximations for simple systems are based upon solving the Edwards diffusion equation. This equation is the continuum variant of the lattice propagator, but ignores the finite segment size (analogous to the Poisson-Boltzmann equation without a Stern layer). By using the discrete propagator for segments next to the surface as the boundary condition in the continuum model, the finite segment size can be introduced into the continuum description, like the ion size in the Stern-Poisson-Boltzmann model. In most cases a ground-state approximation is needed to find analytical solutions. In this way realistic analytical approximations for simple cases can be found, including depletion effects that occur in mixtures of colloids plus non-adsorbing polymers. In the final part of this review I discuss a generalization of the free-volume theory (FVT) for the phase behavior of colloids and non-adsorbing polymer. In FVT the polymer is considered to be ideal: the osmotic pressure Pi follows the Van 't Hoff law, the depletion thickness delta equals the radius of gyration. This restricts the validity of FVT to the so-called colloid limit (polymer much smaller than the colloids). We have been able to find simple analytical approximations for Pi and delta which account for non-ideality and include established results for the semidilute limit. So we could generalize FVT to GFVT, and can now also describe the so-called protein limit (polymer larger than the 'protein-like' colloids), where the binodal polymer concentrations scale in a simple way with the polymer/colloid size ratio. For an intermediate case (polymer size approximately colloid size) we could give a quantitative description of careful experimental data. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Factors governing the substitution of La3+ for Ca2+ and Mg2+ in metalloproteins: a DFT/CDM study.

    PubMed

    Dudev, Todor; Chang, Li-Ying; Lim, Carmay

    2005-03-23

    Trivalent lanthanide cations are extensively being used in biochemical experiments to probe various dication-binding sites in proteins; however, the factors governing the binding specificity of lanthanide cations for these binding sites remain unclear. Hence, we have performed systematic studies to evaluate the interactions between La3+ and model Ca2+ - and Mg2+ -binding sites using density functional theory combined with continuum dielectric methods. The calculations reveal the key factors and corresponding physical bases favoring the substitution of trivalent lanthanides for divalent Ca2+ and Mg2+ in holoproteins. Replacing Ca2+ or Mg2+ with La3+ is facilitated by (1) minimizing the solvent exposure and the flexibility of the metal-binding cavity, (2) freeing both carboxylate oxygen atoms of Asp/Glu side chains in the metal-binding site so that they could bind bidentately to La3+, (3) maximizing the number of metal-bound carboxylate groups in buried sites, but minimizing the number of metal-bound carboxylate groups in solvent-exposed sites, and (4) including an Asn/Gln side chain for sites lined with four Asp/Glu side chains. In proteins bound to both Mg2+ and Ca2+, La3+ would prefer to replace Ca2+, as compared to Mg2+. A second Mg2+-binding site with a net positive charge would hamper the Mg2+ --> La3+ exchange, as compared to the respective mononuclear site, although the La3+ substitution of the first native metal is more favorable than the second one. The findings of this work are in accord with available experimental data.

  3. Time dependent reliability model incorporating continuum damage mechanics for high-temperature ceramics

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Gyekenyesi, John P.

    1989-01-01

    Presently there are many opportunities for the application of ceramic materials at elevated temperatures. In the near future ceramic materials are expected to supplant high temperature metal alloys in a number of applications. It thus becomes essential to develop a capability to predict the time-dependent response of these materials. The creep rupture phenomenon is discussed, and a time-dependent reliability model is outlined that integrates continuum damage mechanics principles and Weibull analysis. Several features of the model are presented in a qualitative fashion, including predictions of both reliability and hazard rate. In addition, a comparison of the continuum and the microstructural kinetic equations highlights a strong resemblance in the two approaches.

  4. Breakdown and Limit of Continuum Diffusion Velocity for Binary Gas Mixtures from Direct Simulation

    NASA Astrophysics Data System (ADS)

    Martin, Robert Scott; Najmabadi, Farrokh

    2011-05-01

    This work investigates the breakdown of the continuum relations for diffusion velocity in inert binary gas mixtures. Values of the relative diffusion velocities for components of a gas mixture may be calculated using of Chapman-Enskog theory and occur not only due to concentration gradients, but also pressure and temperature gradients in the flow as described by Hirschfelder. Because Chapman-Enskog theory employs a linear perturbation around equilibrium, it is expected to break down when the velocity distribution deviates significantly from equilibrium. This breakdown of the overall flow has long been an area of interest in rarefied gas dynamics. By comparing the continuum values to results from Bird's DS2V Monte Carlo code, we propose a new limit on the continuum approach specific to binary gases. To remove the confounding influence of an inconsistent molecular model, we also present the application of the variable hard sphere (VSS) model used in DS2V to the continuum diffusion velocity calculation. Fitting sample asymptotic curves to the breakdown, a limit, Vmax, that is a fraction of an analytically derived limit resulting from the kinetic temperature of the mixture is proposed. With an expected deviation of only 2% between the physical values and continuum calculations within ±Vmax/4, we suggest this as a conservative estimate on the range of applicability for the continuum theory.

  5. An ellipsoid-chain model for conjugated polymer solutions

    NASA Astrophysics Data System (ADS)

    Lee, Cheng K.; Hua, Chi C.; Chen, Show A.

    2012-02-01

    We propose an ellipsoid-chain model which may be routinely parameterized to capture large-scale properties of semiflexible, amphiphilic conjugated polymers in various solvent media. The model naturally utilizes the defect locations as pivotal centers connecting adjacent ellipsoids (each currently representing ten monomer units), and a variant umbrella-sampling scheme is employed to construct the potentials of mean force (PMF) for specific solvent media using atomistic dynamics data and simplex optimization. The performances, both efficacy and efficiency, of the model are thoroughly evaluated by comparing the simulation results on long, single-chain (i.e., 300-mer) structures with those from two existing, finer-grained models for a standard conjugated polymer (i.e., poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) or MEH-PPV) in two distinct solvents (i.e., chloroform or toluene) as well as a hybrid, binary-solvent medium (i.e., chloroform/toluene = 1:1 in number density). The coarse-grained Monte Carlo (CGMC) simulation of the ellipsoid-chain model is shown to be the most efficient—about 300 times faster than the coarse-grained molecular dynamics (CGMD) simulation of the finest CG model that employs explicit solvents—in capturing elementary single-chain structures for both single-solvent media, and is a few times faster than the coarse-grained Langevin dynamics (CGLD) simulation of another implicit-solvent polymer model with a slightly greater coarse-graining level than in the CGMD simulation. For the binary-solvent system considered, however, both of the two implicit-solvent schemes (i.e., CGMC and CGLD) fail to capture the effects of conspicuous concentration fluctuations near the polymer-solvent interface, arising from a pronounced coupling between the solvent molecules and different parts of the polymer. Essential physical implications are elaborated on the success as well as the failure of the two implicit-solvent CG schemes under varying solvent conditions. Within the ellipsoid-chain model, the impact of synthesized defects on local segmental ordering as well as bulk chain conformation is also scrutinized, and essential consequences in practical applications discussed. In future perspectives, we remark on strategy that takes advantage of the coordination among various CG models and simulation schemes to warrant computational efficiency and accuracy, with the anticipated capability of simulating larger-scale, many-chain aggregate systems.

  6. An Optimization-based Atomistic-to-Continuum Coupling Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Derek; Bochev, Pavel B.; Luskin, Mitchell

    2014-08-21

    In this paper, we present a new optimization-based method for atomistic-to-continuum (AtC) coupling. The main idea is to cast the latter as a constrained optimization problem with virtual Dirichlet controls on the interfaces between the atomistic and continuum subdomains. The optimization objective is to minimize the error between the atomistic and continuum solutions on the overlap between the two subdomains, while the atomistic and continuum force balance equations provide the constraints. Separation, rather then blending of the atomistic and continuum problems, and their subsequent use as constraints in the optimization problem distinguishes our approach from the existing AtC formulations. Finally,more » we present and analyze the method in the context of a one-dimensional chain of atoms modeled using a linearized two-body potential with next-nearest neighbor interactions.« less

  7. The Effect of the π-Electron Delocalization Curvature on the Two-Photon Circular Dichroism of Molecules with Axial Chirality.

    PubMed

    Diaz, Carlos; Lin, Na; Toro, Carlos; Passier, Remy; Rizzo, Antonio; Hernández, Florencio E

    2012-07-05

    Herein we report on the theoretical-experimental study of the effect of curvature of the π-electron delocalization on the two-photon circular dichroism (TPCD) of a family of optically active biaryl derivatives (S-BINOL, S-VANOL, and S-VAPOL). The comparative analysis of the influence of the different transition moments to their corresponding TPCD rotatory strength reveals an enhanced contribution of the magnetic transition dipole moment on VAPOL. This effect is hereby attributed to the additional twist in the π-electron delocalization on this compound. TPCD measurements were done using the double L-scan technique in the picosecond regime. Theoretical calculations were completed using modern analytical response theory, within a time-dependent density functional theory (TD-DFT) approach, at both, B3LYP and CAM-B3LYP levels, with the aug-cc-pVDZ basis set for S-BINOL and S-VANOL, and 6-31G* for S-VAPOL. Solvent effects were included by means of the polarizable continuum model (PCM) in CH2Cl2.

  8. Computer-assisted design and synthesis of molecularly imprinted polymers for selective extraction of acetazolamide from human plasma prior to its voltammetric determination.

    PubMed

    Khodadadian, Mehdi; Ahmadi, Farhad

    2010-06-15

    Molecularly imprinted polymers (MIPs) were computationally designed and synthesized for the selective extraction of a carbonic anhydrase inhibitor, i.e. acetazolamide (ACZ), from human plasma. Density functional theory (DFT) calculations were performed to study the intermolecular interactions in the pre-polymerization mixture and to find a suitable functional monomer in MIP preparation. The interaction energies were corrected for the basis set superposition error (BSSE) using the counterpoise (CP) correction. The polymerization solvent was simulated by means of polarizable continuum model (PCM). It was found that acrylamide (AAM) is the best candidate to prepare MIPs. To confirm the results of theoretical calculations, three MIPs were synthesized with different functional monomers and evaluated using Langmuir-Freundlich (LF) isotherm. The results indicated that the most homogeneous MIP with the highest number of binding sites is the MIP prepared by AAM. This polymer was then used as a selective adsorbent to develop a molecularly imprinted solid-phase extraction procedure followed by differential pulse voltammetry (MISPE-DPV) for clean-up and determination of ACZ in human plasma.

  9. Quantum-chemical, NMR and X-ray diffraction studies on (+/-)-1-[3,4-(methylenedioxy)phenyl]-2-methylaminopropane.

    PubMed

    Zapata-Torres, Gerald; Cassels, Bruce K; Parra-Mouchet, Julia; Mascarenhas, Yvonne P; Ellena, Javier; De Araujo, A S

    2008-06-01

    Time-averaged conformations of (+/-)-1-[3,4-(methylenedioxy)phenyl]-2-methylaminopropane hydrochloride (MDMA, "ecstasy") in D(2)O, and of its free base and trifluoroacetate in CDCl(3), were deduced from their (1)H NMR spectra and used to calculate their conformer distribution. Their rotational potential energy surface (PES) was calculated at the RHF/6-31G(d,p), B3LYP/6-31G(d,p), B3LYP/cc-pVDZ and AM1 levels. Solvent effects were evaluated using the polarizable continuum model. The NMR and theoretical studies showed that, in the free base, the N-methyl group and the ring are preferentially trans. This preference is stronger in the salts and corresponds to the X-ray structure of the hydrochloride. However, the energy barriers separating these forms are very low. The X-ray diffraction crystal structures of the anhydrous salt and its monohydrate differed mainly in the trans or cis relationship of the N-methyl group to the alpha-methyl, although these two forms interconvert freely in solution.

  10. Substituent effects on photosensitized splitting of thymine cyclobutane dimer by an attached indole.

    PubMed

    Tang, Wenjian; Zhou, Hongmei; Wang, Jing; Pan, Chunxiao; Shi, Jingbo; Song, Qinhua

    2012-12-21

    In chromophore-containing cyclobutane pyrimidine dimer (CPD) model systems, solvent effects on the splitting efficiency may depend on the length of the linker, the molecular conformation, and the oxidation potential of the donor. To further explore the relationship between chromophore structure and splitting efficiency, we prepared a series of substituted indole-T< >T model compounds 2 a-2 g and measured their splitting quantum yields in various solvents. Two reverse solvent effects were observed: an increase in splitting efficiency in solvents of lower polarity for models 2 a-2 d with an electron-donating group (EDG), and vice versa for models 2 e-2 g with an electron-withdrawing group (EWG). According to the Hammett equation, the negative value of the slope of the Hammett plot indicates that the indole moiety during the T< >T-splitting reaction loses negative charge, and the larger negative value implies that the repair reaction is more sensitive to substituent effects in low-polarity solvents. The EDGs of the models 2 a-2 d can delocalize the charge-separated state, and low-polarity solvents make it more stable, which leads to higher splitting efficiency in low-polarity solvents. Conversely, the EWGs of models 2 e-2 g favor destabilization of the charge-separated state, and high-polarity solvents decrease the destabilization and hence lead to more efficient splitting in high-polarity solvents. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Collocational Processing in Light of the Phraseological Continuum Model: Does Semantic Transparency Matter?

    ERIC Educational Resources Information Center

    Gyllstad, Henrik; Wolter, Brent

    2016-01-01

    The present study investigates whether two types of word combinations (free combinations and collocations) differ in terms of processing by testing Howarth's Continuum Model based on word combination typologies from a phraseological tradition. A visual semantic judgment task was administered to advanced Swedish learners of English (n = 27) and…

  12. Comparing and Contrasting American and Japanese Cultural Values Using a Negotiation Continuum Model.

    ERIC Educational Resources Information Center

    Garrison, Jean A.

    A negotiation continuum model can be used to compare and contrast American and Japanese cultural values. Although two basic styles of negotiating--competitive and cooperative--can be identified, there are a number of general principles that govern all negotiations. These include planning and preparing strategies in advance and practicing nonverbal…

  13. A Continuum Model of Social/Sexual Curriculum and Programming Services.

    ERIC Educational Resources Information Center

    Heler, Ann, Ed.

    This packet of materials from the Wayne County (Michigan) Intermediate School District offers a continuum model of social/sexual curriculum and programming services. Materials include: (1) a copy of a district school board policy giving school districts permission to pursue these curriculum areas; (2) staff guidelines for dealing with students…

  14. The May Center for Early Childhood Education: Description of a Continuum of Services Model for Children with Autism.

    ERIC Educational Resources Information Center

    Campbell, Susan; Cannon, Barbara; Ellis, James T.; Lifter, Karen; Luiselli, James K.; Navalta, Carryl P.; Taras, Marie

    1998-01-01

    Describes a comprehensive continuum of services model for children with autism developed by a human services agency in Massachusetts, which incorporates these and additional empirically based approaches. Service components, methodologies, and program objectives are described, including representative summary data. Best practice approaches toward…

  15. An experimental comparison between the continuum and single jump descriptions of nonactin-mediated potassium transport through black lipid membranes.

    PubMed Central

    van Dijk, C; de Levie, R

    1985-01-01

    The continuum and single jump treatments of ion transport through black lipid membranes predict experimentally distinguishable results, even when the same mechanistic assumptions are made and the same potential-distance profile is used. On the basis of steady-state current-voltage curves for nonactin-mediated transport of potassium ions, we find that the continuum model describes the data accurately, whereas the single jump model fails to do so, for all cases investigated in which capacitance measurements indicate that the membrane thickness varies little with applied potential. PMID:3839420

  16. Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar-Fiber-Reinforced Polymer-Matrix Composites

    DTIC Science & Technology

    2012-08-03

    is unlimited. Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar ®-Fiber-Reinforced Polymer-Matrix Composites The views, opinions...12211 Research Triangle Park, NC 27709-2211 ballistics, composites, Kevlar , material models, microstructural defects REPORT DOCUMENTATION PAGE 11... Kevlar ®-Fiber-Reinforced Polymer-Matrix Composites Report Title Fiber-reinforced polymer matrix composite materials display quite complex deformation

  17. Filters for Improvement of Multiscale Data from Atomistic Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, David J.; Reynolds, Daniel R.

    Multiscale computational models strive to produce accurate and efficient numerical simulations of systems involving interactions across multiple spatial and temporal scales that typically differ by several orders of magnitude. Some such models utilize a hybrid continuum-atomistic approach combining continuum approximations with first-principles-based atomistic models to capture multiscale behavior. By following the heterogeneous multiscale method framework for developing multiscale computational models, unknown continuum scale data can be computed from an atomistic model. Concurrently coupling the two models requires performing numerous atomistic simulations which can dominate the computational cost of the method. Furthermore, when the resulting continuum data is noisy due tomore » sampling error, stochasticity in the model, or randomness in the initial conditions, filtering can result in significant accuracy gains in the computed multiscale data without increasing the size or duration of the atomistic simulations. In this work, we demonstrate the effectiveness of spectral filtering for increasing the accuracy of noisy multiscale data obtained from atomistic simulations. Moreover, we present a robust and automatic method for closely approximating the optimum level of filtering in the case of additive white noise. By improving the accuracy of this filtered simulation data, it leads to a dramatic computational savings by allowing for shorter and smaller atomistic simulations to achieve the same desired multiscale simulation precision.« less

  18. Filters for Improvement of Multiscale Data from Atomistic Simulations

    DOE PAGES

    Gardner, David J.; Reynolds, Daniel R.

    2017-01-05

    Multiscale computational models strive to produce accurate and efficient numerical simulations of systems involving interactions across multiple spatial and temporal scales that typically differ by several orders of magnitude. Some such models utilize a hybrid continuum-atomistic approach combining continuum approximations with first-principles-based atomistic models to capture multiscale behavior. By following the heterogeneous multiscale method framework for developing multiscale computational models, unknown continuum scale data can be computed from an atomistic model. Concurrently coupling the two models requires performing numerous atomistic simulations which can dominate the computational cost of the method. Furthermore, when the resulting continuum data is noisy due tomore » sampling error, stochasticity in the model, or randomness in the initial conditions, filtering can result in significant accuracy gains in the computed multiscale data without increasing the size or duration of the atomistic simulations. In this work, we demonstrate the effectiveness of spectral filtering for increasing the accuracy of noisy multiscale data obtained from atomistic simulations. Moreover, we present a robust and automatic method for closely approximating the optimum level of filtering in the case of additive white noise. By improving the accuracy of this filtered simulation data, it leads to a dramatic computational savings by allowing for shorter and smaller atomistic simulations to achieve the same desired multiscale simulation precision.« less

  19. Multiscale Modeling of Structurally-Graded Materials Using Discrete Dislocation Plasticity Models and Continuum Crystal Plasticity Models

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.

    2012-01-01

    A multiscale modeling methodology that combines the predictive capability of discrete dislocation plasticity and the computational efficiency of continuum crystal plasticity is developed. Single crystal configurations of different grain sizes modeled with periodic boundary conditions are analyzed using discrete dislocation plasticity (DD) to obtain grain size-dependent stress-strain predictions. These relationships are mapped into crystal plasticity parameters to develop a multiscale DD/CP model for continuum level simulations. A polycrystal model of a structurally-graded microstructure is developed, analyzed and used as a benchmark for comparison between the multiscale DD/CP model and the DD predictions. The multiscale DD/CP model follows the DD predictions closely up to an initial peak stress and then follows a strain hardening path that is parallel but somewhat offset from the DD predictions. The difference is believed to be from a combination of the strain rate in the DD simulation and the inability of the DD/CP model to represent non-monotonic material response.

  20. Numerical investigation of non-perturbative kinetic effects of energetic particles on toroidicity-induced Alfvén eigenmodes in tokamaks and stellarators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slaby, Christoph; Könies, Axel; Kleiber, Ralf

    2016-09-15

    The resonant interaction of shear Alfvén waves with energetic particles is investigated numerically in tokamak and stellarator geometry using a non-perturbative MHD-kinetic hybrid approach. The focus lies on toroidicity-induced Alfvén eigenmodes (TAEs), which are most easily destabilized by a fast-particle population in fusion plasmas. While the background plasma is treated within the framework of an ideal-MHD theory, the drive of the fast particles, as well as Landau damping of the background plasma, is modelled using the drift-kinetic Vlasov equation without collisions. Building on analytical theory, a fast numerical tool, STAE-K, has been developed to solve the resulting eigenvalue problem usingmore » a Riccati shooting method. The code, which can be used for parameter scans, is applied to tokamaks and the stellarator Wendelstein 7-X. High energetic-ion pressure leads to large growth rates of the TAEs and to their conversion into kinetically modified TAEs and kinetic Alfvén waves via continuum interaction. To better understand the physics of this conversion mechanism, the connections between TAEs and the shear Alfvén wave continuum are examined. It is shown that, when energetic particles are present, the continuum deforms substantially and the TAE frequency can leave the continuum gap. The interaction of the TAE with the continuum leads to singularities in the eigenfunctions. To further advance the physical model and also to eliminate the MHD continuum together with the singularities in the eigenfunctions, a fourth-order term connected to radiative damping has been included. The radiative damping term is connected to non-ideal effects of the bulk plasma and introduces higher-order derivatives to the model. Thus, it has the potential to substantially change the nature of the solution. For the first time, the fast-particle drive, Landau damping, continuum damping, and radiative damping have been modelled together in tokamak- as well as in stellarator geometry.« less

  1. The wetland continuum: a conceptual framework for interpreting biological studies

    USGS Publications Warehouse

    Euliss, N.H.; LaBaugh, J.W.; Fredrickson, L.H.; Mushet, D.M.; Swanson, G.A.; Winter, T.C.; Rosenberry, D.O.; Nelson, R.D.

    2004-01-01

    We describe a conceptual model, the wetland continuum, which allows wetland managers, scientists, and ecologists to consider simultaneously the influence of climate and hydrologic setting on wetland biological communities. Although multidimensional, the wetland continuum is most easily represented as a two-dimensional gradient, with ground water and atmospheric water constituting the horizontal and vertical axis, respectively. By locating the position of a wetland on both axes of the continuum, the potential biological expression of the wetland can be predicted at any point in time. The model provides a framework useful in the organization and interpretation of biological data from wetlands by incorporating the dynamic changes these systems undergo as a result of normal climatic variation rather than placing them into static categories common to many wetland classification systems. While we developed this model from the literature available for depressional wetlands in the prairie pothole region of North America, we believe the concept has application to wetlands in many other geographic locations.

  2. Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas

    NASA Astrophysics Data System (ADS)

    Hu, S. X.

    2017-08-01

    Continuum lowering is a well known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal- or pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K -edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics calculations based on the all-electron density-functional theory. The resulting K -edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of "single-atom-in-box," developed in this work, accurately predicts K -edge locations as ab initio calculations provide.

  3. Shape dependence of two-cylinder Rényi entropies for free bosons on a lattice

    NASA Astrophysics Data System (ADS)

    Chojnacki, Leilee; Cook, Caleb Q.; Dalidovich, Denis; Hayward Sierens, Lauren E.; Lantagne-Hurtubise, Étienne; Melko, Roger G.; Vlaar, Tiffany J.

    2016-10-01

    Universal scaling terms occurring in Rényi entanglement entropies have the potential to bring new understanding to quantum critical points in free and interacting systems. Quantitative comparisons between analytical continuum theories and numerical calculations on lattice models play a crucial role in advancing such studies. In this paper, we exactly calculate the universal two-cylinder shape dependence of entanglement entropies for free bosons on finite-size square lattices, and compare to approximate functions derived in the continuum using several different Ansätze. Although none of these Ansätze are exact in the thermodynamic limit, we find that numerical fits are in good agreement with continuum functions derived using the anti-de Sitter/conformal field theory correspondence, an extensive mutual information model, and a quantum Lifshitz model. We use fits of our lattice data to these functions to calculate universal scalars defined in the thin-cylinder limit, and compare to values previously obtained for the free boson field theory in the continuum.

  4. Kinetic Monte Carlo simulations of ion-induced ripple formation: Dependence on flux, temperature, and defect concentration in the linear regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chason, E.; Chan, W. L.; Bharathi, M. S.

    Low-energy ion bombardment produces spontaneous periodic structures (sputter ripples) on many surfaces. Continuum theories describe the pattern formation in terms of ion-surface interactions and surface relaxation kinetics, but many features of these models (such as defect concentration) are unknown or difficult to determine. In this work, we present results of kinetic Monte Carlo simulations that model surface evolution using discrete atomistic versions of the physical processes included in the continuum theories. From simulations over a range of parameters, we obtain the dependence of the ripple growth rate, wavelength, and velocity on the ion flux and temperature. The results are discussedmore » in terms of the thermally dependent concentration and diffusivity of ion-induced surface defects. We find that in the early stages of ripple formation the simulation results are surprisingly well described by the predictions of the continuum theory, in spite of simplifying approximations used in the continuum model.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuechler, Erich R.; Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431; Giese, Timothy J.

    To better represent the solvation effects observed along reaction pathways, and of ionic species in general, a charge-dependent variable-radii smooth conductor-like screening model (VR-SCOSMO) is developed. This model is implemented and parameterized with a third order density-functional tight binding quantum model, DFTB3/3OB-OPhyd, a quantum method which was developed for organic and biological compounds, utilizing a specific parameterization for phosphate hydrolysis reactions. Unlike most other applications with the DFTB3/3OB model, an auxiliary set of atomic multipoles is constructed from the underlying DFTB3 density matrix which is used to interact the solute with the solvent response surface. The resulting method is variational,more » produces smooth energies, and has analytic gradients. As a baseline, a conventional SCOSMO model with fixed radii is also parameterized. The SCOSMO and VR-SCOSMO models shown have comparable accuracy in reproducing neutral-molecule absolute solvation free energies; however, the VR-SCOSMO model is shown to reduce the mean unsigned errors (MUEs) of ionic compounds by half (about 2-3 kcal/mol). The VR-SCOSMO model presents similar accuracy as a charge-dependent Poisson-Boltzmann model introduced by Hou et al. [J. Chem. Theory Comput. 6, 2303 (2010)]. VR-SCOSMO is then used to examine the hydrolysis of trimethylphosphate and seven other phosphoryl transesterification reactions with different leaving groups. Two-dimensional energy landscapes are constructed for these reactions and calculated barriers are compared to those obtained from ab initio polarizable continuum calculations and experiment. Results of the VR-SCOSMO model are in good agreement in both cases, capturing the rate-limiting reaction barrier and the nature of the transition state.« less

  6. KECSA-Movable Type Implicit Solvation Model (KMTISM)

    PubMed Central

    2015-01-01

    Computation of the solvation free energy for chemical and biological processes has long been of significant interest. The key challenges to effective solvation modeling center on the choice of potential function and configurational sampling. Herein, an energy sampling approach termed the “Movable Type” (MT) method, and a statistical energy function for solvation modeling, “Knowledge-based and Empirical Combined Scoring Algorithm” (KECSA) are developed and utilized to create an implicit solvation model: KECSA-Movable Type Implicit Solvation Model (KMTISM) suitable for the study of chemical and biological systems. KMTISM is an implicit solvation model, but the MT method performs energy sampling at the atom pairwise level. For a specific molecular system, the MT method collects energies from prebuilt databases for the requisite atom pairs at all relevant distance ranges, which by its very construction encodes all possible molecular configurations simultaneously. Unlike traditional statistical energy functions, KECSA converts structural statistical information into categorized atom pairwise interaction energies as a function of the radial distance instead of a mean force energy function. Within the implicit solvent model approximation, aqueous solvation free energies are then obtained from the NVT ensemble partition function generated by the MT method. Validation is performed against several subsets selected from the Minnesota Solvation Database v2012. Results are compared with several solvation free energy calculation methods, including a one-to-one comparison against two commonly used classical implicit solvation models: MM-GBSA and MM-PBSA. Comparison against a quantum mechanics based polarizable continuum model is also discussed (Cramer and Truhlar’s Solvation Model 12). PMID:25691832

  7. Mesoscopic and continuum modelling of angiogenesis

    PubMed Central

    Spill, F.; Guerrero, P.; Alarcon, T.; Maini, P. K.; Byrne, H. M.

    2016-01-01

    Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. PMID:24615007

  8. Multiscale Modeling of Damage Processes in fcc Aluminum: From Atoms to Grains

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Saether, E.; Yamakov, V.

    2008-01-01

    Molecular dynamics (MD) methods are opening new opportunities for simulating the fundamental processes of material behavior at the atomistic level. However, current analysis is limited to small domains and increasing the size of the MD domain quickly presents intractable computational demands. A preferred approach to surmount this computational limitation has been to combine continuum mechanics-based modeling procedures, such as the finite element method (FEM), with MD analyses thereby reducing the region of atomic scale refinement. Such multiscale modeling strategies can be divided into two broad classifications: concurrent multiscale methods that directly incorporate an atomistic domain within a continuum domain and sequential multiscale methods that extract an averaged response from the atomistic simulation for later use as a constitutive model in a continuum analysis.

  9. Conformational Modeling of Continuum Structures in Robotics and Structural Biology: A Review

    PubMed Central

    Chirikjian, G. S.

    2016-01-01

    Hyper-redundant (or snakelike) manipulators have many more degrees of freedom than are required to position and orient an object in space. They have been employed in a variety of applications ranging from search-and-rescue to minimally invasive surgical procedures, and recently they even have been proposed as solutions to problems in maintaining civil infrastructure and the repair of satellites. The kinematic and dynamic properties of snakelike robots are captured naturally using a continuum backbone curve equipped with a naturally evolving set of reference frames, stiffness properties, and mass density. When the snakelike robot has a continuum architecture, the backbone curve corresponds with the physical device itself. Interestingly, these same modeling ideas can be used to describe conformational shapes of DNA molecules and filamentous protein structures in solution and in cells. This paper reviews several classes of snakelike robots: (1) hyper-redundant manipulators guided by backbone curves; (2) flexible steerable needles; and (3) concentric tube continuum robots. It is then shown how the same mathematical modeling methods used in these robotics contexts can be used to model molecules such as DNA. All of these problems are treated in the context of a common mathematical framework based on the differential geometry of curves, continuum mechanics, and variational calculus. Both coordinate-dependent Euler-Lagrange formulations and coordinate-free Euler-Poincaré approaches are reviewed. PMID:27030786

  10. Conformational Modeling of Continuum Structures in Robotics and Structural Biology: A Review.

    PubMed

    Chirikjian, G S

    Hyper-redundant (or snakelike) manipulators have many more degrees of freedom than are required to position and orient an object in space. They have been employed in a variety of applications ranging from search-and-rescue to minimally invasive surgical procedures, and recently they even have been proposed as solutions to problems in maintaining civil infrastructure and the repair of satellites. The kinematic and dynamic properties of snakelike robots are captured naturally using a continuum backbone curve equipped with a naturally evolving set of reference frames, stiffness properties, and mass density. When the snakelike robot has a continuum architecture, the backbone curve corresponds with the physical device itself. Interestingly, these same modeling ideas can be used to describe conformational shapes of DNA molecules and filamentous protein structures in solution and in cells. This paper reviews several classes of snakelike robots: (1) hyper-redundant manipulators guided by backbone curves; (2) flexible steerable needles; and (3) concentric tube continuum robots. It is then shown how the same mathematical modeling methods used in these robotics contexts can be used to model molecules such as DNA. All of these problems are treated in the context of a common mathematical framework based on the differential geometry of curves, continuum mechanics, and variational calculus. Both coordinate-dependent Euler-Lagrange formulations and coordinate-free Euler-Poincaré approaches are reviewed.

  11. Comparison of all atom, continuum, and linear fitting empirical models for charge screening effect of aqueous medium surrounding a protein molecule

    NASA Astrophysics Data System (ADS)

    Takahashi, Takuya; Sugiura, Junnnosuke; Nagayama, Kuniaki

    2002-05-01

    To investigate the role hydration plays in the electrostatic interactions of proteins, the time-averaged electrostatic potential of the B1 domain of protein G in an aqueous solution was calculated with full atomic molecular dynamics simulations that explicitly considers every atom (i.e., an all atom model). This all atom calculated potential was compared with the potential obtained from an electrostatic continuum model calculation. In both cases, the charge-screening effect was fairly well formulated with an effective relative dielectric constant which increased linearly with increasing charge-charge distance. This simulated linear dependence agrees with the experimentally determined linear relation proposed by Pickersgill. Cut-off approximations for Coulomb interactions failed to reproduce this linear relation. Correlation between the all atom model and the continuum models was found to be better than the respective correlation calculated for linear fitting to the two models. This confirms that the continuum model is better at treating the complicated shapes of protein conformations than the simple linear fitting empirical model. We have tried a sigmoid fitting empirical model in addition to the linear one. When weights of all data were treated equally, the sigmoid model, which requires two fitting parameters, fits results of both the all atom and the continuum models less accurately than the linear model which requires only one fitting parameter. When potential values are chosen as weighting factors, the fitting error of the sigmoid model became smaller, and the slope of both linear fitting curves became smaller. This suggests the screening effect of an aqueous medium within a short range, where potential values are relatively large, is smaller than that expected from the linear fitting curve whose slope is almost 4. To investigate the linear increase of the effective relative dielectric constant, the Poisson equation of a low-dielectric sphere in a high-dielectric medium was solved and charges distributed near the molecular surface were indicated as leading to the apparent linearity.

  12. Multiscale Modeling of Intergranular Fracture in Aluminum: Constitutive Relation For Interface Debonding

    NASA Technical Reports Server (NTRS)

    Yamakov, V.; Saether, E.; Glaessgen, E. H.

    2008-01-01

    Intergranular fracture is a dominant mode of failure in ultrafine grained materials. In the present study, the atomistic mechanisms of grain-boundary debonding during intergranular fracture in aluminum are modeled using a coupled molecular dynamics finite element simulation. Using a statistical mechanics approach, a cohesive-zone law in the form of a traction-displacement constitutive relationship, characterizing the load transfer across the plane of a growing edge crack, is extracted from atomistic simulations and then recast in a form suitable for inclusion within a continuum finite element model. The cohesive-zone law derived by the presented technique is free of finite size effects and is statistically representative for describing the interfacial debonding of a grain boundary (GB) interface examined at atomic length scales. By incorporating the cohesive-zone law in cohesive-zone finite elements, the debonding of a GB interface can be simulated in a coupled continuum-atomistic model, in which a crack starts in the continuum environment, smoothly penetrates the continuum-atomistic interface, and continues its propagation in the atomistic environment. This study is a step towards relating atomistically derived decohesion laws to macroscopic predictions of fracture and constructing multiscale models for nanocrystalline and ultrafine grained materials.

  13. Theoretical Calculation and Validation of the Water Vapor Continuum Absorption

    NASA Technical Reports Server (NTRS)

    Ma, Qiancheng; Tipping, Richard H.

    1998-01-01

    The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multispectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/sq m, which compared to the 4 W/sq m magnitude of the greenhouse gas forcing and the 1-2 W/sq m estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude tuning, the empirical continuum models over the full spectral range of interest for remote sensing and climate applications. Thus, we propose to further develop and refine our existing, far-wing formalism to provide an improved treatment applicable from the near-infrared through the microwave. Based on the results of this investigation, we will provide to the remote sensing/climate modeling community a practical and accurate tabulation of the continuum absorption covering the near-infrared through the microwave region of the spectrum for the range of temperatures and pressures of interest for atmospheric applications.

  14. Theoretical Calculation and Validation of the Water Vapor Continuum Absorption

    NASA Technical Reports Server (NTRS)

    Ma, Qiancheng; Tipping, Richard H.

    1998-01-01

    The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multi-spectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/ml, which compared to the 4 W/m' magnitude of the greenhouse gas forcing and the 1-2 W/m' estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude tuning the empirical continuum models over the full spectral range of interest for remote sensing and climate applications. Thus, we propose to further develop and refine our existing far-wing formalism to provide an improved treatment applicable from the near-infrared through the microwave. Based on the results of this investigation, we will provide to the remote sensing/climate modeling community a practical and accurate tabulation of the continuum absorption covering the near-infrared through the microwave region of the spectrum for the range of temperatures and pressures of interest for atmospheric applications.

  15. Predicting the Activity Coefficients of Free-Solvent for Concentrated Globular Protein Solutions Using Independently Determined Physical Parameters

    PubMed Central

    McBride, Devin W.; Rodgers, Victor G. J.

    2013-01-01

    The activity coefficient is largely considered an empirical parameter that was traditionally introduced to correct the non-ideality observed in thermodynamic systems such as osmotic pressure. Here, the activity coefficient of free-solvent is related to physically realistic parameters and a mathematical expression is developed to directly predict the activity coefficients of free-solvent, for aqueous protein solutions up to near-saturation concentrations. The model is based on the free-solvent model, which has previously been shown to provide excellent prediction of the osmotic pressure of concentrated and crowded globular proteins in aqueous solutions up to near-saturation concentrations. Thus, this model uses only the independently determined, physically realizable quantities: mole fraction, solvent accessible surface area, and ion binding, in its prediction. Predictions are presented for the activity coefficients of free-solvent for near-saturated protein solutions containing either bovine serum albumin or hemoglobin. As a verification step, the predictability of the model for the activity coefficient of sucrose solutions was evaluated. The predicted activity coefficients of free-solvent are compared to the calculated activity coefficients of free-solvent based on osmotic pressure data. It is observed that the predicted activity coefficients are increasingly dependent on the solute-solvent parameters as the protein concentration increases to near-saturation concentrations. PMID:24324733

  16. Computer-aided solvent selection for multiple scenarios operation of limited-known properties solute

    NASA Astrophysics Data System (ADS)

    Anantpinijwatna, Amata

    2017-12-01

    Solvents have been applied for both production and separation of the complex chemical substance such as the pyrrolidine-2-carbonyl chloride (C5H8ClNO). Since the properties of the target substance itself are largely unknown, the selection of the solvent is limited by experiment only. However, the reaction carried out in conventional solvents are either afforded low yields or obtained slow reaction rates. Moreover, the solvents are also highly toxic and environmental unfriendly. Alternative solvents are required to enhance the production and lessen the harmful effect toward both organism and environment. A costly, time-consuming, and laborious experiments are required for acquiring a better solvent suite for production and separation of these complex compounds; whereas, a limited improvement can be obtained. On the other hand, the combination of the state-of-the-art thermodynamic models can provide faster and more robust solutions to this solvent selection problem. In this work, a framework for solvents selection in complex chemical production process is presented. The framework combines a group-contribution thermodynamic model and a segment activity coefficient model for predicting chemical properties and solubilities of the target chemical in newly formulated solvents. A guideline for solvent selection is also included. The potential of the selected solvents is then analysed and verified. The improvement toward the production yield, production rate, and product separation is then discussed.

  17. Predictive modeling: Solubility of C60 and C70 fullerenes in diverse solvents.

    PubMed

    Gupta, Shikha; Basant, Nikita

    2018-06-01

    Solubility of fullerenes imposes a major limitation to further advanced research and technological development using these novel materials. There have been continued efforts to discover better solvents and their properties that influence the solubility of fullerenes. Here, we have developed QSPR (quantitative structure-property relationship) models based on structural features of diverse solvents and large experimental data for predicting the solubility of C 60 and C 70 fullerenes. The developed models identified most relevant features of the solvents that encode the polarizability, polarity and lipophilicity properties which largely influence the solubilizing potential of the solvent for the fullerenes. We also established Inter-moieties solubility correlations (IMSC) based quantitative property-property relationship (QPPR) models for predicting solubility of C 60 and C 70 fullerenes. The QSPR and QPPR models were internally and externally validated deriving the most stringent statistical criteria and predicted C 60 and C 70 solubility values in different solvents were in close agreement with the experimental values. In test sets, the QSPR models yielded high correlations (R 2  > 0.964) and low root mean squared error of prediction errors (RMSEP< 0.25). Results of comparison with other studies indicated that the proposed models could effectively improve the accuracy and ability for predicting solubility of C 60 and C 70 fullerenes in solvents with diverse structures and would be useful in development of more effective solvents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Stochastic simulation tools and continuum models for describing two-dimensional collective cell spreading with universal growth functions

    NASA Astrophysics Data System (ADS)

    Jin, Wang; Penington, Catherine J.; McCue, Scott W.; Simpson, Matthew J.

    2016-10-01

    Two-dimensional collective cell migration assays are used to study cancer and tissue repair. These assays involve combined cell migration and cell proliferation processes, both of which are modulated by cell-to-cell crowding. Previous discrete models of collective cell migration assays involve a nearest-neighbour proliferation mechanism where crowding effects are incorporated by aborting potential proliferation events if the randomly chosen target site is occupied. There are two limitations of this traditional approach: (i) it seems unreasonable to abort a potential proliferation event based on the occupancy of a single, randomly chosen target site; and, (ii) the continuum limit description of this mechanism leads to the standard logistic growth function, but some experimental evidence suggests that cells do not always proliferate logistically. Motivated by these observations, we introduce a generalised proliferation mechanism which allows non-nearest neighbour proliferation events to take place over a template of r≥slant 1 concentric rings of lattice sites. Further, the decision to abort potential proliferation events is made using a crowding function, f(C), which accounts for the density of agents within a group of sites rather than dealing with the occupancy of a single randomly chosen site. Analysing the continuum limit description of the stochastic model shows that the standard logistic source term, λ C(1-C), where λ is the proliferation rate, is generalised to a universal growth function, λ C f(C). Comparing the solution of the continuum description with averaged simulation data indicates that the continuum model performs well for many choices of f(C) and r. For nonlinear f(C), the quality of the continuum-discrete match increases with r.

  19. Stochastic simulation tools and continuum models for describing two-dimensional collective cell spreading with universal growth functions.

    PubMed

    Jin, Wang; Penington, Catherine J; McCue, Scott W; Simpson, Matthew J

    2016-10-07

    Two-dimensional collective cell migration assays are used to study cancer and tissue repair. These assays involve combined cell migration and cell proliferation processes, both of which are modulated by cell-to-cell crowding. Previous discrete models of collective cell migration assays involve a nearest-neighbour proliferation mechanism where crowding effects are incorporated by aborting potential proliferation events if the randomly chosen target site is occupied. There are two limitations of this traditional approach: (i) it seems unreasonable to abort a potential proliferation event based on the occupancy of a single, randomly chosen target site; and, (ii) the continuum limit description of this mechanism leads to the standard logistic growth function, but some experimental evidence suggests that cells do not always proliferate logistically. Motivated by these observations, we introduce a generalised proliferation mechanism which allows non-nearest neighbour proliferation events to take place over a template of [Formula: see text] concentric rings of lattice sites. Further, the decision to abort potential proliferation events is made using a crowding function, f(C), which accounts for the density of agents within a group of sites rather than dealing with the occupancy of a single randomly chosen site. Analysing the continuum limit description of the stochastic model shows that the standard logistic source term, [Formula: see text], where λ is the proliferation rate, is generalised to a universal growth function, [Formula: see text]. Comparing the solution of the continuum description with averaged simulation data indicates that the continuum model performs well for many choices of f(C) and r. For nonlinear f(C), the quality of the continuum-discrete match increases with r.

  20. Cross-continuum Care Continuity: Achieving Seamless Care and Managing Comorbidities.

    PubMed

    Boston-Fleischhauer, Carol; Rose, Robert; Hartwig, Laurie

    As healthcare systems continue to design care models responsive to payment changes and the assumption of clinical and financial risk, the need exists for a comprehensive approach to address cross-continuum care transitions. This article will highlight key learnings from the Nurse Executive Center's research on achieving care continuity. The business case for developing a cross-continuum care transition strategy will be discussed, as well as systemic enablers for the achievement of seamless care. A case study example of 1 system's solution for supporting the multiple comorbid patient population as part of its cross-continuum care transition strategy will be examined.

Top