NASA Astrophysics Data System (ADS)
Filatova, Daria G.; Eskina, Vasilina V.; Baranovskaya, Vasilisa B.; Vladimirova, Svetlana A.; Gaskov, Alexander M.; Rumyantseva, Marina N.; Karpov, Yuri A.
2018-02-01
A novel approach is developed for the determination of Co and Au dopants in advanced materials based on tin oxide using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS) with direct slurry sampling. Sodium carboxylmethylcellulose (Na-CMC) is an effective stabilizer for diluted suspensions. Use Na-CMC allows to transfer the analytes into graphite furnace completely and reproducibly. The relative standard deviation obtained by HR CS GFAAS was not higher than 4%. Accuracy was proven by means inductively coupled plasma mass spectrometry (ICP-MS) in solutions after decomposition as a comparative technique. To determine Au and Co in the volume of SnO2, the acid decomposition conditions (HCl, HF) of the samples were suggested by means of an autoclave in a microwave oven.
Ozbek, Nil; Akman, Suleyman
2016-07-20
Total chlorine in milk was determined via the molecular absorption of diatomic strontium monochloride at 635.862 nm using high-resolution continuum source graphite furnace atomic absorption spectrometry. The effects of coating the graphite furnace, using different modifiers, amount of molecule-forming element, and different calibrants were investigated and optimized. Chlorine concentrations in milk samples were determined in a Zr-coated graphite furnace using 25 μg of Sr as the molecule-forming reagent and applying a pyrolysis temperature of 600 °C and a molecule-forming temperature of 2300 °C. Linearity was maintained up to 500 μg mL(-1) of Cl. The method was tested by analyzing a certified reference wastewater. The results were in the uncertainty limits of the certified value. The limit of detection of the method was 1.76 μg mL(-1). The chlorine concentrations in various cow milk samples taken from the market were found in the range of 588-1472 mg L(-1).
Rello, Luis; Aramendía, Maite; Belarra, Miguel A; Resano, Martín
2015-01-01
DBS have become a clinical specimen especially adequate for establishing home-based collection protocols. In this work, high-resolution continuum source graphite furnace atomic absorption spectrometry is evaluated for the direct monitoring of Pb in DBS, both as a quantitative tool and a screening method. The development of the screening model is based on the establishment of the unreliability region around the threshold limits, 100 or 50 μg l(-1). More than 500 samples were analyzed to validate the model. The screening method demonstrated high sensitivity (the rate of true positives detected was always higher than 95%), an excellent LOD (1 µg l(-1)) and high throughput (10 min per sample).
NASA Astrophysics Data System (ADS)
Tinas, Hande; Ozbek, Nil; Akman, Suleyman
2018-02-01
In this study, lead concentrations in various flour samples were determined by high-resolution continuum source graphite furnace atomic absorption spectrometry with solid sampling. Since samples were analyzed directly, the risks and disadvantages of sample digestion were eliminated. Solid flour samples were dried, weighed on the platforms, Pd was added as a modifier and introduced directly into a graphite tube using a manual solid sampler. Platforms and tubes were coated with Zr. The optimized pyrolysis and atomization temperatures were 800 °C and 2200 °C, respectively. The sensitivities of lead in various flour certified reference materials (CRMs) and aqueous standards were not significantly different. Therefore, aqueous standards were safely used for calibration. The absolute limit of detection and characteristic mass were 7.2 pg and 9.0 pg of lead, respectively. The lead concentrations in different types of flour samples were found in the range of 25-52 μg kg- 1. Finally, homogeneity factors representing the heterogeneity of analyte distribution for lead in flour samples were determined.
Ozbek, Nil; Akman, Suleyman
2016-11-15
This study describes the applicability of solid sampling technique for the determination of fluorine in various baby foods via molecular absorption of calcium monofluoride generated in a graphite furnace of high-resolution continuum source atomic absorption spectrometry. Fluorine was determined at CaF wavelength, 606.440nm in a graphite tube applying a pyrolysis temperature of 1000°C and a molecule forming temperature of 2200°C. The limit of detection and characteristic mass of the method were 0.20ng and 0.17ng of fluorine, respectively. The fluorine concentrations determined in standard reference sample (bush branches and leaves) were in good agreement with the certified values. By applying the optimized parameters, the concentration of fluorine in various baby foods were determined. The fluorine concentrations were ranged from
NASA Astrophysics Data System (ADS)
Cacho, Frantisek; Machynak, Lubomir; Nemecek, Martin; Beinrohr, Ernest
2018-06-01
The paper describes the determination of bromide by evaluating the molecular absorption of thallium mono-bromide (TlBr) at the rotational line at 342.9815 nm by making use a high-resolution continuum source graphite furnace atomic absorption spectrometer. The effects of variables such as the wavelength, graphite furnace program, amount of Tl and the use of a modifier were investigated and optimized. Various chemical modifiers have been studied, such as Pd, Mg, Ag and a mixture of Pd/Mg. It was found that best results were obtained by using Ag which prevents losses of bromide during pyrolysis step through precipitation of bromide as AgBr. In this way, a maximum pyrolysis temperature of 400 °C could be used. The optimum molecule forming temperature was found to be 900 °C. Bromide concentrations in various water samples (CRM, bottled drinking water and tap water) were determined. The quantification was made by both linear calibration and standard addition techniques. The results were matched well those of the reference method. The calibration curve was linear in the range between 1 and 1000 ng Br with a correlation coefficient R = 0.999. The limit of detection and characteristic mass of the method were 0.3 ng and 4.4 ng of Br.
dos Santos, Lisia M G; Welz, Bernhard; Araujo, Rennan G O; Jacob, Silvana do C; Vale, Maria Goreti R; Martens, Andreas; Gonzaga Martens, Irland B; Becker-Ross, Helmut
2009-11-11
A fast routine screening method for the simultaneous determination of cadmium and iron in bean and soil samples is proposed, using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling. The primary absorption line at 228.802 nm has been used for the determination of cadmium, and an adjacent secondary line, at 228.726 nm, for iron. Fourteen bean samples and 10 soil samples from nine states all over Brazil have been analyzed. The limits of detection (3 sigma, n = 10) were 2.0 microg kg(-1) for Cd and 4.5 mg kg(-1) for Fe. The relative standard deviation ranged from 4 to 7% for Cd and from 5 to 28% for Fe, which is usually acceptable for a screening method. The accuracy of the method has been confirmed by the analysis of two certified reference materials; the results were in agreement with the certified values at a 95% confidence interval.
Pires, Laís N; Brandão, Geovani C; Teixeira, Leonardo S G
2017-06-15
This paper presents a method for determining phospholipids in soybean lecithin samples by phosphorus determination using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) via molecular absorption of phosphorus monoxide. Samples were diluted in methyl isobutyl ketone. The best conditions were found to be 213.561nm with a pyrolysis temperature of 1300°C, a volatilization temperature of 2300°C and Mg as a chemical modifier. To increase the analytical sensitivity, measurement of the absorbance signal was obtained by summing molecular transition lines for PO surrounding 213nm: 213.561, 213.526, 213.617 and 213.637nm. The limit of detection was 2.35mgg -1 and the precision, evaluated as relative standard deviation (RSD), was 2.47% (n=10) for a sample containing 2.2% (w/v) phosphorus. The developed method was applied for the analysis of commercial samples of soybean lecithin. The determined concentrations of phospholipids in the samples varied between 38.1 and 45% (w/v). Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ozbek, Nil; Baysal, Asli
2017-04-01
Human hair is a valuable contributor for biological monitoring. It is an information storage point to assess the effects of environmental, nutritional or occupational sources on the body. Human proteins, amino acids or other compounds are among the key components to find the sources of different effects or disorders in the human body. Sulfur is a significant one of these compounds, and it has great affinity to some metals and compounds. This property of the sulfur affects the human health positively or negatively. In this manuscript, sulfur was determined in hair samples of autistic and age-match control group children via molecular absorption of CS using a high-resolution continuum source graphite furnace atomic absorption spectrometer. For this purpose, hair samples were appropriately washed and dried at 75 °C. Then samples were dissolved in microwave digestion using HNO3 for sulfur determination. Extraction was performed with HCl hydrolysation by incubation for 24 h at 110 °C for total protein and albumin determination. The validity of the method for the sulfur determination was tested using hair standard reference materials. The results were in the uncertainty limits of the certified values at 95% confidence level. Finally correlation of sulfur levels of autistic children's hair with their total protein and albumin levels were done.
Gómez-Nieto, Beatriz; Gismera, Mª Jesús; Sevilla, Mª Teresa; Satrústegui, Jorgina; Procopio, Jesús R
2017-08-01
A micro-sampling and straightforward method based on high resolution continuum source atomic absorption spectrometry (HR-CS AAS) was developed to determine extracellular and intracellular Ca in samples of interest in clinical and biomedical analysis. Solid sampling platforms were used to introduce the micro-samples into the graphite furnace atomizer. The secondary absorption line for Ca, located at 239.856nm, was selected to carry out the measurements. Experimental parameters such as pyrolysis and atomization temperatures and the amount of sample introduced for the measurements were optimized. Calibration was performed using aqueous standards and the approach to measure at the wings of the absorption lines was employed for the expansion of the linear response range. The limit of detection was of 0.02mgL -1 Ca (0.39ng Ca) and the upper limit of linear range was increased up to 8.0mgL -1 Ca (160ng Ca). The proposed method was used to determine Ca in mitochondrial suspensions and whole blood samples with successful results. Adequate recoveries (within 91-107%) were obtained in the tests performed for validation purposes. Copyright © 2017 Elsevier B.V. All rights reserved.
de Babos, Diego Victor; Bechlin, Marcos André; Barros, Ariane Isis; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta; de Oliveira, Silvana Ruella
2016-05-15
A new method is proposed for the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS), employing direct solid sample analysis (DSS) and internal standardization (IS). Cobalt was used as internal standard to minimize matrix effects during Ni determinations, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9937. The performance of the method was checked by analysis of six plant certified reference materials, and the results for Mo and Ni were in agreement with the certified values (95% confidence level, t-test). Analysis was made of different types of plant materials used as renewable sources of energy, including sugarcane leaves, banana tree fiber, soybean straw, coffee pods, orange bagasse, peanut hulls, and sugarcane bagasse. The concentrations found for Mo and Ni ranged from 0.08 to 0.63 ng mg(-1) and from 0.41 to 6.92 ng mg(-1), respectively. Precision (RSD) varied from 2.1% to 11% for Mo and from 3.7% to 10% for Ni. Limits of quantification of 0.055 and 0.074 ng were obtained for Mo and Ni, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Pereira, Éderson R; de Almeida, Tarcísio S; Borges, Daniel L G; Carasek, Eduardo; Welz, Bernhard; Feldmann, Jörg; Campo Menoyo, Javier Del
2016-04-01
High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) has been applied for the development of a method for the determination of total As in fish oil samples using direct analysis. The method does not use any sample pretreatment, besides dilution with 1-propanole, in order to decrease the oil viscosity. The stability and sensitivity of As were evaluated using ruthenium and iridium as permanent chemical modifiers and palladium added in solution over the sample. The best results were obtained with ruthenium as the permanent modifier and palladium in solution added to samples and standard solutions. Under these conditions, aqueous standard solutions could be used for calibration for the fish oil samples diluted with 1-propanole. The pyrolysis and atomization temperatures were 1400 °C and 2300 °C, respectively, and the limit of detection and characteristic mass were 30 pg and 43 pg, respectively. Accuracy and precision of the method have been evaluated using microwave-assisted acid digestion of the samples with subsequent determination by HR-CS GF AAS and ICP-MS; the results were in agreement (95% confidence level) with those of the proposed method. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dobrowolski, Ryszard; Mróz, Agnieszka; Dąbrowska, Marzena; Olszański, Piotr
2017-06-01
A novelty method for the determination of gold in geological samples by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry (SS HR CS GF AAS) after solid-phase extraction onto modified carbon nanotubes (CNT) was described. The methodology developed is based on solid phase extraction of Au(III) ions from digested samples to eliminate strong interference caused by iron compounds and problems related to inhomogeneities of the samples. The use of aqueous or solid standard for calibration was studied and the slope of calibration curve was the same for both of these modes. This statement indicates the possibility to perform the calibration of the method using aqueous standard solutions. Under optimum conditions the absolute detection limit for gold was equal to 2.24 · 10- 6 μg g- 1 while the adsorption capacity of modified carbon nanotubes was 264 mg g- 1. The proposed procedure was validated by the application of certified reference materials (CRMs) with different content of gold and different matrix, the results were in good agreement with certified values. The method was successfully applied for separation and determination of gold ions in complex geological samples, with precision generally better than 8%.
NASA Astrophysics Data System (ADS)
Machyňák, Ľubomír; Čacho, František; Němeček, Martin; Beinrohr, Ernest
2016-11-01
Trace concentrations of total chlorine were determined by means of molecular absorption of indium mono-chloride (InCl) at 267.217 nm using high-resolution continuum source graphite furnace molecular absorption spectrometry. The effects of chemical modifiers and the amount of In on the sensitivity and accuracy were investigated. The optimum pyrolysis and vaporization temperatures were 600 °C and 1400 °C, respectively. The limit of detection and characteristic mass were found to be 0.10 ng and 0.21 ng, respectively. Potential non-spectral and spectral interferences were tested for various metals and non-metals at concentrations up to 50 mg L- 1 and for phosphoric, sulphuric and nitric acids. No spectral interferences were observed. Significant non-spectral interferences were observed with F, Br, and I at concentrations higher than 1 mg L- 1, 5 mg L- 1 and 25 mg L- 1, respectively, which is probably caused by formation of competitive indium halogen molecules. Higher concentrations of mineral acids depressed the signal owing to the formation of volatile HCl. The calibration curve was linear in the range between 0.3 and 10 ng with a correlation coefficient of R = 0.993. The elaborated method was used for the chlorine determination in various waters and a drug sample.
Dravecz, Gabriella; Bencs, László; Beke, Dávid; Gali, Adam
2016-01-15
The determination of Al contaminant and the main component Si in silicon carbide (SiC) nanocrystals with the size-distribution of 1-8nm dispersed in an aqueous solution was developed using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS). The vaporization/atomization processes were investigated in a transversally heated graphite atomizer by evaporating solution samples of Al and Si preserved in various media (HCl, HNO3). For Si, the best results were obtained by applying a mixture of 5µg Pd plus 5µg Mg, whereas for Al, 10µg Mg (each as nitrate solution) was dispensed with the samples, but the results obtained without modifier were found to be better. This way a maximum pyrolysis temperature of 1200°C for Si and 1300°C for Al could be used, and the optimum (compromise) atomization temperature was 2400°C for both analytes. The Si and Al contents of different sized SiC nanocrystals, dispersed in aqueous solutions, were determined against aqueous (external) calibration standards. The correlation coefficients (R values) of the calibrations were found to be 0.9963 for Si and 0.9991 for Al. The upper limit of the linear calibration range was 2mg/l Si and 0.25mg/l Al. The limit of detection was 3µg/l for Si and 0.5µg/l for Al. The characteristic mass (m0) was calculated to be 389pg Si and 6.4pg Al. The Si and Al content in the solution samples were found to be in the range of 1.0-1.7mg/l and 0.1-0.25mg/l, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Krawczyk-Coda, Magdalena
2017-03-01
In this research, a simple, accurate, and inexpensive preconcentration procedure was developed for the determination of bismuth in water samples, using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS). During the preconcentration step, halloysite nanotubes (HNTs) were used as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction (USA DMSPE). The influence of the pH of the sample solution, amount of HNTs, and extraction time, as well as of the main parameters of HR CS GFAAS, on absorbance was investigated. The limit of detection was 0.005 μg L- 1. The preconcentration factor achieved for bismuth was 32. The relative standard deviation (RSD) was 4%. The accuracy of this method was validated by analyses of NIST SRM 1643e (Trace elements in water) and TMDA-54.5 (A high level fortified sample for trace elements) certified reference materials. The measured bismuth contents in these certified reference materials were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level. The proposed method has been successfully applied to the determination of bismuth in five different real water samples (seawater, lake water, river water, stream water and rain water).
Equivalent-Continuum Modeling With Application to Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.
2002-01-01
A method has been proposed for developing structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with equivalent-continuum models. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As important examples with direct application to the development and characterization of single-walled carbon nanotubes and the design of nanotube-based devices, the modeling technique has been applied to determine the effective-continuum geometry and bending rigidity of a graphene sheet. A representative volume element of the chemical structure of graphene has been substituted with equivalent-truss and equivalent continuum models. As a result, an effective thickness of the continuum model has been determined. This effective thickness has been shown to be significantly larger than the interatomic spacing of graphite. The effective thickness has been shown to be significantly larger than the inter-planar spacing of graphite. The effective bending rigidity of the equivalent-continuum model of a graphene sheet was determined by equating the vibrational potential energy of the molecular model of a graphene sheet subjected to cylindrical bending with the strain energy of an equivalent continuum plate subjected to cylindrical bending.
NASA Astrophysics Data System (ADS)
de Gois, Jefferson S.; Van Malderen, Stijn J. M.; Cadorim, Heloisa R.; Welz, Bernhard; Vanhaecke, Frank
2017-06-01
This work describes the development and comparison of two methods for the direct determination of Br in polymer samples via solid sampling, one using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and the other using high-resolution continuum source graphite furnace molecular absorption spectrometry with direct solid sample analysis (HR-CS SS-GF MAS). The methods were optimized and their accuracy was evaluated by comparing the results obtained for 6 polymeric certified reference materials (CRMs) with the corresponding certified values. For Br determination with LA-ICP-MS, the 79Br+ signal could be monitored interference-free. For Br determination via HR-CS SS-GF MAS, the CaBr molecule was monitored at 625.315 nm with integration of the central pixel ± 1. Bromine quantification by LA-ICP-MS was performed via external calibration against a single CRM while using the 12C+ signal as an internal standard. With HR-CS SS-GF MAS, Br quantification could be accomplished using external calibration against aqueous standard solutions. Except for one LA-ICP-MS result, the concentrations obtained with both techniques were in agreement with the certified values within the experimental uncertainty as evidenced using a t-test (95% confidence level). The limit of quantification was determined to be 100 μg g- 1 Br for LA-ICP-MS and 10 μg g- 1 Br for HR-CS SS-GF MAS.
NASA Astrophysics Data System (ADS)
Mihucz, Victor G.; Bencs, László; Koncz, Kornél; Tatár, Enikő; Weiszburg, Tamás; Záray, Gyula
2017-02-01
A method of high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS), combined with on-site separation/solid phase extraction (SPE) has been developed for the speciation of inorganic As (iAs) in geothermal and drinking water samples. The HR-CS-GFAAS calibration curves were linear up to 200 μg/L As, but using second order polynomial fitting, accurate calibration could be performed up to 500 μg/L. It has been demonstrated that sample pH should not be higher than 8 for an accurate speciation of As(V) with a recovery of ≈ 95%. Geothermal water had fairly high salt content (≈ 2200 mg/L) due to the presence of chlorides and sulfates at mg/L levels. Therefore, a two-fold dilution of these types of samples before SPE is recommended, especially, for total As determinations, when the As concentration is as high as 400 μg/L. For drinking water, sampled from public wells with records of As concentrations higher than the 10 μg/L in the past, the reduction of As contamination below the WHO's health limit value could be observed. However, the electrical conductivity was close to 2500 μS/cm, i.e., the guideline limit for drinking water, which was due to their higher chloride content. The proposed fit-for-purpose SPE-HR-CS-GFAAS method could be a candidate for screening drinking water quality.
Zanatta, Melina Borges Teixeira; Nakadi, Flávio Venâncio; da Veiga, Márcia Andreia Mesquita Silva
2018-03-01
A new method to determine iodine in drug samples by high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) has been developed. The method measures the molecular absorption of a diatomic molecule, CaI or SrI (less toxic molecule-forming reagents), at 638.904 or 677.692nm, respectively, and uses a mixture containing 5μg of Pd and 0.5μg of Mg as chemical modifier. The method employs pyrolysis temperatures of 1000 and 800°C and vaporization temperatures of 2300 and 2400°C for CaI and SrI, respectively. The optimized amounts of Ca and Sr as molecule-forming reagents are 100 and 150µg, respectively. On the basis of interference studies, even small chlorine concentrations reduce CaI and SrI absorbance significantly. The developed method was used to analyze different commercial drug samples, namely thyroid hormone pills with three different iodine amounts (15.88, 31.77, and 47.66µg) and one liquid drug with 1% m v -1 active iodine in their compositions. The results agreed with the values informed by the manufacturers (95% confidence level) regardless of whether CaI or SrI was determined. Therefore, the developed method is useful for iodine determination on the basis of CaI or SrI molecular absorption. Copyright © 2017 Elsevier B.V. All rights reserved.
Ajtony, Zsolt; Laczai, Nikoletta; Dravecz, Gabriella; Szoboszlai, Norbert; Marosi, Áron; Marlok, Bence; Streli, Christina; Bencs, László
2016-12-15
HR-CS-GFAAS methods were developed for the fast determination of Cu in domestic and commercially available Hungarian distilled alcoholic beverages (called pálinka), in order to decide if their Cu content exceeds the permissible limit, as legislated by the WHO. Some microliters of samples were directly dispensed into the atomizer. Graphite furnace heating programs, effects/amounts of the Pd modifier, alternative wavelengths (e.g., Cu I 249.2146nm), external calibration and internal standardization methods were studied. Applying a fast graphite furnace heating program without any chemical modifier, the Cu content of a sample could be quantitated within 1.5min. The detection limit of the method is 0.03mg/L. Calibration curves are linear up to 10-15mg/L Cu. Spike-recoveries ranged from 89% to 119% with an average of 100.9±8.5%. Internal calibration could be applied with the assistance of Cr, Fe, and/or Rh standards. The accuracy of the GFAAS results was verified by TXRF analyses. Copyright © 2016 Elsevier Ltd. All rights reserved.
Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale
NASA Astrophysics Data System (ADS)
Deng, Zhao; Smolyanitsky, Alex; Li, Qunyang; Feng, Xi-Qiao; Cannara, Rachel J.
2012-12-01
From the early tribological studies of Leonardo da Vinci to Amontons’ law, friction has been shown to increase with increasing normal load. This trend continues to hold at the nanoscale, where friction can vary nonlinearly with normal load. Here we present nanoscale friction force microscopy (FFM) experiments for a nanoscale probe tip sliding on a chemically modified graphite surface in an atomic force microscope (AFM). Our results demonstrate that, when adhesion between the AFM tip and surface is enhanced relative to the exfoliation energy of graphite, friction can increase as the load decreases under tip retraction. This leads to the emergence of an effectively negative coefficient of friction in the low-load regime. We show that the magnitude of this coefficient depends on the ratio of tip-sample adhesion to the exfoliation energy of graphite. Through both atomistic- and continuum-based simulations, we attribute this unusual phenomenon to a reversible partial delamination of the topmost atomic layers, which then mimic few- to single-layer graphene. Lifting of these layers with the AFM tip leads to greater deformability of the surface with decreasing applied load. This discovery suggests that the lamellar nature of graphite yields nanoscale tribological properties outside the predictive capacity of existing continuum mechanical models.
Krawczyk, Magdalena
2014-01-01
In this research, three different commercially available multivitamin dietary supplements were analyzed by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS) with slurry sampling. The concentrations of Cr, Cu, Fe, Mn, and Se were determined and compared to the amounts stated by producers. The safety of multivitamin dietary supplements depends on various factors including the manufacturing process and the purity and origins of the raw ingredients. For this reason, this research determined concentrations of several toxic elements (As, Cd, and Pb). Microwave-assisted high pressure Teflon bomb digestion was used to determine total amounts of elements in samples. Samples were prepared as slurries at a concentration of 0.1% (m/v) for macro elements (Cr, Cu, Fe, Mn, and Se) and at a concentration of % (m/v) for trace elements (As, Cd, and Pb) in acidic media (3M HNO3). The influence of acid concentration, Triton X-100 addition, sonication time, and sonication power on absorbance was investigated. The accuracy of this method was validated by analyses of NRCC LUTS-1 (Lobster hepatopancreas), NRCC DORM-1 (Dogfish Muscle), NRCC DOLT-2 (Dogfish Liver), NBS SRM 1570 (Spinach Leaves) and NBS SRM 1573 (Tomato Leaves) certified reference materials. The measured elements contents in these reference materials (except NRCC DOLT-2) were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level. Copyright © 2013 Elsevier B.V. All rights reserved.
Sulfur determination in coal using molecular absorption in graphite filter vaporizer.
Jim, Gibson; Katskov, Dmitri; Tittarelli, Paolo
2011-02-15
The vaporization of sulfur containing samples in graphite vaporizers for atomic absorption spectrometry is accompanied by modification of sulfur by carbon and, respectively, appearance at high temperature of structured molecular absorption in 200-210 nm wavelength range. It has been proposed to employ the spectrum for direct determination of sulfur in coal; soundness of the suggestion is evaluated by analysis of coal slurry using low resolution CCD spectrometer with continuum light source coupled to platform or filter furnace vaporizers. For coal in platform furnace losses of the analyte at low temperature and strong spectral background from the coal matrix hinder the determination. Both negative effects are significantly reduced in filter furnace, in which sample vapor efficiently interacts with carbon when transferred through the heated graphite filter. The method is verified by analysis of coals with sulfur content within 0.13-1.5% (m/m) range. The use of coal certified reference material for sulfur analyte addition to coal slurry permitted determination with random error 5-12%. Absolute and relative detection limits for sulfur in coal are 0.16 μg and 0.02 mass%, respectively. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dravecz, Gabriella; Laczai, Nikoletta; Hajdara, Ivett; Bencs, László
2016-12-01
The vaporization/atomization processes of Mg in high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS) were investigated by evaporating solid (powder) samples of lithium niobate (LiNbO3) optical single crystals doped with various amounts of Mg in a transversally heated graphite atomizer (THGA). Optimal analytical conditions were attained by using the Mg I 215.4353 nm secondary spectral line. An optimal pyrolysis temperature of 1500 °C was found for Mg, while the compromise atomization temperature in THGAs (2400 °C) was applied for analyte vaporization. The calibration was performed against solid (powered) lithium niobate crystal standards. The standards were prepared with exactly known Mg content via solid state fusion of the oxide components of the matrix and analyte. The correlation coefficient (R value) of the linear calibration was not worse than 0.9992. The calibration curves were linear in the dopant concentration range of interest (0.74-7.25 mg/g Mg), when dosing 3-10 mg of the powder samples into the graphite sample insertion boats. The Mg content of the studied 19 samples was in the range of 1.69-4.13 mg/g. The precision of the method was better than 6.3%. The accuracy of the results was verified by means of flame atomic absorption spectrometry with solution sample introduction after digestion of several crystal samples.
NASA Astrophysics Data System (ADS)
de Oliveira Souza, Sidnei; François, Luciane Luiza; Borges, Aline Rocha; Vale, Maria Goreti Rodrigues; Araujo, Rennan Geovanny Oliveira
2015-12-01
The present study proposes the determination of copper and mercury in phosphate fertilizers by direct solid sampling analysis (SS) employing high resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). For Cu determination, two analytical lines were used: 327.3960 nm and 249.2146 nm. Hg determination was carried out on the line 253.6521 nm and 100 μg KMnO4 was used as chemical modifier. The optimal pyrolysis temperature for Cu determination was 1300 °C. Atomization temperatures for Cu and Hg were 2400 and 1100 °C, respectively. External calibration with aqueous standard solutions was adopted for both elements. The limits of quantification (LoQs) and characteristic mass (m0) obtained for Cu determination were 0.4 μg g- 1 and 1.12 ng, respectively, on line 249.2146 nm, and 64 μg g- 1 and 25 pg on 327.3960 nm. For mercury, LoQ and m0 were 4.8 ng g- 1 and 39 pg, respectively. The accuracy of the proposed methods was confirmed by the analysis of standard reference material (SRM) of Trace Elements in Multi-Nutrient Fertilizer (SRM NIST 695). The precision expressed as relative standard deviation (RSD), was better than 8.2% for Hg and 7.7% for the Cu (n = 5), considered satisfactory for microanalysis in solid sample. Four fertilizer samples acquired in commercial establishments in the city of Salvador, Bahia, Brazil, were analyzed. The optimized analytical methods were simple, fast, accurate, precise and free of spectral interferences for the determination of Cu and Hg in phosphate fertilizer samples by SS-HR-CS GF AAS, avoiding the dissolution of the sample, the use of harmful reagents and the generation of residues.
Cárdenas Valdivia, A; Vereda Alonso, E; López Guerrero, M M; Gonzalez-Rodriguez, J; Cano Pavón, J M; García de Torres, A
2018-03-01
A green and simple method has been proposed in this work for the simultaneous determination of V, Ni and Fe in fuel ash samples by solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry (SS HR CS GFAAS). The application of fast programs in combination with direct solid sampling allows eliminating pretreatment steps, involving minimal manipulation of sample. Iridium treated platforms were applied throughout the present study, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9931. The concentrations found in the fuel ash samples analysed ranged from 0.66% to 4.2% for V, 0.23-0.7% for Ni and 0.10-0.60% for Fe. Precision (%RSD) were 5.2%, 10.0% and 9.8% for V, Ni and Fe, respectively, obtained as the average of the %RSD of six replicates of each fuel ash sample. The optimum conditions established were applied to the determination of the target analytes in fuel ash samples. In order to test the accuracy and applicability of the proposed method in the analysis of samples, five ash samples from the combustion of fuel in power stations, were analysed. The method accuracy was evaluated by comparing the results obtained using the proposed method with the results obtained by ICP OES previous acid digestion. The results showed good agreement between them. The goal of this work has been to develop a fast and simple methodology that permits the use of aqueous standards for straightforward calibration and the simultaneous determination of V, Ni and Fe in fuel ash samples by direct SS HR CS GFAAS. Copyright © 2017 Elsevier B.V. All rights reserved.
da Silva, Alessandra Furtado; Borges, Daniel L G; Lepri, Fábio Grandis; Welz, Bernhard; Curtius, Adilson J; Heitmann, Uwe
2005-08-01
This work describes the development of a method to determine cadmium in coal, in which iridium is used as a permanent chemical modifier and calibration is performed against aqueous standards by high-resolution continuum source atomic absorption spectrometry (HR-CS AAS). This new instrumental concept makes the whole spectral environment in the vicinity of the analytical line accessible, providing a lot more data than just the change in absorbance over time available from conventional instruments. The application of Ir (400 microg) as a permanent chemical modifier, thermally deposited on the pyrolytic graphite platform surface, allowed pyrolysis temperatures of 700 degrees C to be used, which was sufficiently high to significantly reduce the continuous background that occurred before the analyte signal at pyrolysis temperatures <700 degrees C. Structured background absorption also occurred after the analyte signal when atomization temperatures of >1600 degrees C were used, which arose from the electron-excitation spectrum (with rotational fine structure) of a diatomic molecule. Under optimized conditions (pyrolysis at 700 degrees C and atomization at 1500 degrees C), interference-free determination of cadmium in seven certified coal reference materials and two real samples was achieved by direct solid sampling and calibrating against aqueous standards, resulting in good agreement with the certified values (where available) at the 95% confidence level. A characteristic mass of 0.4 pg and a detection limit of 2 ng g(-1), calculated for a sample mass of 1.0 mg coal, was obtained. A precision (expressed as the relative standard deviation, RSD) of <10% was typically obtained when coal samples in the mass range 0.6-1.2 mg were analyzed.
NASA Astrophysics Data System (ADS)
Resano, Martín; Flórez, María del Rosario; Queralt, Ignasi; Marguí, Eva
2015-03-01
This work investigates the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for the direct determination of Pd, Pt and Rh in two samples of very different nature. While analysis of active pharmaceutical ingredients is straightforward and it is feasible to minimize matrix effects, to the point that calibration can be carried out against aqueous standard solutions, the analysis of used automobile catalysts is more challenging requiring the addition of a chemical modifier (NH4F·HF) to help in releasing the analytes, a more vigorous temperature program and the use of a solid standard (CRM ERM®-EB504) for calibration. However, in both cases it was possible to obtain accurate results and precision values typically better than 10% RSD in a fast and simple way, while only two determinations are needed for the three analytes, since Pt and Rh can be simultaneously monitored in both types of samples. Overall, the methods proposed seem suited for the determination of these analytes in such types of samples, offering a greener and faster alternative that circumvents the traditional problems associated with sample digestion, requiring a small amount of sample only (0.05 mg per replicate for catalysts, and a few milligrams for the pharmaceuticals) and providing sufficient sensitivity to easily comply with regulations. The LODs achieved were 6.5 μg g- 1 (Pd), 8.3 μg g- 1 (Pt) and 9.3 μg g- 1 (Rh) for catalysts, which decreased to 0.08 μg g- 1 (Pd), 0.15 μg g- 1 (Pt) and 0.10 μg g- 1 (Rh) for pharmaceuticals.
NASA Astrophysics Data System (ADS)
Kowalewska, Zofia
2011-07-01
For the first time, high-resolution molecular absorption spectrometry with a high-intensity xenon lamp as radiation source has been applied for the determination of sulphur in crude oil and petroleum products. The samples were analysed as xylene solutions using vaporisation in acetylene-air flame or in an electrothermally heated graphite furnace. The sensitive rotational lines of the CS molecule, belonging to the ∆ν = 0 vibrational sequence within the electronic transition X 1∑ + → A 1П, were applied. For graphite furnace molecular absorption spectrometry, the Pd + Mg organic modifier was selected. Strong interactions with Pd atoms enable easier decomposition of sulphur-containing compounds, likely through the temporal formation of Pd xS y molecules. At the 258.056 nm line, with the wavelength range covering central pixel ± 5 pixels and with application of interactive background correction, the detection limit was 14 ng in graphite furnace molecular absorption spectrometry and 18 mg kg -1 in flame molecular absorption spectrometry. Meanwhile, application of 2-points background correction found a characteristic mass of 12 ng in graphite furnace molecular absorption spectrometry and a characteristic concentration of 104 mg kg -1 in flame molecular absorption spectrometry. The range of application of the proposed methods turned out to be significantly limited by the properties of the sulphur compounds of interest. In the case of volatile sulphur compounds, which can be present in light petroleum products, severe difficulties were encountered. On the contrary, heavy oils and residues from distillation as well as crude oil could be analysed using both flame and graphite furnace vaporisation. The good accuracy of the proposed methods for these samples was confirmed by their mutual consistency and the results from analysis of reference samples (certified reference materials and home reference materials with sulphur content determined by X-ray fluorescence spectrometry).
Equivalent-Continuum Modeling of Nano-Structured Materials
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.
2001-01-01
A method has been developed for modeling structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with an equivalent-continuum model. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As an important example with direct application to the development and characterization of single-walled carbon nanotubes, the model has been applied to determine the effective continuum geometry of a graphene sheet. A representative volume element of the equivalent-continuum model has been developed with an effective thickness. This effective thickness has been shown to be similar to, but slightly smaller than, the interatomic spacing of graphite.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Littell, Justin D.
2017-01-01
This paper describes the development of input properties for a continuum damage mechanics based material model, Mat 58, within LS-DYNA(Registered Trademark) to simulate the response of a graphite-Kevlar(Registered Trademark) hybrid plain weave fabric. A limited set of material characterization tests were performed on the hybrid graphite-Kevlar(Registered Trademark) fabric. Simple finite element models were executed in LS-DYNA(Registered Trademark) to simulate the material characterization tests and to verify the Mat 58 material model. Once verified, the Mat 58 model was used in finite element models of two composite energy absorbers: a conical-shaped design, designated the "conusoid," fabricated of four layers of hybrid graphite-Kevlar(Registered Trademark) fabric; and, a sinusoidal-shaped foam sandwich design, designated the "sinusoid," fabricated of the same hybrid fabric face sheets with a foam core. Dynamic crush tests were performed on components of the two energy absorbers, which were designed to limit average vertical accelerations to 25- to 40-g, to minimize peak crush loads, and to generate relatively long crush stroke values under dynamic loading conditions. Finite element models of the two energy absorbers utilized the Mat 58 model that had been verified through material characterization testing. Excellent predictions of the dynamic crushing response were obtained.
NASA Astrophysics Data System (ADS)
Krüger, Magnus; Huang, Mao-Dong; Becker-Roß, Helmut; Florek, Stefan; Ott, Ingo; Gust, Ronald
The development of high-resolution continuum source molecular absorption spectrometry made the quantification of fluorine feasible by measuring the molecular absorption as gallium monofluoride (GaF). Using this new technique, we developed on the example of 5-fluorouracil (5-FU) a graphite furnace method to quantify fluorine in organic molecules. The effect of 5-FU on the generation of the diatomic GaF molecule was investigated. The experimental conditions such as gallium nitrate amount, temperature program, interfering anions (represented as corresponding acids) and calibration for the determination of 5-FU in standard solution and in cellular matrix samples were investigated and optimized. The sample matrix showed no effect on the sensitivity of GaF molecular absorption. A simple calibration curve using an inorganic sodium fluoride solution can conveniently be used for the calibration. The described method is sensitive and the achievable limit of detection is 0.23 ng of 5-FU. In order to establish the concept of "fluorine as a probe in medicinal chemistry" an exemplary application was selected, in which the developed method was successfully demonstrated by performing cellular uptake studies of the 5-FU in human colon carcinoma cells.
NASA Astrophysics Data System (ADS)
Ji, Xiang; Wang, Yang; Zhang, Junqian
2018-06-01
The lithium diffusion in graphite anode, which is the most widely used commercial electrode material today, affects the charge/discharge performance of lithium-ion batteries. In this study, the anisotropic strain effects on lithium diffusion in graphite anodes are systematically investigated using first-principles calculations based on density functional theory (DFT) with van der Waals corrections. It is found that the effects of external applied strains along various directions of LixC6 (i.e., perpendicular or parallel to the basal planes of the graphite host) on lithium diffusivity are different. Along the direction perpendicular to the graphite planes, the tensile strain facilitates in-plane Li diffusion by reducing the energy barrier, and the compressive strain hinders in-plane Li diffusion by raising the energy barrier. In contrast, the in-plane biaxial tensile strain (parallel to the graphite planes) hinders in-plane Li diffusion, and the in-plane biaxial compressive strain facilitates in-plane Li diffusion. Furthermore, both in-plane and transverse shear strains slightly influence Li diffusion in graphite anodes. A discussion is presented to explain the anisotropic strain dependence of lithium diffusion. This research provides data for the continuum modelling of the electrodes in the lithium-ion batteries.
Multi-Scale Modeling of a Graphite-Epoxy-Nanotube System
NASA Technical Reports Server (NTRS)
Frankland, S. J. V.; Riddick, J. C.; Gates, T. S.
2005-01-01
A multi-scale method is utilized to determine some of the constitutive properties of a three component graphite-epoxy-nanotube system. This system is of interest because carbon nanotubes have been proposed as stiffening and toughening agents in the interlaminar regions of carbon fiber/epoxy laminates. The multi-scale method uses molecular dynamics simulation and equivalent-continuum modeling to compute three of the elastic constants of the graphite-epoxy-nanotube system: C11, C22, and C33. The 1-direction is along the nanotube axis, and the graphene sheets lie in the 1-2 plane. It was found that the C11 is only 4% larger than the C22. The nanotube therefore does have a small, but positive effect on the constitutive properties in the interlaminar region.
NASA Astrophysics Data System (ADS)
Xing, Yanlong; Fuss, Harald; Lademann, Jürgen; Huang, Mao Dong; Becker-Ross, Helmut; Florek, Stefan; Patzelt, Alexa; Meinke, Martina C.; Jung, Sora; Esser, Norbert
2018-04-01
In this study, a new therapeutic drug monitoring approach has been tested based on the combination of CaF molecular absorption using high-resolution continuum source absorption spectrometry (HR-CSAS) and surface enhanced Raman spectroscopy (SERS). HR-CSAS with mini graphite tube was successfully tested for clinical therapeutic drug monitoring of the fluorine-containing drug capecitabine in sweat samples of cancer patients: It showed advantageous features of high selectivity (no interference from Cl), high sensitivity (characteristic mass of 0.1 ng at CaF 583.069 nm), low sample consumption (down to 30 nL) and fast measurement (no sample pretreatment and less than 1 min of responding time) in tracing the fluorine signal out of capecitabine. However, this technique has the disadvantage of the total loss of the drug's structure information after burning the sample at very high temperature. Therefore, a new concept of combining HR-CSAS with a non-destructive spectroscopic method (SERS) was proposed for the sensitive sensing and specific identification of capecitabine. We tested and succeed in obtaining the molecular characteristics of the metabolite of capecitabine (named 5-fluorouracil) by the non-destructive SERS technique. With the results shown in this work, it is demonstrated that the combined spectroscopic technique of HR-CSAS and SERS will be very useful in efficient therapeutic drug monitoring in the future.
Bismuth as a general internal standard for lead in atomic absorption spectrometry.
Bechlin, Marcos A; Fortunato, Felipe M; Ferreira, Edilene C; Gomes Neto, José A; Nóbrega, Joaquim A; Donati, George L; Jones, Bradley T
2014-06-11
Bismuth was evaluated as internal standard for Pb determination by line source flame atomic absorption spectrometry (LS FAAS), high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) and line source graphite furnace atomic absorption spectrometry (LS GFAAS). Analysis of samples containing different matrices indicated close relationship between Pb and Bi absorbances. Correlation coefficients of calibration curves built up by plotting A(Pb)/A(Bi)versus Pb concentration were higher than 0.9953 (FAAS) and higher than 0.9993 (GFAAS). Recoveries of Pb improved from 52-118% (without IS) to 97-109% (IS, LS FAAS); 74-231% (without IS) to 96-109% (IS, HR-CS FAAS); and 36-125% (without IS) to 96-110% (IS, LS GFAAS). The relative standard deviations (n=12) were reduced from 0.6-9.2% (without IS) to 0.3-4.3% (IS, LS FAAS); 0.7-7.7% (without IS) to 0.1-4.0% (IS, HR-CS FAAS); and 2.1-13% (without IS) to 0.4-5.9% (IS, LS GFAAS). Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kruger, Pamela C.; Parsons, Patrick J.
2007-03-01
Excessive exposure to aluminum (Al) can produce serious health consequences in people with impaired renal function, especially those undergoing hemodialysis. Al can accumulate in the brain and in bone, causing dialysis-related encephalopathy and renal osteodystrophy. Thus, dialysis patients are routinely monitored for Al overload, through measurement of their serum Al. Electrothermal atomic absorption spectrometry (ETAAS) is widely used for serum Al determination. Here, we assess the analytical performances of three ETAAS instruments, equipped with different background correction systems and heating arrangements, for the determination of serum Al. Specifically, we compare (1) a Perkin Elmer (PE) Model 3110 AAS, equipped with a longitudinally (end) heated graphite atomizer (HGA) and continuum-source (deuterium) background correction, with (2) a PE Model 4100ZL AAS equipped with a transversely heated graphite atomizer (THGA) and longitudinal Zeeman background correction, and (3) a PE Model Z5100 AAS equipped with a HGA and transverse Zeeman background correction. We were able to transfer the method for serum Al previously established for the Z5100 and 4100ZL instruments to the 3110, with only minor modifications. As with the Zeeman instruments, matrix-matched calibration was not required for the 3110 and, thus, aqueous calibration standards were used. However, the 309.3-nm line was chosen for analysis on the 3110 due to failure of the continuum background correction system at the 396.2-nm line. A small, seemingly insignificant overcorrection error was observed in the background channel on the 3110 instrument at the 309.3-nm line. On the 4100ZL, signal oscillation was observed in the atomization profile. The sensitivity, or characteristic mass ( m0), for Al at the 309.3-nm line on the 3110 AAS was found to be 12.1 ± 0.6 pg, compared to 16.1 ± 0.7 pg for the Z5100, and 23.3 ± 1.3 pg for the 4100ZL at the 396.2-nm line. However, the instrumental detection limits (3 SD) for Al were very similar: 3.0, 3.2, and 4.1 μg L - 1 for the Z5100, 4100ZL, and 3110, respectively. Serum Al method detection limits (3 SD) were 9.8, 6.9, and 7.3 μg L - 1 , respectively. Accuracy was assessed using archived serum (and plasma) reference materials from various external quality assessment schemes (EQAS). Values found with all three instruments were within the acceptable EQAS ranges. The data indicate that relatively modest ETAAS instrumentation equipped with continuum background correction is adequate for routine serum Al monitoring.
Zhamu, Aruna; Jang, Bor Z.
2014-06-17
A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.
40 CFR 436.380 - Applicability; description of the graphite subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... graphite subcategory. 436.380 Section 436.380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Graphite Subcategory § 436.380 Applicability; description of the graphite subcategory. The provisions of this subpart...
40 CFR 436.380 - Applicability; description of the graphite subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... graphite subcategory. 436.380 Section 436.380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Graphite Subcategory § 436.380 Applicability; description of the graphite subcategory. The provisions of this subpart...
Precision blackbody sources for radiometric standards.
Sapritsky, V I; Khlevnoy, B B; Khromchenko, V B; Lisiansky, B E; Mekhontsev, S N; Melenevsky, U A; Morozova, S P; Prokhorov, A V; Samoilov, L N; Shapoval, V I; Sudarev, K A; Zelener, M F
1997-08-01
The precision blackbody sources developed at the All-Russian Institute for Optical and Physical Measurements (Moscow, Russia) and their characteristics are analyzed. The precision high-temperature graphite blackbody BB22p, large-area high-temperature pyrolytic graphite blackbody BB3200pg, middle-temperature graphite blackbody BB2000, low-temperature blackbody BB300, and gallium fixed-point blackbody BB29gl and their characteristics are described.
Natural graphite demand and supply - Implications for electric vehicle battery requirements
Olson, Donald W.; Virta, Robert L.; Mahdavi, Mahbood; Sangine, Elizabeth S.; Fortier, Steven M.
2016-01-01
Electric vehicles have been promoted to reduce greenhouse gas emissions and lessen U.S. dependence on petroleum for transportation. Growth in U.S. sales of electric vehicles has been hindered by technical difficulties and the high cost of the lithium-ion batteries used to power many electric vehicles (more than 50% of the vehicle cost). Groundbreaking has begun for a lithium-ion battery factory in Nevada that, at capacity, could manufacture enough batteries to power 500,000 electric vehicles of various types and provide economies of scale to reduce the cost of batteries. Currently, primary synthetic graphite derived from petroleum coke is used in the anode of most lithium-ion batteries. An alternate may be the use of natural flake graphite, which would result in estimated graphite cost reductions of more than US$400 per vehicle at 2013 prices. Most natural flake graphite is sourced from China, the world's leading graphite producer. Sourcing natural flake graphite from deposits in North America could reduce raw material transportation costs and, given China's growing internal demand for flake graphite for its industries and ongoing environmental, labor, and mining issues, may ensure a more reliable and environmentally conscious supply of graphite. North America has flake graphite resources, and Canada is currently a producer, but most new mining projects in the United States require more than 10 yr to reach production, and demand could exceed supplies of flake graphite. Natural flake graphite may serve only to supplement synthetic graphite, at least for the short-term outlook.
ICP-MS measurement of iodine diffusion in IG-110 graphite for HTGR/VHTR
NASA Astrophysics Data System (ADS)
Carter, L. M.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.
2016-05-01
Graphite functions as a structural material and as a barrier to fission product release in HTGR/VHTR designs, and elucidation of transport parameters for fission products in reactor-grade graphite is thus required for reactor source terms calculations. We measured iodine diffusion in spheres of IG-110 graphite using a release method based on Fickain diffusion kinetics. Two sources of iodine were loaded into the graphite spheres; molecular iodine (I2) and cesium iodide (CsI). Measurements of the diffusion coefficient were made over a temperature range of 873-1293 K. We have obtained the following Arrhenius expressions for iodine diffusion:DI , CsI infused =(6 ×10-12 2/s) exp(30,000 J/mol RT) And,DI , I2 infused =(4 ×10-10 m2/s) exp(-11,000 J/mol RT ) The results indicate that iodine diffusion in IG-110 graphite is not well-described by Fickan diffusion kinetics. To our knowledge, these are the first measurements of iodine diffusion in IG-110 graphite.
Coordinated Isotopic and TEM Studies of Presolar Graphites from Murchison
NASA Astrophysics Data System (ADS)
Croat, T. K.; Stadermann, F. J.; Zinner, E.; Bernatowicz, T. J.
2004-03-01
TEM and NanoSIMS investigations of the same presolar Murchison KFC graphites revealed high Zr, Mo, and Ru content in refractory carbides within the graphites. Along with isotopically light carbon, these suggest a low-metallicity AGB source.
In-situ thermal cycling in SEM of a graphite-aluminum composite
NASA Technical Reports Server (NTRS)
Cheong, Y. M.; Marcus, H. L.
1987-01-01
In situ SEM observations of a graphite-aluminum composite (unidirectional P100 graphite-fiber-reinforced 6061 aluminum MMC plates) were used to measure displacements within the graphite fiber relative to the interface between the graphite fiber and the aluminum matrix during thermal cycling. Specimens were thermally cycled from room temperature to 300 C or 500 C in a SEM chamber and then cooled to room temperature. The obtained shear strains within the fiber were then related to anomalous values of measured residual stresses and to the impact on the composite coefficient of expansion and potential damage under thermal fatigue loading. The shear mechanism was proposed as a source of temperature limits on the low coefficient of expansion of these composites, as well as a potential source of thermal fatigue degradation.
ALMA BAND 8 CONTINUUM EMISSION FROM ORION SOURCE I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirota, Tomoya; Matsumoto, Naoko; Machida, Masahiro N.
2016-12-20
We have measured continuum flux densities of a high-mass protostar candidate, a radio source I in the Orion KL region (Orion Source I) using the Atacama Large Millimeter/Submillimeter Array (ALMA) at band 8 with an angular resolution of 0.″1. The continuum emission at 430, 460, and 490 GHz associated with Source I shows an elongated structure along the northwest–southeast direction perpendicular to the so-called low-velocity bipolar outflow. The deconvolved size of the continuum source, 90 au × 20 au, is consistent with those reported previously at other millimeter/submillimeter wavelengths. The flux density can be well fitted to the optically thick blackbody spectral energy distribution, and the brightness temperaturemore » is evaluated to be 700–800 K. It is much lower than that in the case of proton–electron or H{sup −} free–free radiations. Our data are consistent with the latest ALMA results by Plambeck and Wright, in which the continuum emission was proposed to arise from the edge-on circumstellar disk via thermal dust emission, unless the continuum source consists of an unresolved structure with a smaller beam filling factor.« less
Gunduz, Sema; Akman, Suleyman
2015-04-01
Sulphur was determined in various vegetables via molecular absorption of carbon monosulphide (CS) at 258.056 nm using a solid sampling high resolution continuum source electrothermal atomic absorption spectrometer (SS HR-CS ETAAS). Samples were dried, ground and directly introduced into the ruthenium coated graphite furnace as 0.05 to 0.50mg. All determinations were performed using palladium+citric acid modifier and applying a pyrolysis temperature of 1000 °C and a volatilisation temperature of 2400 °C. The results were in good agreement with certified sulphur concentrations of various vegetal CRM samples applying linear calibration technique prepared from thioacetamide. The limit of detection and characteristic mass of the method were 7.5 and 8.7 ng of S, respectively. The concentrations of S in various spinach, leek, lettuce, radish, Brussels sprouts, zucchini and chard samples were determined. It was showed that distribution of sulphur in CRM and grinded food samples were homogeneous even in micro-scale. Copyright © 2014 Elsevier Ltd. All rights reserved.
AC induction field heating of graphite foam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klett, James W.; Rios, Orlando; Kisner, Roger
A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam. An energy conversion device utilizes heat energy from the heated graphite foam to perform a heat energy consuming function. A device for heating a fluid and a method of converting energy are also disclosed.
Robinson, Gilpin R.; Hammarstrom, Jane M.; Olson, Donald W.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.
2017-12-19
Graphite is a form of pure carbon that normally occurs as black crystal flakes and masses. It has important properties, such as chemical inertness, thermal stability, high electrical conductivity, and lubricity (slipperiness) that make it suitable for many industrial applications, including electronics, lubricants, metallurgy, and steelmaking. For some of these uses, no suitable substitutes are available. Steelmaking and refractory applications in metallurgy use the largest amount of produced graphite; however, emerging technology uses in large-scale fuel cell, battery, and lightweight high-strength composite applications could substantially increase world demand for graphite.Graphite ores are classified as “amorphous” (microcrystalline), and “crystalline” (“flake” or “lump or chip”) based on the ore’s crystallinity, grain-size, and morphology. All graphite deposits mined today formed from metamorphism of carbonaceous sedimentary rocks, and the ore type is determined by the geologic setting. Thermally metamorphosed coal is the usual source of amorphous graphite. Disseminated crystalline flake graphite is mined from carbonaceous metamorphic rocks, and lump or chip graphite is mined from veins in high-grade metamorphic regions. Because graphite is chemically inert and nontoxic, the main environmental concerns associated with graphite mining are inhalation of fine-grained dusts, including silicate and sulfide mineral particles, and hydrocarbon vapors produced during the mining and processing of ore. Synthetic graphite is manufactured from hydrocarbon sources using high-temperature heat treatment, and it is more expensive to produce than natural graphite.Production of natural graphite is dominated by China, India, and Brazil, which export graphite worldwide. China provides approximately 67 percent of worldwide output of natural graphite, and, as the dominant exporter, has the ability to set world prices. China has significant graphite reserves, and China’s graphite production is expected to increase, although rising labor costs and some mine production problems are developing. China is expected to continue to be the dominant exporter for the near future. Mexico and Canada export graphite mainly to the United States, which has not had domestic production of natural graphite since the 1950s. Most graphite deposits in the United States are too small, low-grade, or remote to be of commercial value in the near future, and the likelihood of discovering larger, higher-grade, or favorably located domestic deposits is unlikely. The United States is a major producer of synthetic graphite.
Solar radio continuum storms and a breathing magnetic field model
NASA Technical Reports Server (NTRS)
1975-01-01
Radio noise continuum emissions observed in metric and decametric wave frequencies are, in general, associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. These continuum emission sources, often called type I storm sources, are often associated with type III burst storm activity from metric to hectometric wave frequencies. This storm activity is, therefore, closely connected with the development of these continuum emission sources. It is shown that the S-component emission in microwave frequencies generally precedes, by several days, the emission of these noise continuum storms of lower frequencies. In order for these storms to develop, the growth of sunspot groups into complex types is very important in addition to the increase of the average magnetic field intensity and area of these groups. After giving a review on the theory of these noise continuum storm emissions, a model is briefly considered to explain the relation of the emissions to the storms.
40 CFR 436.380 - Applicability; description of the graphite subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability; description of the graphite subcategory. 436.380 Section 436.380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Graphite Subcategory § 436.380...
40 CFR 436.380 - Applicability; description of the graphite subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability; description of the graphite subcategory. 436.380 Section 436.380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Graphite Subcategory § 436.380...
Silicon X-ray line emission from solar flares and active regions
NASA Technical Reports Server (NTRS)
Parkinson, J. H.; Wolff, R. S.; Kestenbaum, H. L.; Ku, W. H.-M.; Lemen, J. R.; Long, K. S.; Novick, R.; Suozzo, R. J.; Weisskopf, M. C.
1978-01-01
New observations of solar flare and active region X-ray spectra obtained with the Columbia University instrument on OSO-8 are presented and discussed. The high sensitivity of the graphite crystal panel has allowed both line and continuum spectra to be served with moderate spectral resolution. Observations with higher spectral resolution have been made with a panel of pentaerythritol crystals. Twenty-nine lines between 1.5 and 7.0 A have been resolved and identified, including several dielectronic recombination satellite lines to Si XIV and Si XIII lines which have been observed for the first time. It has been found that thermal continuum models specified by single values of temperature and emission measure have fitted the data adequately, there being good agreement with the values of these parameters derived from line intensity ratios.
Eskina, Vasilina V; Dalnova, Olga A; Filatova, Daria G; Baranovskaya, Vasilisa B; Karpov, Yuri A
2016-10-01
This paper describes the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for determination of Pt, Pd and Rh after separation and concentration by original in-house developed heterochain polymer S, N-containing sorbent. The methods of sample preparation of spent ceramic-based autocatalysts were considered, two of which were used: autoclave decomposition in mixture of acids HCl:HNO3 (3:1) and high-temperature melting with K2S2O7. Both methods anyway limit the direct determination of analytes by HR CS GFAAS. Using the first method it is an incomplete digestion of spent autocatalysts samples, since the precipitate is Si, and the rhodium metal dissolves with difficulty and partially passes into solution. In contrast to the first method, the second method allow to completely transfer analytes into solution, however, the background signal produced by the chemical composition of the flux, overlaps the analytical zone. It was found, that Pt, Pd and Rh contained in the spent ceramic automotive catalysts could be effectively separated and concentrated by heterochain polymer S, N-containing sorbent, which has high sorption capacity, selectivity and resistant to dilute acids. The chosen HR CS GFAAS analysis conditions enable us to determine Pt, Pd and Rh with good metrological characteristics. The concentrations of Pt, Pd and Rh in two samples of automobile exhaust catalysts were found in range of 0.00015-0.00050; 0.170-0.189; 0.0180-0.0210wt%, respectively. The relative standard deviation obtained by HR CS GFAAS was not more than 5%. Limits of detection by HR CS GFAAS achieved were 6.2·10(-6)wt% for Pt, 1.8·10(-6)wt% for Pd, and 3.4·10(-6)wt% for Rh. Limits of determination achieved by HR CS GFAAS were 1.1·10(-5)wt% for Pt, 6.9·10(-5)wt% for Pd, and 8.3·10(-5)wt% for Rh. To control the accuracy of PGM in sorption concentrates by HR CS GFAAS method, it was appropriate to conduct an inter-method comparative experiment. The researches on the application of atomic-emission spectroscopy method with inductively coupled plasma as a comparative method were conducted. In addition, the trueness control of the obtained results is confirmed by added-found method. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ozbek, Nil; Akman, Suleyman
The presence of fluorine (F) was detected via the rotational molecular absorption line of diatomic strontium-monofluoride (SrF) generated in the gas phase at 651.187 nm using high-resolution continuum source electrothermal atomic absorption spectrometry. Upon the addition of excess strontium (Sr) as the nitrate, the fluorine in the sample was converted to SrF in the gas phase of a graphite furnace. The effects on the accuracy, precision and sensitivity of variables such as the SrF wavelength, graphite furnace program, amount of Sr, coating of the graphite tube and platform with Zr and Ir and the use of a modifier were investigated and optimized. It was determined that there was no need to use a modifier or to cover the platform/tubes with Zr or Ir. Fluorine concentrations in various water samples (certified waste water, tap water, drinking water and mineral water) were determined using 20 μg of Sr as the molecule-forming reagent and applying a maximum pyrolysis temperature of 800 °C and a molecule-forming temperature of 2200 °C with a heating rate of 2000 °C s- 1. Good linearity was maintained up to 0.1 μg of F. The accuracy and precision of the method were tested by analyzing certified reference wastewater. The results were in good agreement with certified values, and the precision was satisfactory (RSD < 10%). The limit of detection and the characteristic mass for the method were 0.36 ng and 0.55 ng, respectively. Finally, the fluorine concentrations in several drinking water and mineral water samples taken from the market were determined. The results were in good agreement with the values supplied by the producers. No significant differences were found between the results from the linear calibration and standard addition techniques. The method was determined to be simple, fast, accurate and sensitive.
Infrared signal generation from AC induction field heating of graphite foam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klett, James W.; Rios, Orlando
A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam to produce light. An energy conversion device utilizes light energy from the heated graphite foam to perform a light energy consuming function. A device for producing light and a method of converting energy are also disclosed.
Characterizing radio continuum sources in a sample of Hi-GAL massive cores
NASA Astrophysics Data System (ADS)
Armstrong, Jason
In 2012 and 2013, Olmi and collaborators conducted a survey for 6.7GHz methanol masers with the Arecibo Telescope toward far infrared sources selected from the Hi-GAL catalog of massive cores. They reported a number of sources with weak 6.7GHz methanol masers, possibly indicating regions in early stages of star formation. Follow-up observations were conducted with the Karl G. Jansky Very Large Array (VLA) in New Mexico to characterize the sources. This thesis presents the results of radio continuum observations of nine of the Arecibo regions. A total of 33 radio continuum sources were detected. The nature of the radio continuum sources was analyzed based on their spectral indices. Most of the sources have negative spectral indices, which is indicative of synchrotron radiation. Many of the synchrotron sources are associated with a supernova remnant in our Galaxy, while the rest are likely background radio galaxies and quasars. Evidence for thermal bremsstrahlung radiation was found toward six sources associated with the Arecibo regions, which is consistent with the interpretation of gas ionized by young high-mass stellar objects.
STATCONT: A statistical continuum level determination method for line-rich sources
NASA Astrophysics Data System (ADS)
Sánchez-Monge, Á.; Schilke, P.; Ginsburg, A.; Cesaroni, R.; Schmiedeke, A.
2018-01-01
STATCONT is a python-based tool designed to determine the continuum emission level in spectral data, in particular for sources with a line-rich spectrum. The tool inspects the intensity distribution of a given spectrum and automatically determines the continuum level by using different statistical approaches. The different methods included in STATCONT are tested against synthetic data. We conclude that the sigma-clipping algorithm provides the most accurate continuum level determination, together with information on the uncertainty in its determination. This uncertainty can be used to correct the final continuum emission level, resulting in the here called `corrected sigma-clipping method' or c-SCM. The c-SCM has been tested against more than 750 different synthetic spectra reproducing typical conditions found towards astronomical sources. The continuum level is determined with a discrepancy of less than 1% in 50% of the cases, and less than 5% in 90% of the cases, provided at least 10% of the channels are line free. The main products of STATCONT are the continuum emission level, together with a conservative value of its uncertainty, and datacubes containing only spectral line emission, i.e., continuum-subtracted datacubes. STATCONT also includes the option to estimate the spectral index, when different files covering different frequency ranges are provided.
Schiffbauer, James D; Yin, Leiming; Bodnar, Robert J; Kaufman, Alan J; Meng, Fanwei; Hu, Jie; Shen, Bing; Yuan, Xunlai; Bao, Huiming; Xiao, Shuhai
2007-08-01
Abundant graphite particles occur in amphibolite-grade quartzite of the Archean-Paleoproterozoic Wutai Metamorphic Complex in the Wutaishan area of North China. Petrographic thin section observations suggest that the graphite particles occur within and between quartzite clasts and are heterogeneous in origin. Using HF maceration techniques, the Wutai graphite particles were extracted for further investigation. Laser Raman spectroscopic analysis of a population of extracted graphite discs indicated that they experienced a maximum metamorphic temperature of 513 +/- 50 degrees C, which is consistent with the metamorphic grade of the host rock and supports their indigenicity. Scanning and transmission electron microscopy revealed that the particles bear morphological features (such as hexagonal sheets of graphite crystals) related to metamorphism and crystal growth, but a small fraction of them (graphite discs) are characterized by a circular morphology, distinct marginal concentric folds, surficial wrinkles, and complex nanostructures. Ion microprobe analysis of individual graphite discs showed that their carbon isotope compositions range from -7.4 per thousand to -35.9 per thousand V-PDB (Vienna Pee Dee Belemnite), with an average of -20.3 per thousand, which is comparable to bulk analysis of extracted carbonaceous material. The range of their size, ultrastructures, and isotopic signatures suggests that the morphology and geochemistry of the Wutai graphite discs were overprinted by metamorphism and their ultimate carbon source probably had diverse origins that included abiotic processes. We considered both biotic and abiotic origins of the carbon source and graphite disc morphologies and cannot falsify the possibility that some circular graphite discs characterized by marginal folds and surficial wrinkles represent deflated, compressed, and subsequently graphitized organic-walled vesicles. Together with reports by other authors of acanthomorphic acritarchs from greenschist-amphibolite-grade metamorphic rocks, this study suggests that it is worthwhile to examine carbonaceous materials preserved in highly metamorphosed rocks for possible evidence of ancient life.
Method for electrostatic deposition of graphene on a substrate
NASA Technical Reports Server (NTRS)
Sumanasekera, Gamini (Inventor); Sidorov, Anton N. (Inventor); Ouseph, P. John (Inventor); Yazdanpanah, Mehdi M. (Inventor); Cohn, Robert W. (Inventor); Jalilian, Romaneh (Inventor)
2010-01-01
A method for electrostatic deposition of graphene on a substrate comprises the steps of securing a graphite sample to a first electrode; electrically connecting the first electrode to a positive terminal of a power source; electrically connecting a second electrode to a ground terminal of the power source; placing the substrate over the second electrode; and using the power source to apply a voltage, such that graphene is removed from the graphite sample and deposited on the substrate.
Constraining the Dust Opacity Law in Three Small and Isolated Molecular Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, K. A.; Thanjavur, K.; Di Francesco, J.
Density profiles of isolated cores derived from thermal dust continuum emission rely on models of dust properties, such as mass opacity, that are poorly constrained. With complementary measures from near-infrared extinction maps, we can assess the reliability of commonly used dust models. In this work, we compare Herschel -derived maps of the optical depth with equivalent maps derived from CFHT WIRCAM near-infrared observations for three isolated cores: CB 68, L 429, and L 1552. We assess the dust opacities provided from four models: OH1a, OH5a, Orm1, and Orm4. Although the consistency of the models differs between the three sources, themore » results suggest that the optical properties of dust in the envelopes of the cores are best described by either silicate and bare graphite grains (e.g., Orm1) or carbonaceous grains with some coagulation and either thin or no ice mantles (e.g., OH5a). None of the models, however, individually produced the most consistent optical depth maps for every source. The results suggest that either the dust in the cores is not well-described by any one dust property model, the application of the dust models cannot be extended beyond the very center of the cores, or more complex SED fitting functions are necessary.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yong; Lii-Rosales, A.; Zhou, Y.
Theory and stochastic lattice-gas modeling is developed for the formation of intercalated metal islands in the gallery between the top layer and the underlying layer at the surface of layered materials. Our model for this process involves deposition of atoms, some fraction of which then enter the gallery through well-separated pointlike defects in the top layer. Subsequently, these atoms diffuse within the subsurface gallery leading to nucleation and growth of intercalated islands nearby the defect point source. For the case of a single point defect, continuum diffusion equation analysis provides insight into the nucleation kinetics. However, complementary tailored lattice-gas modelingmore » produces a more comprehensive and quantitative characterization. We analyze the large spread in nucleation times and positions relative to the defect for the first nucleated island. We also consider the formation of subsequent islands and the evolution of island growth shapes. The shapes reflect in part our natural adoption of a hexagonal close-packed island structure. As a result, motivation and support for the model is provided by scanning tunneling microscopy observations of the formation of intercalated metal islands in highly-ordered pyrolytic graphite at higher temperatures.« less
Synthesis and characterization of LiFePO4/C cathode materials by sol-gel method.
Liu, Shuxin; Yin, Hengbo; Wang, Haibin; Wang, Hong
2014-09-01
The carbon coated LiFePO4 cathode materials (LiFePO4/C) were successfully synthesized by sol-gel method with glucose, citric acid and PEG-4000 as dispersant and carbon source, respectively. The microstructure and grain size of LiFePO4/C composite were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy. The results showed that the carbon source and calcination temperature had important effect on the graphitization degree of carbon; the carbon decomposed by citric acid had higher graphitization degree; with calcination temperature rising, the graphitization degree of carbon increased and the particles size increased. The graphitization degree and grain size were very important for improving the electrochemical performance of LiFePO4 cathode materials, according to the experimental results, the sample LFP-700 (LFP-C) which was synthesized with citric acid as dispersant at 700 degree C had lower polarization and larger discharge capacity.
Silva, Arlene S; Brandao, Geovani C; Matos, Geraldo D; Ferreira, Sergio L C
2015-11-01
The present work proposed an analytical method for the direct determination of chromium in infant formulas employing the high-resolution continuum source electrothermal atomic absorption spectrometry combined with the solid sample analysis (SS-HR-CS ET AAS). Sample masses up to 2.0mg were directly weighted on a solid sampling platform and introduced into the graphite tube. In order to minimize the formation of carbonaceous residues and to improve the contact of the modifier solution with the solid sample, a volume of 10 µL of a solution containing 6% (v/v) H2O2, 20% (v/v) ethanol and 1% (v/v) HNO3 was added. The pyrolysis and atomization temperatures established were 1600 and 2400 °C, respectively, using magnesium as chemical modifier. The calibration technique was evaluated by comparing the slopes of calibration curves established using aqueous and solid standards. This test revealed that chromium can be determined employing the external calibration technique using aqueous standards. Under these conditions, the method developed allows the direct determination of chromium with limit of quantification of 11.5 ng g(-1), precision expressed as relative standard deviation (RSD) in the range of 4.0-17.9% (n=3) and a characteristic mass of 1.2 pg of chromium. The accuracy was confirmed by analysis of a certified reference material of tomato leaves furnished by National Institute of Standards and Technology. The method proposed was applied for the determination of chromium in five different infant formula samples. The chromium content found varied in the range of 33.9-58.1 ng g(-1) (n=3). These samples were also analyzed employing ICP-MS. A statistical test demonstrated that there is no significant difference between the results found by two methods. The chromium concentrations achieved are lower than the maximum limit permissible for chromium in foods by Brazilian Legislation. Copyright © 2015. Published by Elsevier B.V.
1.4 GHz continuum sources in the Cancer cluster
NASA Technical Reports Server (NTRS)
Salpeter, E. E.; Dickey, J. M.
1987-01-01
Results of 1.4-GHz continuum observations are presented for 11 VLA fields, using the D-configuration, which contain the A group of the Cnc cluster (CC). Sixteen Zwicky spiral galaxies in the CC were detected, but no ellipticals, confirming the finding that spiral galaxies with close companions tend to have enhanced radio emission. Over 200 continuum sources beyond the CC are tabulated. The spectral index (relative to 610 MHz) is given for many of the sources, including some of the Zwicky galaxies. There is a suggestion for a nonuniform number surface-density distribution of the sources, not correlated with the CC. Possible predictions of such nonuniformities, from assumptions on 'super-superclusters', are discussed.
From Green Aerogels to Porous Graphite by Emulsion Gelation of Acrylonitrile
2012-01-01
interesting uses of PAN aerogels is not dealing with monoliths at all but rather with films made by grafting PAN on carbon nanotubes that in turn are...REPORT From ‘Green’ Aerogels to Porous Graphite by Emulsion Gelation of Acrylonitrile 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Porous carbons ...including carbon (C) aerogels, are technologically important materials, while polyacrylonitriile (PAN) is the main industrial source of graphite fiber
NASA Astrophysics Data System (ADS)
Sánchez-Monge, Á.; Beltrán, M. T.; Cesaroni, R.; Fontani, F.; Brand, J.; Molinari, S.; Testi, L.; Burton, M.
2013-02-01
Aims: We present Australia Telescope Compact Array (ATCA) observations of the H2O maser line and radio continuum at 18.0 GHz and 22.8 GHz toward a sample of 192 massive star-forming regions containing several clumps already imaged at 1.2 mm. The main aim of this study is to investigate the water maser and centimeter continuum emission (that likely traces thermal free-free emission) in sources at different evolutionary stages, using evolutionary classifications previously published. Methods: We used the recently comissioned Compact Array Broadband Backend (CABB) at ATCA that obtains images with ~20'' resolution in the 1.3 cm continuum and H2O maser emission in all targets. For the evolutionary analysis of the sources we used millimeter continuum emission from the literature and the infrared emission from the MSX Point Source Catalog. Results: We detect centimeter continuum emission in 88% of the observed fields with a typical rms noise level of 0.45 mJy beam-1. Most of the fields show a single radio continuum source, while in 20% of them we identify multiple components. A total of 214 cm continuum sources have been identified, that likely trace optically thin H ii regions, with physical parameters typical of both extended and compact H ii regions. Water maser emission was detected in 41% of the regions, resulting in a total of 85 distinct components. The low angular (~20'') and spectral (~14 km s-1) resolutions do not allow a proper analysis of the water maser emission, but suffice to investigate its association with the continuum sources. We have also studied the detection rate of H ii regions in the two types of IRAS sources defined in the literature on the basis of the IRAS colors: High and Low. No significant differences are found, with high detection rates (>90%) for both High and Low sources. Conclusions: We classify the millimeter and infrared sources in our fields in three evolutionary stages following the scheme presented previously: (Type 1) millimeter-only sources, (Type 2) millimeter plus infrared sources, (Type 3) infrared-only sources. We find that H ii regions are mainly associated with Type 2 and Type 3 objects, confirming that these are more evolved than Type 1 sources. The H ii regions associated with Type 3 sources are slightly less dense and larger in size than those associated with Type 2 sources, as expected if the H ii region expands as it evolves, and Type 3 objects are older than Type 2 objects. The maser emission is mostly found to be associated with Type 1 and Type 2 sources, with a higher detection rate toward Type 2, consistent with the results of the literature. Finally, our results on H ii region and H2O maser association with different evolutionary types confirm the evolutionary classification proposed previously. Appendices are available in electronic form at http://www.aanda.orgTables 3-5, 7-9 are only, and Table 1 is also available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/550/A21
Developing uranium dicarbide-graphite porous materials for the SPES project
NASA Astrophysics Data System (ADS)
Biasetto, L.; Zanonato, P.; Carturan, S.; Di Bernardo, P.; Colombo, P.; Andrighetto, A.; Prete, G.
2010-09-01
Uranium carbide dispersed in graphite was produced under vacuum by means of carbothermic reduction of different uranium oxides (UO 2, U 3O 8 and UO 3), using graphite as the source of carbon. The thermal process was monitored by mass spectrometry and the gas evolution confirmed the reduction of the U 3O 8 and UO 3 oxides to UO 2 before the carbothermic reaction, that started to occur at T > 1000 °C. XRD analysis confirmed the formation of α-UC 2 and of a minor amount of UC. The morphology of the produced uranium carbide was not affected by the oxides employed as the source of uranium.
Internal Grains Within KFC Graphites: Implications for Their Stellar Source
NASA Astrophysics Data System (ADS)
Croat, T. K.; Stadermann, F. J.; Bernatowicz, T. J.
2005-03-01
TEM and NanoSIMS investigations find high s-process element enrichments in internal carbides, suggesting an AGB origin for most Murchison KFC presolar graphites. Other rare phases (iron phases and metallic osmium) are consistent with a SN origin.
Optical motion control of maglev graphite.
Kobayashi, Masayuki; Abe, Jiro
2012-12-26
Graphite has been known as a typical diamagnetic material and can be levitated in the strong magnetic field. Here we show that the magnetically levitating pyrolytic graphite can be moved in the arbitrary place by simple photoirradiation. It is notable that the optical motion control system described in this paper requires only NdFeB permanent magnets and light source. The optical movement is driven by photothermally induced changes in the magnetic susceptibility of the graphite. Moreover, we demonstrate that light energy can be converted into rotational kinetic energy by means of the photothermal property. We find that the levitating graphite disk rotates at over 200 rpm under the sunlight, making it possible to develop a new class of light energy conversion system.
NASA Technical Reports Server (NTRS)
Molinari, S.; Brand, J.; Cesaroni, R.; Palla, F.
2000-01-01
The James Clerk Maxwell Telescope has been used to obtain submillimeter and millimeter continuum photometry of a sample of 30 IRAS sources previously studied in molecular lines and centimeter radio continuum. All the sources have IRAS colours typical of very young stellar objects (YSOs) and are associated with dense gas.
NASA Technical Reports Server (NTRS)
Pravdo, S. H.; Rodriguez, L. F.; Curiel, S.; Canto, J.; Torrelles, J. M.; Becker, R. H.; Sellgren, K.
1985-01-01
The region in Orion containing HH 1 and HH 2 was observed with the VLA at 20, 6, and 2 cm on several occasions from 1981 to 1984. At lower resolution, four continuum sources were detected. Two of these sources coincide positionally with HH 1 and HH 2. At 6 cm and higher resolution, HH 1 is resolved into at least two components. The emission is probably bremsstrahlung originating in the same region where the visible line emission is produced. This is the first detection of radio continuum from classic Herbig-Haro objects. At a position closely centered between HH 1 and HH 2, an object that can be interpreted as the energy source of the system was detected. The central source spectrum is S(nu) of about nu to the alpha power, where alpha = 0.4 + or - 0.2, suggesting a stellar wind. Finally, the fourth radio continuum source coincides positionally with an H2O maser and is probably excited by an independent star. There is evidence of time variability in its radio flux. No emission was detected from the Cohen-Schwartz (1979) star at the 0.1 mJy level.
Accretion Signatures on Massive Young Stellar Objects
NASA Astrophysics Data System (ADS)
Navarete, F.; Damineli, A.; Barbosa, C. L.; Blum, R. D.
2015-01-01
We present preliminary results from a survey of molecular H2 (2.12 μm) emission in massive young stellar objects (MYSO) candidates selected from the Red MSX Source survey. We observed 354 MYSO candidates through the H2 S(1) 1-0 transition (2.12 μm) and an adjacent continuum narrow-band filters using the Spartan/SOAR and WIRCam/CFHT cameras. The continuum-subtracted H2 maps were analyzed and extended H2 emission was found in 50% of the sample (178 sources), and 38% of them (66) have polar morphology, suggesting collimated outflows. The polar-like structures are more likely to be driven on radio-quiet sources, indicating that these structures occur during the pre-ultra compact H ii phase. We analyzed the continuum images and found that 54% (191) of the sample displayed extended continuum emission and only ~23% (80) were associated to stellar clusters. The extended continuum emission is correlated to the H2 emission and those sources within stellar clusters does display diffuse H2 emission, which may be due to fluorescent H2 emission. These results support the accretion scenario for massive star formation, since the merging of low-mass stars would not produce jet-like structures. Also, the correlation between jet-like structures and radio-quiet sources indicates that higher inflow rates are required to form massive stars in a typical timescale less than 105 years.
International strategic minerals inventory summary report; natural graphite
Krauss, U.H.; Schmidt, H.W.; Taylor, H.A.; Sutphin, D.M.
1989-01-01
Natural graphite is a crystalline mineral of pure carbon which normally occurs in the form of platelet-shaped crystals. It has important properties, such as chemical inertness, low thermal expansion, and lubricity, that make it almost irreplaceable for certain uses such as refractories and steelmaking. Graphite ore types are crystalline (flake and lump} or 'amorphous' (cryptocrystalline}. Refractory applications use the largest total amount of natural graphite, while the most important use of crystalline graphite is in crucibles for handling molten metals. All graphite deposits being mined today are found in the following metamorphic environments: (1) contact metamorphosed coal generally is a source of amorphous graphite; (2)disseminated crystalline flake graphite comes from syngenetic metasediments; and (3) crystalline lump graphite is found in epigenetic veins in high-grade metamorphic regions. Graphite may also occur as a trace mineral in ultrabasic rocks and pegmatites, but these are economically insignificant. The world's identified economically exploitable resources of crystalline graphite in major deposits are estimated to be about 9.7 million metric tons of concentrate. In-place resources of amorphous graphite are about 11.5 million metric tons. Of these, less than 2 percent of the crystalline ore and less than 1 percent of the amorphous ore are in western industrial countries. World mining production of natural graphite rose from 347,000 metric tons in 1973 to 659,000 metric tons in 1986, while the proportion produced by central economy countries increased from about 50 percent for the period from 1973 to 1978 to more than 64 percent in 1979 to 1986. It is estimated that crystalline flake graphite accounts for at least 180,000 metric tons of total annual world mining production of natural graphite, and amorphous graphite makes up the rest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inam, A., E-mail: aqil.ceet@pu.edu.pk; Brydson, R., E-mail: mtlrmdb@leeds.ac.uk; Edmonds, D.V., E-mail: d.v.edmonds@leeds.ac.uk
The potential for using graphite particles as an internal lubricant during machining is considered. Graphite particles were found to form during graphitisation of experimental medium-carbon steel alloyed with Si and Al. The graphite nucleation sites were strongly influenced by the starting microstructure, whether ferrite–pearlite, bainite or martensite, as revealed by light and electron microscopy. Favourable nucleation sites in the ferrite–pearlite starting microstructure were, not unexpectedly, found to be located within pearlite colonies, no doubt due to the presence of abundant cementite as a source of carbon. In consequence, the final distribution of graphite nodules in ferrite–pearlite microstructures was less uniformmore » than for the bainite microstructure studied. In the case of martensite, this study found a predominance of nucleation at grain boundaries, again leading to less uniform graphite dispersions. - Highlights: • Metallography of formation of graphite particles in experimental carbon steel. • Potential for using graphite in steel as an internal lubricant during machining. • Microstructure features expected to influence improved machinability studied. • Influence of pre-anneal starting microstructure on graphite nucleation sites. • Influence of pre-anneal starting microstructure on graphite distribution. • Potential benefit is new free-cutting steel compositions without e.g. Pb alloying.« less
NASA Technical Reports Server (NTRS)
Coats, Timothy W.; Harris, Charles E.
1995-01-01
The durability and damage tolerance of laminated composites are critical design considerations for airframe composite structures. Therefore, the ability to model damage initiation and growth and predict the life of laminated composites is necessary to achieve structurally efficient and economical designs. The purpose of this research is to experimentally verify the application of a continuum damage model to predict progressive damage development in a toughened material system. Damage due to monotonic and tension-tension fatigue was documented for IM7/5260 graphite/bismaleimide laminates. Crack density and delamination surface area were used to calculate matrix cracking and delamination internal state variables to predict stiffness loss in unnotched laminates. A damage dependent finite element code predicted the stiffness loss for notched laminates with good agreement to experimental data. It was concluded that the continuum damage model can adequately predict matrix damage progression in notched and unnotched laminates as a function of loading history and laminate stacking sequence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, B.; Menten, K. M.; Wu, Y.
We conducted Very Large Array C-configuration observations to measure positions and luminosities of Galactic Class II 6.7 GHz methanol masers and their associated ultra-compact H ii regions. The spectral resolution was 3.90625 kHz and the continuum sensitivity reached 45 μ Jy beam{sup −1}. We mapped 372 methanol masers with peak flux densities of more than 2 Jy selected from the literature. Absolute positions have nominal uncertainties of 0.″3. In this first paper on the data analysis, we present three catalogs; the first gives information on the strongest feature of 367 methanol maser sources, and the second provides information on allmore » detected maser spots. The third catalog presents derived data of the 127 radio continuum counterparts associated with maser sources. Our detection rate of radio continuum counterparts toward methanol masers is approximately one-third. Our catalogs list properties including distance, flux density, luminosity, and the distribution in the Galactic plane. We found no significant relationship between luminosities of masers and their associated radio continuum counterparts, however, the detection rate of radio continuum emission toward maser sources increases statistically with the maser luminosities.« less
NASA Technical Reports Server (NTRS)
Boggs, S. E.; Lin, R. P.; Coburn, W.; Feffer, P.; Pelling, R. M.; Schroeder, P.; Slassi-Sennou, S.
1997-01-01
The balloon-borne high resolution gamma ray and X-ray germanium spectrometer (HIREGS) was used to observe the Galactic center and two positions along the Galactic plane from Antarctica in January 1995. For its flight, the collimators were configured to measure the Galactic diffuse hard X-ray continuum between 20 and 200 keV by directly measuring the point source contributions to the wide field of view flux for subtraction. The hard X-ray spectra of GX 1+4 and GRO J1655-40 were measured with the diffuse continuum subtracted off. The analysis technique for source separation is discussed and the preliminary separated spectra for these point sources and the Galactic diffuse emission are presented.
Failure Predictions for VHTR Core Components using a Probabilistic Contiuum Damage Mechanics Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fok, Alex
2013-10-30
The proposed work addresses the key research need for the development of constitutive models and overall failure models for graphite and high temperature structural materials, with the long-term goal being to maximize the design life of the Next Generation Nuclear Plant (NGNP). To this end, the capability of a Continuum Damage Mechanics (CDM) model, which has been used successfully for modeling fracture of virgin graphite, will be extended as a predictive and design tool for the core components of the very high- temperature reactor (VHTR). Specifically, irradiation and environmental effects pertinent to the VHTR will be incorporated into the modelmore » to allow fracture of graphite and ceramic components under in-reactor conditions to be modeled explicitly using the finite element method. The model uses a combined stress-based and fracture mechanics-based failure criterion, so it can simulate both the initiation and propagation of cracks. Modern imaging techniques, such as x-ray computed tomography and digital image correlation, will be used during material testing to help define the baseline material damage parameters. Monte Carlo analysis will be performed to address inherent variations in material properties, the aim being to reduce the arbitrariness and uncertainties associated with the current statistical approach. The results can potentially contribute to the current development of American Society of Mechanical Engineers (ASME) codes for the design and construction of VHTR core components.« less
NASA Astrophysics Data System (ADS)
Martín-Méndez, Iván; Boixereu, Ester; Villaseca, Carlos
2016-06-01
Graphite is found dispersed in high-grade metapelitic rocks of the Anatectic Complex of Toledo (ACT) and was mined during the mid twentieth century in places where it has been concentrated (Guadamur and la Puebla de Montalbán mines). Some samples from these mines show variable but significant alteration intensity, reaching very low-T hydrothermal (supergene) conditions for some samples from the waste heap of the Guadamur site (<100 °C and 1 kbar). Micro-Raman and XRD data indicate that all the studied ACT graphite is of high crystallinity irrespective of the degree of hydrothermal alteration. Chemical differences were obtained for graphite δ13C composition. ACT granulitic graphite shows δ13CPDB values in the range of -20.5 to -27.8 ‰, indicating a biogenic origin. Interaction of graphite with hydrothermal fluids does not modify isotopic compositions even in the most transformed samples from mining sites. The different isotopic signatures of graphite from the mining sites reflect its contrasted primary carbon source. The high crystallinity of studied graphite makes this area of central Spain suitable for graphitic exploration and its potential exploitation, due to the low carbon content required for its viability and its strategic applications in advanced technologies, such as graphene synthesis.
The Envelope Kinematics and a Possible Disk around the Class 0 Protostar within BHR7
NASA Astrophysics Data System (ADS)
Tobin, John J.; Bos, Steven P.; Dunham, Michael M.; Bourke, Tyler L.; van der Marel, Nienke
2018-04-01
We present a characterization of the protostar embedded within the BHR7 dark cloud, based on both photometric measurements from the near-infrared to millimeter and interferometric continuum and molecular line observations at millimeter wavelengths. We find that this protostar is a Class 0 system, the youngest class of protostars, measuring its bolometric temperature to be 50.5 K, with a bolometric luminosity of 9.3 L ⊙. The near-infrared and Spitzer imaging show a prominent dark lane from dust extinction separating clear bipolar outflow cavities. Observations of 13CO (J=2\\to 1), C18O (J=2\\to 1), and other molecular lines with the Submillimeter Array (SMA) exhibit a clear rotation signature on scales <1300 au. The rotation can be traced to an inner radius of ∼170 au and the rotation curve is consistent with an R ‑1 profile, implying that angular momentum is being conserved. Observations of the 1.3 mm dust continuum with the SMA reveal a resolved continuum source, extended in the direction of the dark lane, orthogonal to the outflow. The deconvolved size of the continuum indicates a radius of ∼100 au for the continuum source at the assumed distance of 400 pc. The visibility amplitude profile of the continuum emission cannot be reproduced by an envelope alone and needs a compact component. Thus, we posit that the resolved continuum source could be tracing a Keplerian disk in this very young system. If we assume that the continuum radius traces a Keplerian disk (R ∼ 120 au) the observed rotation profile is consistent with a protostar mass of 1.0 M ⊙.
Dust inflated accretion disc as the origin of the broad line region in active galactic nuclei
NASA Astrophysics Data System (ADS)
Baskin, Alexei; Laor, Ari
2018-02-01
The broad line region (BLR) in active galactic nuclei (AGNs) is composed of dense gas (˜1011 cm-3) on sub-pc scale, which absorbs about 30 per cent of the ionizing continuum. The outer size of the BLR is likely set by dust sublimation, and its density by the incident radiation pressure compression (RPC). But, what is the origin of this gas, and what sets its covering factor (CF)? Czerny & Hryniewicz (2011) suggested that the BLR is a failed dusty wind from the outer accretion disc. We explore the expected dust properties, and the implied BLR structure. We find that graphite grains sublimate only at T ≃ 2000 K at the predicted density of ˜1011 cm-3, and therefore large graphite grains (≥0.3 μm) survive down to the observed size of the BLR, RBLR. The dust opacity in the accretion disc atmosphere is ˜50 times larger than previously assumed, and leads to an inflated torus-like structure, with a predicted peak height at RBLR. The illuminated surface of this torus-like structure is a natural place for the BLR. The BLR CF is mostly set by the gas metallicity, the radiative accretion efficiency, a dynamic configuration and ablation by the incident optical-UV continuum. This model predicts that the BLR should extend inwards of RBLR to the disc radius where the surface temperature is ≃2000 K, which occurs at Rin ≃ 0.18RBLR. The value of Rin can be tested by reverberation mapping of the higher ionization lines, predicted by RPC to peak well inside RBLR. The dust inflated disc scenario can also be tested based on the predicted response of RBLR and the CF to changes in the AGN luminosity and accretion rate.
Graphitic biocarbon from metal-catalyzed hydrothermal carbonization of lignin
Demir, Muslum; Kahveci, Zafer; Aksoy, Burak; ...
2015-10-09
Lignin is a high-volume byproduct from the pulp and paper industry and is currently burned to generate electricity and process heat. Moreover, the industry has been searching for high value-added uses of lignin to improve the process economics. In addition, battery manufacturers are seeking nonfossil sources of graphitic carbon for environmental sustainability. In our work, lignin (which is a cross-linked polymer of phenols, a component of biomass) is converted into graphitic porous carbon using a two-step conversion. Lignin is first carbonized in water at 300 °C and 1500 psi to produce biochar, which is then graphitized using a metal nitratemore » catalyst at 900–1100 °C in an inert gas at 15 psi. Graphitization effectiveness of three different catalysts—iron, cobalt, and manganese nitrates—is examined. The product is analyzed for morphology, thermal stability, surface properties, and electrical conductivity. Both temperature and catalyst type influenced the degree of graphitization. A good quality graphitic carbon was obtained using catalysis by Mn(NO 3) 2 at 900 °C and Co(NO 3) 2 at 1100 °C.« less
Graphite tail powder and liquid biofertilizer as trace elements source for ground nut
NASA Astrophysics Data System (ADS)
Hindersah, Reginawanti; Setiawati, M. Rochimi; Fitriatin, B. Natalie; Suryatama, Pujawati; Asmiran, Priyanka; Panatarani, Camellia; Joni, I. Made
2018-02-01
Utilization of graphite tail waste from the mineral beneficiation processing is very important since it contain significant amount of essential minerals which are necessary for plant growth. These mineral are required in biochemical processes and mainly play an important role as cofactor in enzymatic reaction. The objective of this research is to investigate the performance of graphite tail on supporting plant growth and yield of ground nut (Arachishypogeae L.). A field experiment has been performed to test the performance of mixed graphite tail and reduced organic matter dose. The graphite tail size were reduced to various sieved size, -80 mesh, -100 mesh and -200 mesh. The experiment was setup in randomized block design with 4 treatments and 6 replications for each treatment, while the control plot is received without graphite tail. The results demonstrated that reduced organic matter along with -200 mesh tail has potentially decreased plant height at the end of vegetative growth stage, in contrast for to -80 mesh tail amendment increased individual fresh plant biomass. Statistically, there was no change of plant nodule, individual shoot fresh and dry weight, root nodule, number of pod following any mesh of graphite tail amendment. Reducing organic matter while adding graphite tail of 5% did not change bean weight in all plot. In contrast, reduced organic matter along with 80-mesh graphite tail amendment improved the nut yield per plot. This experiment suggests that graphite tail, mainly -80 mesh graphite tail can be possibly used in legume production.
The February 15 2011 CME-CME interaction and possibly associated radio emission
NASA Astrophysics Data System (ADS)
Magdalenic, Jasmina; Temmer, Manuela; Krupar, Vratislav; Marque, Christophe; Veronig, Astrid; Eastwood, Jonathan
2017-04-01
On February 15, 2011 a particular, continuum-like radio emission was observed by STEREO WAVES and WIND WAVES spacecraft. The radio event appeared to be associated with the complex interaction of two coronal mass ejections (CMEs) successively launched (February 14 and February 15) from the same active region. Although the CME-CME interaction was widely studied (e.g. Temmer et al., 2014, Maricic et al., 2014, Mishra & Srivastava, 2014) none of the analyses confirmed an association with the continuum-like radio emission. The usual method of establishing temporal coincidence of radio continuum and a CME-CME interaction is not applicable in this event due to a complex and long-lasting interaction of the CMEs. Therefore, we performed radio triangulation studies (see also Magdalenic et al., 2014) which provided us with the 3D source positions of the radio emission. Comparison of the positions of radio sources and the reconstructed positions of the interacting CMEs, shows that the source position of the continuum-like radio emission is about 0.5 AU away from the interacting CMEs. We can therefore concluded that, in this event, the continuum-like emission is not the radio signature of the CME-CME interaction.
Han, Yong; Lii-Rosales, A.; Zhou, Y.; ...
2017-10-13
Theory and stochastic lattice-gas modeling is developed for the formation of intercalated metal islands in the gallery between the top layer and the underlying layer at the surface of layered materials. Our model for this process involves deposition of atoms, some fraction of which then enter the gallery through well-separated pointlike defects in the top layer. Subsequently, these atoms diffuse within the subsurface gallery leading to nucleation and growth of intercalated islands nearby the defect point source. For the case of a single point defect, continuum diffusion equation analysis provides insight into the nucleation kinetics. However, complementary tailored lattice-gas modelingmore » produces a more comprehensive and quantitative characterization. We analyze the large spread in nucleation times and positions relative to the defect for the first nucleated island. We also consider the formation of subsequent islands and the evolution of island growth shapes. The shapes reflect in part our natural adoption of a hexagonal close-packed island structure. As a result, motivation and support for the model is provided by scanning tunneling microscopy observations of the formation of intercalated metal islands in highly-ordered pyrolytic graphite at higher temperatures.« less
NASA Astrophysics Data System (ADS)
Bushuev, N.; Yafarov, R.; Timoshenkov, V.; Orlov, S.; Starykh, D.
2015-08-01
The self-organization effect of diamond nanocrystals in polymer-graphite and carbon films is detected. The carbon materials deposition was carried from ethanol vapors out at low pressure using a highly non-equilibrium microwave plasma. Deposition processes of carbon film structures (diamond, graphite, graphene) is defined. Deposition processes of nanocrystalline structures containing diamond and graphite phases in different volume ratios is identified. The solid film was obtained under different conditions of microwave plasma chemical synthesis. We investigated the electrical properties of the nanocrystalline carbon films and identified it's from various factors. Influence of diamond-graphite film deposition mode in non-equilibrium microwave plasma at low pressure on emission characteristics was established. This effect is justified using the cluster model of the structure of amorphous carbon. It was shown that the reduction of bound hydrogen in carbon structures leads to a decrease in the threshold electric field of emission from 20-30 V/m to 5 V/m. Reducing the operating voltage field emission can improve mechanical stability of the synthesized film diamond-graphite emitters. Current density emission at least 20 A/cm2 was obtained. Nanocrystalline carbon film materials can be used to create a variety of functional elements in micro- and nanoelectronics and photonics such as cold electron source for emission in vacuum devices, photonic devices, cathodoluminescent flat display, highly efficient white light sources. The obtained graphene carbon net structure (with a net size about 6 μm) may be used for the manufacture of large-area transparent electrode for solar cells and cathodoluminescent light sources
NASA Technical Reports Server (NTRS)
Nir, Z.; Gilwee, W. J.; Kourtides, D. A.; Parker, J. A.
1985-01-01
A new trifunctional epoxy resin, Tris-(hydroxyphenyl) methane triglycidyl ether, is compared to a state-of-the-art tetraglycidyl 4,4'-diaminodiphenyl methane (TGDDM), in graphite composites. Rubber-toughened brominated formulations of the epoxy resin are compared to nonbrominated ones in terms of their mechanical performance, environmental stability, thermochemical behavior, and flame retardancy. It is shown that the new resin performs almost the same way as the TGDDM does, but has improved glass transition temperature and environmental properties. Brominated polymeric additives (BPA) of different molecular weights are tested as a Br source to flame retardant graphite epoxy composites. The optimal molecular weight of the BPA and its polymeric backbone length are derived and compared with a 10 percent rubber-toughened formulation of the epoxy resin. Results indicate that when the Br content in the graphite composite is increased without the use of rubber, the mechanical properties improved. The use of BPAs as tougheners for graphite composites is also considered.
Cameron, Eugene N.; Weis, Paul L.
1960-01-01
Strategic graphite consists of certain grades of lump and flake graphite for which the United States is largely or entirely dependent on sources abroad. Lump graphite of high purity, necessary in the manufacture of carbon brushes, is imported from Ceylon, where it occurs in vein deposits. Flake graphite, obtained from deposits consisting of graphite disseminated in schists and other metamorphic rocks, is an essential ingredient of crucibles used in the nonferrous metal industries and in the manufacture of lubricants and packings. High-quality flake graphite for these uses has been obtained mostly from Madagascar since World War I. Some flake graphite of strategic grade has been produced, however, from deposits in Texas, Alabama, and Pennsylvania. The development of the carbon-bonded crucible, which does not require coarse flake, should lessen the competitive advantage of the Madagascar producers of crucible flake. Graphite of various grades has been produced intermittently in the United States since 1644. The principal domestic deposits of flake graphite are in Texas, Alabama, Pennsylvania, and New York. Reserves of flake graphite in these four States are very large, but production has been sporadic and on the whole unprofitable since World War I, owing principally to competition from producers in Madagascar. Deposits in Madagascar are large and relatively high in content of flake graphite. Production costs are low and the flake produced is of high quality. Coarseness of flake and uniformity of the graphite products marketed are cited as major advantages of Madagascar flake. In addition, the usability of Madagascar flake for various purposes has been thoroughly demonstrated, whereas the usability of domestic flake for strategic purposes is still in question. Domestic graphite deposits are of five kinds: deposits consisting of graphite disseminated in metamorphosed siliceous sediments, deposits consisting of graphite disseminated in marble, deposits formed by thermal or dynamothermal metamorphism of coal beds or other highly carbonaceous sediments, vein deposits, and contact metasomatic deposits in marble. Only the first kind comprises deposits sufficiently large and rich in flake graphite to be significant potential sources of strategic grades of graphite. Vein deposits in several localities are known, but none is known to contain substantial reserves of graphite of strategic quality.Large resources of flake graphite exist in central Texas, in northeastern Alabama, in eastern Pennsylvania, and in the eastern Adirondack Mountains of New York. Tonnages available, compared with the tonnages of flake graphite consumed annually in the United States, are very large. There have been indications that flake graphite from Texas, Alabama, and Pennsylvania can be used in clay-graphite crucibles as a substitute for Madagascar flake, and one producer has made progress in establishing markets for his flake products as ingredients of lubricants. The tonnages of various commercial grades of graphite recoverable from various domestic deposits, however, have not been established; hence, the adequacy of domestic resources of graphite in a time of emergency is not known.The only vein deposits from which significant quantities of lump graphite have been produced are those of the Crystal Graphite mine, Beaverhead County, Mont. The deposits are fracture fillings in Precambrian gneiss and pegmatite. Known reserves in the deposits are small. In Texas, numerous flake-graphite deposits occur in the Precambrian Packsaddle schist in Llano and Burnet Counties. Graphite disseminated in certain parts of this formation ranges from extremely fine to medium grained. The principal producer has been the mine of the Southwestern Graphite Co., west of the town of Burnet. Substantial reserves of medium-grained graphite are present in the deposit mined by the company. In northeastern Alabama, flake-graphite deposits occur in the Ashland mica schist in two belts that trend northeastward across Clay, Goosa, and Chilton Counties. The northeastern belt has been the most productive. About 40 mines have been operated at one time or another, but only a few have been active during or since World War I. The deposits consist of flake graphite disseminated in certain zones or "leads" consisting of quartz-mica-feldspar schists and mica quartzite. Most of past production has come from the weathered upper parts of the deposits, but unweathered rock has been mined at several localities. Reserves of weathered rock containing 3 to 5 percent graphite are very large, and reserves of unweathered rock are even greater. Flake graphite deposits in Chester County, Pa., have been worked intermittently since about 1890. The deposits consist of medium- to coarse-grained graphite disseminated in certain belts of the Pickering gneiss. The most promising deposit is one worked in the Benjamin Franklin and the Eynon Just mines. Reserves of weathered rock containing 1.5 percent graphite are of moderate size; reserves of unweathered rock are large. In the eastern Adirondack Mountains in New York there are two principal kinds of flake-graphite deposits: contact-metasomatic deposits and those consisting of flake graphite disseminated in quartz schist. The contact-metasomatic deposits are small, irregular, and very erratic in graphite content. The deposits in quartz schist are very large, persistent, and uniform in grade. There are large reserves of schist containing 3 to 5 percent graphite, but the graphite is relatively fine grained.
NASA Astrophysics Data System (ADS)
Jin, Hong; Hu, Jingpeng; Wu, Shichao; Wang, Xiaolan; Zhang, Hui; Xu, Hui; Lian, Kun
2018-04-01
Three-dimensional interconnected porous graphitic carbon materials are synthesized via a combination of graphitization and activation process with rice straw as the carbon source. The physicochemical properties of the three-dimensional interconnected porous graphitic carbon materials are characterized by Nitrogen adsorption/desorption, Fourier-transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, Scanning electron microscopy and Transmission electron microscopy. The results demonstrate that the as-prepared carbon is a high surface area carbon material (a specific surface area of 3333 m2 g-1 with abundant mesoporous and microporous structures). And it exhibits superb performance in symmetric double layer capacitors with a high specific capacitance of 400 F g-1 at a current density of 0.1 A g-1, good rate performance with 312 F g-1 under a current density of 5 A g-1 and favorable cycle stability with 6.4% loss after 10000 cycles at a current density of 5 A g-1 in the aqueous electrolyte of 6M KOH. Thus, rice straw is a promising carbon source for fabricating inexpensive, sustainable and high performance supercapacitors' electrode materials.
On the Nature of Orion Source I
NASA Astrophysics Data System (ADS)
Báez-Rubio, A.; Jiménez-Serra, I.; Martín-Pintado, J.; Zhang, Q.; Curiel, S.
2018-01-01
The Kleinmann–Low nebula in Orion, the closest region of massive star formation, harbors Source I, whose nature is under debate. Knowledge of this source may have profound implications for our understanding of the energetics of the hot core in Orion KL since it might be the main heating source in the region. The spectral energy distribution of this source in the radio is characterized by a positive spectral index close to 2, which is consistent with (i) thermal bremsstrahlung emission of ionized hydrogen gas produced by a central massive protostar, or (ii) photospheric bremsstrahlung emission produced by electrons when deflected by the interaction with neutral and molecular hydrogen like Mira-like variable stars. If ionized hydrogen gas were responsible for the observed continuum emission, its modeling would predict detectable emission from hydrogen radio recombination lines (RRLs). However, our SMA observations were obtained with a high enough sensitivity to rule out that the radio continuum emission arises from a dense hypercompact H II region because the H26α line would have been detected, in contrast with our observations. To explain the observational constraints, we investigate further the nature of the radio continuum emission from source I. We have compared available radio continuum data with the predictions from our upgraded non-LTE 3D radiative transfer model, MOdel for REcombination LInes, to show that radio continuum fluxes and sizes can only be reproduced by assuming both dust and bremsstrahlung emission from neutral gas. The dust emission contribution is significant at ν ≥ 43 GHz. In addition, our RRL peak intensity predictions for the ionized metals case are consistent with the nondetection of Na and K RRLs at millimeter and submillimeter wavelengths.
Abundances of presolar graphite and SiC from supernovae and AGB stars in the Murchison meteorite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amari, Sachiko; Zinner, Ernst; Gallino, Roberto
2014-05-02
Pesolar graphite grains exhibit a range of densities (1.65 – 2.20 g/cm{sup 3}). We investigated abundances of presolar graphite grains formed in supernovae and in asymptotic giant branch (AGB) stars in the four density fractions KE3, KFA1, KFB1 and KFC1 extracted from the Murchison meteorite to probe dust productions in these stellar sources. Seventy-six and 50% of the grains in the low-density fractions KE3 and KFA1, respectively, are supernova grains, while only 7.2% and 0.9% of the grains in the high-density fractions KFB1 and KFC1 have a supernova origin. Grains of AGB star origin are concentrated in the high-density fractionsmore » KFB1 and KFC1. From the C isotopic distributions of these fractions and the presence of s-process Kr with {sup 86}Kr/{sup 82}Kr = 4.43±0.46 in KFC1, we estimate that 76% and 80% of the grains in KFB1 and KFC1, respectively, formed in AGB stars. From the abundance of graphite grains in the Murchison meteorite, 0.88 ppm, the abundances of graphite from supernovae and AGB stars are 0.24 ppm and 0.44 ppm, respectively: the abundances of graphite in supernovae and AGB stars are comparable. In contrast, it has been known that 1% of SiC grains formed in supernovae and 95% formed in AGB stars in meteorites. Since the abundance of SiC grains is 5.85 ppm in the Murchison meteorite, the abundances of SiC from supernovae and AGB stars are 0.063 ppm and 5.6 ppm, respectively: the dominant source of SiC grains is AGB stars. Since SiC grains are harder and likely to survive better in space than graphite grains, the abundance of supernova graphite grains, which is higher than that of supernova SiC grains, indicates that supernovae proficiently produce graphite grains. Graphite grains from AGB stars are, in contrast, less abundant that SiC grains from AGB stars (0.44 ppm vs. 5.6 ppm). It is difficult to derive firm conclusions for graphite and SiC formation in AGB stars due to the difference in susceptibility to grain destruction. Metallicity of the parent AGB stars of graphite grains is much lower than that of SiC grains and the difference in metallicity might also have affected to the difference in the abundances in the Murchison meteorite.« less
Exploring the engines of molecular outflows. Radio continuum and H_2_O maser observations.
NASA Astrophysics Data System (ADS)
Tofani, G.; Felli, M.; Taylor, G. B.; Hunter, T. R.
1995-09-01
We present A-configuration VLA observations of the 22GHz H_2_O maser line and 8.4GHz continuum emission of 22 selected CO bipolar outflows associated with water masers. These observations allow us to study the region within 10^4^AU of the engine powering the outflow. The positions of the maser spots are compared with those of ultra-compact (UC) continuum sources found in our observations, with IRAS data and with data from the literature on the molecular outflows. Weak unresolved continuum sources are found in several cases associated with the maser. Most probably they represent the ionized envelope surrounding the young stellar object (YSO) which powers the maser and the outflow. These weak radio continuum sources are not necessarily associated with the IRAS sources, which are more representative of the global emission from the star forming region. A comparison of the velocity pattern of the CO outflow with those of the maser spots detected with the VLA is also made. Asymmetries in the H_2_O velocities are found on opposite sides of the YSO, suggesting that the outflow acceleration begins from the YSO itself. In a few cases we find evidence for two outflows in different evolutionary stages. The H_2_O masers in these sources are always found at the centre of the younger outflow. The degree of variability of each maser is derived from single dish observations obtained with the Medicina radiotelescope before and after the VLA observations. Velocity drifts of some features are interpreted as acceleration of the maser.
Radio continuum from FU Orionis stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, L.F.; Hartmann, L.W.; Chavira, E.
1990-12-01
Using the very large array a sensitive search is conducted for 3.6-cm continuum emission toward four FU Orionis objects: FU Ori, V1515 Cyg, V1057 Cyg, and Elias 1-12. V1057 Cyg and Elias 1-12 at the level of about 0.1 mJy is detected. The association of radio continuum emission with these FU Ori objects strengthens a possible relation between FU Ori stars and objects like L 1551 IRS 5 and Z CMa that are also sources of radio continuum emission and have been proposed as post-FU Ori objects. Whether the radio continuum emission is caused by free-free emission from ionized ejectamore » or if it is optically thin emission from a dusty disk is discussed. It was determined that, in the archives of the Tonantzintla Observatory, a plate taken in 1957 does not show Elias 1-12. This result significantly narrows the time range for the epoch of the outburst of this source to between 1957 and 1965. 38 refs.« less
Lithium Battery Safety/Cell-to-Cell Failure Project FY14 Progress Report
2015-03-06
Delacourt, “Thermal modeling of a cylindrical LiFePO4 /graphite lithium-ion battery.” J. Power Sources 195 (2010) 2961- 2968. 18. T. B. Bandhauer, S...Ren, J. Xie, H. He and F. Xu, “Failure study of commercial LiFePO4 cells in over-discharge conditions using electrochemical impedance spectroscopy...graphite/ LiFePO4 cell.” J. Power Sources 208 (2012) 296-305. 61. N. S. Spinner, C. T. Love, S. G. Tuttle, K. Swider-Lyons and S. L. Rose-Pehrsson
Technical assessment for quality control of resins
NASA Technical Reports Server (NTRS)
Gosnell, R. B.
1977-01-01
Survey visits to companies involved in the manufacture and use of graphite-epoxy prepregs were conducted to assess the factors which may contribute to variability in the mechanical properties of graphite-epoxy composites. In particular, the purpose was to assess the contributions of the epoxy resins to variability. Companies represented three segments of the composites industry - aircraft manufacturers, prepreg manufacturers, and epoxy resin manufacturers. Several important sources of performance variability were identified from among the complete spectrum of potential sources which ranged from raw materials to composite test data interpretation.
Enhancing thermal conductivity of fluids with graphite nanoparticles and carbon nanotube
Zhang, Zhiqiang [Lexington, KY; Lockwood, Frances E [Georgetown, KY
2008-03-25
A fluid media such as oil or water, and a selected effective amount of carbon nanomaterials necessary to enhance the thermal conductivity of the fluid. One of the preferred carbon nanomaterials is a high thermal conductivity graphite, exceeding that of the neat fluid to be dispersed therein in thermal conductivity, and ground, milled, or naturally prepared with mean particle size less than 500 nm, and preferably less than 200 nm, and most preferably less than 100 nm. The graphite is dispersed in the fluid by one or more of various methods, including ultrasonication, milling, and chemical dispersion. Carbon nanotubes with graphitic structure is another preferred source of carbon nanomaterial, although other carbon nanomaterials are acceptable. To confer long term stability, the use of one or more chemical dispersants is preferred. The thermal conductivity enhancement, compared to the fluid without carbon nanomaterial, is proportional to the amount of carbon nanomaterials (carbon nanotubes and/or graphite) added.
Mechanism and modulation of terahertz generation from a semimetal - graphite
Ye, Tong; Meng, Sheng; Zhang, Jin; E, Yiwen; Yang, Yuping; Liu, Wuming; Yin, Yan; Wang, Li
2016-01-01
Semi-metals might offer a stronger interaction and a better confinement for terahertz wave than semiconductors, while preserve tunability. Particularly, graphene-based materials are envisioned as terahertz modulators, filters and ultra-broadband sources. However, the understanding of terahertz generation from those materials is still not clear, thus limits us recognizing the potential and improving device performances. Graphite, the mother material of graphene and a typical bulk semi-metal, is a good system to study semi-metals and graphene-based materials. Here we experimentally modulate and maximize the terahertz signal from graphite surface, thus reveal the mechanism - surface field driving photon induced carriers into transient current to radiate terahertz wave. We also discuss the differences between graphite and semiconductors; particularly graphite shows very weak temperature dependency from room temperature to 80 °C. Above knowledge will help us understand terahertz generations, achieve maximum output and electric modulation, in semi-metal or graphene based devices. PMID:26972818
Mechanism and modulation of terahertz generation from a semimetal--graphite.
Ye, Tong; Meng, Sheng; Zhang, Jin; E, Yiwen; Yang, Yuping; Liu, Wuming; Yin, Yan; Wang, Li
2016-03-14
Semi-metals might offer a stronger interaction and a better confinement for terahertz wave than semiconductors, while preserve tunability. Particularly, graphene-based materials are envisioned as terahertz modulators, filters and ultra-broadband sources. However, the understanding of terahertz generation from those materials is still not clear, thus limits us recognizing the potential and improving device performances. Graphite, the mother material of graphene and a typical bulk semi-metal, is a good system to study semi-metals and graphene-based materials. Here we experimentally modulate and maximize the terahertz signal from graphite surface, thus reveal the mechanism--surface field driving photon induced carriers into transient current to radiate terahertz wave. We also discuss the differences between graphite and semiconductors; particularly graphite shows very weak temperature dependency from room temperature to 80 °C. Above knowledge will help us understand terahertz generations, achieve maximum output and electric modulation, in semi-metal or graphene based devices.
Low-temperature synthesis of nanocrystalline ZrC coatings on flake graphite by molten salts
NASA Astrophysics Data System (ADS)
Ding, Jun; Guo, Ding; Deng, Chengji; Zhu, Hongxi; Yu, Chao
2017-06-01
A novel molten salt synthetic route has been developed to prepare nanocrystalline zirconium carbide (ZrC) coatings on flake graphite at 900 °C, using Zr powder and flake graphite as the source materials in a static argon atmosphere, along with molten salts as the media. The effects of different molten salt media, the sintered temperature, and the heat preservation time on the phase and microstructure of the synthetic materials were investigated. The ZrC coatings formed on the flake graphite were uniform and composed of nanosized particles (30-50 nm). With an increase in the reaction temperature, the ZrC nanosized particles were more denser, and the heat preservation time and thickness of the ZrC coating also increased accordingly. Electron microscopy was used to observe the ZrC coatings on the flake graphite, indicating that a "template mechanism" played an important role during the molten salt synthesis.
An electrostatic Si e-gun and a high temperature elemental B source for Si heteroepitaxial growth
NASA Astrophysics Data System (ADS)
Scarinci, F.; Casella, A.; Lagomarsino, S.; Fiordelisi, M.; Strappaveccia, P.; Gambacorti, N.; Grimaldi, M. G.; Xue, LiYing
1996-08-01
In this paper we present two kind of sources used in Si MBE growth: a Si source where an electron beam is electrostatically deflected onto a Si rod and a high temperature B source to be used for p-doping. Both sources have been designed and constructed at IESS. The Si source is constituted of a Si rod mounted on a 3/4″ flange with high-voltage connector. A W filament held at high voltage (up to 2000 V) is heated by direct current. Electrons from the filament are electrostatically focused onto the Si rod which is grounded. This mounting allows a minimum heating dispersion and no contamination, because the only hot objects are the Si rod and the W filament which is mounted in such a way that it cannot see the substrate. Growth rates of 10 Å/min on a substrate at 20 cm from the source have been measured. Auger and LEED have shown no contamination. The B source is constituted of a graphite block heated by direct current. A pyrolitic graphite crucible put in the graphite heater contains the elemental B. The cell is water cooled and contains Ta screens to avoid heat dispersion. It has been tested up to a temperature of 1700°C. P-doped Si 1- xGe x layers have been grown and B concentration has been measured by SIMS. A good control and reproducibility has been attained.
Liu, Shuxin; Wang, Haibin; Yin, Hengbo; Wang, Hong; He, Jichuan
2014-03-01
The carbon coated LiFePO4 (LiFePO4/C) nanocomposites materials were successfully synthesized by sol-gel method. The microstructure and morphology of LiFePO4/C nanocomposites were characterized by X-ray diffraction, Raman spectroscopy and scanning electron microscopy. The results showed that the carbon layers decomposed by different dispersant and carbon source had different graphitization degree, and the sugar could decompose to form more graphite-like structure carbon. The carbon source and heat-treatment temperature had some effect on the particle size and morphology, the sample LFP-S700 synthesized by adding sugar as carbon source at 700 degrees C had smaller particle size, uniform size distribution and spherical shape. The electrochemical behavior of LiFePO4/C nanocomposites was analyzed using galvanostatic measurements and cyclic voltammetry (CV). The results showed that the sample LFP-S700 had higher discharge specific capacities, higher apparent lithium ion diffusion coefficient and lower charge transfer resistance. The excellent electrochemical performance of sample LFP-S700 could be attributed to its high graphitization degree of carbon, smaller particle size and uniform size distribution.
ERIC Educational Resources Information Center
Briggs, Brandon; Mitton, Teri; Smith, Rosemary; Magnuson, Timothy
2009-01-01
Microbial fuel cells are a current research area that harvests electricity from bacteria capable of anaerobic respiration. Graphite is an electrically conductive material that bacteria can respire on, thus it can be used to capture electrons from bacteria. When bacteria transfer electrons to graphite, an electrical potential is created that can…
Ashy, M A; Headridge, J B; Sowerbutts, A
1974-06-01
Results are presented for the atomic-absorption spectrophotometric determination of zinc in aluminium and aluminium-silicon alloys, and aluminium, antimony and tin in steels, by means of solid samples dropped into an induction-heated graphite-well furnace to produce the atomic vapour.
Carbon transfer from magnesia-graphite ladle refractories to ultra-low carbon steel
NASA Astrophysics Data System (ADS)
Russo, Andrew Arthur
Ultra-low carbon steels are utilized in processes which require maximum ductility. Increases in interstitial carbon lower the ductility of steel; therefore, it is important to examine possible sources of carbon. The refractory ladle lining is one such source. Ladle refractories often contain graphite for its desirable thermal shock and slag corrosion resistance. This graphite is a possible source of carbon increase in ultra-low carbon steels. The goal of this research is to understand and evaluate the mechanisms by which carbon transfers to ultra-low carbon steel from magnesia-graphite ladle refractory. Laboratory dip tests were performed in a vacuum induction furnace under an argon atmosphere to investigate these mechanisms. Commercial ladle refractories with carbon contents between 4-12 wt% were used to investigate the effect of refractory carbon content. Slag-free dip tests and slag-containing dip tests with varying MgO concentrations were performed to investigate the influence of slag. Carbon transfer to the steel was controlled by steel penetrating into the refractory and dissolving carbon in dip tests where no slag was present. The rate limiting step for this mechanism is convective mass transport of carbon into the bulk steel. No detectable carbon transfer occurred in dip tests with 4 and 6 wt%C refractories without slag because no significant steel penetration occurred. Carbon transfer was controlled by the corrosion of refractory by slag in dip tests where slag was present.
Ionized absorbers, ionized emitters, and the X-ray spectrum of active galactic nuclei
NASA Technical Reports Server (NTRS)
Netzer, Hagai
1993-01-01
Broad absorption features are common in the X-ray spectrum of low-luminosity AGNs. The features have been modeled by leaky neutral absorbers or by highly ionized gas that completely occult the continuum source. Such models are incomplete since they do not take into account all the physical processes in the gas. In particular, no previous model included the X-ray emission by the ionized absorbing gas and the reflection of the continuum source radiation. The present work discusses the emission, absorption, and reflection properties of photoionized gases with emphasis on conditions thought to prevail in AGNs. It shows that such gas is likely to produce intense X-ray line and continuum radiation and to reflect a sizable fraction of the nonstellar continuum at all energies. If such gas is indeed responsible for the observed X-ray absorption, then absorption edges are much weaker than commonly assumed, and some residual X-ray continuum is likely to be observed even if the line of sight is completely blocked. Moreover, X-ray emission features may show up in sources not showing X-ray absorption. This has immense consequences for medium-resolution X-ray missions, such as BBXRT and Astro-D, and for the planned high-resolution experiments on board XMM and AXAF.
Lithium storage in structurally tunable carbon anode derived from sustainable source
Lim, Daw Gen; Kim, Kyungho; Razdan, Mayuri; ...
2017-09-01
Here, a meticulous solid state chemistry approach has been developed for the synthesis of carbon anode from a sustainable source. The reaction mechanism of carbon formation during pyrolysis of sustainable feed-stock was studied in situ by employing Raman microspectroscopy. No Raman spectral changes observed below 160°C (thermally stable precursor) followed by color change, however above 280°C characteristic D and G bands of graphitic carbon are recorded. Derived carbon particles exhibited high specific surface area with low structural ordering (active carbons) to low specific surface area with high graphitic ordering as a function of increasing reaction temperature. Carbons synthesized at 600°Cmore » demonstrated enhanced reversible lithiation capacity (390 mAh g -1), high charge-discharge rate capability, and stable cycle life. On the contrary, carbons synthesized at higher temperatures (>1200°C) produced more graphite-like structure yielding longer specific capacity retention with lower reversible capacity.« less
Alloying of steel and graphite by hydrogen in nuclear reactor
NASA Astrophysics Data System (ADS)
Krasikov, E.
2017-02-01
In traditional power engineering hydrogen may be one of the first primary source of equipment damage. This problem has high actuality for both nuclear and thermonuclear power engineering. Study of radiation-hydrogen embrittlement of the steel raises the question concerning the unknown source of hydrogen in reactors. Later unexpectedly high hydrogen concentrations were detected in irradiated graphite. It is necessary to look for this source of hydrogen especially because hydrogen flakes were detected in reactor vessels of Belgian NPPs. As a possible initial hypothesis about the enigmatical source of hydrogen one can propose protons generation during beta-decay of free neutrons поскольку inasmuch as protons detected by researches at nuclear reactors as witness of beta-decay of free neutrons.
Method for wetting a boron alloy to graphite
Storms, E.K.
1987-08-21
A method is provided for wetting a graphite substrate and spreading a a boron alloy over the substrate. The wetted substrate may be in the form of a needle for an effective ion emission source. The method may also be used to wet a graphite substrate for subsequent joining with another graphite substrate or other metal, or to form a protective coating over a graphite substrate. A noneutectic alloy of boron is formed with a metal selected from the group consisting of nickel (Ni), palladium (Pd), and platinum (Pt) with excess boron, i.e., and atomic percentage of boron effective to precipitate boron at a wetting temperature of less than the liquid-phase boundary temperature of the alloy. The alloy is applied to the substrate and the graphite substrate is then heated to the wetting temperature and maintained at the wetting temperature for a time effective for the alloy to wet and spread over the substrate. The excess boron is evenly dispersed in the alloy and is readily available to promote the wetting and spreading action of the alloy. 1 fig.
Zeng, Fan W.; Contescu, Cristian I.; Gallego, Nidia C.; ...
2016-12-18
Laser ultrasonic line source methods have been used to study elastic anisotropy in nuclear graphites by measuring shear wave birefringence. Depending on the manufacturing processes used during production, nuclear graphites can exhibit various degrees of material anisotropy related to preferred crystallite orientation and to microcracking. In this paper, laser ultrasonic line source measurements of shear wave birefringence on NBG-25 have been performed to assess elastic anisotropy. Laser line sources allow specific polarizations for shear waves to be transmitted – the corresponding wavespeeds can be used to compute bulk, elastic moduli that serve to quantify anisotropy. These modulus values can bemore » interpreted using physical property models based on orientation distribution coefficients and microcrack-modified, single crystal moduli to represent the combined effects of crystallite orientation and microcracking on material anisotropy. Finally, ultrasonic results are compared to and contrasted with measurements of anisotropy based on the coefficient of thermal expansion to show the relationship of results from these techniques.« less
The complex ion structure of warm dense carbon measured by spectrally resolved x-ray scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, D.; Barbrel, B.; Falcone, R. W.
2015-05-15
We present measurements of the complex ion structure of warm dense carbon close to the melting line at pressures around 100 GPa. High-pressure samples were created by laser-driven shock compression of graphite and probed by intense laser-generated x-ray sources with photon energies of 4.75 keV and 4.95 keV. High-efficiency crystal spectrometers allow for spectrally resolving the scattered radiation. Comparing the ratio of elastically and inelastically scattered radiation, we find evidence for a complex bonded liquid that is predicted by ab-initio quantum simulations showing the influence of chemical bonds under these conditions. Using graphite samples of different initial densities we demonstrate the capability ofmore » spectrally resolved x-ray scattering to monitor the carbon solid-liquid transition at relatively constant pressure of 150 GPa. Showing first single-pulse scattering spectra from cold graphite of unprecedented quality recorded at the Linac Coherent Light Source, we demonstrate the outstanding possibilities for future high-precision measurements at 4th Generation Light Sources.« less
Ab initio study of the effects of thin CsI coatings on the work function of graphite cathodes
NASA Astrophysics Data System (ADS)
Vlahos, Vasilios; Booske, John H.; Morgan, Dane
2007-10-01
Cesium-iodide (CsI)-coated graphite cathodes are promising electron sources for high power microwave generators, but the mechanism driving the improved emission is not well understood. Therefore, an ab initio modeling investigation on the effects of thin CsI coatings on graphite has been carried out. It is demonstrated that the CsI coatings reduce the work function of the system significantly through a mechanism of induced dipoles. The results suggest that work function modification is a major contribution to the improved emission seen when CsI coatings are applied to C.
NASA Technical Reports Server (NTRS)
Fornes, R. E.; Gilbert, R. D.; Memory, J. D.
1985-01-01
In an effort to elucidate the changes in molecular structural and mechanical properties of epoxy/graphite fiber composites upon exposure to ionizing radiation in a simulated space environment, spectroscopic and surface properties of tetraglycidyl-4,4'-diamino diphenyl methane (TGDDM) red with diamino diphenyl sulfone (DDS) and T-300 graphite fiber were investigated following exposure to ionizing radiation. Cobalt-60 gamma radiation and 1/2 MeV electrons were used as radiation sources. The system was studied using electron spin resonance (ESR) spectroscopy, infrared absorption spectroscopy, contact angle measurements, and electron spectroscopy for chemical analysis.
Role of nuclear grade graphite in controlling oxidation in modular HTGRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windes, Willaim; Strydom, G.; Kane, J.
2014-11-01
The passively safe High Temperature Gas-cooled Reactor (HTGR) design is one of the primary concepts considered for Generation IV and Small Modular Reactor (SMR) programs. The helium cooled, nuclear grade graphite moderated core achieves extremely high operating temperatures allowing either industrial process heat or electricity generation at high efficiencies. In addition to their neutron moderating properties, nuclear grade graphite core components provide excellent high temperature stability, thermal conductivity, and chemical compatibility with the high temperature nuclear fuel form. Graphite has been continuously used in nuclear reactors since the 1940’s and has performed remarkably well over a wide range of coremore » environments and operating conditions. Graphite moderated, gas-cooled reactor designs have been safely used for research and power production purposes in multiple countries since the inception of nuclear energy development. However, graphite is a carbonaceous material, and this has generated a persistent concern that the graphite components could actually burn during either normal or accident conditions [ , ]. The common assumption is that graphite, since it is ostensibly similar to charcoal and coal, will burn in a similar manner. While charcoal and coal may have the appearance of graphite, the internal microstructure and impurities within these carbonaceous materials are very different. Volatile species and trapped moisture provide a source of oxygen within coal and charcoal allowing them to burn. The fabrication process used to produce nuclear grade graphite eliminates these oxidation enhancing impurities, creating a dense, highly ordered form of carbon possessing high thermal diffusivity and strongly (covalently) bonded atoms.« less
NASA Technical Reports Server (NTRS)
Howard, Christian; Sandell, Goeran; Vacca, William D.; Duchene, Gaspard; Matthews, Geoffrey; Augereau, Jean-Charles; Barbado, David; Dent, William R. F.; Eiroa, Carlos; Grady, Carol;
2013-01-01
The Herschel Space Observatory was used to observe approx. 120 pre-main-sequence stars in Taurus as part of the GASPS Open Time Key project. Photodetector Array Camera and Spectrometer was used to measure the continuum as well as several gas tracers such as [O I] 63 micron, [O I] 145 micron, [C II] 158, micron OH, H2O, and CO. The strongest line seen is [O I] at 63 micron. We find a clear correlation between the strength of the [O I] 63 micron line and the 63 micron continuum for disk sources. In outflow sources, the line emission can be up to 20 times stronger than in disk sources, suggesting that the line emission is dominated by the outflow. The tight correlation seen for disk sources suggests that the emission arises from the inner disk (<50 AU) and lower surface layers of the disk where the gas and dust are coupled. The [O I] 63 micron is fainter in transitional stars than in normal Class II disks. Simple spectral energy distribution models indicate that the dust responsible for the continuum emission is colder in these disks, leading to weaker line emission. [C II] 158 micron emission is only detected in strong outflow sources. The observed line ratios of [O I] 63 micron to [O I] 145 micron are in the regime where we are insensitive to the gas-to-dust ratio, neither can we discriminate between shock or photodissociation region emission. We detect no Class III object in [O I] 63 micron and only three in continuum, at least one of which is a candidate debris disk.
On the damping capacity of cast irons
NASA Astrophysics Data System (ADS)
Golovin, S. A.
2012-07-01
The treatment of experimental data on the amplitude-dependent internal friction (ADIF) in terms of various theoretical models has revealed a staged character and the main mechanisms of the processes of energy dissipation in graphite with increasing amplitude of vibrations upon cyclic loading. It is shown that the level of the damping capacity of lamellar cast iron depends on the relationship between the elastic and strength characteristics of graphite and the matrix phase. In cast irons with a rigid matrix structure (pearlite, martensite), the energy dissipation is determined by the volume fraction and morphology of the initial graphite phase. In cast irons with a softer metallic phase (ferrite), the contact interaction of graphite inclusions with the matrix and the properties of the matrix introduce additional sources of high damping.
Knirsch, Kathrin C; Englert, Jan M; Dotzer, Christoph; Hauke, Frank; Hirsch, Andreas
2013-11-28
Reductive alkylation of three graphite starting materials G(flake), G(powder), and G(spherical) reveals pronounced differences in the obtained covalently functionalized graphene with respect to the degree of functionalization, exfoliation efficiency and product homogeneity, as demonstrated by statistical Raman microscopy (SRM), TGA/MS, IR-spectroscopy and solubility behavior.
First Science Verification of the VLA Sky Survey Pilot
NASA Astrophysics Data System (ADS)
Cavanaugh, Amy
2017-01-01
My research involved analyzing test images by Steve Myers for the upcoming VLA Sky Survey. This survey will cover the entire sky visible from the VLA site in S band (2-4 GHz). The VLA will be in B configuration for the survey, as it was when the test images were produced, meaning a resolution of approximately 2.5 arcseconds. Conducted using On-the-Fly mode, the survey will have a speed of approximately 20 deg2 hr-1 (including overhead). New Python imaging scripts are being developed and improved to process the VLASS images. My research consisted of comparing a continuum test image over S band (from the new imaging scripts) to two previous images of the same region of the sky (from the CNSS and FIRST surveys), as well as comparing the continuum image to single spectral windows (from the new imaging scripts and of the same sky region). By comparing our continuum test image to images from CNSS and FIRST, we tested on-the-Fly mode and the imaging script used to produce our images. Another goal was to test whether individual spectral windows could be used in combination to calculate spectral indices close to those produced over S band (based only on our continuum image). Our continuum image contained 64 sources as opposed to the 99 sources found in the CNSS image. The CNSS image also had lower noise level (0.095 mJy/beam compared to 0.119 mJy/beam). Additionally, when our continuum image was compared to the CNSS image, separation showed no dependence on total flux density (in our continuum image). At lower flux densities, sources in our image were brighter than the same ones in the CNSS image. When our continuum image was compared to the FIRST catalog, the spectral index difference showed no dependence on total flux (in our continuum image). In conclusion, the quality of our images did not completely match the quality of the CNSS and FIRST images. More work is needed in developing the new imaging scripts.
RADIO OBSERVATIONS OF THE STAR FORMATION ACTIVITIES IN THE NGC 2024 FIR 4 REGION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Minho; Kang, Miju; Lee, Jeong-Eun, E-mail: minho@kasi.re.kr
Star formation activities in the NGC 2024 FIR 4 region were studied by imaging centimeter continuum sources and water maser sources using several archival data sets from the Very Large Array. The continuum source VLA 9 is elongated in the northwest–southeast direction, consistent with the FIR 4 bipolar outflow axis, and has a flat spectrum in the 6.2–3.6 cm interval. The three water maser spots associated with FIR 4 are also distributed along the outflow axis. One of the spots is located close to VLA 9, and another one is close to an X-ray source. Examinations of the positions ofmore » compact objects in this region suggest that the FIR 4 cloud core contains a single low-mass protostar. VLA 9 is the best indicator of the protostellar position. VLA 9 may be a radio thermal jet driven by this protostar, and it is unlikely that FIR 4 contains a high-mass young stellar object (YSO). A methanol 6.7 GHz maser source is located close to VLA 9, at a distance of about 100 AU. The FIR 4 protostar must be responsible for the methanol maser action, which suggests that methanol class II masers are not necessarily excited by high-mass YSOs. Also discussed are properties of other centimeter continuum sources in the field of view and the water masers associated with FIR 6n. Some of the continuum sources are radio thermal jets, and some are magnetically active young stars.« less
The gamma ray continuum spectrum from the galactic center disk and point sources
NASA Technical Reports Server (NTRS)
Gehrels, Neil; Tueller, Jack
1992-01-01
A light curve of gamma-ray continuum emission from point sources in the galactic center region is generated from balloon and satellite observations made over the past 25 years. The emphasis is on the wide field-of-view instruments which measure the combined flux from all sources within approximately 20 degrees of the center. These data have not been previously used for point-source analyses because of the unknown contribution from diffuse disk emission. In this study, the galactic disk component is estimated from observations made by the Gamma Ray Imaging Spectrometer (GRIS) instrument in Oct. 1988. Surprisingly, there are several times during the past 25 years when all gamma-ray sources (at 100 keV) within about 20 degrees of the galactic center are turned off or are in low emission states. This implies that the sources are all variable and few in number. The continuum gamma-ray emission below approximately 150 keV from the black hole candidate 1E1740.7-2942 is seen to turn off in May 1989 on a time scale of less than two weeks, significantly shorter than ever seen before. With the continuum below 150 keV turned off, the spectral shape derived from the HEXAGONE observation on 22 May 1989 is very peculiar with a peak near 200 keV. This source was probably in its normal state for more than half of all observations since the mid-1960's. There are only two observations (in 1977 and 1979) for which the sum flux from the point sources in the region significantly exceeds that from 1E1740.7-2942 in its normal state.
Uncovering the Protostars in Serpens South with ALMA: Continuum Sources and Their Outflow Activity
NASA Astrophysics Data System (ADS)
Plunkett, Adele; Arce, H.; Corder, S.; Dunham, M.
2017-06-01
Serpens South is an appealing protostellar cluster to study due the combination of several factors: (1) a high protostar fraction that shows evidence for very recent and ongoing star formation; (2) iconic clustered star formation along a filamentary structure; (3) its relative proximity within a few hundred parsecs. An effective study requires the sensitivity, angular and spectral resolution, and mapping capabilities recently provided with ALMA. Here we present a multi-faceted data set acquired from Cycles 1 through 3 with ALMA, including maps of continuum sources and molecular outflows throughout the region, as well as a more focused kinematical study of the protostar that is the strongest continuum source at the cluster center. Together these data span spatial scales over several orders of magnitude, allowing us to investigate the outflow-driving sources and the impact of the outflows on the cluster environment. Currently, we focus on the census of protostars in the cluster center, numbering about 20, including low-flux, low-mass sources never before detected in mm-wavelengths and evidence for multiplicity that was previously unresolved.
Nakadi, Flávio V; Prodanov, Caroline; Boschetti, Wiliam; Vale, Maria Goreti R; Welz, Bernhard; de Andrade, Jailson B
2018-03-01
Thermochemical processes can convert the biomass into fuels, such as bio-oil. The biomass submitted to pyrolysis process, such as fibers, are generally rich in silicon, an element that can lead to damages in an engine when there is high concentration in a fuel. High-resolution continuum source atomic absorption spectrometry (HR-CS AAS) is an interesting alternative for Si determination in the products and byproducts of the pyrolysis process because, besides the flame (F) and graphite furnace (GF) atomizers, it has enhanced the application of direct analysis of solid samples (SS) within GF. This study aimed the development of methods to determine Si in biomass samples, their products and byproducts using HR-CS AAS. A high-resolution continuum source atomic absorption spectrometer contrAA 700 equipped with F and GF atomizers was used throughout the study. HR-CS F AAS (λ = 251.611nm, 1 detection pixel, N 2 O/C 2 H 2 flame) was used to evaluate Si content in biomass and ash, after a microwave-assisted acid digestion with HNO 3 and HF. HR-CS GF AAS (T pyr = 1400°C, T atom = 2650°C) has evaluated Si in pyrolysis water and bio-oil at 251.611nm, and in peach pit biomass and ash at 221.174nm using SS, both wavelengths with 1 detection pixel. Rhodium (300μg) was applied as permanent modifier and 10μgPd + 6μg Mg were pipetted onto the standards/samples at each analysis. Three different biomass samples were studied: palm tree fiber, coconut fiber and peach pit, and three certified reference materials (CRM) were used to verify the accuracy of the methods. The figures of merit were LOD 0.09-20mgkg -1 , and LOQ 0.3-20mgkg -1 , considering all the methods. There were no significant differences between the CRM certified values and the determined ones, using a Student t-test with a confidence interval of 95% (n = 5). Si concentration ranged from 0.11-0.92% mm -1 , 1.1-1.7mgkg -1 , 3.3-13mgkg -1 , and 0.41-1.4%mm -1 , in biomass, bio-oil, pyrolysis water and ash, respectively. Si remained mostly in the ash, leading to a mass fraction of up to 103%, even when the Si loss is not considered. Silicon concentration in bio-oil was below 1.7mgkg -1 , which is suitable for its application as a fuel. The developed methods using HR-CS AAS are suitable for Si determination in biomass, bio-oil, pyrolysis water, and ash. The application of bio-oil as an alternative fuel would be possible evaluating its Si content due to its low levels. The mass balance for Si has proved to be an important tool in order to evaluate the correct disposal of pyrolysis process byproducts. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Papineau, Dominic; De Gregorio, Bradley T.; Stroud, Rhonda M.; Steele, Andrew; Pecoits, Ernesto; Konhauser, Kurt; Wang, Jianhua; Fogel, Marilyn L.
2010-10-01
We present detailed petrographic surveys of apatite grains in association with carbonaceous material (CM) in two banded iron formations (BIFs) from the Paleoproterozoic of Uruguay and Michigan for comparison with similar mineral associations in the highly debated Akilia Quartz-pyroxene (Qp) rock. Petrographic and Raman spectroscopic surveys of these Paleoproterozoic BIFs show that apatite grains typically occur in bands parallel to bedding and are more often associated with CM when concentrations of organic matter are high. Carbonaceous material in the Vichadero BIF from Uruguay is generally well-crystallized graphite and occurs in concentrations around 0.01 wt% with an average δ 13C gra value of -28.6 ± 4.4‰ (1 σ). In this BIF, only about 5% of apatite grains are associated with graphite. In comparison, CM in the Bijiki BIF from Michigan is also graphitic, but occurs in concentrations around 2.4 wt% with δ 13C gra values around -24.0 ± 0.3‰ (1 σ). In the Bijiki BIF, more than 78% of apatite grains are associated with CM. Given the geologic context and high levels of CM in the Bijiki BIF, the significantly higher proportion of apatite grains associated with CM in this rock is interpreted to represent diagenetically altered biomass and shows that such diagenetic mineral associations can survive metamorphism up to the amphibolite facies. Isotope compositions of CM in muffled acidified whole-rock powders from the Akilia Qp rock have average δ 13C gra values of -17.5 ± 2.5‰ (1 σ), while δ 13C carb values in whole-rock powders average -4.0 ± 1.0‰ (1 σ). Carbon isotope compositions of graphite associated with apatite and other minerals in the Akilia Qp rock were also measured with the NanoSIMS to have similar ranges of δ 13C gra values averaging -13.8 ± 5.6‰ (1 σ). The NanoSIMS was also used to semi-quantitatively map the distributions of H, N, O, P, and S in graphite from the Akilia Qp rock, and relative abundances were found to be similar for graphite associated with apatite or with hornblende, calcite, and sulfides. These analyses revealed generally lower abundances of trace elements in the Akilia graphite compared to graphite associated with apatite from Paleoproterozoic BIFs. Graphite associated with hornblende, calcite, and sulfides in the Akilia Qp rock was fluid-deposited at high-temperature from carbon-bearing fluids, and since this graphite has similar ranges of δ 13C gra values and of trace elements compared to graphite associated with apatite, we conclude that the Akilia graphite in different mineral associations formed from the same source(s) of CM. Collectively our results do not exclude a biogenic origin of the carbon in the Akilia graphite, but because some observations can not exclude graphitization of abiogenic carbon from CO 2- and CH 4-bearing mantle fluids, there remain ambiguities with respect to the exact origin of carbon in this ancient metasedimentary rock. Accordingly, there may have been several generations of graphite formation along with possibly varying mixtures of CO 2- and CH 4-bearing fluids that may have resulted in large ranges of δ 13C gra values. The possibility of fluid-deposited graphite associated with apatite should be a focus of future investigations as this may prove to be an alternative pathway of graphitization from phosphate-bearing fluids. Correlated micro-analytical approaches tested on terrestrial rocks in this work provide insights into the origin of carbon in ancient graphite and will pave the way for the search for life on other ancient planetary surfaces.
Uses of continuum radiation in the AXAF calibration
NASA Technical Reports Server (NTRS)
Kolodziejczak, J. J.; Austin, R. A.; Elsner, R. F.; O'Dell, S. L.; Sulkanen, M. E.; Swartz, D. A.; Tennant, A. F.; Weisskopf, M. C.; Zirnstein, G.; McDermott, W. C.
1997-01-01
X-ray calibration of the Advanced X-ray Astrophysics Facility (AXAF) observatory at the MSFC X-Ray Calibration Facility (XRCF) made novel use of the x-ray continuum from a conventional electron-impact source. Taking advantage of the good spectral resolution of solid-state detectors, continuum measurements proved advantageous in calibrating the effective area of AXAF's High-Resolution Mirror Assembly (HRMA) and in verifying its alignment to the XRCF's optical axis.
Spitzer Observations of Dust Destruction in the Puppis A Supernova Remnant
NASA Technical Reports Server (NTRS)
Arendt, Richard G.; Dwek, Eli,; Blair, William P.; Ghavamian, Parviz; Long, Knox S.
2010-01-01
Imaging and spectral observations of the Puppis A supernova remnant (SNR) with the Spitzer Space Telescope confirm that its IR emission is dominated by the thermal continuum emission of swept-up interstellar dust which is collisionally heated by the X-ray emitting gas of the SNR. Line emission is too weak to affect the fluxes measured in broadband observations, and is poorly correlated with the IR or X-ray emission. Modeling of spectra from regions both in the SNR and in the associated ISM show that the ubiquitous polycyclic aromatic hydrocarbons (PAHs) of the ISM are destroyed within the SNR, along with nearly 25% of the mass of graphite and silicate dust grains.
Zöllig, Hanspeter; Fritzsche, Cristina; Morgenroth, Eberhard; Udert, Kai M
2015-02-01
Electrolysis can be a viable technology for ammonia removal from source-separated urine. Compared to biological nitrogen removal, electrolysis is more robust and is highly amenable to automation, which makes it especially attractive for on-site reactors. In electrolytic wastewater treatment, ammonia is usually removed by indirect oxidation through active chlorine which is produced in-situ at elevated anode potentials. However, the evolution of chlorine can lead to the formation of chlorate, perchlorate, chlorinated organic by-products and chloramines that are toxic. This study focuses on using direct ammonia oxidation on graphite at low anode potentials in order to overcome the formation of toxic by-products. With the aid of cyclic voltammetry, we demonstrated that graphite is active for direct ammonia oxidation without concomitant chlorine formation if the anode potential is between 1.1 and 1.6 V vs. SHE (standard hydrogen electrode). A comparison of potentiostatic bulk electrolysis experiments in synthetic stored urine with and without chloride confirmed that ammonia was removed exclusively by continuous direct oxidation. Direct oxidation required high pH values (pH > 9) because free ammonia was the actual reactant. In real stored urine (pH = 9.0), an ammonia removal rate of 2.9 ± 0.3 gN·m(-2)·d(-1) was achieved and the specific energy demand was 42 Wh·gN(-1) at an anode potential of 1.31 V vs. SHE. The measurements of chlorate and perchlorate as well as selected chlorinated organic by-products confirmed that no chlorinated by-products were formed in real urine. Electrode corrosion through graphite exfoliation was prevented and the surface was not poisoned by intermediate oxidation products. We conclude that direct ammonia oxidation on graphite electrodes is a treatment option for source-separated urine with three major advantages: The formation of chlorinated by-products is prevented, less energy is consumed than in indirect ammonia oxidation and readily available and cheap graphite can be used as the electrode material. Copyright © 2014 Elsevier Ltd. All rights reserved.
An atomic carbon source for high temperature molecular beam epitaxy of graphene.
Albar, J D; Summerfield, A; Cheng, T S; Davies, A; Smith, E F; Khlobystov, A N; Mellor, C J; Taniguchi, T; Watanabe, K; Foxon, C T; Eaves, L; Beton, P H; Novikov, S V
2017-07-26
We report the use of a novel atomic carbon source for the molecular beam epitaxy (MBE) of graphene layers on hBN flakes and on sapphire wafers at substrate growth temperatures of ~1400 °C. The source produces a flux of predominantly atomic carbon, which diffuses through the walls of a Joule-heated tantalum tube filled with graphite powder. We demonstrate deposition of carbon on sapphire with carbon deposition rates up to 12 nm/h. Atomic force microscopy measurements reveal the formation of hexagonal moiré patterns when graphene monolayers are grown on hBN flakes. The Raman spectra of the graphene layers grown on hBN and sapphire with the sublimation carbon source and the atomic carbon source are similar, whilst the nature of the carbon aggregates is different - graphitic with the sublimation carbon source and amorphous with the atomic carbon source. At MBE growth temperatures we observe etching of the sapphire wafer surface by the flux from the atomic carbon source, which we have not observed in the MBE growth of graphene with the sublimation carbon source.
Nano-cracks in a synthetic graphite composite for nuclear applications
NASA Astrophysics Data System (ADS)
Liu, Dong; Cherns, David
2018-05-01
Mrozowski nano-cracks in nuclear graphite were studied by transmission electron microscopy and selected area diffraction. The material consisted of single crystal platelets typically 1-2 nm thick and stacked with large relative rotations around the c-axis; individual platelets had both hexagonal and cubic stacking order. The lattice spacing of the (0002) planes was about 3% larger at the platelet boundaries which were the source of a high fraction of the nano-cracks. Tilting experiments demonstrated that these cracks were empty, and not, as often suggested, filled by amorphous material. In addition to conventional Mrozowski cracks, a new type of nano-crack is reported, which originates from the termination of a graphite platelet due to crystallographic requirements. Both types are crucial to understanding the evolution of macro-scale graphite properties with neutron irradiation.
Semiconductor cooling apparatus
NASA Technical Reports Server (NTRS)
Banks, Bruce A. (Inventor); Gaier, James R. (Inventor)
1993-01-01
Gas derived graphite fibers generated by the decomposition of an organic gas are joined with a suitable binder. This produces a high thermal conductivity composite material which passively conducts heat from a source, such as a semiconductor, to a heat sink. The fibers may be intercalated. The intercalate can be halogen or halide salt, alkaline metal, or any other species which contributes to the electrical conductivity improvement of the graphite fiber. The fibers are bundled and joined with a suitable binder to form a high thermal conductivity composite material device. The heat transfer device may also be made of intercalated highly oriented pyrolytic graphite and machined, rather than made of fibers.
NASA Technical Reports Server (NTRS)
Desert, F. X.; Leger, A.; Puget, J. L.; Boulanger, F.; Sellgren, K.
1986-01-01
The predictions of the model of Puget et al. (1985) for the emission from Very Small Grains (VSGs) including both graphitic and silicate components are compared with published 8-13-micron observations of astronomical sources. The VSGs are found to be mainly graphitic and an upper limit is placed on the relative mass of silicates based on lack of the 9.7-micron silicate emission feature on M 82 and NGC 2023. This dissymetry in the composition of VSGs supports the suggestion that they are formed in grain-grain collisions where the behaviors of graphite and silicate grains are expected to be quite different.
NASA Astrophysics Data System (ADS)
Li, Linghui; Gruzdev, Vitaly; Yu, Ping; Chen, J. K.
2009-02-01
High pulse energy continuum generation in conventional multimode optical fibers has been studied for potential applications to a holographic optical coherence imaging system. As a new imaging modality for the biological tissue imaging, high-resolution holographic optical coherence imaging requires a broadband light source with a high brightness, a relatively low spatial coherence and a high stability. A broadband femtosecond laser can not be used as the light source of holographic imaging system since the laser creates a lot of speckle patterns. By coupling high peak power femtosecond laser pulses into a multimode optical fiber, nonlinear optical effects cause a continuum generation that can be served as a super-bright and broadband light source. In our experiment, an amplified femtosecond laser was coupled into the fiber through a microscopic objective. We measured the FWHM of the continuum generation as a function of incident pulse energy from 80 nJ to 800 μJ. The maximum FWHM is about 8 times higher than that of the input pulses. The stability was analyzed at different pump energies, integration times and fiber lengths. The spectral broadening and peak position show that more than two processes compete in the fiber.
Relativistic corrections and non-Gaussianity in radio continuum surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maartens, Roy; Zhao, Gong-Bo; Bacon, David
Forthcoming radio continuum surveys will cover large volumes of the observable Universe and will reach to high redshifts, making them potentially powerful probes of dark energy, modified gravity and non-Gaussianity. We consider the continuum surveys with LOFAR, WSRT and ASKAP, and examples of continuum surveys with the SKA. We extend recent work on these surveys by including redshift space distortions and lensing convergence in the radio source auto-correlation. In addition we compute the general relativistic (GR) corrections to the angular power spectrum. These GR corrections to the standard Newtonian analysis of the power spectrum become significant on scales near andmore » beyond the Hubble scale at each redshift. We find that the GR corrections are at most percent-level in LOFAR, WODAN and EMU surveys, but they can produce O(10%) changes for high enough sensitivity SKA continuum surveys. The signal is however dominated by cosmic variance, and multiple-tracer techniques will be needed to overcome this problem. The GR corrections are suppressed in continuum surveys because of the integration over redshift — we expect that GR corrections will be enhanced for future SKA HI surveys in which the source redshifts will be known. We also provide predictions for the angular power spectra in the case where the primordial perturbations have local non-Gaussianity. We find that non-Gaussianity dominates over GR corrections, and rises above cosmic variance when f{sub NL}∼>5 for SKA continuum surveys.« less
Investigation of diamond deposition by chemical vapor transport with hydrogen
NASA Astrophysics Data System (ADS)
Piekarczyk, Wladyslaw; Messier, Russell F.; Roy, Rustum; Engdahl, Chris
1990-12-01
The carbon-hydrogen chemical vapor transport system was examined in accordance with a four-stage transport model. A result of this examination is that graphite co-deposition could be avoided when diamond is deposited from gas solutions under-saturated with respect to diamond. Actual deposition experiments showed that this unusual requirement can be fulfilled but only for the condition that the transport distance between the carbon source and the substrate surface is short. In such a case diamond can be deposited equally from super-saturated as well as from under-saturated gas solutions. On the basis of thermodynamic considerations a possible explanation of this unusual phenomenon is given. It is shown that there is a possibility of deposition of diamond from both super-saturated as well as under-saturated gas solutions but only on the condition that they are in a non-equilibrium state generally called the activated state. A model of the diamond deposition process consisting of two steps is proposed. In the first step diamond and graphite are deposited simultaneously. The most important carbon deposition reaction is C2H2(g) + 2 H(g) C(diamond graphite) + CH(g). The amount of co-deposited graphite is not a direct function of the saturation state of the gas phase. In the second step graphite is etched according to the most probable reaction C(graphite) + 4 H(g) CH4(g). Atomic hydrogen in a super-equilibrium concentration is necessary not only to etch graphite but also to precipitate and graphite. 1.
Diamond deposition by chemical vapor transport with hydrogen in a closed system
NASA Astrophysics Data System (ADS)
Piekarczyk, W.; Messier, R.; Roy, R.; Engdahl, C.
1990-11-01
The carbon-hydrogen chemical vapor transport system was examined in accordance with a four-stage transport model. A result of this examination is that graphite co-deposition could be avoided when diamond is deposited from gas solutions undersaturated with regard to diamond. Actual deposition experiments showed that this unusual requirement can be fulfilled but only for the condition that the transport distance between the carbon source and the substrate surface is short. In such a case diamond can be deposited equally from supersaturated as well as from undersaturated gas solutions. On the basis of thermodynamic considerations, a possible explanation of this unusual phenomenon is given. It is shown that there is a possibility of deposition of diamond from both supersaturated and undersaturated gas solutions but only on the condition that they are in a non-equilibrium state generally called the activated state. A model of the diamond deposition process consisting of two steps is proposed. In the first step diamond and graphite are deposited simultaneously. The most important carbon deposition reaction is C 2H 2(g)+2H(g) = C(diamond+graphite) +CH 4(g). The amount of co-deposited graphite is not a direct function of the saturation state of the gas phase. In the second step graphite is etched according to the most probable reaction C(graphite)+4H(g) = CH 4(g). Atomic hydrogen in a concentration exceeding equilibrium is necessary not only to etch graphite, but also to precipitate diamond and graphite.
Characterization of nuclear graphite elastic properties using laser ultrasonic methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Fan W; Han, Karen; Olasov, Lauren R
2015-01-01
Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have beenmore » made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mykytiuk, A.P.; Russell, D.S.; Sturgeon, R.E.
Trace concentrations (ng/mL) of Fe, Cd, Zn, Cu, Ni, Pb, U, and Co have been determined in seawater by stable isotope dilution spark source mass spectrometry. The seawater samples were preconcentrated on the ion exchanger Chelex-100 and the concentrate was evaporated on a graphite or silver electrode. The results are compared with those obtained by graphite furnace atomic absorption spectrometry and inductively coupled plasma emission spectrometry. The technique avoids the use of calibration standards and is capable of producing results in cases where the analyte is only partially recovered. 2 tables.
VizieR Online Data Catalog: ALMA 106GHz continuum observations in Chamaeleon I (Dunham+, 2016)
NASA Astrophysics Data System (ADS)
Dunham, M. M.; Offner, S. S. R.; Pineda, J. E.; Bourke, T. L.; Tobin, J. J.; Arce, H. G.; Chen, X.; di, Francesco J.; Johnstone, D.; Lee, K. I.; Myers, P. C.; Price, D.; Sadavoy, S. I.; Schnee, S.
2018-02-01
We obtained ALMA observations of every source in Chamaleon I detected in the single-dish 870 μm LABOCA survey by Belloche et al. (2011, J/A+A/527/A145), except for those listed as likely artifacts (1 source), residuals from bright sources (7 sources), or detections tentatively associated with YSOs (3 sources). We observed 73 sources from the initial list of 84 objects identified by Belloche et al. (2011, J/A+A/527/A145). We observed the 73 pointings using the ALMA Band 3 receivers during its Cycle 1 campaign between 2013 November 29 and 2014 March 08. Between 25 and 27 antennas were available for our observations, with the array configured in a relatively compact configuration to provide a resolution of approximately 2" FWHM (300 AU at the distance to Chamaeleon I). Each target was observed in a single pointing with approximately 1 minute of on-source integration time. Three out of the four available spectral windows were configured to measure the continuum at 101, 103, and 114 GHz, each with a bandwidth of 2 GHz, for a total continuum bandwidth of 6 GHz (2.8 mm) at a central frequency of 106 GHz. (2 data files).
High-temperature compatibility study of iridium (DOP-26 alloy) with graphite and plutonia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Axler, K.M.; Eash, D.T.
1987-12-01
This report outlines the materials compatibility tests conducted on DOP-26 iridium alloy and carbon. The carbon used was in the form of woven graphite as present in the impact shell used to encase plutonia in nuclear heat sources. In addition, compatibility tests of the DOP-26 alloy with plutonia are described. The reactivity observed in both systems is discussed. 4 refs., 6 figs.
Modeling Fission Product Sorption in Graphite Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szlufarska, Izabela; Morgan, Dane; Allen, Todd
2013-04-08
The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributionsmore » of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products on each type of graphite site. The model will include multiple simultaneous adsorbing species, which will allow for competitive adsorption effects between different fission product species and O and OH (for modeling accident conditions).« less
Haro 11: Where is the Lyman Continuum Source?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keenan, Ryan P.; Oey, M. S.; Jaskot, Anne E.
2017-10-10
Identifying the mechanism by which high-energy Lyman continuum (LyC) photons escaped from early galaxies is one of the most pressing questions in cosmic evolution. Haro 11 is the best known local LyC-leaking galaxy, providing an important opportunity to test our understanding of LyC escape. The observed LyC emission in this galaxy presumably originates from one of the three bright, photoionizing knots known as A, B, and C. It is known that Knot C has strong Ly α emission, and Knot B hosts an unusually bright ultraluminous X-ray source, which may be a low-luminosity active galactic nucleus. To clarify the LyCmore » source, we carry out ionization-parameter mapping (IPM) by obtaining narrow-band imaging from the Hubble Space Telescope WFC3 and ACS cameras to construct spatially resolved ratio maps of [O iii]/[O ii] emission from the galaxy. IPM traces the ionization structure of the interstellar medium and allows us to identify optically thin regions. To optimize the continuum subtraction, we introduce a new method for determining the best continuum scale factor derived from the mode of the continuum-subtracted, image flux distribution. We find no conclusive evidence of LyC escape from Knots B or C, but instead we identify a high-ionization region extending over at least 1 kpc from Knot A. This knot shows evidence of an extremely young age (≲1 Myr), perhaps containing very massive stars (>100 M {sub ⊙}). It is weak in Ly α , so if it is confirmed as the LyC source, our results imply that LyC emission may be independent of Ly α emission.« less
Outflow and Infall in Star-forming Region L1221
NASA Astrophysics Data System (ADS)
Lee, Chin-Fei; Ho, Paul T. P.
2005-10-01
We have mapped the 3.3 mm continuum, CO, HCO+, N2H+, and CS emission around a nearby Class I source, IRAS 22266+6845, in the L1221 cometary dark cloud. L1221 is a complicated star-forming region. It hosts three infrared sources: a close binary consisting of an east source and a west source around the IRAS source position and a southeast source ~45" to the southeast (T. Bourke 2004, private communication). The east source is identified as the IRAS source. Continuum emission is seen around the east and southeast sources, probably tracing the dust around them. No continuum emission is seen toward the west source, probably indicating that there is not much dust there. An east-west molecular outflow is seen in CO, HCO+, and CS originated from around the binary. It is bipolar with an east lobe and a west lobe, both appearing as a wide-opening outflow shell originated from around the binary. It is likely powered by the east source, which shows a southeast extension along the outflow axis in the K' image. A ringlike envelope is seen in N2H+ around the binary surrounding the outflow waist. It is tilted with the major axis perpendicular to the outflow axis. The kinematics is well reproduced by a thin-disk model with both infall and rotation, and a column density peak in a ring. The ringlike envelope is not rotationally supported, as the rotation velocity is smaller than the infall velocity.
pacce: Perl algorithm to compute continuum and equivalent widths
NASA Astrophysics Data System (ADS)
Riffel, Rogério; Borges Vale, Tibério
2011-08-01
We present Perl Algorithm to Compute continuum and Equivalent Widths ( pacce). We describe the methods used in the computations and the requirements for its usage. We compare the measurements made with pacce and "manual" ones made using iraf splot task. These tests show that for synthetic simple stellar population (SSP) models the equivalent widths strengths are very similar (differences ≲0.2 Å) for both measurements. In real stellar spectra, the correlation between both values is still very good, but with differences of up to 0.5 Å. pacce is also able to determine mean continuum and continuum at line center values, which are helpful in stellar population studies. In addition, it is also able to compute the uncertainties in the equivalent widths using photon statistics. The code is made available for the community through the web at
Hydrothermal flake graphite mineralisation in Paleoproterozoic rocks of south-east Greenland
NASA Astrophysics Data System (ADS)
Rosing-Schow, Nanna; Bagas, Leon; Kolb, Jochen; Balić-Žunić, Tonči; Korte, Christoph; Fiorentini, Marco L.
2017-06-01
Flake graphite mineralisation is hosted in the Kuummiut Terrane of the Paleoproterozoic Nagssugtoqidian Orogen, south-east Greenland. Eclogite-facies peak-metamorphic assemblages record temperatures of 640-830 °C and pressures of 22-25 kbar, and are retrogressed in the high-pressure amphibolite-facies during ca. 1870-1820 Ma. Graphite occurs as lenses along cleavage planes in breccia and as garnet-quartz-graphite veins in various metamorphic host rocks in the Tasiilaq area at Auppaluttoq, Kangikajik, and Nuuk-Ilinnera. Graphite contents reach >30 vol% in 0.2-4 × 20 m wide semi-massive mineralisation (Auppaluttoq, Kangikajik). Supergene alteration formed 1- to 2-m-thick and up to a 2.5 × 2.5 km wide loose limonitic gravel containing graphite flakes in places. The flake size ranges from 1 to 6 mm in diameter with an average of 3 mm. Liberation efficiency is at minimum 60%. Hydrothermal fluids at 600 °C, transporting carbon as CO2 and CH4, formed the mineralisation commonly hosted by shear zones, which acted as pathways for the mineralising fluids. The hydrothermal alteration assemblage is quartz-biotite-grunerite-edenite-pargasite-K-feldspar-titanite. The δ13C values of graphite, varying from -30 to -18‰ PDB, indicate that the carbon was derived from organic matter most likely from metasedimentary sources. Devolatilisation of marble may have contributed a minor amount of carbon by fluid mixing. Precipitation of graphite involved retrograde hydration reactions, depleting the fluid in H2O and causing graphite saturation. Although the high-grade mineralisation is small, it represents an excellent example of hydrothermal mineralisation in an eclogite-facies terrane during retrograde exhumation.
Warren, Alexander D; Conway, Ulric; Arthur, Christopher J; Gates, Paul J
2016-07-01
The analysis of low molecular weight compounds by matrix-assisted laser desorption/ionisation mass spectrometry is problematic due to the interference and suppression of analyte ionisation by the matrices typically employed - which are themselves low molecular weight compounds. The application of colloidal graphite is demonstrated here as an easy to use matrix that can promote the ionisation of a wide range of analytes including low molecular weight organic compounds, complex natural products and inorganic complexes. Analyte ionisation with colloidal graphite is compared with traditional organic matrices along with various other sources of graphite (e.g. graphite rods and charcoal pencils). Factors such as ease of application, spectra reproducibility, spot longevity, spot-to-spot reproducibility and spot homogeneity (through single spot imaging) are explored. For some analytes, considerable matrix suppression effects are observed resulting in spectra completely devoid of matrix ions. We also report the observation of radical molecular ions [M(-●) ] in the negative ion mode, particularly with some aromatic analytes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Eguchi, James; Dasgupta, Rajdeep
2017-03-01
We have performed experiments to determine the effects of pressure, temperature and oxygen fugacity on the CO2 contents in nominally anhydrous andesitic melts at graphite saturation. The andesite composition was specifically chosen to match a low-degree partial melt composition that is generated from MORB-like eclogite in the convective, oceanic upper mantle. Experiments were performed at 1-3 GPa, 1375-1550 °C, and fO2 of FMQ -3.2 to FMQ -2.3 and the resulting experimental glasses were analyzed for CO2 and H2O contents using FTIR and SIMS. Experimental results were used to develop a thermodynamic model to predict CO2 content of nominally anhydrous andesitic melts at graphite saturation. Fitting of experimental data returned thermodynamic parameters for dissolution of CO2 as molecular CO2: ln( K 0) = -21.79 ± 0.04, Δ V 0 = 32.91 ± 0.65 cm3mol-1, Δ H 0 = 107 ± 21 kJ mol-1, and dissolution of CO2 as CO3 2-: ln (K 0 ) = -21.38 ± 0.08, Δ V 0 = 30.66 ± 1.33 cm3 mol-1, Δ H 0 = 42 ± 37 kJ mol-1, where K 0 is the equilibrium constant at some reference pressure and temperature, Δ V 0 is the volume change of reaction, and Δ H 0 is the enthalpy change of reaction. The thermodynamic model was used along with trace element partition coefficients to calculate the CO2 contents and CO2/Nb ratios resulting from the mixing of a depleted MORB and the partial melt of a graphite-saturated eclogite. Comparison with natural MORB and OIB data suggests that the CO2 contents and CO2/Nb ratios of CO2-enriched oceanic basalts cannot be produced by mixing with partial melts of graphite-saturated eclogite. Instead, they must be produced by melting of a source containing carbonate. This result places a lower bound on the oxygen fugacity for the source region of these CO2-enriched basalts, and suggests that fO2 measurements made on cratonic xenoliths may not be applicable to the convecting upper mantle. CO2-depleted basalts, on the other hand, are consistent with mixing between depleted MORB and partial melts of a graphite-saturated eclogite. Furthermore, calculations suggest that eclogite can remain saturated in graphite in the convecting upper mantle, acting as a reservoir for C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, Mark C.
High-purity graphite is the core structural material of choice in the Very High Temperature Reactor (VHTR) design, a graphite-moderated, helium-cooled configuration capable of producing thermal energy for power generation as well as process heat for industrial applications that require temperatures higher than the outlet temperatures of present nuclear reactors. The Baseline Graphite Characterization Program is establishing accurate as-manufactured mechanical and physical property distributions in nuclear-grade graphites by providing comprehensive data that captures the level of variation in measured values. In addition to providing a thorough comparison between these values in different graphite grades, the program is also carefully tracking individualmore » specimen source, position, and orientation information in order to provide comparisons both in specific properties and in the associated variability between different lots, different billets, and different positions from within a single billet. This report is a preliminary comparison between each of the grades of graphite that are considered “candidate” grades from four major international graphite producers. These particular grades (NBG-18, NBG-17, PCEA, IG-110, and 2114) are the major focus of the evaluations presently underway on irradiated graphite properties through the series of Advanced Graphite Creep (AGC) experiments. NBG-18, a medium-grain pitch coke graphite from SGL from which billets are formed via vibration molding, was the favored structural material in the pebble-bed configuration. NBG-17 graphite from SGL is essentially NBG-18 with the grain size reduced by a factor of two. PCEA, petroleum coke graphite from GrafTech with a similar grain size to NBG-17, is formed via an extrusion process and was initially considered the favored grade for the prismatic layout. IG-110 and 2114, from Toyo Tanso and Mersen (formerly Carbone Lorraine), respectively, are fine-grain grades produced via an isomolding process. An analysis of the comparison between each of these grades will include not only the differences in fundamental and statistically-significant individual strength levels, but also the differences in the overall variability in properties within each of the grades that will ultimately provide the basis for predicting in-service performance. The comparative performance of the different types of nuclear-grade graphites will naturally continue to evolve as thousands more specimens are fully characterized with regard to strength, physical properties, and thermal performance from the numerous grades of graphite being evaluated.« less
NASA Astrophysics Data System (ADS)
Farries, Mark; Ward, Jon; Valle, Stefano; Stephens, Gary; Moselund, Peter; van der Zanden, Koen; Napier, Bruce
2015-06-01
Mid-IR imaging spectroscopy has the potential to offer an effective tool for early cancer diagnosis. Current development of bright super-continuum sources, narrow band acousto-optic tunable filters and fast cameras have made feasible a system that can be used for fast diagnosis of cancer in vivo at point of care. The performance of a proto system that has been developed under the Minerva project is described.
Relation between metric and decametric noise storm sources and microwave S-component emissions
NASA Technical Reports Server (NTRS)
Sakurai, K.
1974-01-01
Various activities are reported by taking into account the properties of the active region and its relationship to low frequency burst emissions observed by the IMP-6 satellite. The relation of metric noise continuum storms (200 MHz) with the S-component of microwave emissions (2800 MHz) are examined. Taking the results analyzed, a model on the growth of radio noise continuum sources in metric and decametric frequencies and its relation to microwave and other solar active phenomena are considered.
Modifications of Graphite and Multiwall Carbon Nanotubes in the Presence of Urea
NASA Astrophysics Data System (ADS)
Duraia, El-Shazly M.; Fahami, Abbas; Beall, Gary W.
2018-02-01
The effect of high-energy ball milling on two carbon allotropes, graphite and multiwall carbon nanotubes (MWCNT) in the presence of urea has been studied. Samples were investigated using Raman spectroscopy, x-ray diffraction, scanning electron microscope (SEM) and x-ray photoelectron spectroscopy (XPS). Nitrogen-doped graphene has been successfully synthesized via a simple scalable mechanochemistry method using urea and graphite powder precursors. XPS results revealed the existence of the different nitrogen atoms configurations including pyridine, pyrrodic and graphitic N. SEM observations showed that the graphene nanosheets morphology become more wrinkles folded and crumbled as the milling time increased. The ID/IG ratio also increased as the milling time rose. The presence of both D' and G + D bands at 1621 cm-1 and 2940 cm-1, respectively, demonstrated the nitrogen incorporation in the graphene lattice Two factors contribute to the used urea: first it helps to exfoliate graphite into graphene, and second it preserves the graphitic structure from damage during the milling process as well as acting as a solid-state nitrogen source. Based on the phase analysis, the d-spacing of MWCNT samples in the presence of urea decreased due to the mechanical force in the milling process as the milling time increased. On the other hand, in the graphite case, due to its open flat surface, the graphite (002) peak shifts toward lower two theta as the milling time increase. Such findings are important and could be used for large-scale production of N-doped graphene, diminishing the use of either dangerous chemicals or sophisticated equipment.
On the origin of the Neoproterozoic Peresopolis graphite deposit, Paraguay Belt, Brazil
NASA Astrophysics Data System (ADS)
Manoel, Talitta Nunes; Dexheimer Leite, Jayme Alfredo
2018-07-01
The Peresopolis graphite deposit is located northeast of Brasilândia Town in Mato Grosso State (Brazil). It consists of an 1800 m long, 200 m wide low-crystallinity graphite-bearing tabular layer that trends ENE and dips 65°ESE. The deposit is hosted in carbonaceous phyllites, which along with basal metadiamictites and upper metarenites make up the upper unit (Coxipó Formation) of the Cuiabá Group in the late Cryogenian to Cambrian Paraguay Belt (ca. 650-500Ma). The carbonaceous phyllites show a mineral assemblage consisting mostly of graphite-quartz-muscovite-albite and pyrite and dolomite to a lesser extent; alteration minerals include tosudite and kaolinite. XRD analysis confirmed the gangue material and defined the graphite as low-order crystallinity. Carbon isotope data for graphite ore returned a light and very restricted range of δ13Corg between -29 and -28‰ suggesting organic matter as the source of carbon. One hundred and sixty measurements of Raman graphite spectrum returned a well-fit between full width at half maximum parameter (FWHM) which allowed its use as a geothermometer. Resulting temperatures are in the range between 285 and 300 °C ± 30 °C, indicating low-to very-low metamorphic conditions for transformation of organic matter into amorphous graphite. The deposition of the organic matter should have taken place in an outer slope of a glaciomarine system and its transformation into the ore occurred because of deformation and low-grade metamorphism related to the development of the Neoproterozoic Brasiliano/Pan-African Orogeny (850-500Ma).
Poskas, Povilas; Grigaliuniene, Dalia; Narkuniene, Asta; Kilda, Raimondas; Justinavicius, Darius
2016-11-01
There are two RBMK-1500 type graphite moderated reactors at the Ignalina nuclear power plant in Lithuania, and they are under decommissioning now. The graphite cannot be disposed of in a near surface repository, because of large amounts of (14)C. Therefore, disposal of the graphite in a geological repository is a reasonable solution. This study presents evaluation of the (14)C transfer by the groundwater pathway into the geosphere from the irradiated graphite in a generic geological repository in crystalline rocks and demonstration of the role of the different components of the engineered barrier system by performing local sensitivity analysis. The speciation of the released (14)C into organic and inorganic compounds as well as the most recent information on (14)C source term was taken into account. Two alternatives were considered in the analysis: disposal of graphite in containers with encapsulant and without it. It was evaluated that the maximal fractional flux of inorganic (14)C into the geosphere can vary from 10(-11)y(-1) (for non-encapsulated graphite) to 10(-12)y(-1) (for encapsulated graphite) while of organic (14)C it was about 10(-3)y(-1) of its inventory. Such difference demonstrates that investigations on the (14)C inventory and chemical form in which it is released are especially important. The parameter with the highest influence on the maximal flux into the geosphere for inorganic (14)C transfer was the sorption coefficient in the backfill and for organic (14)C transfer - the backfill hydraulic conductivity. Copyright © 2016 Elsevier B.V. All rights reserved.
Tang, Jing; Torad, Nagy L; Salunkhe, Rahul R; Yoon, Jang-Hee; Al Hossain, Md Shahriar; Dou, Shi Xue; Kim, Jung Ho; Kimura, Tatsuo; Yamauchi, Yusuke
2014-11-01
A recent study on nanoporous carbon based materials (J. Am. Chem. Soc. 2012, 134, 2864) showed that the presence of abundant graphitized sp(2) carbon species in the frameworks led to higher affinity for aromatic hydrocarbons than their aliphatic analogues. Herein, improved understanding of the sensitive and selective detection of aromatic substances by using mesoporous carbon (MPC)-based materials, combined with a quartz crystal microbalance (QCM) sensor system, was obtained. MPCs were synthesized by direct carbonization of mesoporous polymers prepared from resol through a soft templating approach with Pluronic F127. The carbon-based frameworks can be graphitized through the addition of a cobalt source to the precursor solution, according to the catalytic activity of the cobalt nanoparticles formed during the carbonization process. From the Raman data, the degree of the graphitization was clearly increased by increasing the cobalt content and elevating the carbonization temperature. From a QCM study, it was proved that the highly graphitized MPCs exhibited a higher affinity for aromatic hydrocarbons than their aliphatic analogues. By increasing the degree of graphitization in the carbon-based pore walls, the MPCs showed both larger adsorption uptake and faster sensor response towards toxic benzene and toluene vapors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evaluation of micron size carbon fibers released from burning graphite composites
NASA Technical Reports Server (NTRS)
Sussholz, B.
1980-01-01
Quantitative estimates were developed of micron carbon fibers released during the burning of graphite composites. Evidence was found of fibrillated particles which were the predominant source of the micron fiber data obtained from large pool fire tests. The fibrillation phenomena were attributed to fiber oxidation effects caused by the fire environment. Analysis of propane burn test records indicated that wind sources can cause considerable carbon fiber oxidation. Criteria estimates were determined for the number of micron carbon fibers released during an aircraft accident. An extreme case analysis indicated that the upper limit of the micron carbon fiber concentration level was only about half the permissible asbestos ceiling concentration level.
Continuum and line spectra of degenerate dwarf X-ray sources
NASA Technical Reports Server (NTRS)
Lamb, D. Q.
1981-01-01
Recent observations of X-ray sources are summarized. Unresolved issues concerning these sources are discussed and an outline of the kinds of X-ray observations that would best advance the understanding of these sources is presented.
Preliminary Results of IS Plasma Focus as a Breeder of Short-Lived Radioisotopes 12C(d,n)13N
NASA Astrophysics Data System (ADS)
Sadat Kiai, S. M.; Elahi, M.; Adlparvar, S.; Shahhoseini, E.; Sheibani, S.; Ranjber akivaj, H.; Alhooie, S.; Safarien, A.; Farhangi, S.; Aghaei, N.; Amini, S.; Khalaj, M. M.; Zirak, A. R.; Dabirzadeh, A. A.; Soleimani, J.; Torkzadeh, F.; Mousazadeh, M. M.; Moradi, K.; Abdollahzadeh, M.; Talaei, A.; Zaeem, A. A.; Moslehi, A.; Kashani, A.; Babazadeh, A. R.; Bagiyan, F.; Ardestani, M.; Roozbahani, A.; Pourbeigi, H.; Tajik Ahmadi, H.; Ahmadifaghih, M. A.; Mahlooji, M. S.; Mortazavi, B. N.; Zahedi, F.
2011-04-01
Modified IS (Iranian Sun) plasma focus (10 kJ,15 kV, 94 μF, 0.1 Hz) has been used to produce the short-lived radioisotope 13N (half-life of 9.97 min) through 12C(d,n)13N nuclear reaction. The filling gas was 1.5-3 torr of hydrogen (60%) deuterium (40%) mixture. The target was solid nuclear grade graphite with 5 mm thick, 9 cm width and 13 in length. The activations of the exogenous target on average of 20 shots (only one-third acceptable) through 10-13 kV produced the 511 keV gamma rays. Another peak found at the 570 keV gamma of which both was measured by a NaI portable gamma spectrometer calibrated by a 137Cs 0.25 μCi sealed reference source with its single line at 661.65 keV and 22Na 0.1 μCi at 511 keV. To measure the gamma rays, the graphite target converts to three different phases; solid graphite, powder graphite, and powder graphite in water solution. The later phase approximately has a doubled activity with respect to the solid graphite target up to 0.5 μCi of 511 keV and 1.1 μCi of 570 keV gamma lines were produced. This increment in activity was perhaps due to structural transformation of graphite powder to nano-particles characteristic in liquid water.
Carbon nanotubes and methods of forming same at low temperature
Biris, Alexandru S.; Dervishi, Enkeleda
2017-05-02
In one aspect of the invention, a method for growth of carbon nanotubes includes providing a graphitic composite, decorating the graphitic composite with metal nanostructures to form graphene-contained powders, and heating the graphene-contained powders at a target temperature to form the carbon nanotubes in an argon/hydrogen environment that is devoid of a hydrocarbon source. In one embodiment, the target temperature can be as low as about 150.degree. C. (.+-.5.degree. C.).
Ash Dispersal in Planetary Atmospheres: Continuum vs. Non-continuum Effects
NASA Astrophysics Data System (ADS)
Fagents, S. A.; Baloga, S. M.; Glaze, L. S.
2013-12-01
The dispersal of ash from a volcanic vent on any given planet is dictated by particle properties (density, shape, and size distribution), the intensity of the eruptive source, and the characteristics of the planetary environment (atmospheric structure, wind field, and gravity) into which the ash is erupted. Relating observations of potential pyroclastic deposits to source locations and eruption conditions requires a detailed quantitative understanding of the settling rates of individual particles under changing ambient conditions. For atmospheres that are well described by continuum mechanics, the conventional Newtonian description of particle motion allows particle settling velocities to be related to particle characteristics via a drag coefficient. However, under rarefied atmospheric conditions (i.e., on Mars and at high altitude on Earth), non-continuum effects become important for ash-sized particles, and an equation of motion based on statistical mechanics is required for calculating particle motion. We have developed a rigorous new treatment of particle settling under variable atmospheric conditions and applied it to Earth and Mars. When non-continuum effects are important (as dictated by the mean free path of atmospheric gas relative to the particle size), fall velocities are greater than those calculated by continuum mechanics. When continuum conditions (i.e., higher atmospheric densities) are reached during descent, our model switches to a conventional formulation that determines the appropriate drag coefficient as the particle transits varying atmospheric properties. The variation of settling velocity with altitude allows computation of particle trajectories, fall durations and downwind dispersal. Our theoretical and numerical analyses show that several key, competing factors strongly influence the downwind trajectories of ash particles and the extents of the resulting deposits. These factors include: the shape of the particles (non-spherical particles fall more slowly than spherical particle shapes commonly adopted in settling models); the formation of particle aggregates, which enhances settling rates; and the lagging of particle motion behind the ambient wind field, which results in less widely dispersed deposits. Above all, any particles experiencing non-continuum effects settle faster and are less widely dispersed than particles falling in an entirely continuum regime. Our model results demonstrate the complex interplay of these factors in the Martian environment, and our approach provides a basis for relating deposits observed in planetary datasets to candidate volcanic sources and eruption conditions. This allows for a critical reassessment of the potential for explosive volcanism to contribute to extremely widespread, fine-grained, layered deposits such as the Medusae Fossae Formation.
NREL Helps Agencies Target New Federal Sustainability Goals - Continuum
30% of their electricity from renewable sources, and 25% of federal facility energy from "clean " sources by 2025. Though the current overall percent of electricity from renewable sources used by
Getting the lead out: understanding risks in the distribution ...
This presentation discusses the importance of the water distribution system as a component of the source-to-tap continuum in public health protection. Issues covered include: understanding source water quality changes and their impacts throughout the system; use of mitigation measures such as filters); and holistic approaches and/or strategies that could be used to avoid unintended consequences of decisions from source to tap. Invited presentation on topics indicated as of interest. With exposure to lead as the context, this presentation discusses the importance of the water distribution system as a component of the source-to-tap continuum in public health protection. Issues covered include: understanding source water quality changes and their impacts throughout the system; use of mitigation measures such as filters); and holistic approaches and/or strategies that could be used to avoid unintended consequences of decisions from source to tap.
Kilometric Continuum Radiation
NASA Technical Reports Server (NTRS)
Green, James L.; Boardsen, Scott
2006-01-01
Kilometric continuum (KC) is the high frequency component (approximately 100 kHz to approximately 800 kHz) of nonthermal continuum (NTC). Unlike the lower frequency portion of NTC (approximately 5 kHz to approximately 100 kHz) whose source is around the dawn sector, the source of KC occurs at all magnetic local times. The latitudinal beaming of KC as observed by GEOTAIL is, for most events, restricted to plus or minus 15 degrees magnetic latitude. KC has been observed during periods of both low and strong geomagnetic activity, with no significant correlation of wave intensity with K(sub p), index. However statistically the maximum observed frequency of KC emission tends to increase with K(sub p) index, the effect is more pronounced around solar maximum, but is also detected near solar minimum. There is strong evidence that the source region of KC is from the equatorial plasmapause during periods when a portion of the plasmapause moves significantly inwards from its nominal position. Case studies have shown that KC emissions are nearly always associated with plasmaspheric notches, shoulders, and tails. There is a recent focus on trying to understand the banded frequency structure of this emission and its relationship to plasmaspheric density ducts and irregularities in the source region.
Carbon doping in molecular beam epitaxy of GaAs from a heated graphite filament
NASA Technical Reports Server (NTRS)
Malik, R. J.; Nottenberg, R. N.; Schubert, E. F.; Walker, J. F.; Ryan, R. W.
1988-01-01
Carbon doping of GaAs grown by molecular beam epitaxy has been obtained for the first time by use of a heated graphite filament. Controlled carbon acceptor concentrations over the range of 10 to the 17th-10 to the 20th/cu cm were achieved by resistively heating a graphite filament with a direct current power supply. Capacitance-voltage, p/n junction and secondary-ion mass spectrometry measurements indicate that there is negligible diffusion of carbon during growth and with postgrowth rapid thermal annealing. Carbon was used for p-type doping in the base of Npn AlGaAs/GaAs heterojunction bipolar transistors. Current gains greater than 100 and near-ideal emitter heterojunctions were obtained in transistors with a carbon base doping of 1 x 10 to the 19th/cu cm. These preliminary results indicate that carbon doping from a solid graphite source may be an attractive substitute for beryllium, which is known to have a relatively high diffusion coefficient in GaAs.
Highly oxidized graphene oxide and methods for production thereof
Tour, James M.; Kosynkin, Dmitry V.
2016-08-30
A highly oxidized form of graphene oxide and methods for production thereof are described in various embodiments of the present disclosure. In general, the methods include mixing a graphite source with a solution containing at least one oxidant and at least one protecting agent and then oxidizing the graphite source with the at least one oxidant in the presence of the at least one protecting agent to form the graphene oxide. Graphene oxide synthesized by the presently described methods is of a high structural quality that is more oxidized and maintains a higher proportion of aromatic rings and aromatic domains than does graphene oxide prepared in the absence of at least one protecting agent. Methods for reduction of graphene oxide into chemically converted graphene are also disclosed herein. The chemically converted graphene of the present disclosure is significantly more electrically conductive than is chemically converted graphene prepared from other sources of graphene oxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Fan W.; Contescu, Cristian I.; Gallego, Nidia C.
Laser ultrasonic line source methods have been used to study elastic anisotropy in nuclear graphites by measuring shear wave birefringence. Depending on the manufacturing processes used during production, nuclear graphites can exhibit various degrees of material anisotropy related to preferred crystallite orientation and to microcracking. In this paper, laser ultrasonic line source measurements of shear wave birefringence on NBG-25 have been performed to assess elastic anisotropy. Laser line sources allow specific polarizations for shear waves to be transmitted – the corresponding wavespeeds can be used to compute bulk, elastic moduli that serve to quantify anisotropy. These modulus values can bemore » interpreted using physical property models based on orientation distribution coefficients and microcrack-modified, single crystal moduli to represent the combined effects of crystallite orientation and microcracking on material anisotropy. Finally, ultrasonic results are compared to and contrasted with measurements of anisotropy based on the coefficient of thermal expansion to show the relationship of results from these techniques.« less
A study of Kapton degradation under simulated shuttle environment
NASA Technical Reports Server (NTRS)
Eck, T. G.; Hoffman, R. W.
1986-01-01
A system was developed which employs a source of low energy oxygen ion to simulate the shuttle low Earth orbit environment. This source, together with diagnostic tools including surface analysis ans mass spectroscopic capability, was used to measure the dependence of ion energy of the oxygen induced CO signals from pyrolytic graphite and Kapton. For graphite the CO signal was examined at energies ranging form 4.5 to 465 eV and for Kapton from 4.5 to 188 eV. While the relative quantum yields inferred from the data are reasonably precise, there are large uncertainties in the absolute yields because of the assumptions necessary to covert the measured signal strengths to quantum yields. These assumptions are discussed in detail.
Walter, Carl E.; Van Konynenburg, Richard; VanSant, James H.
1992-01-01
An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behr, Michael; Rix, James; Landes, Brian
2016-10-17
A new high-temperature fibre tensile cell is described, developed for use at the Advanced Photon Source at Argonne National Laboratory to enable the investigation of the carbonization and graphitization processes during carbon fibre production. This cell is used to heat precursor fibre bundles to temperatures up to ~2300°C in a controlled inert atmosphere, while applying tensile stress to facilitate formation of highly oriented graphitic microstructure; evolution of the microstructure as a function of temperature and time during the carbonization and higher-temperature graphitization processes can then be monitored by collecting real-time wide-angle X-ray diffraction (WAXD) patterns. As an example, the carbonizationmore » and graphitization behaviour of an oxidized polyacrylonitrile fibre was studied up to a temperature of ~1750°C. Real-time WAXD revealed the gradual increase in microstructure alignment with the fibre axis with increasing temperature over the temperature range 600–1100°C. Above 1100°C, no further changes in orientation were observed. The overall magnitude of change increased with increasing applied tensile stress during carbonization. As a second example, the high-temperature graphitizability of PAN- and pitch-derived commercial carbon fibres was studied. Here, the magnitude of graphitic microstructure evolution of the pitch-derived fibre far exceeded that of the PAN-derived fibres at temperatures up to ~2300°C, indicating its facile graphitizability.« less
SIKA—the multiplexing cold-neutron triple-axis spectrometer at ANSTO
NASA Astrophysics Data System (ADS)
Wu, C.-M.; Deng, G.; Gardner, J. S.; Vorderwisch, P.; Li, W.-H.; Yano, S.; Peng, J.-C.; Imamovic, E.
2016-10-01
SIKA is a new cold-neutron triple-axis spectrometer receiving neutrons from the cold source CG4 of the 20MW Open Pool Australian Light-water reactor. As a state-of-the-art triple-axis spectrometer, SIKA is equipped with a large double-focusing pyrolytic graphite monochromator, a multiblade pyrolytic graphite analyser and a multi-detector system. In this paper, we present the design, functions, and capabilities of SIKA, and discuss commissioning experimental results from powder and single-crystal samples to demonstrate its performance.
Sayell, E.H.
1973-10-23
A radioisotopic heat source is described which includes a core of heat productive, radioisotopic material, an impact resistant layer of graphite surrounding said core, and a shell of iridium metal intermediate the core and the impact layer. The source may also include a compliant mat of iridium between the core and the iridium shell, as well as an outer covering of iridium metal about the entire heat source. (Official Gazette)
WEAK AND COMPACT RADIO EMISSION IN EARLY HIGH-MASS STAR-FORMING REGIONS. I. VLA OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosero, V.; Hofner, P.; Claussen, M.
2016-12-01
We present a high-sensitivity radio continuum survey at 6 and 1.3 cm using the Karl G. Jansky Very Large Array toward a sample of 58 high-mass star-forming regions. Our sample was chosen from dust clumps within infrared dark clouds with and without IR sources (CMC–IRs and CMCs, respectively), and hot molecular cores (HMCs), with no previous, or relatively weak radio continuum detection at the 1 mJy level. Due to the improvement in the continuum sensitivity of the Very Large Array, this survey achieved map rms levels of ∼3–10 μ Jy beam{sup −1} at sub-arcsecond angular resolution. We extracted 70 continuum sourcesmore » associated with 1.2 mm dust clumps. Most sources are weak, compact, and prime candidates for high-mass protostars. Detection rates of radio sources associated with the millimeter dust clumps for CMCs, CMC–IRs, and HMCs are 6%, 53%, and 100%, respectively. This result is consistent with increasing high-mass star formation activity from CMCs to HMCs. The radio sources located within HMCs and CMC–IRs occur close to the dust clump centers, with a median offset from it of 12,000 au and 4000 au, respectively. We calculated 5–25 GHz spectral indices using power-law fits and obtained a median value of 0.5 (i.e., flux increasing with frequency), suggestive of thermal emission from ionized jets. In this paper we describe the sample, observations, and detections. The analysis and discussion will be presented in Paper II.« less
Yokwana, Kholiswa; Ray, Sekhar C; Khenfouch, Mohammad; Kuvarega, Alex T; Mamba, Bhekie B; Mhlanga, Sabelo D; Nxumalo, Edward N
2018-08-01
Nitrogen-doped graphene oxide (NGO) nanosheets were prepared via a facile one-pot modified Hummer's approach at low temperatures using graphite powder and flakes as starting materials in the presence of a nitrogen precursor. It was found that the morphology, structure, composition and surface chemistry of the NGO nanosheets depended on the nature of the graphite precursor used. GO nanosheets doped with nitrogen atoms exhibited a unique structure with few thin layers and wrinkled sheets, high porosity and structural defects. NGO sheets made from graphite powder (NGOp) exhibited excellent thermal stability and remarkably high surface area (up to 240.53 m2 ·g-1) compared to NGO sheets made from graphite flakes (NGOf) which degraded at low temperatures and had an average surface area of 24.70 m2 ·g-1. NGOf sheets had a size range of 850 to 2200 nm while NGOp sheets demonstrated obviously small sizes (460-1600 nm) even when exposed to different pH conditions. The NGO nanosheets exhibited negatively charged surfaces in a wide pH range (1 to 12) and were found to be stable above pH 6. In addition, graphite flakes were found to be more suitable for the production of NGO as they produced high N-doping levels (0.65 to 1.29 at.%) compared to graphite powders (0.30 to 0.35 at.%). This study further demonstrates that by adjusting the amount of N source in the host GO, one can tailor its thermal stability, surface morphology, surface chemistry and surface area.
Optimization and Domestic Sourcing of Lithium Ion Battery Anode Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, III, D. L.; Yoon, S.
2012-10-25
The purpose of this Cooperative Research and Development Agreement (CRADA) between ORNL and A123Systems, Inc. was to develop a low-temperature heat treatment process for natural graphite based anode materials for high-capacity and long-cycle-life lithium ion batteries. Three major problems currently plague state-of-the-art lithium ion battery anode materials. The first is the cost of the artificial graphite, which is heat-treated well in excess of 2000°C. Because of this high-temperature heat treatment, the anode active material significantly contributes to the cost of a lithium ion battery. The second problem is the limited specific capacity of state-of-the-art anodes based on artificial graphites, whichmore » is only about 200-350 mAh/g. This value needs to be increased to achieve high energy density when used with the low cell-voltage nanoparticle LiFePO4 cathode. Thirdly, the rate capability under cycling conditions of natural graphite based materials must be improved to match that of the nanoparticle LiFePO4. Natural graphite materials contain inherent crystallinity and lithium intercalation activity. They hold particular appeal, as they offer huge potential for industrial energy savings with the energy costs essentially subsidized by geological processes. Natural graphites have been heat-treated to a substantially lower temperature (as low as 1000-1500°C) and used as anode active materials to address the problems described above. Finally, corresponding graphitization and post-treatment processes were developed that are amenable to scaling to automotive quantities.« less
NASA Astrophysics Data System (ADS)
Sánchez-Monge, Á.; Schilke, P.; Schmiedeke, A.; Ginsburg, A.; Cesaroni, R.; Lis, D. C.; Qin, S.-L.; Müller, H. S. P.; Bergin, E.; Comito, C.; Möller, Th.
2017-07-01
Context. The two hot molecular cores Sgr B2(M) and Sgr B2(N), which are located at the center of the giant molecular cloud complex Sagittarius B2, have been the targets of numerous spectral line surveys, revealing a rich and complex chemistry. Aims: We seek to characterize the physical and chemical structure of the two high-mass star-forming sites Sgr B2(M) and Sgr B2(N) using high-angular resolution observations at millimeter wavelengths, reaching spatial scales of about 4000 au. Methods: We used the Atacama Large Millimeter/submillimeter Array (ALMA) to perform an unbiased spectral line survey of both regions in the ALMA band 6 with a frequency coverage from 211 GHz to 275 GHz. The achieved angular resolution is 0.̋4, which probes spatial scales of about 4000 au, I.e., able to resolve different cores and fragments. In order to determine the continuum emission in these line-rich sources, we used a new statistical method, STATCONT, which has been applied successfully to this and other ALMA datasets and to synthetic observations. Results: We detect 27 continuum sources in Sgr B2(M) and 20 sources in Sgr B2(N). We study the continuum emission variation across the ALMA band 6 (I.e., spectral index) and compare the ALMA 1.3 mm continuum emission with previous SMA 345 GHz and VLA 40 GHz observations to study the nature of the sources detected. The brightest sources are dominated by (partially optically thick) dust emission, while there is an important degree of contamination from ionized gas free-free emission in weaker sources. While the total mass in Sgr B2(M) is distributed in many fragments, most of the mass in Sgr B2(N) arises from a single object, with filamentary-like structures converging toward the center. There seems to be a lack of low-mass dense cores in both regions. We determine H2 volume densities for the cores of about 107-109 cm-3 (or 105-107 M⊙ pc-3), I.e., one to two orders of magnitude higher than the stellar densities of super star clusters. We perform a statistical study of the chemical content of the identified sources. In general, Sgr B2(N) is chemically richer than Sgr B2(M). The chemically richest sources have about 100 lines per GHz and the fraction of luminosity contained in spectral lines at millimeter wavelengths with respect to the total luminosity is about 20%-40%. There seems to be a correlation between the chemical richness and the mass of the fragments, where more massive clumps are more chemically rich. Both Sgr B2(N) and Sgr B2(M) harbor a cluster of hot molecular cores. We compare the continuum images with predictions from a detailed 3D radiative transfer model that reproduces the structure of Sgr B2 from 45 pc down to 100 au. Conclusions: This ALMA dataset, together with other ongoing observational projects in the range 5 GHz to 200 GHz, better constrain the 3D structure of Sgr B2 and allow us to understand its physical and chemical structure. FITS files of the continuum images as well as the spectral index are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A6
NASA Astrophysics Data System (ADS)
Shibata, Katsunori M.; Chung, Hyung-Soo; Kameno, Seiji; Roh, Duk-Gyoo; Umemoto, Tomofumi; Kim, Kwang-Dong; Asada, Keiichi; Han, Seog-Tae; Mochizuki, Nanako; Cho, Se-Hyung; Sawada-Satoh, Satoko; Kim, Hyun-Goo; Bushimata, Takeshi; Minh, Young Chol; Miyaji, Takeshi; Kuno, Nario; Mikoshiba, Hiroshi; Sunada, Kazuyoshi; Inoue, Makoto; Kobayashi, Hideyuki
2004-06-01
We have made VLBI observations at 86GHz using a 1000-km baseline between Korea and Japan with successful detections of SiO v = 1, J = 2 - 1 maser emissions from VY CMa and Orion KL in 2001 June. This was the first VLBI result for this baseline and the first astronomical VLBI observation for the Korean telescope. Since then, we observed SiO v = 1, J = 2 - 1 maser emission in VY CMa in 2002 January and 2003 February and derived the distributions of the maser emissions. Our results show that the maser emissions extend over 2-4 stellar radii, and were within the inner radius of the dust shell. We observed other SiO maser sources and continuum sources, and 86-GHz continuum emissions were detected from three continuum sources. It was verified that this baseline has a performance comparable to the most sensitive baseline in the VLBA and the CMVA, and is capable of investigating the proper motions of maser features in circumstellar envelopes using monitoring observations.
Predictions of Poisson's ratio in cross-ply laminates containing matrix cracks and delaminations
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Allen, David H.; Nottorf, Eric W.
1989-01-01
A damage-dependent constitutive model for laminated composites has been developed for the combined damage modes of matrix cracks and delaminations. The model is based on the concept of continuum damage mechanics and uses second-order tensor valued internal state variables to represent each mode of damage. The internal state variables are defined as the local volume average of the relative crack face displacements. Since the local volume for delaminations is specified at the laminate level, the constitutive model takes the form of laminate analysis equations modified by the internal state variables. Model implementation is demonstrated for the laminate engineering modulus E(x) and Poisson's ratio nu(xy) of quasi-isotropic and cross-ply laminates. The model predictions are in close agreement to experimental results obtained for graphite/epoxy laminates.
Z-scan measurements using femtosecond continuum generation
NASA Astrophysics Data System (ADS)
de Boni, Leonardo; Andrade, Acácio A.; Misoguti, Lino; Mendonça, Cléber R.; Zilio, Sérgio Carlos
2004-08-01
We present a single beam Z-scan technique using an intense, broadband, white-light continuum (WLC) beam for the direct measurement of nonlinear absorption spectra. In order to demonstrate the validity of our technique, we compared the results of tetraaniline and Sudan 3 solutions obtained with WLC and conventional single wavelength light sources. Both approaches lead to the same nonlinear spectrum, indicating that the association of the Z-scan technique and the WLC source results in an useful method for the measurement of nonlinear spectra of both absorbing (saturable absorption or reverse saturable absorption) and transparent (two-photon absorption) samples.
48 CFR 15.101 - Best value continuum.
Code of Federal Regulations, 2010 CFR
2010-10-01
... risk of unsuccessful contract performance is minimal, cost or price may play a dominant role in source... performance risk, the more technical or past performance considerations may play a dominant role in source...
Wang, Haitao; Wang, Wei; Asif, Muhammad; Yu, Yang; Wang, Zhengyun; Wang, Junlei; Liu, Hongfang; Xiao, Junwu
2017-10-19
The design and synthesis of a promising porous carbon-based electrocatalyst with an ordered and uninterrupted porous structure for oxygen reduction reaction (ORR) is still a significant challenge. Herein, an efficient catalyst based on cobalt-embedded nitrogen-doped ordered mesoporous carbon nanosheets (Co/N-OMCNS) is successfully prepared through a two-step procedure (cobalt ion-coordinated self-assembly and carbonization process) using 3-aminophenol as a nitrogen source, cobalt acetate as a cobalt source and Pluronic F127 as a mesoporous template. This work indicates that the formation of a two dimensional nanosheet structure is directly related to the extent of the cobalt ion coordination interaction. Moreover, the critical roles of pyrolysis temperature in nitrogen doping and ORR catalytic activity are also investigated. Benefiting from the high surface area and graphitic degree, high contents of graphitic N and pyridinic N, ordered interconnected mesoporous carbon framework, as well as synergetic interaction between the cobalt nanoparticles and protective nitrogen doped graphitic carbon layer, the resultant optimal catalyst Co/N-OMCNS-800 (pyrolyzed at 800 °C) exhibits comparable ORR catalytic activity to Pt/C, superior tolerance to methanol crossover and stability.
RXTE and BeppoSAX Observations of MCG-5-23-16: Reflection From Distant Cold Material
NASA Technical Reports Server (NTRS)
Mattson, B. J.; Weaver, K. A.
2003-01-01
We examine the spectral variability of the Seyfert 1.9 galaxy MCG-5-23-16 using RXTE and BeppoSAX observations spanning 2 years from April 1996 to April 1998. During the first year the X-ray source brightens by a factor of approximately 25% on timescales of days to months. During this time, the reprocessed continuum emission seen with RXTE does not respond measurably to the continuum increase. However, by the end of the second year during the BeppoSAX epoch the X-ray source has faded again. This time, the reprocessed emission has also faded, indicating that the reprocessed flux has responded to the continuum. If these effects are caused by time delays due to the distance between the X-ray source and the reprocessing region, we derive a light crossing time of between approximately 1 light day and approximately 1.5 light years. This corresponds to a distance of 0.001 pc to 0.55 pc, which implies that the reprocessed emission originates between 3 x 10(exp 15) cm and 1.6 x 10(exp l8) cm from the X-ray source. In other words, the reprocessing in MCG-5-23-16 is not dominated by the inner regions of a standard accretion disk.
Ciftci, Harun; Er, Cigdem
2013-03-01
In the present study, a separation/preconcentration procedure for determination of aluminum in water samples has been developed by using a new atomic absorption spectrometer concept with a high-intensity xenon short-arc lamp as continuum radiation source, a high-resolution double-echelle monochromator, and a charge-coupled device array detector. Sample solution pH, sample volume, flow rate of sample solution, volume, and concentration of eluent for solid-phase extraction of Al chelates with 4-[(dicyanomethyl)diazenyl] benzoic acid on polymeric resin (Duolite XAD-761) have been investigated. The adsorbed aluminum on resin was eluted with 5 mL of 2 mol L(-1) HNO(3) and its concentration was determined by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Under the optimal conditions, limit of detection obtained with HR-CS FAAS and Line Source FAAS (LS-FAAS) were 0.49 μg L(-1) and 3.91 μg L(-1), respectively. The accuracy of the procedure was confirmed by analyzing certified materials (NIST SRM 1643e, Trace elements in water) and spiked real samples. The developed procedure was successfully applied to water samples.
Galactic supernova remnant candidates discovered by THOR
NASA Astrophysics Data System (ADS)
Anderson, L. D.; Wang, Y.; Bihr, S.; Rugel, M.; Beuther, H.; Bigiel, F.; Churchwell, E.; Glover, S. C. O.; Goodman, A. A.; Henning, Th.; Heyer, M.; Klessen, R. S.; Linz, H.; Longmore, S. N.; Menten, K. M.; Ott, J.; Roy, N.; Soler, J. D.; Stil, J. M.; Urquhart, J. S.
2017-09-01
Context. There is a considerable deficiency in the number of known supernova remnants (SNRs) in the Galaxy compared to that expected. This deficiency is thought to be caused by a lack of sensitive radio continuum data. Searches for extended low-surface brightness radio sources may find new Galactic SNRs, but confusion with the much larger population of H II regions makes identifying such features challenging. SNRs can, however, be separated from H II regions using their significantly lower mid-infrared (MIR) to radio continuum intensity ratios. Aims: Our goal is to find missing SNR candidates in the Galactic disk by locating extended radio continuum sources that lack MIR counterparts. Methods: We use the combination of high-resolution 1-2 GHz continuum data from The HI, OH, Recombination line survey of the Milky Way (THOR) and lower-resolution VLA 1.4 GHz Galactic Plane Survey (VGPS) continuum data, together with MIR data from the Spitzer GLIMPSE, Spitzer MIPSGAL, and WISE surveys to identify SNR candidates. To ensure that the candidates are not being confused with H II regions, we exclude radio continuum sources from the WISE Catalog of Galactic H II Regions, which contains all known and candidate H II regions in the Galaxy. Results: We locate 76 new Galactic SNR candidates in the THOR and VGPS combined survey area of 67.4° > ℓ > 17.5°, | b | ≤ 1.25° and measure the radio flux density for 52 previously-known SNRs. The candidate SNRs have a similar spatial distribution to the known SNRs, although we note a large number of new candidates near ℓ ≃ 30°, the tangent point of the Scutum spiral arm. The candidates are on average smaller in angle compared to the known regions, 6.4' ± 4.7' versus 11.0' ± 7.8', and have lower integrated flux densities. Conclusions: The THOR survey shows that sensitive radio continuum data can discover a large number of SNR candidates, and that these candidates can be efficiently identified using the combination of radio and MIR data. If the 76 candidates are confirmed as true SNRs, for example using radio polarization measurements or by deriving radio spectral indices, this would more than double the number of known Galactic SNRs in the survey area. This large increase would still, however, leave a discrepancy between the known and expected SNR populations of about a factor of two.
Multiscale modeling of lithium ion batteries: thermal aspects
Zausch, Jochen
2015-01-01
Summary The thermal behavior of lithium ion batteries has a huge impact on their lifetime and the initiation of degradation processes. The development of hot spots or large local overpotentials leading, e.g., to lithium metal deposition depends on material properties as well as on the nano- und microstructure of the electrodes. In recent years a theoretical structure emerges, which opens the possibility to establish a systematic modeling strategy from atomistic to continuum scale to capture and couple the relevant phenomena on each scale. We outline the building blocks for such a systematic approach and discuss in detail a rigorous approach for the continuum scale based on rational thermodynamics and homogenization theories. Our focus is on the development of a systematic thermodynamically consistent theory for thermal phenomena in batteries at the microstructure scale and at the cell scale. We discuss the importance of carefully defining the continuum fields for being able to compare seemingly different phenomenological theories and for obtaining rules to determine unknown parameters of the theory by experiments or lower-scale theories. The resulting continuum models for the microscopic and the cell scale are numerically solved in full 3D resolution. The complex very localized distributions of heat sources in a microstructure of a battery and the problems of mapping these localized sources on an averaged porous electrode model are discussed by comparing the detailed 3D microstructure-resolved simulations of the heat distribution with the result of the upscaled porous electrode model. It is shown, that not all heat sources that exist on the microstructure scale are represented in the averaged theory due to subtle cancellation effects of interface and bulk heat sources. Nevertheless, we find that in special cases the averaged thermal behavior can be captured very well by porous electrode theory. PMID:25977870
Submillimeter array observations of NGC 2264-C: molecular outflows and driving sources
NASA Astrophysics Data System (ADS)
Cunningham, Nichol; Lumsden, Stuart L.; Cyganowski, Claudia J.; Maud, Luke T.; Purcell, Cormac
2016-05-01
We present 1.3 mm Submillimeter Array (SMA) observations at ˜3 arcsec resolution towards the brightest section of the intermediate/massive star-forming cluster NGC 2264-C. The millimetre continuum emission reveals ten 1.3 mm continuum peaks, of which four are new detections. The observed frequency range includes the known molecular jet/outflow tracer SiO (5-4), thus providing the first high-resolution observations of SiO towards NGC 2264-C. We also detect molecular lines of 12 additional species towards this region, including CH3CN, CH3OH, SO, H2CO, DCN, HC3N, and 12CO. The SiO (5-4) emission reveals the presence of two collimated, high-velocity (up to 30 km s-1 with respect to the systemic velocity) bipolar outflows in NGC 2264-C. In addition, the outflows are traced by emission from 12CO, SO, H2CO, and CH3OH. We find an evolutionary spread between cores residing in the same parent cloud. The two unambiguous outflows are driven by the brightest mm continuum cores, which are IR-dark, molecular line weak, and likely the youngest cores in the region. Furthermore, towards the Red MSX Source AFGL 989-IRS1, the IR-bright and most evolved source in NGC 2264-C, we observe no molecular outflow emission. A molecular line rich ridge feature, with no obvious directly associated continuum source, lies on the edge of a low-density cavity and may be formed from a wind driven by AFGL 989-IRS1. In addition, 229 GHz class I maser emission is detected towards this feature.
Thermo-Plasmonics for Localized Graphitization and Welding of Polymeric Nanofibers
Zillohu, Ahnaf Usman; Alissawi, Nisreen; Abdelaziz, Ramzy; Elbahri, Mady
2014-01-01
There is a growing interest in modulating the temperature under the illumination of light. As a heat source, metal nanoparticles (NPs) have played an important role to pave the way for a new branch of plasmonics, i.e., thermo-plasmonics. While thermo-plasmonics have been well established in photo-thermal therapy, it has received comparatively less attention in materials science and chemistry. Here, we demonstrate the first proof of concept experiment of local chemistry and graphitization of metalized polymeric nanofibers through thermo-plasmonic effect. In particular, by tuning the plasmonic absorption of the nanohybrid through a change in the thickness of the deposited silver film on the fibers, the thermo-plasmonic effect can be adjusted in such a way that high enough temperature is generated enabling local welding and graphitization of the polymeric nanofibers. PMID:28788459
Heat-Storage Modules Containing LiNO3-3H2O and Graphite Foam
NASA Technical Reports Server (NTRS)
Bootle, John
2008-01-01
A heat-storage module based on a commercial open-cell graphite foam (Poco-Foam or equivalent) imbued with lithium nitrate trihydrate (LiNO3-3H2O) has been developed as a prototype of other such modules for use as short-term heat sources or heat sinks in the temperature range of approximately 28 to 30 C. In this module, the LiNO3-3H2O serves as a phase-change heat-storage material and the graphite foam as thermally conductive filler for transferring heat to or from the phase-change material. In comparison with typical prior heat-storage modules in which paraffins are the phase-change materials and aluminum fins are the thermally conductive fillers, this module has more than twice the heat-storage capacity per unit volume.
Castilho, Ivan N B; Welz, Bernhard; Vale, Maria Goreti R; de Andrade, Jailson B; Smichowski, Patricia; Shaltout, Abdallah A; Colares, Lígia; Carasek, Eduardo
2012-01-15
Three different procedures for sample preparation have been compared for the determination of Cu, Mo and Sb in airborne particulate matter (APM) collected on glass fiber filters using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). Direct solid sample analysis of the ground filters was compared with microwave-assisted acid leaching with aqua regia and ultrasound-assisted extraction also using aqua regia. The main absorption line at 324.754 nm or the secondary line at 216.509 nm was used for the determination of Cu, depending on the analyte content in the samples. The primary absorption line at 313.259 nm was used for Mo and the secondary line at 212.739 nm for Sb determination. The limits of detection (LOD, 3σ) found for the direct solid sampling method, based on ten atomizations of an unused filter were 15 μg g(-1) for all three analytes, corresponding to 40 ng m(-3) for a typical air volume of 1,440 m(3) collected over a period of 24h. The LOD for the other two methods were less than a factor of two inferior, but the total time required for an analysis was significantly longer. The repeatability of the measurements was between 3 and 9% (n=5), and the results obtained with the three methods did not show any significant difference. The ratio between the three analytes on the filters from areas of intense traffic was found to be around Cu:Mo:Sb≈4:1:1.4, which suggests that the source of all three elements is brake linings, i.e., related to automobile traffic. When the ratio deviated significantly from the above values, the source of contamination was assumed to be of different origin. Copyright © 2011 Elsevier B.V. All rights reserved.
Microlensing of an extended source by a power-law mass distribution
NASA Astrophysics Data System (ADS)
Congdon, Arthur B.; Keeton, Charles R.; Osmer, S. J.
2007-03-01
Microlensing promises to be a powerful tool for studying distant galaxies and quasars. As the data and models improve, there are systematic effects that need to be explored. Quasar continuum and broad-line regions may respond differently to microlensing due to their different sizes; to understand this effect, we study microlensing of finite sources by a mass function of stars. We find that microlensing is insensitive to the slope of the mass function but does depend on the mass range. For negative-parity images, diluting the stellar population with dark matter increases the magnification dispersion for small sources and decreases it for large sources. This implies that the quasar continuum and broad-line regions may experience very different microlensing in negative-parity lensed images. We confirm earlier conclusions that the surface brightness profile and geometry of the source have little effect on microlensing. Finally, we consider non-circular sources. We show that elliptical sources that are aligned with the direction of shear have larger magnification dispersions than sources with perpendicular alignment, an effect that becomes more prominent as the ellipticity increases. Elongated sources can lead to more rapid variability than circular sources, which raises the prospect of using microlensing to probe source shape.
Tracing Life in the Earliest Terrestrial Rock Record
NASA Astrophysics Data System (ADS)
Lepland, A.; van Zuilen, M.; Arrhenius, G.
2001-12-01
The principal method for studying the earliest traces of life in the metamorphosed, oldest (> 3.5 Ga) terrestrial rocks involves determination of isotopic composition of carbon, mainly prevailing as graphite. It is generally believed that this measure can distinguish biogenic graphite from abiogenic varieties. However, the interpretation of life from carbon isotope ratios has to be assessed within the context of specific geologic circumstances requiring (i) reliable protolith interpretation (ii) control of secondary, metasomatic processes, and (iii) understanding of different graphite producing mechanisms and related carbon isotopic systematics. We have carried out a systematic study of abundance, isotopic composition and petrographic associations of graphite in rocks from the ca. 3.8 Ga Isua Supracrustal Belt (ISB) in southern West Greenland. Our study indicates that most of the graphite in ISB occurs in carbonate-rich metasomatic rocks (metacarbonates) while sedimentary units, including banded iron formations (BIFs) and metacherts, have exceedingly low graphite concentrations. Regardless of isotopic composition of graphite in metacarbonate rocks, their secondary origin disqualifies them from providing evidence for traces of life stemming from 3.8 Ga. Recognition of the secondary origin of Isua metacarbonates thus calls for reevaluation of biologic interpretations by Schidlowski et al. (1979) and Mojzsis et al. (1996) that suggested the occurrence of 3.8 Ga biogenic graphite in these rocks. The origin of minute quantities of reduced carbon, released from sedimentary BIFs and metacherts at combustion steps > 700 C remains to be clarified. Its isotopic composition (d13C from -18 to -25%) may hint at a biogenic origin. However, such isotopically light carbon was also found in Proterozoic mafic dykes cross-cutting the metasedimentary units in the ISB. The occurrence of isotopically light, reduced carbon in biologically irrelevant dykes may indicate secondary graphite crystallization from CO2 or CH4- containing fluids that in turn may derive from bioorganic sources. If this were the case, trace amounts of isotopically light secondary graphite can also be expected in metasediments, complicating the usage of light graphite as primary biomarker. The possibility of recent organic contamination, particularly important in low graphite samples, needs also to be considered; it appears as a ubiquitous component released at combustion in the 400 to 500 deg range. - A potential use of the apatite-graphite association as a biomarker has been proposed in the study by Mojzsis et al. (1996). Close inspection of several hundred apatite crystals from Isua BIFs and metacherts did, however, not show an association between these two minerals, moreover graphite is practically absent in these metasediments. In contrast, apatite crystals in the non-sedimentary metacarbonate rocks were found commonly to have invaginations, coatings and inclusions of abundant graphite. Considering that such graphite inclusions in apatite are restricted to the secondary metasomatic carbonate rocks in the ISB this association can not be considered as a primary biomarker in the Isua Supracrustal Belt References: Mojzsis,S.J, .Arrhenius,G., McKeegan, K.D.,.Harrison, T.M.,.Nutman, A.P & C.R.L.Friend.,1996. Nature 384: 55 Schidlowski, M., Appel, P.W.U., Eichmann, R. & Junge, C.E., 1979. Geochim. Cosmochim. Acta 43: 189-190.
NASA Astrophysics Data System (ADS)
Amari, Sachiko
2008-05-01
There are several isotopically distinct noble gas components in meteorites. Of them, Ne-E(L), heavily enriched in 22Ne, is carried by graphite with a range of density (1.6 - 2.2 g/cm3). Bulk (=aggregates) noble gas analysis of graphite separates from the Murchison meteorite indicate that a dominant source of 22Ne is 22Na (T1/2 = 2.6 a) with varying proportions of 22Ne via 14N(α,γ)18F(e+ν)18O(α,γ)22Ne with density. Low-density graphite grains, from their isotopic signatures, are believed to have formed in supernovae. Examinations of both bulk and single-grain analyses of low-density graphite grains (Amari et al., 1995; Nichols et al., 1994) indicate that all 22Ne in low-density graphite grains is from the decay of 22Na that was produced in the O/Ne zone in supernovae. One may argue why implanted 20,22Ne was not observed in the grains, considering the fact that the mass fraction of 20Ne is 5 orders of magnitude larger than that of 22Na. Croat et al. (2003) observed TiC subgrains inside low-density graphite grains have amorphous rims with the thickness of 3 to 15 nm, indicating atom bombardment from the surrounding gas. Assuming the gas is He, they estimated the velocity is 50 km/s or less. If the relative velocities between the Ne and the graphite grains are in that range, the penetration depth into the graphite grains is 2nm. Such shallow surface layers would be sputtered once the grains hit the reverse shock and keep traveling into the hot H-rich region (Nozawa et al, 2007). It remains to be seen whether or not 22Na in higher-density graphite is from supernovae or novae, or both. Amari, S. et al. 1995, Geochim. Cosmochim. Acta, 59, 1411 Croat, T.K. et al. 2003, Geochim. Cosmochim. Acta, 67, 4705 Nichols R.H. et al. 1994, Meteoritics, 29, 510 Nozawa, T. et al. 2007 ApJ, 666, 955
Dual-ion-beam deposition of carbon films with diamond-like properties
NASA Technical Reports Server (NTRS)
Mirtich, M. J.; Swec, D. M.; Angus, J. C.
1985-01-01
A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamond like films generated by sputtering a graphite target.
Dual ion beam deposition of carbon films with diamondlike properties
NASA Technical Reports Server (NTRS)
Mirtich, M. J.; Swec, D. M.; Angus, J. C.
1984-01-01
A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamondlike films generated by sputtering a graphite target.
NASA Technical Reports Server (NTRS)
Martin, A.; Righter, K.
2009-01-01
Carbon stability in planetary mantles has been studied by numerous authors because it is thought to be the source of C-bearing atmospheres and of C-rich lavas observed at the planetary surface. In the Earth, carbonaceous peridotites and eclogites compositions have been experimentally studied at mantle conditions [1] [2] [3]. [4] showed that the fO2 variations observed in martian meteorites can be explained by polybaric graphite-CO-CO2 equilibria in the Martian mantle. Based on thermodynamic calculations [4] and [5] inferred that the stable form of carbon in the source regions of the Martian basalts should be graphite (and/or diamond), and equilibrium with melts would be a source of CO2 for the martian atmosphere. Considering the high content of iron in the Martian mantle (approx.18.0 wt% FeO; [6]), compared to Earth s mantle (8.0 wt% FeO; [7]) Fe/C redox interactions should be studied in more detail.
Reexamination of the effective fine structure constant of graphene as measured in graphite
Gan, Yu; de la Pena Munoz, Gilberto; Kogar, Anshul; ...
2016-05-24
Here we present a refined and improved study of the influence of screening on the effective fine structure constant of graphene, α*, as measured in graphite using inelastic x-ray scattering. This followup to our previous study [J. P. Reed et al., Science 330, 805 (2010)] was carried out with two times better energy resolution, five times better momentum resolution, and an improved experimental setup with lower background. We compare our results to random-phase approximation (RPA) calculations and evaluate the relative importance of interlayer hopping, excitonic corrections, and screening from high energy excitations involving the sigma bands. We find that themore » static, limiting value of α* falls in the range 0.25-0.35, which is higher than our previous result of 0.14, but still below the value expected from RPA. We show the reduced value is not a consequence of interlayer hopping effects, which were ignored in our previous analysis, but of a combination of excitonic effects in the π→ π* particle-hole continuum, and background screening from the σ-bonded electrons. We find that σ-band screening is extremely strong at distances of less than a few nanometers, and should be highly effective at screening out short-distance, Hubbard-like interactions in graphene as well as other carbon allotropes.« less
NASA Astrophysics Data System (ADS)
Andrade-Carpente, Eva; Peña-Vázquez, Elena; Bermejo-Barrera, Pilar
2016-08-01
In this study, the content of sulfur in bovine serum albumin and L-cysteine was determined using high-resolution continuum source molecular absorption spectrometry of the CS molecule, generated in a reducing air-acetylene flame. Flame conditions (height above the burner, measurement time) were optimized using a 3.0% (v/v) sulfuric acid solution. A microwave lab station (Ethos Plus MW) was used for the digestion of both compounds. During the digestion step, sulfur was converted to sulfate previous to the determination. Good repeatability (4-10%) and analytical recovery (91-106%) was obtained.
Energy absorption due to spatial resonance of Alfven waves at continuum tip
NASA Astrophysics Data System (ADS)
Chen, Eugene; Berk, Herb; Breizman, Boris; Zheng, Linjin
2011-10-01
We investigate the response of tokamak plasma to an external driving source. An impedance-like function depending on the driving frequency that is growing at a small rate, is calculated and interpreted with different source profiles. Special attention is devoted to the case where driving frequency approaches that of the TAE continuum tip. The calculation can be applied to the estimation of TAE damping rate by analytically continuing the inverse of the impedance function to the lower half plane. The root of the analytic continuation corresponds to the existence of a quasi-mode, from which the damping rate can be found.
Ozbek, N; Baysal, A
2015-02-01
The new approach for the determination of sulphur in foods was developed, and the sulphur concentrations of various fresh and dried food samples determined using a high-resolution continuum source flame atomic absorption spectrometer with an air/acetylene flame. The proposed method was optimised and the validated using standard reference materials, and certified values were found to be within the 95% confidence interval. The sulphur content of foods ranged from less than the LOD to 1.5mgg(-1). The method is accurate, fast, simple and sensitive. Copyright © 2014 Elsevier Ltd. All rights reserved.
Computational Toxicology: Application in Environmental Chemicals
This chapter provides an overview of computational models that describe various aspects of the source-to-health effect continuum. Fate and transport models describe the release, transportation, and transformation of chemicals from sources of emission throughout the general envir...
A Biomonitoring Framework to Support Exposure and Risk Assessments
Background - Biomonitoring is used in exposure and risk assessments to reduce uncertainties along the source-to-outcome continuum. Specifically, biomarkers can help identify exposure sources, routes, and distributions, and reflect kinetic and dynamic processes following exposure ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosero, V.; Hofner, P.; McCoy, M.
2014-12-01
We report 1.3 cm and 6 cm continuum observations toward the massive proto-stellar candidate G11.11–0.12P1 using the Karl G. Jansky Very Large Array. We detect a string of four unresolved radio continuum sources coincident with the mid-infrared source in G11P1. The continuum sources have positive spectral indices consistent with a thermal (free-free) ionized jet. The most likely origins of the ionized gas are shocks due to the interaction of a stellar wind with the surrounding high-density material. We also present NIR United Kingdom Infrared Telescope (UKIRT) archival data that show an extended structure detected only at K band (2.2 μm),more » which is oriented perpendicular to the jet, and that may be scattered light from a circumstellar disk around the massive protostar. Our observations plus the UKIRT archival data thus provide new evidence that a disk/jet system is present in the massive proto-stellar candidate located in the G11.11–0.12P1 core.« less
2013-01-01
Background The aim of this paper was the validation of a new analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals (Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil after microwave assisted digestion in aqua regia. Determinations were performed on the ContrAA 300 (Analytik Jena) air-acetylene flame spectrometer equipped with xenon short-arc lamp as a continuum radiation source for all elements, double monochromator consisting of a prism pre-monocromator and an echelle grating monochromator, and charge coupled device as detector. For validation a method-performance study was conducted involving the establishment of the analytical performance of the new method (limits of detection and quantification, precision and accuracy). Moreover, the Bland and Altman statistical method was used in analyzing the agreement between the proposed assay and inductively coupled plasma optical emission spectrometry as standardized method for the multielemental determination in soil. Results The limits of detection in soil sample (3σ criterion) in the high-resolution continuum source flame atomic absorption spectrometry method were (mg/kg): 0.18 (Ag), 0.14 (Cd), 0.36 (Co), 0.25 (Cr), 0.09 (Cu), 1.0 (Ni), 1.4 (Pb) and 0.18 (Zn), close to those in inductively coupled plasma optical emission spectrometry: 0.12 (Ag), 0.05 (Cd), 0.15 (Co), 1.4 (Cr), 0.15 (Cu), 2.5 (Ni), 2.5 (Pb) and 0.04 (Zn). Accuracy was checked by analyzing 4 certified reference materials and a good agreement for 95% confidence interval was found in both methods, with recoveries in the range of 94–106% in atomic absorption and 97–103% in optical emission. Repeatability found by analyzing real soil samples was in the range 1.6–5.2% in atomic absorption, similar with that of 1.9–6.1% in optical emission spectrometry. The Bland and Altman method showed no statistical significant difference between the two spectrometric methods for 95% confidence interval. Conclusions High-resolution continuum source flame atomic absorption spectrometry can be successfully used for the rapid, multielemental determination of hazardous/priority hazardous metals in soil with similar analytical performances to those in inductively coupled plasma optical emission spectrometry. PMID:23452327
Frentiu, Tiberiu; Ponta, Michaela; Hategan, Raluca
2013-03-01
The aim of this paper was the validation of a new analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals (Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil after microwave assisted digestion in aqua regia. Determinations were performed on the ContrAA 300 (Analytik Jena) air-acetylene flame spectrometer equipped with xenon short-arc lamp as a continuum radiation source for all elements, double monochromator consisting of a prism pre-monocromator and an echelle grating monochromator, and charge coupled device as detector. For validation a method-performance study was conducted involving the establishment of the analytical performance of the new method (limits of detection and quantification, precision and accuracy). Moreover, the Bland and Altman statistical method was used in analyzing the agreement between the proposed assay and inductively coupled plasma optical emission spectrometry as standardized method for the multielemental determination in soil. The limits of detection in soil sample (3σ criterion) in the high-resolution continuum source flame atomic absorption spectrometry method were (mg/kg): 0.18 (Ag), 0.14 (Cd), 0.36 (Co), 0.25 (Cr), 0.09 (Cu), 1.0 (Ni), 1.4 (Pb) and 0.18 (Zn), close to those in inductively coupled plasma optical emission spectrometry: 0.12 (Ag), 0.05 (Cd), 0.15 (Co), 1.4 (Cr), 0.15 (Cu), 2.5 (Ni), 2.5 (Pb) and 0.04 (Zn). Accuracy was checked by analyzing 4 certified reference materials and a good agreement for 95% confidence interval was found in both methods, with recoveries in the range of 94-106% in atomic absorption and 97-103% in optical emission. Repeatability found by analyzing real soil samples was in the range 1.6-5.2% in atomic absorption, similar with that of 1.9-6.1% in optical emission spectrometry. The Bland and Altman method showed no statistical significant difference between the two spectrometric methods for 95% confidence interval. High-resolution continuum source flame atomic absorption spectrometry can be successfully used for the rapid, multielemental determination of hazardous/priority hazardous metals in soil with similar analytical performances to those in inductively coupled plasma optical emission spectrometry.
Oxygen, Neon, and Iron X-Ray Absorption in the Local Interstellar Medium
NASA Technical Reports Server (NTRS)
Gatuzz, Efrain; Garcia, Javier; Kallman, Timothy R.; Mendoza, Claudio
2016-01-01
We present a detailed study of X-ray absorption in the local interstellar medium by analyzing the X-ray spectra of 24 galactic sources obtained with the Chandra High Energy Transmission Grating Spectrometer and the XMM-Newton Reflection Grating Spectrometer. Methods. By modeling the continuum with a simple broken power-law and by implementing the new ISMabs X-ray absorption model, we have estimated the total H, O, Ne, and Fe column densities towards the observed sources. Results. We have determined the absorbing material distribution as a function of source distance and galactic latitude longitude. Conclusions. Direct estimates of the fractions of neutrally, singly, and doubly ionized species of O, Ne, and Fe reveal the dominance of the cold component, thus indicating an overall low degree of ionization. Our results are expected to be sensitive to the model used to describe the continuum in all sources.
Models of Uranium continuum radio emission
NASA Technical Reports Server (NTRS)
Romig, Joseph H.; Evans, David R.; Sawyer, Constance B.; Schweitzer, Andrea E.; Warwick, James W.
1987-01-01
Uranium continuum radio emission detected by the Voyager 2 Planetary Radio Astronomy experiment during the January 1986 encounter is considered. The continuum emissions comprised four components (equatorial emissions, anomaly emissions, strong nightside emissions, and weak nightside emissions) associated with different sources. The equatorial emissions appeared most prominently during the days before closest approach and extended from 40 kHz or below to about 120 kHz. The anomaly emissions were seen about 12 hours before closest approach and extended to about 250 kHz. The agreement found between Miranda's phase and strong radio emission at 20.4 kHz, just after closest approach, suggests intense dynamic activity on the Miranda L shell.
A VLA radio continuum survey of active late-type giants in binary systems - Preliminary results
NASA Technical Reports Server (NTRS)
Drake, S. A.; Simon, T.; Linsky, J. L.
1985-01-01
Preliminary results of a 6 cm continuum survey using the NRAO VLA of binary systems with 10-100 day orbital period containing an 'active' giant component are reported. The results show that strong radio continuum emission at centimeter wavelengths is a common but not universal property of this class of stars. Possible correlations between radio luminosity and other properties, such as X-ray luminosity, rotational period, and type of companion are discussed. Several binary systems which have been detected for the first time as radio sources are reported, and sensitive upper limits are presented for five other systems, including Capella.
NASA Technical Reports Server (NTRS)
1974-01-01
Radio noise continuum emission observed in metric and decametric wave frequencies is discussed. The radio noise is associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. It is shown that the S-component emission in microwave frequencies generally occurs several days before the emission of the noise continuum storms of lower frequencies. It is likely that energetic electrons, 10 to 100 Kev, accelerated in association with the variation of sunspot magnetic fields, are the sources of the radio emissions. A model is considered to explain the relation of burst storms on radio noise. An analysis of the role of energetic electrons on the emissions of both noise continuum and type III burst storms is presented. It is shown that instabilities associated with the electrons and their relation to their own stabilizing effects are important in interpreting both of these storms.
Photometric redshifts for the next generation of deep radio continuum surveys - I. Template fitting
NASA Astrophysics Data System (ADS)
Duncan, Kenneth J.; Brown, Michael J. I.; Williams, Wendy L.; Best, Philip N.; Buat, Veronique; Burgarella, Denis; Jarvis, Matt J.; Małek, Katarzyna; Oliver, S. J.; Röttgering, Huub J. A.; Smith, Daniel J. B.
2018-01-01
We present a study of photometric redshift performance for galaxies and active galactic nuclei detected in deep radio continuum surveys. Using two multiwavelength data sets, over the NOAO Deep Wide Field Survey Boötes and COSMOS fields, we assess photometric redshift (photo-z) performance for a sample of ∼4500 radio continuum sources with spectroscopic redshifts relative to those of ∼63 000 non-radio-detected sources in the same fields. We investigate the performance of three photometric redshift template sets as a function of redshift, radio luminosity and infrared/X-ray properties. We find that no single template library is able to provide the best performance across all subsets of the radio-detected population, with variation in the optimum template set both between subsets and between fields. Through a hierarchical Bayesian combination of the photo-z estimates from all three template sets, we are able to produce a consensus photo-z estimate that equals or improves upon the performance of any individual template set.
A Close Look At The Relationship Between WMAP (ILC) Small-Scale Features And Galactic HI Structure
NASA Astrophysics Data System (ADS)
Verschuur, Gerrit L.
2012-05-01
Galactic HI emission profiles surrounding two pairs of features located where large-scale filaments at very different velocities overlap were decomposed into Gaussian components. Families of components defined by similarity of center velocities and line widths were identified and found to be spatially related. Each of the two pairs of HI peaks straddle a high-frequency continuum source revealed in the WMAP survey data. It is suggested that where filamentary HI features are directly interacting high-frequency continuum radiation is being produced. The previously hypothesized mechanism for producing high-frequency continuum radiation involving free-free emission from electrons in the interstellar medium, in this case created where HI filaments interact to produce fractional ionizations of order 5 to 15%, fit the data very closely. The results confirm that WMAP data on small-scale structures believed to be cosmological in origin are in fact compromised by the presence of intervening galactic sources of interstellar electrons clumped on scales typical of interstellar HI structure.
Photoionization Modeling with TITAN Code, Distance to the Warm Absorber in AGN
NASA Astrophysics Data System (ADS)
Różańska, A.
2012-08-01
We present a method that allows us to estimate a distance from the source of continuum radiation located in the center of AGN to the highly ionized gas - warm absorber (WA). We computed a set of constant total pressure photoionization models compatible with the warm absorber conditions, where a metal-rich gas is irradiated by a continuum in the form of a double powerlaw. The first powerlaw is hard, up to 100 keV, and represents radiation from an X-ray source, while the second powerlaw extends up to several eV, and illustrates radiation from an accretion disk. When the ionized continuum is dominated by the soft component, the warm absorber is heated by free-free absorption, instead of Comptonization, and the transmitted spectra show different absorption-line characteristics for different values of the hydrogen number density at the cloud illuminated surface. This fact results in the possibility of deriving the number density on the cloud illuminated side from observations, and hence the distance to the warm absorber.
The effect of graphitic target density on carbon nanotube synthesis by pulsed laser ablation method
NASA Astrophysics Data System (ADS)
Kazeimzadeh, Fatemeh; Malekfar, Rasoul; Houshiar, Mahboubeh
2018-01-01
Carbon nanotube (CNT) was synthesized by pulsed laser ablation (PLA) of a graphitic target in vacuum chamber filled by argon gas. The effect of different condition of target preparation on the amount and quality of carbon nanotube generation was investigated. The graphite powder with 2 at% micrometer nickel (Ni) powder was mixed and packed in to a mold using a hydraulic press device at a pressure of 1000 kg/cm3. The obtained pellet which contained the mixture powder provided the carbon source for CNTs formation in PLA method. Two pellets with the pressure time of 15 and 200 min was prepared. It has been shown that the time which graphitic target is under pressure is an effective parameter that can increase the amount of produced CNTs. Field emission scanning electron microscopy (FESEM) images show that if the density of graphitic target is increased by raising up the pressure time, CNTs can grow even under the condition in which usually no nanotube can be formed. It can be due to the elimination of the distances between the graphite and catalyst grains that causes the catalysis performance improvement. The experiment was performed for nanometer cobalt ferrite (CoFe2O4) together with Ni catalyst particles too. The diameter of synthesized CNPs was larger in the case of pure nickel that is related to the size of catalysts. Moreover, it was also observed that the production rate of the nanotubes increased for high density targets. This shows that the results are independent of the type of catalyst.
NASA Astrophysics Data System (ADS)
Zajaček, Michal; Britzen, Silke; Eckart, Andreas; Shahzamanian, Banafsheh; Busch, Gerold; Karas, Vladimír; Parsa, Marzieh; Peissker, Florian; Dovčiak, Michal; Subroweit, Matthias; Dinnbier, František; Zensus, J. Anton
2017-06-01
Context. The Dusty S-cluster Object (DSO/G2) orbiting the supermassive black hole (Sgr A*) in the Galactic centre has been monitored in both near-infrared continuum and line emission. There has been a dispute about the character and the compactness of the object: it being interpreted as either a gas cloud or a dust-enshrouded star. A recent analysis of polarimetry data in Ks-band (2.2 μm) allows us to put further constraints on the geometry of the DSO. Aims: The purpose of this paper is to constrain the nature and the geometry of the DSO. Methods: We compared 3D radiative transfer models of the DSO with the near-infrared (NIR) continuum data including polarimetry. In the analysis, we used basic dust continuum radiative transfer theory implemented in the 3D Monte Carlo code Hyperion. Moreover, we implemented analytical results of the two-body problem mechanics and the theory of non-thermal processes. Results: We present a composite model of the DSO - a dust-enshrouded star that consists of a stellar source, dusty, optically thick envelope, bipolar cavities, and a bow shock. This scheme can match the NIR total as well as polarized properties of the observed spectral energy distribution (SED). The SED may be also explained in theory by a young pulsar wind nebula that typically exhibits a large linear polarization degree due to magnetospheric synchrotron emission. Conclusions: The analysis of NIR polarimetry data combined with the radiative transfer modelling shows that the DSO is a peculiar source of compact nature in the S cluster (r ≲ 0.04 pc). It is most probably a young stellar object embedded in a non-spherical dusty envelope, whose components include optically thick dusty envelope, bipolar cavities, and a bow shock. Alternatively, the continuum emission could be of a non-thermal origin due to the presence of a young neutron star and its wind nebula. Although there has been so far no detection of X-ray and radio counterparts of the DSO, the analysis of the neutron star model shows that young, energetic neutron stars similar to the Crab pulsar could in principle be detected in the S cluster with current NIR facilities and they appear as apparent reddened, near-infrared-excess sources. The searches for pulsars in the NIR bands can thus complement standard radio searches, which can put further constraints on the unexplored pulsar population in the Galactic centre. Both thermal and non-thermal models are in accordance with the observed compactness, total as well polarized continuum emission of the DSO.
Resolving the X-ray emission from the Lyman-continuum emitting galaxy Tol 1247-232
NASA Astrophysics Data System (ADS)
Kaaret, P.; Brorby, M.; Casella, L.; Prestwich, A. H.
2017-11-01
Chandra observations of the nearby, Lyman-continuum (LyC) emitting galaxy Tol 1247-232 resolve the X-ray emission and show that it is dominated by a point-like source with a hard spectrum (Γ = 1.6 ± 0.5) and a high luminosity [(9 ± 2) × 1040 erg s- 1]. Comparison with an earlier XMM-Newton observation shows flux variation of a factor of 2. Hence, the X-ray emission likely arises from an accreting X-ray source: a low-luminosity active galactic nucleus or one or a few X-ray binaries. The Chandra X-ray source is similar to the point-like, hard spectrum (Γ = 1.2 ± 0.2), high-luminosity (1041 erg s- 1) source seen in Haro 11, which is the only other confirmed LyC-emitting galaxy that has been resolved in X-rays. We discuss the possibility that accreting X-ray sources contribute to LyC escape.
NASA Astrophysics Data System (ADS)
Vazquez, Billy
The dusty torus is the key component in the Active Galactic Nuclei (AGN) Unification Scheme that explains the spectroscopic differences between Seyfert galaxies of types 1 and 2. The torus dust is heated by the nuclear source and emits the absorbed energy in the infrared (IR); but because of light travel times, the torus IR emission responds to variations of the nuclear ultraviolet/optical continuum with a delay that corresponds to the size of the emitting region. The results from a mid-infrared (MIR) monitoring campaign using the Spitzer Space Telescope and optical ground-based telescopes (B and V band imaging), which spanned over 2 years and covered a sample of 12 Seyfert galaxies, are presented. The aim was to constrain the distances from the nucleus to the regions in the torus emitting at wavelengths of 3.6 microm and 4.5 microm. MIR light curves showing the variability characteristics of these AGN are presented and the effects of photometric uncertainties on the time-series analysis of the light curves are discussed. Significant variability was observed in the IR light curves of 10 of 12 objects, with relative amplitudes ranging from ˜10% to ˜100% from their mean flux. The "reverberation lags" between the 3.6 microm and 4.5 microm IR bands were determined for the entire sample and between the optical and MIR bands for NGC6418. In NGC6418, the 3.6 microm and 4.5 microm fluxes lagged behind those of the optical continuum by 47.5+2.0-1.9) days and 62.5+2.5-2.9 days, respectively. This is consistent with the inferred lower limit to the sublimation radius for pure graphite grains at T=1800 K but smaller by a factor of 2 than the lower limit for dust grains with a "standard" interstellar medium (ISM) composition. There is evidence that the lags increased following approximately by a factor of 2 increase in luminosity, consistent with an increase in the sublimation radius.
Graphite, graphene and the flat band superconductivity
NASA Astrophysics Data System (ADS)
Volovik, G. E.
2018-04-01
Superconductivity has been observed in bilayer graphene [1,2]. The main factor, which determines the mechanism of the formation of this superconductivity is the "magic angle" of twist of two graphene layers, at which the electronic band structure becomes nearly flat. The specific role played by twist and by the band flattening, has been earlier suggested for explanations of the signatures of room-temperature superconductivity observed in the highly oriented pyrolytic graphite (HOPG), when the quasi two-dimensional interfaces between the twisted domains are present. The interface contains the periodic array of misfit dislocations (analogs of the boundaries of the unit cell of the Moire superlattice in bilayer graphene), which provide the possible source of the flat band. This demonstrates that it is high time for combination of the theoretical and experimental efforts in order to reach the reproducible room-temperature superconductivity in graphite or in similar real or artificial materials.
NASA Astrophysics Data System (ADS)
Abdelkader, A. M.; Cooper, A. J.; Dryfe, R. A. W.; Kinloch, I. A.
2015-04-01
Since the beginning of the `graphene era' post-2004, there has been significant interest in developing a high purity, high yield, and scalable fabrication route toward graphene materials for both primary research purposes and industrial production. One suitable approach to graphene production lies in the realm of electrochemical exfoliation, in which a potential difference is applied between a graphite anode/cathode in the presence of an electrolyte-containing medium. Herein we review various works on the electrochemical fabrication of graphene materials specifically through the use of electrochemical intercalation and exfoliation of a graphite source electrode, focusing on the quality and purity of products formed. We categorise the most significant works in terms of anodic and cathodic control, highlighting the merits of the respective approaches, as well as indicating the challenges associated with both procedures.
Nevin, Kelly P.; Woodard, Trevor L.; Franks, Ashley E.; Summers, Zarath M.; Lovley, Derek R.
2010-01-01
The possibility of providing the acetogenic microorganism Sporomusa ovata with electrons delivered directly to the cells with a graphite electrode for the reduction of carbon dioxide to organic compounds was investigated. Biofilms of S. ovata growing on graphite cathode surfaces consumed electrons with the reduction of carbon dioxide to acetate and small amounts of 2-oxobutyrate. Electrons appearing in these products accounted for over 85% of the electrons consumed. These results demonstrate that microbial production of multicarbon organic compounds from carbon dioxide and water with electricity as the energy source is feasible. PMID:20714445
Measurement of cesium diffusion coefficients in graphite IG-110
NASA Astrophysics Data System (ADS)
Carter, L. M.; Brockman, J. D.; Loyalka, S. K.; Robertson, J. D.
2015-05-01
An understanding of the transport of fission products in High Temperature Gas-Cooled Reactors (HTGRs) is needed for operational safety as well as source term estimations. We have measured diffusion coefficients of Cs in IG-110 by using the release method, wherein we infused small graphite spheres with Cs and measured the release rates using ICP-MS. Diffusion behavior was investigated in the temperature range of 1100-1300 K. We have obtained: DCs = (1.0 ×10-7m2 /s) exp(-1.1/×105J /mol RT) and, compared our results with those available in the literature.
2012-01-01
Experiments have been conducted to validate the de- signed parameterization scheme. A 2.3Ah A123TM 26650 LiFePO4 /graphite battery is cycled with a BitrodeTM...management strategy. The type of battery used in the experiment ( LiFePO4 26650) is different from the one in Fig. 3. Schematics of the Flow Chamber [23...of a cylindrical lifepo4 /graphite lithium-ion battery,” Journal of Power Sources, vol. 195, pp. 2961–2968, 2010. [9] C. W. Park and A. K. Jaura
Humidifier for fuel cell using high conductivity carbon foam
Klett, James W.; Stinton, David P.
2006-12-12
A method and apparatus of supplying humid air to a fuel cell is disclosed. The extremely high thermal conductivity of some graphite foams lends itself to enhance significantly the ability to humidify supply air for a fuel cell. By utilizing a high conductivity pitch-derived graphite foam, thermal conductivity being as high as 187 W/m.dot.K, the heat from the heat source is more efficiently transferred to the water for evaporation, thus the system does not cool significantly due to the evaporation of the water and, consequently, the air reaches a higher humidity ratio.
Downscattering due to Wind Outflows in Compact X-ray Sources: Theory and Interpretation
NASA Technical Reports Server (NTRS)
Titarchuk, Lev; Shrader, Chris
2004-01-01
A number of recent lines of evidence point towards the presence of hot, outflowing plasma from the central regions of compact Galactic and extragalactic X-ray sources. Additionally, it has long been noted that many of these sources exhibit an "excess" continuum component, above approx. 10 keV, usually attributed to Compton Reflection from a static medium. Motivated by these facts, as well as by recent observational constraints on the Compton reflection models - specifically apparently discrepant variability timescales for line and continuum components in some cases - we consider possible of effects of out-flowing plasma on the high-energy continuum spectra of accretion powered compact objects. We present a general formulation for photon downscattering diffusion which includes recoil and Comptonization effects due to divergence of the flow. We then develop an analytical theory for the spectral formation in such systems that allows us to derive formulae for the emergent spectrum. Finally we perform the analytical model fitting on several Galactic X-ray binaries. Objects which have been modeled with high-covering-fraction Compton reflectors, such as GS1353-64 are included in our analysis. In addition, Cyg X-3, is which is widely believed to be characterized by dense circumstellar winds with temperature of order 10(exp 6) K, provides an interesting test case. Data from INTEGRAL and RXTE covering the approx. 3 - 300 keV range are used in our analysis. We further consider the possibility that the widely noted distortion of the power-law continuum above 10 keV may in some cases be explained by these spectral softening effects.
NASA Astrophysics Data System (ADS)
Žumer, Marko; Zajec, Bojan; Rozman, Robert; Nemanič, Vincenc
2012-04-01
Gas-discharge tube (GDT) surge protectors are known for many decades as passive units used in low-voltage telecom networks for protection of electrical components from transient over-voltages (discharging) such as lightning. Unreliability of the mean turn-on DC breakdown voltage and the run-to-run variability has been overcome successfully in the past by adding, for example, a radioactive source inside the tube. Radioisotopes provide a constant low level of free electrons, which trigger the breakdown. In the last decades, any concept using environmentally harmful compounds is not acceptable anymore and new solutions were searched. In our application, a cold field electron emitter source is used as the trigger for the gas discharge but with no activating compound on the two main electrodes. The patent literature describes in details the implementation of the so-called trigger wires (auxiliary electrodes) made of graphite, placed in between the two main electrodes, but no physical explanation has been given yet. We present experimental results, which show that stable cold field electron emission current in the high vacuum range originating from the nano-structured edge of the graphite layer is well correlated to the stable breakdown voltage of the GDT surge protector filled with a mixture of clean gases.
NASA Astrophysics Data System (ADS)
Bureyev, O. A.; Surkov, Yu S.; Spirina, A. V.
2017-05-01
This work investigates the characteristics of the gas discharge system used to create an atmospheric pressure plasma flow. The plasma jet design with a cylindrical graphite cathode and an anode rod located on the axis of the system allows to realize regularly reproducible spark breakdowns mode with a frequency ∼ 5 kHz and a duration ∼ 40 μs. The device generates a cold atmospheric plasma flame with 1 cm in diameter in the flow of various plasma forming gases including nitrogen and air at about 100 mA average discharge current. In the described construction the cathode spots of individual spark channels randomly move along the inner surface of the graphite electrode creating the secondary plasma stream time-average distributed throughout the whole exit aperture area after the decay of numerous filamentary discharge channels. The results of the spectral diagnostics of plasma in the discharge gap and in the stream coming out of the source are presented. Despite the low temperature of atoms and molecules in plasma stream the cathode spots operation with temperature of ∼ 4000 °C at a graphite electrode inside a discharge system enables to saturate the plasma by CN-radicals and atomic carbon in the case of using nitrogen as the working gas.
Low temperature ion source for calutrons
Veach, Allen M.; Bell, Jr., William A.; Howell, Jr., George D.
1981-01-01
A new ion source assembly for calutrons has been provided for the efficient separation of elements having high vapor pressures. The strategic location of cooling pads and improved insulation permits operation of the source at lower temperatures. A vapor valve constructed of graphite and located in a constantly increasing temperature gradient provides reliable control of the vapor flow from the charge bottle to the arc chamber. A pronounced saving in calutron operating time and equipment maintenance has been achieved with the use of the present ion source.
Low temperature ion source for calutrons
Veach, A.M.; Bell, W.A. Jr.; Howell, G.D. Jr.
1979-10-10
A new ion source assembly for calutrons has been provided for the efficient separation of elements having high vapor pressures. The strategic location of cooling pads and improved insulation permits operation of the source at lower temperatures. A vapor valve constructed of graphite and located in a constantly increasing temperature gradient provides reliable control of the vapor flow from the charge bottle to the arc chamber. A pronounced saving in calutron operating time and equipment maintenance has been achieved with the use of the present ion source.
RADIO IMAGING OF THE NGC 2024 FIR 5/6 REGION: A HYPERCOMPACT H II REGION CANDIDATE IN ORION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Minho; Kang, Miju; Lee, Jeong-Eun, E-mail: minho@kasi.re.kr
The NGC 2024 FIR 5/6 region was observed in the 6.9 mm continuum with an angular resolution of about 1.5 arcsec. The 6.9 mm continuum map shows four compact sources, FIR 5w, 5e, 6c, and 6n, as well as an extended structure of the ionization front associated with the optical nebulosity. FIR 6c has a source size of about 0.4 arcsec or 150 AU. The spectral energy distribution (SED) of FIR 6c is peculiar: rising steeply around 6.9 mm and flat around 1 mm. The possibility of a hypercompact H II region is explored. If the millimeter flux of FIRmore » 6c comes from hot ionized gas heated by a single object at the center, the central object may be a B1 star of about 5800 solar luminosities and about 13 solar masses. The 6.9 mm continuum of FIR 6n may be a mixture of free-free emission and dust continuum emission. Archival data show that both FIR 6n and 6c exhibit water maser activity, suggesting the existence of shocked gas around them. The 6.9 mm continuum emission from FIR 5w has a size of about 1.8 arcsec or 760 AU. The SEDs suggest that the 6.9 mm emission of FIR 5w and 5e comes from dust, and the masses of the dense molecular gas are about 0.6 and 0.5 solar masses, respectively.« less
NASA Astrophysics Data System (ADS)
El Goresy, A.; Lin, Y.; Miyahara, M.; Gannoun, A.; Boyet, M.; Ohtani, E.; Gillet, P.; Trieloff, M.; Simionovici, A.; Feng, L.; Lemelle, L.
2017-05-01
Mineral inventories of enstatite chondrites; (EH and EL) are strictly dictated by combined parameters mainly very low dual oxygen (fO2) and sulfur (fS2) fugacities. They are best preserved in the Almahata Sitta MS-17, MS-177 fragments, and the ALHA 77295 and MAC 88136 Antarctic meteorites. These conditions induce a stark change of the geochemical behavior of nominally lithophile elements to chalcophile or even siderophile and changes in the elemental partitioning thus leading to formation of unusual mineral assemblages with high abundance of exotic sulfide species and enrichment in the metallic alloys, for example, silicides and phosphides. Origin and mode of formation of these exotic chondrites, and their parental source regions could be best scrutinized by multitask research experiments of the most primitive members covering mineralogical, petrological, cosmochemical, and indispensably short-lived isotopic chronology. The magnitude of temperature and pressure prevailed during their formation in their source regions could eventually be reasonably estimated: pre- and postaccretionary could eventually be deduced. The dual low fugacities are regulated by the carbon to oxygen ratios estimated to be >0.83 and <1.03. These parameters not only induce unusual geochemical behavior of the elements inverting many nominally lithophile elements to chalcophile or even siderophile or anthracophile. Structure and mineral inventories in EL3 and EH3 chondrites are fundamentally different. Yet EH3 and EL3 members store crucial information relevant to eventual source regions and importantly possible variation in C/O ratio in the course of their evolution. EL3 and EH3 chondrites contain trichotomous lithologies (1) chondrules and their fragments, (2) polygonal enstatite-dominated objects, and (3) multiphase metal-rich nodules. Mineralogical and cosmochemical inventories of lithologies in the same EL3 indicate not only similarities (REE inventory and anomalies in oldhamite) but also distinct differences (sinoite-enstatite-graphite relationship). Oldhamite in chondrules and polygonal fragments in EL3 depict negative Eu anomaly attesting a common cosmochemical source. Metal-dominated nodules in both EL3 and EH3 are conglomerates of metal clasts and sulfide fragments in EH3 and concentrically zoned C-bearing metal micropebbles (≥25 μm ≤50 μm) in EL3 thus manifesting a frozen in unique primordial accretionary metal texture and composition. Sinoite-enstatite-diopside-graphite textures reveal a nucleation and growth strongly suggestive of fluctuating C/O ratio during their nucleation and growth in the source regions. Mineral inventories, sulfide phase relations, sinoite-enstatite-graphite intergrowth, carbon and nitrogen isotopic compositions of graphite, spatial nitrogen abundance in graphite in metal nodules, and last but not least 129I/129Xe and 53Mn/53Cr systematics negate any previously suggested melting episode, pre-accretionary or dynamic, in parental asteroids.
Self-consistent continuum solvation for optical absorption of complex molecular systems in solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timrov, Iurii; Biancardi, Alessandro; Andreussi, Oliviero
2015-01-21
We introduce a new method to compute the optical absorption spectra of complex molecular systems in solution, based on the Liouville approach to time-dependent density-functional perturbation theory and the revised self-consistent continuum solvation model. The former allows one to obtain the absorption spectrum over a whole wide frequency range, using a recently proposed Lanczos-based technique, or selected excitation energies, using the Casida equation, without having to ever compute any unoccupied molecular orbitals. The latter is conceptually similar to the polarizable continuum model and offers the further advantages of allowing an easy computation of atomic forces via the Hellmann-Feynman theorem andmore » a ready implementation in periodic-boundary conditions. The new method has been implemented using pseudopotentials and plane-wave basis sets, benchmarked against polarizable continuum model calculations on 4-aminophthalimide, alizarin, and cyanin and made available through the QUANTUM ESPRESSO distribution of open-source codes.« less
NASA Astrophysics Data System (ADS)
Opachich, Y. P.; Heeter, R. F.; Barrios, M. A.; Garcia, E. M.; Craxton, R. S.; King, J. A.; Liedahl, D. A.; McKenty, P. W.; Schneider, M. B.; May, M. J.; Zhang, R.; Ross, P. W.; Kline, J. L.; Moore, A. S.; Weaver, J. L.; Flippo, K. A.; Perry, T. S.
2017-06-01
Direct drive implosions of plastic capsules have been performed at the National Ignition Facility to provide a broad-spectrum (500-2000 eV) X-ray continuum source for X-ray transmission spectroscopy. The source was developed for the high-temperature plasma opacity experimental platform. Initial experiments using 2.0 mm diameter polyalpha-methyl styrene capsules with ˜20 μm thickness have been performed. X-ray yields of up to ˜1 kJ/sr have been measured using the Dante multichannel diode array. The backlighter source size was measured to be ˜100 μm FWHM, with ˜350 ps pulse duration during the peak emission stage. Results are used to simulate transmission spectra for a hypothetical iron opacity sample at 150 eV, enabling the derivation of photometrics requirements for future opacity experiments.
High-temperature solid electrolyte interphases (SEI) in graphite electrodes
NASA Astrophysics Data System (ADS)
Rodrigues, Marco-Tulio F.; Sayed, Farheen N.; Gullapalli, Hemtej; Ajayan, Pulickel M.
2018-03-01
Thermal fragility of the solid electrolyte interphase (SEI) is a major source of performance decay in graphite anodes, and efforts to overcome the issues offered by extreme environments to Li-ion batteries have had limited success. Here, we demonstrate that the SEI can be extensively reinforced by carrying the formation cycles at elevated temperatures. Under these conditions, decomposition of the ionic liquid present in the electrolyte favored the formation of a thicker and more protective layer. Cells in which the solid electrolyte interphase was cast at 90 °C were significantly less prone to self-discharge when exposed to high temperature, with no obvious damages to the formed SEI. This additional resilience was accomplished at the expense of rate capability, as charge transfer became growingly inefficient in these systems. At slower rates, however, cells that underwent SEI formation at 90 °C presented superior performances, as a result of improved Li+ transport through the SEI, and optimal wetting of graphite by the electrolyte. This work analyzes different graphite hosts and ionic liquids, showing that this effect is more pervasive than anticipated, and offering the unique perspective that, for certain systems, temperature can actually be an asset for passivation.
NASA Technical Reports Server (NTRS)
Faghri, A.; Cao, Y.; Buchko, M.
1991-01-01
Experimental profiles for heat pipe startup from the frozen state were obtained, using a high-temperature sodium/stainless steel pipe with multiple heat sources and sinks to investigate the startup behavior of the heat pipe for various heat loads and input locations, with both low and high heat rejection rates at the condensor. The experimental results of the performance characteristics for the continuum transient and steady-state operation of the heat pipe were analyzed, and the performance limits for operation with varying heat fluxes and location are determined.
2008-05-02
information is estimated to average 1 hour per response, including g the time for reviewing instructions, searching existing data sources, gathering...their central engines cannot be resolved with ordinary telescopes. Gravitational telescopes, however, provide the necessary resolution to study the...structure of the continuum emission regions at optical and X-ray wavelengths and make time delay estimates in the systems in which sufficient data were
Long Term Measurement of the Vapor Pressure of Gold in the Au-C System
NASA Technical Reports Server (NTRS)
Copland, Evan H.
2009-01-01
Incorporating the {Au(s,l) + graphite} reference in component activity measurements made with the multiple effusion-cell vapor source mass spectrometry (multicell KEMS) technique provides a fixed temperature defining ITS-90 (T(sub mp)(Au) = 1337.33K) and a systematic method to check accuracy. Over a 2 year period delta H sub(298)Au was determined by the 2nd and 3rd law methods in 25 separate experiments and were in the ranges 362.2 plus or minus 3.3 kJmol(sup -1) and 367.8 plus or minus 1.1 kJmol(sup -1), respectively. This 5 kJmol-1 discrepancy is transferred directly to the measured activities. This is unacceptable and the source of this discrepancy needs to be understood and corrected. Accepting the 2nd law value increases p(Au) by about 50 percent, brings the 2nd and 3rd law values into agreement and removes the T dependence in the 3rd law values. While compelling, there is no way to independently determine instrument sensitivities, S(sub Au), with T in a single experiment with KEMS. This lack of capability is stopping a deeper understanding of this problem. In addition, the Au-C phase diagram suggests a eutectic invariant reaction: L-Au(4.7at%C) = FCC-Au(0.08at%C) + C(graphite) at T(sub e) approximately 1323K. This high C concentration in Au(l) must reduce p(Au) in equilibrium with {Au(s,l) + graphite} and raises some critical questions about the Gibbs free energy functions of Au(s,l) and the Au fixed point (T(sub mp)(Au) = 1337.33K) which is always measured in graphite.
Getting the lead out: understanding risks in the distribution system
This presentation discusses the importance of the water distribution system as a component of the source-to-tap continuum in public health protection. Issues covered include: understanding source water quality changes and their impacts throughout the system; use of mitigation me...
Radio continuum of galaxies with H2O megamaser disks: 33 GHz VLA data
NASA Astrophysics Data System (ADS)
Kamali, F.; Henkel, C.; Brunthaler, A.; Impellizzeri, C. M. V.; Menten, K. M.; Braatz, J. A.; Greene, J. E.; Reid, M. J.; Condon, J. J.; Lo, K. Y.; Kuo, C. Y.; Litzinger, E.; Kadler, M.
2017-09-01
Context. Galaxies with H2O megamaser disks are active galaxies in whose edge-on accretion disks 22 GHz H2O maser emission has been detected. Because their geometry is known, they provide a unique view into the properties of active galactic nuclei. Aims: The goal of this work is to investigate the nuclear environment of galaxies with H2O maser disks and to relate the maser and host galaxy properties to those of the radio continuum emission of the galaxy. Methods: The 33 GHz (9 mm) radio continuum properties of 24 galaxies with reported 22 GHz H2O maser emission from their disks are studied in the context of the multiwavelength view of these sources. The 29-37 GHz Ka-band observations are made with the Karl Jansky Very Large Array in B, CnB, or BnA configurations, achieving a resolution of 0.2-0.5 arcsec. Hard X-ray data from the Swift/BAT survey and 22 μm infrared data from WISE, 22 GHz H2O maser data and 1.4 GHz data from NVSS and FIRST surveys are also included in the analysis. Results: Eighty-seven percent (21 out of 24) galaxies in our sample show 33 GHz radio continuum emission at levels of 4.5-240σ. Five sources show extended emission (deconvolved source size larger than 2.5 times the major axis of the beam), including one source with two main components and one with three main components. The remaining detected 16 sources (and also some of the above-mentioned targets) exhibit compact cores within the sensitivity limits. Little evidence is found for extended jets (>300 pc) in most sources. Either they do not exist, or our chosen frequency of 33 GHz is too high for a detection of these supposedly steep spectrum features. In NGC 4388, we find an extended jet-like feature that appears to be oriented perpendicular to the H2O megamaser disk. NGC 2273 is another candidate whose radio continuum source might be elongated perpendicular to the maser disk. Smaller 100-300 pc sized jets might also be present, as is suggested by the beam-deconvolved morphology of our sources. Whenever possible, central positions with accuracies of 20-280 mas are provided. A correlation analysis shows that the 33 GHz luminosity weakly correlates with the infrared luminosity. The 33 GHz luminosity is anticorrelated with the circular velocity of the galaxy. The black hole masses show stronger correlations with H2O maser luminosity than with 1.4 GHz, 33 GHz, or hard X-ray luminosities. Furthermore, the inner radii of the disks show stronger correlations with 1.4 GHz, 33 GHz, and hard X-ray luminosities than their outer radii, suggesting that the outer radii may be affected by disk warping, star formation, or peculiar density distributions.
First Optical observation of a microquasar at sub-milliarsec scale: SS 433 resolved by VLTI/GRAVITY
NASA Astrophysics Data System (ADS)
Petrucci, P.; Waisberg, I.; Lebouquin, J.; Dexter, J.; Dubus, G.; Perraut, K.; Kervella, P.; Gravity Collaboration
2017-10-01
We present the first Optical observation at sub-milliarcsec (mas) scale of the famous microquasar SS 433 obtained with the GRAVITY instrument on the VLTI interferometer. This observation reveals the SS 433 inner regions with unprecedent details: The K-band continuum emitting region is dominated by a marginally resolved point source (< 1 mas) embedded inside a diffuse background accounting for 10% of the total flux. The significant visibility drop across the jet lines present in the K-band spectrum, together with the small and nearly identical phases for all baselines, point toward a jet that is offset by < 0.5 mas from the continuum source and resolved in the direction of propagation, with a size of ˜2 mas. Jet emission so close to the central binary system implies that line locking, if relevant to explain the 0.26c jet velocity, operates on elements heavier than hydrogen. Concerning The Brγ line, it is better resolved than the continuum and the S-shape phase signal present across the line suggests an East-West oriented geometry alike the jet direction and supporting a (polar) disk wind origin. This observation show the potentiality of Optical interferometry to constrain the inner regions of high energy sources like microquasars.
40 CFR 436.381 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Specialized definitions. 436.381 Section 436.381 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Graphite Subcategory...
Fundamental analysis of the failure of polymer-based fiber reinforced composites
NASA Technical Reports Server (NTRS)
Kanninen, M. F.; Rybicki, E. F.; Griffith, W. I.; Broek, D.
1975-01-01
A mathematical model predicting the strength of unidirectional fiber reinforced composites containing known flaws and with linear elastic-brittle material behavior was developed. The approach was to imbed a local heterogeneous region surrounding the crack tip into an anisotropic elastic continuum. This (1) permits an explicit analysis of the micromechanical processes involved in the fracture, and (2) remains simple enough to be useful in practical computations. Computations for arbitrary flaw size and orientation under arbitrary applied loads were performed. The mechanical properties were those of graphite epoxy. With the rupture properties arbitrarily varied to test the capabilities of the model to reflect real fracture modes, it was shown that fiber breakage, matrix crazing, crack bridging, matrix-fiber debonding, and axial splitting can all occur during a period of (gradually) increasing load prior to catastrophic failure. The calculations also reveal the sequential nature of the stable crack growth process proceding fracture.
Optical signatures of bulk and solutions of KC{sub 8} and KC{sub 24}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tristant, Damien; LPCNO, UMR-5215 CNRS, INSA, Université Fédérale de Toulouse-Midi-Pyrénées, Université de Toulouse, 135 Avenue de Rangueil, 31077 Toulouse; Wang, Yu
2015-07-28
We first performed an analysis of the shape of the Raman features of potassium-intercalated graphite at stage 1 (KC{sub 8} GIC) and 2 (KC{sub 24} GIC), respectively. By varying the excitation energy from ultraviolet to infrared, we observed a sign change of the Fano coupling factor below and above the optical transition related to the shift of the Fermi level which was determined from first principle calculations. This behavior is explained by a sign change in the Raman scattering amplitude of the electronic continuum. The GICs were then dissolved in two different solvents (N-Methyl-2-pyrrolidone and tetrahydrofuran), and the absorbance ofmore » the graphenide solutions obtained was measured in the UV range. Two peaks were observed which correspond to the maximum of the computed imaginary part of the optical index.« less
Polarization properties of bow shock sources close to the Galactic centre
NASA Astrophysics Data System (ADS)
Zajaček, M.; Karas, V.; Hosseini, E.; Eckart, A.; Shahzamanian, B.; Valencia-S., M.; Peissker, F.; Busch, G.; Britzen, S.; Zensus, J. A.
2017-12-01
Several bow shock sources were detected and resolved in the innermost parsec from the supermassive black hole in the Galactic centre. They show several distinct characteristics, including an excess towards mid-infrared wavelengths and a significant linear polarization as well as a characteristic prolonged bow-shock shape. These features give hints about the presence of a non-spherical dusty envelope generated by the bow shock. The Dusty S-cluster Object (also denoted as G2) shows similar characteristics and it is a candidate for the closest bow shock with a detected proper motion in the vicinity of Sgr A*, with the pericentre distance of only approx. 2000 Schwarzschild radii. However, in the continuum emission it is a point-like source and hence we use Monte Carlo radiative transfer modeling to reveal its possible three-dimensional structure. Alongside the spectral energy distribution, the detection of polarized continuum emission in the near-infrared Ks-band (2.2 micrometers) puts additional constraints on the geometry of the source.
High temperature blackbody BB2000/40 for calibration of radiation thermometers and thermocouple
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogarev, S. A.; Khlevnoy, B. B.; Samoylov, M. L.
2013-09-11
The cavity-type high temperature blackbody (HTBB) models of BB3200/3500 series are the most spread among metrological institutes worldwide as sources for radiometry and radiation thermometry, due to their ultra high working temperatures, high emissivity and stability. The materials of radiating cavities are graphite, pyrolytic graphite (PG) and their combination. The paper describes BB2000/40 blackbody with graphite-tube cavity that was developed for calibration of radiation thermometers at SCEI (Singapore). The peculiarity of BB2000/40 is a possibility to use it, besides calibration of pyrometers, as an instrument for thermocouples calibration. Operating within the temperature range from 900 °C to 2000 °C, themore » blackbody has a wide cavity opening of 40 mm. Emissivity of the cavity, with PG heater rings replaced partly by graphite elements, was estimated as 0.998 ± 0.0015 in the spectral range from 350 nm to 2000 nm. The uniformity along the cavity axis, accounting for 10 °C, was measured using a B-type thermocouple at 1500 °C. The BB2000/40, if necessary, can be easily modified, by replacing the graphite radiator with a set of PG rings, to be able to reach temperatures as high as 3200 °C. The HTBB utilizes an optical feedback system which allows temperature stabilization within 0.1 °C. This rear-view feedback allows the whole HTBB aperture to be used for measurements.« less
NASA Technical Reports Server (NTRS)
Sakurai, K.
1972-01-01
Active heliographic longitudes at the sun are investigated by using the observational data for long-lived metric continuum noise sources. It is shown that, for the period from 1963 to 1969, the number of such longitudes was four in general and these longitudes were very stable for this radio activity since 1963. A discussion is given on the relationship between those longitudes and the sector structure of the interplanetary magnetic field.
Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications
Jeon, Ju-Won; Zhang, Libing; Lutkenhaus, Jodie L.; ...
2015-02-01
Low-cost renewable lignin has been used as a precursor to produce porous carbons. However, to date, it has not been easy to obtain high surface area porous carbon without activation processes or templating agents. Here, we demonstrate that low molecular weight lignin yields highly porous carbon (1092 m² g⁻¹) with more graphitization through direct carbonization without additional activation processes or templating agents. We found that molecular weight and oxygen consumption during carbonization are critical factors to obtain high surface area, graphitized porous carbons. This highly porous carbon from low-cost renewable lignin sources is a good candidate for supercapacitor electrode materials.
Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeon, Ju-Won; Zhang, Libing; Lutkenhaus, Jodie L.
Low-cost renewable lignin has been used as a precursor to produce porous carbons. However, to date, it has not been easy to obtain high surface area porous carbon without activation processes or templating agents. Here, we demonstrate that low molecular weight lignin yields highly porous carbon (1092 m² g⁻¹) with more graphitization through direct carbonization without additional activation processes or templating agents. We found that molecular weight and oxygen consumption during carbonization are critical factors to obtain high surface area, graphitized porous carbons. This highly porous carbon from low-cost renewable lignin sources is a good candidate for supercapacitor electrode materials.
VizieR Online Data Catalog: M33 SNR candidates properties (Lee+, 2014)
NASA Astrophysics Data System (ADS)
Lee, J. H.; Lee, M. G.
2017-04-01
We utilized the Hα and [S II] images in the LGGS to find new M33 remnants. The LGGS covered three 36' square fields of M33. We subtracted continuum sources from the narrowband images using R-band images. We smoothed the images with better seeing to match the point-spread function in the images with worse seeing, using the IRAF task psfmatch. We then scaled and subtracted the resulting continuum images from narrowband images. We selected M33 remnants considering three criteria: emission-line ratio ([S II]/Hα), the morphological structure, and the absence of blue stars inside the sources. Details are described in L14 (Lee et al. 2014ApJ...786..130L). We detected objects with [S II]/Hα>0.4 in emission-line ratio maps, and selected objects with round or shell structures in each narrowband image. As a result, we chose 435 sources. (2 data files).
Opachich, Y. P.; Heeter, R. F.; Barrios, M. A.; ...
2017-06-08
Direct drive implosions of plastic capsules have been performed at the National Ignition Facility to provide a broad-spectrum (500–2000 eV) X-ray continuum source for X-ray transmission spectroscopy. The source was developed for the high-temperature plasma opacity experimental platform. Initial experiments using 2.0 mm diameter polyalpha-methyl styrene capsules with ~20 μm thickness have been performed. X-ray yields of up to ~1 kJ/sr have been measured using the Dante multichannel diode array. The backlighter source size was measured to be ~100 μm FWHM, with ~350 ps pulse duration during the peak emission stage. Lastly, these results are used to simulate transmission spectramore » for a hypothetical iron opacity sample at 150 eV, enabling the derivation of photometrics requirements for future opacity experiments.« less
Opachich, Y P; Heeter, R F; Barrios, M A; Garcia, E M; Craxton, R S; King, J A; Liedahl, D A; McKenty, P W; Schneider, M B; May, M J; Zhang, R; Ross, P W; Kline, J L; Moore, A S; Weaver, J L; Flippo, K A; Perry, T S
2017-06-01
Direct drive implosions of plastic capsules have been performed at the National Ignition Facility to provide a broad-spectrum (500-2000 eV) X-ray continuum source for X-ray transmission spectroscopy. The source was developed for the high-temperature plasma opacity experimental platform. Initial experiments using 2.0 mm diameter polyalpha-methyl styrene capsules with ∼20 μ m thickness have been performed. X-ray yields of up to ∼1 kJ/sr have been measured using the Dante multichannel diode array. The backlighter source size was measured to be ∼100 μ m FWHM, with ∼350 ps pulse duration during the peak emission stage. Results are used to simulate transmission spectra for a hypothetical iron opacity sample at 150 eV, enabling the derivation of photometrics requirements for future opacity experiments.
40 CFR 436.381 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Specialized definitions. 436.381 Section 436.381 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Graphite Subcategory § 436.381...
40 CFR 436.381 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Specialized definitions. 436.381 Section 436.381 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Graphite Subcategory § 436.381...
An evaluation of candidate oxidation resistant materials for space applications in LEO
NASA Technical Reports Server (NTRS)
Rutledge, Sharon; Banks, Bruce; Difilippo, Frank; Brady, Joyce; Dever, Therese; Hotes, Deborah
1986-01-01
Ground based testing of materials considered for polyimide (Kapton) solar array blanket protection and graphite-epoxy stroctural member protection was performed in an RF plasma asher. Protective coatings on Kapton from various commercial sources and from NASA Lewis Research Center were exposed to the air plasma; and mass loss per unit area was measured for each sample. All samples evaluated provided some protection to the underlying surface, but metal-oxide-fluoropolymer coatings provided the best protection by exhibiting very little degradation after 47 hr of asher exposure. Mica paint was evaluated as a protective coating for graphite-epoxy structural members. Mica appeared to be resistant to attack by atomic oxygen, but only offered limited protection as a paint. this is believed to be due to the paint vehicle ashing underneath the mica leaving unattached mica flakes lying on the surface. The protective coatings on Kapton evaluated so far are promising but further research on protection of graphite-epoxy support structures is needed.
A cryogenic thermal source for detector array characterization
NASA Astrophysics Data System (ADS)
Chuss, David T.; Rostem, Karwan; Wollack, Edward J.; Berman, Leah; Colazo, Felipe; DeGeorge, Martin; Helson, Kyle; Sagliocca, Marco
2017-10-01
We describe the design, fabrication, and validation of a cryogenically compatible quasioptical thermal source for characterization of detector arrays. The source is constructed using a graphite-loaded epoxy mixture that is molded into a tiled pyramidal structure. The mold is fabricated using a hardened steel template produced via a wire electron discharge machining process. The absorptive mixture is bonded to a copper backplate enabling thermalization of the entire structure and measurement of the source temperature. Measurements indicate that the reflectance of the source is <0.001 across a spectral band extending from 75 to 330 GHz.
A Cryogenic Thermal Source for Detector Array Characterization
NASA Technical Reports Server (NTRS)
Chuss, David T.; Rostem, Karwan; Wollack, Edward J.; Berman, Leah; Colazo, Felipe; DeGeorge, Martin; Helson, Kyle; Sagliocca, Marco
2017-01-01
We describe the design, fabrication, and validation of a cryogenically compatible quasioptical thermal source for characterization of detector arrays. The source is constructed using a graphite-loaded epoxy mixture that is molded into a tiled pyramidal structure. The mold is fabricated using a hardened steel template produced via a wire electron discharge machining process. The absorptive mixture is bonded to a copper backplate enabling thermalization of the entire structure and measurement of the source temperature. Measurements indicate that the reflectance of the source is less than 0.001 across a spectral band extending from 75 to 330 gigahertz.
The ALMA-PILS survey: 3D modeling of the envelope, disks and dust filament of IRAS 16293-2422
NASA Astrophysics Data System (ADS)
Jacobsen, S. K.; Jørgensen, J. K.; van der Wiel, M. H. D.; Calcutt, H.; Bourke, T. L.; Brinch, C.; Coutens, A.; Drozdovskaya, M. N.; Kristensen, L. E.; Müller, H. S. P.; Wampfler, S. F.
2018-04-01
Context. The Class 0 protostellar binary IRAS 16293-2422 is an interesting target for (sub)millimeter observations due to, both, the rich chemistry toward the two main components of the binary and its complex morphology. Its proximity to Earth allows the study of its physical and chemical structure on solar system scales using high angular resolution observations. Such data reveal a complex morphology that cannot be accounted for in traditional, spherical 1D models of the envelope. Aims: The purpose of this paper is to study the environment of the two components of the binary through 3D radiative transfer modeling and to compare with data from the Atacama Large Millimeter/submillimeter Array. Such comparisons can be used to constrain the protoplanetary disk structures, the luminosities of the two components of the binary and the chemistry of simple species. Methods: We present 13CO, C17O and C18O J = 3-2 observations from the ALMA Protostellar Interferometric Line Survey (PILS), together with a qualitative study of the dust and gas density distribution of IRAS 16293-2422. A 3D dust and gas model including disks and a dust filament between the two protostars is constructed which qualitatively reproduces the dust continuum and gas line emission. Results: Radiative transfer modeling in our sampled parameter space suggests that, while the disk around source A could not be constrained, the disk around source B has to be vertically extended. This puffed-up structure can be obtained with both a protoplanetary disk model with an unexpectedly high scale-height and with the density solution from an infalling, rotating collapse. Combined constraints on our 3D model, from observed dust continuum and CO isotopologue emission between the sources, corroborate that source A should be at least six times more luminous than source B. We also demonstrate that the volume of high-temperature regions where complex organic molecules arise is sensitive to whether or not the total luminosity is in a single radiation source or distributed into two sources, affecting the interpretation of earlier chemical modeling efforts of the IRAS 16293-2422 hot corino which used a single-source approximation. Conclusions: Radiative transfer modeling of source A and B, with the density solution of an infalling, rotating collapse or a protoplanetary disk model, can match the constraints for the disk-like emission around source A and B from the observed dust continuum and CO isotopologue gas emission. If a protoplanetary disk model is used around source B, it has to have an unusually high scale-height in order to reach the dust continuum peak emission value, while fulfilling the other observational constraints. Our 3D model requires source A to be much more luminous than source B; LA 18 L⊙ and LB 3 L⊙.
Lattice Strain Due to an Atomic Vacancy
Li, Shidong; Sellers, Michael S.; Basaran, Cemal; Schultz, Andrew J.; Kofke, David A.
2009-01-01
Volumetric strain can be divided into two parts: strain due to bond distance change and strain due to vacancy sources and sinks. In this paper, efforts are focused on studying the atomic lattice strain due to a vacancy in an FCC metal lattice with molecular dynamics simulation (MDS). The result has been compared with that from a continuum mechanics method. It is shown that using a continuum mechanics approach yields constitutive results similar to the ones obtained based purely on molecular dynamics considerations. PMID:19582230
Visible and near-ultraviolet spectra of low-pressure rare-gas microwave discharges
NASA Technical Reports Server (NTRS)
Campbell, J. P.; Spisz, E. W.; Bowman, R. L.
1971-01-01
The spectral emission characteristics of three commercial low pressure rare gas discharge lamps wire obtained in the near ultraviolet and visible wavelength range. All three lamps show a definite continuum over the entire wavelength range from 0.185 to 0.6 micrometers. Considerable line emission is superimposed on much of the continuum for wavelengths greater than 0.35 micrometers. These sources were used to make transmittance measurements on quartz samples in the near ultraviolet wavelength range.
Kia, Kaveh Kazemi; Bonabi, Fahimeh
2012-12-01
A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kia, Kaveh Kazemi; Bonabi, Fahimeh
A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 {mu}s. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through themore » graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.« less
NASA Astrophysics Data System (ADS)
Rathnayake, R. M. N. M.; Mantilaka, M. M. M. G. P. G.; Hara, Masanori; Huang, Hsin-Hui; Wijayasinghe, H. W. M. A. C.; Yoshimura, Masamichi; Pitawala, H. M. T. G. A.
2017-07-01
Solid polymer composite systems are widely being used for potential technological applications in secondary energy sources and electrochromic devices. In this study, we synthesized and characterized a composite material composed of polyaniline (PANI) and natural needle platy (NPG) vein graphite. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), cyclic voltammetry (CV), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), micro-Raman analysis, thermogravimetric and differential thermal analysis (TGA/DTA), transmission electron microscopy (TEM) were used to study the structural and electrochemical properties of the prepared PANI/NPG graphite composite. XPS, FTIR, and micro-Raman analysis confirmed the existence of relevant functional groups and bonding in the prepared PANI/NPG composite material. The composite shows a very low corrosion rate, approximately 29 μm per year, and high hydrophobicity on steel surfaces, which helps to prevent the corrosion due to O2 penetration towards the metal surface. It indicates that the composite can be used as a high potential surface coating material to anticorrosion. The specific capacitance of PANI/NPG composite is 833.3 F g-1, which is higher than that of PANI. This synergistic electrical performance result proves the prepared PANI/NPG graphite composite as a suitable protective coating material for steel surfaces.
NASA Astrophysics Data System (ADS)
Kia, Kaveh Kazemi; Bonabi, Fahimeh
2012-12-01
A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.
Geng, Longlong; Wu, Shujie; Zou, Yongcun; Jia, Mingjun; Zhang, Wenxiang; Yan, Wenfu; Liu, Gang
2014-05-01
A series of graphite oxide (GO) materials were obtained by thermal treatment of oxidized natural graphite powder at different temperatures (from 100 to 200 °C). The microstructure evolution (i.e., layer structure and surface functional groups) of the graphite oxide during the heating process is studied by various characterization means, including XRD, N2 adsorption, TG-DTA, in situ DRIFT, XPS, Raman, TEM and Boehm titration. The characterization results show that the structures of GO materials change gradually from multilayer sheets to a transparent ultrathin 2D structure of the carbon sheets. The concentration of surface COH and HOCO groups decrease significantly upon treating temperature increasing. Benzyl alcohol oxidation with air as oxidant source was carried out to detect the catalytic behaviors of different GO materials. The activities of GO materials decrease with the increase of treating temperatures. It shows that the structure properties, including ultrathin sheets and high specific surface area, are not crucial factors affecting the catalytic activity. The type and amount of surface oxygen-containing functional groups of GO materials tightly correlates with the catalytic performance. Carboxylic groups on the surface of GO should act as oxidative sites for benzyl alcohol and the reduced form could be reoxidized by molecular oxygen. Copyright © 2014 Elsevier Inc. All rights reserved.
Spectroscopic monitoring of active Galactic nuclei from CTIO. 1: NGC 3227
NASA Technical Reports Server (NTRS)
Winge, Claudia; Peterson, Bradley M.; Horne, Keith; Pogge, Richard W.; Pastoriza, Miriani G.; Storchi-Bergmann, Thaisa
1995-01-01
The results of a five-month monitoring campaign on the Seyfert 1.5 galaxy NGC 3227 are presented. Variability was detected in the continuum and in the broad emission lines. Cross correlations of the 4200 A continuum light curve with the H beta and He II wavelength 4686 emission-line light curves indicate delays of 18 +/- 5 and 16 +/- 2 days, respectively, between the continuum variations and the response of the lines. We apply a maximum entropy method to solve for the transfer function that relates the H beta and He II wavelength 4686 lines and 4200 A continuum variability and the result of this analysis suggests that there is a deficit of emission-line response due to gas along the line of sight to the continuum source for both lines. Using a composite off-nuclear spectrum, we synthesize the bulge stellar population, which is found to be mainly old (77% with age greater than 10 Gyr) with a metallicity twice the solar value. The synthesis also yields an internal color excess E(B - V) approximately equal 0.04. The mean contribution of the stellar population to the inner 5 sec x 10 sec spectra during the campaign was approximately equal 40%.
On the Nature of Off-limb Flare Continuum Sources Detected by SDO /HMI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinzel, P.; Kašparová, J.; Kleint, L.
The Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory has provided unique observations of off-limb flare emission. White-light continuum enhancements were detected in the “continuum” channel of the Fe 6173 Å line during the impulsive phase of the observed flares. In this paper we aim to determine which radiation mechanism is responsible for such enhancement being seen above the limb, at chromospheric heights around or below 1000 km. Using a simple analytical approach, we compare two candidate mechanisms, the hydrogen recombination continuum (Paschen) and the Thomson continuum due to scattering of disk radiation on flare electrons. Both mechanismsmore » depend on the electron density, which is typically enhanced during the impulsive phase of a flare as the result of collisional ionization (both thermal and also non-thermal due to electron beams). We conclude that for electron densities higher than 10{sup 12} cm{sup −3}, the Paschen recombination continuum significantly dominates the Thomson scattering continuum and there is some contribution from the hydrogen free–free emission. This is further supported by detailed radiation-hydrodynamical (RHD) simulations of the flare chromosphere heated by the electron beams. We use the RHD code FLARIX to compute the temporal evolution of the flare-heating in a semi-circular loop. The synthesized continuum structure above the limb resembles the off-limb flare structures detected by HMI, namely their height above the limb, as well as the radiation intensity. These results are consistent with recent findings related to hydrogen Balmer continuum enhancements, which were clearly detected in disk flares by the IRIS near-ultraviolet spectrometer.« less
NASA Astrophysics Data System (ADS)
Eguchi, J.; Dasgupta, R.
2015-12-01
Experimental phase relations of carbonated lithologies [1] and geochemistry of deep diamonds [2] suggest that deep recycling of carbon has likely been efficient for a significant portion of Earth's history. Both carbonates and organic carbon subduct into the mantle, but with gradual decrease of fO2 with depth [3] most carbon in deep mantle rocks including eclogite could be diamond/graphite [4]. Previous studies investigated the transfer of CO2 from subducted eclogite to the ambient mantle by partial melting in the presence of carbonates, i.e., by generation of carbonate-rich melts [5]. However, the transfer of carbon from subducted eclogite to the mantle can also happen, perhaps more commonly, by extraction of silicate partial melt in the presence of reduced carbon; yet, CO2 solubility in eclogite-derived andesitic melt at graphite/diamond saturation remains unconstrained. CO2content of eclogite melts is also critical as geochemistry of many ocean island basalts suggest the presence of C and eclogite in their source regions [6]. In the present study we determine CO2 concentration in a model andesitic melt [7] at graphite/diamond saturation at conditions relevant for partial melting of eclogite in the convecting upper mantle. Piston cylinder and multi anvil experiments were conducted at 1-6 GPa and 1375-1550 °C using Pt/Gr double capsules. Oxygen fugacity was monitored with Pt-Fe sensors in the starting mix. Completed experiments at 1-3 GPa show that CO2 concentration increases with increasing P, T, and fO2 up to ~0.3 wt%. Results were used to develop empirical and thermodynamic models to predict CO2 concentration in partial melts of graphite saturated eclogite. This allowed us to quantify the extent to which CO2 can mobilize from eclogitic heterogeneities at graphite/diamond saturated conditions. With estimates of eclogite contribution to erupted basaltic lavas, the models developed here allow us to put constraints on the flux of CO2 to mantle source regions coming from subducted crust and investigate the possible role this process may play in the deep carbon cycle. [1] Dasgupta (2013) RiMG. [2] Shirey, et al. (2013) RiMG. [3] Frost & McCammon (2008) Ann Rev Earth Plan Sci. [4] Stagno, et al. (2015) CMP. [5] Kiseeva, et al. (2012) JPet. [6] Mallik & Dasgupta (2014) G3. [7] Spandler, et al. (2008) JPet.
NASA Astrophysics Data System (ADS)
Duncan, Kenneth J.; Jarvis, Matt J.; Brown, Michael J. I.; Röttgering, Huub J. A.
2018-07-01
Building on the first paper in this series (Duncan et al. 2018), we present a study investigating the performance of Gaussian process photometric redshift (photo-z) estimates for galaxies and active galactic nuclei (AGNs) detected in deep radio continuum surveys. A Gaussian process redshift code is used to produce photo-z estimates targeting specific subsets of both the AGN population - infrared (IR), X-ray, and optically selected AGNs - and the general galaxy population. The new estimates for the AGN population are found to perform significantly better at z > 1 than the template-based photo-z estimates presented in our previous study. Our new photo-z estimates are then combined with template estimates through hierarchical Bayesian combination to produce a hybrid consensus estimate that outperforms both of the individual methods across all source types. Photo-z estimates for radio sources that are X-ray sources or optical/IR AGNs are significantly improved in comparison to previous template-only estimates - with outlier fractions and robust scatter reduced by up to a factor of ˜4. The ability of our method to combine the strengths of the two input photo-z techniques and the large improvements we observe illustrate its potential for enabling future exploitation of deep radio continuum surveys for both the study of galaxy and black hole coevolution and for cosmological studies.
Cosmological constraints with clustering-based redshifts
NASA Astrophysics Data System (ADS)
Kovetz, Ely D.; Raccanelli, Alvise; Rahman, Mubdi
2017-07-01
We demonstrate that observations lacking reliable redshift information, such as photometric and radio continuum surveys, can produce robust measurements of cosmological parameters when empowered by clustering-based redshift estimation. This method infers the redshift distribution based on the spatial clustering of sources, using cross-correlation with a reference data set with known redshifts. Applying this method to the existing Sloan Digital Sky Survey (SDSS) photometric galaxies, and projecting to future radio continuum surveys, we show that sources can be efficiently divided into several redshift bins, increasing their ability to constrain cosmological parameters. We forecast constraints on the dark-energy equation of state and on local non-Gaussianity parameters. We explore several pertinent issues, including the trade-off between including more sources and minimizing the overlap between bins, the shot-noise limitations on binning and the predicted performance of the method at high redshifts, and most importantly pay special attention to possible degeneracies with the galaxy bias. Remarkably, we find that once this technique is implemented, constraints on dynamical dark energy from the SDSS imaging catalogue can be competitive with, or better than, those from the spectroscopic BOSS survey and even future planned experiments. Further, constraints on primordial non-Gaussianity from future large-sky radio-continuum surveys can outperform those from the Planck cosmic microwave background experiment and rival those from future spectroscopic galaxy surveys. The application of this method thus holds tremendous promise for cosmology.
Continuum radiation from active galactic nuclei: A statistical study
NASA Technical Reports Server (NTRS)
Isobe, T.; Feigelson, E. D.; Singh, K. P.; Kembhavi, A.
1986-01-01
The physics of the continuum spectrum of active galactic nuclei (AGNs) was examined using a large data set and rigorous statistical methods. A data base was constructed for 469 objects which include radio selected quasars, optically selected quasars, X-ray selected AGNs, BL Lac objects, and optically unidentified compact radio sources. Each object has measurements of its radio, optical, X-ray core continuum luminosity, though many of them are upper limits. Since many radio sources have extended components, the core component were carefully selected out from the total radio luminosity. With survival analysis statistical methods, which can treat upper limits correctly, these data can yield better statistical results than those previously obtained. A variety of statistical tests are performed, such as the comparison of the luminosity functions in different subsamples, and linear regressions of luminosities in different bands. Interpretation of the results leads to the following tentative conclusions: the main emission mechanism of optically selected quasars and X-ray selected AGNs is thermal, while that of BL Lac objects is synchrotron; radio selected quasars may have two different emission mechanisms in the X-ray band; BL Lac objects appear to be special cases of the radio selected quasars; some compact radio sources show the possibility of synchrotron self-Compton (SSC) in the optical band; and the spectral index between the optical and the X-ray bands depends on the optical luminosity.
Synthesis of graphene nanomaterials and their application in electrochemical energy storage
NASA Astrophysics Data System (ADS)
Xiong, Guoping
The need to store and use energy on diverse scales in a modern technological society necessitates the design of large and small energy systems, among which electrical energy storage systems such as batteries and capacitors have attracted much interest in the past several decades. Supercapacitors, also known as ultracapacitors, or electrochemical capacitors, with fast power delivery and long cycle life are complementing or even replacing batteries in many applications. The rapid development of miniaturized electronic devices has led to a growing need for rechargeable micro-power sources with high performance. Among different sources, electrochemical micro-capacitors or micro-supercapacitors provide higher power density than their counterparts and are gaining increased interest from the research and engineering communities. Rechargeable Li ion batteries with high energy and power density, long cycling life, high charge-discharge rate (1C - 3C) and safe operation are in high demand as power sources and power backup for hybrid electric vehicles and other applications. In the present work, graphene-based graphene materials have been designed and synthesized for electrochemical energy storage applications, e.g., conventional supercapacitors (macro-supercapacitors), microsupercapacitors and lithium ion batteries. Factors influencing the formation and structure of graphitic petals grown by microwave plasma-enhanced chemical vapor deposition on oxidized silicon substrates were investigated through process variation and materials analysis. Insights gained into the growth mechanism of these graphitic petals suggest a simple scribing method can be used to control both the location and formation of petals on flat Si substrates. Transitional metal oxides and conducting polymers have been coated on the graphitic petal-based electrodes by facile chemical methods for multifunctional energy storage applications. Detailed electrochemical characterization (e.g., cyclic voltammetry and constant galvanostatic charge/discharge) has been carried out to evaluate the performance of electrodes.
NASA Astrophysics Data System (ADS)
Das, S.; Basu, A. R.
2017-12-01
Our recently discovered transition zone ( 410 - 660 Km) -derived peridotites in the Indus Ophiolite, Ladakh Himalaya [1] provide a unique opportunity to study changes in oxygen fugacity from shallow mantle beneath ocean ridges to mantle transition zone. We found in situ diamond, graphite pseudomorphs after diamond crystals, hydrocarbon (C - H) and hydrogen (H2) fluid inclusions in ultra-high pressure (UHP) peridotites that occur in the mantle - section of the Indus ophiolite and sourced from the mantle transition zone [2]. Diamond occurs as octahedral inclusion in orthoenstatite of one of these peridotites. The graphite pseudomorphs after diamond crystals and primary hydrocarbon (C-H), and hydrogen (H2) fluids are included in olivine of this rock. Hydrocarbon fluids are also present as inclusions in high pressure clinoenstatite (> 8 GPa). The association of primary hydrocarbon and hydrogen fluid inclusions in the UHP peridotites suggest that their source-environment was highly reduced at the base of the upper mantle. We suggest that during mantle upwelling beneath Neo Tethyan spreading center, the hydrocarbon fluid was oxidized and precipitated diamond. The smaller diamonds converted to graphite at shallower depth due to size, high temperature and elevated oxygen fugacity. This process explains how deep mantle upwelling can oxidize reduced fluid carried from the transition zone to produce H2O - CO2. The H2O - CO2 fluids induce deep melting in the source of the mid oceanic ridge basalts (MORB) that create the oceanic crust. References: [1] Das S, Mukherjee B K, Basu A R, Sen K, Geol Soc London, Sp 412, 271 - 286; 2015. [2] Das S, Basu A R, Mukherjee B K, Geology 45 (8), 755 - 758; 2017.
NASA Astrophysics Data System (ADS)
Chu, Wei-Han; Yuan, Ming-Chen; Lee, Jeng-Hung; Lin, Yi-Chun
2017-11-01
Ir-192 sources are widely used in brachytherapy and the number of treatments is around seven thousand for the use of the high dose rate (HDR) Ir-192 brachytherapy source per year in Taiwan. Due to its physical half-life of 73.8 days, the source should be replaced four times per year to maintain the HDR treatment mode (DDEP, 2005; Coursey et al., 1992). When doing this work, it must perform the source dose trace to assure the dose accuracy. To establish the primary measurement standard of reference air kerma rate(RAKR) for the HDR Ir-192 brachytherapy sources in Taiwan, the Institute of Nuclear Energy Research (INER) fabricated a dual spherical graphite-walled cavity ionization chambers system to directly measure the RAKR of the Ir-192 brachytherapy source. In this system, the ion-charge was accumulated by the two ionization chambers and after correction for the ion recombination, temperature, atmosphere pressure, room scattering, graphite-wall attenuation, air attenuation, source decay, stem effect, and so on. The RAKR of the Ir-192 source was obtained in the ambient conditions of 22 °C and one atmosphere. The measurement uncertainty of the system was around 0.92% in 96% confidence level (k=2.0). To verify the accuracy of the result, the source calibration comparison has been made at the National Radiation Standard Laboratory (NRSL) of INER and Physikalisch-Technische Bundesanstalt (PTB, Germany) in 2015. The ratio of the measurement results between INER and PTB, INER/PTB, was 0.998±0.027 (k=2) which showed good consistency and the performance of the system was verified.
NASA Astrophysics Data System (ADS)
Murphy, Shane; Bauer, Karl; Sloan, Peter A.; Lawton, James J.; Tang, Lin; Palmer, Richard E.
2015-12-01
We demonstrate plasmon mapping of Ag nanostructures on graphite using scanning probe energy loss spectroscopy (SPELS) with a spatial resolution of 100 nm. In SPELS, an STM tip is used as a localized source of field-emitted electrons to probe the sample surface. The energy loss spectrum of the backscattered electrons is measured to provide a chemical signature of the surface under the tip. We acquire three images simultaneously with SPELS: i) constant-current field-emission images, which provide topographical information; ii) backscattered electron images, which display material contrast; and iii) SPELS images, where material-dependent features such as plasmons are mapped.
Ultrafast compression of graphite observed with sub-ps time resolution diffraction on LCLS
NASA Astrophysics Data System (ADS)
Armstrong, Michael; Goncharov, A.; Crowhurst, J.; Zaug, J.; Radousky, H.; Grivickas, P.; Bastea, S.; Goldman, N.; Stavrou, E.; Belof, J.; Gleason, A.; Lee, H. J.; Nagler, R.; Holtgrewe, N.; Walter, P.; Pakaprenka, V.; Nam, I.; Granados, E.; Presher, C.; Koroglu, B.
2017-06-01
We will present ps time resolution pulsed x-ray diffraction measurements of rapidly compressed highly oriented pyrolytic graphite along its basal plane at the Materials under Extreme Conditions (MEC) sector of the Linac Coherent Light Source (LCLS). These experiments explore the possibility of rapid (<100 ps time scale) material transformations occurring under very highly anisotropic compression conditions. Under such conditions, non-equilibrium mechanisms may play a role in the transformation process. We will present experimental results and simulations which explore this possibility. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.
New production systems at ISOLDE
NASA Astrophysics Data System (ADS)
Hagebø, E.; Hoff, P.; Jonsson, O. C.; Kugler, E.; Omtvedt, J. P.; Ravn, H. L.; Steffensen, K.
1992-08-01
New target systems for the ISOLDE on-line mass separator facility are presented. Targets of carbides, metal/graphite mixtures, foils of refractory metals, molten metals and oxides have been tested. Beams of high intensity of neutron-rich isotopes of a large number of elements are obtained from a uranium carbide target with a hot plasma-discharge ion source. A target of ZrO 2 has been shown to provide high intensity beams of neutron-deficient isotopes of Mn, Cu, Zn, Ga, Ge, As, Se, Br, Kr and Rb, while a SiC target with a hot plasma ion source gives intense beams of radioactive isotopes of a number of light elements. All these systems are rather chemically unselective. Chemically selective performance has been obtained for several systems, i.e.: the production of neutron-deficient Au from ( 3He, pχn) reactions on a Pt/graphite target with a hot plasma ion source; the production of neutron-deficient Lu and LuF + and Hf and HfF 3+ from a Ta-foil target with a hot plasma ion source under CF 4 addition; the production of neutron-deficient Sr as SrF + and Y as YF 2+ form a Nb-foil target with a W surface ionizer under CF 4 addition; the production of neutron-deficient Se as COSe + from a ZrO 2 target with a hot plasma ion source under O 2 addition; and the production of radioactive F from a SiC target with a hot plasma ion source operating in Al vapour.
Acoustic field of a pulsating cylinder in a rarefied gas: Thermoviscous and curvature effects
NASA Astrophysics Data System (ADS)
Ben Ami, Y.; Manela, A.
2017-09-01
We study the acoustic field of a circular cylinder immersed in a rarefied gas and subject to harmonic small-amplitude normal-to-wall displacement and heat-flux excitations. The problem is analyzed in the entire range of gas rarefaction rates and excitation frequencies, considering both single cylinder and coaxial cylinders setups. Numerical calculations are carried out via the direct simulation Monte Carlo method, applying a noniterative algorithm to impose the boundary heat-flux condition. Analytical predictions are obtained in the limits of ballistic- and continuum-flow conditions. Comparing with a reference inviscid continuum solution, the results illustrate the specific impacts of gas rarefaction and boundary curvature on the acoustic source efficiency. Inspecting the far-field properties of the generated disturbance, the continuum-limit solution exhibits an exponential decay of the signal with the distance from the source, reflecting thermoviscous effects, and accompanied by an inverse square-root decay, characteristic of the inviscid problem. Stronger attenuation is observed in the ballistic limit, where boundary curvature results in "geometric reduction" of the molecular layer affected by the source, and the signal vanishes at a distance of few acoustic wavelengths from the cylinder. The combined effects of mechanical and thermal excitations are studied to seek for optimal conditions to monitor the vibroacoustic signal. The impact of boundary curvature becomes significant in the ballistic-flow regime, where the optimal heat-flux amplitude required for sound reduction decreases with the distance from the source and is essentially a function of the acoustic-wavelength-scaled distance only.
Di Domenico, Enea Gino; Petroni, Gianluca; Mancini, Daniele; Geri, Alberto; Di Palma, Luca; Ascenzioni, Fiorentina
2015-01-01
Microbial Fuel cells (MFCs) have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m(2). The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox) bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate.
Petroni, Gianluca; Mancini, Daniele; Geri, Alberto; Palma, Luca Di
2015-01-01
Microbial Fuel cells (MFCs) have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m2. The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox) bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate. PMID:26273609
Thermal neutron calibration channel at LNMRI/IRD.
Astuto, A; Salgado, A P; Leite, S P; Patrão, K C S; Fonseca, E S; Pereira, W W; Lopes, R T
2014-10-01
The Brazilian Metrology Laboratory of Ionizing Radiations (LNMRI) standard thermal neutron flux facility was designed to provide uniform neutron fluence for calibration of small neutron detectors and individual dosemeters. This fluence is obtained by neutron moderation from four (241)Am-Be sources, each with 596 GBq, in a facility built with blocks of graphite/paraffin compound and high-purity carbon graphite. This study was carried out in two steps. In the first step, simulations using the MCNPX code on different geometric arrangements of moderator materials and neutron sources were performed. The quality of the resulting neutron fluence in terms of spectrum, cadmium ratio and gamma-neutron ratio was evaluated. In the second step, the system was assembled based on the results obtained on the simulations, and new measurements are being made. These measurements will validate the system, and other intercomparisons will ensure traceability to the International System of Units. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
IMPROVEMENTS IN THE THERMAL NEUTRON CALIBRATION UNIT, TNF2, AT LNMRI/IRD.
Astuto, A; Fernandes, S S; Patrão, K C S; Fonseca, E S; Pereira, W W; Lopes, R T
2018-02-21
The standard thermal neutron flux unit, TNF2, in the Brazilian National Ionizing Radiation Metrology Laboratory was rebuilt. Fluence is still achieved by moderating of four 241Am-Be sources with 0.6 TBq each. The facility was again simulated and redesigned with graphite core and paraffin added graphite blocks surrounding it. Simulations using the MCNPX code on different geometric arrangements of moderator materials and neutron sources were performed. The resulting neutron fluence quality in terms of intensity, spectrum and cadmium ratio was evaluated. After this step, the system was assembled based on the results obtained from the simulations and measurements were performed with equipment existing in LNMRI/IRD and by simulated equipment. This work focuses on the characterization of a central chamber point and external points around the TNF2 in terms of neutron spectrum, fluence and ambient dose equivalent, H*(10). This system was validated with spectra measurements, fluence and H*(10) to ensure traceability.
NASA Technical Reports Server (NTRS)
Fausnaugh, M. M.; Denney, K. D.; Barth, A.J.; Bentz, M.C.; Bottorff, M.C.; Carini, M.T.; Croxall, K. V.; Rosa, G. De; Goad, M.R.; Gehrels, Cornelis;
2016-01-01
We present ground-based optical photometric monitoring data for NGC 5548, part of an extended multiwavelength reverberation mapping campaign. The light curves have nearly daily cadence from 2014 January to July in ninefilters (BVRI and ugriz). Combined with ultraviolet data from the Hubble Space Telescope and Swift, we confirm significant time delays between the continuum bands as a function of wavelength, extending the wavelength coverage from 1158 Angstrom to the z band (approximately 9160 angstrom). We find that the lags at wavelengths longer than the V band are equal to or greater than the lags of high-ionization-state emission lines (such as He pi lambdal1640 and lambda 4686), suggesting that the continuum-emitting source is of a physical size comparable to the inner broad-line region (BLR). The trend of lag with wavelength is broadly consistent with the prediction for continuum reprocessing by an accretion disk with (tau varies as lambda(exp 4/3)). However, the lags also imply a disk radius that is 3 times larger than the prediction from standardthin-disk theory, assuming that the bolometric luminosity is 10 percent of the Eddington luminosity (L 0.1L(sub Edd)).Using optical spectra from the Large Binocular Telescope, we estimate the bias of the interband continuum lagsdue to BLR emission observed in the filters. We find that the bias for filters with high levels of BLR contamination(20 percent) can be important for the shortest continuum lags and likely has a significant impact on the u and U bandsowing to Balmer continuum emission.
NASA Technical Reports Server (NTRS)
Stirpe, G. M.; Winge, C.; Altieri, B.; Alloin, D.; Aguero, E. L.; Anupama, G. C.; Ashley, R.; Bertram, R.; Calderon, J. H.; Catchpole, R. M.
1994-01-01
The Seyfert 1 galaxy NGC 3783 was intensely monitored in several bands between 1991 December and 1992 August. This paper presents the results from the ground-based observations in the optical and near-IR bands, which complement the data set formed by the International Ultraviolet Explorer (IUE) spectra, discussed elsewhere. Spectroscopic and photometric data from several observatories were combined in order to obtain well-sampled light curves of the continuum and of H(beta). During the campaign the source underwent significant variability. The light curves of the optical continuum and of H(beta) display strong similarities to those obtained with the IUE. The near-IR flux did not vary significantly except for a slight increase at the end of the campaign. The cross-correlation analysis shows that the variations of the optical continuum have a lag of 1 day or less with respect to those of the UV continuum, with an uncertainty of is less than or equal to 4 days. The integrated flux of H(beta) varies with a delay of about 8 days. These results confirm that (1) the continuum variations occur simultaneously or with a very small lag across the entire UV-optical range, as in the Seyfert galaxy NGC 5548; and (2) the emission lines of NGC 3783 respond to ionizing continuum variations with less delay than those of NGC 5548. As observed in NGC 5548, the lag of H(beta) with respect to the continuum is greater than those of the high-ionization lines.
ERIC Educational Resources Information Center
Biggers, Mandy
2018-01-01
Questioning is a central practice in science classrooms. However, not every question translates into a "good" science investigation. Questions that drive science investigations can be provided by many sources including the teacher, the curriculum, or the student. The variations in the source of investigation questions were explored in…
NASA Astrophysics Data System (ADS)
Katskov, Dmitri A.; Sadagov, Yuri M.
2011-06-01
The methodology of simultaneous multi-element electrothermal atomic absorption spectrometry (ETAAS-Electrothermal Atomic Absorption Spectrometry) stipulates rigid requirements to the design and operation of the atomizer. It must provide high degree of atomization for the group of analytes, invariant respective to the vaporization kinetics and heating ramp residence time of atoms in the absorption volume and absence of memory effects from major sample components. For the low resolution spectrometer with a continuum radiation source the reduced compared to traditional ETAAS (Electrothermal Atomic Absorption Spectrometry) sensitivity should be, at least partially, compensated by creating high density of atomic vapor in the absorption pulse. The sought-for characteristics were obtained for the 18 mm in length and 2.5 mm in internal diameter longitudinally heated graphite tube atomizer furnished with 2-4.5 mg of ring shaped carbon fiber yarn collector. The collector located next to the sampling port provides large substrate area that helps to keep the sample and its residue in the central part of the tube after drying. The collector also provides a "platform" effect that delays the vaporization and stipulates vapor release into absorption volume having already stabilized gas temperature. Due to the shape of external surface of the tube, presence of collector and rapid (about 10 °C/ms) heating, an inverse temperature distribution along the tube is attained at the beginnings of the atomization and cleaning steps. The effect is employed for cleaning of the atomizer using the set of short maximum power heating pulses. Preparation, optimal maintenance of the atomizer and its compliance to the multi-element determination requirements are evaluated and discussed. The experimental setup provides direct simultaneous determination of large group of element within 3-4 order concentration range. Limits of detection are close to those for sequential single element determination in Flame AAS with primary line source that is 50-1000 times higher than the limits obtainable with common ETAAS (Electrothermal Atomic Absorption Spectrometry) instrumentation.
Simultaneous multielement atomic absorption spectrometry with graphite furnace atomization
NASA Astrophysics Data System (ADS)
Harnly, James M.; Miller-Ihli, Nancy J.; O'Haver, Thomas C.
The extended analytical range capability of a simultaneous multielement atomic absorption continuum source spectrometer (SIMAAC) was tested for furnace atomization with respect to the signal measurement mode (peak height and area), the atomization mode (from the wall or from a platform), and the temperature program mode (stepped or ramped atomization). These parameters were evaluated with respect to the shapes of the analytical curves, the detection limits, carry-over contamination and accuracy. Peak area measurements gave more linear calibration curves. Methods for slowing the atomization step heating rate, the use of a ramped temperature program or a platform, produced similar calibration curves and longer linear ranges than atomization with a stepped temperature program. Peak height detection limits were best using stepped atomization from the wall. Peak area detection limits for all atomization modes were similar. Carry-over contamination was worse for peak area than peak height, worse for ramped atomization than stepped atomization, and worse for atomization from a platform than from the wall. Accurate determinations (100 ± 12% for Ca, Cu, Fe, Mn, and Zn in National Bureau of Standards' Standard Reference Materials Bovine Liver 1577 and Rice Flour 1568 were obtained using peak area measurements with ramped atomization from the wall and stepped atomization from a platform. Only stepped atomization from a platform gave accurate recoveries for K. Accurate recoveries, 100 ± 10%, with precisions ranging from 1 to 36 % (standard deviation), were obtained for the determination of Al, Co, Cr, Fe, Mn, Mo, Ni. Pb, V and Zn in Acidified Waters (NBS SRM 1643 and 1643a) using stepped atomization from a platform.
ALMA Observations of the Archetypal “Hot Core” That Is Not: Orion-KL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orozco-Aguilera, M. T.; Zapata, Luis A.; Hirota, Tomoya
We present sensitive high angular resolution (∼0.″1–0.″3) continuum Atacama Large Millimeter/Submillimeter Array (ALMA) observations of the archetypal hot core located in the Orion Kleinmann-Low (KL) region. The observations were made in five different spectral bands (bands 3, 6, 7, 8, and 9) covering a very broad range of frequencies (149–658 GHz). Apart from the well-known millimeter emitting objects located in this region (Orion Source I and BN), we report the first submillimeter detection of three compact continuum sources (ALMA1–3) in the vicinities of the Orion-KL hot molecular core. These three continuum objects have spectral indices between 1.47 and 1.56, andmore » brightness temperatures between 100 and 200 K at 658 GHz, suggesting that we are seeing moderate, optically thick dust emission with possible grain growth. However, as these objects are not associated with warm molecular gas, and some of them are farther out from the molecular core, we thus conclude that they cannot heat the molecular core. This result favors the hypothesis that the hot molecular core in Orion-KL core is heated externally.« less
NASA Technical Reports Server (NTRS)
Rudolph, A. L.; deGues, E. J.; Brand, J.; Wouterloot, J. G. A.; Gross, Anthony R. (Technical Monitor)
1994-01-01
We have made a multifrequency (6, 3.6, and 2 cm), high-resolution (3"-6"), radio continuum survey of IRAS selected sources from the catalogue of Wouterloot & Brand (1989) to search for and study H II regions in the far outer Galaxy. We identified 31 sources in this catalog with well determined galactocentric distances, and with R approx.. greater than 15 kpc and L(sub FIR) approx.greater than 10(exp 4) solar luminosity, indicating the presence of high-mass star-formation. We have observed 11 of these sources with the Very Large Array (VLA). We observed the sources at 6 and 2 cm using "scaled arrays", making possible a direct and reliable comparison of the data at these two wavelengths for the determination of spectral indices. We detected a total of 12 radio sources, of which 10 have spectral indices consistent with optically-thin free-free emission from H II regions. Combined with previous VLA observations by other investigators, we have data on a total of 15 H II regions at galactocentric distances of 15 to 18.2kpc, among the most remote H II regions found in our Galaxy. The sizes of the H II regions range from approx. less than 0.10 to 2.3 pc. Using the measured fluxes and sizes, we determine the electron densities, emission measures, and excitation parameters of the H II regions, as well as the fluxes of Lyman continuum photons needed to keep the nebulae ionized. The sizes and electron densities are consistent with most of the sources detected in this survey being compact or ultracompact H II regions. Seven of the fifteen H II regions have sizes approx. less than 0.20 pc. Assuming simple pressure-driven expansion of the H II regions, these sizes indicate ages approx. less than 5 x 10(exp 4) yr, or only 1% of the lifetime of an O star, which implies an unlikely overabundance of O stars in the outer Galaxy. Thus, the large number of compact H II regions suggests that the time these regions spend in a compact phase must be much longer than their dynamical expansion times. Five of the fifteen H II regions have cometary shapes; the remainder are spherical or unresolved. Comparison of the radio continuum data with molecular line maps suggests that the cometary shape of the two H II regions in S 127 may be due to pressure confinement of the expanding ionized gas, as in the "blister" or "champagne flow" models of H II regions. Comparison of the radio continuum data with the IRAS far-infrared data indicates that the five most luminous H II regions are consistent with a single 0 or B star exciting a dust-free H II region. Subject headings: stars: formation - ISM: H II regions - ISM: individual objects: S 127 radio continuum: interstellar
Nanostructural evolution during emission of CsI-coated carbon fiber cathodes
NASA Astrophysics Data System (ADS)
Drummy, Lawrence F.; Apt, Scott; Shiffler, Don; Golby, Ken; LaCour, Matt; Maruyama, Benji; Vaia, Richard A.
2010-06-01
Carbon-based nanofiber and microfiber cathodes exhibit very low voltages for the onset of electron emission, and thus provide exciting opportunities for applications ranging from high power microwave sources to field emission displays. CsI coatings have been experimentally shown to lower the work function for emission from the fiber tips, although little is known about the microstructure of the fibers themselves in their as-received state, after coating with CsI, or after being subjected to high voltage cycling. Longitudinal cross sections of the original, unused CsI-coated fibers produced by focused ion beam lift-out revealed a nanostructured graphitic core surrounded by an amorphous carbon shell with submicron sized islands of crystalline CsI on the outer surface. Aberration-corrected high resolution electron microscopy (HREM) of the fiber core achieved 0.10 nm resolution, with the graphite (200) clearly visible in digital fast Fourier transformations of the 2-4 nm highly ordered graphitic domains. As the cathode fibers are cycled at high voltage, HREM demonstrates that the graphitic ordering of the core increases with the number of cycles, however the structure and thickness of the amorphous carbon layer remains unchanged. These results are consistent with micro-Raman measurements of the fiber disordered/graphitic (D/G) band ratios. After high voltage cycling, a uniform ˜100 nm film at the fiber tip was evident in both bright field transmission electron microscopy (TEM) and high angle annular dark field scanning TEM (STEM). Low-dose electron diffraction techniques confirmed the amorphous nature of this film, and STEM with elemental mapping via x-ray energy dispersive spectroscopy indicates this layer is composed of CsIO. The oxidative evolution of tip composition and morphology due to impurities in the chamber, along with increased graphitization of the fiber core, contributes to changes in emission behavior with cycling.
40 CFR 436.381 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Specialized definitions. 436.381 Section 436.381 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Graphite Subcategory § 436.381 Specialized definitions. For the purpos...
40 CFR 436.381 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Specialized definitions. 436.381 Section 436.381 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Graphite Subcategory § 436.381 Specialized definitions. For the purpos...
Simpson, Jr, J A
1950-12-05
A multiple wire counter utilizing air at atmospheric pressure as the ionizing medium and having a window of a nylon sheet of less than 0.5 mil thickness coated with graphite. The window is permeable to alpha particles so that the counter is well adapted to surveying sources of alpha radiation.
NASA Astrophysics Data System (ADS)
Rougier, E.; Knight, E. E.
2015-12-01
The Source Physics Experiments (SPE) is a project funded by the U.S. Department of Energy at the National Nuclear Security Site. The project consists of a series of underground explosive tests designed to gain more insight on the generation and propagation of seismic energy from underground explosions in hard rock media, granite. Until now, four tests (SPE-1, SPE-2, SPE-3 and SPE-4Prime) with yields ranging from 87 kg to 1000 kg have been conducted in the same borehole. The generation and propagation of seismic waves is heavily influenced by the different damage mechanisms occurring at different ranges from the explosive source. These damage mechanisms include pore crushing, compressive (shear) damage, joint damage, spallation and fracture and fragmentation, etc. Understanding these mechanisms and how they interact with each other is essential to the interpretation of the characteristics of close-in seismic observables. Recent observations demonstrate that, for relatively small and shallow chemical explosions in granite, such as SPE-1, -2 and -3, the formation of a cavity around the working point is not the main mechanism responsible for the release of seismic moment. Shear dilatancy (bulking occurring as a consequence of compressive damage) of the medium around the source has been proposed as an alternative damage mechanism that explains the seismic moment release observed in the experiments. In this work, the interaction between cavity formation and bulking is investigated via a series of computer simulations for the SPE-2 event. The simulations are conducted using a newly developed material model, called AZ_Frac. AZ_Frac is a continuum-based-visco-plastic strain-rate-dependent material model. One of its key features is its ability to describe continuum fracture processes, while properly handling anisotropic material characteristics. The implications of the near source numerical results on the close-in seismic quantities, such as reduced displacement potentials and source spectra are presented.
Triggered star-formation in the bright rimmed globule IC1396A
NASA Astrophysics Data System (ADS)
Patel, Nimesh A.; Sicilia-Aguilar, Aurora; Goldsmith, Paul
2015-01-01
IC1396 is a well known HII region and molecular cloud complex surrounding the Trumpler 37 cluster of OB stars in the Cepheus OB2 association. The dense, elephant trunk shaped globules in this region typically show bright rims facing the central exciting O6 star HD~206267. This region, at a distance of 870 pc, is an excellent astrophysical laboratory for studying the feedback effects of massive stars on neighboring molecular clouds. Triggered star formation occurs when dense cores (which would otherwise remain stable) are compressed and made unstable by the sustained energy input from the OB association. Observationally it remains challenging to prove whether the onset of star-formation in such globules is triggered or spontaneous.Using the Submillimeter Array (SMA), we observed IC1396 globule A (Pottasch 1958 nomenclature), targeting four newly discovered protostars from recent Herschel PACS observations. Here we present 230 GHz molecular line (CO, 13CO, C18O, N2D+ and H2CO) and continuum results for the source IC1396A-PACS-1 (Sicilia-Aguilar et al. 2014). This is a Class 0 source very close to the edge of the ionization front and Herschel observations show this to be a most promisingcase of triggered star-formation. The SMA 230 GHz continuum source has a flux density of 280 mJy. We estimate a dust mass of about 0.1 Msun in this source which appears very compact in our 5" beam. CO, 13CO and C18O emission is largely resolved out by the interferometer and will require combined imaging with single-dish observations. (We have a parallel ongoing study being carried out with the IRAM 30m telescope). SMA N2D+ emission peaks on the continuum sourceand is partially resolved. H2CO emission appears to avoid the peak of continuum and N2D+, suggesting depletion. Both the morphology and kinematics in H2CO emission are indicative of internal disturbance, away from the PDR region into the globule.
NASA Astrophysics Data System (ADS)
Jaffe, W.; Gavazzi, G.; Valentijn, E.
1986-02-01
Radio continuum observations obtained with the Westerbork Radio Synthesis Telescope at 0.6 GHz of four groups of galaxies in the Coma/A1367 supercluster area are presented. Ninety-nine CGCG galaxies were surveyed, yielding the detection of 21 objects. A wide-angle-tail radio galaxy, NGC 4061, is found in the NGC 4065 group. Analysis of this source suggests a relatively low value (neT ≡ 1000 cm-3K) for the intracluster gas pressure in this group.
Study of the molecular and ionized gas in a possible precursor of an ultra-compact H II region
NASA Astrophysics Data System (ADS)
Ortega, M. E.; Paron, S.; Giacani, E.; Celis Peña, M.; Rubio, M.; Petriella, A.
2017-10-01
Aims: We aim to study the molecular and the ionized gas in a possible precursor of an ultra-compact H II region to contribute to the understanding of how high-mass stars build-up their masses once they have reached the zero-age main sequence. Methods: We carried out molecular observations toward the position of the Red MSX source G052.9221-00.4892, using the Atacama Submillimeter Telescope Experiment (ASTE; Chile) in the 12CO J = 3-2, 13CO J = 3-2, C18O J = 3-2, and HCO+J = 4-3 lines with an angular resolution of about 22''. We also present radio continuum observations at 6 GHz carried out with the Jansky Very Large Array (JVLA; USA) interferometer with a synthesized beam of 4.8 arcsec × 4.1 arcsec. The molecular data were used to study the distribution and kinematics of the molecular gas, while the radio continuum data were used to characterize the ionized gas in the region. Combining these observations with public infrared data allowed us to inquire about the nature of the source. Results: The analysis of the molecular observations reveals the presence of a kinetic temperature and H2 column density gradients across the molecular clump in which the Red MSX source G052.9221-00.4892 is embedded, with the hotter and less dense gas in the inner region. The 12CO J = 3-2 emission shows evidence of misaligned massive molecular outflows, with the blue lobe in positional coincidence with a jet-like feature seen at 8 μm. The radio continuum emission shows a slightly elongated compact radio source, with a flux density of about 0.9 mJy, in positional coincidence with the Red MSX source. The polar-like morphology of this compact radio source perfectly matches the hourglass-like morphology exhibited by the source in the Ks band. Moreover, the axes of symmetry of the radio source and the near-infrared nebula are perfectly aligned. Thus, based on the presence of molecular outflows, the slightly elongated morphology of the compact radio source matching the hourglass-like morphology of the source at the Ks band, and the lack of evidence of collimated jets in the near-infrared spectrum, one interpretation for the nature of the source, is that the Red MSX source G052.9221-00.4892 could be transiting a hyper-compact H II region phase, in which the young central star emits winds and ionizing radiation through the poles. On the other hand, according to a comparison between the Brγ intensity and the radio flux density at 6 GHz, the source would be in a more evolved evolutionary stage of an optically thin UC H II region in photoionization equilibrium. If this is the case, from the radio continuum emission, we can conjecture upon the spectral type of its exciting star which would be a B0.5V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peruzzo, S., E-mail: simone.peruzzo@igi.cnr.it; Cervaro, V.; Dalla Palma, M.
2016-02-15
This paper presents the results of numerical simulations and experimental tests carried out to assess the feasibility and suitability of graphite castellated tiles as beam-facing component in the diagnostic calorimeter of the negative ion source SPIDER (Source for Production of Ions of Deuterium Extracted from Radio frequency plasma). The results indicate that this concept could be a reliable, although less performing, alternative for the present design based on carbon fiber composite tiles, as it provides thermal measurements on the required spatial scale.
NASA Astrophysics Data System (ADS)
Peruzzo, S.; Cervaro, V.; Dalla Palma, M.; Delogu, R.; De Muri, M.; Fasolo, D.; Franchin, L.; Pasqualotto, R.; Pimazzoni, A.; Rizzolo, A.; Tollin, M.; Zampieri, L.; Serianni, G.
2016-02-01
This paper presents the results of numerical simulations and experimental tests carried out to assess the feasibility and suitability of graphite castellated tiles as beam-facing component in the diagnostic calorimeter of the negative ion source SPIDER (Source for Production of Ions of Deuterium Extracted from Radio frequency plasma). The results indicate that this concept could be a reliable, although less performing, alternative for the present design based on carbon fiber composite tiles, as it provides thermal measurements on the required spatial scale.
Using principal component analysis to understand the variability of PDS 456
NASA Astrophysics Data System (ADS)
Parker, M. L.; Reeves, J. N.; Matzeu, G. A.; Buisson, D. J. K.; Fabian, A. C.
2018-02-01
We present a spectral-variability analysis of the low-redshift quasar PDS 456 using principal component analysis. In the XMM-Newton data, we find a strong peak in the first principal component at the energy of the Fe absorption line from the highly blueshifted outflow. This indicates that the absorption feature is more variable than the continuum, and that it is responding to the continuum. We find qualitatively different behaviour in the Suzaku data, which is dominated by changes in the column density of neutral absorption. In this case, we find no evidence of the absorption produced by the highly ionized gas being correlated with this variability. Additionally, we perform simulations of the source variability, and demonstrate that PCA can trivially distinguish between outflow variability correlated, anticorrelated and un-correlated with the continuum flux. Here, the observed anticorrelation between the absorption line equivalent width and the continuum flux may be due to the ionization of the wind responding to the continuum. Finally, we compare our results with those found in the narrow-line Seyfert 1 IRAS 13224-3809. We find that the Fe K UFO feature is sharper and more prominent in PDS 456, but that it lacks the lower energy features from lighter elements found in IRAS 13224-3809, presumably due to differences in ionization.
Interpreting angina: symptoms along a gender continuum.
Kreatsoulas, Catherine; Crea-Arsenio, Mary; Shannon, Harry S; Velianou, James L; Giacomini, Mita
2016-01-01
'Typical' angina is often used to describe symptoms common among men, while 'atypical' angina is used to describe symptoms common among women, despite a higher prevalence of angina among women. This discrepancy is a source of controversy in cardiac care among women. To redefine angina by (1) qualitatively comparing angina symptoms and experiences in women and men and (2) to propose a more meaningful construct of angina that integrates a more gender-centred approach. Patients were recruited between July and December 2010 from a tertiary cardiac care centre and interviewed immediately prior to their first angiogram. Symptoms were explored through in-depth semi-structured interviews, transcribed verbatim and analysed concurrently using a modified grounded theory approach. Angiographically significant disease was assessed at ≥70% stenosis of a major epicardial vessel. Among 31 total patients, 13 men and 14 women had angiograpically significant CAD. Patients describe angina symptoms according to 6 symptomatic subthemes that array along a 'gender continuum'. Gender-specific symptoms are anchored at each end of the continuum. At the centre of the continuum, are a remarkably large number of symptoms commonly expressed by both men and women. The 'gender continuum' offers new insights into angina experiences of angiography candidates. Notably, there is more overlap of shared experiences between men and women than conventionally thought. The gender continuum can help researchers and clinicians contextualise patient symptom reports, avoiding the conventional 'typical' versus 'atypical' distinction that can misrepresent gendered angina experiences.
NASA Astrophysics Data System (ADS)
Shine, Keith P.; Campargue, Alain; Mondelain, Didier; McPheat, Robert A.; Ptashnik, Igor V.; Weidmann, Damien
2016-09-01
Spectroscopic catalogues, such as GEISA and HITRAN, do not yet include information on the water vapour continuum that pervades visible, infrared and microwave spectral regions. This is partly because, in some spectral regions, there are rather few laboratory measurements in conditions close to those in the Earth's atmosphere; hence understanding of the characteristics of the continuum absorption is still emerging. This is particularly so in the near-infrared and visible, where there has been renewed interest and activity in recent years. In this paper we present a critical review focusing on recent laboratory measurements in two near-infrared window regions (centred on 4700 and 6300 cm-1) and include reference to the window centred on 2600 cm-1 where more measurements have been reported. The rather few available measurements, have used Fourier transform spectroscopy (FTS), cavity ring down spectroscopy, optical-feedback - cavity enhanced laser spectroscopy and, in very narrow regions, calorimetric interferometry. These systems have different advantages and disadvantages. Fourier Transform Spectroscopy can measure the continuum across both these and neighbouring windows; by contrast, the cavity laser techniques are limited to fewer wavenumbers, but have a much higher inherent sensitivity. The available results present a diverse view of the characteristics of continuum absorption, with differences in continuum strength exceeding a factor of 10 in the cores of these windows. In individual windows, the temperature dependence of the water vapour self-continuum differs significantly in the few sets of measurements that allow an analysis. The available data also indicate that the temperature dependence differs significantly between different near-infrared windows. These pioneering measurements provide an impetus for further measurements. Improvements and/or extensions in existing techniques would aid progress to a full characterisation of the continuum - as an example, we report pilot measurements of the water vapour self-continuum using a supercontinuum laser source coupled to an FTS. Such improvements, as well as additional measurements and analyses in other laboratories, would enable the inclusion of the water vapour continuum in future spectroscopic databases, and therefore allow for a more reliable forward modelling of the radiative properties of the atmosphere. It would also allow a more confident assessment of different theoretical descriptions of the underlying cause or causes of continuum absorption.
STAR FORMATION AND FEEDBACK: A MOLECULAR OUTFLOW–PRESTELLAR CORE INTERACTION IN L1689N
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lis, D. C.; Pagani, L.; Wootten, H. A.
2016-08-20
We present Herschel ,{sup 11} ALMA Compact Array (ACA), and Caltech Submillimeter Observatory observations of the prestellar core in L1689N, which has been suggested to be interacting with a molecular outflow driven by the nearby solar-type protostar IRAS 16293-2422. This source is characterized by some of the highest deuteration levels observed in the interstellar medium. The change in the NH{sub 2}D line velocity and width across the core provides clear evidence of an interaction with the outflow, traced by the high-velocity water emission. Quiescent, cold gas characterized by narrow line widths is seen in the NE part of the core,more » while broader, more disturbed line profiles are seen in the W/SW part. Strong N{sub 2}D{sup +} and ND{sub 3} emission is detected with ACA extending S/SW from the peak of the single-dish NH{sub 2}D emission. The ACA data also reveal the presence a compact dust continuum source with a mean size of ∼1100 au, a central density of (1–2) × 10{sup 7} cm{sup −3}, and a mass of 0.2–0.4 M {sub ⊙}. The dust emission peak is displaced ∼5″ to the south with respect to the N{sub 2}D{sup +} and ND{sub 3} emission, as well as the single-dish dust continuum peak, suggesting that the northern, quiescent part of the core is characterized by spatially extended continuum emission, which is resolved out by the interferometer. We see no clear evidence of fragmentation in this quiescent part of the core, which could lead to a second generation of star formation, although a weak dust continuum source is detected in this region in the ACA data.« less
An ALMA Survey of Protoplanetary Disks in the σ Orionis Cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ansdell, M.; Williams, J. P.; Marel, N. van der
2017-05-01
The σ Orionis cluster is important for studying protoplanetary disk evolution, as its intermediate age (∼3–5 Myr) is comparable to the median disk lifetime. We use ALMA to conduct a high-sensitivity survey of dust and gas in 92 protoplanetary disks around σ Orionis members with M {sub *} ≳ 0.1 M {sub ⊙}. Our observations cover the 1.33 mm continuum and several CO J = 2–1 lines: out of 92 sources, we detect 37 in the millimeter continuum and 6 in {sup 12}CO, 3 in {sup 13}CO, and none in C{sup 18}O. Using the continuum emission to estimate dust mass, we find only 11more » disks with M {sub dust} ≳ 10 M {sub ⊕}, indicating that after only a few Myr of evolution most disks lack sufficient dust to form giant planet cores. Stacking the individually undetected continuum sources limits their average dust mass to 5× lower than that of the faintest detected disk, supporting theoretical models that indicate rapid dissipation once disk clearing begins. Comparing the protoplanetary disk population in σ Orionis to those of other star-forming regions supports the steady decline in average dust mass and the steepening of the M {sub dust}– M {sub *} relation with age; studying these evolutionary trends can inform the relative importance of different disk processes during key eras of planet formation. External photoevaporation from the central O9 star is influencing disk evolution throughout the region: dust masses clearly decline with decreasing separation from the photoionizing source, and the handful of CO detections exist at projected separations of >1.5 pc. Collectively, our findings indicate that giant planet formation is inherently rare and/or well underway by a few Myr of age.« less
Data reduction and analysis of graphite fiber release experiments
NASA Technical Reports Server (NTRS)
Lieberman, P.; Chovit, A. R.; Sussholz, B.; Korman, H. F.
1979-01-01
The burn and burn/explode effects on aircraft structures were examined in a series of fifteen outdoor tests conducted to verify the results obtained in previous burn and explode tests of carbon/graphite composite samples conducted in a closed chamber, and to simulate aircraft accident scenarios in which carbon/graphite fibers would be released. The primary effects that were to be investigaged in these tests were the amount and size distribution of the conductive fibers released from the composite structures, and how these various sizes of fibers transported downwind. The structures included plates, barrels, aircraft spoilers and a cockpit. The heat sources included a propane gas burner and 20 ft by 20 ft and 40 ft by 60 ft JP-5 pool fires. The larger pool fire was selected to simulate an aircraft accident incident. The passive instrumentation included sticky paper and sticky bridal veil over an area 6000 ft downwind and 3000 ft crosswind. The active instrumentation included instrumented meteorological towers, movies, infrared imaging cameras, LADAR, high voltage ball gages, light emitting diode gages, microwave gages and flame velocimeter.
Trichloroethylene (TCE) is widely used as a solvent in metal processing and electronic manufacturing industries, but waste and spilled TCE often results in blocks of non-aqueous liquid in vadose and saturated zones which become continuous contamination sources for groundwater. El...
Development of Microbial and Enzymatic Fuel Cells for Bio-Inspired Power Sources
2009-03-01
that of the oxidation of NADH as possible.[30] A variety of organic mediators have been studied for the anode, including phenazines ,[38] dyes,[39,40...glucose-6-phosphate dehydrogenase on the rotating graphite disc electrode modified with phenazine methosulfate. Enzyme Microb. Technol. 1993, 15 (6), 525
NASA Astrophysics Data System (ADS)
Handley, Scott Michael
The central theme of this thesis is to contribute to the physics underlying the mechanical properties of highly anisotropic materials. Our hypothesis is that a fundamental understanding of the physics involved in the interaction of interrogating ultrasonic waves with anisotropic media will provide useful information applicable to quantitative ultrasonic measurement techniques employed for the determination of material properties. Fiber-reinforced plastics represent a class of advanced composite materials that exhibit substantial anisotropy. The desired characteristics of practical fiber -reinforced composites depend on average mechanical properties achieved by placing fibers at specific angles relative to the external surfaces of the finished part. We examine the physics underlying the use of ultrasound as an interrogation probe for determination of ultrasonic and mechanical properties of anisotropic materials such as fiber-reinforced composites. Fundamental constituent parameters, such as elastic stiffness coefficients (c_{rm IJ}), are experimentally determined from ultrasonic time-of-flight measurements. Mechanical moduli (Poisson's ratio, Young's and shear modulus) descriptive of the anisotropic mechanical properties of unidirectional graphite/epoxy composites are obtained from the ultrasonically determined stiffness coefficients. Three-dimensional visualizations of the anisotropic ultrasonic and mechanical properties of unidirectional graphite/epoxy composites are generated. A related goal of the research is to strengthen the connection-between practical ultrasonic nondestructive evaluation methods and the physics underlying quantitative ultrasonic measurements for the assessment of manufactured fiber-reinforced composites. Production defects such as porosity have proven to be of substantial concern in the manufacturing of composites. We investigate the applicability of ultrasonic interrogation techniques for the detection and characterization of porosity in graphite/epoxy laminates. Complementary ultrasonic parameters based on the frequency dependence of ultrasonic attenuation and integrated polar backscatter are investigated. In summary, the approach taken in this thesis is to examine the physical mechanisms in terms of a continuum mechanics framework and a linear elastic description of ultrasonic wave propagation in anisotropic media with specific application to the nondestructive evaluation of advanced composite materials.
Broad absorption-line time variability in the QSO CSO 203
NASA Technical Reports Server (NTRS)
Barlow, Thomas A.; Junkkarinen, Vesa T.; Burbidge, E. M.; Weymann, Ray J.; Morris, Simon L.; Korista, Kirk T.
1992-01-01
We present spectroscopy of the BALQSO CSO 203 during four epochs over a 17-month time span. These data show three distinct levels in the broad absorption lines (BALs) of Si IV 1397A and C IV 1549A. We also note possible variations in the N V 1240A and Al III 1857A absorption troughs. A broad-band monitoring effort during this period shows that the continuum level remained constant to within 10 percent. We argue that the triggering mechanism for the absorption-line changes is most likely synchronous with the continuum source photons; however, no correlation with the central source has yet been found. The observed variations are consistent with changes in the ionization level in the broad absorption-line region (BALR). We discuss possible mechanisms for these changes and the implications for the structure of the BALR.
VizieR Online Data Catalog: ALMA survey of Lupus protoplanetary disks. I. (Ansdell+, 2016)
NASA Astrophysics Data System (ADS)
Ansdell, M.; Williams, J. P.; van der Marel, N.; Carpenter, J. M.; Guidi, G.; Hogerheijde, M.; Mathews, G. S.; Manara, C. F.; Miotello, A.; Natta, A.; Oliveira, I.; Tazzari, M.; Testi, L.; van Dishoeck, E. F.; van Terwisga, S. E.
2016-11-01
Our ALMA Cycle 2 observations (Project ID: 2013.1.00220.S) were obtained on 2015 June 14 (AGK-type sources and unknown spectral types) and 2015 June 15 (M-type sources). The continuum spectral windows were centered on 328.3, 340.0, and 341.8GHz with bandwidths of 1.875, 0.938, and 1.875 GHz and channel widths of 15.625, 0.244, and 0.977MHz, respectively. The bandwidth-weighted mean continuum frequency was 335.8GHz (890um). The spectral setup included two windows covering the 13CO and C18O 3-2 transitions; these spectral windows were centered on 330.6 and 329.3GHz, respectively, with bandwidths of 58.594MHz, channel widths of 0.122MHz, and velocity resolutions of 0.11km/s. (3 data files).
An Automated Scheme for the Large-Scale Survey of Herbig-Haro Objects
NASA Astrophysics Data System (ADS)
Deng, Licai; Yang, Ji; Zheng, Zhongyuan; Jiang, Zhaoji
2001-04-01
Owing to their spectral properties, Herbig-Haro (HH) objects can be discovered using photometric methods through a combination of filters, sampling the characteristic spectral lines and the nearby continuum. The data are commonly processed through direct visual inspection of the images. To make data reduction more efficient and the results more uniform and complete, an automated searching scheme for HH objects is developed to manipulate the images using IRAF. This approach helps to extract images with only intrinsic HH emissions. By using this scheme, the pointlike stellar sources and extended nebulous sources with continuum emission can be eliminated from the original images. The objects with only characteristic HH emission become prominent and can be easily picked up. In this paper our scheme is illustrated by a sample field and has been applied to our surveys for HH objects.
NASA Astrophysics Data System (ADS)
Martz, Pierre; Cathelineau, Michel; Mercadier, Julien; Boiron, Marie-Christine; Jaguin, Justine; Tarantola, Alexandre; Demacon, Mickael; Gerbeaud, Olivier; Quirt, David; Doney, Amber; Ledru, Patrick
2017-12-01
Graphitic shear zones are spatially associated with unconformity-related uranium deposits that are located around the unconformity between the strata of the Paleo- to Mesoproterozoic Athabasca Basin (Saskatchewan, Canada) and its underlying Archean to Paleoproterozoic basement. The present study focuses on basement-hosted ductile-brittle graphitic shear zones near the Cigar Lake U deposit, one of the largest unconformity-related U deposits. The goal of the study is to decipher the pre-Athabasca Basin fluid migration history recorded within such structures and its potential role on the formation of such exceptional deposit. Dominantly C-O-H(-N) metamorphic fluids have been trapped in Fluid Inclusion Planes (FIPs) in magmatic quartz within ductile-brittle graphitic shear zones active during retrograde metamorphism associated with the formation of the Wollaston-Mudjatik Transition Zone (WMTZ) between ca. 1805 and 1720 Ma. Such fluids show a compositional evolution along the retrograde path, from a dense and pure CO2 fluid during the earliest stages, through a lower density CO2 ± CH4-N2 (± H2O) fluid and, finally, to a very low density CH4-N2 fluid. Statistical study of the orientation, distribution, proportion, and chemical characterization of the FIPs shows that: i) CO2 (δ13CCO2 around - 9‰ PDB) from decarbonation reactions and/or partial water-metamorphic graphite equilibrium initially migrated regionally and pervasively under lithostatic conditions at about 500 to 800 °C and 150 to 300 MPa. Such P-T conditions attest to a high geothermal gradient of around 60 to 90 °C/km, probably related to rapid exhumation of the basement or a large-scale heat source. ii) Later brittle reactivation of the shear zone at around 450 °C and 25-50 MPa favored circulation of CO2-CH4-N2(± H2O) fluids in equilibrium with metamorphic graphite (δ13CCO2 around - 14‰) under hydrostatic conditions and only within the shear zones. Cooling of these fluids and the water uptake linked to fluid-basement rock reactions led to the precipitation at around 450 °C of poorly-crystallized hydrothermal graphite. This graphite presents isotopic (δ13C - 30 to - 26‰ PDB) and morphological differences from the high-T metamorphic graphite (> 600 °C, - 29 to - 20‰ δ13C) derived from metamorphism of C-rich sedimentary material. The brittle structural reactivation and the related fluid migration and graphite precipitation were specifically focused within the shear zones and related damage zones. The brittle reactivation produced major changes in the petro-physical, mineralogical, and chemical characteristics of the structures and their damage zones. It especially increased the fracture paleoporosity and rock weakness toward the fault cores. These major late metamorphic modifications of the graphitic shear zones were likely key parameters favoring the enhanced reactivity of these basement zones under tectonic stress following deposition of the Athabasca Basin, and so controlled basinal brine movement at the basin/basement interface related to the formation of the unconformity-related uranium deposits. This relationship consequently readily explains the specific spatial relationships between unconformity-related U deposits and the ductile-brittle graphitic shear zones.
Earliest Life on Earth - New Data Call for Revision
NASA Astrophysics Data System (ADS)
van Zuilen, M.; Lepland, A.; Arrhenius, G.
2001-12-01
The highly metamorphosed 3.8 Ga old Isua Supracrustal Belt (ISB) in southern West Greenland contains the most widely studied example of ancient Archaean water-lain sediments that carry traces of ancient life. Carbonate deposits in the ISB were originally interpreted as primary platform deposits in a shallow marine environment. Graphite occurring in relatively high concentrations and associating with apatite in these rocks has been interpreted as a remnant of ancient biogenic matter, pointing to the existence of a vast microbial ecosystem in the early Archaean (1,2) Recent discoveries, however, cast considerable doubt on this scenario. The ISB metacarbonates are now found to be secondary deposits, resulting from extensive metasomatism (3,4). The apatite-associated occurrence of graphite, forming the basis for earlier biogenic interpretation, is entirely restricted to these metasomatic carbonate deposits, while true sediments like BIF's and metacherts contain virtually no graphite. Furthermore, within these metacarbonates graphite appears to be specifically associated with iron carbonate (siderite) and magnetite. Thermal decomposition of siderite; 6 FeCO3 ' 2Fe3O4 + 5CO2 + C, is the process seemingly responsible for the graphite formation (5,6). The cation composition (Fe, Mg, Mn, and Ca) of the carbonate minerals, carbon isotope analysis of carbonates and associated graphite and petrographic analysis of a suite of metacarbonates support the conclusion that multiple pulses of metasomatism affected the ISB, causing the deposition of siderite and subsequent partial degradation to graphite and magnetite. Equilibrium isotope fractionation between siderite and graphite in these rocks indicates a temperature of metasomatism between 500 and 600C, which coincides with other estimates of metamorphic temperature for the ISB. The siderite-graphite-apatite association in the ISB consequently appears to be an entirely abiogenic metasomatic feature, which does not point to traces of an ancient Early Archaean ecosystem. An exception to this general observation is a locality in the western part of the ISB, where isotopically light graphite occurs in sequences of graded beds, seemingly representing cyclic turbidites (7). The absence of siderite and/or magnetite makes it clear that inorganic formation of graphite by siderite dissociation can not be the source of carbon in these metasediments This particular formation is thus likely to contain the only currently verified remnant of Archaean life in the ISB with an age of 3.8 Ga. (1). Mojzsis,S.J, .Arrhenius,G., McKeegan, K.D.,.Harrison, T.M.,.Nutman, A.P & C.R.L.Friend.,1996. Nature 384: 55 (2) Schidlowski, M., Appel, P.W.U., Eichmann, R. & Junge, C.E., 1979. Geochim. Cosmochim. Acta 43: 189-190. (3). Rose, N.M., Rosing, M.T. & Bridgwater, D., 1996. Am. J. Sci. 296: 1004-1044. (4). Rosing, M.T.,Rose, N.M.,Bridgwater, D. & Thomsen, H.S., 1996. Geology 24: 43-46. (5). Perry, E.C. & Ahmad, S.N., 1977. Earth Planet. Sci. Lett. 36: 280-284. (6). Van Zuilen, M., Matthew, K., Marti,K., & Arrhenius,G.,1999. Abstract A173, AGU Fall Meeting, San Francisco, CA, Dec. 1999. (7). Rosing, M.T., 1999. Science 283: 674-676.
Reverberation Mapping of the Continuum Source in Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Fausnaugh, Michael Martin
I present results from a monitoring campaign of 11 active galactic nuclei (AGN) conducted in Spring of 2014. I use the reverberation mapping method to probe the interior structures of the AGN, specifically the broad line regions (BLRs) and accretion disks. One of these AGN, NGC 5548, was also subject to multi-wavelength (X-ray, UV, optical, and near-IR) monitoring using 25 ground-based telescopes and four space-based facilities. For NGC 5548, I detect lags between the continuum emission at different wavelengths that follow a trend consistent with the prediction for continuum reprocessing by an accretion disk with temperature profile T ∝ R -3/4. However, the lags imply a disk radius that is 3 times larger than the prediction from standard thin-disk models. The lags at wavelengths longer than the Vband are also equal to or greater than the lags of high-ionization-state emission lines (such as HeII lambda1640 and lambda4686), suggesting that the continuum-emitting source is of a physical size comparable to the inner broad-line region. Using optical spectra from the Large Binocular Telescope, I estimate the bias of the interband continuum lags due to BLR emission observed in the filters, and I find that the bias for filters with high levels of BLR contamination (˜20%) can be important for the shortest continuum lags. This likely has a significant impact on the u and U bands owing to Balmer continuum emission. I then develop a new procedure for the internal (night-to-night) calibration of time series spectra that can reach precisions of ˜1 millimagnitude and improves traditional techniques by up to a factor of 5. At this level, other systematic issues (e.g., the nightly sensitivity functions and Fe II contamination) limit the final precision of the observed light curves. Using the new calibration method, I next present the data and first results from the optical spectroscopic monitoring component of the reverberation mapping campaign. Five AGN were sufficiently variable to measure continuum-Hbeta lags and super-massive black hole masses: MCG+08-11-011, NGC 2617, NGC 4051, 3C 382, and Mrk 374. I also obtain Hgamma and HeII lags for all objects except 3C 382. The HeII lags indicate radial stratification of the BLR, and the masses derived from different emission lines are in general agreement. The relative responsivities of these lines to continuum variations are also in qualitative agreement with photoionization models. Finally, I measure optical continuum lags for the two most variable targets, MCG+08-11-011 and NGC 2617. I again find lags consistent with geometrically thin accretion-disk models that have temperature profiles T ∝ R-3/4. The observed lags are larger than predictions based on standard thin-disk theory by factors of 3.3 for MCG+08-11-011 and 2.3 for NGC 2617. Using a physical model, these differences can be explained if the mass accretion rates are larger than inferred from the optical continuum luminosity by a factor of 4.3 in MCG+08-11-011 and a factor of 1.3 in NGC 2617. While the X-ray variability in NGC 2617 precedes the UV/optical variability, the long 2.6 day lag is problematic for coronal reprocessing models.
Method for producing dustless graphite spheres from waste graphite fines
Pappano, Peter J [Oak Ridge, TN; Rogers, Michael R [Clinton, TN
2012-05-08
A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.
Absorber for microwave investigation in the open space
NASA Astrophysics Data System (ADS)
Kubacki, Roman; Smólski, Bogusław; Głuszewski, Wojciech; Przesmycki, Rafał; Rudyk, Karol
2017-04-01
In some circumstances there is a need to realize the Electromagnetic Compatibility (EMC) investigation not in the specialized anechoic chamber but in the open space. Typical absorbers used in anechoic chamber to reduce the reflected rays from walls and floor, such as ferrite plates and graphite cones, are not suitable in the open space. In the work the investigation of the flexible absorbing material intended to the liquidation of the radiation reflected from the ground has been presented. As an absorbing material the metallic-glass with graphite was elaborated. This material was additionally exposed to the ionizing radiation in the dose of 100 kGy in the radioactive gamma source. The permittivity, permeability as well as the shielding properties have been analyzed.
NASA Technical Reports Server (NTRS)
Schmid, F.; Khattak, C. P.
1977-01-01
A controlled growth, heat-flow and cool-down process is described that yielded silicon with a high degree of single crystallinity. Even when the seed melted out, very large grains formed. Solar cell samples made from cast material yielded conversion efficiency of over 9%. Representative characterizations of grown silicon demonstrated a dislocation density of less than 100/sq cm and a minority carrier diffusion length of 31 micron. The source of silicon carbide in silicon ingots was identified to be from graphite retainers in contact with silica crucibles. Higher growth rates were achieved with the use of a graphite plug at the bottom of the silica crucible.
Headridge, J B; Smith, D R
1972-07-01
An induction-heated graphite furnace, coupled to a Unicam SP 90 atomic-absorption spectrometer, is described for the direct determination of trace elements in metals and alloys. The furnace is capable of operation at temperatures up to 2400 degrees , and has been used to obtain calibration graphs for the determination of ppm quantities of bismuth in lead-base alloys, cast irons and stainless steels, and for the determination of cadmium at the ppm level in zinc-base alloys. Milligram samples of the alloys were atomized directly. Calibration graphs for the determination of the elements in solutions were obtained for comparison. The accuracy and precision of the determination are presented and discussed.
Direct Lyman continuum and Ly α escape observed at redshift 4
NASA Astrophysics Data System (ADS)
Vanzella, E.; Nonino, M.; Cupani, G.; Castellano, M.; Sani, E.; Mignoli, M.; Calura, F.; Meneghetti, M.; Gilli, R.; Comastri, A.; Mercurio, A.; Caminha, G. B.; Caputi, K.; Rosati, P.; Grillo, C.; Cristiani, S.; Balestra, I.; Fontana, A.; Giavalisco, M.
2018-05-01
We report on the serendipitous discovery of a z = 4.0, M1500 = -22.20 star-forming galaxy (Ion3) showing copious Lyman continuum (LyC) leakage (˜60 per cent escaping), a remarkable multiple peaked Ly α emission, and significant Ly α radiation directly emerging at the resonance frequency. This is the highest redshift confirmed LyC emitter in which the ionizing and Ly α radiation possibly share a common ionized channel (with NH I < 1017.2 cm-2). Ion3 is spatially resolved, it shows clear stellar winds signatures like the P-Cygni N Vλ1240 profile, and has blue ultraviolet continuum (β = -2.5 ± 0.25, Fλ ˜ λβ) with weak low-ionization interstellar metal lines. Deep VLT/HAWKI Ks and Spitzer/IRAC 3.6 and 4.5μm imaging show a clear photometric signature of the H α line with equivalent width of 1000 Å rest-frame emerging over a flat continuum (Ks - 4.5μm ≃ 0). From the SED fitting, we derive a stellar mass of 1.5 × 109 M⊙, SFR of 140 M⊙ yr-1 and age of ˜10 Myr, with a low dust extinction, E(B - V) ≲ 0.1, placing the source in the starburst region of the SFR-M* plane. Ion3 shows similar properties of another LyC emitter previously discovered (z = 3.21, Ion2, Vanzella et al. 2016). Ion3 (and Ion2) represents ideal high-redshift reference cases to guide the search for reionizing sources at z > 6.5 with JWST.
Acoustic emission measurements of aerospace materials and structures
NASA Technical Reports Server (NTRS)
Sachse, Wolfgang; Gorman, Michael R.
1993-01-01
A development status evaluation is given for aerospace applications of AE location, detection, and source characterization. Attention is given to the neural-like processing of AE signals for graphite/epoxy. It is recommended that development efforts for AE make connections between the material failure process and source dynamics, and study the effects of composite material anisotropy and inhomogeneity on the propagation of AE waves. Broadband, as well as frequency- and wave-mode selective sensors, need to be developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleint, Lucia; Krucker, Säm; Heinzel, Petr
2016-01-10
Enhanced continuum brightness is observed in many flares (“white light flares”), yet it is still unclear which processes contribute to the emission. To understand the transport of energy needed to account for this emission, we must first identify both the emission processes and the emission source regions. Possibilities include heating in the chromosphere causing optically thin or thick emission from free-bound transitions of Hydrogen, and heating of the photosphere causing enhanced H{sup −} continuum brightness. To investigate these possibilities, we combine observations from Interface Region Imaging Spectrograph (IRIS), SDO/Helioseismic and Magnetic Imager, and the ground-based Facility Infrared Spectrometer instrument, coveringmore » wavelengths in the far-UV, near-UV (NUV), visible, and infrared during the X1 flare SOL20140329T17:48. Fits of blackbody spectra to infrared and visible wavelengths are reasonable, yielding radiation temperatures ∼6000–6300 K. The NUV emission, formed in the upper photosphere under undisturbed conditions, exceeds these simple fits during the flare, requiring extra emission from the Balmer continuum in the chromosphere. Thus, the continuum originates from enhanced radiation from photosphere (visible-IR) and chromosphere (NUV). From the standard thick-target flare model, we calculate the energy of the nonthermal electrons observed by Reuven Ramaty High Energy Solar Spectroscope Imager (RHESSI) and compare it to the energy radiated by the continuum emission. We find that the energy contained in most electrons >40 keV, or alternatively, of ∼10%–20% of electrons >20 keV is sufficient to explain the extra continuum emission of ∼(4–8) × 10{sup 10} erg s{sup −1} cm{sup −2}. Also, from the timing of the RHESSI HXR and the IRIS observations, we conclude that the NUV continuum is emitted nearly instantaneously when HXR emission is observed with a time difference of no more than 15 s.« less
NASA Astrophysics Data System (ADS)
Palosaari, Jenny; Eklund, O.; Raunio, S.; Lindfors, T.; Latonen, R.-M.; Peltonen, J.; Smått, J.-H.; Kauppila, J.; Lund, S.; Sjöberg-Eerola, P.; Blomqvist, R.; Marmo, J.
2016-04-01
Natural graphite is a strategic mineral, since the European Commission stated (Report on critical raw materials for the EU (2014)) that graphite is one of the 20 most critical materials for the European Union. The EU consumed 13% of all flake graphite in the world but produced only 3%, which stresses the demand of the material. Flake graphite, which is a flaky version of graphite, forms under high metamorphic conditions. Flake graphite is important in different applications like batteries, carbon brushes, heat sinks etc. Graphene (a single layer of graphite) can be produced from graphite and is commonly used in many nanotechnological applications, e.g. in electronics and sensors. The steps to obtain pure graphene from graphite ore include fragmentation, flotation and exfoliation, which can be cumbersome and resulting in damaging the graphene layers. We have started a project named FennoFlakes, which is a co-operation between geologists and chemists to fill the whole value chain from graphite to graphene: 1. Exploration of graphite ores (geological and geophysical methods). 2. Petrological and geochemical analyses on the ores. 3. Development of fragmentation methods for graphite ores. 4. Chemical exfoliation of the enriched flake graphite to separate flake graphite into single and multilayer graphene. 5. Test the quality of the produced material in several high-end applications with totally environmental friendly and disposable material combinations. Preliminary results show that flake graphite in high metamorphic areas has better qualities compared to synthetic graphite produced in laboratories.
Radio astronomy aspects of the NASA SETI Sky Survey
NASA Technical Reports Server (NTRS)
Klein, Michael J.
1986-01-01
The application of SETI data to radio astronomy is studied. The number of continuum radio sources in the 1-10 GHz region to be counted and cataloged is predicted. The radio luminosity functions for steep and flat spectrum sources at 2, 8, and 22 GHz are derived using the model of Peacock and Gull (1981). The relation between source number and flux density is analyzed and the sensitivity of the system is evaluated.
Reimers, Jeffrey R; Panduwinata, Dwi; Visser, Johan; Chin, Yiing; Tang, Chunguang; Goerigk, Lars; Ford, Michael J; Sintic, Maxine; Sum, Tze-Jing; Coenen, Michiel J J; Hendriksen, Bas L M; Elemans, Johannes A A W; Hush, Noel S; Crossley, Maxwell J
2015-11-10
Modern quantum chemical electronic structure methods typically applied to localized chemical bonding are developed to predict atomic structures and free energies for meso-tetraalkylporphyrin self-assembled monolayer (SAM) polymorph formation from organic solution on highly ordered pyrolytic graphite surfaces. Large polymorph-dependent dispersion-induced substrate-molecule interactions (e.g., -100 kcal mol(-1) to -150 kcal mol(-1) for tetratrisdecylporphyrin) are found to drive SAM formation, opposed nearly completely by large polymorph-dependent dispersion-induced solvent interactions (70-110 kcal mol(-1)) and entropy effects (25-40 kcal mol(-1) at 298 K) favoring dissolution. Dielectric continuum models of the solvent are used, facilitating consideration of many possible SAM polymorphs, along with quantum mechanical/molecular mechanical and dispersion-corrected density functional theory calculations. These predict and interpret newly measured and existing high-resolution scanning tunnelling microscopy images of SAM structure, rationalizing polymorph formation conditions. A wide range of molecular condensed matter properties at room temperature now appear suitable for prediction and analysis using electronic structure calculations.
High temperature ion source for an on-line isotope separator
Mlekodaj, Ronald L.
1979-01-01
A reduced size ion source for on-line use with a cyclotron heavy-ion beam is provided. A sixfold reduction in source volume while operating with similar input power levels results in a 2000.degree. C. operating temperature. A combined target/window normally provides the reaction products for ionization while isolating the ion source plasma from the cyclotron beam line vacuum. A graphite felt catcher stops the recoiling reaction products and releases them into the plasma through diffusion and evaporation. Other target arrangements are also possible. A twenty-four hour lifetime of unattended operation is achieved, and a wider range of elements can be studied than was heretofore possible.
Zhao, Leyi; Zhao, Xiuyun; Burke, Luke T; Bennett, J Craig; Dunlap, Richard A; Obrovac, Mark N
2017-09-11
A highly crystalline graphite powder was prepared from the low temperature (800-1000 °C) graphitization of renewable hard carbon precursors using a magnesium catalyst. The resulting graphite particles are composed of Voronoi-tessellated regions comprising irregular sheets; each Voronoi-tessellated region having a small "seed" particle located near their centroid on the surface. This suggests nucleated outward growth of graphitic carbon, which has not been previously observed. Each seed particle consists of a spheroidal graphite shell on the inside of which hexagonal graphite platelets are perpendicularly affixed. This results in a unique high surface area graphite with a high degree of graphitization that is made with renewable feedstocks at temperatures far below that conventionally used for artificial graphites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhao, Jian-hua; Li, Pu; Tang, Qi; Zhang, Yan-qing; He, Jian-sheng; He, Ke
2017-02-01
In this study, the bronze-matrix/x-graphite (x = 0, 1, 3 and 5%) composites were fabricated by powder metallurgy route by using Cu-coated graphite, Ni-coated graphite and pure graphite, respectively. The microstructure, mechanical properties and corrosive behaviors of bronze/Cu-coated-graphite (BCG), bronze/Ni-coated-graphite (BNG) and bronze/pure-graphite (BPG) were characterized and investigated. Results show that the Cu-coated and Ni-coated graphite could definitely increase the bonding quality between the bronze matrix and graphite. In general, with the increase in graphite content in bronze-matrix/graphite composites, the friction coefficients, ultimate density and wear rates of BPG, BCG and BNG composites all went down. However, the Vickers microhardness of the BNG composite would increase as the graphite content increased, which was contrary to the BPG and BCG composites. When the graphite content was 3%, the friction coefficient of BNG composite was more stable than that of BCG and BPG composites, indicating that BNG composite had a better tribological performance than the others. Under all the values of applied loads (10, 20, 40 and 60N), the BCG and BNG composites exhibited a lower wear rate than BPG composite. What is more, the existence of nickel in graphite powders could effectively improve the corrosion resistance of the BNG composite.
Temperature distribution in a stellar atmosphere diagnostic basis
NASA Technical Reports Server (NTRS)
Jefferies, J. T.; Morrison, N. D.
1973-01-01
A stellar chromosphere is considered a region where the temperature increases outward and where the temperature structure of the gas controls the shape of the spectral lines. It is shown that lines which have collision-dominated source sink terms, like the Ca(+) and Mg(+) H and K lines, can be used to obtain the distribution of temperature with height from observed line profiles. Intrinsic emission lines and geometrical emission lines are found in spectral regions where the continuum is depressed. In visual regions, where the continuum is not depressed, emission core in absorption lines are attributed to reflections of intrinsic emission lines.
Do some x-ray stars have white dwarf companions
NASA Technical Reports Server (NTRS)
Mccollum, Bruce
1995-01-01
Some Be stars which are intermittent X-ray sources may have white dwarf companions rather than neutron stars. It is not possible to prove or rule out the existence of Be + WD systems using X-ray or optical data. However, the presence of a white dwarf could be established by the detection of its EUV continuum shortward of the Be star's continuum turnover at 100 A. Either the detection or the nondetection of Be + WD systems would have implications for models of Be star variability, models of Be binary system formation and evolution, and models of wind-fed accretion.
Do Some X-ray Stars Have White Dwarf Companions?
NASA Technical Reports Server (NTRS)
McCollum, Bruce
1995-01-01
Some Be stars which are intermittent C-ray sources may have white dwarf companions rather than neutron stars. It is not possible to prove or rule out the existence of Be+WD systems using X-ray or optical data. However, the presence of a white dwarf could be established by the detection of its EUV continuum shortward of the Be star's continuum turnover at 1OOOA. Either the detection or the nondetection of Be+WD systems would have implications for models of Be star variability, models of Be binary system formation and evolution, and models of wind-fed accretion.
The near-infrared broad emission line region of active galactic nuclei - II. The 1-μm continuum
NASA Astrophysics Data System (ADS)
Landt, Hermine; Elvis, Martin; Ward, Martin J.; Bentz, Misty C.; Korista, Kirk T.; Karovska, Margarita
2011-06-01
We use quasi-simultaneous near-infrared (near-IR) and optical spectroscopy from four observing runs to study the continuum around 1 μm in 23 well-known broad emission line active galactic nuclei (AGN). We show that, after correcting the optical spectra for host galaxy light, the AGN continuum around this wavelength can be approximated by the sum of mainly two emission components, a hot dust blackbody and an accretion disc. The accretion disc spectrum appears to dominate the flux at ˜ 1 μm, which allows us to derive a relation for estimating AGN black hole masses based on the near-IR virial product. This result also means that a near-IR reverberation programme can determine the AGN state independent of simultaneous optical spectroscopy. On average we derive hot dust blackbody temperatures of ˜1400 K, a value close to the sublimation temperature of silicate dust grains, and relatively low hot dust covering factors of ˜7 per cent. Our preliminary variability studies indicate that in most sources, the hot dust emission responds to changes in the accretion disc flux with the expected time lag; however, a few sources show a behaviour that can be attributed to dust destruction.
Thermal Jeans Fragmentation within ∼1000 au in OMC-1S
NASA Astrophysics Data System (ADS)
Palau, Aina; Zapata, Luis A.; Román-Zúñiga, Carlos G.; Sánchez-Monge, Álvaro; Estalella, Robert; Busquet, Gemma; Girart, Josep M.; Fuente, Asunción; Commerçon, Benoit
2018-03-01
We present subarcsecond 1.3 mm continuum ALMA observations toward the Orion Molecular Cloud 1 South (OMC-1S) region, down to a spatial resolution of 74 au, which reveal a total of 31 continuum sources. We also present subarcsecond 7 mm continuum VLA observations of the same region, which allow further study of fragmentation down to a spatial resolution of 40 au. By applying a method of “mean surface density of companions” we find a characteristic spatial scale at ∼560 au, and we use this spatial scale to define the boundary of 19 “cores” in OMC-1S as groupings of millimeter sources. We find an additional characteristic spatial scale at ∼2800 au, which is the typical scale of the filaments in OMC-1S, suggesting a two-level fragmentation process. We measured the fragmentation level within each core and find a higher fragmentation toward the southern filament. In addition, the cores of the southern filament are also the densest cores (within 1100 au) in OMC-1S. This is fully consistent with previous studies of fragmentation at spatial scales one order of magnitude larger, and suggests that fragmentation down to 40 au seems to be governed by thermal Jeans processes in OMC-1S.
NASA Technical Reports Server (NTRS)
Chartas, G.; Flanagan, K.; Hughes, J. P.; Kellogg, E. M.; Nguyen, D.; Zombek, M.; Joy, M.; Kolodziejezak, J.
1993-01-01
The VETA-I mirror was calibrated with the use of a collimated soft X-ray source produced by electron bombardment of various anode materials. The FWHM, effective area and encircled energy were measured with the use of proportional counters that were scanned with a set of circular apertures. The pulsers from the proportional counters were sent through a multichannel analyzer that produced a pulse height spectrum. In order to characterize the properties of the mirror at different discrete photon energies one desires to extract from the pulse height distribution only those photons that originated from the characteristic line emission of the X-ray target source. We have developed a code that fits a modeled spectrum to the observed X-ray data, extracts the counts that originated from the line emission, and estimates the error in these counts. The function that is fitted to the X-ray spectra includes a Prescott function for the resolution of the detector a second Prescott function for a pileup peak and a X-ray continuum function. The continuum component is determined by calculating the absorption of the target Bremsstrahlung through various filters, correcting for the reflectivity of the mirror and convolving with the detector response.
NASA Technical Reports Server (NTRS)
Chartas, G.; Flanagan, Kathy; Hughes, John P.; Kellogg, Edwin M.; Nguyen, D.; Zombeck, M.; Joy, M.; Kolodziejezak, J.
1992-01-01
The VETA-I mirror was calibrated with the use of a collimated soft X-ray source produced by electron bombardment of various anode materials. The FWHM, effective area and encircled energy were measured with the use of proportional counters that were scanned with a set of circular apertures. The pulsers from the proportional counters were sent through a multichannel analyzer that produced a pulse height spectrum. In order to characterize the properties of the mirror at different discrete photon energies one desires to extract from the pulse height distribution only those photons that originated from the characteristic line emission of the X-ray target source. We have developed a code that fits a modeled spectrum to the observed X-ray data, extracts the counts that originated from the line emission, and estimates the error in these counts. The function that is fitted to the X-ray spectra includes a Prescott function for the resolution of the detector a second Prescott function for a pileup peak and a X-ray continuum function. The continuum component is determined by calculating the absorption of the target Bremsstrahlung through various filters correcting for the reflectivity of the mirror and convolving with the detector response.
The high velocity symbiotic star AG Draconis after its 1980 outburst
NASA Technical Reports Server (NTRS)
Viotti, R.; Altamore, A.; Baratta, G. B.; Cassatella, A.; Friedjung, M.; Giangrande, A.; Ponz, D.; Ricciardi, O.
1982-01-01
High and low resolution spectra of AG Dra taken in 1981 are analyzed. The UV spectrum of AG Dra is characterized by prominent high ionization emission lines superimposed on a strong continuum. At high resolution, several intense absorption lines of interstellar origin are seen, in spite of the low interstellar extinction. A similar situation is displayed by the high galactic latitude sd0 stars. The radial velocity difference between the emission lines and the i.s. lines is about -105 Km/sec in agreement with the optical observations. The He II 1640 A line appears much stronger than in other symbiotic stars and suggests the presence of a hot source which is variable according to the activity of the star. The line also exhibits broad emission wings which could be formed in a rotating disk. The NV resonance doublet displays a P Cygni profile and is probably formed in a warm wind. Two components in the UV continuum are identified: a steep component dominating the far UV probably associated with the hot source, and a flatter continuum in the near UV which cannot be accounted for by f-f and f-b emission alone, but which is probably emitted by an optically thick region or disk.
NASA Astrophysics Data System (ADS)
Dey, Soumyodeep; Bongu, Sudhakara Reddy; Bisht, Prem Ballabh
2017-03-01
We study the nonlinear optical response of a standard dye IR26 using the Z-scan technique, but with the white light continuum. The continuum source of wavelength from 450 nm to 1650 nm has been generated from the photonic crystal fiber on pumping with 772 nm of Ti:Sapphire oscillator. The use of broadband incident pulse enables us to probe saturable absorption (SA) and reverse saturable absorption (RSA) over the large spectral range with a single Z-scan measurement. The system shows SA in the resonant region while it turns to RSA in the non-resonant regions. The low saturation intensity of the dye can be explained based on the simultaneous excitation from ground states to various higher energy levels with the help of composite energy level diagram. The cumulative effects of excited state absorption and thermal induced nonlinear optical effects are responsible for the observed RSA.
Broad-band properties of the CfA Seyfert galaxies. III - Ultraviolet variability
NASA Technical Reports Server (NTRS)
Edelson, R. A.; Pike, G. F.; Krolik, J. H.
1990-01-01
A total of 657 archived IUE spectra are used to study the UV variability properties of six members of the CfA Seyfert I galaxy sample. All show strong evidence for continuum and line variations and a tendency for less luminous objects to be more strongly variable. Most objects show a clear correlation at zero lag between UV spectral index and luminosity, evidence that the variable component is an accretion disk around a black hole which is systematically smaller in less luminous sources. No correlation is seen between the continuum luminosity and equivalent width of the C IV, Mg II, and semiforbidden C III emission lines when the entire sample is examined, but a clear anticorrelation is present when only repeated observations of individual objects are considered. This is due to a combination of light-travel time effects in the broad-line region and the nonlinear responses of lines to continuum fluctuations.
Producing graphite with desired properties
NASA Technical Reports Server (NTRS)
Dickinson, J. M.; Imprescia, R. J.; Reiswig, R. D.; Smith, M. C.
1971-01-01
Isotropic or anisotropic graphite is synthesized with precise control of particle size, distribution, and shape. The isotropic graphites are nearly perfectly isotropic, with thermal expansion coefficients two or three times those of ordinary graphites. The anisotropic graphites approach the anisotropy of pyrolytic graphite.
Peterson, George R.
1976-01-01
Graphite is joined to graphite by employing both fine molybdenum powder as the brazing material and an annealing step that together produce a virtually metal-free joint exhibiting properties similar to those found in the parent graphite. Molybdenum powder is placed between the faying surfaces of two graphite parts and melted to form molybdenum carbide. The joint area is thereafter subjected to an annealing operation which diffuses the carbide away from the joint and into the graphite parts. Graphite dissolved by the dispersed molybdenum carbide precipitates into the joint area, replacing the molybdenum carbide to provide a joint of virtually graphite.
Method of Joining Graphite Fibers to a Substrate
NASA Technical Reports Server (NTRS)
Beringer, Durwood M. (Inventor); Caron, Mark E. (Inventor); Taddey, Edmund P. (Inventor); Gleason, Brian P. (Inventor)
2014-01-01
A method of assembling a metallic-graphite structure includes forming a wetted graphite subassembly by arranging one or more layers of graphite fiber material including a plurality of graphite fibers and applying a layer of metallization material to ends of the plurality of graphite fibers. At least one metallic substrate is secured to the wetted graphite subassembly via the layer of metallization material.
NASA Astrophysics Data System (ADS)
Bogomazova, E. A.; Kalinin, B. N.; Naumenko, G. A.; Padalko, D. V.; Potylitsyn, A. P.; Sharafutdinov, A. F.; Vnukov, I. E.
2003-01-01
A series of experiments on the parametric X-rays radiation (PXR) generation and radiation soft component diffraction of relativistic electrons in pyrolytic graphite (PG) crystals have been carried out at the Tomsk synchrotron. It is shown that the experimental results with PG crystals are explained by the kinematic PXR theory if we take into account a contribution of the real photons diffraction (transition radiation, bremsstrahlung and PXR photons as well). The measurements of the emission spectrum of channeled electrons in the photon energy range much smaller than the characteristic energy of channeling radiation have been performed with a crystal-diffraction spectrometer. For electrons incident along the <1 1 0> axis of a silicon crystal, the radiation intensity in the energy range 30⩽ ω⩽360 keV exceeds the bremsstrahlung one almost by an order of magnitude. Different possibilities to create an effective source of the monochromatic X-ray beam based on the real and virtual photons diffraction in the PG crystals have been considered.
Plate mode velocities in graphite/epoxy plates
NASA Technical Reports Server (NTRS)
Prosser, W. H.; Gorman, M. R.
1994-01-01
Measurements of the velocities of the extensional and flexural plate modes were made along three directions of propagation in four graphite/epoxy composite plates. The acoustic signals were generated by simulated acoustic emission events (pencil lead breaks or Hsu-Neilson sources) and detected by by broadband ultrasonic transducers. The first arrival of the extensional plate mode, which is nondispersive at low frequencies, was measured at a number of different distances from the source along the propagation direction of interest. The velocity was determined by plotting the distance versus arrival time and computing its slope. Because of the large dispersion of the flexural mode, a Fourier phase velocity technique was used to characterize this mode. The velocity was measured up to a frequency of 160 kHz. Theoretical predictions of the velocities of these modes were also made and compared with experimental observations. Classical plate theory yields good agreement with the measured extensional velocities. For predictions of the dispersion of the flexural mode, Mindlin plates theory, which includes the effects of shear deformation and rotatory inertia was shown to give better agreement with the experimental measurements.
Characterization of the graphite pile as a source of thermal neutrons
NASA Astrophysics Data System (ADS)
Vykydal, Zdenek; Králík, Miloslav; Jančář, Aleš; Kopecký, Zdeněk; Dressler, Jan; Veškrna, Martin
2015-11-01
A new graphite pile designed to serve as a standard source of thermal neutrons has been built at the Czech Metrology Institute. Actual dimensions of the pile are 1.95 m (W)×1.95 m (L)×2.0 m (H). At its center, there is a measurement channel whose dimensions are 0.4 m×0.4 m×1.25 m (depth). The channel is equipped with a calibration bench, which allows reproducible placement of the tested/calibrated device. At a distance of 80 cm from the channel axis, six holes are symmetrically located allowing the placement of radionuclide neutron sources of Pu-Be and/or Am-Be type. Spatial distribution of thermal neutron fluence in the cavity was calculated in detail with the MCNP neutron transport code. Experimentally, it was measured with two active detectors: a small 3He proportional detector by the French company LMT, type 0.5 NH 1/1 KF, and a silicon pixel detector Timepix with 10B converter foil. The relative values of thermal neutron fluence rate obtained with active detectors were converted to absolute ones using thermal neutron fluence rates measured by means of gold foil activation. The quality of thermal neutron field was characterized by the cadmium ratio.
RXTE Observation of the Tycho Supernova Remnant
NASA Technical Reports Server (NTRS)
The, Lih-Sin
1998-01-01
SN1006 [4] and Cas A [1, 9] supernova remnants have been shown convincingly to have a hard X-ray power-law continuum. This continuum is thought to be the synchrotron radiation from accelerated electrons of approx. 100 TeV at the shock fronts. Our goal of AO2 RXTE observation is to detect the hard X-ray continuum and to determine the nature of the continuum from Tycho SNR. A detection of a power-law continuum from Tycho SNR can strongly argue for SNRs are the source of cosmic rays with the first order Fermi acceleration as the energizing process. We report the results of our AO2 RXTE 1 x 10(exp 5) sec observation of Tycho SNR. We detect two components of the X-ray spectrum from Tycho SNR both at better than 3 omega confidence. The best two component models are: bremsstrahlung (kT=2.67 +/- 0.13 keV) + bremsstrahlung (kT=7.07 +/- 2.21/1.72 keV) or bremsstrahlung (kT=2.36 +/- 0.21/0.57 keV) + power-law (gamma=2.58 +/- 0.12/0.09 ). This result is an improvement compaxed with the previous most sensitive X-ray measurements by Ginga which shows Tycho's observed X-ray continuum requires a two-component model to yield acceptable fits with the hard component parameters being highly uncertain. Our RXTE measurements constrain all parameter within 3o, ranges. However, we cannot yet distinguish between thermal and nonthermal models for the hard component. In the followings, we describe what we accomplished in the period covered by the grant proposal.
1982-05-01
process, titanium chlorides are produced by passing chlorine gas through a fine titanium powder contained in a graphite chamber. At the high source...CO was used for a carbon source; the boron source was boron trifluoride . The 52100 samples were disks 0.95 cm in diameter and 0.3 cm thick. During...eV modulation amplitude. The ion gun 1w operated in an Ar atmosphere (5 x 10-5 torr) with a rastered beam of 2 keY Ar+ ions at densities ranging from
A (12)CO J = 2-1 map of the disk of Centaurus A: Evidence for large scale heating in the dust lane
NASA Technical Reports Server (NTRS)
Wild, W.; Cameron, M.; Eckart, A.; Genzel, R.; Rothermel, H.; Rydbeck, G.; Wiklind, T.
1993-01-01
Centaurus A (NGC 5128) is a nearby (3 Mpc) elliptical galaxy with a prominent dust lane, extensive radio lobes, and a compact radio continuum source, suggestive of nuclear activity. As a consequence of its peculiar morphology, this merger candidate has been the subject of much attention, particularly at optical wavelengths. Unfortunately the high and patchy extinction in the disk, aggravated by the warped structure of the dust lane, has severely hindered investigations into the properties of the interstellar medium, particularly with regard to the extent of star formation. Here we present a map of the (12)CO J = 2-1 line throughout the dust lane which, when combined with a previously measured (12)CO J = 1-0 map and data on molecular absorption lines observed against the compact non-thermal continuum source, offers insight into the excitation conditions of the molecular gas.
The infrared spectrum of M8 E - Evidence for circumstellar CO
NASA Technical Reports Server (NTRS)
Larson, H. P.; Fink, U.; Hofmann, R.
1986-01-01
High-resolution spectroscopic observations of the compact infrared source M8 E are reported in the region from 3 to 5 microns. Very prominent CO absorption lines are observed in the v = 1-0 band at 4.7 microns. The velocity width and rotational temperature suggest that this CO absorption occurs in a highly excited region. The high background continuum flux level and the prominent appearance of the CO features suggest that the CO line-forming region must be in front of the dust emission region. A blister model for M8 E, which places most of the dust continuum emission behind the source, satisfies this requirement. According to this picture, the observed circumstellar CO spectrum shows a high rotational temperature and a large velocity dispersion because of the combined effects of the strong stellar wind and possible shock heating near the dust zone as the wind encounters the ambient molecular cloud.
Huang, Mao Dong; Becker-Ross, Helmut; Florek, Stefan; Heitmann, Uwe; Okruss, Michael
2005-08-01
Determination of sulfur in wine is an important analytical task, particularly with regard to food safety legislation, wine trade, and oenology. Hitherto existing methods for sulfur determination all have specific drawbacks, for example high cost and time consumption, poor precision or selectivity, or matrix effects. In this paper a new method, with low running costs, is introduced for direct, reliable, rapid, and accurate determination of the total sulfur content of wine samples. The method is based on measurement of the molecular absorption of carbon monosulfide (CS) in an ordinary air-acetylene flame by using a high-resolution continuum-source atomic-absorption spectrometer including a novel high-intensity short-arc xenon lamp. First results for total sulfur concentrations in different wine samples were compared with data from comparative ICP-MS measurements. Very good agreement within a few percent was obtained.
Search for massive protostellar candidates in the southern hemisphere. I. Association with dense gas
NASA Astrophysics Data System (ADS)
Fontani, F.; Beltrán, M. T.; Brand, J.; Cesaroni, R.; Testi, L.; Molinari, S.; Walmsley, C. M.
2005-03-01
We have observed two rotational transitions of both CS and C17O, and the 1.2 mm continuum emission towards a sample of 130 high-mass protostellar candidates with δ < -30°. This work represents the first step of the extension to the southern hemisphere of a project started more than a decade ago aimed at the identification of massive protostellar candidates. Following the same approach adopted for sources with δ ≥ -30°, we have selected from the IRAS Point Source Catalogue 429 sources which potentially are compact molecular clouds on the basis of their IR colours. The sample has then been divided into two groups according to the colour indices [25 12] and [60 12]: the 298 sources with [25 12] ≥ 0.57 and [60 12] ≥ 1.30 have been called High sources, the remaining 131 have been called Low sources. In this paper, we check the association with dense gas and dust in 130 Low sources. We have obtained a detection rate of ~85% in CS, demonstrating a tight association of the sources with dense molecular clumps. Among the sources detected in CS, ~76% have also been detected in C17O and ~93% in the 1.2 mm continuum. Millimeter-continuum maps show the presence of clumps with diameters in the range 0.2-2 pc and masses from a few M⊙ to 105 M⊙; H2 volume densities computed from CS line ratios lie between ~104.5 and 105.5 cm-3. The bolometric luminosities of the sources, derived from IRAS data, are in the range 103-106 L⊙, consistent with embedded high-mass objects. Based on our results and those found in the literature for other samples of high-mass young stellar objects, we conclude that our sources are massive objects in a very early evolutionary stage, probably prior to the formation of an Hii region. We propose a scenario in which High and Low sources are both made of a massive clump hosting a high-mass protostellar candidate and a nearby stellar cluster. The difference might be due to the fact that the 12 μm IRAS flux, the best discriminant between the two groups, is dominated by the emission from the cluster in Lows and from the massive protostellar object in Highs. Based on results collected at the European Southern Observatory (ESO), La Silla, Chile. Tables [see full text]-[see full text] are only available in electronic form at http://www.edpsciences.org
Fullerenes and interplanetary dust at the Permian-Triassic boundary.
Poreda, Robert J; Becker, Luann
2003-01-01
We recently presented new evidence that an impact occurred approximately 250 million years ago at the Permian-Triassic boundary (PTB), triggering the most severe mass extinction in the history of life on Earth. We used a new extraterrestrial tracer, fullerene, a third carbon carrier of noble gases besides diamond and graphite. By exploiting the unique properties of this molecule to trap noble gases inside of its caged structure (helium, neon, argon), the origin of the fullerenes can be determined. Here, we present new evidence for fullerenes with extraterrestrial noble gases in the PTB at Graphite Peak, Antarctica, similar to PTB fullerenes from Meishan, China and Sasayama, Japan. In addition, we isolated a (3)He-rich magnetic carrier phase in three fractions from the Graphite Peak section. The noble gases in this magnetic fraction were similar to zero-age deep-sea interplanetary dust particles (IDPs) and some magnetic grains isolated from the Cretaceous-Tertiary boundary. The helium and neon isotopic compositions for both the bulk Graphite Peak sediments and an isolated magnetic fraction from the bulk material are consistent with solar-type gases measured in zero-age deep-sea sediments and point to a common source, namely, the flux of IDPs to the Earth's surface. In this instance, the IDP noble gas signature for the bulk sediment can be uniquely decoupled from fullerene, demonstrating that two separate tracers are present (direct flux of IDPs for (3)He vs. giant impact for fullerene).
Thermally exfoliated graphite oxide
NASA Technical Reports Server (NTRS)
Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)
2011-01-01
A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.
The action of macrosounds on graphite ore and derived products
NASA Technical Reports Server (NTRS)
Bradeteanu, C.; Dragan, O.
1974-01-01
A suspension of graphite ore, floated graphite, and the gangue left over from flotation were subjected to the action of macrosounds under determinant conditions. The following was found: (1) The graphite ore undergoes an efficient settling action. (2) The floated graphite is strongly crushed down to the dimensions of colloidal graphite. (3) The gangue left over from flotation can be further processed to recuperate graphite from its nuclei.
Zheng, Dong; Zhang, Xuran; Qu, Deyu; ...
2015-04-21
Oxygen reduction and oxygen evolution reactions were examined on graphite electrodes with different crystal orientations. The kinetics for the redox couple O 2/O 2 •- are very fast, therefore no catalyst seems necessary to assist the charge transfer process. Apparently, the main source of the overpotential for the O 2 reduction reaction is from mass diffusion. Li 2O 2 becomes soluble in non-aqueous electrolytes in the presence of the tetraethylammonium tetrafluoroborate additive. The soluble B-O 2 2- ions can be oxidized electro-catalytically. The edge orientation of graphite demonstrates superior catalytic activity for the oxidation over basal orientation. The findings revealmore » an opportunity for recharging Li-air batteries efficiently and a new strategy of developing the catalyst for oxygen evolution reaction.« less
NASA Technical Reports Server (NTRS)
Nir, Z.; Gilwee, W. J.; Kourtides, D. A.; Parker, J. A.
1983-01-01
The imparting of flame retardancy to graphite-reinforced composites without incurring mechanical property deterioration is investigated for the case of an experimental, trifunctional epoxy resin incorporating brominated polymeric additives (BPAs) of the diglycidyl type. Such mechanical properties as flexural strength and modulus, and short beam shear strength, were measured in dry and in hot/wet conditions, and the glass transition temperature, flammability, and water absorption were measured and compared with nonbromilated systems. Another comparison was made with a tetrafunctional epoxy system. The results obtained are explained in terms of differences in the polymeric backbone length of the bromine carrier polymer. BPAs are found to be a reliable bromine source for fire inhibition in carbon-reinforced composites without compromise of mechanical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dao, Trung Dung; Jeong, Han Mo, E-mail: hmjeong@mail.ulsan.ac.kr
Highlights: • Effect of raw graphite particle size on properties of GO and graphene is reported. • Size of raw graphite affects oxidation degree and chemical structure of GO. • Highly oxidized GO results in small-sized but well-exfoliated graphene. • GO properties affect reduction degree, structure, and conductivity of graphene. - Abstract: We report the effect of raw graphite size on the properties of graphite oxide and graphene prepared by thermal reduction–exfoliation of graphite oxide. Transmission electron microscope analysis shows that the lateral size of graphene becomes smaller when smaller size graphite is used. X-ray diffraction analysis confirms that graphitemore » with smaller size is more effectively oxidized, resulting in a more effective subsequent exfoliation of the obtained graphite oxide toward graphene. X-ray photoelectron spectroscopy demonstrates that reduction of the graphite oxide derived from smaller size graphite into graphene is more efficient. However, Raman analysis suggests that the average size of the in-plane sp{sup 2}-carbon domains on graphene is smaller when smaller size graphite is used. The enhanced reduction degree and the reduced size of sp{sup 2}-carbon domains contribute contradictively to the electrical conductivity of graphene when the particle size of raw graphite reduces.« less
Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Xu, Wu; Choi, Daiwon
2012-04-27
In order to form the stable surface film and to further enhance the long-term cycling stability of the graphite anodes of lithium-ion batteries, the surface of graphite powders has been modified by AlF3 coating through chemical precipitation method. The AlF3-coated graphite shows no evident changes in the bulk structure and a thin AlF3-coating layer of about 2 nm thick is found to uniformly cover the graphite particles with 2 wt% AlF3 content. However, it delivers a higher initial discharge capacity and largely improved rate performances compared to the pristine graphite. Remarkably, AlF3 coated graphite demonstrated a much better cycle life.more » After 300 cycles, AlF3 coated graphite and uncoated graphite show capacity retention of 92% and 81%, respectively. XPS measurement shows that a more conductive solid electrode interface (SEI) layer was formed on AlF3 coated graphite as compared to uncoated graphite. SEM monograph also reveals that the AlF3-coated graphite particles have a much more stable surface morphology after long-term cycling. Therefore, the improved electrochemical performance of AlF3 coated graphite can be attributed to a more stable and conductive SEI formed on coated graphite anode during cycling process.« less
Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation.
Wan, W J; Li, H; Zhou, T; Cao, J C
2017-03-08
Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification.
Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation
Wan, W. J.; Li, H.; Zhou, T.; Cao, J. C.
2017-01-01
Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification. PMID:28272492
SMA Continuum Survey of Circumstellar Disks in Serpens
NASA Astrophysics Data System (ADS)
Law, Charles; Ricci, Luca; Andrews, Sean M.; Wilner, David J.; Qi, Chunhua
2017-06-01
The lifetime of disks surrounding pre-main-sequence stars is closely linked to planet formation and provides information on disk dispersal mechanisms and dissipation timescales. The potential for these optically thick, gas-rich disks to form planets is critically dependent on how much dust is available to be converted into terrestrial planets and rocky cores of giant planets. For this reason, an understanding of how dust mass varies with key properties such as stellar mass, age, and environment is critical for understanding planet formation. Millimeter wavelength observations, in which the dust emission is optically thin, are required to study the colder dust residing in the disk’s outer regions and to measure disk dust masses. Hence, we have obtained SMA 1.3 mm continuum observations of 62 Class II sources with suspected circumstellar disks in the Serpens star-forming region (SFR). Relative to the well-studied Taurus SFR, Serpens allows us to probe the distribution of dust masses for disks in a much denser and more clustered environment. Only 13 disks were detected in the continuum with the SMA. We calculate the total dust masses of these disks and compare their masses to those of disks in Taurus, Lupus, and Upper Scorpius. We do not find evidence of diminished dust masses in Serpens disks relative to those in Taurus despite the fact that disks in denser clusters may be expected to contain less dust mass due to stronger and more frequent tidal interactions that can disrupt the outer regions of disks. However, considering the low detection fraction, we likely detected only bright continuum sources and a more sensitive survey of Serpens would help clarify these results.
CMB-13 research on carbon and graphite
NASA Technical Reports Server (NTRS)
Smith, M. C.
1972-01-01
Preliminary results of the research on carbon and graphite accomplished during this report period are presented. Included are: particle characteristics of Santa Maria fillers, compositions and density data for hot-molded Santa Maria graphites, properties of hot-molded Santa Maria graphites, and properties of hot-molded anisotropic graphites. Ablation-resistant graphites are also discussed.
METHOD OF FABRICATING A GRAPHITE MODERATED REACTOR
Kratz, H.R.
1963-05-01
S>A nuclear reactor formed of spaced bodies of uranium and graphite blocks is improved by diffusing helium through the graphite blocks in order to replace the air in the pores of the graphite with helium. The helium-impregnated graphite conducts heat better, and absorbs neutrons less, than the original air- impregnated graphite. (AEC)
Structure and chemistry in the northwestern condensation of the Serpens molecular cloud core
NASA Technical Reports Server (NTRS)
Mcmullin, Joseph P.; Mundy, Lee G.; Wilking, Bruce A.; Hezel, T.; Blake, Geoff A.
1994-01-01
We present single-dish and interferometric observations of gas and dust in the core of the Serpens molecular cloud, focusing on the northwestern condensation. Single-dish molecular line observations are used to probe the structure and chemistry of the condensation while high-resolution images of CS and CH30H are combined with continuum observations from lambda = 1.3 mm to lambda = 3.5 cm to study the subcondensations and overall distribution of dust. For the northwestern condensation, we derive a characteristic density of 3 x 10(exp 5)/ cu cm and an estimated total mass of approximately 70 solar mass. We find compact molecular emission associated with the far-infrared source S68 FIRS 1, and with a newly detected subcondensation named S68 N. Comparison of the large-and small-scale emission reveals that most of the material in the northwest condensation is not directly associated with these compact sources, suggesting a youthful age for this region. CO J = 1 approaches 0 observations indicate widespread outflow activity. However, no unique association of embedded objects with outflows is possible with our observations. The SiO emission is found to be extended with the overall emission centered about S68 FIRS 1; the offset of the peak emission from all of the known continuum sources and the coincidence between the blueshifted SiO emission and blueshifted high-velocity gas traced by CO and CS is consistent with formation of SiO in shocks. Derived abundances of CO and HCO(+) are consistent with quiescent and other star-forming regions while CS, HCN, and H2CO abundances indicate mild depletions within the condensation. Spectral energy distribution fits to S68 FIRS 1 indicate a modest luminosity (50-60 solar luminosity), implying that it is a low-mass (0.5-3 solar mass) young stellar object. Radio continuum observations of the triple source toward S68 FIRS 1 indicate that the lobe emission is varying on timescales less than or equal to 1 yr while the central component is relatively constant over approximately 14 yr. The nature of a newly detected compact emission region, S68 N, is less certain due to the absence of firm continuum detections; based on its low luminosity (less than 5 solar luminosity) and strong molecular emission, S68 N may be prestellar subcondensation of gas and dust.
Feichtmeier, Nadine S; Ruchter, Nadine; Zimmermann, Sonja; Sures, Bernd; Leopold, Kerstin
2016-01-01
Engineered silver nanoparticles (AgNPs) are implemented in food contact materials due to their powerful antimicrobial properties and so may enter the human food chain. Hence, it is desirable to develop easy, sensitive and fast analytical screening methods for the determination of AgNPs in complex biological matrices. This study describes such a method using solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry (GFAAS). A recently reported novel evaluation strategy uses the atomization delay of the respective GFAAS signal as significant indicator for AgNPs and thereby allows discrimination of AgNPs from ionic silver (Ag(+)) in the samples without elaborate sample pre-treatment. This approach was further developed and applied to a variety of biological samples. Its suitability was approved by investigation of eight different food samples (parsley, apple, pepper, cheese, onion, pasta, maize meal and wheat flour) spiked with ionic silver or AgNPs. Furthermore, the migration of AgNPs from silver-impregnated polypropylene food storage boxes to fresh pepper was observed and a mussel sample obtained from a laboratory exposure study with silver was investigated. The differences in the atomization delays (Δt(ad)) between silver ions and 20-nm AgNPs vary in a range from -2.01 ± 1.38 s for maize meal to +2.06 ± 1.08 s for mussel tissue. However, the differences were significant in all investigated matrices and so indicative of the presence/absence of AgNPs. Moreover, investigation of model matrices (cellulose, gelatine and water) gives the first indication of matrix-dependent trends. Reproducibility and homogeneity tests confirm the applicability of the method.
Nicola1 Zaccarelli; Petrosillo; Irene; Giovanni Zurlini; KurtHans Riitters
2008-01-01
Land-use change is one of the major factors affecting global environmental change and represents a primary human effect on natural systems. Taking into account the scales and patterns of human land uses as source/sink disturbance systems, we describe a framework to characterize and interpret the spatial patterns of disturbances along a continuum of scales in a panarchy...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohrbaugh, David Thomas; Windes, William; Swank, W. David
The Next Generation Nuclear Plant (NGNP) will be a helium-cooled, very high temperature reactor (VHTR) with a large graphite core. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor (HTGR) designs.[ , ] Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphites have been developed and are considered suitable candidates for the new NGNP reactor design. To support the design and licensing of NGNP core components within a commercial reactor, a completemore » properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade with a specific emphasis on data related to the life limiting effects of irradiation creep on key physical properties of the NGNP candidate graphites. Based on experience with previous graphite core components, the phenomenon of irradiation induced creep within the graphite has been shown to be critical to the total useful lifetime of graphite components. Irradiation induced creep occurs under the simultaneous application of high temperatures, neutron irradiation, and applied stresses within the graphite components. Significant internal stresses within the graphite components can result from a second phenomenon—irradiation induced dimensional change. In this case, the graphite physically changes i.e., first shrinking and then expanding with increasing neutron dose. This disparity in material volume change can induce significant internal stresses within graphite components. Irradiation induced creep relaxes these large internal stresses, thus reducing the risk of crack formation and component failure. Obviously, higher irradiation creep levels tend to relieve more internal stress, thus allowing the components longer useful lifetimes within the core. Determining the irradiation creep rates of nuclear grade graphites is critical for determining the useful lifetime of graphite components and is a major component of the Advanced Graphite Creep (AGC) experiment.« less
Stable dispersions of polymer-coated graphitic nanoplatelets
NASA Technical Reports Server (NTRS)
Nguyen, Sonbinh T. (Inventor); Stankovich, Sasha (Inventor); Ruoff, Rodney S. (Inventor)
2011-01-01
A method of making a dispersion of reduced graphite oxide nanoplatelets involves providing a dispersion of graphite oxide nanoplatelets and reducing the graphite oxide nanoplatelets in the dispersion in the presence of a reducing agent and a polymer. The reduced graphite oxide nanoplatelets are reduced to an extent to provide a higher C/O ratio than graphite oxide. A stable dispersion having polymer-treated reduced graphite oxide nanoplatelets dispersed in a dispersing medium, such as water or organic liquid is provided. The polymer-treated, reduced graphite oxide nanoplatelets can be distributed in a polymer matrix to provide a composite material.
Synthesis of carbon nanotubes by arc discharge in open air.
Paladugu, Mohan Chand; Maneesh, K; Nair, P Kesavan; Haridoss, Prathap
2005-05-01
In this work Carbon nanotubes have been synthesized by arc discharge in open air. A TIG welding ac/dc inverter was used as the power source for arc discharge. During each run of the arc discharge based synthesis, the anode was a low purity (approximately 85% C by weight) graphite rod. The effect of varying the atmosphere on the yield of soot of the carbon nanotube containing carbon soot has been studied. Various soots were produced, purified by oxidation and characterized to confirm formation of carbon nanotubes and their relative quality, using transmission electron microscopy, Raman spectroscopy, and XRD. It was found that the yield of soot formed on the cathode is higher when synthesis is carried out in open air than when carried out in a flowing argon atmosphere. When synthesized in open air, using a 7.2-mm-diameter graphite rod as anode, the yield of soot was around 50% by weight of the graphite consumed. Current and voltage for arcing were at identical starting values in all the experiments. This modified method does not require a controlled atmosphere as in the case of a conventional arc discharge method of synthesis and hence the cost of production may be reduced.
Calculated criticality for sup 235 U/graphite systems using the VIM Monte Carlo code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, P.J.; Grasseschi, G.L.; Olsen, D.N.
1992-01-01
Calculations for highly enriched uranium and graphite systems gained renewed interest recently for the new production modular high-temperature gas-cooled reactor (MHTGR). Experiments to validate the physics calculations for these systems are being prepared for the Transient Reactor Test Facility (TREAT) reactor at Argonne National Laboratory (ANL-West) and in the Compact Nuclear Power Source facility at Los Alamos National Laboratory. The continuous-energy Monte Carlo code VIM, or equivalently the MCNP code, can utilize fully detailed models of the MHTGR and serve as benchmarks for the approximate multigroup methods necessary in full reactor calculations. Validation of these codes and their associated nuclearmore » data did not exist for highly enriched {sup 235}U/graphite systems. Experimental data, used in development of more approximate methods, dates back to the 1960s. The authors have selected two independent sets of experiments for calculation with the VIM code. The carbon-to-uranium (C/U) ratios encompass the range of 2,000, representative of the new production MHTGR, to the ratio of 10,000 in the fuel of TREAT. Calculations used the ENDF/B-V data.« less
Post Irradiation Examination Results of the NT-02 Graphite Fins NUMI Target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ammigan, K.; Hurh, P.; Sidorov, V.
2017-02-10
The NT-02 neutrino target in the NuMI beamline at Fermilab is a 95 cm long target made up of segmented graphite fins. It is the longest running NuMI target, which operated with a 120 GeV proton beam with maximum power of 340 kW, and saw an integrated total proton on target of 6.1 1020. Over the last half of its life, gradual degradation of neutrino yield was observed until the target was replaced. The probable causes for the target performance degradation are attributed to radiation damage, possibly including cracking caused by reduction in thermal shock resistance, as well as potentialmore » localized oxidation in the heated region of the target. Understanding the long-termstructural response of target materials exposed to proton irradiation is critical as future proton accelerator sources are becoming increasingly more powerful. As a result, an autopsy of the target was carried out to facilitate post-irradiation examination of selected graphite fins. Advanced microstructural imaging and surface elemental analysis techniques were used to characterize the condition of the fins in an effort to identify degradation mechanisms, and the relevant findings are presented in this paper.« less
Natural occurrence of pure nano-polycrystalline diamond from impact crater
NASA Astrophysics Data System (ADS)
Ohfuji, Hiroaki; Irifune, Tetsuo; Litasov, Konstantin D.; Yamashita, Tomoharu; Isobe, Futoshi; Afanasiev, Valentin P.; Pokhilenko, Nikolai P.
2015-10-01
Consolidated bodies of polycrystalline diamond with grain sizes less than 100 nm, nano-polycrystalline diamond (NPD), has been experimentally produced by direct conversion of graphite at high pressure and high temperature. NPD has superior hardness, toughness and wear resistance to single-crystalline diamonds because of its peculiar nano-textures, and has been successfully used for industrial and scientific applications. Such sintered nanodiamonds have, however, not been found in natural mantle diamonds. Here we identified natural pure NPD, which was produced by a large meteoritic impact about 35 Ma ago in Russia. The impact diamonds consist of well-sintered equigranular nanocrystals (5-50 nm), similar to synthetic NPD, but with distinct [111] preferred orientation. They formed through the martensitic transformation from single-crystal graphite. Stress-induced local fragmentation of the source graphite and subsequent rapid transformation to diamond in the limited time scale result in multiple diamond nucleation and suppression of the overall grain growth, producing the unique nanocrystalline texture of natural NPD. A huge amount of natural NPD is expected to be present in the Popigai crater, which is potentially important for applications as novel ultra-hard material.
NASA Astrophysics Data System (ADS)
Schwenke, A. M.; Janoschka, T.; Stolze, C.; Martin, N.; Hoeppener, S.; Schubert, U. S.
2016-12-01
A simple and fast microwave-assisted protocol to functionalize commercially available graphite felts (GFs) with carbon nanofibers (CNFs) for the application as electrode materials in redox-flow batteries (RFB) is demonstrated. As catalyst for the CNF synthesis nickel acetate is applied and ethanol serves as the carbon source. By the in-situ growth of CNFs, the active surface of the electrodes is increased by a factor of 50, which is determined by the electrochemical double layer capacities of the obtained materials. Furthermore, the morphology of the CNF-coating is investigated by scanning electron microscopy. Subsequently, the functionalized electrodes are applied in a polymer-based redox-flow battery (pRFB) using a TEMPO- and a viologen polymer as active materials. Due to the increased surface area as compared to an untreated graphite felt electrode, the current rating is improved by about 45% at 80 mA cm-2 and, furthermore, a decrease in overpotentials is observed. Thus, using this microwave-assisted synthesis approach, CNF-functionalized composite electrodes are prepared with a very simple protocol suitable for real life applications and an improvement of the overall performance of the polymer-based redox-flow battery is demonstrated.
Natural occurrence of pure nano-polycrystalline diamond from impact crater
Ohfuji, Hiroaki; Irifune, Tetsuo; Litasov, Konstantin D.; Yamashita, Tomoharu; Isobe, Futoshi; Afanasiev, Valentin P.; Pokhilenko, Nikolai P.
2015-01-01
Consolidated bodies of polycrystalline diamond with grain sizes less than 100 nm, nano-polycrystalline diamond (NPD), has been experimentally produced by direct conversion of graphite at high pressure and high temperature. NPD has superior hardness, toughness and wear resistance to single-crystalline diamonds because of its peculiar nano-textures, and has been successfully used for industrial and scientific applications. Such sintered nanodiamonds have, however, not been found in natural mantle diamonds. Here we identified natural pure NPD, which was produced by a large meteoritic impact about 35 Ma ago in Russia. The impact diamonds consist of well-sintered equigranular nanocrystals (5–50 nm), similar to synthetic NPD, but with distinct [111] preferred orientation. They formed through the martensitic transformation from single-crystal graphite. Stress-induced local fragmentation of the source graphite and subsequent rapid transformation to diamond in the limited time scale result in multiple diamond nucleation and suppression of the overall grain growth, producing the unique nanocrystalline texture of natural NPD. A huge amount of natural NPD is expected to be present in the Popigai crater, which is potentially important for applications as novel ultra-hard material. PMID:26424384
Structural disorder of graphite and implications for graphite thermometry
NASA Astrophysics Data System (ADS)
Kirilova, Martina; Toy, Virginia; Rooney, Jeremy S.; Giorgetti, Carolina; Gordon, Keith C.; Collettini, Cristiano; Takeshita, Toru
2018-02-01
Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry
, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25 megapascal (MPa) and aseismic velocities of 1, 10 and 100 µm s-1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer
is ambiguous in active tectonic settings.
NASA Astrophysics Data System (ADS)
Hayward, Christopher C.; Chapman, Scott C.; Steidel, Charles C.; Golob, Anneya; Casey, Caitlin M.; Smith, Daniel J. B.; Zitrin, Adi; Blain, Andrew W.; Bremer, Malcolm N.; Chen, Chian-Chou; Coppin, Kristen E. K.; Farrah, Duncan; Ibar, Eduardo; Michałowski, Michał J.; Sawicki, Marcin; Scott, Douglas; van der Werf, Paul; Fazio, Giovanni G.; Geach, James E.; Gurwell, Mark; Petitpas, Glen; Wilner, David J.
2018-05-01
Interferometric observations have demonstrated that a significant fraction of single-dish submillimetre (submm) sources are blends of multiple submm galaxies (SMGs), but the nature of this multiplicity, i.e. whether the galaxies are physically associated or chance projections, has not been determined. We performed spectroscopy of 11 SMGs in six multicomponent submm sources, obtaining spectroscopic redshifts for nine of them. For an additional two component SMGs, we detected continuum emission but no obvious features. We supplement our observed sources with four single-dish submm sources from the literature. This sample allows us to statistically constrain the physical nature of single-dish submm source multiplicity for the first time. In three (3/7, { or} 43^{+39 }_{ -33} {per cent at 95 {per cent} confidence}) of the single-dish sources for which the nature of the blending is unambiguous, the components for which spectroscopic redshifts are available are physically associated, whereas 4/7 (57^{+33 }_{ -39} per cent) have at least one unassociated component. When components whose spectra exhibit continuum but no features and for which the photometric redshift is significantly different from the spectroscopic redshift of the other component are also considered, 6/9 (67^{+26 }_{ -37} per cent) of the single-dish sources are comprised of at least one unassociated component SMG. The nature of the multiplicity of one single-dish source is ambiguous. We conclude that physically associated systems and chance projections both contribute to the multicomponent single-dish submm source population. This result contradicts the conventional wisdom that bright submm sources are solely a result of merger-induced starbursts, as blending of unassociated galaxies is also important.
Mechanical deformation of carbon nanotube nano-rings on flat substrate
NASA Astrophysics Data System (ADS)
Zheng, Meng; Ke, Changhong
2011-04-01
We present a numerical analysis of the mechanical deformation of carbon nanotube (CNT) nano-rings on flat graphite substrates, which is motivated by our recent experimental findings on the elastic deformation of CNT nano-rings. Our analysis considers a perfectly circular CNT ring formed by bending a straight individual or bundled single-walled nanotube to connect its two ends. The seamless CNT ring is placed vertically on a flat graphite substrate and its respective deformation curvatures under zero external force, compressive, and tensile forces are determined using a continuum model based on nonlinear elastica theory. Our results show that the van der Waals interaction between the CNT ring and the substrate has profound effects on the deformation of the CNT ring, and that the interfacial binding interaction between the CNT ring and the substrate is strongly modulated by the ring deformation. Our results demonstrate that the CNT ring in force-free conditions has a flat ring segment in contact with the substrate if the ring radius R ≥√EI/2Wvdw , in which EI is the flexural rigidity of the nanotube and Wvdw is the per-unit-length van der Waals energy between the flat ring segment and the substrate. Our results reveal that the load-deformation profiles of the CNT ring under tensile loadings exhibit bifurcation behavior, which is ascribed to its van der Waals interaction with the substrate and is dependent on its relaxed conformation on the substrate. Our work suggests that CNT nano-rings are promising for a number of applications, such as ultrasensitive force sensors and stretchable and flexible structural components in nanoscale mechanical and electromechanical systems.
2011-12-01
the designed parameterization scheme and adaptive observer. A cylindri- cal battery thermal model in Eq. (1) with parameters of an A123 32157 LiFePO4 ...Morcrette, M. and Delacourt, C. (2010) Thermal modeling of a cylindrical LiFePO4 /graphite lithium-ion battery. Journal of Power Sources. 195, 2961
NASA Astrophysics Data System (ADS)
Kirilova, Matina; Toy, Virginia; Timms, Nicholas; Halfpenny, Angela; Menzies, Catriona; Craw, Dave; Rooney, Jeremy; Giorgetti, Carolina
2017-04-01
Graphite is a material with one of the lowest frictional strengths, with coefficient of friction of 0.1 and thus in natural fault zones it may act as a natural solid lubricant. Graphitization, or the transformation of organic matter (carbonaceous material, or CM) into crystalline graphite, is induced by compositional and structural changes during diagenesis and metamorphism. The supposed irreversible nature of this process has allowed the degree of graphite crystallinity to be calibrated as an indicator of the peak temperatures reached during progressive metamorphism. We examine processes of graphite emplacement and deformation in the Alpine Fault Zone, New Zealand's active continental tectonic plate boundary. Raman spectrometry indicates that graphite in the distal, amphibolite-facies Alpine Schist, which experienced peak metamorphic temperatures up to 640 ◦C, is highly crystalline and occurs mainly along grain boundaries within quartzo-feldspathic domains. The subsequent mylonitisation in the Alpine Fault Zone resulted in progressive reworking of CM under lower temperature conditions (500◦C-600◦C) in a structurally controlled environment, resulting in spatial clustering in lower-strain protomylonites, and further foliation-alignment in higher-strain mylonites. Subsequent brittle deformation of the mylonitised schists resulted in cataclasites that contain over three-fold increase in the abundance of graphite than mylonites. Furthermore, cataclasites contain graphite with two different habits: highly-crystalline, foliated forms that are inherited mylonitic graphite; and lower-crystallinity, less mature patches of finer-grained graphite. The observed graphite enrichment and the occurrence of poorly-organised graphite in the Alpine Fault cataclasites could result from: i) hydrothermal precipitation from carbon-supersaturated fluids; and/or ii) mechanical degradation by structural disordering of mylonitic graphite combined with strain-induced graphite localisation. The lack of published systematic studies of mechanical modification of the structure of graphite inhibits further conclusion to be drawn. Thus, we performed laboratory deformation experiments during which we sheared highly crystalline graphite powder at room temperature, normal stresses of 5 MPa and 25 MPa and sliding velocities of 1 µm/s, 10 µm/s and 100 µm/s. The degree of graphite crystallinity, both in the starting and resulting materials, was analysed by Raman microspectroscopy. Our results demonstrate consistent decrease of graphite crystallinity with increasing shear strain. We conclude that: i) graphite 'thermometers' are unreliable in brittely deformed rocks; ii) a shear strain calibration of graphite 'thermometers' is needed; iii) fault creep is very likely responsible for the observed structural and textural characteristics of graphite in the Alpine Fault cataclasites. Finally, to investigate the possibility of hydrothermal origin for at least some of the graphite in the Alpine Fault cataclasites we will also present synchrotron FTIR and carbon isotope analysis of the Alpine fault rocks.
NASA Astrophysics Data System (ADS)
Nyathi, Mhlwazi S.
2011-12-01
Graphite is utilized as a neutron moderator and structural component in some nuclear reactor designs. During the reactor operaction the structure of graphite is damaged by collision with fast neutrons. Graphite's resistance to this damage determines its lifetime in the reactor. On neutron irradiation, isotropic or near-isotropic graphite experiences less structural damage than anisotropic graphite. The degree of anisotropy in a graphite artifact is dependent on the structure of its precursor coke. Currently, there exist concerns over a short supply of traditional precursor coke, primarily due to a steadily increasing price of petroleum. The main goal of this study was to study the anisotropic and isotropic properties of graphitized co-cokes and anthracites as a way of investigating the possibility of synthesizing isotropic or near-isotropic graphite from co-cokes and anthracites. Demonstrating the ability to form isotropic or near-isotropic graphite would mean that co-cokes and anthracites have a potential use as filler material in the synthesis of nuclear graphite. The approach used to control the co-coke structure was to vary the reaction conditions. Co-cokes were produced by coking 4:1 blends of vacuum resid/coal and decant oil/coal at temperatures of 465 and 500 °C for reaction times of 12 and 18 hours under autogenous pressure. Co-cokes obtained were calcined at 1420 °C and graphitized at 3000 °C for 24 hours. Optical microscopy, X-ray diffraction, temperature-programmed oxidation and Raman spectroscopy were used to characterize the products. It was found that higher reaction temperature (500 °C) or shorter reaction time (12 hours) leads to an increase in co-coke structural disorder and an increase in the amount of mosaic carbon at the expense of textural components that are necessary for the formation of anisotropic structure, namely, domains and flow domains. Characterization of graphitized co-cokes showed that the quality, as expressed by the degree of graphitization and crystallite dimensions, of the final product is dependent on the nature of the precursor co-coke. The methodology for studying anthracites was to select two anthracites on basis of rank, PSOC1515 being semi-anthracite and DECS21 anthracite. The selected anthracites were graphitized, in both native and demineralized states, under the same conditions as co-cokes. Products obtained from DECS21 showed higher degrees of graphitization and larger crystallite dimensions than products obtained from PSOC1515. Demineralization of anthracites served to increase the degree of graphitization, indicating that the minerals contained in these anthracites have no graphitization-enhancing ability. A larger crystallite length for products obtained from native versions, compared to demineralized versions, was attributed to a formation and decomposition of a silicon carbide during graphitization of native versions. In order to examine the anisotropic and isotropic properties, nuclear-grade graphite samples obtained from Oak Ridge National Laboratory (ORNL) and commercial graphite purchased from Fluka were characterized under similar conditions as graphitized co-cokes and anthracites. These samples served as representatives of "two extremes", with ORNL samples being the isotropic end and commercial graphite being the anisotropic end. Through evaluating relationships between structural parameters, it was observed that graphitized co-cokes are situated, structurally, somewhere between the "two extremes", whereas graphitized anthracites are closer to the anisotropic end. Basically, co-cokes have a better potential than anthracites to transform to isotropic or near-isotropic graphite upon graphitization. By co-coking vacuum resid/coal instead of decant oil/coal or using 500 °C instead of 465 °C, a shift away from commercial graphite towards ORNL samples was attained. Graphitizing a semi-anthracite or demineralizing anthracites before graphitization also caused a shift towards ORNL samples.
Echo Mapping of Active Galactic Nuclei
NASA Technical Reports Server (NTRS)
Peterson, B. M.; Horne, K.
2004-01-01
Echo mapping makes use of the intrinsic variability of the continuum source in active galactic nuclei to map out the distribution and kinematics of line-emitting gas from its light travel time-delayed response to continuum changes. Echo mapping experiments have yielded sizes for the broad line-emitting region in about three dozen AGNs. The dynamics of the line-emitting gas seem to be dominated by the gravity of the central black hole, enabling measurement of the black-hole masses in AGNs. We discuss requirements for future echo-mapping experiments that will yield the high quality velocity-delay maps of the broad-line region that are needed to determine its physical nature.
EXPLORATORY DEVELOPMENT OF GRAPHITE MATERIALS.
COMPOSITE MATERIALS), (* GRAPHITE , (*FIBERS, GRAPHITE ), (*LAMINATED PLASTICS, GRAPHITE ), MOLDINGS, EXTRUSION, VACUUM, EPOXY RESINS, FILAMENTS, STRESSES, TENSILE PROPERTIES, OXIDATION, PHYSICAL PROPERTIES.
Connors, B M; Cooper, A B
2014-12-01
Categorization of the status of populations, species, and ecosystems underpins most conservation activities. Status is often based on how a system's current indicator value (e.g., change in abundance) relates to some threshold of conservation concern. Receiver operating characteristic (ROC) curves can be used to quantify the statistical reliability of indicators of conservation status and evaluate trade-offs between correct (true positive) and incorrect (false positive) classifications across a range of decision thresholds. However, ROC curves assume a discrete, binary relationship between an indicator and the conservation status it is meant to track, which is a simplification of the more realistic continuum of conservation status, and may limit the applicability of ROC curves in conservation science. We describe a modified ROC curve that treats conservation status as a continuum rather than a discrete state. We explored the influence of this continuum and typical sources of variation in abundance that can lead to classification errors (i.e., random variation and measurement error) on the true and false positive rates corresponding to varying decision thresholds and the reliability of change in abundance as an indicator of conservation status, respectively. We applied our modified ROC approach to an indicator of endangerment in Pacific salmon (Oncorhynchus nerka) (i.e., percent decline in geometric mean abundance) and an indicator of marine ecosystem structure and function (i.e., detritivore biomass). Failure to treat conservation status as a continuum when choosing thresholds for indicators resulted in the misidentification of trade-offs between true and false positive rates and the overestimation of an indicator's reliability. We argue for treating conservation status as a continuum when ROC curves are used to evaluate decision thresholds in indicators for the assessment of conservation status. © 2014 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Jin, Wang; Penington, Catherine J.; McCue, Scott W.; Simpson, Matthew J.
2016-10-01
Two-dimensional collective cell migration assays are used to study cancer and tissue repair. These assays involve combined cell migration and cell proliferation processes, both of which are modulated by cell-to-cell crowding. Previous discrete models of collective cell migration assays involve a nearest-neighbour proliferation mechanism where crowding effects are incorporated by aborting potential proliferation events if the randomly chosen target site is occupied. There are two limitations of this traditional approach: (i) it seems unreasonable to abort a potential proliferation event based on the occupancy of a single, randomly chosen target site; and, (ii) the continuum limit description of this mechanism leads to the standard logistic growth function, but some experimental evidence suggests that cells do not always proliferate logistically. Motivated by these observations, we introduce a generalised proliferation mechanism which allows non-nearest neighbour proliferation events to take place over a template of r≥slant 1 concentric rings of lattice sites. Further, the decision to abort potential proliferation events is made using a crowding function, f(C), which accounts for the density of agents within a group of sites rather than dealing with the occupancy of a single randomly chosen site. Analysing the continuum limit description of the stochastic model shows that the standard logistic source term, λ C(1-C), where λ is the proliferation rate, is generalised to a universal growth function, λ C f(C). Comparing the solution of the continuum description with averaged simulation data indicates that the continuum model performs well for many choices of f(C) and r. For nonlinear f(C), the quality of the continuum-discrete match increases with r.
Jin, Wang; Penington, Catherine J; McCue, Scott W; Simpson, Matthew J
2016-10-07
Two-dimensional collective cell migration assays are used to study cancer and tissue repair. These assays involve combined cell migration and cell proliferation processes, both of which are modulated by cell-to-cell crowding. Previous discrete models of collective cell migration assays involve a nearest-neighbour proliferation mechanism where crowding effects are incorporated by aborting potential proliferation events if the randomly chosen target site is occupied. There are two limitations of this traditional approach: (i) it seems unreasonable to abort a potential proliferation event based on the occupancy of a single, randomly chosen target site; and, (ii) the continuum limit description of this mechanism leads to the standard logistic growth function, but some experimental evidence suggests that cells do not always proliferate logistically. Motivated by these observations, we introduce a generalised proliferation mechanism which allows non-nearest neighbour proliferation events to take place over a template of [Formula: see text] concentric rings of lattice sites. Further, the decision to abort potential proliferation events is made using a crowding function, f(C), which accounts for the density of agents within a group of sites rather than dealing with the occupancy of a single randomly chosen site. Analysing the continuum limit description of the stochastic model shows that the standard logistic source term, [Formula: see text], where λ is the proliferation rate, is generalised to a universal growth function, [Formula: see text]. Comparing the solution of the continuum description with averaged simulation data indicates that the continuum model performs well for many choices of f(C) and r. For nonlinear f(C), the quality of the continuum-discrete match increases with r.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, J.X.; Wei, B.Q.; Li, D.D.
The evolution of microstructure in bainite during graphitization annealing at 680 °C of Jominy-quenched bars of an Al-Si bearing medium carbon (0.4C wt%) steel has been studied and compared with that in martensite by using light, scanning and transmission electron microscopy. The results show that the graphitization process in bainite is different from that in martensite in many aspects such as the initial carbon state, the behavior of cementite, the nucleation-growth feature and kinetics of formation of graphite spheroids during graphitization annealing, and the shape, size and distribution of these graphite spheroids. The fact that the graphitization in bainite canmore » produce more homogeneous graphite spheroids with more spherical shape and finer size in a shorter annealing time without the help of preexisting coring particles implies that bainite should be a better starting structure than martensite for making graphitic steel. - Highlights: • This article presents a microstructural characterization of formation of graphite spheroids in bainite. • Nucleation and growth characteristics of graphite spheroids formed in bainite and martensite are compared. • Bainite should be a better starting structure for making graphitic steel as results show.« less
40 CFR 436.380 - Applicability; description of the graphite subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... graphite subcategory. 436.380 Section 436.380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Graphite Subcategory § 436.380 Applicability; description of the graphite subcategory. The provisions of this subpart are applicable to the mining and processing of naturally occurring graphite. ...
The Compact, ˜1 kpc Host Galaxy of a Quasar at a Redshift of 7.1
NASA Astrophysics Data System (ADS)
Venemans, Bram P.; Walter, Fabian; Decarli, Roberto; Bañados, Eduardo; Hodge, Jacqueline; Hewett, Paul; McMahon, Richard G.; Mortlock, Daniel J.; Simpson, Chris
2017-03-01
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the [C II] fine-structure line and the underlying far-infrared (FIR) dust continuum emission in J1120+0641, the most distant quasar currently known (z=7.1). We also present observations targeting the CO(2-1), CO(7-6), and [C I] 369 μm lines in the same source obtained at the Very Large Array and Plateau de Bure Interferometer. We find a [C II] line flux of {F}[{{C}{{II}}]}=1.11+/- 0.10 Jy {km} {{{s}}}-1 and a continuum flux density of {S}227{GHz}=0.53+/- 0.04 mJy beam-1, consistent with previous unresolved measurements. No other source is detected in continuum or [C II] emission in the field covered by ALMA (˜ 25″). At the resolution of our ALMA observations (0.″23, or 1.2 kpc, a factor of ˜70 smaller beam area compared to previous measurements), we find that the majority of the emission is very compact: a high fraction (˜80%) of the total line and continuum flux is associated with a region 1-1.5 kpc in diameter. The remaining ˜20% of the emission is distributed over a larger area with radius ≲4 kpc. The [C II] emission does not exhibit ordered motion on kiloparsec scales: applying the virial theorem yields an upper limit on the dynamical mass of the host galaxy of (4.3+/- 0.9)× {10}10 {M}⊙ , only ˜20 × higher than the central black hole (BH). The other targeted lines (CO(2-1), CO(7-6), and [C I]) are not detected, but the limits of the line ratios with respect to the [C II] emission imply that the heating in the quasar host is dominated by star formation, and not by the accreting BH. The star formation rate (SFR) implied by the FIR continuum is 105-340 {M}⊙ {{yr}}-1, with a resulting SFR surface density of ˜100-350 {M}⊙ {{yr}}-1 kpc-2, well below the value for Eddington-accretion-limited star formation.
Method for producing thin graphite flakes with large aspect ratios
Bunnell, L. Roy
1993-01-01
A method for making graphite flakes of high aspect ratio by the steps of providing a strong concentrated acid and heating the graphite in the presence of the acid for a time and at a temperature effective to intercalate the acid in the graphite; heating the intercalated graphite at a rate and to a temperature effective to exfoliate the graphite in discrete layers; subjecting the graphite layers to ultrasonic energy, mechanical shear forces, or freezing in an amount effective to separate the layes into discrete flakes.
Fabrication of Iron-Containing Carbon Materials From Graphite Fluoride
NASA Technical Reports Server (NTRS)
Hung, Ching-cheh
1996-01-01
Carbon materials containing iron alloy, iron metal, iron oxide or iron halide were fabricated. Typical samples of these metals were estimated to contain 1 iron atom per 3.5 to 5 carbon atoms. Those carbon materials containing iron alloy, iron metal, and/or Fe3O4 were magnetic. The kinetics of the fabrication process were studied by exposing graphite fluoride (CF(0.68)) to FeCl3 over a 280 to 420 C temperature range. Between 280 and 295 C, FeCl3 quickly entered the structure of CF(0.68), broke the carbon-fluorine bonds, and within 10 to 30 min, completely converted it to carbon made up of graphite planes between which particles of crystalline FeF3 and noncrystalline FeCl3 were located. Longer reaction times (e.g., 28 hr) or higher reaction temperatures (e.g., 420 C) produced materials containing graphite, a FeCl3-graphite intercalation compound, FeCl2(center dot)4H2O, and FeCl2(center dot)2H2O. These products were further heat treated to produce iron-containing carbon materials. When the heating temperature was kept in the 750 to 850 C range, and the oxygen supply was kept at the optimum level, the iron halides in the carbon structure were converted to iron oxides. Raising the heat to temperatures higher than 900 C reduced such iron oxides to iron metal. The kinetics of these reactions were used to suggest processes for fabricating carbon materials containing iron alloy. Such processes were then tested experimentally. In one of the successful trial runs, commercially purchased CF(0.7) powder was used as the reactant, and NiO was added during the final heating to 1200 C as a source of both nickel and oxygen. The product thus obtained was magnetic and was confirmed to be a nickel-iron alloy in carbon.
Gap Size Uncertainty Quantification in Advanced Gas Reactor TRISO Fuel Irradiation Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Binh T.; Einerson, Jeffrey J.; Hawkes, Grant L.
The Advanced Gas Reactor (AGR)-3/4 experiment is the combination of the third and fourth tests conducted within the tristructural isotropic fuel development and qualification research program. The AGR-3/4 test consists of twelve independent capsules containing a fuel stack in the center surrounded by three graphite cylinders and shrouded by a stainless steel shell. This capsule design enables temperature control of both the fuel and the graphite rings by varying the neon/helium gas mixture flowing through the four resulting gaps. Knowledge of fuel and graphite temperatures is crucial for establishing the functional relationship between fission product release and irradiation thermal conditions.more » These temperatures are predicted for each capsule using the commercial finite-element heat transfer code ABAQUS. Uncertainty quantification reveals that the gap size uncertainties are among the dominant factors contributing to predicted temperature uncertainty due to high input sensitivity and uncertainty. Gap size uncertainty originates from the fact that all gap sizes vary with time due to dimensional changes of the fuel compacts and three graphite rings caused by extended exposure to high temperatures and fast neutron irradiation. Gap sizes are estimated using as-fabricated dimensional measurements at the start of irradiation and post irradiation examination dimensional measurements at the end of irradiation. Uncertainties in these measurements provide a basis for quantifying gap size uncertainty. However, lack of gap size measurements during irradiation and lack of knowledge about the dimension change rates lead to gap size modeling assumptions, which could increase gap size uncertainty. In addition, the dimensional measurements are performed at room temperature, and must be corrected to account for thermal expansion of the materials at high irradiation temperatures. Uncertainty in the thermal expansion coefficients for the graphite materials used in the AGR-3/4 capsules also increases gap size uncertainty. This study focuses on analysis of modeling assumptions and uncertainty sources to evaluate their impacts on the gap size uncertainty.« less
Pinto, M; Pimpinella, M; Quini, M; D'Arienzo, M; Astefanoaei, I; Loreti, S; Guerra, A S
2016-02-21
The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm(-2), and at a dose rate of about 0.15 Gy min(-1), results of calorimetric measurements of absorbed dose to water, D(w), were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D(w) and D(wK) were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D(w) uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D(w), it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.
Plasma instability control toward high fluence, high energy x-ray continuum source
NASA Astrophysics Data System (ADS)
Poole, Patrick; Kirkwood, Robert; Wilks, Scott; Blue, Brent
2017-10-01
X-ray source development at Omega and NIF seeks to produce powerful radiation with high conversion efficiency for material effects studies in extreme fluence environments. While current K-shell emission sources can achieve tens of kJ on NIF up to 22 keV, the conversion efficiency drops rapidly for higher Z K-alpha energies. Pulsed power devices are efficient generators of MeV bremsstrahlung x-rays but are unable to produce lower energy photons in isolation, and so a capability gap exists for high fluence x-rays in the 30 - 100 keV range. A continuum source under development utilizes instabilities like Stimulated Raman Scattering (SRS) to generate plasma waves that accelerate electrons into high-Z converter walls. Optimizing instabilities using existing knowledge on their elimination will allow sufficiently hot and high yield electron distributions to create a superior bremsstrahlung x-ray source. An Omega experiment has been performed to investigate the optimization of SRS and high energy x-rays using Au hohlraums with parylene inner lining and foam fills, producing 10× greater x-ray yield at 50 keV than conventional direct drive experiments on the facility. Experiment and simulation details on this campaign will be presented. This work was performed under the auspices of the US DoE by LLNL under Contract No. DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Hales, Christopher A.; Chiles Con Pol Collaboration
2014-04-01
We recently started a 1000 hour campaign to observe 0.2 square degrees of the COSMOS field in full polarization continuum at 1.4 GHz with the Jansky VLA, as part of a joint program with the spectral line COSMOS HI Large Extragalactic Survey (CHILES). When complete, we expect our CHILES Continuum Polarization (CHILES Con Pol) survey to reach an unprecedented SKA-era sensitivity of 0.7 uJy per 4 arcsecond FWHM beam. Here we present the key goals of CHILES Con Pol, which are to (i) produce a source catalog of legacy value to the astronomical community, (ii) measure differential source counts in total intensity, linear polarization, and circular polarization in order to constrain the redshift and luminosity distributions of source populations, (iii) perform a novel weak lensing study using radio polarization as an indicator of intrinsic alignment to better study dark energy and dark matter, and (iv) probe the unknown origin of cosmic magnetism by measuring the strength and structure of intergalactic magnetic fields in the filaments of large scale structure. The CHILES Con Pol source catalog will be a useful resource for upcoming wide-field surveys by acting as a training set for machine learning algorithms, which can then be used to identify and classify radio sources in regions lacking deep multiwavelength coverage.
Jo, Yong Nam; Park, Min-Sik; Kim, Jae-Hun; Kim, Young-Jun
2013-05-01
Two different types of granulated graphites were synthesized by blending and kneading of natural graphite with pitch followed by sintering methods. The electrochemical performances of granulated graphites were investigated as anode materials for use in Li-ion batteries. The blending type granulated graphite possesses a large amount of cavities and voids, while the kneading type granulated graphite has a relatively compact microstructure, which is responsible for a high tap density. Both granulated graphites show improved the initial coulombic efficiencies as a result of decrease of surface area by the granulations. In particular, the kneading type granulated graphite exhibits an excellent rate-capability without significant capacity loss. In addition, the thermal stabilities of both granulated graphites were also improved, which could be attributed to the decrease of active surface area due to pitch coating.
NASA Astrophysics Data System (ADS)
Druett, M. K.; Zharkova, V. V.
2018-03-01
Aim. Sharp rises of hard X-ray (HXR) emission accompanied by Hα line profiles with strong red-shifts up to 4 Å from the central wavelength, often observed at the onset of flares with the Specola Solare Ticinese Telescope (STT) and the Swedish Solar Telescope (SST), are not fully explained by existing radiative models. Moreover, observations of white light (WL) and Balmer continuum emission with the Interface Region Imaging Spectrograph (IRISH) reveal strong co-temporal enhancements and are often nearly co-spatial with HXR emission. These effects indicate a fast effective source of excitation and ionisation of hydrogen atoms in flaring atmospheres associated with HXR emission. In this paper, we investigate electron beams as the agents accounting for the observed hydrogen line and continuum emission. Methods: Flaring atmospheres are considered to be produced by a 1D hydrodynamic response to the injection of an electron beam defining their kinetic temperatures, densities, and macro velocities. We simulated a radiative response in these atmospheres using a fully non-local thermodynamic equilibrium (NLTE) approach for a 5-level plus continuum hydrogen atom model, considering its excitation and ionisation by spontaneous, external, and internal diffusive radiation and by inelastic collisions with thermal and beam electrons. Simultaneous steady-state and integral radiative transfer equations in all optically thick transitions (Lyman and Balmer series) were solved iteratively for all the transitions to define their source functions with the relative accuracy of 10-5. The solutions of the radiative transfer equations were found using the L2 approximation. Resulting intensities of hydrogen line and continuum emission were also calculated for Balmer and Paschen series. Results: We find that inelastic collisions with beam electrons strongly increase excitation and ionisation of hydrogen atoms from the chromosphere to photosphere. This leads to an increase in Lyman continuum radiation, which has high optical thickness, and after the beam is off it governs hydrogen ionisation and leads to the long lasting orders of magnitude enhancement of emission in Balmer and Paschen continua. The ratio of Balmer-to-other-continuum head intensities are found to be correlated with the initial flux of the beam. The height distribution of contribution functions for Paschen continuum emission indicate a close correlation with the observations of heights of WL and HXR emission reported for limb flares. This process also leads to a strong increase of wing emission (Stark's wings) in Balmer and Paschen lines, which is superimposed on large red-shifted enhancements of Hα-Hγ line emission resulting from a downward motion by hydrodynamic shocks. The simulated line profiles are shown to fit closely the observations for various flaring events.
Effect of Reacting Surface Density on the Overall Graphite Oxidation Rate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang H. Oh; Eung Kim; Jong Lim
2009-05-01
Graphite oxidation in an air-ingress accident is presently a very important issue for the reactor safety of the very high temperature gas cooled-reactor (VHTR), the concept of the next generation nuclear plant (NGNP) because of its potential problems such as mechanical degradation of the supporting graphite in the lower plenum of the VHTR might lead to core collapse if the countermeasure is taken carefully. The oxidation process of graphite has known to be affected by various factors, including temperature, pressure, oxygen concentration, types of graphite, graphite shape and size, flow distribution, etc. However, our recent study reveals that the internalmore » pore characteristics play very important roles in the overall graphite oxidation rate. One of the main issues regarding graphite oxidation is the potential core collapse problem that may occur following the degradation of graphite mechanical strength. In analyzing this phenomenon, it is very important to understand the relationship between the degree of oxidization and strength degradation. In addition, the change of oxidation rate by graphite oxidation degree characterization by burn-off (ratio of the oxidized graphite density to the original density) should be quantified because graphite strength degradation is followed by graphite density decrease, which highly affects oxidation rates and patterns. Because the density change is proportional to the internal pore surface area, they should be quantified in advance. In order to understand the above issues, the following experiments were performed: (1)Experiment on the fracture of the oxidized graphite and validation of the previous correlations, (2) Experiment on the change of oxidation rate using graphite density and data collection, (3) Measure the BET surface area of the graphite. The experiments were performed using H451 (Great Lakes Carbon Corporation) and IG-110 (Toyo Tanso Co., Ltd) graphite. The reason for the use of those graphite materials is because their chemical and mechanical characteristics are well identified by the previous investigations, and therefore it was convenient for us to access the published data, and to apply and validate our new methodologies. This paper presents preliminary results of compressive strength vs. burn-off and surface area density vs. burn-off, which can be used for the nuclear graphite selection for the NGNP.« less
ERIC Educational Resources Information Center
McCulloch, Sharon
2013-01-01
Existing studies of source use in academic student writing tend to i), focus more on the writing than the reading end of the reading-to-write continuum and ii), involve the use of insufficiently "naturalistic" writing tasks. Thus, in order to explore the potential of an alternative approach, this paper describes an exploratory case study…
NASA Technical Reports Server (NTRS)
Robinson-Saba, J. L.
1983-01-01
Observations of the binary X-ray source Circinus X-1 provide samples of a range of spectral and temporal behavior whose variety is thought to reflect a broad continuum of accretion conditions in an eccentric binary system. The data support an identification of three or more X-ray spectral components, probably associated with distinct emission regions.
NASA Technical Reports Server (NTRS)
Siegel, Peter H.; Ward, John; Maiwald, Frank; Mehdi, Imran
2007-01-01
Terahertz is the primary frequency for line and continuum radiation from cool (5-100K) gas (atoms and molecules) and dust. This viewgraph presentation reviews the reasons for the interest in Terahertz Space Applications; the Terahertz Space Missions: in the past, present and planned for the future, Terahertz source requirements and examples of some JPL instruments; and a case study for a flight deliverable: THz Local Oscillators for ESA s Herschel Space Telescope
NASA Technical Reports Server (NTRS)
Rivers, Elizabeth; Markowitz, Alex; Pottschmidt, Katja; Roth, Stefanie; Barragan, Laura; Furst, Felix; Suchy, Slawomir; Kreykenbohm, Ingo; Wilms, Jorn; Rothschild, Richard
2009-01-01
We present results from two observations of the wind-accreting X-ray pulsar 4U 1907+09 using the Suzaku observatory, The broadband time-averaged spectrum allows us to examine the continuum emission of the source and the cyclotron resonance scattering feature at approx. 19 keV. Additionally, using the narrow CCD response of Suzaku near 6 ke V allows us to study in detail the Fe K bandpass and to quantify the Fe Kp line for this source for the first time. The source is absorbed by fully-covering material along the line of sight with a column density of N(sub H) approx. 2 x 10(exp 22)/sq cm, consistent with a wind accreting geometry, and a high Fe abundance (approx. 3 - 4 x solar). Time and phase-resolved analyses allow us to study variations in the source spectrum. In particular, dips found in the 2006 observation which are consistent with earlier observations occur in the hard X-ray bandpass, implying a variation of the whole continuum rather than occultation by intervening material, while a dip near the end of the 2007 observation occurs mainly in the lower energies implying an increase in NH along the line of sight, perhaps indicating clumpiness in the stellar wind
Ryu, Sunmin; Brus, Louis E.; Steigerwald, Michael L.; Liu, Haitao
2012-09-25
Systems and methods are disclosed herein for forming defects on graphitic materials. The methods for forming defects include applying a radiation reactive material on a graphitic material, irradiating the applied radiation reactive material to produce a reactive species, and permitting the reactive species to react with the graphitic material to form defects. Additionally, disclosed are methods for removing defects on graphitic materials.
Capacitance‐Assisted Sustainable Electrochemical Carbon Dioxide Mineralisation
Lamb, Katie J.; Dowsett, Mark R.; Chatzipanagis, Konstantinos; Scullion, Zhan Wei; Kröger, Roland; Lee, James D.
2017-01-01
Abstract An electrochemical cell comprising a novel dual‐component graphite and Earth‐crust abundant metal anode, a hydrogen producing cathode and an aqueous sodium chloride electrolyte was constructed and used for carbon dioxide mineralisation. Under an atmosphere of 5 % carbon dioxide in nitrogen, the cell exhibited both capacitive and oxidative electrochemistry at the anode. The graphite acted as a supercapacitive reagent concentrator, pumping carbon dioxide into aqueous solution as hydrogen carbonate. Simultaneous oxidation of the anodic metal generated cations, which reacted with the hydrogen carbonate to give mineralised carbon dioxide. Whilst conventional electrochemical carbon dioxide reduction requires hydrogen, this cell generates hydrogen at the cathode. Carbon capture can be achieved in a highly sustainable manner using scrap metal within the anode, seawater as the electrolyte, an industrially relevant gas stream and a solar panel as an effective zero‐carbon energy source. PMID:29171724
Frequency Response of an Aircraft Wing with Discrete Source Damage Using Equivalent Plate Analysis
NASA Technical Reports Server (NTRS)
Krishnamurthy, T.; Eldred, Lloyd B.
2007-01-01
An equivalent plate procedure is developed to provide a computationally efficient means of matching the stiffness and frequencies of flight vehicle wing structures for prescribed loading conditions. Several new approaches are proposed and studied to match the stiffness and first five natural frequencies of the two reference models with and without damage. One approach divides the candidate reference plate into multiple zones in which stiffness and mass can be varied using a variety of materials including aluminum, graphite-epoxy, and foam-core graphite-epoxy sandwiches. Another approach places point masses along the edge of the stiffness-matched plate to tune the natural frequencies. Both approaches are successful at matching the stiffness and natural frequencies of the reference plates and provide useful insight into determination of crucial features in equivalent plate models of aircraft wing structures.
Particle production of a graphite target system for the intensity frontier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, X.; Kirk, H.; McDonald, K. T.
2015-05-03
A solid graphite target system is considered for an intense muon and/or neutrino source in support of physics at the intensity frontier. We previously optimized the geometric parameters of the beam and target to maximize particle production at low energies by incoming protons with kinetic energy of 6.75 GeV and an rms geometric emittance of 5 mm-mrad using the MARS15(2014) code. In this study, we ran MARS15 with ROOT-based geometry and also considered a mercury-jet target as an upgrade option. The optimization was extended to focused proton beams with transverse emittances from 5 to 50 mm-mrad, showing that the particlemore » production decreases slowly with increasing emittance. We also studied beam-dump configurations to suppress the rate of undesirable high-energy secondary particles in the beam.« less
Computational Approaches and Tools for Exposure Prioritization and Biomonitoring Data Interpretation
The ability to describe the source-environment-exposure-dose-response continuum is essential for identifying exposures of greater concern to prioritize chemicals for toxicity testing or risk assessment, as well as for interpreting biomarker data for better assessment of exposure ...
48 CFR 15.101 - Best value continuum.
Code of Federal Regulations, 2011 CFR
2011-10-01
....101 Section 15.101 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Source Selection Processes and Techniques 15.101... cost or price may vary. For example, in acquisitions where the requirement is clearly definable and the...
Sun, Li; Tian, Chungui; Fu, Yu; Yang, Ying; Yin, Jie; Wang, Lei; Fu, Honggang
2014-01-07
An advanced supercapacitor material based on nitrogen-doped porous graphitic carbon (NPGC) with high a surface area was synthesized by means of a simple coordination-pyrolysis combination process, in which tetraethyl orthosilicate (TEOS), nickel nitrate, and glucose were adopted as porogent, graphitic catalyst precursor, and carbon source, respectively. In addition, melamine was selected as a nitrogen source owing to its nitrogen-enriched structure and the strong interaction between the amine groups and the glucose unit. A low-temperature treatment resulted in the formation of a NPGC precursor by combination of the catalytic precursor, hydrolyzed TEOS, and the melamine-glucose unit. Following pyrolysis and removal of the catalyst and porogent, the NPGC material showed excellent electrical conductivity owing to its high crystallinity, a large Brunauer-Emmett-Teller surface area (SBET =1027 m(2) g(-1) ), and a high nitrogen level (7.72 wt %). The unusual microstructure of NPGC materials could provide electrochemical energy storage. The NPGC material, without the need for any conductive additives, showed excellent capacitive behavior (293 F g(-1) at 1 A g(-1) ), long-term cycling stability, and high coulombic efficiency (>99.9 % over 5000 cycles) in KOH when used as an electrode. Notably, in a two-electrode symmetric supercapacitor, NPGC energy densities as high as 8.1 and 47.5 Wh kg(-1) , at a high power density (10.5 kW kg(-1) ), were achieved in 6 M KOH and 1 M Et4 NBF4 -PC electrolytes, respectively. Thus, the synthesized NPGC material could be a highly promising electrode material for advanced supercapacitors and other conversion devices. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quantification of Chemical Erosion in the DIII-D Divertor
NASA Astrophysics Data System (ADS)
McLean, Adam
2009-11-01
Chemical erosion (CE) yield at the graphite divertor target in DIII-D was measured to be substantially lower in cold near-detached plasma conditions compared to well-attached ones, with major implications for ITER. Current estimates of tritium retention by co-deposition with hydrocarbons (HCs) in ITER place potentially severe restrictions on operation. However, calculations done to date have been based on excessively conservative assumptions, due to limited understanding of cold divertor plasmas (1-5eV) which bridge energy thresholds for complex atomic and molecular processes not present in attached conditions. Hydrocarbon injection through a unique porous graphite plate which realistically simulates secondary reactions of HCs with a graphite surface has been used to measure CE in-situ. For the first time in a divertor, measurements were made at extrinsic CH4 injection rates comparable to the expected intrinsic CE rate of C, with the resulting spectroscopic emissions separated from those of the intrinsic sources. Under cold plasma conditions the contribution of CE-produced C relative to total C sources in the divertor declined dramatically from ˜50% to <15%. Photon efficiencies for products from the breakup of injected CH4 were greater than previous measurements at higher puff rates, indicating the importance of minimizing perturbation to the local plasma. At 350K, the measured CE yield near the outer strike point was ˜2.6% in attachment dropping to only ˜0.5% in cold plasma; results are consistent with some theoretical predications and lab studies. Under full detachment, near total extinction of the CD band occurred, consistent with suppression of net C erosion. These findings have potentially major impact on projected target lifetime and tritium retention in future reactors, and for the PFC choice in ITER.
NASA Technical Reports Server (NTRS)
Martin, Audrey M.; Righter, Kevin
2010-01-01
Carbon is present in various forms in the Earth s upper mantle (carbonate- or diamond-bearing mantle xenoliths, carbonatite magmas, CO2 emissions from volcanoes...). Moreover, there is enough carbon in chondritic material to stabilize carbonates into the mantles of Mars or Venus as well as in the Earth. However, the interactions with iron have to be constrained, because Fe is commonly thought to buffer oxygen fugacity into planetary mantles. [1] and [2] show evidences of the stability of clinopyroxene Ca(Mg,Fe)Si2O6 + magnesite (Mg,Fe)CO3 in the Earth s mantle around 6GPa (about 180km). The stability of oxidized forms of carbon (like magnesite) depends on the oxygen fugacity of the system. In the Earth s mantle, the maximum carbon content is 10000 ppm [3]. The fO2 parameter varies vertically as a function of pressure, but also laterally because of geodynamic processes like subduction. Thus, carbonates, graphite, diamond, C-rich gases and melts are all stable forms of carbon in the Earth s mantle. [4] show that the fO2 variations observed in SNC meteorites can be explained by polybaric graphite-CO-CO2 equilibria in the Martian mantle. [5] inferred from thermodynamic calculations that the stable form of carbon in the source regions of the Martian basalts should be graphite (and/or diamond). After [6], a metasomatizing agent like a CO2-rich melt may infiltrate the mantle source of nakhlites. However, according to [7] and [8], the FeO wt% value in the Martian bulk mantle is more than twice that of the Earth s mantle (KLB-1 composition by [9]). As iron and carbon are two elements with various oxidation states, Fe/C interaction mechanisms must be considered.
Sun, Li; Fu, Yu; Tian, Chungui; Yang, Ying; Wang, Lei; Yin, Jie; Ma, Jing; Wang, Ruihong; Fu, Honggang
2014-06-01
Separated boron and nitrogen porous graphitic carbon (BNGC) is fabricated by a facile hydrothermal coordination/ZnCl2-activation process from renewable and inexpensive nitrogen-containing chitosan. In this synthetic pathway, chitosan, which has a high nitrogen content, first coordinates with Fe(3+) ions to form chitosan-Fe that subsequently reacts with boric acid (boron source) to generate the BNGC precursor. After simultaneous carbonization and ZnCl2 activation followed by removal of the Fe catalyst, BNGC, containing isolated boron and nitrogen centers and having a high surface area of 1567 m(2) g(-1) and good conductivity, can be obtained. Results indicate that use of chitosan as a nitrogen-containing carbon source effectively prevents nitrogen atoms from direct combination with boron atoms. In addition, the incorporation of Fe(3+) ions not only endows BNGC with high graphitization, but also favors for nitrogen fixation. Remarkably, the unique microstructure of BNGC enables its use as an advanced electrode material for energy storage. As electrode material for supercapacitors, BNGC shows a high capacitance of 313 F g(-1) at 1 A g(-1), and also long-term durability and coulombic efficiency of >99.5 % after 5000 cycles. Notably, in organic electrolytes, the energy density could be up to 50.1 Wh kg(-1) at a power density of 10.5 kW kg(-1). The strategy developed herein opens a new avenue to prepare BNGC without inactive BN bonds from commercially available chitosan for high-performance supercapacitors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yu, Yiseul; Jung, Hyeon Jin; Je, Mingyu; Choi, Hyun Chul; Choi, Myong Yong
2016-07-01
In this work, the zero valent Fe (ZVI) and graphite-encapsulated Fe (Fe@C) nanoparticles (NPs) were easily and selectively prepared by a pulsed laser ablation (PLA) method in an aqueous sodium borohydride solution and ascorbic acid dissolved in methanol, respectively. Here, the Fe@C NPs were uniquely synthesized by PLA in methanol, where the solvent is used as both a carbon source for the graphitic layers and solvent, which is very unique. Furthermore, Pd NPs were loaded onto the surface of the Fe@C NPs to prepare bimetallic (Fe@C/Pd) NPs for the enhancement of the degradation efficiency of m-dichlorobenzene (m-DCB). The morphology, crystallinity, and surface composition of the prepared NPs were carefully characterized by high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray spectrometer (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The degradation rate of m-DCB using single (Fe and Pd) or bimetallic (Fe/Pd and Fe@C/Pd) NPs were compared by using gas chromatography. Among these NPs produced in this work, the Fe@C/Pd NPs with 1.71 wt % of Pd showed an excellent dechlorination efficiency for m-DCB with 100% degradation within 75 min. The graphitic layer on the Fe NPs played as not only an oxidation resistant for the Fe NPs to surroundings, but also a supporter of the Pd NPs for the enhanced degradation efficiency of m-DCB. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chattopadhyay, Jayanta
The effective utilization of carbon nanomaterials, such as single-walled carbon nanotubes (SWNTs) and graphite, has been hindered due to difficulties (poor solubility, poly-dispersity) in processing. Therefore, a high degree of sidewall functionalization, either covalent or non-covalent, is often required to overcome these difficulties as the functionalized nanomaterials exhibit better solubility (either in organic solvents or in water), dispersity, manipulation, and processibility. This thesis presents a series of convenient and efficient organic synthetic routes to functionalize carbon nanomaterials. Carbon nanotube salts, prepared by treating SWNTs with lithium in liquid ammonia, react readily with aryl halides to yield aryl-functionalized SWNTs. These arylated SWNTs are soluble in methanol and water upon treatment with oleum. Similarly, SWNTs can be covalently functionalized by different heteroatoms (nitrogen, oxygen, and sulfur). Using the reductive alkylation approach, a synthetic scheme is designed to prepare long chain carboxylic acid functionalized SWNTs [SWNTs-(RCOOH)] that can react with (1) amine-terminated polyethylene glycol (PEG) chains to yield water-soluble biocompatible PEGylated SWNTs that are likely to be useful in a variety of biomedical applications; (2) polyethyleneimine (PEI) to prepare a SWNTs-PEI based adsorbent material that shows a four-fold improvement in the adsorption capacity of carbon dioxide over commonly used materials, making it useful for regenerable carbon dioxide removal in spaceflight; (3) chemically modified SWNTs-(RCOOH) to permit covalent bonding to the nylon matrix, thus allowing the formation of nylon 6,10 and nylon 6,10/SWNTs-(RCOOH) nanocomposites. Furthermore, we find that the lithium salts of carbon nanotubes serve as a source of electrons to induce polymerization of simple alkenes and alkynes onto the surface of carbon nanotubes. In the presence of sulfide/disulfide bonds, SWNT salts can initiate the single electron transfer (SET) mechanism to functionalize carbon nanotubes with different alkyl/aryl groups. Using the reductive alkylation approach, we can also functionalize graphites by alkyl/carboxylic acid groups, making graphite soluble in organic solvents and water. Tailoring of graphite layers is also accomplished by using different metals in liquid ammonia. Finally, SWNT-epoxides/graphite epoxides are synthesized using m-CPBA. Quantification of the epoxide substituents on the nanotube/graphite surface is evaluated through the catalytic de-epoxidation reaction using MeReO 3/PPh3 as heterogeneous catalyst. In summary, the proposed covalent functionalization methods yield derivatized nanomaterials that can provide a solid platform for a number of exciting applications, ranging from material science to biomedical devices. Furthermore, the results presented in this thesis provide insight into the molecular chemistry at nano-resolution.
Comet Impacts as a Source of Methane on Titan
NASA Astrophysics Data System (ADS)
Howard, Michael; Goldman, N.; Vitello, P. A.
2006-12-01
We model comet impacts on Titan as a possible source of atmospheric methane. That is, we study the formation of methane in comet impacts using chemical equilibrium calculations coupled with arbitrary Lagrange-Eulerian (ALE) hydrodynamics. That is, we study the chemical transformation of comet material under high pressure and temperature conditions as it impacts Titan. We assume that the comet is composed of ice, graphite, nitrogen and some hydrocarbons. For certain pressure and temperature regimes, in chemical equilibrium, a significant amount of ice and graphite can be transformed into methane. As a result, we find that a significant amount of methane can be formed in comet collisions on Titan. The methane is formed in the post-impact vapor clouds that form as the comet material expands and cools. We use molecular dynamics to construct an equation of state for the ice surface structures and the comet material. We also study kinetic processes for methane formation during the expansion and cooling phase. We discuss the implication of our results for comets as a possible source of abiotic methane on Titan and its implications on the origin of life. We also discuss the various uncertainties in our model. * This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
Thermal Analysis of Step 2 GPHS for Next Generation Radioisotope Power Source Missions
NASA Astrophysics Data System (ADS)
Pantano, David R.; Hill, Dennis H.
2005-02-01
The Step 2 General Purpose Heat Source (GPHS) is a slightly larger and more robust version of the heritage GPHS modules flown on previous Radioisotope Thermoelectric Generator (RTG) missions like Galileo, Ulysses, and Cassini. The Step 2 GPHS is to be used in future small radioisotope power sources, such as the Stirling Radioisotope Generator (SRG110) and the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). New features include an additional central web of Fine Weave Pierced Fabric (FWPF) graphite in the aeroshell between the two Graphite Impact Shells (GIS) to improve accidental reentry and impact survivability and an additional 0.1-inch of thickness to the aeroshell broad faces to improve ablation protection. This paper details the creation of the thermal model using Thermal Desktop and AutoCAD interfaces and provides comparisons of the model to results of previous thermal analysis models of the heritage GPHS. The results of the analysis show an anticipated decrease in total thermal gradient from the aeroshell to the iridium clads compared to the heritage results. In addition, the Step 2 thermal model is investigated under typical SRG110 boundary conditions, with cover gas and gravity environments included where applicable, to provide preliminary guidance for design of the generator. Results show that the temperatures of the components inside the GPHS remain within accepted design limits during all envisioned mission phases.
NASA Astrophysics Data System (ADS)
Khaerudini, D. S.; Prakoso, G. B.; Insiyanda, D. R.; Widodo, H.; Destyorini, F.; Indayaningsih, N.
2018-03-01
Bipolar plates (BPP) is a vital component of proton exchange membrane fuel cells (PEMFC), which supplies fuel and oxidant to reactive sites, remove reaction products, collects produced current and provide mechanical support for the cells in the stack. This work concerns the utilization of mill scale, a by-product of iron and steel formed during the hot rolling of steel, as a potential material for use as BPP in PEMFC. On the other hand, mill scale is considered a very rich in iron source having characteristic required such as for current collector in BPP and would significantly contribute to lower the overall cost of PEMFC based fuel cell systems. In this study, the iron reach source of mill scale powder, after sieving of 150 mesh, was mechanically alloyed with the carbon source containing 5, 10, and 15 wt.% graphite using a shaker mill for 3 h. The mixed powders were then pressed at 300 MPa and sintered at 900 °C for 1 h under inert gas atmosphere. The structural changes of powder particles during mechanical alloying and after sintering were studied by X-ray diffractometry, optical microscopy, scanning electron microscopy, and microhardness measurement. The details of the presence of iron, carbon, and iron carbide (Fe-C) as the products of reactions as well as sufficient mechanical strength of the sintered materials were presented in this report.
Very Large Array OH Zeeman Observations of the Star-forming Region S88B
NASA Astrophysics Data System (ADS)
Sarma, A. P.; Brogan, C. L.; Bourke, T. L.; Eftimova, M.; Troland, T. H.
2013-04-01
We present observations of the Zeeman effect in OH thermal absorption main lines at 1665 and 1667 MHz taken with the Very Large Array toward the star-forming region S88B. The OH absorption profiles toward this source are complicated, and contain several blended components toward a number of positions. Almost all of the OH absorbing gas is located in the eastern parts of S88B, toward the compact continuum source S88B-2 and the eastern parts of the extended continuum source S88B-1. The ratio of 1665/1667 MHz OH line intensities indicates the gas is likely highly clumped, in agreement with other molecular emission line observations in the literature. S88-B appears to present a similar geometry to the well-known star-forming region M17, in that there is an edge-on eastward progression from ionized to molecular gas. The detected magnetic fields appear to mirror this eastward transition; we detected line-of-sight magnetic fields ranging from 90 to 400 μG, with the lowest values of the field to the southwest of the S88B-1 continuum peak, and the highest values to its northeast. We used the detected fields to assess the importance of the magnetic field in S88B by a number of methods; we calculated the ratio of thermal to magnetic pressures, we calculated the critical field necessary to completely support the cloud against self-gravity and compared it to the observed field, and we calculated the ratio of mass to magnetic flux in terms of the critical value of this parameter. All these methods indicated that the magnetic field in S88B is dynamically significant, and should provide an important source of support against gravity. Moreover, the magnetic energy density is in approximate equipartition with the turbulent energy density, again pointing to the importance of the magnetic field in this region.
NASA Astrophysics Data System (ADS)
Hunter, T. R.; Brogan, C. L.; MacLeod, G. C.; Cyganowski, C. J.; Chibueze, J. O.; Friesen, R.; Hirota, T.; Smits, D. P.; Chandler, C. J.; Indebetouw, R.
2018-02-01
We report the first sub-arcsecond VLA imaging of 6 GHz continuum, methanol maser, and excited-state hydroxyl maser emission toward the massive protostellar cluster NGC 6334I following the recent 2015 outburst in (sub)millimeter continuum toward MM1, the strongest (sub)millimeter source in the protocluster. In addition to detections toward the previously known 6.7 GHz Class II methanol maser sites in the hot core MM2 and the UCHII region MM3 (NGC 6334F), we find new maser features toward several components of MM1, along with weaker features ∼1″ north, west, and southwest of MM1, and toward the nonthermal radio continuum source CM2. None of these areas have heretofore exhibited Class II methanol maser emission in three decades of observations. The strongest MM1 masers trace a dust cavity, while no masers are seen toward the strongest dust sources MM1A, 1B, and 1D. The locations of the masers are consistent with a combination of increased radiative pumping due to elevated dust grain temperature following the outburst, the presence of infrared photon propagation cavities, and the presence of high methanol column densities as indicated by ALMA images of thermal transitions. The nonthermal radio emission source CM2 (2″ north of MM1) also exhibits new maser emission from the excited 6.035 and 6.030 GHz OH lines. Using the Zeeman effect, we measure a line-of-sight magnetic field of +0.5 to +3.7 mG toward CM2. In agreement with previous studies, we also detect numerous methanol and excited OH maser spots toward the UCHII region MM3, with predominantly negative line-of-sight magnetic field strengths of ‑2 to ‑5 mG and an intriguing south–north field reversal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rana, Vikram; Harrison, Fiona A.; Walton, Dominic J.
We present results for two ultraluminous X-ray sources (ULXs), IC 342 X-1 and IC 342 X-2, using two epochs of XMM-Newton and NuSTAR observations separated by ∼7 days. We observe little spectral or flux variability above 1 keV between epochs, with unabsorbed 0.3-30 keV luminosities being 1.04{sub −0.06}{sup +0.08}×10{sup 40} erg s{sup –1} for IC 342 X-1 and 7.40 ± 0.20 × 10{sup 39} erg s{sup –1} for IC 342 X-2, so that both were observed in a similar, luminous state. Both sources have a high absorbing column in excess of the Galactic value. Neither source has a spectrum consistent with a black hole binary in low/hard state, and both ULXsmore » exhibit strong curvature in their broadband X-ray spectra. This curvature rules out models that invoke a simple reflection-dominated spectrum with a broadened iron line and no cutoff in the illuminating power-law continuum. X-ray spectrum of IC 342 X-1 can be characterized by a soft disk-like blackbody component at low energies and a cool, optically thick Comptonization continuum at high energies, but unique physical interpretation of the spectral components remains challenging. The broadband spectrum of IC 342 X-2 can be fit by either a hot (3.8 keV) accretion disk or a Comptonized continuum with no indication of a seed photon population. Although the seed photon component may be masked by soft excess emission unlikely to be associated with the binary system, combined with the high absorption column, it is more plausible that the broadband X-ray emission arises from a simple thin blackbody disk component. Secure identification of the origin of the spectral components in these sources will likely require broadband spectral variability studies.« less
Effect of graphite target power density on tribological properties of graphite-like carbon films
NASA Astrophysics Data System (ADS)
Dong, Dan; Jiang, Bailing; Li, Hongtao; Du, Yuzhou; Yang, Chao
2018-05-01
In order to improve the tribological performance, a series of graphite-like carbon (GLC) films with different graphite target power densities were prepared by magnetron sputtering. The valence bond and microstructure of films were characterized by AFM, TEM, XPS and Raman spectra. The variation of mechanical and tribological properties with graphite target power density was analyzed. The results showed that with the increase of graphite target power density, the deposition rate and the ratio of sp2 bond increased obviously. The hardness firstly increased and then decreased with the increase of graphite target power density, whilst the friction coefficient and the specific wear rate increased slightly after a decrease with the increasing graphite target power density. The friction coefficient and the specific wear rate were the lowest when the graphite target power density was 23.3 W/cm2.
AGC 2 Irradiated Material Properties Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohrbaugh, David Thomas
2017-05-01
The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. , Nuclear graphite H 451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core componentsmore » within a commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less
AGC 2 Irradiation Creep Strain Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windes, William E.; Rohrbaugh, David T.; Swank, W. David
2016-08-01
The Advanced Reactor Technologies Graphite Research and Development Program is conducting an extensive graphite irradiation experiment to provide data for licensing of a high temperature reactor (HTR) design. In past applications, graphite has been used effectively as a structural and moderator material in both research and commercial high temperature gas cooled reactor designs. Nuclear graphite H-451, used previously in the United States for nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been developed and are considered suitable candidates for new HTR reactor designs. To support the design and licensing of HTR core components within amore » commercial reactor, a complete properties database must be developed for these current grades of graphite. Quantitative data on in service material performance are required for the physical, mechanical, and thermal properties of each graphite grade, with a specific emphasis on data accounting for the life limiting effects of irradiation creep on key physical properties of the HTR candidate graphite grades. Further details on the research and development activities and associated rationale required to qualify nuclear grade graphite for use within the HTR are documented in the graphite technology research and development plan.« less
NASA Astrophysics Data System (ADS)
Peng, Tiefeng; Liu, Bin; Gao, Xuechao; Luo, Liqun; Sun, Hongjuan
2018-06-01
Expandable graphite is widely used as a new functional carbon material, especially as fire-retardant; however, its practical application is limited due to the high expansion temperature. In this work, preparation process of low temperature and highly expandable graphite was studied, using natural flake graphite as raw material and KMnO4/HClO4/NH4NO3 as oxidative intercalations. The structure, morphology, functional groups and thermal properties were characterized during expanding process by Fourier transform infrared spectroscopy (FTIR), Raman spectra, thermo-gravimetry differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), and scanning electron microscope (SEM). The analysis showed that by oxidation intercalation, some oxygen-containing groups were grafted on the edge and within the graphite layer. The intercalation reagent entered the graphite layer to increase the interlayer spacing. After expansion, the original flaky expandable graphite was completely transformed into worm-like expanded graphite. The order of graphite intercalation compounds (GICs) was proposed and determined to be 3 for the prepared expandable graphite, based on quantitative XRD peak analysis. Meanwhile, the detailed intercalation mechanisms were also proposed. The comprehensive investigation paved a benchmark for the industrial application of such sulfur-free expanded graphite.
The impact of LDEF results on the space application of metal matrix composites
NASA Technical Reports Server (NTRS)
Steckel, Gary L.; Le, Tuyen D.
1993-01-01
Over 200 graphite/aluminum and graphite/magnesium composites were flown on the leading and trailing edges of LDEF on the Advanced Composites Experiment. The performance of these composites was evaluated by performing scanning electron microscopy and x-ray photoelectron spectroscopy of exposed surfaces, optical microscopy of cross sections, and on-orbit and postflight thermal expansion measurements. Graphite/aluminum and graphite/magnesium were found to be superior to graphite/polymer matrix composites in that they are inherently resistant to atomic oxygen and are less susceptible to thermal cycling induced microcracking. The surface foils on graphite/aluminum and graphite/magnesium protect the graphite fibers from atomic oxygen and from impact damage from small micrometeoroid or space debris particles. However, the surface foils were found to be susceptible to thermal fatigue cracking arising from contamination embrittlement, surface oxidation, or stress risers. Thus, the experiment reinforced requirements for carefully protecting these composites from prelaunch oxidation or corrosion, avoiding spacecraft contamination, and designing composite structures to minimize stress concentrations. On-orbit strain measurements demonstrated the importance of through-thickness thermal conductivity in composites to minimize thermal distortions arising from thermal gradients. Because of the high thermal conductivity of aluminum, thermal distortions were greatly reduced in the LDEF thermal environment for graphite/aluminum as compared to graphite/magnesium and graphite/polymer composites. The thermal expansion behavior of graphite/aluminum and graphite/magnesium was stabilized by on-orbit thermal cycling in the same manner as observed in laboratory tests.
Z mode radiation in Jupiter's magnetosphere - The source of Jovian continuum radiation
NASA Technical Reports Server (NTRS)
Barbosa, D. D.; Kurth, W. S.; Moses, S. L.; Scarf, F. L.
1990-01-01
Observations of Z-mode waves in Jupiter's magnetosphere are analyzed. The assumption that the frequency of the intensity minimum, which isolates the signal, corresponds to the electron plasma frequency provides a consistent interpretation of all spectral features in terms of plasma resonances and cutoffs. It is shown that the continuum radiation is composed of both left-hand and right-hand polarized waves with distinct cutoffs observed at the plasma frequency and right-hand cutoff frequency, respectively. It is found that the Z-mode peak frequency lies close to the left-hand cutoff frequency, suggesting that the observed characteristics of the emission are the result of wave reflection at the cutoff layer. Another distinct emission occurring near the upper hybrid resonance frequency is detected simultaneously with the Z mode. The entire set of observations gives strong support to the linear mode theory of the conversion of upper hybrid waves to continuum radiation mediated by the Z mode via the Budden radio window mechanism.
NASA Technical Reports Server (NTRS)
Israel, F. P.; Mahoney, M. J.; Howarth, N.
1992-01-01
We present measurements of the integrated radio continuum flux density of M33 at frequencies between 22 and 610 MHz and discuss the radio continuum spectrum of M33 between 22 MHz and 10 GHz. This spectrum has a turnover between 500 and 900 MHz, depending on the steepness of the high frequency radio spectrum of M33. Below 500 MHz the spectrum is relatively flat. We discuss possible mechanisms to explain this spectral shape and consider efficient free-free absorption of nonthermal emission by a cool (not greater than 1000 K) ionized gas to be a very likely possibility. The surface filling factor of both the nonthermal and the thermal material appears to be small (of order 0.001), which could be explained by magnetic field/density fluctuations in the M 33 interstellar medium. We briefly speculate on the possible presence of a nuclear radio source with a steep spectrum.
Aquifer-yield continuum as a guide and typology for science-based groundwater management
NASA Astrophysics Data System (ADS)
Pierce, Suzanne A.; Sharp, John M.; Guillaume, Joseph H. A.; Mace, Robert E.; Eaton, David J.
2013-03-01
Groundwater availability is at the core of hydrogeology as a discipline and, simultaneously, the concept is the source of ambiguity for management and policy. Aquifer yield has undergone multiple definitions resulting in a range of scientific methods to calculate and model availability reflecting the complexity of combined scientific, management, policy, and stakeholder processes. The concept of an aquifer-yield continuum provides an approach to classify groundwater yields along a spectrum, from non-use through permissive sustained, sustainable, maximum sustained, safe, permissive mining to maximum mining yields, that builds on existing literature. Additionally, the aquifer-yield continuum provides a systems view of groundwater availability to integrate physical and social aspects in assessing management options across aquifer settings. Operational yield describes the candidate solutions for operational or technical implementation of policy, often relating to a consensus yield that incorporates human dimensions through participatory or adaptive governance processes. The concepts of operational and consensus yield address both the social and the technical nature of science-based groundwater management and governance.
The bird: A pressure-confined explosion in the interstellar medium
NASA Technical Reports Server (NTRS)
Lane, A. P.; Stark, A. A.; Helfand, D. J.
1986-01-01
The non-thermal radio continuum source G5.3-1.0, mapped at 20 cm with the Very Large Array (VLA) by Becker and Helfand, has an unusual bird-like shape. In order to determine possible interaction of this source with adjacent cold gas, we have mapped this region in the J=1-0 line of CO using the AT and T Bell Laboratories 7m antenna and the FCRAO 14m antenna. The map shown contains 1859 spectra sampled on a 1.5 arcminute grid; each spectrum has an rms noise of 0.2 K in 1 MHz channels. There are several molecular clouds at different velocities along the line of sight. The outer regions of a previously unknown Giant Molecular Cloud (GMC) at l=4.7 deg., b=-0.85 deg., v=200 km s(-1) appears to be interacting with G5.3-10: the molecular cloud has a bird-shaped hole at the position of the continuum source, except that the brightest continuum point (the bird's head) appears to be embedded in the cloud. The velocity of this GMC indicates it is within 2 kpc of the galactic center. The morphology suggests that a supernova or other explosive event occurred near the outside of the GMC, in a region where (n) is approximately 300 cm(-3), and expanded into a region of lower density and pressure. The pressures, densities, and velocity gradients of molecular clouds near the galactic center are on average higher than those of clouds near the Sun. We therefore expect that Type II supernovae near the galactic center would be distorted by their interactions with their parent molecular clouds.
A buyer's guide to the innovation bazaar.
Nambisan, Satish; Sawhney, Mohanbir
2007-06-01
Companies seeking new ideas or product concepts from outside sources may find the "innovation bazaar," with its wide array of choices and methods of acquiring them, a confusing, chaotic place. Nambisan and Sawhney have crafted a conceptual guide for managers who understand the importance of going outside their firms for innovation but are uncertain about how to do it. The authors' "external sourcing continuum" shows at a glance how shopping for, say, raw ideas compares with shopping for market-ready products in terms of cost, risk, multiplicity of options, and speed of commercialization. Raw ideas, whether acquired directly from the inventor or through a patent broker, licensing agent, or some other intermediary, tend to be low cost but high risk and take a long time to bring to market. Market-ready products, often acquired as stand-alone businesses through a venture capitalist or business incubator, are more expensive and narrow one's choices, but they can be launched quickly and with less risk. Between these two approaches lies a third, facilitated by the "innovation capitalist." This new kind of intermediary provides client companies with access to a broad range of innovative product or technology ideas that are nearly market ready, thereby mitigating early-stage risks and lowering the time to market without significantly increasing acquisition costs. The authors compare the advantages and disadvantages of using intermediaries associated with the three approaches and provide a checklist of factors to consider when placing your company on the external sourcing continuum. If you've been oriented toward one end of the continuum or the other, you can increase your options and your flexibility by expanding into the middle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Ting; Stocke, John T.; Darling, Jeremy
2016-03-15
This is the second paper directed toward finding new highly redshifted atomic and molecular absorption lines at radio frequencies. To this end, we selected a sample of 80 candidates for obscured radio-loud active galactic nuclei (AGNs) and presented their basic optical/near-infrared (NIR) properties in Paper I. In this paper, we present both high-resolution radio continuum images for all of these sources and H i 21 cm absorption spectroscopy for a few selected sources in this sample. A-configuration 4.9 and 8.5 GHz Very Large Array continuum observations find that 52 sources are compact or have substantial compact components with size <0.″5more » and flux densities >0.1 Jy at 4.9 GHz. The 36 most compact sources were then observed with the Very Long Baseline Array at 1.4 GHz. One definite and 10 candidate Compact Symmetric Objects (CSOs) are newly identified, which is a detection rate of CSOs ∼three times higher than the detection rate previously found in purely flux-limited samples. Based on possessing compact components with high flux densities, 60 of these sources are good candidates for absorption-line searches. Twenty-seven sources were observed for H i 21 cm absorption at their photometric or spectroscopic redshifts with only six detections (five definite and one tentative). However, five of these were from a small subset of six CSOs with pure galaxy optical/NIR spectra (i.e., any AGN emission is obscured) and for which accurate spectroscopic redshifts place the redshifted 21 cm line in a radio frequency intereference (RFI)-free spectral “window” (i.e., the percentage of H i 21 cm absorption-line detections could be as high as ∼90% in this sample). It is likely that the presence of ubiquitous RFI and the absence of accurate spectroscopic redshifts preclude H i detections in similar sources (only 1 detection out of the remaining 22 sources observed, 13 of which have only photometric redshifts); that is, H i absorption may well be present but is masked by the RFI. Future searches for highly redshifted H i and molecular absorption can easily find more distant CSOs among bright, “blank field” radio sources, but will be severely hampered by an inability to determine accurate spectroscopic redshifts due to their lack of rest-frame UV continuum.« less
1992-08-25
Ukraine has made environmental issues a top priority in any national security equation. The Chernobyl disaster of April 1986 is estimated to have...investment in Ukraine and in other former Soviet republics may be jeopardized by another environmental disaster of Chernobyl proportions. As an energy...adequate nuclear plants nor ailternative energy sources beyond coal to substitute for nuclear generated electricity. Some 16 Chernobyl -type graphite
NASA Astrophysics Data System (ADS)
Zulkurnain, E. S.; Ahmad, F.; Gillani, Q. F.
2016-08-01
The purpose of in-tumescent fire retardant coating (IFRC) is to protect substrate from fire attack by limiting heat transfer. A range of coating formulations have been prepared using Bisphenol A epoxy resin BE-188 and polyamide solidifier H-2310 as two-part binder, ammonium polyphosphate (APP) as acid source, melamine (MEL) as the blowing agent, expandable graphite (EG) as carbon source and nano-boron nitride (BN) as inorganic nano filler. The filler was used to improve the performances of the APP-EG-MEL coating. The effects of nano-BN on the char morphology and thermal degradation were investigated by fire test, thermo gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X- ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy (FESEM). The results showed that by substituting or reinforcing of 4% weight percentage of nano-BN, residual weight of the char increases by 23.82% compared to APP-EG-MEL coating without filler. Higher carbon content was obtained in the char and a more compact char was produced. The results indicated that nano-BN could be used as a filler to improve thermal stability of the APP-EG-MEL coating.
Formation mechanism of the protective layer in a blast furnace hearth
NASA Astrophysics Data System (ADS)
Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Xu, Meng; Liu, Feng
2015-10-01
A variety of techniques, such as chemical analysis, scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, were applied to characterize the adhesion protective layer formed below the blast furnace taphole level when a certain amount of titanium- bearing burden was used. Samples of the protective layer were extracted to identify the chemical composition, phase assemblage, and distribution. Furthermore, the formation mechanism of the protective layer was determined after clarifying the source of each component. Finally, a technical strategy was proposed for achieving a stable protective layer in the hearth. The results show that the protective layer mainly exists in a bilayer form in the sidewall, namely, a titanium-bearing layer and a graphite layer. Both the layers contain the slag phase whose major crystalline phase is magnesium melilite (Ca2MgSi2O7) and the main source of the slag phase is coke ash. It is clearly determined that solid particles such as graphite, Ti(C,N) and MgAl2O4 play an important role in the formation of the protective layer, and the key factor for promoting the formation of a stable protective layer is reasonable control of the evolution behavior of coke.
The NOSAMS sample preparation laboratory in the next millenium: Progress after the WOCE program
NASA Astrophysics Data System (ADS)
Gagnon, Alan R.; McNichol, Ann P.; Donoghue, Joanne C.; Stuart, Dana R.; von Reden, Karl; Nosams
2000-10-01
Since 1991, the primary charge of the National Ocean Sciences AMS (NOSAMS) facility at the Woods Hole Oceanographic Institution has been to supply high throughput, high precision AMS 14C analyses for seawater samples collected as part of the World Ocean Circulation Experiment (WOCE). Approximately 13,000 samples taken as part of WOCE should be fully analyzed by the end of Y2K. Additional sample sources and techniques must be identified and incorporated if NOSAMS is to continue in its present operation mode. A trend in AMS today is the ability to routinely process and analyze radiocarbon samples that contain tiny amounts (<100 μg) of carbon. The capability to mass-produce small samples for 14C analysis has been recognized as a major facility goal. The installation of a new 134-position MC-SNICS ion source, which utilizes a smaller graphite target cartridge than presently used, is one step towards realizing this goal. New preparation systems constructed in the sample preparation laboratory (SPL) include an automated bank of 10 small-volume graphite reactors, an automated system to process organic carbon samples, and a multi-dimensional preparative capillary gas chromatograph (PCGC).
Treatment of irradiated graphite from French Bugey reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, Howard; Laurent, Gerard
In 2008, following the general French plan for nuclear waste management, Electricite de France attempted to find for irradiated graphite an alternative solution to direct storage at the low-activity long-life storage center in France managed by the national agency for wastes (ANDRA). EDF management requested that its engineering arm, EDF CIDEN, study the graphite treatment alternatives to direct storage. In mid-2008, this study revealed the potential advantage for EDF to use a steam reforming process known as Thermal Organic Reduction, 'THOR' (owned by Studsvik, Inc., USA), to treat or destroy the graphite matrix and limit the quantity of secondary wastemore » to be stored. In late 2009, EDF began a test program with Studsvik to determine if the THOR steam reforming process could be used to destroy the graphite. The program also sought to determine if the graphite could be treated to release the bulk of activity while minimizing the gasification of the bulk mass of the graphite. In October 2009, tests with non-irradiated graphite were completed and demonstrated destruction of a graphite matrix by the THOR process at satisfactory rates. After gasifying the graphite, focus shifted to the effect of roasting graphite at high temperatures in inert gases with low concentrations of oxidizing gases to preferentially remove volatile radionuclides while minimizing the graphite mass loss to 5%. A radioactive graphite sleeve was imported from France to the US for these tests. Completed in April 2010, 'Phase I' of testing showed that the process removed >99% of H-3 and 46% of C-14 with <6% mass loss. Completed in September 2011, 'Phase II' testing achieved increased removals as high as 80% C-14. During Phase II, it was also discovered that roasting in a reducing atmosphere helped to limit the oxidation of the graphite. Future work seeks to explore the effects of reducing gases to limit the bulk oxidation of graphite. If the graphite could be decontaminated of long-lived radionuclides up to 95% for C-14 while minimizing mass loss to <5%, this would minimize the volume of any secondary waste streams and potentially lower the waste class of the larger bulk of graphite. Alternatively, if up to 95% decontamination of C-14 is achieved, the graphite may be completely gasified which could result in lower disposal. (authors)« less
NASA Astrophysics Data System (ADS)
Benedetti, Ivano; Nguyen, Hoang; Soler-Crespo, Rafael A.; Gao, Wei; Mao, Lily; Ghasemi, Arman; Wen, Jianguo; Nguyen, SonBinh; Espinosa, Horacio D.
2018-03-01
Novel 2D materials, e.g., graphene oxide (GO), are attractive building blocks in the design of advanced materials due to their reactive chemistry, which can enhance interfacial interactions while providing good in-plane mechanical properties. Recent studies have hypothesized that the randomly distributed two-phase microstructure of GO, which arises due to its oxidized chemistry, leads to differences in nano- vs meso-scale mechanical responses. However, this effect has not been carefully studied using molecular dynamics due to computational limitations. Herein, a continuum mechanics model, formulated based on density functional based tight binding (DFTB) constitutive results for GO nano-flakes, is establish for capturing the effect of oxidation patterns on the material mechanical properties. GO is idealized as a continuum heterogeneous two-phase material, where the mechanical response of each phase, graphitic and oxidized, is informed from DFTB simulations. A finite element implementation of the model is validated via MD simulations and then used to investigate the existence of GO representative volume elements (RVE). We find that for the studied GO, an RVE behavior arises for monolayer sizes in excess to 40 nm. Moreover, we reveal that the response of monolayers with two main different functional chemistries, epoxide-rich and hydroxyl-rich, present distinct differences in mechanical behavior. In addition, we explored the role of defect density in GO, and validate the applicability of the model to larger length scales by predicting membrane deflection behavior, in close agreement with previous experimental and theoretical observations. As such the work presents a reduced order modeling framework applicable in the study of mechanical properties and deformation mechanisms in 2D multiphase materials.
Origin of particulate organic matter exported during storm events in a forested headwater catchment.
NASA Astrophysics Data System (ADS)
Jeanneau, Laurent; Rowland, Richard D.; Inamdar, Shreeram P.
2016-04-01
Particulate organic matter (POM) plays an important biogeochemical role towards ecology, ecotoxicology and carbon cycle. Moreover POM within the fluvial suspended sediment load during infrequent high flows can comprise a larger portion of long-term flux than dissolved species. It is well documented that storm events that constituted only 10-20% of the year contributed to >80% of POC exports. But the origin and composition of POM transferred during those hot moments remained unclear. In order to improve our knowledge on this topic we explore the variability in storm event-transported sediments' POM content and source down a continuum of catchment drainage locations. Wetland, upland and forest O horizons, litter, river banks and bed sediments were analyzed for their content in organic C, isotopic (13C) and molecular (thermochemiolysis-gas chromatography-mass spectrometry) fingerprints. The isotopic and molecular fingerprints recorded in suspended and deposited (differentiated into fine, medium and coarse particles) sediments sampled during different storm events down a continuum of catchment drainage locations (12 and 79 ha). This study highlights compositional differences between the catchment size (12 versus 79 ha), the particle size of deposited sediment (fine versus medium versus coarse) and the sampling time during a storm event (rising limb versus peak flow versus falling limb). Two sampling strategies were used. Suspended sediments sampled at a specific time during flood events allow evaluating changes along the hydrograph, while deposited sediments that integrate the entire event allow making comparisons with drainage scale. For deposited sediments, the proportion of OM coming from the endmembers wetland, litter and Forest O horizon decreases from the 12ha to the 79ha catchment, which exhibited a higher proportion of OM coming from stream bed sediment and river banks. For both catchments, from fine to coarse particles, the influence of stream bed sediments and river banks decreases while the influence of Forest O horizon increases. For suspended sediments, the evolution during storm events were opposite in the 12ha and the 79ha catchments. In the 12ha catchment, during the rising limb of the hydrograph, POM seems to be inherited from stream bed sediments and river banks, while from the rising limb to the peak flow, the influence of litter and/or wetland increases. This influence decreases during the falling limb. The opposite trend was observed in the 79ha catchment, with an increasing contribution of stream bed sediments to the OM exported during a storm event. What is the information to take away? First POM transferred in headwater catchments has multiple sources. Secondly, the combination of those sources is different along the size continuum of particles. Then, down a continuum of catchment drainage locations, the combination of sources changes both along the size continuum and during storm events. This information is critical for identifying the various drivers and mechanisms behind POM transport and for understanding the impacts of POM on aquatic metabolism and downstream water quality.
Bridged graphite oxide materials
NASA Technical Reports Server (NTRS)
Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)
2010-01-01
Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.
Preparation of graphitic articles
Phillips, Jonathan; Nemer, Martin; Weigle, John C.
2010-05-11
Graphitic structures have been prepared by exposing templates (metal, metal-coated ceramic, graphite, for example) to a gaseous mixture that includes hydrocarbons and oxygen. When the template is metal, subsequent acid treatment removes the metal to yield monoliths, hollow graphitic structures, and other products. The shapes of the coated and hollow graphitic structures mimic the shapes of the templates.
Method of Obtaining Uniform Coatings on Graphite
Campbell, I. E.
1961-04-01
A method is given for obtaining uniform carbide coatings on graphite bodies. According to the invention a metallic halide in vapor form is passed over the graphite body under such conditions of temperature and pressure that the halide reacts with the graphite to form a coating of the metal carbide on the surface of the graphite.
METHOD OF OBTAINING UNIFORM COATINGS ON GRAPHITE
Campbell, I.E.
1961-04-01
A method is given for obtaining uniform carbide coatings on graphite bodies. According to the invention a metallic halide in vapor form is passed over the graphite body under such conditions of temperature and pressure that the halide reacts with the graphite to form a coating of the metal carbide on the surface of the graphite.
Chang, Yo-Wei; Yu, Shiau-Wei; Liu, Cheng-Hao; Tsiang, Raymond Chien-Chao
2010-10-01
P3HT/graphene nanocomposite was prepared via in-situ reduction of exfoliated graphite oxide in the P3HT polymer matrix, where the exfoliated graphite oxide was formed beforehand via the oxidation of graphite via the Hummers method. The oxidation reaction not only imparts functional groups, such as C=O, C-OH, and C-O-C, to graphite but also causes exfoliation of the resulting graphite oxide. The functional groups render graphite oxide an additional, lower thermal degradation temperature (T(d)) and the exfoliation shifts the XRD pattern towards a much smaller angle. The oxidation of graphite into graphite oxide creates a pleated flaking morphology for graphite oxide as opposed to that of graphite. UV/Vis and photoluminescence (PL) spectra of P3HT/graphene nanocomposite indicate that the existence of graphene does not alter the UV/Vis and PL excitation characteristics of P3HT, and the P3HT/graphene composite has higher electron mobility, a smaller band gap and higher conductivity than the pristine P3HT.
Toward Understanding the Fanaroff-Riley Dichotomy in Radio Source Morphology and Power
NASA Astrophysics Data System (ADS)
Baum, Stefi A.; Zirbel, Esther L.; O'Dea, Christopher P.
1995-09-01
In Paper I we presented the results of a study of the interrelationships between host galaxy magnitude, optical line luminosity, and radio luminosity in a large sample of Fanaroff-Riley classes 1 and 2 (FR 1 and FR 2) radio galaxies. We report several important differences between the FR 1 and FR 2 radio galaxies. At the same host galaxy magnitude or radio luminosity, the FR 2's produce substantially more optical line emission (by roughly an order of magnitude or more) than do FR 1's. Similarly, FR 2 sources produce orders of magnitude more line luminosity than do radio-quiet galaxies of the same optical magnitude, while FR 1 sources and radio-quiet galaxies of the same optical magnitude produce similar line luminosities. Combining these results with previous results from the literature, we conclude that while the emission-line gas in the FR 2's is indeed photoionized by a nuclear UV continuum source from the AGN, the emission-line gas in the FR 1's may be energized predominantly by processes associated with the host galaxy itself. The apparent lack of a strong UV continuum source from the central engine in FR 1 sources can be understood in two different ways. In the first scenario, FR l's are much more efficient at covering jet bulk kinetic energy into radio luminosity than FR 2's, such that an FR 1 has a much lower bolometric AGN luminosity (hence nuclear UV continuum source) than does an FR 2 of the same radio luminosity. We discuss the pros and cons of this model and conclude that the efficiency differences needed between FR 2 and FR 1 radio galaxies are quite large and may lead to difficulties with the interpretation since it would suggest that FR 2 radio source deposit very large amounts of kinetic energy into the ISM Intracluster Medium. However, this interpretation remains viable. Alternatively, it may be that the AGNs in FR 1 sources simply produce far less radiant UV energy than do those in FR 2 sources. That is, FR 1 sources may funnel a higher fraction of the total energy output from the AGNs into jet kinetic energy versus radiant energy than do FR 2 sources. If this interpretation is correct, then this suggests that there is a fundamental difference in the central engine and/or in the immediate "accretion region" around the engine in FR 1 and FR 2 radio galaxies. We note also the absence of FR 1 sources with nuclear broad line regions and suggest that the absence of the BLR is tied to the absence of the "isotropic" nuclear UV continuum source in FR 1 sources. We put forth the possibility that the FR 1/FR 2 dichotomy (i.e., the observed differences in the properties of low- and high-power radio sources) is due to qualitative differences in the structural properties of the central engines in these two types of sources. Following early work by Rees et al. (1982), we suggest the possibility that FR 1 sources are produced when the central engine is fed at a lower accretion rate, leading to the creation of a source in which the ratio of radiant to jet bulk kinetic energy is low, while FR 2 sources are produced when the central engine is fed at a higher accretion rate, causing the central engine to deposit a higher fraction of its energy in radiant energy. We further suggest the possibility that associated differences in the spin properties of the central black hole between FR 1 (lower spin) and FR 2 (higher spin) sources may be responsible for the different collimation properties and Mach numbers of the jets produced by these two types of radio-loud galaxies. This scenario, although currently clearly speculative, is nicely consistent with our current picture of the triggering, feeding, environments, and evolution of powerful radio galaxies. This model allows for evolution of these properties with time for example, the mass accretion rate and BH spin may decline with time causing an FR 2 radio source or quasar to evolve into a FR 1 radio source.
ERIC Educational Resources Information Center
Cushing, C. E.
1995-01-01
Provides a "template" for how a stream ecosystem functions. Discusses the physical and chemical factors of geology, light, current velocity, temperature, and energy sources. Describes functional groups of aquatic insects and the River Continuum Concept, a model of interaction that explains the spatial occurrence of aquatic insects. (LZ)
NASA Technical Reports Server (NTRS)
Mruphy, Kendrah D.; Yaqoob, Tahir; Terashima, Yuichi
2007-01-01
We present the results of a one year monitoring campaign of the Seyfert 1.9 galaxy NGC 2992 with RXTE. Historically, the source has been shown to vary dramatically in 2-10 keV flux over timescales of years and was thought to be slowly transitioning between periods of quiescence and active accretion. Our results show that in one year the source continuum flux covered almost the entire historical range, making it unlikely that the low-luminosity states correspond to the accretion mechanism switching off. During flaring episodes we found that a highly redshifted Fe K line appears, implying that the violent activity is occurring in the inner accretion disk, within 100 gravitational radii of the central black hole. We also found that the Compton y parameter for the X-ray continuum remained approximately constant during the large amplitude variability. These observations make NGC 2992 well-suited for future multi-waveband monitoring, as a test-bed for constraining accretion models.
SWIFT Observations of a Far UV Luminosity Component in SS433
NASA Technical Reports Server (NTRS)
Cannizzo, J. K.; Boyd, P. T.; Dolan, J. F.
2007-01-01
SS433 is a binary system showing relativistic Doppler shifts in its two sets of emission lines. The origin of its UV continuum is not well established. We observed SS433 to determine the emission mechanism responsible for its far UV spectrum. The source was observed at several different phases of both its 13 d orbital period and 162.5 d precession period using the UVOT and XRT detector systems on Swift. The far UV spectrum down to 1880 Angstrom lies significantly above the spectral flux distribution predicted by extrapolating the reddened blackbody continuum that fits the spectrum above 3500 Angstroms. The intensity of the far UV flux varies over a period of days and the variability is correlated with the variability of the soft X-ray flux from the source. An emission mechanism in addition to those previously detected in the optical and X-ray regions must exist in the far UV spectrum of SS433.
Resolving the Wind Structure of Eta Carinae
NASA Technical Reports Server (NTRS)
Gull, T.; Hillier, J.; Ishibashi, K.; Davidson, K.
2000-01-01
Space Telescope Imaging Spectrograph (STIS) spectral observations of Eta Carinae have resolved the wind structure of the star(s) from the central point source. These observations were done with a 52 x 0.1" aperture, resolving power of about 5000 and complete spectral coverage from 1640A to 10400A. Various broad stellar Lines are seen to change within the central 0.511 of the nebular region. The Balmer lines, relative to the continuum, drop in strength while some Fe II lines scale with the continuum. Other Fe II lines increase in intensity while still others decrease. The structure to the southeast of the central source shows considerable variation in the stellar line strengths. To the Northwest, the emission is dominated by the very bright nebular knots, Weigelt blobs B and D. Three sets of observations have been done: March 1998, February 1999 and March 2000 to monitor the spectral variations. The stellar, wind and nebular emission changes considerably during this two year period. This work was done under the STIS GTO and HST GO funding.
Mass Loss from the Nuclei of Active Galaxies
NASA Technical Reports Server (NTRS)
Crenshaw, Michael; Kraemer, Steven B.; George, Ian M.
2003-01-01
Blueshifted absorption lines in the UV and X-ray spectra of active galaxies reveal the presence of massive outflows of ionized gas from their nuclei. The intrinsic UV and X-ray absorbers show large global covering factors of the central continuum source, and the inferred mass loss rates are comparable to the mass accretion rates. Many absorbers show variable ionic column densities which are attributed to a combination of variable ionizing flux and motion of gas into and out of the line of sight . Detailed studies of the intrinsic absorbers. with the assistance of monitoring observations and photoionization models. provide constraints on their kinematics] physical conditions. and locations relative to the central continuum source. which range from the inner nucleus (approx.0.01 pc) to the galactic disk or halo (approx.10 kpc) . Dynamical models that make use of thermal winds. radiation pressure. and/or hydromagnetic flows have reached a level of sophistication that permits comparisons with the observational constraints .
NASA Astrophysics Data System (ADS)
Peña-Vázquez, E.; Barciela-Alonso, M. C.; Pita-Calvo, C.; Domínguez-González, R.; Bermejo-Barrera, P.
2015-09-01
The objective of this work is to develop a method for the determination of metals in saline matrices using high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Module SFS 6 for sample injection was used in the manual mode, and flame operating conditions were selected. The main absorption lines were used for all the elements, and the number of selected analytical pixels were 5 (CP±2) for Cd, Cu, Fe, Ni, Pb and Zn, and 3 pixels for Mn (CP±1). Samples were acidified (0.5% (v/v) nitric acid), and the standard addition method was used for the sequential determination of the analytes in diluted samples (1:2). The method showed good precision (RSD(%) < 4%, except for Pb (6.5%)) and good recoveries. Accuracy was checked after the analysis of an SPS-WW2 wastewater reference material diluted with synthetic seawater (dilution 1:2), showing a good agreement between certified and experimental results.
A high-sensitivity survey of radio continuum emission from Herbig Ae/Be stars
NASA Technical Reports Server (NTRS)
Skinner, Stephen L.; Brown, Alexander; Stewart, Ron T.
1993-01-01
Results of a high-sensitivity VLA/Australia Telescope survey of radio continuum emission from the 57 Herbig Ae/Be stars and candidates in the 1984 catalog of Finkenzeller and Mundt are presented. Twelve stars were detected at the primary observing wavelength of 3.6 cm, on the basis that not less than 4 sigma radio sources lie within 1 arcsec of the optical positions. It is suggested that the radio emission is predominantly thermal and in many cases wind-related. The unusual eclipsing binary TY CrA is an exception and is classified as a nonthermal radio source on the basis of its decidedly negative spectral index (alpha = -1.2). A simple spherically symmetric free-fall accretion model is used to show that the predicted radio fluxes due to accretion at rates, estimated in the literature, of about 10 exp -6 to 10 exp -5 solar mass/yr are one to four orders of magnitude larger than observed.
NASA Technical Reports Server (NTRS)
Campbell, Sandi; Papadopoulos, Demetrios; Heimann, Paula; Inghram, Linda; McCorkle, Linda
2005-01-01
Expanded graphite was compressed into graphite sheets and used as a coating for carbon fiber reinforced PMR-15 composites. BET analysis of the graphite indicated an increase in graphite pore size on compression, however the material was proven to be an effective barrier to oxygen when prepegged with PMR-15 resin. Oxygen permeability of the PMR-15/graphite was an order of magnitude lower than the compressed graphite sheet. By providing a barrier to oxygen permeation, the rate of oxidative degradation of PMR-15 was decreased. As a result, the composite thermo-oxidative stability increased by up to 25%. The addition of a graphite sheet as a top ply on the composites yielded little change in the material's flexural strength or interlaminar shear strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquez, Eva; Pina, Gabriel; Rodriguez, Marina
Spain has to manage about 3700 tons of irradiated graphite from the reactor Vandellos I as radioactive waste. 2700 tons are the stack of the reactor and are still in the reactor core waiting for retrieval. The rest of the quantities, 1000 tons, are the graphite sleeves which have been already retrieved from the reactor. During operation the graphite sleeves were stored in a silo and during the dismantling stage a retrieval process was carried out separating the wires from the graphite, which were crushed and introduced into 220 cubic containers of 6 m{sup 3} each and placed in interimmore » storage. The graphite is an intermediate level radioactive waste but it contains long lived radionuclides like {sup 14}C which disqualifies disposal at the low level waste repository of El Cabril. Therefore, a new project has been started in order to investigate two new options for the management of this waste type. The first one is based on a selective decontamination of {sup 14}C by thermal methods. This method is based on results obtained at the Research Centre Juelich (FZJ) in the Frame of the EC programs 'Raphael' and 'Carbowaste'. The process developed at FZJ is based on a preferential oxidation of {sup 14}C in comparison to the bulk {sup 12}C. Explanations for this effect are the inhomogeneous distribution and a weaker bounding of {sup 14}C which is not incorporated in the graphite lattice. However these investigations have only been performed with graphite from the high temperature reactor Arbeitsgemeinschaft Versuchsreaktor Juelich AVR which has been operated in a non-oxidising condition or research reactor graphite operated at room temperature. The reactor Vandellos I has been operated with CO{sub 2} as coolant and significant amounts of graphite have been already oxidised. The aim of the project is to validate whether a {sup 14}C decontamination can also been achieved with graphite from Vandellos I. A second possibility under investigation is the encapsulation of the graphite in a long term stable glass matrix. The principal applicability has been already proved by FNAG. Crushed graphite mixed with a suitable glass powder has been pressed at elevated temperature under vacuum. The vacuum is required to avoid gas enclosures in the obtained product. The obtained products, named IGM for 'Impermeable Graphite Matrix', have densities above 99% of theoretical density. The amount of glass has been chosen with respect to the pore volume of the former graphite parts. The method allows the production of encapsulated graphite without increasing the disposal volume. This paper will give a short overview of characterisation results of different irradiated graphite materials obtained at CIEMAT and in the Carbowaste project as well as the proposed methods and the actual status of the program including first results about leaching of non-radioactive IGM samples and hopefully first tendencies concerning the C-14 separation from graphite of Vandellos I by thermal treatment. Both processes, the thermal treatment as well as the IGM, have the potential to solve problems related to the management of irradiated graphite in Spain. However the methods have only been tested with different types of i-graphite and virgin graphite, respectively. Only investigations with real i-graphite from Spain will reveal whether the described methods are applicable to graphite from Vandellos I. However all partners are convinced that one of these new methods or a combination of them will lead to a feasible option to manage i-graphite in Spain on an industrial scale. (authors)« less
RXTE Observations of the 1A 1118-61 in an Outburst, and the Discovery of a Cyclotron Line
NASA Technical Reports Server (NTRS)
Doroshenko, V.; Suchy, S.; Santangelo, A; Staubert, R.; Kreykenbohm, I.; Rothschild, R.; Pottschmidt, K.; Wilms, J.
2010-01-01
We present the analysis of RXTE monitoring data obtained during the January 2009 outburst of the hard X-ray transient IA 1118-61. Using these observations the broadband (3.5-120 keV) spectrum of the source was measured for the first time ever. We have found that the broadband continuum spectrum of the source is similar to other accreting pulsars and is well described by several conventionally used phenomenological models. We have discovered that regardless of the applied continuum model, a prominent broad absorption feature at approx. 55 keV is observed. We interpret this feature as a Cyclotron Resonance Scattering Feature (CRSF). The observed CRSF energy is one of the highest known and corresponds to a magnetic field of B approx. 4.8 x 10(exp 12) G in the scattering region. Furthermore, our data suggests an iron emission line presence, which was not reported previously for lA 1118-61 as well. Timing properties of the source, including a strong spin-up, were found to be similar to those observed by CGRO/BATSE during the previous outburst, however the broadband capabilities of RXTE reveal a more complicated energy dependency of the pulse-profile.
Research on graphite reinforced glass matrix composites
NASA Technical Reports Server (NTRS)
Bacon, J. F.; Prewo, K. M.
1977-01-01
The results of research for the origination of graphite-fiber reinforced glass matrix composites are presented. The method selected to form the composites consisted of pulling the graphite fiber through a slurry containing powdered glass, winding up the graphite fiber and the glass it picks up on a drum, drying, cutting into segments, loading the tape segment into a graphite die, and hot pressing. During the course of the work, composites were made with a variety of graphite fibers in a glass matrix.
NASA Astrophysics Data System (ADS)
Liu, Yancong; Zhan, Xianghua; Yi, Peng; Liu, Tuo; Liu, Benliang; Wu, Qiong
2018-03-01
A double-track lap cladding experiment involving gray cast iron was established to investigate the transformation mechanism of graphite phase and microstructure in a laser cladding heated region. The graphite phase and microstructure in different heated regions were observed under a microscope, and the distribution of elements in various heated regions was analyzed using an electron probe. Results show that no graphite existed in the cladding layer and in the middle and upper parts of the binding region. Only some of the undissolved small graphite were observed at the bottom of the binding region. Except the refined graphite size, the morphological characteristics of substrate graphite and graphite in the heat-affected zone were similar. Some eutectic clusters, which grew along the direction of heat flux, were observed in the heat-affected zone whose microstructure was transformed into a mixture of austenite, needle-like martensite, and flake graphite. Needle-like martensite around graphite was fine, but this martensite became sparse and coarse when it was away from graphite. Some martensite clusters appeared in the local area near the binding region, and the carbon atoms in the substrate did not diffuse into the cladding layer through laser cladding, which only affected the bonding area and the bottom of the cladding layer.
NASA Astrophysics Data System (ADS)
Takahashi, Satoko; Rodon, J.; De Gregorio-Monsalvo, I.; Plunkett, A.
2017-06-01
The mechanisms behind the formation of sub-stellar mass sources are key to determine the populations at the low-mass end of the stellar distribution. Here, we present mapping observations toward the Lupus I cloud in C18O(2-1) and 13CO(2-1) obtained with APEX. We have identified a few velocity-coherent filaments. Each contains several substellar mass sources that are also identified in the 1.1mm continuum data (see also SOLA catalogue presentation). We will discuss the velocity structure, fragmentation properties of the identified filaments, and the nature of the detected sources.
NEW METHOD OF GRAPHITE PREPARATION
Stoddard, S.D.; Harper, W.T.
1961-08-29
BS>A method is described for producing graphite objects comprising mixing coal tar pitch, carbon black, and a material selected from the class comprising raw coke, calcined coke, and graphite flour. The mixture is placed in a graphite mold, pressurized to at least 1200 psi, and baked and graphitized by heating to about 2500 deg C while maintaining such pressure. (AEC)
Observations of the May 1979 outburst of Centaurus X-4
NASA Technical Reports Server (NTRS)
Blair, W. P.; Raymand, J. C.; Dupree, A. K.
1982-01-01
The IUE spectra of the X-ray transient/X-ray burst source Cen X-4 at three intervals during the peak and decline of the May 1979 transient event were studied. The spectrum is characterized by a blue continuum and strong emission lines of N V lambda 1240, Si IV lambda 1398 and C IV lambda 1550. The origin of these emission components in the context of an X-ray dwarf nova model is investigated. It is suggested that an accretion disk plays a prominent role in the generation of the continuum emission and that X-ray heating of the accretion disk and the companion star may be important in the formation of the emission lines.
Microwave continuum measurements and estimates of mass loss rates for cool giants and supergiants
NASA Technical Reports Server (NTRS)
Drake, S. A.; Linsky, J. L.
1986-01-01
Attention is given to the results of a sensitive, 6-cm radio continuum survey conducted with the NRAO VLA of 39 of the nearest single cool giants and supergiants of G0-M5 spectral types; the survey was conducted in order to obtain accurate measurements of the mass loss rates of ionized gas for a representative sample of such stars, in order to furnish constraints for, and a better understanding of, the total mass loss rates. The inferred angular diameters for the cool giant sources are noted to be twice as large as photospheric angular diameters, implying that these stars are surrounded by extended chromospheres containing warm partially ionized gas.
NASA Technical Reports Server (NTRS)
Lambrecht, Walter R. L.
1992-01-01
The goals of the research were to provide a fundamental science basis for why the bonding of Cu to graphite is weak, to critically evaluate the previous analysis of the wetting studies with particular regard to the values used for the surface energies of Cu and graphite, and to make recommendations for future experiments or other studies which could advance the understanding and solution of this technological problem. First principles electronic structure calculations were used to study the problem. These are based on density functional theory in the local density approximation and the use of the linear muffin-tin orbital band structure method. Calculations were performed for graphite monolayers, single crystal graphite with the hexagonal AB stacking, bulk Cu, Cu(111) surface, and Cu/graphite superlattices. The study is limited to the basal plane of graphite because this is the graphite plane exposed to Cu and graphite surface energies and combined with the measured contact angles to evaluate the experimental adhesion energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferralis, N.; Diehl, R.D.; Pussi, K.
2004-12-15
Potassium adsorption on graphite has been a model system for the understanding of the interaction of alkali metals with surfaces. The geometries of the (2x2) structure of potassium on both single-crystal graphite (SCG) and highly oriented pyrolytic graphite (HOPG) were investigated for various preparation conditions for graphite temperatures between 55 and 140 K. In all cases, the geometry was found to consist of K atoms in the hollow sites on top of the surface. The K-graphite average perpendicular spacing is 2.79{+-}0.03 A , corresponding to an average C-K distance of 3.13{+-}0.03 A , and the spacing between graphite planes ismore » consistent with the bulk spacing of 3.35 A. No evidence was observed for a sublayer of potassium. The results of dynamical LEED studies for the clean SCG and HOPG surfaces indicate that the surface structures of both are consistent with the truncated bulk structure of graphite.« less
An Electron Microscopy Study of Graphite Growth in Nodular Cast Irons
NASA Astrophysics Data System (ADS)
Laffont, L.; Jday, R.; Lacaze, J.
2018-04-01
Growth of graphite during solidification and high-temperature solid-state transformation has been investigated in samples cut out from a thin-wall casting which solidified partly in the stable (iron-graphite) and partly in the metastable (iron-cementite) systems. Transmission electron microscopy has been used to characterize graphite nodules in as-cast state and in samples having been fully graphitized at various temperatures in the austenite field. Nodules in the as-cast material show a twofold structure characterized by an inner zone where graphite is disoriented and an outer zone where it is well crystallized. In heat-treated samples, graphite nodules consist of well-crystallized sectors radiating from the nucleus. These observations suggest that the disoriented zone appears because of mechanical deformation when the liquid contracts during its solidification in the metastable system. During heat-treatment, the graphite in this zone recrystallizes. In turn, it can be concluded that nodular graphite growth mechanism is the same during solidification and solid-state transformation.
NASA Astrophysics Data System (ADS)
Lin, Na; Jia, Zhe; Wang, Zhihui; Zhao, Hui; Ai, Guo; Song, Xiangyun; Bai, Ying; Battaglia, Vincent; Sun, Chengdong; Qiao, Juan; Wu, Kai; Liu, Gao
2017-10-01
The structure degradation of commercial Lithium-ion battery (LIB) graphite anodes with different cycling numbers and charge rates was investigated by focused ion beam (FIB) and scanning electron microscopy (SEM). The cross-section image of graphite anode by FIB milling shows that cracks, resulted in the volume expansion of graphite electrode during long-term cycling, were formed in parallel with the current collector. The crack occurs in the bulk of graphite particles near the lithium insertion surface, which might derive from the stress induced during lithiation and de-lithiation cycles. Subsequently, crack takes place along grain boundaries of the polycrystalline graphite, but only in the direction parallel with the current collector. Furthermore, fast charge graphite electrodes are more prone to form cracks since the tensile strength of graphite is more likely to be surpassed at higher charge rates. Therefore, for LIBs long-term or high charge rate applications, the tensile strength of graphite anode should be taken into account.
Reimers, Jeffrey R.; Panduwinata, Dwi; Visser, Johan; Chin, Yiing; Tang, Chunguang; Goerigk, Lars; Ford, Michael J.; Sintic, Maxine; Sum, Tze-Jing; Coenen, Michiel J. J.; Hendriksen, Bas L. M.; Elemans, Johannes A. A. W.; Hush, Noel S.; Crossley, Maxwell J.
2015-01-01
Modern quantum chemical electronic structure methods typically applied to localized chemical bonding are developed to predict atomic structures and free energies for meso-tetraalkylporphyrin self-assembled monolayer (SAM) polymorph formation from organic solution on highly ordered pyrolytic graphite surfaces. Large polymorph-dependent dispersion-induced substrate−molecule interactions (e.g., −100 kcal mol−1 to −150 kcal mol−1 for tetratrisdecylporphyrin) are found to drive SAM formation, opposed nearly completely by large polymorph-dependent dispersion-induced solvent interactions (70–110 kcal mol−1) and entropy effects (25–40 kcal mol−1 at 298 K) favoring dissolution. Dielectric continuum models of the solvent are used, facilitating consideration of many possible SAM polymorphs, along with quantum mechanical/molecular mechanical and dispersion-corrected density functional theory calculations. These predict and interpret newly measured and existing high-resolution scanning tunnelling microscopy images of SAM structure, rationalizing polymorph formation conditions. A wide range of molecular condensed matter properties at room temperature now appear suitable for prediction and analysis using electronic structure calculations. PMID:26512115
Fundamental analysis of the failure of polymer-based fiber reinforced composites
NASA Technical Reports Server (NTRS)
Kanninen, M. F.; Rybicki, E. F.; Griffith, W. I.; Broek, D.
1976-01-01
A mathematical model is described which will permit predictions of the strength of fiber reinforced composites containing known flaws to be made from the basic properties of their constituents. The approach was to embed a local heterogeneous region (LHR) surrounding the crack tip into an anisotropic elastic continuum. The model should (1) permit an explicit analysis of the micromechanical processes involved in the fracture process, and (2) remain simple enough to be useful in practical computations. Computations for arbitrary flaw size and orientation under arbitrary applied load combinations were performed from unidirectional composites with linear elastic-brittle constituent behavior. The mechanical properties were nominally those of graphite epoxy. With the rupture properties arbitrarily varied to test the capability of the model to reflect real fracture modes in fiber composites, it was shown that fiber breakage, matrix crazing, crack bridging, matrix-fiber debonding, and axial splitting can all occur during a period of (gradually) increasing load prior to catastrophic fracture. The computations reveal qualitatively the sequential nature of the stable crack process that precedes fracture.
NASA Astrophysics Data System (ADS)
Ezzedine, S. M.; Vorobiev, O.; Herbold, E. B.; Glenn, L. A.; Antoun, T.
2013-12-01
This work is focused on analysis of near-field measurements (up to 100 m from the source) recorded during Source Physics Experiments in a granitic formation. One of the main goals of these experiments is to investigate the possible mechanisms of shear wave generation in the nonlinear source region. SPE experiments revealed significant tangential motion (up to 30 % of the magnitude in the radial direction) at many locations. Furthermore, azimuthal variations in radial velocities were also observed which cannot be generated by a spherical source in isotropic materials. Understanding the nature of this non-radial motion is important for discriminating between the natural seismicity and underground explosions signatures. Possible mechanisms leading to such motion include, but not limited to, heterogeneities in the rock such as joints, faults and geologic layers as well as surface topography and vertical motion at the surface caused by material spall and gravity. We have performed a three dimensional computational studies considering all these effects. Both discrete and continuum methods have been employed to model heterogeneities. In the discrete method, the joints and faults were represented by cohesive contact elements. This enables us to examine various friction laws at the joints which include softening, dilatancy, water saturation and rate-dependent friction. Yet this approach requires the mesh to be aligned with joints, which may present technical difficulties in three dimensions when multiple non-persistent joints are present. In addition, the discrete method is more computationally expensive. The continuum approach assumes that the joints are stiff and the dilatancy and shear softening can be neglected. In this approach, the joints are modeled as weakness planes within the material, which are imbedded into and pass through many finite elements. The advantage of this approach is that it requires neither sophisticated meshing algorithms nor contact detection algorithm. It is also suitable for evaluating the bounds of possible shear motion due to uncertainties in the joints distribution. Details of this uncertainty quantification study are presented in a separate abstract (Vorobiev, et.al). In the present work using both the continuum and the discrete approaches we study the effects of the surface spall, in-situ stress and joint orientation on the observed near-field motion. Three dimensional numerical simulations are performed for different burial depths and yields to investigate scalability of both radial and shear motions. The motion calculated in the near-field is then propagated into a far field. Results of the far field study are presented in an accompanied work (Pitarka, et al). This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Friction and wear of carbon-graphite materials for high-energy brakes
NASA Technical Reports Server (NTRS)
Bill, R. C.
1978-01-01
Caliper type brake simulation experiments were conducted on seven different carbon graphite materials formulations against a steel disk material and against a carbon graphite disk material. The effects of binder level, boron carbide (B4C) additions, SiC additions, graphite fiber additions, and graphite cloth reinforcement on friction and wear behavior were investigated. Reductions in binder level, additions of B4C, and additions of SiC each resulted in increased wear. The wear rate was not affected by the addition of graphite fibers. Transition to severe wear and high friction was observed in the case of graphite-cloth-reinforced carbon sliding against a disk of similar composition. The transition was related to the disruption of a continuous graphite shear film that must form on the sliding surfaces if low wear is to occur.
NASA Astrophysics Data System (ADS)
Wardlow, Julie L.; Simpson, J. M.; Smail, Ian; Swinbank, A. M.; Blain, A. W.; Brandt, W. N.; Chapman, S. C.; Chen, Chian-Chou; Cooke, E. A.; Dannerbauer, H.; Gullberg, B.; Hodge, J. A.; Ivison, R. J.; Knudsen, K. K.; Scott, Douglas; Thomson, A. P.; Wei, A.; van der Werf, P. P.
2018-06-01
We present ALMA observations of the mid-J12CO emission from six single-dish selected 870-μm sources in the Extended Chandra Deep Field-South (ECDFS) and UKIDSS Ultra-Deep Survey (UDS) fields. These six single-dish submillimetre sources were selected based on previous ALMA continuum observations, which showed that each comprised a blend of emission from two or more individual submillimetre galaxies (SMGs), separated on 5-10″ scales. The six single-dish submillimetre sources targeted correspond to a total of 14 individual SMGs, of which seven have previously-measured robust optical/near-infrared spectroscopic redshifts, which were used to tune our ALMA observations. We detect CO(3-2) or CO(4-3) at z = 2.3-3.7 in seven of the 14 SMGs, and in addition serendipitously detect line emission from three gas-rich companion galaxies, as well as identify four new 3.3-mm selected continuum sources in the six fields. Joint analysis of our CO spectroscopy and existing data suggests that 64( ± 18)% of the SMGs in blended submillimetre sources are unlikely to be physically associated. However, three of the SMG fields (50%) contain new, serendipitously-detected CO-emitting (but submillimetre-faint) sources at similar redshifts to the 870-μm selected SMGs we targeted. These data suggest that the SMGs inhabit overdense regions, but that these are not sufficiently overdense on ˜100 kpc scales to influence the source blending given the short lifetimes of SMGs. We find that 21 ± 12% of SMGs have spatially-distinct and kinematically-close companion galaxies (˜8-150 kpc and ≲ 300 km s-1), which may have enhanced their star-formation via gravitational interactions.
Inelastic X-ray Scattering Studies of Plasmons in Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Upton, M. H.; Casa, D.; Gog, T.; Misewich, J.; Hill, J. P.; Lowndes, D.; Eres, G.
2006-03-01
We report preliminary inelastic x-ray scattering measurements of the plasmon dispersions in oriented multi- and single- walled carbon nanotubes (M- and S- WCNT) and compare them to the plasmon dispersion in graphite. Two plasmon bands are observed dispersing along the nanotubes' axes: the π and π+σ plasmon bands. The π+σ plasmon band exhibits an apparent systematic variation in energy. Specifically, it has a lower energy in MWCNT than in graphite, and a still lower energy in SWCNT. The energy of the π+σ plasmon band is determined by the plasma frequency of the material, which is proportional to the square root of the electron density. We postulate that the energy shift is a result of a surface effect -- the electron wave function extends past the surface, lowering the average electron density in the bulk. The higher surface-to-volume ratio of the mostly SW sample would then lower the plasmon frequency with respect to the MWCNT sample and graphite. Thus, the systematic variation in plasmon frequency may be explained by a lowering of the net electron density by the surfaces in S- and M-WCNT. Work performed at BNL and the Advanced Photon Source was supported by the US DOE under contracts No. DE-AC02-98CH10886 and No. W-31-109-Eng-38 respectively.
Thermal Output of WK-Type Strain Gauges on Various Materials at Cryogenic and Elevated Temperatures
NASA Technical Reports Server (NTRS)
Kowalkowski, Matthew K.; Rivers, H. Kevin; Smith, Russell W.
1998-01-01
Strain gage apparent strain (thermal output) is one of the largest sources of error associated with the measurement of strain when temperatures and mechanical loads are varied. In this paper, experimentally determined apparent strains of WK-type strain gages, installed on both metallic and composite-laminate materials of various lay-ups and resin systems for temperatures ranging from -450 F to 230 F are presented. For the composite materials apparent strain in both the 0 ply orientation angle and the 90 ply orientation angle were measured. Metal specimens tested included: aluminum-lithium alloy (Al-LI 2195-T87), aluminum alloy (Al 2219-T87), and titanium alloy. Composite materials tested include: graphite-toughened-epoxy (IM7/997- 2), graphite-bismaleimide (IM7/5260), and graphite-K3 (IM7/K3B). The experimentally determined apparent strain data are curve fit with a fourth-order polynomial for each of the materials studied. The apparent strain data and the polynomials that are fit to the data are compared with those produced by the strain gage manufacturer, and the results and comparisons are presented. Unacceptably high errors between the manufacture's data and the experimentally determined data were observed (especially at temperatures below - 270-F).
Pasteris, J.D.; Chou, I.-Ming
1998-01-01
We used Raman microsampling spectroscopy (RMS) to determine the degree of crystallinity of minute (2-15 ??m) graphite inclusions in quartz in two sets of samples: experimentally reequilibrated fluid inclusions in a natural quartz grain and biotite-bearing paragneisses from the KTB deep drillhole in SE Germany. Our sequential reequilibration experiments at 725??C on initially pure CO2 inclusions in a quartz wafer and the J. Krautheim (1993) experiments at 900-1100??C on organic compounds heated in gold or platinum capsules suggest that, at a given temperature, (1) fluid-deposited graphite will have a lower crystallinity than metamorphosed organic matter and (2) that the crystallinity of fluid-deposited graphite is affected by the composition of the fluid from which it was deposited. We determined that the precipitation of more-crystalline graphite is favored by lower fH2 (higher fO2), and that the crystallinity of graphite is established by the conditions (including gas fugacities) that pertain as the fluid first reaches graphite saturation. Graphite inclusions within quartz grains in the KTB rocks show a wide range in crystallinity index, reflecting three episodes of carbon entrapment under different metamorphic conditions. Isolated graphite inclusions have the spectral properties of totally ordered, completely crystalline graphite. Such crystallinity suggests that the graphite was incorporated from the surrounding metasedimentary rocks, which underwent metamorphism at upper amphibolite-facies conditions. Much of the fluid-deposited graphite in fluid inclusions, however, shows some spectral disorder. The properties of that graphite resemble those of experimental precipitates at temperatures in excess of 700??C and at elevated pressures, suggesting that the inclusions represent precipitates from C-O-H fluids trapped under conditions near those of peak metamorphism at the KTB site. In contrast, graphite that is intimately associated with chlorite and other (presumably low-temperature) silicates in inclusions is highly disordered and spectrally resembles kerogens. This graphite probably was deposited during later greenschist-facies retrograde metamorphism at about 400-500??C. The degree of crystallinity of fluid-deposited graphite is shown to be a much more complex function of temperature than is the crystallinity of metamorphic graphite. To some extent, experiments can provide temperature-calibration of the crystallinity index. However, the difference in time scales between experimental runs and geologic processes makes it difficult to infer specific temperatures for naturally precipitated graphite. Copyright ?? 1998 Elsevier Science Ltd.
Zhang, Guangyu; Jiang, Xin; Wang, Enge
2003-04-18
We report the synthesis of tubular graphite cones using a chemical vapor deposition method. The cones have nanometer-sized tips, micrometer-sized roots, and hollow interiors with a diameter ranging from about 2 to several tens of nanometers. The cones are composed of cylindrical graphite sheets; a continuous shortening of the graphite layers from the interior to the exterior makes them cone-shaped. All of the tubular graphite cones have a faceted morphology. The constituent graphite sheets have identical chiralities of a zigzag type across the entire diameter, imparting structural control to tubular-based carbon structures. The tubular graphite cones have potential for use as tips for scanning probe microscopy, but with greater rigidity and easier mounting than currently used carbon nanotubes.
Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets
Makowiecki, D.M.; Ramsey, P.B.; Juntz, R.S.
1995-07-04
An improved method is disclosed for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite`s high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding. 11 figs.
Mineral resource of the month: graphite
,
2008-01-01
The article presents facts about graphite ideal for industrial applications. Among the characteristics of graphite are its metallic luster, softness, perfect basal cleavage and electrical conductivity. Batteries, brake linings and powdered metals are some of the products that make use of graphite. It attributes the potential applications for graphite in high-technology fields to innovations in thermal technology and acid-leaching techniques.
ERIC Educational Resources Information Center
Farahzad, Farzaneh
This paper discusses factors contributing to differing translations of the same source text, arguing that translation occurs on a continuum rather than having absolute criteria and procedures. Issues examined include the formal properties of the text, the text's "invariant core of meaning," stability in the semantic elements of the text, the text…
Air Quality Measurements for Science and Policy
Air quality measurements and the methods used to conduct them are vital to advancing our knowledge of the source-to-receptor-to-health effects continuum1-3. This information then forms the basis for evaluating and managing air quality to protect human health and welfa...
Nucleation and Growth of Graphite in Eutectic Spheroidal Cast Iron: Modeling and Testing
NASA Astrophysics Data System (ADS)
Carazo, Fernando D.; Dardati, Patricia M.; Celentano, Diego J.; Godoy, Luis A.
2016-06-01
A new model of graphite growth during the continuous cooling of eutectic spheroidal cast iron is presented in this paper. The model considers the nucleation and growth of graphite from pouring to room temperature. The microstructural model of solidification accounts for the eutectic as divorced and graphite growth rate as a function of carbon gradient at the liquid in contact with the graphite. In the solid state, the microstructural model takes into account three stages for graphite growth, namely (1) from the end of solidification to the upper bound of intercritical stable eutectoid, (2) during the intercritical stable eutectoid, and (3) from the lower bound of intercritical stable eutectoid to room temperature. The micro- and macrostructural models are coupled using a sequential multiscale approach. Numerical results for graphite fraction and size distribution are compared with experimental results obtained from a cylindrical cup, in which the graphite volumetric fraction and size distribution were obtained using the Schwartz-Saltykov approach. The agreements between the experimental and numerical results for the fraction of graphite and the size distribution of spheroids reveal the importance of numerical models in the prediction of the main aspects of graphite in spheroidal cast iron.
Graphitized-carbon fiber/carbon char fuel
Cooper, John F [Oakland, CA
2007-08-28
A method for recovery of intact graphitic fibers from fiber/polymer composites is described. The method comprises first pyrolyzing the graphite fiber/polymer composite mixture and then separating the graphite fibers by molten salt electrochemical oxidation.
THE LICK AGN MONITORING PROJECT 2011: SPECTROSCOPIC CAMPAIGN AND EMISSION-LINE LIGHT CURVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela
2015-04-15
In the Spring of 2011 we carried out a 2.5 month reverberation mapping campaign using the 3 m Shane telescope at Lick Observatory, monitoring 15 low-redshift Seyfert 1 galaxies. This paper describes the observations, reductions and measurements, and data products from the spectroscopic campaign. The reduced spectra were fitted with a multicomponent model in order to isolate the contributions of various continuum and emission-line components. We present light curves of broad emission lines and the active galactic nucleus (AGN) continuum, and measurements of the broad Hβ line widths in mean and rms spectra. For the most highly variable AGNs wemore » also measured broad Hβ line widths and velocity centroids from the nightly spectra. In four AGNs exhibiting the highest variability amplitudes, we detect anticorrelations between broad Hβ width and luminosity, demonstrating that the broad-line region “breathes” on short timescales of days to weeks in response to continuum variations. We also find that broad Hβ velocity centroids can undergo substantial changes in response to continuum variations; in NGC 4593, the broad Hβ velocity shifted by ∼250 km s{sup −1} over a 1 month period. This reverberation-induced velocity shift effect is likely to contribute a significant source of confusion noise to binary black hole searches that use multi-epoch quasar spectroscopy to detect binary orbital motion. We also present results from simulations that examine biases that can occur in measurement of broad-line widths from rms spectra due to the contributions of continuum variations and photon-counting noise.« less
A Spectroscopic Search for Leaking Lyman Continuum at Zeta Approximately 0.7
NASA Technical Reports Server (NTRS)
Bridge, Carrie R.; Teplitz, Harry I.; Siana, Brian; Scarlata, Claudia; Rudie, Gwen C.; Colbert, James; Ferguson, Henry C.; Brown, Thomas M.; Conselice, Christopher J.; Armus, Lee;
2010-01-01
We present the results of rest-frame, UV slitless spectroscopic observations of a sample of 32 z approx. 0.7 Lyman Break Galaxy (LBG) analogs in the COSMOS field. The spectroscopic search was performed with the Solar Blind Channel (SBC) on HST. While we find no direct detections of the Lyman Continuum we achieve individual limits (3sigma) of the observed non-ionizing UV to Lyman continuum flux density ratios, f(sub nu)(1500A)/f(sub nu)(830A) of 20 to 204 (median of 73.5) and 378.7 for the stack. Assuming an intrinsic Lyman Break of 3.4 and an optical depth of Lyman continuum photons along the line of sight to the galaxy of 85% we report an upper limit for the relative escape fraction in individual galaxies of 0.02 - 0.19 and a stacked 3sigma upper limit of 0.01. We find no indication of a relative escape fraction near unity as seen in some LBGs at z approx. 3. Our UV spectra achieve the deepest limits to date at any redshift on the escape fraction in individual sources. The contrast between these z approx. 0.7 low escape fraction LBG analogs with z approx. 3 LBGs suggests that either the processes conducive to high f(sub esc) are not being selected for in the z less than or approx.1 samples or the average escape fraction is decreasing from z approx. 3 to z approx. 1. We discuss possible mechanisms which could affect the escape of Lyman continuum photons
The Lick AGN Monitoring Project 2011: Spectroscopic Campaign and Emission-line Light Curves
NASA Technical Reports Server (NTRS)
Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela; Filippenko, Alexei V.; Gates, Elinor L.; Greene, Jenny E..; Li, Weidong; Malkan, Matthew A.; Pancoast, Anna; Sand, David J.;
2016-01-01
In the Spring of 2011 we carried out a 2.5 month reverberation mapping campaign using the 3 m Shane telescope at Lick Observatory, monitoring 15 low-redshift Seyfert 1 galaxies. This paper describes the observations, reductions and measurements, and data products from the spectroscopic campaign. The reduced spectra were fitted with a multicomponent model in order to isolate the contributions of various continuum and emission-line components. We present light curves of broad emission lines and the active galactic nucleus (AGN) continuum, and measurements of the broad Hß line widths in mean and rms spectra. For the most highly variable AGNs we also measured broad H beta line widths and velocity centroids from the nightly spectra. In four AGNs exhibiting the highest variability amplitudes, we detect anticorrelations between broad H beta width and luminosity, demonstrating that the broad-line region "breathes" on short timescales of days to weeks in response to continuum variations. We also find that broad H beta velocity centroids can undergo substantial changes in response to continuum variations; in NGC 4593, the broad H beta velocity shifted by approximately 250 km s(exp -1) over a 1 month period. This reverberation-induced velocity shift effect is likely to contribute a significant source of confusion noise to binary black hole searches that use multi-epoch quasar spectroscopy to detect binary orbital motion. We also present results from simulations that examine biases that can occur in measurement of broad-line widths from rms spectra due to the contributions of continuum variations and photon-counting noise.
Structural Testing of a Stitched/Resin Film Infused Graphite-Epoxy Wing Box
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.; Bush, Harold G.
2001-01-01
The results of a series of tests conducted at the NASA Langley Research Center to evaluate the behavior of an all-composite full-scale wing box are presented. The wing box is representative of a section of a 220-passenger commercial transport aircraft wing box and was designed and constructed by The Boeing Company as part of the NASA Advanced Subsonics Technology (AST) program. The semi-span wing was fabricated from a graphite-epoxy material system with cover panels and spars held together using Kevlar stitches through the thickness. No mechanical fasteners were used to hold the stiffeners to the skin of the cover panels. Tests were conducted with and without low-speed impact damage, discrete source damage and repairs. Up-bending, down-bending and brake roll loading conditions were applied. The structure with non-visible impact damage carried 97% of Design Ultimate Load prior to failure through a lower cover panel access hole.
Structural Response and Failure of a Full-Scale Stitched Graphite-Epoxy Wing
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.; Lovejoy, Andrew E.; Bush, Harold G.
2001-01-01
Analytical and experimental results of the test for an all-composite full-scale wing box are presented. The wing box is representative of a section of a 220-passenger commercial transport aircraft wing box and was designed and constructed by The Boeing Company as part of the NASA Advanced Subsonics Technology (AST) program. The semi-span wing was fabricated from a graphite-epoxy material system with cover panels and spars held together using Kevlar stitches through the thickness. No mechanical fasteners were used to hold the stiffeners to the skin of the cover panels. Tests were conducted with and without low-speed impact damage, discrete source damage and repairs. Up-bending down-bending and brake roll loading conditions were applied. The structure with nonvisible impact damage carried 97% of Design Ultimate Load prior to failure through a lower cover panel access hole. Finite element and experimental results agree for the global response of the structure.
NASA Technical Reports Server (NTRS)
Papazian, Peter B.; Perala, Rodney A.; Curry, John D.; Lankford, Alan B.; Keller, J. David
1988-01-01
Using three different current injection methods and a simple voltage probe, transfer impedances for Solid Rocket Motor (SRM) joints, wire meshes, aluminum foil, Thorstrand and a graphite composite motor case were measured. In all cases, the surface current distribution for the particular current injection device was calculated analytically or by finite difference methods. The results of these calculations were used to generate a geometric factor which was the ratio of total injected current to surface current density. The results were validated in several ways. For wire mesh measurements, results showed good agreement with calculated results for a 14 by 18 Al screen. SRM joint impedances were independently verified. The filiment wound case measurement results were validated only to the extent that their curve shape agrees with the expected form of transfer impedance for a homogeneous slab excited by a plane wave source.
NASA Astrophysics Data System (ADS)
Popescu, C.; Dorcioman, G.; Bita, B.; Besleaga, C.; Zgura, I.; Himcinschi, C.; Popescu, A. C.
2016-12-01
Thin films of carbon were synthesized by ns pulsed laser deposition in vacuum on silicon substrates, starting from graphite targets. Further on, the films were irradiated with a picosecond laser source emitting in visible at 532 nm. After tuning of laser parameters, we obtained a film surface covered by laser induced periodical surface structures (LIPSS). They were investigated by optical, scanning electron and atomic force microscopy. It was observed that changing the irradiation angle influences the LIPSS covered area. At high magnification it was revealed that the LIPSS pattern was quite complex, being composed of other small LIPSS islands, interconnected by bridges of nanoparticles. Raman spectra for the non-irradiated carbon films were typical for a-C type of diamond-like carbon, while the LIPSS spectra were characteristic to nano-graphite. The pristine carbon film was hydrophilic, while the LIPSS covered film surface was hydrophobic.
Capacitance-Assisted Sustainable Electrochemical Carbon Dioxide Mineralisation.
Lamb, Katie J; Dowsett, Mark R; Chatzipanagis, Konstantinos; Scullion, Zhan Wei; Kröger, Roland; Lee, James D; Aguiar, Pedro M; North, Michael; Parkin, Alison
2018-01-10
An electrochemical cell comprising a novel dual-component graphite and Earth-crust abundant metal anode, a hydrogen producing cathode and an aqueous sodium chloride electrolyte was constructed and used for carbon dioxide mineralisation. Under an atmosphere of 5 % carbon dioxide in nitrogen, the cell exhibited both capacitive and oxidative electrochemistry at the anode. The graphite acted as a supercapacitive reagent concentrator, pumping carbon dioxide into aqueous solution as hydrogen carbonate. Simultaneous oxidation of the anodic metal generated cations, which reacted with the hydrogen carbonate to give mineralised carbon dioxide. Whilst conventional electrochemical carbon dioxide reduction requires hydrogen, this cell generates hydrogen at the cathode. Carbon capture can be achieved in a highly sustainable manner using scrap metal within the anode, seawater as the electrolyte, an industrially relevant gas stream and a solar panel as an effective zero-carbon energy source. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Evaluation of the Structural Response and Failure of a Full-Scale Stitched Graphite-Epoxy Wing
NASA Astrophysics Data System (ADS)
Jegley, Dawn C.; Bush, Harold G.; Lovejoy, Andrew E.
2001-01-01
Analytical and experimental results for an all-composite full-scale wing box are presented. The wing box is representative of a section of a 220-passenger commercial transport aircraft wing box and was designed and constructed by The Boeing Company as part of the NASA Advanced Subsonics Technology (AST) program. The semi-span wing was fabricated from a graphite-epoxy material system with cover panels and spars held together using Kevlar stitches through the thickness. No mechanical fasteners were used to hold the stiffeners to the skin of the cover panels. Tests were conducted with and without low-speed impact damage, discrete source damage and repairs. Upbending, down-bending and brake roll loading conditions were applied. The structure with nonvisible impact damage carried 97% of Design Ultimate Load prior to failure through a lower cover panel access hole. Finite element and experimental results agree for the global response of the structure.
NASA Astrophysics Data System (ADS)
Feng, Tong; Liao, Wenli; Li, Zhongbin; Sun, Lingtao; Shi, Dongping; Guo, Chaozhong; Huang, Yu; Wang, Yi; Cheng, Jing; Li, Yanrong; Diao, Qizhi
2017-11-01
Large-scale production of active and stable porous carbon catalysts for oxygen reduction reaction (ORR) from protein-rich biomass became a hot topic in fuel cell technology. Here, we report a facile strategy for synthesis of nitrogen-doped porous nanocarbons by means of a simple two-step pyrolysis process combined with the activation of zinc chloride and acid-treatment process, in which kidney bean via low-temperature carbonization was preferentially adopted as the only carbon-nitrogen sources. The results show that this carbon material exhibits excellent ORR electrocatalytic activity, and higher durability and methanol-tolerant property compared to the state-of-the-art Pt/C catalyst for the ORR, which can be mainly attributed to high graphitic-nitrogen content, high specific surface area, and porous characteristics. Our results can encourage the synthesis of high-performance carbon-based ORR electrocatalysts derived from widely-existed natural biomass.
Stability of boron-doped graphene/copper interface: DFT, XPS and OSEE studies
NASA Astrophysics Data System (ADS)
Boukhvalov, D. W.; Zhidkov, I. S.; Kukharenko, A. I.; Slesarev, A. I.; Zatsepin, A. F.; Cholakh, S. O.; Kurmaev, E. Z.
2018-05-01
Two different types of boron-doped graphene/copper interfaces synthesized using two different flow rates of Ar through the bubbler containing the boron source were studied. X-ray photoelectron spectra (XPS) and optically stimulated electron emission (OSEE) measurements have demonstrated that boron-doped graphene coating provides a high corrosion resistivity of Cu-substrate with the light traces of the oxidation of carbon cover. The density functional theory calculations suggest that for the case of substitutional (graphitic) boron-defect only the oxidation near boron impurity is energetically favorable and creation of the vacancies that can induce the oxidation of copper substrate is energetically unfavorable. In the case of non-graphitic boron defects oxidation of the area, a nearby impurity is metastable that not only prevent oxidation but makes boron-doped graphene. Modeling of oxygen reduction reaction demonstrates high catalytic performance of these materials.
Graphite fiber/copper matrix composites for space power heat pipe fin applications
NASA Astrophysics Data System (ADS)
McDanels, David L.; Baker, Karl W.; Ellis, David L.
1991-01-01
High specific thermal conductivity (thermal conductivity divided by density) is a major design criterion for minimizing system mass for space power systems. For nuclear source power systems, graphite fiber reinforced copper matrix (Gr/Cu) composites offer good potential as a radiator fin material operating at service temperatures above 500 K. Specific thermal conductivity in the longitudinal direction is better than beryllium and almost twice that of copper. The high specific thermal conductivity of Gr/Cu offers the potential of reducing radiator mass by as much as 30 percent. Gr/Cu composites also offer the designer a range of available properties for various missions and applications. The properties of Gr/Cu are highly anisotropic. Longitudinal elastic modulus is comparable to beryllium and about three times that of copper. Thermal expansion in the longitudinal direction is near zero, while it exceeds that of copper in the transverse direction.
NASA Astrophysics Data System (ADS)
Lei, Yun; Chen, Feifei; Li, Rong; Xu, Jun
2014-07-01
In this experiment, flake graphite (<30 μm) was prepared as raw materials. Graphite oxide is prepared with Hummers method by low temperature, middle temperature and high temperature, and further treated with super-sonic oscillation to get graphene oxide. Graphene-zinc sulfide composites were synthesized through a simple solvothermal method using thiourea or sodium sulfide as sulfur source in the ethylene glycol or ethylenediamine, respectively. The products were characterized by X-ray and SEM, and analyzed by the transient photocurrent response and electrochemical impedance spectra. The results indicate that the properties of graphene-zinc sulfide composites prepared with thiourea in ethylene glycol are superior to those of blank-ZnS and composites prepared with sodium sulfide and ethylenediamine, which is attributed to electron capture and transfer ability of graphene resulting in a more efficient separation of the photoexcited charge carriers from ZnS-graphene composites.
On thermal stress failure of the SNAP-19A RTG heat shield
NASA Technical Reports Server (NTRS)
Pitts, W. C.; Anderson, L. A.
1974-01-01
Results of a study on thermal stress problems in an amorphous graphite heat shield that is part of the launch-abort protect system for the SNAP-19A radio-isotope thermoelectric generators (RTG) that will be used on the Viking Mars Lander are presended. The first result is from a thermal stress analysis of a full-scale RTG heat source that failed to survive a suborbital entry flight test, possibly due to thermal stress failure. It was calculated that the maximum stress in the heat shield was only 50 percent of the ultimate strength of the material. To provide information on the stress failure criterion used for this calculation, some heat shield specimens were fractured under abort entry conditions in a plasma arc facility. It was found that in regions free of stress concentrations the POCO graphite heat shield material did fracture when the local stress reached the ultimate uniaxial stress of the material.
NASA Astrophysics Data System (ADS)
Pavliuk, A. O.; Zagumennov, V. S.; Kotlyarevskiy, S. G.; Bespala, E. V.
2018-01-01
The problems of accumulation of nuclear fuel spills in the graphite stack in the course of operation of uranium-graphite nuclear reactors are considered. The results of thermodynamic analysis of the processes in the graphite stack at dehydration of a technological channel, fuel element shell unsealing and migration of fission products, and activation of stable nuclides in structural elements of the reactor and actinides inside the graphite moderator are given. The main chemical reactions and compounds that are produced in these modes in the reactor channel during its operation and that may be hazardous after its shutdown and decommissioning are presented. Thermodynamic simulation of the equilibrium composition is performed using the specialized code TERRA. The results of thermodynamic simulation of the equilibrium composition in different cases of technological channel dehydration in the course of the reactor operation show that, if the temperature inside the active core of the nuclear reactor increases to the melting temperature of the fuel element, oxides and carbides of nuclear fuel are produced. The mathematical model of the nonstationary heat transfer in a graphite stack of a uranium-graphite reactor in the case of the technological channel dehydration is presented. The results of calculated temperature evolution at the center of the fuel element, the replaceable graphite element, the air gap, and in the surface layer of the block graphite are given. The numerical results show that, in the case of dehydration of the technological channel in the uranium-graphite reactor with metallic uranium, the main reaction product is uranium dioxide UO2 in the condensed phase. Low probability of production of pyrophoric uranium compounds (UH3) in the graphite stack is proven, which allows one to disassemble the graphite stack without the risk of spontaneous graphite ignition in the course of decommissioning of the uranium-graphite nuclear reactor.
Electrochemical treatment of evaporated residue of soak liquor generated from leather industry.
Boopathy, R; Sekaran, G
2013-09-15
The organic and suspended solids present in soak liquor, generated from leather industry, demands treatment. The soak liquor is being segregated and evaporated in solar evaporation pans/multiple effect evaporator due to non availability of viable technology for its treatment. The residue left behind in the pans/evaporator does not carry any reuse value and also faces disposal threat due to the presence of high concentration of sodium chloride, organic and bacterial impurities. In the present investigation, the aqueous evaporated residue of soak liquor (ERSL) was treated by electrochemical oxidation. Graphite/graphite and SS304/graphite systems were used in electrochemical oxidation of organics in ERSL. Among these, graphite/graphite system was found to be effective over SS304/graphite system. Hence, the optimised conditions for the electrochemical oxidation of organics in ERSL using graphite/graphite system was evaluated by response surface methodology (RSM). The mass transport coefficient (km) was calculated based on pseudo-first order rate kinetics for both the electrode systems (graphite/graphite and SS304/graphite). The thermodynamic properties illustrated the electrochemical oxidation was exothermic and non-spontaneous in nature. The calculated specific energy consumption at the optimum current density of 50 mA cm(-2) was 0.41 kWh m(-3) for the removal of COD and 2.57 kWh m(-3) for the removal of TKN. Copyright © 2013 Elsevier B.V. All rights reserved.
AGC-2 Graphite Pre-irradiation Data Package
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Swank; Joseph Lord; David Rohrbaugh
2010-08-01
The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterizedmore » prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.« less
Preparation and Characterization of Graphite Waste/CeO2 Composites
NASA Astrophysics Data System (ADS)
Kusrini, E.; Utami, C. S.; Nasruddin; Prasetyanto, E. A.; Bawono, Aji A.
2018-03-01
In this research, the chemical modification of graphite waste with CeO2 was developed and characterized. Graphite waste was pretreated with mechanical to obtain the size 200 mesh (75 μm), and thermal methods at 110°C oven for 6 hours. Here, we demonstrate final properties of graphite before modification (GBM), activated graphite (GA) and graphite/CeO2 composite with variation of 0.5, 1 and 2 g of CeO2 (G0.5; G1; G2). The effect of CeO2 concentration was observed. The presence of cerium in modified graphite samples (G0.5; G1; G2) were analyzed using SEM-EDX. The results show that the best surface area was found in G2 is 26.82 m2/g. The presence of CeO2 onto graphite surface does not significantly increase the surface area of composites.
Monolithic porous graphitic carbons obtained through catalytic graphitization of carbon xerogels
NASA Astrophysics Data System (ADS)
Kiciński, Wojciech; Norek, Małgorzata; Bystrzejewski, Michał
2013-01-01
Pyrolysis of organic xerogels accompanied by catalytic graphitization and followed by selective-combustion purification was used to produce porous graphitic carbons. Organic gels impregnated with iron(III) chloride or nickel(II) acetate were obtained through polymerization of resorcinol and furfural. During the pyrolysis stage graphitization of the gel matrix occurs, which in turn develops mesoporosity of the obtained carbons. The evolution of the carbon into graphitic structures is strongly dependent on the concentrations of the transition metal. Pyrolysis leads to monoliths of carbon xerogel characterized by substantially enhanced mesoporosity resulting in specific surface areas up to 400 m2/g. Removal of the amorphous carbon by selective-combustion purification reduces the xerogels' mesoporosity, occasionally causing loss of their mechanical strength. The graphitized carbon xerogels were investigated by means of SEM, XRD, Raman scattering, TG-DTA and N2 physisorption. Through this procedure well graphitized carbonaceous materials can be obtained as bulk pieces.
Friction and wear of carbon-graphite materials for high energy brakes
NASA Technical Reports Server (NTRS)
Bill, R. C.
1975-01-01
Caliper-type brakes simulation experiments were conducted on seven different carbon-graphite material formulations against a steel disk material and against a carbon-graphite disk material. The effects of binder level, boron carbide (B4C) additions, graphite fiber additions, and graphite cloth reinforcement on friction and wear behavior were investigated. Reductions in binder level and additions of B4C each resulted in increased wear. The wear rate was not affected by the addition of graphite fibers. Transition to severe wear and high friction was observed in the case of graphite-cloth-reinforced carbon sliding against a disk of similar composition. This transition was related to the disruption of a continuous graphite shear film that must form on the sliding surfaces if low wear is to occur. The exposure of the fiber structure of the cloth constituent is believed to play a role in the shear film disruption.
Low-Energy, Hydrogen-Free Method of Diamond Synthesis
NASA Technical Reports Server (NTRS)
Varshney, Deepak (Inventor); Morell, Gerardo (Inventor); Weiner, Brad R. (Inventor); Makarov, Vladimir (Inventor)
2013-01-01
Diamond thin films were deposited on copper substrate by the Vapor Solid (VS) deposition method using a mixture of fullerene C(sub 60) and graphite as the source material. The deposition took place only when the substrate was kept in a narrow temperature range of approximately 550-650 C. Temperatures below and above this range results in the deposition of fullerenes and other carbon compounds, respectively.
Polyarylenethioethersulfone Membranes for Fuel Cells (Postprint)
2010-01-01
The Electrochemical SocietyProton exchange membrane fuel cells PEMFCs are an attrac- tive power source due to their energy efficiency and...standard in PEMFC technology.3,4 Nafion membranes have a polytetrafluoro- ethylene PTFE backbone, which provides thermal and chemical stability, and...diffusion layers to fabricate MEAs. Single-cell test (H- PEMFC ).— MEAs were positioned in a single-cell fixture with graphite blocks as current
Classroom Demonstration: Combustion of Diamond to Carbon Dioxide Followed by Reduction to Graphite
ERIC Educational Resources Information Center
Miyauchi, Takuya; Kamata, Masahiro
2012-01-01
An educational demonstration shows the combustion of carbon to carbon dioxide and then the reduction of carbon dioxide to carbon. A melee diamond is the source of the carbon and the reaction is carried out in a closed flask. The demonstration helps students to realize that diamonds are made of carbon and that atoms do not change or vanish in…
The Height of a White-Light Flare and its Hard X-Ray Sources
NASA Technical Reports Server (NTRS)
Oliveros, Juan-Carlos Martinez; Hudson, Hugh S.; Hurford, Gordon J.; Kriucker, Saem; Lin, R. P.; Lindsey, Charles; Couvidat, Sebastien; Schou, Jesper; Thompson, W. T.
2012-01-01
We describe observations of a white-light (WL) flare (SOL2011-02-24T07:35:00, M3.5) close to the limb of the Sun, from which we obtain estimates of the heights of the optical continuum sources and those of the associated hard X-ray (HXR) sources. For this purpose, we use HXR images from the Reuven Ramaty High Energy Spectroscopic Imager and optical images at 6173 Ang. from the Solar Dynamics Observatory.We find that the centroids of the impulsive-phase emissions in WL and HXRs (30 -80 keV) match closely in central distance (angular displacement from Sun center), within uncertainties of order 0".2. This directly implies a common source height for these radiations, strengthening the connection between visible flare continuum formation and the accelerated electrons. We also estimate the absolute heights of these emissions as vertical distances from Sun center. Such a direct estimation has not been done previously, to our knowledge. Using a simultaneous 195 Ang. image from the Solar-Terrestrial RElations Observatory spacecraft to identify the heliographic coordinates of the flare footpoints, we determine mean heights above the photosphere (as normally defined; tau = 1 at 5000 Ang.) of 305 +/- 170 km and 195 +/- 70 km, respectively, for the centroids of the HXR and WL footpoint sources of the flare. These heights are unexpectedly low in the atmosphere, and are consistent with the expected locations of tau = 1 for the 6173 Ang and the approx 40 keV photons observed, respectively.
NASA Astrophysics Data System (ADS)
Lee, Su-Yoon; Jeong, Ye-Jin; Chae, So-Ryong; Yeon, Kyeong-Ho; Lee, Yunkyu; Kim, Chan-Soo; Jeong, Nam-Jo; Park, Jin-Soo
2016-04-01
Performance of graphite foil electrodes coated by porous carbon black (i.e., Vulcan) was investigated in comparison with metal electrodes for reverse electrodialysis (RED) application. The electrode slurry that was used for fabrication of the porous carbon-coated graphite foil is composed of 7.2 wt% of carbon black (Vulcan X-72), 0.8 wt% of a polymer binder (polyvinylidene fluoride, PVdF), and 92.0 wt% of a mixing solvent (dimethylacetamide, DMAc). Cyclic voltammograms of both the porous carbon (i.e., Vulcan)-coated graphite foil electrode and the graphite foil electrode without Vulcan showed good reversibility in the hexacyanoferrate(III) (i.e., Fe(CN)63-) and hexacyanoferrate(II) (i.e., Fe(CN)64-) redox couple and 1 M Na2SO4 at room temperature. However, anodic and cathodic current of the Vulcan-coated graphite foil electrode was much higher than those of the graphite foil electrode. Using a bench-scale RED stack, the current-voltage polarization curve of the Vulcan-coated graphite electrode was compared to that of metal electrodes such as iridium (Ir) and platinum (Pt). From the results, it was confirmed that resistance of four different electrodes increased with the following order: the Vulcan-coated graphite foil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, Mark Christopher
2015-07-01
This report details the initial comparison of mechanical strength properties between the cylindrical nuclear-grade graphite specimens irradiated in the second Advanced Graphite Creep (AGC-2) experiment with the established baseline, or unirradiated, mechanical properties compiled in the Baseline Graphite Characterization program. The overall comparative analysis will describe the development of an appropriate test protocol for irradiated specimens, the execution of the mechanical tests on the AGC-2 sample population, and will further discuss the data in terms of developing an accurate irradiated property distribution in the limited amount of irradiated data by leveraging the considerably larger property datasets being captured in themore » Baseline Graphite Characterization program. Integrating information on the inherent variability in nuclear-grade graphite with more complete datasets is one of the goals of the VHTR Graphite Materials program. Between “sister” specimens, or specimens with the same geometry machined from the same sub-block of graphite from which the irradiated AGC specimens were extracted, and the Baseline datasets, a comprehensive body of data will exist that can provide both a direct and indirect indication of the full irradiated property distributions that can be expected of irradiated nuclear-grade graphite while in service in a VHTR system. While the most critical data will remain the actual irradiated property measurements, expansion of this data into accurate distributions based on the inherent variability in graphite properties will be a crucial step in qualifying graphite for nuclear use as a structural material in a VHTR environment.« less
Using Hyperfine Structure Limits to Characterize the Formaldehyde Maser in G32.74-0.07
NASA Astrophysics Data System (ADS)
Araya, Esteban; Nazmus Sakib, Md; Olmi, Luca; Hofner, Peter; Kurtz, Stan; Hoffman, Ian M.; Linz, Hendrik
2018-06-01
Formaldehyde (H2CO) masers are a rare variety of astrophysical masers, but they have the virtue of exclusively tracing the interiors of high-mass star forming regions. We report observations conducted with the 305m Arecibo Telescope and the Karl G. Jansky Very Large Array (VLA) of the 6 cm H2CO maser in the region of high-mass star formation G32.74-0.07. This maser is among the narrowest H2CO masers known, and thus it is an excellent candidate to study the excitation of the hyperfine components of the transition. The Arecibo and VLA results are consistent, the maser flux density observed with Arecibo is recovered in the VLA image within the rms noise of the spectra, and the fitted line widths of the two observations agree to within formal errors. Our high signal-to-noise (~7 mJy rms) and high spectral resolution (0.05 km/s) observations allow us to set strong limits on the hyperfine structure of the line. The line profile is consistent with unsaturated emission, with a maser gain of approximately 3, and an amplified background radio continuum of ~1 mJy. VLA observations confirm the presence of a continuum source at the location of the maser. The continuum source is characterized by a spectral index of +0.9 at 5 GHz, which is indicative of thermal Bremsstrahlung in the optically thick/thin transition.
Influence of graphite-alloy interactions on corrosion of Ni-Mo-Cr alloy in molten fluorides
NASA Astrophysics Data System (ADS)
Ai, Hua; Hou, Juan; Ye, Xiang-Xi; Zeng, Chao Liu; Sun, Hua; Li, Xiaoyun; Yu, Guojun; Zhou, Xingtai; Wang, Jian-Qiang
2018-05-01
In this study, the effects of graphite-alloy interaction on corrosion of Ni-Mo-Cr alloy in molten FLiNaK salt were investigated. The corrosion tests of Ni-Mo-Cr alloys were conducted in graphite crucibles, to examine the differences of test specimens in conditions of electric contact and isolated with graphite, respectively. The corrosion attack is severer with more weight loss and deeper Cr depletion layer in samples electric contact with graphite than those isolated with graphite. The occurrence of galvanic corrosion between alloy specimens and graphite container was confirmed by electrochemical measurement. The corrosion is controlled by nonelectric transfer in isolated test while electrochemical reaction accelerated corrosion in electric contact test.
The origin of epigenetic graphite: evidence from isotopes
Weis, P.L.; Friedman, I.; Gleason, J.P.
1981-01-01
Stable carbon isotope ratios measured in syngenetic graphite, epigenetic graphite, and graphitic marble suggests that syngenetic graphite forms only by the metamorphism of carbonaceous detritus. Metamorphism of calcareous rocks with carbonaceous detritus is accompanied by an exchange of carbon between the two, which may result in large changes in isotopic composition of the non-carbonate phase but does not affect the relative proportions of the two reactants in the rock. Epigenetic graphite forms only from carbonaceous material or preexisting graphite. The reactions involved are the water gas reaction (C + H2O ??? CO + H2) at 800-900??C, and the Boudouard reaction (2CO ??? C + CO2), which probably takes place at temperatures about 50-100??C lower. ?? 1982.
Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets
Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z.
2010-11-02
The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.
METHOD FOR COATING GRAPHITE WITH METALLIC CARBIDES
Steinberg, M.A.
1960-03-22
A method for producing refractory coatings of metallic carbides on graphite was developed. In particular, the graphite piece to be coated is immersed in a molten solution of 4 to 5% by weight of zirconium, titanium, or niobium dissolved in tin. The solution is heated in an argon atmosphere to above 1400 deg C, whereby the refractory metal reacts with the surface of the graphite to form a layer of metalic carbide. The molten solution is cooled to 300 to 400 deg C, and the graphite piece is removed. Excess tin is wiped from the graphite, which is then heated in vacuum to above 2300 deg C. The tin vaporizes from the graphite surface, leaving the surface coated with a tenacious layer of refractory metallic carbide.